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Editorial on the Research Topic

Probiotics and its Effects on Inflammatory and Infectious Disorders

INTRODUCTION

Human beings have evolved surrounded by a variety of microorganisms. Aside from their
presence as outer neighbors, bacteria, viruses, fungi, archaea and parasites, may also live in close
proximity inhabiting distinct ecological niches in our body, and are known as microbiota (Simon
et al., 2019). For decades, these “foreigners” were believed to have only very specific and limited
roles towards the functionality of human biological systems. However, especially with the use of
next generation sequencing (NGS), mainly targeting the largest population of living
microorganisms inhabiting different body sites, which are bacteria, our knowledge in this
field has drastically increased (Toju et al., 2020).

Currently, the microbiota of different body sites is believed to influence (or to be influenced
by) distinct biological systems, including nervous, immune and endocrine, among others, thus
directly contributing to the maintenance of healthy and disease states. Among these different
microbial niches, the gut is by far, the richest (in diversity and composition) and the most
explored in different contexts (Chen et al., 2018). However, it is not clear yet if microbial
disturbances (known as dysbiosis) are a consequence or the causative agent of inflammatory and
infectious diseases. Despite the ongoing advances in exploring microbial communities in the
aforementioned scenarios, the therapeutic potential of microorganisms have been explored for
centuries in human culture. Either as fermented foods (with unknown amounts and composition
of microorganisms) or using known species of microbes at specific concentrations, such
approach aims at modulating microbial composition and diversity, mainly gut microbiota,
thus reestablishing microbial balance and constraining inflammation. Although some beneficial
properties of probiotics have been explored in different contexts (Sales-Campos et al., 2019), the
ongoing amount of research identifying the therapeutic potential of known/unknown
microorganisms, used alone or in combination with classical therapies, may represent a new
frontier in the field of microbiota manipulation, thus leading to a more favorable outcome of
infectious and inflammatory diseases.

PROBIOTICS IN INFLAMMATORY DISORDERS

The mutual contribution between microbiota, mainly from Gastrointestinal tract (GIT), and
different biological systems dictates the outcome of health and disease. In this view, Curciarello
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et al. investigate the potential anti-inflammatory effect of
Lactobacillus kefiri in patients with Inflammatory Bowel
Disease (IBD). More specifically, L. kefiri reduced the release
of IL-6 and IL-8 from inflamed biopsies. Also, for the first time,
they have reported the immunomodulatory effect of a kefir-
isolated strain, L. kefiri CIDCA 8,348, on human intestinal
tissue and primary T cells from IBD patients. Additionally,
Belo et al. investigated the potential role of surface-layer
proteins (Slp), notably SlpB from Propionibacterium
freudenreichii CIRM-BIA 129, as a modulator of inflammation
in Ulcerative colitis (UC). Mice exposed to DSS and treated with
the probiotic Lactococcus lactis NCDO 2118 expressing a
recombinant SlpB, had reduced severity of colitis and
improved disease score, when compared to untreated mice.
Also, it constrained inflammation in diseased mice. Finally,
Savassi et al. developed a lyophilized synbiotic, to address its
effects as adjuvant treatment in mucositis. The formulation
reduced weight loss, intestinal permeability, and the intensity
of inflammation in the duodenum, ileum, and colon; besides, it
decreased the levels of pro-inflammatory cytokines. These data
suggest probiotic bacteria as promising candidates for the
treatment and prevention of GIT inflammatory diseases.

Strategies aiming at modulating the microbiota-gut-brain
axis may represent a new frontier in developing therapeutic
approaches for neuropsychiatric disorders. Wang et al.
explored the role of the psychobiotic Lactobacillus johnsonii
BS15 on the gut-brain axis to elucidate whether it could
modulate the gut environment, thus, preventing memory
dysfunction in an experimental model of psychological
stress. The psychobiotic not only enhanced the performance
of mice under stressing conditions, but also positively
modulated the hypothalamic–pituitary–adrenal axis and
memory-related functional proteins, besides maintaining gut
barrier integrity.

In general, autoimmune or immune-mediated diseases are
multifactorial disorders in which genetic mutations,
environmental factors, immune imbalance and microbiota
dysbiosis contribute to disease onset. Guo et al., reviewed the
beneficial effects of probiotics in experimental models of Systemic
Lupus Erythematosus (SLE) highlighting its impact towards a
reduction in cardiovascular and renal complications. If the
number of human studies addressing the role of probiotics in
SLE is limited, Ferro et al., showed a completely different scenario
for rheumatoid arthritis (RA). The probiotic bacteria
Lactobacillus casei seems to represent the best candidate for
application as adjuvant therapy for RA patients. In addition,
Pagnini et al., discussed the potential role of probiotics on
modulating the vitamin D pathway to treat IBD.

Obesity is marked by a low grade chronic inflammation and
dysbiosis, and the review submitted by Maioli et al., explores the
role of Faecalibacterium prausnitzii as a potential treatment and a
putative biomarker in this scenario.

Liver inflammation, as a consequence of alcohol consumption,
can evolve to more severe forms of liver damage, including cirrhosis
and hepatocarcinoma, where such disturbances can be generically
described as alcoholic liver disease (ALD). Also, ALD outcome is
drastically influenced by gut dysbiosis which suggests a role for

probiotics, in combination with classic approaches, to attenuate liver
inflammation and ameliorate disease progression, as reviewed by
Fuenzalida et al.

PROBIOTICS IN INFECTIOUS DISORDERS

Members of the genus Bifidobacterium are the first to colonize the
human gut, exerting health benefits for the host, and are also
ubiquitously used as probiotics. Shimabukuro et al. evaluated the
effect of two Bifidobacterium strains in inhibiting Porphyromonas
gingivalis interaction with host cells and biofilm formation in
periodontitis. More specifically, Bifidobacterium bifidum 1622A
showed greater potential to control periodontitis, once it has not
changed the inflammatory parameters significantly and
prevented alveolar bone loss.

Cell-free supernatants of probiotic bacteria have been
proposed lately as a safer option when compared to the use of
live bacteria. Dubey et al. explored the use of cell-free supernatant
of Lactiplantibacillus plantarum MTCC 2621 (Lp2621) to
evaluate the potential antibacterial, hemolytic, antioxidant and
wound healing properties using in vitro and in vivo approaches.
Treatment with Lp2621 gel upregulated IL-6 in the early phase of
wound healing and enhanced IL-10 expression in the later phase.
Also, this treatment improved angiogenesis, proliferation of
fibroblasts, re-epithelization, and recruitment of
polymorphonuclear leukocytes.

Probiotics have also been used to treat other infectious
disorders. The crosstalk between gut and lungs has been
proposed as a key driver for host homeostasis. For this reason,
gut microbiota dysbiosis also impacts lung function, thus
increasing the susceptibility of respiratory tract infections. In
this regard, Cruz et al. reviewed the role of prebiotics, probiotics
and synbiotics on the prevention or as therapeutic approaches to
treat bacterial, viral, fungal and helminthic infections affecting
lungs. In this context, and based on the limitations concerning
anthelmintic drugs, Saracino et al., highlighted the effects of
probiotics to elicit a type 2 immune response, and therefore,
improving the response and control against helminthic infection.

CONCLUSION

During the past years, a growing number of researchers have been
dedicating time and efforts to explore the role of probiotics in
different scenarios. Likewise, the popularization of NGS
drastically improved our knowledge about microbiota
composition and ecology, which not only facilitated the
identification of microorganisms with probiotic potential but
also the improvement of already known species. Despite this
promising scenario, the use of probiotics, especially in clinical
practice, remains strict to only a few inflammatory diseases,
mainly those affecting GIT. Unfortunately, the number of
human studies addressing the role of probiotics in infectious
diseases is even smaller. However, the rising number of
experimental studies addressing the beneficial impact of
probiotics, mainly as adjuvant therapy, and the association
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between its use and the reestablishment of gut microbial balance,
may encourage a broader use by clinicians in the aforementioned
scenarios.
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Probiotic Lactobacilli Isolated from
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Andrés Rocca2, Ivan Doldan2, Emmanuel Peton3, Santiago Brayer3, Alicia M. Sambuelli 4,
Silvina Goncalves4, Pablo Tirado4, Gustavo J. Correa5, Martín Yantorno5, Laura Garbi 5,
Guillermo H. Docena1, María de los Ángeles Serradell 6† and Cecilia I. Muglia1†*

1Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-Departamento de Ciencias Biológicas, Facultad de
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Gastroenterología Dr. Carlos Bonorino Udaondo, Ciudad Autónoma de Buenos Aires, Argentina, 3Unidad de Proctología,
Departamento de Cirugía, Hospital de Gastroenterología Dr. Carlos Bonorino Udaondo, Ciudad Autónoma de Buenos Aires,
Argentina, 4Sección de Enfermedades Inflamatorias Del Intestino, Hospital de Gastroenterología Dr. Carlos Bonorino Udaondo,
Ciudad Autónoma de Buenos Aires, Argentina, 5Área de Enfermedad Inflamatoria Intestinal, Sala de Endoscopía, Servicio de
Gastroenterología, Hospital Interzonal General de Agudos General San Martín, La Plata, Argentina, 6Cátedra de Microbiología,
Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina

Ulcerative colitis and Crohn’s disease, the two main forms of inflammatory bowel disease
(IBD), are immunologically mediated disorders. Several therapies are focused on activated
T cells as key targets. Although Lactobacillus kefiri has shown anti-inflammatory effects in
animal models, few studies were done using human mucosal T cells. The aim of this work
was to investigate the immunomodulatory effects of this bacterium on intestinal T cells from
patients with active IBD. Mucosal biopsies and surgical samples from IBD adult patients
(n � 19) or healthy donors (HC; n � 5) were used. Lamina propria mononuclear cells were
isolated by enzymatic tissue digestion, and entero-adhesive Escherichia coli-specific
lamina propria T cells (LPTC) were expanded. The immunomodulatory properties of L.
kefiri CIDCA 8348 strain were evaluated on biopsies and on anti-CD3/CD28-activated
LPTC. Secreted cytokines were quantified by ELISA, and cell proliferation and viability were
assessed by flow cytometry. We found that L. kefiri reduced spontaneous release of IL-6
and IL-8 from inflamed biopsies ex vivo. Activated LPTC from IBD patients showed low
proliferative rates and reduced secretion of TNF-α, IL-6, IFN-γ and IL-13 in the presence of
L. kefiri. In addition, L. kefiri induced an increased frequency of CD4+FOXP3+ LPTC along
with high levels of IL-10. This is the first report showing an immunomodulatory effect of L.
kefiri CIDCA 8348 on human intestinal cells from IBD patients. Understanding the
mechanisms of interaction between probiotics and immune mucosal cells may open
new avenues for treatment and prevention of IBD.
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INTRODUCTION

Inflammatory bowel disease (IBD) comprises a complex group of
chronic relapsing diseases among which the most conspicuous
are ulcerative colitis (UC) and Crohn’s disease (CD). Patients
with IBD suffer chronic inflammation of the bowel mucosa that
may affect the mucosal layer (UC) or the whole bowel wall (CD)
(Torres et al., 2017; Ungaro et al., 2017). The etiology of these
diseases is largely unknown, although factors such as diet, certain
genes related to the sensing of luminal microbes, secretion of
antimicrobial peptides and autophagy have shown to be
associated (J. S. Lee et al., 2021; Kaser and Blumberg 2011).
Changes in microbiota composition are typically observed in IBD
patients. These findings, along with results obtained from animal
models, including the fact that germ free mice do not develop
experimental colitis, highlight the impact of the microbiota
composition in the pathogenesis of these disorders
(Onderdonk et al., 1977).

Metagenomic strategies have revealed an altered gut microbial
composition in IBD patients compared to healthy subjects,
known as dysbiosis (Liu et al., 2020). IBD patients usually
present a reduced bacterial diversity, with low levels of
Firmicutes and Bacteroidetes and increased levels of facultative
anaerobic Proteobacteria and Bacilli. However, the implication of
these findings for pathogenesis is not clear. Also, persistent
bacterial infection by enteric bacteria, such as adherent-
invasive Escherichia coli, has been observed (Abdelhalim et al.,
2020; J. G. Lee et al., 2019). Intensive research is being carried out
to determine whether changes in microbiota are causative or a
consequence of the chronic inflammation observed in IBD.
Inflammation probably comes from a sum of effects: an
increased amount of mucosal associated bacteria, along with
high intestinal permeability also present in these patients
suggest that bacteria could penetrate the epithelial barrier, thus
contributing to inflammation. These microorganisms in turnmay
promote the release of pro-inflammatory factors such as TNF-α,
which boost inflammation (Shawki and McCole, 2017). Altered
trans-cellular and para-cellular permeability have been described
in IBD, evidenced by the presence of intracellular bacteria inside
epithelial cells, and by modified tight junction protein expression
and increased myosin light chain kinase (MLCK) activity (Yu
Chia-Hui, 2018). Moreover, gut permeability can be influenced
by changes in metabolites produced by the microbiota (Schlegel
et al., 2020; J. S. Lee et al., 2021). The healthy gut microbiome
produces bioactive metabolites, including short chain fatty acids
(SCFA), which contribute to intestinal homeostasis and epithelial
cell nutrition (Postler et al., 2017). Diminished levels of these
molecules could favor an impaired barrier function and
inflammatory environment.

The role of CD4+ T lymphocytes is critical in IBD. In CD, IL-
12 signaling induces the differentiation of CD4+ T cells into IFN-
γ secreting cells, while IL-23 contributes to the differentiation of
CD4+ T cells into Th1 and Th17, thus increasing IFN-γ and IL-17
secretion, respectively. IL-6, IL-23 and TGF-β also participate in
CD pathogenesis. In UC, CD4+ T lymphocytes also secrete IL-4
and IL-13, which contribute to tissue damage (Zenewicz et al.,
2009). In addition, activated CD4+ T cells have increased

proliferation rate and are resistant to apoptosis in these
pathologies (Schmitt et al., 2019). Anti-TNF-α therapies target
these activated T cells, inducing T cell apoptosis, but
unfortunately, many patients do not respond or become
refractory within years of treatment, and require surgery
(Yanai and Hanauer, 2011). Consequently, great effort is being
made to develop new therapies for IBD, aimed to modulate T cell
response.

Probiotics were defined several years ago as “live
microorganisms that confer a health benefit to the host when
administered in adequate amounts” (Food and Agriculture
Organization and of the United Nations/World Health
Organization, 2002). Recently, the term “postbiotic” has come
to be used and refers to the functional bioactive compounds
generated during microbial fermentation processes, including
extracellular polysaccharides, (SCFA) and different microbial
cell components, which can have beneficial effects on host
health (Wegh et al., 2019). Probiotics have been studied as
having beneficial properties in murine and rat models of
colitis. Different strains of Bifidobacterium, E. coli and
Lactobacillus have shown anti-inflammatory effects (Jakubczyk
et al., 2020). Even though data from probiotics treatment in
patients are controversial, evidence of their usefulness in
combination with pharmacological treatments is arising
(Shanahan and Quigley, 2014; Qiao et al., 2016; Fan et al.,
2019; Ahn et al., 2020). Nevertheless, basic studies regarding
their effect on IBD lamina propria cells are scarce. Kefir is an
ancient product traditionally obtained by fermentation of milk
with kefir grains, and many health-promoting properties have
been associated with its consumption (Farag et al., 2020). Kefir
grains are composed of different species of bacteria and yeasts
that live symbiotically in a complex matrix constituted by
proteins and polysaccharides (Bengoa et al., 2019).
Lactobacillus kefiri is one of the most important lactobacilli
retrieved from kefir, with reported quantification of around
108 bacteria/mL in fermented milk (Garrote et al., 2005). Most
L. kefiri strains are safe for consumption and resistant to the harsh
conditions of the gastrointestinal tract. Moreover, different
beneficial effects, including immunomodulation and
prevention of metabolic disorders, have been reported for
these species (Slattery et al., 2019). In particular, the kefir-
isolated strain L. kefiri CIDCA 8348 has shown to be sensitive
to several antibiotics, to lack virulence factors, and to be safe for
oral consumption in mice (Carasi et al., 2014). Noteworthy, mice
orally treated with this strain showed reduced expression of pro-
inflammatory molecules and an up-regulation of anti-
inflammatory mediators, as well as secretory IgA and mucins
in the gut (Carasi et al., 2015). Moreover, it was reported
that administration of L. kefiri CIDCA 8348 prevents the
deleterious effects of a fructose-rich diet in a murine model,
exerting an anti-inflammatory activity in the adipose tissue
(Zubiría et al., 2017).

In this work, we studied the immunomodulatory properties of
L. kefiri CIDCA 8348 on CD4+ T lymphocytes from the lamina
propria of IBD patients. This Lactobacillus strain diminishes the
proliferation of these cells and the secretion of pro-inflammatory
cytokines through an NF-κB dependent pathway.

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 6580262

Curciarello et al. Lactobacillus Modulates IBD T Cells

9

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


MATERIALS AND METHODS

Patients and Tissue
Surgical samples of colon or rectum from patients who
underwent partial or total colectomy, and endoscopic colonic
biopsies were taken from macroscopically inflamed mucosa of
IBD adult patients affected by CD (n � 8) or UC (n � 11). The
diagnosis was made according to clinical, endoscopic and
histological criteria. The extent and location of the UC and
CD were evaluated during colonoscopy. Clinical activity in UC
was evaluated by total Mayo score (inactive ≤2, mild activity three
to five, moderate seven to nine, severe 10–12) and by Harvey-
Bradshaw Index (Inactive score <5; mild activity ≥5, moderate
≥7, severe ≥16) in CD (Table 1) (Peyrin-Biroulet et al., 2016).
In addition, mucosal samples were collected endoscopically
from the colon of adult subjects who were neither diagnosed
with IBD nor any other inflammatory condition of the gut.
Samples of healthy mucosa were obtained from surgical
specimens of colorectal cancer partial colectomies. These
specimens constituted the "healthy control patient" samples
(HC, n � 5). The local Ethics Committee (Comité de Ética en
Investigaciones, Hospital de Gastroenterología Carlo B. Udaondo,
Ciudad Autónoma de Buenos Aires, Res. 07–07–2016) approved
the protocols and informed written consent was obtained from
every patient.

Bacteria and Conditioned Medium
Lactobacillus kefiri CIDCA 8348 belonging to the collection of the
Centro de Investigación y Desarrollo en Criotecnología de
Alimentos (CIDCA, CONICET-UNLP-CIC, Argentina) was
used. The strain was cultured in deMan-Rogosa-Sharpe (MRS)
broth (Difco, Beauvais, France) at 37°C for 48 h in aerobic
conditions. Bacteria were harvested, washed twice and finally
resuspended in sterile phosphate-buffered saline (PBS) at
OD550 � 2.0 (approx. 1–2x108 cfu/ml). In order to prepare the
L. kefiri-conditioned medium (CM), bacterial suspension at
OD550 � 0.1 in Ultraculture medium was incubated for 24 h at
37°C and 5% CO2. Then, bacteria were removed by centrifugation

and supernatant was collected and stored at −20°C until used.
Entero-adhesive (EA) E. coli was grown in Luria Bertani Broth to
OD550 � 0.8. Cells were then harvested by centrifugation and
resuspended in sterile PBS. Extracts were sonicated for 10 pulses
at 100% and centrifuged al 10.000×g for 15 min. Protein
concentration of the resulting solution was assayed by
bicinchoninic acid assay (Pierce, Thermo Fisher Scientific,
Rockford, IL, United States) and stored at −20°C. Prior to use,
extracts were thawed and diluted in fresh medium to the desired
concentration.

Organ Cultures
Endoscopic mucosal biopsies from control subjects (n � 5) or IBD
patients (n � 13) were placed (one biopsy per well) in 24-well
plates. Individual biopsies were cultured in 300 μL of serum-free
RPMI 1640 medium (Gibco, Thermo Fisher Scientific, Rockford,
IL, United States), supplemented with 100 U/mL penicillin and
100 μg/ml streptomycin, and cultured at 37°C, 5% CO2, with or
without probiotics and/or 10 ng/ml TNF-α. After 24 h of ex vivo
culture, supernatants of mucosal biopsies were collected and
stored at −70°C until used.

Lamina Propria Mononuclear Cell Isolation
The mucosa layer of surgical pieces was mechanically separated
from the full-thickness surgical specimen. The epithelial layer was
removed with 1 mmol/L ethylenediaminetetraacetic acid (EDTA)
and 1 mmol/L dithiothreitol (DTT) in 1 mM HBSS (Gibco,
Thermo Fisher Scientific, Rockford, IL, United States). After
stirring for 1 h at 37°C, the supernatant was removed. The
remaining tissue was minced with a scalpel and digested with
type 1 A collagenase (1 mg/ml; Sigma-Aldrich, St. Louis, MO,
United States) and DNAse (10 IU/ml, Roche, Thermo Fisher
Scientific, Rockford, IL, United States) in RPMI-1640 medium
containing 10% fetal bovine serum (FBS), 100 U/mL penicillin,
and 100 μg/ml streptomycin for 2 h with stirring at 37°C and 5%
CO2. Biopsies were washed three times in HBSS containing
EDTA and DTT with stirring and then digested as described
above. Cells were filtered through 40 μm cell-strainers (Becton

TABLE 1 | Clinical features of healthy control (HC) and IBD patient groups.

HC group IBD group

UC CD

Number of patients 5 11 8
Sex (n � patients) Female � 3, Male � 2 Female � 6, Male � 5 Female � 7, Male � 1
Age of the patients [average (range)] 51 (23–73) y 39 (18–64) y 38 (21–59) y
Site of sampling (n� patients)a Left colon (2)

rectum (3)
Cecum (1), right (2), left (4), transverse (2),
sigmoid (3), rectum (8)

Cecum (2), right (3), left (2), transverse (1),
rectum (2)

Endoscopic activity at sampling time
(n� patients)

No activity � 5 mild � 6, moderate � 3 severe � 2 No activity � 1b, mild � 1, moderate � 4 severe � 2

Treatment at sampling time
(n� patients)c

Not applicable Adalimumab (1) corticosteroids (3) mesalazine
(9) azatioprine (4)

Adalimumab (2) infliximab (1) corticosteroids (4)
mesalazine (3) azatioprine (2)

UC � ulcerative colitis, CD � Crohn’s disease, age is expressed in years (y).
aSamples were taken from more than one site in some patients.
bUninflamed samples were only used for LPTC in vitro assays.
cSome patients were under multiple pharmacological treatment.
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Dickinson, Franklin Lakes, NJ, United States) and washed with
RPMI-1640 medium containing 10% FBS, 100 U/mL penicillin,
and 100 μg/ml streptomycin.

Generation of Lamina Propria T-Cell Lines
(LPTC)
LPMC were washed and cultured in 300 µL of serum-free
Ultraculture medium (LONZA, Basel, Switzerland),
supplemented with 2 mM glutamine, 20 μM 2-
mercaptoethanol, and Antibiotic-Antimicotic (Gibco, Thermo
Fisher Scientific, Rockford, IL, United States). In order to
obtain specific LPTC, cells were stimulated with entero-
adhesive E. coli extracts (0.5 μg/ml) at 37°C, 5% CO2. Cultures
without E. coli extract served as controls. Four days later, cells
were treated with recombinant human (rh) IL-2 (10 U/mL,
Preprotech, Rocky Hill, NJ, United States), rhIL-7 (10 ng/ml,
Preprotech, NJ, United States) and rhIL-15 (10 ng/ml,
Preprotech, Rocky Hill, NJ, United States) as reported by
Rabinowitz et al. (2013). After 5 days, viable T cell blasts were
enriched by Ficoll-Paque ™ (GE, Healthcare, Life Sciences,
Danderyd, Sweden) gradient and then incubated in 96-well
round-bottom cultures plates, in Ultraculture medium,
supplemented with the cytokines mentioned above, 10%
human AB+ plasma and irradiated peripheral blood
mononuclear cells PBMC (1 × 105) (Bohle et al., 2003). Cells
were expanded in this same medium twice a week until enough
cells were obtained, thus generating EA E. coli specific LPTC
(from now on LPTC).

LPTC Cultures and Proliferation Assays
After expansion, LPTC were rested without further feeding for 10
days. Cells were washed, labeled with CFSE (Sigma-Aldrich, St.
Louis, MO, United States) proliferation dye and stimulated with
human anti-CD3 and anti-CD28 antibodies (1 μg/ml,
eBioscience, San Diego, CA, United States), L. kefiri (2:1
bacteria:eukaryotic cell relation), L. kefiri conditioned media or
combinations thereof. EA E. coli cultures were used as a positive
control, also in a 2:1 relation to lymphocytes. Negative controls
without the addition of stimuli were included. Assays were
performed in serum-free AIMV medium (Thermo Fisher
Scientific, Rockford, IL, United States). After 4 days, culture
supernatants were harvested for cytokine evaluation and cells
were stained with anti-CD4-APC (BD Pharmingen, San Diego,
CA, United States), 7-AAD (BD Pharmingen, San Diego, CA,
United States) and flow cytometry was performed using a FACS
CALIBUR (BD, Franklin Lakes, NJ, United States). Flow
cytometry data from two independent experiments from each
patient was analyzed using FlowJo software (BD, Franklin Lakes,
NJ, United States).

For intracellular FOXP3 staining, cells were stimulated as
previously indicated. After 4 days cells were harvested and
stained with anti-CD4-APC (BD Pharmingen, San Diego, CA,
United States). Cells were then treated with BD Cytofix/
Cytoperm Fixation/Permeablization Kit (BD Pharmingen, San
Diego, CA, United States) and stained with anti-FOXP3-PE (BD

Pharmingen, San Diego, CA, United States). Events were
acquired with a FACS CALIBUR (BD, Franklin Lakes, NJ,
United States). Lymphocytes were gated in the FSC/SSC
scatter plot. CD4+ lymphocytes were then selected from this
gate and analyzed for FOXP3 staining. The negative threshold
was set using fluorescence minus one controls (FMO). Duplicate
independent experiments were performed for each patient.

ELISA
Cytokines were quantified in organ culture and LPTC
supernatants (each sample was tested in duplicate), following
manufacturer’s instructions: human IL-6 (R&D systems,
Minneapolis, MN, United States), human IL-8 (BD, Franklin
Lakes, NJ, United States), human IFN-γ and human TNF-α
(ImmunoTools, Friesoythe, Germany), human IL-13
(Invitrogen, Thermo Fisher Scientific, Rockford, IL,
United States), human IL-10 (R&D systems, Minneapolis, MN,
United States), human IL-1β and human IL-17 A (Biolegend, San
Diego, CA, United States).

Western Blot
Protein extracts from LPTC incubated with anti-CD3/anti-CD28
alone or combined with L. kefiri for 30 min were used. Briefly,
cells were harvested and lyzed with RIPA buffer (Sigma-Aldrich,
St. Louis, MO, United States) in the presence of a protease
inhibitor mixture (Sigma-Aldrich, St. Louis, MO,
United States). Protein content was quantified by
bicinchoninic acid assay (Pierce, Thermo Fisher Scientific,
Rockford, IL, United States) and extracts were stored at –80°C
until use. Protein samples were resolved on 10% SDS-PAGE
under reducing conditions (BioRad Mini-Protean III; BioRad,
Hercules, CA, United States), and transferred onto a
nitrocellulose membrane for 1 h at 300 mA. Blots were blocked
and probed with a rabbit anti-p65 antibody (Santa Cruz
Biotechnology, Santa Cruz, CA, United States), followed by
the appropriate HRP-conjugated secondary antibody (BioRad,
Hercules, CA, United States). Protein bands were visualized by
enhanced chemiluminescence (ECL Plus; GE Healthcare,
Danderyd, Sweden) according to the manufacturer’s
instructions. Blots were stripped and incubated with a rabbit
anti-human β-actin antibody (Abcam, Cambridge, MA,
United States) diluted 1:3,000, as an internal loading control.
The bands were scanned with C digit scanner (LI-COR
Biosciences, Lincoln, Nebraska, United States) and quantified
using ImageJ software.

Statistical Analysis
Statistical analysis was carried out using GraphPad Prism eight
software (GraphPad Software, San Diego, CA, United States). The
significance of the difference was determined using an
independent-sample t-test or 1-way ANOVA after visual
inspections of distribution using Q–Q plots and Shapiro–Wilk
normality test analysis. In cases when data did not adjust to
normal distribution, Wilcoxon matched paired test or Friedman
statistics were applied. A p-value < 0.05 was considered
statistically significant.
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Ethics Statement
The studies involving human participants were reviewed and
approved by Ethics Committee of the Hospital de
Gastroenterología Carlos B. Udaondo. The patients/participants
provided their written informed consent to participate in this study.

RESULTS

Lactobacillus Kefiri Reduces the
Pro-Inflammatory Cytokine Secretion in
Inflamed Biopsies from IBD Patients
In order to evaluate the immunomodulatory effects of L. kefiri
CIDCA 8348, we assayed IL-6 and IL-8 in culture supernatants of
tissue explants from healthy subjects (n � 5) incubated with the
pro-inflammatory stimulus TNF-α, with or without probiotics
(Figure 1A). TNF-α promoted the secretion of IL-8 (p < 0.01),
and a trend in IL-6 secretion (p � 0.0616) with respect to
unstimulated healthy tissue. Explants exposed to L. kefiri
produced reduced levels of these TNF-α -induced cytokines (p <
0.05). We then studied the effect of the bacteria on biopsies from
inflamed mucosa of IBD patients (n � 13). L. kefiri significantly
dampened the spontaneous release of pro-inflammatory cytokines

ex vivo (p < 0.001) for IL-6 and IL-8 (p < 0.05) (Figure 1B). A
significant similar suppression of IL-1β and IL-17 A secretion was
observed in IBD samples (p < 0.01) (Supplementary Figure S1).

Lactobacillus Kefiri Modulates the Cell
Proliferation of Stimulated
Microbiota-Specific Lamina Propria T
Lymphocytes
Since EA E. coli is overrepresented in the microbiota of IBD
patients, we expanded E coli-specific LPTC.We could not retrieve
LPTC from HC since these cells did not survive long in vitro
under EA E. coli extract stimulation. We therefore proceeded to
generate LPTC from 17 colon samples from patients with active
IBD.We found that EA E. coli extracts significantly increased (p <
0.01) the proliferation of LPTC from IBD patients (Figure 2A).

Aiming to study whether L. kefiri modulates IBD LPTC, anti-
CD3/CD28-stimulated cells were co-incubated with the
probiotics. We found that the increased proliferation of LPTC
(p < 0.01) and CD4+ LPTC (p < 0.001) (Figures 2A–C) were
significantly inhibited by incubation with L. kefiri (p < 0.01 and
p < 0.05, respectively). Also, the cell viability remained unchanged
in all conditions, as shown with 7AAD staining (Figure 2D).
E. coli used as control promoted cell proliferation, thus

FIGURE 1 | Lactobacillus kefirimodulates the secretion of IL-6 and IL-8 in organ culture (A).Biopsies from healthy donors (n � 5) were incubated o. n. with TNF-α, L.
kefiri or a combination of both (B). Biopsies form IBD patients (n � 13) were incubated with or without L. kefiri. Supernatants were collected and cytokines were assessed
by ELISA. *p < 0.05, **p < 0.01, ***p < 0.001.

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 6580265

Curciarello et al. Lactobacillus Modulates IBD T Cells

12

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


FIGURE 2 | Proliferation and LPTC response are impaired by L. kefiri (A). LPTC were activated with anti-CD3 and anti-CD28 and incubated with live probiotic,
conditionedmedium (CM), EA E. coli or medium. Cell proliferation was assessed by flow cytometry with CFSE. The gating strategy is shown: CD4+ cells were gated from
the lymphocyte gate on the forward and side scatter plot. Histograms for CFSE staining are shown separately for each stimulus. Representative results from one patient
are shown (B). LPTC proliferation shown as percentage of “CFSE low” staining population under each stimulus in vitro. Each symbol represents one independent
experiment (C). Proliferation of CD4+ LPTC is shown as percentage of CFSE low cells obtained by the strategy shown in A, each symbol represents one independent
experiment (D). CD4+ LPTC cell death was assessed by flow cytometry with 7-AAD staining, in the same LPTC cultures. *p < 0.05, **p < 0.01, ***p < 0.001.
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confirming the specificity of T cells (p < 0.01 and p < 0.001,
respectively).

Considering that lactic acid bacteria secrete SCFA with
immunomodulatory properties, we also incubated LPTC with

conditioned medium from L. kefiri. As depicted, we found that
LPTC proliferation was significantly suppressed (p < 0.001),
whereas for activated-CD4+ T cells, it did not reach statistical
significance (p � 0.106) (Figures 2A–D).

FIGURE 3 | Lactobacillus kefiri modulates LPTC cytokine secretion, FOXP3 expression and NF-κB signaling (A). Effect of L. kefiri and CM on cytokine secretion
from activated LPTC. Cytokines were assessed by ELISA (B). Immunoblots of LPTC protein extracts after 30 min of stimulation (representative of two independent
assays) and statistical analysis of intensities of bands corresponding to p65 (C). Quantification of IL-10 by ELISA in supernatants of the same LPTC assays shown in A
(D). Representative histograms of the flow cytometry data analysis of LPTC. Frequency of CD4+FOXP3+ T cells after 4 days incubation with live probiotic or CM.
FOXP3+ cells were evaluated in CD4+ cells from the lymphocytes gate. Anti-CD3 and anti-CD28 antibodies were used for T cell activation. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.
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Lactobacillus Kefiri Ameliorates the
Pro-Inflammatory Cytokine Secretion by
Stimulated-Microbiota-Specific Lamina
Propria T Cells
To further characterize the cellular response of these cells in vitro,
we evaluated the secretion of pro-inflammatory cytokines by
activated LPTC when co-incubated with L. kefiri. The
stimulation of LPTC with anti-CD3/CD28 induced the secretion
of TNF-α, IFN-γ, IL-6 and IL-13. The co-incubation of activated
LPTC with the probiotic significantly diminished the secretion of
these cytokines (Figure 3A, p < 0.01, p < 0.0001, p < 0.0001 and p <
0.05 respectively). Also, the incubation of the stimulated cells with
CM significantly reduced the levels of the pro-inflammatory
cytokines IFN-γ (p < 0.0001), IL-6 (p < 0.001) and IL-13 (p < 0.01).

We then investigated the activation of the NF-κB pathway on
LPTC from patients with active IBD in the different culture
conditions.We found that p65 levels were diminished in activated
cells after a 30 min exposure to L. kefiri (Figure 3B, p < 0.01). L.
kefiri per se did not trigger the NF-κB pathway.

Next, we analyzed the secretion of the tolerogenic cytokine IL-10
and we found it significantly increased in the supernatant of
stimulated LPTC that were exposed to L. kefiri (Figure 3C, p
< 0.01). To get a further insight into this suppressive effect,
FOXP3 expression was also evaluated in LPTC by flow cytometry
(Figure 3D). We found that this transcription factor was specifically
induced in CD4+ LPTC by L. kefiri, irrespective of their activation
with anti-CD3/anti-CD28 (p< 0.05).We also found thatCM induced
FOXP3 expression in activated LPTC (p < 0.01) (Figure 3D).

DISCUSSION

In IBD, dysregulated immune responses take place against the
intestinal microbiota in genetically predisposed hosts, and several
T cell subsets have been described to be involved in homeostasis
breakdown. In this context, microbiota-specific T cells were
identified in IBD patients and in animal models (Hepworth
et al., 2015; Sorini et al., 2018). Intestinal T cells are target of
several therapeutic procedures to constrain inflammation.

In our study, we aimed to evaluate the immunomodulatory
properties of a probiotic Lactobacillus strain isolated from kefir
on lamina propria CD4+ T cells from patients with active IBD.
Microbiota-specific lamina propria T cell lines were obtained
from intestinal specimens and exposed to L. kefiriCIDCA 8348 or
conditioned medium to mitigate cell activation. The control of
cell proliferation and cytokine secretion of activated T cells
correlated significantly with previous results from our group
found in healthy mice and in mice fed with a fructose-rich
diet that were orally administered with this bacteria (P. Carasi
et al., 2015; Zubiría et al., 2017).

Probiotic microorganisms isolated from kefir as well as some of
their metabolites have been reported to reduce gut inflammation in
colitis animal models, and the amelioration of symptoms after kefir
consumption has been observed in one controlled trial with IBD
patients to date (Iraporda et al., 2016; Sevencan et al., 2019; Yılmaz,
Dolar, and Özpınar 2019). However, this is the first report to show

the immunomodulation promoted by Lactobacillus kefiri in human
organ culture ex vivo. The patients in our study were on
immunosuppressive and/or immunomodulatory pharmacological
treatment, and we considered this could be interfering with our ex
vivo model results. However, mucosal biopsies obtained from
inflamed colon areas of IBD patients showed increased basal
levels of pro-inflammatory cytokines IL-6, IL-8 and even IL-1β
and IL-17A, reflecting the periods of flares and increased disease
activity occurring also in treated patients. We showed that L. kefiri
CIDCA 8348 suppressed the secretion of these pro-inflammatory
cytokines from IBD mucosal biopsies to similar levels as those
found in healthy mucosa. Similar results were recently reported in a
study performed by Pagnini et al., with a dose-response reduction
of TNF-α and IL-17 expression in UC mucosal samples incubated
with L. rhamnosusGG (Pagnini et al., 2018). In another study, IBD
biopsies exposed to the probiotic Lactococcus lactis exhibited a
reduced secretion of TNF-α and IL-23 (Simčič et al., 2019).

Considering that the gut barrier is impaired in IBD and luminal
microorganisms may be found in the lamina propria of patients,
we further addressed the effect of L. kefiri on lamina propria
activatedmicrobiota-specific T cells, to deeper understand whether
L. kefiri’s anti-inflammatory effect occurred through lamina
propria T lymphocyte modulation (Kumar et al., 2020; Al-Sadi
et al., 2021). We isolated lamina propria mononuclear cells and
established entero-adhesive E. coli-specific T cell lines for in vitro
characterization. LPTC were activated with anti-CD3 and anti-
CD28 antibodies, and we found that cell proliferation, cytokine
secretion and NF-κB pathway activation were suppressed upon
exposure to L. kefiri. Collectively, different strains of Lactobacillus
and Lactococcus have shown tomodulate the inflammatory activity
through multiple mechanisms, but especially by inhibiting the
translocation of the nuclear transcription factor NF-κB (Vincenzi
et al.,. 2020; Zeng et al., 2020). Here, we co-incubated activated
LPTC in vitro with L. kefiri and we found that NF-κB p65 was
diminished in these cells, which also secreted lower amounts of
TNF-α, IFN-γ, IL-6 and IL-13 than controls. In addition, activated
LPTC incubated with L. kefiri CM also exhibited a reduced
secretion of these cytokines. However, as proliferation of CD4+

T cells from these LPTC cultures was not diminished by L. kefiri
CM, we propose that L. kefiri effect might be due to a direct
interaction between the bacteria and the CD4+ T lymphocytes. To
this regard, it has been previously described that the purified
S-layer glycoprotein of L. kefiri CIDCA 8348 (a regular protein
array that completely covers the bacterial surface) could enhance
the activation of murine macrophages and bone marrow derived
dendritic cells, through the recognition of the S-layer protein
glycans by the C-type lectin receptor Mincle (Malamud et al.,
2019). However, further investigations are needed to understand
the role of the S-layer protein recognition on tuning the activation
of antigen-presenting cells triggered by the whole bacteria.
Nonetheless, a recent report by Gong et al. showed increased
Mincle signaling in both intestinal samples from CD patients and
experimental models of colitis, mainly due to an up-regulation of
pyroptosis in macrophages, which promotes gut inflammation
(Gong et al., 2020). However, the expression of Mincle on human
CD4+ T lymphocytes has not been widely reported (Vijayan et al.,
2010). Therefore the level of expression in LPTC from IBD patients
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and the possible role of this C-type lectin receptor in the interaction
between LPTCCD4+ and L. kefiriCIDCA 8348will be key issues to
be addressed in further studies. The effect of conditioned medium
on cytokine secretion may be attributed to metabolites secreted by
lactobacilli. Of note, we have measured lactate present in L. kefiri
conditioned medium used for the assay and it was 140 ± 0.2 µM.
We have performed proliferation and cytokine assays including
lactate as a possible modulator (Garrote et al., 2015; Iraporda et al.,
2016), but results have been significant for concentrations above
10mM (data not shown), a value much higher than that secreted
by cultured L. kefiri. Hence the effect shown in this work cannot be
attributed solely to this SCFA and must be further investigated.

Remarkably, in our study we found that LPTC incubated with
L. kefiri or conditioned medium showed a high frequency of CD4+

FOXP3+ T cells. Several studies highlight that Lactobacillus may
promote Treg differentiation in animal models (Zakostelska et al.,
2011; Smelt et al., 2013; Park et al., 2017). Long term Treg cultures,
like the ones performed in this work, have been shown to lose
FOXP3 signaling upon repeated stimulation cycles (Hoffmann
et al., 2009). In mice, in vitro incubation of CD4+ T cells with
sonicated extracts of Lactobacillus rhamnosus GG diminished IL-
17 secretion by these cells and increased FOXP3 and IL-10
secretion via TLR2 mechanism, clearly showing the plasticity
induced by the probiotic (Jia et al., 2020). Our results could be
showing the functional plasticity of human lamina propria effector
T cells in response to the probiotic or its metabolites, which may
induce FOXP3 induction. Our experiments showed a direct effect
of L. kefiri on T cell IL-10 secretion, since no antigen presenting
cells were included in our in vitro assays. Further studies are
needed to characterize whether the FOXP3+ cells are responsible
for the increase in IL-10 secretion, and functional assays should be
performed to demonstrate the regulatory capacity of these CD4+

FOXP3+ T cells in the future. It is worth noting that the increase of
IL-10 secretion induced by the probiotic may be important for
generating a tolerogenic milieu in the inflamed gut, even in the
absence of FOXP3 induction (Hoffmann et al., 2009). These effects,
combined with a lower proliferation of effector CD4+ T
lymphocytes and the decrease in pro-inflammatory cytokine
secretion could be a useful complement of the adequate drug
treatment to shift the IBD gut toward a tolerogenic state.

Although the anti-inflammatory activity of L. kefiri CIDCA 8348
has been shown inmice (Carasi et al., 2015; Zubiría et al., 2017), this is
the first report demonstrating the immunomodulatory properties of a
kefir-isolated strain (L. kefiriCIDCA8348) on human intestinal tissue
and primary T cells from IBD patients. Great effort has been made
tomodulate the pro-inflammatory activity of T cells as a treatment for
IBD, with variable success; however, there is still need for improving
therapies. Understanding the mechanisms of interaction between
probiotics and immune cells in the gut could open new avenues to
help prevent or treat inflammatory bowel disease.
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Simčič, S., Berlec, A., Stopinšek, S., Štrukelj, B., and Orel, R. (2019). ‘Engineered and
wild-type L. Lactis promote anti-inflammatory cytokine signalling in

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 65802610

Curciarello et al. Lactobacillus Modulates IBD T Cells

17

https://doi.org/10.1016/j.micpath.2020.104233
https://doi.org/10.1016/j.micpath.2020.104233
https://doi.org/10.3168/jds.2019-17356
https://doi.org/10.1016/j.ajpath.2021.02.003
https://doi.org/10.1111/jam.14107
https://doi.org/10.1002/eji.200324321
https://doi.org/10.1155/2015/361604
https://doi.org/10.1155/2015/361604
https://doi.org/10.1155/2014/208974
https://doi.org/10.5152/tjg.2019.18426
https://doi.org/10.3390/nu12020346
https://www.who.int:fs_management:probiotic_guidelines
https://www.who.int:fs_management:probiotic_guidelines
https://www.who.int:fs_management:probiotic_guidelines
https://doi.org/10.1080/09540100500244146
https://doi.org/10.1080/09540100500244146
https://doi.org/10.3389/fmicb.2015.00629
https://doi.org/10.1093/ecco-jcc/jjaa088
https://doi.org/10.1126/science.aaa4812
https://doi.org/10.1002/eji.200838904
https://doi.org/10.3389/fimmu.2016.00651
https://doi.org/10.3389/fimmu.2016.00651
https://doi.org/10.3390/nu12071973
https://doi.org/10.1002/cti2.1213
https://doi.org/10.1002/cti2.1213
https://doi.org/10.1053/j.gastro.2011.02.048
https://doi.org/10.1038/s41467-019-14182-2
https://doi.org/10.1371/journal.pone.0216165
https://doi.org/10.1080/19490976.2021.1880241
https://doi.org/10.1007/s13238-020-00745-3
https://doi.org/10.1007/s13238-020-00745-3
https://doi.org/10.3389/fimmu.2019.01422
https://doi.org/10.1093/ajcn/30.11.1819
https://doi.org/10.1093/ajcn/30.11.1819
https://doi.org/10.3748/wjg.v24.i41.4652
https://doi.org/10.1007/s12275-017-6447-y
https://doi.org/10.1016/j.cgh.2015.06.001
https://doi.org/10.1016/j.cmet.2017.05.008
https://doi.org/10.1111/1751-2980.12422
https://doi.org/10.1053/j.gastro.2012.12.001
https://doi.org/10.1111/apha.13492
https://doi.org/10.1007/s00281-019-00756-1
https://doi.org/10.1007/s00281-019-00756-1
https://doi.org/10.1002/fsn3.1174
https://doi.org/10.1053/j.gastro.2014.01.050
https://doi.org/10.1016/j.jcmgh.2016.10.004
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


inflammatory bowel disease patient’s mucosa’. World J. Microbiol. Biotechnol.
35 (3), 45. doi:10.1007/s11274-019-2615-z

Slattery, C., Cotter, P. D., and O’Toole, P. W. (2019). Analysis of health benefits
conferred by Lactobacillus species from kefir.Nutrients 11 (6), 113. doi:10.3390/
nu11061252

Smelt, M. J., de Haan, B. J., Bron, P. A., Iris van, S., Meijerink, M., Wells, J. M., et al.
(2013). Probiotics can generate FoxP3 T-cell responses in the small intestine
and simultaneously inducing CD4 and CD8 T cell activation in the large
intestine. PLoS One 8 (7), e68952. doi:10.1371/journal.pone.0068952

Sorini, C., Cardoso, R. F., Gagliani, N., and Villablanca, E. J. (2018). Commensal
bacteria-specific CD4+ T cell responses in health and disease. Front. Immunol.
9, 2667. doi:10.3389/fimmu.2018.02667

Torres, J., Mehandru, S., Colombel, J.-F., and Peyrin-Biroulet, L. (2017). Crohn’s
disease. The Lancet 389 (10080), 1741–1755. doi:10.1016/s0140-6736(16)31711-1

Ungaro, R., Mehandru, S. P., Peyrin-Biroulet, L., Colombel, J.-F., and Colombel,
J.-F. (2017). Ulcerative colitis. The Lancet 389 (10080), 1756–1770. doi:10.
1016/s0140-6736(16)32126-2

Vijayan, D., Radford, K., Bellette, B., Beckhouse, A., Ashman, R., Wells, C., et al.
(2010). Expression analysis of MINCLE on human peripheral blood cells. IADR
General Session 2010

Vincenzi, A., Márcia, I. G., and Fernanda Volken de Souza, C. (2020), An
evaluation of the effects of probiotics on tumoral necrosis factor (TNF-α)
signaling and gene expression. Cytok. Growth Factor Rev. 57, 27–38. doi:10.
1016/j.cytogfr.2020.10.004

Wegh, C. A. M., Geerlings, S. Y., Jan, K., Roeselers, G., and Belzer, C. (2019).
Postbiotics and their potential applications in early Life nutrition and beyond.
Int. J. Mol. Sci. 20 (19). doi:10.3390/ijms20194673

Yanai, H., and Hanauer, S. B. (2011). Assessing response and loss of response to
biological therapies in IBD. Am. J. Gastroenterol. 106 (4), 685–698. doi:10.1038/
ajg.2011.103

YuChia-Hui, L. (2018). Microbiota dysbiosis and barrier dysfunction in
inflammatory bowel disease and colorectal cancers: exploring a common
ground hypothesis. J. Biomed. Sci. 25 (1), 79. doi:10.1186/s12929-018-0483-8
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Psychoactive Effects of Lactobacillus
johnsonii Against Restraint
Stress-Induced Memory Dysfunction
in Mice Through Modulating Intestinal
Inflammation and permeability—a
Study Based on the Gut–Brain Axis
Hypothesis
Hesong Wang1†, Shunhui He1,2†, Jinge Xin3, Tao Zhang4, Ning Sun3, Lianxin Li 3, Xueqin Ni3,
Dong Zeng3, Hailin Ma5* and Yang Bai1*

1Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of
Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China, 2Department of Gastroenterology,
Shunde Hospital, Southern Medical University, Foshan, China, 3Animal Microecology Institute, College of Veterinary Medicine,
Sichuan Agricultural University, Chengdu, China, 4School of Science, Xihua University, Chengdu, China, 5Plateau Brain Science
Research Center, South China Normal University/Tibet University, Guangzhou, China

Though the underlying mechanism remains elusive, a close relationship between psychological
stress and intestinal inflammation has been widely accepted. Such a link is very important to set
the basis for our understanding of the critical role of gut-brain axis (GBA) in homeostatic
processes in health and disease. Probiotics that could confer benefits to mental health through
GBA are referred to as “psychobiotics”. This study aimed to further determine whether a
potential psychobiotic strain, Lactobacillus johnsoniiBS15 could preventmemory dysfunction in
mice induced by psychological stress through modulating the gut environment, including
intestinal inflammation and permeability. Memory dysfunction in mice was induced by
restraint stress (RS), one of the most commonly utilized models to mimic psychological
stress. The mice were randomly categorized into three groups including no stress (NS),
restraint stress (RS), and probiotic (RS-P) and administered with either phosphate buffered
saline (NS and RS groups) or L. johnsonii BS15 (RS-P group) every day from day 1–28. From
days 22–28, themice in RS and RS-P groupswere subjected to RS each day. Results revealed
that BS15-pretreatment enhanced the performance of RS-induced mice during three different
behavioral tests for memory ability and positively modulated the hypothalamic–pituitary–adrenal
axis by attenuating the serum corticosterone level. In the hippocampus, L. johnsonii BS15
positively modulated the memory-related functional proteins related to synaptic plasticity,
increased neurotransmitter levels, and prevented RS-induced oxidative stress and
mitochondria-mediated apoptosis. In the intestines, L. johnsonii BS15 protected the RS-
induced mice from damaged gut barrier by enhancing the mRNA levels of tight junction
proteins and exerted beneficial effects on the anti-inflammatory cytokine levels reduced by RS.
These findings provided more evidence to reveal the psychoactive effect of L. johnsonii BS15
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against memory dysfunction in RS-induced mice by modulating intestinal inflammation and
permeability.

Keywords: Lactobacillus johnsonii, psychobiotics, gut-brain axis, memory dysfunction, intestinal environment

INTRODUCTION

When provided in adequate amounts, probiotics could exert
beneficial effects on the host (Sherman et al., 2009), such as
improving the intestinal barrier function and gut microbiota,
reducing proinflammatory cytokines, and increasing the
intestinal antioxidant ability, and have been utilized for the
prevention and/or treatment of many different intestinal
diseases, such as inflammatory bowel disease (Wasilewski
et al., 2015) and diarrhea (Selinger et al., 2013). However, the
exact mechanism underlying these effects has not been identified
(Guandalini et al., 2015; Sun et al., 2016). For example, Je et al.,
2018 proved that ID-JPL934, a mixture of three probiotic strains
(two Lactobacillus strains and one Bifidobacterium strain at a 1:1:
1 ratio) attenuates dextran sulfate sodium-induced colitis by
inhibiting the mRNA expression levels of proinflammatory
cytokines in rodents. Probiotics also prevent or treat metabolic
disorders andmany other diseases (Le Barz et al., 2019). Given the
close relationships between intestinal tracts and other organs,
researchers have focused on expanding the application scope of
probiotics.

Gut–brain axis (GBA) is defined as a network and
communication among gastrointestinal tract, the enteric
nervous system, and the brain. (Sudo et al., 2004) observed
substantially high serum corticosterone level and reduced
mRNA expression levels of brain-derived neurotrophic factor
(BDNF) in the hippocampus and cortex in response to restraint
stress (RS) in germ-free mice (born and fed entirely in the absence
of microorganisms), indicating that commensal microbiota in the
intestines could affect post-natal development. Effects on
cognitive abilities including poor learning and memory and
autism-like behavior were also found (Desbonnet et al., 2015;
Vuong and Hsiao, 2017). The application of probiotic or prebiotic
could lead to enhanced long-term potentiation (an
experimentally evoked process in which the synaptic strength
is rapidly increased and involves the crucial mechanism
underlying learning and memory), increased BDNF
concentrations, and improved intestinal immunity and barrier
function, which consequently enhance the performance on a
number of learning and memory tests (Zareie et al., 2006;
Dash et al., 2015; Vazquez et al., 2015).

The association between intestinal environment and host
behavior and the potential psychobiotics/probiotics that benefit
mental health and yield positive psychiatric effects in
psychopathology through GBA have been widely researched
(Sarkar et al., 2018). Sgritta and colleagues (2019) reported
consistent and robust reversal for social behavioral deficits by
a potential psychobiotic, Lactobacillus reuteri in four different
autistic spectrum disorder (ASD) mouse models (Shank3B−/–

mice, valproic acid-treated mice, BTBR mice and germ-free
mice). Lee et al., 2018 also found that Lactobacillus plantarum

C29 could alleviate memory impairment in 5XFAD transgenic
mice, indicating its possible ability to prevent Alzheimer’s disease.
However, the limitation of psychobiotic researches should not be
ignored that most reported findings about their effects opertains
to rodent models rather than human studies. Also, most
psychobiotic research findings are currently understood in
terms of correlation rather than causation. Therefore, in order
to make a potential psychobiotic strain convinceing enough to be
applied in human studies, the mechanism underlying the
beneficial effect must be considered to provide information for
psychobiotic exploration based on GBA.

Lactobacillus johnsonii BS15 (CCTCC M2013663) was
isolated from homemade yogurt from Hongyuan Prairie, Aba
Autonomous Prefecture, China and was found to prevent non-
alcoholic fatty liver disease by attenuating hepatic inflammation
and mitochondrial injury and improving gut environment in
obese mice (Xin et al., 2014). It also effectively prevents memory
dysfunction induced by chronic high-fluorine intake by
modulating the intestinal environment (Sun et al., 2020).
Recently, we also found that L. johnsonii BS15 pretreatment
enhanced intestinal health and prevented the hippocampus-
related memory dysfunction induced by water avoidance stress
(WAS), a well-established model for causing psychological stress
(Wang et al., 2020). However, more evidence needs to be
provided to prove whether or not L. johnsonii BS15 could be
applied as a qualified psychobiotic that positively influences and
protects mental health and cognitive behaviors against
psychological stressors.

This study aimed to determine whether L. johnsonii BS15
could effectively prevent memory dysfunction in mice after
restraint stress (RS) through modulating the gut environment,
including intestinal inflammation and permeability. RS was
induced in C57BL/6J mice to determine whether L. johnsonii
BS15 could prevent memory dysfunction by conducting different
behavioral tests. Given that the hippocampus is considered as a
crucial brain region in memory ability and a neurobiological
mediator underlying the bacteria-cognition link (Stachenfeld and
Botvinick, 2017), the levels of memory-related functional proteins
and neurotransmitters, antioxidant capacity, and apoptosis level
were measured to reveal how L. johnsonii BS15 rescuing the
impaired memory ability under RS influences the hippocampus.
Intestinal integrity and inflammatory factors were also evaluated
to further understand the mechanism on how L. johnsonii BS15
prevents hippocampus-related memory dysfunction.

MATERIALS AND METHODS

Bacteria Preparation and Animal Treatment
L. johnsonii BS15 was maintained in de Man, Rogosa and Sharpe
(MRS, QDRS Biotec, Qingdao, Shandong, China) broth under
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anaerobic environment at 37 C for 36 h. Heterotrophic plate
count was used to evaluate the amount of bacterial cells. After
collection, the bacterial cells were washed with saline and then
suspended at pH 7.0 in phosphate buffered saline (PBS) at a
concentration of 1 × 109 cfu L johnsonii BS15/mL. Our previous
experiment confirmed that oral gavage of L. johnsonii BS15
at the daily amount of 0.2 ml solution with 1 × 109 cfu L
johnsonii BS15/mL has the best preventive effects for obese
mice (Xin et al., 2014).

A total of 108 5C7BL/6J male mice (3 week-old) were provided
by Dashuo Biological Institute (Chengdu, Sichuan, China). The
animals were fed on normal chow diet for 1 week before
treatment to stabilize all metabolic conditions. All mice were
housed with a 12 h light/dark cycle (lights on at 8:00 a.m. and off
at 8:00 p.m.) in a room with strictly controlled temperature of
20–22 C and humidity of 40–60%. The animals were randomly
divided into three groups each containing six cages (six mice per
cage) and administered with either PBS (pH 7.0) (NS and RS
groups) or L. johnsonii BS15 (RS-P group; daily amounts of 2 ×
108 cfu) through oral gavage from day 1–28. All animal
experiments followed the guidelines for the use and care of
laboratory animals (approval number: SYXKchuan 2019–187;
approved by the Institutional Animal Care and Use Committee of
Sichuan Agricultural University).

Study Design and Sampling
The first day after 1 week stabilization was defined as day 1.
From day 22–28, the mice in RS and RS-P groups were
subjected to RS by placing them in 50 ml plastic conical
centrifuge tubes for 60 min each day and directing their
head toward the nasal end of the cylinder with air vents.
The tubes restrained all physical movements without
subjecting the animal to pain. All mice were not provided
with food and water during the RS experiment.

After RS experiment in RS and RS-P groups on the morning of
day 28, 8–10 mice from the three experimental groups were
randomly selected and immediately sacrificed through cervical
dislocation in accordance with institutional guidelines of animal
care. Blood was collected through cardiac puncture, and the
samples were immediately placed on ice and centrifuged. The
isolated serum was frozen at −20 C until further analysis. The
hippocampus and epithelial tissues of the jejunal and ileac
samples were immediately removed from mice. After being
washed by ice-cold sterilized saline, these samples were frozen
in liquid nitrogen and then stored at −80 C. The other parts of
hippocampus, the mucosa of jejunum and ileum were separately
removed and frozen at −20 C until further analysis. The samples
stored at −80 C were retrieved, and RNA of hippocampus,
jejunum, and ileum was extracted using E. Z.N.A. Total RNA
Kit (OMEGA Bio-Tek, Doraville, GA, United States) in
accordance with the manufacturer’s guidelines. Total RNA
(1 μg) was synthesized into first-strand complementary DNA
(cDNA) using PrimeScriptTM RT reagent kit with gDNA Eraser
(TaKaRa, Dalian, Liaoning, China). The cDNA products were
stored at −20 C until subsequent tests. Another four mice in each
group were sacrificed and their brain, jejunum and ileum was

removed, fixed in 4% paraformaldehyde solution, and stored in
4 C for immunohistochemical and/or immunofluorescent assay.

In a subset of experiments, 10–12 mice from each group were
selected for T-maze test. The habituation and training phases of
T-maze test were performed at day 21 and lasted for 6 days until
the 27th experimental day. On day 28, after the RS treatment for
RS and RS-P groups, the testing phase of T-maze test was
conducted for all three experimental groups. Another 10–12
mice from each group were selected for novel object and
passive avoidance tests. Novel object test was carried out on
day 28 after the mice were subjected to RS, except mice in NS
group. The mice were allowed to have a 10 min rest period
between two tests and then placed in the wooden box for
passive avoidance test to experience familiarization and
training. The testing phase for passive avoidance test was
conducted on day 29. All the mice that underwent behavioral
tests were not selected to avoid the carry-over effects of behavioral
testing on inflammation related parameters and other biomarkers
(Boitard et al., 2014; Beilharz et al., 2017). Figure 1 displays the
flow diagram of behavioral tests applied in this study.

Behavioral Tests
Novel Object Test
Mice have the tendency to investigate a novel object rather than a
familiar one. On this basis, novel object test was undertaken for
hippocampus-dependent memory formation following the
method described by Gareau et al., 2011 with minor
modification. The test was briefly described below:

The mice without RS were placed into a dark open-field
arena (40 × 40 × 45 cm, l×b×h) and allowed to freely explore
for 1 h for habituation. The following two different objects
were exposed to the mice after RS or habituation: blue and
orange tube caps with the same size and shape and a smooth
pebble of proper size. Behavioral assessment consisted of the
following two phases:

Familiarization Phase
The mice were placed into the arena with a blue tube cap and an
orange tube cap placed in opposite corners and allowed to freely
explore the two objects for 5 min. The objects were then removed,
and the mice were given a rest period (20 min) before the
testing phase.

Testing Phase
The orange tube cap was replaced by the smooth pebble
during the rest period, and the mice after resting were re-
exposed to the blue tube cap and the smooth pebble. Memory
could be evaluated as the frequency to explore the smooth
pebble. compared with the blue tube cap during the testing
phase. Exploration ratio represents the smelling bouts
proportion related to the new object vs. the old one (ratio
of the frequency of smelling the smooth pebble to the total
frequency of smelling the blue tube cap and the smooth
pebble). A ratio of 0.5 represents impaired hippocampus-
dependent memory as no discrimination is found between the
two objects. In the present test, exploration was defined by
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orientating the mice toward the object with the nose pointing
directly to the object within 1–2 cm.

Passive Avoidance Test
Memory acquisition and retention were evaluated using step-
down passive avoidance test. The apparatus was a wooden box
(40 × 40 × 40 cm, l×b×h) with floor consisted of 0.3 cm caliber
stainless paralleled steel bars. The bars were spaced 1 cm apart. A
small platform (4 × 4 × 4 cm, l×b×h) was placed in the center of
the grid floor.

Familiarization and Training Phases
For familiarization, the mice placed on the platform in the
wooden box were allowed to freely explore for 3 min. The
training phase was then started after the mice became familiar
with the apparatus. In the training phase, the mice were gently
placed on the platform (3 min) and immediately received 2 s of
electric shock (36 V, 1 mA, 50 Hz) once they stepped down with
all four paws on the grid. Afterward, the animals generally
returned to the platform.

Testing Phase
The testing phase (3 min) was started 24 h after the training phase
with identical process, and RS was induced in advance when
needed. Escape latency was recorded as the duration the mice first
stayed on the platform. Error number was measured as the
repeated times the mice stepped down on the grid during the
phase (3 min) (Malekmohamadi et al., 2007). Poor memory
ability could be indicated by short escape latency and high
error numbers (Chen et al., 2014).

T-Maze Test
The applied T-maze was a “T”-shape enclosed apparatus with a
start arm (60 × 10 × 20 cm, l×b×h) and two goal arms (30 × 10 ×
20 cm, l×b×h). Given their natural tendency to explore a novel
environment, the mice were first placed at the base of the start
arm and allowed to freely enter one of the goal arms. A mouse
tends to choose the other goal armwhich is not visited prior to the

second trial, and this phenomenon could reflect the memory of
the first choice. Alternation is sensitive to memory dysfunction
(especially hippocampus-related) and represents a model of
working memory (Albert-Gasco et al., 2017).

Rewarded T-maze test was chosen (over spontaneous T-maze
test) because mice could run many trials per day before getting
sated (Deacon and Rawlins, 2006). As food reward, 0.07 ml of 1:1
(vol/vol) full fat/water sweetened condensed milk (Nestle,
Qingdao, Shandong, China) mixture was given per trial by
preset pipette. The test was briefly described below:

Habituation and Training Phases
During habituation phase (3 days), the mice were softly stroked,
slowly picked up, and put down three times per day (3 min each
time) to ensure that they were accustomed to the touch from
operators. Given that they are wary of eating anything new
(Forestier et al., 2018), the mice were fed 0.5 ml of food
reward each day to get familiar with its taste. Training phase
(4 days) was performed after habituation, and the animals were
placed into T-maze with all arms open and allowed to explore
freely for 10 min. The mice in the start arm were allowed to run
toward one goal arm, and their reward was provided into the food
well while the other arm was blocked by its door. No more than
3 min of training time was given until the mice discovered that
the well was empty. Each mouse was trained four times per day
(left and right runs were given with equal numbers).

Testing Phase
Each mouse was tested for 4 days with five trials per day. The
rodent was allowed to explore the whole maze without loss of
interest. RS was given before the test started each day when
needed. With one of the goal arms blocked (randomly chosen for
each trial), the mice from the start arm were allowed to run
toward the open goal arm with consumable reward. They were
immediately returned to the start arm as soon as they found the
well empty, and the operator opened the door of the blocked goal
arm.With 0 s (for trails at day 1 and 2) or 1 min (for trails at day 3
and 4) of retention interval, the mice were allowed to run from the

FIGURE 1 | Flow diagram of behavioral tests.
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start arm again and choose one arm. If it chose the correct arm,
then the mouse was allowed to consume the reward; if incorrect,
the mouse was removed after definitively discovering that the well
was empty. Working memory with 0 s and 1 min of retention
interval was separately assessed as a ratio of correct times to total
trail times (n � 10).

Biochemical Analysis
Corticosterone and D-lactate serum contents and diamine
oxidase (DAO) activity were quantified using ELISA) kits
specific for mice (MLBIO Biotechnology Co., Ltd,
Shanghai, China) following the manufacturer’s instructions.
The standard curve was used to calculate the contents of
determined proteins. In the hippocampus, the contents of
neurotransmitters (dopamine, DA; 5-hydroxytryptamine, 5-
HT; acetylcholine, Ach; glutamic acid, Glu; gamma-
aminobutyric acid, GABA; nitric oxide, NO),
neurotransmitter-related proteins (including nitric oxide
synthase, NOS; acetyl-cholinesterase, AchE; choline
acetyltransferase, ChAT), and two apoptosis-related
proteins (Bax and Bcl-2) were determined by ELISA using
reagent kits specific for mice (MLBIO Biotechnology Co., Ltd,
Shanghai, China) in accordance with the manufacturer’s
instructions. The antioxidant indexes in the hippocampus
were measured using commercial kits (Jiancheng
Bioengineering Institute, Nanjing, Jiangsu, China),
including the activities of catalase (CAT), total
antioxidation capacity (T-AOC), glutathione peroxidase
(GSH-Px), superoxide dismutase, and malondialdehyde
(MDA) and GSH contents (Zareie et al., 2006).
Inflammatory factors contents in the jejunum and ileum
were also determined by ELISA using reagent kits specific
for mice (MLBIO Biotechnology Co., Ltd, Shanghai, China).
The determined inflammatory factors included interleukin
(IL)-1β, IL-4, IL-6, IL-10, tumor necrosis factor-alpha (TNF-
α), and interferon-gamma (IFN-γ).

Immunohistochemistry
Tissues for immunohistochemical assay were embedded by
paraffin and cut by a microtome. Using a microwave oven
(model: P70D20TL-P4; Galanz, Guangdong, China), slices
were submerged in citrate antigen retrieval solution and
heated at medium heat until boiling. The temperature was
then ceased and tissues were kept warm for 8 min. The tissues
were heated at medium–low heat for 7 min. The slices after
free cooling were placed into PBS (pH 7.4) and shaken for
5 min for decoloration, which was repeated three times. The
sections were then incubated in 3% oxydol for 25 min at room
temperature and away from the light to block endogenous
peroxidase. The slices were washed three times in PBS by
shaking for 5 min, then sealed for 30 min by 3% bull serum
albumin, and incubated with monoclonal rabbit anti-BDNF
(1:400) or polyclonal rabbit anti-CREB (1:500) antibodies at
4°C overnight. Species-specific biotinylated anti-rabbit
immunoglobulin (horseradish peroxidase labeled) was used
for immuno-detection. Following the second antibody
incubation, the 3,3′-diaminobenzidine staining kit was used

to complete the reaction according to the manufacturer’s
instructions. Hematoxylin staining was performed to re-
stain the nucleus.

Immunofluorescence
The 5-µm-thick paraffin-embedded jejunal and ileal tissue
sections were used for immunofluorescence. Heat-induced
antigen retrieval was performed by autoclaving the sections for
10 minutes at 121°C in 10mM sodium citrate buffer (pH 6.0). The
sections were blocked with 8% skim milk in TBST at 37°C for
40 minutes, and then immunostained using primary antibodies
against ZO-1 (1:200, GB11195, rabbit; Servicebio), occludin (1:
200, GB111401, rabbit; Servicebio), claudin-1 (1:200, GB11032,
rabbit; Servicebio) at 4°C overnight. The sections were washed
and incubated with secondary fluorescent antibodies at 37°C for
60 minutes. The secondary antibodies was CY3 goat anti-rabbit
IgG (1:300; GB21303; Servicebio). Sections were mounted with
Nikon DS-U3 with DAPI (G1012, Servicebio). Images were
captured with an Nikon Eclipse C1 fluorescence microscope
(Nikon, Tokyo, Japan).

Real-Time Quantitative Polymerase Chain
Reaction (qPCR) Analysis
PCR was performed to determine the prepared cDNA products
from the hippocampus, jejunum, and ileum. A CFX96 Real-
time PCR Detection System (Bio-Rad, Hercules, CA,
United States) with iTaq Universal SYBR Green Supermix
(Bio-Rad, Hercules, CA, United States) was used with the
following protocol: 5 min at 95 C, 40 cycles of 10 s
denaturation at 95 C, and 30 s annealing/extension at
optimum temperature (Tables 1, 2). PCR product purity was
monitored by a final melting curve analysis. Standard curves
were obtained through serial dilution. The primer sequences
for targeted genes are presented in Table 1. ΔΔCt method was
applied to estimate mRNA abundance. The samples (n � 6) in
each group were analyzed in triplicate, and Ct was calculated as
(Cttarget − Ctβ-actin)treatment − (Cttarget − Ctβ-actin)control. β-actin
was used as the eukaryotic housekeeping gene to normalize
relative gene expression levels. Mean values of measurements
were applied to evaluate the mRNA expression levels of cyclic
amp (cAMP) response element binding protein (CREB),
N-methyl-D-aspartate receptor (NMDAR), brain-derived
neurotrophic factor (BDNF), c-Fos, stem cell factor (SCF),
neural cell adhesion molecule (NCAM), Bcl-2, Bad, Bcl-xL,
Bax, caspase-3 and caspase-9 in the hippocampus and IL-1β,
tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-4, IL-10,
IL-6, claudin-1, occludin, and zoluna occludens protein (ZO)-1
in the jejunum and ileum.

qPCR Quantification
The population of total bacteria and Lactobacillus johnsonii was
estimated in the jejunum and ileum following the method of Xin
and colleagues (2014). A CFX Connect™ real-time system (Bio-
Rad, Hercules, CA, United States) and SYBR® Premix Ex Taq™ II
(TaKaRa, Dalian, Liaoning, China) were used to perform qPCR.
Table 3 presents the primers for the qPCR of the microbiota. The
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reaction mixture (25 μL) included SYBR® Premix Ex TaqTM II
(12.5 μL), forward and reverse primers (1 μL), sterile deionized
water (9.5 μL), and DNA template (1 μL). PCR was performed as
follows: 95 C for 1 min, 40 cycles of 94 C for 15 min, and
annealing at optimal temperatures for 30 s at 72 C. The
specificity of the PCR primers was regulated by generating
melting curves.

Data Analysis
Data were analyzed based on individual mice. Statistical analysis
was performed using one-way ANOVA, followed by Duncan’s
multiple-range test for multiple comparisons (both normality test
and equal variance test passed) (SigmaPlot for Social Sciences
version 12). Differences at P < 0.05 were considered statistically
significant.

TABLE 1 | Primer sequences for RT-qPCR in hippocampus.

