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The aim of this Research Topic for Frontiers in Psychology under the section of Cognitive 
Science and Frontiers in Neurorobotics is to present state-of-the-art research, whether 
theoretical, empirical, or computational investigations, on open-ended development driven 
by intrinsic motivations. The topic will address questions such as: How do motivations drive 
learning? How are complex skills built up from a foundation of simpler competencies? What 
are the neural and computational bases for intrinsically motivated learning? What is the 
contribution of intrinsic motivations to wider cognition? 

Autonomous development and lifelong open-ended learning are hallmarks of intelligence. 
Higher mammals, and especially humans, engage in activities that do not appear to directly 
serve the goals of survival, reproduction, or material advantage. Rather, a large part of 
their activity is intrinsically motivated - behavior driven by curiosity, play, interest in novel 
stimuli and surprising events, autonomous goal-setting, and the pleasure of acquiring new 
competencies. This allows the cumulative acquisition of knowledge and skills that can later be 
used to accomplish fitness-enhancing goals. Intrinsic motivations continue during adulthood, 
and in humans artistic creativity, scientific discovery, and subjective well-being owe much to 
them. 

The study of intrinsically motivated behavior has a long history in psychological and 
ethological research, which is now being reinvigorated by perspectives from neuroscience, 
artificial intelligence and computer science. For example, recent neuroscientific research 
is discovering how neuromodulators like dopamine and noradrenaline relate not only to 
extrinsic rewards but also to novel and surprising events, how brain areas such as the superior 
colliculus and the hippocampus are involved in the perception and processing of events, novel 
stimuli, and novel associations of stimuli, and how violations of predictions and expectations 
influence learning and motivation. 

Computational approaches are characterizing the space of possible reinforcement learning 
algorithms and their augmentation by intrinsic reinforcements of different kinds. Research 
in robotics and machine learning is yielding systems with increasing autonomy and capacity 
for self-improvement: artificial systems with motivations that are similar to those of real 
organisms and support prolonged autonomous learning. Computational research on intrinsic 
motivation is being complemented by, and closely interacting with, research that aims to build 
hierarchical architectures capable of acquiring, storing, and exploiting the knowledge and 
skills acquired through intrinsically motivated learning. 

Now is an important moment in the study of intrinsically motivated open-ended 
development, requiring contributions and integration across a large number of fields within 
the cognitive sciences. This Research Topic aims to contribute to this effort by welcoming 
papers carried out with ethological, psychological, neuroscientific and computational 
approaches, as well as research that cuts across disciplines and approaches.
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1. INTRODUCTION
This editorial article introduces the Frontiers Research Topic and
Electronic Book (eBook) on Intrinsic Motivations (IMs), which
involved the publication of 24 articles with the journals Frontiers
in Psychology – Cognitive Science and Frontiers in Neurorobotics.
The main objective of this Frontiers Research Topic is to present
state-of-the-art research on IMs and open-ended development
from an interdisciplinary perspective involving human and ani-
mal psychology, neuroscience, and computational perspectives.
We first introduce in this section the main themes and con-
cepts on IMs from different interdisciplinary perspectives. These
themes and concepts have been reviewed more extensively in
other works (e.g., see Barto et al., 2004; Oudeyer and Kaplan,
2007; Mirolli and Baldassarre, 2013; Barto, 2013), but they are
briefly reported here both to meet the needs of the reader new
to the field and to introduce the concepts and terms we use in the
succeeding sections. In the next four sections, we give an overview
of the Topic contributions grouped by four themes. A final section
draws the conclusions.

Autonomous development and lifelong open-ended learning
are hallmarks of intelligence. Higher mammals, and especially
humans, engage in activities that do not appear to directly
serve the goals of survival, reproduction, or material advantage.
Rather, many activities seem to be carried out “for their own
sake” (Berlyne, 1966), play being a prime example, but includ-
ing other activities driven by curiosity and interest in novel
stimuli or surprising events. Autonomously setting goals and
working to acquire new forms of competence are also exam-
ples of activities that often do not confer obvious evolutionary
benefit. Activities like these are thus said to be driven by intrin-
sic motivations (Baldassarre and Mirolli, 2013a). IMs facilitate
the cumulative and virtually open-ended acquisition of knowl-
edge and skills that can later be used to accomplish fitness-
enhancing goals (Singh et al., 2010; Baldassarre, 2011). IMs
continue during adulthood, and they underlie several important
human phenomena such as artistic creativity, scientific discovery,
and subjective well-being (Ryan and Deci, 2000b; Schmidhuber,
2010).

IMs were proposed within the animal literature to explain
aspects of behavior that could not be explained by the dom-
inant theory of motivation postulating that animals work to
reduce physiological imbalances (Hull, 1943). The term “intrin-
sic motivation” was first used to describe a “manipulation drive”
hypothesized to explain why rhesus monkeys would engage with
mechanical puzzles for long periods of time without receiving
extrinsic rewards (Harlow et al., 1950). Other studies showed
how animal instrumental actions can be conditioned with the
delivery of apparently neutral stimuli: for example, monkeys were
trained to perform actions to gain access to a window from which
they could observe conspecifics (Butler, 1953), and mice were
trained to perform actions that resulted in clicks or in moving
the cage platform (Kish, 1955). The psychological literature on
IMs initially linked them to the perceptual properties of stimuli,
such as their complexity, novel appearance, or surprising fea-
tures (Berlyne, 1950, 1966). Later, IMs were also related to action,
in particular to the competence (“effectance”) that an agent can
acquire to willfully make changes in its environment (White,
1959). This relation of IMs with action and their effects was later
linked to the possibility of autonomously setting one’s own goals
(Ryan and Deci, 2000a).

Computational approaches, in particular machine learning
and autonomous robotics, are concerned with IMs and open-
ended development as these are thought to have the potential
to lead to the construction of truly intelligent artificial systems,
in particular systems that are capable of improving their own
skills and knowledge autonomously and indefinitely. The rela-
tion of these studies with those on IMs in psychology were
first highlighted by Barto et al. (2004) and Singh et al. (2005).
The investigation of IMs from a computational perspective can
lead to theoretical clarifications, in particular with respect to
the computational mechanisms and functions that might under-
lie IMs (Mirolli and Baldassarre, 2013). IM mechanisms have
been classified as being either knowledge-based or competence-
based (Oudeyer and Kaplan, 2007): the former based on mea-
sures related to the acquisition of information, and the latter
on measures related to the learning of skills. More recently,
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knowledge-based IMs have been further divided into novelty-
based IMs and prediction-based IMs (Baldassarre and Mirolli,
2013b; Barto et al., 2013). Novelty-based IMs are elicited by the
experience of stimuli that are not in the agent’s memory (e.g.,
novel objects, or novel object-object or object-context combina-
tions); prediction-based IMs are related to events that surprise the
agent by violating its explicit predictions.

These distinctions have been formalized in the computational
models proposed in the literature. Seminal works in machine
learning (Schmidhuber, 1991), later developed to function in
robots (Oudeyer et al., 2007), have proposed algorithms reward-
ing actions that allow the agent to improve the quality of a
“predictor” component with which it anticipates the effects that
such actions produce on the environment. Other researchers have
proposed robots capable of detecting and focussing on novel
stimuli (e.g., Marsland et al., 2005), or systems capable of detect-
ing anomalies in datasets (Nehmzow et al., 2013). Additional
research threads have focussed on action and control, in partic-
ular on IMs guiding the autonomous acquisition of motor skills
(Barto et al., 2004), on the decision about which of several skills
to practice at any time (Schembri et al., 2007; Santucci et al.,
2013), and on the the autonomous formation of goals guiding
skill acquisition (Baranes and Oudeyer, 2013). Other computa-
tional mechanisms related to the idea of IMs are being proposed
in the growing field of active learning, in particular in relation to
supervised learning systems (Settles, 2010).

Recent neuroscientific investigations are revealing brain mech-
anisms that possibly underlie the IM systems investigated in
the behavioral and computational literature. However, unfortu-
nately such investigations are carried out under agendas different
from the one on IMs, e.g., in relation to dopamine, memory,
motor learning, goal-directed behavior, and conflict monitor-
ing, so comprehensive views are still missing. A large body of
research shows how the hippocampus, a brain compound system
playing pivotal functions for memory, has the capacity to detect
the novelty of various aspects of experience, from the novelty of
single items to the novelty of item-item and item-context asso-
ciations (Ranganath and Rainer, 2003; Kumaran and Maguire,
2007). This detection is then capable of triggering the release of
neuromodulators, such as dopamine, that modulate the function-
ing and learning processes of the hippocampus itself and other
brain areas, e.g., of the frontal cortex involved in higher cogni-
tion, action planning, and action execution (Lisman and Grace,
2005). Other studies have shown that unexpected stimuli can
activate the superior colliculus, a midbrain structure that plays
a key role in oculomotor control, which in turn causes phasic
bursts of dopamine affecting trial-and-error learning processes
happening in basal ganglia, a brain region known to be involved
in learning to select actions and other cortex contents (Redgrave
and Gurney, 2006). Dopamine signals have also been shown to
have an interesting direct relationship with information seeking
(Bromberg-Martin and Hikosaka, 2009). Noradrenaline, another
neuromodulator targeting a large part of brain, has been shown
to be involved in signaling violations of the agent’s expectations
(Sara, 2009). The failure (Carter et al., 1998) or success (Ribas-
Fernandes et al., 2011) in accomplishing goals and sub-goals,
possibly themselves set by IMs, has been shown to have neural

correlates that might affect succeeding motivation, engagement,
and learning. Bio-inspired/bio-constrained computational mod-
eling is linking some of these neuroscientific results to specific
computational mechanisms, e.g., in relation to dopamine (e.g.,
see the pioneering work of Kakade and Dayan, 2002, and Mirolli
et al., 2013) and goal-directed behavior (Baldassare et al., 2013).

The 24 interdisciplinary contributions to the present Research
Topic can be clustered into four groups. The first group of six
contributions (IMs and brain and behavior) focuses on different
types of IM mechanisms implemented in the brain. The second
group of five contributions (IMs and attention) focuses on the
role of IMs in attention. The third group of eight contributions
(IMs and motor skills) focuses on IMs as drives for the acquisition
of manipulation and navigation skills, often with an emphasis
on their function in enabling cumulative, open-ended develop-
ment. Finally, the fourth group of five contributions (IMs and
social interaction) focuses on the relationship between IMs and
social phenomena, a novel area of investigation of IMs that is
increasingly attracting the attention of researchers.

2. INTRINSIC MOTIVATIONS, BRAIN AND BEHAVIOR
The theoretical contribution of Barto et al. (2013) argues for the
importance of distinguishing between novelty and surprise on the
basis of a comprehensive analysis of the computational literature
related to the two. It then shows the utility of the distinction
for improved understanding of brain and behavior phenom-
ena where the two are often confused. Andringa et al. (2013)
present a broad view of possible relationships between IMs and
control, exploration, and agency, linking these processes to the
specialization of the left and right hemispheres of the brain and
showing how the interplay between these can lead to a progres-
sive sophistication of cognition. Shah and Gurney (2014) propose
a computational model that investigates how basal ganglia, mod-
ulated by IMs, can lead to a dynamical shift from noise-based
exploration to repetition that can support the acquisition of
both simple and more complex motor skills (in the present case,
simulated reaching skills). Boedecker et al. (2013) propose a
computational model based on the distinction between dorsal
and ventro-medial basal ganglia regions (supporting respectively
habitual and goal-directed behavior). Through the model, the
authors analyze the relation between these brain regions and
IMs concerning reasoning costs and the value of information.
This analysis is used to account for some empirical phenom-
ena concerning the relationship between extrinsic and IMs. Fiore
et al. (2014) propose a biologically-constrained computational
model that also focuses on different portions of basal ganglia. The
model shows how these regions can be differentially regulated by
a unique tonic dopaminergic signal, linked to both intrinsic and
extrinsic motivations, on the basis of their different sensitivity to
dopamine. The model, also tested with the simulated humanoid
robot iCub, shows how these modulatory mechanisms can play
important adaptive functions for the control of overt attention,
manipulation, and goal-directed processes. Thirkettle et al. (2013)
introduce the novel “Joystick experimental paradigm” devel-
oped to study intrinsically and extrinsically driven acquisition of
actions. The authors demonstrate the function and effectiveness
of this paradigm by presenting behavioral experiments grounded
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in the neuroscientific literature and concerning the acquisition of
non-trivial motor actions.

3. INTRINSIC MOTIVATIONS AND ATTENTION
The computational work of Lonini et al. (2013) builds on a
previous binocular system in which an IM learning signal is gen-
erated on the basis of the capacity of the system to reconstruct
images encoded with sparse-coding features. This signal guides
the acquisition of attention and vergence skills by reinforcement
learning. The contribution here focuses on demonstrating the
robustness of the system, in particular for recovering from distur-
bances and for self-recalibration. Di Nocera et al. (2014) present a
behavior-based architecture that uses curiosity drives to improve
the attentional capabilities of a reinforcement learning robot
engaged in solving simulated survival “extrinsic” tasks. Overall,
the work shows the utility of IMs to improve attention and, based
on this, action selection. Mather (2013) briefly reviews research
related to the familiarity-to-novelty attention shift observed in
babies, and, on this basis, highlights the challenges that this phe-
nomenon poses to theories on IMs. Perone and Spencer (2013)
also deal with the familiarity-to-novelty shift. In particular, the
authors propose a dynamical-field model that offers an expla-
nation of the phenomenon as emerging from the autonomous
accumulation of visual experience under the guidance of novelty-
based IMs. Schlesinger and Amso (2013), referring to the results
of tests of both human and computational agents engaged in
solving a visual-exploration task, propose that free viewing of
natural images in human infants can be understood as the
effect of intrinsically motivated visual exploration driven by the
goal of producing predictable gaze sequences. The authors high-
light the implications of their approach for understanding visual
development in infants.

4. INTRINSIC MOTIVATIONS AND OPEN-ENDED
DEVELOPMENT OF MOTOR SKILLS

Santucci et al. (2013) focus on the problem of which IM signals
are best suited to decide which skills to learn by reinforcement
learning given a set of tasks. By comparing the results of systems
receiving different IM signals, they show that the best IM signals
are those based on mechanisms that measure the improvement
of the skill competence rather than the errors, or error improve-
ments, of predictors of the action effects on the environment.
In a theoretical machine learning contribution, Schmidhuber
(2013) proposes a system that automatically invents computa-
tional problems in order to train an increasingly-general problem
solver. IM signals driving learning are generated when the sys-
tem finds more efficient skills to solve all the problems generated
thus far. In a similar vein, Ngo et al. (2013) propose an architec-
ture for controlling a Katana simulated and real robot interacting
with a blocks-world. The system is capable of self-generating
goals based on its confidence in its predictions about how the
environment will react to its actions. Zahedi et al. (2013) pro-
pose the use of task-independent IMs to support task-dependent
learning on the basis of the mutual information of the past
and future elements of sensor streams (predictive information).
The authors conclude that a combination of predictive infor-
mation with external rewards is recommended only for hard

tasks to speed-up learning but at the cost of an asymptotic
performance lost. Metzen and Kirchner (2013) propose a rein-
forcement learning model that self-generates tasks on the basis
of graphs of states and selects the skills to learn on the basis
of both novelty-based and prediction-based IMs. The system is
tested with navigating and octopus-like simulated robots acting
in continuous domains. Inspired by infant cognition, Pitti et al.
(2013) present a reinforcement-learning bio-inspired gain-fields
system for learning task-sets (areas of the sensorimotor space
having a common underlying cause-effect structure). The sys-
tem, tested in a cognitive task and with a Kinova robot arm,
is capable of recognizing a given task-set as familiar and can
create a new representation for it on the basis of its uncer-
tainty and related prediction errors. Frank et al. (2014) propose
a system for controlling the humanoid robot iCub that explores
the state-action space on the basis of information gain max-
imization so as to improve the learning of the world model
used for real-time motion planning. Law et al. (2014) present
a schema-based memory system inspired by child early senso-
rimotor development for controlling the iCub robot. The sys-
tem undergoes a staged learning process to acquire eye-arm
reaching skills and basic manipulation skills under the guid-
ance of novelty- and prediction-based IMs, and the progressive
release of constraints focussing attention and learning on relevant
experiences.

5. INTRINSIC MOTIVATIONS AND SOCIAL PHENOMENA
In a contribution based on game theory, Merrick and Shafi (2013)
propose the concept of “optimally motivating incentive” for game
players, and show how different instances of such an incentive
(i.e., strong power, affiliation, and achievement motivation) can
be used in both modeling human behavior and designing effective
artificial agents. The theoretical contribution of Triesch (2013)
starts from the idea of IMs serving the function of learning “effi-
cient coding” of sensory data and proposes that imitation can
emerge as the consequence of a general intrinsic drive to compress
information that leads to matching one’s own actions with those
of the imitated tutor. Moulin-Frier et al. (2013) propose a model
of the initial staged development of speech in infants. IMs initially
drive the system to learn the control of phonation, then to pro-
duce unarticulated sounds, and finally to produce proto-syllables.
The model is tested with a simulator of the vocal tract, the audi-
tory system, the agent’s motor control, and social interactions
with peers. The contribution of Ogino et al. (2013) proposes a
reinforcement learning model of parent-child engagement where
learning signals, similar to phasic dopamine signals, are caused by
both extrinsic and intrinsic information, in particular related to
the presence and novelty of emotional facial expressions. Finally,
Jauffret et al. (2013) propose a bio-inspired neural architecture
that uses a prediction-based algorithm applied to sensorimotor
contingencies to solve complex navigation tasks and is capable of
asking for help in dead-lock situations.

6. CONCLUDING REMARKS
The papers of the present Research Topic testify to the exis-
tence of ample interest on the Topic issues. At the same time,
they show that the literature on IMs is still characterized by a
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heterogeneity of perspectives on their possible roles in cognition
and behavior and on the possible mechanisms supporting them.
On the one side, this heterogeneity is expected given the recency
of the attempts to systematize the psychological, neuroscientific,
and computational views on IMs within broad interdisciplinary
frameworks. On the other side, the heterogeneity is also an indica-
tion of the richness of intrinsically motivated phenomena, of their
importance for animals’ cognition and behavior, and of their util-
ity for the design of autonomous robots and intelligent machines.
The richness of this topic is expected to result in a further
strengthening of the research in the field over the near future.

ACKNOWLEDGMENTS
This research has received funds from the European Commission
7th Framework Programme (FP7/2007-2013), “Challenge
2—Cognitive Systems, Interaction, Robotics,” Grant Agreement
No. ICT-IP-231722, Project “IM-CLeVeR—Intrinsically
Motivated Cumulative Learning Versatile Robots.” This Frontiers
Topic was accomplished as a deliverable of the IM-CLeVeR
Project.

REFERENCES
Andringa, T. C., van den Bosch, K. A., and Vlaskamp, C. (2013). Learning auton-

omy in two or three steps: linking open-ended development, authority, and
agency to motivation. Front. Psychol. 4:766. doi: 10.3389/fpsyg.2013.00766

Baldassare, G., Mannella, F., Fiore, V. G., Redgrave, P., Gurney, K., and Mirolli, M.
(2013). Intrinsically motivated action-outcome learning and goal-based action
recall: a system-level bio-constrained computational model. Neural Netw. 41,
168–187. doi: 10.1016/j.neunet.2012.09.015

Baldassarre, G. (2011). “What are intrinsic motivations? a biological perspective,”
in Proceedings of the International Conference on Development and Learning and
Epigenetic Robotics (ICDL-EpiRob-2011), eds A. Cangelosi, J. Triesch, I. Fasel, K.
Rohlfing, F. Nori, P.-Y. Oudeyer, et al. (New York, NY:IEEE), E1–E8 .

Baldassarre, G., and Mirolli, M. (Eds.). (2013a). Intrinsically Motivated Learning in
Natural and Artificial Systems. Berlin: Springer. doi: 10.1007/978-3-642-32375-1

Baldassarre, G., and Mirolli, M. (2013b). “Intrinsically motivated learning sys-
tems: an overview,” in Intrinsically Motivated Learning in Natural and Artificial
Systems, eds G. Baldassarre and M. Mirolli (Berlin: Springer-Verlag), 1–14. doi:
10.1007/978-3-642-32375-1_1

Baranes, A., and Oudeyer, P. (2013). Active learning of inverse models with intrin-
sically motivated goal exploration in robots. Robot. Auton. Syst. 61, 49–73. doi:
10.1016/j.robot.2012.05.008

Barto, A. (2013). “Intrinsic motivation and reinforcement learning,” in Intrinsically
Motivated Learning in Natural and Artificial Systems, eds G. Baldassarre and M.
Mirolli (Berlin:Springer-Verlag), 17–47. doi: 10.1007/978-3-642-32375-1_2

Barto, A., Mirolli, M., and Baldassarre, G. (2013). Novelty or suprise? Front. Psychol.
4:907. doi: 10.3389/fpsyg.2013.00907

Barto, A. G., Singh, S., and Chentanez, N. (2004). “Intrinsically motivated
learning of hierarchical collections of skills,” in International Conference on
Developmental Learning (ICDL2004), eds J. Triesch and T. Jebara (New York,
NY:IEEE), 112–119.

Berlyne, D. E. (1950). Novelty and curiosity as determinants of exploratory
behaviour. Br. J. Psychol. Gen. Sec. 41, 68–80. doi: 10.1111/j.2044-8295.1950.
tb00262.x

Berlyne, D. E. (1966). Curiosity and exploration. Science 143, 25–33. doi:
10.1126/science.153.3731.25

Boedecker, J., Lampe, T., and Riedmiller, M. (2013). Modeling effects of intrin-
sic and extrinsic rewards on the competition between striatal learning systems.
Front. Psychol. 4:739. doi: 10.3389/fpsyg.2013.00739

Bromberg-Martin, E. S., and Hikosaka, O. (2009). Midbrain dopamine neurons
signal preference for advance information about upcoming rewards. Neuron 63,
119–126. doi: 10.1016/j.neuron.2009.06.009

Butler, R. (1953). Discrimination learning by rhesus monkeys to visual-exploration
motivation. J. Comp. Physiol. Psychol. 46:95. doi: 10.1037/h0061616

Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., and
Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online
monitoring of performance. Science 280, 747–749. doi: 10.1126/science.280.
5364.747

Di Nocera, D., Finzi, A., Rossi, S., and Staffa, M. (2014). The role of intrin-
sic motivations in attention allocation and shifting. Front. Psychol. 5:273. doi:
10.3389/fpsyg.2014.00273

Fiore, V. G., Sperati, V., Mannella, F., Mirolli, M., Gurney, K., Friston, K., et al.
(2014). Keep focussing: striatal dopamine multiple functions resolved in a single
mechanism tested in a simulated humanoid robot. Front. Psychol. 5:124. doi:
10.3389/fpsyg.2014.00124

Frank, M., Leitner, J., Stollenga, M., Forster, A., and Schmidhuber, J. (2014).
Curiosity driven reinforcement learning for motion planning on humanoids.
Front. Neurorobot. 7:25. doi: 10.3389/fnbot.2013.00025

Harlow, H., Harlow, M., and Meyer, D. (1950). Learning motivated by a manipula-
tion drive. J. Exp. Psychol. 40:228. doi: 10.1037/h0056906

Hull, C. L. (1943). Principles of Behavior. New York, NY: Appleton-century-crofts.
Jauffret, A., Cuperlier, N., Tarroux, P., and Gaussier, P. (2013). From self-assessment

to frustration, a small step toward autonomy in robotic navigation. Front.
Neurorobot. 7:16. doi: 10.3389/fnbot.2013.00016

Kakade, S., and Dayan, P. (2002). Dopamine: generalization and bonuses. Neural
Netw. 15, 549–559. doi: 10.1016/S0893-6080(02)00048-5

Kish, G. (1955). Learning when the onset of illumination is used as the reinforcing
stimulus. J. Comp. Physiol. Psychol. 48, 261–264. doi: 10.1037/h0040782

Kumaran, D., and Maguire, E. A. (2007). Which computational mechanisms oper-
ate in the hippocampus during novelty detection? Hippocampus 17, 735–748.
doi: 10.1002/hipo.20326

Law, J., Shaw, P., Kevin, E., Sheldon, M., and Lee, M. (2014). A psychology based
approach for longitudinal development in cognitive robotics. Front. Neurorobot.
8:1. doi: 10.3389/fnbot.2014.00001

Lisman, J. E., and Grace, A. A. (2005). The hippocampal-VTA loop: controlling
the entry of information into long-term memory. Neuron 46, 703–713. doi:
10.1016/j.neuron.2005.05.002

Lonini, L., Forestier, S., Teuliere, C., Zhao, Y., Shi, B. E., and Triesch, J. (2013).
Robust active binocular vision through intrinsically motivated learning. Front.
Neurorobot. 7:20. doi: 10.3389/fnbot.2013.00020

Marsland, S., Nehmzow, U., and Shapiro, J. (2005). On-line novelty detec-
tion for autonomous mobile robots. Robot. Auton. Syst. 51, 191–206. doi:
10.1016/j.robot.2004.10.006

Mather, E. (2013). Novelty, attention, and challenges for developmental psychology.
Front. Psychol. 4:491. doi: 10.3389/fpsyg.2013.00491

Merrick, K. E., and Shafi, K. (2013). A game theoretic framework for incentive-
based models of intrinsic motivation in artificial systems. Front. Psychol. 4:791.
doi: 10.3389/fpsyg.2013.00791

Metzen, J. H., and Kirchner, F. (2013). Incremental learning of skill col-
lections based on intrinsic motivation. Front. Neurorobot. 7:11. doi:
10.3389/fnbot.2013.00011

Mirolli, M., and Baldassarre, G. (2013). “Functions and mechanisms of intrin-
sic motivations: the knowledge versus competence distinction,” in Intrinsically
Motivated Learning in Natural and Artificial Systems, eds G. Baldassarre and M.
Mirolli (Berlin:Springer-Verlag), 49–72.

Mirolli, M., Baldassarre, G., and Santucci, V. G. (2013). Phasic dopamine as a
prediction error of intrinsic and extrinsic reinforcement driving both action
acquisition and reward maximization: a simulated robotic study. Neural Netw.
39, 40–51. doi: 10.1016/j.neunet.2012.12.012

Moulin-Frier, C., Nguyen, S. M., and Oudeyer, P.-Y. (2013). Self-organization
of early vocal development in infants and machines: the role of intrinsic
motivation. Front. Psychol. 4:1006. doi: 10.3389/fpsyg.2013.01006

Nehmzow, U., Gatsoulis, Y., Kerr, E., Condell, J., Siddique, N., and McGinnity,
M. T. (2013). “Novelty detection as an intrinsic motivation for cumulative
learning robots,” in Intrinsically Motivated Learning in Natural and Artificial
Systems, eds G. Baldassarre and M. Mirolli (Berlin: Springer-Verlag), 185–207.
doi: 10.1007/978-3-642-32375-1_8

Ngo, H., Luciw, M., Forster, A., and Schmidhuber, J. (2013). Confidence-based
progress-driven self-generated goals for skill acquisition in developmental
robots. Front. Psychol. 4:833. doi: 10.3389/fpsyg.2013.00833

Ogino, M., Nishikawa, A., and Asada, M. (2013). A motivation model for interac-
tion between parent and child based on the need for relatedness. Front. Psychol.
4:618. doi: 10.3389/fpsyg.2013.00618

Frontiers in Psychology | Cognitive Science September 2014 | Volume 5 | Article 985 | 9

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


Baldassarre et al. Intrinsic motivations and open-ended development

Oudeyer, P., and Kaplan, F. (2007). What is intrinsic motivation? A
typology of computational approaches. Front. Neurorobot. 1:6. doi:
10.3389/neuro.12.006.2007

Oudeyer, P., Kaplan, F., and Hafner, V. (2007). Intrinsic motivation systems for
autonomous mental development. IEEE Trans. Evol. Comput. 11, 265–286. doi:
10.1109/TEVC.2006.890271

Perone, S., and Spencer, J. P. (2013). Autonomous visual exploration creates devel-
opmental change in familiarity and novelty seeking behaviors. Front. Psychol.
4:648. doi: 10.3389/fpsyg.2013.00648

Pitti, A., Braud, R., Mahe, S., Quoy, M., and Gaussier, P. (2013). Neural model for
learning-to-learn of novel task sets in the motor domain. Front. Psychol. 4:771.
doi: 10.3389/fpsyg.2013.00771

Ranganath, C., and Rainer, G. (2003). Neural mechanisms for detecting and
remembering novel events. Nat. Rev. Neurosci. 4, 193–202. doi: 10.1038/nrn1052

Redgrave, P., and Gurney, K. (2006). The short-latency dopamine signal: a role in
discovering novel actions? Nat. Rev. Neurosci. 7, 967–975. doi: 10.1038/nrn2022

Ribas-Fernandes, J. J. F., Solway, A., Diuk, C., McGuire, J. T., Barto, A. G., Niv, Y.,
et al. (2011). A neural signature of hierarchical reinforcement learning. Neuron
71, 370–379. doi: 10.1016/j.neuron.2011.05.042

Ryan, R., and Deci, E. (2000a). Intrinsic and extrinsic motivations: Classic
definitions and new directions. Contemp. Educ. Psychol. 25, 54–67. doi:
10.1006/ceps.1999.1020

Ryan, R. M., and Deci, E. L. (2000b). Self-determination theory and the facilitation
of intrinsic motivation, social development, and well-being. Am. Psychol. 55,
68–78. doi: 10.1037/0003-066X.55.1.68

Santucci, V. G., Baldassarre, G., and Mirolli, M. (2013). Which is the best intrin-
sic motivation signal for learning multiple skills? Front. Neurorobot. 7:22. doi:
10.3389/fnbot.2013.00022

Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition.
Nat. Rev. Neurosci. 10, 211–223. doi: 10.1038/nrn2573

Schembri, M., Mirolli, M., and Baldassarre, G. (2007). “Evolving internal
reinforcers for an intrinsically motivated reinforcement-learning robot,” in
Proceedings of the 6th International Conference on Development and Learning,
eds Y. Demiris, D. Mareschal, B. Scassellati, and J. Weng (New York,NY: IEEE),
E1–E6.

Schlesinger, M., and Amso, D. (2013). Image free-viewing as intrinsically-
motivated exploration: estimating the learnability of center-of-gaze image sam-
ples in infants and adults. Front. Psychol. 4:802. doi: 10.3389/fpsyg.2013.00802

Schmidhuber, J. (1991). “A possibility for implementing curiosity and bore-
dom in model-building neural controllers,” in Proceedings of the International
Conference on Simulation of Adaptive Behavior: From Animals to Animats, eds
J. A. Meyer and S. W. Wilson (Cambridge, MA: MIT Press/Bradford Books),
222–227.

Schmidhuber, J. (2010). Formal theory of creativity, fun, and intrinsic moti-
vation (1990–2010). IEEE Trans. Auton. Mental Dev. 2, 230–247. doi:
10.1109/TAMD.2010.2056368

Schmidhuber, J. (2013). Powerplay: training an increasingly general problem solver
by continually searching for the simplest still unsolvable problem. Front. Psychol.
4:313. doi: 10.3389/fpsyg.2013.00313

Settles, B. (2010). Active Learning Literature Survey. Computer Sciences Technical
Report 1648, University of WisconsinMadison.

Shah, A., and Gurney, K. N. (2014). Emergent structured transition from variation
to repetition in a biologically-plausible model of learning in basal ganglia. Front.
Psychol. 5:91. doi: 10.3389/fpsyg.2014.00091

Singh, S., Barto, A., and Chentanez, N. (2005). “Intrinsically motivated rein-
forcement learning,” in Advances in Neural Information Processing Systems 17:
Proceedings of the 2004 Conference, eds L. K. Saul, Y. Weiss, and L. Bottou
(Cambridge, MA: The MIT Press).

Singh, S., Lewis, R., Barto, A., and Sorg, J. (2010). Intrinsically motivated reinforce-
ment learning: An evolutionary perspective. IEEE Trans. Auton. Mental Dev. 2,
70–82. doi: 10.1109/TAMD.2010.2051031

Thirkettle, M., Walton, T., Redgrave, P., Gurney, K., and Stafford, T. (2013).
No learning where to go without first knowing where you’re coming from:
action discovery is trajectory, not endpoint based. Front. Psychol. 4:638. doi:
10.3389/fpsyg.2013.00638

Triesch, J. (2013). Imitation learning based on an intrinsic motivation mech-
anism for efficient coding. Front. Psychol. 4:800. doi: 10.3389/fpsyg.2013.
00800

White, R. W. (1959). Motivation reconsidered: The concept of competence. Psychol.
Rev. 66, 297–333. doi: 10.1037/h0040934

Zahedi, K., Martius, G., and Ay, N. (2013). Linear combination of one-step
predictive information with an external reward in an episodic policy gradient
setting: a critical analysis. Front. Psychol. 4:801. doi: 10.3389/fpsyg.2013.
00801

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 14 July 2014; accepted: 19 August 2014; published online: 09 September 2014.
Citation: Baldassarre G, Stafford T, Mirolli M, Redgrave P, Ryan RM and Barto A
(2014) Intrinsic motivations and open-ended development in animals, humans, and
robots: an overview. Front. Psychol. 5:985. doi: 10.3389/fpsyg.2014.00985
This article was submitted to Cognitive Science, a section of the journal Frontiers in
Psychology.
Copyright © 2014 Baldassarre, Stafford, Mirolli, Redgrave, Ryan and Barto. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) or licensor are credited and that the orig-
inal publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

www.frontiersin.org September 2014 | Volume 5 | Article 985 | 10

http://dx.doi.org/10.3389/fpsyg.2014.00985
http://dx.doi.org/10.3389/fpsyg.2014.00985
http://dx.doi.org/10.3389/fpsyg.2014.00985
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


HYPOTHESIS AND THEORY ARTICLE
published: 11 December 2013

doi: 10.3389/fpsyg.2013.00907

Novelty or Surprise?
Andrew Barto1*, Marco Mirolli 2 and Gianluca Baldassarre2

1 School of Computer Science, University of Massachusetts Amherst, Amherst, MA, USA
2 Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche, Rome, Italy

Edited by:
Tom Stafford, University of
Sheffield, UK

Reviewed by:
Karl Friston, University College
London, UK
Nathan F. Lepora, The University of
Sheffield, UK

*Correspondence:
Andrew Barto, School of
Computer Science, University of
Massachusetts Amherst,
272 Computer Science Building,
Amherst, MA 01003, USA
e-mail: barto@cs.umass.edu

Novelty and surprise play significant roles in animal behavior and in attempts to understand
the neural mechanisms underlying it. They also play important roles in technology, where
detecting observations that are novel or surprising is central to many applications, such
as medical diagnosis, text processing, surveillance, and security. Theories of motivation,
particularly of intrinsic motivation, place novelty and surprise among the primary factors
that arouse interest, motivate exploratory or avoidance behavior, and drive learning. In
many of these studies, novelty and surprise are not distinguished from one another: the
words are used more-or-less interchangeably. However, while undeniably closely related,
novelty and surprise are very different. The purpose of this article is first to highlight
the differences between novelty and surprise and to discuss how they are related by
presenting an extensive review of mathematical and computational proposals related
to them, and then to explore the implications of this for understanding behavioral and
neuroscience data. We argue that opportunities for improved understanding of behavior
and its neural basis are likely being missed by failing to distinguish between novelty and
surprise.
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1. INTRODUCTION
Novelty and surprise play significant roles in animal behavior and
in attempts to understand the neural mechanisms underlying it.
They are intimately connected to sensory processing, attention,
learning, and decision making. Theories of motivation, particu-
larly of intrinsic motivation (Deci and Ryan, 1985; Baldassarre
and Mirolli, 2013), place novelty and surprise among the primary
factors that arouse interest and motivate exploratory or avoidance
behavior. Novelty and surprise also play important roles in tech-
nology, where detecting observations that are novel or surprising
is central to many applications, such as medical diagnosis, text
processing, surveillance, and security. In many—perhaps most—
of these studies, novelty and surprise are not distinguished from
one another: the words are used more-or-less interchangeably.

However, while undeniably closely related, novelty is in fact
very different from surprise. The ordinary dictionary definition of
novelty refers to the quality of not being previously experienced
or encountered, while surprise refers to the result of encounter-
ing something suddenly or unexpectedly. In the most abstract
setting (and ignoring many subtleties with which we attempt to
deal below), detecting novelty requires examining (by one means
or another) the contents of memory to determine if the stim-
ulus has or has not previously been experienced and attended
to. Surprise, on the other hand, is the result of a discrepancy
between an expectation and an observed actuality. This com-
parison of an experience with an expectation does not require
examination of the contents of memory despite the fact that an
expectation is clearly built on previous experience. Something can
be unanticipated without being un-experienced.

To pick just two illustrations of how natural it is to blur the
distinction between novelty and surprise, consider the following

quotations. Marsland (2003) writes: “Novelty detection, recog-
nizing that an input differs in some respect from previous inputs,
can be a useful ability for learning systems, both natural and
artificial. For animals, the unexpected perception could be a
potential predator or a possible victim.” When discussing what
happens when a naked man enters a classroom, Ranganath and
Rainer (2003) write: “Suffice to say, the entrance of the naked
guy was a novel event in that it was unexpected and out of con-
text.” Although this blurring is completely understandable given
how closely related novelty and surprise can be and the diffi-
culty of formalizing the concepts, we argue that the failure to
clearly distinguish between novelty and surprise precludes oppor-
tunities for improved understanding of behavior and its neural
basis.

The purpose of this article is foremost to remind readers of
differences between novelty and surprise, to discuss how these
concepts are related, and to explore the implications of this for
understanding behavioral and neuroscience data. A review of all
that has been written about novelty and surprise is significantly
beyond the scope of this paper. Here we present an extensive
review of mathematical and computational proposals related to
surprise and novelty, and we discuss these proposals in terms of
our common sense notions. We also point out key factors that
distinguish surprise from novelty, and we argue that some of
the definitions in common use are misleading, as are some of
the labels applied to results of experiments by psychologists and
neuroscientists.

A caveat with respect to the interpretation of empirical data
is needed. The distinction between novelty and surprise critically
depends on the mechanisms in play when the nervous system pro-
duces the experimental results in question. As a consequence, it is
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to be expected that one cannot say with certainty whether exper-
imental results provide evidence for novelty or for surprise when
the actual mechanisms implemented by the brain are incom-
pletely known. However, we suggest that by distinguishing novelty
from surprise some existing results might be reinterpreted in a
way that improves our understanding of behavior and the neu-
ral machinery that underlies it. And, even more importantly,
keeping the distinction in mind may be a useful heuristic for
studying the brain. Although the names used to describe results
are not important, the distinction may encourage neuroscien-
tists to ask questions such as: Is there a predictor at play? If so,
where is it? What kind of predictions does it produce? On the
basis of what information? Or, if there is no prediction, what
are the memories that are searched for? Where are those repre-
sentations stored? These are important questions that may not
arise as clearly if one fails to distinguish between novelty and
surprise.

This article begins with accounts of representative examples
of how the words have been interpreted, first addressing sur-
prise (Section 2) and then novelty (Section 3). For the most
part, the examples in each of these sections were chosen because
they provide formalizations related to each concept, although
not all of them are intended to model surprise or novelty in
animals. The examples are placed in either the surprise or nov-
elty section on the basis of which word their adherents chose
to associate with them. Section 4 summarizes the main fea-
tures of surprise and novelty, viewing each in an idealized form
that largely ignores the more complicated issues about how they
are related. Section 5 takes on some of these issues by exam-
ining the relationship between less idealized views of surprise
and novelty. Some of the categories in which formalisms were
placed in Sections 2 and 3 are reconsidered here. Section 6 con-
siders how an improved understanding of differences between
surprise and novelty may have beneficial consequences in neu-
roscience, where it can serve to sharpen the interpretation of
experimental results and raise useful questions for continuing
research. The article ends with a brief summary and concluding
remarks.

2. SURPRISE
Of the two concepts novelty and surprise, surprise is probably the
easiest to characterize. There is wide agreement that surprise is an
emotion arising from from a mismatch between an expectation
and what is actually observed or experienced (e.g., Ekman and
Davidson, 1994). Since our concern here is not with the emo-
tion of surprise but rather with the conditions that elicit it, by
surprise we mean these eliciting conditions. Surprise requires a
mechanism for comparing an expectation with actuality.

But what is an expectation and how is one aroused? An
expectation is usually thought of as a mental representation of
a stimulus or event that is aroused by some cue or set of cues
that has regularly preceded that stimulus or event in the past.
Alternatively, an expectation might be aroused by an inferen-
tial process that predicts the occurrence of a stimulus or event
(Berlyne, 1960). According to the most straightforward view,
expectations are representations of the values that some per-
ceptual features are likely to assume in the future. However,

expectations are naturally expressed in probabilistic terms as
well, where a probability distribution over the range of possible
observations can be considered to be a “belief state,” a kind of
expectation that can generate surprise. If an estimated probability
of an observation is available to the perceiving agent when the
observation is made, then the certainty of the observation can
be compared to its probability of occurrence, yielding a measure
of surprise. Importantly, expectations as probabilistic beliefs are
usually conditioned, in the sense of being conditional on a partic-
ular state or context. This notion of expectation (which is not the
same as the expectation, or expected value, in probability theory)
underlies Bayesian views of surprise that we discuss in Section 2.2
below.

The psychologist D. E. Berlyne, who wrote extensively about
novelty, surprise, and curiosity, used the term incongruity for the
situation of a stimulus creating an expectation that is unfulfilled
by other stimuli that occur at the same time (Berlyne, 1960). The
“two-headed lady” of his example is incongruous because her
extra head violates the expectations generated by the rest of her
image. Berlyne regards this as a special case of surprise that does
not involve the passage of time, while acknowledging that it might
actually involve time because parts of the incongruous stimulus
may be scanned in succession.

Surprise plays a key role in theories of learning and finds nat-
ural expression in the framework of Bayesian statistics. Here we
first discuss how prominent models of associative learning rep-
resent expectations and surprise, followed by a description of a
modern Bayesian theory of surprise in which expectations appear
as probability distributions over classes of environment mod-
els. Then we briefly discuss closely related information-theoretic
notions of surprise. We discuss these examples in some detail
because they are concrete examples of how surprise has been
expressed in formal terms.

2.1. SURPRISE IN ASSOCIATIVE LEARNING THEORY
Surprise plays a key role in theories of classical, or Pavlovian,
conditioning. In classical conditioning experiments, conditioned
stimuli (CSs) are followed after a short time by biologically sig-
nificant events (such as a shock, food, etc.), called unconditioned
stimuli (USs) that reflexively produce unconditioned responses
(URs). Great care is taken to prevent the animal’s response to the
CS from influencing the occurrence of the US (unlike instrumen-
tal conditioning experiments where a reward is contingent on the
animal’s behavior). After repeated trials consisting of the CS-US
sequence, the animal comes to produce a conditioned response
(CR) that resembles the UR but occurs as a response to a CS.
For example, an air puff to the eye (the US) elicits a reflexive
eye blink (the UR). When regularly preceded by another stimu-
lus (the CS), say a tone or a light, occurrence of the CS comes
to elicit an eye blink that anticipates the US. The process is often
regarded as one of learning about predictive relationships among
stimuli.

What is now called Kamin blocking is the failure of an animal
to learn to elicit a CR when a CS is presented to an animal as
part of a compound that includes another CS that had been pre-
viously conditioned to elicit a CR (Moore and Schmajuk, 2008).
Kamin thought that this might be due to the fact that the US is
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no longer surprising since it is already predicted by the previously
conditioned CS:

. . . perhaps, for an increment in an associative connection to
occur, it is necessary that the US instigates some mental work on
the part of the animal. This mental work will occur only if the US
is unpredicted, if it in some sense surprises the animal. Thus, in
the early trials of a normal conditioning experiment, the US is an
unpredicted, surprising event of motivational significance and the
CS-US association is formed. (Kamin, 1969, p. 293)

This idea that an organism learns only when events violate its
expectations, that is, when the organism is surprised, was elab-
orated by Rescorla and Wagner in the most widely-known and
influential model of classical conditioning (Rescorla and Wagner,
1972):

The central notion here can also be phased in somewhat more cog-
nitive terms. One version might read: organisms only learn when
events violate their expectations. Certain expectations are built up
about the events following a stimulus complex; expectations ini-
tiated by that complex and its component stimuli are then only
modified when consequent events disagree with the composite
expectation. (Rescorla and Wagner, 1972, p. 75)

In the associationist tradition, the Rescorla-Wagner model adjusts
associative strengths of stimuli that specify how strongly each
stimulus predicts the US. Each constellation of stimuli that occurs
(CS) generates a composite expectation for the US. This composite
expectation is the weighted sum of the saliencies of the stimuli in
the constellation, each weighted by its corresponding associative
strength for the US. The model adjusts the associative strengths
that specify how strongly each component csi of the CS present
on a trial predicts the US:

�Vcsi = αcsiβ(λ− V), (1)

where Vcsi is the associative strength of component i of the CS
and �Vcsi is its change, αcsi is the salience of component i of
the CS, β is the learning rate parameter associated with the US,
λ is the asymptote for learning for the US, and V is the com-
posite expectation for the CS. The model adjusts the associative
strengths of the stimuli present on each trial up or down depend-
ing on λ− V , the difference between the composite expectation,
V , and the associative strength supported by that particular US,
λ, which we call the “target associative strength.”

For the sake of brevity we skip further details and the impor-
tant role this model has played in the history of animal learning
theory (see Schmajuk, 2008, for a review; see also Lepora et al.,
2010, and Mannella et al., 2010, for two models that capture
the basic brain mechanisms with which classical conditioning is
implemented in, respectively, cerebellum and amygdala). The key
point is that the difference, or discrepancy, λ− V , is considered
to be a measure of surprise: a constellation of stimuli generates an
expectation that is compared with what actually happens.

The Rescorla-Wagner model is an example of an error-
correcting learning rule such as the Widrow-Hoff Least
Mean Square learning rule (Widrow and Hoff, 1960)

and the well-known error backpropagation algorithm
(Rumelhart et al., 1986), where the US corresponds to the
“teaching input” or “desired output,” and λ− V is the error
guiding learning (although the error is sometimes called a
teaching signal in biological models of classical conditioning,
e.g., Lepora et al., 2010). Error correction is also central to the
widely-used Kalman filter and related algorithms, where the error
is called the “innovation” or “measurement residual” (Welch and
Bishop, 1995).

Connecting the Rescorla-Wagner model to probabilistic
notions of surprise is the observation that in the case where the
US is represented by a binary variable with values 0 or 1, the
model computes the conditional probability of the US given pos-
sible patterns of CSs (Dayan and Long, 1998). In addition, the
process of error correction is related to Bayesian learning as we
discuss in Section 2.2 below.

Error correction is also the basis of Temporal Difference (TD)
learning (Sutton, 1988), where the error incorporates informa-
tion about the long-term expectation of reward and not just the
immediate reward. TD learning is the basis of a model of classical
conditioning that elaborates the Rescorla-Wagner model (Sutton
and Barto, 1990) as well as the reward-prediction-error hypothe-
sis about the phasic activity of dopamine producing neurons in
the brain (Barto, 1995; Houk et al., 1995; Schultz et al., 1997;
Schultz, 1998). TD learning is not restricted to predicting reward;
the role of reward can be replaced by other stimulus features,
and it can be generalized to networks of interrelated predictions
(Sutton and Tanner, 2004).

In accord with the associationist view, the associative strengths
of the stimuli needed for determining a composite expectation
become available as a consequence of the mere occurrence of
the stimuli. They have been formed in response to the animal’s
experience over time in observing sequences of stimulus constel-
lations. Think of a two-layer neural network whose connection
weights from its input layer to its output layer correspond to
the adjustable associative strengths. In response to input patterns
the network computes composite expectations in the form of the
activity levels of the output units. Target output values represent-
ing USs, provided by so-called “teaching inputs,” are compared
to the network’s actual outputs—the surprise computation—to
determine the error that drives learning. In addition to participat-
ing in this comparison, these expectations also directly determine
the strength of the animal’s tendency to produce a CR.

This process does not require a scanning of the organism’s
memory for previously experienced instances of the stimulus
constellation that is currently present: this experience has been
cached in the connection weights, and the network reads out an
expectation in response to the current input pattern. In a neural
network setting that considers the relative timing of inputs (i.e.,
the teaching input is whatever stimulus pattern occurs shortly
after the input pattern setting the activation levels of the input
units), the network becomes a predictor, meaning that each of its
output patterns will tend to resemble the input pattern that comes
next. (Of course this assumes the network is complex enough
to represent the prediction function.) The process is not tied to
a specific US. The network’s weights summarize, in a statistical
sense, the totality of the organism’s previous experience as to what

www.frontiersin.org December 2013 | Volume 4 | Article 907 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Barto et al. Novelty or surprise?

stimulus constellations tend to follow other stimulus constella-
tions. In machine learning, one would say that a forward model
of environmental contingencies is learned via supervised learning
(Barto, 1990).

Other concepts have been proposed for how an expectation for
associative learning might be implemented in the nervous system.
For example, Grossberg (1982) proposed that an expectation is a
feedback pattern of neural activity derived from signaling across
an entire network gated by long-term memory, and that unex-
pected events trigger a “mismatch-modulated arousal burst,” i.e.,
what we would call a surprise signal.

2.2. BAYESIAN SURPRISE
A formal theory of surprise was proposed by Itti and Baldi based
on the Bayesian framework (Itti and Baldi, 2005, 2006, 2009).
In this framework, probabilities, which correspond to subjective
beliefs, are updated as new observations are made using Bayes’
theorem to convert prior beliefs into posterior beliefs. What they
call Bayesian surprise is a measure of the difference between an
observer’s prior and posterior beliefs.

Here is how they formalize this. An observer is assumed to have
background beliefs characterized by a prior probability distribu-
tion over hypotheses or models of its world, M, that are in some
space of models, M:

{P(M)}M ∈M.

Upon obtaining new data D, the observer updates this prior
distribution into the posterior distribution by applying Bayes’
theorem:

∀M ∈M, P(M|D) = P(D|M)

P(D)
P(M).

Bayesian Surprise is a measure of the dissimilarity between the
prior and posterior distributions. Itti and Baldi do this using the
relative entropy, or Kullback-Leibler (KL) divergence, between
these distributions:

S(D,M) = KL(P(M), P(M|D))

=
∫

M ∈M
P(M|D) log

P(M|D)

P(M)
dM.

This measure gives the amount of information needed to trans-
form the prior into the posterior distribution:

A unit of surprise—a “wow”—may then be defined for a single
model M as the amount of surprise corresponding to a two-fold
variation between P(M|D) and P(M), i.e., as log P(M|D)/P(M)

(with log taken in base 2), with the total number of wows expe-
rienced for all models obtained through the integration [in the
equation above]. (Itti and Baldi, 2009)

According to this theory, surprise is a measure of the discrep-
ancy between beliefs before and after an observation. A sur-
prising event is one that is not well predicted by the animal’s
current beliefs formed in response to its previous experience.
In this case, the expectation that determines surprise is the

set of beliefs held by the agent before the observation in
question, that is, the prior probability distribution over pos-
sible world models: {P(M)}M ∈M. Itti and Baldi (2005, 2006,
2009) argue that this definition has key advantages over alter-
natives in being more principled, more widely applicable, and
more able to account for what attracts human visual atten-
tion. Importantly for our purposes, these authors also discuss
how assessing surprise differs from detecting statistical outliers,
which is one of the notions commonly (though erroneously we
will argue) invoked for detecting novelty. We discuss this in
Section 5 where we examine differences between surprise and
novelty.

Schmidhuber and colleagues (Schmidhuber et al., 1994; Storck
et al., 1995) proposed using Bayesian surprise (as later defined by
Itti and Baldi) as a measure of learning progress for reinforcement
learning agents. This measure of surprise generates a “curiosity
reward” that encourages the agent to behave so as to continue
learning efficiently by seeking regions of its environment where
it is surprised while avoiding regions where it is “bored,” either
because it has already learned as much as it can in those regions
(thereby eliminating surprise) or because there are no learnable
regularities (so that surprise is absent because new information
is not acquired). This is one of the first proposals for how ideas
related to what psychologists call intrinsic motivation can be
implemented in a machine learning system, and much additional
research has been lately done in this area (Baldassarre and Mirolli,
2013).