Gene Tm (°C) Sequence References

β-actin 60 F: GCTCTTTTCCAGCCTTCCTT Sun et al. (2020)
R: GATGTCAACGTCACACTT

BDNF 60 F:GCGCCCATGAAAGAAGTAAA Niu et al. (2018)
R: TCGTCAGACCTCTCGAACCT

c-Fosa 59.5 F:CAGAGCGGGAATGGTGAAGA —

R:CTGTCTCCGCTTGGAGTGTA
NCAM 60 F: GGGAACTCCATCAAGGTGAA Niu et al. (2018)

R: TTGAGCATGACGTGGACACT
SCF 60 F:CCTTATGAAGAAGACACAAACTTGG Niu et al. (2018)

R:CCATCCCGGCGACATAGTTGAGGG
CREB 60 F: CCAGTTGCAAACATCAGTGG Niu et al. (2018)

R: TTGTGGGCATGAAGCAGTAG
NMDAR 60 F: GTGGATTGGGAGGATAGG Niu et al. (2018)

R: TTAGTCGGGCTTTGAGG
Caspase-9 61 F: GAGGTGAAGAACGACCTGAC Guo et al. (2017)

R: AGAGGATGACCACCACAAAG
Caspase-3 59 F: ACATGGGAGCAAGTCAGTGG Guo et al. (2017)

R: CGTCCACATCCGTACCAGAG
Bax 61 F: ATGCGTCCACCAAGAAGC Guo et al. (2017)

R: CAGTTGAAGTTGCCATCAGC
Bad 60 F: AGAGTATGTTCCAGATCCCAG Guo et al. (2017)

R: GTCCTCGAAAAGGGCTAAGC
Bcl-2 61 F: AGCCTGAGAGCAACCCAAT Guo et al. (2017)

R: AGCGACGAGAGAAGTCATCC
Bcl-xl 62 F: TGTGGATCTCTACGGGAACA Guo et al. (2017)

R: AAGAGTGAGCCCAGCAGAAC

aThe primer sequences of c-fos is designed by National Center for Biotechnology Information (NCBI) and the referenced gene ID is 14,281.

TABLE 2 | Primer sequences for RT-qPCR in small intestines.

Gene Tm (°C) Sequence References

β-actin 60 F: GCTCTTTTCCAGCCTTCCTT Sun et al. (2020)
R: GATGTCAACGTCACACTT

Claudin-1 60 F:GGGGACAACATCGTGACCG Liu et al. (2017)
R:AGGAGTCGAAGACTTTGCACT

Occludin 60 F:TTGAAAGTCCACCTCCTTACAGA Liu et al. (2017)
R:CCGGATAAAAAGAGTACGCTGG

ZO-1 60 F:GATCCCTGTAAGTCACCCAGA Liu et al. (2017)
R:CTCCCTGCTTGCACTCCTATC

TNF-α 59.0 F:ACGGCATGGATCTCAAAGAC Xin et al. (2014)
R:AGATAGCAAATCGGCTGACG

IL-1β 60 F:ATGAAAGACGGCACACCCAC Liu et al. (2017)
R:GCTTGTGCTCTGCTTGTGAG

IL-6 60 F:TGCAAGAGACTTCCATCCAGT Liu et al. (2017)
R:GTGAAGTAGGGAAGGCCG

IFN-γ 53 F:TCAAGTGGCATAGATGTGGAAGAA Liu et al. (2017)
R:TGGCTCTGCAGGATTTTCATG

IL-10 56 F:GGTTGCCAAGCCTTATCGGA Liu et al. (2017)
R:ACCTGCTCCACTGCCTTGCT

IL-4 55 F:ACAGGAGAAGGGACGCCAT Usuda et al. (2012)
R:GAAGCCCTACAGACGAGCTCA
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RESULTS

Behavioral Tests
Figures 2–4 show the results of behavioral tests for memory
abilities. Significantly lower time in exploration ratio (Figure 2)
and escape latency (Figure 3) were observed (P < 0.05) in the RS
group compared with those in the NS group. Correct times for 0 s
and 1 min of retention interval (Figure 4) in the RS group were

also significantly lower (P < 0.05) than those in the NS group.
Meanwhile, error numbers (Figure 2) in the RS group were
significantly higher than those in the NS group. Positive changes
in all indexes were induced by L. johnsonii BS15 in the RS and RS-
P groups. In particular, the exploration ratio (Figure 2), escape
latency (Figure 3), and correct times for both 0 s and 1 min of
retention interval (Figure 4) were significantly high (P < 0.05) in
the RS-P group. The error numbers (Figure 3) in the RS group
were significantly lower (P < 0.05) than those in the RS-P group.
Moreover, significant differences (P < 0.05) in exploration ratio
(Figure 2), escape latency, and error numbers (Figure 3) were
observed between the RS-P and NS groups, whereas the correct
times showed no significance (P > 0.05) (Figure 3).

Serum Corticosterone and
Memory-Related Functional Proteins
Figure 5 shows the differences in corticosterone levels in the
serum among three groups. Corticosterone level was significantly
higher (P < 0.05) in the RS group compared with that in the other
groups, and that in the RS-P group was significantly higher (P <
0.05) than that in the NS group. Levels of memory-related
functional proteins are shown in Figure 6. All indexes were
significantly lower (P < 0.05) in the RS group than in the NS
group (Figures 6A–F). Although no significant change (P > 0.05)
in NCAM (Figure 6C) was observed between the RS and RS-P
groups, the mRNA expression levels of BDNF, CREB, SCF, c-Fos,
and NMDAR in RS-P group were significantly higher (P < 0.05)
than those in the RS group (Figures 6A,B,D–F). Except for CREB

TABLE 3 | Primer information on the microflora for qPCR.

Target species Tm (°C) Primer sequence (5→3) References

Total bacteria 60.0 F: CGGYCCAGACTCCTACGGG Xin et al. (2014)
R: TTACCGCGGCTGCTGGCAC

L. johnsonii 61.4 F:CACTAGACGCATGTCTAGAG Xin et al. (2014)
R:AGTCTCTCAACTCGGCTATG

FIGURE 2 | Effects of L. johnsonii BS15 on exploration ratio by novel
object test. Data are presented with the means ± standard deviation (n � 10).
Bars with different letters are significantly different on the basis of Duncan’s
multiple range test (P < 0.05).

FIGURE 3 | Effects of L. johnsonii BS15 on the escape latency and error
numbers by passive avoidance test. Data are presented with the means ±
standard deviation (n � 10). Bars with different letters are significantly different
on the basis of Duncan’s multiple range test (P < 0.05).

FIGURE 4 | Effects of L. johnsonii BS15 on the correct times with both
0s and 1min of retention interval by T-maze test. Data are presented with the
means ± standard deviation (n � 8). Bars with different letters are significantly
different on the basis of Duncan’s multiple range test (P < 0.05).

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 6621487

Wang et al. Lactobacillus johnsonii Modulates Gut-Brain Axis

25

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


with no significant difference (P > 0.05), all other indexes in the
RS-P group were significantly lower (P < 0.05) than those in the
NS group. As shown in Figure 6G–L, the protein expression
levels of BDNF and CREB were significantly reduced in the RS
group compared with that in the other two groups.

Neurotransmitters and Related Functional
Proteins
Figures 7A–C show that although DA, 5-HT, and Ach levels were
significantly lower in the RS group than those in the NS group,
they were significantly increased (P < 0.05) by L. johnsonii BS15
in RS-P group and showed no significant differences (P > 0.05)
compared with those in the NS group. In addition, the Glu
content (Figure 7D) and AchE activity (Figure 7G) in the RS
group were significantly higher (P < 0.05) than those in the other
groups but were influenced by L. johnsonii BS15 to show no
significant difference (P > 0.05) between the NS and RS-P groups.
As shown in Figure 7E, the GABA content in the RS-P group was
significantly higher (P < 0.05) than that in the RS group but lower
(P < 0.05) than that in the NS group. As shown in Figure 7H, the
ChAT activity in the RS group was significantly decreased (P <
0.05) compared with that in the NS group but was not
significantly different (P > 0.05) in the RS-P group compared
with the NS or RS group. The levels of NO and NOS activity
(Figures 7F,I) were not significantly influenced (P > 0.05) by
BS15 and RS.

Antioxidant Capacity and Apoptosis
Figure 8 demonstrates antioxidant indexes in the hippocampus.
As shown in Figure 8A, T-AOCwas significantly lower (P < 0.05)
in the RS and RS-P groups than that in the NS group, but no
difference was shown (P > 0.05) between the two RS groups. No
changes were observed (P > 0.05) in SOD activity (Figure 8B).
Figures 8C,E show significantly lower CAT activity (P < 0.05)
and higher MDA content (P < 0.05) in the RS group than in the
other two groups, but no significant differences of these two
indexes were found (P > 0.05) between the NS and RS-P groups.
Meanwhile, GSH-Px activity and GSH content were significantly

low (P < 0.05) in the RS-P group (Figures 8D,F) but showed no
differences (P > 0.05) compared with those in the NS or RS group.
The results of apoptosis-related functional protein contents and
mRNA expression levels in the hippocampus are presented in
Figure 9. Significantly lower values of bcl-2 protein content
(Figure 9A) and mRNA expression levels of bcl-2 (Figure 9A)
and Bcl-xL (Figure 9C) were found (P < 0.05) in the RS groups
than those in the NS and RS-P groups. Higher protein andmRNA
expression levels of Bax (Figure 9B) and caspase-3 (Figure 9F)
were also found (P < 0.05) in the RS groups. These indexes
showed no significant differences (P > 0.05) between the NS and
RS-P groups. However, the mRNA expression levels of Bad
(Figure 9D) and caspase-9 (Figure 9E) remained unchanged
(P > 0.05).

Intestinal Integrity and Permeability
The contents of DAO and D-lactate in the serum are shown in
Figure 10A. The mRNA expression levels of three tight junction
proteins in the jejunum and ileum are presented in Figures
10B–D (occludin, claudin-1, and ZO-1). As shown in
Figure 10A, the DAO level in the RS-P group was
significantly higher (P < 0.05) than that in the NS group but
lower (P < 0.05) than that in the RS group. A significantly higher
D-lactate level was observed (P < 0.05) in the RS group relative to
other two groups. The D-lactate levels showed no differences (P >
0.05) between NS and RS-P groups. Except for occludin in the
jejunum (Figure 10C) of which the mRNA expression level was
higher (P < 0.05) than NS group, all mRNA expression levels in
jejunum and ileum in the RS-P group were higher (P < 0.05) than
those in the RS group, but no significant differences (P > 0.05)
were found between the NS and RS-P groups (Figures 10B–D).
The protein expressions of three tight junction proteins were also
detected by immunofluorescence, and the results showed the
same trend (Figures 11, 12).

Inflammatory Factors
Results of protein contents and mRNA expression levels of
inflammatory factors are shown in Figure 13. The
inflammatory factors showed significant differences (P < 0.05,
Figures 13A–F), although a small proportion of the indexes
remained unchanged (P > 0.05, Figures 13C–E) among the
three experimental groups (protein contents of IL-1β, IL-6,
and IL-4 and mRNA expression of IL-6). As shown in Figures
13A,B, the mRNA expression levels of TNF-α and IFN-γ and the
protein contents of IFN-γ were significantly up-regulated (P <
0.05) in the RS group compared with those in the other groups.
However, the changes were not controlled by L. johnsonii BS15
because no significant differences were detected (P > 0.05)
between the NS and RS-P groups. In addition, the mRNA
expression levels of IFN-γ (Figure 13B) and IL-1β
(Figure 13C) in the RS group were significantly higher (P <
0.05) than those in the NS group, and these indexes in the RS-P
group showed no differences (P > 0.05) compared with those in
the NS or RS group. Different from the protein content, the
mRNA expression level of IL-4 was influenced by L. johnsonii
BS15 because it was significantly up-regulated (P < 0.05) in the
RS-P group than that in the NS and RS groups (Figure 13E).

FIGURE 5 | Levels of corticosterone in the serum. Data are presented
with the means ± standard deviation (n � 6). Bars with different letters are
significantly different on the basis of Duncan’s multiple range test (P < 0.05).
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Moreover, the protein content and mRNA expression level of IL-
10 (Figure 13F) were lower (P < 0.05) in the RS group than those
in the NS and RS-P groups without significance (P > 0.05).

Gut Microbiota
Microbial populations in the cecum were quantified via qPCR.
The results are presented in Figure 14. The population of total
bacteria (Figure 14A) was not significantly different (P > 0.05)
among all experimental groups in the jejunum and ileum.
However, both in the jejunum and ileum, the population of
Lactobacillus johnsonii (Figure 14B) was significantly higher
(P < 0.05) in RS-P group than those in NS and RS groups,
while no significant difference was observed (P > 0.05) between
NS group and RS group.

DISCUSSION

In modern society, psychological stress is common and negatively
influences people’s physiological system toward a low utility state
(Guo et al., 2017). A quarter of the population in the United States
is under high physiological stress (Oken et al., 2015). Stressful
events can damage memory performances, such as memory
consolidation and memory retrieval. (Mo et al., 2013) reported
that increased stress susceptibility in animal models could cause a
direct negative effect on memory function. Studies revealed
negative influences on the majority of determined indexes,
indicating that psychological stress could bring considerable
harm to human health. Research achievements in different
fields such as psychiatry, gastroenterology, and neuroscience

FIGURE 6 | Expression levels of memory-related functional proteins in the hippocampus. (A)–(F): Relative expression of BDNF, CREB, NCAM, SCF, c-Fos, and
NMDAR, respectively. Data are presented with the means ± standard deviation (n � 6). Bars with different letters are significantly different on the basis of Duncan’s
multiple range test (P < 0.05). (G)–(I) Immunohistochemistry of BDNF expressions in the hippocampus of NS (G), RS (H) and RS-P (I) groups. (J)–(L)
Immunohistochemistry of CREB expressions in the hippocampus of NS (J), RS (K) and RS-P (L) groups. The BDNF- and CREB-positive cells are brown like the
arrow indication, themagnification of all the figures are 40×. BDNF, brain-derived neurotrophic factor; CREB, cyclic ampresponse element binding protein; NCAM, neural
cell adhesion molecule; SCF, stem cell factor; NMDAR, N -methyl-D-aspartate receptor.
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are essential in advancing our understanding of GBA and
exploring psychobiotics to regulate the brain by improving gut
health, including intestinal inflammation and permeability. Many
probiotics have psychobiotic potential of restoring or preventing
hippocampal-dependent memory deficits in rodents induced by
many different factors such as aging (Jeong et al., 2015) and
diabetes (Davari et al., 2013). Although the antinociceptive
(Iwakabe et al., 1998) and antidepressant (Ait-Belgnaoui et al.,
2009) effects of probiotics on RS-induced mice have been
reported, to our best knowledge, limited information is
available regarding the preventive effects and underlying
mechanism of potential psychobiotics on RS-induced memory
dysfunction in rodents.

RS is one of the most widely utilized methods to mimic
psychological stress. Rodents are isolated from their group
with their movement confined to a restricted area (Bali and
Jaggi, 2015; Miyamoto et al., 2017). Sheridan et al., 1991
reported that their immunity against virus is substantially
depressed, and IL-2 secretion is reduced in the spleens and
mediastinal lymph nodes in RS mice. Similar to many other
stressors, RS damages the neuronal morphology and
hippocampal function and induces dendritic remodeling in the
prefrontal cortex, resulting in the increase in anxiety-like
behaviors in humans and animals (Shansky et al., 2009). RS-
induced anxiety could disrupt the working memory and therefore
is one of the causes of memory dysfunction (Shackman et al.,

2006). Stress could be controlled by the activation of the
hypothalamic–pituitary–adrenal axis and the subsequent
release of stress hormones such as corticosterone (in rodents)
that are important for memory ability. The present results
revealed increased corticosterone levels in the serum caused by
RS and were in agreement with those by Guimaraes and
colleagues (1993) and Gregus et al., 2005. In addition, the
serum corticosterone level was attenuated by L. johnsonii BS15
pretreatment. This phenomenon was associated with the
improved performances of the RS-P group during the novel
object test, T-maze test, and passive avoidance test. Three
different behavioral tests were utilized to evaluate the
preventive effects of L. johnsonii BS15 on RS-induced
hippocampus-related memory dysfunction. The mice in RS-P
group were free from damaged memory abilities to some extent,
thus suggesting the positive influences of L. johnsonii BS15 as a
potential psychobiotic strain. The results of total bacteria and L.
johnsonii population in this study indicated that L. johnsonii BS15
is possibly able to colonize in small intestines (jejunum and
ileum) of mice, which makes it possible for this probiotic
strain to alter the intestinal environment and thus exerts
beneficial effects against psychological stress. Although
detecting more copies of the genome does not directly
demonstrate that the microbe is growing in the gut/
metabolically active, as the qPCR approach will amplify
genomic matrial from dormant cells, the observed differences

FIGURE 7 | Levels of neurotransmitters in the hippocampus. Data are presented with the means ± standard deviation (n � 6). Bars with different letters are
significantly different on the basis of Duncan’s multiple range test (P < 0.05). (A)–(F): Levels of DA, 5-HT, Ach, Glu, GABA and NO, respectively; (G)—(I): Activities of
AchE, ChAT and NOS, respectively. DA, dopamine; 5-HT, 5-hydroxytryptamine; Ach, acetylcholine; Glu, glutamic acid; GABA, gamma-aminobutyric acid; NO, nitric
oxide; AchE, acetyl-cholinesterase; ChAT, choline acetyltransferas; NOS, nitric oxide synthase.
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between the groups still help to support our hypothesis to some
extent.

The hippocampus is a crucial brain area for memory ability
and is particularly susceptible to dietary (after less than 1 week) or
psychological (30 min of psychological stresses) insult that could
cause memory deficits (Guimaraes et al., 1993; Molteni et al.,
2002). This work determined the changes of some important
memory-related functional proteins, neurotransmitters,
antioxidant capacity, and apoptosis-related functional proteins
in the hippocampus to reveal the mechanism underlying the
promising performances of L. johnsonii BS15 in behavioral tests
for hippocampus-related memory abilities. Although the exact
mechanism of stress-induced memory deficits remains unclear,
the decreased neuroplasticity markers in the hippocampus are
one of the most important proposed mechanisms (Reichelt et al.,
2015).

Brain-derived neurotrophic factor (BDNF) plays an important
role in the synaptic plasticity underlying the acquisition and/or
consolidation of memory, and the hippocampus-specific deletion
of BDNF could cause impaired spatial learning and novel object
recognition (Heldt et al., 2007). A substantial decrease in the
mRNA expression level of BDNF was found in the RS-induced

mice, and this result agrees with the study by Xu et al., 2004. An
enteric bacterial infection was reported by Gareau et al., 2011 to
impair memory via reduced hippocampal BDNF; Citrobacter
rodentium-infected mouse showed significant decreases in
hippocampal BDNF levels, and reversal in BDNF expression
was found in the probiotic-treated group. In addition, gut
microbiota damaged by oral antimicrobials in mice reduces
the hippocampal mRNA expression of BDNF, and this effect
could be reversed by colonizing with normal microbiota (Bercik
et al., 2011). A possible link between the significantly up-
regulated mRNA levels of BDNF and the improved gut
microbiota in RS-P group was suggested because a potentially
harmful family of microorganisms, Enterobacteriaceae, was
suppressed by L. johnsonii BS15. In addition, Lactobacillus
spp. level also increased, indicating the probable suppression
of other non-beneficial bacterial groups (Xin et al., 2014). The
change of BDNF level may also be the major cause of the
significant up-regulation of CREB. As one of the best-
characterized transcription factors in the brain, CREB induced
by BDNF is required for various memory forms and plays a role
in neuronal resistance to insult in conjunction with BDNF
(Gomez-Pinilla et al., 2002). SCF is reported to promote

FIGURE 8 | Antioxidant indexes in the hippocampus. Data are presented with the means ± standard deviation (n � 6). Bars with different letters are significantly
different on the basis of Duncan’s multiple range test (P < 0.05). (A)–(F): Activities or contents of T-AOC, SOD, CAT, GSH-Px, MDA and GSH, respectively. T-AOC, total
antioxidation capacity; SOD, superoxide dismutase; CAT, catalase; GSH-Px, glutathione peroxidase; MDA, malondialdehyde; GSH, glutathion.
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neuronal plasticity (Hutchison et al., 2010). Given that the mRNA
expression level of SCF was decreased by RS and effectively
prevented by L. johnsonii BS15, the results of BDNF, CREB
and SCF jointly revealed the close relationship between the
preventive effects of L. johnsonii BS15 as a psychobiotic and
the changes of neuronal plasticity. The results also showed that
the RS-induced decreased mRNA expression of c-Fos and
NMDAR, two functional proteins closely related to memory
formation, were reversibly increased by L. johnsonii BS15,
thereby suggesting its preventive effects against hippocampal-
dependent memory dysfunction. The findings on c-Fos and
NMDAR are consistent with the study by Wang et al., 2015
who applied Lactobacillus fermentum NS9 to protect the
antibiotic-induced physiological and psychological
abnormalities in rats.

Liang et al., 2015 pretreated rats with another potential
psychobiotic strain, Lactobacillus helveticus NS8, and found

that the DA and 5-HT contents in the hippocampus were
substantially low in the chronic RS-induced group but were
enhanced by NS8 pretreatment. Given that 5-HT and NE
regulate mood and cognition, the results suggested the
therapeutic potential of NS8 through the GBA. Similar
results of DA and 5-HT contents in the hippocampus were
found in the present study. Other crucial neurotransmitters
were also determined. GLU and GABA are important for
learning and memory in the hippocampus and serve as
excitatory and inhibitory neurotransmitter (Tabassum
et al., 2017). Increased Glu content and decreased GABA
content commonly indicate damaged hippocampal
functions and memory dysfunction. Therefore, L. johnsonii
BS15 showed beneficial effects by protecting the memory
abilities against RS by enhancing GABA content and
decreasing Glu content in the RS-P group. Moreover, the
preventive effects of L. johnsonii BS15 are revealed by the

FIGURE 9 | Apoptosis-related functional protein contents and mRNA expression levels in the hippocampus. Data are presented with the means ± standard
deviation (n � 6). Bars with different letters are significantly different on the basis of Duncan’s multiple range test (P < 0.05). (A)–(B): mRNA expression levels and protein
contents of bcl-2 and Bax; (C)—(F): mRNA expression levels of bcl-xl, Bad, caspase-9 and caspase-3, respectively.
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FIGURE 10 | Effect of L. johnsonii BS15 on gut integrity and permeability. Data are presented with the means ± standard deviation (n � 6). Bars with different letters
are significantly different on the basis of Duncan’s multiple range test (P < 0.05). A: Levels of DAO and D-Lactate in the serum. (B)–(D): mRNA expression levels of tight
junction protein (Claudin-1, Occludin and ZO-1, respectively) in the jejunum and ileum.

FIGURE 11 | Immunofluorescence of tight junction protein expressions in jejunum of mice. (A)–(C) Expressions of Claudin-1 in the jejunum of NS (A), RS (B) and
RS-P (C) groups. (D)–(F) Expressions of Occludin in the jejunum of NS (D), RS (E) and RS-P (F) groups. (G)–(I) Expressions of ZO-1 in the jejunum of NS (G), RS (H) and
RS-P (I) groups. The tight junction proteins of. ZO-1-, claudin-1- and occludin are stained red, and the magnification of all the figures are 40×.
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increase in Ach content, which also plays an important role in
memory function, especially hippocampus-dependent
learning (Haam and Yakel, 2017). Ach is catalyzed by
ChAT and removed by the degradative function of AchE.
The results indicated that RS could inhibit Ach accumulation
by enhancing AchE activity and decreasing ChAT activity,
thus damaging the memory function. Based on the results for
the RS-P group, the changes of Ach could be prevented by L.
johnsonii BS15.

Lipid peroxidation is an important process of molecular injury
during various oxidative stresses causing hippocampal-
dependent memory deficits. The production of reactive oxygen
species generated by stress is responsible for lipid peroxidation
indicated by increased MDA formation (Niki, 2012). CAT, SOD,
and GSH-Px are antioxidant enzymes that protect against
oxidative stress by degrading superoxide anions and hydrogen
peroxide (Thakare et al., 2017). In this study, RS reduced the
activities of T-AOC, GSH-Px, and CAT and increased MDA
formation in the hippocampus, suggesting the enhancement of
oxidative stress partly associated with the RS-induced memory
dysfunction. This finding is consistent with the study by Freitas
et al., 2014 and Thakare and colleagues (2017) who obtained
similar results in the hippocampus of mice induced by RS for 7 h
and 1 h, respectively. Molecular lesions could be induced by
oxidative damage inducing and triggering apoptosis. Bcl-2
family proteins are located on the mitochondrial membrane,

alter the permeability of mitochondrial membrane, and trigger
apoptosis. High vulnerability to apoptotic activation could be
indicated by increased Bax and low Bcl-2 (Kasprzak, 1995). The
present study found the highest Bax and caspase-3 contents and
lowest bcl-2 and Bcl-xL contents in the hippocampus of rodents
in the RS group, suggesting that apoptosis mediated by
mitochondria is remarkably activated by RS. L. johnsonii BS15
also effectively prevented the RS-induced side effects indicated by
low Bax and caspase-3 and high Bcl-2 and Bcl-x in the RS-P
group. Caspase-dependent apoptotic pathway can be activated by
an imbalance between Bcl-2 and Bax, which results in high levels
of caspase-3 and -9. Briefly, cytochrome c triggers the association
of Apaf-1 to form an apoptosome by leaking out through the
holes formed by Bax in themitochondrial membrane; caspase-9 is
activated through the apoptosome, which then triggers caspase-3
activation and consequently causes cell apoptosis (Jarskog et al.,
2004). In the present study, the results of apoptosis-related
proteins were related to the caspase-dependent apoptotic
pathway and revealed that L. johnsonii BS15 pretreatment may
inhibit oxidative damage in the hippocampus, modulate
apoptosis level, and protect mice from RS-induced
hippocampal-dependent memory deficits.

One of the most widely accepted mechanisms of how GBA
influences cognitive functions is that bacteria in the gut initiate
functional signals that are transmitted to the central nervous
system through blood circulation. When the gut epithelium tight

FIGURE 12 | Immunofluorescence of tight junction protein expressions in ileum of mice. (A)–(C) Expressions of Claudin-1 in the ileum of NS (A), RS (B) and RS-P
(C) groups. (D)–(F) Expressions of Occludin in the ileum of NS (D), RS (E) and RS-P (F) groups. (G)–(I) Expressions of ZO-1 in the ileum of NS (G), RS (H) and RS-P (I)
groups. The tight junction proteins of. ZO-1-, claudin-1- and occludin are stained red, and the magnification of all the figures are 40×.
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junctions are impaired, the damaged integrity of intestinal barrier
becomes highly permeable, thus allowing the bacteria and/or
their metabolites to easily enter the blood circulation (Sgritta
et al., 2019). Therefore, the intestinal barrier protective effects of a
potential psychobiotic may be the possible mechanisms to
prevent mental diseases, including preserving the tight
junction protein, inhibiting epithelial apoptosis, decreasing
pathogenic bacterial adhesion, and reducing proinflammatory
cytokines (Mennigen and Bruewer, 2009). Therefore, gut integrity
and permeability were evaluated by determining DAO and
D-lactate levels in the serum and the three key tight junction
proteins in jejunum and ileum. The levels of DAO and D-lactate,
circulating markers for the damage and repair of the intestinal

mucosa, reflect the permeability and barrier function in the gut
(Liu et al., 2017). The tight conjunction proteins (claudin-1,
occluding, and ZO-1) created an intact layer of epithelial cells
(Günzel and Yu, 2013). RS remarkably increased the release of
DAO and D-lactate in the serum and decreased the mRNA
expression levels of all three tight junction proteins, thus
reflecting the RS-induced impairment of intestinal barrier.
Therefore, L. johnsonii BS15 exerted beneficial effects on all
determined indexes related to intestinal permeability except
for the DAO level possibly through its protection for the
intestinal epithelial cell membrane (Zeissig et al., 2007).

Proinflammatory cytokines, such as IFN-γ and TNF-α reduce
the epithelial barrier function by influencing the epithelial tight

FIGURE 13 | Protein contents and mRNA expression levels of inflammatory factors in the ileum. Data are presented with the means ± standard deviation (n � 6).
Bars with different letters are significantly different on the basis of Duncan’smultiple range test (P < 0.05). (A)–(F): mRNA expression levels and protein contents of TNF-α;
IFN-γ; IL-1β; IL-6; IL-4; IL-10, respectively. TNF-α, tumor necrosis factor-alpha; INF-γ, interferon-gamma.
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junction and the induction of single cell apoptosis (Uwada et al.,
2017). TNF-α and IFN-γ downregulate the mRNA expression of
occludin and ZO-1, two tight junction proteins (Mankertz et al.,
2000). Zeissig et al., 2004 also found that the damaged integrity of
intestinal barrier could be restored to normal in humans by using
TNF-α antibody therapy. According to our results, the impairment
of intestinal barrier may be associated to the increased
proinflammatory cytokines in the ileum. The highest mRNA
expression levels of TNF-α, IFN-γ, and IL-1β, three important
proinflammatory cytokines, were detected in the RS group, and the
same trends of their protein contents (except IL-1β) were also
observed. Moreover, IL-10, an anti-inflammatory cytokine, was
inhibited by RS. The RS-induced changes were also observed by
Gareau et al., 2008 in their study on the relationship between
psychological stress and intestinal damage. Although L. johnsonii
BS15 did not remarkably improve the proinflammatory cytokines,
the determined anti-inflammatory cytokines (IL-4 and IL-10) were
increased in the RS-P group compared with those in the RS group,
indicating that L. johnsonii BS15 may induce preventive changes
against RS by enhancing the intestinal anti-inflammatory effect and
thus maintaining the intestinal integrity. These changes are in
agreement with the results reported by Desbonnet et al., 2008
who administered another psychobiotic strain, Bifidobacterium
infantis, to rats.

In conclusion, the pretreatment of L. johnsonii BS15 may
prevent RS-induced hippocampus-related memory dysfunction
by modulating intestinal inflammation and permeability, which
indicated the psychoactive effects of L. johnsonii BS15 on
positively influencing the GBA.
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Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease that ultimately
leads to joint destruction and functional disability. Although the exact etiology of RA is not fully
understood, it is well established that gut microbiota (GM) plays a vital role in the
pathogenesis of RA, with accumulating evidence suggesting that gut dysbiosis induces
a chronic inflammatory response that may be linked to disease development. Of interest,
patients with RA have significant changes in the intestinal microbiota compared to healthy
controls, and several studies have suggested the use of probiotics as a possible adjuvant
therapy for RA. Benefits of probiotic supplementation were reported in animal models of
arthritis and human studies, but the current evidence regarding the effect of probiotic
supplementation in the management of RA remains insufficient to make definite
recommendations. Several different strains of Lactobacillus and Bifidobacteria, as single
species or in mixed culture, have been investigated, and some have demonstrated beneficial
effects on disease activity in RA human subjects. As of now, L.casei probiotic bacteria seems
to be the strongest candidate for application as adjuvant therapy for RA patients. In this
review, we highlight the role of GM in the development and progression of RA and
summarize the current knowledge on the use of probiotics as a potential adjuvant
therapy for RA. We also review the proposed mechanisms whereby probiotics regulate
inflammation. Finally, the role of fermented foods is discussed as a possible alternative to
probiotic supplements since they have also been reported to have health benefits.

Keywords: dysbiosis, inflammation, autoimmunity, rheumatology, fermented foods

INTRODUCTION

Rheumatoid Arthritis (RA) is a chronic immune-mediated inflammatory disorder that involves the
synovial membranes of multiple joints (Sewell and Trentham, 1993; McInnes and Schett, 2017). The
inflammatory process underlying this disease causes cartilage and bone destruction, damaging the
joint structure and (Kang et al., 2017) leading to functional disability (Firestein, 2003; Smolen et al.,
2016; Kalinkovich et al., 2018). In addition, systemic inflammation may impact other organs and
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systems, such as the cardiovascular, pulmonary, skeletal bone,
and brain (McInnes and Schett, 2011). RA is characterized by
autoantibodies production in most patients, such as rheumatoid
factor and anti-citrullinated protein antibodies (McInnes and
Schett, 2011). Although the exact etiology of RA remains
unknown, it has become evident that besides genetic factors,
the environment (including the internal environment, the
microbiome) plays a pivotal role in disease onset (Scherer
et al., 2020).

RA patients have compositional and functional alterations in the
gut microbiota (GM) (Zhang et al., 2015), and a significant decrease
in microbial diversity compared with healthy controls has been
reported (Chen et al., 2016). Moreover, the GM of RA patients
exhibited decreased diversity with increased disease duration (Chen
et al., 2016). Faecalibacterium is one of the most abundant Firmicutes
in the human gut that produces butyrate, and a decreased abundance
of Faecalibacterium and other butyrate producing taxa, such as
Flavobacterium, have been reported in RA patients (Picchianti-
Diamanti et al., 2018). On the other hand, the GM of RA patients
has a significant increase in the order of Lactobacillales (Chen et al.,
2016; Picchianti-Diamanti et al., 2018), and a higher variety of
lactobacilli compared to healthy controls (Liu et al., 2013).
Accordingly, an increase in the Lactobacillaceae family and the
Lactobacillus genus in mice susceptible to collagen-induced
arthritis (CIA) have been reported (Liu et al., 2016). Interestingly,
the administration of some Lactobacillus species, seems to exert
beneficial effects in RA clinical signs, which suggests that different
Lactobacillimay have different roles in RA pathogenesis and disease
activity modulation (Alipour et al., 2014; Vaghef-Mehrabany et al.,
2014). In early RA patients, a significant increase of Prevotella genus
has been frequently found in comparison to healthy controls, in
particular Prevotella copri (P. copri) (Maeda et al., 2016; Paul et al.,
2021; Reyes-Castillo et al., 2021). Given that the GM of RA patients
differs from the general population and that anti-rheumatic drugs can
exert positive effects on its regulation (Croia et al., 2019), microbiome
research in the field of Rheumatology is expanding significantly
(Manasson et al., 2020). Mounting evidence supports the existence
of a reciprocal connection between drugs and GM, which can
influence each other and have an impact on therapeutic outcomes
(Bhat et al., 2017). Specifically, methotrexate (MTX) was shown to
modify GM composition, partly restoring the microbial balance
altered by the disease (Zhang et al., 2015; Picchianti-Diamanti
et al., 2018). Moreover, the partial restoration of a beneficial
microbiota induced mainly by anti tumor necrosis factor (TNF)
drugs (as shown for etercept) can contribute to the clinical efficacy of
these agents. A deeper understanding of the alterations occurring in
the GM of patients on different therapeutic regimens could help set
up individualized and supportive therapeutic strategies providing
patients with more effective and safe care (Picchianti-Diamanti et al.,
2018). In line with this, GMmodulation and its interactions with the
host have been reported as a strategy to prevent and control
rheumatic diseases (Van De Wiele et al., 2016).

Probiotics are defined as live microorganisms that, when
administered in adequate amounts, confer a health benefit on
the host (Hill et al., 2014). Several studies have suggested the
use of probiotics as a possible adjuvant therapy for RA patients
(Ciccia et al., 2016; Wang et al., 2016; Reyes-Castillo et al., 2021).

Various mechanisms whereby probiotics affect RA have been
proposed, but are still poorly scientifically supported. Currently,
most of the available research on this topic was conducted in
animal models of arthritis. Exogenous bacteria can have a transient
and subject-specific effect on the GM and, by its modification, can
improve dysbiosis-related diseases (Zhang et al., 2016), such as RA.
Since the probiotic effect is strain-dependent (Butel, 2014), the
most appropriate strain must be chosen.

RA is a major global public health challenge with increasing age-
standardized prevalence and incidence (Safiri et al., 2019). Despite
the substantial advances with novel pharmacological therapies, the
impact of RA on patient’s functional capacity and quality of life
remains a significant issue. Most patients have a chronic persistent
form of the disease, as full remission is uncommon and sustained
remission is even more unlikely to occur. Moreover, in order to
control this disease, chronic treatment is needed, and multiple drug
adverse effects often accumulate over the years. Indeed, there are still
considerable unmet needs in RA management, and new safe
treatment approaches that complement the existing ones are
required (Smolen et al., 2016).

This paper aims to provide an up-to-date review of both animal
and human studies investigating the effects of probiotics in RA and
the proposed mechanisms whereby probiotics regulate
inflammation. Since fermented foods can be used as a probiotic
carrier and contain health-promoting components (Melini et al.,
2019), we address their potential use in this context as a possible
alternative to probiotic supplements.

GUT MICROBIOTA, IMMUNE SYSTEM AND
RHEUMATOID ARTHRITIS

It is now well established that more than 100 trillion
microorganisms, primarily bacteria, colonize the human oral-
gastrointestinal tract, most residing in the distal intestine
(Kamada et al., 2013). In recent years, there has been a dramatic
increase in the interest regarding the composition and function of
GM, resulting in a large body of evidence supporting GM as a crucial
component in shaping host physiology and maintaining gut and
immune homeostasis (Derrien and van Hylckama Vlieg, 2015).

The clinical picture of RA results from a complex interaction
between various factors, including autoantibodies and signal
transduction pathways of the innate and adaptive immune
system (Croia et al., 2019). In RA patients, joint tissue is
typically infiltrated by immune cells such as T cells, B cells, and
macrophages, producing a variety of pro-inflammatory cytokines
facilitating inflammation and eventually leading to tissue
destruction (Volkov et al., 2020). Throughout life, GM plays a
fundamental role in the induction, education, and function of the
immune system, as well as the individuals’ response to self-antigens
(Belkaid and Hand, 2014; D’Amelio and Sassi, 2018; Wu and Wu,
2012). The modulation of GMmay regulate the mechanism of gut
immune tolerance, as it influences the number and function of
colonic regulatory T cells (Tregs) (Tanoue et al., 2016). Tregs
suppress inappropriate activation of effector T cells by secreting
anti-inflammatory cytokines (Kalinkovich and Livshits, 2019;
Kayama et al., 2020). On the other hand, the mucosal immune
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system has a crucial role in developing and maintaining a healthy
GM (X. Wu et al., 2016). Due to this interdependent relationship,
gut dysbiosis, a compositional and functional alteration of GM
(Levy et al., 2017), may influence host susceptibility to many
immune-mediated diseases such as RA, type 1 diabetes, multiple
sclerosis, and systemic lupus erythematosus (de Oliveira et al.,
2017). Additionally, there is emerging literature reporting on the
role of changes in GM in the pathogenesis of chronic immune-
mediated inflammatory disorders, including RA (Ciccia et al., 2016;
Kalinkovich et al., 2018; Zhong et al., 2018). Deregulation of host
responses as a consequence of gut dysbiosis could affect distant
anatomical sites through the activation of host immune responses,
and this could be the mechanism contributing to the onset of an
idiopathic inflammatory condition like RA (Cho and Blaser, 2012).

To support the hypothesis that changes in GM composition play a
significant role in the onset and progression of RA (Horta-Baas et al.,
2017; Kang et al., 2017), several mechanisms by which GM is
associated with arthritis have been proposed. These include
regulating the host’s immune system (triggering T cell
differentiation), activating antigen-presenting cells (APCs) through
an effect on Toll-like receptors (TLRs) or NOD-like receptors
(NLRs), promoting the citrullination of peptides by enzymatic
action, antigenic mimicry, and increasing the intestinal mucosal
permeability (Horta-Baas et al., 2017; Guerreiro et al., 2018).
Regarding the effect on the expression of TLRs of APCs, this may
contribute to an imbalance in the Th17/Treg cell ratio and this local
immune response could lead to systemic autoimmunity (Horta-Baas
et al., 2017). Thus, the existing literature suggests that GM could
contribute to or prevent the expansion of autoimmunity and
inflammation during the preclinical and clinical phases of RA,
and GM could influence transitions between these phases (Wilson
et al., 2020). Figure 1 summarizes the pathophysiology of RA and the
proposed mechanisms whereby GM could participate in triggering
autoimmunity and systemic inflammation in susceptible individuals.

Since the diet is an essential environmental factor impacting
intestinal microbiota composition, increasing attention has been
given to its role in the pathogenesis, progression, and activity of
rheumatic diseases (Gioia et al., 2020). In this regard, the use of
probiotic bacteria has been suggested as a possible strategy to
correct gut dysbiosis and promote the homeostasis of a healthy
microbiota, having an impact on systemic immune responses and
thus could be used as adjuvant therapy to treat immune-mediated
diseases (Gareau et al., 2010; de Oliveira et al., 2017).

MECHANISMS UNDERLYING PROBIOTICS
EFFECTS ON GUT MICROBIOTA, IMMUNE
SYSTEM AND RHEUMATOID ARTHRITIS
A link between the composition and activity of GM and human
health and disease has been previously described (Azad, Sarker, Li,
et al., 2018). Although the local effects of probiotic bacteria on gut
health are well reported, the mechanisms behind their systemic anti-
inflammatory and immunomodulating potential have not been
wholly explored (Vieira et al., 2016; Plaza-Diaz et al., 2019;
Oliviero and Spinella, 2020). A set of mechanisms whereby
probiotics regulate inflammation have been postulated, which can
be exerted not only via direct immune system modulation, but also
through indirect mechanisms (La Fata et al., 2018; Kalinkovich and
Livshits, 2019).

Probiotic’s Direct Mechanisms of Immune
System Modulation
Specific probiotic bacteriamodulate the immune response by affecting
different cells involved in innate and acquired immunity, such as
epithelial cells and dendritic cells (DCs), natural killer cells (NK),
macrophages, and lymphocytes (Bermudez-Brito et al., 2012; La Fata
et al., 2018; Cristofori et al., 2021).

FIGURE 1 | Rheumatoid arthritis pathophysiology and the proposed mechanisms by which gut microbiota could influence its pathogenesis. CRP, C-reactive; P.
Copri, Prevotella copri; ZO-1, Zonula occluclens-1; IL, Interleukin; TNF, tumour necrosis factor.
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The innate immune system develops the primary response to
pathogens after activation of the pattern recognition receptors
(PRRs), which are expressed on immune and non-immune
cells, such as NK cells, DCs, macrophages, fibroblasts, and
epithelial cells (Bermudez-Brito et al., 2012; Plaza-Diaz et al.,
2019; Cristofori et al., 2021). Toll-like receptors (TLRs) are the
most widely studied PRRs, which can activate signaling pathways
that affect cell proliferation and cytokine production to modulate
the immune system (Ferlazzo et al., 2011; Cristofori et al., 2021). It
is well established that probiotics can downregulate TLR
expression, reducing inflammation (Gómez-Llorente et al., 2010).

Concerning the adaptive immune response, T cells are central to
immune balance (Plaza-Diaz et al., 2019). Inflammatory responses
driven by T helper (Th)1 and Th17 cells protect the host from
pathogens, but their overactivation is linked to the pathogenesis of
detrimental inflammation. The adaptive immune cells Foxp3+
Tregs suppress inappropriate activation of effector Th cells by
secreting anti-inflammatory cytokines, such as IL-10, modulating
the immune response (Kalinkovich and Livshits, 2019; Peters et al.,
2019; Kayama et al., 2020). Probiotics have also been reported to
influence cytokine production by APCs, which initiates adaptive
responses (Azad, Sarker, and Wan, 2018). Beyond the described
immunomodulatory properties involving DCs and T cells, some
probiotic strains also have a role in increasing the production of
secretory IgA once they promote the differentiation of B cells into
plasma cells (Liu, Tran, et al., 2018). Secretory IgA provides a
defense against pathogens by limiting bacterial adhesion to the
epithelium and preventing the penetration of host tissue (Azad,
Sarker, and Wan, 2018; Liu, Tran, et al., 2018).

Probiotic’s Indirect Mechanisms of Immune
System Modulation
Probiotics can also interact with the host immune system through
indirect mechanisms, which involve the modulation of GM. The
mechanisms by which probiotic strains have been proposed to
modulate GM include regulating the gut epithelial barrier and the
mucus layer characteristics, secretion of antimicrobial
compounds and competition with pathogenic bacteria (Vieira
et al., 2016; Jethwa and Abraham, 2017; Cristofori et al., 2021).

The gut epithelium, which separates the luminal environment from
the intestinal milieu, has a key role in assuring the permeability to
nutrients and other molecules, as well as blocking the entry of toxins
and other microorganisms (Deane et al., 2017; Van Spaendonk et al.,
2017). Tight Junction (TJ) proteins, located in the apical part of the
intestinal epithelial cells, are crucial elements to ensure the functionality
and integrity of the mucosal barrier (Ulluwishewa et al., 2011; Lee,
2015). When an alteration in the expression or localization of TJ
proteins occurs, the epithelial barrier function is compromised due to
increased permeability (Ulluwishewa et al., 2011). The use of probiotics
and the consequent increase in the short-chain fatty acids (SCFA)
release, particularly butyrate, has been reported to enforce the gut
barrier function as butyrate strengthens the barrier through increased
expression of TJ components zonula occludens (ZO)-1, ZO-2, and
cingulin (Bordin et al., 2004; Deane et al., 2017; Liu, Tran, et al., 2018).

The intestinal epithelium is covered by a viscoelastic mucus layer,
mainly composed of mucins, high-molecular-weight glycoproteins

produced by goblet cells (La Fata et al., 2018). Mucins are responsible
for building a protective barrier containing digestive enzymes,
promoting food passage, and at the same time prevent the entry
of bacteria into the lamina propria by blocking their adhesion to the
epithelial cells (Corfield et al., 2000; Derrien et al., 2010; De Santis
et al., 2015). The intestinal mucus layer has a primary role in
protecting against mechanical, chemical, and biological attacks to
the gut and contributes to the maintenance of intestinal homeostasis
(Paone andCani, 2020). Some probiotic strains have been reported to
regulate mucin expression, altering the properties of the mucus layer
and indirectly regulating the gut immune system (La Fata et al., 2018).
Examples include the adherent Lactobacillus spp, which can stimulate
MUC3 expression in human intestinal epithelial cells and MUC2
production and secretion (Sicard et al., 2017; Bron et al., 2017), and
Lactobacillus reuteri (L. reuteri), which has a protective effect against
dextran sulfate sodium-induced colitis in mice, increasing the mucus
layer thickness (Ahl et al., 2016).

Specific probiotic-modulated local and systemic metabolites have
been reported to have anti-inflammatory and antimicrobial
functions, such as SCFA, dietary tryptophan, adenosine, and
histamine (Liu, Alookaran, et al., 2018). One of the primary
mechanisms by which probiotics compete in this environment is
through competitive exclusion, by which they adhere to the intestinal
mucosa and prevent the subsequent entry of pathogens into the
lamina propria (Liu, Tran, et al., 2018; Santis et al., 2015). Moreover,
the adhesion of probiotic microorganisms to epithelial cells may
trigger a signaling cascade, leading to immunological modulation
(Markowiak and Sli_, 2017). As previously described, SCFAs exert an
indirect anti-inflammatory effect through improving intestinal
barrier function (Bodkhe et al., 2019; Kolodziejczyk et al., 2019).
Butyrate is particularly relevant in modulating inflammation, as it
inhibits histone deacetylase and regulates the expression of numerous
pro-inflammatory genes, inducing the differentiation and expansion
of Tregs and regulating cytokine production (Koh et al., 2016; Liu
et al., 2021; Liu, Tran, et al., 2018; Peters et al., 2019).

Probiotic’s Mechanisms and the
Pathophysiology of Rheumatoid Arthritis
Crosstalk between gut epithelium, immune system, and commensal
bacteria is key to starting the systemic inflammatory response (Y. Liu,
Tran, et al., 2018). An imbalance between anti-inflammatory and
pro-inflammatory cytokines, including interleukin (IL)-1β, TNF,
interferon (IFN)-γ, IL-6, IL-12, and IL-17, plays a central role in
the inflammatory processes involved in the pathogenesis of RA
(Smolen and Steiner, 2003; So et al., 2008; Amdekar et al., 2011).

The proposed mechanism for the gut-joint axis in
inflammatory arthritis is related to the hyperpermeability of
the gut wall, which leads to the exposure of immune system to
microorganisms, leading to a systemic immune response that
triggers a local inflammatory process within the joints (Jethwa
and Abraham, 2017; Liu et al., 2021).

Considering the perturbed GM as a pivotal trigger in the
pathogenesis of RA, interest has emerged regarding the clinical
interest of probiotics to correct gut dysbiosis and downregulate
the pro-inflammatory cytokine cascade implicated in
inflammatory arthritis (Wang et al., 2016; Mohammed et al.,
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2017; Lowe et al., 2020). Probiotics upregulate regulatory
cytokines produced by Tregs or tolerogenic DCs in the gut.
Cytokines travel to target organs and expand Tregs that traffic
to inflammation sites (Marietta et al., 2016). Probiotic-driven
metabolic products, such as SCFA, also impact immune response
and systemic inflammation by regulating immune cell function
(Oliviero and Spinella, 2020). SCFA as regulators of several
leukocyte functions including production of eicosanoids and
chemokines and cytokines, such as TNF, IL-2, IL-6 and IL-10,
exhibit anti-inflammatory properties (Vinolo et al., 2011;
Kalinkovich and Livshits, 2019). Moreover, probiotic bacteria
and its metabolic products can keep a balance between tolerance
to the intestinal microflora and resistance against harmful
bacterial colonization, adherence, and translocation
(Mohammed et al., 2017). These properties may be useful to
correct the hyperpermeability of gut wall proposed for the gut-
joint axis in inflammatory arthritis.

A meta-analysis of randomized trials investigating the effect of
Lactobacillus as single species or in mixed cultures with
Bifidobacterium species concluded that probiotic supplementation
reduced serum levels of IL-6 (Mohammed et al., 2017). Another
systematic review and meta-analysis that investigated the
effectiveness of Lactobacillus casei (L. casei) supplementation in
RA reported that a significant reduction of C-reactive protein
(CRP) was achieved with this specific strain (Rudbane et al.,
2018). Studies have also reported that L. casei might help alleviate
RA symptoms and suppress pro-inflammatory cytokines in
individuals undergoing treatment with disease-modifying anti-
rheumatic drugs (DMARDs), which suggests a positive synergistic

effect between DMARDs and probiotics on arthritis (Alipour et al.,
2014; Pan et al., 2017, 2019).

These findings suggest that the administration of probiotic
bacteria may have a beneficial effect on the inflammatory activity
of RA, through the regulation of cytokine production,
improvement of the intestinal barrier function, and its positive
synergistic effect with DMARDs. Figure 2 summarizes the
proposed mechanisms for the influence of probiotics on RA.

EXPERIMENTAL EVIDENCEOF PROBIOTIC
EFFECTS ON RHEUMATOID ARTHRITIS
PREVENTION AND TREATMENT

Experimental Evidence From Animal
Models
This section will review the current evidence for microbiome
manipulation by using probiotic bacteria in animal models of
arthritis for both disease prevention and treatment.

Studies With the Collagen-Induced Arthritis Animal
Model
Several studies have proposed a link between GM and CIA
development with oral administration of several bacterial
strains in mice.

A study conducted by Fan et al. compared the effects of a
preventive and therapeutic treatment with Bifidobacterium
adolescentis (B. adolescentis) in CIA rats (Fan et al., 2020).
Preventive B. adolescentis administration had better results in

FIGURE 2 | Proposed mechanisms for the influence of probiotics on systemic inflammation in rheumatoid arthritis patients. IgA, Immunoglobulin A; IL, Interleukin;
RA, Rheumatoid; SCFA, short Chain Fatty Acids; TJ, Tight Junctions; TLR, Toll-like receptors.
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reducing the clinical symptoms, rebalancing the pro- and anti-
inflammatory responses, and reversing the gut dysbiosis than late
B. adolescentis treatment. Early probiotic administration
performed better in promoting SCFAs production, had
significant higher Tregs cells frequency and lower levels of
TNF compared to the late B. adolescentis treated group.
Moreover, SCFA positively correlated with Tregs and
negatively correlated with pro-inflammatory cytokines in the
early treated group (Fan et al., 2020). These findings suggest
that the introduction of B. adolescentis before arthritis can impact
the onset of arthritic inflammation, and support that GM
manipulating therapies should be provided at an early stage of
the disease or even before disease occurrence.

Another study investigated the effects of the oral administration
of L. casei Shirota (LcS) in amousemodel of CIA (Kato et al., 1998).
LcS administration during induction of CIA suppressed the
abnormal anti-type II collagen antibody production and delayed
onset and reduced severity of CIA. It was concluded that oral
administration of LcS reduced the humoral and cellular immune
responses to CIA, which could result in reduced rates of CIA
development in mice (Kato et al., 1998).

Yamashita et al. evaluated the effect of oral administration of
L. helveticus SBT2171 in reducing the incidence and progression
of CIA (Yamashita et al., 2017). Oral administration of L.
helveticus SBT2171 significantly relieved joint swelling and
suppressed weight loss. These findings suggested that L.
helveticus SBT2171 can downregulate the abundance of
immune cells and the production of anti-type II collagen
antibodies and IL-6, suppressing CIA symptoms indicating its
potential for use in the prevention of RA (Yamashita et al., 2017).

Amdekar et al. assessed the therapeutic efficacy of L. casei in a
CIA model of arthritis and reported a therapeutic effect of this
probiotic when administered after the onset of arthritis (Amdekar
et al., 2011). There was a significant reduction in the arthritis
score with a significantly decreased secretion of pro-
inflammatory cytokines (TNF and IL-6) and an increased
concentration of IL-10, an anti-inflammatory cytokine
(Amdekar et al., 2011). The authors suggested that the exerted
anti-inflammatory effect of L. casei was a result of
Cyclooxygenase (COX)-2 and NF-κB inactivation (Amdekar
et al., 2011). Previous research on the COX-2 have already
sugested that it has a key role in inflammation in RA (Kang
et al., 1996), as COX-2 has been pointed out as the responsible for
the overproduction of prostaglandins. Prostaglandins are
implicated in different phases of inflammatory reactions, and
its synthesis is down regulated by anti-inflammatory cytokines,
such as IL-10. In this regard, the proposed mechanism provided
by Amdekar et al. for the obtained effect with L. casei in a CIA
model, involves prostaglandins inhibition due to an increased
secretion of IL-10 promoted by the probiotic treatment.

Another study from Amdekar et al. evaluated the anti-
inflammatory and antioxidant properties of L. casei and
Lactobacillus acidophilus (L. acidophilus) as a therapeutic
protocol in an experimental model of CIA. The results
suggested that L. casei and L. acidophilus exhibit antiarthritic
and anti-inflammatory properties by suppressing IL-6, TNF, IL-
17, and IL-1β production and upregulating IL-10 and IL-4

(Amdekar et al., 2013). Along with the reported imbalances
between pro-inflammatory and anti-inflammatory cytokines,
which have been reported to play an important role in
initiation and pathogenesis of arthritis, prostaglandins, nitric
oxide, and reactive oxygen species (ROS) are also released at
the site of inflammation in many rheumatic diseases, damaging
the cartilage and the components of extracellular matrix. In this
study, L. casei and L. acidophilus significantly decreased lipid
peroxidation and catalase (CAT) levels, and increased the
concentration of glutathione peroxidase (GPx), glutathione
(GSH) and superoxide dismutase (SOD) (Amdekar et al.,
2013). These findings are particularly relevant as they suggest
that the beneficial effects of L. casei and L. acidophilus are due, not
only to their anti-inflammatory effect, but also to their
antioxidant properties.

In a study conducted by Marietta et al., an isolated human gut
commensal Prevotella histicola (P. histicola) was tested for treating
CIA in HLA-DQ8 transgenic mice in prophylactic and therapeutic
protocols (Marietta et al., 2016). Mice were monitored for the onset
and progression of CIA. Treating mice with P. histicola
significantly decreased the incidence and severity of arthritis
compared to controls (Marietta et al., 2016). The microbial
modulation of arthritis was dependent on the generation of
Tregs in the gut, resulting in suppression of Th17 response and
increased release of IL-10. Moreover, treatment with P. histicola
improved intestinal barrier function by increasing the expression of
TJ proteins, ZO-1 and occludin (Marietta et al., 2016).

So et al. investigated the effect of L. casei in suppressing the
inflammatory immune responses of RA by testing its impact on
the effector functions of CD4+ T cells (So et al., 2008). This study
demonstrated that L. casei could effectively suppress RA-related
pathways by simultaneously down-regulating Th1 effector
functions and upregulating anti-inflammatory IL-10 (So et al.,
2008). Additionally, oral administration of L. casei suppressed
arthritis, reduced hind paw swelling, lymphocyte infiltration and
the destruction of cartilage tissue. Several reports have
demonstrated the beneficial effects of Lactobacillus species in
mouse models of arthritis however further research is needed to
describe the mechanisms underlying its efficacy.

Animal studies support the thesis that L. casei strains down-
regulate immune-system function (Vaghef-Mehrabany et al.,
2018), which is beneficial in the case of RA and other
inflammatory diseases. Results from a number of preclinical
studies have demonstrated that various strains of L. casei can
be effective in reducing arthritis score and decreasing serum
inflammatory cytokines in RA (Kato et al., 1998; So et al., 2008;
Amdekar et al., 2011, 2013; Pan et al., 2019). Although there are
numerous studies reporting the efficacy of Lactic Acid Bacteria
(LAB), their underlying mechanisms of action are still to be fully
elucidated. Proposed mechanisms for L. casei strains include the
improved proportion of Th2/Th1 cytokines, including the
induction of Treg cells and down-regulation of Th1 cells.
Once bound to TLR 2/6, L. casei bacteria, trigger various
intracellular mechanisms, which will ultimately contribute to
the maturation of FoxP3-CD4+ towards FoxP3 Treg cells
(Vaghef-Mehrabany et al., 2018). Tregs cells are the main
producers of IL-10, providing inhibitory effects on Th1 cells
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(Issazadeh-Navikas et al., 2012). Amdekar et al., have also proposed
a similarmechanism for Lactobacillus species (Amdekar et al., 2013).
Therefore, the altered cytokine balance in favour of anti-
inflammatory cytokines seems to be the main mechanism of
action of probiotics in RA and should be the basis of future
research. The role of antioxidant effects should be further elucidated.

Studies With the Adjuvant-Induced Arthritis Animal
Model
Concerning the role of probiotic bacteria on disease progression,
Pan et al. investigated the potential of administrating L. casei in
the treatment of adjuvant-induced arthritis (AIA) and reported
profound changes of microbial species in the gut as well as
alterations in clinical signs during arthritis induction and
progression phases, such as inhibition of joint swelling, lower
arthritis scores, and prevention of bone destruction (Pan et al.,
2019). Thirty days after prophylactic treatment with L. casei, a
significant reduction in pro-inflammatory cytokines levels was
observed. Moreover, an increased relative abundance of several
Lactobacillus strains was also detected, such as L. acidophilus,
Lactobacillus hominis, L. reuteri, and Lactobacillus vaginalis,
suggesting that L. casei improves arthritis mainly through
establishing the rebalance of the Lactobacillus strains (Pan
et al., 2019). Some Lactobacillus strains have been reported to
drive T cell differentiation from intraepithelial CD4+ T cells into
immunoregulatory Treg. Also, their metabolic products, such as
SCFAs, influence colonic Treg cell homeostasis (Smith et al.,
2013; Cervantes-Barragan et al., 2017).

Rovensky et al. investigated the efficacy of Escherichia coli O83
(Colinfant®) in the treatment of AIA (Rovenský et al., 2009). They
studied the effect of Colinfant® alone, of Colinfant® in combination
with MTX and MTX alone. They found a significant reduction in
both inflammation and arthritis-associated alterations (reduction
of hind paw swelling and arthrogram score) with MTX and with
the combination of MTX and Colinfant® (Rovenský et al., 2009).
They also reported a more significant improvement of the arthritis
score with combination treatment than withMTX alone. However,
the use of Colifant® alone had no impact on inflammatory markers
(Rovenský et al., 2009).

Another study using an AIA model investigated whether B.
coagulans and inulin, administered either isolated or in
combination, influenced arthritis severity in rats (Abhari et al.,
2016). A significant clinical improvement was observed in B.
coagulans and/or inulin treated rats. This improvement included
suppression of paw swelling and a decrease in pro-inflammatory
parameters, such as fibrinogen and TNF-α (Abhari et al., 2016).

A study conducted by Achi et al. evaluated three strains of
Bifidobacteria, namely Bifidobacterium breve NCIM 5671 (B.
breve NCIM 5671), Bifidobacterium longum NCIM 5672, and
Bifidobacterium bifidum NCIM 5697, to investigate their
prophylactic effect in an AIA model (Achi et al., 2019). The
results have demonstrated that Bifidobacteria can reduce the
severity and progression of arthritis. However, B. breve NCIM
5671 had better antiarthritic effects in the rat model than the
other bifidobacterial species studied, suggesting that the effect is
strain-dependent, and these strains should be further explored for
their putative positive impact on RA treatment (Achi et al., 2019).

Table 1 summarizes the characteristics and main findings
regarding probiotic effects on RA in preclinical studies.

Summary of Evidence From Animal Models
Even after several decades of research, RA remains a complex disease
of unknown etiology and without a cure (Choudhary et al., 2018).
Animal models are widely used for testing potential new therapies
for RA, and despite their recognized limitations, it is evident that
these have provided valuable information regarding RA
pathogenesis and the underlying mechanisms of disease. When
considering all existing animal models of arthritis, the most
commonly found question is which model is most predictive of
therapeutic efficacy in human subjects with RA, as each model
features a different mechanism driving disease expression (Hegen
et al., 2008). Considering the problem to be investigated, the benefits
of each model should be closely evaluated in order to make the most
appropriate choice. Accordingly, for the identification and validation
of drug targets, AIA and CIA models have great reproducibility and
are the most commonly used models (Choudhary et al., 2018). The
AIA model is characterized by acute inflammation and severe
destruction, useful for the evaluation of the early structural
consequences of arthritis and also for studies of pain pathways
(Boissier and Bessis, 2017; Vidal et al., 2018). On the other hand, CIA
has been an extremely popular model since its conception, once its
underlying mechanisms involve numerous elements of the innate
and adaptive immune systems, making it a useful model both for
developing concepts to be extended to human subjects and for
validating new treatment targets (Boissier and Bessis, 2017). The
breach of tolerance and generation of auto antibodies towards self,
are recognized as the most important characteristics of the CIA
model, which makes it a very good in vivo model for RA studies
(Asquith et al., 2009).

We have considered both prophylactic (when probiotic
administration started before immunization or before arthritis
onset) and therapeutic (when dosing with study probiotic started
after clinical signs of disease) treatment regimens with probiotic
bacteria in CIA and AIA models. A number of preclinical studies
reported the beneficial effects of probiotics via multiple pathways,
including restoring the dysbiosis of GM in a prophylactic way
(Achi et al., 2019; Pan et al., 2019; Fan et al., 2020). A study
conducted by Liu et al., has reported significant differences in the
microbiome composition of CIA-susceptible and CIA-resistant
mice (Liu et al., 2016). When transplanted to germ-free mice, the
microbiome of the CIA-susceptible mice aggravated CIA disease
severity, suggesting a relationship between GM composition and
CIA susceptibility (Liu et al., 2016). These results showed that
intestinal microbiota strongly affects the balance between pro-
and anti-inflammatory immune responses in CIA. Although
several studies reported differences in the microbiome
composition of RA when compared to controls, little is known
about the highly personalized microbiome dynamics during the
induction, progression, and treatment of arthritis. The genus
Lactobacillus is significantly more abundant prior to arthritis
onset in CIA-susceptible mice than in CIA-resistant mice (Liu
et al., 2016), However, results obtained by Pan et al., indicated
that L. casei could influence the disordered microbiome and
ameliorate arthritis via modulation of Lactobacillus strains

Frontiers in Pharmacology | www.frontiersin.org July 2021 | Volume 12 | Article 7117887

Ferro et al. Probiotic Supplementation for Rheumatoid Arthritis

44

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


TABLE 1 | Probiotic effects on animal models of arthritis.

Animal models of CIA

Author, year Study objective Animal model/
administration timing

Probiotic strain Administration dose Evaluated parameters Main findings

Kato et al.
(1998)

To investigate the effects of L. casei Shirota
on the development of CIA and immune
responses

Male DBA 1 mice/after
arthritis modeling

L. casei Shirota PG1: 0.25 × 109 CFU/
day
PG2: 0.5 × 109 CFU/day
PG3: 1 × 109 CFU/day
PG4:2 × 109 CFU/day

Arthritis score; incidence of CIA; serum anti-
CII antibodies; IFN-γ; IL-4

L. casei Shirota ↓ arthritis incidence in all
groups; ↓ arthritis severity; ↓ CII-specific
antibodies IgG2a and IgG2b; ↓ IFN-γ

So et al.
(2008)

To investigate how L. casei suppresses the
progression of CIA

Female lewis rats/before
and after arthritis
induction

L. casei 5 × 109 CFU/dose Paw swelling; arthritis score; CII-specific
antibodies; CII-reactive pro-inflammatory
molecules

L.casei ↓ hind paw swell ing; ↓ lymphocyte
infi l trat ion; ↓ destruction of cart i lage
tissue; ↓ IL-1β; ↓ IL-2; ↓ IL-6; ↓ IL-12; ↓ IL-
17; ↓ IFN-γ; ↓ TNF; ↓ COX-2; ↑ IL-10; ↓
serum CII-specific IgG2a and IgG2b; ↓ T
cell proli feration (in both the
pretreatment and acute phase treatment)

Amdekar
et al. (2011)

To investigate the therapeutic efficacy of L.
casei in a CIA model

Female wistar rats/after
arthritis induction

L.casei ATCC 334 2 × 108 CFU/ml Arthritis score; serum cytokines; hind knee
joint morphology

L. casei ↓ arthritis score; ↓ IL-6; ↓ TNF-α; ↓
infiltration of neutrophils in joint; ↓ bone erosion;
↓ pannus formation

Amdekar
et al. (2013).

To evaluate antioxidant and anti-
inflammatory potential of L. casei and L.
acidophilus in a CIA model

Male wistar rats/after
arthritis induction

L.casei ATCC 334 L.acidophilus
ATCC314

PG1: 2 × 108 CFU/ml
(L. casei)
PG2: 2 × 108 CFU/ml
(L. acidophilus)

Arthritis score; serum cytokines; oxidative
stress markers (GSH, CAT, SOD, lipid
peroxidation, GPx)

L. casei and L. acidophilus ↓ arthritis score; ↑ IL-
4; ↑ IL-10; ↓ IL-6; ↓ TNF; ↓ IL-1β; ↓ IL-17; ↓CAT;
↓ lipid peroxidation; ↑ GSH; ↑ GPx; ↑ SOD

Marietta et al.
(2016)

To evaluate the effects of P. histicola for
treating CIA

DQ8 mice/before and
after arthritis induction

P. histicola 1 × 109 live bacteria Arthritis incidence; arthritis onset; arthritis
severity; expression of TJ proteins; serum
cytokines

P. histicola ↓ incidence of arthritis; ↓ severity of
arthritis; ↓ IL-2; ↓ IL-17; ↓ TNF; ↑ IL-4; ↑ IL-10;
↓ anti-CII antibodies; ↓ gut permeability; ↑
ZO-1

Yamashita
et al. (2017)

To evaluate the effect of L. helveticus on the
development of CIA, antibody production
and immune cells

Male DBA 1J mice/after
arthritis induction

L.helveticus SBT2171 PG1:1.2 × 1010 CFU/g
(oral administration)
PG2: (Intraperitoneal
inoculation)

Hind limb joint tissues; serum CII-specific
antibodies; serum cytokines; total immune
cells

L. helveticus oral administration ↓ joint
swelling; ↓ body weight loss; ↓ serum CII-
specific IgG and IgG1; L. helveticus
intraperitoneal inoculation ↓ arthritis
incidence; ↓ joint damage; ↓ serum IL-6; ↓
total B-cells; ↓ CD4+ T cells in the
inguinal LNs

Fan et al.
(2020)

To investigate the effects of B. adolescentis
before and after arthritis induction on GM
composition and immune responses

Female wistar rats/before
and after arthritis
induction

B. adolescentis cocktail including 5
strains HuNan2016-7-2 AHWH4-M1
FSDJN3Q1 M1DZ09M1
FSDJN12W5

5 × 109 CFU/ml/day
(per strain)

Ankle thickness; arthritis score; serum
cytokines; serum anti-CII antibodies; tregs in
MLNs; level of TJ proteins; GM composition;
faecal SCFA

Preventive B. adolescentis performed
better in ↓ ankle thickness; ↓ arthritis score;
↓TNF; ↑ Tregs in MLNs; ↑ SCFAs; ↑ mRNA
level of ZO-1 and occludin; maintaining the
gut microbial communities similar to the CG

Animal models of AIA

Rovenský et
al. (2009)

To evaluate the effect of E. coli O83 on AIA
during basal treatment with MTX

Male lewis rats/after
arthritis induction

E. coli O83 8 × 108 bacteria/ml
(1 ml/kg body mass)

Body mass; hind paw swelling; arthrogram
score; serum albumin

E.coli O83 + MTX ↓ hind paw swelling; ↓
arthrogram score

Abhari et al.
(2016)

To investigate the possible influence of
Bacillus coagulans on immune responses
and disease progression

Male wistar rats/before
and after induction

Bacillus coagulans 109 spores Paw thickness; Fn; SAA; TNF-a; a1AGp Pretreatment with Bacillus coagulans ↓ Fn; ↓
SAA; ↓ TNF

(Continued on following page)
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(Pan et al., 2019). These findings highlighted the importance of
monitoring changes in microbial communities during disease
progression and provided powerful evidence to explain the
evolution of the GM in RA. Of interest, Fan et al. reported the
beneficial effects of early treatment in maintaining gut microbial
communities (Fan et al., 2020).

There is no model fully reproducing a human rheumatic
disease, which means that therapeutic interventions in animal
models only provide partial information (Bessis et al., 2017).
However, the development of novel treatment interventions for
RA still relies on the careful analysis of studies in animal models
combined with clinical observations.

Experimental Evidence From Human
Studies (Randomized Controlled Trials)
Randomized Controlled Trials With Lactobacillus
rhamnosus
The effect of probiotic supplementationwas studied in stable RA in a
randomized controlled trial (RCT) evaluating the treatment with
Lactobacillus rhamnosus (L. rhamnosus) GG versus placebo
(Hatakka et al., 2003). Patients were not under treatment with
DMARDs, but most of them were on stable medication with
glucocorticoids (GC, 75% in the probiotic group and 62% in the
placebo group) and non-steroidal anti-inflammatory drugs
(NSAIDs, 75% in the probiotic group and 77% in the placebo
group). In this study, the intervention group was given two capsules
of L. rhamnosus (ATCC 53103) GG (Gefilus®, Valio Ltd.; ≥5 × 109

colony-forming units (CFU) per capsule), twice a day, for
12 months, and the placebo group received identical capsules
without the bacteria. There were no statistical differences in the
clinical parameters, biochemical variables, and Health Assessment
Questionnaire (HAQ) between groups. Inflammatory parameters
were not significantly reduced. Interestingly, although there were no
statistical differences in disease activity, more subjects in the
intervention group reported subjective well-being when compared
to the placebo group (Hatakka et al., 2003).

Supplementation with L. rhamnosus combined with L. reuteri
was also studied as adjunctive therapy for patients with active RA
(Pineda et al., 2011). In this study, patients on stable medication
(for at least one month) with DMARDs, steroids and/or NSAIDs
were randomized to receive one capsule taken twice daily, for
3 months or placebo. The probiotic group received a supplement
containing L. rhamnosus GR-1 and L. reuteri RC-14 (containing
2 × 109 CFU/capsule). The placebo group received a capsule
containing the same ingredients without the bacteria. A decrease
in serum levels of IL-1a, IL-6, IL-10, IL-12p70, and TNF was
reported, but placebo caused a significantly greater decline in the
production of IL-6, IL-12p70, and TNF, as well as IL-15, IL-17.
Finally, although there was a significant improvement in the
HAQ score in the probiotic group, no between-group differences
were found (Pineda et al., 2011).

Randomized Controlled Trials With Lactobacillus
casei
A different strain of Lactobacillus, L. casei, was also studied for its
potential benefits in RA. In the study conducted by Vaghef-T
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Mehrabany et al., patients with inactive to moderate RA (i.e., a
disease activity score (DAS28) of <5.1) who were following a stable
medication regimen for at least three months were included;
current medication for most patients included DMARDs and
GCs, but not NSAIDs or biologics. The probiotic group
received a daily capsule of L. casei 01 (>108 CFU/capsule) for
eight weeks (Vaghef-Mehrabany et al., 2014). The placebo group
received capsules containing only maltodextrin (the excipient used
in the probiotic capsules). The probiotic supplementation
significantly decreased three of the assessed serum pro-
inflammatory cytokines (TNF, IL-6, and IL-12). Moreover, a
significant increase in serum levels of IL-10 was observed in the
probiotic group. In this study, the pain visual analogue scale (VAS)
score decreased, compared with baseline, by 43.96% in the
probiotic group and by 5.99% in the placebo group at the end
of the study (Vaghef-Mehrabany et al., 2014). Regarding the effects
of probiotic supplementation with L. casei on oxidative stress,
Vaghef-Mehrabany et al. conducted a secondary analysis and
concluded that this intervention had no significant effect on the
oxidative status of patients with RA compared to placebo (Vaghef-
Mehrabany et al., 2016). Additionally, the same authors found that
this intervention with L. casei 01 also significantly decreased serum
high sensitivity C-reactive protein (hs-CRP), global health score
(assessed by VAS), DAS-28, as well as tender and swollen joint
counts (Alipour et al., 2014). Regarding disease activity, DAS-28
(mean ± standard deviation) decreased from 2.56 ± 1.01 at baseline
to 2.07 ± 0.82 at the end of the study in the probiotic group, while a
much smaller improvement in DAS-28 was observed in the placebo
group (2.31 ± 0.90 at baseline to 2.23 ± 0.86 at the end of the study)
(Alipour et al., 2014).

Zamani et al. tested L. casei combined with other strains (Zamani
et al., 2016). In this RCT, the intervention group received, in addition
to their conventional medications (DMARDs and GCs), a daily
capsule containing L. casei (2 × 109 CFU/g), L. acidophilus (2 ×
109 CFU/g) and B. bifidum (2 × 109 CFU/g) for eight weeks, and
the placebo group took capsules filled with cellulose for the same
amount of time. Although this trial was conducted in patients with
moderate to severe disease activity (DAS-28 > 3.2), contrarily to the
previous studies, probiotic supplementation also resulted in improved
DAS-28. In the probiotic group, DAS-28 (mean ± standard deviation)
decreased from 4.0 ± 0.7 at baseline to 3.7 ± 0.7 at the end of the trial,
while the decrease in the placebo group was only from 4.1 ± 0.7 at
baseline to 4.0 ± 0.7 at the end of the trial. The authors also found a
significant decrease in serum hs-CRP concentrations and other
parameters not previously studied, such as serum insulin levels
(Zamani et al., 2016). In line with Vaghef-Mehrabany et al., this
intervention did not influence biomarkers of oxidative stress compared
with the placebo among patients with RA (Zamani et al., 2016).

Lastly, L. casei was also tested combined with other strains in
the study conducted by Cannarella et al. (Cannarella et al., 2021).
In this trial, RA patients in the probiotic group took a daily sachet
for 60 days containing 109 CFU/g of each of the following strains:
L. casei LC-11, L. acidophilus LA-14, Lactococcus lactis LL-23, B.
lactis BL-04 and B. bifidum BB-06, and the placebo group took
maltodextrin daily for the same amount of time. Similarly to the
previous studies, the usual medication was maintained in both
groups during the experiment. The probiotic group showed a

significant reduction in white blood cell counts, TNF and IL-6
plasma levels, but this intervention did not alter DAS-28 (median
of 3.83 at baseline vs a median of 3.88 at the end of the study in the
placebo group; median of 3.20 at baseline vs a median of 3.18 at
the end of the study in the probiotic group). Moreover, no
differences were found in the IL-10, adiponectin, CRP and
erythrocyte sedimentation rate (ESR) between groups. The
authors also assessed parameters that were not reported in the
previous studies, such as oxidative/nitrosative profile and
antioxidant defences. They found that probiotic supplementation
improved the oxidative/nitrosative profile and increased the
antioxidant defences in patients with RA. In this regard, the
probiotic group showed lower nitric oxide metabolites, and
higher sulfhydryl group and a total radical-trapping antioxidant
parameter compared to the placebo group (Cannarella et al., 2021).

Randomized Controlled Trials With Bacillus coagulans
An RCT with B. coagulansGBI-30, 6,086® (GanedenBC30®), also
used in combination with DMARDs, was conducted by Mandel
et al. in RA patients. In this trial, besides the probiotic itself, the
preparation included green tea extract, methylsulfonylmethane,
vitamins and minerals, and the placebo contained
microcrystalline cellulose. There was a statistically significant
improvement in the pain scale compared to placebo (Mandel
et al., 2010). Besides, the probiotic supplementation resulted in a
reduction of CRP and greater improvement in patient-global
assessment, self-assessed disability, the ability to walk two miles
and participation in daily activities compared to placebo (Mandel
et al., 2010). The authors did not report DAS-28 but suggested
that B. coagulans GBI-30, 6,086® supplementation may be an
effective adjunct therapy for the relief of RA symptoms. Trials
assessing disease activity are warranted.

Summary of Evidence From Randomized
Controlled Trials
Overall, there is some evidence from human RCTs that probiotic
supplementation can improve disease activity and the
inflammatory status of RA patients when used in addition to
the patient’s conventional medications. Additionally, the recently
published RCT by Cannarella et al. reported that probiotic
supplementation could also increase the antioxidant defences
and improve oxidative/nitrosative profile in RA patients
(Cannarella et al., 2021). Figure 3 summarizes the
experimental evidence for the use of probiotic bacteria in RA
according to taxonomic distribution.

Several different strains have been tested for their benefit in
RA patients, as single species or in mixed culture, in different
dosages, which is a limitation that could explain conflicting
results. Selecting the most appropriate strain for
administration to RA patients is of major importance, and this
should be sought in future research projects. As of now, probiotic
supplementation with L. casei seems to be the strongest candidate
to be used as adjuvant therapy for RA patients, and current
evidence suggests a minimum of 108 CFU/capsule per day to
obtain significant results. Supporting this, a systematic review and
meta-analysis investigating the effectiveness of probiotic
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supplementation in RA underlined that the trials in which a
significant reduction of CRP was achieved used the same
probiotic strain, L. casei (Rudbane et al., 2018). Nevertheless,
strain choice is only one of the various variables that are likely to
influence the outcomes of probiotic studies, because dosage, study
duration, frequency of administration, baseline disease activity
(Marco and Tachon, 2013) and concomitant pharmacological
treatment are also of major importance. Table 2 details the
characteristics and main findings of the included papers
regarding probiotic effects on RA.

FERMENTED FOODS AS A POSSIBLE
ALTERNATIVE TO PROBIOTIC
SUPPLEMENTS
Fermented foods and beverages are defined as foods made
through desired microbial growth and enzymatic conversions
of food components (Marco et al., 2021). Yoghurt, Kefir, Miso,
Natto, Tempeh and most Kombuchas are some of the available
fermented foods that contain live microorganisms (Marco et al.,
2021). Historically, many foods have undergone fermentation as a
food preservation technique (Paul Ross et al., 2002; Dimidi et al.,
2019) since the generation of antimicrobial metabolites like
organic acids, ethanol and bacteriocins reduce the risk of
contamination with pathogenic microorganisms (Dimidi et al.,
2019). Nowadays, fermented foods and beverages are more
popular than ever before (Bell et al., 2018). This emerging
interest in such foods could be explained by their health-
promoting potential (Marco et al., 2017; Melini et al., 2019).

Although the current body of evidence regarding the impact of
fermented foods on health and disease remains insufficient (Bell et al.,
2018; Dimidi et al., 2019), it is increasingly understood that some
fermented foods promote human health in ways not directly
attributable to the starting food materials (Marco et al., 2017).
These foods could benefit health through the nutritive alteration
of the ingredients, modulation of the immune system, or by
influencing GM composition and activity (Marco et al., 2021).
Most likely, several of these mechanisms are related and
contribute to the effects of each other.

These foods contain various microbes with health-promoting
properties, and GM has been suggested to be the mediator
between fermented food consumption and these health
outcomes. However, it is important to acknowledge that
changes in the bacterial composition of diet do not necessarily
translate into GM functional changes (Stiemsma et al., 2020).
That being said, there is evidence from dietary interventions in
humans suggesting that foodborne microbes can transiently
colonize gut (David et al., 2014). Food ingested bacteria are
capable of transient integration into GM, despite the resistance
of resident communities to colonization by ingested bacteria
(Derrien and van Hylckama Vlieg, 2015). Although these
microorganisms are unlikely to maintain long-term residence
in the intestine, it has been suggested that short-term colonization
could be sufficient to synthesize bioactive compounds, inhibit
intestinal pathogens and mediate epithelial modulatory effects
(Marco et al., 2021). Nevertheless, to fully understand the long-
term effects of the consumption of fermented foods, it is crucial
that future studies have longer intervention periods and evaluate
the GM composition, not only before and immediately after the

FIGURE 3 | Taxonomic distribution of probiotic bacteria used in animal models of arthritis and rheumatoid arthritis trials.
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TABLE 2 | Probiotic effects on Rheumatoid Arthritis in clinical trials.

Author/ year Sample size/ study
duration/ RA severity

Probiotic strain Administration dose Evaluated Parameters Main findings

RCT with L.
rhamnosus

(Hatakka et al.,
2003)

n � 21/12 months/
mild disease

L. rhamnosus GG ≥5 × 109 CFU/capsule (4 caps/day) HAQ; TJC and SJC; ESR; CRP; IL-1β;
IL-6; IL-10; IL-12; TNF

No statistical differences were observed;
↑ number of subjects reporting subjective
well being in the probiotic group

(Pineda et al., 2011) n � 29/3 months/
severity not
described

L. rhamnosus GR-1L.
reuteri RC-14

2 × 109 CFU/capsule (2 caps/day) TJC and SJC; ESR; CRP; TNF; IL-1 α;
IL-1β; IL-6; IL-10; IL-12; GH VAS; pain
VAS; HAQ

No statistical differences were observed
between groups

RCT with
L.casei

(Vaghef-Mehrabany
et al., 2014)

n � 46/8weeks/mild
to moderate disease

L. casei 01 ≥108 CFU/capsule (1 caps/day) IL-1β; IL-6; IL-10; IL-12;TNF ↓ IL-6; ↓ IL-12; ↓ TNF;↑ IL-10

(Alipour et al., 2014) n � 46/8 weeks/mild
to moderate disease

L. casei 01 ≥108 CFU/capsule (1 caps/day) DAS28; TJC and SJC; GH score; hs-CRP ↓ DAS28;↓ hs-CRP; ↓ GH score; ↓ TJC
and SJC

(Vaghef-Mehrabany
et al., 2016)

n � 46/8 weeks/mild
to moderate disease

L. casei 01 ≥108 CFU/capsule (1 caps/day) MDA; SOD; GPx; CAT; TAC No significant effect was observed on the
oxidative status

(Zamani et al., 2016) n � 60/8 weeks/
moderate to severe
disease

L. acidophilusL. caseiB.
bifidum

2x109 CFU/g of each strain
(1 caps/day)

DAS28; TJC and SJC; VAS of pain;
hs-CRP; serum insulin; HOMA-B;
HOMA-IR; lipid profile; NO; TAC;
GSH; MDA

↓ DAS28;↓ serum insulin; ↓ HOMA-B;↓
hs-PCR

(Cannarella et al.,
2021)

n � 47/60 days/
severity not
described

L. casei LC-11L.
acidophilus
LA-14Lactococcus
lactis LL-23B. Lactis
BL-04B. Bifidum
BB-06

109 CFU/sachet of each strain
(1 sachet/day)

DAS28; GH VAS; TJC and SJC; WBC;
ESR; hs-CRP; TNF; IL-6; IL-10;
adiponectin; LOOH; PC; NO; SH

↓ WBC; ↓ TNF;↓ IL-6; ↓ NOx;↑ Total
antioxidant capacity (TRAP); ↑ SH

RCT with
Bacillus
coagulans

(Mandel et al., 2010) n � 45/60 days/
severity not
described

Bacillus Coagulans
GBI-30, 6086

2x109 CFU/day HAQ-DI; TJC and SJC; ERS; CRP; pain
score; global assessment

↓ pain score and CRP

B, bifidobacterium; CAT, catalase; CRP, C-reactive protein; DAS28, disease activity score 28 joint count; ESR, erythrocyte sedimentation rate; GH, global health; GSH, glutathione; GPx, glutathione peroxidase; HAQ, Health Assessment
Questionnaire; HAQ-DI, Stanford Health Assessment Questionnaire Disability Index; HOMA-B, homeostatic model assessment-B cell function; HOMA-IR, homeostasis model of assessment-estimated insulin resistance; hs-CRP, serum high
sensitivity C-reactive protein; IL, interleukin; L, lactobacillus; LOOH, lipid hydroperoxide; MDA, malondialdehyde; NO, nitric oxide; NOx, nitric oxid metabolites; PC, protein carbonyl; RCT, randomized clinical trial; RA, rheumatoid arthritis; SH,
sulfhydryl groups; SJC, swollen joint counts; SOD, superoxide dismutase; TAC, total antioxidant capacity; TJC, tender joint counts; TNF, tumour necrosis factor; TRAP, total radical-trapping antioxidant parameter; VAS, visual analogue scale;
WBC, white blood cell counts.
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intervention, but also some time after the cessation of the regime
(e.g., several weeks). Bifidobacterium and lactic acid bacteria,
including Lactobacillus, which were studied as probiotic
supplements in RA patients, are some of the microorganisms
present in many fermented foods (Tamang et al., 2016).

Even though fermented foods can be classified as probiotics if
they meet the required criteria, it is important to clarify that
fermented foods are not equivalent to probiotic foods since many
fermented foods do not have evidence of a demonstrated health
benefit conferred by well-defined and characterized live
microorganisms (Hill et al., 2014; Marco et al., 2021). The
effects of the microorganisms are strain specific and most
likely dose-dependent. This is one of the main limitations
regarding the use of fermented foods as an alternative to
probiotic supplementation. Additionally, some foods and
beverages produced by fermentation do not contain live
microorganisms, such as bread, beer, wine and distilled
alcoholic beverages, due to their inactivation by heat or physical
removal by filtration or other means (Rezac et al., 2018). As
previously discussed, fermented foods could lead to beneficial
outcomes by various mechanisms besides providing living
microorganisms to the gastrointestinal tract. Hence, these foods
could carry a positive functional role even in the absence of live
microorganisms in the finished product, considering that microbes
are capable of modifying food constituents, may produce vitamins
or other bioactive molecules and inactivate anti-nutritional factors
(Marco et al., 2017; Rezac et al., 2018). Since several other
components in the food matrix may positively influence health
and it is possible that fermented foods carry additional benefits
when compared with probiotic supplementation by itself.

Considering all these findings, fermented foods can be probiotic
carriers and may be a promising alternative to probiotic
supplementation for RA patients. Fermented foods may change
the amounts and types of beneficial bacteria that live in human
gut (Stiemsma et al., 2020) and, considering the emerging evidence
linking dysbiosis with autoimmunity mechanisms (Horta-Baas et al.,
2017), this could be particularly interesting for RA patients.
Moreover, there is evidence of the beneficial effect of fermented
foods in reducing inflammatory biomarkers in studies conducted in
healthy individuals (Burton et al., 2017; Pei et al., 2017). Of interest to
the subject discussed in this paper, fermented foods have also been
studied in other inflammatory conditions and, although more
research is needed, results suggested that these foods can exert
beneficial effects in conditions characterized by chronic
inflammation. For instance, an RCT conducted in patients with
inflammatory bowel disease found that kefir consumption
significantly decreased ESR and CRP serum levels in patients with
Crohn’s disease and concluded that this intervention may improve
both symptoms and quality of life of these patients (Yılmaz et al.,
2019). Furthermore, in patients with type 2 diabetes, the
consumption of a probiotic yogurt containing 3.7 × 106 CFU/g of
both L. acidophilus (La5) and B. lactic (Bb12), significantly decreased
TNF levels (Mohamadshahi et al., 2014). A significant decrease in
TNF levels, as a result of yogurt consumption, was also found in a
RCT promoted by Chen et al., conducted in obese women with
nonalcoholic fatty liver disease and metabolic syndrome (Chen et al.,
2019). In this study conventional yogurt was used and a significant

decrease in serum lipopolysaccharide (LPS), a biomarker of gut
permeability, was also found as well as changes in GM
composition, namely a decrease in the abundance of the
Firmicutes phylum and the taxa within it (Chen et al., 2019). In
line with this, a recent systematic review and meta-analysis of RCTs
regarding fermented foods and inflammation reported that
fermented foods might have beneficial effects in subjects with an
inflammatory disease background (SaeidiFard et al., 2020), as is the
case of RA patients. Lastly, dietary interventions are among the
nonpharmacological therapies proposed to minimize the
consequences of the disease in patients with established RA
(Küçükdeveci, 2019). Finally, it has already been suggested that
fermented foods may be an appealing complement to a whole-
dietary pattern, such as the Mediterranean Diet, since both
fermented foods and the Mediterranean Diet have similar anti-
inflammatory pathways and may potentiate each other, resulting
in a promising combination for RA patients (Dourado et al., 2020).
Altogether, this evidence highlights the need for well conducted
intervention studies with fermented foods in RA patients.

CONCLUSION

The link between gut dysbiosis and RA has expanded the interest in
investigating the modulation of the GM as a possible adjuvant
therapy for disease prevention and treatment. The increasing
evidence reporting the positive effects of probiotic bacteria in
animal models of arthritis has been leveraging the desire to
transfer these benefits into clinical practice. However, only a small
number of studies addressed the role of probiotics in themanagement
of RA on human subjects and, to the best of our knowledge, no
human trial has investigated the role of probiotics in a preventive
approach. Research in this field is still in need of high-quality studies
with larger sample sizes and longer treatment durations to ascertain
the exact benefit of this promising treatment for RA patients.

Probiotics supplementation in RA seems to have no clinically
significant adverse effects, but further research is needed to get a solid
basis concerning the most appropriate strains for RA patients. As of
now, L. casei seems to be the strongest candidate, and its potential
effect on GM and immune system could be further explored to
achieve new insights on this promising therapy for RA patients.

Moreover, fermented foods may be a possible alternative to
probiotic supplementation, as some of these foods and beverages
are known to be probiotic carriers with potentially similar health
benefits. As the current body of evidence investigating the impact
of fermented foods on health and disease remains insufficient, its
proposed benefits on the human GM should warrant future
research consideration.
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Searching for the one(s): Using
Probiotics as Anthelmintic Treatments
Maria Priscila Saracino1,2*, Cecilia Celeste Vila1,2, Pablo César Baldi1,2 and
Daniel Horacio González Maglio1,2

1Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina, 2Instituto
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Helminths are a major health concern as over one billion people are infected worldwide
and, despite the multiple efforts made, there is still no effective human vaccine against
them. The most important drugs used nowadays to control helminth infections belong to
the benzimidazoles, imidazothiazoles (levamisole) and macrocyclic lactones (avermectins
and milbemycins) families. However, in the last 20 years, many publications have revealed
increasing anthelmintic resistance in livestock which is both an economical and a potential
health problem, even though very few have reported similar findings in human populations.
To deal with this worrying limitation of anthelmintic drugs, alternative treatments based on
plant extracts or probiotics have been developed. Probiotics are defined by the Food and
Agriculture Organization as live microorganisms, which, when consumed in adequate
amounts, confer a health benefit to the host. It has been proven that probiotic microbes
have the ability to exert an immunomodulatory effect both at the mucosa and the systemic
level. The immune response against gastrointestinal helminths is characterized as a type 2
response, with high IgE levels, increased numbers and/or activity of Th2 cells, type 2 innate
lymphoid cells, eosinophils, basophils, mast cells, and alternatively activated
macrophages. The oral administration of probiotics may contribute to controlling
gastrointestinal helminth infections since it has been demonstrated that these
microorganisms stimulate dendritic cells to elicit a type 2 or regulatory immune
response, among other effects on the host immune system. Here we review the
current knowledge about the use of probiotic bacteria as anthelmintic therapy or as a
complement to traditional anthelmintic treatments. Considering all research papers
reviewed, we may conclude that the effect generated by probiotics on helminth
infection depends not only on the parasite species, their stage and localization but
also on the administration scheme.

Keywords: probiotics, helminths, inflammation, type 2 immune response, regulatory immune response

INTRODUCTION

Helminths have co-evolved with mammals and infect over one billion people worldwide, mostly in
non-industrialized countries (Hotez et al., 2008). Generally, helminths have complex life cycles,
involving different stages and hosts. Most species of parasitic helminths occupy more than a single
niche in a human host during their life cycle and, in most cases, helminths produce chronic
infections. Despite worldwide efforts, the development of vaccines providing long-term protection
against helminths has been hampered by multiple life cycle stages, antigenic variation between them,
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evasion mechanisms and immunomodulation strategies (Bobardt
et al., 2020; Drurey et al., 2020). At present, only a few vaccines
against helminths are commercially available with a high level of
protection (>90%) and they are applied only to ruminants
(Claerebout and Geldhof 2020). Therefore, a major approach
to control helminth infections in livestock is periodic
chemotherapy with anthelmintic drugs. However, uncomplete
drug treatment schemes, high rates of post-treatments
reinfections and the rise of anthelmintic resistance makes a
dangerous combo for the increase of helminth infections
among livestock with the consequent impact on human health
(Hotez et al., 2008).

Probiotics are defined as live microorganisms that, when
administered in adequate amounts, confer a health benefit on
the host (Hill et al., 2014). These benefits include the prevention of
health problems, such as diarrhea, irritable bowel syndrome,
inflammatory bowel disease and allergic disorders such as
atopic dermatitis (Islam 2016). The mechanisms of action of
probiotics involve colonization and normalization of perturbed
intestinal microbial communities, competitive exclusion of
pathogens and bacteriocin production, modulation of enzymatic
activities related to metabolization of a number of carcinogens and
other toxic substances, and production of volatile fatty acids, which
play a role in the maintenance of energy homeostasis and
regulation of functionality in peripheral tissues (Bermudez-Brito
et al., 2012; Plaza-Diaz et al., 2019). Probiotics also reinforce
intestinal barrier function and mucin production and modulate
the activity of gut-associated lymphoid tissue and the immune
system (Plaza-Diaz et al., 2019). Likewise, probiotics may interfere
with the physiology of parasites in the gut. Furthermore, their
secreted products may have anthelmintic effects and can reduce the
virulence of many parasites and for this reason probiotics may be
an integral part of helminth parasite control strategies (Berrilli
et al., 2012). Here we review the current knowledge about the use of
probiotic bacteria as anthelmintic therapy or as a complement to
traditional anthelmintic treatments.

IMMUNE RESPONSE AGAINST
HELMINTHS

In general terms, the immune response in helminth infections is a
type 2 immune response which is characterized by the production
of interleukin (IL)-4, IL-5, IL-9, IL-10, and IL-13 (Allen and
Maizels 2011). Adaptive immune cells including CD4+ T helper 2
(Th2) cells and B cells innate immune cells such as basophils,
eosinophils, mast cells and innate lymphoid cells (ILCs) are
important sources of type 2 cytokines and are important
effector cells (Gause et al., 2020).

The epithelial cell barrier not only represents the first line of
defense against helminths but also provides signals to initiate type 2
immune response. As helminths invade epithelial barriers and
migrate through tissues, they cause considerable damage. The
cell death of host cells is associated with the release of damage-
associated molecular patterns (DAMPs), which trigger signaling
pathways that contribute to the initiation of the type 2 response.
Tissue damage is sensed by mucosal epithelial cells which promote

the secretion of alarmins like IL-25, thymic stromal lymphopoietin
(TSLP), and IL-33 (Wiedemann and Voehringer 2020). These
alarmins induce activation and differentiation of type 2 immune
cells which then release several other cytokines like IL-4, IL-5, IL-9,
and IL-13. Epithelial cells also express a set of cytokines that educate
dendritic cells (DCs) in promoting adaptive Th2 cell immunity and
activate ILC2, basophils, eosinophils and mast cells; epithelial cells
can also express chemokines such as CCL17, CCL22 and eotaxins
(CCL11, CCL24 andCCL26) recruitingDCs, eosinophils, basophils,
mast cells, and CD4+ T cells (Hammad and Lambrecht 2015). ILC2
are important in this type of response since they are inducer and
effector cells and, like CD4+ T lymphocytes, express the
transcription factor GATA3 and secrete IL-5, IL-9, and IL-13 at
the beginning of the infection (Klose and Artis 2016; Kouchkovsky
et al., 2017; Gurram and Zhu 2019).

IL-4 and IL-13 induce the proliferation of goblet cells, which
secrete mucus and resistin-like molecule-beta (RELMβ). IL-4
induces IgE production; then, IgE-antigen immune complexes
bind to high-affinity IgE receptors (FcεRI) on basophils and mast
cells, causing the degranulation and release of several
proinflammatory mediators, such as histamine, heparin and
serotonin (Tantisira et al., 2007; Kubo 2018). IL-5 is
responsible for the activation and recruitment of eosinophils,
and IL-9 causes mast cell activation. Altogether, immune cells and
the secreted cytokines coordinate parasite expulsion by increasing
fluid and mucus production, encapsulation and barrier
formation, epithelial cell turnover, smooth muscle cell
contraction, and production of anthelmintic effector
molecules, such as RELM-β (Babu and Nutman 2019). The
type 2 cytokines mentioned also stimulate repair of tissues
damaged by parasites, which control inflammatory processes
and promote tissue remodeling and restructuring (Faz-López
et al., 2016; Shapouri-Moghaddam et al., 2018).

Helminths have been shown to modulate/regulate the host
response to their own benefit (parasite-specific
immunoregulation) by releasing immunomodulatory molecules
that evoke a regulatory phenotype among innate and adaptive
immune cells (McSorley and Maizels 2012; Navarro et al., 2016;
Wu et al., 2017; Gazzinelli-Guimaraes et al., 2018; Ryan et al.,
2020). For this reason, and in the hygiene hypothesis context,
helminth-derived products have been tested for treating
autoimmune diseases (Yazdanbakhsh et al., 2002; R. M.;
Maizels et al., 2014; Stiemsma et al., 2015). However, chronic
helminth infections may induce allergic diseases as they enhance
type 2 inflammation (Herz et al., 2000; Hurst et al., 2001; Demirci
et al., 2003; Maizels and Yazdanbakhsh 2003).

Although helminth parasites are universal in inducing all or
most of these type 2 effector pathways, in the host the specific
effector pathway mediating protection varies between different
parasites, lifecycle stages, and site of infection.

MECHANISM OF ACTION OF PROBIOTICS

To discuss the role of probiotics in parasite infections it is
necessary to describe their general effects on the gut
environment and their immunomodulatory capacity.
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As mentioned, probiotics are live microorganisms that, when
administered in adequate amounts, confer a health benefit on the
host. Among these probiotics, one of the more important groups
is that of lactic acid bacteria. These microorganisms have the
ability to produce large quantities of lactic acid, which inhibits the
growth of pathogenic bacteria, and have been used to produce
dairy foods for centuries (Metchnikoff 1908; Mackowiak 2013;
Fisberg and Machado 2015). The former genus Lactobacillus,
subdivided into 25 genera (including 23 new ones), includes
different species with proven probiotic activity, such as
Lacticaseibacillus casei, Lacticaseibacillus rhamnosus, and
Lactobacillus delbrueckii (Zheng et al., 2020). Moreover, other
genera like Bifidobacterium, Enterococcus and Streptococcus, also
include strains with probiotic capacity.

The ability to promote health benefits by these bacteria resides
in direct effects on other microorganisms in the gut lumen as well
as in the modulation of immune and non-immune cells (Plaza-
Diaz et al., 2019). Regarding the direct effects, besides the
production of lactic acid, these bacteria can proliferate in the
gut, preventing the colonization by different pathogens.
Moreover, probiotics produce and secrete different
bacteriocins, peptides that affect the growth of bacteria, fungi,
parasites, and viruses (Hernández-González et al., 2021). They
also produce short-chain fatty acids (SCFA), like butyrate and
acetate, and branched-chain fatty acids (BCFA), such as
isobutyrate and 2-methylbutyrate. These volatile fatty acids
help the host cells, including immune ones, to maintain
energy homeostasis.

Regarding the effects produced specifically on the immune
system, they are triggered by interactions between the
microorganisms and cellular receptors. The latter are present
both in epithelial and immune cells, being the dendritic cells (DC)
that emit cytoplasmic processes into the gut, an essential
mediator of probiotics’ effects (Sánchez et al., 2017). The
bacterial surface molecules recognizable through specific
receptors include the peptidoglycan, lipoteichoic and teichoic
acids (surface molecule of gram-positive bacteria), surface
proteins, and different glycan residues present in surface
molecules. These molecular targets are recognized by receptors
such as toll-like receptor 2 (TLR2), TLR6, nucleotide-binding
oligomerization domain-containing protein 1 (NOD1), NOD2,
and others. The receptor-target interaction mediates effector
responses that usually depend on the gut environment. Under
physiological conditions, these responses tend to promote
immune tolerance, a lack of specific effector inflammatory
responses, and the avoidance of damage to the
microorganisms and the surrounding tissue. However,
activated DC can also prime T cells, inducing effector Th1,
Th2, or Th17 responses against different targets, such as
microorganisms and cancer cells (both local and distant ones)
(de Moreno de LeBlanc et al., 2007). Probiotics can also modify
immune responses through the secretion of different molecules.
In this way, the role of lactic acid production on gut immunity has
been described. In vitro assays showed that lactate decreases
inflammatory responses of DC and macrophages, an effect
that correlates with reduced intestinal inflammation in a
murine colitis model (Iraporda et al., 2015; Iraporda et al.,

2016). Besides lactic acid, SCFA also affect immune cell
metabolism and the overall immune response (Tan et al.,
2014). However, probiotics can also modulate immune cells in
an indirect way.When enterocytes recognize molecular targets on
probiotics, these cells are capable of secreting a wide variety of
pro- and anti-inflammatory cytokines which ultimately affect
immune cells (Corthésy et al., 2007). The effects mentioned do
not require live probiotics to be produced. It has also been
observed that heat-killed bacteria as well as molecules isolated
from probiotics, such as lipoteichoic acid, can exert some of the
effects observed for live microorganisms (Friedrich et al., 2017).

The local effects produced by probiotics on the gut
environment and the gut-associated lymphoid tissues (GALT)
have allowed their use as a treatment or as a supplementary
therapy on different gastrointestinal diseases. Such uses go from
treating gut dysbiosis (produced by antibiotic therapy, diarrhea,
food intake, or others) to restoring the microbial balance in the
gut (McFarland 2014) or modulating the immune response in
inflammatory diseases and cancer. Briefly, probiotics’ use in
inflammatory bowel diseases, being ulcerative colitis (Dang
et al., 2020) and Crohn’s disease (Lichtenstein et al., 2016) the
most frequent pathologies, has shown different grades of efficacy
(Orel and Trop 2014). Whereas there was some efficacy in
regulating inflammation in ulcerative colitis, there was no
evidence of significant beneficial effect in Crohn’s disease.
However, the immune system modulation induced by
probiotics is beneficial in the case of gastrointestinal tumors.
In this case, probiotics exert a prophylactic effect (observed both
in animal models and in epidemiological studies) and protect the
gut against side effects of antitumor treatments (Drago 2019).
Some of the modulatory effects are related to the cytokines
induced in the probiotic-treated animals, including TNF-α,
IFN-γ, and IL-10 (de LeBlanc and Perdigón 2004).

Nevertheless, the immune modulation induced by oral
probiotics is not limited to the gastrointestinal tract. These
effects can impact on distant organs, such as the lungs and the
skin (Friedrich et al., 2017). This can be observed in atopic
diseases, such as asthma and atopic dermatitis (AD).
Regarding the respiratory atopic disease, an interesting meta-
analysis showed that probiotics’ administration reduced the
number of episodes in treated children, with a concomitant
reduction in IL-4 production and an increase in IFN-γ levels,
showing a bias of the T helper response towards a Th1 profile.
However, no statistical differences were found in other outcomes
of the pathology (Lin et al., 2018). According to these findings, a
meta-analysis done by Wei and colleagues showed that the use of
probiotic supplementation did not associate with a lower risk of
asthma in infants (Wei et al., 2020). In the case of AD, a
significant number of clinical trials revealed AD prevention
with probiotics’ consumption in children (Meneghin et al.,
2012). Moreover, the authors also reported the therapeutic
effectiveness of the treatment with different beneficial
microorganisms once the pathology was installed (Meneghin
et al., 2012). In a more recent meta-analysis, Rusu and
colleagues argue that despite these results there is not enough
data regarding optimal dosing, optimal time to start treatment and
duration necessary to show beneficial effects (Rusu et al., 2019).
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Finally, the immunomodulatory capacity of probiotics was also
demonstrated in skin cancer studies. Lactobacillus spp.
lipoteichoic acid produced a reduction in squamous cell
carcinomas in chronically UV-exposed mice, reinforcing Th1
response (Weill et al., 2013). Moreover, this treatment was also
effective in preventing UV-induced immunosuppression
(Friedrich et al., 2019). In addition, the oral treatment with
Bifidobacterium spp. was as effective as PDL-1 blocking
monoclonal antibody in affecting melanoma’s growth in a
mouse model (Sivan et al., 2015).

Overall, probiotics affect the balance of gut microbiota and
modify the availability of molecular targets for immune receptors
and soluble metabolites, leading to modulation of innate and
adaptive immune responses. These modulations are induced both
at the local and the systemic levels (Sivan et al., 2015).

PROBIOTICS AS COMPLEMENT/
TREATMENT AGAINST HELMINTH
INFECTIONS
Experimental evidence on the use of probiotics to treat parasite
infections is limited. It is important to highlight the lack of blind,
placebo controlled, clinical trials. Consequently, most of the
published work commented hereafter was developed in
different animal models, including experimental models
(typically mouse) and susceptible animals (such as pigs).

Evidence about the role of gastrointestinal bacteria on parasite
infection can be found in the correlation between microbiota
composition and parasite infection. Reynolds et al. reviewed the
effects of the presence of parasites on the microbiota, and vice
versa (Reynolds et al., 2015). Interestingly, the absence of
microbiota (in germ-free mice) hampers parasite infection.
Moreover, the presence or administration of some
Lactobacillus strains promote helminths colonization or
persistence. The authors highlight that Lactobacillus spp. tend
to decrease type 2 responses and increase Tregs, as mentioned,
and propose that those mechanisms may explain the results
observed in germ-free mice.

Here, we present experimental and epidemiological evidence
about the role of probiotics and commensal bacteria on different
helminth infections.

Nematodes
Ascaris spp.
Hosts contract Ascaris spp. infection via the faecal-oral route;
when embryonated eggs are ingested, larvae penetrate the
gastrointestinal tract and enter the blood stream. Through the
blood stream the larvae are carried to the liver and heart, then
enter pulmonary circulation and are released in the alveolar
space, where they grow and molt. From the respiratory system
the larvae are coughed up, swallowed, to finally reach the small
intestine, where they mature to adult male or female worms. After
mating, female worms release eggs that contaminate faeces.

Different works were published studying the effect of
probiotics during this helminth infection, including some in
pigs infected with Ascaris suum (Jang et al., 2017; Solano-

Aguilar et al., 2018). The first report, by Jang et al., described
the use of L. rhamnosusGG (LGG) as a probiotic treatment of the
infection. Moreover, the authors included flavonol-rich cocoa
powder (CP) as a supplement, due to the immunomodulatory
capacity of the flavonols such as catechin and epicatechin present
in the extract. The treatment was applied during 5 weeks prior to
parasite challenge, and the animals were evaluated 17 days after
inoculation. No significant differences in intestinal parasite
content (L4 larvae) were observed, but a delay in intestinal
expulsion of parasitic larvae from the intestine was registered
in the CP + LGG group. No changes in serum specific IgG2 were
obtained with the probiotic treatment. Interestingly, the LGG
treatment alone induced modifications of cytokine and
chemokine transcription (decrease of IL-1β, IL-13, and
CCL26) in the tracheobronchial lymph nodes but not in the
mesenteric lymph nodes (Jang et al., 2017).

Using the same model of host and parasite, Solano-Aguilar
et al. evaluated the effect of Bifidobacterium animalis subspecies
lactiswith the modulation of the intestinal immune response. The
probiotic treatment began on the sows and continued in newborn
piglets for 2.5 months, when they were inoculated with A. suum.
Even though they did not observe changes in the number of
intestinal L4 larvae at 17 days post infection (p.i.), an increase in
specific antibodies was detected (serum IgA and ileum fluid IgG1
and IgG2). Moreover, jejunal mucosa from infected pigs showed a
characteristic decrease in glucose absorption and an increase in
the secretory response to histamine, both being attenuated by the
probiotic treatment. Finally, the eosinophilia promoted by the
parasite was decreased by B. animalis subspecies lactis, without
affecting the expulsion of the worms (Solano-Aguilar et al., 2018).

In another work, the therapeutic ability of inactivated Bacillus
thuringiensis overexpressing Cry5B protein (paraprobiotic with
anthelmintic properties) was tested in A. suum infection models.
The paraprobiotic intoxicated A. suum larvae in vitro and was
highly effective against intestinal A. suum infections in a mouse
model. In pigs, a single oral dose of this paraprobiotic reduced the
parasite burden by 96% during A. suum infections (Urban et al.,
2021). This strategy results in an attractive alternative for the
control other helminth infections.

All these data suggest that during Ascaris spp. infection
depending on the treatment realized with probiotics, the
effects on parasitological and immunological parameters could
be beneficial, negative, or neutral. The scarcity of studies on the
effects of probiotics against this helminth infection clearly
indicates the need of further research on this topic.

Trichuris spp.
Trichuris trichiura is one of the most common gastrointestinal
nematodes. In infected children, trichuriasis is associated with
malnutrition, growth stunting, and reduced educational
performance, whereas in adults, it is related to anemia,
reduced worker productivity, and/or low-birth-weight babies
(Bethony et al., 2006). The cycle initiates by ingestion of
contaminated water or food with embryonated eggs, which
hatch in the intestine to release infective L1 larvae. L1 migrate
to the caecum and colon and undergo four molts to adult worms.
Adult females produce eggs, which are excreted in the feces.
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Infective eggs in the environment are subsequently ingested.
Trichuris muris in the mouse has provided a useful and
relevant model system with which to explore immunity to T.
trichiura in man due to their homology at the genomic and
transcriptomic level (Klementowicz et al., 2012; Foth et al., 2014).
Infection of mice with T. muris drives polarized T helper cell (Th)
responses, which associate with resistance (Th2) or susceptibility
(Th1) (Klementowicz et al., 2012). B cells are important in the
development and maintenance of the protective immune
response to T. muris (Sahputra et al., 2019).

The role of probiotics inducing regulatory immune responses
was discussed above. However, implications of this mechanism
against parasite infection are not necessarily straightforward.
McClemens et al. showed the effects of L. rhamnosus (JB-1)
administration against Trichuris spp. infection, highlighting the
role of IL-10 on those effects. Susceptible and resistant mouse
strains (AKR and C57BL/6, respectively) were inoculated with T.
muris and fed with live and γ-irradiated probiotics. The procedure
was conducted also in IL-10 KOmice. The number of worms in the
caecum was reduced by live L. rhamnosus at 10, 14, and 21 days
post-inoculation (vs. control), but the effect was lost when dead
bacteria were used. The increased parasite expulsion induced by
this probiotic was also lost in IL-10 KO mice, showing the
important role of this regulatory cytokine. Moreover, the AKR
mouse strain, susceptible to develop chronic infections with T.
muris, also showed a decrease in parasite burden after L. rhamnosus
treatment. An increase in IL-10 production was observed in these
mice, reinforcing the results about the role of this cytokine in the
expulsion of the nematode (McClemens et al., 2013).

In another work, Dea-Ayuela et al. studied the effect of an oral
treatment with either viable or dead L. casei (ATCC 7469) before
T. muris infection. The results in the treated groups were not
encouraging; both conditions favored the infection as the mean
number of L3 larvae recorded were significantly higher than in
challenged untreated controls. Regarding the immune response,
viable L. casei reduced the levels of fecal IgA induced by challenge
infection, decreased the cellular response (diminished
proliferation of MLN cells with mitogens), and reduced IFN-γ,
TNF-α, IL-4 and IL-13 in bothMLN and PP compared to infected
untreated mice (Dea-Ayuela et al., 2008).

When we compare both studies, results seem to depend on the
species of probiotic used. While L. rhamnosus treatment had a
protective effect on T. muris infection, critically dependent on IL-
10, L. casei treatment diminished the immune response at both
the cellular and humoral level, leading to a higher parasite load.

Trichinella spiralis
The life cycle of T. spiralis is completed in one host and there is no
free-living stage. Transmission occurs when infected skeletal
muscle containing muscle larvae (ML or L1) is consumed. In
the stomach, ML are freed from muscle by digestion and move
into the small intestine where they invade epithelial cells and
migrate through the epithelial monolayer creating syncytia. ML
molt four times becoming adult worms (AW) who mate in the
epithelium. Female worms release newborn larvae (NBL) which
enter the lymphatics and eventually reach the bloodstream.
During their journey to their final ecotope, NBL can

extravasate in any tissue, such as liver, lungs, or heart, but can
only complete their development in skeletal muscle cells. When
fully mature, each larva can infect a new host.

Clearance of AW from intestine is mediated by a potent type 2
response, which is characterized by increases in the numbers of
lymphocytes, eosinophils, goblet cells and mast cells, and also by
the switch to IgE and IgG1 isotypes (Ahmad and Bell 1991;
Negrão-Corrêa 2001; Saracino et al., 2020). Regarding the NBL, it
is known that they are killed by antibody-dependent cellular
cytotoxicity (ADCC) both at systemic and tissue levels (Kazura
and Grove 1978; Wang and Bell 1987; Venturiello et al., 1993;
Gentilini et al., 2011; Falduto et al., 2014).

Bautista-Garfias et al. studied the ability of viable L. casei (ATCC
7469), administered by an intraperitoneal route, to induce
resistance in mice against T. spiralis infection. The percent of
reduction of adult worms in the intestine 5 days after T. spiralis
infection observed in L. casei-treated animals, compared with those
of the control group, fluctuated between 70.9 and 88.5%; and the
reductions of larvae per gram of muscle tissue, evaluated at 30 days
after infection, varied from 46.6 to 84.4% (Bautista-Garfias et al.,
1999). Later, this group evaluated the effects of L. casei (ATCC 7469
live, heat-killed and culture supernatant) orally administered prior
to oral challenge with T. spiralis. The treatment with live probiotic
reduced AW numbers by 58%, whereas dead probiotic did it by
44% and culture supernatant by 32%. ML were also decreased by
70, 65 and 24% by live bacteria, dead bacteria, and culture
supernatant, respectively (Bautista-Garfias et al., 2001). These
results show that, in the response against T. spiralis, the
immune mechanisms triggered by probiotics components are
enough to induce the observed effects. Moreover, soluble
mediators produced by L. casei are also effective, even though
with a lower potency. Comparing administration routes,
intraperitoneal versus oral, it seems that the parasitic load
reductions were higher with administration by
intraperitoneal route.

A more recent study of the group analyzed the effect of the
intraperitoneal administration of Lacticaseibacillus casei Shirota
strain in CD1 mice on the establishment of T spiralis AW, and on
the generation of intestinal IgA anti-T. spiralis after challenge.
From day 5 p.i., mice in L. casei Shirota group showed a
significantly smaller number of AW and higher levels of IgA
anti-T. spiralis than animals from the untreated group which
suggest that L. casei Shirota would be protecting mice from T.
spiralis infection (Martínez-Gómez et al., 2009).

More recently, an interesting approach to evaluate the role of
immune modulation and probiotics in T. spiralis infection was
published. Wang et al. treated mice with both wild type and IL-4
recombinant Lactiplantibacillus plantarumNC8 prior to challenge
with T. spiralis. A marked reduction of the infection-induced
weight loss was observed with both treatments. However, wild
type L. plantarum failed to reduce intestinal adult worms at day
7 post-infection, whereas the IL-4-expressing bacteria produced a
significant decrease. Interestingly, the number of ML found at day
28 after parasite inoculation was significantly reduced by both
treatments (being the effect of the recombinant bacteria more
intense) (Wang et al., 2020). This work shows that
Lacticaseibacillus spp. administration can partially reduce
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parasite burden, and that the effect is stronger in the presence of IL-
4. However, these results contrast with those obtained by Temsahy
et al. who found that serum IFN-γ concentrationwas raised inmice
fed with L. plantarum P164 whether they were or not infected with
T. spiralis (Temsahy et al., 2015). Actually, the authors attribute
this IFN-γ increase to the bacterial peptidoglycan and not, as other
authors, to the infection by T. spiralis (Dvorožňáková et al., 2011;
Gentilini et al., 2011) or the combination of both stimuli. These
authors also showed that the probiotic was able to colonize the gut
after probiotic feeding, which they explained as a result of its
adhesion ability.

Dvorožnáková et al. explored the effects of Enterococcus
faecium CCM8558, Enterococcus durans ED26E/7,
Limosilactobacillus fermentum CCM7421 and L. plantarum
17L/1 on cellular immunity. Mice treated with probiotic
strains and then infected with T. spiralis showed a higher
cellular response in terms of phagocytosis and respiratory
burst (Dvorožňáková et al., 2016). Moreover, when the
distribution of CD4+ and CD8+ cells was studied in the
intestine they found that there was a higher number of CD8+

cells at the epithelia and increased numbers of CD4+ cells at
lamina propria, which could contribute to the reduction in the
number of adult worms in the host (Dvoroznakova et al., 2016).
Regarding this point, Temsahy et al. found an increase in goblet
cells hyperplasia in the intestines of mice treated with L.
plantarum which could also explain the lower number of AW
recovered from the gut as these cells are involved in AW
expulsion (Temsahy et al., 2015).

Bucková et al. have shown that the parasite burden, the
number of adult worms, the female fecundity and NBL were
diminished when mice were treated with E. faecium CCM8558, E.
durans ED26E/7 and L. fermentum CCM7421. Also, these
probiotic strains reduced the female fecundity with the
subsequent reduction in the number of NBL in the in vitro
assays (Bucková et al., 2018).

Toxocara spp.
Humans are accidental hosts of Toxocara spp. who become
infected by ingesting infective eggs or undercooked meat/viscera
of infected hosts. After ingestion, the eggs hatch, and larvae that
penetrate the intestinal wall are carried by the circulation to a
variety of tissues (liver, heart, lungs, brain, muscle, eyes). While
the larvae do not undergo any further development in these sites,
they can cause local reactions and mechanical damage leading to
clinical toxocariasis. T. canis causes larva migrans syndrome that
induces an immune response characterized by blood
eosinophilia, eosinophilic infiltration around larval sites of
migration, specific antibody production (IgG and IgE) and a
Th2 response (Ruiz-Manzano et al., 2019). Migrating larvae are
attacked by host immune responses, resulting in local
inflammation associated with eosinophilia and increased
production of cytokines and specific antibodies. Although
many T. canis infections are subclinical in nature, human
toxocariasis can manifest itself as syndromes known as
visceral larva migrans, ocular larva migrans, neurotoxocariasis,
and covert or common toxocariasis (Taylor et al., 1988; Finsterer
and Auer 2007; Pivetti-Pezzi 2009).

Regarding Toxocara spp. infection and probiotic treatment,
several experimental reports are published. Most of them
evaluated the parasite burden after pretreatment with
probiotics in mouse models. Moreover, the direct effect of the
microorganisms on parasite viability was evaluated in vitro in
many of these works. Saccharomyces boulardii is a non-bacterial
microorganism, closely related with S. cerevisiae, with probiotic
properties which also is resistant to the adverse conditions of
gastric and intestinal environments (Pais et al., 2020).

de Avila et al. (2012) showed that S. boulardii was able to
reduce the number of larvae in Swiss mice infected with T. canis at
both the acute and chronic phase of the infection. However,
in vitro assays did not show a larvicidal effect on L3 larvae (de
Avila et al., 2013) suggesting the necessity of a contact of S.
boulardiiwith the intestinal mucosal or microbiota to mediate the
observed in vivo effects. In a subsequent, the authors explored the
effect of S. boulardii on the immune system in mice infected with
T. canis (de Avila et al., 2016). The cytokine secretion in
splenocytes from mice orally treated or not with S. boulardii,
and later infected with T. canis, was evaluated. The study showed
that diet supplementation with S. boulardii stimulates a Th1
response since IL-12 and IFN-γ genes transcription was elevated
in both infected and not infected groups whereas IL-4 and IL-10
did not present any significant differences between treatments. In
a later work, this group used a different infection model as mice
were infected with larvae and not with T. canis eggs. This study
not only did not reveal a significative reduction of T. canis larvae,
but also showed that IL-12 transcription was below the threshold
value in both supplemented and not supplemented infected mice.
It is worth to notice that uninfected animals supplemented with
the probiotic showed a significant increase in this cytokine
transcription in the duodenum (de Moura et al., 2017). Taken
together these results point out that S. boulardii anthelmintic
properties will depend on the parasitic stage that is aimed to
eliminate. Finally, these researchers studied the effect of S.
boulardii when animals are infected by the ingestion of raw
liver from chickens infected with T. canis larvae in order to
emulate the natural infection. Mice that received diet
supplemented with S. boulardii showed a reduction of 64.4%
in the number of larvae recovered from the liver and 66.7% from
the lungs as compared to those not treated with the probiotic.

The effects of L. rhamnosus (ATCC 7469) and L. acidophilus
(ATCC 4356) on the experimental infection with T. canis were
also investigated. The probiotic treatment was initiated before
parasite challenge with T. canis embryonated eggs. These
probiotics successfully reduced the number of migrating larvae
found in liver at 48 h p.i. (52% reduction for L. rhamnosus and
58% for L. acidophilus). As previously found for S. boulardii, L.
rhamnosus and L. acidophilus displayed their effects in vivo but
did not exert a direct effect on the parasite in vitro, demonstrating
once more that the interaction between the host and these
bacteria is of paramount importance for the protective effects
(de Avila et al., 2012; Walcher et al., 2018; Cadore et al., 2021).

Another probiotic evaluated regarding the prevention of T.
canis infection was E. faecalis (CECT 7121). In this case, co-
administration of probiotic and parasite led to a reduced number
of larvae recovered from liver and lungs (Basualdo et al., 2007).
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However, if the parasite infection was done before probiotic
treatment the effect was lost (Chiodo et al., 2010).

Trematodes
Schistosoma spp.
During infection with Schistosoma spp. adult worms produce eggs
which exit the host via urine or fecal matter. When schistosome
eggs enter freely into the environment they hatch to produce
miracidia that invade snails and develop along different stages.
Cercariae travel from the intermediate snail host to the definitive
mammalian host. Following attachment and skin penetration,
cercariae transform to schistosomula which travel to the lungs,
and then to the liver. Within the liver, worms develop into female
and male adults that finally lodge within the portal and
mesenteric vessels of the small intestine or the veins of the
vesical and pelvic plexuses, from where the gravid females
release eggs. Unfortunately, many bloodborne eggs become
lodged within vascularized tissues and organs being the main
cause of pathology following infection (Burke et al., 2009). The
pathogenesis of schistosome infections and the morbidity
associated with infection is due to a lethal combination of
highly immunogenic eggs, a vigorous immune response and
the various organs in which eggs become trapped.

To restrain the invading cercariae, innate and local stromal
cells trigger an inflammatory cascade, with the release of
macrophage inflammatory protein (MIP)-1, IL-6, IL-1, IL-12/
23p40 and IL-18. Cercarial products can also directly stimulate
production of cytokines, such as IL-4 and IL-10, which dampen
the Th1 inflammatory response via their antagonistic effects on
IL-12/23p40 production.

In the first weeks of murine S. mansoni infection, while the
host is exposed to schistosomula and semi-mature schistosomes,
a Th1-like immune response is observed. With the onset of egg
deposition, however, a pronounced Th2 immune response comes
up being characterized by high production of IL-4 and IL-13, IgE
synthesis as well as eosinophilia and mastocytosis. Finally, when
infection becomes chronic and egg production continues, a
general down-modulation of immune reactivity develops,
leading to a diminished Th2 response together with a smaller
size of newly formed granulomas (Pearce and MacDonald 2002).
The eggs induce a granulomatous host immune response largely
characterized by lymphocytes (which mainly produce Th2
cytokines), eosinophils, and alternatively activated
macrophages (Pearce and MacDonald 2002; Fairfax et al.,
2012). This response eventually sequesters egg products, but it
can also lead to severe hepatic fibrosis and portal hypertension.

In the case of schistosomiasis, the effectiveness of probiotic
treatment was studied alone or combined with antiparasitic drugs.
Zowail et al., 2012 evaluated the treatment of mice previously
infected with S. mansoni with either Bacillus coagulans,
praziquantel (drug of choice for the control of schistosomiasis)
or a combination of both. They observed a 53% reduction in the
number of adult worms using the probiotic alone, an 89% with the
standard praziquantel treatment, and a 100% reduction with the
combined treatment. Moreover, the number of eggs in the liver and
intestine was also reduced in a similar way; for the liver, reductions
of 47, 59 and 87% were observed, whereas for the intestine the

reductions were 51, 53 and 71% (probiotic alone, praziquantel, and
combined therapy, respectively). This work highlights the
importance of evaluating the probiotics as a supplement for
regular antiparasitic treatments (Mohamed et al., 2016). As
other authors have demonstrated, infection by S. mansoni
induces chromosomal aberrations and DNA damage (Shubber
and Salih 1987) as well as praziquantel treatment (Montero and
Ostrosky 1997) so in order to prevent this effect, El-Esawy et al.
used B. coagulans as a complement of anti-parasitic treatment.
When anthelmintic treatment was combined with B. coagulans a
significant reduction in chromosomal aberrations induced by
infection or praziquantel treatment was observed. This work
highlights the importance of evaluating the probiotics as a
supplement for regular antiparasitic treatments (El-Esawy 2012).

In a more recent work performed by El-Khadragy et al., the
efficacy of a mixture of L. acidophilus (ATCC 4356) and L.
delbrueckii subsp. bulgaricus (DSM 20080) was evaluated in a
mouse model of S. mansoni infection. In this work, probiotics were
administered either before or after parasite challenge. Moreover,
the probiotic mix was applied in saline buffers and as a yogurt
(allowing the probiotic to ferment milk for 5 h). Although results
were also compared with praziquantel treatment, combined
therapy was not evaluated. The authors observed a reduction in
adult worm burden inmice treated with either probiotics or yogurt,
both in administrations pre- and post-infection (68 and 60% for
probiotics pre- and post-infection, and 72 and 64% for yogurt pre-
and post-infection). Probiotics were almost as effective as
praziquantel, which produced a 78% decrease in the number of
adult worms. The reduction in liver eggs followed a similar pattern.
Interestingly, S. mansoni infection increased the hepatic levels of
MMP-9, lipid peroxidation, and NO, and decreased the levels of
reduced glutathione. All these effects were prevented or reverted by
probiotic treatment, as well as by praziquantel. Interestingly, the
drug failed to decrease hepatic NO levels, whereas all probiotic
treatments were successful (El-Khadragy et al., 2019).

De Fátima Macedo Santos et al. studied the effect of
Zymomonas mobilis administration in mice divided into
prophylactic and curative groups. Also, a mixed group was
considered which received bacterial culture before and after
S. mansoni infection. The total number of adult worms
recovered was lower in the curative group, resulting in 61%
protection. However, when prophylactic treatment was applied
there was a non-significant reduction of adult worms.
Surprisingly, animals belonging to the mixed group had an
exacerbation of the infection, with a larger number of adult
worms (De Fátima Macedo Santos et al., 2004).

Ghanem et al. used yoghurt containing L. casei, L. acidophilus,
L. plantarum and Limosilactobacillus reuteri to fed mice before
and after infection with S. mansoni. This strategy resulted in body
weight gain as well as decreased spleen and liver weights to values
close to controls. This probiotic yoghurt was found to display an
immunomodulatory effect by stimulating an IgM response
against soluble worm antigens as compared to the untreated
control. While the infection increased AST, LDH and gGT
activity in plasma, the addition of probiotic yoghurt led to a
significant decrease of these enzymes in infected animals
(Ghanem et al.,2005).

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 7141987

Saracino et al. Probiotics as Anthelmintic Treatments

61

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Taken together, these studies suggest that probiotics treatment
may be used before or after infection with Schistosoma spp.
However, as suggested by the study of De Fátima Macedo
Santos et al., the combination of both treatments should be
studied previously in each model to rule out potential adverse
events such as increased parasitic load. This exacerbated infection
may be due to an anergy state.

Cestodes
Echinococcus spp.
The two species with clinical importance are E. granulosus and E.
multilocularis. The life cycle of this cestode involves dogs and other
canids as definitive hosts, and sheep and other herbivores as
intermediate hosts. After ingestion by a suitable intermediate
host eggs hatch in the small intestine and release an oncosphere
that actively penetrates the intestinal wall andmigrates through the
circulatory and lymphatic system into several organs, particularly
the liver and lungs. In these organs, the oncosphere develops into a
metacestode (cyst) that gradually enlarges, producing protoscolices
and daughter cysts that remain within the cyst. The definitive host
is infected after ingesting the cyst-containing organs of the infected
intermediate host. After ingestion, the protoscolices evaginate,
attach to the intestinal mucosa and develop into adults.

Humans are accidental intermediate hosts and become
infected via ingestion of eggs which hatch and develop into
metacestodes (fluid-filled cysts, hydatids) in tissues,
particularly the liver and lungs. Two essential mechanisms
appear to be at the basis of the often long-lasting and
asymptomatic co-habitation of the hydatid cyst and the
intermediate host: immune evasion/modulation and protective
immunity to re-infection. The latter is antibody- and
complement-dependent (Dempster et al., 1992; Dempster
et al.,1995; Heath and Lawrence 1996; Lightowlers 2010;
Torben et al., 2012), and is enhanced in the presence of
neutrophils (Rogan et al., 1992). A mixed Th1/Th2 response,
together with high levels of IL-10, is evoked as shown by ex vivo
stimulation of splenocytes with protoscoleces (PSC) extract. The
production of IL-10 and IL-4 could be actively induced by the
parasite to favor its establishment (Dematteis et al., 1999).

Regarding the effects of probiotics in echinococcosis, there are
few but interesting studies. Yousif and Ali studied the effect of a
mix of L. acidophilus, L. casei and L. rhamnosus in the immune
response against infection with secondary hydatid disease as an
antiparasitic immunomodulator in BALB/c mice. The bacteria
were administered by intraperitoneal route in mice, before and
after infections with E. granulosus protoscoleces. Many criteria
were considered, including numbers, weight, diameter, and
percentage reduction of hydatid cysts of treated mice as
compared to infected animals not treated with probiotics. The
study showed a decline in cysts, including their diameter, weight,
and number in probiotic treated animals. The bacteria were
applied at two different concentrations, both promoting the
reduction in number, size and diameter of hydatid cysts
6 months post-infection (98.03% reduction). It may well be
concluded that probiotic bacteria can be used as a therapeutic
method against hydatidosis. Unfortunately, no immune analysis
was done (Yousif and Ali 2020).

Vogt et al. presented a different approach: they developed and
used a recombinant Bacillus subtilis strain, carrying two antigens
from E. granulosus. This approach is based on the capacity of the
recombinant bacteria to act as a delivery system for the vaccination
antigens. The work was done in dogs and the response evaluated was
the production of specific antibodies in the serum of the treated
animals. Dogs generated a humoral response, mainly IgG, not only
against E. granulosus peptides but also against some B. subtilis
antigens (Vogt et al., 2018). However, it is interesting the use of a
well-known and safe probiotic microorganism as delivery system,
whichmay have an impact per se against a challengewith the parasite.

Other Helminths
Hookworms
Hookworms are soil-transmitted nematode parasites that can reside
for many years in the small intestine of their human hosts, where
they suck blood and can cause iron deficiency anemia (Loukas et al.,
2016). Two major species of hookworms infect humans: Necator
americanus and Ancylostoma duodenale. During the life cycle of the
hookworm eggs expelled in the feces of the infected host hatch in the
environment, resulting in L1 larvae, which then molt twice to L3
(infective). L3 penetrate the skin of mammalian hosts. The larvae
then enter the bloodstream, migrate through heart to the lungs,
break through the alveoli, creep up the trachea and are swallowed,
eventually residing in the small intestine to mature to adult worms.
In the small intestine, adult hookworm mate and produce eggs that
are passed in the feces, completing the life cycle.

Human hookworm infection generates a robust specific Th2
response, with some evidence of a systemic, but not mucosal
hookworm-specific Th1 response (Gaze et al., 2012). Despite the
predominance of Th2 cells and cytokines, and parasite-killing
antibody isotypes (such as IgE), attempts to dislodge adult
hookworms from the gut are mostly unsuccessful. Hookworms are
potent inducers of regulatory immune responses that promote their
survival and reproductive capacity. In humans, the expansion of
regulatoryT cells (Treg cells) has been reported (Wammes et al., 2014).

Regarding the use of probiotics to treat these infections, a study by
Coêlho et al. analyzed the administration of L. acidophilus (ATCC
4536), L. plantarum (ATCC 8014), and L. delbrueckii (UFVH2B20) to
control canine ancylostomiasis. The probiotic preparation was
administered to naturally infected animals for 28 days, resulting in a
reduction of eggs found in feces, as well as an increase in leukocyte and
lymphocyte counts. It is important to mention that, before the
treatment, red blood cells were below normal values in all dogs. The
stabilization of the anemia in treated dogs, compared to its exacerbation
in control animals, may be associated with the reduction of the number
of eggs in the treated group (Coêlho et al., 2013).

H. polygyrus
H. polygyrus has a direct lifecycle with no intermediate hosts: eggs
released in the feces of infected mice hatch in the environment
producing L1 larvae, which molt twice to L3 larvae (infective stage),
which are ingested by mice. L3 invade the intestinal mucosal layer
molting into L4, which encyst in themuscle layer of the intestine and
start maturing into adult parasites. Adult male and female worms
mate in the lumen of the intestine, and gravid females produce eggs
that are passed into feces.
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H. polygyrus infection induces a strongly polarized Th2
response, which has been shown to be critical for the control
and expulsion of the worm (Urban et al., 1991). A primary H.
polygyrus infection induces IL-3, IL-4, IL-5, and IL-9 gene
expression in the MLN and Peyer’s patches (Svetić et al.,
1993). Mononuclear cells from MLN, spleen or lamina propria
stimulated in vitro with parasite antigens released high amounts
of IL-4, IL-5, IL-9, IL-10, and IL-13 (Finney et al., 2007; Setiawan
et al., 2007; Rausch et al., 2008). At the cellular level, infection is
accompanied by expanded regulatory T cell populations and
B cell hyperstimulation. In most mouse strains, these act to
block protective Th2 immunity (Rick M. Maizels et al., 2012).

Reynolds et al. found that administration of Lactobacillus
taiwanensis (BL263) enhanced Treg frequencies which made
animals more susceptible to H. polygyrus infection. Moreover, H.
polygyrus raises Lactobacillus species abundance in the duodenum
of C57BL/6 mice, which are susceptible to H. polygyrus infection,
but not in BALB/c mice, which are relatively resistant. Sequencing
of samples at the bacterial gyrB locus identified the principal
Lactobacillus species as L. taiwanensis (Reynolds et al., 2014).
This causal relationship between commensal bacterium and H.
polygyrus, highlights the importance of the mutualistic relationship
between a commensal microbe and a helminth parasite, which
provides a different perspective on the interactions in the intestinal
tract that we have seen in this work.

Strongyloides spp.
Strongyloides spp. are soil-transmitted helminths. The primary
mode of infection is through contact with soil contaminated
with free-living larvae. The latter penetrate the skin and migrate
through the body, eventually finding the small intestine where they
mature into adults and produce eggs. Unlike other soil-transmitted
helminths, the eggs of these helminths hatch into larvae in the
intestine.Most of these larvae will be excreted in the stool, but some
of themmaymature and re-infect the host either by burrowing into
the intestinal wall, or by penetrating the skin around the anus.

Like other helminth infections, strongyloidiasis elicits a
predominant Th2 immune response (Wilkes et al., 2007). During
primary infection neutrophils and eosinophils are attracted by parasite
components and kill the larvae through the release of granule
products. B-cells produce both IgM and IgG that collaborate with
neutrophils to kill worms (Bonne-Année et al., 2011).

In the case of Strongyloides spp., a work by Oliveira-Sequeira et al.
evaluated the administration of viableB. animalis strain 04450B before
the infection with S. venezuelensis. They found in probiotic-treated
mice a decrease in the worm burden (33%) and egg output (21%)
accompanied by a reduced intestinal damage (Oliveira-Sequeira et al.,
2014). Unfortunately, there is no immune analysis done in this study.

Haplorchis taichui
The intestinal trematode Haplorchis taichui is a medically important
parasite infecting humans and livestock. This parasite has an aquatic life
cycle, using freshwater snails as the first and cyprinid fish as the second
intermediate hosts, with definitive hosts being fish-eating mammals
(Dzikowski et al., 2004; Nithikathkul and Wongsawad 2008).

In a different approach to study the relationship between parasite
infections and gastrointestinal microorganisms, Prommi et al.

analyzed stool samples from 1,047 volunteers from Thailand. A
parasitological study was conducted, and 16s rRNA sequencing
was performed to evaluate microbial diversity. While this is not a
study about the role of probiotics in parasite infections, it contributes
to highlight the relevance of microbiota balance regarding parasite
infection. A high prevalence of the trematode Haplorchis taichui was
found in the samples. Notably, the group of volunteers without
parasite infections exhibited a higher bacterial diversity (α
diversity) compared with the H. taichui-infected group. Moreover,
differences in bacterial community composition were also found
(β diversity). The authors concluded that H. taichui infection
modifies microbiome (Prommi et al., 2020). However, it is
possible to question us: does parasite infection succeed if
microbiota is first affected by other reasons? An alternative
explanation, however, could be that H. taichui is more likely to
produce successful infections in individuals with an intestinal
microbiota previously affected for other reasons.

CONCLUSION

The use of probiotics as a treatment for helminth infection is an
incipient research line with promising perspectives. Even though the
papers discussed above show auspicious findings, they also raise
additional questions. Regarding the host immune system, a
detailed characterization of how the probiotic treatment affects the
known immune mechanisms towards helminths is needed. As was
mentioned before some features remain as open questions. For
instance, which would be the best time to start treatment, right
after the infection takes place or before? What is the optimal
duration of the treatment? Once more, it would depend on the
combination of parasite species and the probiotic strain
(combination). Also, we have yet little information about which
probiotics molecules, superficial or secreted, are responsible for the
effects reviewed in this work. A fascinating aspect to explore would be
the combined use of probiotics strains and anthelmintic drug
treatments. Last but not least, it is important to highlight the lack
of blind, placebo-controlled clinical trials as these treatments are
expected to be applied to human or animal individuals.

We look forward to many more findings in this field as there is
a wide range of possibilities to be explored that may deliver
groundbreaking treatment strategies for helminth diseases.
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Gut Microbiota Modulation as a
Potential Target for the Treatment of
Lung Infections
Clênio Silva Cruz, Mayra Fernanda Ricci*† and Angélica Thomaz Vieira*†

Laboratory of Microbiota and Immunomodulation (LMI), Department of Biochemistry and Immunology, Institute of Biological
Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil

The gastrointestinal and respiratory systems are colonized by a complex ecosystem of
microorganisms called the microbiota. These microorganisms co-evolved over millions of
years with the host, creating a symbiotic relationship that is fundamental for promoting host
homeostasis by producing bioactivemetabolites and antimicrobial molecules, and regulating the
immune and inflammatory responses. Imbalance in the abundance, diversity, and function of the
gutmicrobiota (knownas dysbiosis) have been shown to increase host susceptibility to infections
in the lungs, suggesting crosstalk between these organs. This crosstalk is now referred to as the
gut-lung axis. Hence, the use of probiotics, prebiotics, and synbiotics for modulation of gut
microbiota has been studied based on their effectiveness in reducing the duration and severity of
respiratory tract infections, mainly owing to their effects on preventing pathogen colonization and
modulating the immune system. This review discusses the role and responses of probiotics,
prebiotics, and synbiotics in the gut-lung axis in the face of lung infections.

Keywords: symbiotics, mucosal immmunity, gut-lung axis, prebiotcs, probiotics, immunobiotics, inflammation,
microbiota

INTRODUCTION

Microorganisms and humans have co-evolved for thousands of years, and many survival functions
have been defined throughout this time for both. All body surfaces are colonized by complex and
dynamic communities of symbiotic microorganisms, including bacteria, viruses, fungi, helminths,
and protists, called microbiota (Grice and Segre, 2012; Sender et al., 2016). As demonstrated by next-
generation sequencing, the lungs and gut possess unique microbiota that differ mainly in
composition and structure, with bacteria being the most predominant microorganisms (Dickson
et al., 2015; Santacroce et al., 2020). The microbiota plays fundamental roles in host homeostasis via
the metabolism of nutrients, production of vitamins, metabolites, and antimicrobial molecules,
activation of the immune system, and regulation of the inflammatory process (Dang and Marsland,
2019). The gut dysbiosis has been shown to increase susceptibility to infection in the lungs, and
infections in the lung are identified as a cause of gut dysbiosis; highlighting a bidirectional link
between these two organs; this crosstalk is now called the gut-lung axis (Li et al., 2008; Hand et al.,
2016; Budden et al., 2017; Sencio et al., 2020). Also, the lung and gut originate from the same
embryonic organ, the foregut, and consequently have some structural similarities that might
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contribute to the interaction between these two organs (Faure and
de Santa Barbara, 2011). Respiratory tract infections (RTI) are a
global health concern. Approximately 2.38 million deaths were
attributed to RTI in 2016 alone, making it the sixth leading cause
of mortality among all ages and the leading cause of death among
children under 5 years (Ferkol and Schraufnagel, 2014; Troeger
et al., 2018). Given the importance of the gut-lung axis, our review
summarized the latest experimental and clinical studies on this
topic and showed that modulation of the gut-lung axis with
probiotics, prebiotics, and synbiotics, could be an important
therapeutic target for preventing and treating lung infections
caused by bacteria, viruses, fungi, and parasites.

GUT-LUNG AXIS IN RESPIRATORY TRACT
INFECTIONS

The respiratory system is composed of different organs, and is
divided into two main parts: the upper respiratory tract (URT)
and the lower respiratory tract (LRT). The URT comprises the
nostrils, nasal passages, paranasal sinuses, nasopharynx, and

oropharynx, while the lower respiratory tract comprises the
trachea, bronchi, bronchioles, and alveoli. These organs make
up one of the largest surface areas in the human body, that from
the nostrils to the lungs, is colonized by a symbiotic and diverse
community of microorganisms (Figure 1).

The microbiota of the lungs and gut of healthy individuals differ
significantly in taxonomic composition, diversity, and function. In
contrast to the thriving resident microbiota in the gut, the lung
microbiota is composed of transient microorganismsmainly derived
from URT. While Bacteroidetes and Firmicutes are the most
abundant bacterial phyla in both microbiotas, the lung and gut
microbiota are very different at the species level. In the lungs, the
genera Streptococcus spp., Veillonella spp., and Prevotella were the
most abundant, whereas Bacteroides, Faecalibacterium, and
Bifidobacterium are more prevalent in the gut (Sender et al.,
2016). In a disease or dysbiotic state, other organisms are present
in the lung, such as viruses, including human rhinovirus, human
bocavirus, polyomaviruses, human adenovirus, and human
coronavirus, and fungi such as Aspergillus spp., Penicillium spp.,
Candida spp., andAlternaria spp. (Papadopoulos and Skevaki, 2006;
Limon et al., 2017).