Itti and Baldi (2005, 2006, 2009) were concerned with atten-
tion rather than learning, but their concept of surprise arises from
the Bayesian approach to learning where a prior belief distri-
bution is updated by Bayes’ theorem to a posterior distribution
upon each new observation. Large Bayesian surprise means that
learning from a new observation has made a large change in the
animal’s beliefs about the contingencies in its world. In its most
general form, Bayesian learning does not explicitly involve the
computation of prediction errors. Instead of processing errors
generated by an existing model, learning processes evidence for
all possible models and updates beliefs accordingly. Unlike error-
correction learning, where the error as a measure of surprise is the
direct driving force of learning, Bayesian surprise is the result of
learning but not its direct cause, coming after the Bayesian update
instead of before it.

However, Bayesian learning can be approximated, and in
some cases computed exactly, by an error-correction process.
The Kalman filter, for example, uses error correction to per-
form Bayesian learning in the context of linear-Gaussian systems
(Welch and Bishop, 1995). The mean of the Gaussian posterior
distribution is updated by multiplying the innovation, or pre-
diction error, by the Kalman gain which controls the allocation
of weight between the prediction of a current model and a new
observation based on a measures of confidence in the model and
in the observation. Bayesian learning can be approximated in a
number of ways, such as through the Laplace approximation and
variational methods (Bishop, 2006), that permit updates to be
made on the basis of prediction errors. Variational approxima-
tion plays a key role in the hierarchical architecture proposed
by Mathys et al. (2011), who discuss the relationship of the
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resulting learning process to error-correction methods like the
Rescorla-Wagner model.

Models of classical conditioning based on Bayesian methods,
including the Kalman filter, have been proposed that go beyond
the account provided by the Rescorla-Wagner model (Dayan
et al., 2000; Kakade and Dayan, 2002a; Courville et al., 2004,
2006). Changes in the world, and therefore changes in the correct
world model, are sources of Bayesian surprise. Bayesian methods
not only update beliefs in specific models but also the confi-
dence in those beliefs, and surprise causes decreased confidence
in current beliefs. As a result, new observations should be given
more weight than previous observations (as in the Kalman fil-
ter), implying that the speed of learning about the uncertain
predictive relationships should increase. This Bayesian account of
increases in the rate of animal learning observed in certain experi-
ments (Rescorla, 1971) accomplishes what the Pearce-Hall model
(Pearce and Hall, 1980) does via its use of an explicit measure of
surprise as the magnitude of a prediction error. TD learning has
also been developed in a Bayesian framework (Engle et al., 2003).

Another area in which prediction errors appear in a Bayesian
framework is in the “predictive coding” architectures of Rao and
Ballard (1999) and Friston and Kiebel (2009). These are layered
hierarchical systems going from input levels to levels encoding
information in a more abstract fashion. The key aspect of these
systems is that the bottom-up flow of information from sen-
sations to abstract representations is paralleled by a top-down
information flow where the top levels project predictions to
the lower-levels. This allows higher-level stages to receive infor-
mation only through the information mismatch between their
predictions and sensations, so that higher levels receive only
unpredicted information. Prediction errors are used to propagate
information from the bottom up to the higher levels of the sys-
tem, and also to continuously update the top-down predictors.
These proposals refine the concept of surprise as they capture
surprise at multiple levels, namely from the prediction of sim-
ple, isolated events at the lower levels, to the prediction of the
behavior of more complex compounds of items at the higher
levels.

2.3. INFORMATION THEORETIC SURPRISE
Although Itti and Baldi’s Bayesian theory of surprise is connected
to information theory (KL divergence is a measure of informa-
tion gain), other concepts of surprise are more directly based on
information theory. One example is what Tribus (1961) called
surprisal to refer to the self-information of the outcome of a ran-
dom variable, which is a measure of the information content of
the outcome. If outcome ω occurs with probability P(ω), then
the self-information, or surprisal, is − log P(ω). Thus, an out-
come that is highly unlikely has high surprisal when it occurs. The
expected value of surprisal for observations drawn from a random
source is the entropy of that source. Computational linguists, e.g.,
Roark (2011) and Monsalve et al. (2012), use the term lexical sur-
prisal to refer to the negative log of the conditional probability of
a word in a sentence given the preceding words in the sentence.
Although Tribus’ definition of surprisal does not explicitly invoke
conditional probabilities, there is always an implicit assumption
that surprisal is conditioned on a context or model. Therefore,

when we refer to surprisal below, we always have a conditional
form of surprisal in mind.

An important contrast can be drawn between surprisal and
Baysian surprise. The usual example is to consider viewing a tele-
vision screen showing white noise, or “snow” (Schmidhuber et al.,
1994; Storck et al., 1995; Itti and Baldi, 2005). After a while this
becomes very boring even though the information content of each
frame, or its surprisal, is very high because there are so many
equally-likely patterns of random noise. On the other hand, a
viewer’s Bayesian surprise will decrease and eventually disappear
as their beliefs adjust so that random frames become expected.
“Thus, more informative data may not always be more important,
interesting, worthy of attention, or surprising” (Itti and Baldi,
2005).

Tribus’ notion of surprisal plays a prominent role in the global
brain theory of K. Friston and colleagues which is based on
the principle of “free-energy minimization” (Friston et al., 2006;
Friston, 2009, 2010). This principle states that intelligent agents
aim to minimize a free energy function of their internal states. If
one assumes that an agent maintains a model of the causes of its
sensory input, this principle implies that intelligent agents act on
their environments to avoid surprises, which means working to
make observations that conform to their expectations. Another
component of this theory is that intelligent agents learn by
revising their models to make more accurate predictions. These
implications can be seen to follow from free-energy minimization
through the perspective of variational Bayesian inference. Free
energy (in this case the variational free energy) is always greater
than or equal to the negative log of the evidence, or the marginal
likelihood, of the agent’s model. Model evidence is the probabil-
ity of observations given the agent’s current model: if s denotes
an agent’s sensory state at some time and M denotes its current
model, the model evidence is P(s|M) (where hidden states have
been marginalized out). Thus, acting to minimize this free energy
function tends also to minimize the negative log of model evi-
dence (since the latter quantity is always less than or equal to
the free energy). This is equivalent to tending to maximize the
(positive) log of model evidence, which is the same as tending to
maximize the model evidence itself since the logarithm is a mono-
tonically increasing function. The theory’s connection to surprisal
is due to the fact that the negative log evidence for a model is the
surprisal conditioned on that model, − log P(s|M), so that max-
imizing model evidence is the same as minimizing this notion of
surprise. According to this theory, then, intelligent agents act on
their environments to suppress discrepancies between their pre-
dictions and what they actually experience, that is to avoid being
surprised.

The theory also relates to Itti and Baldi’s (and Schmidhuber’s)
notion of Bayesian surprise. In addition to acting to increase evi-
dence of a current model, agents can reduce free energy by adjust-
ing their model to make more accurate predictions. Through a
learning process, a current probability distribution over models
(a prior distribution) is updated to a new distribution (a posterior
distribution) that takes into account each new observation. As the
model becomes more accurate, the KL divergence between these
distributions—that is, the Bayesian surprise—decreases, which
decreases free energy. The Bayesian surprise becomes zero only
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when the model makes perfect predictions. An additional impli-
cation of this theory arises from the role of model evidence in
Bayesian model comparison, where there is an automatic penalty
for model complexity. This implies that the work done by agents
to increase how well their model accounts for observations is bal-
anced by a tendency to minimize model complexity, a form of
Occam’s razor. Friston and colleagues present hypotheses about
how the brain might implement the elements of this theory
(Friston et al., 2006; Friston, 2009, 2010).

In his book “Novelty, Information, and Surprise” Palm (2012)
provides definitions of all three of these terms. Roughly, novelty
is the same as Tribus’ surprisal, but surprise is given an inter-
esting definition that depends on the concept of a “description,”
which is a mapping from possible outcomes of a random variable
to propositions that are true for a collection of outcomes. A key
aspect of this theory seems to be that by knowing the descrip-
tion an observer is using, that is, by knowing the whole mapping,
it is possible to consider the probability that an outcome will
have the same description as the outcome observed. Then the
amount of surprise experienced by an observer depends not on
the probability of the observation, but on the probability of any
observation with the same description. Palm gives the following
example. Suppose that in a state lottery the sequence of numbers
(1, 2, 3, 4, 5, 6) were to be drawn. This would be much more sur-
prising than the sequence (5, 11, 19, 26, 34, 41) even though both
sequences have the same probability of being drawn. “The reason
for our surprise in the first case seems to be that this sequence can
be exactly described in a very simple way: it consists of the first
six numbers. . . . it is much more probable to obtain a sequence
that does not admit a simple exact description . . . . In the spe-
cial case of (1, 2, 3, 4, 5, 6) we could argue that there are only two
such extremely simple sequences, namely the last 6 and the first 6
numbers” (Palm, 2012, p. xix). Palm argues that his extension of
classical information theory allows one to incorporate a “person’s
interests, intentions, and purposes.” How this intriguing view of
surprise relates to the more familiar ones discussed above is not
yet completely clear to the authors.

2.4. SUMMARY
According to the commonsense notion as well as the most promi-
nent formulations, surprise involves a comparison between an
expected and an actual observation. The comparison does not
need to entail a scan of the contents of memory. Expectations
formed on the basis of past experience can be linked directly to
stimuli so that they are aroused by the occurrence of those stimuli,
or aroused by an inference process in the absence of those stimuli.
Surprise is a measure of the discrepancy this comparison reveals,
whether it is a simple signed difference as in error-correction
learning rules, the KL divergence in Itti and Baldi’s Bayesian sur-
prise, or some other measure. Predictive coding by hierarchical
systems suggests how surprise might be generated at different lev-
els of abstraction. The term surprisal has been proposed for an
observation’s self information, a quantity inversely related to the
probability of the observation conditional on a model. Bayesian
surprise and surprisal differ in significant ways. Friston’s global
brain theory based on the free-energy principle suggests that
intelligent agents act in order to reduce surprisal conditioned on

their current models, while they also reduce (future) Bayesian
surprise by adjusting their models to make better predictions.

3. NOVELTY
Confronting the problematic concept of novelty, Berlyne (1960)
emphasized a number of relevant distinctions. First, he distin-
guished between short-term, long-term, and complete novelty.
Something may never have been encountered before (complete
novelty), or not encountered in the last few minutes (short-term
novelty), or not encountered for some intermediate time, e.g., a
few days (long-term novelty). Another distinction is that between
absolute and relative novelty. A stimulus is absolutely novel when
some of its features have never been experienced before, whereas
it is relatively novel if it has familiar features but they occur in
some combination or arrangement that has not been previously
encountered.

Berlyne claimed the following:

Any new experience, even if it does not seem to be a combination
of familiar experiences, must have some definite degree of resem-
blance to experiences that have occurred before. It will inevitably
be possible to insert it into an ordering of familiar stimuli or to
assign to it values among dimensions that are used to classify them.
(Berlyne, 1960, p. 19)

He gives the example of seeing a man taller than any seen before:
it is still possible to place the experience on a familiar scale,
or more generally, to locate the experience in the appropriate
multidimensional feature space. Further, according to Berlyne:

For any adult human being, or even any adult dog, cat, or rat,
a new stimulus must be similar to, and relatable to, a host of
familiar and frequently experienced entities. However, bizarre a
non-sense figure may be that is shown to a human adult, it must
consist of lines, angles, and curves such as he has seen on countless
occasions. (Berlyne, 1960, p. 20)

Note that Berlyne restricts this comment to adults. The situation
must be different for young children, due not only to their relative
lack of experience but also due to the deeper need to establish
the feature spaces and dimensions that are useful for categorizing
experience. For designers of artificial agents this is a key issue.

Berlyne’s distinctions are important because they connect to
our ordinary understanding of what the term novelty means while
revealing some of the issues that make the concept problematic.
In formal notions of novelty to which we now turn, the links to
our commonsense notion are not always apparent.

3.1. MEMORY-BASED NOVELTY
The simplest translation of our commonsense idea of novelty into
a more precise notion is that the novelty of an event is assessed by
examining a memory store of past observations, where a memory
system might require more than one experience of an event to
form a lasting memory. An observation is completely novel, to use
Berlyne’s term, if a representation of it is not found in memory. If
memory fades with time, this process assesses short-term or long-
term novelty depending to the fading rate. This of course ignores
many aspects both of novelty and of memory, and it may not be
feasible from a computational perspective.
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But some more sophisticated methods for novelty detection
are elaborations of this basic idea. Novelty detection based on
clustering is one example. Using a distance measure based on sim-
ilarity, data can be clustered into classes so that items in a class are
“close” to one another and not close to items in the other clus-
ters. Novelty here means that an item is not close enough to the
mean of an already existing cluster, so that a new cluster needs
to be formed. There are very many clustering methods, and there
are many methods for determining when a new cluster should be
added (Markou and Singh, 2003).

Determining distances from existing clusters is a search of
a memory that stores the cluster means, making it more fea-
sible than a naive memory-based method. Prominent neural
network methods for novelty detection, such as methods based
on self-organizing feature maps (Kohonen, 1984; Nehmzow et al.,
2013), perform this basic process where the memory scan is
performed in parallel by the network. Of current interest in
statistics and machine learning are Bayesian non-parametric clus-
tering methods (Gershman and Blei, 2012). Instead of specifying
the number of clusters in advance, these methods allow the
number of clusters to grow as new data items arrive. These
methods do not involve a literal scan of memory, but deter-
mining whether a new cluster is needed essentially relies on
determining that none of the existing clusters properly explains
the data.

Another kind of memory-based novelty arises in the case
of content-addressable associative memory systems. Perhaps the
most well-known and simplest is the correlation matrix mem-
ory proposed by Kohonen (1977, 1980, 1984). Instead of being
stored in separate memory locations, information is superim-
posed and distributed across a memory substrate, for example
a neural network, and retrieval is a kind of filtering process.
The stored items are vectors of real numbers, and the memory
is a matrix formed from the stored vectors in such a way that
upon being presented with an input vector, the system produces
as output a weighted sum of all the stored vectors, where each
weight is a measure of how well that stored vector correlates
with the input vector. When the input vector is a distorted ver-
sion or a fragment of a stored vector, it is expected that it will
correlate most strongly with that vector and much less with the
other stored vectors, implying that the memory’s output will be
a less noisy version of the input vector or a “completion” of it.
Mathematically, the memory’s output is the orthogonal projec-
tion of the input, x, onto the subspace, L, spanned by the stored
vectors, which is the vector, call it x̂ ∈ L that is “closest” to x.
Every vector x can be expressed as the sum of x̂ and a vector,
x̃, in the subspace orthogonal to L. Kohonen (1977) says that
“x̃ is the amount that is ‘maximally new’ in x. It may be justi-
fied to call this component the ‘novelty,’ and the name Novelty
Filter is hereupon used for a system which extracts x̃ from input
data x”. . .
fragments or aspects of an observation that are not fragments
or aspects of previously stored experiences. Our memory sys-
tems are undoubtedly much more complicated than a correlation
matrix memory, but it is worth keeping this example in mind
when we discuss associative novelty as studied in neuroscience in
Section 6.2 below.

3.2. NOVELTY AS STATISTICAL OUTLIER
A common notion is that an observation is novel if it is a statistical
outlier, meaning that it is significantly different from other mem-
bers of the sample from which it is drawn. In general terms,
detecting outliers requires modeling the usual distribution of
observations and detecting when an observation departs signifi-
cantly from the model. Sometimes this is called anomaly detection.
Many methods have been proposed to detect outliers and to han-
dle them, but what concerns us here is what being an outlier
means with respect to our common idea of novelty and how it
differs from surprise.

One area in which this idea of novelty plays a prominent role
is machine learning. For example, learning a classification rule by
supervised learning involves adjusting a classifier’s parameters on
the basis of training examples drawn from a corpus of labeled
examples. It is important that the corpus of training examples
is representative of the input data to which the classifier will be
applied. Novelty detection for supervised learning is the problem
of determining if an input does not belong to the class of inputs
represented by the training examples, i.e., determining if the input
is an outlier. For novel inputs, the output of the classifier will be
considered unreliable.

Nearly all the statistical approaches to this problem model the
probability density of the training data and identify inputs as
novel if they fall in regions of low estimated density. Many meth-
ods exist for estimating probability densities from a finite number
of samples, both parametric or non-parametric (Duda and Hart,
1973; Markou and Singh, 2003), and many methods have been
suggested for how to use the estimated probabilities to determine
when an input should be regarded as novel. The details of these
methods need not concern us here; the principle remains the
same: according to this view novelty means having a low estimated
probability of occurrence. Note that according to the definition of
surprisal given in Section 2, this is the same as saying that being
novel means having high surprisal, a point to which we return in
Section 5 below.

We commented in Section 2.3 that although Tribus’ definition
of surprisal does not explicitly invoke conditional probabilities,
there is always an implicit assumption that surprisal is condi-
tioned on a model or context. Estimated probabilities for outlier
detection are conditioned on the context of the collection of
samples and background assumptions about the sample space.
This raises questions about equating novelty with “low proba-
bility” because it is based on the assumption that the system
can represent the entire domain of possible samples in advance
of experiencing them, and so can assign zero probability to all
instances not observed up to a given moment. An aspect of our
commonsense notion of novelty for which this view is not able
to account is the possibility that an observation might occur that
the system is not able to represent in terms of existing categories.
Assuming that the sample space consists of all possible config-
urations of the lowest-level sensor readings may be a solution
for artificial systems (e.g., the pixels of a camera), but it seems
an inadequate account of biological memory which is typically
not so eidetic. Indeed, as we discuss in Section 6 below, nov-
elty may trigger brain activity whose function is to acquire new
representations.
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3.3. SUMMARY
Berlyne (1960) distinguished between several difference senses in
which the term novelty is used, and formalizations of novelty are
not as unified as those of surprise. Straightforward interpreta-
tions involving searches of memory for previous encounters do
not do justice to the complexity of either the concept of novelty
or of the nature of memory. Clustering-based concepts expand
naive memory search and make better contact with the common-
sense notion of novelty as the quality of being different from what
is in a memory store. Content-addressable associative memory
systems suggest a more abstract notion of novelty as, roughly,
fragments or aspects of an observation that were not present in
previous experiences. Statistical interpretations in terms of out-
lier detection have many applications, but as we argue below they
also abstract away from important aspects of our commonsense
understanding. In neuroscience additional categories of novelty
are described, which we discuss in Section 6.

4. NOVELTY AND SURPRISE: TYPICAL FEATURES
We have seen that there are various proposals about how to
define surprise and novelty, all having some strengths. On this
basis, we think it is premature to propose definitive defini-
tions. Nevertheless, we also think it is possible and useful to
highlight the main features of the two concepts that repre-
sent the “poles” around which the different definitions should
gravitate. Table 1 displays these features, and we now briefly
explain them.

A key difference between novelty and surprise is due to the
type of knowledge store they use and the way they process such

knowledge. Novelty is based on memory stores and the pro-
cesses that determine if a given item is, or is not, in the store.
Surprise, on the other hand, is based on expectations of systems
capable of predicting, the processes generating such expectations,
and the processes that compare the expectations with what is
actually experienced. An observation is novel when a represen-
tation of it is not found in memory, or, more realistically, when
it is not “close enough” to any representation found in mem-
ory. Novelty triggers the formation of new representations for
entry into long-term memory. These representations can then
be exploited to perform other cognitive processes, including
the generation of surprise by exploiting already existing rep-
resentations (Lisman and Grace, 2005; Kumaran and Maguire,
2007). The case of surprise is different because its core element
is not the incoming item but the predicted item. Indeed, the
incoming item can be either familiar or novel—this does not
count. What counts for surprise is that the system perceives
“something” that is different from the prediction, whatever that
“something” is.

Novelty and surprise also differ with respect to their relation to
time. The expectations or predictions that underly surprise have
to do with the dynamic flow of events happening in time (with
the possible exception of spatial predictions underlying Berlyne’s
notion of incongruity, which may, however, involve the visual
scan of a stimulus, thereby again involving time). Predictions
typically involve a specific time, or range of times, in the future
when something is expected to happen: “If I see A at time t,
then I expect to see B at time t plus something.” Novelty, on
the other hand, seems not to be strictly related to time. The

Table 1 | The typical features of novelty and surprise.

Features Novelty Surprise

Type of knowledge store, Memory, Predictor,

process involved memory recall prediction

Variants of the knowledge - Formation of new representations - Deterministic expectations

and process involved - Formation of new links between - Stochastic expectations

the representations of the

features/components of the novel data

Time Time not a key factor: Incoming data usually

items in memory are always compared with a

available for comparison temporalized prediction

Processes for One phase: Two phases:

novelty/surprise - Formulation of prediction

triggering - Experience does not match memory - Prediction is violated

Typical functions - Support the formation of new - Support the improvement

representations of predictions

- Generate learning signals for - Generate learning signals for

the sub-component detecting novelty, the predicting sub-component

or for other sub-components or for other sub-components

- Direct/motivate attention and - Direct/motivate attention and

learning resources learning resources

to novel stimuli to unpredicted stimuli
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comparison of current experience with the contents of memory,
i.e., the process that supports novelty detection, is not sensitive
to the time at which a memory was formed, nor to the time the
novel item is perceived: what really matters is only the absence of
a representation of the perceived stimulus in memory. Berlyne’s
distinction between short-term, long-term, and complete novelty
refers to differences in how this process may work, but in none
of these cases is the timing of the perception as critical as it is
for surprise.

Both surprise and novelty increase an animal’s level of arousal,
direct its attention, enhance learning, and elicit other appropriate
behavior. But in some other respects surprise and novelty differ in
their typical functions. Where novelty often supports the acqui-
sition of representations, surprise supports the improvement of
predictions. More specifically, novelty supports the acquisition of
items by memory, while surprise plays a key role in improving the
capacity of the system to predict (as in error-correction learning
reviewed in Section 2.1) or to signal that such an improve-
ment has taken place (as in the Bayesian account as discussed in
Section 2.2).

5. RELATIONSHIP BETWEEN SURPRISE AND NOVELTY
Surprise often—perhaps always—accompanies novelty, which
may be a major reason the two concepts tend to be confounded.
Indeed, if one assumes that an agent is always making predictions
about what it is going to soon experience, encountering some-
thing novel should not only trigger a novelty response, because
no representation has been found in memory that corresponds
to the perception, but also surprise, because the agent’s expecta-
tions must be violated by the novel item which could not have
been predicted. In this case, the agent is not predicting that
it will not observe that item, but it is predicting that it will
observe something else—a prediction that is violated. Whether
or not this argument is convincing depends upon whether ani-
mals are always expecting something, which in turn depends on
what it really means to expect something, which we will discuss
shortly.

On the other hand, it is clear that surprise does not imply
novelty. A familiar observation may be surprising in a context
in which something else is expected. It is easy to come up with
examples: for instance, we can be surprised at finding our car door
locked when we thought we had just clicked the unlock button on
the key fob.

A more interesting example is provided in a study by Huron
(2004) of laughter in listeners to Peter Schickele’s PDQ Bach
compositions. In this example, the expected “something else”
is in fact rare, whereas the actual observation is familiar,
though unexpected. Schickele has composed a large number
of humorous pieces attributed to the fictional P.D.Q. Bach.
Huron argues that a plausible explanation for the laughter these
compositions induce is that laughter occurs at “dramatic viola-
tions of expectation.” In one composition (Quodlibet for Small
Orchestra), Schickele reproduces a well-known theme from a
Beethoven symphony, but instead of continuing with Beethoven’s
finish to the movement “which is the rarest continuation in
Western music with a probability of less than 0.007,” he switches
to a “musically banal” conclusion. Invariably, listeners burst

into laughter at the moment of this switch. Huron (2004)
summarizes:

In short, Schickele’s transgression here is a violation of veridi-
cal expectation (“That’s not how the music goes.”) rather than
a schematic transgression (“That’s not what happens in music.”)
The violation is amplified by the extreme contrast between veridi-
cal and schematic probabilities. (Huron, 2004, p. 702)

What Huron means by a “veridical expectation” is an expec-
tation created through past experience with the specific music
in question, in this case Beethoven’s symphony, which—during
listening—generates an expectation for its usual ending. But the
usual ending is rare in music in general, that is, its probability
of being heard is very low, whereas Schickele’s ending has much
higher probability. Therefore, the “schematic transgression” is a
mismatch between an expectation for something unlikely and the
receipt of something familiar.

As discussed above in Section 3.2, a common formalization of
novelty in machine learning is that being novel means being a
statistical outlier, and novelty detection is accomplished by mod-
eling the probability density function of possible observations
and regarding an observation as novel if it falls in a region of
low enough estimated density (according to a given threshold
or a more sophisticated criterion). We are not aware of claims
that this formalization of novelty provides a good account of
what novelty means for an animal, but it is pertinent to ask if
this notion of novelty is consistent with either our common-
sense understanding of the term or novelty’s typical features. The
answer has to be no. It is true that if the probability of an event
occurring is low, then the probability that a representation of
that event is stored in memory is low as well. But it is clearly
missing something important about novelty to equate low esti-
mated probability of occurrence with novelty. It is easy to think
of examples of events that are not novel at all but that have a
very low probability of occurring. For example, any event that
occurred only once in the past, and that is distinctly different from
other experienced events, will likely be assigned a low probabil-
ity of occurring again. But that event may be vividly memorable
and therefore familiar if it were to happen again. Furthermore,
if so-called novelty detection happens as a result of a mismatch
between one’s estimated probabilities and current perceptions,
this seems to be a clear case of surprise rather than novelty, as
discussed in Section 2. Thus, while treating low probability events
as novel may be a good method for machine learning, it is a poor
model of what novelty really is and represents a misleading use of
the term.

The same reasoning explains why Tribus’s term surprisal
(Tribus, 1961) is more consistent with what we mean by surprise.
Indeed, the surprisal value of an observation, that is, a measure
inversely related to its probability of occurring, can be thought of
as the discrepancy between its probability of occurring and the
fact that it actually occurred. Thus, surprisal appears to be consis-
tent with the notion of surprise according to our analysis (despite
the fact that it is basically the same as novelty according to the sta-
tistical outlier view of novelty). Surprisal is particularly consistent
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with our characterization of surprise when it is explicitly condi-
tioned on a context as in the lexical surprisal of computational
linguists (Monsalve et al., 2012; Roark, 2011). In this case, sur-
prise as surprisal is triggered by an event occurring in a context in
which the estimated probability of its occurrence is low.

Itti and Baldi’s (2005, 2006, 2009) Bayesian surprise is not a
misleading use of the term since their definition is based on a
discrepancy between beliefs before and after an observation. The
degree of surprise generated by an observation depends on how
strongly it changes the probability distribution over models that
characterize an observer’s beliefs about how its world works. It is
not clear that the Itti/Baldi notion is the only, or the best, Bayesian
account of surprise, but this account of surprise is consistent with
what we regard as its typical features.

Bayesian surprise has interesting implications with respect to
the view of surprise as surprisal. Here is a slightly modified ver-
sion of an example given by Itti and Baldi. Consider incoming
data, D, that has a very low probability given the current context
C, that is, D is surprising in the sense of having high surprisal.
Suppose the observer has only two models, and the observation
has a low probability given the context and either model, that
is, P(D|C, M1) and P(D|C, M2) are both low. In this case, even
though the surprisal of D is high, Bayesian surprise would be very
low since D has little effect on the agent’s beliefs: it is not useful
in discriminating between M1 and M2. This is a very hypothetical
example, but it raises the question of which account of surprise
is more consistent with the processes that generate surprise in
animals.

6. SURPRISE AND NOVELTY IN NEUROSCIENCE AND
COGNITION

This section considers some important threads of neuroscience
research related to surprise and novelty. Enlisting the concepts
developed in the previous sections shows how existing results
might be reinterpreted in a way that improves our understand-
ing of behavior and the neural machinery underlying it. The goal
here is not to cover the large neuroscience literature related to
novelty and surprise, but rather to show how keeping the distinc-
tion in mind may be a useful heuristic for isolating interesting
problems and seeking answers to questions about how surprise
and novelty are processed in the brain. Thus, below we focus on a
selection of biological cases that involve mechanisms where the
distinction between novelty and surprise is blurred or contro-
versial, while omitting consideration of other brain phenomena
more reliably associated to each of the two concepts (e.g., cere-
bellum, forward models, prediction errors, classical conditioning;
anterior cingulate cortex, anticipations, error-related negativity;
amygdala, classical conditioning).

Modern neuroscience literature distinguishes between three
types of novelty to which the brain responds: stimulus nov-
elty, contextual novelty, and associative novelty (Ranganath and
Rainer, 2003; Kumaran and Maguire, 2007). These three types of
novelty are investigated with different experimental paradigms,
involve partially overlapping networks of brain areas, and are
based on various neural mechanisms. In addition, an important
thread of neuroscience research deals with what have been called
dopamine “novelty responses.” In what follows we discuss these

four novelty categories in turn, trying to clarify whether the term
“novelty” is an appropriate label or if the investigated phenomena
have more to do with surprise.

6.1. STIMULUS NOVELTY
Stimulus novelty refers to the phenomenon for which the neu-
ral and behavioral responses to a particular stimulus (e.g., the
sight of an object) change when it is experienced multiple times.
A typical observation is that with repetition of a stimulus the
neurons responding to it present a progressively decreasing acti-
vation, a phenomenon called repetition suppression (Ringo, 1996;
Henson and Rugg, 2003). Repetition suppression is stimulus spe-
cific and has been observed in various types of experiments, from
classification (Sobotka and Ringo, 1994) to delayed-matching-to-
sample tests (Li et al., 1993). Some of the areas most sensitive
to the novelty of stimuli are inferotemporal cortex (Ranganath
and Rainer, 2003), an area involved in object recognition, the
perirhinal cortex (Brown and Aggleton, 2001), an area close to
the hippocampus and involved in episodic memory, and the
prefrontal cortex (Asaad et al., 1998), the highest multimodal
associative cortex.

Stimulus novelty seems to be the classical case of novelty,
where the incoming items trigger novelty detection when they do
not correspond to any existing memory. The novel items trigger
the formation of a neural representation at multiple levels within
the brain areas mentioned above, so they progressively became
familiar (Ranganath and Rainer, 2003).

An intriguing issue related to stimulus novelty arises from the
fact that novel items seem to cause an initial high activation of the
brain areas where novelty is presumed to be computed. This raises
a twofold question: (a) what are the specific mechanisms that
cause such a high activity, and (b) what is its adaptive function?
While the question about mechanisms is an interesting challenge
for computational modeling, the view that the main function of
novelty detection is the formation of representations of the novel
items in memory might explain why novel items cause higher
activation. Learning often needs to be supported by the pro-
duction of neuromodulators. The elevated activation caused by
novel items might trigger the production of neuromodulators, for
example, noradrenaline and achetylcholine (see Ranganath and
Rainer, 2003, for a review). In turn, the presence of neuromodu-
lators may support the formation of new neural representations.
This hypothesis suggests a number of neuroscientific investi-
gations directed toward understanding the brain mechanisms
implementing the various steps of the suggested causal chain, as
has already happened with respect to dopamine and hippocam-
pus, which are involved in the other types of novelty detection
considered below (see Lisman and Grace, 2005).

6.2. ASSOCIATIVE NOVELTY
Associative novelty is one of the most subtle and interesting cases
of novelty studied in neuroscience. Associative novelty refers to
situations where familiar stimuli are associated in novel config-
urations (Kumaran and Maguire, 2007). The associations can be:
spatial, where familiar items appear in new spatial locations; item-
item, where items appear in novel combinations, e.g., two familiar
words are paired in an odd fashion; or temporal, where familiar
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items appear in a novel temporal sequence. Interestingly, the field
of associative memory is one in which the blurring of the distinc-
tion between novelty and surprise is most prevalent. An example
is given by the following from O’Keefe and Nadel (1978) with our
italics:

Imagine that you are in a classroom . . . suddenly, your attention
is diverted when a naked man enters the room. . . . the entrance
of the naked guy was a novel event in that it was unexpected and
out of context. . . . novel events attract attention and they are more
effectively encoded in memory than are predictable events.

Associative novelty includes cases that are most difficult to clas-
sify, including some that may involve both novelty and surprise.

Temporal associative novelty involves a paradigmatic case of
surprise: if you perceive a familiar item in a novel temporal
sequence, it seems that items that precede the target item con-
stitute the context that supports an expectation which is violated
by the appearance of the familiar target item. Hence surprise.

The spatial case is also probably related more to surprise than
to novelty. When we perceive a familiar item in a new spatial loca-
tion, we already have its representation in memory. It is likely that
finding the item in a position where we never experienced it just
violates our expectation regarding its position—hence surprise.
This interpretation is consistent with the fact that in experiments
dealing with spatial associative novelty, subjects are typically
exposed to the associative pairings for many times before their
familiarity/novelty discrimination responses are assessed (Duzel
et al., 2003; Kohler et al., 2005). It is most likely that these repeated
exposures are needed for expectations to be created, so that they
can be violated to trigger the inappropriately-labeled “novelty”
signal.

Item-item associative novelty seems to be the more compli-
cated case to classify. To understand whether a case is best called
novelty or surprise may require knowing which brain mech-
anisms are involved. It is well accepted that the hippocampal
system is involved in the formation of complex episodic memories
and seems to play a critical role for the detection of multiple kinds
of novel associations (Wan et al., 1999; Brown and Aggleton,
2001). The comparator hypothesis is one of the most established
hypotheses about how the hippocampal system detects associa-
tive novelty. It refers to the following processes (Hasselmo and
Schnell, 1994; Kumaran and Maguire, 2007; Duncan et al., 2012):
(a) familiar aspects of the percept (“lures”) actively recall previous
memories on the basis of pattern-completion-like mechanisms,
for example, an item recalls other items previously experienced in
association with it, and (b) some of the perceived items mismatch
with the recalled items so that a mismatch signal is triggered. If
this theory is correct, than associative novelty is closely related
to Berlyne’s notion of incongruity, which we classified as a form
of surprise in Section 2 because it involves a mismatch between
explicit expectations/predictions and incoming data. Kohonen’s
“novelty filter” (Kohonen, 1977) described in Section 3.1 is rele-
vant to this point: the novelty in an input is, roughly, that part of it
that is not predicted by the remaining part. However, it might also
be the case that sometimes sets of items are grouped into single
compound representations, and that the brain, by searching in

memory for these representations and not finding any, registers
observation of the set as actual novelty. It is also plausible that in
such circumstances both novelty and surprise are simultaneously
at play.

The general point here is that some areas of the brain, espe-
cially higher-level associative areas such as the hippocampus, may
use the same machinery to exploit the representations of associ-
ated items to either detect novelty or to detect surprise, depending
on the context and the task at hand, and that in some cases both
novelty and surprise may be registered. What are the actual mech-
anisms that the brain uses in each circumstance is an important
question for neuroscience research.

6.3. CONTEXTUAL NOVELTY
Contextual novelty is another type of widely-studied novelty,
closely related to associative novelty (Ranganath and Rainer,
2003). This refers to the behavioral and neural reactions to stim-
uli that are familiar but are unexpected given the context in which
they occur. Contextual novelty is often studied in oddball exper-
iments where, for example, sequences of a repeating auditory
stimulus (e.g., a simple tone) are interleaved with rare odd sig-
nals (e.g., a “moo” of a cow) (Ranganath and Paller, 1999). The
reaction of the brain to an oddball stimulus is often monitored
via electric field potentials (Event-Related Potentials—ERP) gen-
erated when the brain detects the stimulus. The typical result of
these tests is the manifestation of a positive wave of the electric
field happening about 200–300 ms after the odd stimulus and
named “P300” or “P3” (Friedman et al., 2001). Intense investi-
gation has led to the isolation of a P3a component of the wave,
also called “novelty P3” (Soltani and Knight, 2000). Various stud-
ies indicate that the novelty P3 originates from a network of brain
areas including the the hippocampal system considered above
(Soltani and Knight, 2000). This and other elements suggest that
overlapping brain machinery might underline associative novelty
and contextual novelty (Kumaran and Maguire, 2007).

It is easy to see that in the case of contextual novelty the mecha-
nisms of prediction and surprise, and not of novelty, are in action.
Indeed, in the oddball experiments the odd item is appealed to as
“novel” even if it is often a familiar item that is presented to the
participants in an unpredictable fashion, e.g., a “cow moo” pre-
sented after a sequence of simple tones. In this case, the “moo” is
surely not novel as the participants have surely heard that sound
several times before the experiment. Instead, the “moo” repre-
sents a typical example of familiar item that generates surprise
because it is unpredicted after a sequence of regular tones. We
expect that the clear recognition of what phenomenon is being
observed, in this case surprise, will help researchers to recog-
nize new problems and new solutions to them, and to suggest
experiments that will lead to a better understanding of the brain
processes involved.

6.4. DOPAMINE “NOVELTY” RESPONSES
Another important example of the confusion between surprise
and novelty can be found in the recent neuroscience literature
on dopamine. Dopamine is a neuromodulator that is well known
to play a pivotal role in motivational and reinforcement learning
processes (Wise, 2004; Berridge, 2007). In the mid 1990s, phasic
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dopamine activations were recognized to correspond closely with
the behavior of the Temporal Difference prediction error (TD
error) postulated by the TD algorithm of computational rein-
forcement learning (Barto, 1995; Houk et al., 1995; Schultz et al.,
1997; Schultz, 1998). This has led to the reward-prediction-error
hypothesis of the phasic activity of dopamine neurons, which
has received a large amount of empirical support and repre-
sents one of the most fruitful integrations between computational
and empirical research (Ungless, 2004; Wise, 2004; Schultz, 2007;
Graybiel, 2008; Glimcher, 2011).

Notwithstanding its success, an important problem faced by
the reward-prediction-error hypothesis is that phasic dopamine
neuron activity is not triggered only by rewards and reward pre-
dictors, but by different kinds of salient stimuli (Horvitz, 2000),
such as sudden visual or auditory stimuli that have never been
associated with rewards (Steinfels et al., 1983; Ljungberg et al.,
1992; Horvitz et al., 1997). Because these responses tend to disap-
pear with repeated stimulation, they have been called “novelty”
responses (Schultz, 1998). An interesting explanation of these
responses has been proposed by Kakade and Dayan (2002b), who
relate them to the problem of exploration: according to these
authors, these dopamine activations represent “novelty bonuses”
that are generated when an animal perceives novel states and that
serve the function of increasing the animal’s tendency to explore
the environment, thus augmenting the probability that the animal
finds rewards. The novelty bonus idea has recently attracted much
attention, and it is fostering a number of neuroimaging studies
where the activation of the dopaminergic system is studied while
subjects are exposed to novel stimuli (e.g., Bunzeck and Duzel,
2006; Wittmann et al., 2008; Krebs et al., 2009).

The problem here is that the so-called novelty responses of
dopamine neurons found in animals through electrophysiological
studies do not seem to be related to novelty, but rather to surprise.
In fact, the stimuli that have been used in those electrophysi-
ological experiments are simple light flashes or sudden sounds,
and the dopaminergic responses to lights and tones typically per-
sist after many presentations so that talking about novelty of the
stimuli does not seem appropriate (Steinfels et al., 1983; Horvitz
et al., 1997; Ungless, 2004). Hence, it is more reasonable to
assume that it is the unexpectedness of the event, e.g., the sudden
appearance of a light or sound, that is responsible for dopamine
activation.

Further indirect evidence that the activity of dopaminergic
neurons triggered by lights and tones is due to surprise rather
than novelty comes from behavioral studies of sensory rein-
forcement. Sensory reinforcement is the very well-investigated
phenomenon that many kinds of sensory events (of which the
most frequently studied are again lights and tones) are able to
drive the acquisition of instrumental responses. For example, if
pressing a bar results in the switching on of a light, an animal will
start to press the bar, much as if the bar-press were to lead to a
reward such as food (e.g., Kish, 1955; Williams and Lowe, 1972;
Glow and Winefield, 1978; Reed et al., 1996). Because we know
that dopamine is both necessary and sufficient for appetitive
instrumental conditioning (Robinson et al., 2006; Zweifel et al.,
2009), it is probably safe to assume that it is phasic dopamine that
mediates operant conditioning in sensory reinforcement, just as

we assume that it is dopamine that drives standard instrumental
conditioning reinforced by food.

Further support that surprise and not novelty supports sen-
sory reinforcement comes from the evidence that light offsets
are more-or-less as good reinforcers as light onsets (Glow, 1970;
Russell and Glow, 1974). But in the case of light offset, where
is the “novel” stimulus that acts as a reinforcer (by supposedly
triggering dopamine)? In this case it is even more clear that it is
the unexpectedness of the event (surprise), not the novelty of the
stimulus (which is absent), that is at play.

We have argued that it is surprise and not novelty that triggers
phasic activity of dopamine neurons in animal electrophisio-
logical studies involving lights and tones. But why should this
mere misuse of terminology be worth noting? We think there
are at least two important reasons to be aware of this mislead-
ing labeling. The first reason has to do with the mechanisms
underlying phasic activation of dopamine neurons. If one wants
to understand how dopamine neuron activity is triggered, it is
probably a good idea not to confuse novelty activations due to
novel images with surprise activations due to unexpected events.
In fact, not surprisingly in human experiments with novel images,
it is the hippocampus that seems to be involved (e.g., Lisman and
Grace, 2005), whereas light flashes trigger dopamine activity via
the superior colliculus, which directly projects to the dopamin-
ergic neurons (Dommett et al., 2005). Furthermore, if it is the
unexpectedness of lights or tones that trigger dopamine neu-
ron activity, then the question is raised about the neural circuits
providing the predictions that inhibit surprise activations after
repeated stimulation. This is a very important question that, to
the best or our knowledge, has not yet been addressed. We con-
jecture that a key reason for this neglect is that these dopamine
responses have been regarded as novelty responses, and therefore
that they do not involve predictions.

The second reason the novelty/surprise distinction is impor-
tant with respect to phasic activity of dopamine neurons has
to do with the function that these activations play in animal
behavior. While it is reasonable to assume that the dopamin-
ergic responses to novel stimuli found in animals are actually
“novelty bonuses” that facilitate exploration (Kakade and Dayan,
2002b), it is less reasonable to assume that the same function is
ascribed to dopamine activations triggered by unexpected (sur-
prising) events. In fact, it seems more likely that the function
of dopamine surprise activations is to encourage the animal to
engage in activity to discover which aspects of its own activity may
trigger surprising events so that the animal may add new actions
to its repertoire (Redgrave et al., 1999; Redgrave and Gurney,
2006; Mirolli et al., 2013).

Finally, to reiterate a point made in Section 2, the TD algo-
rithm, which underlies the reward-prediction-error hypothesis
of phasic dopamine neuron activity, is not restricted to predict-
ing reward: the role of reward can be replaced by other stimulus
features. The reward-prediction-error hypothesis essentially says
that the TD error signals the surprising receipt of reward. But
the same machinery equally can signal the surprising receipt of
any stimulus. As in the Rescorla-Wagner model, the essence of
TD learning is surprise. This adds further support to our sug-
gestion that it would be better to think of the phasic activity

Frontiers in Psychology | Cognitive Science December 2013 | Volume 4 | Article 907 | 22

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


Barto et al. Novelty or surprise?

of dopamine neurons as responses to surprise rather than to
novelty.

7. CONCLUSION
Novelty and surprise play significant roles in animal behavior
and in attempts to understand the neural mechanisms underly-
ing it. Surprise and novelty underlie core intrinsic motivations
that allow organisms (and promise to allow robots) to acquire
useful knowledge and skills in the absence of explicit instruc-
tion and externally supplied rewards and penalties. They also play
important roles in technology, where detecting observations that
are novel or surprising is central to many applications, such as
medical diagnosis, text processing, surveillance, and security. The
words novelty and surprise are often used interchangeably despite
the fact that according to our normal understanding novelty and
surprise refer to very different phenomena. Without claiming to
do justice to all that has been written about novelty and surprise,
we described a sample of past attempts to define these concepts,
and we related these definitions to our common sense notions.
We pointed out key factors distinguishing surprise from novelty,
and we argued that some of the definitions in common use are
misleading, as are some of the labels and interpretations applied
to results of experiments by psychologists and neuroscientists.
But clarifying, indeed in some cases correcting, word usage has
not been our goal: opportunities for improved understanding of
behavior and its neural basis are likely being missed by failing to
distinguish between novelty and surprise.
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In this paper we connect open-ended development, authority, agency, and motivation
through (1) an analysis of the demands of existing in a complex world and (2)
environmental appraisal in terms of affordance content and the complexity to select
appropriate behavior. We do this by identifying a coherent core from a wide range of
contributing fields. Open-ended development is a structured three-step process in which
the agent first learns to master the body and then aims to make the mind into a reliable
tool. Preconditioned on success in step two, step three aims to effectively co-create
an optimal living environment. We argue that these steps correspond to right-left-right
hemispheric dominance, where the left hemisphere specializes in control and the right
hemisphere in exploration. Control (e.g., problem solving) requires a closed and stable
world that must be maintained by external authorities or, in step three, by the right
hemisphere acting as internal authority. The three-step progression therefore corresponds
to increasing autonomy and agency. Depending on how we appraise the environment, we
formulate four qualitatively different motivational states: submission, control, exploration,
and consolidation. Each of these four motivational states has associated reward signals
of which the last three—successful control, discovery of novelty, and establishing
new relations—form an open-ended development loop that, the more it is executed,
helps the agent to become progressively more agentic and more able to co-create a
pleasant-to-live-in world. We conclude that for autonomy to arise, the agent must exist
in a (broad) transition region between order and disorder in which both danger and
opportunity (and with that open-ended development and motivation) are defined. We
conclude that a research agenda for artificial cognitive system research should include
open-ended development through intrinsic motivations and ascribing more prominence to
right hemispheric strengths.

Keywords: motivation, agency, autonomy, open-ended development, co-creation, authority, complexity,

lateralization

INTRODUCTION
In this theoretical paper we aim to unify a number of complemen-
tary and highly consistent results from a wide range of scientific
domains that all pertain to “learning to cope autonomously with
the challenges of an open environment.” We will frame these
results in terms of agency and autonomy development. In the
final section we will formulate what we call the “open-ended
development loop” (Figure 5) as a main and productive synthesis
for artificial cognitive system research and behavioral sciences in
general.

In our efforts we benefitted from results and insights from
life-span research, personality development, emotion theory, psy-
choanalysis, motivation research, brain lateralization, political
psychology, soundscape research, complexity theory, and even
early Chinese philosophy. In addition, although in this paper
less prominent, we benefited from moral psychology, epistemo-
logical development, and education research. While this may

seem an unnecessary wide range of scientific domains to address
the call-topic of “open-ended development driven by intrinsic
motivations” we argue that both the concepts of “open-ended
development” and “motivation” are not just cognitive functions,
but cognitive foundations: without motivation there would be no
activity and no agency.

As cognitive foundations, “motivation” and “open-ended
development” shape and constrain many facets of cognition. As
such, insights from all specialisms of the cognitive sciences in the
broadest sense, and in particular those domains directly related to
open environments, may contribute with novel perspectives on
foundational principles. We will outline that open-ended devel-
opment and motivation are intimately related with concepts such
as agency, mood, behavior, and action selection, brain lateral-
ization, appraisal, safety, and complexity. In addition we will
introduce the terms “authority” (defined as the capacity to create,
maintain, and influence living environments), and “co-creation”
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(defined as the ability to work with the inherent dynamics of the
world instead of suppressing and controlling it) as fundamental
concepts for understanding agency and cognition.

Since we derive from many domains of science we focus more
on the relations between relevant concepts and the progression
of argument than on experimental or implementation details. In
many cases we will slightly generalize domain specific terms, con-
cepts, and results to make them more consistent with each other.
Our inductive approach to science was only possible because of
the many deep and precisely formulated insights by researchers
from very different traditions, which strengthens our belief that
the true value of scientific insights can only be estimated outside
of the domain where it was developed. We present many of these
insights as direct quotes so that the quality of the formulation can
also be appreciated in a quite different context than the original
publication.

Our paper has, apart from the introduction, 4 main sections.
In section Open-Ended Development we address a wide range of
results and insights consistent with the title of our paper, suggest-
ing that open-ended development occurs in two or three steps,
with the third step being pre-conditioned on the success of the
second. In step one the agent’s focus is on making the body into
a reliable instrument. The second step involves making the mind
into a reliable and effective tool. Only success in this step allows
a third phase in which the agent learns to shape—co-create—the
conditions for its continued existence and in doing so it becomes
independent of external authority and truly autonomous. We
visualize this two or three step approach as a spiral development
in which matching development phases stemming from diverse
fields of research have been indicated. This spiral epitomizes
open-ended development.

In the next section we address two attitudes toward a com-
plex world. One associated with exploration and the other with
control. We couple these attitudes to two modes of being and
understanding of the world that comply very well with the differ-
ent strengths of the left (control) and right (exploration) hemi-
sphere. Here we conclude that step one and three rely on right
hemispheric dominance and step two on left hemispheric domi-
nance. We couple this conclusion to a need of external authority
associated with a dominant left hemisphere.

In section Motivations we address motivations by first focusing
on some of our own results that couple four qualitatively different
appraisals of the (sonic) environment to motivational states in the
context of core affect. We argue that each of the four quadrants of
core affect constrains mind-states in a distinct way and that moti-
vation can be treated as attitudes toward particularly appraised
worlds. We end this section with a table describing these four
quadrants in terms of motivation and other properties derived
from different scientific domains.

In section Open-Ended Development Driven by Intrinsic
Motivation we address the call topic “open-end development
driven by intrinsic motivations” by outlining the conditions
required for open-ended development, which, we argue, rely
essentially on the agent learning to shape its own environment.
We argue that the results of motivation research, interpreted in
the context of the four quadrants, describe what we call the “open-
ended development loop.” We note a number of observations and

constraints to be satisfied for open-end development to occur that
might be used to formulate a research agenda for artificial cogni-
tive systems research. We end with the observation that particular
Western—left hemispheric—biases have limited our understand-
ing of cognitive systems and we suggest a way to address these
limitations.

OPEN-ENDED DEVELOPMENT
Open-ended development is not undirected, quite the contrary.
The research outlined below shows that open-ended development
refers to the capacity to ever-extend and fine-tune one’s capacity
to deal with life’s challenges and to co-create one’s environment.
Put differently: open-ended development is a development that
allows agents to gradually master more and more of the com-
plexity of the world and to become more and more self-deciding,
agentic, and autonomous. Figure 1 visualizes open-ended devel-
opment and it summarizes many of the results that we address in
this section in terms of reported stadia of open-ended develop-
ment. While this section addresses the many properties of open-
ended development, its main drivers—the demands of an open
world, (intrinsic) motivation, and the open-ended development
loop—will be addressed in later sections.

The spiral development outwards makes about three turns that
reflect, very roughly, three developmental phases. The first phase
is physical growth and learning to control the body. In the second
phase one aims to makes the mind into a reliable instrument. The
third phase, preconditioned on the success of phase 2, concerns
learning to co-construct a world in which the inherent dynamics
of the world are stabilized and made reliable and broadly benefi-
cial. This leads to ever more extended (both in place and in time)
environments in which one can self-maintain the condition for
adequate functioning, leading to increasing diversity and individ-
ual authority. This characterizes the outer (pre-conditioned) loop
of the spiral development in Figure 1.

The figure has a number of functional components. The spi-
ral is divided into a number of sectors that reflect aspects of
open-ended development without being necessarily in the strict
circular progression the spiral form suggests. The end-state of the
spiral is referred to as self-actualization or wisdom. The solid-
line part of the spiral reflects development up the level of the
authoritarian personality, while the dashed part reflects an—in
Western cultures non-standard—additional development toward
the libertarian personality type. The main axes reflect behavior
types and strategies horizontally and self-development and action
readiness vertically. The diagonal axes reflect distinct develop-
ment stages from diverse scientific fields: moral development,
education research and epistemological development, and brain
lateralization research. In the next subsections we’ll provide sup-
portive evidence for each axis and gradually develop the key
terminology of this paper.