FIGURE 1 |Overview of the main microbial genus in the health upper respiratory tract (nasal cavity, nasopharynx, oropharynx), lower respiratory tract (lungs), small
intestine, and large intestine. RT: respiratory tract.
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The immune responses in the gut-lung axis depend on the
balance of microbiota composition, particularly in the gut. The
regulated interaction between the metabolites and antigens of
symbiotic microbiota with the host is crucial for the activation of
pattern recognition receptors (PRRs) andmetabolic sensor receptors
such as G-protein-coupled receptors (GPCRs), and the production
of inflammatory mediators, which are necessary for the migration,
activation, and proliferation of innate and adaptive immune cells
responsible for the production of pro-and anti-inflammatory
cytokines, immunoglobulins, and antimicrobial peptides (Fan and
Pedersen, 2021). These cells and molecules can move bidirectionally
between the lungs and the gut through the bloodstream and
lymphatic system and regulate immune and inflammatory
responses (Marsland et al., 2015; Dang and Marsland, 2019).

Intestinal dysbiosis is responsible for increasing the
susceptibility of the host to lung disease, as evidenced by the
high prevalence of asthma in patients with irritable bowel
syndrome (Yazar et al., 2001). Experimentally, mice treated
with antibiotics are more susceptible to lethal infection by the
influenza virus (IFV) (Ichinohe et al., 2011; Pang et al., 2018).
Furthermore, infections in the lungs are also linked to dysbiosis in
the gut; mice infected with IFV displayed a significant increase in
Enterobacteriaceae and decreased diversity of Lactobacillus and
Lactococcus (Wang et al., 2018). Influenza infection also affects
the production of short-chain fatty acids (SCFAs) and impairs the
gut barrier properties thereby increasing susceptibility to second
bacterial infections (Sencio et al., 2020, 2021).

SCFAs, such as butyrate, propionate, and acetate derived from
the fermentation of dietary fibers by the microbiota, are involved
in regulating the inflammatory process and pulmonary immune
response (Fukuda et al., 2011; Trompette et al., 2014). SCFAs
activate GPCRs and inhibit histone deacetylases, thus
contributing to the reduction of inflammation in the gut-lung
axis by inhibiting the NF-κB signaling pathway, increasing
regulatory T (Treg) cells, and decreasing T helper 1 (Th1) and
Th17 cells (Maslowski et al., 2009; Kim et al., 2013; Li et al., 2018).
SCFAs can also reach the bone marrow and influence the
generation and development of immune cells such as Ly6C-
and Ly6C + monocytes and dendritic cells, which can be
recruited into the lungs and modulate the immune response
against pathogens (Trompette et al., 2014, 2018; Kopf et al., 2015).
Our research group has also demonstrated that activation of the
GPR43 receptor in neutrophils and alveolar macrophages by
acetate is essential for modulating the inflammatory response
and controlling pulmonary infection by Klebsiella pneumoniae
(Galvão et al., 2018) and Streptococcus pneumoniae serotype 1 in
mice (Sencio et al., 2020). In another study, activation of GPR43
in pulmonary epithelial cells induced interferon (IFN)-β in the
lungs and increased the protection of mice infected with
respiratory syncytial virus (RSV) (Antunes et al., 2019).

PROBIOTICS, PREBIOTICS, AND
SYNBIOTICS

Probiotics are live microorganisms that confer benefits to the host
when administered in adequate amounts (Salminen et al., 2021).

Probiotics are considered important tools for the modulation of
microbiota in the gut-lung axis, with their benefits on the gut-
lung axis dependent on the strains used (Figure 2). However,
common mechanisms have been reported between species, such
as –1) colonization of the respiratory and intestinal tracts, 2)
production of SCFAs and antimicrobial peptides, 3) maintenance
of the integrity of the intestinal and pulmonary mucosa, and –4)
stimulation of the innate and adaptive immune system
(Bermudez-Brito et al., 2012; Salminen et al., 2021). The
benefits of probiotics have been shown in animal models and
clinical studies in many disease conditions, such as post-
antibiotic-associated diarrhea, allergies and inflammatory
bowel diseases, and respiratory tract infections (Vieira et al.,
2013). For a given microorganism to be assessed as a probiotic,
biosafety criteria and scientific evidence regarding its biological
benefits must be considered (Harzallah and Belhadj, 2013).
Lactobacillus and Bifidobacterium species are more commonly
used as probiotics; however, yeasts, certain Streptococcus spp.
strains, and Bacillus spp. are also used as probiotics, but less
frequently (Fijan, 2014). The use of inactivated probiotics is also
of great interest because live probiotic microorganisms may cause
systemic infections, excessive immune stimulation, and antibiotic
resistance gene transfer (Doron and Snydman, 2015). Taking this
into consideration, the term postbiotics was proposed as
preparation for inanimate microorganisms and/or their
components that confer a health benefit on the host (Salminen
et al., 2021).

Prebiotics are dietary fibers, such as inulin,
fructooligosaccharides, and galactooligosaccharides, which are
fermented in the gut and promote an increase in the diversity
and activity of specific symbiotic microorganisms (Salminen
et al., 2021). The activity of prebiotics also leads to an
enhancement of immune response, decrease in colon pH, local
induction of reactive oxygen species (ROS), trophic effects on
enterocytes, and anti-inflammatory responses (Vieira et al.,
2013). In addition, the SCFAs butyrate and propionate,
derived from the metabolism of prebiotics, can increase
miRNAs through the inhibition of histone deacetylases,
leading to improved antibody class switching and local and
systematic impact on the T-dependent and T-independent
immunoglobulin production (Sanchez et al., 2020).

Synbiotics consist of probiotics and prebiotics to achieve
synergistic and complementary effects on their functions
(Salminen et al., 2021). A recent meta-analysis of randomized
controlled clinical trials involving over 10,000 individuals showed
the effectiveness of synbiotic interventions in reducing the rate of
respiratory tract infections (Chan et al., 2021). Understanding the
specific mechanisms of interaction between probiotics and
prebiotics and their modulation of the gut environment and
immune response will lead to better utilization of the synbiotics to
treat infections and metabolic diseases.

Gut-Lung Axis Modulation in the Context of
Bacterial Lung Infections
The lung is highly vulnerable to bacterial infections due its
constant exposure to environment agents. One of the most
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common diseases caused by bacteria in the lungs is pneumonia
that is characterized by alveolar infection and intense
inflammatory response that ranges from mild to severe and
can affect both the right and left lobes and may impair the
gaseous exchange. The most common causes of bacterial
pneumonia in immunocompetent hosts include S.
pneumoniae, Haemophilus spp., and Mycobacterium
tuberculosis. In immunocompromised hosts the number of
pathogens that cause pneumonia is much larger, and in
general those individuals are more vulnerable and have worse
outcomes (van der Poll and Opal, 2009) (Table 1).

Several studies have shown that the oral administration of
different strains of probiotics, such as Lactobacillus bulgaricus

CRL 423 and Streptococcus thermophilus CRL 412 (Villena et al.,
2006), L. casei CRL 431 (Villena et al., 2005, 2009), L. fermentum
(Cangemi De Gutierrez et al., 2001), and L. rhamnosus CRL 1505
(Barbieri et al., 2017) causes: 1) increased resistance to infection,
2) decreased number of bacteria in the lungs, and 3) increased
survival of mice infected with S. pneumoniae. In general, these
articles, associated this protection with an increase in neutrophils,
lymphocytes, macrophages, phagocytic activity, and levels
specific anti-S. pneumoniae IgG and IgA in the lungs. The
increase in phagocytic activity and the number of neutrophils
in the lower respiratory tract is the first line of defense against
invading pathogens, and the increase in regulatory cells and
cytokines contributes to the reduction of the inflammatory

FIGURE 2 | Effects and mainly mechanisms of probiotics and prebiotics in the gut-lung axis and context of respiratory infections. Probiotics and prebiotics
administered orally can improve dysbiosis and induce eubiosis in the host, leading to an increase in SCFAs directly (produced by probiotics) or indirectly (produced by
commensal microbiota). Furthermore, probiotics can also reduce the burden and epithelial damage induced by intestinal parasites. The uptake of probiotics by DCs in
the intestinal submucosa, and their migration to lymph nodes, induces the activation and proliferation of Th1, Th2, Th17, Treg, and B cells. Activated T cells and
B cells produce cytokines and antibodies, enter the circulatory and lymphatic systems, and reach the lungs, where they will increase resistance to infections caused by
viruses, bacteria, and fungi. The fermentation of prebiotics and production of SCFAs increases the number of DCs precursors in the bone marrow and increases CD8+

T cells activity, that confer protection against infections in the lung. The immunomodulation demonstrated after the administration of probiotics and prebiotics may be
linked to the reduced viral titer, bacterial colonization, parasite load, and migration in the lungs. Probiotic-induced immunomodulation can increase the frequency of
dendritic cells and CD4+ and CD8+ T cells in the lungs against infections by viruses and bacteria and can increase specific IgG and IgM antibodies to these pathogens.
Also, the increase in Treg cells may be related to the reduction of inflammation-induced lung damage. In parasitic infections, probiotics have been linked with increased
frequency of Th1 and concentration of IL-12 and IFN-γ, whichmay justify the reduction in the parasite load and larvaemigration in the lung. Because there are no scientific
studies that demonstrate the reduction of lung colonization by fungi after oral administration of probiotics, is still unknow if the antimycotic potential from probiotics
metabolites, as shown in vitro, could be applied in an in vivo system.
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TABLE 1 | Pre-clinical studies on the modulation of the microbiota for treatment of bacterial and viral lung infections.

Strategy for
microbiota modulation

Dose and
route of

administration

Experimental
model

Pathogen Main outcomes References

Effects on bacterial pathogen
Lactobacillus bulgaricus CRL
423 and Streptococcus
thermophilus CRL 412

2 × 108 CFU, via oral Malnourished, Swiss
albino mice

Streptococcus
pneumoniae

Reduced bacterial load in the lungs;
increased bactericidal function of
bronco-alveolar phagocytes;
reduced tissue inflammation;
increased neutrophils in blood; and
increased level of lung anti-
pneumococcal IgA and IgG

Villena et al. (2006)

Lactobacillus casei CRL 431 1 × 109 CFU, via
intranasal

Malnourished, Male,
3-week-old Swiss
albino mice

Streptococcus
pneumoniae

Increased the bacteria lung
clearance; improved production of
TNF-α; increased activity of
phagocytes in the respiratory tract;
increased IL-4, IL-10, and
Pneumococcus-specific IgG

Villena et al. (2009)

Lactobacillus casei CRL 431 1 × 109 CFU, via oral Male 6-week-old
Swiss albino

Streptococcus
pneumoniae

Increased pathogen clearance from
blood; lower lung damage;
improved number of leukocytes and
neutrophils; and increased levels of
antipneumococcic IgA in BAL.

Villena et al. (2005)

Lactobacillus fermentum 1 × 107, via intranasal Adult, BALB/c mice Streptococcus
pneumoniae

Increased the number of activated
macrophages and lymphocytes;
and increased anti-S.pneumoniae
antibodies

Cangemi De
Gutierrez et al.
(2001)

Lactobacillus rhamnosus
CRL1505

1 × 108 CFU, via
intranasal

Malnourished, Male,
3-week-old Swiss-
albino mice

Streptococcus
pneumoniae

Changed the quantitative and
qualitative alterations of CD4+ T cells
in the bone marrow, thymus, spleen
and lung induced by malnutrition
and infection; and increased IL-10
and IL-4 in respiratory and systemic
compartments

Barbieri et al.
(2017)

Lactobacillus casei CRL 431,
Lactobacillus delbrueckii
subsp. bulgaricus and
Streptococcus thermophilus

1 × 109 CFU, via oral 3-week-old, Swiss
albino mice

Pseudomonas
aeruginosa

Enhanced lung clearance of P.
aeruginosa; increased phagocytic
activity of alveolar macrophages;
and increased IgA and IgM levels
in BAL.

Alvarez et al.
(2001)

Lactobacillus rhamnosus GG 4 × 108 CFU, via oral 5 to 8-week-old, FVB/
N mice

Pseudomonas
aeruginosa

Mice treated had improved survival;
reduced bacterial counts in BAL;
decreased the levels of IL-6 and
increased levels of IL-10 mRNA;
improved lung pathology; and
increased levels of Treg cell marker
Foxp3

Meitert et al.
(2013)

Lactobacillus fermentum
K.C6.3.1E, Lactobacillus zeae
Od.76, and Lactobacillus
paracasei ES.D.88

9 × 106 CFU, via
intratracheal

6 to 8-week-old,
C57BL/6 mice

Pseudomonas
aeruginosa

Decreased secretion in BAL of IL-6
and TNF-α

Fangous et al.
(2019)

Bifidobacterium longum 51A 1 × 108, via oral 8 to 12-week-old,
C57BL/6 WT and
Mal/TIRAP-/- mice

Klebsiella pneumoniae Reduced bacterial burden; faster
resolution of inflammation;
decreased lung damage; increased
production of IL-10; and increased
alveolar macrophages ROS
associated with Mal/TIRAP
activation

Vieira et al. (2016)

Effects on viral pathogen
Lactobacillus casei Shirota 1 × 108 CFU, via oral Neonatal and infant,

BALB/c mice
Influenza A/PR/8/34
(H1N1)

Higher survival rate, reduced titer of
virus in the nasal washings; greater
pulmonary NK cell activity; and
increased IL-12 production by
mediastinal lymph nodes

Yasui et al. (2004)

Lactobacillus rhamnosus M21 1 × 109 CFU, via oral Female, specific
pathogen-free, BALB/
c mice

Influenza A/NWS/33
(H1N1)

Increased IL-2 and IFN-γ; increased
sIgA levels; reduced inflammatory
cells in BAL.

Song et al. (2016)

(Continued on following page)
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response and to the maintenance of tolerance to symbiotic
microorganisms, which is necessary to reduce damage
associated with infections by pathogens (Martin and Frevert,
2005).

Similar results were observed in mice infected with
Pseudomonas aeruginosa, treated orally with the probiotics L.
casei CRL 431, L. delbrueckii subsp. bulgaricus, S. thermophilus
(Alvarez et al., 2001) and L. rhamnosus GG (Meitert et al., 2013).

TABLE 1 | (Continued) Pre-clinical studies on the modulation of the microbiota for treatment of bacterial and viral lung infections.

Strategy for
microbiota modulation

Dose and
route of

administration

Experimental
model

Pathogen Main outcomes References

Lactobacillus pentosus S-PT84 Heat-killed L. pentosus
S-PT84, via intranasal

Female, BALB/c mice Influenza A/PR/8/34
(H1N1)

Increased survival rates; reduced
titer of influenza virus in BAL;
increased IL-12 and IFNγ
production in mediastinal lymph
node cells; increased IL-12 and IFN-
α in BAL; and increased NK cell
activity

Izumo et al. (2010)

Lactobacillus plantarum and
Leuconostoc mesenteroides

1 × 109 CFU, via oral Female, 5-week-old,
BALB/c mice

Influenza rK09 (H1N1) Restrained viral replication; and
increased rates of survival of
infected mice

Bae et al. (2018)

Lactobacillus rhamnosus GG 200 µg of L.
rhamnosus GG
lyophilized, via
intranasal

Female, 7-week-old
BALB/c mice

Influenza A⁄PR⁄ 8⁄ 34
(H1N1)

Higher survival rate; increased cell-
killing activity of lung cells; and
increased mRNA expression of
interleukin IL-1 beta, TNF and
MCP-1

Harata et al.
(2010)

Lactobacillus acidophilus L-92 4 × 1010 CFU, via oral Female, 4-weeks-old
BALB/c mice

Influenza A/PR/8/34
(H1N1)

Reduced Virus titers in the lung;
increased NK cells activity;
decreased the number of
neutrophils; increased eotaxin,
MCSF, IL-1β, RANTES and IFN-α in
the lung; and increased IL-17 levels
in Peyer’s patches

Goto et al. (2013)

Lactobacillus plantarum DK119 1 × 108 or 1 × 109 CFU,
via oral

Female, BALB/c mice Influenza A/PR8 Reduced lung viral loads; increased
levels of cytokines IL-12 and IFN-γ in
BAL; and reduced degree of
inflammation

Park et al. (2013)

Lactococcus lactis subsp.
lactis JCM5805

1 mg of heat-killed L.
lactis subsp. lactis
JCM5805, via oral

Female, DBA/2jjcl
mice

Murine Parainfluenza
virus (mPIV1)

Increased survival rate; prevention
of weight loss; reduced lung
histopathology scores; increased
activation of Peyer’s patches (PP)
and PP pDCs; increased levels of
type I IFNs; and increased
expressions of anti-viral factors such
as Isg15, Oasl2, and Viperin, at lung

Jounai et al.
(2015)

Lactobacillus paracasei CNCM
I-1518

2 × 108 CFU, via oral Female, 6-week-old
BALB/c mice

Influenza A/Scotland/20/
74 (H3N2)

Reduced weight loss; and increased
recruitment of inflammatory myeloid
cells, such as interstitial monocytes
and dendritic cells, to the lungs

Belkacem et al.
(2017)

Bacillus subtilis 3 (UCM B-
5007)

1 × 107 CFU, via oral Four-week-old BALB/
c mice

Influenza A/FM/1/47
(H1N1)

Prevented influenza infection Starosila et al.
(2017)

Lactobacillus rhamnosus
CRL1505

1 × 108 CFU, via oral Male, 6-week-old
BALB/c mice

Respiratory Syncytial
Virus strain A2 and
Influenza virus A/PR/8/34
(H1N1)

Reduced lung immune-coagulative
reaction triggered by TLR3
activation

Zelaya et al.
(2014)

Lactobacillus plantarum
NCIMB 8826 and Lactobacillus
reuteri F275

1 × 109 CFU, via
intranasal

BALB/c and C57BL/6
MyD88−/− mice

Pneumonia Virus of mice
(PVM) strain J3666

Protection against lethal infection;
reduced granulocyte recruitment;
reduced expression of
proinflammatory cytokines CXCL10,
CXCL1, CCL2, and TNF.

Gabryszewski
et al. (2011)

Lactobacillus rhamnosus
CRL1505 and CRL1506

1 × 108 CFU, via
intranasal

Female, 3-week-old
BALB/c mice

Human RSV strain A Increased levels of IFN-α, IFN-β,
IFN-γ, IL-6 and IL-10; increased
levels of CD4+ Tregg cells and
CD11c+CD103+ DCs; reduced viral
replication and lung damage

Tomosada et al.
(2013)
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In addition, the administration of L. rhamnosus GG induces an
anti-inflammatory response by increasing the levels of regulatory
T cells (Treg) Foxp3+ and decreasing the production of the
proinflammatory cytokine IL-6. This anti-inflammatory profile
was also observed in mice infected with P. aeruginosa with
intratracheal administration of probiotics L. fermentum
K.C6.3.1E, L. zeae Od.76, and L. paracasei ES.D.88,
demonstrated by the reduction of lung inflammation and
decreased production of IL-6 and tumor necrosis factor
(TNF)-α (Fangous et al., 2019).

In an experimental lung infection by K. pneumoniae, the
administration of viable or inactivated probiotic
Bifidobacterium longum 51A induced pulmonary clearance of
K. pneumoniae by increasing ROS production in alveolar

macrophages through activation of the mal/TIRAP signaling
pathway (Vieira et al., 2016). There was a concomitant
reduction in the inflammatory process and concentration of
cytokines TNF-α and IL-6 and an increase in IL-10 in the
lungs of mice. However, only viable probiotics were able to
increase the levels of IL-10 in the lungs of mice. Viable B.
longum 51A produces SCFA acetate in large quantities, and
acetate administration in mice before respiratory infection by
K. pneumoniae induced increased production of IL-10 in animals.
The authors demonstrated that acetate might be the primary
inducer production of IL-10 in this model (Vieira et al., 2016). In
addition, intestinal colonization of germ-freemice with B. longum
51A restored the ability of these mice to decrease infection by
increasing the production of CXCL1 and the recruitment of

TABLE 2 | Clinical studies on the modulation of the microbiota for treatment of bacterial and viral lung infections.

Strategy for
microbiota modulation

Dose and
route of

administration

Study design
and subjective

Pathogen and
disease

Outcome References

Effects on bacterial pathogen
Lactobacillus casei
rhamnosus Lcr35

1 × 109 CFU, via oral Prospective, randomized,
double-blind, placebo-
controlled pilot study with
patients aged 18-91

Pseudomonas aeruginosa Reduction in the occurrence of
P. aeruginosa respiratory
colonization and/or infection in
the probiotic group. Reduction
in the frequency of VAP to P.
aeruginosa

Forestier et al.
(2008)

Lactobacillus rhamnosus GG 2 × 109 CFU, via oral Prospective, randomized,
double-blind, placebo-
controlled trial with patients
at high risk of
developing VAP

VAP by Gram-positive and
Gram-negative pathogens

Reduction in the development
of microbiologically confirmed
VAP. Patients treated with
probiotics had fewer days of
antibiotics prescribed for VAP.

Morrow et al.
(2010)

Bifidobacterium breve Yakult,
Lactobacillus casei Shirota,
and galacto-oligosaccharide

1 × 108 CFU of B. breve and
L. casei and Galacto-

oligosaccharides in a 10 g/
day formula, via oral

Randomized controlled trial
with patients with more
than 16 years old

Patients with more than
16 years old, placed on a
ventilator, and who were
diagnosed as having
sepsis

Reduced incidence of VAP.
Increased number of
Bifidobacterium and
Lactobacillus. Increased
concentration of acetate in the
feces

Shimizu et al.
(2018)

Effects on viral pathogens
Lactobacillus rhamnosus GG
ATCC 5310 and galacto-
oligosaccharide and
polydextrose mixture

1 × 109 CFU/day for
1–30 days and 2 ×
109 CFU/day for

31–60 days, via oral

Randomized, double-
blind, placebo-controlled
study with preterm infants

Rhinovirus-associated
respiratory tract infection

Reduced respiratory tract
infections. Reduced
rhinovirus-induced episodes

Luoto et al.
(2014)

Lactobacillus brevis KB290 6 × 109, via oral Open-label, parallel-group
trial with elementary
schoolchildren

Influenza infection Reduced incidence of
influenza infections

Waki et al.
(2014)

Lactobacillus rhamnosus GG 1 × 109, via oral Randomized, double-
blind, placebo-controlled
study with nursing home
residents aged 65 and
older

Influenza infection Reduced laboratory-
confirmed respiratory viral
infections

Wang et al.
(2018)

Streptococcus thermophilus
DSM 32245, Bifidobacterium
lactis DSM 32246,
Bifidobacterium lactis DSM
32247, Lactobacillus
acidophilus DSM 32241,
Lactobacillus helveticus DSM
32242, Lactobacillus
paracasei DSM 32243,
Lactobacillus plantarum DSM
32244, and Lactobacillus
brevis DSM 27961

2.4 × 109, via oral Retrospective,
observational cohort study
with adults

COVID-19 pneumonia by
SARS-CoV-2

Increased survival rates of
patients that received BAT
plus oral bacteriotherapy

Ceccarelli
et al. (2021)
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neutrophils (Vieira et al., 2016). In mice infected with IFV, the
lower quantity of acetate was also related to increased
susceptibility to secondary respiratory pneumococcal infection,
mainly due to the impaired bactericidal activity of alveolar
macrophages, and this detrimental effect was restored after
acetate supplementation (Sencio et al., 2020).

The potential of probiotics to protect the host from pulmonary
infections has also been assessed in several clinical studies,
including diverse patients, methodological designs, and
inclusion criteria (Table 2). Most of these studies focused on
probiotics for prevention and treatment of nosocomial
pulmonary infections in patients admitted to intensive care
units (ICUs). Two prospective, randomized, double-blind, and
placebo-controlled studies showed that the probiotics L. casei
rhamnosus Lcr35 and L. rhamnosus GG, administered orally or
oropharyngeally, resulted in decreased colonization and infection
of the LRT by P. aeruginosa or related gram-positive and gram-
negative pathogens in patients admitted to the ICU using
mechanized pulmonary ventilation (Forestier et al., 2008;
Morrow et al., 2010). Only one study showed that
administration of a synbiotic consisting of B. breve Yakult, L.
casei Shirota, and galactooligosaccharides decreased the incidence
of ventilator-associated pneumonia (VAP) in patients diagnosed
with sepsis admitted to the ICU (Shimizu et al., 2018).

In general, we can conclude that the modulation of the
intestinal microbiota, mainly with probiotics, is an exciting
alternative for treating lung diseases caused by bacteria.
Although it is already well established in the literature that
probiotic species and strains behave differently according to
their metabolic pathways and their interaction with the host,
the probiotic species used against lung alterations attract
attention to those from the Lactobacillus genus. Most
articles demonstrated that non-specific immune responses
mediated by probiotics, prebiotics, and symbionts are the
principal host protection against lung bacteria. Generally, it
seemed more significant phagocytic activity of lung
macrophages, reduced lung bacterial load, and less tissue
inflammation, associated with increased levels of IL-4 and
IL-10, increased frequency of Treg cells, increased
production of IgA and IgG, and reduced of IL-6 and TNF-α
levels. This demonstrates a more resolving anti-inflammatory
profile after modulation of the host’s intestinal microbiota.
Despite the benefits, these articles use different study designs,
experimental models, doses, and routes of administration,
making it challenging to translate the results obtained in
animal models to humans and thus develop more specific
therapies with probiotics.

Gut-Lung Axis Modulation in the Context of
Lung Viral Infections
Viral infections generally cause common cold, bronchiolitis, and
pneumonia and vary widely in severity depending on age,
immune and nutritional status, genetics, and use of antibiotics.
IFV, RSV, and rhinovirus are the most abundant and common
causes of lung infections (Jain, 2017). IFV is well known to cause
outbreaks of varying severity every year, but recently the novel

coronavirus SARS-CoV-2 has emerged as a pandemic that has
caused more than 3.5 million deaths (Zhu et al., 2020) (Table 1).

Several studies have demonstrated the potential for oral and
intranasal administration of probiotics such as L. casei Shirota
(Yasui et al., 2004), L. rhamnosus M21 (Song et al., 2016), L.
pentosus S-PT84 (Izumo et al., 2010), and L. plantarum and
Leuconostoc mesenteroides (Bae et al., 2018) to protect and
increase the survival of IFV-infected animals, mainly by
inducing anti-viral immune responses with the activation of
NK cells and increased production of cytokines such as IL-12
and IFN-γ, increased production of IgA in the respiratory
mucosa, and reduction of polymorphonuclear inflammatory
infiltrate in the lung tissue. In addition to these protective
effects, L. rhamnosus GG administered intranasally (Harata
et al., 2010), and L. acidophilus L-92 (Goto et al., 2013) also
demonstrated the ability to increase the levels of proinflammatory
cytokines, such as IL-1β, monocyte chemotactic protein 1 (MCP-
1), and chemokines such as eotaxin and M-CSF.

Dendritic cells are crucial for developing immune responses
because of their ability to detect pathogens through TLRs and
create a link between innate and adaptive immune responses.
Mice with depleted alveolar macrophages lost the anti-viral
protection against IFV infection conferred by increasing IL-12
and IFN-γ levels after oral administration of the probiotic L.
plantarumDK119 (Park et al., 2013). In addition, the importance
of dendritic cells was demonstrated after oral administration of
the probiotic Lactococcus lactis subsp. lactis JCM5805 in mice
infected with murine parainfluenza virus. The authors showed
that the probiotic was incorporated into CD11c+ immune cells in
Peyer’s patches and activated plasmacytoid dendritic cells that
produce type I IFNs at draining mucosal sites. The authors also
observed an increase in IFN-related genes, such as lsg15, Oasl2,
and Viperin in the lungs, suggesting that the type I IFN produced
by plasmacytoid dendritic cells could reach systemic levels and
induce anti-viral activity in the lungs. In addition, ex vivo
stimulation with murine parainfluenza virus of lung
lymphocytes from mice treated with JCM5805 demonstrated
high expression of IFN-α and IFN-β (Jounai et al., 2015).

Determining the taxonomic composition and function of the
microbiota is crucial for understanding the impact of probiotics
on the protective response against pathogens. The oral
administration of L. paracasei CNCM I-1518 did not modify
the gut microbiota structure in mice infected with IFV; however,
it conferred protection against the virus (Belkacem et al., 2017).

Diets rich in inulin and SCFAs improve mice lung pathology
after infection with IFV by promoting the differentiation of
alternatively activated macrophages (AAMs) from circulating
Ly6C- monocytes and decreasing the immunopathological
effects of neutrophils. Also SCFAs increases anti-IFV
immunity by enhancing the CD8+ T cells activity by serving
as a substrate for fatty acid oxidation and by specifically
interacting with the receptor GPR41 (Trompette et al., 2018).
One study showed that activation of GPR43 and interferon-α/β
receptor (IFNAR) in pulmonary epithelial cells by SCFA acetate
induced increased levels of IFN-β in the lungs and increased
protection of mice in an experimental model of RSV infection
(Antunes et al., 2019).
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Other probiotic-derived metabolites also require further
investigations. A peptide P18 produced by the probiotic
Bacillus subtilis 3 (UCM B-5007) share high structural
homology with IFV neutralizing antibody, and it is capable of
inhibit IFV replication in vitro and protect 80% of mice from
lethal IFV infection when administered in a therapeutic regimen.
This protection is superior to that observed using the anti-viral
drug oseltamivir (approximately 70%) (Starosila et al., 2017).

Double-stranded RNA intermediates from IFV and RSV are
associated with changes in the host’s coagulation process by
activation of receptors such as TLR-3, and retinoic acid-
inducible gene I (RIG-I). The activation of these receptors by
these viruses, increases the expression of coagulation factors in
endothelial cells and monocytes and inhibits fibrinolysis,
inducing a prothrombotic state in the hosts, leading to fibrin
deposition in the pulmonary alveoli and exacerbation of tissue
inflammation. In order to address this issue one study
demonstrated in a murine model of IFV and RSV infection,
that oral administration of L. rhamnosus CRL 1505 in mice
increases the clearance of both viruses and controls immune-
coagulative responses initiated by the activation of TLR-3 in the
lungs, in a process dependent on IL-10 (Zelaya et al., 2014).

Intranasal administration of viable or heat-killed L. plantarum
NCIMB 8826 and L. reuteri F275 protected mice from lethal
pneumonia virus of mice (PVM) infection. The lungs showed
minimal inflammation, with fewer granulocytes and an increased
number of lymphocytes, correlated with a reduction in
proinflammatory cytokines CXCL10, CXCL1, CCL2, and TNF-α.
Evaluation of the lymphocyte populations demonstrated that
treatment did not result in changes in the relative proportions of
CD4+ T cells (CD3+CD4+CD8−), CD8+ (CD3+CD4−CD8+), or
B cells (B220+). In contrast, the fraction of NK cells (CD3−DX5+)
decreased. The authors demonstrated that these results are not
specific for L. plantarum NCIMB 8826 and L. reuteri F275, as
the same protection was observed when using the non-pathogenic
gram-positive bacteria Listeria innocua. These probiotics also
increased the survival of mice infected with the PVM, with the
deleted MyD88 (TLRs adapter protein) gene (MyD88−/−), thus
demonstrating that this induced protection can be TLR-
independent (Gabryszewski et al., 2011). However, other studies
have determined that the anti-viral activity of probiotics is related to
the activation of TLRs. This was demonstrated in mice with L.
rhamnosus probiotics CRL1505 and CRL1506 that differentially
activate the TLR3/RIF-I pathway to inoculate with poly (I:C) (a
molecular pattern associated with viruses). The activation of TLR3/
RIF-I leads to increased production of IFN-γ, IFN-β, TNF-α, IL-6,
and IL-10, the frequency of CD3+CD4+IFN-γ+, CD3+CD4+IL-10+,
and the dendritic cells D11c+CD11blowCD103+ and
CD11c+CD11bhighCD103, in the lungs. Additionally, this study
showed an increase in MHC-II levels in both populations of
dendritic cells. The authors also demonstrated that this protective
response and modulation of the immune response were similar to
those observed in mice infected with the human RSV strain
(Tomosada et al., 2013).

Clinical studies showed that probiotics have general effects
on viral infections of the respiratory tract (Table 2). A
randomized, double-blind, placebo-controlled study, on

preterm infants showed that a synbiotic composed of L.
rhamnosus GG ATCC5310 and galactooligosaccharides and
polydextrose reduced the rate of rhinovirus infection
compared to the placebo group (Luoto et al., 2014). In
school-aged children, consumption of L. brevis KB290
during the influenza season was associated with a reduction
in the clinical diagnosis of IFV infection (Waki et al., 2014). In
a randomized, double-blind, placebo-controlled pilot study,
the probiotic L. rhamnosus GG was also associated with a
reduction in the occurrence of influenza infections (Wang
et al., 2018).

As demonstrated, the most used probiotics in studies of
pulmonary diseases caused by viruses are also those of the
Lactobacillus genus. The effects of this genus related to
increased protection against viruses are linked to increased
production of IFN types I and II, proinflammatory cytokines
such as IL-12 and IFN-γ, or even increased expression of genes
encoding anti-viral factors. Unfortunately, a mechanistic basis for
the observed beneficial effects of probiotics in combating viral
lung infections is often not well defined. This knowledge gap is
mainly because most experiments using probiotics for viral
treatment use different study designs and experimental
models, doses, times, and routes of administration. Therefore,
more research is needed to understand better the role of
probiotics in our immune system in fighting viral pulmonary
infections.

The Gut-Lung Axis During SARS-CoV-2 Infection
The severe acute respiratory syndrome coronavirus 2 (SARS-
CIoV-2), which causes coronavirus disease 2019 (COVID-19),
has spread around the world since 2019 and has been declared a
pandemic that continues to spread with devastating
consequences to public health. As of July 2021, there were
approximately 190, 600, 300 global confirmed cases and
4,130,000 confirmed deaths.

SARS-CoV-2 can invade human cells by binding its spike
protein to a variety of receptors, such as angiotensin-converting
enzyme 2 (ACE2), neuropilin-1, tyrosine-protein kinase receptor
(AXL), and antibody–FcγR complexes (V’kovski et al., 2021). The
current evidence suggests that the severity of COVID-19 is a
consequence of a hyperinflammatory immune response
culminating in a ‘cytokine storm’, with markedly increased
levels of proinflammatory cytokines such as IL-1, IL-6, IL-12,
IFN-γ, and TNF-α, which elicit extensive local and systemic tissue
damage (Coperchini et al., 2020).

Recent studies have revealed that patients infected with SARS-
CoV-2 demonstrate intestinal dysbiosis, which correlates with the
susceptibility and severity of COVID-19 (Zuo et al., 2020; Yeoh
et al., 2021). Though some studies detected SARS-CoV-2 RNA in
the feces of patients, the activity and infectivity of SARS-CoV-2 in
the GI tract are still largely unknown (Zuo et al., 2021). However,
as ACE2 is highly expressed in the intestinal epithelia, this
receptor may be involved in gastrointestinal symptoms that
are common in severe cases (Chen et al., 2020; Villapol, 2020;
Koester et al., 2021). Interestingly, in a study with gnotobiotic
rats, researchers demonstrated that the gut microbiota regulates
the colonic mRNA of ACE2 (Yang et al., 2020).
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Another study demonstrated that patients with severe
COVID-19 had a significant decrease in the abundance of
butyrate-producing bacteria, such as Faecalibacterium
prausnitzii, Clostridium butyricum, Clostridium leptum, and
Eubacterium rectale, and an increased number of common
opportunistic pathogens, Enterococcus and Enterobacteriaceae
(Tang et al., 2020). In non-human primates infected with
SARS-CoV-2, 16S rRNA analysis of the microbial gut
community showed changes in the taxonomic composition,
with the relative abundance of Acinetobacter and
Ruminococcaceae being positively correlated with the presence
of SARS-CoV-2 in the URT. In addition, SARS-CoV-2 infection
significantly alters the metabolite composition with a reduction in
the levels of SCFAs, bile acids, and tryptophan metabolites (Sokol
et al., 2021).

The impact of probiotics in COVID-19 and in the cytokine
storm can be deduced by their knownmechanisms in modulating
immune response and inflammation (He et al., 2020; de Oliveira
et al., 2021), but more basic and clinical research is needed to
show their benefits. In a retrospective study of ICU patients
diagnosed with pneumonia caused by SARS-CoV-2, the
association of the best available therapy with the probiotics S.
thermophilus DSM 32245, B. lactis DSM 32246, B. lactis DSM
32247, L. acidophilus DSM 32241, L. helveticus DSM 32242, L.
paracasei DSM 32243, L. plantarum DSM 32244, and L. brevis
DSM 27961 showed a positive association with reduced mortality
(Ceccarelli et al., 2021).

Gut-Lung Axis Modulation in the Context of
Fungal Lung Infections
Among the wide variety of respiratory pathogens, fungi are
responsible for only a small proportion of nosocomial or
community-acquired pneumonia. However, these species are
of relevant medical interest, as fungi cause high morbidity and
mortality especially when they affect immunosuppressed
patients, or patients with chronic lung diseases, such as
chronic obstructive pulmonary disease (COPD) (Charlson
et al., 2012; Delhaes et al., 2012).

Although some studies showed that the microbiota in the gut-
lung axis is fundamental to the host response to lung infections by
fungi, most studies that have demonstrated antimycotic action
against respiratory pathogens have been carried out in vitro. In
vitro experiments showed that the bacterium Bacillus safensis can
block, in a contact-dependent manner, several Cryptococcus
neoformans virulence factors including melanin, antiphagocytic
capsule, and biofilm formation (Mayer and Kronstad, 2017).
Many microorganisms of the genus Bacillus are characterized
as probiotics (Hong et al., 2005); however, B. safensis has not yet
been characterized as such. B. safensis is phylogenetically close to
the probiotic B. pumilus (Satomi et al., 2006), and its anti-fungal
activity has been described (Pandya and Saraf, 2015), making B.
safensis an exciting candidate for studies of biological safety and
probiotic activity. Another study demonstrated in vitro that
treatment with concentrated cell-free supernatant from the
culture of L. plantarum 16 altered the transcription of genes
involved in a variety of cellular functions, especially those related

to cellular metabolism, which culminated in the complete
inhibition of spore germination and development of the germ
tubes and hyphae of the pathogen A. fumigatus (Crowley et al.,
2013). In one in vivo study using the probiotics Saccharomyces
boulardii, L. paracasei ST-11, and L. rhamnosus GG, mice were
not protected against lung infection caused by the pathogen
Cryptococcus gattii (Oliveira et al., 2017).

The recognition of lectins in the fungal cell wall by PRRs is
crucial for the activation of dendritic cells and macrophages and
the activation of T cells, including Th1 and Th17, which are the
best defense strategies against fungal infections, as they help
promote the clearance of fungi through innate effectors such
as neutrophils and macrophages. The activation of Treg cells and
anti-inflammatory cytokines is also fundamental to the anti-
fungal immune response, as these cells and molecules are
essential for controlling the inflammatory response. The
immune response against fungi has already been extensively
reviewed by other authors, such as Lionakis et al. (2017).

Among the opportunistic species that affect the lungs,
Aspergillus spp. are the primary etiologic agents of invasive
lung diseases and mainly affect transplant patients
(Kontoyiennis et al., 2010; Pappas et al., 2010). Evidence also
suggests that COPD patients are at a high risk of developing
invasive aspergillosis, although this association is poorly explored
(Hammond et al., 2020). An experimental study demonstrated
the importance of intestinal microbiota in structuring the
pulmonary anti-Aspergillus immune response. During infection
by A. fumigatus, the administration of antibiotics decreased the
number of Th17 cells and IL-17 in the lungs, which correlated
with a decrease in intestinal colonization by segmented
filamentous bacteria (SFB). By investigating how commensal
SFBs were linked to this phenotype, the authors, through
serum transfer experiments from mice colonized by SFB to
negative SFB mice, demonstrated that SFBs contribute to the
accumulation of Th17 cells in the lung by inducing an increase in
IL-1. This was confirmed when mice that received serum pre-
incubated with an IL-1 antagonist attenuated the response of
Th17 cells in the lungs (McAleer et al., 2016). Germ-free mice
(GF) infected with C. gattii showed greater susceptibility to lung
colonization, mortality, correlated with reduced levels of IFN-γ,
IL-1β, and IL-17 and reduced phagocytosis and ROS production
than conventional mice. After restoring the intestinal microbiota
those mice mounted a stronger response to infection by C. gattii,
associated with prolonged survival rates and higher levels of
inflammatory mediators (Costa et al., 2016).

Pneumocystis jirovecii is another opportunistic fungus that
causes pneumonia, particularly in HIV-positive patients, with an
inverse relationship between the CD4+ T cell count in the blood
and the risk of infection by P. jirovecii (Dunbar et al., 2020).
When investigating the diversity of the intestinal microbial
community between immunocompetent mice and mice
depleted of CD4+ T cells, with pneumonia caused by
Pneumocystis murina, there was a significant change in alpha
and beta diversity and a change in the taxonomic abundance of
the intestinal microbiota among these groups, suggesting that the
loss of CD4+ T cells affects the intestinal microbiota and the
response to P. murina. P. murina infection was also found to
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increase the expression of genes in the intestinal microbiota
related to carbohydrate energy metabolism, xenobiotic
degradation, and signal transduction pathways (Samuelson
et al., 2016a).

Another study demonstrated that vaccination, using a prime-
boost vaccination strategy, with live P. murina induced protection
against subsequent lung infection with the same pathogen in
immunocompetent mice and even in mice depleted of CD4+

T cells. In immunocompetent mice, this immunization increased
the number of CD4+ T cells, CD8+ T cells, CD19+ B cells, and
CD11b+ macrophages in the lungs after a respiratory infection
and increased the levels of IgG and IgA specific for P. murina. A
significant reduction in the lung load of P. murina was observed
in serum transfer experiments from non-infected and immunized
mice to infected mice. The beta diversity of the intestinal
microbial community in mice immunized with P. murina was
also altered, suggesting that the effectiveness of this
immunization may be partly related to the modification of the
microbiota; however, further studies are needed to determine
whether changes in the microbiota participate in the induction of
immunological memory in P. murina (Samuelson et al., 2016b).

Despite the importance of the intestinal microbiota and its
metabolites for the development of anti-fungal immune
responses, and in vitro studies demonstrate that probiotics have
an action against fungi that cause lung infections, there have been no
reports of robust studies aiming to assess the effectiveness of the
modulation of in vivo intestinalmicrobiota for the prevention and/or
treatment of pulmonary fungal infections. Thus, with the
significance of lung infections in mind, more researchers urgently
need to turn their attention to this broad and promising field.

Gut-Lung Axis Modulation in the Context of
Parasitic Lung Infection
Many helminths cause disease, but they have been shown to also
influence the pulmonary immune response. Similar to bacteria,
they co-evolved with the host’s immune system to maintain a
mutually beneficial relationship (Schwartz et al., 2018). Some
helminths also share the same niche, the intestinal lumen, with
bacteria belonging to the microbiota, and some studies have
shown that there are complex interactions between the two
(Leung et al., 2018). The intestinal microbiota acts as one of
the main inducers of the activation and function of local and
systemic antiparasitic responses, such as the activation of Th2
cells and eosinophils (Jiménez-Saiz et al., 2020).

During the larval phase of their life cycle, different species of
helminths, such as Ascaris lumbricoides, Toxocara sp., Necator
americanus, Ancylostoma duodenale, and Strongyloides sp.,
migrate through the lungs and induce pathological immune
responses and cause tissue damage, such as eosinophilic
pneumonia, which is characterized mainly by increased
infiltration of eosinophils in the lung parenchyma and blood
eosinophilia (Akuthota and Weller, 2012).

Some studies involving the modulation of the microbiota in
spite of helminth infections have focused only on intestinal
pathology and on the parasitological aspects of the infection,
such as intestinal parasitic load, release of eggs in the feces,

and survival of mice. This was demonstrated experimentally
with the probiotic L. casei ATCC7469 in infection with
Trichinella spiralis (Bautista-Garfias et al., 2001), B.
animalis 04450B against infection by S. venezuelensis
(Oliveira-Sequeira et al., 2014), and S. boulardii in mice
infected with T. canis (Avilada et al., 2012). However,
researchers have already reported the beneficial effect of
probiotics in reducing the parasitic burden of larval stages
during T. canis infection in mice. In vitro experiments
demonstrated a reduction in the viability of T. canis larvae
after direct incubation with live cells or cell-free supernatant
of the probiotic Enterococcus faecalis CECT712. The same
study also showed that oral administration of E. faecalis
CECT712 significantly reduced the number of T. canis
larvae found in the lungs of these animals (Chiodo et al.,
2010). L. rhamnosus (Walcher et al., 2018) and L. acidophilus
ATCC 4356 (Cadore et al., 2020) were also able to reduce the
parasitic larval burden of T. canis in the lungs of mice, but had
no antiparasitic action against the larvae in vitro, which
indicates the indirect action of these two probiotics on T.
canis, probably related to the stimulation of the protective
immune response. The administration of S. boulardii in mice
infected with T. canis increased the transcription of genes
encoding IL-12 and IFNγ, which correlated with a decrease in
the number of larvae in the lungs and other tissues (de Avila
et al., 2016).

Some probiotics, mainly from the Lactobacillus genera, showed
action in vitro and in vivo against helminths that cycle through the
lungs. However, differences in the efficacy of species and strains used
can be attributed to variability in the experimental models, the
probiotic dose, and the administration route. However, data are
insufficient to determine the molecular mechanisms by which
probiotics act on helminths that cycle through the lungs.
Furthermore, further studies on host-microbiota-helminth
interaction mechanisms are needed to validate the actions of
probiotics in clinical studies with humans.

STUDIES PERSPECTIVES AND
CONCLUSION

Although studies have shown that probiotics, prebiotics, and
synbiotics have prophylactic and therapeutic effects against lung
infections caused by bacteria, viruses, fungi, and helminths,
further studies are needed to better understand the
mechanisms of action and molecular pathways involved in
these strategies. It is necessary to favor the translational use of
gut microbiota modulation strategies as a therapeutic approach to
human lung diseases. In addition, since the effect of these
strategies is highly linked to the strains of the microorganism
and the dose and route of administration, more in-depth
investigations should be performed, considering well-defined
experimental protocols. Considering the complexity of the
microbiota and its interaction with the host, it is also
important to determine whether this strategy acts in synergy
with the microbiota or has another mechanism involving direct
action against the lung pathogen or modulation of the host
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immune system. In addition, it is important to emphasize the
therapeutic window necessary to restore the gut microbiota to re-
establish homeostasis after lung infection control.
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Alcoholic liver disease (ALD) is one of the leading causes of morbidity among adults with alcohol
use disorder (AUD) worldwide. Its clinical course ranges from steatosis to alcoholic hepatitis,
progressing to more severe forms of liver damage, such as cirrhosis and hepatocellular
carcinoma. The pathogenesis of ALD is complex and diverse elements are involved in its
development, including environmental factors, genetic predisposition, the immune response,
and the gut-liver axis interaction. Chronic alcohol consumption induces changes in gut
microbiota that are associated with a loss of intestinal barrier function and inflammatory
responses which reinforce a liver damage progression triggered by alcohol. Alcohol
metabolites such as acetaldehyde, lipid peroxidation-derived aldehyde malondialdehyde
(MDA), and protein-adducts act as liver-damaging hepatotoxins and potentiate systemic
inflammation. Additionally, ethanol causes direct damage to the central nervous system
(CNS) by crossing the blood-brain barrier (BBB), provoking oxidative stress contributing to
neuroinflammation. Overall, these processes have been associated with susceptibility to
depression, anxiety, and alcohol craving in ALD. Recent evidence has shown that probiotics
can reverse alcohol-induced changes of the microbiota and prevent ALD progression by
restoring gut microbial composition. However, the impact of probiotics on alcohol consumption
behavior has been less explored. Probiotics have been used to treat various conditions by
restoring microbiota and decreasing systemic and CNS inflammation. The results of some
studies suggest that probiotics might improve mental function in Alzheimer’s, autism spectrum
disorder, and attenuated morphine analgesic tolerance. In this sense, it has been observed that
gut microbiota composition alterations, as well as its modulation using probiotics, elicit changes
in neurotransmitter signals in thebrain, especially in thedopamine reward circuit. Consequently, it
is not difficult to imagine that a probiotics-based complementary treatment to ALDmight reduce
disease progression mediated by lower alcohol consumption. This review aims to present an
update of the pathophysiologicmechanismunderlying themicrobiota-gut-liver-brain axis in ALD,
as well as to provide evidence supporting probiotic use as a complementary therapy to address
alcohol consumption disorder and its consequences on liver damage.

Keywords: alcoholic liver disease, microbiota, gut-liver-brain axis, probiotics, alcohol craving, alcohol addiction,
neuroinflammation
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INTRODUCTION

Alcohol consumption is the third most important cause of health
impairment worldwide, with 5.3% of all annual deaths due to its
excessive use. Approximately 43% of the population over 15 years
of age consumed alcohol in the last 12 months, indicating an early
life risk of death and disability due to this cause (World-Health-
Organization, 2018).

Chronic alcohol consumption is one of the main risk factors of
liver injury (Rocco et al., 2014), with alcoholic liver disease (ALD)
as one of the leading causes of morbidity among adults with
alcohol use disorder (AUD). The liver damage induced by alcohol
consumption includes the following clinical impacts: steatosis,
steatohepatitis, alcoholic hepatitis, fibrosis, and cirrhosis, each
considered a relevant public health burden (World-Health-
Organization, 2018). Globally, AUD has a significant
socioeconomic impact on the population, with an elevated
mortality rate from alcohol cirrhosis associated with increased
alcohol consumption rates. It is estimated that alcohol
consumption and ALD incidence will continue to increase in
the coming decades, inextricably linked to psychosocial issues
that our society is facing.

Consequently, healthcare systems confront a significant and
increasing demand for ALD treatment. So far, abstinence-based
interventions remain the cornerstone of clinical ALD
management. However, due to the high relapse rate observed
in AUD patients, there are increasing needs for developing and
implementing new treatment options for this disorder (Axley
et al., 2019).

In recent years, numerous studies have focused on the role of
the microbiota-gut-liver axis in ALD pathophysiology. Diverse
strategies directed to reestablish the homeostatic function of this
axis have also been assayed in ALD patients with successful
therapeutical results, including probiotic-based approaches. In
this review, we summarize some of this evidence, including an
additional landscape focused on integrating this knowledge to the
role of the brain functions over these mechanisms and vice-versa.
Bidirectional modulation of this relationship will help advance
toward better integral management of this pathology, which is
based on the microbiota-gut-liver-brain axis as a central
component in ALD.

MICROBIOTA-GUT-LIVER AXIS IN THE
PATHOGENESIS OF ALCOHOLIC LIVER
DISEASE
Once a drink is swallowed, it is mainly absorbed in the intestinal
tract and subsequently transported via the portal vein to the liver,
where it is metabolized. A significant part of absorbed alcohol can
induce direct damage to this organ. However, only 10–35% of
heavy drinkers develop alcoholic steatohepatitis, and of those
subjects, 10% develop liver cirrhosis (McCullough and O’Connor,
1998), suggesting that other mechanisms can contribute to the
ALD pathogenesis.

ALD pathogenesis is complex and multifactorial, including
environmental factors, genetic predisposition, immune response,

and gut microbiota. In recent years, several researchers have
focused on studying ALD pathogenesis regarding the interaction
between the gut microbiota and the liver. The influence of
intestinal microbiota on liver disease development has been
highlighted among the findings, as well as, contrariwise, the
impact exerted by the liver and bile acid secretion on
microbiota status (Szabo, 2015). In this regard, abusive alcohol
consumption influences the microbiota-gut-liver axis interaction,
a mechanism highly relevant to ALD progression (Bajaj, 2019).
The interplay of the components belonging to the axis sets the
behavior of diverse mechanisms that are part of it, such as
intestinal immune responses, intestinal barrier function,
microbiota composition, and hepatic and systemic
inflammation, all of which are seriously altered in ALD
(Leclercq et al., 2014b; Chen et al., 2015; Neuman et al., 2020).

Increasing evidence has demonstrated that alcohol intake
leads to small and large intestinal changes in intestinal
microbial composition and a loss of intestinal barrier function,
giving rise to an inflammatory response that reinforces the liver
damage progression triggered by alcohol. Differences in
microbiota diversity and composition have been described in
the pathophysiology of many diseases such as Inflammatory
Bowel Disease, Parkinson’s, and Autism (Bajaj, 2019). A
particular dysbiosis is observed for ALD, which is described to
be conservative across the studied populations and closely
associated with the severity of alcohol dependence (Llopis
et al., 2016). Compared to healthy subjects, the dysbiosis
observed in AUD is characterized by decreased abundance for
the phylum Bacteroidetes but elevated for Proteobacteria, while at
the family level, an increased number of Enterobacteriaceae has
been observed in individuals with cirrhosis, which is related to
plasma endotoxin abundance increases. By contrast,
Lachnospiracea and Ruminococcaceae have lower abundance
in individuals with AUD, which is linked with reduced
intestinal short-chain fatty acids (SCFAs) (Litwinowicz et al.,
2020). Since SCFAs are products derived from bacterial
fermentation, changes in intestinal microbial composition
might be related to differences in intestinal metabolism
responsible for decreased SCFA levels observed after alcohol
intake (Hartmann et al., 2015). SCFAs provide energy to
enterocytes and exert a protective effect on the gut barrier
function by promoting an anti-inflammatory environment,
thus mediated by regulatory mechanisms of immune response
activation (Litwinowicz et al., 2020). Additionally, at the genus
level, increased levels of Bifidobacterium and Streptococcus have
been shown after alcohol consumption, being described as the
most common pathogens responsible for bacterial infections in
cirrhotic individuals (Litwinowicz et al., 2020). In this context,
Zhong X. et al. demonstrated that increased Streptococcus
abundance was linked with hepatocyte damage severity in
patients with alcoholic liver cirrhosis, which in turn was
correlated with AST plasma level, a major indicator of
alcoholic liver injury (Zhong et al., 2021).

The factors contributing to dysbiosis in ALD are not fully
known. However, it has been described that environmental
factors, genetics, intestinal dysmotility, increased gastric pH,
altered bile flow, and an altered immune response participate
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in its development (Hartmann et al., 2015). Moreover, the down-
regulation of intestinal antimicrobial peptides (AMPs) after
chronic ethanol consumption (Litwinowicz et al., 2020)
contributes to intestinal dysbiosis. Intestinal alpha-defensins
are AMPs that play an innate host defense against bacterial
infection and maintain intestinal mucosa homeostasis (Muniz
et al., 2012). It has been shown that chronic ethanol intake down-
regulates the expression of alpha-defensins in the intestine,
leading to dysbiosis, loss of intestinal barrier function, and
systemic inflammation (Shukla et al., 2018). In this regard,
new evidence has shown that cathelicidin-related antimicrobial
peptide (CRAMP) knockout mice fed with alcohol exacerbate
ALD response by an increased hepatic inflammasome activation
and an elevated serum interleukin (IL)-1β levels. Indeed, the
exogenous administration of CRAMP can reduce alcohol-
induced hepatic steatosis by reverting alcohol-induced
endotoxemia and inflammasome activation (Li et al., 2020).

Chronic alcohol ingestion also may lead to small and large
intestinal bacterial overgrowth, which along with changes in the
microbiota composition, have been correlated with alcoholic
cirrhosis severity. This evidence suggests that microbiota
modulation can be an attractive target for ALD therapy
(Hartmann et al., 2015). Dysbiosis in ALD led to an abnormal
accumulation of bacterial products in the portal circulation (Tilg
et al., 2016). In fact, dysbiosis, bacterial overgrowth, and alcohol
consumption are associated with increased intestinal epithelial
permeability, facilitating microbial product’s translocation to the
liver, including lipopolysaccharide (LPS), an endotoxin from
Gram-negative bacteria (Figure 1) (Araneda et al., 2016).
Several studies have demonstrated that alcohol consumption
increases LPS levels in the systemic circulation, mainly
observed during the early stages of ALD. Upon reaching the
liver, LPS activates inflammatory pathways conducted by
interacting with Toll-like receptor-4 (TLR-4), triggering

FIGURE 1 |Gut-microbiota-liver-brain axis in ALD. Interaction diagram of the different mechanisms participating in the gut-microbiota-liver-brain axis involved in the
pathophysiology of ALD. (A) Alcohol consumption has adverse effects on the gut; it disrupts the gut barrier leading to high permeability and translocation of bacterial
products. These effects create a proinflammatory environment which affects microbiota. (B) ALD has a specific microbiota dysbiosis favoring an overgrowth of
nonbeneficial bacteria. The decrease of SCFA due to alcohol consumption influences these alterations because SCFA is food for helpful bacteria. This context
produces a translocation of different substances called PAMPs, such as LPS or peptidoglycan, to the liver and circulation, increasing endotoxemia. (C) The liver is a vital
organ in ethanol metabolization and suffers many changes in chronic consumption; activation of Küpffer cells and proinflammatory TLR4 pathway, causing hepatitis,
increased reactive oxygen species, and cytokines, such as IL-18, IL-8, and IL-1β. In advanced stages, the liver fails in its detox task, and organisms accumulate
ammonia. (D) All the aforementioned inflammatory processes lead to a systemic inflammation that affects the brain, contributing to ethanol-triggered neuroinflammation.
PAMPs and alcohol also produce disruption of the blood-brain barrier, astrocyte senescence, and more significant changes in the brain; alteration of the DR1 and 2,
increased levels of anxiety, depression, and alcohol craving. Finally, the gut and the microbiota are influenced by the brain and vice-versa through nerve and GABA
signaling modulation. ALD: Alcoholic liver disease; SCFA: Short-chain fatty acids; PAMPs: Pathogen-associated molecular patterns; LPS: Lipopolysaccharide: PGN:
Peptidoglycan; ROS: Reactive oxygen species; BBB: Blood-brain barrier; DR1/DR2: Dopamine receptor 1/2; GABA: γ-aminobutyric acid; TLR4: Toll-like receptor 4.
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intracellular signaling, principally regulated by the nuclear factor-
kappa B (NF-kB), toward the expression of the inflammatory
genes. Consequently, the release of proinflammatory cytokines by
Küpffer and other hepatic cells occurs, inducing liver and
systemic inflammation (Hartmann et al., 2015; Araneda et al.,
2016). Among the cytokines TNF-α stands out as a
proinflammatory cytokine that induces liver fibrosis and
necro-inflammatory hepatic damage processes. High systemic
TNF-α levels are also associated with worsening gut permeability
(Rocco et al., 2014) and intestinal inflammatory responses that
enlarge the initial impact induced by alcohol over the gut
microbiota composition.

The liver is the main organ responsible for ethanol
metabolism. Ethanol oxidation can occur in two steps: the first
is conducted by alcohol dehydrogenase (ADH), a cytoplasmic
enzyme promoting fast oxidation from ethanol to acetaldehyde, a
process that occurs mainly in the liver due to a high expression of
the enzyme in this organ (Seitz and Oneta, 1998). ADH
expression is also observed in the gut, associated with a lesser
degree of alcohol metabolism, limiting the ethanol charge in the
portal vein and, thus, in the liver and the systemic circulation
(Seitz et al., 1994). Subsequently, acetaldehyde is further
metabolized to acetate in a second stage by acetaldehyde
dehydrogenase (ALDH).

Ethanol and its metabolites can exert a direct cytotoxic effect
on the cells acting as hepatotoxins. Acetaldehyde damages the
liver by triggering inflammation, extracellular matrix remodeling,
and fibrogenesis (Rocco et al., 2014). Additionally, acetaldehyde
can directly disrupt the epithelial barrier function. In vitro studies
conducted by K. J. Atkinson and R. K. Rao showed that
acetaldehyde, at elevated pathophysiological concentrations,
was able to disrupt tight junction structures of Caco-2 cell
monolayers, mainly zonula occludens-1, by a tyrosine
phosphorylation-dependent mechanism, contributing to
increased gut permeability (Atkinson and Rao, 2001).

ADH conducts the main route to metabolize ethanol.
However, chronic alcohol consumption upregulated the
microsomal ethanol oxidizing system by cytochrome P450
(CYP) enzymes, specifically CYP 2E1. First, CYP 2E1 catalyzes
ethanol oxidation to acetaldehyde and then metabolizes it to
acetate (Ceni et al., 2014). The catalytic reaction of ethanol by
CYP2E1 generates significant reactive oxygen species, such as
superoxide anion, hydrogen peroxide, and the hydroxyl radical.
These molecules can induce direct damage to hepatic cells,
generating toxic effects such as lipid peroxidation, enzyme
inactivation, DNA mutations, and cell membrane destruction
(Ceni et al., 2014). Reactive oxygen species can also induce
inflammatory processes of alcohol-induced liver damage by
recruiting immune cells to the liver, increasing systemic
proinflammatory cytokine levels, and contributing to lipid
peroxidation (Rocco et al., 2014). Lipid peroxidation is one of
the main reactions in alcohol-induced liver damage due to the
generation of toxic aldehydes, including malondialdehyde
(MDA) and 4-hydroxynonenal (4-HNE). Similar to
acetaldehyde, these molecules can react with DNA, lipids, and
proteins to form adducts (Ceni et al., 2014; Rocco et al., 2014) that
interfere with liver function by mechanisms of mitochondrial

damage, activation of stellate cells, increased liver fibrosis, and
inflammation (Ceni et al., 2014).

The mechanisms involved in the communication of the
microbiota-gut-liver axis that continuously contributes to ALD
development are not alone. The reciprocal impact of brain
function perturbations in ALD progression has acquired
increasing importance.

ALCOHOL AND MICROBIOTA-
GUT-LIVER-BRAIN AXIS

The alterations of the microbiota-gut-liver axis in ALD have been
widely described during the last years. Interest has recently
increased regarding the role of this axis in brain function and
its reciprocal influence on the intestinal environment and liver
functions. Thus, growing evidence has emerged to consider the
microbiota-gut-liver-brain axis as an integrative approach for
better understanding ALD pathophysiology.

As mentioned earlier, diverse evidence has shown that
microbiota disturbances and liver damage affect gut-brain axis
communication. In this regard, Stärkel P. et al. observed that
depression, anxiety, and alcohol craving are positively correlated
with increased intestinal permeability in patients with alcohol
dependence (Leclercq et al., 2014a). Moreover, brain function
alteration in primary psychiatric disorders such as schizophrenia,
in the absence of AUDs, is associated with gut-brain axis
interaction disturbances that are enhanced by alcohol
consumption (Bajaj, 2019).

Brain function is affected throughout the spectrum of AUDs,
ranging from acute intoxication to chronic changes, such as
hepatic encephalopathy (Bajaj, 2019). The direct effects of
alcohol on the brain are explained because ethanol is a
lipophilic molecule that easily crosses the blood-brain barrier,
causing direct damage to the central nervous system (CNS).
Among its deleterious effects is increased neuronal membrane
fluidity, which can be mediated by lipid composition proportion
changes (Leonard, 1986) and genotoxic damage that leads to cell
death (Lamarche et al., 2003). In addition, endogenous DNA-
damaging molecules, such as oxygen radicals, lipid peroxidation
products, and acetaldehyde, all produced due to ethanol
metabolism, contribute to this process (Brooks, 1997). Ethanol
also activates an immune response in the brain conducted by an
increased TLR4 pathway activation. It consequently induces
inflammatory cytokines, such as TNF-α and IL-6, mediating
neuroinflammation and blood-brain barrier impairment
(Gupta et al., 2021). Inflammatory brain damage contributes
to alcohol dependence after its chronic and heavy
consumption. Furthermore, brain reward circuit activation
enhances this behavior, which is associated with a positive
reinforcement that drinking exerts on further ethanol intake,
due partially to dopamine production (Stärkel et al., 2016).

As we mentioned earlier, the impact of alcohol on brain
functions can indirectly be mediated by gut-liver-brain axis
disturbance. Alcohol-induced microbiota changes and its
consequences on intestinal barrier function can contribute to
bacterial components and metabolites translocating to the
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bloodstream and liver, inducing low-grade systemic
inflammation. In this regard, increased bacteria component
loads in peripheral circulation have also been associated with
alcohol dependence and consumption habits (Leclercq et al.,
2012; Stärkel et al., 2016). This generates a vicious circle,
where alcohol-induced microbiota damage leads to consuming
more alcohol, and its ingestion perpetuates the intestinal
microenvironment injury. In this regard, Jadhav KS. et al.
demonstrated that a differential microbiota composition was
associated with alcohol consumption behavior in vulnerable
and resilient experimental rat groups trained daily to self-
drink 0.1 ml of alcohol (10% weight/volume) during 80
following sessions of 30 min. They observed that, unlike a
resilient group of rats, the vulnerable group (those that lose
control over alcohol consumption) showed microbiota
composition changes and were correlated with striatal
dopamine receptor expression level alterations (Jadhav et al.,
2018). These results suggest a regulatory role of microbiota over
the dopamine reward system in the brain.

The mesocorticolimbic dopamine system or reward system
consists of heterogeneous dopaminergic neurons localized in the
mesencephalon, diencephalon, and olfactory bulb.
Mesodiencephalic dopaminergic neurons are part of substantia
nigra pars compacta, the ventral tegmental area (VTA), and the
retrorubral field. The dopamine system includes the mesolimbic
and mesocortical pathways, which arise from VTA. The
mesolimbic dopaminergic system includes VTA that project to
the nucleus accumbens, amygdala, and hippocampus. The
mesocortical dopaminergic system, which includes the VTA,
extends its fibers to the prefrontal, cingulate, and perirhinal
cortex (Arias-Carrión et al., 2010). As a component of the
reward pathway, the striatum comprises medium spiny
neurons classified into those expressing dopamine receptor
D1, the direct pathway, and those expressing the D2 receptor
or indirect pathway as a reward pathway component. D1medium
spiny neurons mediate reinforcement and reward, so a current
consensus suggests that D1 medium spiny neurons facilitate the
selection of rewarding actions. D2 medium spiny neurons, by
contrast, have been associated with aversion and avoidance, so D2
medium spiny neurons help suppress cortical patterns that
encode maladaptive or non-rewarding actions (Jadhav et al.,
2018). Therefore, positive reinforcement learning would be
modulated by signaling the D1 direct pathway, while negative
reinforcement learning would be modulated by signaling the D2
indirect pathway (Jadhav et al., 2018). In the Jadhav KS study, the
vulnerable group of rats showed a lower expression of striatal D2
receptors, concomitant with higher expression of D1 receptors at
the striatum. These findings suggest that dysbiosis-induced
alcohol consumption predisposition was due to a higher
reward effect.

Regarding the study, an interesting association between D2R
mRNA expression and microbiota composition was described in
the vulnerable group. A significant correlation was found between
changes in the low abundance of some bacteria genera, such as
Lachnospiraceae, and reduced D2R mRNA expression in the
brain. These findings have suggested that reestablishing gut
microbiota composition may contribute to inhibitory

innervations in brain circuits associated with addiction. The
correlations between intestinal microbial composition and
addiction behavior would indicate that variations in bacterial
abundance may coincide with differences in the addictive
behavior, connecting the gut microbiota and the brain directly,
specifically to the striatal D2R mRNA expression (Jadhav et al.,
2018).

As we already mentioned, the liver damage stage is linked with
intestinal dysbiosis progression. Concurrently, this is associated
with increased intestinal permeability and microbial product
translocation to the liver, promoting bile acid metabolism
imbalance, gut dysmotility, and systemic inflammation
(Milosevic et al., 2019). Ammonia and other substances
produced by the intestinal microbiota that are cleared by the
liver can also be accumulated in ALD. Consequently, high
circulating ammonia levels reaching the CNS induce astrocyte
senescence, giving rise to a cascade of events leading to brain
damage (Gupta et al., 2021). Brain imaging studies have
demonstrated that hyperammonemia is related to astrocyte
dysfunction (Ahluwalia et al., 2016). Furthermore, an
increased level of proinflammatory plasma cytokines, such as
TNF-α, also contributes to this inflammatory brain damage
(Gupta et al., 2021). Therefore, microbial products, ammonia,
and inflammatory mediators produced by disturbances of the
microbiota-gut-liver axis can worsen the neuroinflammation of
the brain in ALD.

Neurobiological Alteration in Alcohol
Addiction and Neuroinflammation
As previously mentioned, ALD is directly associated with the
damage produced by alcohol consumption, making it important
to go further into the subject of alcohol addiction and the
mechanisms involved in its pathogenesis. Recent studies have
been focused on how an imbalance in the microbiota-gut-liver-
brain axis, due to alcohol consumption, affects brain function in
people with ALD, specifically in their cognitive performance
(Ahluwalia et al., 2016). Alcohol impacts multiple brain
pathways, neuroplasticity, signaling related to reward, stress,
habit formation, and decision making, which contribute to
producing the phenomenon of addiction (Koob and Volkow,
2010). However, the exact mechanisms exerted by alcohol on the
brain and the association between alcohol addiction and the
microbiota-gut-liver-brain axis are still unknown.

Chronic administration of alcohol and other abused
substances activates the mesocorticolimbic dopamine system,
producing functional alterations at several levels (Adinoff,
2004). Ethanol is known to provoke a dose-dependent
excitation of dopaminergic VTA neurons (Brodie et al., 1990),
increasing dopamine levels in the nucleus accumbens. This
finding is relevant, considering that in the pathophysiology of
addiction, dopamine synapse plasticity and metaplasticity play an
important role in reward-based learning and addiction
development (Cui et al., 2013). Interestingly, new evidence
suggests that self-administration of ethanol is not dependent
only on the dopaminergic activation of the nucleus
accumbens. Indeed, this event is necessary for rewarding the
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effects of ethanol but not essential for other aspects of reinforcing
actions of the drug (Weiss and Porrino, 2002).

In this regard, other neuronal pathways contribute to the
development of alcohol addiction. It has been demonstrated that
ethanol can directly interact with GABAA and NMDA ion
channel receptors in the mesocortical system by an unknown
mechanism. This interaction mediates the reinforcing action of
alcohol. Chronic intake and repeated ethanol withdrawal
experiences produce GABAA receptor function adaptations,
decreasing its sensitivity. As with inhibitory neurotransmission
signaling in the CNS, an increased GABAergic activation by
ethanol is related to decreased neuronal excitability in diverse
brain areas, including the prefrontal cortex area (Grobin et al.,
1998). Therefore, the adaptations induced by ethanol are
important in the marked increased CNS excitability that
characterizes the withdrawal (Finn and Crabbe, 1997).

Conversely, glutamate is the principal excitatory
neurotransmitter in the brain. Ethanol plays a role in
modulating ionotropic glutamate receptors, with NMDA
receptors being the most studied. Chronic alcohol
consumption causes an adaptive up-regulation of the NMDA
receptor function (Hoffman and Tabakoff, 1994), a mechanism
that could explain withdrawal symptoms that appear due to
rebound activation of this receptor.

Another neural signaling pathway involved in alcohol
addiction is serotonergic system dysfunction. In abstinent
alcoholics, a decreased serotonin (5-HT) content is observed
in cerebrospinal fluid, platelet, and low use of tryptophan, the
amino acid precursor of serotonin. In line with this evidence,
various studies have observed a decrease in plasma tryptophan
concentrations in alcohol-dependent patients. Tryptophan
deposit depletion in alcoholics does not increase alcohol
consumption behavior (Sari et al., 2011). Studies carried out in
humans regarding the administration of central serotonergic
agonists have not yet provided concordant results, but a
significant reduction in the availability of brainstem serotonin
transporters was found in alcoholics, which was correlated with
alcohol consumption, depression, and anxiety during withdrawal.
These findings support the hypothesis of serotonergic
dysfunction in alcoholism (Heinz, 1998).

New evidence has suggested that cerebral neuroimmune
interaction also plays a role in addiction. Neuroimmune
mediators expressed in neurons and glia, such as cytokines
and chemokines, are involved in various brain functions. For
instance, it has been described that CCL2 and CXCL-12 regulate
the release of glutamate, GABA, and dopamine (Cui et al., 2014).
Neurotransmitters are involved in the reward system. These
findings open new opportunities for exploring the role of this
neuroimmune communication in alcohol addiction.