END-STATE: SELF-ACTUALIZATION AND WISDOM
Open-ended development in humans is a highly structured pro-
cess that has been well studied in a variety of different domains
that each shed more light on the phases in the development
process. The development process begins obviously at concep-
tion and develops after birth in a number of stages toward
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FIGURE 1 | Open-ended development. This spiral development depicts
phases in open-ended development and terms typically associated with
different development phases. The inner rotation can be described as
learning to master the body, the second rotation as making the mind a

reliable tool and the third learning to effectively co-create an optimal living
environment. We propose that this corresponds to a progression from right
to left to right hemispheric dominance and associated strategies. [Inspired by
the depiction in Arnold, (1910), p. 23].

what Maslow (1943, 1962) calls self-actualization. According to
Maslow, self-actualization accounts for the highest possible forms
of psychological health and self-development. As such it is a
candidate for fully developed open-ended learning. Among the
main characteristic properties of a self-actualized individual are
(1) realistic perceptions of themselves, others, and the world
around them, (2) a strong motivation, through a sense of per-
sonal responsibility and ethics, to help others and to find solutions
to problems in the external world, and (3) a well-developed per-
sonal autonomy, which is for example visible as an utter disregard
of conformity if the situation demands this and an appreciation
for private time to self-develop one’s potential further.

Compared to not (yet) self-actualized individuals they

1. Have learned the skills to prevent or overcome one’s own psy-
chological problems that allow them to be rarely motivated by
unfulfilled needs,

2. Have developed a deep and pervasive understanding of reality
that they keep extending through life and that is apparent from
a well-developed creative capacity to produce intended results
with minimal adverse side-effects, and

3. Feel a moral obligation to contribute to an improved world.

These properties reflect deep realities concerning the nature of
agentic life. Interestingly the term self-actualization arose from
Maslow’s work on motivation (Maslow, 1943), but he refined
and defined the term self-actualization later on the basis of case-
studies of individuals of whom he thought that they represented
examples of self-actualization (Maslow, 1962). This intuition-
driven (dangerously circular) process is vindicated by results later
in this paper that dovetail with Maslow’s conclusions while being
based on entirely different evidence.

Another way to approach open-ended development comes
from gerontology and especially the role of lifelong learning and
continued education for older people which allows them to stay
involved in a rapidly changing world (Ardelt, 2000). This led to
a distinction between intellectual knowledge and wisdom-related
knowledge, of which the wisdom related knowledge develops
on a basis of intellectual knowledge. Wisdom-related knowledge
inductively reduces the quantity and complexity of intellectual
knowledge in favor of what is deeper and more essential. Wisdom
researcher Sternberg defines wisdom as follows:
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“the application of tacit knowledge towards the application of a
common good through a balance among intra-, inter-, and extra-
personal interests to achieve a balance among adaptation to existing
environments, shaping of existing environments, and a selection of
new environments, over the long term as well as the short term.”
(Sternberg, 1998)

One might summarize wisdom as “the ability to produce broadly
beneficial intended results while taking the full consequences of
behavior into account.” Again we find a combination of skill
(tacit knowledge), and (implicitly) a pervasive (long term) under-
standing of reality, in combination with an urge to improve and
shape the living environment. We consider this developing urge
to improve and shape living environments an essential aspect of
open-ended development and propose an explanation for that
below in the section on a complex world.

AUTHORITARIANS AND LIBERTARIANS
The solid part of the spiral is the development up to the level of
the authoritarian personality as defined by Stenner (2005, 2009).
Authoritarians “are not endeavoring to avoid complex thinking
so much as a complex world (Stenner, 2009, p. 193).” It is the
authoritarian’s underdeveloped cognitive capacity that “reduces
one’s ability to deal with complexity.” This personality-type seeks,
appreciates, and even demands external authorities to maintain
the living conditions in which they can function adequately:
normalcy. For authoritarians “authorities” are the processes or
agents that they perceive as responsible for maintaining normalcy
(and with that their sense of adequacy). Authoritarians display
“bounded autonomy” because they exhibit autonomy only in
a suitably controlled environment. Authoritarians actively help
their authorities in a particular and highly characteristic way: by
reducing the perceived complexity of the environment; in par-
ticular through intolerance of diversity and by supporting some
perceived central authority (an agent or process) with the same
surmised aim.

The dashed part of the spiral progresses beyond this level to the
libertarian personality (Stenner, 2005). Libertarians have gradu-
ally developed the autonomy and skills to co-create living condi-
tions in which they and others feel and act adequately without the
need for external authority to maintain and create these condi-
tions. Libertarians have internalized the role of authority and pre-
fer therefore individual authority to centralized authority. As such
libertarians become local centers of development and growth in
their (social) environment and consequently centers of diver-
sity. Compared to authoritarians who can function adequately
in standard situations and tend to exhibit norm-complying and
norm-returning behavior, libertarians (have learned to) under-
stand the world to a degree that they can cope effectively with
deviations from normalcy and they use the benefits this provides
to enhance their lives.

Stenner used a very simple “child-rearing values test” (Stenner,
2005) to determine whether individuals were authoritarian or lib-
ertarian (she only used the extremes in her analysis). Participants
that clearly preferred children to be raised as obedient conformist
were deemed authoritarian and those that preferred children to
be raised as independent self-deciders were deemed libertarian.

Apparently this simple six two-option test was enough to sepa-
rate people into a group that aims to avoid (a more) complex
world and a group that can comfortably deal with some more
complexity. Stenner specifically identifies the reaction to “nor-
mative threads,” perceptions of leadership failure and diversity
in public opinion, as key difference between authoritarians and
libertarians.

Authoritarian behavior depends on whether or not the situ-
ation might develop beyond coping capacity. This entails that
“individuals with a certain level of authoritarianism may man-
ifest entirely different attitudes and behaviors from one occasion
to the next, depending upon the presence or absence of normative
threat (Stenner, 2009, p. 189).” And “normative threat only invites
this kind of fear, cognitive unraveling and out-bursts of intolerance
among authoritarians, whereas in fact these very same conditions
(i.e., the public dissension and criticism of leaders that are the
hallmarks of a healthy democracy) induce only greater tranquility,
sharper cognition, and more vigilant defense of tolerance among lib-
ertarians (Stenner, 2009, p. 193).” We will use this observation in
the next section to differentiate between Two Attitudes Toward a
Complex World.

MAIN AXES
The axis from the center leftward in Figure 1 reflects increasingly
more advanced responses to environmental challenges develop-
ing from innate (e.g., sucking), via emotional (e.g., happy or
frustrated), to appropriate (e.g., culturally sanctioned) and even
proactive responses (e.g., preventing future problems or creating a
better society). Protruding downward is an axis denoting auton-
omy development. This axis develops from no autonomy at all,
via the bounded autonomy of authoritarians, to the autonomy of
libertarians. Extending rightward is an axis reflecting strategies
developing from voluntary movements and direct perception-
action relations, via coping strategies for the here and now, to
advanced co-creating strategies that define and shape the envi-
ronment (i.e., the agent as authority).

The axis extending from the center upwards reflects a devel-
opment from a dependent self, to an immature and mature self.
This development of the self has two separate but related facets:
social and personal maturity. “Social maturity is defined by mea-
sures of adaptation such as life satisfaction, environmental mastery,
or positive social relations. Personal maturity, however, is indexed
by openness to experience and indicators of personal wisdom such
as personal growth and ego development (Staudinger and Glück,
2011, p. 213).” Development of the self moves people increas-
ingly away from egocentric, dependent, and self-centered modes
of being (in Figure 1 referred to as “immature self”), toward the
capacity to take perspectives on the self and others, and to expe-
rience positive, helpful, responsible, and mutual interaction with
others referred to as “mature self” (Richardson and Pasupathi,
2005, p. 145).

DIAGONAL AXES
The lower left diagonal in Figure 1 simply reflects the develop-
ment from a baby, which is preoccupied with discovering its
body and its immediate environment, to childhood in which it
is preoccupied with the exploration of the neighborhood and the

Frontiers in Psychology | Cognitive Science October 2013 | Volume 4 | Article 766 | 29

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


Andringa et al. Learning autonomy in two or three steps

acquisition of habits, skills, and knowledge, and to adulthood in
which one’s potential can be developed and utilized in full.

The upper left diagonal shows the three main stages of moral
development as described by Kohlberg (1971). Kohlberg calls the
first main stage “pre-conventional” in which the child only under-
stands the consequences of its behavior in terms of direct effects on
self in terms of (un)pleasantness and in which it knows that obe-
dience is a way to avoid punishment. At this stage right action
concerns mainly the satisfaction of one’s needs. In the second,
“conventional,” phase the individual’s attitude is not only one of
conformity to personal expectations and social order, but of loyalty to
it. It actively maintains, supports, and justifies the order and identi-
fies with the persons or group involved in it. This phase corresponds
closely to the description of authoritarianism. The third stage
is called the “post-conventional,” “autonomous,” or “principled”
level. Individuals at this stage make a clear effort to define moral
values and principles that have validity and application apart from
the authority of the groups of persons holding them and apart from
the individual’s own identification with the group (Kohlberg, 1975).
This stage corresponds closely to the description of libertarians.
A 20-year longitudinal study in Chicago found moral judgment
development to be positively correlated with age, socio-economic
status, IQ, and education. In addition development in child-
hood predicted development in adulthood. At age 36 only about
10% had reached a moral development at post-conventional level
(Colby et al., 1983); this suggests indeed that it is more an option
than a default in modern Western cultures.

The upper right diagonal reflects words from the field of epis-
temological development [see van Rossum and Hamer (2010) for
an overview] and in particular from Kuhn et al. (2000) who sep-
arates four levels of beliefs about the world. In the first “realist”
level, assertions exist only in direct reference to a state of the
world. In the second “absolutist” level assertions are authority
derived true or false representations of the world. In the third level
assertions are opinions that can be freely chosen, are accountable
to their owners, and that, apart from authority support, can-
not be ranked in terms of quality. In the fourth level assertions
are judgments that can be evaluated and compared according to
criteria of argument and evidence. This fourth level has passed
what van Rossum and Hamer (2010), p. 26 call the water-
shed between reasoning in terms of ready-made things (facts,
procedures) existing “out there” to independently constructing
meaning. Since this is, again, a transition between dependence
and independence of authority we associate (but not equate)
the “watershed” with the transition from authoritarianism to
libertarianism.

The last diagonal, in the lower right, describes typical activities
associated with different life-phases. A baby is typically involved
in all forms of sensory-motor explorations in which it gradually
learns to separate the whole of perceptual and motor experi-
ences into meaningful units. This parts-from-whole approach
of participatory discovery is typically associated with the right
brain hemisphere (McGilchrist, 2010). The second phase is typ-
ically culturally, technically, and representationally driven. In
this phase the main sources of knowledge are represented and
conveyed via languages (of diverse forms) and technologically
and culturally constructed objects and environments. This is a

phase in which—in our Western cultures—the left hemisphere is
dominant. It is also a world in which knowledge and skills are con-
structed from parts-to-whole. Knowledge and skills are typically
not self-discovered but directly derived from others (authorities).
In the post-watershed phase the participatory co-creation that
characterizes self-actualized individuals takes again the effect of
behavior in an ever-extending context into account. This suggests
a return to right hemispheric dominance. The processes that drive
these developments, and the rational to assign them to dominant
hemispheres will be addressed in the next section.

The next section addresses two essentially distinct modes of
being that are believed to underlie both hemispheric differences
as well as the key properties of intrinsic and extrinsic motiva-
tions that, we claim, differ in the way they approach a complex
situation.

TWO ATTITUDES TOWARD A COMPLEX WORLD
Complexity research has shown (Kauffman, 1995; Capra, 1997)
that all life and therefore all human activity seems to occur in
the transition region between order and disorder or structure and
chaos (Mora and Bialek, 2011). Too much structure precludes
diversity and development. Too much disorder precludes stability
and predictability. Put differently: moderately increasing disorder
allows for more diversity and development but allows less con-
trol. In moderation, disorder may lead to novelty, in excess it
leads to chaos. In contrast, increasing order fosters uniformity,
predictability, and control, but in excess it leads to stagnation
and lifelessness. Note that the moment a novel structure has
been discovered in a previously disordered or chaotic state, some
order (and meaning) is imposed on it and the complex system
becomes a little more tractable and accessible to agent influence.
With this discovery the “edge of chaos” has been pushed toward
higher complexity. We propose that this process pushes develop-
ment along the spiral in accordance with Vygotsky (1978) zone of
proximal development.

TWO MODES OF COGNITION
We can call the form of cognition that allows us to discover novel
structure “cognition for disorder,” “cognition for possibilities,” or
“explorative cognition.” Whatever it is called, its essential nature is
participatory: structures in (apparent) chaos are only discovered
through some form of participation in the system. During explo-
ration and play, the properties of these structures are revealed
and the structures of interest become gradually more familiar
and predictable. This allows their properties to be generalized,
abstracted, and integrated with existing knowledge and in doing
so made useful for in the widest possible range of environments
and (individual) challenges.

In situations where errors are costly (or even deadly) we need
a complementary form of cognition: a form that more aptly is
called “cognition for order,” “cognition for certainty,” or “con-
trol cognition.” Both are essential forms of cognition and together
they allow for a gradual proven and reliable extension of the limits
of agent capability toward ever more complex situations and ever-
larger temporal and spatial scopes. This continual progression of
exploration, consolidation, and testing is another formulation of
open-ended development.
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Recall that the reaction to an increasing complex world is the
key difference between authoritarians and libertarians (Stenner,
2009). This suggests that the complexity of our (living) world is
a deciding factor in determining whether someone is (or behaves
as) authoritarian or libertarian. Authoritarians tend to abhor a
complex world and feel an urge to reduce its complexity, while
libertarians can deal comfortably with some additional complex-
ity. The authoritarian reaction to increased complexity is with
fear and intolerance of diversity (reducing complexity), while the
libertarian reacts with increased interest and sharper cognition
(mastering complexity). This suggests that explorative cognition
and control cognition, in particular with authoritarians, are acti-
vated depending on whether the environment is appraised as safe
or unsafe.

The depiction in Figure 2 visualizes these two cogni-
tive responses. The backdrop is Escher’s, 1955 tessellation
“Liberation” that reflects a progression from lifeless, predictive
structure toward living free dynamics and endless possibilities.
Here we assume that an agent’s coping capacity allows it to deal
with some intermediate level of complexity half way this progres-
sion. Depending on whether the overall situation is perceived as
safe or unsafe, an agent might be motivated to explore dynamic
diversity and novelty—the interest bias—or be motivated to
reduce the complexity of the environment by helping to reduce
the complexity through curtailing diversity and dynamics—the
fear bias. The higher the life-fraction spent with an interest bias,
the more one explored and the more one learned to master
complexity.

It is therefore not surprising that the personality trait
“openness to experience” correlates positively with libertarianism
(Stenner, 2005). According to McCrae and Sutin (2009) “highly
open people are thus seen as imaginative, sensitive to art and
beauty, emotionally differentiated, behaviorally flexible, intellectu-
ally curious, and liberal in values. Closed people are down-to-earth,
uninterested in art, shallow in affect, set in their ways, lacking
curiosity, and traditional in values.” This contrast reads as a pref-
erence for an interesting vs. an ordered world. In addition “open
people admire openness, closed people despise it (McCrae and Sutin,
2009).” Associated with a closed attitude is “the need for closure”
(Kruglanski and Webster, 1996; Malhotra et al., 2008), the desire
for definite and final answers. People prone to seizing on the first
idea offered and then freezing on this solution are in general unin-
terested in exploring alternative possibilities, keeping their views
simple and uncluttered.

TWO HEMISPHERES
The existence and detailed properties of these two forms
of cognition have recently been described in the seminal
work on the divided brain by McGilchrist[2010; see Rowson
and McGilchrist (2013) for a highly accessible introduction].
McGilchrist argues that the two cortical hemispheres under-
stand the world in quite different ways. In particular it sug-
gests to us that the left hemisphere specializes in cognition
for order, while the right hemisphere specializes in cogni-
tion for disorder. Table 1 provides a representative fraction
(McGilchrist, 2010 chapter 1) of the wealth of reported differences

FIGURE 2 | Dealing with complexity. The anxiety-free response to
increased complexity leads to curious exploration and sharper cognition,
while the anxiety-laden response activates intolerance of diversity. This
graphical depiction can be interpreted as agent development at some

part of the spiral in Figure 1 that gradually moves outwards toward
self-actualization. (M.C. Escher’s “Liberation” © 2013 The M.C. Escher
Company—the Netherlands. All rights reserved. Used by permission.
www.mcescher.com).
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Table 1 | Overview of roles and approaches ascribed to the left and right cortical hemisphere that together define two quite different stances

toward the world.

Topic

Left hemisphere

Cognition for: control, order, certainty

Right hemisphere

Cognition for: exploration, disorder, possibility

Main requirements
Associated with fear and anxiety, detachment,
abstract manipulation, closed to experience.

Associated with interest, participation, interaction, play,
openness to experience.

Closed vs. open personality Closed people are down-to-earth, uninterested in
art, shallow in affect, set in their ways, lacking
curiosity, and traditional in values. They are prone
to seizing the first idea offered and stick to it to
keep their views simple and uncluttered.

Openness to experience: imaginative, sensitive to art and
beauty, emotionally differentiated, behaviorally flexible,
intellectually curious, and liberal in values.

Main concern Principal concern is utility: the world as a resource. Prioritizes what actually is and what concerns us.

Scope Local short term view. Deal with what it knows. Bigger picture (broader, long-term view). Draws attention
from the edges of awareness.

Interests Interested in the familiar and the known, difficulty
with disengaging from the familiar. Concerned with
what it knows. Concerned with man-made objects.
Non-living objects specialist. Living entities as tools
or instruments. Body-parts. Tools and machines.

Interested in the novel. Concerned with what it
experiences. New information, new skills, emotional
engagement. More concerned with living individuals. Living
individuals as other individuals. Food + musical
instruments. Body as a whole.

Preferences Preferences for things that are represented as
relatively invariant across specific instances,
allowing for abstracted types or classes of things.

Preference for things that exist in the world. Sensitive to
what distinguished different instances of similar type from
each other.

Strengths Thoroughly known and familiar. Efficient in routine
situations and familiar skills. Prioritizes the
expected and generates expectations. Things
made fixed and equivalent: types. All that is
re-presented as over-familiar, inauthentic, lifeless
[because not individuated] categories.

Gathering new information. Good when prediction is
difficult. Anomaly (individuality) detector: individuals. More
efficiently when initial assumptions need to be revised or
when old information needs to be distinguished from new
information. All that is “present” as new, authentic, and
individuated.

Attention type Local narrowly selective (highly) focused attention. Broad, global, and flexible attention.

Attitude toward world Representing the world: the world as a copy that
exists in conceptual form, suitable for
manipulation.

Experiencing the world: the world as it is, open for novelty
and whatever exists apart from ourselves, without
preconceptions and not focusing on what it already knows.

Construction of world Start with pieces and put these together.
Bottom-up.

Start from the whole and go, if required, into detail.
Top-down.

Representation of objects Preference to re-present categories of things, and
generic, non-specific objects.

Individual unique instances of things and individual generic
objects: individuals are Gestalt wholes. Concerned with the
uniqueness and individuality of each existing thing or being.

Solution limitations Problem solving: single solution and latch on to
that. Deny inconsistencies. Suppressing not
currently relevant relations.

Array of possible solutions, which remain life when
alternatives are explored. Actively watching for
discrepancies.

Associations Single strong association more important that
multiple weaker associations.

Widespread activation of relations. Single strong or multiple
weaker relations equally important.

Preferred knowledge type Affinity with public knowledge. Personal knowledge.

Identification Identification by parts. Gradual (knowledge-based)
construction.

Identification from/by whole. “Aha!” phenomena through
seeking and finding patterns in things.

(Continued)
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Table 1 | Continued

Topic Left hemisphere

Cognition for: control, order, certainty

Right hemisphere

Cognition for: exploration, disorder, possibility

Reasoning Linear sequential arguments. More explicit
reasoning. Concentrating helps to focus on explicit
structure of the problem.

Deductions and some kinds of mathematical reasoning.
Pleasurable “Aha!” phenomenon mediates between
emotions and higher frontal cognitive functions. Insights
when NOT concentrating on a problem. Link with anomaly
(inconsistency detection in own assumptions).
Concentrating on problem impairs finding a solution.

Language use Language as symbol manipulation, More extensive
vocabulary, subtle and complex syntax. Parsing of
utterance, but meaning less deep. Explicit
meaning.

Interpretation as a whole and in context, attribution of full
meaning. Use of intonation and pragmatics. Non-literal and
implicit meaning. Sensitive to subtle unconscious
perception. Better at detection deceit.

View on world More optimistic view of the self and the world.
Also unwarranted optimism. More anger.

More associated with sadness than with angers. Sadness
associated to low activation of frontal lobe.

Main emotions Emotions associated with competition, rivalry,
individual-self-believe (positive and negative).

All emotions. Emotions related to bonding and empathy.

Empathy Unconcerned with others and their feelings. Empathic identification. Self-awareness, empathy,
identification with others. But only with what is known
[considered] to be another living being—not a mechanism.
Theory of mind.

Link with older parts of the
brain and body

More connected to the limbic system and the ancient
subcortical systems. Hypothalamic-pituitary axis, which is
where the endocrine interfaces with body and emotion.
Essential to the subjective appreciation of the body’s
physiological condition.

The description in the three header rows stems from the requirements of cognition for order and disorder. The header of the table summarizes cognition for order

and cognition for disorder. The body of the table contains near literal formulations from chapter 1 of McGilchrist (2010).

in how the individual hemispheres approach and understand the
world.

McGilchrist argues that in the last two or three millennia, our
Western societies have become characterized by an ever grow-
ing dominance of the left-hemispheric world view that favors a
narrow focus over the broader picture, specialists over general-
ists, fragmentation over unification, knowledge and intelligence
over experience and wisdom, technical objects over living enti-
ties, control over growth and flourishing, and dependence over
autonomy. In his book, called The Master and His Emissary
McGilchrist argues that the right hemisphere, with its holistic per-
spective and more intimate relation with the body is the master
that tasks its emissary, the left-hemisphere, with focused assign-
ments. However, in our increasingly culturally defined (i.e., more
technically structured and less naturally organized) world, where
linguistically transmitted shared knowledge has become more
important than individually acquired tacit knowledge, left hemi-
spheric strengths seem to have become more beneficial for most
of us than right hemispheric strengths.

IN- AND EXTERNAL AUTHORITY
However, and this is essential for our discourse, the left and right
hemisphere require quite different conditions to function opti-
mally. The right hemisphere assumes autonomous participation

in an open, dynamic, and infinite world of nested dynamical
systems that form dynamically stable and continually evolving
entities. In this mode of being, truth is defined as accordance
with reality and is to be tested by acting out in the world; right-
hemispheric knowledge and experiences are essentially subjective.
As such this mode of being is particularly effective in situa-
tions where new aspects of the dynamics of the world are to be
investigated to expand the thought-action repertoire (Fredrickson
and Branigan, 2005) and where novel and creative solutions are
appropriate.

In contrast, the left hemisphere assumes a closed, static, and
finite world in which entities are symbolic, discrete and abstract
and in which one is an “objective” observer instead of a partici-
pant. In this mode of being, truth is defined as the result of con-
sistent reasoning and consensually agreed on linguistically shared
and presented facts. This mode of being is particularly effective
in situations in which problems have to be solved or addressed
in a detached, rational, standardized, and communicable way.
Scientific communication is a typical example of this. Because
of this more narrow focus, left hemispheric strategies essentially
depend on processes that create and maintain the required closed,
static, and finite world: the normative order introduced earlier.
We argue that authorities—defined as processes or agents that
create, maintain, and influence the conditions in which agents
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exist—fulfill this role. Adequate left hemispheric strategies, we
propose, are only possible if either an internal authority, i.e., the
right hemisphere, or external authorities ensure that conditions
are maintained in which left hemispheric strategies are effective.

In particular we propose that the authoritarian mode of being
corresponds to a left hemispheric dominance in combination
with a need for external authorities to create and maintain the
conditions in which a dominant left hemisphere can function
adequately. Libertarianism corresponds to a right hemispheric
dominance that is able to provide the proper conditions for
left hemispheric functioning. This entails that the authoritarian
agent, as the name suggests, is essentially dependent on external
authorities, while the libertarian agent, again as the name sug-
gests, is free from external authorities because the agent is able
to self-maintain the conditions in which both modes of cog-
nition contribute adequately. To put it bluntly, we argue that
authoritarianism in adults is a sign of arrested development that
limits individual autonomy growth to environments maintained
by external authorities.

AUTONOMY IN TWO OR THREE STEPS
In terms of Figure 1, this can be described as an initial right hemi-
sphere dominated inner-loop in which one learns to master the
body through playful interaction with the world. The second loop
is left hemisphere controlled because one learns from external
authorities and through abstracted linguistically conveyed knowl-
edge about the structures of the world. However the purpose of
this phase is to learn how to make the mind a useful instrument. If
this process succeeds, it allows one to effectively produce intended
results in both culturally defined and natural worlds. As such it is
a basis for confidence, further exploration, and gradually increas-
ing autonomy through the ability to co-create ever more extended
(both in place and in time) environments in which one can self-
maintain the condition for adequate functioning. This describes
the third (pre-conditioned) loop.

However, when an agent is unable to make the mind into a reli-
able instrument, the individual is frequently confronted with the
inability to produce intended results. And because the left hemi-
sphere is dominant in this phase, one responds in the complexity
reducing control mode favored by authoritarians. It is interesting
that “power” is defined as “the ability to produce intended results
(Russell, 1938).” Earlier we summarized Sternberg’s definition
of wisdom (Sternberg, 1998) as “the ability to produce broadly
beneficial intended results while taking the full consequences of
behavior into account.” This suggests defining raw power as “the
ability to produce intended results without necessarily taking the
full consequences of behavior into account.” Its is therefore not at
all surprising that typical centralized authoritarian organizations
such as bureaucracies, governments, large corporations, and the
military are always associated with “power” and standardization.

Libertarians do not need the control over the environment
provided by these centralist structures and they are, because they
made their mind into a reliable tool, not obsessed with reach-
ing intended results (they can do that more often than not). In
contrast they are more interested in understanding the full con-
sequences of behavior. This requires a participatory approach in
which one learns to discover and predict the innate dynamics of

the social, cultural, and natural world without necessarily con-
trolling or curtailing its diversity. On the contrary, working with
the inherent dynamics of the world is a way to stabilize it (or not
to disturb it). We refer to this creative process of moving with
the dynamics of the social and natural world as “co-creation”: a
product of open-ended development.

In the next section we will argue that external drivers of
behavior (functioning as external authority) are associated with
extrinsic motivation and left hemispheric strengths, while inter-
nal drivers of behavior are associated with intrinsic motivation
and as such with learning to co-create and open-ended develop-
ment. We will use the appraisal of the environment as the link
between open-ended development, the two attitudes toward the
world, and motivation.

MOTIVATIONS
To be motivated means to be moved to do something (Ryan and
Deci, 2000). However it is not yet clear how states of the world
or states of the individual motivate agents to spend their (mind)
time in particular ways. We will therefore start this section with
some recent results from soundscape research that helped us to
formalize the influence of the environment on motivation.

APPRAISAL, MOTIVATION, AND CORE AFFECT
A soundscape is a perceived sonic environment and soundscape
research addresses the role of sounds and sonic environments
on individuals and society. In a recent paper (Andringa and
Lanser, 2013), addressing how quiet sounds promote and annoy-
ing sounds impede health, we analyzed the words people use to
appraise sonic environments (Axelsson et al., 2010). Appraisals
are “cognitive evaluations of events that are considered to be the
proximal psychological determinants of emotional experience, with
different combinations of appraisals corresponding to different emo-
tions” (Kuppens et al., 2012). Appraisals typically refer directly or
indirectly to motivation. Kuppens et al. lists: motivational rele-
vance (“Is it important?”); motivational congruence (“Is it advan-
tageous or disadvantageous?”); agency (“Is it caused by others or
myself?”); problem and emotion focused coping potential (“Can I
cope with the situation and with my emotions?”); future expectancy
(“Is the expected outcome desired or not?”). Appraising the envi-
ronment therefore combines motivation, coping capacity, and
expectations of the future. As such the appraisal process involves
the evaluation of possible (inter)actions with the environment.

Appraisals are also connected to a central concept in emo-
tion theory called “core affect” (Russell, 2003). Core affect is
defined as an integral blend of the dimensions displeasure-
pleasure (valence) and passive-active (arousal). Unlike emotional
episodes, which are relatively infrequent, core affect is contin-
ually present to self-report. Core affect is usually visualized as
a circle with the pleasure axis horizontally and the arousal axis
vertically as depicted in Figure 3. Here relaxed and invigorated
moods are situated in the lower and upper right quadrants and
moods like boredom and anxiousness in the lower and upper left
quadrants respectively. Associated with these moods are calm and
lively appraisals on the right and a chaotic and boring appraisals
on the left (Andringa, 2013). Appraisals and core affect mutually
influence each other (Kuppens et al., 2012).
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FIGURE 3 | Core affect, appraisal, and four affective states estimated

from soundscape research (Andringa, 2013). The main axes reflect the
dimensions of core affect, the descriptions in the corners reflect typical

appraisals, the description in the circle quadrants reflect four affective states
and the diagonal axes represent an alternative way to span the circle in terms
of complexity of behavioral selection and affordance content.

AFFORDANCES AND COMPLEXITY
Since appraisals involve the evaluation of possible interactions
with the environment, they pertain to two main questions: what
action opportunities does the environment afford and: how to
decide on the best course of action? We will refer to the first ques-
tion as the affordance content, in Figure 3 as the diagonal from
lower left to upper right, and to the second as the complexity of
the environment. We will address these issues in order. Because
the description of the visual scene leads to quite similar patterns
of descriptive words (Russell et al., 1981; Axelsson et al., 2010) we
treat our results as if they pertain to perception in general.

Affordances are perceivable action possibilities, provided by
an environment (Chemero, 2003) that might be used to satisfy
(immediate or future) needs. Affordances arise thus from the
interaction of the environment with the perception capabilities of
the individual agent. Interesting environments provide discover-
able affordances to extend knowledge and skills through, typically,
playful interaction (Fredrickson, 1998). Boring environments are
devoid of discoverable affordances and do not provide appreci-
ated novelty (e.g., because they are devoid of stimuli, or the stim-
uli are either too static to be useful or too complex to interpret).
The more one interacts (plays) with interesting environments the
more complex affordances one learns to perceive.

The complexity of an environment is, in this context, a refer-
ence to how difficult it is to cope with environmental challenges
and opportunities. Complexity therefore refers not to the envi-
ronment per se, but to the question of how difficult it is for an
agent to decide on situationally appropriate behavior. Low com-
plexity environments are highly redundant (each part “predicts”
the whole, leading to an impression of harmony), which entails
that most perceptual evaluations of the environment lead to a
similar overall interpretation of pervasive safety. In “calm” low
complexity environments action outcomes are relatively insensi-
tive to the details of action selection and action execution; one
is neither forced nor enticed to act overtly and the mind is free
to wander and to attend its own business (Andringa and Lanser,
2013).

In contrast, highly complex environments are less redundant;
for example because of a lack of internal coherence due to a mul-
titude of uncorrelated processes, giving an impression of chaos
and unpredictability. This entails that the focus of attention needs
to be chosen and adapted well to ensure a proper selection and
execution of coping behavior. In contrast to low complexity envi-
ronments, complex situations may force one to act in a highly
controlled fashion and in response to particular events. This
entails that action outcomes in complex environments are highly
sensitive to detail.

This analysis suggests four qualitatively different types of
(sonic) environments in terms of the complexity of action selec-
tion and affordance content. The complexity depends on the
agent’s ability to select a safe course of action. Highly complex
or chaotic environments are difficult to interpret (e.g., due to an
overabundance of diverse stimuli), actively indicative of insecu-
rity, or in other ways requiring a precise selection of activities.
This type of environment activates highly focused mind-states
aimed at coping with the here and now. A boring (sonic) envi-
ronment is low on useful (audible) affordances and is, for that
reason, not indicative of safety, which activates alert mind-states.
In contrast, a lively environment is not indicative of insecurity
and represents many affordances that provide ample interesting
opportunities to attend, and it allows one freedom to address
the available affordances at will. The fourth environment is calm
or relaxing because it provides ample indications of safety and
allows as such full freedom of mind-states to relax and recu-
perate. Figure 3 provides these four domains of environmental
appraisal.

In terms of the spiraling open-ended development depicted
in Figure 1, the growing ability to detect and effectively use
affordances is a measure of progress along the spiral. Initially
the affordance content is predominantly used to determine sit-
uationally appropriate conformist behavior, but gradually the
affordances can be used in the more individualized and situation-
ally appropriate fashion characteristic of co-creation. Similarly,
any growth of the agents coping ability in Figure 2 depends on
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an increasing ability to perceive more and more complex affor-
dances and to learn more and more generic and reliable coping
strategies.

MOTIVATION AND REWARD SIGNALS
According to Baldassarre’s (2011) recent paper, motivations are
based on mechanisms that “drive learning of skills and knowl-
edge, and the exploitation and energisation of behaviors.” But
extrinsic motivations do this “on the basis of the levels and vari-
ations of homeostatic needs detected within the visceral body,”
while intrinsic motivations “facilitate this, on the basis of the
levels and the variations of such skills and knowledge directly
detected within the brain.” This suggests that, according to
Baldassarre, motivations are exclusively based on information
derived from either the body or the brain: appraisal of the
environment plays no (explicit) role. In addition, skills and
knowledge derived from extrinsic motivations “have the adap-
tive function to produce behaviours that allow the regulation of
those homeostatic needs so as to increase fitness.” In contrast
“intrinsic motivations have the adaptive function to allow organ-
isms to learn skills and knowledge without the necessity to have a
direct impact on homeostatic needs and fitness at the time of the
acquisition. These skills and knowledge contribute to increase fit-
ness as they can later be used to learn, relatively quickly, complex
behaviours and long chains of actions that regulate homeostatic
needs.”

Strictly interpreted this entails that extrinsically motivated
behavior only occurs after the visceral body develops a homeo-
static need, while intrinsically motivated behavior has no direct
benefit. Consequently a well-fed agent on the track of an
approaching train might be fascinated by the complex behav-
iors and long chains of actions afforded by this experience, but
it will not move unless it timely develops a visceral need such as
thirst. Yet apart from the absent role of situational appraisal there
is much to agree with in Baldassarre’s definition. In particularly
the role of the perceived needs of the visceral body—now or in
the foreseeable future—that define extrinsic motivations and its
reward function.

Ultimately, extrinsic motivations are deficiency motivations
and are associated with what Maslow referred to as D-cognition
(D = deficiency) which he defined as “the cognitions that are
organized from the point of view of basic needs or deficiency-needs
and their gratification and frustration {Maslow:1962tn, p. 189}.”
The reward signal of D-cognition is need-gratification: the plea-
sures of food after abstention, restoring order after chaos, relief
after a negotiating a dangerous situation, or a monetary reward
after boring work. Intrinsic motivations are uncoupled from
direct need gratification and allow what Maslow referred to as B-
cognition (B = being), a form of cognition in which the world
(or objects as Maslow referred to) as it objectively exists can
be discovered. These two forms of cognition again refer to the
two modes of being outlined in section Two Attitudes Toward
a Complex World. It is therefore to be expected that extrin-
sic motivations are predominantly left hemispheric phenomena,
that are driven by utility, while intrinsic motivations are more
right hemispheric phenomena associated with exploration and
open-ended-learning.

Baldassarre (2011) details how intrinsic motivations provide
the reward signals required to drive reinforcement learning.
According to him “intrinsic motivations are based on mechanisms
that measure the success of the acquisition of skills and knowl-
edge directly within the brain. For example, these mechanisms drive
organisms to continue to engage in a certain activity if their com-
petence in achieving some interesting outcomes is improving, or if
their capacity to predict, abstract, or recognise percepts is not yet
good or is improving: the brain detects all these conditions with-
out involving the visceral body.” The mechanisms that measure the
successful acquisition of new knowledge, skills, and insights are
essentially associated with open-ended development. The expe-
rience of this success has been described by Maslow (1954) as
a feature of B-cognition. Maslow describes peak experiences as
“feelings of limitless horizons opening up to the vision, the feeling
of being simultaneously more powerful and also more helpless than
one ever was before, the feeling of great ecstasy and wonder and awe,
the loss of placing in time and space with, finally, the conviction
that something extremely important and valuable had happened, so
that the subject is to some extent transformed and strengthened even
in daily life by such experiences.” According to Maslow the fur-
ther the development toward self-actualization the more frequent
these peak experiences occur, which suggests that they are expe-
rienced rewards signals that drive the later stages of open-ended
development in B-cognition.

MOTIVATION, AGENCY, AND MIND-STATES
Motivation researchers such as Ryan and Connell (Ryan and
Connell, 1989) couple motivations directly to the perceived locus
of causality (PLOC), which reflects the degree the individual or
some external authority or influence originates the behavior. It
is a measure of autonomy and agency. The more autonomous
the behavior, the more it is endorsed by the whole self and is
experienced as action for which one is responsible (Deci and
Ryan, 1987). This leads to a sequence of progressively more
agentic motivations: “external,” “introjected,” “identified,” and
“intrinsic” reasons to act. According to Ryan (Ryan and Connell,
1989) “external reasons were those where behavior is explained by
reference to external authority, fear of punishment, or rule com-
pliance.” Introjected reasons are framed in terms of “internal,
esteem-based pressures to act, such as avoidance of guilt and shame
or concerns about self and other-approval.” These are typically
situation-enforced motivations with the aim to prevent a worse
outcome associated with doing nothing. “Identifications were cap-
tured by reasons involving acting from one’s own values or goals, and
typically took the form of ‘I want’.” Through this identification the
locus of causality shifts more and more to the agent. Intrinsic rea-
sons for action occur whenever “the behavior is done ‘simply’ for
its inherent enjoyment or for fun.”

More recently (Malhotra et al., 2008) ordered motivations
in terms of intrinsic and extrinsic motivations that have an
external or internal perceived locus of causality, and exogenous
and endogenous motivation that reflect whether the behavior is
driven either by external stimuli or by internal needs or drives.
This resulted in four combinations of in-/extrinsic and exo-
/endogenous motivations that dovetails very well with the four
quadrants in Figure 3 (combining appraisal and core affect), the
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two modes of cognition in section Two Modes of Cognition,
and the role of the two hemispheres described in section Two
Hemispheres. As such this allows us to combine many concepts
addressed in this paper in a single framework, which is depicted
in Table 2.

The entries reflect descriptive words originating from different
authors. The upper row and leftmost column reflect descriptions
that pertain to the whole row or column respectively. The two
rightmost columns, titled extrinsic and intrinsic, reflect modes of
being that are directly associated with the two ways to approach
complexity, the role of the left and right hemisphere, Maslow’s
D- and B-cognition, the role of safety in environmental appraisal,
and the diverse descriptions of ex- and intrinsic motivations. The
two lower rows reflect whether behavior is exogenous and highly
activated or endogenous and less activated. The four remain-
ing cells reflect descriptions that pertain to each of the different
combination of in-/extrinsic and exo-/endogenous motivation.
They also refer to a more general interpretation of the quadrants
as depicted in Figure 3. These cells/quadrants have a descriptive
name in bold.

The control quadrant reflects a combination of external moti-
vating stimuli with the external perceived locus of causality char-
acteristic of a challenging world. This quadrant reflects a motiva-
tional state in which an agent primarily aims to avoid immediate
or future injury, harm, or disadvantage. Another name for this
quadrant would be the problem-solving quadrant. An agent in
this highly complex situation (in terms of behavior selection) is
interested in any utility instrumental to avoid negative conse-
quences and to retain or regain control. The associated mind-state

is stably focused on the problem as long as the problem exists and
is a form of prolonged effortful directed attention (Kaplan, 1995).

The exploration quadrant combines external stimuli with an
internal PLOC leading to self-chosen overt behavior that is per-
ceived as fun and enjoyed for its own sake; all characteristic of
an interesting world. Aimless but definitely unforced exploration
and creation is only possible in apparent safety and requires envi-
ronmental affordances at a level of complexity that the agent can
handle without being taxed too much or too little. The associated
mind-state is flexibly focusing on the most interesting aspects of
the world, while remaining completely absorbed without lapses
and pauses. Flow (Nakamura and Csikszentmihalyi, 2002) is a
fitting description for this pleasurable mind-state.

The consolidation quadrant combines individual-need-driven
activities with an internal PLOC. This is also only possible in a
safe world. This may or may not lead to overt behavior, but is
in all situations aimed at unforced self-development, growth, or
other forms of psychological and physical recuperation and devel-
opment. In this quadrant the associated mental activities are free
to digress or to wander aimlessly without purpose or goal. One
associated mind-state is fascination (Kaplan, 1995) which allows
a prolonged, uninterrupted, and effortless immersion in an envi-
ronment that is pleasant and self-selected to address personal
needs proactively. This does not involve directed attention and
therefore restores the capacity for directed attention. It is in this
mind-state that the mind/brain can address its own needs.

The last quadrant is described with the term submission (to
external forces), characteristic of a dominating world. This quad-
rant is characterized by an external locus of perceived causality

Table 2 | Four motivational states.

Motivations Extrinsic

Russell: unpleasant
Ryan: external PLOC, low autonomy
Maslow: D-cognition
McGilchrist: left-hemisphere
Baldasare: extrinsic, deficiency driven, direct fitness benefit
Andringa: no safety, reactive

Intrinsic

Russell: pleasant
Ryan: internal PLOC, higher autonomy
Maslow: B-cognition
McGilchrist: right-hemisphere
Baldasare: intrinsic, future fitness benefit
Andringa: safety, pro-active

Exogenous

Russell: highly activated
Malhotra: Driven by
external stimuli

Control

World: challenging
Ryan: introjected motivation (internal or esteem-based
pressures to avoid harm)
Malhotra: usefulness/utility
Andringa: retaining or regaining control
Andringa: high complexity
Mind-state: directed attention

Exploration

World: interesting
Ryan: intrinsic motivation, completely self-determined
activity
Malhotra: hedonistic (fun, enjoyment)
Andringa: learning and playing in safety
Andringa: high affordances
Mind-state: flow

Endogenous

Russell: minimally
activated
Malhotra: Driven by
internal needs/drives

Submission

World: dominating
Ryan: external (authority enforced, fear of punishment, rule
compliance)
Malhotra: guided (to external regulation)
Andringa: no sense of safety or control
Andringa: low affordances
Mind-state: boredom

Consolidation

World: safe
Ryan: identified (personal importances) or integrated
(personal goals)
Malhotra: self-development, self-enhancement, self-growth
Andringa: restoring resources and caring
Andringa: low complexity
Mind-state: fascination

This table combines results and concepts from many different domains and provides a generalization of the quadrants in Figure 3.
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in combination with unfulfilled internal needs that offer no other
options than to accept guidance, to be subjected to external con-
trol (through threat, punishment, or fear), or to do nothing due
to cognitive inadequacy given the current environment. In this
quadrant the mind is never at rest, but fruitlessly in search of
ways to cope. One associated mind-state is boredom, which is
described (Martin et al., 2006) as “Not being in control of life;
agitated, yet at the same time, lethargic.” In addition boredom is
associated with restlessness, stress, the feeling of being trapped,
frustration, fatigue, lack of concentration, guilt, meaninglessness,
and even depression.

The range of scientific domains that have contributed to
Table 2 is wide and includes emotion research (Russell, 2003),
motivation research (Ryan and Connell, 1989), human machine
interfacing (Malhotra et al., 2008), computational development
and learning (Baldassarre, 2011), soundscape research (Andringa
and Lanser, 2013), personal development (Maslow, 1962), cog-
nitive psychology (Kaplan, 1995), and general cognitive science
and culture studies (McGilchrist, 2010). This is an impressive
range that is suggestive of the fundamental nature of the topic
of this call on open-ended development driven by intrinsic
motivations.

OPEN-ENDED DEVELOPMENT DRIVEN BY INTRINSIC
MOTIVATION
This concluding section returns to the core topic of the call:
open-ended development driven by intrinsic motivation. We will
use the four motivational states as described in Table 2 to cou-
ple motivation to open-ended development via what we call the
“open-ended development loop.” We will first address motiva-
tion in terms of attitudes and strategies to deal with the world
as it is experienced. Secondly we will directly address the intimate
relation between open-ended development, intrinsic motivation,
and acting out in the world. Thirdly we will outline some conse-
quences for artificial cognitive system research and in particular
how to facilitate development toward truly autonomous and
moral agents. Finally, we will argue that the left hemispheric
biases characteristic of Western cultures have limited artificial
cognitive systems research and we suggest a solution to address
these limitations.

MOTIVATION, AUTHORITY, AND CO-CREATION
This subsection returns to the concepts “authority” and “co-
creation” that we introduced as essential for open-ended devel-
opment. We aim to demonstrate that they are important not only
as core concepts of cognitive science, but also as defining concepts
for agency and even as main forces that shape our (geo)political
world.

The section End-State: Self-Actualization and Wisdom, dis-
cussed the target of open-ended development and concluded that
the authoritarian personality type “seeks, appreciates, and even
demands external authorities to maintain the living conditions
(the normative order) in which they can function adequately.”
In Section In- and External Authority we proposed that the
need for external authority was a necessary consequence of left
hemispheric dominance that requires a closed, static, and finite
world to be effective. This entails that left hemispheric strategies

and external authority are mutually dependent: external author-
ities are expected to maintain the conditions in which the left
hemisphere functions adequately. Left hemispheric strategies—
through for example intolerance of diversity—reinforce the
impact of external authorities through actively allowing exter-
nal authorities more control while reducing one’s own agency.
Overall this mode of being reduces the complexity of the world
through increased uniformity and shared or centralized author-
ity: the defining characteristics of authoritarians (Stenner, 2005).
In moderation this process accounts for the existence of corpora-
tions, governments, organized religion, and the military. In excess
it leads to stultifying bureaucracies in each of these organizations
and eventually to oppressive dictatorship.

However, control through increased uniformity and central-
ized authority is neither the only nor the best way to deal
with a complex world. Section End-State: Self-Actualization and
Wisdom concluded that self-actualized or wise individuals feel
a moral obligation to contribute to an improved world and we
summarized wisdom as “the ability to produce broadly beneficial
intended results while taking the full consequences of behavior
into account.” Section Authoritarians and Libertarians concluded
that the libertarian personality developed the autonomy and skills
to co-create living conditions in which (s)he and others feel and
act adequately, without the need for external authority to main-
tain and create these. The driving dynamics for this ability is
rooted in the self-confidence resulting from the interest-based
exploration and playful behavior that prepared the agent well
for an unknown future (Silvia, 2008). In effect this leads to the
ability to co-create ever more extended (both in place and in
time) environments in which one can self-maintain the condi-
tion for adequate functioning, which leads to increasing diversity
and individual authority: the defining characteristics of libertari-
ans (Stenner, 2005). This advanced ability characterizes the outer
(pre-conditioned) loop of the spiral development in Figure 1.

The difference between the authoritarian and libertarian mode
of dealing with a complex world can be (Horney, 1945) summa-
rized as “moving against” or “moving with.” The (according to
Horney pathological) “moving against” mode controls diversity
and reduces complexity through actively suppressing the inherent
dynamics of the world. Note that this is the defining character-
istic of our psychology or robotics labs. The (non pathological)
“moving with” works with or co-opts the inherent dynamics of
the world to stabilize it or to prevent the disruption of reliable and
useful inherent dynamics. As such “moving with” is a summary of
right hemispheric strategies.

The “moving with” mode of being, characteristic of the wise
and the self-actualized, allows them not only to create and main-
tain an individual environment in which they can function ade-
quately, it allows them to co-create the wider environment by
gradually reducing the need for external authority (also in others)
by (re)allowing and shaping the inherent dynamics of the world
in favor of all its inhabitants.

Figure 4 provides a graphical depiction of much of the infor-
mation in Table 2, but it focuses on the relation between the agent
and the environment and the difference between external (con-
trolling) authority and internal (co-creating) authority. The large
ovals reflect the agent’s world that is more (light gray) or less (dark
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FIGURE 4 | Motivation, authority, and co-creation. This figure
combines four qualitatively different types of environments in terms
of the complexity of action selection and affordance content. The
ovals around the agent (white circle) defines self-maintained

environments in which the agent can more or less satisfy its needs
(light vs. darker shade) and be agentic (size of circles). The dark
circle represents a source or novelty approached in danger (left) or
safety (right).

gray) congruent with agentic needs. The prominence of external
authorities (the inward pointing arrows) determines whether the
world is characterized by suppressed dynamics (the authoritarian
mode on the left) or co-opted dynamics (the libertarian mode on
the right). The more the agent is able to create and extend a stable
agent-maintained environment (dashed oval), the safer and more
authoritative it is.

Figure 4 provides the four motivational quadrants defined in
terms of the quadrants shown in Figure 3 and Table 2. In the
left quadrants the agent is either trying to control or is actu-
ally controlled by complex and ill-understood external forces
that function as authorities. In the upper left quadrant the agent
is challenged by environmental and/or agentic influences which
stretch its coping capacity, force it into a narrow range of coping
behaviors, and depletes its resources. In the lower left quadrant
the agent is part of a world that is mainly beyond its control
and understanding, since it does neither afford the agent useful
affordances nor resupply of resources. As such it has to accept a
minimally agentic role, for example by being forced to participate
in activities that may harm its future interests.

In the quadrants on the right the agent’s world is congru-
ent with its needs (the most prominent of these is safety). The
agent in the upper right quadrant is maximally agentic since it
is able to use and explore the affordances of its world in safety
and with satisfied basic needs. The agent exists in an interesting
world in which it is free to participate in co-creation strategies that
gradually elucidates and stabilizes more and more of the world’s
inherent dynamics for shared benefit. The agent in the lower
right quadrant exists in a safe, low complexity environment. It is

unforced since, in essence, it profits from earlier co-creation activ-
ities of itself and others. This state allows the agent to resupply its
resources (to address its needs) and to consolidate its experiences
into generalized knowledge and skills.

This then, we conjecture, defines the success of open-ended
development: successful open-ended development is character-
ized by a balance between the co-creation of a low complexity
world, in which behavior selection is easy, in combination with
high agency due to an abundance of affordances for maintained
and extended co-creation. It is this dynamic balance that living
agents find highly pleasurable. The enjoyment of successful agen-
tic life—happiness—is therefore deeply meaningful: it is body and
mind agreeing on success. And it also suggests that strengths of
the right hemisphere, as listed in Table 1, might be understood as
pervasive optimization.

OPEN-ENDED DEVELOPMENT DRIVEN BY INTRINSIC MOTIVATION
In this subsection we will more directly address the intimate rela-
tion between open-ended development, intrinsic motivation, and
acting out in the world. In their review paper on extrinsic and
intrinsic motivations and their importance for education and
development, Ryan and Deci (2000) conclude that “social contex-
tual conditions that support one’s feelings of competence, autonomy,
and relatedness are the basis for one maintaining intrinsic motiva-
tion.” They define relatedness as the basic need to feel connected,
competence as the basic need to be effective, and autonomy as the
basic need to feel agentic. According to Ryan and Deci we need
these three basic human needs to be fulfilled in the classroom “as
one is exposed to new ideas and exercises new skills.”
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Interestingly, this conclusion can be connected one-to-one
with the quadrant structure of Figure 2, Table 2, and Figure 4. In
the exploration quadrant one expresses autonomy and agency and
extends one’s behavioral repertoire. In the consolidation quadrant
one develops—in the absence of environmental pressures—new
connections between oneself and the environment and one relates
and combines hitherto unrelated knowledge and experiences. In
doing so one generalizes, stabilizes, and consolidates knowledge
and relations (whether mental, social, or otherwise). The con-
solidated knowledge, (social) relations, and skills, no longer new
and unpredictable, become more and more suitable for gen-
eral utility and in particular problem solving (a left-hemispheric
activity). This corresponds to the problem-solving quadrant in
which the agent can prove its increased competence and test and
fine-tune its extended behavioral repertoire. Successful real-world
problem solving leads to confidence, which is a basis for fur-
ther exploration, consolidation, and testing. This “open-ended
development loop” is depicted in Figure 5.

The continuation of the open-ended development loop
depends crucially on the success-rate of the in the real-world
problem solving ability. Failure to come up with a suitable
solution leads to reduced confidence and eventually frustration.
Perkins and Hill (1985) provide strong support that boredom
is associated with frustration, and since the lower left quadrant
is associated with boredom, low agency, and the need for guid-
ance, it makes sense to situate persistent failure and the ensuing
low confidence and reduced urge to explore in this quadrant.
Persistent failure not only disrupts the open-ended development
loop, it is also a strong demotivation to engage in any agentic
activity and especially activities that are not habitual (because
habits are activated by the environment) and therefore rely on
some measure of agency.

This description is reminiscent of the phenomenon of learned
helplessness that was discovered when “dogs exposed to inescapable

and unavoidable electric shocks in one situation later failed to learn
to escape shock in a different situation where escape was possible
(Maier and Seligman, 1976).” Learned helplessness depends on
the uncontrollability of the aversive stimulus, which may entail
that the agent learns that its activities do no longer produce
intended outcomes. If so the agent does not unlearn its behav-
ior, it simply no longer activates it because of its expected futility.
Interestingly, in rats learned helplessness occurs only when one
crucial condition is satisfied: “the response used in the test for
learned helplessness must be difficult, and not something the rat does
very readily.” Which, indeed, suggests that learned helplessness
occurs only with activities that are agentic. This is the reason why
the lower left describes its effect as “deactivating behaviors.”

RELEVANCE TO COGNITIVE SYSTEM RESEARCH
We believe that for autonomy to arise in any meaningful way,
goal selection and achievement must occur in a (broad) tran-
sition region between order and disorder in which both danger
and opportunity and defined (conform Figure 2). Without access
to such a transition region and the experiences that it affords,
the flexible and opportunistic balance and the complementar-
ity between cognition for order en cognition for disorder cannot
develop, which entails that there is nothing to drive the open-
ended development loop in Figure 5.

Figure 5 suggests a principled way to formulate and structure
reward signals because each of the quadrants may be associated
with particular reward signals: the lower left with the gratitude
of being led or adoration of authority, the upper left with the joy
of restoring order, solving problems, or to receive social esteem
rewards, the lower right with the joy of insights and under-
standing and the joys of interpersonal relations (love, friendships,
and altruism), and finally the upper left the joy of play, explo-
ration, and creation. The varying states of the environment and
the associated appraisals (interesting, safe, or challenging) then

FIGURE 5 | Open-ended development loop. The words in brackets originate
from Ryan and Deci (2000). The loop depends essentially on the rewards
signals associated with exploration (experiencing novelty), consolidation

(discovering and fostering relations), and successful problem solving. The
reward signals associated with this loop, described as peak experiences
(Maslow, 1962), drive the outward spiraling development of Figure 1.
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bring one in different learning modes. A suitable artificial agent
that can engage in this open-ended development loop should be
able to learn its way from guided exploration, consolidation, and
problem solving into gradually more autonomous exploration,
consolidation, and problem solving. In theory, each agent can
learn to become autonomous and even wise (i.e., effectively co-
creative), as long as it exists in an open environment that offers
opportunities for all reward signals.

By constraining the learning environment it is possible to
define the character of this agent by ensuring that it is not suffi-
ciently exposed to all reward signals of the open-end development
loop. For example, by making it very difficult to continue open-
ended learning beyond a certain level of bounded autonomy, one
creates an agent who will predominantly experience the reward
signals associated with the pleasure of being “moved by.” This will
lead to an agent that seeks and loves its servitude.

Alternatively an agent that is “raised” in insecurity will be
exposed predominantly to the reward signals and learning out-
comes associated with “moving against” uncertainty (e.g., of
suppressing diversity), successful problem solving, protocol fol-
lowing, and other forms of cognition for order. This agent will
be a quite autonomous apparatchik, someone “not of grand plans,
but of a hundred carefully executed details (Billington, 1980),” who
has no inkling of its role in the grander scheme of things, and
who will spontaneously and quite ruthlessly seek, accept, and sup-
port external authorities to maintain or restore the conditions for
its adequate functioning. Characteristically It will enforce global
uniformity and suppress local optimization whenever it increases
diversity.

The agent that has been raised in a safe and protected situation
and has primarily been exposed to the reward signals associated
with love, friendship, and understanding, will develop the many
facets of relatedness and profound interest in the world conform
the induction capacity of cognition for disorder. This empathic
agent will “move toward” others, be comfortable with diversity,
and quite able to perceive and understand the beauty and ills of
the world. However in times of adversity the empathic agent will
not be able to organize or restore and maintain order the way the
apparatchik can and it will probably be crushed by its imposed
order and intolerance to diversity.

Fourthly the explorative agent is always in search of the reward
signals associated with discovery, novelty, creation, and individual
expression. This might be an artist agent who seeks the most indi-
vidual expression of the most individual emotion, a risk-taker,
or an autarchic agent that prefers the solitude of self-sufficiency
to celebrate its individuality and autonomy. In Horney’s (1945)
terminology he is “moving away.”

It is interesting that Horney’s (1945) terminology—moving
away, moving toward, and moving against—fits so well on the
three quadrants that define the open-ended development loop.
Horney’s “moving with” personality, who moves with the dynam-
ics of the world, is her only non-pathological personality. In our
framework this is the personality that has learned from all reward
signals and that as such has spend much time in the open-ended
development loop, with the associated peak experiences. This is
the only agent personality who has a proven competence (and
autonomy) for most of its existence.

INCLUDING THE RIGHT HEMISPHERE IN COGNITIVE SYSTEMS
RESEARCH
Gomila’s and Müller’s (2012) definition of an cognitive system as
“one that learns from individual experience and uses this knowledge
in a flexible manner to achieve its goals” dovetails with how we
defined raw power in section Autonomy in Two or Three Steps:
“the ability to produce intended results without necessarily taking
the full consequences of behavior into account.” In that sec-
tion we concluded that executing raw power is a typical left
hemispheric (authoritarian) response. A more developed liber-
tarian, and wiser, response takes the full consequences of behavior
into account. This suggests that the left hemispheric dominance
of Western societies that McGilchrist (2010) describes has also
limited the understanding of the artificial cognitive systems com-
munity by focusing its research on left hemispheric strongpoints
such as object manipulation, problem solving, and task execu-
tion. If so, these Western biases have prevented the artificial
cognitive systems community (and other scientific communi-
ties) from fully realizing the importance of right hemispheric
strengths.

It might therefore be useful to study cultures without these
Western limitations. For example Erica Fox Brindley, who stud-
ies the intellectual and cultural history of early China (500 BC
to 200 AD), wrote a book on individualism in early China [for a
summary see Brindley (2011)], which provides a rich description
of the roles of agency, autonomy, and authority as the right hemi-
sphere might understand these. She writes for example (Brindley,
2010 pp. xxvii–xxviii):

Earlier Chinese forms of individualism do not generally focus on
the radical autonomy of the individual, but rather on the holistic
integration of the empowered individual with forces and author-
ities in his or her surroundings (family, society, and cosmos). For
early Chinese thinkers, there is no such thing as unfettered auton-
omy or freedom of will, in line with Kantian notions of the self.
While such concepts are considered problematic even in some
Western traditions they nonetheless constitute a core strand of
thought that continues to inform contemporary concepts of indi-
vidualism. In contrast to such conceptualizations, there exists a
relative and relational sort of autonomy in early Chinese contexts,
a type of autonomy that grants individuals the freedom to make
decisions for themselves and to shape the course of their own lives
to the fullest degree that they can and should—all from within
a complicated and rich system of interrelationships. This type of
autonomy, in other words, grants authority to the individual to
fulfill his or her potential as an “integrated individual.” The goal
of such an individual is to achieve authoritativeness as a person
while at the same time conforming to certain types of authority
stemming from his or her larger environment.
. . . Yet the emphasis in the Chines tradition on the relative
autonomy of an individual from within a system of holis-
tic and interconnected processes is quite different from many
of the models with which we [Westerners] are most familiar.
Rather than view autonomy in relationship to a void (individu-
als as ex nihilo), individuals emerge authoritative and powerful
as part and parcel of an interconnected web of forces. Therefore,
a crucial back-and-forth tug between the self and the various
influences and authorities surrounding it is woven in the very
fabric of what it means to be a fully attained and empowered
individual.
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This description, while not even derived from a cognitive sci-
ence source, illustrates many of the key points of this paper. For
example, in terms of agent terminology it states that the goal of
a developing agent is to achieve authoritativeness (i.e., to inter-
nalize the role of authority) while at the same time conforming
to certain types of authority stemming from the larger environ-
ment. Since we defined authority as the “processes or agents that
create, maintain, and influence the conditions in which agents
exist,” this description describes the outward development along
the spiral in Figure 1. While all agents influence their living envi-
ronment, it is the more authoritative—libertarian—agent that
successfully can take a role as co-creator and co-maintainer of its
environment. So co-creation—defined as working with the inher-
ent dynamics of the world as opposed to frantically controlling
and curtailing it—was an inherent part of early Chinese philos-
ophy. In fact it corresponds to the Daoist key term “Wu wei,”
which “means something like ‘act naturally,’ ‘effortless action,’ or
‘nonwillful action’ (Littlejohn, 2003).” So the point of open-ended
development is to learn “Wu wei” through a process of the inter-
nalization of authority insofar achievable given natural laws as
highest authority.

The point to make here is not that early Chinese philoso-
phy is an alternative to Western approaches to artificial cog-
nitive systems research, but that our cultural biases limit our
understanding. Accounting for these biases and learning from
cultures without these particular (and probably other) biases

can help to inform the formulation of fundamental research
roadmaps such as for artificial cognitive systems. We propose that
putting the strengths of the right hemisphere (as summarized in
Table 1) center-stage is an essential step to take artificial cogni-
tive systems research out of the closed domain solutions afforded
by left hemispheric approaches (and caricatures) of cognitive
systems.

If the artificial cognitive systems community indeed tries to
rid itself from its limiting biases and adopts approaches that
puts the strengths of the right hemisphere and the open-ended
development loop central, we have a suggestion for a suit-
able environment for artificial cognitive system development.
This environment offers at the same time (1) many differ-
ent agents and processes to relate with and care for, (2) many
problems to solve and protocols to follow, and (3) an endless
and unstoppable variety of novelty and change. This environ-
ment might have been an essential progenitor of our cultures
because it approximates an ideal balance of reward signals to
drive open-ended learning. So a robot that acts responsibly
in this environment should be able to acquire the compe-
tences and moral development required to function responsibly
in the rest of our societies. For that reason we suggest that
robot labs should collaborate with . . . low-tech self-sustaining
farms where human, animals, vegetables, fruits, and grains flour-
ish in one of the finest examples of what co-creation can
offer.
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Often, when animals encounter an unexpected sensory event, they transition from
executing a variety of movements to repeating the movement(s) that may have caused
the event. According to a recent theory of action discovery (Redgrave and Gurney, 2006),
repetition allows the animal to represent those movements, and the outcome, as an action
for later recruitment. The transition from variation to repetition often follows a non-random,
structured, pattern. While the structure of the pattern can be explained by sophisticated
cognitive mechanisms, simpler mechanisms based on dopaminergic modulation of basal
ganglia (BG) activity are thought to underlie action discovery (Redgrave and Gurney, 2006).
In this paper we ask the question: can simple BG-mediated mechanisms account for
a structured transition from variation to repetition, or are more sophisticated cognitive
mechanisms always necessary? To address this question, we present a computational
model of BG-mediated biasing of behavior. In our model, unlike most other models of BG
function, the BG biases behavior through modulation of cortical response to excitation;
many possible movements are represented by the cortical area; and excitation to the
cortical area is topographically-organized. We subject the model to simple reaching tasks,
inspired by behavioral studies, in which a location to which to reach must be selected.
Locations within a target area elicit a reinforcement signal. A structured transition from
variation to repetition emerges from simple BG-mediated biasing of cortical response
to excitation. We show how the structured pattern influences behavior in simple and
complicated tasks. We also present analyses that describe the structured transition from
variation to repetition due to BG-mediated biasing and from biasing that would be expected
from a type of cognitive biasing, allowing us to compare behavior resulting from these
types of biasing and make connections with future behavioral experiments.

Keywords: action discovery, reinforcement, basal ganglia, variation, repetition

1. INTRODUCTION
Animals are capable of executing a huge variety of movements
but, importantly, they can discover the specific movements that
affect the environment in predictable ways and represent them
as actions for later recruitment. Redgrave, Gurney, and colleagues
have suggested that this occurs through a process they refer to
as action discovery (Redgrave and Gurney, 2006; Redgrave et al.,
2008, 2011, 2013; Gurney et al., 2013). Action discovery begins
when an animal is executing movements within some context
and an unexpected salient sensory event (such as a light flash)
occurs. The unexpected sensory event causes a short-latency
phasic increase in dopamine (DA) neuron activity (henceforth
referred to simply as DA activity). Through its influence on the
basal ganglia (BG)—a group of interconnected subcortical struc-
tures which, in turn, influence cortical activity—the increase in
DA activity can help bias the animal to repeat the movements that
preceded the unexpected sensory event under the same contextual
circumstances. This repetition bias (Redgrave and Gurney, 2006)
allows associative networks in the brain to learn and encode the

movements as an action because it causes a frequent and reliable
presentation of context, movements, and the sensory event as the
outcome of those movements.

This transition from executing a variety of movements to
repeating just one or a subset of movements often follows a non-
random, structured, pattern. For example, consider a spatial task
such that reaching to a specific location results in the outcome.
Here, one type of structured transition from variation to rep-
etition occurs if the animal gradually refines its movements so
that movements that are further from the location decrease in
frequency earlier than movements that are closer to the location.

The non-random structure of the transition from variation
to repetition can be explained with “intelligent” or sophisticated
cognitive mechanisms, e.g., by using an estimation of the range of
movements that cause the outcome that gets more and more pre-
cise with repeated occurrences of the outcome. Similarly, other
types of a structured transition may rely on other sophisticated
notions such as optimality or uncertainty (e.g., Dearden et al.
1998; Dimitrakakis 2006; Simsek and Barto 2006). However, the
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process of action discovery is thought to be mediated primar-
ily by simpler mechanisms involving DA modulation of the BG,
and not sophisticated cognitive mechanisms. In this paper we
ask the question, can simple BG-mediated mechanisms guide a
structured transition from variation to repetition, or must sophis-
ticated cognitive mechanisms always be recruited? To address this
question, we present a computational model of BG-mediated
biasing of behavior.

Our model will necessarily deal with a specific and, therefore,
limited example of action discovery and so to establish its sta-
tus, we now outline the model’s wider context comprising various
broad categories of action. For example, one type of action might
involve making a particular gesture with the hand (as in sign lan-
guage or hand signaling), regardless of the precise spatial location
of the hand, and no environmental object is targeted. Another
type of action involves manipulating objects in the environment
(such as flipping a light switch or typing out a password). In
this instance, space is weakly implicit (the objects are located
somewhere); the key feature is the target object identity and its
manipulation. In this paper, we focus on an explicitly spatial task:
the relatively simple action of moving an end-effector to a partic-
ular spatial location. In the model task, a movement end-point to
which to move must be selected. End-points that correspond to
a target location elicit a reinforcement signal, and, importantly,
reinforcement is not contingent on movement trajectory. The
model task is inspired by behavioral counterparts we have used
to study action discovery in which participants manipulate a joy-
stick to find an invisible target area in the workspace (Stafford
et al., 2012, 2013; Thirkettle et al., 2013a,b). While there may be
“gestural” aspects of action in the behavioral task, in the model we
ignore these and focus only on the spatial location of movement
end-point.

In the next few paragraphs, we describe features of neural pro-
cessing which our model incorporates that many other models
of the BG do not. Biological theories of BG function suggest
that the BG bias behavior not through direct excitation of their
efferent targets, but, rather, through the selective relaxation of
inhibition (i.e., disinhibition) of their efferent targets (Chevalier
and Deniau, 1990; Mink, 1996; Redgrave et al., 2011). When
the BG are presented with multiple signals, each representing an
action or movement, these signals will have different activity lev-
els signifying the urgency or salience of the “action request.” BG
are supposed to process each signal through a neural population
or channel, and inter-channel connections facilitate competitive
processes resulting in suppression of BG output (inhibition) on
high salience channels and increased output on the low salience
channels (Gurney et al., 2001a,b; Humphries and Gurney, 2002;
Prescott et al., 2006). Many models of BG function focus on how
the multiple signals presented to the BG are transformed to the
activity of the BG’s output nucleus. Action selection in these mod-
els is then based on the latter’s activity (e.g., Gurney et al. 2001a,b,
2004; Joel et al. 2002; Daw et al. 2005; Shah and Barto 2009).
However, one important feature of our model is that it also takes
into account the pattern of excitation from other areas to the BG’s
efferent targets (see also Humphries and Gurney 2002; Cohen and
Frank 2009; Baldassarre et al. 2013). Thus, behavior results from
BG modulation of their efferent target’s response to excitation

patterns, and is not just a mirror of the activity of the BG’s output
nucleus.

Further, many models of BG function focus on how the BG
select from a small number of abstract independent behaviors
(e.g., Gurney et al. 2001b; Daw et al. 2005; Cohen and Frank 2009;
Shah and Barto 2009). While such representations may be appro-
priate for some behavioral tasks in experimental psychology, in
ethological action discovery, the space of activities from which to
select may be larger and adhere to some inherent topology. In our
model, candidate locations to which to move are represented by a
large number of topographically-organized neurons in cortex so
that neighboring spatial locations are represented by neighbor-
ing neurons. Excitation to cortex follows a pattern in which all
neurons are weakly excited initially, and that pattern evolves so
that eventually only one neuron is excited strongly. This pattern
is inspired by neural activity observed in perceptual decision-
making tasks (Britten et al., 1992; Platt and Glimcher, 1999; Huk
and Shadlen, 2005; Gold and Shadlen, 2007), and as suggested by
evidence accumulation models of decision-making (Bogacz et al.,
2006; Lepora et al., 2012).

We hypothesize that because the BG bias behavior by modulat-
ing cortical response to excitation, and that that excitation follows
a structured pattern, simple BG-mediated biasing can result in a
structured transition from variation to repetition in action dis-
covery. Sophisticated cognitive mechanisms are not necessarily
required to develop a structured transition.

In addition, behavioral biasing in action discovery is not
thought to be driven by “extrinsic motivations” that are based on
rewarding consequences and that dictate reinforcement in many
types of operant conditioning tasks (Thorndike, 1911; Skinner,
1938) and computational reinforcement learning (RL) (Bertsekas
and Tsitsiklis, 1996; Sutton and Barto, 1998). Rather, “intrin-
sic motivations” (Oudeyer and Kaplan, 2007; Baldassarre, 2011;
Barto, 2013; Barto et al., 2013; Gottlieb et al., 2013; Gurney
et al., 2013) that are triggered by the occurrence of an unexpected
sensory event may drive DA activity and thus behavioral bias-
ing in action discovery (Redgrave and Gurney, 2006; Redgrave
et al., 2008, 2011, 2013; Gurney et al., 2013; Mirolli et al., 2013).
In such cases, if the outcome does not represent or predict an
extrinsically-rewarding event, reinforcement decreases as asso-
ciative networks in the brain learn to predict its occurrence
(Redgrave and Gurney, 2006; Redgrave et al., 2011). Rather than
implement a model of prediction explicitly, we approximate its
effects with a simple model of habituation in which the rate
of reinforcement decreases as the target location is repeatedly
hit (Marsland, 2009). This habituation model approximates the
dependence of DA activity on outcome predictability in action
discovery (Redgrave and Gurney, 2006; Redgrave et al., 2011),
and is similar to that used in neural network models of novelty
detection (Marsland, 2009).

In this paper, we use computational models to demonstrate
that simple BG-mediated mechanisms can bias behavior, via their
modulation of cortical response to a pattern of excitation, such
that the transition from variation to repetition follows a struc-
tured pattern. We describe this structured pattern and show how
it, along with the effects of habituation, lead to behavioral pat-
terns in tasks in which one target area delivers a reinforcement
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signal, two target areas deliver reinforcement, or the target area
that delivers reinforcement changes location. These experiments
lead to predictions as to the type of behavior that would be
expected when only simple BG-mediated mechanisms, and not
more sophisticated cognitive mechanisms, bias behavior. We also
run models that mimic a simple form of transition from variation
to repetition that would be expected under sophisticated cogni-
tive mechanisms by subsuming the effects of those mechanisms
in a phenomenological way. In order to make contact with future
behavioral experiments, we develop a novel characterization of
behavioral trends which links these trends to underlying neural
mechanisms that dictate different forms of biasing.

2. METHODS
We use a computational model, based on established models
(Gurney et al., 2001a,b; Humphries and Gurney, 2002), to control
movement selection in a task that simulates reaching or pointing
to specific target spatial locations. We provide here a conceptual
overview of its mechanics; detailed equations are provided in the
Supplementary section.

The model is a neural network model with leaky-integrator
neuron units (henceforth referred to as “neurons” for brevity),
the activities of which represent conglomerate neural firing rate
of a group of neurons (Gurney et al., 2001a,b). Each brain area
in the model, except for the area labeled “Context,” consists of
196 neurons spatially arranged in a 14× 14 grid. Each neuron in
each area is part of an “action channel” (Gurney et al., 2001a,b;
Humphries and Gurney, 2002) such that its location in the grid
corresponds to a movement toward the corresponding location of
a two-dimensional workspace. For the purposes of this model, the
workspace is of dimensions 14× 14 units. Most projections from
one area to another are one-to-one and not plastic; exceptions will
be explicitly noted.

Figure 1 illustrates the gross architecture of the model. In brief,
the end-point location of a movement, XM , is determined by the
activities of neurons in “M (Cortex).” These neurons are excited
by an exploratory mechanism, “E (Explorer),” and are engaged
in positive feedback loops with neurons in “T (Thalamus).”
The basal ganglia (BG, gray boxes) send inhibitory projec-
tions to Thalamus neurons, and they modulate the gain of the
Cortex-Thalamus positive feedback loops (Chambers et al., 2011)
through selective disinhibition of Thalamus neurons. Cortex and
Thalamus represent grids of neurons that correspond to motor-
related areas of cortex and thalamus, respectively.

2.1. EXCITATORY INPUTS TO THE NEURAL NETWORK
There are two sources of excitatory input to the neural net-
work.The first is labeled “C (Context)” and represents the context,
such as participating in the current experiment. There is only one
context for the results reported in this paper. Thus, Context con-
sists of a single neuron with an output activity set to a constant
value. Context influences BG activity through one-to-all projec-
tions to areas D1, D2, and STN. Projections to D1 and D2 are
plastic and represent a context-dependent biasing of movements,
as described in the subsection “Biasing of behavior.”

The second source of excitatory input is “E (Explorer),” which
provides excitation to Cortex which, in turn, is responsible for

movement. The Explorer is the source of variation required to
explore the space of possible movements. This variation may be
more or less random or structured according to the strategy used.
However, these strategies are devised by other mechanisms, not
explicitly modeled here, and we simply aim to capture the effects
of such strategies in the Explorer.

In this paper, the Explorer is inspired by a range of experi-
mental data. First, recordings in some areas of parietal cortices
(Anderson and Buneo, 2002) show activation of neurons corre-
sponding to a decision to make a movement that terminates at
the location represented by those neurons. Further, several exper-
imental studies, (Britten et al., 1992; Platt and Glimcher, 1999;
Huk and Shadlen, 2005; Gold and Shadlen, 2007) show that neu-
rons representing different decisions are weakly active early in
the decision-making process. The activities of some neurons—
corresponding to the executed decision in these experiments—
increase at a greater rate than that of other neurons.

We capture features of this behavior with a hand-crafted func-
tion describing, for a decision to move to a particular spatial loca-
tion, the evolution of activity for every neuron in the Explorer.
Early in the process, all neurons are weakly-excited with low acti-
vation levels. Neural activity evolves such that, as confidence in a
particular movement increases, so does the corresponding neuron
activity. The activities of other neurons increase to a lesser degree.
An example of this behavior is shown in Figure 2; it is described
in greater detail in the next paragraph and in the Supplementary
section.

For each movement, a particular neuron in Explorer, labeled
Gexp, is chosen. If we suppose that sophisticated cognitive mech-
anisms are not devoted to movement selection, Gexp is chosen
randomly. The activity of the neuron corresponding to Gexp

increases linearly to one (green line in Figure 2). The activities of
surrounding neurons change according to a Gaussian-like func-
tion centered at Gexp. They first increase and then decrease; those
furthest from Gexp increase by a small amount and then quickly
decrease to zero, while those closer to Gexp increase by a larger
amount and decrease at a later time point to zero. The pattern of
activity such that the activity of neuron Gexp is one and the activi-
ties of all other neurons are at zero is held for brief time, and then
the activities of all neurons are set to zero. This evolution takes TE

time steps, which is the number of time steps in a trial.
If, in contrast, we assume sophisticated cognitive mechanisms

do influence movement selection, Gexp is chosen in order to
reflect that strategy, e.g., according to some heuristic search such
as a spiral pattern or quadrant-by-quadrant search. In this paper
we examine behavior that results when cognitive mechanisms do
not influence movement selection as well as behavior that results
from a simple pattern, as described in the subsection “Biasing of
behavior.”

2.2. CORTEX AND THALAMUS
“Cortex” represents cortical areas that encode high-level move-
ment plans such as reaching or pointing to a location (Anderson
and Buneo, 2002). In our model, the spatial location of a
neuron in Cortex corresponds to a target spatial location in
the workspace, or movement end-point, to which to reach.
Cortex (M) receives excitatory projections from Explorer and
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FIGURE 1 | Architecture of the model. Each box except for “C (Context)” contains 196 neurons spatially arranged in a 14× 14 grid. Context contains just one
neuron. Types of projections are labeled in the legend on the right.
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FIGURE 2 | Example of activity of Explorer neurons during a typical

movement. The activity of the neuron corresponding to the focus of
excitation, Gexp, is drawn in green. Selected neurons, colored in the inset, are

drawn with thick lines in different shades of gray so as to demonstrate the
spatial influence on excitation pattern. All other neurons are drawn in thin
gray lines

Thalamus (T) which preserve channel identity; that is, the neu-
rons representing a given channel in Explorer and Thalamus
project to the corresponding neuron in Cortex. In turn, Thalamus
receives channel-wise excitatory projections from Cortex, and
channel-wise inhibitory projections from SNr (a nucleus of
the BG called the substantia nigra pars reticulata). Cortex and
Thalamus therefore form a positive feedback loop referred to as
a Cortex-Thalamus loop, for each channel which is excited by
the corresponding channel in Explorer. The gain of a Cortex-
Thalamus loop is modulated by inhibitory projections from SNr
neuron to Thalamus (Chambers et al., 2011). When the activity
level of an SNr channel is low, the corresponding Thalamus neu-
ron is said to be disinhibited and its Cortex-Thalamus loop has
a high gain. A Cortex-Thalamus loop with a high gain is more
easily-excited by the corresponding Explorer neuron.

2.3. BASAL GANGLIA
The functional properties of BG architecture have been described
in detail in prior work (Gurney et al., 2001a,b; Humphries and
Gurney, 2002; Redgrave et al., 2011). Briefly, the BG is a sub-
cortical group of brain areas with intrinsic architecture that is
well-suited to select one behavioral option among competing
options. The BG implement an off-center on-surround excitation
pattern: The BG channel i that is most strongly-excited by its cor-
tical “action request” inhibits the corresponding target channel
(neuron) in Thalamus the least, while other Thalamus chan-
nels j �= i are further inhibited. Thus, Cortex-Thalamus loop i is
most easily-excited by input from Explorer to Cortex, and other
Cortex-Thalamus loops j �= i are harder to excite by input from
Explorer to Cortex. These properties are similar in some ways
to those of a winner-take-all network between the competing
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channels, but additional architectural features of the BG ensure
better control of the balance between excitation and inhibition
(Gurney et al., 2001a,b). D1 and D2 refer to different popu-
lations of neurons (named after the dopamine receptors they
predominantly-express) in a nucleus of the BG called the stria-
tum. The pathway comprising D1 and STN (subthalamic nucleus)
performs the selection with an off-center on-surround network in
which D1 supplies focussed (“central”) inhibition and the STN a
diffuse (“surround”) excitation. The pathway through D2 regu-
lates the selection by controlling, though GPe (external segment
of the globus pallidus), the excitatory activity of STN (Gurney
et al., 2001a,b).

2.4. FROM CORTICAL ACTIVITY TO BEHAVIOR
Movement in this model is a function of the activities of the
Cortex neurons. Each neuron with an activation greater than a
threshold η “votes” to move to the location represented by its
grid location with a strength proportional to its activity (i.e.,
using a population code, Georgopoulos et al. 1982). In most cases,
because of the selection properties of the BG, the activation of
only one Cortex neuron rises above η. At each time step t, the
target location to which to move, XM(t), is an average of the
locations represented by Cortex neurons with activities above η,
weighted by their activities. At each t, if any Cortex neuron is
above η, a simple “motor plant” causes a movement from the cur-
rent position (xp(t)) toward XM(t) (see Supplementary section
for equations). Movement evaluation, and hence any learning, is
based only on xp(TE), the position at time TE (the last time step of
a trial). Thus, end-point of movement, not movement trajectory,
is evaluated in this model.

2.5. BIASING OF BEHAVIOR
Targets are circular areas within the workspace. A target is consid-
ered hit when ||xp(TE)− XG|| < θG, where XG is the location of
the center of target G and θG (= 1.1) is the radius. Thus, a move-
ment to the location represented by neuron i that corresponds to
the center of the target, or to locations represented by the immedi-
ate four neighboring neurons, is within the target’s radius. When
a target is hit, behavior is biased so that the model is more likely to
make movements to the target. This repetition bias (Redgrave and
Gurney, 2006) can be implemented in two ways in this model.

The first way is “BG-mediated biasing,” which is based on
dopamine-dependent plasticity at the corticostriatal synapses
(Calabresi et al., 2007; Wickens, 2009), and is implemented as
a Hebbian-like rule governing plasticity to weights onto striatal
D1 and D2 neurons. When the end-point of movement is eval-
uated (at time TE of a trial), usually only one neuron (i) in each
of Cortex, D1, and D2 have an activity above zero. If the target is
hit, the weights from Cortex neuron i to D1 neuron i, Cortex neu-
ron i to D2 neuron i, the Context neuron to D1 neuron i, and the
Context neuron to D2 neuron i are increased according to equa-
tions of the following form (see Supplementary section for full
equations):

�wi = α βNk−1 ypre ypost (Wmax − wi), (1)

where wi is the weight, ypre is the activity of the presynaptic
neuron, ypost is the activity of the postsynaptic neuron, α is a

step-size, Wmax (= 1) is the maximum strength of a synapse, β

(= 0.825) is a habituation term (Marsland, 2009), and Nk is the
number of times target k has been hit. If the target is not hit, the
weights are decreased. Weights from Cortex to striatum have a
lower limit of zero, while weights from Context to striatum have a
lower limit of−0.1. Neurons that have greater afferent weights are
more-easily excited than are neurons with lower afferent weights.

Neurons in D1 and D2 that correspond to movements that
were reinforced are excited by the Context neuron from the
first time step of a trial onward, and neurons that correspond
to movements that were not reinforced are weakly inhibited
by the Context neuron. (We use negative weights to approx-
imate the inhibitory effects of striatal interneurons, Koos and
Tepper 1999; Bolam et al. 2006). Thus, weights from the Context
neuron to D1 and D2 represent an a priori bias in favor of
movements that were reinforced, and against movements that
were not reinforced. This bias is context-dependent and, while
there is only one context for the results reported in this paper,
multiple contexts can be represented by multiple context neu-
rons with similar learning rules. Neurons in D1 and D2 are
also excited by Cortex neurons, which, early in a trial, are all
weakly-excited by Explorer. Because the projections from Cortex
to D1 and D2 are plastic, movements that were reinforced are
more-easily excited by Cortex than movements that were not
reinforced.

Thus, with BG-mediated biasing, channels corresponding to
making a movement to locations that are within the target area
are easily-excited by weak inputs from the Explorer after the target
has been hit several times. Channels corresponding to move-
ments that do not hit the target are made to be more difficult to
excite.

The second way by which repetition bias is implemented in this
model is referred to as “Cognitive biasing,” whereby Gexp is chosen
according to some strategy or pattern. Under cognitive biasing
in this paper, the set of neurons in Explorer from which Gexp is
chosen corresponds to a spatial area, centered around the location
of the target, that decreases in size each time the target is hit (we
describe this pattern in detail in the Supplementary section). This
is a simple hand-crafted form of biasing that mimics a decrease in
variation and increase in repetition by “zooming in” on the target
as the target is repeatedly hit. It is meant to capture the effects
of behavioral biasing as mediated by “sophisticated cognitive” or
“intelligent” mechanisms. If there is no Cognitive biasing, Gexp is
randomly chosen as described earlier.

2.6. MODEL EXPERIMENTS
A model run consists of having the model select movements for
300 trials (where a trial consists of executing one movement).
Movements were reinforced (Equation 1) when they hit a partic-
ular target. We examined behavior that results from reinforcing
one target, two targets simultaneously, and one target and then
another. The targets are referred to G1, G2far (which is far from
G1), and G2near (which is near G1). Experiments 1 to 4 were
conducted to describe patterns of behavior under simple, “non-
intelligent,” BG-mediated biasing and different conditions of
reinforcement. Experiment 5 was conducted to describe patterns
of behavior under BG biasing, Cognitive biasing, and both.
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• Experiment 1: Single target (G1): We ran 50 independent runs
of 300 movements during which BG biasing (and not Cognitive
biasing) was used to reinforce movements that hit G1.
• Experiment 2: Two simultaneous targets (G1 and G2far): We

ran 50 independent runs of 300 movements during which
BG biasing was used to reinforce movements that hit either
G1 or G2far.
• Experiment 3: Reinforce G1, then G2far, then G1 again: We ran

50 independent runs of 900 movements during which BG bias-
ing was used to reinforce movements that hit G1 for the first
300 movements, then to reinforce movements that hit G2far

(but not those that hit G1) for the next 300 movements, and
then reinforce movements that hit G1 (but not those that hit
G2far) for the final 300 movements.
• Experiment 4: Reinforce G1, then either G2far or G2near: We

ran 50 independent runs of 600 movements during which BG
biasing was used to reinforce movements that hit G1 for the
first 300 movements and then to reinforce G2far (but not those
that hit G1) for the next 300 movements. We ran another 50
independent runs of 600 movements during which BG biasing
was used to reinforce movements that hit G1 for the first 300
movements and then to reinforce G2near (but not those that hit
G1) for the next 300 movements.
• Experiment 5: Different bias conditions: We ran 50 indepen-

dent runs of 300 movements during which Cognitive biasing
(and not BG biasing) was used to reinforce movements that hit
G1. We ran another 50 independent runs of 300 movements
during which both BG biasing and Cognitive biasing were used
to reinforce movements that hit G1.

3. RESULTS
3.1. EXPERIMENT 1: SINGLE TARGET (G1)
Recall that there are two sources of excitation to the model, as
explained in Methods section 2.1: the Context neuron, which
projects to D1, D2, and STN; and the Explorer, which projects
to Cortex (see also Figure 1). As described in Methods sec-
tion 2.1, a focus of excitation, Gexp, is chosen randomly, and
the activities of neurons in the Explorer follow a hand-crafted
pattern such that all neurons are weakly-excited initially, but
that activity focuses so that only the neuron corresponding
to Gexp is strongly-excited (see Figure 2). If the weights onto
D1 and D2 remain at their initial values, Explorer activity
will result in a movement made to the location represented
by Gexp.

In Experiment 1, there was a single target, G1, located in
the lower right area of the work space (center of target col-
ored in red in the upper left graph in Figure 3). When the
target was first hit, it was because the Explorer happened to
choose a Gexp that was within θG of target center. As described
in Methods section 2.5, when the target is hit, the corti-
costriatal weights that project to striatal neurons correspond-
ing to the movement just made are increased (Equation 1).
When a target is not hit, the weights decrease. The weight
change influences how the BG modulates the gain between
Thalamus and Cortex positive feedback loops (Methods sections
2.2 and 2.3), and hence how Cortex responds to excitation from
Explorer.

Neural activity
Figure 3 shows selected neuron activity resulting from the
same excitation from the Explorer during early movements
(“before learning”) and during late movements (“after learning”).
Excitation from Explorer is illustrated in the lower left graph,
and the color scheme indicating which neuron’s activity is plot-
ted is illustrated in the upper left graph. In this example, activities
of neurons corresponding movements made to Gexp are plotted
in green; those corresponding to the center of the target (G1)
are plotted in red; and those corresponding to a subset of neu-
rons near or between Gexp and G1 are plotted in shades of gray.
(Compare with Figure 2 and Methods section 2.1.) Gexp is not
within the target area. The top row of graphs to the right of the
color scheme graph plot neuron activity in striatum D1, neuron
activity in SNr, and neuron activity in Cortex in the untrained
model. As excitation from Explorer evolved over time, Cortex
neurons increased accordingly due to the direct one-to-one pro-
jections from Explorer to Cortex and positive feedback loops
with Thalamus (as described in Methods section 2.2). Cortex
activity directly excited striatal neurons due to direct one-to-
one projections to striatum D1 and striatum D2 (as described in
Methods section 2.3). In this case, striatal neurons corresponding
to Gexp increased in activity. Because no learning has occurred
yet, Context did not bias activity in striatum as all projections
from Context to striatum remained at zero. Intra-BG process-
ing (described in Methods section 2.3) resulted in a decrease in
activity of SNr neuron corresponding to Gexp, and an increase
in all other SNr neurons. This disinhibited the Thalamus neu-
ron corresponding to Gexp, increasing the gain on the positive
feedback loop with Cortex neuron corresponding to Gexp, thus
allowing it to increase in activity even more. In addition, the
increased activity of all other SNr neurons further decreased the
positive feedback gain between other Cortex-Thalamus neuron
pairs (Chambers et al., 2011). In this example, weights into D1
and D2 have not undergone any changes, i.e., the target has not
been hit, so there is no biasing from Context. Thus, the BG facili-
tated the selection of the movement suggested by Explorer (move
to location Gexp) and inhibited the selection of other movements.

After the target had been hit many times, the weights from
Context to striatal neurons D1 and D2, and from Cortex to D1
and D2, that correspond to movements made to a location within
the target zone (in this example, the center of G1) increased
(as described in Methods section 2.5 and Equation 1), and the
weights to all others decreased by a small amount. Neuron activ-
ity in response to the same excitation from Explorer after learning
is illustrated in the bottom, right most three graphs of Figure 3.
Neurons that correspond to G1 (plotted in red) are referred to
as sG. Because weights from Context to sG in D1 and D2 have
increased, the activity of neuron sG in D1 and D2 increased faster
due to excitation from Cortex than did that of other neurons,
including that of neurons that correspond to movements made
to Gexp. This caused a decrease in the activity of SNr neuron
sG and an increase in the gain of the corresponding Cortex-
Thalamus positive feedback loop (described in Methods section
2.2). Hence, the weak excitation to Cortex neuron sG at the begin-
ning of a movement period was sufficient to initiate a positive
feedback process between the corresponding neuron sG in Cortex
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FIGURE 3 | Example neural activity for selected neurons from D1, SNr,

and Cortex (M) at different points in training. Neurons are colored
according to their spatial location in the grid (top left). The red neuron
corresponds to the center of target G1, the green neuron corresponds to
the location of Gexp (focus of excitation in Explorer), which is not within
the target area. Other neurons, most of which are located in between the
G1 and Gexp, are colored in gray (darker gray neurons are closer to Gexp).

Bottom left: activities of Explorer neurons. Rightmost three graphs on

top: activities of neurons from D1, SNr, and M before learning (i.e., before
the target was hit). Rightmost three graphs on bottom: activities of the
same neurons after learning, i.e., after the target was hit several times.
Note that the maximum of the vertical axis of SNr is 0.5, while that of the
other graphs is one. Horizontal dashed line of graphs for M (right)
represents η.

and Thalamus, causing more excitation to neuron sG in D1 and
D2, even further disinhibition of the feedback loop, and further
inhibition of the loops of other neurons. BG-mediated bias was
in favor of movements toward G1, implemented by an increase in
weights from Context and Cortex to the neurons in D1 and D2
that correspond to a movement to G1 (Equation 1). Thus, Cortex
neuron sG increased above η and movement was made to the
location corresponding to G1, even though the Explorer more-
strongly excited neurons corresponding to movements made
to Gexp.

Movement redistribution under contextual bias
The biasing of activity within the BG, BG’s regulation of Cortex-
Thalamus loop excitability, and the gradual focusing of excita-
tion from Explorer to Cortex, comprise simple mechanisms that
results in a seemingly “intelligent” structured transition from
variability to repetition. After the target had been hit by chance a
few times, weights from Context to neurons sG in D1 and D2, and
weights from neuron sG in Cortex to neurons sG in D1 and D2,
were increased a little (Equation 1). When Explorer later chooses
Gexp near G1, the resulting relatively high excitation to Cortex
neuron sG, combined with the increased gain at Cortex-Thalamus
loop sG and decreased gain to other loops, excited Cortex neu-
ron sG while preventing other Cortex neurons from increasing
past η. Thus, a movement to the target was made when Explorer
chose Gexp near G1: the target was hit with an increased likeli-
hood, and movements to areas near the target were made with
a decreased likelihood. We refer to this pattern as a “bias zone,”
centered at G1, that increases in size the more often the target
is hit.

Figure 4 shows how the bias zone increases as the number of
times the target has been hit increases. In order to produce this
figure, the model was run with Gexp set to G1 for a set number
of times. Then, learning was turned off and model response for
Gexp set to each possible location was examined. Each graph in
Figure 4 plots the location of Gexp in the workspace: green dots
indicate locations of Gexp that result in movements made to those
locations; red dots indicate locations of Gexp that result in move-
ments made to locations within the target area (red circle). The
title of each graph indicates how many times Gexp was set to G1

before response was examined. The expansion of the bias zone
determines an “intelligent-looking” structured transition from
variation to repetition in that it follows a non-random pattern.

For the purposes of this paper, model behavior is considered
to be well-learned when a “streak” of hitting the target with ten
consecutive movements is achieved. Figure 5, top left, plots the
proportion of 50 runs that achieved this streak by various points
of experience. About 40% reached it by 100 movements, and
almost 80% reached it by 300 movements. A little over 20% did
not achieve it by 300 movements. Figure 5, bottom left, plots the
proportion of 50 runs that hit the target as a function of move-
ment number. The proportion reaches about 0.8 by movement
number 300.

Figure 5, right, plots, for each movement across the 50 runs,
the distance between the movement and G1 as a function of move-
ment number. The distance of movements that hit G1 are plotted
in red (and are all at zero). As movement number increases, the
density of movements near G1 but that did not hit G1 decreases
at a faster rate than the density of movements far from G1. This
pattern is due to the expanding bias zone (Figure 4). We develop
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FIGURE 4 | Illustration of the “bias zone” effect. In each graph, the target

was first hit N times (labeled at the top of the graph). Then, learning was
turned off and movement for each possible value of Gexp was evaluated. Each
dot represents the spatial location corresponding to Gexp. Large green dots

represent locations of Gexp that resulted in movements that hit the location
corresponding to Gexp. Small red dots represent locations of Gexp that, because
of biasing implemented by weights onto D1 and D2, resulted in movements
that hit the target (represented by the red circle in the lower right).
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FIGURE 5 | Performance across all 50 runs for Experiment 1: A single

target (and only BG biasing). Top left: proportion of runs that achieved
streak of hitting target ten consecutive times by the movement
50, 100, 150, ..., or 300. Note that the bar graphs are cumulative. Bottom

left: proportion of runs that hit target as a function of movement number.
Right: Distance from the center of the target (in units of target radius) of
each movement from all 50 runs. That for movements that hit the target are
drawn in red and are at value 0 of the vertical axis.

a method for quantifying this pattern in the section describ-
ing results of Experiment 5 (and in the Supplementary section).
Experiment 4 describes behavior in a more complicated task that
results from this pattern.

Effect of cortical noise on model performance
The capability of the model to bias movements toward G1

is due in part to the pattern of excitation from Explorer to
Cortex (Figure 2), which weakly-excites all Cortex neurons by
very similar amounts early in a trial. This suggests that model
performance may be sensitive to unpredicted deviations from
this pattern. To investigate this, we ran simulations in which
signal-dependent noise (Harris and Wolpert, 1998) was added
to Cortex neurons (which project to the BG and Thalamus, and
from which movement is determined). In particular, at each time
step: y← [y + y N(0, σ)]10, where y is the output activity of a
Cortex neuron, N(0, σ) refers to a number drawn randomly from
a zero-mean Gaussian distribution with standard deviation σ, and
[x]10 returns 0 if x < 0, 1 if x > 1, and x otherwise. The proportion

of the last 30 movements of all runs under a particular noise con-
dition that were made to G1 were 0.82, 0.64, 0.53, and 0.20 for
σ levels of 0 (no noise), 0.1, 0.3, and 0.5, respectively. Thus, the
model was able to learn to repeatedly hit G1 if a low to moderate
level of noise was added to Cortex neuron activity, but perfor-
mance dropped off with high levels of noise. Figure 6 illustrates,
in a manner similar to Figure 3, example model neuron activity
for a model run with σ = 0.1. The rest of the simulations in this
paper were run with no noise.

3.2. EXPERIMENT 2: TWO SIMULTANEOUS TARGETS (G1 AND G2FAR)
Movements that hit either of two targets, G1 (lower right of the
workspace) or G2far (upper left) (red and blue circles, respectively,
in Figure 7), were reinforced according to Equation 1. However,
the habituation term differentiated them. (The habituation term
is βNk−1 in Equation 1, where Nk is the number of times target
k has been hit and β = 0.825.) For example, even if G1 was hit
many times, at the first time G2far was hit, it was a novel event and
thus the corresponding weights increased by a large amount.
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FIGURE 6 | Example neural activity for selected neurons from D1, SNr,

and Cortex (M) at different points in training for a model with low levels

of noise (σ = 0.1) added to Cortex (M) neuron activity (see text for

details). This figure is plotted in a manner similar to that of Figure 3. Neurons
are colored according to their spatial location in the grid (top left). The red
neuron corresponds to the reinforced movement that hit target G1 in this

example. Note, however, that, unlike with Figure 3, the reinforced movement
is one unit away from the center of G1 (the center of G1 is marked with a
closed red circle). (Recall that the radius of the target is 1.1 units, so
movements made to the center of G1 or to the immediate neighbors of the
center are reinforced.) The green neuron corresponds to the location of Gexp

(focus of excitation in Explorer), which is not within the target area.
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FIGURE 7 | Distribution of movements in Experiment 2: two

simultaneous targets. Left: Proportion of runs that were classified as being
biased toward one target (more than half of the movements hit target G1, red,
or G2far, blue); both targets (more than a quarter of the movements hit G1 and
more than a quarter hit G2far, gray); or none (all others, black). Right three

graphs: example movement distributions for runs that were classified as

being biased toward G1, G2far, or both. Similar to Figure 4, learning was
stopped (this time at the end of the 300 movements) and then movement
resulting from each possible value of Gexp (represented by the spatial locations
of the dots) was evaluated. Red dots indicate the location of Gexp that resulted
in a movement made to G1 (red circle); blue dots indicate a movement made
to G2far (blue circle), and green dots indicate a movement made to Gexp.

Figure 7, left, plots the proportion of runs that were classified
as either biased toward one of the targets, distributed between
the two targets, or did not find a target (see figure caption for
details on the classification criteria). While behavior in a majority
of the runs was biased to a single target (e.g., middle two graphs
of Figure 7), the model was capable of distributing movements
to both targets (e.g., Figure 7, right). For runs which were biased
to just one target, only a Gexp very near the un–preferred target
produced a movement to that target.

3.3. EXPERIMENT 3: REINFORCE G1 , THEN G2FAR , THEN G1 AGAIN
The use of experience-based learning rules—weight modification
(Equation 1) is dependent on actual behavior—and a habituation
term leads to a type of memory that can influence subsequent

behavior in a changing environment. This is illustrated with
experiments in which only movements to G1 are reinforced for
300 movements, then only movements to G2far are reinforced (at
which point the habituation term for G1 is reset), and then only
movements to G1 are reinforced again. As shown in Figure 8,
top row, which plots the proportion of runs that hit each tar-
get as a function of movement number, the reacquisition of G1

(movements 601–900) occurred faster than the initial acquisition
(movements 1–300) of G1.

The enhanced acquisition is because corticostriatal weights
corresponding to movements toward G1, illustrated in red in
Figure 8, bottom row, increased to a stable value (of about 0.2
in the figure) during first acquisition. (The habituation pre-
vents it from increasing any more after the target had been
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FIGURE 8 | Time-course of behavior and corticostriatal weights for

Experiment 3: reinforce G1 (movements 1–300), then G2far (301–600),

then G1 again (601–900). Top: proportion of runs that hit G1 (red) or G2far

(blue) as a function of movement number. The proportion of runs that hit G1

during movements 1–300 are redrawn at horizontal positions 601–900 as a
gray line for comparison of performance between initial acquisition
(movements 1–300) and reacquisition (movements 601–900) of G1. Bottom:

Mean (across runs) weight from Context neuron to the D1 neuron
corresponding to most movements that hit G1 (red) or G2far (blue) for that

particular run. The D1 neuron that corresponded to most movements that hit
each target was determined by finding the maximum weight from Context to
D1 neurons at the end of each 300 movement segment. Because several
movements can hit each target, only runs in which the same D1 neuron was
selected at movement 300 and movement 900 (i.e., for movements that hit
G1) were included (16 out of 50 runs were excluded). That for weights from
Context neuron to D2 neurons followed a similar pattern and are not plotted.
Similar to the graphs in the top row, mean weight during movements 1–300
are plotted again at movements 601–900 in gray for comparison purposes.

repeatedly hit.) During movements 301–600, G2far was rein-
forced (and G1 was no longer reinforced). The model contin-
ued to move to G1 early in the second set of movements, but,
because G1 was no longer reinforced, the corresponding weights
decreased. As the weights decreased, the bias zone around G1

decreased and the model was free to move to other locations,
including toward G2far. As a new bias zone, now centered on
G2far, was established, the model stopped moving to G1. Because
movements toward G1 were no longer made, weights associ-
ated with moving to G1 ceased to decrease. When movements
to G1 were reinforced again, those weights were already above
zero and thus G1 was reacquired faster than it was initially
acquired. In addition, due to resetting the habituation term,
the weights increased to a greater value than the previous high
value.

This pattern of activity provides a simple mechanism that can
be used to partially explain the findings that practice sessions that
are separated in time lead to enhanced acquisition and perfor-
mance compared to practice sessions that are massed together
(Ammons, 1950; Baddeley and Longman, 1978) (though such
effects do not necessarily apply to all types of tasks, e.g., Lee and
Genovese 1989).

3.4. EXPERIMENT 4: REINFORCE G1 , THEN EITHER G2FAR OR G2NEAR

When one target is reinforced for a period of time, and then
another is reinforced instead, how well the second reinforced
target is acquired depends on its proximity to the first tar-
get. This is illustrated by comparing the results of experi-
ments in which the second target (G2far, blue in Figure 9)
was far from the first one with those in which the second
target (G2near, purple) was near the first one. Figure 9 plots
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FIGURE 9 | Behavior for Experiment 4: reinforce G1 (movements 1–300)

and then either G2far or G2near (301–600). Left: locations of the three
targets in the workspace (dots indicate locations corresponding to possible
values of Gexp, colored gray if those locations do not lie within a target area.
Right: proportion of runs that hit G1 for movements 1–300 or G2far or G2near

for movements 301–600.

the proportion of runs for which the first and second tar-
gets were hit as a function of movement for the different sets.
The first target (G1, red) was acquired the fastest. The far sec-
ond target (G2far) was acquired faster than the near second
target (G2near).

The discrepancy between acquiring the second targets is
explained by the bias zone. A well-learned model has corticos-
triatal weights such that the bias zone is large. When the bias
zone is centered around G1, un–reinforced movements to G1

must happen in order for weights to decrease, after which the
bias zone shrinks and movements to other locations can be made.
Movements to locations far from G1 are available earlier than
movements to locations near G1 as the bias zone shrinks. Thus,
a second target far from G1 will be more-easily acquired than a
second target near G1.
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3.5. EXPERIMENT 5: MOVEMENT REDISTRIBUTION UNDER DIFFERENT
BIAS CONDITIONS

As movements made to a target increase, movements made
to other locations must decrease: movements are redistributed
over the workspace. The previous sections focused on move-
ment redistribution in our model with only BG-mediated biasing
(Equation 1). Here we describe metrics of movement redis-
tribution that will allow us to compare how movements are
redistributed under different bias conditions. We focus on model
runs in which only movements made to one target (G1) were
reinforced.