Neuroinflammation involves diverse stages. Initially, an innate
immune response, principally characterized by increased levels of
TNF-α and IL-1β, is produced by microglia in response to
environmental toxins or neuronal damage. These cytokines
exert neuroprotective effects on SNC by promoting
oligodendrocyte maturation and neurotrophin secretion.
However, under overactivated conditions, microglia release
abundant proinflammatory cytokines and chemokines, which

synergistically mediate neuroinflammatory processes in specific
brain areas, such as the central amygdala (Cui et al., 2014). In vivo
animal studies provide further evidence about the role of
neuroimmune modulation in alcohol addiction; some studies
show effects from interrupting certain neuroimmune gene
expressions, such as beta-2-microglobulin and cathepsin S
(Blednov et al., 2005; Blednov et al., 2012) or targeted
disruption of TLR4 in the central amygdala reduced alcohol
consumption (Liu et al., 2011). Indeed, pharmacological
suppression of neuroimmune signaling pathways, such as the
toll-like receptor signaling pathway, reduces alcohol intake
behavior in different animal models (Mayfield et al., 2013; Bell
et al., 2015). In this regard, alcoholics have shown a positive
correlation between alcohol craving and elevated levels of
inflammatory cytokines and endotoxins in serum, suggesting
that an innate immunity activation may uphold alcohol
addiction. This premise is consistent with results obtained
from animal studies where injecting LPS increased alcohol
consumption, with this effect reversed by deleting immune-
related genes (Cui et al., 2014). In this scenario, it is not
difficult to imagine that, by an indirect effect of probiotics on
microbiota modulation and the reduction of systemic
inflammation, they could be a good therapeutic alternative to
control alcohol addiction. Probiotic’s impact on alcohol-
neuroinflammation has been poorly explored. Further studies
directed to understand the role of probiotics in cerebral
neuroimmune alterations are necessary to comprehend its
contribution to alcohol addiction.

While chronic alcohol consumption induces
neuroinflammation in the CNS, the peripheral elevation of
cytokine levels can promote and reinforce this damaging
process. Systemic inflammation is favored by the activation
conducted by pathogen-associated molecular patterns
(PAMPs), such as LPS and peptidoglycan, over Pattern
Recognition Receptors (PRRs) (TLRs or NOD-like receptors)
present in various immune cells. It has been seen that the
activation of this pathway plays a crucial role in developing
alcohol-induced damage, given that they trigger the expression
of genes involved in the innate immune response. Thus, the
elevation of proinflammatory cytokine levels, such as IL-1β, IL-8,
and IL-18 (Akira et al., 2006; Leclercq et al., 2014a) results in a
systemic and SNC low-grade inflammation. The contribution of
this mechanism in ALD pathogenesis has been strongly
demonstrated in TLR4 knockout mice experiments
characterized by acquired resistance to both alcohol addiction
and liver-damaging (Alfonso-Loeches et al., 2010). Furthermore,
these proinflammatory pathways have been directly related to a
greater desire for alcohol consumption or craving, as well as its
dependence and addiction (Leclercq et al., 2012).

ALD is the most common cause of death among patients with
AUD and is considered a preventable disorder. Currently, the
alternatives for AUD treatment are limited, including
psychological and pharmacological therapy characterized by
low efficacy. Some drugs approved by the Food and Drug
Administration (FDA), such as disulfiram, naltrexone, and
acamprosate, are currently being used to reduce feel-good
response to alcohol intake and control the long-term effect of
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alcohol deprivation (Vuittonet et al., 2014). However, other
unapproved drugs, such as gabapentin, baclofen, topiramate,
ondansetron, varenicline, and other approved drugs such as
nalmefene, are beginning to be used off-label (Leggio and Lee,
2017; Shen, 2018). Therefore, there is a need for a treatment that
supports current therapies. In addition, recent studies have
positioned ethanol-induced neuroinflammation as a central
factor in alcohol dependence and depressive and anxiety
disorders, with the latter also present in conjunction with
AUD, probably because they share the same pathophysiology.

As previously discussed, alcohol leads to CNS and systemic
inflammation both directly and indirectly and is a relevant factor
to understand while seeking alcohol addiction treatments. The
low-grade inflammation observed in AUD is associated with
mood disorders, mental illness (schizophrenia and autism),
and alcohol addiction, which can develop together. Indeed,
depression predisposes to alcoholism and vice versa (Maes,
1999; Felger and Lotrich, 2013). Likewise, the presence of
depression symptoms has been widely studied in patients with
chronic inflammation. It is shown that the increase in
inflammatory cytokines, such as interferon-γ, generates a
greater expression of enzymes involved in tryptophan
catabolism, the precursor of serotonin. Thus, the persistence of
a low-grade inflammation status would explain the appearance of
mood disorders frequently observed in alcohol consumption
(Lestage et al., 2002). Considering the aforementioned
mechanisms, it is not difficult to imagine that reducing
systemic inflammation would reduce detrimental psychological
symptoms and addiction behavior to alcohol and other drugs,
such as cocaine and opioids (Koob and Le Moal, 2005; Zhang
et al., 2019).

Given the addictive nature of alcohol, strategies to prevent
relapse after withdrawal are currently being investigated. Several
studies suggest that intestinal microbiota modulation using
probiotics may have a role in ALD. Reestablishing beneficial
gut bacteria composition would decrease anxiety, depression, and
neuroinflammation in AUD patients and decrease alcohol
consumption. Therefore, complementary therapies based on
probiotics are an attractive therapeutic alternative to treat
addictions and their relapses.

PROBIOTICS AND GUT-BASED THERAPY

Probiotics are defined as “live microorganisms which, when
administered in adequate amounts, confer a health benefit on
the host” (Mack, 2005). Probiotics’ beneficial effects have been
widely studied in different pathologies, such as gastrointestinal
diseases, and to treat various central disorders by restoring
microbiota properties and the capability to modulate systemic
and CNS inflammation. Furthermore, due to probiotics’ potential
benefits for CNS and mental disorders, it has recently been
proposed to recognize them as “psychobiotic,” with an
expectation of low side effects and anti-inflammatory,
antidepressant, and anti-anxiety properties (Ansari et al.,
2020). Some studies suggest using probiotics to improve
mental function in Alzheimer’s and Autism spectrum

disorders and attenuated morphine-derived analgesic tolerance
(Zhang et al., 2019; Ansari et al., 2020).

Probiotics Benefits on Alcoholic Liver
Disease
Diverse studies have shown that probiotics have beneficial effects
on ALD. Probiotics can modulate several pathophysiological
mechanisms involved in liver damage development, some of
them detailed in Figure 2. Among the mechanisms described
are microbiota balance restoration, decreasing dysbiosis, and
promoting an anti-inflammatory environment that allows for
reducing intestinal permeability and translocating of bacterial
components (LPS) to the systemic circulation (Kirpich et al.,
2008). In addition, by reducing endotoxemia, probiotics can
prevent bacterial metabolites reaching the liver and the
inflammatory response (Kirpich et al., 2008).

As previously mentioned, changes in the microbiota-gut-liver-
brain axis are observed for diverse behavioral and addictive
disorders. It is not difficult to imagine that the use of
approaches directed to modulate these alterations may treat
AUDs. A positive mechanism of probiotics could thus have
different consequences in ALD development (Figure 2). It is
therefore simple to conceive the possibility of addressing alcohol
addiction with probiotics to positively reduce depression, anxiety,
alcohol craving, dependence, and systemic inflammation. By
reducing systemic proinflammatory status and
neuroinflammation, probiotics also offer an excellent
alternative to relieve CNS damage reinforcing beneficial effects
on addiction and, consequently, alcohol consumption.

Numerous approaches have been explored to modulate
intestinal microbiota in ALD. Table 1 summarizes some of the
studies related to probiotics use for modulating mechanisms
underlying the microbiota-gut-liver-brain axis in this disorder.
One highlight is the study of Kirpich IA. et al. who observed that
probiotic supplementation with Bifidobacterium bifidum and
Lactobacillus plantarum restored Bifidobacteria, Lactobacilli,
and Enterococci numbers in a group of alcoholics, to the title
reported in healthy controls (Kirpich et al., 2008). Some
probiotics approaches have also been shown to modulate
intestinal barrier function in AUD patients, mainly using
Lactobacillus, Bifidobacterium bifidum, or Akkermansia
(Khailova et al., 2009; Grander et al., 2018). In this regard,
other probiotics have been reported to improve the expression
of tight junction proteins in the ileum and normalize cytokine
levels (Chen et al., 2016) in mice with a chronic binge alcohol-fed
model. Other studies have revealed that probiotics have beneficial
effects on brain functions, mood, behavior, and addiction. For
example, a recent study has shown that in a group of patients with
alcoholic hepatitis treated orally with cultures of Lactobacillus
subtilis and Streptococcus faecium, the probiotic-based treatment
decreased serum LPS level compared with placebo (Han et al.,
2015). This study also shows that probiotic-based therapy
modulates the microbiota environment, specifically reducing
E. coli levels and increasing Lactobacillus in patients with
alcoholic hepatitis. Interestingly, a considerably decreased LPS
level was observed in a subgroup of patients with high liver
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damage, probably because this group is associated with a high
intestinal permeability that causes bacterial translocation. Other
probiotics approaches have also been shown to stimulate
intestinal epithelial cell growth, improving the barrier function
(Yan et al., 2007).

As noted above, the potential use of probiotics in ALD has
already been demonstrated. Evidence has also shown the capacity
of probiotic Lactobacillus reuteri to produce antimicrobial
peptides that prevent the growth of pathogenic bacteria in the
intestine (Jones and Versalovic, 2009). Lactobacillus rhamnosus
GG (LGG) was also shown to reduce alcohol-induced intestinal
translocation, oxidative stress, and inflammation in the liver and
intestine in a rat model of alcoholic steatohepatitis (Forsyth et al.,
2009); all these alterations are involved in ALD. LGGs can also

increase intestinal fatty acids and amino-acid metabolism (Shi
et al., 2015; Li et al., 2016). Furthermore, studies in rats using LGG
conclude that it can reverse established alcoholic hepatic steatosis
and injury (Li et al., 2016). Probiotics’ direct or indirect
improvement of liver function can also be demonstrated based
on its effect on restoring ALT levels and AST, lactate
dehydrogenase, and total bilirubin described as liver damage
biomarkers (Zhang et al., 2019).

Immune response can be also modulated by probiotics. In this
matter, a restoration of neutrophil phagocytic capacity has been
observed in patients with alcoholic cirrhosis treated with a
probiotic scheme based on Lactobacillus casei Shirota. Indeed,
together with an increase of this activity in this immune cell type,
a normalization of the TLR4 receptor expression was also

FIGURE 2 | Probiotics’ effect on the gut-microbiota-liver-brain axis in ALD. Probiotics exert their actions at different levels of the gut-microbiota-liver-brain axis,
acting directly on each of these organs and indirectly due to the axis component’s interplay. (A) At the intestinal level, probiotics improve digestion and tight junction’s
expression and are a protective factor for the crypts and mucous layer. (B) The change enhances the effects that probiotics produce in the microbiota, restoring it and
decreasing dysbiosis triggered by alcohol abuse, which will lead to a decrease in harmful bacteria and an increase in beneficial ones, therefore reducing the high
permeability of the gut and the translocation of PAMPs to the liver. (C) Probiotics’ effect in the brain causes a decrease in proinflammatory cytokines at the systemic level;
consequently, the system and neuroinflammation are attenuated by a probiotic-based therapy. Inflammation control is one of the mechanisms behind controlling alcohol
consumption and psychological symptoms, such as anxiety and depression. Furthermore, the control of high permeability and the translocation of substances
contributes to controlling the disruption of the blood-brain barrier and neuroinflammation. Finally, FGF21 has an important effect on the brain since it produces dopamine
transporter transcription in the nucleus accumbens, allowing less dopamine to access the postsynaptic receptor. (D) Probiotics have demonstrated multiple benefits at
the liver level since the decrease of steatosis to encephalopathy and cirrhosis. These liver effects are explained by the decrease of PAMPs in the systemic circulation,
especially LPS, that induce the normalization of the inflammatory processes that are associated, among others, with the TLR4 pathway. Consequently, the adverse
effects of alcohol on the liver are decreased; less activation of Küpffer cells, decreased liver enzymes, proinflammatory cytokines, and less fibrosis. Some probiotics
cause increased formation of FGF21 in the liver, which has effects on the brain. ALD: Alcoholic liver disease; SCFA: Short-chain fatty acids; PAMPs: Pathogen-
associated molecular patterns; BBB: Blood-brain barrier; TLR4: Toll-like receptor 4; FGF21: fibroblast activation protein 21.
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observed in treated patients, suggesting a decrease in
inflammatory signals induced by pathogenic ligands
(Stadlbauer et al., 2008). Based on the above, by reducing
systemic inflammation, we can expect a positive impact of the
probiotic on the CNS that could be useful to control the desire to
consume alcohol. It was demonstrated that some probiotics
reduce the systemic TNF-α and IL-10 levels as well. The study

concluded that in mice injected with LPS and D-galactosamine,
pretreatment with the probiotic mixture VSL#3 prevented
colonic barrier function breakdown, reduced bacterial
translocation, reduced TNF-α levels tissues, and significantly
attenuated liver injury (Ewaschuk et al., 2007). Studies have
shown that the use of Lactobacillus spp, including Lactobacillus
plantarum and Fructo-oligosaccharides, reduces the production

TABLE 1 | Probiotics based treatment in ALD.

Intervention
(probiotic treatment)

Species Design and model Summary of results Mechanism

Lactobacillus Rhamnosus GG 1010

Colony-forming unit (CFU)/mL for
1 month Nanji et al. (1994)

Rat A liquid diet containing ethanol and
corn oil for 1 month was
administered, followed by
administration of Lactobacillus
Rhamnosus

Improved alcoholic liver disease
pathology score and lowered
plasma endotoxin level

Reduce plasma endotoxin level,
improved barrier, and immune
function

Improved liver enzymes
Reduced hepatic steatosis and
injury

Lactobacillus plantarum (TSP05),
Lactobacillus fermentum (TSF331),
and Lactobacillus reuteri (TSR332)
Hsieh et al. (2021)

Mice Group A, an ethanol-containing
diet (28% ethanol); group B, an
ethanol-containing diet + strain
TSP05 8.2 × 109 CFU/kg; iv) group
C, an ethanol-containing diet +
strains TSF331 and TSR332 8.2 ×
109 CFU/kg; v) group D, an
ethanol-containing diet + strains
TSP05, TSF331 and TSR332 8.2 ×
109 CFU/kg; and vi) group E, fed a
regular diet + strains TSP05,
TSF331 and TSR332

Neutralized free radicals and
displayed high antioxidant activity
in vitro

Reduce oxidative stress and
inflammatory responses, thus
preventing ASH development
and liver injury

Bifidobacterium bifidum 0.9 ×
108 CFU and Lactobacillus
plantarum 8PA3 0.9 × 109 CFU
Kirpich et al. (2008)

Human Alcoholic adults were treated with
probiotic therapy

Restoration of bowel flora
significantly reduces ALT, AST,
GGT, LDH, and total bilirubin

Restoring normal bacteria levels
improves intestinal barrier
function

Bifidobacterium breveATCC15700:
200 µL of ATCC15700 suspension
at the final dose of 1010 cells Tian
et al. (2020)

Mice Ethanol-treated mice (alcoholic
group) were given alcohol
(3.8 g/kg body weight, 200 µL)
1 hour after probiotic
administration

Significant reduction of
inflammatory cytokines (including
TNF-α, IL-1β, IL-6, and IL-17) in
both serum and liver

ATCC protects alcohol-exposed
mice against liver injury

Bifidobacterium, Lactobacillus, and
Streptococcus (VSL#3) Gupta et al.
(2021)

Patients with Chronic
liver diseases, including
alcoholic cirrhosis and
cirrhosis with HE

Patients with these conditions
were treated with probiotics

Improved malondialdehyde Protect against alcohol-induced
intestinal barrier dysfunctionImproved proinflammatory

cytokines (TNF-α, IL-6, and IL-10)
in alcoholic cirrhosis patients
Improved AST, ALT, GGT in
alcoholic cirrhosis patients

Lactobacillus Acidophilus Ziada
et al. (2013)

Humans Ninety patients with ALD were
divided into three groups. Group A
was treated with lactulose, group
B with Lactobacillus acidophilus,
and group C was a control

Improved neuro metabolites and
psychometric analysis

Improved ammonia in the blood

Decreased glutamine and
glutamate/creatinine ratio

Faecalibacterium prausnitzii,
Bifidobacterium, and others Kirpich
et al. (2008)

Humans Randomly, patients received
5 days of Bifidobacterium bifidum
and Lactobacillus plantarum 8PA3
or standard therapy (withdrawal +
vitamins)

Improved intestinal barrier
integrity and ameliorated alcohol-
induced liver damage

Gut microbiota alteration by
changing secretion of specific
metabolites involved in gut
barrier dysfunction

Lactobacillus casei Shirota
Stadlbauer et al. (2008).

Humans 4-weeks administration of
Lactobacillus casei Shirota to
alcoholic patients

Patients with cirrhosis improved
the phagocytic capacity of
neutrophils

Probiotics reduce the
endotoxemia generated by LPS,
increasing neutrophil’s function
via IL-10 normalization

Lactobacillus Rhamnosus GG 5 ×
109 CFU Ezquer et al. (2021)

Rats Rats were allowed concurrent two-
bottle choice access to 10 and
20% (v/v) ethanol solution and
water

Pronounced increase in
plasmatic FGF21 levels

Activation of dopamine
transporter transcription in
nucleus accumbens, thus
allowing less dopamine to
access the postsynaptic
receptor
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of primed TNF-α by peripheral blood mononuclear cells in
cirrhotic patients (Riordan et al., 2003). On the other hand,
in vitro studies demonstrated that Bifidobacteria induce the
production of IL-10 by cultured human dendritic cells, capable
of modulating the immune system (Hart et al., 2004). Other
studies of the effect of Bifidobacteria longum and Lactobacillus
acidophilus in inhibiting plasma lipid peroxidation showed that
both intestinal strains could protect plasma lipids from oxidation
to different degrees (Lin and Chang, 2000). Additionally, some
probiotics regulate the host defense peptides response by
inducing the expression of antimicrobial peptides (AMPs). In
fact, the probiotic Escherichia coli strain Nissle (EcN) and some
species of Lactobacilli induced a high expression of human beta-
defensin-2 in epithelial cells. Similarly, other probiotics, such as
Lactobacillus reuteri, can increase the secretion of interleukin-22
(IL-22), which mediate intestinal mucosa repair and defense via
AMPs induction (Wehkamp et al., 2004; Gaudino et al., 2021;
Patnaude et al., 2021).

In line with this cumulative evidence, there is a particular
interest in supporting the use of probiotics in ALD treatment.
Targeting the microbiota-gut-liver axis with this approach allows
introducing a holistic therapy to manage the multifactorial
pathogenesis of ALD.

Probiotics Benefit Addiction and
Neuroinflammation
Alcohol dependence is considered an epiphenomenon of
systemic neuroinflammation. Although the mechanisms
underlying this relationship are not fully described, it has been
shown that alcohol and derived metabolites can modify some
brain neurotransmitter signals, including γ-aminobutyric acid
(GABA), glutamate, and dopamine circuits, with this effect
influenced by the inflammation induced by changes of
intestinal microbiota. Studies based on the use of magnetic
resonance spectroscopy have demonstrated a high glutamine/
glutamate to creatinine ratio in alcoholic patients with hepatic
encephalopathy (Gupta et al., 2021). Interestingly, it has been
observed that Lactobacillus and Bifidobacterium can metabolize
glutamate, an excitatory neurotransmitter that regulates
glutamine/glutamate signaling, to produce GABA in the gut.
As an inhibitory neurotransmitter, GABA acts locally,
regulating the information relayed from the gut to the brain.
Remarkable findings from a recent clinical study published by
Morley K. et al. revealed an inverse correlation between GABA
levels in the brain and ALD severity (Morley et al., 2020),
suggesting that Lactobacillus and Bifidobacterium could be an
interesting therapeutical approach to modulate this
neurotransmission pathway in this pathology (Gupta et al.,
2021). Indeed, a long-term diet supplemented with multi-
species live Lactobacillus and Bifidobacterium mixture has
been demonstrated to enhance cognitive and memory
functions by altering GABA concentrations in the brain in a
middle-aged rat model (O’Hagan et al., 2017).

In line with this evidence, it has been demonstrated that
administering the probiotic Lactobacillus rhamnosus increases
plasma levels of fibroblast growth factor 21 (FGF21), a

transcriptional activator of the dopamine transporter in
dopaminergic neurons at the nucleus accumbens of Wistar-
derived high drinker UChB rats (Ezquer et al., 2021).
Considering the role of dopamine in addiction, increased
reuptake of this neurotransmitter in the synaptic cleft due to
increased transporter activity induced by this probiotic suggests
that this mechanism is responsible for reward reduction alcohol
intake in this model. Based on this evidence, it is easy to imagine
that a probiotics-based complementary therapy to ALD
treatment might diminish disease progression mediated by
reducing lower alcohol consumption.

In recent years, probiotics’ impact on the expression of brain
receptors involved in addiction, such as dopamine receptor 1
(DR1) and DR2, has been studied. It has been observed that
alcohol and other substances can increase dopamine release,
generating a sensation of pleasure and leading the subject to
repeat a specific behavior. Alcohol acts directly on GABA
receptors, positively modulating dopamine release in the
nucleus accumbens and the ventral tegmental area (Grace
et al., 2007; Koob and Volkow, 2010). According to the
aforementioned study conducted by Jadhav KS. et al., the
vulnerable group of rats showed a loss of control over alcohol
intake associated with a significantly high DR1 expression and
lowered DR2 expression in the striatum compared to the resilient
group. The study correlated these alterations with intestinal
microbiota changes observed in vulnerable rats, suggesting that
gut microbiota composition may contribute to inhibitory
innervations in addiction-related brain circuits. Although the
correlation observed requires further investigation, particularly to
discover the mechanism that explains how gut microbiota
induces striatal dopamine receptor expression, a positive
correlation between D2R mRNA expression and a low
abundance of bacteria of the Firmicutes phylum was observed.
This phylum includes bacteria of the Clostridial order, which
together with the Ruminococcacea and Lachnospiraceae, were
positively associated with AUD severity. Thus, DR2 could be an
interesting target to achieve by probiotics-based therapeutic
approaches to restore intestinal Lachnospiraceae and
Ruminococcacea levels (Jadhav et al., 2018).

Additional proposals aimed at intestinal microbiota
modulation have also been explored in AUD. It was shown
that fecal microbiota transplantation from a healthy donor
with high levels of Lachnospiraceae and Ruminococcaceae
drove a short-term reduction in craving and consumption of
alcohol in patients with alcoholic cirrhosis associated with
intestinal microbial changes. Microbial diversity increased with
higher Ruminococcaceae and other SCFAs producing taxa, linked
with SCFA levels following fecal microbiota transplantation but
not placebo (Bajaj et al., 2021). Interestingly, a trend toward
higher SCFA levels in stool and plasma was detected in a post-
FMT group, positively associated with Lachnospiraceae and
Ruminococcaceae constituent. The intermediary role of SCFA
in the communication of the gut-brain axis in addiction
disorders, in both animal and human models, has been well
described. Therefore, increased SCFA content post-FMT suggests
this factor as a potential mediator of alcohol addiction behavior
(Bajaj et al., 2021).
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Based on the above, probiotics-based treatment may be an
interesting intervention to reduce alcohol intake and disease
progression by restoring gut microbiota and improving
microbiota-gut-liver-brain axis communication.

DISCUSSION

Considering that alcohol addiction is a biopsychosocial
condition, an integrative treatment is required to achieve
better clinical response, greater adherence, and reduced costs
associated with the disease, in both the short and long term. In
this matter, novel therapeutical approaches have emerged from
research efforts toward discovering possible therapeutic targets.
Among them, probiotic discovery and development, and gene
editing therapy of enzymes, such as alcohol dehydrogenase and
aldehyde dehydrogenase, to complement pharmacological and
psychological interventions are currently being used.

Along with probiotics, prebiotics has also emerged as a
complementary therapy. Both have been recently included in a
category denominated “psychobiotics” characterized by their
potential benefits for the CNS (Ansari et al., 2020). Prebiotics
was described in 1995 as “a non-digestible food ingredient that
beneficially affects the host by selectively stimulating the growth
and/or activity of one or a limited number of bacteria in the colon,
thus improving host health” (Gibson and Roberfroid, 1995). This
terminology has remained so far, and it has been observed that
they serve as an energy source for microbiota, regulating its
composition, functions, and the intestinal environment
(Davani-Davari et al., 2019). Furthermore, various studies
using a combination of probiotics and prebiotics (symbiotics)
in an animal model have been assays, and some formulas, based
on specific mixed, have been explored in clinical practice
(Markowiak and Śliżewska, 2018). Indeed, increased interest in
therapeutical approaches toward microbiota restoration has
emerged from diverse studies utilizing prebiotics and
probiotics for various conditions such as ALD, addiction,
depression, anxiety, autism, schizophrenia, and Alzheimer’s.
The beneficial outcomes obtained from these interventions,
principally from probiotics as the most used, reinforce
research effort in this matter.

Regarding probiotic usage safety, it is considered that they lack
factors that allow them to develop pathogenic capacities, and the
adverse effects related to them are minimal and occur in specific
contexts. There are cases of sepsis due to probiotics, mainly
Lactobacilli and Bifidobacteria. However, its incidence
according to studies is only 0.02%. In any case, it is
recommended to exercise greater caution and vigilance in
administering probiotics to patients at risk. On the other
hand, its use in patients is still considered beneficial due to
reducing bacterial translocation. Many studies show positive
effects of probiotics, even in the extreme stages of life, and
complications related to their use are extremely rare, despite
their unrestricted use (Brunser, 2017 #3).

ALD has complex and multifactorial pathogenesis, including
environmental factors, genetic predisposition, immune response,
and gut microbiota in its development. In this context, its
treatment should target many mechanisms involved in its
development and its maintenance. To date, abstinence-based
therapy remains the best choice for treatment in ALD.
However, the increased relapse rate challenges discovering new
therapies to achieve integral management of ALD patients.
Therefore, diverse therapeutic interventions focused on each
component involved in the pathophysiology of ALD have been
explored. The study of gut microbiota and its alteration has
gained importance recently due to its multiple impacts on
individual health, including psychological and behavioral
fields. These findings have positioned the microbiota
modulator approaches, such as probiotics, prebiotics, fecal
transplantation and antibiotics, as a feasible therapeutic
option. In this context, using probiotics stands out due to
their effective microbiota modulation properties, being
accessible and safe compared to other approaches. Probiotics
have proved to have many benefits at the microbiota-gut-liver-
brains axis level in ALD. They reduce dysbiosis, restore normal
microbiota and intestinal permeability, and decrease bacterial
products translocation and liver, brain, and systemic
inflammation. Even more important is their role in decreasing
the progression of the disease by its properties of modulating
alcohol addiction at CNS. In addition, some probiotics, like
Lactobacillus rhamnosus, can be used to decrease alcohol
intake due to its proven anti-inflammatory properties, which
can prevent ALD progression and establishment.

This review provides updated evidence of the role of
probiotics not only in the pathogenesis of ALD but also in
reducing craving and alcohol consumption. Future research is
necessary to support the use of probiotics to decrease the
severity and progression of ALD, as well as to evaluate its
impact on the interaction in the microbiota-gut-liver-brain
axis in other addictive disorders.
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Periodontitis is an inflammatory disease induced by a dysbiotic oral microbiome. Probiotics
of the genus Bifidobacterium may restore the symbiotic microbiome and modulate the
immune response, leading to periodontitis control. We evaluated the effect of two strains of
Bifidobacterium able to inhibit Porphyromonas gingivalis interaction with host cells and
biofilm formation, but with distinct immunomodulatory properties, in a mice periodontitis
model. Experimental periodontitis (P+) was induced in C57Bl/6 mice by a microbial
consortium of human oral organisms. B. bifidum 1622A [B+ (1622)] and B. breve 1101A

[B+ (1101)] were orally inoculated for 45 days. Alveolar bone loss and inflammatory response
in gingival tissues were determined. The microbial consortium induced alveolar bone loss in
positive control (P + B-), as demonstrated by microtomography analysis, although P.
gingivalis was undetected in oral biofilms at the end of the experimental period. TNF-α
and IL-10 serum levels, and Treg and Th17 populations in gingiva of SHAM and P + B-
groups did not differ. B. bifidum 1622A, but not B. breve 1101A, controlled bone destruction
in P+ mice. B. breve 1101A upregulated transcription of Il-1β, Tnf-α, Tlr2, Tlr4, and Nlrp3 in
P-B+(1101), which was attenuated by the microbial consortium [P + B+(1101)]. All
treatments downregulated transcription of Il-17, although treatment with B. breve 1101A

did not yield such low levels of transcripts as seen for the other groups. B. breve 1101A

increased Th17 population in gingival tissues [P-B+ (1101) and P + B+ (1101)] compared to
SHAM and P + B-. Administration of both bifidobacteria resulted in serum IL-10 decreased
levels. Our data indicated that the beneficial effect ofBifidobacterium is not a common trait of
this genus, since B. breve 1101A induced an inflammatory profile in gingival tissues and did
not prevent alveolar bone loss. However, the properties of B. bifidum 1622A suggest its
potential to control periodontitis.
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INTRODUCTION

Periodontitis comprises a destructive inflammatory process of the
teeth supporting tissues induced by a dysbiotic subgingival
microbiome (Hajishengallis, 2014). Porphyromonas gingivalis is
considered a key stone pathogen in periodontitis, allowing the
appropriate conditions to induce the disease (Kuboniwa et al.,
2017), due to the ability to alter the subgingival ecosystem caused
by its strategies to evade the immune system (Chopra et al., 2020).
The dysbiotic microbiome of periodontitis involves not only
increased levels of P. gingivalis (Hajishengallis, 2014), and
other pathogens, but also pathobionts as Streptococcus gordonii
(Kuboniwa and Lamont, 2010; Socransky et al., 1998), Prevotella
intermedia (Barbosa et al., 2015), and Fusobacterium nucleatum
(Polak et al., 2017) and decreased levels of beneficial bacteria
(Hajishengallis, 2014). The mechanical periodontal treatment
and systemic antimicrobials are able to reduce periodontal
pathogens in subgingival regions (Teughels et al., 2020).
However, their effect is not entirely predictable, and long-term
success requires the establishment of a program of supportive
periodontal therapy following the treatment of active disease
(Armitage and Xenoudi, 2016).

The ecological shift of the periodontal microbial community
towards disease may be hindered by the oral administration of
living beneficial bacteria with antimicrobial and
immunomodulatory properties, considered as probiotics.
Hence, probiotics may comprise an argued ecological
therapeutic approach to control periodontitis (Matsubara
et al., 2016). Probiotics may directly interfere with pathogen’s
colonization by competition for adhesion sites in oral surfaces
and/or in already adherent bacteria in the biofilm and production
of antimicrobial substances, or indirectly, by modulating host
immune response and by decreasing permeability of the epithelial
barrier of mucosa surfaces (Teughels et al., 2011).

Periodontal tissues destruction is induced by an exacerbated
response triggered by the dysbiotic microbiome after recognition
of pathogen-associated molecular patterns (PAMPS) and
damage-associated molecular pattern molecules (DAMPs) by
extracellular and intracellular pattern recognition receptors
(PPRs) such as Toll-Like receptors (TLRs) and nucleotide-
binding oligomerization domain (NOD)-Like receptors
(NLRs). Recognition by PPRs activates transcription factors,
inducing the production of inflammatory cytokines and
chemokines (Ojcius and Saïd-Sadier, 2012).

Periodontitis is characterized by an elevated pro-
inflammatory: anti-inflammatory ratio, with increased levels of
cytokines such as IL-1β, IL-6 and TNF-α (Kawamoto et al., 2020).
IL-1β is a major pro-inflammatory cytokine in periodontitis (Aral
et al., 2020), and its levels in gingival tissue are related to disease
severity (Hou et al., 2003). IL-1β inactive precursor pro-IL-1β is
only converted to its biologically active form after inflammasome
activation. Inflammasomes are multiprotein complexes
constituted by an intracellular receptor, an adaptor protein
ASC (apoptosis-associated speck-like protein containing
CARD - caspase-recruitment domain) and a pro-caspase 1
(Shibata, 2018). Receptor recognition leads to inflammasome
activation, in that ASC converts pro-caspase-1 to caspase-1,

which cleaves pro- IL-1β, pro-IL-18, and pro-IL-33 to their
active forms, and/or induce cell death by pyroptosis (Aral
et al., 2020). There are several types of inflammasome
differing on their receptor molecules, activation molecules and
tissue’s locations (Man et al., 2016; Abderrazak et al., 2015).
NLRP3 (Nod-like receptor pyrin domain-containing protein 3)
and AIM-2 (Absent in melanoma 2) inflammasomes are
associated to periodontal disease, and high levels of their
receptors, NRLP3 and AIM-2, are detected in gingival tissues
of periodontitis patients (Aral et al., 2021).

The immune response to microbial insults in the gingival
tissues also involves T cells proliferation, differentiation towards
Th17 subsets, and induction of regulatory T cells (Treg) (Silva
et al., 2015). Pathogens induce T cells polarization to Th17 in
gingival tissues (Moutsopoulos et al., 2012), whereas inhibition of
Treg increases periodontal inflammation and bone resorption
(Garlet, 2010). Despite their role in homeostasis, Tregs can also
differentiate into the Th17 effector subtype under inflammatory
conditions, in order to mount a defense against extracellular
pathogens (Round and Mazmanian, 2010).

Bifidobacterium are probiotics commonly used in humans
(Gupta, 2011), usually considered safe (Di Gioia et al., 2014)
and showed encouraging results in controlling ligature-induced
periodontitis in rats by modulating the host response (Oliveira
et al., 2017). In humans, the intake of B. animalis subsp. lactis led
to reduced plaque and gingival indexes and decreased IL-1β levels
in gingival crevicular fluid (Toiviainen et al., 2015) and was
successfully used as an adjunct to the mechanical treatment of
periodontitis (Invernici et al., 2018).

Certain mechanisms of probiotics are common to
Bifidobacterium spp, such as their antimicrobial properties
through the production of lactic acid (Gillor et al., 2008),
which impacts P. gingivalis survival (Jäsberg et al., 2016).
We have also shown that bifidobacteria such as B. bifidum
1622A and B. breve 1101A may also impair P. gingivalis
colonization in an acid-independent mechanism, by favoring
commensals over the pathogen, altering the transcription of
virulence encoding genes (Ishikawa et al., 2020) and by
reducing its adhesion and invasion to gingival epithelial cells
(GECs) (Albuquerque-Souza et al., 2019). However, beneficial
properties of probiotics are strain specific, and the most
appropriate probiotic strains and their mechanisms in
controlling periodontal destruction were still not determined
(Mulhall et al., 2020). We previously showed that the in vitro
overall effect of B. bifidum 1622A on P. gingivalis seemed more
pronounced than of B. breve 1101A, including its impact on
transcription of virulence factors (Ishikawa et al., 2020).
Furthermore, B. bifidum 1622A and B. breve 1101A also
showed different effects on the production of IL-1β by P.
gingivalis infected GECs (Albuquerque-Souza et al., 2019).

The in vitro determination of potential candidates is the first
step to select a probiotic strain, but in vivo experimental data are
needed to elucidate its benefits to health and underlying
mechanisms. Thereby, we aimed to evaluate the effect of B.
breve 1101A and B. bifidum 1622A, with known activities over
P. gingivalis but distinct immunomodulatory properties, in a
periodontitis experimental model.
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MATERIALS AND METHODS

Animals and Group Allocation
Ninety-six, 4 weeks old C57Bl/6 male mice, bred under Specific
Pathogen Free conditions were acquired from the Central Facility
of School of Medicine, University of São Paulo, andmaintained in
the mouse breeding facility of the Department of Microbiology,
Institute of Biomedical Sciences, University of São Paulo, in
collective microisolators containing up to four animals, with
an artificial light-dark cycle of 12 h, at a constant temperature
of 22°C, and water and food available ad libidum. Animals were
randomly allocated in six groups (n � 8), and two independent
assays were performed. Experimental groups received a microbial
consortium (P+) and/or B. breve 1101A [B+ (1101)] or B. bifidum
1622A [B+ (1622)]. Controls were inoculated with vehicles of
microbial consortium (P-) and/or probiotics (B-). The groups
were as follows: SHAM (P-B-) (negative control); Positive control
(P + B-) (microbial consortium and probiotic vehicle);
Bifidobacteria control groups P-B+ (1101) and P-B+ 1622)
(microbial consortium vehicle and B. breve 1101A or B.
bifidum 1622A); and experimental groups [P + B+ (1101) and
P + B+ (1622)]. The animals were monitored for weight gain, loss
of mobility, and skin appearance throughout the experimental
period. All procedures were performed following National
Institutes of Health guidelines for experimental animal welfare
and approved by the Institutional Animal Care and Use
Committee (ICB USP Approval number:1112017).

Blinding
Each animal was assigned a temporary random number within
the group. Based on their position on the rack, cages were given
a numerical designation. For each group, a cage was selected
randomly from the pool of all cages. Blinding was carried out
during the allocation, evaluation of the results, and data
analysis. Blindness was unfeasible during the experiment
since the same researcher prepared and inoculated the
organisms. Furthermore, the bacterial suspensions differed in
color from the vehicle.

Exclusion Criteria
Animals presenting alteration in growth, weight and/or physical
defects at baseline were excluded.

Sample Size
Sample calculation was performed using alveolar bone loss as the
primary outcome, based on data obtained in a pilot study. Taking
into consideration a difference in the bone volume of 4,719 cubic
pixels at a standard area, a sample size of 7.84 animals was
adequate to obtain a Type I error rate of 5% and power greater
than 80% (Charan and Kantharia, 2013). Thus, each experimental
group was formed by eight animals.

Orally Administered Cultures of Microbial
Consortium and Bifidobacteria
Bifidobacterium breve 1101A and Bifidobacterium bifidum 1622A

isolated from fecal samples of healthy children in Bahia and part

of the biobank of the Federal University of Minas Gerais were
tested (approval by the Ethics Committee of the Federal
University of Bahia 276/2009) (Souza et al., 2013). The
microbial consortium for inducing experimental periodontitis
comprised: P. gingivalis ATCC 33277 (non-capsulated,
fimbriated, genotype fimA I), P. gingivalis W83 (capsulated
K1, afimbriated, genotype fimA IV), Prevotella intermedia 17
(Fukushima et al., 1992), Fusobacterium nucleatum ATCC 25586
(Barker et al., 1982) and Streptococcus gordonii DL1 (Pakula,
1965).

Bacteria from frozen stocks were cultivated in agar plates,
transferred to broth, and grown to reach the stationary phase. P.
gingivalis, P. intermedia and F. nucleatum were grown in BHI
HM broth (Brain Heart Infusion Broth supplemented with 1 mg
Hemin/mL and 0.1 mg Menadione/mL), in an anaerobic
chamber (PlasLabs, Lansing, MI, United States) containing an
atmosphere of 85% N2, 5%H2 and 10% CO2. S. gordonii was
cultivated in BHI broth under microaerophilic atmosphere (10%
CO2). Bifidobacterium strains were grown in MRS broth under
anaerobiosis. Standard cultures were obtained for each strain,
cells were harvested and resuspended in 500 µL lyophilization
solution [10% skin milk with 5% L-Glutamic acid monosodium
salt hydrate, and 5% dithiothreitol (Sigma-Aldrich Darmstadt,
Germany)]. Aliquots were lyophilized using Freezone Triad
Freezer Dryers (Freezone Triad Freezer Dryers, Labconco,
Kansas City, MI, United States) at −40°C, under vacuum and
maintained at −80°C. Viability was estimated for each lot under
appropriate conditions.

Experimental Treatments
Before the beginning of the experimental period, the mice
resident microbiota was reduced by adding 1 mg kanamycin/
mL (Gatej et al., 2018) and 1 mg amoxicillin/mL to the drinking
water for 4 consecutive days, and the oral cavities were rinsed
with 2% chlorhexidine digluconate (Peridex; Procter and
Gamble) using a microbrush (Kang et al., 2012) for 2 days,
followed by a 2-days washout period. At the first day of the
experimental period, lyophilized B. breve 1101A and B. bifidum
1622A were suspended at 2 × 1010 CFU/mL in PBS/2%
carboximethylcellulose gel (Gatej et al., 2018) and 50 µL
aliquots were administered in the oral cavity with a gavage
needle to groups [B+(1101)] or [B+(1622)]. This procedure
was repeated daily for 45 days.

Lyophilized bacteria of the microbial consortium were
inoculated in BHI HM broth, incubated for 6 h under
anaerobiosis to recover to physiological state and suspended in
PBS/2% carboximethylcellulose gel (Kang et al., 2012; Gatej et al.,
2018) to reach 2 × 1012 CFU/mL of each strain. Viability of each
strain was confirmed. 50 µL aliquots (containing 1 × 1011 CFU/
each strain) were inoculated in the oral cavity of P+ groups
5 days/week for 5 weeks, totalizing 25 inoculations of the
microbial consortium, starting at day 3 of the experimental
period and ending 12 days before euthanasia. In order to avoid
a direct effect of the bifidobacteria to the viable bacteria of the
microbial consortium, the bifidobacteria were orally inoculated in
the morning, whereas the microbial consortium was given
6 h later.
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Control groups (P- and/or B-) received only vehicle (PBS/2%
carboximethylcellulose gel) at the same regimen used for the
infected groups (P+ and/or B+).

Samples Collection
Forty-five days after the initial inoculation with
bifidobacteria, the mice were anesthetized with ketamine/
xylazine, blood was obtained by intracardiac puncture, and
serum stored at −80°C. The mice were euthanized by cervical
dislocation. Oral biofilm samples were obtained with sterile
microbrushes and placed in Tris EDTA (TE) buffer (pH 8.0).
Gingival tissue was collected from the maxilla around molars
(Mizraji et al., 2013), and half transferred to RNAlater™
Stabilization Solution (Invitrogen by Thermo Fisher
Scientific, Vilnius, Lithuania) for gene expression analysis
and half to RPMI 1640 cell culture medium (Sigma–Aldrich,
St. Louis, MO, United States) for immune cells evaluation.
Then, a hemimaxilla was transferred to 4% formaldehyde
solution for 24 h, transferred to PBS and stored at 4°C for
alveolar bone analysis.

Alveolar Bone Analysis
Alveolar bone resorption was determined by
microtomography (MicroCT) using a microtomograph
(SkyScan 1176 version 1.1, Kontich, Belgium) at 45 kV
voltage, 550 uA current, 8.71 µm pixel size, 0.2 mm
aluminum filter. The left hemimaxillae were scanned, and a
blinded examiner selected a standard area of 60 × 30 pixel at
the interproximal region between first and second M in 15
coronal sections from the second M ECJ. The images were
analyzed by calculating bone volume, percentage of bone
volume, and total porosity using CTAnalyser software
Version 1.15.4.0, Skyscan (Rogers et al., 2007).

Gene Expression Analysis
RNA was extracted from gingival samples using TRizol LS
Reagent (Invitrogen Life Technologies, Carlsbad, CA,
United States) and Mini-BeadBeater (BioSpec 3110BX Mini-
BeadBeater-1 High Energy Cell Disrupter, Campinas, São
Paulo, Brazil) for 20 s, twice. The resulting RNA was treated
with desoxyribonuclease (Ambion™ DNase I, Invitrogen Life
Technologies, Carlsbad, CA, United States). cDNA was obtained
using the SuperScriptTM ViloTM Synthesis Kit for RT-PCR
(Invitrogen Life Technologies). Quantitative PCR was
performed in StepOne Plus System thermocycler (Applied
Biosystems, Foster City, CA, United States). Each reaction was
performed with 100 ng cDNA using TaqMan™ Gene Expression
Assay (Invitrogen by Thermo Fisher Scientific, Vilnius,
Lithuania). Commercial Taqman primers and probes
(Invitrogen Life Technologies, Carlsbad, CA, United States)
comprised Tlr-2 (Mm01213946_g1), Tlr-4 (Mm00445273_m1),
Nlrp3 (Mm04210224_m1), Il-1β (Mm00434228_m1), Il-17
(Mm00439619_m1), Tnf-α Mm00607939_s1) and β-actin
(Mm00607939_s1). Relative expression of target genes was
calculated by the ΔΔCT method, using β-actin as endogenous
control (Pfaffl, 2001), and expressed as fold changes in relation to
control group (SHAM).

P. gingivalis Detection in Oral Biofilm
DNA was extracted using Meta-G-Nome™ DNA Isolation kit -
MGN0910 (Epicentre, Madison, WI, United States). P. gingivalis
was detected by real-time PCR, using species-specific primer pairs
(5′-TGTAGATGACTGATGGTGAAAACC-3′ and 5′-ACGTCA
CCACCTCCTTC-3′) (Amano et al., 2000). The reaction
consisted of 10 ng DNA, 25 pMol of each primer, and SYBR®
Green Real-Time PCRMaster Mix (Invitrogen Life Technologies,
Carlsbad, CA, United States) and was performed at 50°C/2 min,
95°C/10 min, followed by 40 cycles at 95°C/15 s, 60°C/1 min, in a
StepOne Plus thermocycler (Applied Biosystems, Foster City, CA,
United States). The standard curve consisted of serially diluted
16SrRNA of P. gingivalis ATCC 33277 amplicon. Efficiency was
estimated as 100 ± 10%, and the data were reported as number of
P. gingivalis 16SrRNA copies/μg DNA.

Tregs and Th17 Cells Populations in
Gingival Tissue
The percentages of CD45+CD3+CD4+ T cells, Foxp3+(Treg) or
RORγt+ (Th17) subpopulations in gingival tissue samples were
determined by flow cytometer analysis (Souto et al., 2014).
Gingival samples were pooled for every four animals due to
the low amount of total cells populations, and dissociated with
0.28 Wunsch/mL liverase blendyme (Gibco by Life Technologies,
New York, NY, United States), using Tumor Dissociation mouse
kit (MiltenyiBiotec Inc., Auburn, Al, United States) with the aid of
the MACSTM Octo Dissociator with Heaters (MiltenyiBiotec Inc.,
Auburn, Al, United States). Death cells and cell debris were
distinguished from viable cells by staining with Fixable
Viability Stain 570 [BD Horizon™ Fixable Viability Stain 570
(Becton; Dickinson and Company, San Diego, CA,
United States)]. Then, 1–10 × 106 viable cells were stained
using fluorescence-bound Antibodies [APC-Cy™ seven Rat
Anti-Mouse CD3, FITIC Rat Anti-Mouse CD4 and BV510 Rat
Anti-Mouse CD45 (Becton; Dickinson and Company, San Diego,
CA, United States)]. Cells were then permeabilized and fixed [BD
Pharmingen™ Mouse Foxp3 Buffer Set kit (Becton; Dickinson
and Company, San Diego, CA, United States)], and intracellular
staining was performed with Alexa Fluor® 647 Rat anti-MOUSE
Foxp3, e BV421 Mouse Anti-Mouse RORγt, overnight, at 4°C.
Non-specific binding was blocked by BSA. Unstained samples
were used as negative controls, and BD™ CompBeads (Becton;
Dickinson and Company, San Diego, CA, United States) labeled
used for staining compensation. Data from 100,000 events were
acquired using the BD FACSCanto™ II cytometer (Becton;
Dickinson and Company, San Diego, CA, United States), and
analyzed using FlowJo 10.6 software (Becton; Dickinson and
Company, San Diego, CA, United States).

Serum Cytokines Levels
IL-10 and TNF-α levels in serumwere evaluated by ELISA, using the
BD Opteia Mouse ELISA Set kit (Becton; Dickinson and Company,
San Diego, CA, United States). OD was determined at 450 nm in a
spectrophotometer [Microplate Manager® Software Version 5.2.1
(Bio-Rad Laboratories, INC., Hercules, CA, United States)]. After
comparison to a standard curve, data were expressed in pg/mL.
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Statistical Analysis
Data were tested for normality using Kolmogorov-Smirnov test
with Lilliefors correlation and homogeneity of variances was
assessed by the F test. One-way ANOVA post hoc Tukey test
was used for determining differences among the studied groups in
alveolar bone parameters, relative transcription levels, percentage
of Treg and Th17 cells in gingival tissues, and serum cytokines
levels. Statistical significance was set at p < 0.05. The analyses
were performed using the GraphPad Prism® Version 6.0
statistical package (GraphPad software, La Jolla, CA,
United States).

RESULTS

The treatments did not result in any observable alteration in skin,
hair, or locomotion activity. This in vivo study was performed in
two independent assays, which gave similar results. Weight gain
was similar for all groups, except for the group which received the
microbial consortium and B. breve 1101A [P + B+ (1101)], which
gained less weight than SHAM (Figure 1).

Effect of Probiotics on Alveolar Bone Loss
Alveolar bone volume was determined at the interproximal
region of first and second M at the left maxilla (Figure 2A).
Data on bone volume, percentage of bone volume, and bone
porosity in the studied groups are shown in Figures 2B–D,
respectively. The microbial consortium was able to induce
significant bone loss, indicated by reduced bone volume and

increased porosity in positive control (P + B-) compared to
SHAM (P-B-). Alveolar bone volume, percentage of alveolar
bone volume, and bone porosity of the groups receiving only
bifidobacteria [P-B+ (1101) and P-B+ (1622)] did not differ from
SHAM (ANOVA, p > 0.05), indicating that B. bifidum 1622A and
B. breve 1101A did not induce alveolar bone loss. Administration
of B. bifidum 1622A prevented the reduction in bone volume and
increase in bone porosity induced by the microbial consortium
[P + B+ 1622) ≠ P + B-, p < 0.05], whereas administration of
B. breve 1101A did not.

Gene Expression in the Gingival Tissue
Despite the microbial consortium induced bone destruction,
there were no differences in mRNA levels of Il-1β and Tnf-α
or of genes encoding receptors for PAMPs between P + B- and
SHAM groups, as shown in Figures 3A,B. However,
transcription of Il-17 was down-regulated in P + B- compared
to SHAM (Figure 3C). The daily administration of B. breve 1101A

up-regulated transcription of Il-1β and Tnf-α [P-B+ (1101) and P
+ B+ (1101) ≠ SHAM], Figures 3A,B. All treatments
downregulated transcription of Il-17 when compared to
SHAM, but the group treated only with B. breve 1101A [P-
B+(1101)] showed the highest Il-17 mRNA levels among the
treated groups (Figure 3C). The microbial consortium down-
regulated transcription of Il-1β, Tnf-α and Il-17 in animals
receiving B. breve 1101A [P + B+(1101) ≠ P-B+(1101)],
although Il-1β and Tnf-α transcript levels in P + B+(1101)
were still above those of the P + B- group. Meanwhile, the
oral administration of B. bifidum 1622A did not interfere in Il-
1β regulation, down-regulated Il-17, but promoted a slight up-
regulation (less than 2 folds) inTnf-α transcription [P + B+ 1622) ≠
P + B-], Figure 3.

The microbial consortium did not alter the transcription
profile of genes encoding receptors to PAMPs in the gingival
tissues (Figures 3D–F). However, transcription of Tlr2, Tlr4, and
Nrlp3 was up-regulated by B. breve1101A [P-B+ (1101) ≠ P + B- ≠
SHAM]. The positive regulation of Tlr2 andNrlp3was attenuated
by the microbial consortium [P + B+ (1101)]. On the other hand,
both Bifidobacterium strains induced up-regulation of Tlr4 in
mice that were also challenged with the microbial consortium
[P + B+ (1101) and P + B+ 1622) ≠ P + B- ≠ SHAM], Figure 3E.

P. gingivalis Levels in Oral Biofilm
P. gingivalis levels were determined by amplification of 16SrRNA
using species-specific primers, and data were normalized by CT
values in SHAM. Oral inoculation of microbial consortium did
not induce P. gingivalis persistent colonization of the oral biofilm,
since no group reached CT values above background.

Tregs and Th17 Populations
Immune cells were evaluated by flow cytometry analysis. Gingival
tissue samples from four mice were pooled, making two pooled
samples/group, due to low amount of tissue. T-helper (Th) cells
(CD4+) were stained for CD45+CD3+CD4+FoxP3+ (Tregs cells)
and for CD45+CD3+CD4+RORγt+ (Th17 cells). The percentages
of innate immune cells detected are shown in the Supplementary
Table S1. Percentages of Tregs or Th17 populations were similar

FIGURE 1 | Mean and SD of weight gain in grams after 45 days of
experimental period of C57Bl/6 mice submitted to different treatments: SHAM
(negative control), P + B- (positive control), P-B+ (1101) (B. breve 1101A), P +
B+ (1101) (microbial consortium + B. breve 1101A), P-B+ (1622) (B.
bifidum 1622A) and P + B+ (1622) (Microbial consortium + B. bifidum 1622A).
*Statistically significant difference in relation to negative control (SHAM), #
Statistically significant difference in relation to positive control (P + B-). ANOVA,
Tukey’s multiple comparison, p <0.05%. Data representative of two
independent experiments (n � 8 mice/per group).
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in gingival tissues of groups P + B- and negative control (SHAM).
Treg cells populations were also similar in all experimental
groups (Figure 4). The administration of B. bifidum 1622A did
not induce changes in Th17 cells population. However, the oral
administration of B. breve 1101A increased
CD45+CD3+CD4+RORγt+ Th17 cells population from 0.31%
in SHAM gingival tissue samples to 1.79% in P + B+ (1101)
and 3% in P-B+ (1101), indicating that oral inoculation of B. breve
1101A induces a Th17 response (Figure 5).

Serum Cytokines Levels
Serum levels of IL-10 were similar in groups P + B- and negative
control (SHAM). However, the bifidobacteria oral regimen
decreased serum levels of IL-10, especially in the groups that
were also inoculated with the microbial consortium (Figure 6).
There were no differences in TNF-α levels among groups (data
not shown).

DISCUSSION

In the present study, the infection model with oral inoculation of
P. gingivalis, F. nucleatum, P. intermedia and S. gordonii was
efficient in reducing alveolar bone volume and increasing total
bone porosity in C57Bl/6 mice. Thus, the protocol was able to
induce experimental periodontitis, as shown in other studies
(Blasco-Baque et al., 2012; Barbosa et al., 2015; Kuboniwa
et al., 2017). Two strains of P. gingivalis were used, since

multiple strains of the pathogen showing different virulence
strategies occur in humans (Amano et al., 2000). Despite bone
resorption, P. gingivalis was not detected at the end of the
experimental period, and expression of Il-1β, Tnf-α, and genes
encoding receptors to PAMPS, as well as the percentage of Treg
and Th17 cells populations were not altered in gingival samples of
the periodontitis group (P + B-) when compared to SHAM. Some
studies demonstrated that the inflammatory cytokines were
detected only in the initial phase of induction of periodontitis
in mouse model (Polak et al., 2009; Ebbers, et al., 2018), thus for
cytokine detection, early time points analysis would be required.
In contrast, expression of Il-17 was downregulated by the
microbial consortium, confirming the breakage of homeostasis.
These findings are in accordance with others who reported that
persistent colonization of P. gingivalis may not be achieved, but
bone loss is seen due to dysbiosis promoted by P. gingivalis, a
keystone pathogen (Payne et al., 2019). Similarly, P. gingivalis
strain W83 does not up-regulate transcription of Tnf-α and Il-1β
in mice gingival tissues (Sato et al., 2018). Moreover, the effects of
administration of bifidobacteria differed in mice challenged with
the microbial consortium from control mice.

We have shown that the oral administration of B. bifidum
1622A, but not of B. breve 1101A, was able to control alveolar bone
loss induced by the microbial consortium. These in vivo data
contrast to in vitro results showing that B. breve 1101A and B.
bifidum 1622A can aggregate inmultispecies biofilms formed by P.
gingivalis, S. oralis and S. gordonii, and reduce the abundance of
P. gingivalis without affecting the abundance of early colonizers

FIGURE 2 | Alveolar bone analysis determined by Microtomography in the interproximal region of first and second M at the right maxilla of C57Bl/6 mice submitted
to different treatments for 45 days: SHAM (negative control), P + B- (positive control), P-B+ (1101) (B. breve 1101A), P + B+ (1101) (microbial consortium + B. breve
1101A), P-B+ (1622) (B. bifidum 1622A) and P + B+ (1622) (microbial consortium + B. bifidum 1622A). (A) Representative images of alveolar bone. All data were obtained
in the region between the red points. Data on Alveolar bone volume (ABV) (Average and sd) determined in pixels3 (B), Percentage of alveolar bone volume (Average
and sd) and (C) Percentage of total porosity (Average and sd) (D) of the different groups. * Statistically significant difference in relation to negative control (SHAM), #
Statistically significant difference in relation to positive control (P + B-). ANOVA, Tukey’s multiple comparison, p <0.05%. Data representative of two independent
experiments (n � 8 mice/per group).
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(Ishikawa et al., 2020). The beneficial effect of B. breve was also
suggested by a strong antioxidant capacity of B. breve strain A28,
which protects host cells against reactive oxygen species produced
during the inflammatory process (Mendi and Aslım, 2014).
However, this feature is not homogenous within this specie,
and the antioxidant capacity of the studied bifidobacteria was
not determined.

The benefit of bifidobacteria species in the control of
periodontitis has been previously shown for B. animalis subsp.
lactis HN019. The topical use of this strain prevented alveolar
bone loss in rats submitted to ligature induced periodontitis
(Oliveira et al., 2017). Another animal study reported the
beneficial effect of B. animalis subsp. lactis HN019 even as
adjunct to scaling and root planning (SRP), with concomitant
reduction in the number of osteoclasts, decrease in IL-1β
transcripts and increased expression of IL-10 in the
periodontal tissues (Ricoldi et al., 2017). Similarly, the
adjunctive use of Bifidobacterium animalis subsp. lactis HN019
in humans to treat periodontitis improved periodontal clinical
parameters such as probing pocket depth and clinical attachment
gain, and reduced the colonization levels of P. gingivalis,
Treponema denticola and other pathobionts (Invernici et al.,
2018).

Herein, a distinct response to different Bifidobacterium species
was not only seen in terms of alveolar bone loss. The groups
receiving each bifidobacteria strain (P-B+), or each bifidobacteria
plus the microbial consortium (P + B+) differed also in other
parameters such as weight gain, expression of cytokines and
receptors in the gingival tissue, and Th17 cells percentage.

B. breve 1101A lack of effect in preventing alveolar bone loss
induced by the periodontal pathogenic consortium was followed
by lower weight gain and higher inflammatory response in
gingival tissues when compared to the other groups. The
inflammatory profile induced by B. breve 1101A was evidenced
by the upregulation of transcription of Tnf-α, Il-1β, Tlr2, Tlr4, and
Nrlp3, a slight down-regulation of Il-17 and increase of Th17 cells
population in the gingival tissues. On the other hand,
administration of B. bifidum 1622A alone or in combination
with the microbial consortium did not induce any changes,
except for a substantial down regulation of Il-17 mRNA levels
and an upregulation of TLr4 in mice challenged with the
microbial consortium.

The oral administration of the two bifidobacteria also yielded
different outcomes on the transcription of Nrlp3 and Il-1β,
suggesting their influence on inflammasome modulation. B.
breve 1101A up-regulated transcription of Nrlp3 and Il-1β

FIGURE 3 | Bifidobacteria alter transcription of genes encoding cytokines and receptors for PAMPS in gingival tissues. Relative transcription of Il-1β (A) and Tnf-α
(B), Il-17 (C), Tlr2 (D), Tlr4 (E) and Nrlp3 (F), determined by RT-qPCR in gingival tissues of C57Bl/6 mice submitted to different treatments for 45 days of experimental
period: SHAM (negative control), P + B- (positive control), P-B + (1101) (B. breve 1101A), P + B+ (1101) (microbial consortium + B. breve 1101A), P-B+ (1622) (B. bifidum
1622A) and P + B+ (1622) (microbial consortium + B. bifidum 1622A). * Statistically significant difference in relation to negative control (SHAM), # Statistically
significant difference in relation to positive control (P + B-). & Statistically significant difference in relation to P-B+ (1101). ANOVA, Tukey’smultiple comparison, p <0.05%.
Data representative of two independent experiments (n � 8 mice/per group).
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compared to the SHAM group, whereas B. bifidum 1622A down-
regulated Nrlp3 mRNA levels and did not affect transcription of
Il-1β. However, concomitant administration of the microbial
consortium with the bifidobacteria resulted in decrease of the
high mRNA levels of Nrlp3 and Il-1β induced by B. breve 1101A

and an increase in these transcripts in the B. bifidum 1622A group,
although it did not reach the high levels achieved by B. breve
1101A. Previous in vitro data may help explaining the different
outcomes on the control of periodontitis by the two tested
bifidobacteria. P. gingivalis W83 challenged gingival epithelial
cells showed increased viability when co-infected with B. bifidum
1622A but not with B. breve 1101A (Albuquerque-Souza et al.,
2019). On the other hand, co-culture of P. gingivalis ATCC 33277
challenged GECs with B. breve 1101A resulted in high production
of IL-1β and CXCL-8 differing from infected GECs co-cultured
with B. bifidum 1622A (Albuquerque-Souza et al., 2019).

It is well known that inflammasome activation differs
according to the challenging bacteria species, target cells and

environmental conditions including periodontal tissues
(Taxman et al., 2012; Okano et al., 2018; Aral et al., 2021).
Thus, the variable regulation of Nrlp3 and Il-1β induced by the
two bifidobacteria may play a role on their effects in
periodontal tissues. Tissue destruction in periodontitis is
associated with the positive regulation of inflammasome-
associated receptors such as NRLP3 (Xue et al., 2015) and
production of IL-1β (Silva et al., 2015). Thus, induction of Il-1β
and Nrlp3 transcription in gingival tissues by B. breve 1101A

under a commensal microbiome is indicative of its pro-
inflammatory activity. In contrast, B. bifidum 1622A may
partially surpass pathogen´s strategy to inhibit
inflammasome activation in order to evade host defenses
(Taxman et al., 2012; Okano et al., 2018) since its
administration in the group receiving the microbial
consortium attenuated Nrlp3 down-regulation.

Administration of B. breve 1101A without any other challenge
up-regulated the transcription of Tlr4 and Tlr2. Up-regulation of

FIGURE 4 | Treg populations remained unchanged in gingival tissues of C57Bl/6 mice submitted to different treatments: SHAM (negative control), P + B- (microbial
consortium), P-B+ (1101) (B. breve 1101A), P + B+ (1101) (microbial consortium + B. breve 1101A), P-B+ (1622) (B. bifidum 1622A) and P + B+ (1622) (microbial
consortium + B. bifidum 1622A). In (A) representative flow cytometry diagram showing the gating of CD4+, FoxP3+ Treg cells. In (B) Average percentages of CD4+,
FoxP3+ Treg cells. No differences among the groups. ANOVA, Tukey’s multiple comparison, p>0.05%. Facs plots represent the results of one of two independent
experiments with similar results (n � 2 pooled samples from 4 mice/per group).
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Tlr2 was previously shown for other probiotics (Li et al., 2019).
Tlr4 mRNA levels increased with concomitant administration of
the microbial consortium and B. breve 1101A or B. bifidum 1622A.
Bifidobacteria are known to upregulate Tlr4 due to production of
lactic acid (Kanmani et al., 2019). B. breve 1101A induced
upregulation of PRRs under a symbiotic microbiome suggests
increased recognition of commensals, and pro-inflammatory
down-stream cascades, as indicated by increased expression of
Tnf-α and Il-1β in the P-B+1101 group. However, Tlr4 up-
regulation promoted by both Bifidobacterium under pathogens
challenge may increase pathogen’s recognition, and elimination.
In contrast, down-regulation of Tlr2 under P. gingivalis challenge
may be beneficial, since TLR2 signaling in immune cells impairs
their phagocytic activity, which promotes pathogen`s survival
(Maekawa et al., 2014).

Regulatory T lymphocytes (Tregs) play a fundamental role in
the control of inflammatory response, suppressing the
proliferation and cytokine production of effector T cells,

especially Th1 and Th17 (Gonzales, 2015). However, Treg
populations in the gingival tissues of mice were not altered by
the different treatments, suggesting this mechanism is not
induced by the studied bifidobacteria. Oral inoculation of B.
breve 1101A altered T cells population in gingival tissues,
leading to increased percentages of Th17, which was partially
attenuated by the microbial consortium. Transcription of Il-17
was demonstrated in the gingival tissue of the non-infected
control mice, but all treatments with the microbial pathogenic
consortium and/or the bifidobacteria down-regulated Il-17
transcript levels. However, Il-17 mRNA levels were higher in
the group receiving B. breve 1101A, whereas B. bifidum 1622A

induced the lowest levels among all groups. The inflammatory
functions of Th17 cells depend on the different combinations of
cytokines expressed in the environment (Bunte and Beikler, 2019)
and these cells present multiple functions. While IL-17
production is key to homeostasis, Th17 exacerbated activation
by microbial challenge can be deleterious (Moutsopoulos et al.,

FIGURE 5 |Oral administration of B. breve 1101A increases Th17 population in the gingival tissue. Th17 population in the gingival tissue of C57Bl/6 mice submitted
to different treatments: SHAM (negative control), P + B- (microbial consortium), P-B+ (1101) (B. breve 1101A), P + B+ (1101) (microbial consortium + B. breve 1101A),
P-B+ (1622) (B. bifidum 1622A) and P + B+ (1622) (microbial consortium + B. bifidum 1622A). In (A) representative flow cytometry diagram showing the gating of CD4+,
RORγt+ Th17 cells. In (B) Average percentages of CD4+, RORγt+ Th17 cells. *Statistically significant difference in relation to negative control (SHAM), # Statistically
significant difference in relation to positive control (P + B-). ANOVA, Tukey’s multiple comparison, p<0.05%. Facs plots represent the results of one of two independent
experiments with similar results (n � 2 pooled samples from 4 mice/per group).
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2012). Thus, Th17 cell analyses also indicated that B. breve 1101A

induces an inflammatory profile in gingival tissues, differing from
B. bifidum 1622A.

These data should be taken under the limitations of the mice
model where P. gingivalis persistent colonization was not
achieved. Furthermore, the data were obtained at a single time
point, 12-days after the last inoculation of the microbial
consortium, whereas bifidobacteria were administered
throughout the 45-days experimental period. It is also worthy
to emphasize that the immune cells evaluation was performed
with only two pooled samples per group, to minimize the number
of mice, but the data were reproducible in two independent
assays.

Overall, our data showed that the beneficial effect of
Bifidobacterium to the periodontal tissues is not a
common trait of this genus. The pro-inflammatory effect
of B. breve 1101A in gingival tissues may indicate increased
defenses against invading organisms but also brings some
concern on the safety of this species. Our data are
corroborated by others reporting bacteremia by
bifidobacteria, including B. breve (Esaiassen et al., 2017),
even when used as a probiotic (Sato et al., 2016). Therefore,
considering that probiotics outcomes depend on factors
related to the host and their microbiome, their outspread
use should be rethought. On the other hand, B. bifidum 1622A

is a potential candidate as a probiotic to control
periodontitis. B. bifidum 1622A did not lead to significant
changes in inflammatory parameters and prevented alveolar

bone loss without noticeable side effects. Further studies are
still needed before its clinical indication.
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Lactiplantibacillus plantarum MTCC 2621 is a well-characterized probiotic strain and is
reported to possess many health benefits. However, the wound healing potential of this
probiotic is yet to be explored. Here, we have assessed the antibacterial, antioxidant, and
wound healing activities of cell-free supernatant of Lactiplantibacillus plantarum MTCC
2621 (Lp2621). Lp2621 exhibited excellent antibacterial activity against the indicator
bacteria in the agar well diffusion assay. Lp2621 did not show any hemolytic activity.
The safety of Lp2621 gel was established using the skin irritation assay in BALB/c mice,
and no dermal reactions were observed. The supernatant showed 60–100% protection of
A549 cells against H2O2-induced stress. In the scratch assay, Lp2621 accelerated wound
healing after 24 h of treatment. The percent wound healing was significantly higher in cells
treated with Lp2621 at 18–24 h posttreatment. In an excision wound healing in mice,
topical application of Lp2621 gel showed faster healing than the vehicle- and betadine-
treated groups. Similar wound healing activity was observed in wounds infected with
Staphylococcus aureus. Histological examination revealed better wound healing in
Lp2621-treated mice. Topical treatment of the wounds with Lp2621 gel resulted in the
upregulation of pro-inflammatory cytokine IL-6 in the early phase of wound healing and
enhanced IL-10 expression in the later phase. These findings unveil a protective role of
Lp2621 against bacterial infection, oxidative stress, and wound healing.
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1 INTRODUCTION

Wound healing is a multifaceted biological process involving
many extracellular and intracellular macromolecules. Healing
occurs in four steps: hemostasis, inflammation, proliferation,
and maturation (Vaid et al., 2020), and has a vital role in skin
remodeling after injury (Mousavi et al., 2020). The economic
evaluation of chronic wounds suggests that care and treatment of
the wound are time-consuming and cost billions of dollars every
year (Nussbaum et al., 2018). Although antibiotic therapies are in
place for routine care and management of the wound, they do not
cover all characteristics of wound management (Nussbaum et al.,
2018). Thus, researchers and the scientific community have
focused their efforts on developing an alternative strategy of
using probiotics that aids in the wound healing process. The
World Health Organization (WHO) defines probiotics as “live
microorganisms which when administered in adequate amounts
confer a health benefit on the host” (FAO/WHO 2002).
Probiotics lower the risk of infectious diseases, and in
combination with antibiotics, combat secondary infections
(King et al., 2014) as well as reduce the incidence and severity
of diarrhea associated with antibiotic therapy (Hempel et al.,
2012). They primarily belong to the genus Lactobacillus and
Bifidobacterium (Soccol et al., 2010), and effectively modulate
the immune function of the host by maintaining the balance of
the intestinal microbiota (Ouwehand et al., 2016), improve the
innate immunity, and moderate the functions of dendritic cells,
macrophages, and T and B lymphocytes (Georgieva et al., 2015).
In addition, they have also been shown to promote wound healing
and modulate the inflammation caused by the pathogens through
the toll-like receptor-controlled pathways (Vanderpool et al.,
2008; Gholami et al., 2020). Studies have revealed that the
direct application of lactic acid bacteria (LAB) on injured skin
may improve skin health and augment its capacity to fight against
various diseases (Nole et al., 2014; Knackstedt et al., 2020).
Certain strains of the Lactobacillus genus play an important
role in the wound healing process and protect the skin against
inflammation and infections by the competitive inhibition of
pathogens for adhesion sites and nutrients, modulation of the
host immune response, and production of cytokines and
secondary metabolites such as short-chain fatty acids as well
as antimicrobial peptides (Halper et al., 2003; Peral et al., 2009;
Sonal Sekhar et al., 2014; Lukic et al., 2017; Ong et al., 2020). The
strain Lactobacillus plantarum MTCC 2621 {now renamed as
Lactiplantibacillus plantarum [Lpb. plantarum] (Zheng et al.,
2020)} used in this study (equivalent to Lpb. plantarum ATCC
8014) has been characterized for its probiotic properties
(Tambekar and Bhutada 2010; Sreevani and Kumari 2013; Pop
et al., 2016; Malakar et al., 2017; Khalil et al., 2018; Monteiro et al.,
2019). Lpb. plantarum MTCC 2621 exhibited
immunomodulatory activity via the downregulation of pro-
inflammatory cytokines (Goad et al., 2013), whereas
competitive inhibition with pathogens and the production of
antimicrobial agents resulted in the pro-fertility property
(Bhandari and Prabha 2015). The beneficial roles of this
probiotic have been reported in various diseases; however, the
efficacy of Lpb. plantarum MTCC 2621 has not yet been fully

elucidated in wound healing. Therefore, in this study, we assessed
the antibacterial, antioxidant, and wound healing properties of
the cell-free supernatant of Lpb. plantarum MTCC 2621
(henceforth read as Lp2621) using A549 cells in vitro and in a
mouse model of wound healing.