Redistribution metric
The expanding bias zone (Results section 3.1 and Figure 4) that
results from BG-mediated biasing results in a pattern of behavior
such that movements made near, but not at, the target decrease
in likelihood earlier than movements made far from the target.
For each run, we quantify the rate of decrease as a function
of distance from target. Briefly (see Figure 10), movements that
did not hit the target were coarsely categorized into three tem-
poral chunks and three spatial zones (vertical and horizontal
lines, respectively, in Figure 10). Temporal chunk one includes
the first 100 movements; temporal chunk two includes the second
100 movements; and temporal chunk three includes the last 100
movements. Recalling that θG is target radius and letting dX be the
distance of a movement from target center, the spatial zones are 1)
θG < dX ≤ 5θG (green points in Figure 10), 2) 5θG < dX ≤ 9θG

(blue), and 3) 9θG < dX (black). The number of movements that
fell into spatial zone i from temporal chunks 1 to 2 to 3 was fit to
an equation of the form ebi(j−1), where j refers to temporal chunk.
The rate of decrease of the number movements was quantified by
the parameter bi. A more negative bi indicates a greater rate of
decrease (see the Supplementary section for more details).

Movement redistribution across different bias conditions
Figure 10, top row, graphs movement distance from target as a
function of movement number for three sample runs under BG-
mediated bias (these graphs are similar to Figure 5, right). In
all three cases, b1 < b2 < b3, i.e., the rate of decrease of move-
ments made near but not at the target is greater than that of
movements made far from the target. This is in line with the
behavioral pattern we would expect given the expanding bias zone
(Figure 4) that results from BG-mediated biasing. Regarding the
specific sample runs in Figure 10, top row, the rate of decrease of
movements from the first sample run that fell within zone one
is greater than that of the second sample run, which is greater
than that of the third sample run. This, also, is reflected in the b
metrics.

The same process was used to determine b metrics for models
that biased movement selection with different mechanisms. Recall
from Methods section 2.5 that, if there is no “Cognitive bias,”
movements suggested by the Explorer (Gexp) were randomly
selected from a uniform distribution over all possible move-
ments. Under the Cognitive bias scheme (described in Methods
section 2.5 and the Supplementary section), every time the tar-
get is hit, the set of possible movements from which Gexp is
selected decreases: movements further from target center are

removed from the set earlier than movements closer to target
center. Movement redistribution under a Cognitive bias thus fol-
lows a trend opposite that under BG-mediated bias: b1 > b2 > b3

(Figure 10, bottom row).
For a given run of a model using BG-mediated bias, b for spa-

tial zones closer to the target should be more negative than b
for zones farther from the target. Thus, we expect b3 − b2 > 0
and b2 − b1 > 0 in models using BG-mediated bias. Models using
the Cognitive bias should exhibit opposite behavior: b3 − b2 < 0
and b2 − b1 < 0. The differences should be zero if the transition
from variation to repetition does not follow a structured pattern
(i.e., the frequency of movements to non-target areas decreases
uniformly).

Figure 11 plots the distribution of pair-wise (by run) differ-
ences b3 − b2 (right column, black) and b2 − b1 (left column,
blue) of model runs using different bias conditions (arranged by
row). The means of the distributions were also tested against the
null hypothesis that they are zero (single sample one-tailed t-
tests). The distributions of the pair-wise differences for models
using a BG bias (top row) were positive; that for models using a
Cognitive bias (bottom) were negative; and that for using both
biasing mechanisms (middle) were also negative (though visual
inspection suggests that the Cognitive bias condition has more
extreme negative pair-wise differences than does the combined
bias condition). Thus, this analysis was able to capture the general
trends that were seen in the different bias conditions of the model.

4. DISCUSSION
As described in a recent theory of action discovery (Redgrave and
Gurney, 2006; Redgrave et al., 2008, 2011, 2013; Gurney et al.,
2013), when an unexpected sensory event occurs, animals tran-
sition from executing a variety of movements to repeating move-
ments that may have caused the event. A transition from variation
to repetition often follows non-random, structured patterns that
may be explained with sophisticated cognitive mechanisms (e.g.,
Dearden et al. 1998; Dimitrakakis 2006; Simsek and Barto 2006).
However, in action discovery, simple non-cognitive mechanisms
involving dopamine modulation of basal ganglia (BG) activity
are thought to play a prominent role in behavioral biasing. In
this paper we use a biologically-plausible computational model
to demonstrate that a structured transition from variation to
repetition can emerge from processing within such simple mech-
anisms. Such behavior is due to the following features on which
our model, unlike most previous models of BG function, focuses:
(i) the BG does not bias behavior directly, but modulates cor-
tical response to excitation (Chevalier and Deniau, 1990; Mink,
1996; Humphries and Gurney, 2002; Cohen and Frank, 2009;
Redgrave et al., 2011; Baldassarre et al., 2013); (ii) excitation to
cortex follows a pattern that evolves from weakly exciting all neu-
rons to strongly exciting only one neuron (Britten et al., 1992;
Platt and Glimcher, 1999; Huk and Shadlen, 2005; Bogacz et al.,
2006; Gold and Shadlen, 2007; Lepora et al., 2012). By including
these features in our model, we show that sophisticated cognitive
mechanisms may not always be necessary to develop a structured
transition from variation to repetition.

In our model, movements occur by selecting an end-point
(spatial location) to which to move. Movements that terminated
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FIGURE 10 | Distance from G1 of executed movement (in units of θG ) as

a function of movement number (similar to Figure 5, right) for sample

runs of models using BG-mediated biasing (top row) or Cognitive

biasing (bottom). Color of dot indicates the spatial zone (defined relative to

target center) in which the movement lies. Horizontal lines indicate spatial
zone borders. Vertical lines indicate temporal chunk borders. The parameter b
indicates the rate of decrease of movements falling within each spatial zone.
The more negative b is, the greater the rate of decrease (see text for details).

in a target area were reinforced so that the selection of such
end-points increased in frequency. The transition from executing
a variety of movements to executing just the reinforced move-
ments followed a structured pattern: as end-points at the target
location increased in frequency, end-points near, but not at, the
target location decreased in frequency at a greater rate than end-
points far from the target. We refer to the area around the target
area in which end-point frequency decreased as a “bias zone”
(Figures 4, 10, top), and the bias zone increased in size as the tar-
get was repeatedly hit. The graded shift from variation (a small
bias zone) to repetition (a large bias zone) allows for the discov-
ery of a second target area in some cases (Figure 7), and also
results in specific patterns of behavior if the target area moves
(Figures 8, 9).

In addition, in action discovery, phasic DA activity in response
to achievement of the outcome (e.g., hitting the reinforced target
area) decreases as associative brain areas learn to predict the out-
come’s occurrence (Redgrave and Gurney, 2006; Redgrave et al.,
2008, 2011, 2013; Gurney et al., 2013; Mirolli et al., 2013). This
may be thought of as a type of intrinsic motivation (IM) in that
the outcome need not have hedonic value in order to be rein-
forcing (Oudeyer and Kaplan, 2007; Baldassarre, 2011; Barto,
2013; Barto et al., 2013; Gottlieb et al., 2013; Gurney et al.,
2013). The type of IM in action discovery is best described as
some combination of novelty and surprise (Barto et al., 2013).
A detailed account of exactly how the prediction process may
be implemented in the brain is beyond the scope of this paper.

We mimic its effects in our model with a simple habituation
mechanism similar that used in neural network models of nov-
elty detection (Marsland, 2009). Here, the reinforcing effects of
an outcome with which the model has little recent experience
is greater than the reinforcing effects of an outcome with which
the model has much recent experience. The habituation term
(βNk−1 in equation 1) influences behavioral patterns, particu-
larly in tasks in which more than one target area is reinforced
(Figure 7) or the target area changes (Figures 8, 9). Unlike the
reward prediction error hypothesis of phasic DA neuron activity
(Houk et al., 1995; Schultz et al., 1997), habituation is a mecha-
nism that does not rely on extrinsic motivation by which phasic
DA neuron activity, and hence rate of change of the rate of corti-
costriatal plasticity, decreases with continued occurrences of the
outcome.

We also implement models in which a structured transition
from variation to repetition is that which would be expected if
one type of more sophisticated mechanism (“Cognitive biasing”)
is in effect. The pattern of behavior (Figure 10, bottom) is then
different than that of BG-only biasing. Finally, we have devised a
method for capturing such differences with quantitative measures
(Figures 10, 11) which will allow us to make contact with future
behavioral experiments investigating how different brain areas
contribute to biasing behavior in tasks similar to model tasks. In
continuing work, we are devising such behavioral experiments.
Preliminary results suggest that our quantitative measure will
allow us to compare the effects of different biasing mechanisms
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FIGURE 11 | Comparing redistribution patterns in Experiment 5:

movement redistribution under different bias conditions. Each graph is
a histogram illustrating the distribution of pair-wise differences (by run) of b
parameters of model runs using different bias conditions (arranged by row).
That for b3 − b2 is in the right column (black); that for b2 − b1 is in the left
column (blue). Bin widths and locations were determined as follows: the
minimum and maximum b of all possible b from all analyzed runs from all
conditions defined the range of possible b. This range was divided into 20
evenly-spaced bins of uniform size. The means of the samples of b
parameters were tested according to the hypotheses that they have a
mean μA > 0 or μA < 0 (indicated, along with p value, in each graph).

by examining behavior from different systems (e.g., model versus
human), different workspaces, different target sizes, and differ-
ent target locations, etc. Possible mechanisms by which to isolate
different brain mechanisms include explicit instructions, use of
different stimuli (Thirkettle et al., 2013b), or use of distractor
tasks (Stocco et al., 2009).

As with any computational model of brain systems, the mech-
anisms described in this paper should be viewed as being a part
of a complex system of interacting parts. We’ve isolated the effects
of the specific mechanisms we’ve investigated in order to demon-
strate how a structured transition from variation to repetition can
emerge from those mechanisms. In the next subsection we discuss
the implications of some of these choices in greater detail and how
to expand on them to include more sophisticated systems.

4.1. A MULTI-STAGE SELECTION PROCESS
Recall that, for each movement in our model, the pattern of exci-
tation from “Explorer” to “Cortex” evolves from weakly-exciting
all neurons to strongly-exciting one neuron (referred to as Gexp,
the focus of excitation). The weak excitation of all neurons early
in the evolution allows for corticostriatal plasticity to bias behav-
ior. Behavior can also be biased by the choice of Gexp, the effects of
which are greater later in the evolution. Thus, the evolving exci-
tation pattern from Explorer to Cortex allows for a multi-stage
selection process. We expand on these points below.

Through corticostriatal plasticity and BG selection mecha-
nisms, Cortex neurons that are only weakly excited during the
early stages of excitation from Explorer can increase in activ-
ity at a greater rate than other Cortex neurons. BG selection
mechanisms also enable these neurons to suppress the responses
of other Cortex neurons to subsequent strong excitation (e.g.,
Figure 3). The expanding bias zone (described in Results sec-
tion 3.1 and Figure 4) that is seen in models using BG-mediated
biasing emerges from the pattern of excitation from Explorer to
Cortex. Because the model task was a spatial reaching task, a
topographic representation was used that revealed an apparent
dependency between movements: neurons in Explorer near the
focus of excitation (Gexp) were excited more than neurons far
from the focus.

However, a different pattern may be revealed in other types of
tasks. In general, the pattern of activity is likely to be influenced
by perceptual processing of sensory information. For example,
the theory of affordances (Gibson, 1977, 1986) suggests that the
perception of objects preferentially primes neurons that corre-
spond to actions that can operate on those objects, e.g., the
perception of a mug would prime a grasping action. Thus,
the pattern of excitation in these conditions would preferen-
tially excite those neurons, and excitation may follow a pat-
tern that is different than the one used in this paper. Because
BG modulates how Cortex responds to excitation rather than
directly-exciting movements, any behavioral pattern controlled
by BG-mediated biasing would depend on the pattern of exci-
tation to Cortex. Thus, different patterns of exploration, and
different patterns of a structured transition from variation to
repetition, would be observed in different environments and
tasks.

We envision that more sophisticated mechanisms (e.g., our
Cognitive biasing) can be expressed in our model in the later
part of the evolving excitation pattern of the Explorer, i.e., in how
Gexp is chosen. One such mechanism may search the workspace
in a way that is more intelligent than random, such as a spiral or
raster-like search pattern that does not repeat itself until all possi-
ble movements have been executed. The choice of Gexp could also
be adaptive, including using mechanisms by which a transition
from variation to repetition is governed by mechanisms based
on measures of optimality, uncertainty, or other task-related vari-
ables (Dearden et al., 1998; Daw et al., 2006; Dimitrakakis, 2006;
Simsek and Barto, 2006; Cohen et al., 2007).

Thus, the early part of the evolving excitation pattern from
Explorer to Cortex comprises weak excitation that is influenced by
perception of the environment (e.g., affordances or, in our model,
possible movement locations) or simple mechanisms. The later
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part of the evolution allows for more complicated mechanisms
that may require more processing time to also influence behavior.
We have focused mostly on simple mechanisms in this paper, but
the evolving pattern of excitation can be used to implement pro-
posed theories that focus on multiple influences on behavior, e.g.,
Kawato (1990); Rosenstein and Barto (2004); Daw et al. (2005);
Shah and Barto (2009).

4.2. ACTION DISCOVERY WITH COMPLICATED BEHAVIORS
There are many types of movements or behaviors that can affect
the environment, e.g., making a gesture (regardless of spatial
location), manipulating objects in the environment, or making
a sequence of movements. In this paper we focused on a simple
type of action in which the system, able to select a spatial end-
point of movement, must discover the end-point(s) that delivers
an outcome. On a more abstract level, this is similar to “n-armed
bandit” problems, in which the system must discover which out
of a set of n actions is followed by the most rewarding conse-
quences in a one-step decision task (e.g., Sutton and Barto 1998).
The general process of action discovery (Redgrave and Gurney,
2006; Redgrave et al., 2008, 2011, 2013; Gurney et al., 2013) is also
concerned with discovering the temporal and structural compo-
nents of a complex behavior that affects the environment. These
problems are similar to the those of temporal and structural credit
assignment problems (Minksy, 1961; Sutton, 1984, 1988; Barto,
1985; Sutton and Barto, 1998), which we briefly describe below.

One form of the temporal credit assignment problem is
exposed in systems in which a series of actions is required in
order to achieve an outcome, and there is great redundancy: a
large number of different (but possibly overlapping) sequences
can achieve the outcome. How does the agent discover the most
direct sequence, i.e., the sequence that uses the fewest actions?
This redundancy is often resolved by assigning a cost for each
executed action and using optimal control methods to achieve
the goal while also minimizing cost (e.g., Sutton and Barto
1998). However, optimal control methods, which are designed
to find behavior that minimizes cost according to an arbitrary
cost function, may use mechanisms that are more sophisticated
and complicated than those thought to underly action discov-
ery. Recent modeling work (Shah and Gurney, 2011; Chersi et al.,
2013) has shown that a simpler learning rule that does not incor-
porate cost per action can discover the most direct sequence of
actions in a redundant system. Such behavior remains stable for
a period of time, but, if learning is not attenuated, extraneous
actions are incorporated with extended experience (Shah and
Gurney, 2011).

The structural credit assignment problem is exposed when a
system can execute many actions simultaneously and the out-
come depends only on the simultaneous execution of a small
subset of those. When behavior is composed of several compo-
nents, and the outcome is contingent on only some of those
components, variation allows the animal to determine which
components are relevant and to “weed out” the irrelevant compo-
nents. We have not addressed this problem directly, but previous
work on the structural credit assignment problem in RL offers
promising directions (Barto and Sutton, 1981; Barto et al., 1981;
Barto, 1985; Barto and Anandan, 1985; Gullapalli, 1990).

4.3. CONCLUSION
How biasing causes a transition from variation to repetition so as
to converge on the specific movements that cause an outcome is
a fundamental problem in the process of action discovery. With
a simple model of a restricted aspect of action discovery, which
includes neural processing features not included in most other
models of BG function, we are able to describe the effects of differ-
ent types of behavioral biasing. The results reported in this paper
describe a first step in understanding the more processes at work
in general action discovery.
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A common assumption in psychology, economics, and other fields holds that higher
performance will result if extrinsic rewards (such as money) are offered as an incentive.
While this principle seems to work well for tasks that require the execution of the same
sequence of steps over and over, with little uncertainty about the process, in other cases,
especially where creative problem solving is required due to the difficulty in finding
the optimal sequence of actions, external rewards can actually be detrimental to task
performance. Furthermore, they have the potential to undermine intrinsic motivation to do
an otherwise interesting activity. In this work, we extend a computational model of the
dorsomedial and dorsolateral striatal reinforcement learning systems to account for the
effects of extrinsic and intrinsic rewards. The model assumes that the brain employs both
a goal-directed and a habitual learning system, and competition between both is based
on the trade-off between the cost of the reasoning process and value of information.
The goal-directed system elicits internal rewards when its models of the environment
improve, while the habitual system, being model-free, does not. Our results account
for the phenomena that initial extrinsic reward leads to reduced activity after extinction
compared to the case without any initial extrinsic rewards, and that performance in
complex task settings drops when higher external rewards are promised. We also test
the hypothesis that external rewards bias the competition in favor of the computationally
efficient, but cruder and less flexible habitual system, which can negatively influence
intrinsic motivation and task performance in the class of tasks we consider.

Keywords: striatal models, reinforcement learning model, model-free vs. model-based learning, intrinsic

motivation, extrinsic motivation

1. INTRODUCTION
What motivates intelligent beings to perform certain actions in
their environment is a central question in psychology. The influ-
ential paradigm of operant conditioning by Skinner (1953) held
that all behavior is stimulated by external rewards presented
to an animal. This view was challenged, however, by observa-
tions made by White (1959) that some behaviors are intrinsically
motivated, i.e., they are performed simply because the activ-
ity is intrinsically rewarding. Deci (1971) then examined what
effects external rewards would have on intrinsic motivation and
found that under certain circumstances, extrinsic rewards could
undermine intrinsic motivation. Later on, several studies (see
extensive meta-analytic review by Deci et al., 1999) observed
that external rewards can decrease cognitive flexibility in problem
solving (McGraw and McCullers, 1979), and have the potential to
decrease performance on complex tasks (Erez et al., 1990). These
findings significantly contradicted predictions of earlier theories
such as operant conditioning or utility theory in economics.

To explain these observations, several theoretical accounts
have been put forward [e.g., Cognitive Evaluation Theory by
Deci and Ryan (1985), Attribution Theory by Lepper et al.
(1973), or Self-Determination Theory by Ryan and Deci. (2000)
amongst others] which suggest different cognitive mechanisms to
account for the data. However, it is not clear what computational

mechanisms in the brain could give rise to these phenomena.
A computational model would enable quantitative comparisons
of different hypotheses, test various experimental settings, and
generate predictions for new, untested scenarios.

Here, we provide such a computational model by extending
two previously presented models explaining behavioral control in
the decision systems (Daw et al., 2005), and trade-offs between
habitual and goal-directed brain processes (Keramati et al., 2011).
Both of these models follow a hypothesis from behavioral eco-
nomics, suggesting that two distinct control systems in the brain
compete for control of actions (see e.g., Kahneman and Frederick,
2002). The models are formalized using the framework of rein-
forcement learning (RL, see e.g., Sutton and Barto, 1998), and
it is assumed that one controller uses computationally efficient
model-free RL, whereas the other one uses statistically efficient
model-based RL algorithms. The model-free system represents
a habitual process, implementing a cache of efficient actions
for a given situation, while the model-based system realizes a
goal-directed process by searching a tree of recorded state-action
transition probabilities for alternative choices. Both computa-
tional models could account for several phenomena from animal
experiments designed to test devaluation resistance, including
habituation after extensive training, non-habituation in ambiva-
lent tasks, and habituation in preference tasks. Our proposed
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model is a mixture of both earlier models (see below for details),
and, for the first time, connects them to intrinsic rewards for
the model-based goal-directed subsystem. With this extension, we
aim to explain three additional phenomena which the previous
models could not account for.

1.1. ACTIVITY WITHOUT EXTRINSIC REWARD
When dealing with a creative or complex system, both humans
and animals can be observed to interact (to “play”) with it even if
no extrinsic reward whatsoever is being provided or promised.

1.2. REDUCED POST-EXTINCTION ACTIVITY
In creative tasks, the presence of strong extrinsic rewards can
lead to diminished activity after said rewards have been deval-
ued. More specifically, the activity will be lower than it would
have been had the subject never received any extrinsic reward in
the first place (Deci, 1971). Strong extrinsic rewards are therefore
expected to suppress intrinsic motivation.

1.3. EFFECTS OF PROMISED EXTERNAL REWARDS
It has been observed that the promise of strong extrinsic rewards
for a certain level of task performance does not only lead to
diminished activity during creative problem solving as described
above, but in fact also leads to inferior final performance on tasks
involving cognitive skills (Ariely et al., 2009).

2. MATERIALS AND METHODS
Since our model is an extension of the work by Daw et al. (2005)
and Keramati et al. (2011) on striatal competition, we first give a
brief description of their respective approaches. After that, we will
detail the changes that were newly introduced in detail.

2.1. STRIATAL COMPETITION
Both previous models intend to give a formal account of the deci-
sion system and its division into a goal-directed and a habitual
module. The former realizes a model-based “tree” system that
gradually builds a comprehensive model of the task, which can
then be used to find an optimal sequence of steps that results in
the greatest reward for a given task. In contrast, the habitual sys-
tem learns in a model-free fashion as a “cache,” retaining only the
knowledge of which possible action in a given situation promises
a higher final payoff, but does not record which subsequent state
the action would lead to. This makes it computationally cheaper
than the goal-directed system, but also less adaptive to changes in
the environment.

In Daw et al. (2005), these systems are assumed to be located
in the prefrontal cortex and the dorsolateral striatum, respectively.
While newer studies have placed the goal-directed system in the
dorsomedial striatum (Yin et al., 2005), the functional distinction
between the two types of system remains unchallenged.

Reproducing these aspects in the models allows them to
explain several observations regarding habituation in animals.
Specifically, it was found by Killcross and Coutureau (2003) as
well as Holland (2004) that if a rat performs a simple lever-
pulling task long enough that generates a food reward, it will
become resistant to devaluation. Even if the food reward is being
negated (via poison), the animal will continue performing the

same sequence of actions. If the devaluation occurs after only
moderate training, no such resistance occurs, and the rat will
immediately adapt its behavior.

It was argued that the observed effects are caused by the
competition between both modules. The adaptable goal-directed
system is active initially, but replaced by the habitual system after
extended training, at which point the agent becomes resistant to
devaluation. The main difference between the two models lies
in the specific competition mechanism used to arbitrate between
both systems.

2.1.1. Uncertainty-based competition
In the earlier model by Daw et al. (2005), it is assumed that
the system is chosen which is more certain about the action
to be taken. To determine uncertainty, both the model-based
and the model-free system are implemented using Bayesian
Reinforcement Learning Dearden et al., 1998, Mannor et al., 2004.
Therefore, rather than learning Q-values for a given state, they
assume a prior (Beta) distribution over Q-values for each entry
in the Q-table. Bayesian updates are then used to calculate the
posterior distribution based on the experience during learning.
Likewise, the transition function and the terminal reward func-
tion employed by the model-based subsystem are also tables of
distributions. A policy is then generated through tree-search on
this model, which is realized by performing Value Iteration on a
Q-function initialized to the reward function.

When the system enters some state s, the value distribution
Qs, a is determined for each available action a. For each a, either
the goal-directed or the habitual system’s estimate of Qs, a is used.
The system that provides the Q-distribution is chosen depending
on which one has the lower variance σ2 :

Q∗s, a =
{

Qtree
s, a if (σ2

s, a)tree < (σ2
s, a)cache

Qcache
s, a otherwise

(1)

After selecting the more confident system for each action, the
actual action to be performed is chosen through Boltzmann
exploration over the Q-distributions’ means μ∗, parameterized
by the softmax parameter β .

P(a = ai|s) ∝ eβμ∗s, ai (2)

At each time step, all distribution parameters decay exponentially
with a forgetting factor θto their priors, thus keeping the system
capable of learning from new experiences even after long training
durations.

Since the tree-search is performed until convergence at each
time step, a sudden change in the reward model resulting from
a devaluation event will immediately be propagated all the way
through the state space. In contrast, the model-free system will
have to perform the original sequence several times to register
a change in the terminal state’s value in the starting state. The
habitual system becomes dominant after extended training, but
not after moderate one, since its variance decreases more slowly
than that of the goal-directed system. Thus, the model accounts
for the empirical findings.
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2.1.2. Value-based competition
Keramati et al. (2011) modify the basic approach of Daw et al.
(2005) by using the value of perfect information (VPI) instead
of uncertainty. Here, the model-free system computes how much
value would be gained from knowing the true value of a given
action. Such knowledge would only have value if it allows the
agent to improve its policy. Therefore, it should reveal that the
previously preferred action is not in fact optimal, either by show-
ing that its true value is less than thought, or that another action
promises higher rewards. Formally, the gain G of knowing that
an action ahas the value Qs, a = x can be computed as follows,
where the calculation differs depending on whether ais the opti-
mal action a1 or second best action a2 as judged by the habitual
system thus far.

Gs, a(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Qcache
s, a2
− x if a = a1 and

x < Qcache
s, a2

x − Qcache
s, a1

if a �= a1 and

x > Qcache
s, a1

0 otherwise

(3)

The VPI is then simply given by the expected Gain over the
distribution of possible values that Qs, a can take.

VPI(s, a) = E[Gs, a(x)] (4)

Intuitively and generally speaking, this value is higher if an
action’s Q-distribution overlaps strongly with the best action,
since in this case the former may turn out to be preferable.
Conversely, once the distributions have separated, knowing the
true value of an action is unlikely to change which one is ulti-
mately chosen.

Once computed, the VPI is compared against the costs of
opportunity for performing a tree-search, denoted by R̄τ, with
R̄ being the expected average reward and τbeing the cost in terms
of deliberation time for traversing an edge of the tree.

Q∗s, a =
{

Qtree
s, a if VPI(s, a) > R̄τ

Qcache
s, a otherwise

(5)

Only if the VPI is higher than the opportunity costs is the model-
based system activated to determine the true reward. The winning
system’s estimate is then used for action selection. Since deter-
mining the VPI does not involve the goal-directed system in any
way, this approach better adheres to the assumption that using the
habitual system is less time-intensive.

Finally, the average reward R̄ is updated with new observations
rusing learning rate η :

R̄t+ 1 = (1− η)R̄t + ηrt (6)

One advantage of using the VPI instead of both modules’ uncer-
tainty lies primarily in considerations of speed. Since the VPI
can be computed purely from the habitual system’s uncertainty
about the value distribution, thus often eliminating the need

for the costly computations required when activating the goal-
directed system. In contrast, the previous model always required
the calculation of the goal-directed system’s uncertainty and
value. Without the ability to speed up the decision process, that
would raise the issue of why a habitual module should even have
evolved.

It is worth noting that the goal-directed system used both here
and by Keramati et al. (2011) does not initially provide perfect
value estimates, making the term “value of perfect information”
somewhat incorrect. As such, it may not fulfill its purpose of
improving the action choices at the very beginning of the learning
process. However, its ability to reason globally allows it to learn
sensible actions from fewer observations than the rigid cache, and
thus to provide value estimates soon.

2.2. MODEL EXTENSION
Aside from using a mixture of the features present in our prede-
cessor models, there are two major extensions in our model that
were not present in its predecessors, which will be described in
detail in the following.

2.2.1. Intrinsic rewards
The main contribution of our model lies in its extension with a
mechanism for intrinsic motivation. The central feature of intrin-
sic rewards lies in that their value depends on the current state
of the model, as opposed to extrinsic rewards that are provided
by the process or environment. As such, intrinsic rewards can
notably arise only in the goal-directed system, and are not applied
to the habitual one.

Currently we consider only one of multiple types of intrin-
sic reward, namely the learning progress of the transition model
(similar to Oudeyer et al., 2007). Learning progress is based
on the intuition that a system should explore regions where it
can currently learn the most based on the state of its internal
models, i.e., make the largest progress at improving its mod-
els. In contrast, simple metrics based on surprise are prone to
get stuck in completely unpredictable situations which is avoided
by rewarding progress (i.e., reduction of surprise over time)
instead. There are other proposed aspects to intrinsic moti-
vation, such as competence-based and information-theoretical
mechanisms (for an overview, see section 4.1), but we focus
on progress for the sake of simplicity, as it already accounts
for the phenomena we consider by itself. As measure of learn-
ing progress we use the magnitude of shifts in the means
of the transition function’s distributions. Formally, the intrin-
sic reward I for choosing action ain state sis given by the
equation:

Is, a = ι
∑
s′ ∈ S

|�μtrans
s, a, s′ | (7)

Here, ι is a factor used to accentuate the intrinsic rewards and
bring them into the same order of magnitude as the extrinsic
ones.

I is then added to the result of the tree-search:

Q̃
tree
s, a := Qtree

s, a + Is, a (8)
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The resulting Q-values Q̃
tree

are then used in place of those deter-
mined by the search for the purpose of subsystem selection and
exploration.

At this point, one may wonder why, from among the many
alternative types of intrinsic motivation, we choose �μtrans rather
than �(σ2)trans, which provides a more meaningful measure of
learning progress. Our model provides the variance readily, but
when using Dirichlet distributions with a large number of states,
the variance is not a useful metric. This is because shifts in vari-
ance for observations that have or have not been made before
differ very little. Only once the transition model is nearly stable
will unexpected observations cause a distinct shift. However, by
that time, the intrinsic rewards will be too low to have significant
influence on action selection anyway.

2.2.2. Transition costs
Aside from intrinsic rewards, we also introduce transition costs.
While a common element of RL and formalized in the Bellman
Equation (see Sutton and Barto, 1998), they were not present
in the model by Daw et al. (2005). Instead, the entire terminal
reward of a trajectory was propagated all the way to the starting
state.

By accommodating them, we enable the model to acquire
minimum-time policies in tasks where trajectories can contain
loops. Most importantly, transition costs can also be chosen
differently for each action, thereby modeling energy conservation.

It is worth noting that action-based transition costs do not
fall cleanly into the distinction between extrinsic and intrin-
sic rewards. Traditionally considered extrinsic rewards, they are
likewise applied to the habitual system, as opposed to intrin-
sic rewards, which due to being model-based can naturally only
occur within the goal-directed system. On the other hand, they
mimic intrinsic rewards in that they are essentially inherent—
one may be tempted to say “intrinsic”—to the agent. Action costs
are not provided by the environment, and can thus be assumed
to occur even when other extrinsic rewards do not. To avoid
confusion, we will dub them action rewards in the following
and mention explicitly when they are used and when not, since
their appearance is not bound to either of the two major reward
types.

Applying transition costs can easily be done during both tree-
search and update of the habitual system by adding them to the
discounted extrinsic reward that would result from choosing the
optimal action a∗ in the successor state s′. Doing so yields a new
target mean μ̂ :

μ̂s, a = γμs′, a∗ + ra (9)

The update rule for the distribution parameters also requires the
second moments of the successor states’ Beta distributions. We
therefore generate a new distribution Q̂s, a = Beta(α̂, β̂) with the
target mean μ̂s, a , from which we can then infer these moments.
Between its parameters, the following relationship must hold:

α̂

μ̂
= β̂

1− μ̂
(10)

Thus, we need to fix one of the Beta parameters to determine the
other. Depending on which one is chosen, the distribution’s vari-
ance may either increase or decrease, as illustrated in Figure 1.
Under the reasonable assumption that every step of tree-search
introduces additional uncertainty, we choose whichever would
cause a variance increase.

The resulting Q̂s, a is then used for the computation of the
new distribution parameters. Analogously to Daw et al. (2005),
they are updated using a mixture rule derived from Dearden et al.
(1998).

∫ 1

0
Beta(αs, a + x, βs, a + (1− x))Q̂s, a(x) dx (11)

Details on the closed-form update can be found in the supple-
mental material to Daw et al. (2005).

2.2.3. Model mixture
Like Keramati et al. (2011), we use the VPI to mediate between
the goal-directed and the habitual subsystem. The alternative
approach of using the variance of the Q-function’s estimates
would not be plausible in a framework containing intrinsic
rewards. Intrinsic motivation is generally assumed to be high

FIGURE 1 | Illustration of the relationship between Beta parameters

for a given positive mean shift of an arbitrary distribution (left).

If α is fixed (middle), the lower β results in a flatter distribution

with higher variance. Conversely, fixing β would reduce the variance
(right). For action costs, i.e., negative action rewards, the effects are
reversed.
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for regions of the state space in which the model has not been
learned yet. In these regions, the goal-directed system’s variance
will also be particularly high (Oudeyer and Kaplan, 2007). If
the goal-directed system’s variance is involved in the competition
mechanism, this will lead to it being rejected in precisely those
situations when intrinsic motivation is high, thereby neutralizing
the effect of the latter.

From the original approach by Daw et al. (2005) we retain the
use of Beta and Dirichlet distributions to represent the model and
the policies learned by the agent, as opposed to the Gaussians
used by Keramati et al. (2011). Using a Beta distribution for
the policy carries the advantage that its probability density func-
tion can have two peaks, as illustrated in Figure 2. Therefore,
it is able to represent a limited amount of ambiguity arising
from non-determinism, while single-peaked Gaussians model
only uncertainty. Since their range is constrained in the interval
[0; 1], we can simply compute the integral of the VPI by sampling.

E[Gs, a(x)] =
∫ 1

0
Gs, a(x)P(Qcache

s, a = x) dx (12)

Instead of Boltzmann exploration, we employ ε-greedy explo-
ration when choosing an action, i.e., at each decision point, a
random action is uniformly sampled from the options with prob-
ability ε. This approach was chosen because given more complex
tasks, the different learning speed of both subsystems may cause
their Q-values to be of considerably different magnitude. In such
cases, Boltzmann exploration is implausible, as it would virtually
eliminate the chance of attempting an underestimated action, and
thus prevent the system from learning its true value.

3. RESULTS
Our model is evaluated in a number of settings, which can be
divided into two broad classes. The first consists of variations
of a simple feeder task, identical to those by Daw et al. (2005),

FIGURE 2 | Unlike a Gaussian, a Beta distribution can represent both

double-peaked (with α , β < 1) and single-peaked (with α , β > 1)

distributions.

which are to show that even with the modifications introduced
here, the model still reproduces the basic devaluation resis-
tance effects of its predecessors. Afterward, we will examine our
central phenomena related to intrinsic motivation and activity
in a more complex, “creative” task. Here, we take creative to
mean a problem that requires a long chain of actions to solve,
where each action does not cause a visible approach toward
the goal.

3.1. DEVALUATION RESISTANCE
Daw et al. (2005) and Keramati et al. (2011) mostly examined
their respective models using a decision task inspired by exper-
iments with rats (Holland, 2004, Killcross and Coutureau, 2003),
where the animals needed to manipulate a feeding apparatus in
a short sequence to generate a reward. Those sequences had a
maximum length of two decision points, and either two or three
possible actions were available.

The first, simpler variant of the task allows the agent to choose
between two actions, representing a lever press and a magazine
entry. Only a press followed by an entry generates any reward,
while any other sequence leads to a restart. In a second variation
of moderate difficulty, there is an additional chain-pulling action,
which, if followed by a magazine entry, leads to a different, but
equivalent, extrinsic reward.

We perform the same series of experiments, with largely iden-
tical parametrization. Those that were changed, as well as newly
introduced ones, are summarized in Table 1.

To examine the system’s habituation, we devalue the goal state
that is reached through the lever press by resetting its extrinsic
reward distribution to Beta(1, 15). This is done after both mod-
erate (20 episodes) and extensive training (200 episodes), and the
changes in the ratio at which the lever is pressed is observed. In the
moderately difficult setting, the devaluation takes place slightly
later after 240 episodes to account for the more difficult task.

The results for all settings, summarized in Figure 3, are con-
sistent with those of the predecessor models. While the system
generally reacts more quickly to an early devaluation in the simple
setting, its behavior does not change readily after extensive train-
ing, due to the inflexible habitual system having become active.
The effect of early devaluations exhibits a much higher variance,
which is to be expected; considering the random nature of explo-
ration, the degree to which the system has learned the optimal
policy and become habituated can differ considerably after a mere
30 episodes.

The speed of adaption mirrors the rate at which the goal-
directed system was used around the time of devaluation, as
Figure 4 illustrates. In the moderate task, the ambiguity of the
two available actions causes a persistently high VPI and thus
a continued use of the goal-directed system. Coupled with the

Table 1 | Default parameters that were used in the feeder task.

Parameter Symbol Value

Search costs τ 0.1

Exploration ε 0.2

Intrinsic reward factor ι 2.0
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high accuracy of the transition model after extended train-
ing, this allows the agent to switch to the chain-pulling action
immediately.

3.2. REWARD-BASED ACTIVITY
The above feeding tasks consist only of very few states and actions,
making them too simple to showcase those phenomena related
specifically to intrinsic motivation. We therefore consider a more
complex setting, adapted from the Playroom environment used

FIGURE 3 | Post-devaluation frequency of choosing the lever press

action in the starting state. Values are relative to their respective
pre-devaluation rates. Comparisons are between the 100 cycles before and
after the devaluation for the late settings, and 20 cycles for the early one.
Note that action choices are determined before exploration, hence the
sharp drop in the moderate task.

FIGURE 4 | Development of the ratio of selecting the habitual system

over the goal-directed one in the starting state in the rat experiment.

Ratios in each time step were averaged across 100 runs. Devaluation points
are marked using dashed lines in the matching color.

by Singh et al. (2005), albeit simplified to accommodate the use
of exact inference Bayesian RL.

In this task, the agent has to learn to manipulate a number
of objects, each of which causes a different effect when used. A
blue box can be used to start playing music, while a red one
stops it. A switch toggles the lighting of the room, which causes
the colored boxes to become indistinguishable. Lastly, there is
a toy monkey, which does not cause any effect and serves as a
neutral distractor. These objects need to be used in a specific
sequence to bring about some desired goal state, which differs
between experiments. Generally, the goal is to turn the music on
and the light off, with additional success requirements in some
settings.

The agent possesses a hand and an eye, both of which must
rest on an object for it to become usable. Aside from performing
an object affordance, the agent can also move its eye to a random
object, bring the hand to the object the eye is resting on, or per-
form a null action that has no effect whatsoever. The null action
generates a small positive action reward, unlike the other actions
which cause negative ones. We thereby model an agent’s general
tendency to prefer the action that exerts the least effort.

While still simple for a task aimed at intrinsic motivation, it is
considerably more complex than the food dispensal experiments.
Most notably, trajectories can be cyclic, and one of the actions
is non-deterministic. In addition, the partial observability of the
state when the light is off can lead to local minima in the policy.

In this framework, we observe the behavior of the system using
different combinations of intrinsic and extrinsic rewards, and
determine whether the phenomena described in section 1 can be
reproduced. Action rewards are present in all cases.

Unless noted differently, the system was parameterized as
in Table 2. Most notably, the forgetting factor θ, the reward
horizon η and the Dirichlet initialization αi were adjusted to
account for the longer episodes and more complex process model;
otherwise, the system would forget old experiences faster than
it could collect new ones. The action rewards ra were always
very slightly positive (0.005) for the null action, and nega-
tive (−0.02) for all others. They thereby model the intuitive
assumption that if doing nothing promises the same reward as
performing an action, the null action should be preferred. At
the same time, the use of the null action should not accumu-
late too high action rewards, lest it overshadow those arising in
the terminal states, where a terminal extrinsic reward of 1 was
given.

Table 2 | Default parameters that were used in the Playroom task

unless noted otherwise.

Parameter Symbol Value

Forgetting factor θ 0.9999

Search costs τ 0.1

Update rate of avg. reward η 0.001

Exploration ε 0.2

Intrinsic reward factor ι 2.0

Initial transition model αi 0.1

Reward discount factor γ 0.95
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3.2.1. Activity without extrinsic rewards
A first experiment compares the activity of the system with and
without intrinsic rewards. In this setting, there are no external
rewards whatsoever, aside from the action-dependent transi-
tion costs. One would intuitively expect the overall activity, i.e.,
the occurrence of non-null actions, to be increased when using
intrinsic rewards—higher motivation should naturally lead to
more activity. And indeed, as Figure 5 illustrates, their use leads
to a significantly lower rate at which the null action is chosen.

The activity with intrinsic motivation drops to a similar level
as without it only after extensive training, once the model has
stabilized and no more intrinsic reward can be generated. This
effect seems plausible as well, seeing as how even a motivated indi-
vidual will eventually cease playing or being otherwise active. It
is caused by the retaining of action-dependent costs, which will
always cause the system to settle on the null action in the end.

3.2.2. Post-extinction activity
To show that stronger extrinsic rewards lead to less activity, as pro-
posed in section 1.2, we next have the system learn a policy while
providing the maximum extrinsic reward upon entering the goal
state s+. In this case, s+ is reached by having the music turned
on and the lights off. We devalue it either after 50 or after 200
episodes of training by replacing the distribution of the extrinsic
reward model for the goal state with the Beta distribution Beta(1,
15). The parameters of the replacement distribution were chosen
in accordance with Daw et al. (2005) in such a way as to con-
centrate most of the probability mass at 0. Note that we devalue
the goal, rather than merely extinguishing its extrinsic reward,
under the assumption that for higher-level intelligent agents, an
extinction will be registered immediately, like a devaluation.

FIGURE 5 | Development of the percentage of non-null action choices,

with and without intrinsic rewards. Curves are based on the theoretical
greedy choice of action, even in the 20% of cycles in which an ε-greedy
exploratory action was ultimately used. Ratios were determined across
bins of 200 samples and smoothed using locally weighted scatterplot
smoothing.

If the devaluation occurs early, the post-devaluation activity
drops sharply compared to its earlier level, as shown in Figure 6.
In contrast, the purely intrinsic system remains active during the
same time period. Only considerably later, once all intrinsic moti-
vation in the model has been exhausted, does it become as inactive
as the system using extrinsic rewards does after the devaluation.

The lowered activity is in fact caused by the re-activation of
the goal-directed system. As the costs of opportunity for perform-
ing a tree-search decrease, it takes over from the habitual system
as seen in Figure 7. The previous takeover of the habitual sys-
tem caused the agent to be active mostly in a limited region of
the state space, as any exploration attempts were cut short by the

FIGURE 6 | Percentage of non-null actions chosen by the system using

both intrinsic and extrinsic rewards, compared to activity using only

intrinsic motivation. The goal state is devalued after episodes 50 and 200.

FIGURE 7 | Ratio of how often the habitual system is selected vs. the

goal-directed one, when using both intrinsic and extrinsic rewards.

The vertical lines mark the times of devaluation at 50 and 200 episodes.
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habitual system’s drive to reach the goal. Consequently, the model
in this area of the state space is very accurate already. Therefore,
no intrinsic reward is generated anymore, and the goal-directed
system will not deviate from its path once having taken over.
Essentially, due to the prolonged activation of the habitual sys-
tem, the intrinsic motivation will have been exhausted without
having the chance to cause any increased exploration and activity.

Also note that in Figure 6 the purely intrinsic setting results in
slightly lower initial activity than the pre-devaluation case. This
observation seems plausible, since a system not driven by extrinsic
rewards would be more likely to try the sub-optimal null action
to improve its model.

3.2.3. Scope of motivation
One assumption we made was the local scope of intrinsic moti-
vation. In accordance with Equation (8), the intrinsic reward I
is only applied to the final Qtree after the tree-search. Therefore,
only the progress in the transition model out of the current state
is considered when generating I .

One possible alternative would be to not consider intrinsic
rewards locally, but globally, by applying them to the target mean
already during tree-search. To do so, one would merely have to
revise Equation (9) to

μ̂
tree
s, a = μtree

s′, a∗ + ra + Is, a (13)

This should drive the agent more strongly into areas of the state
space it has not observed yet, facilitating the acquisition of a better
model.

However, the assumption of global intrinsic rewards is incon-
sistent with the empirical findings. Figure 8 compares the post-
devaluation activity between both approaches, and it becomes
clearly apparent that the previously observed reduction in activity
becomes much less pronounced when using global motivation.

FIGURE 8 | Relative amounts of non-null action after devaluation for

local (left) and global (right) intrinsic rewards. Activities are normalized
to the pre-devaluation level.

3.3. SYSTEM PERFORMANCE
While intrinsic rewards as modeled here account for the above
activity phenomena, there have been no considerations of learn-
ing performance. Therefore, we also perform a number of exper-
iments in the same setting as before to examine the overall
performance of the system.

3.3.1. Model acquisition
Clearly, a sensible model of intrinsic rewards should also justify
their existence, as one would expect them to aid learning in some
manner.

We thus test the system with and without intrinsic motivation
in a task in which we change the goal state after a period of train-
ing. Initially, the agent receives an extrinsic reward for turning
on the music and switching off the light as before, regardless of
where the hand and eye are placed when the two conditions are
met. After 200 episodes, one variation of the goal is devalued: if
hand and eye are on a box when the music and light conditions
have been met (i.e., if the light has been left off), no more extrin-
sic reward is given. The other possibility of having the hand and
eye on the switch at the time, i.e., (turning the light on before
manipulating the music, then turning it off again) remains as
before. The first combination, which we will refer to as the proxi-
mal goal, can be potentially reached in as little as three steps, while
the second distal goal requires three times as many.

The setup is repeated both using intrinsic rewards and using
only extrinsic ones. We observe the frequency at which the agent
manages to reach the remaining goal state after the devalua-
tion. While it almost never enters the distal when only extrinsic
rewards are given, it does manage to do so more often if using
intrinsic motivation. The effect is not completely independent of
the ε-greedy exploration; as figure Figure 9 illustrates, even the
intrinsically motivated system fails to find the distal goal in case of
too low a value for ε. Similarly, excessive over-exploration causes

FIGURE 9 | Comparison of the number of times the agent reaches the

distal goal after devaluation during 100 test episodes, with and

without intrinsic rewards, for different exploration rates.
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the performance to drop as well, as it prevents the agent from per-
forming its learned policy. Regardless, the system clearly performs
better with intrinsic reward than without, and this effect is even
more pronounced if using slightly lower values for ε.

The results can be explained by the intrinsically motivated sys-
tem’s drive to better explore the state space. Thus, it possesses a
higher change of finding the distal goal state. Ideally, the agent
should then directly learn to prefer the distal route, as it provides a
guaranteed extrinsic reward—unlike the proximal one, due to the
inability to differentiate the box colors while the light is off. But
even if it does not, having seen this alternate goal would enable it
to immediately switch over to it once the devaluation occurs.

3.3.2. Effects of promised rewards
As a final experiment, we examine how the model accounts for
phenomena related to promises of extrinsic rewards. As observed
by Ariely et al. (2009), a high expectation of being rewarded later
upon completion of a task can actually reduce an agent’s per-
formance in complex tasks compared to a purely intrinsically
motivated individual.

A reasonable assumption to simulate promises of later rewards
seems to be to fix the average reward R̄ at 1, i.e., treat the promise
of extrinsic rewards just the same as their observation. We thus
take R̄ as the expected reward, rather than the observed average. In
fact, this assumption is closer to those of Niv et al. (2007), whose
model of tonic dopamine levels Keramati et al. (2011) have based
the concept of R̄ on.

The conditions with and without fixed R̄ are compared with
respect to both the time spent on reasoning processes and the abil-
ity to learn a task. We also test in two different settings of distinct
difficulty, both of which require the agent to turn the music on
and the light off while looking at the blue box. In the distal task,
the agent starts in the same configuration as before, with light and
music off, while in the proximal setting, the music is already play-
ing and the light is on, requiring it to perform a much simpler
sequence of actions.

The results for 300 episodes of training are summarized in
Figure 10. Using promises of extrinsic reward reduces the amount
of time spent on tree-searches significantly, particularly in the
distal setting. However, the speed improvement also comes at a
drastic decrease in performance in complex tasks, with the fixed
R̄ completely preventing the agent from solving the distal case.

It should be noted that this behavior does not result from our
additions to the model, but would already have been present in
that of Keramati et al. (2011) using the slightly changed interpre-
tation of R̄ adopted here. It is included here mostly because it has
been ignored in the prior work, despite its noteworthy consistency
with the empirical findings of Ariely et al. (2009).

4. DISCUSSION
We have proposed an extension to two previous models of the
striatal learning system that introduces the concept of intrinsic
motivation. By assigning additional intrinsic rewards for higher
learning progress, we were able to reproduce several additional
empirical phenomena that were not covered by our predecessors.
In particular, we account for the fact that the presence of intrinsic
motivation predictably raises the overall activity, but that it can be

FIGURE 10 | Comparison of performance (left) and speed (right)

between systems with promised extrinsic rewards (dark gray) and

with only observed rewards (light gray). As one tree-search takes an
average of 350 ms, compared to less than a millisecond needed for
querying the habitual system, the number of tree-searches is directly
proportional to the total time.

suppressed by high extrinsic rewards in turn. We have also shown
that intrinsic rewards lead to better system performance in more
complex tasks requiring creative solutions.

Of course, there are always aspects of the model that could be
improved or require clarification, as well as behaviors that have
not been examined empirically yet. These will be discussed in
more detail in the following.

4.1. COMPUTATIONAL INTRINSIC MOTIVATION AND RELATED
BIOLOGICAL MODELS

The principles of intrinsically motivated learning have
gained increasing interest in the field of computational RL.
Formalization of different aspects of intrinsic motivation, such as
curiosity or competence, are expected to provide general, task-
independent mechanisms that let artificial agents explore their
own skills and their environment efficiently and autonomously.
Furthermore, the models, which the agents build through envi-
ronment interaction guided by intrinsic motivations, promise to
enable improved adaptability to environmental changes or new
task requirements.

Starting with the pioneering work of Schmidhuber (1991a,b),
who introduced curious model-building controllers that got
rewarded strongest for (near-mismatches of) predictions about
the world, to Singh et al. (2005) who used internal reward signals
proportional to the agent’s error in predicting salient events in
a related way, many approaches that tried to formalize notions
of interestingness, curiosity, competence, and improvement of
an agent’s model about the world have been proposed [e.g.,
by Oudeyer et al. (2007), Schembri et al. (2007), Schmidhuber
(2008), Baranes and Oudeyer (2009), and Grzyb et al. (2011)].
Here, our focus is on computational mechanisms that could
explain phenomena observed in the psychology literature, i.e.,
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on cognitive modeling, rather than proposing general-purpose
reward mechanisms. A full overview of approaches from the com-
putational RL literature is therefore beyond the scope of this
article. Surveys for this purpose, however, such as Oudeyer and
Kaplan (2007) and Schmidhuber (2010), as well as the recent
book by Baldassarre and Mirolli (2013) give a much more com-
plete picture in this regard.

Recent models dealing with aspects of intrinsic motivation
from a biological perspective include those in Bolado-Gomez
and Gurney (2013) and Mirolli et al. (2013). Both of these pro-
pose a role for the phasic dopamine signal from dopaminergic
neurons in the brain, and both strive for consistency with neuro-
scientific data. In Bolado-Gomez and Gurney (2013) the authors
suggest that this signal indicates surprising actions outcomes,
and that objects associated with such outcomes acquire a novelty
salience. They show that these signals can be used by an agent for
the purpose of action discovery. In Mirolli et al. (2013), on the
other hand, it is proposed that phasic dopamine signals reward
prediction errors which are shaped by two different kinds of rein-
forcers: temporary, internal rewards for unexpected stimuli the
agent experiences, and permanent, external rewards of a biologi-
cal nature. Based on this assumption, phasic dopamine can drive
both discovery and learning of new actions in a unified way. The
model we present here also relies on an internal reinforcer which
the agent can perceive in case its model of the world changes (see
below). However, at this point, we do not identify the exact source
of this signal. In future studies, it might be interesting to examine
whether our proposed mechanism would fit the empirical data
about phasic dopamine release though.

4.1.1. Alternative mechanisms of motivation
The underlying assumption behind our concept of intrinsic moti-
vation is higher learning progress yields increased rewards. To
measure progress, we observed shifts in the model’s distribution
means. This approach is inferior to tracking reductions in the dis-
tribution variance, as it does not allow us to differentiate between
actual learning progress and cases where the model simply can-
not be learned, for instance due to non-determinism. However, as
described in section 2.2.1, the variance cannot be used when using
Dirichlet distributions. Therefore, future improvements should
try to either replace the distribution type used, or examine if alter-
nate types of intrinsic motivation still exhibit the same behavioral
effects.