2. MATERIALS AND METHODS

2.1 Chemicals
DeMan, Rogosa, Sharpe MRS agar, MRS broth, and nutrient agar
were purchased fromHiMedia, and Triton X-100; carboxymethyl
cellulose, and 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide were purchased from Sigma. The
reagents for cell culture media, RPMI, and fetal bovine serum
(FBS) were obtained from GIBCO. H2O2 used to induce oxidative
stress was purchased from Merck.

2.2 Cell Line
A549 cell line (human lung carcinoma cell line) was purchased
from the National Centre for Cell Science (NCCS), Pune, India.

2.3 Bacterial Cell Culture
Lactiplantibacillus plantarum MTCC 2621, Staphylococcus
aureus MTCC 737, Micrococcus luteus MTCC 106,
Pseudomonas aeruginosa MTCC 1934, Bacillus subtilis MTCC
441, Escherichia coli MTCC 739, and Klebsiella pneumoniae
MTCC 618 were obtained from the Microbial Type Culture
Collection (MTCC) (CSIR-Institute of Microbial Technology,
Chandigarh, India). The culture of Lpb. plantarum was grown
in MRS broth at 37°C with 1% (v/v) inoculum. The culture was
centrifuged at 5000 rpm for 10 min, and the cell-free supernatant
was collected and used in this study. All other strains were grown
on the nutrient agar media at 37°C for 24 h.

The flowchart of the experimental design of the study is
illustrated in Figure 1.

2.4 In Vitro Studies
2.4.1 Antibacterial Activity of Lp2621
The antibacterial property of Lp2621 was determined using the
agar well diffusion assay as per previous studies (Dahiya and
Purkayastha 2012). Six indicator strains were used viz. S. aureus
(MTCC 737), M. luteus (MTCC 106), P. aeruginosa (MTCC
1934), B. subtilis (MTCC 441), E. coli (MTCC 739), and K.
pneumoniae (MTCC 618). MRS broth alone was used as the
negative control.

2.4.2 Hemolytic Assay for Toxicity Testing of Lp2621
Blood collected from New Zealand white rabbit was centrifuged,
washed three times with 1X PBS, and resuspended in phosphate-
buffered saline (PBS) at a concentration of 4% (vol/vol). The
hemolytic assay was performed as described by Jangra et al.
(2019) using different concentrations of Lp2621 (0.78–100
percent in two fold dilutions). Triton X-100 (0.1%), MRS
broth, and PBS were used as positive, vehicle, and negative
controls, respectively.

Percent hemolytic activity was calculated using a formula.
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%Hemolysis

� Absorbance of Test − Absorbance of Blank
Absorbance of positive control − Absorbance of Blank

X 100.

(1)

2.4.3 Scratch Assay to Evaluate the Wound Healing
Ability of Lp2621
The scratch assay was carried out according to Vaid et al.
(2020), with slight modifications. A549 cells (1 × 106 cells/well)
were grown in the RPMI culture medium with 10% FBS in six-
well plates and incubated overnight at 37°C in a humidified
CO2 incubator. After incubation, the medium was removed
completely, and a scratch was created on the adherent cell layer
in each well by using a sterile 200 μl pipette tip. The wells were
washed with 1X PBS to remove cellular debris. The RPMI
medium having Lp2621 (grown up to 12 h) at a dose of 12.5
and 6.25% was added to respective wells. The positive and
solvent controls received RPMI supplemented with 10% FBS
and RPMI with 10% FBS and 12.5% MRS broth (used to
prepare Lp2621), respectively. In negative control wells,
only the RPMI medium was added. Photographs of the
scratch area (wound area) were captured at 0, 6, 12, 18,
and 24 h by using a trinocular microscope having a in-built
camera. Data were evaluated to calculate the percent wound
area using ImageJ software (LOCI, the University of
Wisconsin).

2.4.4 Beneficial Role of Lp2621 on H2O2-Induced
Oxidative Stress in A549 Cells
Antioxidant activity of Lp2621 was evaluated by an assay in
which oxidative stress was induced in A549 cells by H2O2 and
the cell viability was evaluated by MTT assay according to Vaid
et al. (2020), with slight modifications. Various concentrations
of Lp2621 (0.78, 1.56, 3.125, 6.25, 12.5, 25, 50, and 100%)

diluted in RPMI having 10% FBS and 1% pen-strep were used
to treat cells in different protocols as mentioned below:

a. Concomitant exposure of A549 cells to both Lp2621 and
1.0 mM H2O2 for 24 h.

b. Exposure of A549 cells to 1.0 mM H2O2 for 4 h followed by
Lp2621 treatment for 24 h.

c. 24 h pretreatment of the A549 cells with Lp2621 followed by
exposure of 1.0 mM H2O2 for 4 h.

2.5 Preparation of Gel Containing Lp2621
Lpb. plantarum (MTCC 2621) was cultured in MRS broth at
37°C. The culture with 1 × 109 CFU/ml was centrifuged at
5000 rpm for 10 min, and the cell-free supernatant was
collected. The gel was formulated by adding 2% carboxy
methyl cellulose (CMC) to the supernatant and was mixed
thoroughly at room temperature until the uniform gel was
formed, and stored at 4°C for further use.

2.6 In Vivo Analysis
2.6.1 Animals
Eight-week-old BALB/c mice (19–25 gmweight) were taken from
the IMTECH Centre for Animal Resources and Experimentation
(iCARE) facility of the institute. Mice were housed in individually
ventilated cages under controlled conditions of temperature
(24–25°C), light (photoperiod of 12:12), and humidity
(30–70%), and were provided pelleted diet and water ad
libitum. Before starting the experiment, randomization of the
animals was done, and the mice were left for a week prior to the
experiment for acclimatization. The study protocol was approved
by the Institutional Animal Ethics Committee (IAEC) of CSIR-
Institute of Microbial Technology (IAEC approval number
IAEC/20/18) and performed as per the principles and
guidelines of the Committee for the Purpose of Supervision of
Experiments on Animals (CPCSEA), Ministry of Fisheries,
Animal Husbandry and Dairying, India.

FIGURE 1 | Flowchart depicting the study design for evaluation of antibacterial, antioxidant, and wound healing potential of Lp2621.
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2.6.2 Skin Irritation Assay
Skin irritation assay was performed to evaluate the safety of Lp2621
gel in BALB/c mice (Draize et al., 1944). The dorsal back of the
mice was shaved to remove hair, without damaging the skin
surface, 24 h before the assay. The mice were divided into three
groups (N � 3) according to the treatment plan, and each group
was having three mice: Group I: 20% sodium lauryl sulfate (SLS)
solution (positive control), Group II: CMC gel (negative control),
and Group III: gel containing Lp2621 and housed individually. The
gel was applied topically to the shaved skin area (approximately
1 cm2), and the applied sites were observed for any dermal
reactions such as erythema and edema at 24, 48, and 72 h post-
application. The mean erythema and edema scores were recorded
based on their degree of severity caused by the application of gel as
follows: no erythema/edema � 0, slight erythema/edema � 1,
moderate erythema/edema � 2, and severe erythema/edema � 3.

2.6.3 Wound Healing Activity of Lp2621
Having shown the antibacterial activity in the agar well diffusion
assay and the wound healing activity of Lp2621 in a scratch assay
using A549 cells, we next planned to conduct two experiments on
the mice to check whether Lp2621 gel would be effective in wound
healing and/or treating wounds infected with S. aureus infection as
well. The mice were anesthetized using isoflurane (gas anesthesia).
The hair on the dorsal side of the skin was removed, and the area
was cleaned and disinfected using 70% ethanol. A full-thickness
excision wound of 8 mm diameter was created in the skin of the

dorsal part of mice with a sterile biopsy punch. The mice were
randomized into three groups (N � 3) having nine mice in each
group (n � 9) viz. vehicle control (CMC), positive control
(betadine), and Lp2621 (test group). Each group of mice
received topical application of the respective treatment twice a
day for 21 days. The study continued up to 21 days, the images of
the wounds were taken at days 0, 7, 14, and 21 of the study, and the
wound area was calculated using ImageJ software. The percent
wound contraction was calculated by the following formula.

Percent wound contraction � Healed area
Total area

X 100. (2)

Three mice were euthanized at days 7 and 14 after treatment
from each group. In the sham control group (n � 3), a wound was
created without applying any treatment, and mice were
euthanized after 24 h. Wound tissues were collected from
different groups of mice and fixed in 10% neutral buffer
formalin (NBF) solution for histopathological studies. Blood
was collected from mice of different groups, and the serum
was isolated and stored at −80°C for cytokine analysis.

2.6.4 Efficacy of Lp2621 Gel on an Excision Wound
Healing Model Infected With S. aureus
The same procedure for induction of a full thickness excision wound
in the skin of the dorsal part of the mice was followed as mentioned
under 2.6.3. Mice (n � 9) were divided into three groups. The grown
S. aureus culture was centrifuged at 5,000 g for 10min, the media

FIGURE 2 | Hemolytic property of Lp2621. The image is a representative of two independent experiments performed in triplicates.
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was discarded, and the pellet was washed twice with PBS. Bacterial
infection was initiated by placing a droplet containing 107 CFU cells
on the excision wound as created earlier. The treatment of the
infectious wound was started 4 h postinfection. Group I was treated
with CMC as the negative control, group II with betadine, and group
III with Lp2621 gel. The gross images of wounds were recorded and
analyzed to calculate the percent wound contraction as described
above. Themice of each group (n � 3) were euthanized at days 7 and
14 of wounding. Blood samples and wound tissues were collected for
analysis of pro- and anti-inflammatory cytokines in serum and
histopathological examination, respectively.

2.6.5 Histopathology
Formalin-fixed wound tissues were processed and dehydrated
with graded alcohol, cleared in xylene, and molded in paraffin.
Sections of 4–5 μm thickness were prepared and stained with
hematoxylin and eosin (H&E), and observed under a light
microscope. The H&E staining was used to evaluate fibroblast
proliferation, vascularization, re-epithelization, collagen
deposition, granulation of tissue formation, and the infiltration
of polymorphonuclear leukocytes (PMNL).

2.6.6 Cytokine Analysis
The cytokines (IL-6 and IL-10) were analyzed using a standard
ELISA method. In a 96-well plate, primary antibodies, namely,
IL-6 (2 μg/ml) and IL-10 (2 μg/ml), were coated in phosphate

buffer (pH-9.2) and left overnight at 4°C. The next day after
washing, sites were blocked with 1% bovine serum albumin for
2 h at 37°C. The plates were washed with phosphate buffer saline
Tween-20, and pooled serum samples (50 µl) (dilution- 1:10)
were added and incubated at 4°C overnight. Then, the
biotinylated antibody was added in dilution buffer (1:1
solution of PBST and 1% BSA) and incubated at 37°C for 2 h.
Streptavidin HRP (1:10,000) was added to each well, and the plate
was incubated for 45 min at 37°C. Then the substrate OPD
(o-phenylenediamine dihydrochloride)-H2O2 (1 mg/ml and
1 μl/ml) was added and observed for color development. The
reaction was stopped using 7% H2SO4, and the reading was taken
at 492 nm in an ELISA plate reader. After every step, washing was
done with PBST.

2.7 Statistical Analysis
The results are expressed as the mean ± SE unless mentioned
otherwise. All statistical analyses were done using the one-way
analysis of variance (ANOVA) (SigmaPlot 11.0 program).

3. RESULTS

3.1 Antibacterial Activity
In the agar well diffusion assay, Lp2621 exhibited distinct zones of
inhibition (inmm) against all tested indicator bacterial strains viz.

FIGURE 3 | Representative microscopic images of the wound area in A549 epithelial cells in scratch assay after 0, 6, 12, 18, and 24 h incubation. Images were
taken using a trinocular microscope having an in-built camera. Analysis was done using ImageJ software.
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FIGURE 4 | Wound healing percent (%) in scratch assay after 6, 12, 18, and 24 h post-treatment with Lp2621. Data are representative of two independent
experiments performed in triplicates and expressed as mean ± SE.*, and # mean p < 0.001 and p � 0.003.

FIGURE 5 | Percent viability of A549 cells treated with Lp2621.

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 7286146

Dubey et al. Antibacterial, Antioxidant, and Wound Healing Potential

114

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


S. aureusMTCC 737 (9.03 ± 0.39),M. luteusMTCC 106 (18.94 ±
0.31), P. aeruginosaMTCC 1934 (10.53 ± 0.59), B. subtilisMTCC
441 (10.48 ± 0.84), and K. pneumoniae MTCC 618 (8.82 ± 0.39),
except E. coli.

3.2 Toxicity Test Using Hemolytic Assay
Lp2621 does not show any hemolytic activity at 0.78–100 percent
concentration. In contrast, Triton X-100 (positive control) caused
the complete lysis of RBCs (Figure 2).

FIGURE 6 |Representative images of the skin irritation assay using Lp2621 at 72 h: (A) positive control, SLS treated, (B) negative control, CMC gel, and (C) treated
with gel containing Lp2621.

FIGURE 7 | Full-thickness excision wounds were created in mice. Representative photographs from the mice showing macroscopic wound closure on different
day’s post-injury.
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3.3 Wound Healing Ability of Lp2621 in A549
Cells Using the Scratch Assay
The treatment of A549 cells with different concentrations (6.25
and 12.5%) of Lp2621 results in faster wound healing than the
positive control after 24 h of treatment (Figure 3). Percent wound
healing is significantly higher in cells treated with Lp2621 than in
various controls (p < 0.001 and p � 0.003) at 18–24 h
posttreatment (Figure 4).

3.4 Antioxidant Activity of Lp2621
Percent viability ofA549 cells after treatmentwith Lp2621 andH2O2 is
presented inFigure 5. Lp2621 exhibits 90–100%protection of the cells

when treated at 12.5, 6.25, and 3.125% concentrations concomitantly
with 1mMH2O2 for 24 h (p< 0.001, p� 0.003 and p� 0.008). On the
contrary, pre-exposure of cells to H2O2 for 4 h followed by treatment
with Lp2621 at similar concentrations results in 60–80% cell viability
(p < 0.001 and p � 0.001). Furthermore, 24 h pretreatment of cells
with Lp2621 (3.125, 1.56, and 0.78%) followed by the exposure to
H2O2 for 4 h results in a decline in cell viability to 60% (p < 0.001).

3.5 In Vivo Analysis
3.5.1 Skin Irritation Assay
Mice treated with negative control and gel containing Lp2621 did
not display any abnormal irritation even after 72 h of application,

FIGURE 8 | Effect of topical treatment of Lp2621 gel; (A)wound area and (B) percent wound contraction at different day’s post-wounding. Data are expressed as
mean ± SD. *mean p � 0.033.

FIGURE 9 | Representative histological images of wounds of various groups on day 1 (A) and day 7 (B–D). (A) sham, (B) vehicle (CMC), (C) positive (betadine), (D) Lp2621
(scale bar � 100 μm). Fibroblasts (black), vascularization (red), re-epithelization (yellow), collagen deposition (arrow head), and granulation of tissue (double-sided arrow).
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whereas mice treated with SLS exhibits severe dermal reactions
such as erythema and edema at the site of application (Figure 6).

3.5.2 Efficacy of Lp2621 Gel on Excision Wound
Healing Model
The results showed that the treatment of the wound with Lp2621 gel
exhibited considerable wound healing as compared to the vehicle
and betadine-treated groups of mice, and is indicated by a reduction
in the wound area as well as percent contraction (p � 0.033) of the
wound (Figure 7 and Figures 8A,B). Histopathological examination
of wound tissues on day 7 (Figure 9) showed an enhanced
proliferation of fibroblasts, vascularization, re-epithelization,
collagen deposition, and the granulation of tissue in betadine-
and Lp2621 gel–treated groups as compared to the vehicle-
treated group. These results were corroborated by
histopathological examination of the tissues, on day 14. The
wound healing was incomplete in vehicle-treated mice, while in
the betadine- and Lp2621 gel–treated groups of mice, the tissue was
completely healed and appears to be histologically normal.

3.5.3 Efficacy of Lp2621 Gel on an Excision Wound
Healing Model Infected With S. aureus
The efficacy of Lp2621 gel on the excision wound in the mice
infected with S. aureus was evaluated. The results show that the

treatment of infected wound with Lp2621 gel leads to a
substantially quicker wound recovery compared to the vehicle
and positive control as evident by a reduction in the wound area
and an increase in the percent contraction (p � 0.002 and p �
0.020) of the wound (Figure 10 and Figures 11A,B). The rate of
wound healing activity was better in betadine- and Lp2621
gel–treated infected wounds than in the untreated infected
wounds as observed on day 7 (Figure 12). The vehicle-treated
infected wound tissues depict persistent inflammatory changes
with the infiltration of inflammatory cells, mainly neutrophils,
granulation of connective tissue in the wound area with
numerous loops of blood vessels, fibroblast proliferation, and
poor re-epithelization (Figure 12A). However, betadine- and
Lp2621 gel–treated infected wound tissues depict re-
epithelization of tissues with a reduced infiltration of
leukocytes, increased fibroblastic activity, collagenation, and
granulation of tissues (Figures 12B,C).

3.5.4 Cytokine Analysis
We further verified the role of Lp2621 in the immunoregulation
of pro- and anti-inflammatory cytokines in the healing of normal
and/or wounds infected with S. aureus infection. As shown in
Figures 13A–D, the serum levels of pro-inflammatory cytokine

FIGURE 10 | Full-thickness excision wounds were created in mice and infected with S. aureus. Representative photographs from mice showing macroscopic
wound closure on different day’s post-injury.
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IL-6 were elevated in the initial phase of wound healing but declined
on day 14. On the contrary, higher levels of IL-10 were observed
during the later phase of wound recovery. However, this variation in
levels of cytokines (IL-6 and IL-10) in normal and/or wounds
infected with S. aureus infection was not statistically significant
between the experimental groups on the respective day of the study.

4. DISCUSSION

In the present study, we assessed the antibacterial, hemolytic,
antioxidant, and the wound healing properties of Lp2621 in A549
cells and excision wounds with and without S. aureus infection
model in mice. Previous studies have reported the probiotic

FIGURE 12 | Histological images of skin tissue from infected wounds on day 7: (A) vehicle (CMC), (B) Positive (betadine), (C) Lp2621 (scale bar � 100 μm).
Fibroblasts (black), vascularization (red), re-epithelization (yellow), collagen deposition (arrow head), and granulation of tissue (double-sided arrow).

FIGURE 11 | Effect of topical treatment of Lp2621 gel on different groups: (A) on wound area infected with S. aureus and (B) percent wound contraction at different
days post-wounding. Data are expressed as mean ± SD. #, and ## mean p � 0.002, and p � 0.020.
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potential (Huang et al., 2013; Pop et al., 2016; Khalil et al., 2018;
Monteiro et al., 2019) and antimicrobial activity of various
Lactobacillus species (Halder et al., 2017; Prabhurajeshwar and
Chandrakanth 2019; Qian et al., 2020) as well as Lpb. plantarum
MTCC 2621 (Sreevani and Kumari 2013). The mechanisms behind
the antibacterial activity of Lactobacillus strains are likely due to the
production of antimicrobial compounds, resistance and competition
for nutrients with other pathogenic bacteria, reduction of bacterial
attachment to the mucosa, and modulation of the host immune
system (Maria Tufail 2011; Giani et al., 2019).

The cutaneous wound healing activity of various Lactobacillus
species has been previously reported in animal studies (Tsiouris
and Tsiouri 2017). Another group demonstrated that the topical
application of live L. reuteri DSM 17938 and its lysate induced
anti-inflammatory activity by reducing the levels of pro-
inflammatory cytokines (IL-6 and IL-8) (Khmaladze et al.,
2019). The antimicrobial and in vivo wound healing potential
of the probiotic VITSAMJ1 in rats has been studied previously
(Sinha et al., 2019). Similar outcomes were observed in the burn
wounds, where topical application of Lpb. plantarum could
promote the wound healing (Satish et al., 2017). Probiotics
such as Lacticaseibacillus paracasei and Lpb. plantarum
significantly enhanced the production of IL-6 in the presence
of IL-1β, an inflammatory cytokine in enterocytes (Caco2 cells),
intermediated through hsp70 and hsp27 heat shock proteins
(Reilly et al., 2007). Our findings (Figures 7–12) are
consistent with the recent work by Khodaii and coworkers,
where the wound healing activity was considerably promoted

by the administration of L. reuteri extract by day 15 post-
wounding (Khodaii et al., 2019). L. reuteri promoted wound
healing via the PI3K/AKT/β-catenin/TGFβ1 pathway (Han et al.,
2019). In another study, Limosilactobacillus fermentum enhanced
the wound healing by promoting the production of anti-
inflammatory and anti-pathogenic factors (Brandi et al., 2020).
Ashoori et al. (2020) observed that the rate of wound healing was
faster in the groups treated with both L. reuteri and L. fermentum
supernatant-loaded chitosan nanogel (Ashoori et al., 2020). The
metabolites of probiotics increased proteoglycan deposition,
angiogenesis, reduced inflammation, and stimulated different
growth factors (Matsumoto et al., 2005; Sonal Sekhar et al., 2014).

The histopathological examination of wound tissues in the
present study (Figure 9 and Figure 12) revealed angiogenesis
and the recruitment of PMNL at the site of injury. These results
are consistent with the earlier findings where a subcutaneous
injection of LS into the mouse caused a continuous influx of
polymorphonuclear leukocytes (PMNL) and macrophages in the
wound area, and stimulated the inflammatory phase of the tissue
repair (Halper et al., 2003). Histological changes were characterized
by the infiltration of polynuclear neutrophils and dilatation of blood
vessels along with a significant decrease in serum levels of pro-
inflammatory cytokines such as IL-1β, IL-6, TNF-α, IL-17, and IL-
22, while an increase in the levels of IL-10 was observed in
Ligilactobacillus salivarius LA307–treated mice (Holowacz et al.,
2018). Lactobacillus bulgaricus and Lpb. plantarum accelerated
wound healing by decreasing IL1β and TNFα, and upregulating
IL-10 expression in diabetic Wistar rats (Mohtashami et al., 2020).

FIGURE 13 | Cytokine levels in the serum sample of mice. (A,B) IL-6 levels in the excision wound and the wound infected with S. aureus. (C,D) IL-10 levels in the
excision wound and the wound infected with S. aureus. Data are representative of two independent experiments performed in duplicates and expressed as mean ± SE.
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The probiotic strains have been consistently reported to modulate
the pro-inflammatory cytokine, IL-6, and upregulate the level of
anti-inflammatory cytokine, IL-10 (Karamese et al., 2016; Holowacz
et al., 2018; Johnson et al., 2020). The favorable histological changes
observed upon the treatment of the wound area with probiotic
strains/extracts such as infiltration of polynuclear neutrophils and
dilation of blood vessels are concomitant to the dynamic levels
observed of IL-6 and is in accordance with the reported modulatory
role (Holowacz et al., 2018; Johnson et al., 2020). Also, increase in
angiogenesis, tissue regeneration, matrix remodeling, and repair are
corroborated to increase in IL-10 and as such help in the regenerative
process (Steen et al., 2020).

The findings of our wound healing study provide evidence that
the topical application of Lp2621 to infected and uninfected
wounds demonstrated rapid healing via enhanced angiogenesis,
proliferation of fibroblasts, re-epithelization, and recruitment of
PMNL. Another key finding of our study is that IL-6 level was
elevated in the initial phase of wound healing followed by a decline
by day 14. On the contrary, higher level of IL-10 was observed
during the later phase of wound healing. The findings thus
underscore the importance of cell-free supernatant of probiotic
bacteria, Lpb. plantarum 2621 in treating both normal and S.
aureus–infected wounds. These findings, therefore, suggest that
probiotics and/or their metabolites have potential for the treatment
of drug-resistant bacteria. Future research will be directed toward
the development of probiotics/consortia of probiotics and their
metabolites as alternatives to antibiotics for the effective treatment
of drug-resistant bacteria, thereby thwarting the serious global
threat of antimicrobial resistance.
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Systemic lupus erythematosus (SLE) is a kind of chronic diffuse connective tissue illness
characterized by multisystem and multiorgan involvement, repeated recurrence and
remission, and the presence of a large pool of autoantibodies in the body. Although
the exact cause of SLE is not thoroughly revealed, accumulating evidence has manifested
that intake of probiotics alters the composition of the gut microbiome, regulating the
immunomodulatory and inflammatory response, which may be linked to the disease
pathogenesis. Particularly, documented experiments demonstrated that SLE patients
have remarkable changes in gut microbiota compared to healthy controls, indicating that
the alteration of microbiota may be implicated in different phases of SLE. In this review, the
alteration of microbiota in the development of SLE is summarized, and the mechanism of
intestinal microbiota on the progression of immune and inflammatory responses in SLE is
also discussed. Due to limited reports on the effects of probiotics supplementation in SLE
patients, we emphasize advancements made in the last few years on the function and
mechanisms of probiotics in the development of SLE animal models. Besides, we follow
through literature to survey whether probiotics supplements can be an adjuvant therapy for
comprehensive treatment of SLE. Research has indicated that intake of probiotics alters
the composition of the gut microbiome, contributing to prevent the progression of SLE.
Adjustment of the gut microbiome through probiotics supplementation seems to alleviate
SLE symptoms and their cardiovascular and renal complications in animal models,
marking this treatment as a potentially novel approach.

Keywords: autoimmunity, microbiota, probiotics, systemic lupus erythematosus, inflammation

INTRODUCTION

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease, where a large pool of
autoantibodies are produced, causing the immune system to attack its tissues, resulting in damage to
multiple organs and systems throughout the body (Mu et al., 2015; Yacoub et al., 2018). Its main
clinical features are multiple systems and organs involvement, repeated relapse and remission, and
the development of a large pool of autoantibodies against double-stranded (ds) DNA (Lisnevskaia
et al., 2014; Durcan et al., 2019; Fava and Petri, 2019). Individuals affected by SLE have extensive
symptoms and course of the disease, the most frequent of which are fever, fatigue, facial butterfly
erythema, photosensitivity, muscle or joint pain, arthritis, and renal symptoms (Goldblatt and
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O’Neill, 2013). Moreover, patients with SLE have an increased
incidence of atherosclerosis, thrombosis, arteritis, embolization,
and vascular spasm (Kasselman et al., 2018). The most lethal
outcomes in SLE patients are infection, severe multiple organ
injury, especially damage to the nervous system and kidney (Lee
et al., 2016; Yen et al., 2017). Production of the immune response
in SLE is distinguished by an overreaction of B cell and T cell
responses, and impaired self-tolerance to autoantigens.
(Lisnevskaia et al., 2014; Durcan et al., 2019; Fava and Petri,
2019; Kiriakidou and Ching, 2020). The prevalence of SLE varies
widely from region to region, with the current global prevalence
approaching or even above 50 to 241 per 100,000 adults, among
which the prevalence rates of African Americans, American
Indians, and Alaska Natives are higher (Helmick et al., 2008;
Ferucci et al., 2014; Somers et al., 2014; Rees et al., 2017;
Nikolopoulos et al., 2020). The prevalence of SLE is higher
among African Americans and Europe, which is less prevalent
in Africa (Symmons, 1995; Pons-Estel et al., 2010). The severity of
the disease may also vary by ethnic background, with patients of
African and Latin American descent commonly more severe
(Carter et al., 2016). Particularly, SLE is strikingly dominated
by women of childbearing age, with nearly 10 female patients for
every male suffering from the disease (Carter et al., 2016; Durcan
et al., 2019; Fava and Petri, 2019; Fanouriakis et al., 2021). Among
women aged 15 to 44, the ratio of women to men is 13:1 while the
ratio is only 2:1 between children and the elderly (Petri, 2002;
Danchenko et al., 2006).

A variety of medications are applied to SLE therapy, including
glucocorticoids (GCs), antimalarial agents, nonsteroidal anti-
inflammatory drugs (NSAIDs), immunosuppressive agents,
and B cell–targeting biologics. NSAIDs block the synthesis of
prostaglandins by attenuating the enzymes cyclooxygenases
(COX-1 and COX-2) to counter inflammation and pain. The
adverse reactions with the highest incidence of this drug are
gastrointestinal gastritis, nephrotoxicity, fluid retention
(Kiriakidou and Ching, 2020). Hydroxychloroquine is the
cornerstone of lupus treatment (Kiriakidou and Ching, 2020).
Hydroxychloroquine or other antimalarial agents have the effect
of immunomodulatory and antithrombotic (Chrisman et al.,
1976; Espinola et al., 2002; Wang et al., 2019). But the drugs
can induce retinopathy, skin pigmentation, and rare cases of
neuromuscular or cardiac toxicity (Marmor et al., 2016). GCs are
the most commonly used agents in SLE-induced remission
therapy and are consistently recommended by the guidelines
as first-line agents for the control of SLE. (Gordon et al., 2018;
Fanouriakis et al., 2019; Kiriakidou and Ching, 2020). The side
effects that may occur after taking GCs are gastrointestinal
adverse reaction, metabolic disorders, infections, weight gain,
hypertension, psychiatric disorders, lipodystrophy, fractures, and
adrenal suppression, which are mainly dose and time-dependent
(Saag et al., 1994; van Staa et al., 2002; Wei et al., 2004; Da Silva
et al., 2006; Warrington and Bostwick, 2006; Dixon et al., 2011;
Sarnes et al., 2011). Furthermore, immunosuppressant therapy is
suggested for SLE patients who continue to respond poorly to
GCs and hydroxychloroquine combination therapy, or who
cannot adjust the dose of GCs to a relatively safe dose.
Immunosuppressive agents such as methotrexate inhibit DNA

synthesis and increase the release of adenosine, but some patients
were forced to stop using the drug because of intolerance to
adverse reactions (Kiriakidou and Ching, 2020). What occurs
most after the application of methotrexate are gastrointestinal
side effects (nausea, vomiting, diarrhea), hepatotoxicity, and
blood-related toxicity (anemia, leucopenia) (Sakthiswary and
Suresh, 2014; Andreoli et al., 2017). For patients with
refractory (ineffective after conventional treatment) or
recurrent SLE, the administration of biological agents can
reduce disease activity, disease recurrence rate and reduce
hormone dosage (Wei et al., 2016; Alshaiki et al., 2018).
Belimumab targets B-lymphocyte stimulator inhibits
B-lymphocyte proliferation and activation (van Vollenhoven
et al., 2012), but its common adverse effects are
hypersensitivity reaction, gastrointestinal toxicity, myalgias,
depression, migraine, infection (Lee and Song, 2018;
Peterknecht et al., 2018). Rituximab depletes CD20-expressing
B lymphocytes, but patients may occur an infusion reaction,
infection, progressive multifocal leukoencephalopathy (rare)
(Alshaiki et al., 2018; Peterknecht et al., 2018). In addition,
other measures can be used to treat SLE. When SLE develops
to severe or refractory levels, the addition of plasma exchange or
DNA immunosorbent as adjunct therapy may be considered,
which may ameliorate clinical symptoms rapidly but cannot
improve the outcome (Kronbichler et al., 2016). In summary,
all the medicines used in the treatment of SLE induce adverse
reactions, whereas, probiotics supplementation appears to have
no significant side effects clinically. Hence, it is necessary to
further investigate probiotics for the exploration of theoretical
basis as adjuvant therapy in SLE patients.

The precise pathogenesis of SLE is not entirely revealed, it is
believed to be caused by the human immune system attacking
self-tissues after being abnormally activated. The pathogenesis of
SLE may be related to genetic, hormones and, environmental
factors (infection, drugs, UVA light) (De Luca and Shoenfeld,
2019). Nevertheless, with research on intestinal flora
dysregulation going depth recently, dysbiosis as a vital internal
environmental factor has also been shown to be concerned with
SLE (Meng et al., 2019). In 1994, Apperloo-Renkema et al. first
demonstrated experimentally that alterations in intestinal
microbiota composition can cause SLE in animal models,
possibly due to a weakened defense of native gut microbes
against foreign bacteria (Apperloo-Renkema et al., 1994).
Repeated antigen stimulation may lead to changes in intestinal
microecology, confusion of the immune system, and the body
subsequently attacks its tissue by producing antibodies or
sensitized lymphocytes (Zhang and Reichlin, 2008). The
production of these antibodies is exacerbated by extensive
inflammatory responses, which leads to a range of clinical
symptoms and further complications associated with SLE
(Zhang and Reichlin, 2008). Long-term use of probiotics is
believed to neutralize an imbalance in the gut microbiota that
results in the reduced antibody production and suppressed
inflammatory response, leading to attenuation of severity,
signs and, manifestation of SLE (Esmaeili et al., 2017). In a
study assessing the resistance of intestinal microbiota to
pathogen colonization in SLE patients and healthy controls,
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the colonization resistance of patients with active SLE is lower
than that of healthy people, which indicates that the incomplete
normal intestinal microbiota may lead to more intestinal
transfection of pathogenic bacteria (Apperloo-Renkema et al.,
1994). The study presented above confirmed that the balance of
intestinal microbiota is associated with the pathogenesis of SLE,
but it is still unclear whether administering probiotics to restore
normal intestinal flora and reduce inflammation may have
therapeutic benefits for SLE patients or not (van der Meulen
et al., 2016).

In brief, raising an understanding of how to ameliorate gut
dysbiosis could help explore an alternative approach to prevent or
alleviate SLE. Therefore, the alteration of microbiota associated with
SLE was reviewed and the function and mechanisms of probiotics in
the development of SLE animal models were also discussed.

AN INFLAMMATORY PATHWAY OF SLE

SLE is a multifactorial caused disease, and the pathogenesis is
considered to be related to hormonal, environmental and genetic
factors that lead to an intolerance to autoantigens (Rahman and
Isenberg, 2008; De Luca and Shoenfeld, 2019). SLE is featured by
the generation of autoantibodies, aggregation of autoreactive and
inflammatory T cells, and abnormal production of inflammatory
cells and pro-inflammatory cytokines (Buckner, 2010; Tsokos,
2011; Rastin et al., 2013). Autoantibodies produced by
autoimmune B cells bring about the generation and
accumulation of immunocomplex which do harm to multiple
organs, containing the skin, joints, heart, kidneys, and brain
(Zhang and Reichlin, 2008; Tsokos, 2011). Although SLE is
regarded as mainly B cells mediated disease, there is some
evidence indicating the significance of unbalanced regulatory T
(Treg) cells in the development of SLE (Buckner, 2010; Ma et al.,
2010; Talaat et al., 2015). In addition, it has been proven that
improved T helper cell 17 (Th17) amount and effect play a crucial
role by secreting pro-inflammatory cytokines, such as interleukin
(IL)-17 and IL-23), as the primary trigger of autoimmune
response, and these cytokines are related to the inflammatory
formation and tissue damage in SLE (Crispín et al., 2008; Doreau
et al., 2009; Chen et al., 2010; Pan et al., 2013). Studies have
demonstrated that strengthening Treg cells restrain abnormal
reactions of effector T cells, which can steadfastly alleviate
autoimmune and inflammatory responses (Shevach, 2009; Lavi
Arab et al., 2015; Reihani et al., 2015). It has been identified that
patients with SLE have decreased numbers and functional
deficiencies of Tregs as well as the resistance of effector T cells
to the inhibitory effects of Tregs, which exert significant effects in
the pathogenesis of SLE (Lyssuk et al., 2007; Valencia et al., 2007;
Gómez et al., 2009; Esmaeili et al., 2017). It is reported that anti-
inflammatory cytokines, such as transforming growth factor β
(TGF-β) and pro-inflammatory cytokines, including IL-6, IFN-γ,
and IL-23/IL-17 are drastic in every developmental stage of SLE
(Su et al., 2012). Therefore, restoration of unbalanced cytokines
and defective immune cells may be a potential remedial strategy
for alleviating SLE manifestations (Esmaeili et al., 2017).

THE MICROBIOME AND PROBIOTICS

The Gut Microbiota
The intestine contains the largest complex mic-ecosystem in
humans, which can be regarded as an independent organ in
the body (Van de Wiele et al., 2016). According to high-
throughput culture-independent sequencing analysis, the
microbiome of the gut tract is more complicated than those of
other parts of the body, with over 1,000 microorganisms
identified so far, and the total biomass is close to
1,000 colony-forming units 1013∼1014(CUF) (Claesson et al.,
2009; Sankar et al., 2015). The intestine microbiota is
dominated mainly by two phyla (approximately 90%)
Firmicutes and Bacteroidetes, and the rest is involved in
Actinobacteria, Proteobacteria, Synergistetes, Verrucomicrobia,
Fusobacteria, and so on (Eckburg et al., 2005; de la Visitación
et al., 2019). The existing methanogenic archaea, yeasts, and
viruses (mainly phages) increase the complexity of the gut
microbiota (Lozupone et al., 2012). Although only two phyla
have predominance in the gut microbiota, there are striking
differences in the intestinal microecology between people and
people across different life cycles (Van de Wiele et al., 2016).
Individual diversity in host genes, mode of delivery and lactation,
geographic origin, age, diet, disease, drug uptake, and lifestyle
contribute to differences in intestine microbiota composition
(Ley, 2015). With the development of the functional
characteristics of individual microbiota, growing evidence
shows that the gut microbiota participated in critical activities
related to disease and health. It has been proven that the functions
of the human gut bacteria are to affect digestion, provide
nutrients, form intestinal barriers and produce colonization
resistance, regulate the development of intestinal epithelium,
as well as to modulate the activation and progression of the
immune system (Van de Wiele et al., 2016).

Therefore, any factors that disrupt the host-microbial balance
(such as acute alters in dietary behavior; malnutrition; pathogen
infection; inflammation; administration of anti-biological drugs;
gastrointestinal surgery; etc.) may influence the homeostasis of
microbiota which exerts a significant impact on the regulation of
host immune functions (Ogura et al., 2003; Cho, 2008; De Filippo
et al., 2010; Delzenne et al., 2011).

Probiotics
Probiotics are living organisms that regulate the gut microbiome
in various ways to improve intestinal health. Probiotics can affect
immune homeostasis by keeping a healthy microbial balance, and
can also adjust mucus secretion through intestinal epithelial cells,
thereby contributing to maintaining the stability of the mucus
barrier and providing resistance to pathogen colonization (Bron
et al., 2017; de Oliveira et al., 2017). Besides, Probiotics can
promote the generation of multiple nutrients such as SCFAs and
vitamins, which contribute to form the entire host intestinal
microbiome (Yadav et al., 2013; de Oliveira et al., 2017).
Moreover, probiotics participate in the degradation of toxic
compounds and the production of antimicrobial compounds,
like bacteriocins (de Oliveira et al., 2017). Therefore, these
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probiotics can be used as a treatment option for immune-related
diseases (Balakrishnan and Taneja, 2018).

Probiotics have been widely evaluated for their benefits in
preventing or treating extensive diseases, including infection,
inflammation, cancer, and autoimmune diseases in animal and
human trails (Borchers et al., 2009). The recorded probiotic-
inducing impacts include suppression of infection, immune
regulation, prolonged remission of patients with ulcerative
colitis, treating or preventing infective or antibiotic-associated
diarrhea in both adults and infants, assisting in the eradication of
Helicobacter pylori, improving nonalcoholic fatty liver disease
and metabolic diseases, reducing the recurrence rate of colorectal
cancer and alleviating lactose intolerance symptoms (de Vrese
et al., 2001; Van Niel et al., 2002; Bengmark, 2003; Gill, 2003;
Gionchetti et al., 2003; Kalliomäki et al., 2003; Tamboli et al.,
2003). Probiotics have been reported to exert their beneficial
effects mainly in three ways, containing competitive exclusion,
antibacterial action, and regulation of immune responses. It has
been found that the administration of immunoregulatory
probiotics in the prevention or treatment of autoimmune
diseases is mainly attributable to improving the inflammatory
responses and modulating tolerance in the host to pathogens
(Esmaeili et al., 2017).

Mechanism of Action of Probiotics
It has been discovered that probiotics influence each segment of
the intestine, containing the intraluminal microbiota, the
epithelial microbial, mucosal barrier, the lamina propria rich
in lymphocytes and plasma cells, the blood vessels and nerves of
lamina propria components, the underlying smooth muscles
commanding movement and the mesenteric lymph nodes
associated with systemic immunity (Liu et al., 2018). In
mechanism, immunomodulatory probiotics are known to
prevent inflammation and modulate immunity to improve SLE
symptoms (Liu et al., 2018). As Liu et al. (Liu et al., 2018)
summarized that short-chain fatty acids (SCFAs) generated by
bifidobacterium, lactobacillus, and symbiotic bacteria combine
and activate receptors (FFAR2, FFAR3, or GPR109a) on
enterocytes to inhibit inflammatory responses by blocking
nuclear factor-κ-light chain enhancer of B cells activation
pathway. SCFAs also suppress histone deacetylases to facilitate
amassing of Tregs and discharge glucagon-like protein-1/peptide
tyrosine to respond to the enteric and central nervous system,
thereby affecting intestinal homeostasis and motion. They also
induce tolerogenic dendritic cells (DCs), which induce immature
CD4+ T cells to differentiate into Tregs. The above response
restraint the generation of cytokines via neutrophils and
macrophages by binding to receptors. Adenosine and its
derivative inosine interact with adenosine receptor-2A
expressed on T cells to enhance Treg effects and suppress
TH1 and TH17 subsets inflammation. Histamine generated by
L. reuteri 6475 reacts on H2 receptor located in intestinal
epithelial cells and macrophages to decrease the secretion of
proinflammatory cytokines, containing tumor necrosis factor
(TNF)-α, MCP (monocyte chemoattractant protein)-1, and IL-
12. In conclusion, the pivotal metabolites generated by probiotics

exhibit anti-inflammatory properties and improvement of the
intestinal barrier function during the disease.

THE MICROBIOTA STUDIES IN SLE

Studies that described the microbiota of SLE are relatively limited,
although the increasing prevalence of Crohn’s disease (CD) in
patients with SLE (Shor et al., 2016) has sparked interest in its
involvement. Although the pathogenesis of SLE is not completely
understood, an imbalance in the microbiome has beenmanifested
to be associated with the establishment of SLE (Hevia et al., 2014;
De Luca and Shoenfeld, 2019). Until now, human studies that
investigate the connection between the microbiome and SLE
initiation are observational case-control studies that compare
differences of the human microbiome in areas like the gut or
buccal cavity between SLE patients and controls (Arron et al.,
2014; Hevia et al., 2014; Zhang et al., 2015; López et al., 2016).
Therefore, revealing the microbial composition and possible
function of these microbes in SLE patients may illuminate the
cause and development, and may even find diagnostic
biomarkers.

SLE patients have compositional and functional alterations in
gut microbiota, possibly due to a weakened defense of native gut
microbes against foreign bacteria (Apperloo-Renkema et al.,
1994). Noticeable increase of several genera, including
Rhodococcus, Klebsiella, Eggerthella, Prevotella, Eubacterium,
and Flavonifractor, has been found in patients with SLE,
whereas, Dialister and Pseudobutyrivibrio decreased (Hevia
et al., 2014; He et al., 2016; Chen et al., 2017). Quantitative
polymerase chain reaction analysis confirmed that the ratio of
Firmicutes to Bacteroidetes was lower in patients with SLE, and
the abundance of some families of Firmicutes was decreased
(López et al., 2016) (Hevia et al., 2014; Neuman and Koren,
2017; van der Meulen et al., 2019) (Table 1). Such alterations are
also present in other diseases, such as Crohn’s disease and type 2
diabetes mellitus (Man et al., 2011), suggesting that an overall
imbalanced microbiota state is not specific to SLE (Larsen et al.,
2010). A similar study on the composition of gut microbiota in 45
Chinese patients with SLE was in accordance with the results
mentioned above, showing lower Firmicutes and higher
Bacteroidetes in SLE patients (He et al., 2016). Downregulating
inflammation can be achieved in several ways, such as elimination
of apoptotic cells and cell debris, clearance of oxidized lipids, and
blocking the stimulation of mitogen-activated protein kinase
(MAPK) and other pro-inflammatory cytokines (Grönwall
et al., 2012; López et al., 2016). As the anti-dsDNA titer
increased, the frequency of the Synergistetes, which was
positively associated with the rate of Firmicutes to
Bacteroidetes in healthy controls, verged to decrease in SLE
patients and was present a significantly negative association
with the level of proinflammatory cytokines IL-6 in serum,
meanwhile, correlating positively with natural protective IgM
anti-phosphorylcholine secreted by B1 cells (López et al., 2016).

In female SLE patients, studies have shown the abundances of
Lactobacillaceae decreases, while the levels of Lachnospiraceae
increase, both of which belong to the Firmicutes phylum (Zhang
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et al., 2014; Mu et al., 2015; Neuman and Koren, 2017). Notably,
comthe level of abutyrate-producing bacterium Lachnospiraceae
was augmenter in SLE patients compared with healthy controls,
thus Lachnospiraceae or any bacterium that produces butyrate
may be unable to inhibit inflammation in SLE cases (Kakiyama
et al., 2013; Zhang et al., 2014; Kasselman et al., 2018; Luo et al.,
2018). Further, patients with SLE tend to generate more CD25high

cells, whereas Bifidobacterium bifidum (B. bifidum) strain can
revert to the up regulatory effect (López et al., 2016). On the other
hand, the microbiota isolated from the feces of SLE patients has
been found to accelerate the activation of lymphocytes and the
differentiation of Th17 from primitive CD4+ lymphocytes (López
et al., 2016). Additionally, B. bifidum may prevent lymphocyte
activation whereas mixtures of two Clostridia strains
supplementation, including Ruminococcus obeum DSM25238
and Blautia coccoides DSM935, restore Th17/Th1 balance
(Atarashi et al., 2011; Atarashi et al., 2013; López et al., 2016).
Alternatively, increased numbers of Selenomonas, Veillonella, T.
denticola, and Leptotrichia are directly associated with raised
concentrations of inflammatory factors like IL-6, IL-17, and IL-
33, which are indicative of a decline in oral microbial species
diversity in SLE patients (Corrêa et al., 2017).

ROLES OF PROBIOTICS AGAINST SLE

As a result of the above-mentioned findings, researchers believe
that SLE treatment with probiotics (Table 2), has already

presented some benefits like in other autoimmune diseases,
can help ameliorate the symptomatology of disease (Schiffer
et al., 2011; Zamani et al., 2016). Studies in animal and
human trials have identified the potential benefits of probiotics
in the alleviation and suppression of inflammation and
autoimmune responses (Liu et al., 2018). Research in the SLE
animal model has demonstrated that certain probiotic strains,
including B. bifidum, Lactobacillus, Ruminococcus obeum, and
Blautia coccoides, contribute to regulating excessive inflammation
and restore tolerances (Esmaeili et al., 2017).

Researchers found that enteral administration of
combinations of lactobacilli or L. reuteri alone in MRL/LPR
mice, SLE mouse models, can skew the balance of Treg–Th17
toward Treg cell advantage in the kidneys, reduce endotoxemia,
decrease the concentrations of dsDNA-reactive IgG, decrease
urinary protein, and ameliorate the survival rate of patients
(Mu et al., 2017). These outcomes were related to a shift in
intestinal microbiota and extension of Lactobacilli, Clostridiales,
and Desulfovibrionales. Mu et al. (2017) found that Lactobacillus
spp. supplementation plays an anti-inflammatory role through
reducing IL-6 and enhancing IL-10 generation in the intestine.
The supplement of therapeutic Lactobacillus enhanced
circulating IL-10 and declined IgG2a, which is regarded as a
main immune deposition in MRL/lpr mice kidney. These benefits
were observed in female and unsexed male mice, rather than in
male functional mice, indicating that intestinal flora may regulate
inflammation in a sex hormone-dependent pattern. According to
Mardani et al.(2018), the consumption of Lactobacillus

TABLE 1 | The shift of microbiota in SLE.

Bacteria Changes Mechanism of pathogenesis/potential
metabolic function/other associations

Ref

Bifidobacterium bifidum ↑ • prevents excessive activation of CD4(+) lymphocyte López et al. (2011); López et al. (2016)
• generates fewer CD25high cells
• generates IL-17, Th17, and functional Treg
• reduces IFNc and TNFa
• reverts the up regulatory effect on CD25 expression
• reduces the percentage of Foxp3+ cells included within the CD25high

population
• induces phenotypic DC maturation

Clostridia strains* ↑ • restores Th17/Th1 balance López et al. (2016)
• reduces the IL-17/IFNγ ratio induced by DCs
• reduces the IL-17/IFNγ balance

F/B ratio ↓ • increases inflammation Hevia et al. (2014); Neuman and Koren (2017);
van der Meulen et al. (2019)• overrepresents oxidative phosphorylation and glycan utilization pathways

• some effects are species-dependent

Bacteroidetes ↑ • glycan-degrading activity Hevia et al. (2014)
• associated mucin-degrading sulfatase activity contributing to impaired

epithelial cell layer and chronic inflammation

Firmicutes ↓ • produces butyrate Hevia et al. (2014)
Prevotella spp. ↑ • considered a gut commensal associated with a fiber-rich diet He et al. (2016); Ley (2016); Chen et al. (2017)

• SCFA producer

Eggerthella
(Coriobacteriaceae)

↑ • Not well characterized yet Gardiner et al. (2015); He et al. (2016)
• believed to be an emerging pathogen

Abbreviations: F/B, Firmicutes/Bacteroidetes; TH, T helper; DC, Dendritic Cells; IL, interleukin; IFN, interferon; Foxp3+, forkhead Box P3+; ↓, decrease; ↑, increase; *, Twomixed strains of
clostridium (Ruminococcus obeum DSM25238 and Blautia coccoides DSM935).
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delbrueckii and actobacillus rhamnosusin to Female pristane-
induced BALB/c mice improved the symptoms of SLE, exhibit
anti-inflammatory properties by attenuating the generation of
Th7 and down-regulating its major cytokines of IL-17a, one of the
critical mediators in the formation and progression of
inflammation.

L. reuteri GMNL 263 can down-regulate cytokine levels and
repaired Tregs in NZB/W F1 mouse model, which is
distinguished by oxidative stress and reduction of regulatory

Tregs levels in circulation (Tzang et al., 2017; Liu et al., 2018).
Alternatively, L. GMNL 263(GMNL 263) showed a diverse
mechanism in the NZB/W F1mouse model of SLE (Tzang
et al., 2017). These probiotics strains can enhance the
production of Treg lymphocytes and the levels of transcription
factor fork head box P3 (FoxP3), which is the hallmark of a
natural Treg. These cells are in charge of regulating these pro-
inflammatory lymphocytes and have significant anti-
inflammatory characteristics. Besides, TLR-4, TLR-5, TLR-7,

TABLE 2 | Effects of probiotics in SLE animal models.

Probiotic strain Model Effects Ref.

Lactobacillus strains* MRL/lpr, mice • suppresses the generation of IL-6 IL-10 Mu et al. (2017)
• decreases the production and renal deposition of

pathogenic IgG2a
• suppresses pathogenic Th 17 cells
• increase Treg cells
• rebalances T cell subsets in the kidney

Lactobacillus Female pristane-induced BALB/c
mice

• decreases IL-6 Mardani et al. (2018); Khorasani
et al., 2019)• reduces Th1–Th17 polarization

• reduces the number of Th17 cells
• decreases the expression of IL-17 mRNA and IL-17

protein levels
• decreases the level of anti-dsDNA, ANA, anti-RAP
• enhances Tregs and the expression level of FoxP3

Lactobacillus reuteri
GMNL 263

NZB/W F1 • decreases TLR-4, TLR-5, TLR-7, and TLR-9 Hsu et al. (2017); Tzang et al. (2017)
• declines the generation of IL-1β, IL-6, and TNF-α
• increases the differentiation of CD4+CD25 + FoxP3+

T cells
• increases the proportion of CD4+CD25 + T cells in

CD4+T cells
• increases the mRNA level of Foxp3 in CD4+CD25 +

T cells

Lactobacillus paracasei
GMNL 32

NZB/W F1 • reduces the expression of IL-1β, IL-6, and TNF-α Hsu et al. (2017); Hu et al. (2017);
Tzang et al. (2017)• down-regulates TLR-4, TLR-5, TLR-7, and TLR-9

• increases heart weight and the ventricular wall
thickness

Heat-Killed Lactobacillus
reuteri GMNL-263

NZB/W F1 • reduces TUNEL-positive cells, Fas death receptor-
related elements, and TNF-R1

Yeh et al. (2021)

• increases the levels of survival protein phospho-AKT
• decreases MMP-9 and the levels of MMP-9 proteins

Lactobacillus fermentum
CECT5716

NZB/W F1 • reduces the elevated T, B, Treg, and Th-1 cells in
mesenteric lymph nodes

Toral et al. (2019); de la Visitación
et al. (2020)

• decreases the plasma levels of IL-17a, IL-10, IFN-g,
TNF-a, and IL-2 to normal levels

• decreases gene expression of IL-6, IL-β, THF-α, and
TLR-4 in the aorta

Bacteroides fragilis ATCC
25285

Female C57BL/6J and B6.MRL-
Faslpr/J lupus-prone mice

• reduces the production of TNF-α, IL-6, and MCP-1 Li et al. (2020)
• promotes CD1d production in B cells by Est-1 pathway
• inhibits CD86 expression to repair the immune

response of B cells
• decreases the level of anti-dsDNA, total IgM, total IgG,

BUN, Cre, and RBP in serum
• increases CD1d expression level

Abbreviations: IL, interleukin; Th, T-helper; Treg, regulatory T cells; Foxp3, forkhead Box P3; ANA; TNF, tumor necrosis factor; TLR, toll-like receptor; TNF, tumor necrosis factor; TUNEL,
terminal deoxynucleotidyl transferase, 2′-deoxyuridine, 5′-triphosphate (dUTP)-mediated nick-end labeling; MMP-9, matrix metallopeptidase 9; MCP,monocyte chemoattractant protein-
1; BUN, blood urea nitrogen; *, A mixture of 5 Lactobacillus strains (L. oris, L. rhamnosus, L. reuteri, LactobaCallus johnsonii, and L. gasseri).
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and TLR-9, which are the common pathogen-associated
molecular pattern receptors that mediate the inflammation
progression in the liver, were decreased and the antioxidant
activity was increased under probiotics treatment (Hsu et al.,
2017; Tzang et al., 2017). In addition, GMNL 263 also promoted
the differentiation of CD4+CD25+FoxP3+ T cells and the
proportion of CD4+CD25+ T cells number in CD4+T cells of
spleen and enhanced the expression of Foxp3 mRNA in
CD4+CD25+ T cells (Hsu et al., 2017).

In similar trials, the above alterations of TLRs and oxidative
stress were also found using probiotics L. paracasei GMNL
32(GMNL-32) and L. reuteri GMNL 89, although GMNL 263
presented an effect on Treg expression in those cases (Hsu et al.,
2017). The SLE-associated inflammation was also decreased with
the administration of these probiotics, through enhancing the
activity of antioxidation in serum and levels of CD4+CD25 +

regulatory T cells in NZB/W F1 mice (Tzang et al., 2017).
Moreover, in the treatment of these three probiotics strains,
pro-inflammatory cytokines IL-1β, TNF-α, and IL-6 declined
in the liver by inhibiting nuclear factor kB (NF-κB) and the
signaling pathway of mitogen-activated protein kinase (Hsu et al.,
2017; Hu et al., 2017). Specifically, GMNL-32 supplement
attenuated left ventricular hypertrophy and the cardiac cell
apoptosis in this genetic model of lupus (Hu et al., 2017;
Tzang et al., 2017). These results indicated that oral
supplement of several probiotic strains, such as GMNL32, L.
reuteri GMNL-89, and L. reuteri GMNL263, to NZB/W F1 mice
can not only mitigates hepatic inflammation and apoptosis
caused by SLE, but also presents a protective function on
cardiac cells of lupus-prone mice (Hsu et al., 2017; Hu et al.,
2017; Tzang et al., 2017).

Yeh et al. (2021) first revealed the preventive effect of Heat-
killed L. reuteri GMNL-263 on expanded interstitial spaces
and abnormal myocardial structures in the hearts of NZB/W
F1 mice, and lowered area of fibrosis and rescues
cardiomyocyte arrangement, which demonstrate the clinical
applications of the Lactobacillus in SLE-related cardiovascular
diseases therapy. Because Heat-Killed L. reuteri GMNL263
prevented the development of the proinflammatory response,
cardiac and renal hypertrophy complications in SLE were
averted (Yeh et al., 2021). Compared with the controls, the
anti-apoptotic effects were observed in the NZB/W F1 mice,
and the significant declines of TUNEL-positive cells, Fas death
receptor-related elements, and apoptosis were also detected
after the consumption of GMNL-263. Additionally,
administration of L. reuteri GMNL-263 to NZB/W F1mice
present markedly higher levels of phospho-AKT (survival
protein) than in NZB/W F1 control group. In fact, feeding
L. Paracasei GMNL 32 was also detected to exhibit a similar
protective pathway and prevent cardiac complications
associated with SLE in NZB/W F1 mice. The Heat-killed L.
reuteri GMNL-263 was a kind of dead bacteria, which was
killed after heat treatment at 121°C for 5 min in 0.9% sterile
NaCl and were made into powder freeze-dried. During the
experiment, the powder was dissolved into a probiotic
solution and fed to mice. Live probiotics provide barrier
protection and immune system modulation; while

components of dead cells exert an anti-inflammatory
response in the gastrointestinal tract. Both live and dead
probiotics can exert specific actions. To sum up, both L.
reuteri GMNL-263 and L. paracasei GMNL 32 have been
observed to exert cardioprotective properties by reducing
TNF-R1, Fas-associated protein with death domain
(FADD) and fibrosis proteins matrix metallopeptidase 9
(MMP-9).

Research has found L. fermentum CECT5716(LC40) protects
the kidney and cardiovascular complications as well as disease
activity in a female mouse model of SLE (Toral et al., 2019; de la
Visitación et al., 2020). The administration of the immune-
modulatory bacterium LC40 could increase the number of
Bifidobacterium in the intestine of female NZB/WF1 mice.
LC40 can reduce the activity of lupus and splenomegaly in
SLE mice, improving the integrity of the intestinal barrier,
reducing the plasma level of lipopolysaccharide (LPS), and
subsequently decreasing the immune activation, which was
characterized by reduced T and B cells in mesenteric lymph
nodes (MLNs) and declined plasma pro-inflammatory factors,
containing TNF-α, IFN-γ, IL-17a, and IL-21. Since probiotics
prevented the progression of proinflammatory responses,
complications related to SLE, such as cardiac and renal
hyperplasia, were prevented (Toral et al., 2019). Another
research reported that treatment with LC40 decreased the
enhanced plasma anti-dsDNA, endotoxemia, and hypertension
in NZB/WF1 mice. Meanwhile, LC40 also protected lupus mice
from deterioration in renal function and kidney damage, as well
as suppressing immune-complex deposition and inflammatory
infiltration in glomerular, tubulointerstitial, and vascular lesions
(de la Visitación et al., 2020).

In one recent experiment conducted by Li et al. (2020), oral
supplementation of Bacteroides fragilis (B. fragilis) ATCC
25285 reduced autoantibodies levels and symptoms of
lupus nephritis in MRL/lpr mice. The results confirmed
that B. fragilis ATCC 25285 could improve the expression
CD1d in B cells through Est-1 pathway, but suppress the
expression of CD86 through SHP-2 signaling pathway to
restore the immune response of B cells. Furthermore, levels
of anti-dsDNA, total IgG and total IgM, as well levels of BUN,
CRE, and RBP in serum decreased in MRL/lpr mice. In
parallel, B. fragilis ATCC 25285 was found to play a role in
restoring the balance of Th17/Treg in MRL/lpr mice, as it does
in other autoimmune diseases (Li et al., 2020).

Through the above research, we have an overall understanding
of the beneficial role of probiotics in adjuvant therapy of SLE,
particularly the regulatory function of Treg and Th17 (de la
Visitación et al., 2019). Dendritic and T Treg cells, cytokines like
IL-6, IFN-γ, IL-17, and IL-23 are currently regarded as the most
dominant mediators of dysregulation in the tolerated condition
(Esmaeili et al., 2017). Different strains of probiotics may exhibit
different beneficial functions but still fall within the same species.
In this regard, live versus heat-killed probiotics present different
properties, such as L. reuteri GMNL-263 andHeat-killed L. reuteri
GMNL-263 (Adams, 2010). Therefore, further exploration of the
potential mechanisms of probiotics is necessary, which will not
only contribute to the cause and progression of SLE but may also
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support an alternative strategy for the comprehensive treatment
of SLE, such as renal, cardiovascular, and hepatic complications.

DISCUSSION

It is well known that there is a connection between microbes and
autoimmune diseases. Alterations of the microbiome, namely
“dysbiosis” can cause autoimmune disease influenced by the
factors of certain genetic backgrounds and environments (De
Luca and Shoenfeld, 2019). Dysbiosis can occur with the
following three situations: reduction of beneficial
microorganisms, overgrowth of potentially harmful
microorganisms, and decrease of microbial diversity
(DeGruttola et al., 2016). In order to ameliorate the adverse
effects produced bymicrobial imbalances during the course of the
disease, it may be possible to reestablish a healthy microbiota by
supplement multiple probiotic strains, such as Bifidobacteriaum
spp., Lactobacillus spp., Lactococcus spp., Pediococcus spp., or
more varieties (Solis et al., 2002; Homayouni et al., 2014).
Furthermore, fecal microbiota transplantation (FMT) is the
transplantation of healthy fecal fluids into the gut of the
recipient to restore a stable intestinal flora, which affects both
the endogenous and host microbes (Gough et al., 2011).

Theoretical risks of probiotics have been illustrated in case
reports, including systemic infections, harmful metabolic
activities, gene transfer, extreme immune activation in
susceptible populations, and gastrointestinal adverse reactions
(Doron and Snydman, 2015). Notably, the most frequently
reported single event is fungemia caused by consumption of
Lactobacillus acidophilus and Lactobacillus casei (Barton et al.,
2001; De Groote et al., 2005; Ledoux et al., 2006; Vahabnezhad
et al., 2013). Meanwhile, incidents of endocarditis caused by both
Lactobacillus and Streptococcus probiotics have also been
reported (Mackay et al., 1999; Doron and Snydman, 2015).
Although probiotics supplements appear to have no clinically
significant side effects, the administration of probiotics in
susceptible individuals should be treated with caution.

In conclusion, the existing evidence manifests that some
probiotics, such as Lactobacillus, which can restore dysbiosis
and enhance intestinal barrier function may prevent the
occurrence of cardiovascular and renal complications of
SLE and alleviate its symptoms. The mechanism of
intestinal microflora imbalance inducing the occurrence and
development of SLE may be associated with the abnormal
T cell subsets, particularly the abnormal levels of Naïve
CD4+T, γδT, Tfh, Treg, and Th17 cells. Further exploration
of the mechanism by which the probiotics influence the disease
state of SLE, most likely through inflammation and the
immune system, may contribute to the progression of future
clinical treatments. Therefore, it is significant to shed light on
the variation of intestine microbiota to exhibit anti-
inflammatory properties, and potentially they can be
considered as biomarkers to reflecting disease status.
Particularly important is that more animal trials combined
with clinical studies are needed to further elucidate the
mechanisms for the effect of probiotics, meanwhile, to
unravel whether specific probiotics bacteria have a positive
impact on the treatment or prevention of SLE to develop novel
therapeutic targets.
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Probiotics and Vitamin D/Vitamin D
Receptor Pathway Interaction:
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Inflammatory Bowel Disease
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Inflammatory bowel diseases (IBD) are chronic conditions of unknown etiology and
immunomediated pathogenesis. In the last years, the comprehension of the complex
mechanisms involved in the intestinal mucosal homeostasis, and the analysis of the
alterations potentially leading to inflammatory pathologic states, has consistently
increased. Specifically, the extraordinary impulse in the field of research of the intestinal
microbiome has opened the door to the investigation of possible novel approaches to the
diagnosis, management and therapeutic applications in IBD. In line with that,
administration of probiotic bacteria has been intensely evaluated, leading to much
more exciting results in experimental models than in clinical practice. Considering the
consistent heterogeneity of the available studies on probiotics, the increased knowledge of
the properties of the single bacterial species would ideally lead to unravel potential
mechanisms of action that may bring therapeutic applications in specific pathologic
condition. Among the relevant molecular pathways for mucosal homeostasis
maintenance, the vitamin D/vitamin D receptor (VDR) pathway has been intensely
studied in the very last years. In fact, besides osteometabolic functions, the vitamin D
exerts important homeostatic effects in the organism at multiple levels, such as
immunomodulation, inflammation control, and microbiota regulation, which are likely to
play a relevant role in intestinal mucosa protection. In the present review, recent findings
about probiotic applications in IBD and mechanisms of action linking vitamin D/VDR
pathway to IBD are reported. Available evidence for probiotic effect on vitamin D/VDR are
reviewed and potential future application in IBD patients are discussed. At present, many
aspects of IBD pathogenesis are still obscure, and current therapeutic options for IBD
treatment are at best suboptimal. The increasing comprehension of the different pathways
involved in IBD pathogenesis will lead to novel findings ideally leading to potential clinical
applications. Microbiota manipulation and vitamin/VDR pathway appear a promising field
for future research and therapeutic developments.
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INTRODUCTION

In the last decades, virtually every field of human science has been
involved and shaked by the effect of the so called “microbiome
revolution.” In fact, under the stimulation of novel culture-
independent laboratory techniques, that allowed a thorough
evaluation of bacterial intestinal species, and thank to an
increased comprehension of the molecular mediators of
microbiota-intestine interaction, an exponential and intensive
interest rising has led to a consistent impulse to this field of
research (Rescigno, 2017). Consequently, the idea that the
complex eco-system hosted in our gut, collectively comprised
in the term “microbiota,” could represent a virtual organ of our
organism, with a fundamental role in health maintenance, has
more and more decisely taken pace (Marchesi et al., 2016). In line
with that, therapeutic manipulation of the microbiota, by means
of diet, nutraceuticals, antibiotics, pre- and probiotics has been
proposed and investigated in many areas of medicine, with mixed
results (Preidis and Versalovic, 2009).

Specifically, the idea of the utilization of beneficial bacterial
species for health purposes has been proposed as early as in the
beginning of 20th century with the pioneer studies by Elie
Methnickov, but it’s at the turn of the new Millennium that
the scientific research in that field has consistently grown and
expanded (Marchesi et al., 2016). The probiotics, defined by the
World Health Organization (WHO) as living organisms with
beneficial health effect whether ingested in adequate quantity, has
been therefore intensely investigated in experimental models and
clinical studies, with more striking results in the former setting
comparing with in the latter, mostly due to the extreme
dishomogeneity of literature data (Suez et al., 2019). At
present, current research on probiotic bacteria is following two
main lines. From one side, bacteria with a strong history of
empirical utilization and safety data, mainly from Lactobacilli and
Bifidobacteria genera, have been rigorously and carefully
investigated in pre-clinical and clinical studies, in order to
propose and solidly support clinical utilization in specific
situations (Kleerebezem and Vaughan, 2009). On the other
hand, by means of an accurate microbiota composition
analysis, difference between health subjects and patients with
different diseases has been characterized, with the final ideal goal
to identify bacterial species of particular relevance for the
pathologic condition, potentially useful as novel probiotic
bacteria (“next generation probiotics”) to supplement for
therapeutic purposes (O’Toole et al., 2017). Regardless the
research approach and notwithstanding the actual flaws for an
evidence-based utilization of probiotics, the clearest concept
emerged is that probiotics are not the same, but many
molecular and therefore potential clinical effect are often
species-specific and not generally extendable (McFarland et al.,
2018). Accordingly, the generic term “probiotic” has nowadays
lost its sense, considering that, at present, and many more in the
future, the identification of specific molecular properties of well
characterized bacterial species, and the correct and aimed
positioning in a specific clinical setting, it’s most probably the
key to the implementation of probiotics utilization as a
therapeutic option in medicine.

Among the infective and inflammatory pathologies where
probiotics’ application has been investigated, inflammatory
bowel diseases (IBD) still represent one of the most promising
and yet debated (Ghouri et al., 2014). IBD are a group of diseases,
whose two main forms are represented by ulcerative colitis (UC)
and Crohn’s disease (CD), clinically characterized by
intermittent/recurrent symptoms of active disease (abdominal
pain, diarrhea, bloody stool) and remittent phases. Even though
these two entities share pathogenetic similarities, they present
peculiar morphological and clinical features. UC is characterized
by a chronic inflammation of the superficial layer of the colonic
mucosa, initiating in the rectum and with a variable proximal
extension, while in CD the mucosal inflammation is transmural
and may affect virtually every segment of the GI tract with skip
lesions, and may be characterized by prevalence of inflammation
or complications such as stenosis and fistulas (Abraham and Cho,
2009). Among available pharmacological treatments there are
mesalamine, corticosteroids, antibiotics, immunosuppressant
and biologic drugs, with the latter representing the mainstay
of treatment for moderate-severe disease (Lamb et al., 2019).
Despite conventional and immunomodulatory therapy, still
many patients do not respond adequately, so that the research
and the development of novel pathways involved in disease
occurrence, to be targeted for therapeutic purposes, are largely
needed. Among possible involved molecular pathways, in very
recent years the vitamin D/vitamin D receptor (VDR) interaction
has been consistently proposed (Kellermann et al., 2020). In fact,
besides its well characterized role in bone metabolism, vitamin D
has been recently highlighted as an important molecular mediator
for intestinal homeostasis, due to important immunomodulatory
and anti-inflammatory effect (Del Pinto et al., 2017). Since bi-
univocal links between microbiota and vitamin D has been
hypothesized, the idea of a potential therapeutic application of
probiotic bacteria and vitamin D in IBD patients appears more
than attractive.

In the present narrative review we intended to critically
analyse pre-clinical and clinical available data on potential
influence of probiotic and vitamin D pathway interaction in
IBD patients. The concomitant use of probiotic and vitamin D
could be helpful in IBD patients both for the single potential
positive effect on intestinal inflammation that probiotics and
vitamin D may exert singularly, and for a real molecular
interaction with a reciprocal amplification of effect.
Therefore, we briefly summarized the experimental and
clinical data for probiotic and vitamin D efficacy in IBD
separately, and then we explored the possible interaction at
molecular level and the clinical effect of probiotic/vitamin D
concomitant administration.

PROBIOTICS IN IBD: POTENTIAL
MECHANISM OF ACTION AND CLINICAL
EVIDENCE
Evidence for a microbial influence in IBD onset and/or development
comes from initial observations from germ-free animals and in
patients with fecal diversion, indicating a negative role of intestinal
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bacteria (Rutgeerts et al., 1991; Taurog et al., 1994). More recent data
suggest that an altered balance between protective and pathogenic
bacteria occurs in IBDpatients (“dysbiosis”), potentially contributing
to the initiation and progression of a deregulated chronic
inflammation (Caruso et al., 2020). Indeed, a consistent set of
experimental and pre-clinical data indicate potential mechanisms
of action by which specific probiotic bacteria may exert a beneficial
effect on chronic intestinal inflammation (Ciorba, 2012). In fact,
probiotics may contrast the dysbiosis by reducing pathogenic
bacteria and stimulating beneficial ones, such as butirrate-
producing bacteria (Markowiak-Kopec and Slizewska, 2020).
Moreover, they may temporary colonize the intestinal mucosa
and directly interact with specific receptors of the innate immune
system, namely the pattern recognition receptors - PRR
(i.e., nucleotide-binding oligomerization domain - NOD and toll-
like receptors - TLRs), thus exerting an immunomodulatory effect
(Bermudez-Brito et al., 2012). As a consequence, epithelial functions
are enhanced, with stimulation of cytoprotective factors, improving
of epithelial cells survival, stimulation of mucus and anti-bacteria
molecules production, reduction of intestinal permeability (Ohland
and Macnaughton, 2010). The increase of the intestinal barrier
efficacy reduces the antigen load to the sub-mucosal
compartment, and for that reason, and for a direct effect of
probiotics on dendritic cells and lymphocytes, adaptive pro-
inflammatory immune response is prevented and reduced, with a
reduction of pro-inflammatory cytokines (i.e., TNF, IFN, IL-17) and
a stimulation of regulative mediators (i.e., IL-10, TGFb, IL-4)
(Pagnini et al., 2013). Unfortunately, the impressive experimental
data have not be followed so far by convincing clinical results, and
clinical trials in IBD patients have been characterized by a dramatic
dishomogeneity in terms of probiotic used, doses and duration of the
therapeutic schemes, inclusion criteria and end-points investigated,
so that clear evidences are far from being depicted. In fact, attempts
to synthetize clinical data into meta-analysis yielded to inconsistent
results (Limketkai et al., 2020a; Iheozor-Ejiofor et al., 2020; Kaur
et al., 2020). Nonetheless, utilization of E. coli Nissle 1917 for
remission maintenance in UC patients and of VSL#3 probiotic
mixture in pouchitis is indicated as possible options in
international guidelines (Harbord et al., 2017; Su et al., 2020),
suggesting that well designed clinical trials would ideally expand
utilization of more probiotic species in specific IBD setting and
indications. Indeed, a very recent study brilliantly highlighted that
the variable results of probiotics in human studies may be related to
two conceptual shortcomings: first, the fact that most studies rely on
fecal, rather than mucosal, probiotic concentration as a marker of
colonization, and second, the lack of appropriate investigation of the
subjects’ microbiota before probiotic administration, since different
composition has been found to be related to a “permissive” or
“resistant” phenotype to exogenous bacteria administration (Zmora
et al., 2018).

Vitamin D/VDR and Immune System
Regulation in IBD
Vitamin D is a fat soluble secosteroid hormone that can be
assumed in the diet in two forms: vitamin D2 (ergocalciferol),
present in mushrooms and vegetables, and vitamin D3

(colecalciferol), in fish and meet. The alimentary source is
substantially scarce, and vitamin D3 is endogenously
synthetized in the skin for the transformation by the UV light
of the cholesterol precursor 7-dehydrocholesterol in pre-vitamin
D3 and then in vitamin D3. In the blood stream, vitamin D3 and
D2 are converted by a double hydroxylation process in the liver,
by the enzyme 25-hydroxylase (CYP2R1) in 25 hydroxyvitamin
D (25(OH)D), and in the kidney, by the enzyme 1-α-hydroxylase
(CYP27B1), into its active form, 1,25-dihydroxyvitamin D
(1,25(OH)2D or calcitriol). VDR is a single aminoacidic chain
polypeptide of the nuclear receptors superfamily, and it is widely
and differently expressed in many tissues, including intestinal
mucosa and immune cells (Pike et al., 2017). The binding of
1,25(OH)2D to VDR in the cytoplasm of the cell, with the
heterodimerization with the retinoid X receptor (RXR),
determines the translocation of the complex to the nucleus
and the binding to vitamin D response elements (VDREs),
with stimulation and/or suppression of gene transcription
(Pagnini et al., 2021). The biologic action of vitamin D/VDR
signalling, initially characterized in the bone metabolism, is
pleiotropic, and the correct functioning of this pathways has a
paramount role for homeostasis maintenance at several levels.
Multiple molecular effects may have a positive role in preventing
and ameliorating chronic intestinal inflammation in IBD
patients, and in particular the enforcement of intestinal
barrier, the immunomodulation, and the microbiota
modulation (Kellermann et al., 2020). In fact, experimental
data indicate that vitamin D/VDR signalling stimulates
functionality of tight junction proteins. VDR knockout and
vitamin D-deficient mice showed epithelial barrier impairment
with hyperfunction of claudin-2, and increased susceptibility to
invasive bacteria colonization and colitis (Assa et al., 2015; Zhang
et al., 2019). Vitamin D supplementation showed beneficial in
Dextran sulphate sodium (DSS) model of colitis, by preserving
the expression of E-cadherin, claudin, and zonula occludens in
Caco-2 cells (Zhao et al., 2012). At intestinal mucosal level,
vitamin D/VDR interaction display immunoregulatory effect,
with a global stimulation of innate defence and regulation of
pro-inflammatory mediators of the acquired compartment of
immunity (Kellermann et al., 2020). In fact, vitamin D induces a
TLR2/1-dependent activation of cAMP and beta-defensin 2
expression in monocytes and macrophages, with an increased
anti-microbial function, and a vitamin D deficient diet or a lack of
VDR can determine impaired anti-bacterial activities of epithelial
cells and increased inflammation (Liu et al., 2009; Wang et al.,
2010). Experimental data demonstrate that vitamin D stimulates
autophagy, that is an essential innate immune physiological
mechanism by which potentially harmful antigens are cleared
at the mucosal compartment, thus preventing gut inflammation
and dysbiosis (Wang et al., 2010). Considering adaptive
immunity, many data indicate that vitamin D inhibits Th1,
Th17 cells, and DCs differentiation and promoting Treg cells,
with a reduced production of pro-inflammatory cytokines [i.e., IL-
17A, TNF-alpha, IL-6, and interferon-gamma (IFN-γ)] (Kamen and
Tangpricha, 2010;Wang et al., 2010). The effect on innate immunity
is probably the key for the modulation of intestinal microbiota by
vitamin D. In a recent study in a mouse model with a lack of
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expression of VDR in Paneth cells, Lu et al. elegantly demonstrated
that VDR signalling is essential for bacteria recognition, pathogens
clearance and dysbiosis prevention (Lu et al., 2021). In fact, vitamin
D administration has demonstrate to influence microbiota
composition in mice models and human studies, potentially
preventing or correcting dysbiosis (Shang and Sun, 2017). In
particular, a recent meta-analysis of fourteen studies confirmed a
regulatory effect of vitamin D administration on intestinal
microbiota composition, even though with mixed results
(Waterhouse et al., 2019), and even studies investigating
microbiota modification due to vitamin D in IBD patients
showed conflicting results (Garg et al., 2018; Schaffler et al., 2018;
Soltys et al., 2020). Considering clinical data, low vitamin D status
has been found to be associated with a higher IBD risk and a recent
meta-analysis, including nearly 1,900 subjects, showed that IBD
patients had a 64% increased risk of vitamin D deficiency comparing
with controls (Del Pinto et al., 2015). Even more recently, a meta-
analysis including a total of 8,316 IBD patients (3115 UC, 5201 CD),
showed that low 25(OH)D level was linked to higher risk of disease
activity, mucosal inflammation, low quality of life (QOL) scores, and
clinical relapse (Gubatan et al., 2019). Considering the low vitaminD
levels and IBD occurrence/severity, the crucial question of whether it
represents a cause or an effect remains still unsolved, even though
recent observational studies examining vitamin D levels prior to the
diagnosis of IBD seem to support the latter hypothesis (Opstelten
et al., 2018; Limketkai et al., 2020b). Interventional studies
investigating the effect of vitamin D supplementation in IBD
patients are still preliminary and no clear evidence exists, but a
recent meta-analysis of 18 studies, with a total of 908 IBD patients,
indicated that vitamin D supplement significantly improved the
25(OH)D blood levels and, in seven trials, determined a consistent
relapse rate reduction comparing with untreated patients (Li et al.,
2018). Indeed, for the established role of vitamin D for the bone
health and the high incidence of deficiency in IBD patients, periodic
check and correction of insufficient levels is advisable in such
patients, even though the administration for immunomodulatory
purposes remains, at present, only a fascinating suggestion (Myint
et al., 2020). Moreover, since the correction in deficient IBD patients
appears rational and indicated, the beneficial effect of vitamin D
supplement in patients with normal serum level is not
straightforward and probably needs further investigation.

PROBIOTICS PLUS VITAMIN D: EVIDENCE
FOR A SYNERGIC EFFECT

Molecular Interaction
Besides the aforementioned beneficial effect that probiotics and
vitamin D may singularly exert in IBD patients, early
experimental data are suggesting a possible direct interaction
between those two nutraceuticals, that may confer increased
anti-inflammatory effect in the intestinal mucosa. In fact,
studies in VDR knock-out (KO) mice have shown a defective
autophagy and presence of dysbiosis, with reduction of
Lactobacilli and Bacteroidetes species, comparing with wild-
type mice (Ooi et al., 2013). In experimental model of colitis,
supplementation of butyrate stimulate VDR genetic expression

and protein production, with amelioration of the colonic
inflammation (Wu et al., 2015b), even though the exact
contribution of the VDR pathway for the anti-inflammatory
effect of butyrate is not completely elucidated, considering the
concomitant activation of the cell surface G-protein coupled
receptors (GPCRs) such as GPR41, GPR43, and GPR109A,
potentially involved for the immunomodulatory effect of
butyrate in intestinal mucosa (Parada Venegas et al., 2019).
Moreover, recent studies demonstrated that VDR functioning
pathway is necessary for probiotics protection against colitis. In
an elegant study, Wu et al. demonstrated that Lactobacillus
rhamnosus GG and Lactobacillus plantarum stimulated VDR
expression and activity in different cell lines, and that the
administration of the two probiotic bacteria had a protective
effect against Salmonella-induced colitis only in wild-type mice
with intact functioning of the VDR pathway, while that
protective effect was completely abrogated in VDR knock-out
(KO) mice (Wu et al., 2015a). In addition, further experimental
data demonstrated that probiotics stimulate VDR expression
and activity. In the trinitrobenzene sulfonic acid (TNBS)
inflammation-cancerogenesis model, the administration of
the multiple probiotic compound VSL#3 stimulated VDR
expression (together with angiostatin and alkaline
sphingomyelinase), thus delaying the inflammatory mediated
transition to dysplasia and cancer (Appleyard et al., 2011). The
same multi-species probiotic product has shown to induce
expression and modulate activity of VDR and other nuclear
receptors, in an animal model of genetic dyslipidemia, with a
reduction of insulin resistance in liver and adipose tissues and
protection against development of steatohepatitis and
atherosclerosis (Mencarelli et al., 2012). Early administration
of Lactobacillus casei BL23 in larval zebrafish positively
influenced growth, immune system development and
survival, by means of induction of genes with different
involvement in homeostasis, among which VDR-α (Qin
et al., 2018). As a further confirmation of the strain-
specificity properties of probiotic bacteria, among six
Lactobacillus strains tested, only L. plantarum significantly
induced VDR expression in HT-29 MTX cells (Raveschot
et al., 2020), even though the association between increased
expression of VDR and its activity is still not fully demonstrated.
Besides the effect on VDR, some clinical and experimental data
indicate that probiotic bacteria may increase vitamin D levels. In
a post-hoc analysis of a randomized controlled trial
investigating the cholesterol-lowering efficacy of the bile salt
hydrolase active Lactobacillus reuteri NCIMB 30242,
surprisingly, the probiotic bacteria did not impaire the
absorption of fat-soluble vitamins, and yet increased the
mean circulating level of 25-Hydroxyvitamin D, after 9 weeks
of administration (Jones et al., 2013). In clinical studies
including patients after bariatric surgery, administration of a
multiple probiotic compound, from 4 weeks prior to 12 weeks
after surgery, increased 25-OH Vitamin D serum level in
patients undergoing One Anastomosis Gastric Bypass- Mini
Gastric Bypass (Karbaschian et al., 2018), and the same effect
was observed for an association of Lactobacillus acidophilus
NCFM and Bifidobacterium lactis Bi-07, administered for

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 7478564

Pagnini et al. Probiotics and Vitamin D Interaction

138

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


3months after Roux-en-Y Gastric Bypass (Ramos et al., 2021). In a
computational modeling framework analysis, prebiotic stimulates
pro-vitamin D3 by means of an increased production of lactate by
stimulated Lactobacilli (Gokhale and Bhaduri, 2019). Although the
exact molecular mechanism for the increased vitamin D by
probiotics remains to be elucidated, possible factors are the
increased absorption at intestinal level, mediated by increased ion
concentration and lower pH, the increased substrate concentration,
given by the lactate produced by the probiotic bacteria, and the
activity stimulation of key enzymes of the vitamin D pathway, such
as hepatic 25-hydroxylase or hepatic 3-hydroxy-3-methyl-glutaryl-
coenzyme A reductase (Hollander et al., 1978; Yavuz et al., 2009).
Therefore, considering experimental data, a hypothetical model for
probiotic/vitamin D interaction for their beneficial effect in IBD
patients could be drawn, as represented in Figure 1. In a virtual circle
with multiple reciprocal interactions, specific probiotic bacteria may
increase circulating vitamin D levels and stimulate the mucosal
expression and activity of VDR, that in turn may exert
immunomodulation of the mucosal immunity, with an
enforcement of innate and anti-bacterial defences and a reduction
of Th1 polarized cytokines, with a global anti-inflammatorymucosal
effect. The stimulation of the innate response contributes to
positively regulate the intestinal microbiota and to resolve or
prevent dysbiosis, further favouring temporary colonization of
administered probiotic bacteria and the stimulation of
proliferation of butyrate-producing bacteria, with a consequent
activation of vitamin/VDR pathway in a looping manner.

Clinical Data
Despite mounting data on potential biological interaction
between vitamin D and probiotics, clinical data are still at the
beginning. To date, ten randomized clinical trials (RCTs) (Savino
et al., 2015; Tazzyman et al., 2015; Miraglia Del Giudice et al.,
2016; Jafarnejad et al., 2017; Raygan et al., 2018; Ghaderi et al.,
2019; Jamilian et al., 2019; Ostadmohammadi et al., 2019;
Hajipoor et al., 2021; Morvaridzadeh et al., 2021), investigating
the application of co-administration of vitamin D and probiotics,
has been published (Table 1), seven of which have been included
in a recent systematic review (Abboud et al., 2020). No clinical
trial investigated so far the simultaneous application of probiotics
and vitamin D in IBD patients. Waiting for clinical data,
utilization of those nutraceuticals appears rational and may
already be proposed as a supportive treatment in induction
and maintenance of remission, as an ancillary therapy to the
evidence-based treatments currently approved and available. In
fact, considering the safety profile and the rational for their
utilization, they may contribute to increase treatment efficacy
and improve the management of IBD patients. Encouraging
clinical data comes from different settings, and nearly all the
published studies demonstrated a beneficial effect of probiotics
and vitamin D co-administration. Nonetheless, results need to be
taken with great caution, and clinical data in this field have to be
considered preliminary. In fact, a consistent dishomogeneity
exists in published studies, since trial designs, therapeutic
schemes, probiotic species, probiotics/vitamin D doses,

FIGURE 1 | Schematic representation of the possible reciprocal molecular interactions between probiotics and vitamin D for intestinal mucosal homeostasis. For a
detailed explanation refer to the text.
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duration of treatments, clinical settings, and sample sizes
profoundly differ. Among published trials, only one
investigated a gastroenterological condition, namely irritable
bowel syndrome (IBS) (Tazzyman et al., 2015). No significant
difference in symptoms was observed between patients who had
co-supplementation with probiotics and vitamin D, compared
with those who had vitamin D alone, or placebo. However, this
study had a limited sample size and a limited duration of follow-
up, and presented a consistent placebo effect, which may be due
to different sun exposure between the investigated groups.
Among the tested pathologic conditions, particularly positive
results of vitamin D/probiotics administration has been
observed in metabolic disorders, potentially representing a
promising path for future research.

FUTURE PERSPECTIVES AND
CONCLUSION

Despite pre-clinical data for a possible interaction of vitamin
D/VDR pathway and probiotic administration in ameliorating
intestinal inflammation, clinical studies are still to come.
Considering the encouraging clinical data from other clinical
settings, this therapeutic option appears intriguing and
promising and deserve future investigation. In order to design

reliable trials, flaws emerged from pre-clinical and clinical studies
in probiotics and vitamin D application in IBD needs to be taken
into account and carefully addressed. First, the choice of the
probiotic bacteria appears to be relevant, considering that
beneficial properties may differ even at strain level. A well
studied bacterial species, with solid safety data and documented
anti-inflammatory effect in the intestinal mucosa, could most
probably lead to better results. Moreover, pre- and post-
interventional assessment of microbiota quali-quantitative
composition, together with the verification of temporary
mucosal colonization of the supplemented probiotic, by means
of genomic-based techniques, may provide further insights into
potential mechanism of action of nutraceuticals, pre-selection of
patients, and identification of potential markers for efficacy
evaluation. Considering the high rate of vitamin D deficiency,
and the lack of specific target levels for IBD patients, assessment of
pre- and post-interventional blood levels, and evaluation of VDR
mucosal expression, could help in identifying surrogate markers to
pre-stratify patients and to monitor and guide nutraceutical
supplementation modalities. In this regard, the possible
presence of polymorphism of VDR genes (namely, TaqI and
FokI), described in up to 20% of IBD patients, that may
influence VDR functionality and therefore potentially reduce
the response to vitamin D administration (Xue et al., 2013),
need to be probably assessed. Finally, considering the variability

TABLE 1 | Randomized clinical trials (RCTs) investigating the effect of co-administration of probiotics and vitamin D in different clinical conditions; no trial, at present,
evaluated the effect of probiotic plus vitamin D in IBD patients.

Study (first
author, year)

Disease N Vitamin D
dose

Probiotic species Comparator Outcome

Ghaderi (2019) Schizofrenia 60 50,000 IU/2 weeks L. acidophilus, B. bifidum, L.
reuteri, L. fermentum

Placebo Beneficial

Jafarnejad (2017) Osteopenia 50 200 IU/day L. casei, B. longum, L.
acidophilus, L. rhamnosus, L.
bulgaricus, B. breve, S.
thermophilus

Vitamin D alone Some molecular difference but no
effect on BMD

Jamilian (2019) Gestational
diabetes

87 50,000 IU/2 weeks L. acidophilus, B. bifidum, L.
reuteri, L. fermentum

Probiotic alone; placebo Beneficial

Ostadmohammadi
(2019)

Polycystic
ovary
syndrome

60 50,000 IU/2 weeks L. acidophilus, B. bifidum, L.
reuteri, L. fermentum

Placebo Beneficial on mental health but no
effect on other parameters

Raygan (2018) Type 2
diabetes

60 50,000 IU/2 weeks L. acidophilus, B. bifidum, L.
reuteri, L. fermentum

Placebo Beneficial on mental health,
glycemic level, HDL, CRP but no
effect on other metabolic profiles
and hypertension

Savino (2015) Infantile colic in
newborns

105 400 IU/day L. reuteri DSM 17938 Vitamin D alone Beneficial

Tazzyman (2015) IBS 51 3,000 IU/day L. acidophilus, CUL 60, CUL
21, B. bifidum CUL 20, B.
animalis sub. Lactis CUL 34

Vitamin D alone+placebo;
placebo+placebo

No effect

Miraglia Del Giudice
M (2016)

Asmatic
allergic
children

32 400 IU/day L. reuteri DSM 17938 Placebo Beneficial

Hajipoor S (2021) Obese 140 1,000 IU/day L. acidophilus La-B5, B. lactis
Bb-12

1)Plain yogurt, 2)
yogurt+probiotics alone, 3)
yogurt+vitamin D alone

No difference in lipid profile,
anthropometric indices

Morvaridzadeh M
(2021)

NAFLD 104 1,000 IU/day S. thermophilus, L.
bulgaricus, L. acidophilus La-
5, B. lactis Bb-12

Plain yogurt Beneficial on 25(OH)D3 level, no
effect on blood sugars and
antropometric parameters

L. , – Lactobacillus, B. – Bifidobacterium, IBS – irritable bowel syndrome, NAFLD – non-alcoholic fatty liver disease.
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of the clinical pictures that fall under the term of “IBD,” it is
necessary to design interventional studies in specific restricted
homogeneous clinical condition, as for example UC patients
with proctosigmoiditis or CD patients with inflammatory
phenotype and exclusive ileal localization. Moreover, possible
confounding factors, such as diet, sun exposure, metabolic
status, co-morbidities, and drug utilization, should be carefully
assessed and standardized. In conclusion, vitamin D/probiotics co-
administration appears a rational and attracting therapeutic option
in IBD patients, but clinical data do not exist yet. The appropriate

design of reliable trials will help to evaluate the potential efficacy,
identify specific conditions and administration modalities, that
would support and propose the contemporary supplement of
vitamin D and probiotic in clinical practice for IBD patients.
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Metabolic disorders are an increasing concern in the industrialized world. Current research
has shown a direct link between the composition of the gut microbiota and the
pathogenesis of obesity and diabetes. In only a few weeks, an obesity-inducing diet
can lead to increased gut permeability and microbial dysbiosis, which contributes to
chronic inflammation in the gut and adipose tissues, and to the development of insulin
resistance. In this review, we examine the interplay between gut inflammation, insulin
resistance, and the gut microbiota, and discuss how some probiotic species can be used
to modulate gut homeostasis. We focus primarily on Faecalibacterium prausnitzii, a highly
abundant butyrate-producing bacterium that has been proposed both as a biomarker for
the development of different gut pathologies and as a potential treatment due to its
production of anti-inflammatory metabolites.

Keywords: diabetes, gut permeability, obesity, probiotics, Faecalibacterium prausnitzii

INTRODUCTION

Obesity has increased worldwide (Di Cesare et al., 2016) and is a public health concern across the
globe. This disease is associated health outcomes such as diabetes, hypertension, and cancer (Arroyo-
Johnson and Mincey, 2016). Currently, it is estimated that 30% of the global population is
overweight, and this number continues to increase (Talukdar et al., 2020). The most prevalent
consequence of obesity is insulin resistance and the development of type 2 diabetes (T2D). This
condition is driven by inflammation that begins in adipose tissue. The hyperglycemia associated with
obesity is linked with gut inflammation, increased permeability to bacterial products, and changes in
microbiota composition that promote the cycle of inflammation associated with the obese state
(Fallucca et al., 2014). Such pathogenic modifications of the community structure of gut microbiota
are referred to as dysbiosis; one of the most well-known examples in the context of obesity is an
increase in the ratio of Firmicutes to Bacteriodetes in both mice and humans, which produces a pro-
inflammatory profile characteristic of the obese microbiota (Kim et al., 2012; Verdam et al., 2013).

Diet has a direct influence on intestinal inflammation, which is related to weight gain and
microbiota changes. A few weeks of a high-fat, high-sugar diet is enough to induce certain gut
disorders, including increased gut permeability and dysbiosis (Cani et al., 2001b). After this it is
possible to detect free lipopolysaccharides (LPS) in the blood, which triggers the activation of the
innate immune system and inflammatory conditions (Guerville et al., 2017).
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The development of hyperglycemia has been linked with a
variety of alterations in the gut mucosa in addition to dysbiosis.
These include increased gut permeability, altered expression of
tight junction molecules, activation of innate immune molecules,
and an increase in activated adaptative immune cells. All those
changes characterize a “leaky gut,” the terminology used to
collectively describe those gut alterations (De Kort et al.,
2011). Together, these conditions can perturb gut homeostasis
and increase the probability of developing an inflammatory
disease such as Crohn’s disease.

Currently, the best diet-based strategy for treating these
conditions is a shift from a Western-style diet to a balanced,
plant-based diet. However, the implementation of such changes
takes time and requires a very high level of nutritional education.
Because of this, the success rates of weight loss maintenance due
to lifestyle changes are typically low (Lewis and Abreu, 2017). In
response, alternative treatments are being developed that aim to
ameliorate the negative gut effects. One group of treatments that
has demonstrated promise are probiotics, which in certain cases
have been shown to decrease both gut permeability and glycemia
(Barengolts, 2016; Xu et al., 2019).

Faecalibacterium prausnitzii (F. prau) is a probiotic isolated
from the human microbiota, where it is a dominant species in
healthy adults. Its decline is associated with the development of
chronic inflammation, as observed in cases of obesity. Multiple
studies have demonstrated the anti-inflammatory properties of
this bacterium (Feng et al., 2014; Andoh et al., 2016; Ganesan
et al., 2018; Wrzosek et al., 2018), which are thought to be
associated with its ability to produce butyrate. Butyrate
activates the G-protein receptor (GPR) and thus facilitates
downstream control of gut alterations during obesity and
diabetes (Brown et al., 2003). Therefore, the goal of this review
is to discuss the current state of knowledge regarding F. prau,
particularly with respect to its potential as probiotic derived from
human gut for use in alleviating the gut inflammation developed
during obesity and hyperglycemia.

OBESITY AND HYPERGLYCEMIA-
ASSOCIATED GUT ALTERATIONS

Obesity is a highly complex, multifaceted disease associated with
numerous metabolic dysfunctions. These include type 2 diabetes
mellitus (T2DM), dyslipidemia, cardiovascular dysfunction, and
chronic inflammatory diseases (Winer et al., 2016). These
conditions are linked with changes in adipose tissue (AT), a
complex endocrine organ that plays an important role in energy
homeostasis due to its rapid and dynamic responses to changes in
nutrient availability (Sun et al., 2011). Adipose tissue is composed
of adipocytes, macrophages, lymphocytes, fibroblasts, cell
progenitors, and endothelial cells, and is responsible for the
secretion of molecules such as leptin, adiponectin, cytokines,
and the vascular regulators angiotensin II and plasminogen
activator inhibitor (PAI-1) (Andersen et al., 2016).

In conditions of obesity, AT can become severely
dysfunctional, with changes ranging from an increase in size
to impaired function and atypical distribution in the body. This

results in a suite of physiological alterations, including
modifications to the extracellular matrix, vascularization, levels
of oxidative stress, the profile of secreted adipokines, and the
inflammatory state of infiltrated immune cells (Jo et al., 2009).
Due to the increase in free fatty acids (FFA), signaling pathways
such as IKKβ and NF-κB are activated, along with those linked
with Toll-like receptors (TLRs) (Crawford et al., 2009; Baker et al.,
2011), which influence the inflammatory state. Obese patients are
typically characterized by an increase in LPS that is accompanied
by higher levels of TLR4 and CD14 expression, which all
contribute to the proliferation of pro-inflammatory
mechanisms (Winer et al., 2016).

The activation of TLRs is important in obesity, especially
TLR4 (Winer et al., 2016), as these signaling pathways regulate
the phosphorylation of proteins and lead to an increase in the
production of molecules such as TNF-α, IL-6, leptin, resistin, and
chemokines like type 2 CC chemokine receptor (CCR2), which is
related to monocyte migration. TNF-α promotes the activation of
the NF-kB pathway, stimulation of the cell death signaling
pathway, inhibition of the expression of the glucose
transporter GLUT-4, and an increase in FFA levels and
consequent reduction in insulin sensitivity (Gomez-Hernandez
et al., 2016).

Compared to their lean counterparts, mice that are fed a high-
fat diet present a higher number of TCD4+ and TCD8+ cells and
higher levels of IFN-c and TNF-α, mainly in adipose tissue
(Lumeng et al., 2007). The infiltration of TCD8+ cells in
adipose tissue is followed by the accumulation of CX3CR1int

macrophages, which migrate towards AT in response to greater
amounts of FFAs, glucose, and apoptosis, thus increasing
inflammation (Rocha et al., 2014). Adipose tissue macrophages
(ATMs) infiltrate adipose tissue in a CCR2-dependent manner
and inhibit the insulin signal in insulin-sensitive tissues,
including liver, adipose tissue, and muscle (Hotamisligil, 2017;
Kawano et al., 2016). Taken together, these conditions contribute
to the production of pro-inflammatory cytokines and the release
of monocyte 1 and 3 chemotactic protein (MCP-1 and MCP-3),
which creates a cycle of continuous cell recruitment and constant
inflammation in AT (Nishimura et al., 2009).

The inflammatory state in visceral adipose tissue, along with
an excess of metabolites in the circulation, is a major driver of
obesity-related insulin resistance (IR). IR is characterized by
impaired phosphorylation of the insulin receptor in cells that
depend on insulin. This results in increased serine
phosphorylation of insulin receptor substrate 1 and 2 (IRS-1
and IRS-2) and activation of the SOCS (suppressor of cytokine
signaling) protein, which reduces the insulin receptor’s ability to
transmit signals downstream in the insulin pathway and to
capture glucose in cells (Biddinger and Kahn, 2006).

When the full extent of metabolic dysfunction is considered,
the physiological impact of obesity is wide-ranging, with
numerous effects on the architecture and functionality of
primary and secondary immune system organs, including
bone marrow, thymus, and lymph nodes (Yang et al., 2009).
The accumulation of lipids reduces hematopoiesis in bone
marrow and thymopoiesis in the thymus, which is added to a
restricted diversity of T cell receptor repertoires in the thymus
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(Yang et al., 2009). In the peripheral immune response, there is a
reduction in the migration of antigen-presenting cells to
peripheral lymph nodes and a consequent reduction in the
differentiation of naïve T cells into effective cells. These
systemic effects can also translate into disturbances to the
homeostasis of gut mucosa, which together with the mucosal-
associated lymphoid tissue harbor the majority of immune cells
found in the body.

The intestinal mucosa is the largest surface of the human body
that is in contact with the external environment (Rezende and
Weiner, 2017). The intestinal immune system is thus faced with
an immense challenge: tolerating the vast amount of antigens that
originate from the diet and the commensal microbiota while, at
the same time, protecting against intestinal pathogens and toxins
(Faria et al., 2017). Alterations in the intestinal barrier and
dysbiosis in the gut of obese individuals may not only favor
the development of diseases, but may also compromise immune
tolerance to dietary antigens and the microbiota (Spiekermann
and Walker, 2001; Faria and Weiner, 2005).

In the literature, there is an abundance of evidence on the
many ways obesity and insulin resistance can affect immune
responses and gut physiology. Obesity enhances jejunal
inflammation and increases the density of macrophage
populations, CD3+ T cells, intraepithelial lymphocytes and
mature dendritic cells. It also increases the expression of pro-
inflammatory cytokines (IFNc, IL1β, TNFα), chemokines, and
co-stimulatory factors in cells from the lamina propria and
epithelial compartment. The increase in T-cell populations in
the intestinal mucosa of obese subjects has also been associated
with an impaired insulin response compared with lean subjects
(Monteiro-Sepulveda et al., 2015). In humans with obesity and
insulin resistance, there is a stronger inflammatory profile in the
duodenum compared to non-obese patients, with more
inflammatory cytokines and M1 macrophages (Ho-Plagaro
et al., 2019). In addition, obesity and excess weight have been
associated with increased gut permeability—demonstrated by
increased serum concentrations of zonulin—along with
microbiota modifications (Mörkl et al., 2018). Increased gut
permeability was also reported in individuals with high levels
of fasting glucose, as well as higher levels of pro-oxidative markers
in the blood compared with healthier subjects (Carnevale et al.,
2017). Furthermore, intestinal permeability was found to be
sharply increased by a high-fat diet (HFD), probably mediated
by a reduction in the expression of ZO-1 and occludin, which
then favors the translocation of LPS through the intestinal wall
(Cani et al., 2008b).

Hyperglycemia associated with HFD increases levels of IFN-
c– and IL-17–producing inflammatory cells in the intestine and
intestinal permeability, and decreases the abundance of
regulatory cells (Luck et al., 2015). Even in the absence of
excess weight, hyperglycemia has been associated with
increased permeability and alterations in the mucosal immune
system. For example, in db/dbmice with controlled food intake or
in mice treated with streptozotocin, high levels of blood glucose
were associated with high intestinal permeability and increased
expression of PRP (pathogen recognition patterns) in lymphoid
organs (Thaiss et al., 2018). In other words, hyperglycemia that is

secondary to obesity, IR, or even T1D can further compromise
intestinal health. Alterations in glucose metabolism can also
decrease oral tolerance of antigens from the diet (Miranda
et al., 2019) and increase the severity of food allergies (data
not published) in mice.

One of the main consequences of the development of
inflammatory alterations and the breakdown of gut epithelial
integrity is the leakage of bacterial products, including endotoxins
such as LPS, across the intestinal epithelium. This then results in
dysfunction of immune organs, inadequate distribution of
leukocyte populations, and changes in lymphocyte activity,
which can all affect the immune response against pathogens,
regulation of the immune response to dietary antigens, and the
intestinal microbiota (Figure 1).

CHANGES IN GUT MICROBIOTA RELATED
TO OBESITY AND HYPERGLYCEMIA

Composition of the microbiota is modulated by the availability of
dietary nutrients that provide a wide variety of essential
metabolites for the maintenance of intestinal architecture and
integrity, while simultaneously acting on the modulation of
immunity. In healthy conditions, Bacteroidetes and Firmicutes
are the most abundant phyla of the microbial gut community.
Although the structure of these communities can vary, some
general patterns have been noted. For example, studies have
determined that some of the most abundant intestinal
bacterial species in healthy individuals tend to include
members of the Dorea/Eubacterium/Ruminococcus groups as
well as Bifidobacteria, Proteobacteria, and streptococci/
lactobacilli (Eckburg et al., 2005; Qin et al., 2010).

Diet is the key determinant of microbiota composition; it
modulates the abundance of various species and, consequently,
their individual or collective functions. In humanized gnotobiotic
mice, a shift from a low-fat, plant polysaccharide–rich diet to a
high-fat and high-sugar diet had detectable effects on microbial
community structure and metabolic pathways after only a single
day. More specifically, the increase in body fat percentage in mice
fed a high-fat diet was positively associated with the abundance of
species in the genera Lactococcus and Allobaculum but was
negatively associated with Akkermansia (Kolodziejczyk et al.,
2019).

The alterations in the microbiota linked with HFD-induced
obesity also have effects on gut permeability to bacteria and
bacterial products. The Burcelin group (2008, 2011) described
that after 1 week of HFD consumption, changes could be seen in
the intestinal mucosa and microbiota such as co-localization of
bacteria with dendritic cells (DCs) both in the mucosa and in the
mesenteric lymph nodes. After 4 weeks of HFD consumption,
clear increases in intestinal permeability have been noted, with a
concomitant decrease in zonulin expression in the intestine.
These changes were also dependent on changes in the
microbiota (Cani et al., 2008b; Amar et al., 2011). These
alterations in the intestine permit increased bacterial
translocation, which involves intestinal phagocytes and
requires the recognition of pathogen-associated molecular
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patterns (PAMPs) by standard recognition receptors (PRRs),
such as TLRs and nod-like receptors, to activate an innate
immune response (Kim et al., 2012; Luck et al., 2015). Under
pathological conditions. However, this molecular signaling
process can favor further infiltration and cell accumulation in
adipose tissue, triggering local inflammation.

The relationship between dysbiosis and gut permeability also
plays a role in the development of insulin resistance. Specifically,
alterations in the abundance of intestinal bacteria caused by
chronically elevated glucose levels and obesity are known to
result in dysfunction in the intestinal barrier (Guerville et al.,
2017). As a result, high concentrations of gram-negative bacterial
cell-wall products, such as LPS, can cross the intestinal barrier to
reach other organs and tissues, and induce chronic inflammation
(Cani et al., 2009). This can initiate a series of inflammatory
mechanisms, setting in motion one of the main processes that
leads to insulin resistance and ultimately T2D (Cani et al., 2007;
Ganesan et al., 2018). This can be further exacerbated by the
fact that the production of pro-inflammatory cytokines
interferes with insulin secretion and the expression of insulin
mRNA in human beta islet cells. Changes in the composition
of the microbiota can thus play a multi-faceted role in

intestinal barrier dysfunction and, consequently, in metabolic
disorders.

Certain groups of bacteria have been linked with various
conditions in the gut. As mentioned earlier, an increased ratio
of Firmicutes to Bacteroidetes in obese individuals has been
related to inflammatory diseases (Turnbaugh et al., 2006),
while conversely, the ratio of Bacteroides to Prevotella is lower
in obese subjects than their lean counterparts. F. prau has been
negatively associated with insulin resistance (Furet et al., 2010),
while potential proinflammatory bacteria such as Ruminococcus
gnavus or Bacteroides may dominate the microbiota of obese
patients. In general, a reduction of butyrate-producing bacteria in
obese subjects has been associated with an increase in mucus
degradation (Cotillard et al., 2013). Obese women with high
serum levels of zonulin, which is correlated with higher gut
permeability, showed decreased abundance of
Ruminococcaceae and Faecalibacteri both could weaken the
gut barrier and lead to systemic inflammatory responses
(Mörkl et al., 2018).

A study in mice reported that, after 1 week of HFD, and the
subsequent early onset of diabetes, gram-negative bacteria start to
adhere in the DCs of the gut mucosa; this increased bacterial

FIGURE 1 | Changes to the intestinal barrier functions associated with obesity. Under normal circumstances, the gut microbiota is highly diversified which
contributes to the maintenance of intestinal permeability, tolerance to dietary antigens and immunoregulation. Obese patients have dysbiosis of the gut microbiota,
characterised by decreased diversity, and altered barrier functions such as increased permeability and activation of pro-inflammatory pathways by immune cells at local
and systemic levels. Obesity-associated hyperglycemia may also drive barrier permeability through transcriptional reprogramming resulting in decreased
expression of adherens and tight juction proteins.
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translocation and triggered inflammation (Amar et al., 2011).
Interestingly, mice that are deficient in TLR5, which recognizes
bacterial flagellin, develop obesity and features of metabolic
syndrome even in the absence of a high-fat diet, solely as a
function of microbiota changes (Vijay-Kumar et al., 2010).
Finally, some bacterial species have been identified as
particular promoters of insulin resistance, for example,
Prevotella copri and Bacteroides vulgatus, which were noted to
be the main species driving the association between the
biosynthesis of branched-chain amino acids and insulin
resistance in humans (Pedersen et al., 2016).

One important function of the microbiota is the metabolism of
polysaccharides, through which these bacteria produce a wide
variety of metabolites, such as short-chain fatty acids (SCFAs),
that are essential for the microbial population and for the
maintenance of intestinal homeostasis (Sun et al., 2017). The
SCFAs acetate, butyrate, and propionate are the main products of
fermentation in the intestine, and are of particular interest due to
their ability to activate local G-protein-coupled receptors (GPCR)
in epithelial cells, especially GPR41 and GPR43 (Miyamoto et al.,
2016). This process has feedback effects on the physiology of the
intestinal microbiome and mediates chronic inflammation,
affecting both glucose homeostasis and insulin sensitivity (Ang
and Ding, 2016; Lambertz et al., 2017). Butyrate-producing
bacteria such as F. prau can reduce bacterial translocation and
stimulate mucin secretion, which acts to maintain the integrity of
the intestine (Ganesan et al., 2018).

Interactions between the intestinal microbiota and host cells
require finely tuned control by the immune system, as specialized
cells are needed to recognize bacterial fragments and induce
inflammation when appropriate. A significant consequence of
the microbial changes associated with obesity is activation of the
innate immune system, which often results in chronic
inflammation (Cani et al., 2007; Cani et al.,2008a). In animal
models, increased levels of LPS in the bloodstream can directly
damage pancreatic β cells and increase insulitis by triggering the
innate immune response; this is a crucial factor in the
pathogenesis of insulin resistance (Ganesan et al., 2018).
Similarly, Amar et al. (2011) reported that excess LPS
fragments in the blood of diabetic mice induced adipose tissue
inflammation.

Interestingly, when HFD experiments are performed in
animals lacking the microbial pattern recognition receptors
Nod1 or CD14, diet no longer has strong effects on bacterial
permeability and translocation (Amar et al., 2011). Likewise,
TLR4-knockout mice have a completely different microbiota
and display elevated blood LPS levels and diabetes
development compared to WT controls. These alterations in
gut morphology and microbiota composition are also
correlated with lower levels of circulating SCFAs, which
suggests an interaction between intestinal functions,
microbiota composition, and the development of diabetes
(Simon et al., 2020).

Taken together, the changes to the structure and function of
the gut microbiota that occur in cases of obesity and
hyperglycemia have the potential to severely exacerbate
mucosal inflammation and gut permeability. For this reason,

the use of bacterial probiotics—especially those known to
produce high levels of SCFAs—could represent an interesting
approach to treat the damage associated with intestinal metabolic
syndrome.

PROBIOTICS AS AN ALTERNATIVE
TREATMENT FOR OBESITY AND
HYPERGLYCEMIA
Modulation of the microbiota has become a regular and effective
approach in the treatment and prevention of mucositis, colorectal
cancer, neurological diseases, and several other disorders
(Sanders et al., 2019). There are several ways to modify the
microbiota, including diet alteration; the administration of
probiotics, prebiotics, and postbiotics; and fecal microbiota
transplantation. The underlying goal of all of these methods is
the same: to modify the bacterial composition in the gut in order
to provide benefits to the host. As the links between obesity,
hyperglycemia, and alterations in the microbiota have become
clearer, studies have attempted to shed light on the exact
mechanisms by which diet is able to affect the microbiome. It
is possible to envision that microbiota modulation could serve as
a non-invasive means of treating metabolic conditions, especially
obesity, and thus represent an attractive alternative to common
approaches such as bariatric surgery.

As mentioned above, obesity-related dysbiosis induces a series
of events, mainly in the intestine, that result in chronic
inflammation and disruptions to intestinal homeostasis.
However, until the early 2000s, there was no discussion of the
possibility that the microbiota itself could contribute to weight
gain (Backhed et al., 2004). The Gordon group has conducted
research on this topic, and their pioneering studies proposed an
interesting hypothesis—that the microbiome from obese subjects
has an increased capacity to harvest energy from the diet. First, it
was reported that control mice colonized with an “obese”
microbiota present higher body fat compared to mice
colonized with “lean” microbiota (Turnbaugh et al., 2006).
Further studies with gnotobiotic germ-free C57BL/6 mice
revealed that a Western diet induced a drop in microbiota
diversity, with an increase in abundance of a single class of
Firmicutes. In addition, when the microbiota from
conventionally raised obese mice were transplanted into wild-
type mice, they showed a greater increase in body fat (Turnbaugh
et al., 2008). Finally, a fascinating study with adult monozygotic
and dizygotic twins showed that, although twins shared a core
microbiota, obese siblings had less diversity in their microbial
assemblages, lower proportions of Bacteroidetes, and a higher
proportion of Actinobacteria compared to their leaner twins
(Turnbaugh et al., 2009). These interesting findings have led
to the generation of several hypotheses, with one of the most
intriguing being that microbiota modulation by itself might be an
effective treatment for obesity.

The relationship between gut microbiota and energy balance
(and thus the development of larger adipose tissue) is complex
because it involves many factors, such as diet, gender, and culture,
among others. However, recent studies have pointed to the gut
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microbiome as a key element in the regulation of food absorption;
there is evidence that the gut microbiota can affect hormone
secretion directly in the brain, in areas that are responsible for
controlling appetite, fat storage, and energy expenditure (Cerdó
et al., 2019). Although the science is far from settled on the topic,
based on these initial results, some attempts have been made to
treat obesity by modifying the host microbiota.

To date, probiotics and prebiotics have been used for the
treatment of obesity in both experimental models and clinical
trials. Probiotics are live microorganisms that, when ingested, can
confer benefits on the host, while prebiotics are molecules or
components (such as food fiber) that are capable of modifying the
composition of the intestinal bacterial assemblage or stimulating
the activity of one or a limited number of bacterial species in a
positive way (Gibson et al., 2017). In most cases, one of the noted
benefits of both prebiotics and probiotics is increased levels of
SCFAs, which have regulatory effects and are important for
intestinal integrity. Much research has focused on the positive
effects of Lactobacillus and Bifidobacterium in obesity; both
bacteria have been reported to contribute to weight loss and a
reduction in insulin resistance. For instance, several studies
involving different mouse or rat models of obesity have shown
positive results from treatment with certain strains of L.
plantarum (DSM 15313, Strain No. 14, and TL8), such as less
weight gain, reduced adiposity, and higher insulin sensitivity
(Axling et al., 2012; Ben Salah et al., 2013; Okubo et al., 2013).
A recent publication reported that L. plantarum LMT1-48
significantly reduced weight in HFD-fed mice and its extract
was capable of inhibiting the differentiation of adipocytes
through downregulation of genes such as PPAR-c (Choi et al.,
2020). Notably, synergistic effects were observed from a probiotic
combination of L. plantarum KY1032 and L. curvatus HY7601;
HFD-fed mice treated with this mixture showed reduced body
weight gain and fat accumulation, lower levels of insulin and
cholesterol, and fewer biomarkers for inflammation (Park et al.,
2013; Yoo et al., 2013). One exception was reported with HFD-fed
mice treated with L. plantarum DSM 15313, which showed an
increase in body weight despite lower levels of glucose in plasma
(Andersson et al., 2010). Another study, with L. plantarum
NCIMB8826, found no effect on body weight (Martinic et al.,
2018). Overall, numerous strains—including L. paracasei CNCM
I-4034, L. casei IMVB-7280, L. paracaseiHII01, L. casei IBS041, L.
rhamnosus CGMCC1.3, L. rhamnosus PB01 (DSM 14870), and L.
rhamnosus LA68, among others—have demonstrated probiotic
potential in studies of obesity, inducing positive effects such as
reduced weight gain, less adiposity with less white adipose tissue,
and reduced cholesterol levels, as reviewed by Ejathed et al.
(Ejtahed et al., 2019).

Avolio and colleagues et al showed that HFD-fed hamsters
treated with a probiotic mix of six species (S. thermophilus, L.
bulgaricus, L. lactis, L. plantarum, B. lactis, and L. reuteri)
presented a reduction in body weight and reduced levels of
inflammatory factors in the blood compared to control HFD
animals (Avolio et al., 2019). A study of leptin-deficient mice (ob/
ob mice) showed that administration of the plant-derived lactic
acid bacterium Pediococcus pentosaceus was sufficient to reduce
adipocyte size and liver triglyceride content (Zhao et al., 2012).

Similarly, HFD-fed mice treated with L. plantarum demonstrated
reduced adipose tissue and triglyceride levels; the treatment also
reduced the Firmicutes/Bacteroidetes ratio and improved the gut
microbiota composition (Joung et al., 2021). Finally, although
most effort to date has focused on bacteria, the most-studied yeast
probiotic, Saccharomyces boulardii, has been reported to reduce
hepatic steatosis and hepatic inflammation in db/db mice
(Everard et al., 2014).

Positive results are also being reported from obese mice treated
with various types of prebiotics. For example, the use of
oligofructose as a prebiotic in HFD-fed obese mice resulted in
higher numbers of intestinal Bifidobacteria and Lactobacillus in
treated mice; this correlated with higher zonulin expression,
leading to less intestinal permeability and less hepatic
inflammation (Cani et al.,2008b). The addition of oligofructose
in the diet was also found to promote satiety in HFD-fed mice,
contributing to a reduction in both weight and adipose tissue
deposits (Cani et al., 2005; Régnier et al., 2021). Another study
showed that short-chain fructose-oligosaccharides induced a
significant increase in the abundance of Bifidobacteria in obese
mice, and these animals gained less weight than control HFD
mice (Respondek et al., 2013). In general, the use of prebiotics as a
treatment for obesity seems quite promising; this is especially true
for approaches using food fiber, which seems to increase the
production of satiety hormones, thus helping to control weight
and increasing sensitivity to insulin (Parnell et al., 2012).

In humans, several clinical trials of probiotics and prebiotics as
a treatment for obesity have reported positive results. For
example, a randomized, double-blind study conducted by
Osterberg and collaborators demonstrated that administration
of a probiotic containing eight strains of bacteria (Lactobacillus,
Bifidobacterium, and Streptococcus) attenuated increases in body
mass index (BMI) and adipose tissue in subjects on a high-fat diet
(Boutagy et al., 2015). Similarly, other studies of interventions
with Lactobacillus spp. and Bifidobacterium spp. have reported
positive results in obese and overweight subjects, such as less body
weight and less fat storage (Minami et al., 2015; Madjd et al.,
2017). Two recent systematic reviews concluded that some
probiotic strains are effective in reducing BMI and hip
circumference (Shirvani-Rad et al., 2021; Tomé-Castro et al.,
2021).

Despite the promising results thus far, there is still much room
for new approaches and improvements, especially those aimed at
elucidating the mechanisms by which various probiotics and
prebiotics induce reductions in weight and inflammation. In
this context, the probiotic derived from human gut F. prau
may prove particularly useful.

F. PRAU AS A NEW TREATMENT TO
IMPROVE GUT HOMEOSTASIS DURING
OBESITY AND IR
F. prau is a Gram-positive bacterium belonging to the
Ruminococcaceae family, in Clostridium cluster IV. It is one of
the most abundant species found in the gut, representing between
1 and 6% of the total fecal microbiota (Hold et al., 2003). Multiple
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studies have described its anti-inflammatory properties and its
role in tissue damage repair and protection against colitis(Sokol
et al., 2008; Martín et al., 2014; Rossi et al., 2015), which appear to
be related, at least in part, to its ability to produce butyrate(Zhou
et al., 2018). F. prau is characterized by great intra-species
diversity; indeed, it has been suggested that the genomic
disparities are great enough to warrant separating the group
into at least two different species: F. prau sensu stricto and F.
moorei sp. nov (Fitzgerald et al., 2018).

Patterns of abundance of F. prau and its different phylogroups
have been associated with various pathologies of the gut. For
example, IBD patients were found to host reduced phylotype
richness of F. prau compared to a healthy group. Specifically, total
levels of F. prau phylogroup I were reduced, and this pattern
could be used to accurately differentiate IBD and colorectal
cancer patients from healthy subjects; instead, phylogroup II
was specifically reduced in Crohn’s disease (CD) patients.
Interestingly, F. prau prevalence was found to be reduced
locally in either the ileum, colon, or rectum depending on the
form of the patient’s CD (Lopez-Siles et al., 2016). Taken
together, this demonstrates the potential applications of F.
prau phylotypes as biomarkers for the diagnosis and prognosis
of patients.

As discussed earlier, diversity of the microbiota is lower in
obese patients, and F. prau has been implicated in these changes
in community composition. For example, analysis of a Chinese
cohort revealed a reduced abundance of Bacteroides,
Akkermansia (another butyrate-producing bacterium), and F.
prau in T2D patients. Evidence of this shift was even
detectable in pre-diabetic obese patients, reflecting the link
between glucose intolerance and microbiota composition
(Zhang et al., 2013). These results—especially with respect to
F. prau—were corroborated in a later Iranian study, which also
reported a negative correlation between F. prau count and BMI
(Navab-Moghadam et al., 2017). In another study, though, F.
prau was found to be enriched in patients suffering from T2D
after weight loss (Hippe et al., 2016). Thus, although the exact
mechanisms have yet to be determined, the current state of
research supports a link between BMI, blood glucose levels,
and the abundance of F. prau.

Another interesting finding with respect to F. prau was
the observation of differences in gut composition on the
basis of gender, especially for this bacterium and
streptococci. In a population of obese Chinese patients, a
positive correlation was found between F. prau abundance
and fasting glucose levels in men but not in women (Aguirre
de Cárcer et al., 2011).

Rapid improvements (on the scale of a few days) have been
observed in the community structure of gut microbiota as a result
of nutritional interventions. Diets rich in non-digestible
carbohydrates, such as inulin-type fructans,
fructooligosaccharides, polydextrose, soluble corn fiber, and
raffinose, have been observed to increase the abundance of F.
prau (Verhoog et al., 2019). Supplements can also be effective; for
example, kiwifruit-based supplementation was noted to increase
F. prau abundance in the gut as well as stool frequency in humans
(Rush et al., 2002; Blatchford et al., 2017).

Alternatively, supplementation with F. prau itself could have
potential in the treatment of obesity and its associated disorders.
HFD-fed mice that were treated twice a week with F. prau
displayed decreased hepatic inflammation, with fewer lipids
accumulated in the liver, as well as a reduction in cell
infiltration of adipose tissue and adipocyte size compared to
controls (Munukka et al., 2017).

Finally, many studies have examined the mechanisms by
which F. prau exerts its beneficial impacts on the intestinal
health of obese individuals (Figure 2). It appears that these
effects may not only be a function of the abundance of this
bacterium in the intestine, but also of the quantity and type of
metabolites it produces, such as butyrate. Indeed, some of these
metabolites have already demonstrated promise for the treatment
of obesity and T2D (Ganesan et al., 2018; Verhoog et al., 2019).

F. PRAU ACTION THROUGH BUTYRATE
PRODUCTION

F. prau is one of the most abundant butyrate-producing bacteria
in human feces (Hold et al., 2003), and this SCFA is currently the
subject of intense research focused on its positive health effects.
For example, butyrate can prevent HFD-induced insulin
insensitivity through epigenetic regulation that increases
mitochondrial beta-oxidation, thus improving glucose
sensitivity and adiposity (Fernandes et al., 2014).

The butyrate-containing supernatant of F. prau has been
found to regulate Th17/Treg differentiation through inhibition
of the IL-6 and STAT3/IL-17 proinflammatory pathway,
specifically by targeting histone deacetylase 1 (HDAC1)
(Rivière et al., 2016; Zhou et al., 2018). Although this
mechanism was demonstrated in a colitis model, this
proinflammatory pathway is also involved in obesity (Hippe
et al., 2016). These results are consistent with the observation
that HFD-mice treated with F. prau have improved hepatic health
and reduced inflammation in adipose tissue (Munukka et al.,
2017).

The anti-inflammatory properties of butyrate, and by
extension F. prau, have long been known to be beneficial to
IBD patients(JM et al., 1989; W et al., 1992; Scheppach, 1996). A
recent clinical study found that administration of encapsulated
sodium butyrate altered patients’ gut microbiota by increasing the
abundance of SCFA-producing bacteria in ulcerative colitis
patients and butyrate-producing bacteria in Crohn’s disease
patients, with the former group reporting an increased quality
of life (Facchin et al., 2020). Sodium butyrate supplementation
also had positive effects on HFD-fed mice by altering the
composition of the gut microbiota, lowering serum LPS
concentration, and reducing HFD-induced inflammation
(Zhou et al., 2017).

The A2-165 strain of F. prau has been found to induce a
distinct cytokine response, with high IL-10 secretion compared to
other F. prau strains tested (Rossi et al., 2016). This may be the
result of higher butyrate production, which is known to induce
IL-10 responses in Th1 cells (Sun et al., 2018). Indeed, a recent
study demonstrated that this strain’s anti-inflammatory
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properties in primary human colonic mucosal barrier cells are
primarily due to the downregulation of TLR3 and TLR4 by
butyrate (Zhang et al., 2021). It thus seems likely that
differences in the cytokine profile induced by strain A2-165
compared to other strains of F. prau can be at least partially
explained by higher butyrate production.

However, gaps remain in our understanding of F. prau’s
butyrate metabolism and its effects on patients’ health, with
some studies reporting inconsistent results. For example, an
early study in southern India found significantly higher
abundances of F. prau in obese children compared to non-
obese children (Balamurugan et al., 2010). Similarly, Pinto
et al. (2017) found increased levels of F. prau in T1D patients.
They showed that the high abundance of the gluconeogenic
enzyme phosphenolpyruvate carboxykinase in the gut
proteome of their T1D cohort could be attributed to two
strains of F. prau and hypothesized that this was due to low
levels of glycolytic sources in the diets of T1D patients and a lack
of acetate—necessary for butyrate production—from other
bacterial sources such as Bifidobacterium spp. (Pinto et al.,
2017). This hypothesis was supported by the finding that co-
culture with strains of Bifidobacterium improved growth, gut
colonization, and butyrate production of F. prau. Administration
of the co-culture supernatant to mice decreased DSS-induced

inflammation, providing further evidence that the beneficial
properties of F. prau are dependent on its surrounding
environment and interactions with other species (Ganesan
et al., 2018; Kim et al., 2020).

Intriguingly, a 2016 study reported that samples from lean
patients contained the highest count of F. prau genes compared to
obese and T2D patients, but the lowest content of the F.
prau–associated butyryl-CoA:acetate CoA-transferase (BUT)
gene. Instead, T2D patients demonstrated the highest BUT
content. This was interpreted as evidence that different
phylotypes of F. prau produce different levels of butyrate in
vivo and that their abundance differs from healthy to unhealthy
patients (Hippe et al., 2016). It seems paradoxical that higher
butyrate production by F. prau would be associated with obesity
and T2D. The authors hypothesized that, while certain levels of
butyrate production can be protective in obese patients, greatly
increased production can lead to inflammation in the gut and the
development of T2D. The dose-dependent effect of butyrate on
epithelium permeability has long been supported by work using
transepithelial electrical resistance measurements; experiments
on Caco-2 cells showed protective effects at 2 mM and
detrimental effects at 8 mM of butyrate (Peng et al., 2007).
Similarly, a Belgian study on primary cell monolayers from
ulcerative colitis patients found that although butyrate had

FIGURE 2 | Proposed benefits effects of Faecalibacterium prausnitzii in gut inflammation due to obesity: Obesity and hyperglycemia cause dysbiosis, increased
level of FFA and LPS, and also disrupts intestinal permeability. These conditions trigger inflammatory pathways in the lamina propria allowing more permeability to
antigens and bacteria. This leads to a leaky gut and susceptibility to inflammatory disorders. The treatment with probiotic F. prau and its products can increase the
butyrate concentration, stabilizes the microbiota and mucous layer and decreases the activation of inflammatory pathway.
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protective effects in control non-inflamed tissue, it actually
worsened inflammation when administered together with
TNF-alpha and IFN-gamma, resulting in a dramatic increase
in IL-8 production (Vancamelbeke et al., 2019).

F. prau has been associated with the production of several
other metabolites, including shikimic and salicylic acids, known
for their antimicrobial activity, and α-ketoglutaric acid, which is
involved in ammonia recycling and cell proliferation and
differentiation, and known to be depleted in patients with gut
dysbiosis (Miquel et al., 2015). Investigation of these other
metabolites has become all the more relevant given a report
that the ability of 13 different strains to decrease IL-8 levels
induced by TNF-α stimulation in HT-29 cells was not correlated
either to growth ratio or butyrate production (Martín et al., 2017).

Quévrain et al. (2016) identified a family of peptides from F.
prau that were all derived from the same protein, the microbial
anti-inflammatorymolecule (MAM). They demonstrated that the
anti-inflammatory properties of MAM arose through inactivation
of the NF-κB pathway. Later experiments in models of DNBS-
and DSS-induced colitis validated the effects of MAM on NF-κB
in vivo and demonstrated its ability to inhibit the Th1 and Th17
immune responses (Breyner et al., 2017).

Amore recent investigation ofMAM analyzed its effects in db/
db mice, which do not express leptin receptors and which
demonstrated a depressed abundance of F. prau in the gut.
When these mice were supplemented with MAM produced by
E. coli, this protein was found to interact with ZO-1 and other
tight junction proteins. Furthermore, the transfection of MAM
into a cell line was able to increase ZO-1 expression and restore
epithelial barrier function (Xu et al., 2019). These results suggest
that MAM could have potential as an alternative treatment for
pathologies involving disturbances of the gut epithelium and gut
permeability.

It has thus become evident that butyrate is far from the only
metabolite implicated in the immunomodulatory properties of F.
prau. The use of this bacterium as a preventive or complementary
treatment for obesity- and T2D-related inflammation of the gut
could be promising. However, we first need a better
understanding of the optimal dosage of bacterial units and the
effects of butyrate production on host health, as well as how F.
prau and butyrate metabolism are affected by other gut bacteria.

FINAL CONSIDERATION

Obesity is a metabolic disease caused by several factors—genetic,
environmental, hormonal, and behavioral—but mainly by excess
energy intake. It predisposes patients to other diseases such as
hypertension and type 2 diabetes, and it is also associated with
disorders of intestinal homeostasis, such as increased permeability
and dysbiosis. Non-surgical treatments for obesity include changes in
lifestyle, diet, and medications, all of which tend to have low
adherence by the patient and are rarely effective for weight
control or even for shaping intestinal health. As a major factor
associated with obesity and gut health, intestinal dysbiosis may be the
key to the effectiveness of weight management and the control of its
associated comorbidities. For this reason, several probiotics have been
tested successfully for the control of obesity, and there is intense
interest in the discovery of new potential treatments.

F. prau is well known as an abundant bacterium in the natural
human microbiota whose abundance is reduced in obese
individuals. In addition to being a high producer of butyrate,
it has anti-inflammatory effects that contribute to intestinal
homeostasis. Therefore, the use of F. prau or its derivative
products may represent a good alternative for the treatment of
intestinal disorders linked with obesity and its comorbidities.
However, studies on dose, forms of administration, and
mechanisms of action are still necessary in order to improve
our understanding of the most appropriate use of this bacterium.
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Mucositis is an adverse effect of cancer chemotherapies using 5-Fluorouracil (5-FU). It is
characterized by mucosal inflammation, pain, diarrhea, and weight loss. Some studies
reported promising healing effects of probiotic strains, when associated with prebiotics,
as adjuvant treatment of mucositis. We developed a lyophilized symbiotic product, containing
skimmedmilk, supplemented with whey protein isolate (WPI) andwith fructooligosaccharides
(FOS), and fermented by Lactobacillus casei BL23, Lactiplantibacillus plantarum B7, and
Lacticaseibacillus rhamnosus B1. In a mice 5-FU mucositis model, this symbiotic lyophilized
formulation was able to reduce weight loss and intestinal permeability. This last was
determined in vivo by quantifying blood radioactivity after oral administration of 99mTc-
DTPA. Finally, histological damages caused by 5-FU-induced mucositis were monitored.
Consumption of the symbiotic formulation caused a reduced score of inflammation in the
duodenum, ileum, and colon. In addition, it decreased levels of pro-inflammatory cytokines IL-
1β, IL-6, IL-17, and TNF-α in the mice ileum. The symbiotic product developed in this work
thus represents a promising adjuvant treatment of mucositis.

Keywords: probiotic, chemotherapy, prebiotic, immunomodulant effects, symbiotic

INTRODUCTION

Mucositis consists of an inflammation, mainly of the small bowel, that affects individuals submitted
to cancer chemotherapy treatments, such as 5-Flourouracil (5-FU) (Sonis, 2004). It includes mucosal
injury, inflammation, diarrhea, and weight loss. It may lead to mucosal lesions and/or ulcerations
throughout the gastrointestinal tract (Rodríguez-Caballero et al., 2012). Mucositis markers include
the presence of leukocyte infiltrate in the lamina propria, degenerate enterocytes (Ciorba et al., 2016),
accumulation of neutrophils and eosinophils (Antunes et al., 2016), increased degeneration of goblet
cells (Stringer, 2013), as well as atrophy of villi (Chang et al., 2012).

There is presently no effective treatment for the prevention or alleviation of symptoms of mucositis.
Furthermore, the use of chemotherapeutics causes severe dysbiosis (imbalance in the intestinal
microbiota) which in turn worsens intestinal inflammation (van der Velden et al., 2014). In this
context, development of alternative or adjuvant treatments is needed. Indeed, the use of probiotics as
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promising candidates for adjuvant treatment of mucositis recently
attracted attention (Carvalho RD. et al., 2017). Selected lactic acid
bacteria (LAB) strains were reported as probiotics with beneficial
effects mediated by different mechanisms of action and offer new
perspectives for the development of adapted functional foods
(Carvalho RDO. et al., 2017; Eales et al., 2017; Tang et al., 2017).
Thus, studies have been carried out to evaluate the potential of such
probiotic strains, associated with prebiotics, as possible symbiotic
treatments of mucositis (Bastos et al., 2016).

Administration of lactobacilli strains, or of probiotic formulations,
can, in pre-clinical models, alleviate experimental mucositis and
prevent weight loss, diarrhea, and intestinal damages (Justino et al.,
2015; Cordeiro et al., 2018; Do Carmo et al., 2019). As an example,
Cordeiro and collaborators showed that the L. casei BL23 strain, when
grown in milk supplemented with whey protein isolate, was able to
mitigate inflammation in 5-FU-induced mucositis in mice (Cordeiro
et al., 2018). Moreover, Galdino et al. (2018) demonstrated that
Fructooligosaccharides (FOS), recognized as prebiotic, were able to
reduce mucosal damages in such a model (Galdino et al., 2018).
Trindade et al. (2018) further reported that the use of the symbiotic
Simbioflora® reduced intestinal injury in such amodel (Trindade et al.,
2018). Products combining probiotics and prebiotics are called
symbiotic. They may contain one or more probiotic strain(s) and
one or more prebiotic compound(s) (Flesch et al., 2014). They are
designed to favor synergy between the combined elements, providing
the consumer with the beneficial effects of this association (Flesch et al.,
2014). Several studies carried out with symbiotics highlighted effects
such as reduction of pro-inflammatory cytokines (Ishikawa et al.,
2005), stimulation of the immune system (Raizel et al., 2011), and
reduction of intestinal infections and intestinal inflammation (Santos
et al., 2015). Futher efforts focused on the quest for new strains, or
consortia thereof, to be used as adjuvants in the treatment of mucositis
(Picó-Monllor and Mingot-Ascencao, 2019; Shu et al., 2020). In this
quest, new candidate strains Lactiplantibacillus plantarum B7 and
Lacticaseibacillus rhamnosus D1 may open new perspectives. They
were recently shown to prevent infections by Salmonella enterica
serovar Typhimurium in BALB/c mice and in germ-free-mice,
including clinical manifestations such as tissue damages at the level
of ileum (Acurcio L. B. et al., 2017, Acurcio et al., 2017 LB.; Valente
et al., 2019). This protective effect being anti-inflammatory, these
strains seem good candidates to be investigated in the context of
mucositis.

The aim of this work was thus to develop a symbiotic and
lyophilized product, based on milk, supplemented with WPI and
FOS, fermented by strains L. casei BL23, L. plantarum B7, and L.
rhamnosus B1, which would be able to reduce the intestinal
inflammation, to control the pro-inflammatory immune
response, and to decrease intestinal permeability, in a murine
model of mucositis induced by 5-FU.

MATERIALS AND METHODS

Bacterial Strains and Culture Conditions
The bacterial strain L. casei BL23 is part of the UMR1219 MICALIS
INRA-AgroParisTech collection, Jouy-en-Josas, France. The strains
L. plantarum B7 and L. rhamnosus D1 were provided by Professor

Leonardo Acúrcio of Microorganisms and Ecology Laboratory of
Physiology, Universidade Federal de Minas Gerais. An aliquot of the
bacterial strains L. caseiBL23, L. plantarumB7, and L. rhamnosusD1
were first inoculated (2% v/v) in MRS culture medium (deMan,
Rogosa, and Sharpe) for 24 h at 37°C. Aliquots of bacterial cultures
from each strain were then inoculated into 12% w/v low-fat milk
medium (0.1%w/v yeast extract, 2%w/v glucose) supplemented or in
the absence of whey protein isolate (WPI) 30% w/v. After growth
(24 h 37°C), a 1ml aliquot of each inoculum was removed to assess
colony forming unit (CFU) count. Subsequently, 500ml of each
sample along with 500ml of skimmedmilk supplemented withWPI
without the presence of bacteria (Matrix), were refrigerated and
lyophilized in LH modelo 0601 (LIOMEAL—LBR Liofilização do
Brasil). Posteriorly, for 5-FU-inducedmucositis mice model, all three
strains fermented beverages (L. casei BL23, L. plantarum B7, and L.
rhamnosusD1) subjected to lyophilization were homogenized in a 1:
1:1(g) ratio and, subsequently, added with FOS (NewNutrition®) in a
sterile environment also at a ratio of 1:1(g). The product composed of
three strains lyophilized in amatrix and supplemented with FOS was
called Symbiotic.

Physicochemical Analyses and Bioactivity
The determination of moisture, protein, and fat content were
evaluated according to what was previously described (BRASIL,
2006). To determine the moisture content, we oven-dry 5 g of a
sample at 100–105°C, for 24 h. For protein content quantification
and fat levels, we realized the Kjeldahl and Gerber method,
respectively (Cordeiro et al., 2021). All results were expressed as
g/100 g. The bioactive peptides levels were determinated evaluate
the angiotensin I-converting enzyme inhibition (ACEI),
antioxidant activity (DPPH), and α-amylase and α-glucosidase
inhibition. For angiotensin I-converting enzyme inhibitory (ACEI)
calculate we used the spectrophotometric assay, according to
Konrad et al. (2014). For 2,2-diphenyl-1-picrylhydrazyl (DPPH)
measurmeant, we used the radical-scavenging method previously
described (Lee et al., 2016). Finally, for measurement of
α-glucosidase and α-amylase inhibitory activities of lyophilized
formulations we used the protocol describe by Grom et al. (2020).

Evaluation of Probiotics Properties of the
Formulations in Mucosite Mice Models
Animals
Conventional BALB/c mice (female) between 6 and 8 weeks of age,
obtained at Universidade Federal de Minas Gerais (UFMG–Belo
Horizonte, Brazil), were used. All mice were kept in a room with
temperature-controlled and standard chow diet and ad libitum
access to water. This study was approved by the Ethics Committee
on Animal Experimentation of the Federal University of Minas
Gerais (379/2018).

Experimental Set-Up
For probiotic treatment, mice were gavaged daily with 500 mg
(per day per animal) of dried product resuspended in PBS pH 7.4
until dissolution (500 µl for maximum final volume) for 13 days.
The maximal volume given daily by gavage was set according to
the good practice guide to the administration of substances (Diehl
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et al., 2001). To induce the mucositis disease, on day 11, mice of
inflamed groups received a single injection of 5-FU
(Fauldfluor—Libbs) (300mg/kg, intraperitoneally). An injection of
saline (NaCl 0.9%) was used in control groups. After 72 h of this
mucositis induction, all mice were euthanized (Carvalho RD. et al.,
2017). A longitudinal abdominal incisionwas performed to remove the
intestine for further analyses. The mice were weighed daily. BALB/c
mice were divided into five groups. The non-inflamed control (naive)
and inflamed control (5-FU) groups received 500 µl of PBS pH 7.4, the
other three groups received the dose of 5-FU, and were gavaged with
500mg of samples resuspended in PBS pH 7.4, i.e., the matrix control
group was gavaged with the lyophilization matrix (with FOS). The L.
caseiBL23 group and the Symbiotic groupwere gavagedwith probiotic
formulations containing in addtion toWPI (lyophilizationmatrix) and
FOS (250mg per dose), either BL23 (109 CFU) or the 3 strains (109

CFU). Themaximal volume given daily by gavage was set according to
the good practice guide to the administration of substances (Diehl et al.,
2001). Each group contained 18 animals.

Histopathological Analysis
The distal portion of the duodenum, jejunum, and ileum from mice
was collected and prepared for histomorphological analysis. For that,
tissues were immersed in 4%buffered formaldehyde solution and then
the material was embedded in paraffin, and a 4-μm section of each
sample was placed on a glass slide and stained with hematoxylin-eosin
(HE). The histological score was done by a pathologist, using Soares
et al. (2008) protocol. In this protocol, the intensity of the infiltrate of
mononuclear and polymorphonuclear cells in the lamina propria of
the duodenum, jejunum, and ileum, the presence of ulceration and
erosion and changes in mucosal architecture were measured (Soares
et al., 2008). For each parameter a classificationwas given according to
the severity of the lesion in the tissues: absent (0), mild (1), moderate
(2), and severe (3). Formorphometric analysis, 10 images of the ileum
of each animal were randomly captured and analyzed using ImageJ
software (version 1.8.0). Additional cuts in the paraffinized samples
from duodenum, jejunum, and ileum were stained by the Periodic
Acid-Schiff (PAS) to determine the number of goblet cells in the
tissues (Prisciandaro et al., 2011). Ten random field images of each
sample were made using the 40x objective and the intact goblet cells
were counted using ImageJ software (version 1.8.0) and expressed as
the number of cells per high-power field (hpf) (40x, 108.2 μm2)
(Cordeiro et al., 2018).

Intestinal Permeability
To assess intestinal permeability, after 72 h of mucositis induction, a
group of animals received 0.1 ml of diethylenetriaminepentaacetate
acid (DTPA), labelled with 18.5 MBq of 99mtechnetium, by gavage.
Four hours later, the blood was collected, placed in appropriate tubes
for radioactive determination and weighing (de Barros et al., 2018).
Results were calculated as percentage of dose per g of blood, by the
following equation: % dose/g blood � (cpm in g of blood/cpm dose
of standard) × 100 cpm (counts of radioactivity per minute)
(Galdino et al., 2018; Do Carmo et al., 2019).