4.1.2. Applicability to larger problems
In this work, we were focused purely on the explanation of empir-
ical phenomena. For the sake of a clean theory, we used exact
inference Bayesian RL. However, this approach quickly becomes
intractable when applied to more complex problems. Both from a
pragmatic standpoint as well as from a theoretical one—after all,
rats and humans are capable of solving problems more difficult
than pressing a lever or manipulating a small number of objects
in sequence—it would therefore be desirable to replace it with
approximative methods. Ideally, the observed phenomena should
remain in that case. The ability to solve more complex tasks would
also enable us to truly examine the validity of the model and of
different hypotheses of motivation quantitatively.

4.1.3. Isolated treatment of actions
In our model, just like in those of our predecessors, we assume
that the choice between the habitual and the goal-directed
system is made independently for each available action, and
only afterward exploration is performed over the resulting Q-
values. Therefore, once the VPI approaches the threshold R̄τ,
the habitual system may take over for single actions, but not
for others. This can potentially lead to sub-optimal behav-
ior if both systems learn at different speeds, as is often the
case for complex tasks. If, then, the goal-directed system has
a lower estimate than the habitual one, its prediction will be
disregarded during exploration, despite generally being more
accurate.

While this effect does not usually prevent learning, as either
the sub-optimal action will also drop to its true level over time, or
its VPI will decrease below threshold, this may reduce the speed at
which the system learns to solve a task. Thus, for practical applica-
tions, one might either use the goal-directed system to determine
all actions’ values if even one calls for it, or re-calculate the VPI
for all actions immediately after performing a tree-search. These
approaches should still account for all observed phenomena, and
may be worth examining in future works.

4.1.4. Integration with other models
A model for the division of the decision-making system in
rats has also been proposed by Caluwaerts et al. (2012), albeit
with the goal of explaining a different type of behavior entirely,
namely navigation. While their design of a learning arbitration
mechanism does not readily afford a speed/accuracy trade-off
as introduced by Keramati et al. (2011), their use of learn-
ing progress to detect context changes (i.e., a shift in the
goal state) could prove compatible with our model and poten-
tially be employed to replace the explicit devaluation used
so far.

4.2. PARAMETRIZATION
The model was generally designed to be robust to the choice
of its parameters. Usually, their exact values should only affect
the speed at which the system learns and the time at which the
observed phenomena occur. However, there are a few parameters
that influence the principal behavior of the system.

4.2.1. Search costs
In our model, we adopted the VPI-based competition mech-
anism of Keramati et al. (2011) for its high plausibility and
larger compatibility with intrinsic rewards. It should, however,
be noted that the choice of the active subsystem in Equation
(5) depends heavily on the search costs τ. Since the habitual
system’s value distributions may always overlap to some extent,
the VPI will generally converge to some non-zero value. Thus,
if τis chosen too small, the habitual system may never become
active as the tree-search can be performed practically for free.
Conversely, too high a search cost will prevent the goal-directed
system from being chosen. The fact that the same setting of
τ = 0.1 can be used both for the simple feeder task and the
more complex Playroom suggests that the admissible range of
τis wide enough to not require an exhaustive search. Even so,
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in principle it may be necessary to choose τappropriately in
different tasks.

4.2.2. Forgetting factor
One aspect that the system is fairly dependent on is the forget-
ting factor θ. With θ = 0.98, as used by Daw et al. (2005), it is
impossible to learn a task as complex as the Playroom setting,
since the distribution parameters will usually decay back to their
priors faster than new experiences are acquired. This requires us
to tune the parameter closely to the task complexity.

In this work, we settled for a setting of θ = 0.9999, there-
fore practically turning parameter decay off. This approach comes
at a cost, in turn, as it makes it difficult to change the sys-
tem’s behavior after a while. Once the distributions have stabi-
lized after extensive training, new experiences will be virtually
ignored. Also, when learning tasks with a larger state space, the
acquisition of the Dirichlet transition model may take notice-
ably longer than learning a policy along a narrow trajectory
in the habitual system, causing the latter to become severely
over-trained.

While such behavior can actually be realistic—after all, a habit
usually takes very long to unlearn—it would effectively render the
habitual system useless in real-world applications. For its exis-
tence to be truly plausible, the system needs to be extended with
a more robust mechanism for forgetting experiences. One option
would be a surprise-based approach, which causes the parame-
ter decay to accelerate when an unexpected event occurs, while
gradually slowing down otherwise.

4.3. PREDICTIONS
Our model makes a number of assumptions and shows behav-
iors that have not been examined in empirical studies to date.
These predictions could therefore be used to support or falsify
the model.

4.3.1. Scope of motivation
In section 3.2.3 we found that in order to reproduce the empirical
effects on activity, we have to assume that intrinsic motivation
is local in scope rather than propagating all the way through
the model. To our knowledge, no studies regarding the scope of
intrinsic rewards exist, and it remains unclear how one could test
such an aspect empirically. A possible approach could be to have
individuals perform a creative task before introducing an unex-
pected event into the process. In two conditions to be compared,
this event should either be immediately reproducible by the sub-
ject, say by pressing a previously unavailable button, or require a
long sequence of actions to bring about. By observing whether the
longer sequence causes less exploration in its direction or not, it
should be possible to confirm or falsify our locality assumption.

4.3.2. Promised rewards
In section 3.3.2, we adopted the hypothesis of Niv et al. (2007)
that expected rewards are explicitly encoded in the striatal sys-
tem through tonic dopamine levels. In the framework of our
model, assuming that the average reward R̄ encodes expectations
leads to a system behavior that matches empirical findings by
Ariely et al. (2009). Our model therefore supports the predic-
tion that promises of rewards should indeed increase dopamine
levels. However, the dopamine level theory is untested thus far,
and would require an empirical study to confirm. Furthermore,
a more detailed examination how promises of varying degrees
influence behavior would be in order.
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The effects of striatal dopamine (DA) on behavior have been widely investigated over
the past decades, with “phasic” burst firings considered as the key expression of a
reward prediction error responsible for reinforcement learning. Less well studied is “tonic”
DA, where putative functions include the idea that it is a regulator of vigor, incentive
salience, disposition to exert an effort and a modulator of approach strategies. We present
a model combining tonic and phasic DA to show how different outflows triggered by
either intrinsically or extrinsically motivating stimuli dynamically affect the basal ganglia
by impacting on a selection process this system performs on its cortical input. The
model, which has been tested on the simulated humanoid robot iCub interacting with
a mechatronic board, shows the putative functions ascribed to DA emerging from the
combination of a standard computational mechanism coupled to a differential sensitivity
to the presence of DA across the striatum.

Keywords: basal ganglia, dopamine, selection, novelty, iCub, intrinsic motivation

1. INTRODUCTION
Distinct functions are ascribed to striatal dopamine (DA) in rela-
tion to the type of outflow (tonic/phasic) expressed by this neu-
romodulator and the experimental context. “Tonic” DA release is
caused by the removal of inhibitory constraints affecting sponta-
neously active DAergic neurons (Floresco et al., 2003; Grace et al.,
2007). This low frequency mode of DA activation is considered
as encoding average rewards (Niv et al., 2007; Beierholm et al.,
2013), the presence of stressors (Cabib and Puglisi-Allegra, 2012)
or novel stimuli (Lisman and Grace, 2005), and more recently as
an indicator of precision of prior beliefs (Friston et al., 2012).
As far as its function, tonic DA is mainly investigated for its
effects on motor control: one influential account posits a role in
mediating the vigor with which a subject pursues desired out-
comes (Niv et al., 2007) which might be limited to approach
strategies (Guitart-Masip et al., 2012). This overlaps with a pro-
posed role in mediating the disposition to exert and sustain
effort in pursuing a goal (Salamone et al., 2003; Salamone and
Correa, 2012) and incentive salience in motivation or “wanting”
(Berridge and Robinson, 1998; Peciña et al., 2003). Recent human
evidence has also suggested a role attaining a balance between
model free and model-based behaviors (Wunderlich et al., 2012),
a formulation consistent with models of habitual versus goal con-
trol in Parkinson disease (Redgrave et al., 2010) and with DA’s
established role in reasoning, cognitive flexibility, planning, and
working memory (Montague et al., 2004; Cools and D’Esposito,
2011).

Phasic DA release results from a direct glutamatergic excitation
of DAergic neurons (Floresco et al., 2003). There is substantial

agreement these short burst firings play a key role in trigger-
ing learning processes, but the exact information they convey is
disputed. The main proposal is that DA bursts report a reward
prediction error resulting in reinforcement learning, a key ele-
ment in behavior that leads to reward maximization (Sutton
and Barto, 1998; Schultz, 2007). However, phasic DA is also
considered as implicated in signaling saliency (Redgrave et al.,
1999b) and agency-related novelty (Redgrave and Gurney, 2006;
Redgrave et al., 2008).

Whether DA is considered as signaling the presence of unex-
pected or novel stimuli and independently of their association
with the agent’s actions or priors, there exists a strong relation
between DA and the broad category of intrinsically motivating
stimuli. These are motivations guiding learning in the absence of
primary “extrinsic” rewards such as food, water, and pain, and are
directed to acquire knowledge and skills exploitable in later stages
(Ryan and Deci, 2000; Baldassarre and Mirolli, 2013; Mirolli et al.,
2013). The key feature of these motivations relies in the optimiza-
tion of the information flow (Tishby and Polani, 2011), narrowing
the amount of information that needs to be processed and moti-
vating risky, but potentially fruitful, explorations in a changing
environment (Kakade and Dayan, 2002; Ranganath and Rainer,
2003; Kaplan and Oudeyer, 2007; Düzel et al., 2010).

DAergic neurons are localized in a restricted brain region
mainly the ventral tegmental area (VTA) and substantia nigra
pars compacta (SNpc). By contrast, its targets, including the stri-
atal region, are broad and heterogeneous. This is often seen as
suggesting that DA cannot encode fine grain information and
this lack of target specificity hints that its effects may be the
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expression of a coarse influence (Schultz, 2007). Among DA prin-
cipal projection targets is the striatum, a component in a complex
circuitry involving the substantia nigra pars reticulata (SNr), the
globus pallidus (GP) and the sub-thalamic nucleus (STN) that
together form the basal ganglia. These nuclei are connected to
the cortex via the thalamus to create parallel reentrant loops,
where motor, associative, and ventral (limbic) cortices project to
their specific target compartments in the striatum—respectively
putamen (Put), caudate (Cau), and nucleus accumbens (NAcc)—
(Alexander et al., 1986; Haber et al., 2000; Utter and Basso,
2008; Miyachi, 2009). With minor exceptions, these loops show
qualitatively similar internal structure across functional areas
(Nakano, 2000; Redgrave et al., 2010). The features characteriz-
ing this circuitry have led researches to ascribe two functions to
the basal ganglia: first, as responsible for action selection modu-
lated by tonic DA outflow (Redgrave et al., 1999a), and, second,
as mediator of reinforcement learning triggered by phasic DA via
instrumental conditioning and novelty detection (Schultz, 2006).
Thus, current theories highlight a neuromodulatory gain con-
trol and action selection role for DA or, alternatively, focus on
its role in mediating the synaptic plasticity that underlies learn-
ing. Our approach rests upon coupling these two roles so that
action selection and learning become an integral part of learning
how to select actions. We will see later that this involves a closed
causal chain involving the dopaminergic modulation of corti-
cal plasticity and the cortical drive of phasic and tonic DAergic
responses.

The core of our proposal is a new integrated hypothesis of
the interaction between DA and cortical-striatal circuitry. In par-
ticular, we propose that DA’s putative functions result from the
combination of a differential sensitivity characterizing striatal
subregions and the ability of DA to dynamically modulate a com-
petition taking place within different basal ganglia nuclei. The
present models show how DA affects the gain of a striato-cortical
loop, altering the range of inputs capable of triggering a selection,
the time required to perform a selection, and the ability of the sys-
tem to persevere in a selection despite changes in the input. This
mechanism is coupled with a differential sensitivity each part of
the striatum exhibits to DA levels. This hypothesis is consistent
with data describing the distribution of DA receptors in the stria-
tum (Beckstead et al., 1988; Piggott et al., 1999) and it enables the
agent to switch between behavioral strategies depending on the
type of motivating stimuli perceived.

To support our hypothesis, we first simulate the activity of a
single striato-cortical loop providing it an external arbitrary input
and recording the way its processes are modified by the differ-
ent outflows of DA. Secondly, we present a more complex model
grounded on three striato-cortical loops, interconnected via the
cortex, respectively for the control/selection of: arm actions (Put
and pre-motor cortex, PMC), attention/associative processes for
the selection of eye gaze (Cau and frontal eye field, FEF), and
executive control for goal-directed behavior (NAcc and prefrontal
cortex, PFC).

Both models are used in a series of simulated embodied tests
performed on the humanoid robot iCub (Metta et al., 2010). The
single loop model shows how increasing DA outflow enhances
the probability of performing any selection (akin to action vigor)

and leads to an increased perseverance of the selection in the
face of distractors and variable information from environment.
The three-looped model is used to solve a task requiring sensory-
driven and novelty-driven exploration of a device having buttons
and lights (the mechatronic board, cf. Taffoni et al., 2013): the
agent is required to learn via intrinsic motivation (i.e., unexpected
visual stimuli, Reed et al., 1996) and to exploit the acquired asso-
ciations when extrinsic rewards appear in the environment. The
next section will describe the details of the parts of the basal
ganglia we have focussed on, neglecting others to simplify the
overall complexity of the biological system the models refers to.
Despite these simplifications, we think the results of the tests show
that the DA-based mechanisms illustrated above can play several
important adaptive functions such as the guidance of sensory-
and novelty-driven exploration, the exploitation of goal-directed
(model-based) action-outcome associations, and the saving of
energy (rest) when no motivating stimuli are perceived.

2. MATERIALS AND METHODS
2.1. BASAL GANGLIA: ANATOMY AND CIRCUITRY
The multifunctional role ascribed to the action of DA within
the striatum renders it unsurprising that the basal ganglia are
themselves implicated in guiding perception, attention, learning,
and memory processes, beside motor control. Both empirical evi-
dence (Mink, 1996; Redgrave et al., 1999a; Grillner et al., 2005;
Hikosaka, 2007) and computational modeling (see Humphries
et al., 2006; Prescott et al., 2006; Baldassarre et al., 2012;
Humphries et al., 2012, for the most closely related to the present
model and Frank, 2011 for a general review) converge on the idea
that a core element of basal ganglia function involves removal of
tonic inhibition so as to realize a selection of its input.

The basal ganglia receive massive input from most regions of
cortex and provide a processed output to the thalamus, which
closes the loop via reconnection back to the cortex. The circuitry
characterizing the cortico-thalamic connection is also rather
complex: the thalamus reaches layer IV of the cortex and this
reaches the striatum via layers III and V whilst another loop
involving directly thalamus and cortex is closed via layer VI
(Douglas and Martin, 2004; da Costa and Martin, 2010). For the
purpose of this study, the architecture will capture only the fea-
tures characterizing specific parts of the basal ganglia relevant
to the objectives of this work, leaving aside the complex inter-
action involving the other two main actors in this loop, namely
cortex and thalamus (see section 4 for further details). One of
these essential features is illustrated in Figure 1, which shows the
parallel “channels” of neural populations characterizing a stria-
tocortical loop (Alexander et al., 1986; Alexander and Crutcher,
1990; Gurney et al., 2001a,b): the striatum receives its localized
input directly from the cortex and it propagates this signal via
two distinct pathways, each originating in a subregion character-
ized by the presence of specific DA receptors. The first of these
two striatal subregions shows a higher concentration of D1 recep-
tors (having excitatory effect) and directly connects to the SNr
(when considering the NAcc) and the internal part of the GP (Gpi,
when considering the Cau and Put), forming the so-called direct
pathway; the second subregion is characterized by greater concen-
tration of D2 receptors (having an inhibitory effect) and its signals
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FIGURE 1 | Prototypical striatocortical loop used in simulations. The
neural structure shows three “channels” to exemplify its connectivity: the
pools of neurons belonging to different neural subregions of the basal
ganglia are connected either via localized (parallel) or diffuse (all to all)
connections. The cortex (Cx) is divided into two neural layers, the inner
layer is part of the striatocortical loop, receiving its incoming signal from the
thalamus (Th) and propagating it to the striatum (Str) and the sub-thalamic
nucleus (STN) whilst the external layer functions as the output of the
system. In the single loop test showing the effects generated by arbitrary
DA outflows, an external input reaches the inner layer of the cortex (here
represented in red). The striatum is divided into two areas: the direct
pathway involves the area of striatum characterized by the presence of D1
receptors (D1—Str) which is connected either to the Substantia Nigra Pars
Reticulata (SNr) or the internal Globus Pallidus (GPi). The indirect pathway
(represented in gray because it is not part of the present simulations)
involves the part of striatum mainly characterized by D2 (D2—Str) and the
external Globus Pallidus (GPe).

reach the SNr/GPi via a double inhibition involving the external
Globus Pallidum (GPe), the so-called indirect pathway. Finally, a
cortical input also reaches the STN which is connected directly to
the SNr and GP via diffuse excitatory connections referred to as
the hyperdirect pathway.

Parallel inhibitory channels of neural populations run through
the whole loop, in both the direct and indirect pathways, as
opposed to the diffuse excitatory connections between STN and
SNr/GP. This structure results in a functional double competi-
tion between two regions preserving segregated activations and
the region providing a diffuse undifferentiated signal: the for-
mer regions convey information about the values of each separate
component of the input, whereas the latter conveys non-specific
information about the general intensity of the incoming stimuli
as a whole (Frank, 2006; Frank et al., 2007).

Assuming the input provided by the cortex already encodes
the value or salience of the stimuli (Samejima et al., 2005; Lau

and Glimcher, 2008; Kimchi and Laubach, 2009; FitzGerald et al.,
2012; Znamenskiy and Zador, 2013), the input nuclei of the
three pathways receive and process these saliencies in a contin-
uous self-feeding process mediated by the presence of a closed
loop: depending on the relative strength of activity in these path-
ways, the basal ganglia eventually alter these values preserving,
increasing or suppressing the differences encoded. This process
is mediated by the tonic inhibitory activity of the SNr/GPi—the
output nucleus of the basal ganglia—whose channels can be selec-
tively inhibited so as to release the corresponding population of
neurons in the thalamus and resulting in a gating effect (Chevalier
and Deniau, 1990; Gurney et al., 2001a,b). Most of this tonic
activity is provided by the hyperdirect pathway which therefore
concurs in reducing the chances that any of the channels in the
SNr might be inhibited; on the contrary, the direct and indirect
pathways compete in establishing which of the SNr/GPi chan-
nel has to be inhibited, the former favoring the strongest cortical
inputs whereas the latter favors the weakest.

In the present study we are mainly interested in testing the
effects on behavior due to an increase in DA outflows. Thus,
we have simplified the structure of basal ganglia by relying on a
model that focusses on the competition implemented by direct
and hyperdirect pathways alone (Figure 1 shows the regions
whose activity has not been simulated in light gray). This sim-
plification is justified assuming that, due to the presence of the
D2 receptors, increasing DA release causes the indirect pathway to
decrease its activity, therefore—in a computational perspective—
it diminishes its effect on the whole system, allowing the D1-
related direct pathway to have a major role in the selections
(Humphries et al., 2012). This choice is also consistent with data
and models identifying indirect pathway structures as responsi-
ble for “No-Go” that is negatively correlated with increases of DA
release due to high concentrations of D2 receptors (Frank et al.,
2004; Surmeier et al., 2007; Frank, 2011; Guitart-Masip et al.,
2012): the present models rely on a simplified structure which
can be considered nonetheless accurate in analyzing most of the
behaviors connected with high DA outflows and “Go” choices.

2.2. THE COMPUTATIONAL MODEL
The neural systems used for both simulation and embodied tests
were developed with C++ libraries: these were tested for the first
time in Baldassarre et al. (2012) and have been modified to deal
with the new requirements concerning the neural architecture
and the mechanics involving the simulated DA. The basic build-
ing block of the models is a leaky integrator unit defined by a
continuous-time differential equation that simulates mean activ-
ity of a whole neural area or pool of neurons. This is a standard
tool in firing rate models (Dayan and Abbott, 2005), modified to
include the effects of the DA neuromodulation as follows:

τg u̇j = −uj + bj + (ε + λ d) �iwjiyi (1)

where τg is a time constant (related to the nucleus or group, g, of
units to which j belongs), uj is the activation potential of unit j,
bj is the basal activation of such unit (if any), wji represents the
connection weight between input unit i and unit j, and yi the
activation of input unit i.
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To include the DAergic modulation, we assume DA enhance-
ment of the signal reaching a target area can be simulated via
a multiplicative effect: this is a standard computational strat-
egy in simulating D1 specific effects (Fellous and Linster, 1998;
Durstewitz, 2009) and is realized through the parameter d, repre-
senting the amount of DA released, and the coefficients ε and λ,
respectively for the strength of the input independent of the pres-
ence of DA and the multiplicative effect DA exerts on the same
input. These two coefficients have been set to ε = 1 and λ = 0 for
all the units which are not affected by the DA release in the simu-
lations, and 0 < ε < 1 and λ > 0 for the remaining units: besides
the striatum, the three-looped model (see Figure 2) also shows
the hippocampal simulated layer as being affected by the presence
of DA in the way described here.

Equation (1) describes the activation potential of the units in
the neural models where Equation (2) is a positive saturation
transfer function defining the final activation of these units: the
activity of all units here described is simulated relying on these

two equations. The transfer function is defined as follows:

yj =
[
tanh

(
αg
(
uj − θg

))]+
(2)

where tanh(.) is the hyperbolic tangent function, αg is a constant
defining the slope of the hyperbolic function (per group), θg is
a threshold parameter (per group) and [.]+ is a function defined
as [x]+ = 0 if x ≤ 0 and [x]+ = x if x > 0. Notice that 0 < yj < 1
for all j. Aside from the layers simulating the activity of the cortex,
the threshold is always set to θ = 0: the cortical transfer func-
tion has been thresholded so that units activations are zero unless
their corresponding activation potential exceeds its layer specific
threshold (in the single loop simulation, these are set to 0.6 for
the inner cortical units and 0.8 for external cortical units).

Finally, the three-looped model shown in Figure 2 consists
of three separated loops for manipulation, attention, and exec-
utive control: respectively the dorsolateral, dorsomedial, and ven-
tral striatocortical loop. During the task, these systems establish

FIGURE 2 | Neural architecture of the model used to solve the

mechatronic board task: three striatocortical loops reciprocally

connected via learned cortico-cortical connections. The system allows the

agent to autonomously explore the environment, perceive intrinsically
motivating signals (flashes of light), learn and exploit the learned association
to pursue a maximizations of rewards.
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cortico-cortical connections that reciprocally bias the selection
performed thanks to a Hebbian learning process guided by the
presence of phasic DA. The equation describing this learning is as
follows:

�wji = ηctx gjyi (ŵctx − wji) [d− ζ]+ (3)

where yi and gj represent the activities of the connected units
(belonging respectively to the cortical external layer in the pre-
synaptic loop and the cortical inner layer in the post-synaptic
loop), wji is the connection weight between yi and gj, ηctx is
a learning rate and ŵctx is a maximum value reachable by wji.
The neuromodulator is here thresholded: [d− ζ]+ represents the
amount of DA required to overcome a threshold ζ, where [.]+
is defined as in Equation (2). This threshold is set higher than
any tonic outflow variation, therefore allowing learning processes
only in presence of high peaks of DA corresponding to phasic
activations.

The DA bursts required for LTP Hebbian learning are triggered
by sudden luminance variances perceived by the system/agent
via the superior colliculus (SC): this region provides fast and
strong signals to the DAergic units, which result in the simulated
DA bursts (resembling the actual connectivity and function as
described by Redgrave and Gurney, 2006). Both tonic and phasic
DA releases are simulated with one component representing the
overall activity of both the VTA and the SNc: the activity of the
single DAergic unit is controlled by both excitatory and (tonically
active) inhibitory units.

In order to simulate the presence of an agency-related pre-
dictor, the same learning process expressed in Equation (3) is
also used to establish excitatory connections between the inner
cortical layer of the simulated PFC, part of the ventral loop,
and an interneuron unit in the DAergic area: this direct con-
nection simplifies the actual pathway responsible for this sig-
nal control functioning, which may involve the lateral habenula
(Hikosaka et al., 2008). This learning process, triggered by the
presence of DA bursts, eventually leads to suppression of phasic
DA responses: the agent relies on the acquired cortico-cortical
associations between specific combination of attentional/motor
selections and PFC activity triggered by the perception of moti-
vating stimuli to provide the ventral loop with the required
information about the proximal cause of any experienced moti-
vating stimuli. Since motor and attentional selections temporally
precede the stimulus, once the association is learnt, this informa-
tion is sufficient to cause activation of an inhibitory unit in the
DAergic area (via PFC) before the actual stimulus takes place. As
a result, an action causing unexpected changes in the environ-
ment, such as luminance variance in the present task, will trigger
DA bursts that engage learning processes among cortical regions
and between the PFC and the DAergic area. However, if manages
to successfully repeat the correct action on the proper target, the
resulting change in the environment will eventually become pre-
dicted, therefore preventing an input coming from the SC from
triggering any more DA bursts.

The learned cortico-cortical connections among different
striato-cortical loops are instances of inverse and forward mod-
els (Gurney et al., 2013). Inverse models implement here the links

between goal representations and action representations, impor-
tant for the recall of actions on the basis of the pursued goals in
goal-directed behavior. The forward models, instead, allow the
anticipation of the accomplishment of a certain outcome when
a certain action is performed.

This role of DA in the self-assembly or bootstrapping of
intrinsically valuable sensorimotor sequences is reminiscent of
early simulations of value-dependent learning using neuronally
plausible models (Friston et al., 1994). In brief, the dopamin-
ergic reinforcement of stimulus-response and response-stimulus
links by DA depends upon phasic dopaminergic discharges. By
introducing dopaminergic plasticity into the cortical projections
eliciting these discharges, one introduces a circular causality, in
which innately or intrinsically rewarding stimuli transfer their
value to their sensory or motor precedents. This form of learning
has formal links with actor-critic models in reinforcement learn-
ing, accounts for the transfer of phasic dopaminergic responses
from unconditioned to conditioned stimuli and provides a phys-
iologically grounded account of how sequences of exploratory or
exploitative behavior emerge.

Among the remaining components of the model pictured in
Figure 2, the hippocampus (HIP) is composed by a single layer of
units encoding spatial representations: the activity of these units
slowly decreases as a response to the incoming input. The slow
decrease of the input (which starts from the maximum value of 1
to reach its minimum value of 0.1 in roughly 2 min) is determined
by the time of exposure to the visual stimulus: this process sim-
ulates habituation to novel stimuli, leading to high responses of
HIP to novel stimuli located in space (as it happens during visual
exploration of a new environment) and low responses in presence
of familiar items.

The projections of the HIP via the NAcc and the SNr to
DAergic areas drives changes toward a tonic response mode of
the simulated DAergic unit, which itself affects the activity of
the HIP thus creating a loop. This circuitry is consistent with
HIP connectivity and functioning (Grace et al., 2007) as the lit-
erature describes it as one of the major systems responsible for
novelty detection and the related regulation of tonic DA release
(Lisman and Grace, 2005; Düzel et al., 2010). The HIP is not the
only part of brain that responds to novelty and habituates (see
Ranganath and Rainer, 2003, for a review). However, coherently
with the choice illustrated above on the HIP as the only source
of novelty detection in the model, we included in the model only
HIP habituation. This assumption was sufficient to have a brain
mechanism performing novelty detection and habituation, and
the consequent novelty based tonic DA regulation.

The simulated DAergic area is thus controlled by activity of SC
(causing phasic DA bursts), the PFC (inhibiting the signal com-
ing from the SC and suppressing DA bursts), SNr (responsible
for tonic inhibitory control mainly due to the HIP) and finally
a simplified amygdala (Amg): this component affects the activ-
ity of a tonically active interneuron in the DAergic area, resulting
in strong increase in the DA outflow when a reward is perceived
(i.e., simulating the perceived presence of food in one of the
boxes).

Regarding the BG-cortical structures, the manipulation
striato-cortical loop is characterized by three channels and
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Table 1 | Table of essential parameters marking the difference among

the three loops and the learning processes: the complete set of

parameters is available for download (see instructions in the

Supplementary Material).

Parameters Attention Arm action Goal

λ 2.5 1.5 1

θg layer 1 0.4 0.6 0.1

θg layer 2 0.8 0.8 0.6

Lateral inhibitions 2 0.2 0

Noise in Th 20 30 0

Noise decay 1000 2000 0

Learning processes (ζ coefficient)

Cortico-cortical 0.2

Predictor 0.00008

The tuning has been carried out by comparison with behavioral results.

controls the arm in the robotic set-up allowing selection among
three possible actions (one per channel). Both the attentional loop
and the ventral loop have six channels: the first controls foveation
among six possible locations in space and the second controls the
selection of the desired outcome to pursue. The three loops are
similar, showing differences in only a few key parameters: among
these, it is important to stress the presence of random noise in the
thalamic parts of the manipulation and attentional loops and the
presence of a different value for the coefficient λ for each of the
striatal layers. The noise, which is essential to perform random
exploration, is smoothed using a leaky integrator (Equation 1)
and therefore is controlled by two parameters, one for the strength
of the input and one for the decay speed (see Table 1). The coeffi-
cient λ (Equation 1), on the other hand, simulates the differential
sensitivity to the presence of DA characterizing different striatal
regions. This differential sensitivity will be shown to be essential
for endowing the system with a flexible behavioral expression and
for avoiding multiple fixated selections.

The biological plausibility of this hypothesis is grounded on
the known distribution of D1 receptors within the striatum: there
is a gradient of D1 receptor density within each subregion, with
the Cau and the NAcc having, respectively, the highest and the
lowest concentrations (Beckstead et al., 1988; Piggott et al., 1999).
Assuming a higher concentration of D1 makes a neural region
more sensitive to any variation of DA outflow is consistent with
the model computational requirements to solve the mechatronic
board task. In the model, DA alters the gain in each of the three
feedback loops, having in the attentional loop (involving the Cau)
the most sensitive system, in the manipulation loop (involving
the Put) mid sensitivity and in the executive control loop (involv-
ing the NAcc) the system that requires the most DA release to be
activated.

2.3. ROBOTIC SETUP AND MECHATRONIC BOARD TASK
The iCub1 is a humanoid robot whose dimensions resemble those
of a 5 years old child. This robotic platform is characterized by

1http://www.icub.org/

an high number of degrees of freedom (16 for each arm, 5 for the
head-eyes, 3 for the torso), so it is particularly fit to deal with tasks
involving “human-like” movements. The official simulator of the
iCub has been used to run the experiments concerning vigor
and the solution to the mechatronic board task (see Figure 3). A
mechatronic board, described in Taffoni et al. (2013), has been
simulated and employed as the test environment. In order to
match the requirements of the three-looped neural system here
described, three actions (namely “grab,” “wipe,” and “press”),
have been implemented to move the robot left hand in differ-
ent ways and positions. Any selected action is always performed
on the target the iCub is looking at. Through its movements the
robot can interact with the mechatronic board, triggering light-
flashes (lasting 1 s) when the proper action is performed on one of
the correct targets: the time required to complete an action varies
between 2 and 3 s circa (0.5 for a foveation), depending on the
starting position of the arm and the final target. Note that, despite
the name, the actions “grab” and “wipe” denote simply dummy
actions, i.e., actions with no consequence on the board.

The control works in continuous time reflecting the activity
of the neural system, so that both the actions and the targets
can be changed or stopped at any time. This feature allows the
experimenter to add and relocate a reward in any of the acces-
sible locations at any time whilst the robot is interacting with
the environment. A link to a short movie showing the robot
interacting with the actual mechatronic board is provided in the
Supplementary Material.

The task the agent is dealing with is rather simple: it requires
exploration of an unknown environment, learning of agency-
related associations due to the presence of intrinsically motivating
stimuli (light flashes) and recall/exploitation to pursue the max-
imization of extrinsically motivating rewards. The mechatronic
board consists of three buttons and three transparent boxes (see
Figure 3): when the correct action is performed on any button
(press), the box opens and the associated light flashes. The agent
is provided with a sufficient amount of time to freely explore its
accessible environment. In a second phase of the task the envi-
ronment is modified adding a visible reward (e.g., food) inside
one box: to access the reward, the agent is required to recall the
learned association and to perform the correct action causing the
opening of the box. The task, which resembles the response pre-
conditioning driven by neutral stimuli described by Reed et al.
(1996), has already been solved using an early version of the three-
looped model (Baldassarre et al., 2012): a comparison between
the two versions of the model is provided in section 4.

3. RESULTS
3.1. INPUT DISCRIMINATION: EFFECT OF DA IN A SINGLE LOOP
To show the effects different outflows of DA have on the processes
performed by the Basal Ganglia, several tests have been carried
out on a three-channel loop as in Figure 1: the mean activity of
pools of neurons has been simulated as in Equations (1, 2) and an
arbitrary input lasting 6 min, consisting of a three-dimensional
vector, has been set to reach the inner cortical layer of the cortex.

Figure 4 (left) shows values and variations of the input vec-
tor assigning a different color (blue, green, red) to each of the
three-dimensions: the input changes five times during each test,
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FIGURE 3 | The iCub in its simulated environment interacting with the

mechatronic board. The image is captured whilst the robot is pressing the
red button, triggering the corresponding light.

with a fixed interval of 1 min. The same color code has been used
to represent activation of the corresponding channels as recorded
in the inner layer of the cortex and depicted in the center col-
umn of Figure 4: any of the units in the cortical inner layer may
independently overcome a threshold (0.8, pictured as a dotted
line) characterizing the transfer function of the external layer
of the cortex. The activity in the external layer of the cortex is
stabilized by the presence of lateral inhibitions preventing this
layer from exhibiting multiple channel activations (Figure 4, B/W
colormaps).

Given the specific set of parameters characterizing this loop,
the input has been chosen so that it shows two features: first it is
insufficient by itself to cause activation of any unit in the cortical
external layer in the baseline DA condition. Secondly, the changes
in the components in the input vector alter both sparseness (mean
interval) and the overall mean value. The tests show that, depend-
ing on the amount of DA reaching the striatum, it is useful to
distinguish three conditions:

(1) Weak or scarce selection. In this condition, the striatal-cortical
loop requires an input which must be both strong and sparse
in order to overcome the given threshold. Therefore, few
selections are performed, and—because of strong correlation
with input features—they are characterized by high instabil-
ity, being abandoned as soon as either the intensity of the
strongest stimulus decreases or any other stimulus increases
its intensity. The first row in Figure 4 (DA +15%) exem-
plifies this condition, showing only one activation over the
threshold (fifth interval), despite the presence of stronger or
equally valued stimuli in several other time intervals (i.e.,
third, fourth, and sixth).

(2) Enhanced discrimination. The DA unbalances the competi-
tion between diffuse (STN) and localized (Str) signal pro-
cessing, favoring the latter: this condition enables the loop to
amplify the differences between stimuli with similar intensity

via accumulation of the strongest signal and suppression of
the weaker ones. The time required to perform this process is
directly correlated with the amount of DA (within a certain
range, the higher the release, the faster the amplification, and
thus the selection). Despite the fact the loop is still unable
to discriminate between strong, closely related stimuli (e.g.,
sixth time interval), this condition is shown to be the most
flexible to any change in the environment allowing, in most
cases, quick switches in selection depending on the values
encoded in the input. In particular, the comparison between
the second and the third row (DA +18% +20%) illustrates
the effect of accumulation granted by the loop and its timing:
a higher level of DA allows the system to reach a homeostasis
characterized by values which overcome the given threshold
(time intervals 1, 2, 3, and 5 result in activations in the exter-
nal layer of the cortex). Each time the input is propagated
back from cortex to the striatum, the higher value encoded
in the input grows: comparing the first two time intervals
in these rows we notice that a slight increase in the DA out-
flow makes the input in the first interval cause an activation
roughly 30 s in advance.

(3) Maintenance and disrupted selection. The competition
between localized and diffuse activation is strongly unbal-
anced in favor of the former: this allows the possibility of
discrimination between closely related strong inputs (e.g.,
sixth time interval, condition DA +40%), but at the same
time it makes any selection performed persistent so causing
interference and delayed switch (first to second time inter-
val, DA +25%), maintenance (first to second time interval,
DA+30%) and eventually (if the DA further increases) mul-
tiple channel activation (third to sixth intervals, DA +50%).
The system is now unable to respond quickly to changes
in the stimuli unless they are characterized by strong val-
ues: any selection is preserved until either the DA outflow
decreases or the input changes dramatically. A further incre-
ment of the DA outflow makes the maintenance effect so
strong that multiple activations in the loop become more and
more likely, disrupting a selection mechanism (which in the
present model is preserved in the external layer only due to
the action of the lateral inhibitions). Such a condition implies
difficulties in adaptation to changes in the environment, but
it can also be considered as the cause of a useful “focus effect”
which allows the preservation of rewarding selections in the
presence of noise or distractors. Indeed, the condition of
maintenance may be reached both due to elevated tonic DA
release and due to high frequency burst firings causing DA
accumulation (Floresco et al., 2003): this phenomenon would
therefore favor both the expression of incentive salience and
learning processes granting the repetition of those selections
that have proximally caused the increase in the DA outflow.

3.2. SIMULATION OF DA-DEPENDENT VIGOR
A second test has been carried out involving two segregated stri-
atocortical loops, one characterized by six channels controlling
attention via oculomotor selection (assuming the simplified envi-
ronment of the mechatronic board showing only six cues to focus
the attention on) and a second three channeled loop simulating
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FIGURE 4 | External input (left) and activation of the channels

recorded in the two cortical layers of a test striatocortical loop.

The seven different conditions (one per row, center, and right columns)
are determined by the outflow of DA: center column represents

activation of the three channels (three colored lines) in the inner layer
of the cortex; right column represents the external layer as a B/W
colormap (the channels are labeled with the same color scheme seen
in the input and inner layer).

the selection between three arm actions: in both cases, the loops
do not receive any external input but they are provided with ran-
domly generated noise in the thalamus. Changing every step, the
noise results in a “random walk” eventually triggering random
selection in the cortex. The choice of the thalamus as the locus
for the random walk is justified by the reasoning that this area
receives information from several cortical sources: this input is
abstracted with the noise used in the model. In this respect, this
noise should not be interpreted as local neural noise, but rather
as the neural activity reaching the thalamus from different corti-
cal areas and capable to overcome SNr/GPi inhibition, inducing
exploration (Baldassarre et al., 2012). It is necessary to focus on
a target and to select one of the arm-controlling channels to start
executing any motor action: the agent requires a variable time of
around 2–3 s to complete any hypothetical action on any selected
target, so that both attentional and manipulation selections must
be maintained for a sufficient amount of time. If the agent perse-
verates in its selections, the action is executed again on the same
target, resulting in repetitions.

We ran several tests lasting 6 min on the iCub simulator chang-
ing the DA outflow (baseline, +20% and +40%) and recording
the number of completed actions performed on any possible

target. The results are represented in Figure 5, which shows mean
and standard error of completed actions—recorded in ten sam-
ple tests—in the three DA conditions and a sample test showing
activations of external cortical layers in both the loops (B/W col-
ormaps) and the corresponding actions performed in the three
DA conditions.

These results are consistent with a known correlation between
DA outflow and reward-related vigor (Niv et al., 2007; Beierholm
et al., 2013) or incentive salience (Berridge and Robinson, 1998;
Peciña et al., 2003), but they provide a new explanation of these
behaviors. The number of completed actions increases signifi-
cantly from an average of 0.6 (baseline) to 28.2 (DA +20%),
reaching 91.8 (DA +40%) per test. This result is neither caused
by any learning process nor it relies solely on the strengthening
of the input due to DA multiplicative effect (e.g., Gurney et al.,
2001b; Humphries et al., 2006): DA alters the gain of the loop
thereby unbalancing the competition between the striatum and
the STN, causing quick accumulation and selection at first (as
seen in Figure 4, DA +20%) and then maintenance for a longer
time (allowing repetitions, DA+40%).

These tests show that a widely known function ascribed to stri-
atal DA can be produced by relying on a dynamic mechanism
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FIGURE 5 | Bin charts show completed actions in a single sample test

(top) and mean and standard error of ten sample tests (bottom) in three

DA conditions (baseline, +20% and +40%). B/W colormaps represent the
neural activity of the external cortical layers of two striatocortical loops that

have resulted in the action represented in the first bin chart. One loop has
been used for the manipulation (three channels, center) and the other for the
attentional control (six channels, right): an action is considered terminated if
both the loops maintain their selection for 2 s.

which allows the system to focus on a single rewarded selection as
long as it is the cause of an increase of DA: the mechatronic board
task exemplifies how this phenomenon both coexists and assists
the standard computational role ascribed to DA as the trigger for
learning processes.

3.3. THE SOLUTION TO THE MECHATRONIC BOARD TASK
To solve the task the three-looped model (see Figure 2) relies
on the hypothesis that, due to a differential sensitivity in the
striatum, the same DA outflow causes the manipulation loop
to express the first behavior (weak or scarce selection) whereas
the attentional loop expresses the second (enhanced discrimina-
tion). This is consistent with data in MPTP-induced Parkinsonian
subjects associating low DA outflow with the absence of motor
activity but slow oculomotor foveations (Hotson et al., 1986;
Schultz et al., 1989; Hikosaka et al., 2000).

This differentiation makes the agent start a visual exploration
of the environment whilst performing very few arm actions (as
seen in Figure 5, B/W colormaps of baseline DA condition): as
soon as a novel experienced cue is perceived then activity in the
HIP triggers (via NAcc and SNr) an increase in the tonic release
of DA, allowing the manipulation system to enter the condition
of enhanced discrimination and forcing the attentional system
to a state of maintenance (as seen in Figure 5, B/W colormaps
of DA +20% condition). As a consequence, the agent starts exe-
cuting on a single target several randomly selected actions: the

process stops when the HIP habituates to the perceived cue,
restoring the usual outflow of DA, allowing the visual exploration
to start again and reducing the number of action performed.

During this visual and motor exploration, the agent eventu-
ally focusses on any of the button cues: if the action “reach/press”
is randomly selected and completed whilst on this target (the
agent requires the usual 2–3 s of maintenance), the box associ-
ated with the pressed button opens and the corresponding light
flashes. Sudden luminance changes are then perceived by the SC
causing DA bursts which have a twofold effect: first, phasic DA
is itself causative in a further tonic release of DA via HIP (which
is highly sensitive to DA presence) therefore forcing maintenance
in both manipulation and attentional loops and causing enhanced
selection in the ventral loop (e.g., Figure 7, left column, 155–185 s
interval). Secondly, phasic DA allows learning processes to take
place, strengthening connection weights between different corti-
cal layers and between the PFC and the DAergic area. This latter
type of learning is responsible for the emergence of the agency-
related predictor which results in an inhibition of DA bursts when
specific motor/attention combinations are selected. As a conse-
quence, attention is preserved on the target (the button) and
the action (reach/press) is repeated until the DA bursts disap-
pear because of the predictor, allowing the exploratory routine
to restart.

The cortico-cortical learning, on the other hand, allows asso-
ciating the selection of the reach/press action in the PMC and the
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selection of attention on the button in the FEF with the channels
activated at the same time in the PFC due to the activity of the
HIP. The connections established between external PMC/FEF and
internal layer of PFC are essential for the predictor, whereas the
connections established between the external PFC and the inter-
nal layers of PMC and FEF are essential for the agent to express
goal-oriented behaviors.

Figure 6 shows activity of the external cortices during a simu-
lated task lasting 30 min. The picture outlines the first exploratory
phase lasting circa 10 min: the DA outflow is increased each
time a new cue is perceived and maintenance is entrained by
the DA bursts when the correct motor/attention combination is
found. The second phase (10–21 min) shows visual exploration
and scarce arm activity: the mechatronic board has been widely
explored and the cues are no longer able to elicit strong activity in
the HIP.

At the beginning of the test phase, a reward becomes visible
in one of the boxes. When this is detected, the high release of
DA (via Amg) would make the loop maintain the wrong selec-
tion (attention on the box and any randomly selected arm-action
at the time the reward is perceived): this problem is offset by the
fact that the ventral loop is also activated, due to the combined
effect of the high DA and the renewed activity in the HIP which
also responds to high DA release. Due to the cortico-cortical

connections established during the exploration phase, activity in
the PFC plays the role that, in the single loop model, was ascribed
to the external input. Provided the weights are strong enough, the
PFC activity is then able to bias the selection in both other loops.
Figure 6 shows this process of the PFC biasing the selections each
time the reward is moved from one box to another (21, 24, and
27 min): within a few seconds after the reward is perceived, PFC
makes the manipulation loop switch to the reach/press channel
and the attentional loop switch to the selection of the button
associated with the box containing the reward. Attentional loop
and input reaching the NAcc are strongly connected (due to the
activity in the HIP) so that when the first switches toward the but-
ton, the ventral system receives an input related to this new focus.
If the correct button is pressed, the focus changes back on the
box containing the reward, due to the action of the SC: the input
reaching the ventral system changes again and this system eventu-
ally restarts biasing the attentional loop to focus on the associated
button. This closed causal chain generates an oscillation of both
attention and goal between the two targets, i.e., causing a switch of
goals from an intermediate one (reach/press the correct button)
to the ultimate one (reach the box to secure the food).

When the reward is moved from one box to another, the release
of DA decreases, allowing the start of visual exploration until the
new position of the reward is detected. Provided the agent has

FIGURE 6 | B/W colormap represents the neural activity recorded in

the external cortical layers of the three-looped neural model,

labeled as PMC, FEF, and PFC (to download graphs showing the

neural activity of all layers, see the Supplementary Material). The
two line charts respectively represent the activity of the unit

responsible for the simulated DA release and the sum of the activity
in the SNr as part of the ventral loop. The graphs at the right
represent B/W colormaps of the matrices of the cortico-cortical
weights acquired during the task in the same simulation (see
Supplementary Material for a video of the robot).
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enough time to explore the whole environment and learn all the
associations, it will be then able to solve the task.

3.4. INTRINSIC MOTIVATIONS AND DA CONTROL
Despite the 18 combinations of possible actions on the available
targets in the environment (three actions times six cues), the sim-
ulated agent usually completes the exploration of all the possible
combinations and successfully learns the three associations (after
repeating each of them 5–10 times) within the first 10–12 min of
a trial. For a comparison, the former version of the model, which
exploits a bias in favor of the reach/press action on any target cue
(due to the cortico-cortical weights established during learning),
took nonetheless an average of 30 min to complete the learning
process (Baldassarre et al., 2012).

The behavioral advantage of the new model is evident in the
embodied tests carried out on the iCub: the robot is slower than
its abstract counterpart and thus needs to maintain its selections
until the button is completely pushed to open the box and turn
the light on. The benefits accruing from the fact that attention
is preserved on a single cue are twofold: first, it allows suffi-
cient amount of time to try several randomly generated actions
thereby increasing the chances of selection and completion of a
“reach/press”; secondly, it indirectly allows the agent to discrimi-
nate between cues that have been already explored and cues that
are still novel. By favoring unexplored cues, the agent avoids wast-
ing time trying actions on explored ones and focusses on those
that might still allow discovery of novel interactions.

This result arises directly from the manner in which different
DA outflows (either caused by intrinsic or extrinsic motivations)
alter the agent behavior, narrowing the information provided by
the environment. The same mechanism described for the single
loop dynamics is replicated in each of the three loops involved in
solving the mechatronic board task, but it is triggered by different
DA outflows. It is due to this different sensitivity that different
effects (e.g., “maintenance” and “weak selection”) may be experi-
enced at the same time in two different striatocortical loops of the
same agent. This differentiation allows the agent to fixate atten-
tion on novel cues at a certain DA whereas the same agent repeats
those actions causing unexpected changes in the environment and
fixate on the goal to pursue at a different—higher—DA outflow.

The solution to the behavioral problems arising from the task
can be also used to address the problem of the recorded effect DA
has on the switch between model free and model-based behaviors
(Wunderlich et al., 2012). During the first phase, the agent freely
explores the environment guided by its random input, which
resembles activity within sensorial cortices reaching the manip-
ulation and attentional loops. This exploration can be considered
as “model free” in the restricted sense that the agent does not yet
have an explicit model of the environment it is exploring and it is
therefore guided by the stimuli in the environment (simulated by
noise). On the other hand, the more the process of learning—
guided in this task by intrinsically motivating stimuli—allows
establishing associations between PFC and both PMC and FEF,
the more activity in PFC has the potential to bias the selection in
these areas. Thus, when a reward is perceived and the PFC is acti-
vated (the ventral loop requires mid-to-high release of DA to be
active), its signals guide the whole process of selection performed

in both attention and manipulation loops (Figure 7, right), sim-
ulating the effect of selections guided by an acquired model of
the environment and in particular of the correct combination of
action on target (the button) and the resulting effect on a different
cue in the environment (the box opens and the light flashes).

4. DISCUSSION
The models we describe show an heterogeneous set of phenomena
caused by DA affecting the working status of basal ganglia cir-
cuitry: in particular, our tests show a mechanism underlying these
phenomena in the dynamic unbalancing of competition estab-
lished between the direct (via D1 striatum) and hyperdirect (via
STN) pathways, with high DA outflows favoring the former.

All the phenomena here simulated and tested on the iCub
can be properly considered as emergent: the timing differences
bringing forth vigor, maintenance causing the “focus effect” and
incentive salience, the dynamic switch between behavioral strate-
gies (rest, exploration, goal oriented behavior and model-based
exploitation) do not require ad hoc functions or structures to be
realized but instead result from intrinsic features characterizing
the interaction between DA and Basal Ganglia.

The existence of segregated loops within the circuitry linking
cortex and basal ganglia is currently widely accepted when con-
sidering macroscopic structures for motor, associative and limbic
neural regions (Joel and Weiner, 2000; Kelly and Strick, 2004;
Miyachi, 2009): within these macroscopic structures, the exact
extent of the channels has been described for motor selection
(Alexander and Crutcher, 1990; Romanelli et al., 2005) and the
hypothesis that there are similar structures in other macroloops
is consistent with findings about segregated values and saliencies
within the NAcc (Samejima et al., 2005; Lau and Glimcher, 2008;
FitzGerald et al., 2012).

To the best of our knowledge, the models exploiting the func-
tions expressed by this fine grained “channeled circuitry” either
investigate the effects of DA on selections performed by feed-
forward models of the basal ganglia which do not close the
striatocortical loop (Gurney et al., 2001b; Humphries et al., 2006,
2012), or neglect of tonic DA outflow as a regulator of the selec-
tions among distinct channels (Prescott et al., 2006; Baldassarre
et al., 2012; Chersi et al., 2013).