Gene Expression Analysis in the Mice Ileum
Fragments of 1 cm of ileum were collected and total RNA of
samples was extracted using PureLink RNA Mini Kit (Thermo

Fisher Scientific). The extraction protocol was done according
to the manufacturer. To digest and remove residual genomic
DNA of samples we used DNase I (Invitrogen; Waltham, MA)
and Turbo DNA-free Kit (Ambion; Austin, TX). RNA quality
was assessed using agarose gel and NanoDrop® ND-1000 (260/
230 ratio). To prepare the cDNA libraries we used the High-
Capacity cDNA Reverse Transcription kit (Applied Biosystems;
Foster City, CA). Quantitative PCR (qPCR) was determined
using iTaq universal SYBR green supermix (Biorad; Hercules,
CA) and gene specific-primers, were selected according to Do
Carmo et al. (2019), for zonula occludes 1 and 2 (zo-1 and zo-2,
respectively), occludin (ocln), claudin-1 (cln-1), and claudin-5
(cln-5). For housekeeping genes, we encoded β-actin (actβ) and
GAPDH (gapdh). The amplification cycles were performed as
described: 95°C for 30 s, and 40 cycles of 95°C for 15 s and 60°C
for 30 s on ABI PRISM 7900HT Sequence Detection System
(Applied Biosystems). Results were expressed as a fold-change
of expression levels, using the mean and standard deviations of
target expression (2−ΔΔCt).

Ileum Tissue Preparation for Cytokine Quantification
by ELISA
Pro- and anti-inflammatory cytokines were quantified by ELISA
assay. Briefly, the ileum section of were weighed and
homogenized (100 mg tissue/ml buffer) in PBS containing
0.05% Tween-20 (Sigma-Aldrich, St. Louis, MO),
phenylmethylsulfonyl fluoride 0.1 mM (Sigma- Aldrich, St.
Louis, MO), benzethonium chloride 0.1 mM (Sigma-Aldrich,
St. Louis, MO), EDTA 10 mM (Synth, São Paulo, São Paulo,
Brazil), and aprotinin A 20 KIU (Sigma-Aldrich, St. Louis, MO).
Suspensions were centrifuged at 3.000 g for 10 min 12 and the
supernatants were collected for dosage of IL-1β, IL-6, IL- 10, IL-
17, TNF-α, and INF-γ cytokine according to the R and D Systems,
Inc. protocols. The absorbance was measured at 492 nm using a
Microplate Reader Model 680 (BIO-RAD). Samples from six
animals per group were collected for the ELISA assay,
homogenized, and three technical replicates performed.

Statistical Analyses
Data were performed using one-way ANOVA or two-way
ANOVA followed by the Tukey or Sidak post-test. Graphs
and statistical analyzes were analized using GraphPad Prism
version 9.2.0 (332) for Windows (GraphPad Software, San
Diego, CA). All results were presented as the mean ±
standard deviation, and p < 0.05 was considered as
statistically significant.

RESULTS

Viability of L. casei BL23, L. plantarum B7,
and L. rhamnosus D1 Strains Submitted to
Lyophilization
The viability of strains L. casei BL23, L. plantarum B7, and L.
rhamnosus D1, submitted to lyophilization, was measured by
CFU couting after rehydration of the product. All three strains,
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cultivated in the formulations with or without WPI, reached
populations greater than 2 × 109 CFU/g. The population of L.
casei BL23 was 4 × 109 CFU/g and 3 × 109 CFU/g (before and
after lyophilization, respectively). That of L. plantarum B7 was 3.3
× 109 CFU/g and 2.3 × 109 CFU/g (before and after
lyophilization, respectively). Similar results were observed with
L. rhamnosus D1: 4.9 × 109 CFU/g and 2.5 × 109 CFU/g (before
and after lyophilization, respectively).

Proximate Composition and Bioactivity
Compounds
The Matrix formulation, containing WPI and FOS, was used as a
control in the analysis of proximate composition and bioactivity
compounds. The proximal composition of the probiotic
formulations is described in Table 1. Analyzed parameters
were moisture, proteins, lipids, lactose, and ash. It was not
possible to find significant differences between the fermented

TABLE 1 | Proximal composition of fermented milks.

Samples Moisture Protein Fat Lactose Ash

Matrix 70.3 ± 0.85b 2.26 ± 0.02b 2.41 ± 0.19b 24.99 ± 0.83b 0.6 ± 0.0&b

L. casei BL23 88.2 ± 0.05a 3.52 ± 0.24a 1.81 ± 0.19a 5.82 ± 0.16a 0.65 ± 0.06a

L. casei BL23 + FOS 88.3 ± 0.04a 3.53 ± 0.91a 1.89 ± 0.28a 5.57 ± 0.18a 0.71 ± 0.07a

Symbiotic 89.7 ± 0.09a 3.54 ± 0.43a 1.88 ± 0.62a 4.22 ± 0.92a 0.66 ± 0.02a

Symbiotic + FOS 88.4 ± 0.02a 3.52 ± 0.21a 1.82 ± 0.51a 5.58 ± 0.70a 0.68 ± 0.06a

*Data are expressed as the mean ± standard deviation of at least 3 replicates.
a–fDifferent letters in the same column indicate significant differences between samples (p < 0.05).

TABLE 2 | Bioactive compounds of fermented milks.

Samples DPPH Antioxydant ACE Inhibition α

- amylase Inhibition
α

- glucosidase Inhibition

Matrix 23.7 ± 0.32d 23.2 ± 1.76e 18.2 ± 0.31e 20.5 ± 0.38e

L. casei BL23 23.1 ± 0.13d 37.8 ± 0.24d 26.7 ± 0.79d 32.1 ± 0.16d

L. casei BL23 + FOS 34.1 ± 0.34c 43.1 ± 0.98c 39.2 ± 0.21c 49.8 ± 0.18c

Symbiotic 44.3 ± 0.09b 58.2 ± 1.10b 49.2 ± 0.45b 55.6 ± 0.92b

Symbiotic + FOS 55.6 ± 0.28a 62.1 ± 0.30a 62.1 ± 0.22a 68.9 ± 0.70a

*Data are expressed as the mean ± standard deviation of at least 3 replicates.
a–fDifferent letters in the same column indicate significant differences between samples (p < 0.05). The DDPH, ACE, α - amylase and α—glucosidase was expressed in %.

FIGURE 1 | Probiotic lyophilized formulations can interfere with weight loss in mice with 5-FU-induced mucositis. Variation in body weight of mice (in percentage)
over the last 5 experimental days (A) of animals that were gavaged with: PBS pH 7.4 (Naive group and 5-FU inflamed control group); 12% skimmed milk supplemented
with 30% WPI and Fructooligosaccharide (Matrix); a formulation containing L. casei BL23, a formulation containing the mix of probiotics (Symbiotic). (B) Body weight
variation (in percentage) observed after the last experimental day (14th day) considering the 10th experimental day as initial weight (100%). Animals gavaged with
PBS was used as experimental controls. The one-way or two-way ANOVA test, followed by Sidak or Tukey post-test was used for the multiple comparisons between
groups (n � 6–9). Asterisks represent statistically significant differences as follows: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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samples (L. casei BL23 or Symbiotic in the presence or absence of
FOS). However, there was a significant difference between the
Matrix control and the other formulations.

Table 2 shows the bioactive compounds in the formulations
proposed in this study. Regarding the analyzed bioactives:
antioxidant potential (DPPH), inhibition of the enzyme
converting angiotensin ACE, inhibition of α-amylase, and
inhibition of α—glucosidase, the Symbiotic lyophilized product
showed the highest values with significant differences (p < 0.05),
when compared to other lyophilized product. Moreover, there
was a significant difference (p < 0.05) in the bioactives levels of the
Symbiotic with FOS, with higher values, when compared to the
Symbiotic formulation in the absence of FOS.

Symbiotic Reduces the Weight Loss in Mice
with Mucositis
Figure 1 shows the time-course of mice body weight
monitoring during the last five experimental days (10th to
14th day). During the pre-treatment period, prior to mucositis
induction (1st to 10th day), there was no significant difference
(data not shown) between the control groups (Naive and 5-FU)
and the experimental groups (Matrix, L. casei BL23,
Symbiotic). After the induction of mucositis, Figure 1A

shows that the animals receiving the dose of 300 mg/kg of
the chemotherapy 5-FU began to lose weight on the 12th
experimental day, while bodyweight of control naïve mice
remained constant. Moreover, all groups receiving 5-FU
showed significant weight loss, when compared to the Naive
group. The group of animals that received the Symbiotic
treatment showed a significant difference (p < 0.05) in the
daily variation of weight loss on the 12th and 13th
experimental days. The peak of weight loss occurred on the
13th and 14th day of the experiment (Figure 1A). 5-FU
administration, as shown in Figure 1B, induced weight loss
in all experimental groups. However, the Symbiotic treatment
significantly reduced (p < 0.05) the loss, compared to 5-FU
(inflamed control group) and to L. casei BL23. We also
observed a small weight loss in the Naive group without
inflammation.

Symbiotic Improves Mucosal Preservation
in Small Intestine of the Inflamed Mice
After euthanasia, the duodenal, jejunal, and ileal sections of the
animals were collected and stained with HE and submitted to
histological analysis to evaluate mucositis severity. Figures 2A–C
show representative photos of the duodenum, jejunum, and ileum

FIGURE 2 | Probiotic lyophilized formulations can reduce inflammation in the duodenal, jejunum, and ileum section of 5-FU-induced mucositis mice. (A, B, C)
Photomicrographs of the duodenal, jejunum, and ileum of BALB/c mice, stained in HE, induced or not to mucositis by 5-FU and those that received the probiotic
lyophilized formulations. The animals were gavage with: PBS pH 7.4 (Naive group and 5-FU inflamed control group); 12% skimmed milk supplemented with 30% WPI
and Fructooligosaccharide (Matrix); a formulation containing L. casei BL23, a formulation containing the mix of probiotics (Symbiotic). The photos show the ×20
magnification. Scale bar � 100 µm (D, E, F)Histopathological score of the duodenal, jejunum, and ileum section. Results were expressed asmeans ± standard deviation
(n � 6–9). One-way ANOVA and Tukey post-hoc tests were used for multiple comparison. Asterisks represent statistically significant differences as follows: *p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001.
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section, respectively. In the Naive group, no morphological
change in duodenum, jejunum, and ileum sections was
observed according to the parameters analyzed. Sections were
devoid of inflammatory infiltrate and the general architecture of
the mucosa remained unchanged. In the 5-FU inflamed control
group, an increase in the infiltration of inflammatory cells in the
lamina propria, submucosa, and muscle layer was observed in
duodenum, jejunum, and ileum section. So was an increase in
the thickness of the muscle layer, as well as a drastic change in
the villi, being partially or completely destroyed. Furthermore,
in some animals in the 5-FU inflamed group, the presence of
ulceration and erosion was observed (not shown in the
images). The group that received the Matrix showed
moderate preservation of the architecture and height of the
villi, with a partial destruction of the crypts and the presence of
a moderate (mixed) inflammatory infiltrate, reaching the
mucosa and submucosa. The group that received the L.
casei BL23 formulation showed moderate mononuclear
inflammatory infiltration, moderate to intense destruction
of the crypts, and a moderate preservation of the villi
architecture and height. In the group that received the
Symbiotic formulation, discrete destruction and reduction
of villi, moderate inflammatory infiltrate with mucosal and

submucosal involvement, with moderate loss of crypts, can be
observed. The histopathological score of the duodenum,
jejunum, and ileum sections (Figures 2D–F, respectively)
shows a reduction in the analyzed parameters with a
significant difference between the 5-FU group and the
groups treated with the Matrix, L. casei BL23, or Symbiotic
(p < 0.01; p < 0.001; p < 0.001, respectively). In addition, the
comparative analysis identified significant differences between
the group treated with the Matrix, and the group treated with
Symbiotic, for scores in duodenum and jejunum section (p <
0.05; p < 0.01, respectively), with a significant reduction of the
histopathological score in the latter.

As expected, the 5-FU induced mucositis in this mice model
triggers substantial decrease in goblet cells number 6.66, 13.47, 22.30
goblet cell/hpf in duodenum, jejunum, and ileum section, respectively
(Figures 3A–C for) when compared to the groups injected with 0.9%
saline, 51.4, 37.9, 52.93 goblet cell/hpf in duodenum, jejunum, and
ileum section, respectively. In the other hand, L. casei BL23 and
Symbiotic treatment did not prevent the degeneration of goblet cells
in the mice duodenum, jejunum, and ileum section. However, only
the Matrix was able to significantly reduce the degeneration of goblet
cells in the duodenum and jejunum (27.8, 27.2 goblet cell/hpf, p <
0.05; p < 0.01, respectively), not in the ileum.

FIGURE 3 | Probiotic lyophilized formulations can interfere in the population of goblet cells in the duodenal, jejunum, and ileum section of 5-FU-induced mucositis
mice. (A, B, C) Photomicrographs of the duodenal, jejunum, and ileum, stained by PAS, of BALB/c mice submitted to 5-FU-induced mucositis and those that received
the probiotic lyophilized formulations. The animals were gavage with: PBS pH 7.4 (Naive group and 5-FU inflamed control group); 12% skimmedmilk supplemented with
30% WPI and Fructooligosaccharide (Matrix); a formulation containing L. casei BL23, a formulation containing the mix of probiotics (Symbiotic). The photos show
the ×20magnification. Scale bar � 100 µm (D, E, F)Quantification of goblet cells in the section of the duodenal, jejunum, and ileum by field of highest magnification (×40;
108.2 µm2). Results were expressed as means ± standard deviation (n � 6–9). One-way ANOVA and Tukey post-hoc tests were used for multiple comparison. Asterisks
represent statistically significant differences as follows: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Symbiotic Prevents Increase in Gut
Permeability
Intestinal permeability was evaluated after oral gavage of mice
with radiolabelled diethylenetriaminepentaacetate (99mTc-
DTPA), followed by quantification of radioactivity in the
animal´s blood. As expected, 5-FU injection significantly
increased intestinal permeability (p < 0.001), compared to the
Naive control group (Figure 4). There was no significant
difference between the group treated with the L. casei BL23
and the 5-FU control group. However, animals treated with
Matrix and Symbiotic exhibited significantly decreased (p <
0.001) intestinal permeability, compared to the 5-FU inflamed
control group. Furthermore, there was no difference between the
Naive, Matrix, and Symbiotic groups. Additionally, when the
Matrix and Symbiotic groups were compared to the L. casei BL23
group, a significant reduction in intestinal permeability values
was observed (p < 0.05).

Symbiotic Increases Expression of
Epithelial Barriers Genes
Among Naïve, 5-FU (inflamed control group), Matrix, and L.
casei BL23 groups, no difference was found between groups in the
expression of genes zo-1, zo-2, claudin-1, and occluding
(Figure 5). However, the Symbiotic treatment was able to
significantly increase the expression of the genes zo-1 (p <
0.01), occludin (p < 0.05), and claudin-1 (p < 0.05), when
compared to the 5-FU inflamed control groups. It is
noteworthy that expression of the ZO-1 and Occludin genes in
the Symbiotic group was significantly higher, when compared to
Matrix and L. casei BL23 groups, respectively, zo-1 (p < 0.01; p <
0.05), ocludin (p < 0.05; p < 0.05).

Symbiotic Modulates Anti-Inflammatory
Cytokines in Mice Ileum
As shown in Figure 6, the cytokines IL-1β, IL-6, IL-17, and TNF-
α were significantly enhanced (p < 0.001; p < 0.05; p < 0.0001; p <
0.001, respectively) in the ileum of animals administered with 5-
FU (inflamed control group), when compared to the Naïve
control group. However, Symbiotic treatment was able to
reduce significantly cytokines levels of IL-1β, IL-6, IL-17,
TNF-α (p < 0.05; p < 0.0001; p < 0.0001; p < 0.001,
respectively) compared to the 5-FU control group. In addition,
the Symbiotic group reduced significantly (p < 0.05) the levels of
IL-1β, when compared to the Matrix group. The Matrix and L.
casei BL23 treatments were also able to reduce significantly
cytokines levels of IL-6, IL-17, and TNF-α, compared to the 5-
FU group. No difference was found in cytokine levels of INF-γ.
Additionally, only L. casei BL23 was able to increase Il-10 levels,
compared to the 5-FU inflamed control group (p < 0.05).

DISCUSSION

Mucositis is characterized by inflammation and by cell loss at the
level of the epithelial barrier of the digestive tract. This leads to

mucosal lesions and/or ulcerations throughout the TGI, i.e., from
the mouth to the anus (Soares et al., 2008). Treatments aimed at
controlling such side effects of cancer chemotherapy are lacking.
We thus proposed to use probiotic bacterial strains, either in
suitable culture media (Do Carmo et al., 2019) or in dairy
matrices supplemented with whey protein (Cordeiro et al.,
2018). We obtained promising results against adverse effects
caused by chemotherapeutics, precisely in 5-FU-induced
mucositis. Furthermore, Galdindo and collaborators used a
FOS prebiotic to attenuate the effects of 5-FU-induced
mucositis and obtained promising results (Galdino et al.,
2018). Therefore, the present work aimed to develop a
symbiotic product from milk, fermented by strains of
Lactobacillus casei BL23, Lactiplantibacillus plantarum B7, and
Lacticaseibacillus rhamnosus D1, supplemented with WPI, added
with FOS, and subsequently lyophilized, to evaluate its
therapeutic effects in a murine model of 5-FU-induced mucositis.

Initially, bioactive compounds analyses showed that the
Symbiotic (supplemented with FOS) has high levels of the
DPPH, ACE, a-amylase, and a-glucosidase inhibitor bioactive

FIGURE 4 | Lyophilized probiotic formulations can decrease intestinal
permeability in mice with 5-FU-induced mucositis. Intestinal permeability was
measured 72 h after mucositis induction by determining Technetium-99 m
radioactivity (99mTc-DTPA) in mouse blood. The animals were gavage
with: PBS pH 7.4 (Naive group and 5-FU inflamed control group); 12%
skimmed milk supplemented with 30% WPI and Fructooligosaccharide
(Matrix); a formulation containing L. casei BL23, a formulation containing the
mix of probiotics (Symbiotic). Means and standard deviations were calculated
from an independent experiment for each of the 9 animals per group. Asterisks
represent statistically significant differences between the strains and were
indicated as follows: *p < 0.05; **p < 0.01; ***p < 0.001 and ****p < 0.0001.
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compounds. These inhibitor peptides have beneficial effects in other
intestinal inflammations such as diabetes, hypertension, obesity, and
inflammatory bowel disease (Takiishi et al., 2017; Salinas et al., 2021).
It is worth emphasizing the role of the antioxidant activity, which is:
protective against histological damage, apoptotic changes, and pro-
inflammatory cytokines, mainly caused by chemotherapeutic agents.
Given the previous selection of bacterial strains due to their probiotic
potential in infection in vivo models and mucositis (Acurcio L. B.
et al., 2017, Acurcio et al., 2017 LB.; Cordeiro et al., 2018; Valente
et al., 2019), and subsequent characterization of the lyophilized
fermented product and supplemented with FOS, we decided to
investigate its therapeutic potential in a murine model of mucositis
induced by 5-FU chemotherapy.

It is known that the application of 5-Fluorouracil in mice leads
to a significant weight loss, when compared to non-inflamed

animals (Chang et al., 2012). As seen in previous studies, 5-FU-
induced mucositis in BALB/c mice triggers a drastic reduction in
weight, pasty stools with the presence of blood, as a result of
substantial changes in the architecture, and destruction of the
intestinal mucosa, resulting in intense inflammatory process
(Carvalho RD. et al., 2017; Cordeiro et al., 2018). This also
favors a change in intestinal permeability (Galdino et al., 2018;
Do Carmo et al., 2019). The probiotic VSL#3 was tested in a
murine model of mucositis (Bowen et al., 2007). Hence, this
product, which contains several bacterial strains (one strain of
Streptococcus thermophilus, four Lactobacillus spp., and three
Bifidobacterium spp.), was effective in reducing weight loss in
a mucositis model induced by irinotecan. Since mucositis affects
the entire gastrointestinal tract, we decided to extend the
histological analysis to include the duodenum and jejunum

FIGURE 5 | Probiotic lyophilized formulations can modulate gene expression of epithelial barrier genes in the ileum section of mice with 5-FU-induced mucositis.
Gene for zonula occludes 1 and 2 (zo-1 and zo-2, respectively), occludin (ocln), and claudin-1 (cln-1) were measured by RT-qPCR. The animals were gavage with: PBS
pH 7.4 (Naive group and 5-FU inflamed control group); 12% skimmed milk supplemented with 30%WPI and Fructooligosaccharide (Matrix); a formulation containing L.
casei BL23, a formulation containing the mix of probiotics (Symbiotic). Means and standard deviations are calculated from 3 animals per group, from 2 independent
repetitions and each quantification was performed in duplicate (technical duplicate). Asterisks represent statistically significant differences between strains and were
indicated as follows: *p < 0.05; **p < 0.01; ***p < 0.001 and ****p < 0.0001.
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section, together with the ileum section, described in the literature
as the site intensely affected by 5-FU action (Touchefeu et al.,
2014). In the 5-FU control group, alteration and destruction of
the mucosal architecture, as well as extensive inflammation, was
observed in the duodenum and jejunum. In the histological
analysis of the duodenum, jejunum, and ileum, it was
observed that all formulations were able to reduce
inflammation in the intestinal mucosa. Interestingly, the
Matrix, containing WPI and FOS, was sufficient to reduce
inflammation. This result is in agreement with previous
studies using WPI and FOS (Cordeiro et al., 2018; Galdino
et al., 2018), which indicated significant protection. Other
authors suggested that some of the amino acids present in
WPI, such as cysteine and glutamate, are used to produce
glutathione (Moslehi et al., 2014). This is responsible for

providing the main intracellular defense against oxidative
stresses, which occurs in severe inflammation such as
mucositis, a fact that makes WPI a potential anti-
inflammatory compound (Shiby and Mishra, 2013).
Futhermore, the results found here using our Symbiotic are
similar to those found in other works. For example, Yeung
et al., using Lactobacillus acidophilus and Bifidobacterium
bifidum strains, significantly reduced mucosal damage caused
by 5-FU-induced mucositis in a murine model (Yeung et al.,
2015). In the work of Trindade et al., the administration of the
symbiotic Simbioflora®, which contains four probiotic strains
plus FOS, also reduced damages in the same animal model
(Trindade et al., 2018). We suggest that the synergy provided
by the interaction of the Lactobacillus three strains, with
previously tested anti-inflammatory potential, plus FOS, is

FIGURE 6 | Probiotic lyophilized formulations can modulate cytokine production in the ileum section of mice with 5-FU-inducedmucositis. Cytokine levels (A IL-1β,
IL-6, IL- 10, IL-17, TNF-α, and INF-γ ratio were determined inmouse ileum tissue supernatant by ELISA. The animals were gavagedwith: PBS pH 7.4 (Naive group and 5-
FU inflamed control group); 12% skimmed milk supplemented with 30% WPI and Fructooligosaccharide (Matrix); a formulation containing L. casei BL23, a formulation
containing the mix of probiotics (Symbiotic). Means and standard deviations are calculated from 3 animals per group, from 3 independent repetitions, and each
quantification was performed in triplicate (technical triplicates). Asterisks represent statistically significant differences between strains and were indicated as follows:
*p < 0.05; **p < 0.01; ***p < 0.001 and ****p < 0.0001.
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responsible for improving the response to inflammation.
However, more studies will be needed to understand the
synergistic mechanisms, the specific action of each of the
strains, and the mechanism responsible for mitigation of
inflammation caused by chemotherapy.

The impact of mucositis, using chemotherapeutics, expands
throughout the intestinal barrier, also affecting the production of
goblet cells (Carvalho RDO. et al., 2017). The group that received
the lyophilization matrix, interestingly, showed a significant
preservation of these cells. Perhaps, the matrix components
that were not metabolized by the strains helped in the
preservation of goblet cells. A hypothesis for this result, as
observed by Cordeiro et al. (2018), would be the availability of
amino acids via WPI, mainly threonine, cysteine, and serine for
the synthesis of this mucus (Faure et al., 2006) and also the
presence of FOS action, increasing the population of
Bifidobacteria, which would modulate mucus production.

Mucositis alters the epithelial integrity of the gastrointestinal
tract. As a result, the intestinal permeability is affected (Cinausero
et al., 2017), allowing translocation of harmful and toxic
substances produced by pathobionts bacteria. This may in turn
allow their passage from the intestinal lumen to the blood
circulation, causing unwanted systemic effects that can lead to
death (Fine et al., 2020). Accordingly, 5-FU led here to increased
intestinal permeability of animals in the inflamed, when
compared to the Naive group. Consumption of L. casei BL23
failed to prevent this increase, while preserving the architecture
and reducing the inflammation in the small intestine. However,
theMatrix and Symbiotic both significantly reduced the intestinal
permeability of mucositis mice. In the work of Galdino et al., FOS
administration in 5-FU mucositis mice led to similar results
(Galdino et al., 2018). In the work of Antunes et al. (2016),
the use of the amino acid L-arginine, present in WPI in large
quantities, reduced damages to the mucosa and intestinal
permeability of animals in a murine model of mucositis.
However, synergy with the strains contained here in the
Symbiotic promoted an increase in the expression of genes
involved in the intestinal epithelial barrier (ZO-1, Ocludin,
and Claudin-1). This may explain how this formulation was
able to reduce intestinal permeability.

In response to the administration of the chemotherapeutic
agent 5-FU, mediators of the inflammatory response are
activated, including the transcription factor NF-kb. Its
activation leads to the production of pro-inflammatory
cytokines, such as TNF-α, IL1-β, and IL-6 and IL-17 (Chang
et al., 2012). These inflammatory markers play a central role in
mucositis and are released in the inflammatory phase (Lopez-
Castejon and Brough, 2011). The symbiotic was able to reduce the
level of pro-inflammatory cytokines, which allows us to
hypothesize that the therapeutic action of this formulation in
the 5-FU-induced mucositis model is mediated by the inhibition
of the pro-inflammatory response. This modulatory effect may be
favored by metabolites (SCFA, bacteriocins, and
neurotransmitters such as GABA) as a result of fermentation
by the three strains. This would explain the difference between
the Matrix and L. casei BL23. However, further experiments will
be necessary to fully explain the mechanisms responsible for the

healing effect observed here and to identify the different anti-
inflammatory effectors produced by these strains.

CONCLUSION

In conclusion, we have demonstrated that the lyophilized
Symbiotic formulation, containing WPI, FOS, and fermented
by Lactobacillus casei BL23, Lactiplantibacillus plantarum B7
and Lacticaseibacillus rhamnosus B1, has anti-inflammatory
potential in 5-FU-induced mucositis, reducing animal weight
loss, intestinal permeability, modulating genes implicated in the
intestinal epithelial barrier, controlling pro-inflammatory
cytokine levels, and reducing mucosal damage caused by
chemotherapy. This work opens new perspectives for the
development of functional symbiotic products for target
populations, in the context of mucositis, based on smart
selection of matrices and bacterial consortia.
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SlpB Protein Enhances the Probiotic
Potential of L. lactis NCDO 2118 in
Colitis Mice Model
Giovanna A. Belo1, Bárbara F. Cordeiro1, Emiliano R. Oliveira1, Marina P. Braga1,
Sara H. da Silva1, Bruno G. Costa1, Flaviano dos S. Martins1, Gwénaël Jan2, Yves Le Loir 2,
Alfonso Gala-García1,3, Enio Ferreira1, Vasco Azevedo1† and Fillipe L. R. do Carmo1,2*†

1Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil, 2INRAE, STLO, Institut Agro,
Agrocampus Ouest, Rennes, France, 3School of Dentistry, Federal University of Bahia (UFBA), Salvador, Brazil

Bacteria used in the production of fermented food products have been investigated for
their potential role as modulators of inflammation in gastrointestinal tract disorders such as
inflammatory bowel diseases (IBD) that cause irreversible changes in the structure and
function of gut tissues. Ulcerative colitis (UC) is the most prevalent IBD in the population of
Western countries, and it is marked by symptoms such as weight loss, rectal bleeding,
diarrhea, shortening of the colon, and destruction of the epithelial layer. The strain
Propionibacterium freudenreichii CIRM-BIA 129 recently revealed promising
immunomodulatory properties that greatly rely on surface-layer proteins (Slp), notably
SlpB. We, thus, cloned the sequence encoding the SlpB protein into the pXIES-SEC
expression and secretion vector, and expressed the propionibacterial protein in the lactic
acid bacterium Lactococcus lactis NCDO 2118. The probiotic potential of L. lactis NCDO
2118 harboring pXIES-SEC:slpB (L. lactis-SlpB) was evaluated in a UC-mice model
induced by Dextran Sulfate Sodium (DSS). During colitis induction, mice receiving L.
lactis-SlpB exhibited reduced severity of colitis, with lower weight loss, lower disease
activity index, limited shortening of the colon length, and reduced histopathological score,
with significant differences, compared with the DSS group and the group treated with L.
lactis NCDO 2118 wild-type strain. Moreover, L. lactis-SlpB administration increased the
expression of genes encoding tight junction proteins zo-1, cln-1, cln-5, ocln, andmuc-2 in
the colon, increased IL-10 and TGF-β, and decreased IL-17, TNF-α, and IL-12 cytokines in
the colon. Therefore, this work demonstrates that SlpB recombinant protein is able to
increase the probiotic potential of the L. lactis strain to alleviate DSS-induced colitis in mice.
This opens perspectives for the development of new approaches to enhance the probiotic
potential of strains by the addition of SlpB protein.

Keywords: SlpB, propionibacterium, colitis, Lactococcus lactis, inflammatory bowel disease

INTRODUCTION

Propionibacterium freudenreichii (Pf) is a dairy propionic acid bacterium (PAB) that has gained
prominence as a potential probiotic, after studies have shown primitive characteristics, such as
the production of short-chain fatty acids and conjugated linoleic acid, in addition to producing
vitamin 12 at an industrial scale (Thierry et al., 2011; Deptula et al., 2017). Pf has been listed in the
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qualified presumption of safety (QPS) list by the European food
safety authority and has a GRAS (Generally Recognized As
Safe) status for its use in cheese. The immunomodulatory
properties of some Pf strains have already been clearly
demonstrated in inflammatory bowel disease (IBD) mice
models (Foligne et al., 2010; Carvalho et al., 2017; Ma et al.,
2020; Rabah et al., 2020) and in the mucositis model (Cordeiro
et al., 2018; Do Carmo et al., 2020). The probiotic properties of
Pf are directly linked to the presence of surface proteins, the
S-layer proteins (Slp), as shown by the study by Do Carmo et al.
(2017) and Do Carmo et al. (2018). Mutation of the gene
encoding SlpB, a surface protein present at the surface of the
probiotic strain P. freudenreichii CIRM-BIA 129 (Pf 129),
drastically alters its immunomodulatory effects in vitro and
in vivo, its adhesion to HT-29, its physicochemical properties,
its ability to survive stress, and its surface and whole-cell
proteome. Moreover, the purified Pf 129 SlpB protein was
able to increase IL-10 gene expression in HT-29 cells.
Furthermore, it is very important to know whether the
immunomodulatory effects of the Pf 129 SlpB protein can be
observed in other organisms, such as lactic acid bacteria.

Probiotic potential of the lactic acid bacterium (LAB)
Lactococcus lactis has widely been explored. Notably, recent
studies on the L. lactis subsp. lactis strain NCDO 2118 pointed
out its potential to control intestinal inflammation in a mouse
model (Carvalho et al., 2017). Precisely, L. lactis NCDO 2118 is
amenable to transformation, and it has been used for the
production and secretion of heterologous proteins in a L. lactis
species that reportedly secretes a small number of homologous
proteins (Nouaille et al., 2003). Miyoshi and collaborators (2004)
developed a versatile plasmidic expression system inducible by
xylose (xylose-inducible expression system—XIES). XIES
plasmid (pXIES) can address the recombinant protein to the
cytoplasm (pXIES-CYT) or to the extracellular medium (pXIES-
SEC) (Miyoshi et al., 2004). Gomes-Santos et al. (2017) explored
the potential of L. lactis strain NCDO 2118 secreting the
Mycobacterium leprae heat-shock protein HSP65 (pXIES-SEC:
hsp65) and obtained promising results in mitigating experimental
colitis in mice model.

Probiotics, such as P. freudenreichii CIRM-BIA 129 and L.
lactisNCDO 2118, have been tested as adjuvants in the treatment
of colitis in animal models (Gomes-Santos et al., 2017; Ma et al.,
2020; Rabah et al., 2020; Cordeiro et al., 2021). IBDs induce
pathological signs and symptoms such as weight loss, rectal
bleeding, diarrhea, shortening of the colon, and destruction of
the epithelial layer. In the colon mucosa of patients affected by
ulcerative colitis (UC), the presence of an inflammatory infiltrate
composed of neutrophils and eosinophils are described.
Furthermore, destruction of the epithelial barrier and the
mucin layer leads to the exposure to antigens or pathobionts
present in the intestinal lumen, exacerbating the pro-
inflammatory response (Kushkevych and Monika, 2021). IBD
etiology is being explored to unravel the mechanisms responsible
for this pathology. Beyond the evidence of genetic susceptibility,
the intestinal microbiota alterations (or dysbiosis), causing an
exacerbated immune response in the host, can affect and
aggravate IBD symptoms. An experimental approach proposed

for the study of IBDs is a mice model of colitis induced by
Dextran Sulfate Sodium (DSS). DSS-induced colitis model is able
to mimic and reproduce IBD pathology routinely observed in
human UC, body weight reduction, diarrhea, bloody feces,
decreased colon length, mucosal injury, impaired mucus
epithelial barrier function, and proinflammatory immune
response (Wirtz et al., 2017).

In this work, we explore the therapeutic role of Pf 129 SlpB
protein in the modulation of intestinal inflammations induced by
chemical substances. In this aim, we use the L. lactis NCDO2118
harboring pXYSEC:slpB, to evaluate its effects in the DSS-colitis
mice model.

MATERIALS AND METHODS

Strains and Cloning Procedure
Lactococcus lactisNCDO 2118 wild-type (L. lactisWT) strain was
grown at 30°C in M17 medium (Difco) containing 0.5% glucose
(GM17), without agitation, or in the same medium solidified with
1.5% agar for 18 h. The nucleotide sequence encoding the SlpB
surface protein from Propionibacterium freudenreichii CIRM-
BIA 129 (Pf 129) was obtained from the database of the National
Center for Biotechnology Information (NCBI), deposited under
accession number CDP48273.1 (CDS 5503..7173). The sequence
was optimized for expression in Lactococcus lactis NCDO2118
bacteria in the OptimumGeneTM program (GenScript
Corporation) and synthesized by GenScript Corporation
(Piscataway, NJ, USA) and cloned into pUC57 vector. The
optimized SlpB protein sequence was synthesized with the
restriction sites NsiI-3′ and EcoRI-5 to cloning into the
plasmid pXYSEC (chloramphenicol resistance). The NsiI/
EcoRI digested and purified SlpB ORF and pXY:SEC
fragments were ligated by T4 DNA ligase (Invitrogen) to
obtain the pXYSEC:slpB plasmid, which was established by
transformation in E. coli Top10 and selected with 10 μg/ml of
chloramphenicol (Cm) in Luria Bertani Agar (Miyoshi et al.,
2004). Routinely, the primers SlpB-Forward 5′-GATCCCCCG
TCTGAACGAACTT-3′ and SlpB-Reverse 5′-CGACATCAT
TGAACATGCTGAAGAGC-3′ were used for plasmid
construction verification by PCR and agarose gel, and also for
sequencing (PCR product size: 1,816 bp). Then, the optimized
gene sequence for SlpB was subcloned into the pXYSEC plasmid
and competent L. lactis NCDO 2118 bacteria was transformed by
electroporation as previously described by Langella et al. (1993),
and grown at 30°C in M17 medium (Difco) containing 0.5%
glucose (GM17) without agitation containing 10 μg/ml of
chloramphenicol. To confirm the final construction of
pXYSEC:slpB, a DNA sequencing was performed by
fluorochrome-labeled dideoxynucleotides method (BigDye
Terminator v3.1 Cycle Sequencing, Applied Biosystems, USA).
Recombinant L. lactisNCDO2118 strain was grown in DifcoM17
broth, supplemented with either 0.5% glucose (GM17) or 1%
xylose (XM17) and chloramphenicol (10 μg/ml) at 30°C without
agitation. On the first day, single colonies of recombinant L. lactis
NCDO2118 harboring pXYSEC:slpB (L. lactis-SlpB) were
cultured in 5 ml of GM17. On the second day, the overnight
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culture was diluted 1:10,000 in XM17 to induce the expression of
the slpB gene ORF. Proteins sample preparation from L. lactis
wild type and recombinant L. lactis-SlpB cultures was performed
as previously described (Miyoshi et al., 2004). To verify protein
production, a Sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS–PAGE) and Western blotting was done
as previously described by Do Carmo et al., 2017.

Animals
Conventional female C57BL/6 mice of 8 weeks of age, obtained at
the Universidade Federal de Minas Gerais (UFMG, Belo
Horizonte, Brazil), were used in this work. They were housed
in plastic cages in a room with controlled temperature
(18°C–23°C), light cycle 14 h light/10 h dark, relative humidity
(40%–60%), and ad-libitum access to food and water. All
experimental procedures realized in this work were approved
by the Ethics Committee on Animal Experimentation of the
Universidade Federal de Minas Gerais (CEUA-UFMG, Brazil) by
the protocol no. 148/2020.

Experimental Design and Dextran Sulfate
Sodium-Induced Colitis
L. lactis NCDO2118 WT (L. lactis) and L. lactis NCDO2118
pXYSEC: slpB (L. lactis-SlpB) strains were prepared daily for the
animals, using intragastric gavage as a form of administration. Both
strains were grown in M17 medium (Difco) added with glucose
(0.5%), for the wild-type strain, and xylose (1%) + 10 μg/ml of Cm,
for the L. lactis-SlpB strain. Bacteria cultures (L. lactis and L. lactis-
SlpB), were incubated for 24 h at 30°C, and 1 ml of each culture was
centrifuged at 3,500 rpm for 10min and washed with PBS pH 7.4
twice to remove the antibiotic. Thus, each bacterial pellet
corresponds to a daily dose with 5 × 109 CFU/per dose of
bacteria, which was then resuspended in 100 µl of PBS pH 7.4.

The mice were divided randomly into four main groups, each
containing six animals per group (Supplementary Figure S1).
Group 1 represented a healthy control group that received only
water for drinking (control group). The mice from groups 2–4
(experimental groups) received DSS (36–50 kDa, MP Biomedicals,
CAT 260110, LOT Q5756), as the only drinking source, prepared
to a concentration of 1.7% in filtered drinking water and provided
to the animals daily, during 7 days, according to the acute colitis
model previously described (Wirtz et al., 2017). Animals from
group 2 received only DSS solution (group DSS) and no treatment.
Mice from groups 3 and 4 received the bacteria dose during the
7 days by gavage (all experimental days), together with DSS in
drinking water. Precisely, mice from group 3 received intragastric
doses (100 µl containing 5 × 109 CFU) of L. lactisNCDO 2118WT
(group DSS + NCDO 2118 WT), and animals in group 4 received
(100 µl containing 5 × 109 CFU) of L. lactis NCDO 2118 pXYSEC:
slpB (group DSS + NCDO2118 pXYSEC:slpB). The mice were
euthanized on the seventh day. All in vivo experiments were
done in biological triplicate.

Assessment of Colitis Severity
During all experimental days, the water, food intake, and mice
body weight were recorded daily. On the last experimental day,

the disease activity index (DAI) was determined, as described by
Cooper et al. (1993), attributing a score of the three major colitis
clinical signs: weight loss, intensity of diarrhea, and presence of
rectal bleeding.

A longitudinal abdominal incision was performed in all mice
to access the intestine and colon, and then to be used in future
analyses. The colon length of each mouse (measured from the
cecum to rectum) were used to indicate the mean of each
experimental group (cm). The colon distal part was collected,
washed with PBS, and stored in segment rolls for
histomorphological analysis. These rolls were immersed in
formaldehyde solution (4%, v/v) for tissue fixation and, after
that, they were embedded in paraffin. A section (4 µm) was placed
on a glass slide and stained with Hematoxylin-Eosin (HE)
(Marchal Bressenot et al., 2015). The sections were
photographed (×20 magnification objective) using a digital
camera (Spot Insight Color) coupled to an optical microscope
(Olympus, BX-41, Japan). The histological inflammation score was
determined by a pathologist using the score previously described by
Wirtz et al. (2017). Consider: tissue damage (0: none; 1: isolated
focal epithelial damage; 2: mucosal erosions and ulcerations; 3:
extensive damage deep into the bowel wall) and lamina propria
inflammatory cell infiltration (0: infrequent; 1: increased, some
neutrophils; 2: the submucosal presence of inflammatory cell
clusters; 3: transmural cell infiltrations). The total score ranging
from 0 (no changes) to 6 (widespread cellular infiltrations and
extensive tissue damage) were obtained by the sum of these two
sub-scores (tissue damage and lamina propria inflammatory cell
infiltration). Other cuts of the paraffinized colon samples were
produced and stained by the periodic acid-Schiff (PAS)
(Prisciandaro et al., 2011) in order to count the mucus-
producing goblet cells. Ten random field images from each
sample were made using the ×40 objective, and then, using
ImageJ software (version 1.8.0) the intact goblet cells were
counted. The total number of goblet cells was expressed as the
number of cells per high-power field (HPF) (×40, 108.2 µm2).

Colonic Activity of Myeloperoxidase and the
Eosinophil Peroxidase
Neutrophil infiltration levels in the colon tissue were assessed by
measurement of myeloperoxidase activity (MPO), as previously
described by Porto et al., 2019. For MPO quantification, a piece of
colon tissue (100 mg) was homogenized proportionally in 1.9 ml/
100 mg of PBS and centrifuged at 10,000 × g for 10 min. The
pellet formed was lysed and centrifuged again. The pellet formed
was resuspended proportionally in 1.9 ml/100 mg of 0.5%
HTAB (hexadecyltrimethylammonium bromide) diluted in
PBS. The suspension was submitted to freeze–thaw cycle (3x)
using liquid nitrogen and then, centrifuged at 12,000 × g at 4°C,
for 10 min. In order to perform the enzymatic assay, we added
an equal amount of substrate (1.5 mM L−1 of
o-phenylenediamine and 6.6 mM L−1 of H2O2 in 0.075 mM
L−1 of Tris–HCl pH 8.0) to the supernatant. To stop the
enzymatic reaction, 50 μl of 1 M H2SO4 was added. The
absorbance was read in a spectrophotometer (Spectramax
M3, Molecular Devices, LLC, Sunnyvale, CA, USA), at 492 nm.
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The extent of eosinophil infiltration into the tissues was assessed
by measuring eosinophil peroxidase (EPO) activity, as previously
described by Vieira et al. (2009). For EPO quantification, a piece of
colon tissue (100 mg) was homogenized proportionally in 1.9 ml/
100 mg of PBS and centrifuged at 10,000 × g for 10min 4°C. The
precipitate was subjected to hypotonic lysis, where 0.9 ml of a
solution containing 0.2% NaCl was added prior to the addition of
an equal volume of solution containing 1.6%NaCl and 5% glucose.
The samples were again homogenized and centrifuged (10,000 × g,
at 4°C, for 10 min). The supernatant was discarded, and the pellet
was resuspended in 1.9 ml of 0.5% HTAB
(hexadecyltrimethylammonium bromide) diluted in PBS. After
three cycles of freeze–thaw in liquid nitrogen, the samples were
centrifuged at 4°C, 10,000 g for 10min. To test the enzyme activity,
the obtained supernatant was mixed with a substrate (1:1)
containing 1.5 mmol/L of o-phenylenediamine, 6.6 mmol/L of
H2O2, and 0.075 mmol/L of Tris-HCl pH 8. After 30min the
reaction was stopped with 50 μl of 1 MH2SO4. The absorption was
measured in a spectrophotometer (Spectramax M3, Molecular
Devices, LLC, Sunnyvale, CA, United States) at 492 nm.

Measurement of Secretory
Immunoglobulin A
The secretory immunoglobulin A (sIgA) of the intestinal lavage
was determined by ELISA, according to Cordeiro et al., 2021. For
the quantification of the samples was used a 96 well-plates (Nunc-
Immuno Plates, MaxiSorp) coated with anti-IgA antibodies
(Southern Biotechnology, Birmingham, AL, United States) and
incubated overnight. After the incubation, the plates were washed

in saline-Tween (saline with 0.05% of Tween-20—SIGMA
Chemical Co.) and blocked with 200 µl of PBS-casein (0.05%)
for 1 h, at room temperature. After that, the intestinal lavage
contents were added, and the plate was serially diluted (1:100)
and incubated at room temperature for 1 h. Plates were washed
with saline-Tween and then, biotin-conjugated anti-mouse IgA
antibodies were added (Southern Biotechnology) (1: 10,000 in PBS-
casein). Plates were incubated for 1 h at 37°C and then, biotinylated
monoclonal antibodies anti-IgA (BD Bioscience) were added and
incubated for 1 h at room temperature. Following this, peroxidase-
labeled streptavidin (Southern Biotechnology) was added. Plates
were washed in saline-Tween and incubated again with 100 µl of
orthophenylenediamine (OPD) (Sigma, St. Louis, MO, USA) and
H2O2 (0.04%), for 1 h, at room temperature. To stop the reaction,
20 µl/well of 2N H2SO4 was added. Absorbance reading was
performed on Bio-Rad Model 450 Microplate Reader, at
492 nm. The results of total sIgA were measured, according to
the standard curve, in a concentration of sIgA (ng) per ml of
intestinal fluid.

Colonic Gene Expression Analysis
In order to obtain the quantitative gene expression in colon
fragments, the methodology was carried out according to Do
Carmo et al. (2020). Fragments of 1 cm of the colon were
collected. Total RNA was isolated using PureLink RNA Mini
Kit (Thermo Fisher Scientific) according to the protocol of the
manufacturer. Afterward, DNase I (Invitrogen; Waltham, MA,
USA) was used to digest residual genomic DNA of samples, and
then Turbo DNA-free Kit (Ambion; Austin, TX, USA) was used
for DNA removal following the protocol of the manufacturer.

TABLE 1 | Primer list for RT-quantitative PCR (qPCR).

Gene Primer Sequence (59 → 39) References

actβ Forward TGGCTGGGTGTTGAAGGTCT Do Carmo et al. (2020)
Reverse AGCACGGCATCGTCACCAACT

gapdh Forward CAACGACCACTTTGTCAAGC Do Carmo et al. (2020)
Reverse TTCCTCTTGTGCTCTTGCTG

muc2 Forward CAGCACCGATTGCTGAGTTG Do Carmo et al. (2020)
Reverse GCTGGTCATCTCAATGGCAG

zo1 Forward GAATGATGGTTGGTATGGTGCG Do Carmo et al. (2020)
Reverse TCAGAAGTGTGTCTACTGTCCG

zo2 Forward GGAGACCAGATTCTGAAGGTGAACACA Rabah et al. (2020)
Reverse CCTTTGGGGATTTCTAGCAGGTAGAGGAC

cld-1 Forward CTGGAAGATGATGAGGTGCAGAA Rabah et al. (2020)
Reverse CTAATGTCGCCAGACCTGAA

cld-5 Forward ACGGGAGGAGCGCTTTAC Pfeiffer et al. (2011)
Reverse GTTGGCGAACCAGCAGAG

ocln Forward GGACCCTGACCACTATGAAACAGACTA Rabah et al. (2020)
Reverse TAGGTGGATATTCCCTGACCCAGTC

inos Forward CAGCTGGGCTGTACAAACCTT Rabah et al. (2020)
Reverse CATTGGAAGTGAAGCGTTTCG

pparg Forward CAGGCTTCCACTATGGAGTTC PlÉ et al. (2016)
Reverse GGCAGTTAAGATCACACCTATCA

il10 Forward AAAGAAGGCATGCACAGCTC Do Carmo et al. (2020)
Reverse AAGCATGTTAGGCAGGTTGC

il17a Forward GCTCCAGAAGGCCCTCAGA Rabah et al. (2020)
Reverse AGCTTTCCCTCCGCATTGA

Note. muc 2, Mucin 2; zo1, zonula Occludes 1; zo2, zonula Occludes 2; cln-1, Claudin-1; cln-5, Claudin-5; ocln, Occludin; inos, inducible nitric oxide synthase; pparg, peroxisome
proliferator-activated receptor-gamma; il10, interleukin-10.,
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RNA quality was checked by agarose gel and NanoDrop® ND-
1000 (260/230 ratio). To obtain the samples cDNA the High-
Capacity cDNA Reverse Transcription kit (Applied Biosystems;
Foster City, CA, United States) was used. Quantitative PCR
(qPCR) was determined using iTaq universal SYBR green
supermix (Biorad; Hercules, CA, United States) and gene
specific primers (Table 1), for Mucin 2 (muc-2), Zonula
occludens 1 (zo-1), zonula occludens 2 (zo-2), Claudin-1 (cln-
1), Claudin-5 (cln-5), Occludin (ocln), inducible nitric oxide
synthase (inos), peroxisome proliferator-activated receptor-
gamma (pparg), and cytokine genes for interleukin-10 (il-10),
il-17, as well as housekeeping genes encoding β-actin (actβ) and
GAPDH (gapdh). The amplification cycles were performed as
described: 95°C for 30 s, and 40 cycles of 95°C for 15 s and 60°C
for 30 s on ABI PRISM 7900HT Sequence Detection System
(Applied Biosystems). Results were expressed as a fold-change of
expression levels, using the mean and standard deviations of
target expression (2−ΔΔCt).

Cytokine Quantification by Enzyme-Linked
Immunosorbent Assay
For the quantification of cytokines, the samples were weighed,
and 50 mg of colon tissue was homogenized in 1 ml of PBS
solution containing Tween-20 (0.05%) (Sigma-Aldrich, St. Louis,
MO, USA), Phenylmethylsulfonyl fluoride (PMSF) 0.1 mM
(Sigma-Aldrich, St. Louis, MO, USA), 0.1 mM benzethonium
chloride (Sigma-Aldrich, St. Louis, MO, USA), 10 mM EDTA
(Synth, São Paulo, São Paulo, Brazil), and aprotinin A 20 KIU
(Sigma-Aldrich, St. Louis, MO, USA). The homogenized samples
were then centrifuged at 3,000 × g for 10 min at 4°C, and the
supernatants were collected to perform the enzyme-linked
immunosorbent assay (ELISA). Plates were coated with
purified monoclonal antibodies reactive with cytokines IL-1β,

IL-10, IL-12, p70, IL-17, TGFβ1, and TNF-α (B&D Systems, Inc.,
USA), overnight at 4°C. Then, plate wells were washed,
supernatants were added, and the plates were again incubated
overnight at 4°C. On the third day, biotinylated monoclonal
antibodies against cytokines (R&D Systems, Inc., USA) were
added to the plates and incubated for 2 h at room
temperature. Color was developed at room temperature with
100 μl/well of orthophenylenediamine (1 mg/m) and 0.04% (v/v)
H2O2 substrate in sodium citrate buffer. The reaction was stopped
by the addition of 20 μl/well of 2N H2SO4. The absorbance was
measured at 492 nm using a Microplate Reader Model 680
(BIO-RAD).

Statistical Analyses
Data were analyzed using one-way ANOVA followed by
Tukey’s post-test and performed in GraphPad Prism
version 9.1 for Windows (GraphPad Software, San Diego,
CA, USA). The experimental assays were performed in
triplicate, and the results were expressed as
mean ± standard deviation. Asterisks demonstrated in all
figures represent the significant differences between the
experimental groups and were indicated as follows:
*p< 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

RESULTS

Lactococcus lactis-Surface-Layer Protein B
Reduces Weight Loss in Dextran Sulfate
Sodium-Induced Colitis
Expression of the P. freudenreichii SlpB protein by L. lactis
NCDO 2118 was first verified by Western blotting
(Supplementary Figure S2). We then investigated the ability of

FIGURE 1 | Lactococcus lactis-Surface-layer protein (Slp)B is able to control weight loss in Dextran Sulfate Sodium (DSS)-induced colitis. Time-course of body
weight during the seven experimental days (A) and weight loss (B) are shown. The two-way ANOVA (A), one-way ANOVA (B), and Tukey’s post-hoc tests were used for
the multiple comparisons (The data represent the mean ± SD of 12 mice per group). Asterisks represent statistically significant differences as follows: pp < 0.05,
ppp < 0.01, pppp < 0.001, ppppp < 0.0001.
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such expression to enhance the probiotic properties of the L.
lactis in the context of DSS-colitis. First, the liquid and food
consumption, as well as the weight of the animals, were
monitored during the seven experimental days. In the DSS
group, significant -weight loss was observed (p < 0.001 and
p < 0.0001, respectively) on the sixth and seventh days
(Figures 1A, B). However, at the end of the 7 days, both
treatments with L. lactis-SlpB and the control group L. lactis
WT were able to limit such weight loss of the animals (p < 0.001
and p < 0.01, respectively), when compared with the DSS group.
Concerning liquid and food intake, no significant change was
observed between experimental groups (Supplementary
Figure S3).

Lactococcus lactis-Surface-Layer Protein B
Alleviates Clinical and Macroscopic
Symptoms in Dextran Sulfate
Sodium-Colitis Mice Model
Regarding disease activity index (DAI) analysis (Figures 2A, B), as
expected, the DSS significantly increased the score (5.85 ± 3.18) in
the disease control group (DSS Control), when compared with the
healthy group (Control) on the sixth and seventh days (p < 0.05 and
p < 0.0001, respectively). At the end of 7 days, L. lactis-SlpB
administration was shown to mitigate the signs of clinical colitis,
based on DAI score (3.40 ± 1.67), when compared with the DSS
control (p < 0.01). Treatment with L. lactis WT strain failed, by

FIGURE 2 | L lactis-SlpB alleviates clinical symptoms in DSS-colitis mice model and reduces colon mucosal damage. Disease activity index over the seven
experimental days (A), at the last day (B), Colon length analysis (C), Micrograph images of the histopathological analysis of the colon tissue (D) and analysis of the
histopathological score (E) are shown. The slides were stained in hematoxylin and eosin (H&E) and analyzed under ×20magnification. The two-way ANOVA (A), one-way
ANOVA (B), and Tukey’s post-hoc tests were used for the multiple comparisons (The data represent the mean ± SD of 12 mice per group). Asterisks represent
statistically significant differences as follows: pp < 0.05, ppp < 0.01, pppp < 0.001, ppppp < 0.0001.
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contrast, to reduce DAI score in this DSS mice model (6.20 ± 1.30).
Additionally, L. lactis-SlpB administration significantly limited the
colon length shortening (p < 0.05) caused by theDSS administration,
when compared with the DSS group (Figure 2C). It was more
effective than L. lactis WT, which failed to do so (Figure 2C).

Surface-Layer Protein B Protein Improves
the Potential of Lactococcus lactis to
Reduce Colon Mucosal Damage
Histological analysis revealed that consumption of L. lactis-SlpB
was able to mitigate the colon damage caused by DSS
administration (Figure 2D). Precisely, it preserved colon
morphological structure, reduced inflammatory cell infiltration
in the lamina propria, submucosa, and muscular layer.
Furthermore, animals that received L. lactis WT showed a
slight decrease in mucosal damage, when compared with DSS
control, but some ulcerations and a large infiltration of
inflammatory cells were still observed. These results become
evident through the analysis of the histopathological score,
shown in Figure 2E, where, among the groups that consumed
the DSS solution, the group L. lactis-SlpB showed significant
differences in the histopathological score (3.14 ± 0.37), when
compared with the group treated with L. lactis WT (4.00 ± 0.5,
p < 0.05) and the DSS control group (5.0 ± 0.63, p < 0.0001). As
expected, DSS-colitis induction resulted in a substantial decrease
in goblet cells number in the DSS control group (67.08 ± 17.85
goblet cell/hpf). A significant increase in the number of goblet
cells (Figures 3A, B) was exclusively observed in the group
treated with L. lactis-SlpB (99.90 ± 20.51 goblet cell/hpf), when
compared with the DSS control group (p < 0, 05). It was, however,
not enough to re-establish the levels of the control group
(133.1 ± 14.62 goblet cell/hpf, p < 0.05). In addition, L. lactis
WT strain was not able to significantly increase the number of
goblet cells (compared with the DSS-control group), and there
was no statistical difference between L. lactis-SlpB and L. lactis
WT strains (90.20 ± 6.64 goblet cell/hpf). A decrease in crypt
depth (Figure 3C) was observed in the DSS Control group
(191.1 μm ± 45.4, p < 0.05), compared with the Control group
(232.3 μm ± 41.73). However, there was no statistical difference
in the depth of the Crypts of Lieberkühn, between the treated
groups L. lactis WT (212.5 μm ± 28.91) and L. lactis-SlpB
(209.7 μm ± 46.30) with the control group (232.3 μm ± 41.73)
and DSS group (191.1 μm ± 45.4).

Wild-Type and Recombinant Strains Both
Reduce Levels of Myeloperoxidase Activity
and Eosinophilic Peroxidase
Consumption of L. lactis WT and/or L. lactis-SlpB significantly
decreased the amount of colon enzyme activity of MPO
(57.27 ± 48.43 and 17.50 ± 6.65, respectively) (Figure 4A), with
statistically significant differences for both treatments, when
compared with the DSS control group (232.7 ± 115.9,
p < 0.0001). The same scenario was repeated when the EPO
enzyme activity was quantified (Figure 4B), where both strains,
L. lactisWT and L. lactis-SlpB, proved effective to reduce EPO levels

(0.07 ± 0.05 and 0.04 ± 0.04, respectively), with statistically
significant differences, compared with the DSS Control group
(0.28 ± 0.10, p < 0.0001). In addition, the results shown in
Supplementary Figure S4 demonstrate high levels of secretory
IgA (sIgA) in the inflamed control groupDSS (91.30 μg/ml ± 40.93).
However, no statistical differences between the groups L. lactisWT
(63.54 μg/ml ± 17.17) and L. lactis-slpB (59.44 μg/ml ± 26.85 and
control group (62.81 μg/ml ± 28.17) was observed.

Lactococcus lactis-Surface-Layer Protein B
Increases Expression of Genes Involved in
Epithelial Barrier Protection
In the context of DSS-induced colitis, consumption of L. lactis-slpB
increased significantly (p < 0.001) the colonic mRNA expression
levels (Figure 5) of muc-2 gene and epithelial barrier genes zo-1,
cln-1, and cln-5 (1.75 ± 0.87; 2.65 ± 0.72; 1.46 ± 0.54; 1.56 ± 0.35,
respectively), when compared with the DSS Control group
(0.60 ± 0.21; 0.97 ± 0.49; 0.41 ± 0.25; 0.90 ± 0.31, respectively).
Interestingly, no difference in the expression levels of the zo-2
gene was found between the experimental groups.

Pro and Anti-Inflammatory Genes
Implicated in Ulcerative Colitis are
Modulated by the Lactococcus
lactis-Surface-Layer Protein B
Recombinant Strain
The increase in the inos gene expression levels triggered by DSS
administration in the inflammatory control group (8.31 ± 4.66)
were controlled by the administration of L. lactis-SlpB strain
(1.39 ± 1.08, p < 0.01) (Figure 6A). On the other hand, mRNA
levels of pparc were decreased in the DSS Control group
(0.59 ± 0.20) and in the L. lactis WT group (0.58 ± 0.30), but
the L. lactis-SlpB administration restored significant levels of
pparc colonic expression (1.07 ± 0.54, p < 0.01) (Figure 6B).
Regarding the expression of genes encoding pro and anti-
inflammatory cytokines (Figures 6C, D), L. lactis-SlpB group
showed significantly reduced levels of il-17 gene expression
(0.39 ± 0.27, p < 0.01), compared with the DSS control group
(1.83 ± 1.03). Finally, the gene expression of anti-inflammatory
cytokine il-10 was reduced in the DSS Control group
(0.31 ± 0.11), but was restored in the group that received the
L. lactis-SlpB strain (1.25 ± 0.55, p < 0.001). However, there were
no statistical differences in the colonic expression levels of il-17
and il-10 cytokines, between the groups receiving L. lactis WT or
L. lactis-SlpB.

Lactococcus lactis-Surface-Layer Protein B
StrainModulates Cytokine Production in the
Mice Colon
Levels of colonic pro-inflammatory cytokines IL-17, IL-12, and
TNF-α (13.66 ± 2.285, 20.17 ± 1.36; 17.41 ± 6.01, respectively)
(Figures 7A–C) were increased in the DSS control group. In
contrast, L. lactis-SlpB group showed significantly reduced levels
of these cytokines, TNF-α, IL-17, and IL-12 (19.98 ± 7.04, p < 0.05;
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FIGURE 3 | L. lactis-SlpB mitigates histological signs of DSS-colitis. Model images of micrographs for analysis of goblet cells in colon tissue (A) and the result of
goblet cell quantification by field (B) and depth of colon intestinal crypts (C) are shown. The slides were stained in Periodic Acid-Schiff (PAS), goblet cells have intense
purple-pink tones, and analyzed under ×40 magnification. The data represent the mean ± SD of 12 mice per group. One-way ANOVA and Tukey’s post-hoc tests were
used for multiple comparisons. Asterisks represent statistically significant differences as follows: pp < 0.05, ppp < 0.01, pppp < 0.001, ppppp < 0.0001.

FIGURE 4 | L. lactis Wild-type and L. lactis-SlpB strains prevent DSS-induced increase of myeloperoxidase (MPO) and eosinophilic peroxidase (EPO) activity.
Quantification of the myeloperoxidase [MPO, (A)] and eosinophilic [EPO, (B)] enzymes in the colon tissue is shown. One-way ANOVA and Tukey’s post-hoc tests were
used for multiple comparisons. The data represent the mean ± SD of six mice per group. Asterisks represent statistically significant differences as follows: pp < 0.05,
ppp < 0.01, pppp < 0.001, ppppp < 0.0001.
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10.51 ± 2.20, p < 0.05; 14.20 ± 1.20, p < 0.05, respectively), compared
with the DSS control group. In addition, an increase in the colonic
levels of IL-10 and TGF-β cytokines (Figures 7D, E) was observed in
the group treated with L. lactis-SlpB (59.10 ± 23.14; 468.70 ± 261.60,
p < 0.05, respectively) compared with the DSS Control group
(31.96 ± 4.91; 183.80 ± 63.11, respectively). However, L. lactis-SlpB
failed to decrease levels of Il-1β induced by DSS (Figure 7F).

DISCUSSION

Ulcerative colitis (UC) is an inflammatory bowel disease, which can
be mimicked using in vivo models through induction with
chemicals such as DSS (Wirtz et al., 2017). The inflammation
occurring in UC affects the colonic epithelial cells and results in an
impairment in the mucosal barrier function. In addition, colitis is
marked by obvious clinical signs, such as weight loss, diarrhea, and
occult blood in the feces (Zhang and Li, 2014). Some strains of
lactic acid bacteria, such as L. lactis NCDO2118 (Luerce et al.,

2014) and propionibacteria, such as P. freudenreichii CIRM-BIA
129 (Rabah et al., 2020) have already given promising results in
alleviating the symptoms of UC. Precisely, P. freudenreichii 129
expresses a surface protein SlpB protein, which can be directly
linked to its probiotic effects (Rabah et al., 2020). Thus, the DSS-
induced mice model, the molecular tools for L. lactis NCDO 2118
to produce recombinant protein, and the SlpB protein from the Pf
129 strain, constitute the perfect scenario to test the potential of this
protein to enhance the probiotic effects of other strains.

Several proteins expression models have already been
successfully developed for L. lactis strains (Tavares et al.,
2020). The xylose-induced model (XIES), developed
exclusively for L. lactis NCDO 2118 by Miyoshi et al. (2004),
not only expresses but also uses the mechanism of secretion and
targeting of the protein to the extracellular medium, allowing
the correct targeting of the SlpB surface protein. Besides, due to
simple metabolism and rapid growth (12–24 h), in contrast to P.
freuderinchii 2–3 days to reach the stationary growth phase, L.
lactis began to be used for the production of recombinant

FIGURE 5 | L. lactis-SlpB increases the expression of genes involved in epithelial barrier protection. Quantification of the expression of the genes Mucin 2 (muc2)
(A), Zonula Occludes 1 (zo-1) (B), Zonula Occludes 2 (zo-2) (C), Claudin-1 (cln-1) (D), Claudin-5 (cln-5) (E), and Occludin (ocln) (F), in the mice colon, is shown. One-way
ANOVA and Tukey’s post-hoc tests were used for multiple comparisons. The data represent the mean ± SD of six mice per group. Asterisks represent statistically
significant differences as follows: pp < 0.05, ppp < 0.01, pppp < 0.001, ppppp < 0.0001.
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proteins in the cytoplasm or secreted into the extracellular
medium (Carvalho et al., 2017).

L. lactis NCDO 2118 and P. freudenreichii CIRM-BIA 129, as
well as the action of some surface proteins in a purified way, can
bring relief in weight loss in mice with colitis or other models of
inflammation (Luerce et al., 2014; Cai et al., 2018; Do Carmo et al.,
2020; Rabah et al., 2020). Luerce et al. (2014) showed that the L.
lactis NCDO2118 strain can prevent colon shortening in the
context of colitis. In our work, mitigation of inflammation was
enhanced by the presence of SlpB. Indeed, concerning colon length,
the wild-type strain alone did not show efficacy in this DSS mice
model. Furthermore, although L. lactisNCDO2118WT gave good
results by decreasing the histopathological score, in accordance
with Luerce et al. (2014), our results indicate that the presence of
the SlpB protein further enhanced the histopathological score,
when compared with the L. lactis NCDO 2118 group. The

preservation of goblet cells is an important aspect of probiotic
mechanisms of action. These cells produce mucus, which serves as
a barrier preventing the direct adhesion of microorganisms to the
epithelium (Abrantes et al., 2020). It is worth noting that the L.
lactis-SlpB strain increased the expression of the muc-2 gene and
restored goblet cells in animals treated with DSS. The goblet cells
are responsible for producing the mucus that covers the intestinal
mucosa, and high levels of sIgA can be found in the mucus layer of
the intestine in healthy individuals (Rogier et al., 2014). However,
increased IgA secretion may be related to an inflammatory
response caused by disturbances in the ileum intestinal barrier,
as shown by Rabah et al. (2020). In the present work, only the DSS
group exhibited high levels of sIgA, but no significant differences
between groups were found. Moreover, preservation of the
epithelium, demonstrated in the histology of animals that
received L. lactis-SlpB, is consistent with the increased

FIGURE 6 | L. lactis-SlpB strain modulates expression of pro and anti-inflammatory genes implicated in ulcerative colitis. Quantification of the expression of the
genes inducible nitric oxide synthase (inos) (A), peroxisome proliferator-activated receptor-gamma (pparg) (B), as well as interleukin-17 (il-17) (C) and interleukin-10 (il-
10) (D) pro and anti-inflammatory cytokines, is shown. The data represent themean ± SD of six mice per group. One-way ANOVA and Tukey’s post-hoc tests were used
for multiple comparisons (n � 6). Asterisks represent statistically significant differences as follows: pp < 0.05, ppp < 0.01, pppp < 0.001, ppppp < 0.0001.
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expression of the zo-1, cld-1, cld-5, and ocln genes responsible for
the expression of tight junction proteins, maintaining the epithelial
barrier function and controlling cell permeability (Landy et al.,
2016). It is plausible that the SlpB protein plays a central role in
reinforcing the epithelial barrier, but further studies are needed,
such as treatment with purified SlpB protein and monitoring of
intestinal permeability, to conclude this statement.

Regarding the inflammatory cells infiltrate, it was visibly
attenuated in the group treated with L. lactis NCDO2118 and
even smaller in the animals treated with L. lactis-SlpB. This
infiltrate is composed of mononuclear and polymorphonuclear
cells, and in ulcerative colitis, increased levels of neutrophils
and eosinophils are mainly observed (Villanacci et al., 2013).
Therefore, we quantified the colonic activity of
myeloperoxidase (MPO) and eosinophilic peroxidase (EPO),
as a means of indirect determination of neutrophils and
eosinophils, respectively, in the colon of animals. The
results obtained in the quantification of MPO and EPO
enzymes in this work corroborate those described by Han

et al. (2021), where the DSS group enhanced activity of both
enzymes in the colon.

PPARγ is a regulator of intestinal inflammation. It inhibits
transcription of pro-inflammatory cytokine genes, such as ifn-c,
and the inducible nitric oxide synthase (inos) gene (Dubuquoy
et al., 2006; Rabah et al., 2020). The activation of the inos
expression is responsible for mediating the accumulation of
nitric oxide that results in oxidative stress and it is directly
linked to gastrointestinal immunopathology, such as ulcerative
colitis (Kolios et al., 2004). We observed that the DSS-induced
colitis resulted in a significant increase in the expression of nitric
oxide synthase corroborating the results obtained in the work of
Rabah et al. (2020). However, L. lactis-SlpB triggered an increase
in the expression of the pparγ gene, showing an effect not found
with the administration of the L. lactis NCDO 2118 wild-type
strain. Patients with ulcerative colitis have impaired expression of
pparγ in the colon and the increased expression of this gene can
lead to the inhibition of inflammatory cytokines such as IL-1β
and TNF-α (Dubuquoy et al., 2006). We accordingly observed a

FIGURE 7 | L. lactis-SlpB strain modulates cytokines production in the mice colon. Colonic cytokines concentrations levels of IL-17 (A), IL-12 (B), TNF-α, (C), IL-10
(D), TGF-β (E), IL-1β (F) were quantified by enzyme-linked immunosorbent assay (ELISA). The data represent the mean ± SD of six mice per group. One-way ANOVA
and Tukey’s post-hoc tests were used for multiple comparisons. Asterisks represent statistically significant differences as follows: pp < 0.05, ppp < 0.01, pppp < 0.001,
ppppp < 0.0001.
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reduction in the levels of TNFα in the animals treated with the L.
lactis-SlpB, where the L. lactisNCDO 2118 wild-type strain failed
to prevent the increase in cytokine secretion caused by DSS-
induced colitis.

Immune response, i.e., pro and anti-inflammatory cytokines,
is one of the main mediators of the pathogenesis of colitis (Ko
and Auyeung, 2014). In this aspect, bacterial surface proteins
may moderate dysregulation of cytokines, as demonstrated by
the effects of the SlpA protein from Lactobacillus acidophilus
CICC in the DSS-induced colitis model (Cai et al., 2018). The
impact of the SlpB protein on the IL-12 cytokine expression has
already been demonstrated by Do Carmo et al. (2020). Indeed,
consumption of the wild strain of Pf 129 triggered a decrease in
this cytokine during 5-FU-induced mucositis, but the same was
not observed as a result of the consumption of the knockout
strain for the slpB gene (Pf 129ΔslpB). Furthermore, activation
of IL-10 and TGF-β secretion by the L. lactis-SlpB strain was
also observed here, an important factor that contributes to the
attenuation of the inflammatory response in the colon caused by
DSS. The anti-inflammatory cytokine IL-10 can inhibit the
production of IL-1β, IL-6, and TNF-α. However, to access
IL-10 protective effect against colitis, IL-10 signaling pathway
must be triggered before the induction of DSS colitis (Li and He,
2004). The mechanism of action of the SlpB protein also appears
to be aimed at limiting the inflammatory process, mainly
containing IL-17, via regulation of Th17 cells. Colliou et al.
(2017) demonstrated that propionibacteria that enrich the
microbiota of infants through breastfeeding can attenuate the
incidence of necrotizing enterocolitis through the regulation of
Th17 cells.

CONCLUSION

S-layer proteins have a great potential to mediate host–probiotic
interactions via intestinal cells, which are important to maintain
gut immunity homeostasis and to mitigate inflammatory
diseases. Mice that received L. lactis-slpB showed a
significant reduction in colitis severity symptoms. Thus, it is
plausible that the presence of SlpB protein in the L. lactisNCDO
2118 strain increased its potential to control the effects and
symptoms of DSS-induced colitis, such as decreased DAI.
Further studies involving purified SlpB protein and its
expression in other organisms are needed to unravel its
ability to enhance probiotic effects. This work demonstrates
that L. lactis NCDO 2118 harboring SlpB recombinant protein
prevents the inflammatory process during DSS-induced colitis
in mice, opening perspectives for the development of new
probiotic functional foods for personalized nutrition in the
context of IBD.
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