The former type of models simulate differences in selection
strength and distribution that is correlated with different DA out-
flows (Gurney et al., 2001b; Humphries et al., 2012), but they
do not show the accumulation of signal responsible for strong
alterations in selection in the presence of low and mid DA out-
flows. In a similar manner, the difference in the circuitry allows
for an explanation of impaired switching only in terms of multi-
ple selections (Humphries et al., 2006) but it cannot simulate the
phenomena of interference and maintenance, which are described
here as taking place when the DA outflow is still lower than that
required for the multiple activations. Humphries et al. (2006,
2012) reach a similar conclusion about DA being responsible for
an inverted U effect on the agent’s ability to switch selections fol-
lowing changes in the environment (i.e., the external stimuli), but
the differences in the neural architecture allow the present mod-
els to provide a more detailed account of the way the input is
processed, especially in presence of mid-to-high DA outflows. The
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FIGURE 7 | Two sections lasting 100 s each showing key behaviors

expressed by the agent solving the mechatronic board task as in

Figure 6. B/W colormaps represent the neural activity recorded in the
external cortical layers of each loop (PMC, FEF, and PFC), line charts
respectively represent DA release and overall neural activity in SNr (ventral
loop). Vertical red lines (100–200 s interval) mark the moments when the
attentional loop randomly selects a novel cue: due to the increased DA
outflow (caused by the Hippocampus via NAcc and SNr), the attentional
system expresses “maintenance” whereas the manipulation loop
expresses enhanced exploration (e.g., third interval circa 125–155 s: the
agent performs all the actions in its repertoire on the fifth cue, a box). The
fourth interval (circa 155–185 s) shows the agent randomly selecting the
correct action (first channel: reach/press) whilst focussing on a button (any
of the first three cues): the unexpected flash of light triggers phasic DA

responses causing a focussing effect in both attentional and manipulation
loop and enhanced selection in the ventral loop. The predictor eventually
inhibits the phasic response, allowing the system to restart its exploration
routine. Vertical blue lines mark important changes in the activity of the
PFC during the final test of the mechatronic board task: when the reward
is relocated in a new box (1620 s: the reward is moved into the first box),
the manipulation system enters a rest mode (weak selection) and the
attentional system enters the exploration mode (interval between first and
second blue markers 1623–1637 s). If the agent randomly selects the cue
showing the reward, the DA increases reactivating the PFC (second blue
marker): the ventral system is now able to bias the selections performed
by both the manipulation and the attentional systems eventually forcing the
switch to the proper action/target selections (green line marks the switch
in the attentional loop).

present models not only point out that a successful gating effect
is inversely correlated with the mean value/salience ascribed to
the input and directly correlated with its sparseness: the models
show how, by way of the unbalanced competition, DA outflow
eventually affects the spectrum of inputs that can be successfully
processed by a striato-cortical loop, either increasing or decreas-
ing it. Furthermore, the presence of the loop allows the system
to maintain the performed selections making of each selection a
part of the input in the following cycle, ignoring most changes in
the environment. From a computational perspective, the use of a
loop to create a memory-like phenomenon and preserve neural
activity despite changes in the input is not novel: a similar con-
clusion about preserving selections (there called “latching”) has
been reached for instance by Humphries and Gurney (2002). The
novelty of the present study is to show how this mechanism can
be caused by the dynamics of the DA outflows, hence becoming
strongly correlated with the presence of motivations and rewards.

There are concerns that may be raised when establishing
a comparison between the biological complexity of the neural
structure of the striato-cortical loop and its simplified version
implemented in our models. In particular, the results might be
biased by three distinct features characterizing the architecture of
the present models: first and foremost, the lack of the basal ganglia

indirect pathway; second, the lack of the re-entrant cortico-
thalamic loop; finally, the presence of the lateral inhibitions in the
second layer of the cortex, which may perform the selections in
place of the basal ganglia (as seen in Figure 4,+50% condition).

These concerns may lead to the conclusion that the simu-
lations generated by the models are ill-grounded. However, it
should be considered that the effects on selections are mainly due
to the alteration of the gain obtained unbalancing the competi-
tion between direct and hyperdirect pathways due to increased
release of DA, i.e., a condition paralleled and strengthened, in real
brain, by a diminished activity in the indirect pathway (due to
the presence of D2). Since the indirect pathway plays a major role
in regulating the selections by controlling, via GPe, the activity
of STN (Gurney et al., 2001a,b; Frank, 2006), the results com-
ing from the model might have a quantitative bias in providing
predictions about the amount of DA required to unbalance the
competition between direct and hyperdirect pathway, but they
should be sufficiently reliable in providing a general qualitative
understanding on the consequences of such unbalance.

The lack of the re-entrant thalamo-cortical loop is also a possi-
ble cause of biased results. Furthermore, the present model shows
a “collapsed” version of the cortical layers involved where the
actual biological circuitry (Douglas and Martin, 2004; da Costa
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and Martin, 2010) is condensed in a single layer receiving input
from the thalamus and propagating it back to the striatum, whilst
a second layer is mainly used as an output source for the robotic
set-up. Former models (Humphries and Gurney, 2002) have
demonstrated the ability of a more complex thalamo-cortical cir-
cuitry to preserve a selection in the cortex independently of the
input provided by the basal ganglia. Still, the computation per-
formed at this level should not affect our key hypothesis about
the role played by the DA in biasing the gain of the striato-
cortical loop in favor of the direct pathway. From a computational
perspective, the input reaching the striatum from the cortex is
weighted by the presence of the DA in the area: as a result, the
differences between the single values characterizing each compo-
nent of this input are increased when the DA outflow increases.
After this input is processed in the thalamo-cortical circuit and
propagated back to the striatum, this process is repeated, so that
the new cycle further increases the differences in the inputs. In
the present model the computation performed in the thalamus
is simplified via its basal activity, which is lowered by the inhibi-
tion provided by the SNr or GPi. A more bio-constrained model
would be grounded on reciprocal connections between thalamus
and cortex and these would be the cause for the initial activation
of the former. We argue that this change might once again affect
timing and duration of maintenance, but it would not affect the
general hypothesis about the improved gain in the bigger loop
involving the striatum, which is essential for the increased chance
the basal ganglia have to maintain any performed selection, real-
izing a memory-like phenomenon. The thalamo-cortical loop is
part of the striato-cortical one, so it has for sure an important
effect on this maintenance, but the functions of the two structures
can be considered as distinct, although affecting each other.

In future work, we plan to model an architecture of the basal
ganglia including both the indirect pathway and a more com-
plex thalamo-cortical connectivity, including the reentrant loop,
though relying on the same type of computational tools and
assumptions. This will allow a better comparison with the known
literature via the analysis of how the functioning of this neural
system is modulated when the DA release either increases above
or decreases below the baseline.

Concerning the selection in the second layer of the cortex,
Figure 4 shows that the mechanism of the lateral inhibition
becomes important only when the DA release reaches very high
values (e.g., in the single loop test, compare +50% with +20%,
+30%, and five out of six intervals in the+40% condition), deter-
mining multiple selections in the first layer of the cortex. DA
release recorded in most of the task is well below this thresh-
old (see Figure 7), so that it is fair to state that the selections
performed during the task are properly determined by the basal
ganglia rather than by the lateral inhibition in the second layer of
the cortex. An example of selections performed without the help
of the lateral inhibition is provided by the ventral loop (which
lacks these inhibitions in both cortical layers), where it is pos-
sible to see some overlap among selections, whilst the system is
still able to perform quick switches depending on its input. It
is important to stress here that the lack of lateral inhibition in
the ventral system is meant mainly for the purpose to demon-
strate the ability of the underlying system to perform its selections

independently of the final “filter” which would be implemented in
the second cortical layer. This assumption does not entail that the
PFC does not have lateral inhibition, as the cortex of the other
two loops do. Adding these inhibitions would have resulted in a
“cleaner” output signal as the one recorded in the second layers of
the attentional and manipulation loop, but it would have possibly
concealed the selection of basal ganglia targeted here.

Compared to its early version (Baldassarre et al., 2012), the
three-looped model has been modified mainly by altering cortico-
cortical connectivity, erasing direct inputs to Cau and Put, adding
the hippocampal input to the ventral loop and an agency guided
predictor to stop DA bursts when a perceived stimulus is no longer
unexpected. What is more important, both DA outflow dynamics
and effects it plays in its target regions have been sophisticated. To
solve the mechatronic board task, the model exploits the tempo-
rary focus effect, jointly with a differentiated sensitivity to DA in
different striatal regions. The combination of these two features
results in completely different behaviors in relation to distinct
DA outflows. It is useful to distinguish three phases in the task:
first, the agent visually explores the environment looking for new
cues and performing few arm actions; secondly, the agent focusses
attention on a new cue and randomly explores possible interac-
tions with the cue itself thanks to its action repertoire; finally, the
agent repeats those action selections responsible for generating
intrinsically motivating changes in the environment or granting
access to rewards.

The early version of the model also had to secure a similar
behavior in presence of intrinsic motivations to boost learning
processes. To this purpose, a “repetition bias” (Gurney et al.,
2009; Baldassarre et al., 2012) was used in the former model. This
is a transient process resembling learning and unlearning con-
ceived to offset the well-known (in reinforcement learning field)
tendency of a system to stick with the action/procedure it has
learned, avoiding any subsequent exploration of the environment
(a nice review of the exploration versus exploitation problem can
be found in Cohen et al., 2007). This classic problem has been
overcome in the present model by simply relying on the differ-
ential DA release triggered by either intrinsically (i.e., novel cues
and agency-related unexpected changes in the environment) or
extrinsically motivating stimuli (i.e., food): we have shown both
tonic and phasic DA can be causative in selection maintenance
so that even if there were no learning processes, the agent would
nonetheless repeat the behavior selected when the motivating
stimuli are perceived.

This mechanism, jointly with the effect DA has on accumu-
lation and selection timing, mediates vigor-like behaviors in the
agent (see Figure 5), suggesting these can be caused by the abil-
ity to quickly accumulate signals and preserve a selection rather
than by biasing learning processes. The differentiation between
repeated behavior and learning denotes a significant difference
with respect to classic reinforcement learning models (Niv et al.,
2007), but it does not entail these two phenomena do not con-
cur in determining the agent’s overall behavior. It is important to
stress that the model described in Baldassarre et al. (2012) had
both cortico-striatal and cortico-cortical plasticity. The present
model, which aims to investigate more in depth the DA role, does
not entail that cortico-striatal learning is not involved in this task.
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It rather points out that this learning process, though sufficient
for supporting the desired behavioral changes, is not strictly nec-
essary. The removal of such learning allows the current model
to better isolate some effects of DA that are often overlooked.
In particular, the present model shows that DA, aside its impor-
tance for striatal learning, has also a dynamic transient effect on
striato-cortical loops, which results in a behavior resembling the
one caused by learning. Any learning taking place in the striatum,
though biologically plausible due to the presence of DA bursts and
surely present in tasks as those considered here, would have made
this dynamic effect of DA much less evident, hence was removed
from the present model.

On the contrary, the mechatronic board task shows the “focus
effect” enhancing both the cortical learning process during explo-
ration and the exploitation after recalling: after the PFC has
successfully biased the selections performed in the manipulation
and attentional loops, the agent shows a stereotyped behavior pat-
tern in pursuing its reward. In this context DA has still a role
in helping the system to focus and maintain its selections, but
the learned cortico-cortical connections trigger a switch favor-
ing those selections that are biased by the activity in the ventral
loop, rather than those that are temporally close to the increase
of DA outflow. The resulting behavior shows both the features
described for high vigor (short time reactions) and those charac-
terizing incentive salience (Berridge and Robinson, 1998; Peciña
et al., 2003), where the “wanting” is mediated by the stability of
the activity of the ventral loop.

Since the functioning realized here is determined by the special
features characterizing the neural circuitry of the striatocortical
loops, our results show how manipulation, attention and exec-
utive control systems may be affected by enhanced selection,
interference and maintenance, that in turn are dependent on DA
outflow. The model supports the hypothesis that, in normal con-
ditions, different types of motivating stimuli, triggering different
DA outflows, modulate selection, but it also provides an interest-
ing explanation of the dysfunctions associated with hyper activa-
tion of the D1 receptors mimicking high release of DA in any of
the loops. We suggest the so-called “focus effect” in particular may
provide a better explanation of the recorded behavior and neural
activity associated with intrastriatal injections of amphetamine or
DA agonists (Wang and Rebec, 1993; Waszczak et al., 2002; Gulley
et al., 2004) or of impulsive/compulsive disorders and stereotyped
behaviors in medicated Parkinson’s patients (Weintraub, 2009;
Djamshidian et al., 2011).

Data reported in medicated Parkinson’s patients can be
explained by the mechanisms we describe in terms of the under-
lying role of guidance by the ventral loop. The learned cortico-
cortical connections represent the acquired associations between
actions on specific targets and the resulting changes in the envi-
ronment, so that when one of these outcomes is desired (i.e.,
selected in the ventral loop), the learned connections allow the
ventral loop to orient the selection in the other systems, causing a
switch to a goal-oriented behavior.

The low sensitivity to DA in the ventral loop means this sys-
tem is only activated in presence of high—tonic or phasic—DA
outflows, such as the one caused by either extrinsically or intrin-
sically motivating stimuli so that it is either active during learning

(establishing the associations) or when exploitation is necessary
to pursue a reward (consistently with Wunderlich et al., 2012).
But if the agent suffers from a loss of DA release in dorsal stria-
tum and is therefore employing DA agonists to compensate this
loss, the ventral striatum (which in Parkinson’s patients is usually
less affected by this loss) might be activated much more frequently
in contexts which are normally not connected with either extrin-
sic or intrinsic motivations. The more frequent selections in the
ventral loop due to artificially high presence of DA—or even
the fixated selection if the DA is sufficiently high—would bias
any other selection either in the motor or associative loops and
would therefore lead to an artificially induced hyper-incentivated
salience on the perceived stimuli and therefore to compulsive
behaviors.

Despite the functional analogies that can be established
between the motor exploration of a biological system and its
artificial simulation presented here, we note that the current
implementation of the actions in the robot generates a behavior
which, in both conditions of increased DA release, might lead to
some misinterpretations. Indeed, both the condition expressing
motor exploration of the possible interactions with a novel cue
(Figure 6, 0–10 min) and the one expressing exploitation of the
known associations when either intrinsic or extrinsic rewards is
perceived (Figure 6, 21–30 min) might resemble a dysfunctional
behavior. In particular, during motor exploration several actions
are initiated and do not reach their conclusion whereas in pres-
ence of motivations the robot expresses a strongly stereotyped
behavior. When analyzing these data it is important to remember
that the repertoire of actions in this set-up is limited enough to
grant a good test (18 possible combinations of actions on differ-
ent targets) of the effect of DA in narrowing down the options and
guiding exploration, but far from being close to the repertoire of
actions and environment interactions that would characterize—
for instance—a child or a primate when playing with the very
same mechatronic board. This is of course a strong limit for the
potential variety and flexibility of the final behavior. Furthermore,
DA affects the maintenance of a selection performed by a sys-
tem which is otherwise completely guided (in its attentional and
motor selections) by the random walk set in the thalamus. Thus, it
is not surprising that the actions are often initiated and then inter-
rupted when DA outflow is not sufficient to perform a strong lock.
Using random noise to initiate actions granting the autonomous
exploration of an environment is a functional simplification of
the real motor exploration performed by biological agents, which
is likely guided by goals and constantly affected by the presence
of minor intrinsic and extrinsic motivations that can be found
in a rich environment. This common procedure in the field of
developmental robotics (Saegusa et al., 2009; Gottlieb et al., 2013;
Ivaldi et al., 2013; Moulin-Frier and Oudeyer, 2013) is some-
times called “motor babbling” and is used to overcome the need
to create an otherwise infeasibly rich environment to motivate
exploration.

The model described in this paper can explain a wide range
of behaviors under minimal assumptions. Furthermore, it is
biologically plausible—being grounded in the neuroanatomy of
perceptual and action selection systems. Because the model is
formulated in terms of neuronal dynamics that are associated
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with specific cortical and subcortical structures, it lends itself to
dynamic causal modeling of empirical neuronal responses. For
example, it is—in principle—possible to use Equation (1) as a
model of hidden neuronal activity associated with sources of
electrophysiological responses. By equipping this neuronal model
with a conventional electromagnetic forward model, one can then
estimate the parameters (connectivity) of the model using non-
invasive EEG or MEG measurements. Crucially, one could also
evaluate the Bayesian model evidence for dynamic causal models
with and without dopaminergic gating or gain control implicit
in Equation (1). This would nicely parallel the face validity we
have established through implementation of the scheme in a
neurorobotics setting.
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SUPPLEMENTARY MATERIAL
The compiled file of the C++ libraries, the files containing all
the parameters and the essential matlab code to plot graphs here
described and any other recording in relation to the present
simulations, plus a series of demonstrative graphs showing the
neural activity in all layers of the three loops, can be down-
loaded here: http://www.im-clever.eu/resources/models/models/
fiorewetal2013keepfocussingmodel.tar.gz

The video showing the iCub accomplishing its task can be
found here: http://www.youtube.com/watch?v=vW6Gf2A3-XQ
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Intrinsic motivations drive an agent to explore, providing essential data for linking behaviors
with novel outcomes and so laying the foundation for future flexible action. We present
experiments using a new behavioral task which allows us to interrogate the connection
between exploration and action learning. Human participants used a joystick to search
repeatedly for a target location, only receiving feedback on successful discovery. Feedback
delay was manipulated, as was the starting position. Experiment 1 employed stable
starting positions, so the task could be learnt with respect to a target location or a
target trajectory. Participants were able to learn the correct movement under all delay
conditions. Experiment 2 used a variable starting location, so the correct movement could
only be learnt in terms of target location. Participants displayed little to no learning in this
experiment. These results suggest that movements on this scale are stored as trajectories
rather than in terms of target location. Overall the experiments demonstrate the potential
of this task for uncovering the native representational substrates of action learning.

Keywords: action outcome learning, spatial learning, intrinsic motivation, cognitive science, motor learning

INTRODUCTION
When Thorndike (1911) pioneered the study of action acqui-
sition with his puzzle box escape paradigm, he was investigat-
ing whether animals can learn to produce apparently insightful
behavior despite having no causal understanding of the prob-
lem at hand. By repeatedly placing subjects into a puzzle box
and measuring the time taken for them to enact their escape,
Thorndike was able to observe and record the animals as they
gradually extracted the elements of behavior associated with suc-
cess from a complex stream of self-generated behavioral variance.
Thorndike’s animals improved across trials, and while they may
have had little insight into the underlying relationship between
their actions and escape, the feat of learning was nonetheless
impressive, requiring them to solve a considerable problem of
credit assignment (Minsky, 1961; Sutton and Barto, 1998). The
major challenge of learning through trial and error is that suc-
cess will inevitably be associated with both causally relevant
and causally irrelevant activities. In addition to this, the learn-
ing system must deal with delays between successful actions and
their associated outcomes—the so called “distal reward problem”
(Izhikevich, 2007), with no way of determining how far back in
the motor record the most important aspects of performance
might lie.

By associating motor activity with a particular outcome, ani-
mals create an action-outcome pair, which can then be added
to the behavioral repertoire. Theories of the representation of
action suggest that it is the outcome which is represented after
learning (Hommel et al., 2001), but these focus on the goal
of the action, rather than how to perform the action. During

action discovery, especially in a situation where discovery occurs
during unconstrained exploration, the contingency is not neces-
sarily obvious, and moreover identifying the causal element of
motor output is non-trivial. In normative models of reinforce-
ment learning, a common method is to use temporal difference
algorithms which maintain a trace of the pattern of recent activ-
ity, such that it remains eligible for reinforcement at the moment
when the outcome eventually occurs (Barto et al., 1981; Wickens,
1990; Singh and Sutton, 1996). This approach is consistent with
Skinner’s studies of superstitious behavior (1948), and predicts
that participants will learn sub-optimal strategies based on prior
success, as previously successful trajectories of movement will
be reinforced regardless of the underlying contingency of the
action-outcome pair. It is also clear that this mechanism of asso-
ciating recent motor activity with success leaves little opportunity
for insight into which aspect of the previously successful move-
ment is causal and which can be pruned across repetitions. Such
refinements could only occur through a process of trial-and-error
across numerous action repetitions.

Redgrave and Gurney (2006) and Redgrave et al. (2008)
have argued that the response of dopamine neurons in the
ventral midbrain ∼100 ms after the presentation of novel and
rewarding stimuli acts as an indiscriminate time-stamp which
indicates the last segment of the animal’s motor record that
could have played a role in eliciting a novel stimulus, irrespec-
tive of what that stimulus might be. They propose that the
dopamine response is central to the tasks of agency detection,
action discovery and the learning of action-effect contingen-
cies. It is widely thought that this activity plays a key role in
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valuation and economic decision-making (Schultz et al., 1997;
Schultz, 2007), and in the case of action discovery, Redgrave
and Gurney (2006) suggest that the dopamine response acts as
the timestamp against which the motor commands in the eli-
gibility trace can be compared—ameliorating the distal reward
problem. While this time-stamping mechanism prevents any
motor commands subsequent to the outcome, and therefore non-
contingent, from entering the pool of potential contingencies,
the record of recent motor output eligible for reinforcement will
still contain non-contingent elements, and any manipulation of
the time between movement performance and success being sig-
naled will necessarily introduce further non-contingent motor
output.

The twin problems of credit assignment and distal reward are
at the heart of a paradigm we created to investigate this kind of
“Thorndikian” action acquisition in human and animal partici-
pants (Stafford et al., 2012). This task captures the discovery of
a novel action through self-generated behavior and allows the
refinement of that behavior through the trial-and-error pruning
of non-contingent elements to be studied. In this task partici-
pants move a joystick freely and “escape” the trial by discovering
the action set by the experimenter, in this case simply plac-
ing the joystick controlled cursor within a pre-defined area. The
participants receive no feedback on the cursor’s location and suc-
cessful performance of this action is denoted only by an audio
signal and the end of the trial. Other work using this paradigm
has focused on the neural pathways preferred for processing the
reinforcing signal (Thirkettle et al., 2013), or on the time sensi-
tivity of these mechanisms (Walton et al., 2013). Together this
work seeks to better understand the cognitive mechanisms and
neural pathways involved in the discovery and learning of novel
actions through self-generated exploratory behaviors. Stafford
et al. (2012) include an in depth discussion of the nature of the
joystick task and its relationship to previous behavioral work
studying learning. The present experiments aim to identify if
an “eligibility trace” of movement trajectories generated dur-
ing an iterated location finding task is necessary for learning.
Previous studies have focused on the discovery of a new action-
outcome pair; here that moment of discovery is studied alongside
the refinement of the action through repetition. If participants
learn a novel action by stamping in recent motor output, there
should be evidence of this in the form of the preservation of
portions of successful movements from early performances in
later ones. The design of the joystick task, lacking as it does, any
visual information regarding either the target location, or the cur-
rent location of the joystick in the search arena encourages the
participants to use motoric and bodily sources of information.
The type of location information used in a location finding task
has been shown to affect performance in terms of both system-
atic biases and absolute levels of performance (e.g., Simmering
et al., 2008), but here our focus is on maintaining a constant
source of information—proprioception and efference copy—and
manipulating the usefulness of relevance of past experience to
inform learning. If a reliance on the movements made previously
is found, we would predict this would preclude learning in a sit-
uation where only the endpoint of a previous movement, rather
than the movement itself was informative.

We therefore sought to measure learning performance when
the eligibility trace was contaminated with additional, non-
contingent, motor commands, and when the record of motor
commands was devalued across movement repetitions. In exper-
iment one, participants discovered the location of a hidden target
area and then repeated moving to this target from the same
start position. By manipulating the delay between the partici-
pant entering the target area and the presentation of the success
signal, contamination was introduced into the record of recent
motor commands. If the eligibility trace is bound by a time-
stamping mechanism then increasing this delay between action
performance and reinforcement should produce weaker learn-
ing and more variable movement trajectories across repetitions.
In experiment two, we repeated the manipulation of delay in the
location finding task but used a randomized starting location for
each repetition of the movement to the target—forcing partic-
ipants to return to the target area from a different position each
time. If participants are relying on the previous movements rather
a representation of the target location to refine their performance
across repetitions then both learning and performance should be
extremely poor.

EXPERIMENT 1
MATERIALS AND METHODS
Participants
Thirty undergraduate students (mean age 19 years) at the
University of Sheffield (25 females) participated in all condi-
tions of this study. Participants took part in return for credits
in the department’s research participation scheme. All subjects
were naive to the purpose of the experiment and the independent
variable. Ethical approval was granted by the department’s ethics
committee.

Apparatus
The experimental program was written in Matlab (Version 2007),
and stimulus display was performed using the Psychophysics
Toolbox extensions (Brainard, 1997). A 19′′ monitor was used
throughout along with a standard USB keyboard for participant
response during instructions. A commercial joystick (Logitech
extreme 3D pro joystick, P/N: 863225-1000) was used as the
experimental input device. Custom Matlab code polled the posi-
tion of the joystick at 100 Hz.

The search space was defined as a square with a side length of
1024 units. Movements of the joystick were mapped onto move-
ments within the search space in a one to one fashion, with the
joystick starting in the center of the search space at the beginning
of each trial. Once released from the grip of a participant, the joy-
stick’s internal spring returned it to the center of the search space
within a tolerance of 10 units.

Procedure
Participants sat at a desk in front of the joystick and monitor.
Before starting the experimental program, the task was briefly
described verbally with the goal being phrased as “finding the
correct position to place the joystick in.” Participants were told
that the experiment involved no deception and that the correct
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position could always be found. Following this brief verbal reas-
surance, the program was started and the participants were asked
to follow the onscreen instructions.

The size of the target area (hotspot) that participants were
required to find was determined through pilot testing and set to
occupy 0.28% of the search space. Experimental trials were split
into ten iterations, an initial iteration where they had to search
for the hotspot, and nine subsequent iterations where they had
to return to a hotspot in the same position. Each iteration began
with the joystick in the center of the search space and for each
trial the center of the hotspot was positioned randomly within an
annulus shaped region of the total search space to ensure that the
hotspot never overlapped the central starting point or the outer
edge of the search space. During an iteration any movement of
the joystick into this region was defined as a “hit” and resulted
in a beep (600 Hz) of 10 ms duration and the end of the itera-
tion. During each iteration, the screen remained dark and blank.
A delay period of 0, 150, 300, or 450 ms was interposed between
the moment at which a participant moved into the hotspot and
the point at which the beep was presented. This also marked the
end of the current iteration and was accompanied by an on-screen
message to prepare for the next (see Appendix 1 for full details of
onscreen text).

Before the experimental trials, participants completed a short
practice session and once this was completed the experimen-
tal trials began immediately. Participants completed 2 trials
at each delay duration, each trial containing 10 iterations—
for a total of 80 movements. Order of trial delay condition
was counterbalanced across participants to control for order
effects.

Data analysis
We used a 4th order two-way low pass Butterworth filter at 10 Hz
to remove noise and redundant data points from the movement
data. This filter is commonly used in studies of human motion
(Seidler, 2007) and smoothed the raw joystick output, the inten-
tion being to more accurately reflect the underlying movement of
the participant’s hand and arm.

For the purposes of analysis, the trace of movement from
each iteration was treated as being composed of two phases:
pre-discovery and post-discovery (Figure 1). The pre-discovery
period extends from the start of the iteration to the point of
entry into the hotspot and is free to last as long as the partici-
pant takes to discover the target. Conversely, the duration of the
post-discovery period is strictly dictated by the delay imposed
by the experimenter between the successful discovery of the tar-
get and the presentation of success signal. The post-discovery
period is of particular interest as it contains contaminating—non-
contingent—information produced by the participant. If people
learn by stamping in recent motor output, their activity dur-
ing this period should influence their performance during the
pre-discovery period of subsequent trials.

Due to the open-ended nature of trials, it was anticipated
prior to testing that the distribution of trial duration and dis-
tance covered would be positively skewed. Analysis of the data
distributions confirmed this and all data were corrected using
log-transformation prior to analysis (Keene, 1995).

RESULTS
In each iteration, the movement within the pre-discovery period
can be compared against a direct line from the start position to the
target. We term the difference between this straight line and the
path taken by the participant the “irrelevant distance” and by col-
lapsing this measure across the ten iterations of each trial, across
trials and across participants the impact of the imposed signal
delays on performance before contact was made with the target
can be assessed.

As Figure 2 shows, there was a significant effect of delay
on pre-discovery irrelevant distance, F(3, 87) = 4.79, p < 0.005,
driven entirely by the slump in performance in the 450 ms condi-
tion (p < 0.05). This is a consistent, albeit less dramatic, effect to
that reported in our previous work using a manipulation of signal
delay in the joystick task, and we attribute the reduced delay sen-
sitivity found here compared to the previous work to the iterated
nature of the present task.

FIGURE 1 | Illustration of joystick movement trace showing phases of

joystick movement: The movement trace was split into the activity

between the start of the iteration (solid, unfilled, circle) and

encountering the target (filled circle), and the activity between

encountering the target and the presentation of the signal (dashed,

unfilled, circle). These phases of movement were termed the
pre-discovery (solid line) and post-discovery (dotted line) components.

FIGURE 2 | Mean irrelevant pre-discovery distance (and standard error)

for the 4 levels of reinforcement delay. Values are back-transformed from
the log transformation.
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The requirement of the participant to repeat a newly acquired
action allows the learning of that action to be captured and as such
we expected to see a reduction in the irrelevant distance moved by
the participant in later iterations of trials compared to earlier iter-
ations of the same trial. A learning ratio was calculated by dividing
the irrelevant distance traveled in the pre-discovery period in
iterations 1–5 by that traveled in iterations 6–10 of each trial.
Figure 3 shows the learning ratio collapsed across participants for
the four delay conditions and shows that while there was no sig-
nificant effect of delay on learning [F(3, 87) = 0.142, p = 0.935],
a considerable improvement in performance was observed from
early to late trials. This suggests that the effect of delay on is one
which impacts action discovery, rather than the refinement of the
discovered action across the later iterations.

Within each trial, the refinement of the newly discovered
action across iteration can be approximated by the power law of
learning (Ritter and Schooler, 2001) as in the equation:

efficiency = Em+ range× e−αN

Here we use irrelevant search distance as the measure of effi-
ciency, with α being the parameter which describes the speed

FIGURE 3 | Learning ratio (performance measures in the first half of

iterations divided by that in the second half of iterations) for the 4

levels of reinforcement delay. Values are back-transformed from the log
transformation, error bars are standard error.

of learning with the range of observed performance levels, Em
is a minimum figure for the irrelevant search distance, range is
the difference between initial and asymptotic performance, and
N is the number of trials. Figure 4 shows the average perfor-
mance of participants within each trial at each reinforcement
delay condition with the best power law fit applied. The improve-
ment in performance is well-described by the power law at each
level of delay, although, again, it is notable that the greater
delay had more of an impact on the minimum irrelevant search
distance than upon the value of α which describes the rate
at which performance improved to asymptote. The similarity
of α across delay conditions, as with the learning ratio, sug-
gests that delay is impeding action discovery, rather than action
refinement.

The learning evident in experiment 1, shows that after dis-
covering the invisible target location in the first iteration, the
movement required by the task was refined across the sub-
sequent 9 iterations. Participants were able to greatly reduce
the length of their path to the target by the final iteration
compared to that taken on their first encounter with the
target.

EXPERIMENT 2
A limitation of using a stable starting position when seeking
to investigate whether a particular trajectory of movement is
stamped into behavior is that if participants perform close to
optimally in an early trial, it is difficult to determine on sub-
sequent trials whether similar trajectories of movement are a
reflection of the participants adopting previously successful tra-
jectories of movement or whether they are adopting previously
successful trajectories simply because these trajectories are con-
sistent with near optimal performance and they would have
learnt to perform at this level anyway. An alternative approach
is to vary the start position whilst maintaining a stable target.
In this way it is possible to ensure that the optimal trajec-
tory of movement varies from trial to trial, making it easier to
determine whether participants are exploiting their memory of
a previously successful movement path or learning a success-
ful end point which they are able to reach from any starting

FIGURE 4 | Average participant performance across the 10 iterations for

each delay condition. Data shows the fitted power law curve which
describes the rate of improvement in performance well. Annotations show

the fitting values for the power law, both for the fitted variables of the power
law itself and the sum of squares due to error (SSE) goodness of fit value for
the curve fitted to the data.
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position. Experiment 2 therefore replicated experiment 1, but
after discovering the target location instead of repeating the
movement from the same start position to the target 9 times,
participants moved to the target from 9 randomly chosen start
positions.

MATERIALS AND METHODS
Participants
15 undergraduate students (mean age 19 years) at the University
of Sheffield (11 females) participated in all conditions of this
study. Again, participants took part in return for credits in the
department’s research participation scheme. All subjects were
naive to the purpose of the experiment and the independent
variable.

Apparatus
The experimental setup remained as in experiment 1; with
the exception that stimulus display was performed using the
Cambridge Research Systems Visage graphics board and the
associated Matlab toolbox extensions. A Mitsubishi Diamond
Pro 2070sb 22′′ monitor was used throughout and a chin rest
ensured the participants remained seated 57 cm from the screen
throughout. Changes to the experimental code meant that the
position of the joystick was now polled at 1000 Hz and the
search space was defined as a square with a side length of
1000 units.

Procedure
All experimental procedures were kept as similar as possible as in
experiment 1, with the addition of a requirement that the par-
ticipant moved the joystick to a randomly selected start position
before beginning the search on each iteration for the target. Also
three rather than four different delay levels were employed in
order to reduce experiment time, and focus more tightly on the
most influential delays between success and reinforcement signal
presentation. The randomization of start location was achieved
by presenting the start position and the current position of the
joystick on-screen and instructing the participant to move the
cursor to the highlighted area in order to start the iteration. The
start position was chosen in the same way as the target position
(which, as in experiment 1, remained unchanged for the 10 iter-
ations of each trial), with the additional constraint that it could
not overlap the target position. As in experiment 1 participants
understood that the target position was changing only for each
trial of 10 iterations.

Participants again completed a short practice session immedi-
ately before the experimental trials and conducted three trials of
10 iterations at each of three delay levels (0, 200, and 400 ms) for
a total of 90 trials. The resulting data was processed in the same
way as in experiment 1 to correct for positive skew, and reduce
redundant data points from the movement data.

RESULTS
There was a significant effect of delay on the irrelevant dis-
tance traveled by the participants when the start position
was randomized [F(2, 28) = 13.422, p < 0.001]. As in experi-
ment 1, this effect was driven entirely by the highest level

FIGURE 5 | Mean irrelevant pre-discovery distance (and standard error)

for the 3 levels of reinforcement delay in experiment 2 (shown as

dotted line). The results from experiment 1 (solid line) are also plotted for
comparison.

of delay, in this case 400 ms [F(1, 14) = 16.290, p = 0.001]. As
Figure 5 shows, across all delay conditions, comparing between
the experiments participants average irrelevant distance was
greater when seeking a static target if the start position was
changed from iteration to iteration suggesting a reliance on
the static start position in order to find the unchanging tar-
get. While the delay manipulation is unequal across the two
experiments, preventing in depth analysis, comparing perfor-
mance in just the zero delay conditions, shows that changing the
start position significantly impaired performance [t(40.135) 2.709,
p = 0.01].

A simple increase in the irrelevant distance traveled could sig-
nify that by changing the start position on each iteration the
task of finding the target was made more difficult, rather than
speaking to the effect of the changing start position on learn-
ing. However, this is revealed in the measures of learning across
the ten iteration of experiment 2. Figure 6 shows the learning
ratio and fitted power law data for performance in experiment 2.
Again, we see no significant effect of delay on the learning ratio
but the lack of improvement across the 10 iterations is strik-
ing. Unlike in experiment 1, participants did not improve as the
repetitions of the movement continued, and this is borne out
in a significant reduction in the learning ratio. Comparing the
zero delay conditions across the two experiments again we see
this reduction is significant [t(35.724) 5.776, p < 0.01]. The lack
of learning found without a stable start position is evidenced
further by our attempts to fit a power law to the data as in exper-
iment 1. The power law of learning no longer describes the data
as no improvement in performance of any note is taking place.
This strongly suggests that the refinement of the newly discovered
action as found in experiment 1 is heavily reliant on a stable start
position.
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FIGURE 6 | Learning ratios and fitted performance data for

experiment 2. Compared to the learning ratios of experiment 1
(Figure 3) we again see no effect of delay on learning ratio but
dramatically reduced values for said ratios (upper axis). Unlike in
experiment 1 (Figure 4) the power law curve shown on the lower

set of axis no longer adequately fits the data and participants did
not reliably improve across the 10 iterations (Power law curve fit
values for lower axis figures: 0 ms Delay: Em = 3.73, α = 5.2−4,
SSE = 7.16, 200 ms Delay: Em = 1.63, α = −9.4−3, SSE = 1.77,
400 ms Delay: Em = 6.63, α = −1.1−2, SSE = 1.27).

GENERAL DISCUSSION
Whether the starting position was static (experiment 1) or
changed with each iteration (experiment 2) participants were able
to successfully discover the target location, but are affected by
delaying the reinforcement signal. This is consistent with our pre-
vious findings using different versions of this task (Stafford et al.,
2012; Thirkettle et al., 2013; Walton et al., 2013), but here we
demonstrate the impact of reinforcement delay in a version of
the task in which the reinforcement is delivered without giving
the participant the opportunity to correct for, or respond to, the
delay within a single performance of the reinforced action. Here
participants had to repeat the entire action after a single, possibly
delayed, reinforcement signal. This sensitivity to delay reveals, we
argue that it is the process of action acquisition which is critically
dependent on the coincidence of motor efference copy with a sen-
sory signal indicating a novel or surprising outcome (Redgrave
and Gurney, 2006) rather than the subsequent refinement of a
discovered action through, in this case, repeated encounters with
the target area. For the initial discovery of an action, the num-
ber of potentially causative movements grows with each moment
and this record inevitably becomes increasingly contaminated

with noise (i.e., movements or aspects of movement with no
causative relationship to the action). Because of this, delivery of
the sensory signal to the brain area(s) where it can be used to
tag potentially causal elements in the motor record must be done
as fast as possible in order to reduce the difficulty of the credit
assignment problem (Minsky, 1961). In machine learning, the
idea of an “eligibility trace” has been suggested as a mechanism
for solving the credit assignment problem (Singh and Sutton,
1996). With regard to the joystick task, a system employing such
an “eligibility trace” should display the repetition of aspects of
movement contained within such a period regardless of their
necessity for success. Further studies are planned to focus on the
production and persistence of these “superstitious movements” in
the joystick task.

Learning to move to a spatial target is significantly poorer,
indeed, almost abolished, when only the target location remains
static and the participant must move to the target without ref-
erence to their previous movements (experiment 2). This allows
an additional supposition about how the credit assignment prob-
lem is being solved here: Not only is learning in this task achieved
by a highly time sensitive mechanism, such as an eligibility
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trace’, but that this mechanism operates on a record of previ-
ous movements not a record of previous locations. The task
in experiment 1 could be solved by a learning mechanism that
stored target information, or trajectory information (since learn-
ing to move toward the target location, or moving in a target
direction would both allow successful completion of the task).
The target location method remains viable for experiment 2, but
the task cannot be successfully completed by acquiring target
trajectories—the start location of the movement shifts, requiring
different trajectories to reach the target. The absence of learn-
ing in experiment 2, but successful learning in experiment 1,
suggests that the participants are relying on a trajectory based
strategy.

That a stable starting position could be so critical to learning
is somewhat surprising. Previous work with an emphasis on spa-
tial goals has shown that both rats and humans are capable of
learning even when a stable trajectory is not associated with the
goal (Tolman, 1948; Landau et al., 1984). Human visuo-spatial
reasoning is highly developed and, for example, in tasks such as
the pursuit rotor task (Frith and Lang, 1979) participants are able
to trace a moving target so that current spatial position guides
trajectory. In the Morris Water Maze (Morris, 1984) rats learn a
target location rather than a trajectory or by using “dead reck-
oning” [but see Chamizo (2003)]. That our participants are not
able to use spatial location to guide their movements suggests
that our task taps a different set of processes. Indeed, we designed
the task (Stafford et al., 2012) to rely as far as possible on the
processes of motor learning without augmentation from visual-
spatial memory or explicit reasoning. By using a task that tapped
implicit motor processes we hoped to be able to isolate the specific
capacities of this architecture of action discovery. Alternatively,
it is also possible that the lack of reliable visuo-spatial informa-
tion in this formulation of the task forces the system to rely on
trajectory information to an unusual extent. Certainly the addi-
tion of spatial information in the form of a visual cue would have
colored the results, and further experimentation is required to
assess the relative contribution of each category of information
on learning. However, what can be said with certainty is that in
the absence of visuo-spatial information the system is capable of
using only trajectory information from efference copy to learn
spatial tasks.

If we consider how an animal might learn under natural con-
ditions, it seems likely that the behavior it chooses to reselect—in
effect, the unit of reinforcement—might relate to the attitude of
its body and its overall position within the environment at the
moment when reinforcement arrived. The ability to learn par-
ticular trajectories of movement might not be a key aspect of
action acquisition because reinforcement is so rarely contingent
on such movement. Indeed, there is mounting evidence to sug-
gest that the motor output an animal is most inclined to reselect
and reinforce might be its terminal body position rather than
the movement trajectory required to achieve that body position.
Graziano (2006) describes how attempts to map the motor cor-
tex have revealed that actions do not appear to be represented
at the neural level in the form of motor primitives that can be
combined to form complete actions. Instead, particular portions
of the cortex, when stimulated, evoke whole meaningful adaptive

responses such as defensive or feeding postures. Furthermore, cer-
tain aspects of these actions appear to be more important than
others. For example, hand movements are encoded in such a way
that the hand will finish at a specific point in space, irrespective
of where it started. Such representations do not describe a par-
ticular sequence of movements and instead describe behaviorally
relevant terminal postures. In Graziano’s view, certain features of
actions, such as the final hand position, are crucial and the means
by which these positions are achieved are of less importance and
are likely free to vary to a greater extent. These representations
in the cortical behavioral repertoire are plastic, and are able to
represent complex movements as a function of experience and
training (Martin et al., 2005; Ramanathan et al., 2006). While our
current results may appear in tension with this body of evidence,
one reconciliation is that regardless of the final representation in
the cortex (which seemingly does include the terminal posture), a
stable trajectory of movement is sufficient to support this process
of learning. In other words, the conditions required for learning
actions can be different from the eventual form of their storage.

These experiments validate the task as being a useful one for
investigating the mechanisms of novel action learning (Stafford
et al., 2012). The manipulation of delay allows us to expose the
time sensitivity of these mechanisms (Walton et al., 2013), while
precise stimulus control even allows us to discern the involve-
ment of different neural pathways in action learning (Thirkettle
et al., 2013). The current result suggests that trajectories can act
as the substrate of novel action learning and further that in the
absence of both visual information and a stable trajectory, actions
can be discovered but cannot be refined over subsequent repeti-
tions, although it should be noted that it remains possible that
with more repetitions some improvement in performance could
be observed.

We were inspired in this investigation by our theory of the
function of the basal ganglia in novel action learning (Redgrave
and Gurney, 2006; Redgrave et al., 2013). These variations of the
“joystick task” are important and revealing as a whole because
action acquisition presents a particularly difficult problem in the
compromise between over-constrained and under-constrained
tasks: when we over-constrain, we leave little opportunity for
the agent to generate interesting behavioral variance as they
freely explore and discover the new action; but when we under-
constrain, there is simply too much noise in the data for us to
draw any meaningful conclusions.

This work has been inspired by considering human action
learning from the perspective of an autonomous agent which
must acquire novel actions without either explicit instruction
or certain knowledge of action-outcome relations (see also Shah
et al., submitted). We have been guided in this by work in
intrinsically motivated learning, and particularly by work within
the framework of reinforcement learning (Sutton and Barto,
1998). From this reinforcement learning perspective a number of
direct predictions flow. For example, the exploration-exploitation
dilemma is a fundamental trade-off in learning within a com-
plex space of actions where the reinforcement signal has unknown
bounds. Early focus on actions with highest known value may
lead to failure to discover the highest value actions in the long run,
and—conversely—early exploration may lead to the discovery of

www.frontiersin.org September 2013 | Volume 4 | Article 638 | 95

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Thirkettle et al. Trajectory based action discovery

the highest value actions in the long-term. In the joystick task
this predicts that those participants who “explore” the move-
ment space more in early trials—i.e., those who cover a greater
distance reaching the target—will eventually settle on a more
optimal path than those who explore less and “exploit” a suffi-
cient path to the target. We have confirmed that this signature
of an exploration-exploitation trade-off manifests in our joystick
task (Stafford et al., 2012) as well as in at least one other domain
of skill acquisition (Stafford and Dewar, 2013).

For an autonomous agent the credit assignment problem
is deeply under-constrained—any aspect of the agent’s behav-
ior could potentially be causative of some novel outcome. The
present experiment shows that the action learning system of
human subjects have a bias to attribute cause to trajectory aspects
of brief motor actions, rather than spatial aspects (resulting in
the failure to learn seen in experiment 2). It is plausible to
suggest that a “representational bias” may exist in these sys-
tems in order to narrow down their search of motor space
for novel action-outcome pairs. An animal analog of the joy-
stick task has been developed, and research already conducted
demonstrates that general measures of behavior are compara-
ble between rat and human participants (Stafford et al., 2012).
Further work is required to assess whether the core challenge of
the credit assignment problem is approached in a similar manner

in rats, and whether search strategies and persistent elements
of movement are detectable in rat response data and compa-
rable to human data. Should this research reveal a common
solution to the credit assignment problem, we would suggest
that the use of a representational bias to focus the search of
motor space could be a reasonable approach for any artificial
agent.

The ability to acquire new actions is a keystone of human
intelligence and the drive to explore our motor competency
an essential element of our intrinsic motivations, relating, as it
does, to aspects of intrinsic motivation such as novelty, surprise,
curiosity, and mastery (Baldassarre and Mirolli, 2013). Our task
allows us to frame general questions about intrinsic motivation
and action discovery within a tightly controlled experimental
context.
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The efficient coding hypothesis posits that sensory systems of animals strive to encode
sensory signals efficiently by taking into account the redundancies in them. This principle
has been very successful in explaining response properties of visual sensory neurons as
adaptations to the statistics of natural images. Recently, we have begun to extend the
efficient coding hypothesis to active perception through a form of intrinsically motivated
learning: a sensory model learns an efficient code for the sensory signals while a
reinforcement learner generates movements of the sense organs to improve the encoding
of the signals. To this end, it receives an intrinsically generated reinforcement signal
indicating how well the sensory model encodes the data. This approach has been tested
in the context of binocular vison, leading to the autonomous development of disparity
tuning and vergence control. Here we systematically investigate the robustness of the
new approach in the context of a binocular vision system implemented on a robot.
Robustness is an important aspect that reflects the ability of the system to deal with
unmodeled disturbances or events, such as insults to the system that displace the stereo
cameras. To demonstrate the robustness of our method and its ability to self-calibrate, we
introduce various perturbations and test if and how the system recovers from them. We
find that (1) the system can fully recover from a perturbation that can be compensated
through the system’s motor degrees of freedom, (2) performance degrades gracefully if
the system cannot use its motor degrees of freedom to compensate for the perturbation,
and (3) recovery from a perturbation is improved if both the sensory encoding and the
behavior policy can adapt to the perturbation. Overall, this work demonstrates that our
intrinsically motivated learning approach for efficient coding in active perception gives rise
to a self-calibrating perceptual system of high robustness.

Keywords: active perception, sparse coding, reinforcement learning, robotics, stereo vision, vergence, robustness

1. INTRODUCTION
A number of studies in the last four decades addressed the ques-
tion of how sensory neurons encode information and showed
that neural systems might employ an efficient code to represent
incoming data, i.e., a code that exploits redundant information
(Attneave, 1954; Barlow, 1961; Field, 1994). The visual system
has been a primary target of these studies, where the main result
showed that neurons in primary visual cortex (V1) might encode
visual information through a sparse code, i.e., a code where, at any
given moment, only a few neurons out of the entire population
fire. A sparse coding strategy has several benefits (Willshaw et al.,
1969; Lennie, 2003), including increased memory, less interfer-
ence between stored patterns and reduced energy consumption,
as compared to a dense code (i.e., where many units are simul-
taneously active). Importantly, when the sparse coding principle
is applied to the encoding of natural images (i.e., scenes from
nature), it leads to the emergence of basis functions whose struc-
ture resemble that of V1 simple cells’ receptive fields (Olshausen
et al., 1996). The idea of sparse coding has been confirmed by
neurophysiological experiments, showing sparse activation of V1

neurons in primates when probed with image sequences of nat-
ural stimuli (Weliky et al., 2003) and has been extended to other
sensory domains, including the olfactory and auditory domain
(Perez-Orive et al., 2002; Smith and Lewicki, 2006). Most stud-
ies treated the problem of efficient coding without considering
the effects of behavior. The connection between sensory inputs
and behavior, commonly referred to as the perception-action cycle
is important both to (1) understand the development of sensory
representations in neural systems as a function of the task per-
formed (Rothkopf et al., 2009) and to (2) design artificial systems,
such as robots that autonomously learn and adapt to a chang-
ing environment. Indeed, a big technological challenge for such
systems is to learn in an efficient and unsupervised way.

We consider this problem in the context of binocular vision.
Binocular disparity, the difference between the image projected
on left and right retina, is used by organisms with two frontal
eyes as a primary depth cue. In order to focus on a point at a
certain depth, the two eyes are required to jointly turn inwards or
outwards, such that the same object or world feature appears in
the center of both images and disparity is nullified. Such type of
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eye movement is known as vergence and represents a fundamental
component of visually-guided behavior.

Many approaches to perform vergence in robotic systems
employ computer vision techniques to estimate disparity from
stereo-images followed by the use of a feedback controller to move
the eyes and nullify disparity. These methods are often dependent
on pre-defined system parameters and camera calibration. Some
methods have used reinforcement learning to autonomously learn
vergence control; however, they all require estimating disparity by
the use of a pre-defined set of filters (Piater et al., 1999) or a pop-
ulation of disparity-selective neurons (Franz and Triesch, 2007;
Wang and Shi, 2010).

In our previous work (Zhao et al., 2012; Lonini et al.,
2013c) we have presented a method that autonomously learns
how to verge two cameras on a common world feature based
on the efficient coding hypothesis. The model makes use of
a form of intrinsic motivation to learn efficient sensory rep-
resentations in the perception-action cycle. A sparse coding
model learns to encode sensory information using binocular
basis functions at different resolutions, while a reinforcement
learner generates the camera movement, according to the out-
put of the sparse coding model. Sensory coding and behavior
develop in parallel, by minimizing the same cost function: the
error between the original stimulus and its reconstruction by
the sparse coding model. The rationale behind the approach is
that, the more similar left and right images are, the easier they
are to encode. Thus, if the actions taken by the reinforcement
learning (RL) agent drive the system to perform correct ver-
gence, the reconstruction error will be minimized. Importantly,
the reward to the reinforcement learning agent is generated
within the system and does not explicitly specify the goal to be
attained.

In this paper we show that the joint learning of the sen-
sory and the control part produces a system that is robust with
respect to unmodeled disturbances. This is a critical issue for
stereo vision systems: for example an insult to the system might
cause a displacement of one camera, which in turn modifies
the extrinsic parameters (i.e., the relative offset of the two cam-
eras) of the model of the system. We consider four different
types of perturbations that we apply to one camera: blur, roll
(in-plane rotation), tilt (vertical misalignment), and pan (hor-
izontal misalignment). We show that the system can still learn
vergence despite the perturbations. Moreover, when a pertur-
bation is introduced, adapting the bases of the sparse coding
models to the changed input statistics improves the perfor-
mance, as compared to a case where only the policy of the
RL agent is adapted and the bases are tuned to unperturbed
images. The results underline the importance of adapting both
the sensory encoding and the behavior of the system. The use
of an intrinsic reward, coupled to an efficient coding of the sen-
sory inputs, allows the model to continuously learn under a
multitude of conditions. This self-calibrating property is highly
desirable for robotic systems that have to operate in changing
environments.

We use the head of the humanoid robot iCub as a test platform.
The iCub robot stereo head represents a convenient platform to
study active perception, because it replicates the main degrees

of freedom of the human head and eyes. We train the model
using the iCub simulator and use it to quantitatively assess the
performance of the system. We then show that the model also
works well on the real robot. The paper is organized as follows:
in section 2 we describe the model architecture, the perturba-
tions used and the experimental setup. Section 3 contains the
results of the robustness analysis and section 4 discusses the
results.

2. MATERIALS AND METHODS
In this section, we first provide an overview of the architecture of
the vergence control system; then we describe the set of distor-
tions applied to the stereo images, which are used to assess the
robustness of the method. Finally we describe the iCub robotic
platform and the simulator used to run the experiments.

2.1. MODEL ARCHITECTURE
The vergence control model consists of three main stages (see
Figure 1):

• Pre-processing: stereo patches are extracted from the input
binocular images and normalized.
• Sensory encoding: two sparse coding models are used to encode

the input images at different resolutions.
• Motor control: a reinforcement learning agent generates ver-

gence commands to move the cameras of the robot according
to the output of the sparse coding models.

A detailed description of our model architecture has been intro-
duced in (Lonini et al., 2013c). We report here the main elements
for the sake of completeness.

2.1.1. Pre-processing
Stereo images are acquired from the cameras of the iCub robot
(320× 240 pixels) and converted to gray-scale. The fixation point
is defined to be at the center of each input image. A 128×
128 pixel image is cut from the center of left and right images
(Figure 1, red windows); the image is subsampled to 16× 16 pix-
els using a Gaussian pyramid and patches of size 8× 8 pixels
are extracted; this set of patches (receptive fields) corresponds
to patches of size 64× 64 in the original image. The subsam-
pling operation is performed to reduce the computational burden
required to train the sparse coding model as well as to learn basis
functions at a coarse resolution. To learn basis functions at a fine
resolution, patches of size 8× 8 pixels are extracted from 72× 72
pixel foveal windows (Figure 1, blue windows), without perform-
ing any subsampling. From each foveal window, we extract a total
of 81 patches of size 8× 8 pixels, where patches at the coarse scale
are shifted horizontally and/or vertically by multiples of 1 pixel.
This ensures that the same number of patches is extracted at each
scale. For each scale, each left (right) patch is transformed into a
column vector xL

k (xR
k ) and preprocessed to have zero mean and

unit norm. Corresponding left and right patches are vertically
concatenated to form a stereo-patch xk, where the first 64 compo-
nents of xk correspond to the left patch and the last 64 correspond
to the right patch. The subscript k indexes the patch within an
image.
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FIGURE 1 | Architecture of the model for vergence control [adapted from Lonini et al. (2013c)].

2.1.2. Sparse coding model
The input to a sparse coding model is a matrix of 81 patches
within an input stereo image at a given scale (i.e., coarse or fine).
A stereo patch is approximated through the sparse coding model
by a linear combination of binocular (stereo) basis functions φ.
Formally this approximation is expressed by:

[
x̂L

k
x̂R

k

]
=

B∑
i= 1

a(k)
i

[
φL

i
φR

i

]
, (1)

where B = 288 is the total number of basis functions available in
the dictionary of each sparse coding model. In order to ensure
sparseness of the representation we allow only 10 coefficients ai

to be non-zero. The sparse coding model is trained to represent
the original image as accurately as possible given this sparseness
constraint. The total squared reconstruction error over all the
stereo-patches, normalized by the energy in the original image
measures the loss of information due to the encoding. This is
defined by:

e =

P∑
k= 1
‖xk − x̂k‖2

P∑
k= 1
‖xk‖2

, (2)

where P is the total number of patches within an image.
Learning occurs online through a two-step procedure: for

each patch, a set of coefficients ai and basis functions φ

are selected from the basis dictionary using matching pursuit
(Mallat and Zhang, 1993), a greedy algorithm that finds a set
of bases to represent the input patch. Then, the chosen bases
are adapted through gradient descent on the reconstruction

error function (Olshausen et al., 1996). Given a foveal win-
dow Ij(t) at time t and scale j (i.e., coarse or fine), we com-
pute the B-dimensional feature vector, sj(t), by averaging the
squared weighting coefficients over the P patches taken from the
window:

sj(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
P

P∑
k= 1

(
a(k)

1 (t)
)2

...

1
P

P∑
k= 1

(
a(k)

B (t)
)2

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3)

where a(k)
i denotes the coefficient1 of basis i for patch k.

In biological terms, each entry of the state vector models the

pooled responses of binocular simple cells (coefficients a(k)
i for

a given i) over different locations of the visual field (different
patches k). The receptive field of a binocular simple cell is repre-
sented here by a basis function φi, which is sensitive to a specific
orientation, spatial frequency and disparity. The result of this
pooling roughly corresponds to the operation performed by com-
plex cells, which receive inputs from many simple cells at different
locations and tuned to the same disparity.

2.1.3. Reinforcement Learning
The reinforcement learning agent receives as input the combined
feature vector s(t) from each scale and maps it to a vergence
change �α(t). The reward for the agent is the negative sum of the
reconstruction errors of the two sparse coding models. The goal
of the RL agent is to select actions to maximize the discounted

1For the convenience of reading, we drop the index j indicating that the
coefficients ai depend on the scale.
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cumulative future reward R(t)

R(t) =
∞∑

k= 0

−γ−k[eC(t + k)+ eF(t + k)], (4)

where eC and eF are the reconstruction errors (2) for the coarse
and fine scale sparse coding models, respectively2.

The RL architecture we use is the natural actor-critic algo-
rithm as described in Bhatnagar et al. (2009), with an additional
regularization factor to keep the weights of the policy bounded.
Two linear neural networks (NN) are used to implement the
actor (policy) and the critic (value function). The critic network
receives as an input the state s(t) and produces as output the value
V(t) of the current state

V(t) = vT(t)s(t), (5)

where v(t) are the weights of the network at time t and the super-
script T denotes the transpose operator. The policy network maps
states to actions and its output layer contains as many neurons as
possible actions that the agent can generate. Each action is a rela-
tive change �α(t) in the current vergence angle α(t). We chose a
set A of 11 actions, uniformly spaced on a logarithmic scale as
A = {−8◦,−4◦,−2◦,−1◦,−0.5◦, 0◦, 0.5◦, 1◦, . . . , 8◦} to allow
coarse and fine movements.

The activation za of each output neuron at time t is
computed as

za(t) = θT
a (t)s(t), (6)

where θa(t) is the vector of weights from the state s to action a at
time t.

The probability of choosing action a is computed according to
a softmax operation on the activation of the output neurons that
is:

πa(s(t)) = exp(βza(t))
11∑

j= 1
exp

(
βzj(t)

) , (7)

where β is the inverse of the temperature parameter which con-
trols the amount of exploration vs. exploitation. During training
this parameter is set to 1.

2.2. IMAGE PERTURBATIONS
We consider four types of perturbations to assess the robust-
ness as well as the adaptation properties of the model. These
perturbations simulate either an unmodeled disturbance or the
consequence of an event which causes a change in the extrinsic
camera parameters (e.g., a collision). The perturbations are sim-
ulated by applying the following transformations to one of the
cameras of the robot (we chose the right one):

• Blur: the original image is blurred by applying a rotationally
symmetric Gaussian lowpass filter. Three different levels of blur

2Maximizing (4) corresponds to minimizing the total reconstruction error.

are chosen, corresponding to the following three different com-
binations of the standard deviation σ and kernel size S of the
filter reported in Table 1.
• Rotations: We add a constant roll (5◦, 15◦ or 25◦), tilt (2◦, 6◦

or 16◦) or pan (2◦ or 4◦) angle to the right camera. The roll
simulates an in-plane rotation of the camera; the tilt and pan
mainly produce, respectively, a vertical and horizontal offset
of the right image with respect to the left image. In biologi-
cal terms, the pan and tilt rotations have a loose analogy with
the clinical condition named strabismus, where the gaze direc-
tion of one eye is constantly deviated with respect to that of the
other eye. In a robotic system this perturbation might occur as
a result of an insult to the system.

The effect of each perturbation is shown in Figure 2B. Details
on how to simulate those rotations from the original images are
provided in the Appendix. Importantly, since the RL agent can
only change the vergence angle, tilt and roll perturbations can
not be fully compensated. In contrast, the effect of a pan per-
turbation can be fully compensated by the model through the
controlled degree of freedom. We assess how the model deals with
each condition.

2.3. EXPERIMENTAL SETUP
The iCub robot is an open source humanoid robotic platform.
The head of the robot (Beira et al., 2006) has a total of six
degrees of freedom: three in the neck (pan, tilt, roll) and three
in the eyes (independent pan for left and right eye, common
tilt). In our setup, we keep the neck of the robot fixed and con-
trol anti-symmetrically the pan of the two eyes such as to only
modify the vergence angle. In order to accurately quantify the
performance of our method, we train the model using the iCub
simulator, which provides a controlled environment for extensive
testing.

Table 1 | Parameters of the different blur levels.

σ [px] 4 16 32

S [px] 8× 8 32× 32 64× 64

FIGURE 2 | (A) A screenshot from the iCub simulator showing the
experimental setup; (B) Types of perturbations applied to right image from
the robot camera (Blur of σ = 4 px; Roll of 5◦; Pan of 4◦; Tilt of 2◦).
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The stereo images acquired from the cameras of the simulated
robot have a resolution of 320 × 240 pixels. The focal length is
equivalent to 257 pixels which yields a horizontal field of view
of ∼64◦. Thus, a patch at the coarse and fine scale subtends a
visual angle of, respectively, 14.2 and 1.8◦.

We use a flat square object of side 1 m fronto-parallel to the
robot at a varying distance ranging from 0.5 to 2 m (Figure 2A).
During training the object distance is varied uniformly within
that range every 10 iterations. This range of distances corresponds
to vergence angles varying from 8 to 2◦. We constrain the maxi-
mum vergence angle to be 20◦. Similarly, the texture applied on
the object is also changed by randomly drawing it from a set of 24
different images. Changing the texture provides the sparse coding
model with sufficient statistics about the environmental stimuli to
allow a diverse set of basis functions to develop. Training is per-
formed online, where the sparse coding model as well as the RL
are both updated at each iteration of the algorithm.

3. RESULTS
We first compare how performance changes when a distortion is
present, with respect to the control model (i.e., a model trained
without any distortion). Each model is trained for 100,000 itera-
tions and performance is measured by the absolute mean vergence
error (AME) during training. Since the largest action that the
model can take in one step corresponds to a change of 8◦ in
vergence, more than one step may be required to reach the tar-
get vergence value. For example, if the current vergence is 20◦
and the target vergence is 1◦, the minimum number of steps
required to reach the target vergence is 4 (one possible sequence
of actions is −8◦, −8◦, −2◦, −1◦). In order to prevent a bias in
the estimation of the performance, we only consider the error in
the iteration preceding the stimulus change (i.e., the 9th itera-
tion after presentation of a new stimulus). If the new stimulus
is introduced at time t, the AME is

AME(t) = 1

N

N/2∑
k=−N/2+ 1

|α(t + 9+ 10k)− α∗(t + 9+ 10k)| (8)

where α∗ is the target vergence angle for the stimulus and N is the
size of the averaging window. In our experiments we use a value of
N = 500 iterations. Since the averaging window is centered on the
data point, to compute the AME when there are no previous or
subsequent data points available (i.e., t < N/2 and t > T − N/2,
with T being the total number of training iterations) we replicate
the data point3.

Figure 3 shows the AME during training for four different per-
turbations, averaged over five different simulation runs. The level
of the perturbation that we use corresponds to the images of
Figure 2. As we can see from the decrease of the vergence error,
the model can learn to verge under all types of perturbations con-
sidered. As a comparison, a random policy for selecting actions
would lead to a vergence error of 7.5◦. The performance of the
system and its final accuracy depend both on the type of pertur-
bation and, as we will show below, on its level. The AME for the

3For example we assume α(t′) = α(0) if t′ < 0.

FIGURE 3 | The AME of vergence during training for the four types of

perturbations introduced (blur, roll, pan, and tilt), averaged over 5

simulations. The control represents the case where no perturbation is
applied (gray line). The AME for a random policy is ∼7.5◦ (not shown). Error
bars represent one standard deviation.

control settles at∼0.2◦ at the end of training. For the pan rotation
(horizontal misalignment) the model displays a similar perfor-
mance. This is because the system can still find a position of zero
disparity and maximum redundancy by acting on the vergence
angle. The vergence position in this case will correspond to the
fixation on a point that is horizontally shifted by 2◦ with respect
to the fixation point of the control case. This vergence position
can be reached without any change in the system since our RL
agent outputs relative vergence angles. For the other three pertur-
bations the final accuracy is lower compared to the control case. In
the case of blur, this is due to the loss of high frequency informa-
tion. On the other hand, the tilt and roll rotations induce a change
in the redundancy of information between left and right image at
the vergence position, which affects the performance. However,
the final error is ∼1◦, which shows good learning of the vergence
control.

As previously mentioned, the performance of the system at the
end of learning also depends on the level of the perturbation we
introduce. To quantify this performance we run the training phase
with different levels of perturbation and observe the final AME of
the vergence. Figure 4 shows the results for each type of pertur-
bation, averaged over 5 simulations as before. Again, the AME for
a random policy is ∼7.5◦. As expected, the performances are not
affected in the pan rotation case. For the other conditions, the
performance degrades as the level of each perturbation increases.
In the case of blurred images, the learned policy performs better
than a random policy up to values of σ = 16 pixels (AME ∼3◦).
For roll angles up to 15◦, the AME is ∼2◦, indicating that the
model can learn vergence, despite the significant rotation between
left and right images. For a roll angle of 25◦ the AME reaches on
average 6◦. The AME for the tilt perturbation reaches a value of
∼2.5◦ for a tilt angle of 6◦, which corresponds to a vertical offset
of 18 pixels in the image. When the tilt angle is 16◦ (vertical off-
set of 74 pixels), performance degrades drastically and the AME
increases to∼8.5◦.

In order to assess whether the model can generalize well on
new data after training, a test is conducted using a new set of

Frontiers in Neurorobotics www.frontiersin.org November 2013 | Volume 7 | Article 20 | 102

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Lonini et al. Robust active binocular vision

FIGURE 4 | AME of vergence at the end of training is plotted as a

function of the level of each perturbation (average over 5 simulation

runs): (A) blur; (B) roll; (C) pan; (D) tilt. AME increases with the level of a
perturbation for all types of perturbation, except the pan perturbation (see
text). Error bars represent one standard deviation.

five textures and evaluating the greedy policy. In that case (7) is
replaced by

πa(s(t)) =
⎧⎨
⎩

1 if a = argmaxa{za(t)}

0 otherwise

. (9)

The stimulus depth is randomly changed between 2 and 0.5 m
every 10 iterations and a texture is drawn from the test set every
200 iterations. The test runs for a total of 1000 iterations. The
same random sequence is used for all the perturbations. Figure 5
shows a box plot of the vergence error during the test for each
case. The median vergence error is used to remove the effect of
outliers during the test. For the control case the median of the
vergence error is 0.15◦. The effect of a roll rotation of 5◦ is also
fully compensated, while the blur (σ = 4 px) and the tilt rotation
induce a slightly larger median vergence error, which is ∼0.25◦.
Overall the model performs well in the test sessions for all cases
considered. In general, the errors are smaller than that measured
at the end of training because the greedy policy is used for testing.

Figure 6 shows example basis functions from the learned dic-
tionaries for each perturbation condition and for each scale. Basis
functions are tuned to different orientations and spatial frequen-
cies. Left and right part (vertically concatenated) for bases tuned
to zero disparity are identical, while bases tuned to non-zero dis-
parities show a horizontal shift between the left and right part
(Figure 6-Control). Each perturbation induces a specific change
in the bases that reflects the type of perturbation. The blur condi-
tion produces mostly monocular bases at the fine scale, indicated
by the fact that the right part is plain. The roll perturbation
induces a rotation of the right part with respect to the left, while
the tilt rotation produces some bases with a vertical shift between
left and right parts, representing vertical disparity.

FIGURE 5 | Box plot of the vergence error in the test session for all

types of perturbations considered. The red line in each box indicates the
median; edges of a box are the 25th (q1) and 75th (q3) percentiles. The
whiskers extend to values up to q3 + 1.5(q3 − q1). The plotted range
extends up to approximately ±2.7σ (standard deviation) of the data. Values
outside this range are considered outliers and are not plotted.

FIGURE 6 | Example basis functions that emerge at the end of training

(100,000 iterations) for coarse (left column) and fine scale (right

column). Each row corresponds to a different perturbation (Roll of 25◦; Blur
of σ = 4 px; Tilt of 2◦). The pan perturbation case is not considered, as it
does not induce any significant change in left and right part of the bases as
compared to the control case. See also the video available online for the roll
perturbation (Lonini et al., 2013a).

To assess how adaptation of the bases affects learning of the
policy when a perturbation is introduced, we consider the fol-
lowing scenario: we first train a model without any perturbation
(control case) for 100,000 iterations. Then, a perturbation is
introduced and the model is further trained under either of the
following two conditions: first, the bases of the sparse coding
models are updated and second, the bases remain fixed as they
were before the perturbation. These situations may be roughly
analogous to the biological case of an insult to the system occur-
ring either before or after the end of the critical period (Hubel
and Wiesel, 1970). In terms of robotics, this could correspond
to a perturbation induced by a shock received by the robot, after
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the system has been trained in an unperturbed scenario. Figure 7
shows the AME during training for three different perturbations
(blur, roll and tilt perturbation, first row) as well as the recon-
struction error of the sparse coding model for the fine scale
(bottom row), under the two conditions. We observe that the
AME decreases more for the case where the bases are allowed to
change vs. the case when the system uses the same bases learned
in the no-perturbation condition (Figure 7, red vs. blue line).
Importantly, the policy weights are allowed to change in both
cases. Thus, the RL can adapt to the perturbation, even when
the same set of basis functions is used. As expected, when the
bases are allowed to change, the reconstruction error decreases.
This is because the adapted bases can represent the perturbed
images better than the original set of bases, trained on unper-
turbed images; moreover the policy that emerges leads to lower
vergence errors, which translates into lower reconstruction errors.
Notably, the reconstruction error for the blur case drops in both
conditions (adapting and non-adapting bases) because blurring
one of the images makes it easier to encode. Also, the AME for the
roll perturbation at the onset of the perturbation (∼3◦) is lower
than the AME obtained at the end of training for the same type
of perturbation (cfr. Figures 4B, 7). The reason is that the bases
trained in absence of the perturbation can still be used to detect
disparity, when the perturbation is introduced. A video show-
ing the development of the basis functions, before and after the
roll perturbation is introduced, is available online (Lonini et al.,
2013a). It can be seen that during exposure to the perturbation,
the right part of several basis functions rotates, relatively to the
left part.

Finally, we test the model trained in the simulator on the real
robot to assess the performance when different perturbations are
applied. Three sources of uncertainties affect the reliability of the
measure of the vergence error on the iCub: 1) the backlash in the
DC motors (≤ 1◦) that prevents us from accurately measuring the
actual vergence angle from the encoder readings; 2) the error in

the measure of the distance of the stimulus from the robot; 3) the
estimates of the extrinsic camera parameters as well as lens distor-
tions. Figure 8 shows the left and right image anaglyph from the
robot cameras before and after vergence is achieved, for all types
of perturbations (blur of σ = 4 px; roll of 5◦; pan of 4◦; tilt of 2◦).
The model is able to achieve correct vergence under all the pertur-
bations considered. Of notice, the camera parameters of the real
iCub differ from that of the simulator. A video of the robot per-
forming the vergence in each condition is available online (Lonini
et al., 2013b).

4. DISCUSSION
Despite an increasing interest in intrinsic motivations there is
still no universally accepted definition. One standpoint is that
extrinsic motivations are driven by variables outside of the con-
troller (e.g., battery level, state of the sensors), whereas intrinsic
motivations are related to variables within the brain (or con-
troller) of the agent. Thus, intrinsic motivations are driven by
epistemic goals, i.e., goals directed to improve the knowledge of
the agent, rather than producing a direct change in the world
(Baldassarre, 2011). (Zhao et al., 2012) and (Lonini et al., 2013c)
have recently proposed a form of intrinsically motivated learning
for efficient coding in active perception. They generalize classic
notions of efficient coding to movements of the sense organs that
facilitate efficient encoding of the sensory data. To this end, a
sensory coding model is coupled with a reinforcement learner
for controlling the sense organs. The reinforcement learner is
rewarded for movements that make the sensory input easier to
encode. This approach is closely related to a recent formula-
tion of intrinsic motivations as aiming to maximize compression
progress (Schmidhuber, 2009) to create a more compact (and
thus interesting) representation of the data. Our system also
favors compression progress because achieving a smaller recon-
struction error after a vergence command, while using the same
amount of neural resources (number of active basis functions),

FIGURE 7 | AME (first row) and reconstruction error of the fine

scale sparse coding models (bottom row) when the bases of

the sparse coding models are adapted (red) vs. fixed (blue).

The perturbation occurs after 100,000 iterations. Curves show the
average over 5 simulations. Error bars represent one standard
deviation.
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FIGURE 8 | Test on the real iCub. Anaglyph of left and right image, before
(left) and after (right) vergence is achieved for each perturbation (from top to
bottom: Blur of σ = 4 px; Roll of 5◦; Pan of 4◦; Tilt of 2◦). See also online
video (Lonini et al., 2013b).

implies that the data are encoded more efficiently. Zhao et al.
(2012) and (Lonini et al., 2013c) have shown that in the context
of binocular vision, this leads to a fully autonomous learning of
disparity representations and accurate vergence control. The sys-
tem discovers that it is useful to properly verge its eyes, because
this enables it to encode the sensory data more efficiently.

In this paper we build on this previous work and provide
an analysis of the robustness of the approach to various per-
turbations. We believe that the robustness and self-calibrating
properties of a robotic system are a matter of great importance
when building autonomous robots capable of adapting to chang-
ing environments. We first show that learning occurs under all the
perturbations considered and the model performance degrades
gracefully with the size of the perturbation. We then compare
the condition where the bases (filters) are allowed to adapt
when a perturbation is present with the case where they are left
unchanged from training on normal images. Adaptation of the
bases leads to a more efficient encoding of the input images, which

in turns leads the RL to adapt the policy, in a completely unsuper-
vised fashion. Thus, a changed condition in the system, such as a
rotation or misalignment of a camera, is automatically handled by
our model. A complete compensation of the pan perturbation is
obtained as the model controls the vergence angle. Similarly, a full
compensation for the tilt and roll perturbation could be achieved
if the RL agent was allowed to independently control the tilt and
roll angle for each eye.

Previous work addressing the issue of vergence in active stereo
vision systems has often relied on computer vision techniques to
infer disparity from the stereo pair, and then controlling the stereo
cameras through a feedback loop. These methods often require
the knowledge of the intrinsic (e.g., focal length and optical cen-
ters of the cameras) and the extrinsic (relative position of the two
cameras) parameters of the cameras. Examples include cepstral
or zero-disparity filters (Olson and Coombs, 1991), correlation-
based methods (Capurro et al., 1997) and feature matching
(Hansen and Sommer, 1996). Reinforcement learning has been
used to learn vergence, by using as reward the disparity estimated
through feature matching (Piater et al., 1999) or by a population
of disparity-tuned neurons (Franz and Triesch, 2007; Wang and
Shi, 2010). The main limitation of these approaches is that the
disparity filters are not learned from the data. Importantly, to
our knowledge, there is no work that is directly addressing the
robustness of a vergence control method to image distortions.

Our model provides a way to autonomously adapt both the
sensory representation as well as the control of the behavior
by the simultaneous learning of the two systems. The proposed
method can be extended to other domains, such as the learning
of smooth-pursuit behavior, which is currently under develop-
ment. Future work should address whether this new framework
for efficient coding in active perception can be further extended
to other sensory modalities and what insights into the biology of
active perception it provides.
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APPENDIX
We describe here how the perturbations are generated. A rota-
tion of a camera induces a projective transformation of the image.
To simulate our pan, tilt and roll perturbations we thus com-
pute this transformation, also called homography. Formally, the
homographic image transformations H, is computed by:

H = KRK−1, (10)

where K is a 3× 3 matrix, containing the camera intrinsic param-
eters (focal length and image center coordinates) and R is a 3× 3
matrix containing the three angles of rotation of the camera (pan,
tilt, in-plane rotation4) (Faugeras, 1993). The forms of K and R
are the following:

K =
⎡
⎣ f 0 cx

0 f cy

0 0 1

⎤
⎦, (11)

R =

⎡
⎢⎢⎢⎢⎢⎣

c(ry)c(rz) −c(ry)s(rz) s(ry)

c(rx)s(rz) + s(rx) c(rx)c(rz)− −s(rx)c(ry))

sin(ry)c(rz) s(rx)s(ry)s(rz)

c(rx)s(ry)c(rz)+ c(rx)s(ry)s(rz)+ c(rx)c(ry)

s(rx) sin(rz) +c(rz)s(rx)

⎤
⎥⎥⎥⎥⎥⎦

, (12)

where cx and cy are the image center coordinates, f is the focal
in pixel values and c() and s() denote, respectively, the cosine
and sine operation. rx, ry, and rz indicate the tilt, pan and roll
angle, respectively. We thus simulate those rotations by applying
the homographic transformation to the acquired images. For each
pixel of coordinates [uv] of the original image, the correspond-
ing position after the perturbation would be [u′v′1]	 = H[uv1]	.
Cubic interpolation is used to compute the pixel values at integer
pixel coordinates. Remember that the system has no knowledge
about the perturbation nor the camera parameters, and the steps
described here are only used to simulate a perturbation in one
of the cameras. Also, as the result of a rotation is a relative mis-
alignment of the two cameras, it is actually irrelevant whether the
rotation is applied to one or both cameras to demonstrate the
ability of the system to correct for a perturbation.

4We indicate the in-plane rotation degree of freedom also as roll.
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The concepts of attention and intrinsic motivations are of great interest within adaptive
robotic systems, and can be exploited in order to guide, activate, and coordinate multiple
concurrent behaviors. Attention allocation strategies represent key capabilities of human
beings, which are strictly connected with action selection and execution mechanisms,
while intrinsic motivations directly affect the allocation of attentional resources. In
this paper we propose a model of Reinforcement Learning (RL), where both these
capabilities are involved. RL is deployed to learn how to allocate attentional resources in
a behavior-based robotic system, while action selection is obtained as a side effect of the
resulting motivated attentional behaviors. Moreover, the influence of intrinsic motivations
in attention orientation is obtained by introducing rewards associated with curiosity drives.
In this way, the learning process is affected not only by goal-specific rewards, but also by
intrinsic motivations.

Keywords: attention shifting, curiosity, intrinsic motivations, reinforcement learning, action selection

INTRODUCTION
Attention and intrinsic motivations play a crucial role in cognitive
control (Posner et al., 1980) and are of great interest in cogni-
tive robotics. Indeed, attentional mechanisms and motivational
drives are strictly involved in the process of guiding and orches-
trating multiple concurrent behaviors. Attentional mechanisms,
beyond their role in perception orientation, are also considered
as key mechanisms in action selection and coordination (Posner
et al., 1980; Norman and Shallice, 1986). The capability of select-
ing and filtering the information is associated with the process
of focusing cognitive and executive resources toward the stimuli
that are relevant for the environmental and behavioral context.
On the other hand, another key factor affecting action selec-
tion is represented by the so called intrinsic motivations such
as the curiosity (Baldassarre, 2011), which can indirectly affect
action selection because of its influence on attentional shifting.
For instance, the curiosity drive can attract the attentional focus
toward novel stimuli and, consequently, can elicit the execution of
actions which are not directly related to the current behavior or
goal. Albeit there is not a clear consensus on how intrinsic moti-
vations differ from the extrinsic ones (Baldassarre, 2011), their
role in pushing human/animal beings to spontaneously explore
their environment (Baldassarre and Mirolli, 2013) and to execute
this activity only for their inherent satisfaction (Ryan and Deci,
2000), rather than for satisfying some basic needs such as hunger
or thirst (White, 1959; Berlyne, 1960), is widely accepted.

In this work, we focus on the intrinsic motivation provided by
the curiosity, which is considered as the main drive for humans
to explore novel situations and to learn complex behaviors from
experience (Berlyne, 1954; Litman, 2005). Recent studies have
also shown that both attention and curiosity are strictly related
to the dopaminergic system responsible for action driving. It is
widely accepted, indeed, that dopamine affects both the reward
excitement, fundamental in the learning process, and the demand
of more attention by novel stimuli (Nieoullon, 2002; Redgrave
and Gurney, 2006; Jepma et al., 2012). Unpredicted events can
generate intrinsic reinforcement signals, which support the acqui-
sition of novel actions. In particular, it has been shown that the
dopamine release is triggered not only in response to unexpected
environmental changes and goal-directed action-outcome learn-
ing (Heidbreder and Groenewegen, 2003; Dalley et al., 2004), but
also in response to the detection of novel events (Lisman and
Grace, 2005).

The typical approach adopted for modeling the dopamine-
like rewarding system (Montague et al., 1996) and for coping
with the problem of treating intrinsic motivations (Barto et al.,
2004; Mirolli and Baldassarre, 2013) is represented by the well
known Reinforcement Learning (RL) process. Recent works have
been proposed to incorporate models for novelty (Marsland et al.,
2000) and curiosity (Schmidhuber, 1991) within Motivated RL
algorithms (Barto et al., 2004) providing accounts for behav-
ior adaptation, action selection learning, mental development,
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and learning of hierarchical collections of skills depending on
the robot experience (Kaplan and Oudeyer, 2003; Barto et al.,
2004; Oudeyer and Kaplan, 2007; Schembri et al., 2007; Singh
et al., 2010; Baranes and Oudeyer, 2013). Typically, within these
approaches, RL is used to directly model and generate the action
selection strategies. In contrast, we propose a system where RL
is deployed to learn attentional allocation and shifting strategies,
while action selection emerges from the regulation of attentional
monitoring mechanisms (Di Nocera et al., 2012), which can be
affected by the intrinsic motivation of curiosity. Our curiosity
model is inspired by the interest/deprivation model proposed
by Litman (2005), which captures both optimal-arousal and
curiosity-driven approaches of curiosity modeling. Following this
approach, attentional shifting mechanisms can be generated tak-
ing into account not only extrinsic motivations, like mission goals
and primary needs satiation, but also intrinsic motivations, like
the need of acquiring knowledge (Litman’s deprivation model)
and the attraction toward novel stimuli and opportunity of learn-
ing (Litman’s interest-based model). In this context, we aim to
investigate whether our account of curiosity and attentional reg-
ulation learning is feasible and effective for the generation of
attentional allocation and shifting strategies, whose side effect is
an adaptive emergent behavior for the robot. We are also inter-
ested in the impact of our model of curiosity on the learning
process. Specifically, we want to assess whether the proposed
intrinsically motivated system affects the progress in learning.

We detail the approach by describing our intrinsically moti-
vated RL model and analyzing its performance in a simulated
survival domain. In this scenario, the robot is engaged in survival
tasks such as finding food or water, while avoiding dangerous sit-
uations. The goal is to learn attentional allocation and shifting
policies that allow the robot to survive in the particular environ-
ment. The system evaluation is based on a comparison between
the performance of the attentional policies, which are learned
with the curiosity model, with respect to the ones generated with-
out taking into account the curiosity drive. The collected results
show that our intrinsically motivated learning approach is fea-
sible and effective. Indeed, the curiosity-driven learning system
allows us to find satisfactory attentional allocation and shifting
policies showing a faster convergence of the learning process,
safer policies of the selected action, and a higher wellness state
of the robotic system in terms of energy gained during the explo-
ration of the environment. In particular, in the curious setting
the robot behavior seems more flexible because endowed with
an additional capacity of adaptation. Indeed, different attentional
allocation (or shifting) policies, and consequently, various action
selection policies, can be defined depending on the current level
of curiosity.

MATERIAL AND METHODS
ATTENTIONAL SHIFTING SYSTEM
In this work, we refer to the attentional framework introduced
by Burattini et al. (2010). Here, the attentional system is mod-
eled as a reactive behavior-based system (Brooks, 1986; Arkin,
1998), endowed with internal attentional mechanisms capable
of distributing and shifting the attention among different con-
current behaviors depending on the current saliency of tasks

and stimuli. These attentional mechanisms allow the robotic
system to supervise multiple concurrent behaviors and to effi-
ciently manage limited resources. In contrast with typical works
on visual attention (Itti and Koch, 2001), the Burattini et al.
(2010) approach is not concerned with the orientation of the
attention in the space (i.e., the field of view), but it is about
the executive attention (Posner et al., 1980) and the temporal
distribution of the attentional resources needed to monitor and
control multiple processes. This model of attention is inspired by
Pashler and Johnston (1998), where the attentional load due to
the accomplishment of a particular task is defined as the quantity
of attentional time units devoted to that particular task, and by
Senders (1964), where attentional allocation and shifting mecha-
nisms are related to the sampling rate needed to monitor multiple
parallel processes. In particular, Burattini et al. (2010) propose a
frequency-based model of attention allocation, where the incre-
ment of the attention due to salient stimuli is associated with
an increment of sensors sampling rate and of the behavior acti-
vations. Specifically, starting from a behavior-based architecture,
each behavior is endowed with an internal clock regulating its
activation frequency and sensory sampling rate: the higher the
sampling rate, the higher the resolution at which the behavior
is monitored and controlled. The internal clock can increase or
decrease the attentional state of each behavior with respect to
salient internal/external stimuli by means of suitable attentional
monitoring functions. In this context, the internal stimuli are
modeled as internal needs, such as, for example, thirst or hunger,
while the external stimuli are associated with salient events or
discontinuities perceived in the external environment.

An explicative example of this behavior-based attentional sys-
tem at work is presented in Figure 1. The plot shows how the
sampling rate of a behavior (for example a give task) changes
(see Figure 1A) depending on different stimuli (for example, the
human hand speed, in Figure 1B, and the distance between the
human hand and the robot end effector, in Figure 1C). It is pos-
sible to observe that if non-salient stimuli are presented to the
behavior, the attentional process monitors the environment in a
relaxed manner, instead, if something salient happens, the clock
frequency of the behavior is enhanced and more attention is con-
sequently paid toward the stimulus. This general model permits
to monitor and control different internal and external processes,
shifting, from time to time, the allocation of computational
and operational resources. Notice that, this adaptive frequency
implicitly provides a mechanism for behaviors prioritization.
Indeed, high-frequency behaviors are associated with activities
with a high relevance and priority in the current operational
context.

Formalization of the model
Following the approach of Burattini and Rossi (2008), we con-
sider a Behavior-based architecture (Brooks, 1986; Arkin, 1998),
where each behavior is endowed with an attentional mechanism
represented by an internal adaptive clock.

A schema theory representation (Arbib, 1998) of an atten-
tional behavior is illustrated in Figure 2. This is characterized by
a Perceptual Schema (PS), which elaborates sensor data, a Motor
Schema (MS), producing the pattern of motor actions, and an
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FIGURE 1 | Example of the attentional allocation strategies presented in Sidobre et al. (2012). (A) The sampling rate associated with the behavior of giving
an object changes depending on internal or external stimuli: (B) the human hand speed and (C) the distance between the human hand and the robot end-effector.

FIGURE 2 | Schema Theory representation of an attentional behavior.

attentional control mechanism, called Adaptive Innate Releasing
Mechanism (AIRM), based on a combination of a clock and a
releaser. The releasing mechanism works as a trigger for the MS
activation (e.g., the view of a predator releases the escape behav-
ior), while the clock regulates the sensors sampling rate and,
consequently, the activation rate of the behaviors. The clock acti-
vation rate changes following an attentional monitoring strategy,
which can adaptively increase or decrease the clock frequency,
according to salient internal and external stimuli. More formally,
the attentional mechanism is characterized by:

• An activation period pb ranging in an interval [pb
min, pb

max],
where b is the behavior identifier.
• A monitoring function f

(
σ b(t), pb

t− 1

) : Rn → R that adjusts

the current clock period pb
t , according to the internal state of

the behavior and to the environmental changes.
• A trigger function ρ(t, pb

t ), assuming a 0/1 value, which
enables/disables the data flow σ b(t) from sensors to PS at each
pb

t time unit.
• Finally, a normalization function φ(f (σ b(t), pb

t− 1)) : R→ N

that maps the values returned by f into the allowed range
[pb

min, pb
max].

The clock period at time t is regulated as follows:

pb
t = ρ

(
t, pb

t− 1

)
· φ
(

f (σ b(t), pb
t− 1

)
+
(

1− ρ(t, pb
t− 1)

)
· pb

t− 1

(1)
That is, if the behavior is disabled, the clock period remains
unchanged, i.e., pb

t− 1. Otherwise, when the trigger function is 1,
the behavior is activated and the clock period changes according
to the φ(f ). In order to learn attentional monitoring strate-
gies, various methods such as Differential Evolution (Burattini
et al., 2010) and RL techniques (Di Nocera et al., 2012) have
been deployed, respectively for off-line and on-line tuning of the
parameters regulating the attentional monitoring functions. In
the following sections, we will present an intrinsically motivated
RL (IMRL) approach to the attentional allocation problem in our
frequency-based model of attention.

INTRINSIC MOTIVATIONS: CURIOSITY MODEL
Curiosity is an appetitive state involving the recognition, pursuit,
and intense desire to investigate novel information and experi-
ences that demand one’s attention. In literature, we find two main
theoretical accounts of curiosity: the optimal arousal model and
curiosity-drive theory. The curiosity-drive model assumes that the
main drive of curiosity is the reduction of uncertainty: novel and
ambiguous stimuli cause a need for coherence restore that reduces
the uncertainty. This reduction is considered as rewarding. This
model is supported by studies showing that unusual situations are
associated with approaching behaviors and attentional states (e.g.,
see the Loewenstein, 1994 knowledge gap/approach gradient).
However, the curiosity-driven model cannot explain why biolog-
ical organisms initiate exploratory behaviors without any stimuli.
These situations are instead well explained by the optimal-arousal
model (e.g., see the Spielberger and Starr, 1994 model). Following
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this model, the biological systems are associated with an home-
ostatic regulation of their arousal level: when the arousal level
is under-stimulated, the organism is motivated to increase the
arousal and to look for novel situations; in contrast, when the
organisms is over-stimulated additional stimuli are evaluated as
negative and associated with an avoidance behavior. While in
the curiosity-drive model the reward is associated with uncer-
tainty reduction, in the optimal arousal model, the induction of
curiosity is directly rewarding. Also this model is not completely
satisfactory, indeed, in this case an optimal arousal state should
be maintained and the reward is directly associated with a feel-
ing of interest, hence the gain of new knowledge could reduce this
feeling and could be considered counter-productive (see Litman,
2005 for a discussion). A combination of these two approaches is
proposed by Litman (2005) with the interest/deprivation model of
curiosity. Here, both the satiation and the activation of curiosity
can be rewarding: the interest-based curiosity is driven by novel
stimuli and opportunity of learning, whereas the deprivation-
based curiosity is driven by the uncertainty and the lack of
knowledge. In Litman (2005) the interest/deprivation model of
curiosity is then related to the neuroscience of the wanting and
liking systems, which are hypothesized to underlie motivation
and affective experience for a wide class of appetites (Berridge,
2003). In the Litman model, wanting is associated with depriva-
tion and need of knowledge, while liking is associated with the
expected pleasure due to learning and knowledge acquisition. In
Table 1 we show the Litman’s classification. Here, in the case of
high level of wanting and liking, curiosity is due to a need of
knowledge and it is sustained by an interest; if wanting is low, but
liking is high, information seeking is motivated by pure interest;
in contrast, if wanting is high and liking is low, the need of knowl-
edge is not associated with the anticipation of a pleasure. Finally,
when wanting and liking are low, also the curiosity drive is inhib-
ited. In this paper, we exploit a model of curiosity that is inspired
by the Litman (2005) interpretation of wanting and liking.

REINFORCEMENT LEARNING FOR ATTENTIONAL SHIFTING
Following the approach by Di Nocera et al. (2012), in this paper
we exploit a RL algorithm to learn the attention allocation strate-
gies introduced in section 2.1. In Di Nocera et al. (2012), a
Q-learning algorithm is used to tune and adapt the frequencies
of sensors sampling, while action selection is obtained as a side
effect of this attentional regulation. In the following, we first recall
the Q-learning algorithm and then we detail its application to the
attentional shifting problem.

Table 1 | Litman’s classification of curiosity states with respect to

high and low levels of liking and wanting (Litman, 2005).

Liking Wanting

Low High

Low LL: Ambivalent disinterest LH: Need for uncertainty
clarification

High HL: Curiosity as a feeling
of “interest”

HH: Curiosity as a feeling
of “deprivation”

General description of the Q-learning algorithm
Q-learning (QL) (Watkins and Dayan, 1992) is a learning algo-
rithm for a Markov Decison Process (MDP). A MDP is defined
by a tuple (S, A, R, Pa) where S is the set of states, A is the set of
actions, R is the reward function R : S× A→ R, with R(s, a) the
immediate reward in s ∈ S after the execution of a ∈ A; Pa is the
transition function Pa : S× A× S→ [0, 1] ∈ R, with Pa(s, a, s′)
probability of s′ ∈ S after the execution of a ∈ A in s ∈ S. A solu-
tion of a MDP is a policy π : S→ A that maps states into actions.
The value function Vπ (s) is the cumulative expected reward from
s ∈ S following π . The q-value Q(s, a) is the expected discounted
sum of future payoffs obtained by executing the action a from
the state s and following an optimal policy π∗, i.e., Q(s, a) =
{Rt+ 1 + γ V∗(st+ 1) | st = s, at = a}, with V∗ associated to π∗.

In QL techniques, the Q-values are estimated through the
agent experience after being initialized to arbitrary numbers. For
each execution of an action at leading from the state st to the state
st+ 1, the agent receives a reward rt+ 1, and the Q-value is updated
as follows:

Q(st, at)← (1− αt) · Q(st, at)+ αt(Rt+ 1

+ γ ·maxat+ 1∈AQ(st+ 1, at+ 1)) (2)

where γ is the discount factor (which determines the importance
of future rewards) and α is the learning rate.

Different exploration policies can be introduced to select the
action to be executed trying to balance exploration and exploita-
tion. Analogously to Di Nocera et al. (2012), in this paper we
consider a Softmax method that selects the action to be executed
through a Boltzmann distribution (Sutton and Barto, 1998):

Pa(a | s, Q) = exp
Q(s,a)

τ

∑
b εA(s)

exp
Q(s,b)

τ

(3)

Here, the temperature τ controls the exploration strategy: the
higher the temperature, the closer the strategy is to a random
policy (exploration); the lower the temperature, the closer the
strategy is to Q(s, a) maximization (exploitation). Under suit-
able conditions (see, for example, Watkins and Dayan, 1992), this
algorithm converges to the correct Q-values with probability 1
assuming that every action is executed in every state infinitely
many times and α is decayed appropriately.

Q-learning for attentional regulation
In our setting, the QL algorithm is to be exploited to generate
the attention allocation strategy. For this purpose, we introduce
a suitable space state Sb for each attentional behavior, while the
action space Ab represents a set of possible regulations of the
clocks. Specifically, the action space spans a discretized set of pos-
sible allowed periods Pb = {pb

1, . . . , pb
k} for each behavior b (i.e.,

Ab coincides with Pb). Since the current state sb ∈ Sb should track
both the attentional state (clock period) and the perceptive state,
this can be represented by a pair sb = (pb, σ b), where pb ∈ Pb is
the current clock period and σ b ∈ Xb is for the current percep-
tive status. In particular, we consider the perceptive state of each
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behavior as a discretization of the behavior perceptive domain
using n equidimensional intervals Xb = {σ b

1 , . . . , σ b
n }. Therefore,

the attentional allocation policy πb : Sb → Ab represents a map-
ping between the current state sb and the next attentional period
pb that should be learned by means of the QL algorithm. That
is, given a reward function R for each behavior, the algorithm is
to find the optimal attention allocation policy πb, i.e., for each
state sb ∈ Sb, the activation period pb ∈ Pb that maximizes the
expected reward of that behavior.

The resulting Q-table for a generic attentional behavior in Di
Nocera et al. (2012) can be described by the Table 2.

This approach to adaptive attentional allocation and action
selection has been tested in a robotic setting (Di Nocera et al.,
2012). Starting from this model we will design our model of
Intrinsically Motivated Reinforcement Learning.

MOTIVATED RL FOR ATTENTIONAL SHIFTING
In this section, we extend the RL approach to attention allocation
presented above introducing the effects of the intrinsic motiva-
tion of curiosity. In particular, we rely on a curiosity model which
is inspired by the interest/deprivation model proposed by Litman
(2005) and adapted to the behavior-based setting we consider in
this work. More specifically, analogously to Litman, we associ-
ated the liking mechanism to a direct reward related to novelty,
however, our interpretation of the wanting system is slightly dif-
ferent. Indeed, in the place of the cognitive deprivation model
introduced by Litman, which cannot be easily accounted within
the simple behaviors we are concerned with, we relate the want-
ing mechanism to the need to explore and act. This is represented
by a value that we called the residual energy: the higher the avail-
able energy, the higher is the need to “consume” this surplus in an
exploratory (hence, curious) behavior. More details will be pro-
vided below and in section 4 where we present some concrete
instances of the reward functions used to capture this model of
curiosity.

ACTION SPACE
Analogously to Di Nocera et al. (2012), in our model, for each
behavior b we introduce an Action Space Ab representing the set
of possible periods Pb = {pb

1, . . . , pb
k} for that behavior. That is,

an action ab is a possible assignment of a clock period pb which
regulates the sampling rate and the activation frequency of the

Table 2 | Q-values for a generic behavior, where Sb represents the

state space.

Sb Ab

p1 p2 . . . pk

σ1

p1 Q11,1 Q11,2 . . . Q11,k

. . . . . . . . . . . . . . .

pk Q1k,1 Q1k,2 . . . Q1k,k

. . . . . . . . . . . . . . . . . .

σn

p1 Qn1,1 Qn1,2 . . . Qn1,k

. . . . . . . . . . . . . . .

pk Qnk,1 Qnk,2 . . . Qnk,k

associated behavior. As explained above, the idea is that the sys-
tem does not learn directly the action to execute, instead, it learns
the attentional policies (i.e., clock regulations with respect to its
perceptual and attentional state). In this context, the action selec-
tion is an indirect consequence of the attentional behaviors. In
the curiosity-driven setting, different attentional shifting strate-
gies will be learned depending on the level of curiosity of the
agent.

STATE SPACE
In order to represent the curiosity state into the state space, we
reformulate the State Space Sb of Di Nocera et al. (2012) intro-
ducing a new parameter representing the degree of curiosity of
the agent. In the extended framework, the state sb is determined
by a triple (cb, pb, σ b), where, cb represents the level of curiosity of
the system, pb is for the current clock period, and σ b is the current
perceptive state of a behavior b. In particular, for each behavior,
the attentional monitoring period pb ranges in a predefined set
of possible values Pb. Analogously, the perceptive state σ b is suit-
ably discretized in intervals representing sub-ranges of the input
signal Xb. Finally, the curiosity degree cb ranges in an interval
of the four values [LL, LH, HL, HH] representing four relations
between wanting and liking values (low-low, low-high, high-low,
high-high) which are inspired by the curiosity model definition
introduced in Litman (2005) (see section 2.2). Therefore, the
attentional allocation policy πb : Sb → Ab represents a mapping
between the current state sb and the next action ab correspond-
ing to the suitable period for the attentional monitoring pb, that
is learned by means of the QL algorithm.

REWARD FUNCTION
Given the Q-Learning Actions and States Spaces, we can introduce
the Reward function as a combination of extrinsic component, an
intrinsic component and a dynamic weight between these two.
While the extrinsic reward depends on the direct effect of the
actions with respect to the behavior utility, in our curiosity model,
the second reward is directly related to the pleasure of the nov-
elty, hence to the level of liking. Instead, the wanting level is used
to dynamically balance the relation between extrinsic and liking
reward: the higher the need of information seeking, the higher the
liking associated with the encountered novelty. As stated before,
differently from Litman (2005), our assumption is that the level
of wanting depends on a sort of (global) energy state of the agent
(see section 4 for additional details in the case study). The idea
is that the robotic agent can explore new situations, guided by
curiosity, only when the system is in a wellness state. Instead,
when the system is under a certain wellness threshold, the atten-
tion is focused on priority needs (e.g., to eat and drink) rather
than on secondary ones (information seeking and exploration of
new states). We formalize the overall reward function as follows:

Rb = (1− w) · Rb
e + (w) · Rb

l (4)

where Rb
e is the reward computed considering the observed state,

and Rb
l represents the reward evaluated considering the satisfac-

tion of an observation with respect to a particular curiosity state
(i.e., the reward is related to something that the agent likes just
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because it is novel). The value of Rb
l is thus computed as level

of liking. The w value represents the level of wanting, an inter-
nal unmotivated need to explore something (the drive toward a
specific location/object depends on the liking mechanism).

This relation between liking and extrinsic rewards implies that,
when the situation is critical (i.e., low energy) the Rl reward value
will be neglected with respect to the Re extrinsic reward value,
while Rl will be emphasized as much as the agent will be in
a wellness state. The possible correspondences between the Rl,
Re rewards and the wanting, liking values are illustrated in the
Table 3. Notice that this matrix of wanting and liking relations is
different from the one by Litman (2005), because of the different
interpretation of the wanting system. For example, here low want-
ing and liking levels are associated with the prevalence of extrinsic
rewards, while in Litman (2005) they are directly associated to a
boredom state.

CASE STUDY
In order to test our approach we introduce a Survival Domain,
where a robot must survive for a predefined amount of time
within an environment (see Figure 3) avoiding obstacles (objects,
walls, etc.) and recharging energy by eating and drinking.

We consider simulated environments of 16 m2. Obstacles,
water, and food locations are cubes of size 0.5 m× 0.5 m× 0.5 m,
respectively of black, blue, and green color (see Figure 3). An
experiment ends in a positive way if the robot is able to survive
till the end of the test (max_time), while it fails in the following
three cases: (1) the robot collides with an obstacle or its dis-
tance from an obstacle is under a certain safety distance threshold;
(2) the value representing the robot thirst goes under the min-
imum value; (3) the value representing the hunger goes under
the minimum value. We tested our approach using a simulated
Pioneer3-DX mobile robot (using the Player/Stage tool Gerkey
et al., 2003), endowed with a blob camera and 16 sonar sensors.

Internal needs functions
We assume that the robot is endowed with internal drives. In our
case study, we consider two internal needs: hunger and thirst.
These are modeled by the following functions.

We introduce a Hunger function, to compute the need for food:

Hunger(t) = Hunger(t − 1)+ k · (nb_act)

− (ef · food_consumed) (5)

Here, the hunger increases the need for food at each machine cycle
by a k value, for each active behavior (nb_act), and decreases it

Table 3 | Wanting and liking relations and the associations between

liking and extrinsic rewards.

Liking Wanting

Low High

Low LL: Re >> Rl LH: Re < Rl

High HL: Re > Rl HH: Re << Rl

when a quantity of food is ingested (food_consumed), depending
on the energy power of the food (ef ).

An analogous Thirst function is used to compute the need for
water:

Thirst(t) = Thirst(t − 1)+ k · (nb_act)

− (ew · water_consumed) (6)

ATTENTIONAL BEHAVIOR-BASED ARCHITECTURE
We introduce a Behavior-Based Attentional Architecture (see
Figure 4) where, the attentional control is obtained from the
interaction of a set of three parallel attentional behaviors AVOID,
EAT and DRINK.

For each behavior, the process of changing the rate of sen-
sory readings is interpreted as an increase or decrease of selective
attention toward internal or external saliences. These sources of
salience are generally behavior- and task-dependent; these can
depend on either internal states, such as hunger, thirst, etc., or
external stimuli, such as obstacles, unexpected variations of the
environment, attractiveness of a particular object, etc. The over-
all attentional behavior should emerge from the interrelation of
the attentional mechanisms associated with the different primi-
tive behaviors and learned by means of the motivated RL learning
technique.

In Figure 4 we illustrate the attentional control system
designed for the survival domain. It combines three behaviors:
AVOID, EAT, and DRINK, each endowed with its releaser and

FIGURE 3 | The testing environment is simulated through the

Player/Stage tool for robotics development (Gerkey et al., 2003). We
adopt a simulated Pioneer3-DX mobile robot endowed with a blob camera
and 16 sonar sensors. The black, blue, and green colored cubes (of size
0.5 m× 0.5 m× 0.5 m) within the environment represent respectively
obstacles, water, and food.
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FIGURE 4 | Attentional behavior-based architecture with intrinsic motivations.

adaptive clock. The output of the robotic system is the combi-
nation of the outputs (if they are available).

AVOID
Manages obstacle avoidance. Its input signal σ avoid

t is the mini-
mum distance of the 8 frontal sonar sensors; its motor schema
controls the robot linear and angular velocity (v(t), θ(t)) gener-
ating a movement away from the obstacle. The obstacle avoidance
is obtained as follows: v(t) is proportional to the obstacle proxim-

ity, i.e., v(t) = vmax · σ avoid
t

σ avoid
max

, where vmax and σ avoid
max , are respectively

the maximum velocity and the maximum sonar range; θ(t) is
obtained as weighted sum of the angular velocities generated by
the active sonars, i.e., θ(t) =∑i∈A(t) θmax · θi, where A(t) is the
set of active sonars detecting an obstacle at time t, θmax is the
maximal rotation, θi is a suitable weight depending on the sonar
position (high values for frontal sonars and low for lateral ones).

EAT
Monitors an internal function Hunger(t) representing the need
of food. At each execution cycle the Hunger function changes as
described in the previous section. Therefore, EAT is active when
σ eat

t = Hunger(t) goes above a suitable threshold σ eat
max. When

enabled, if a green blob (representing the food source) is detected
by the camera, the motor schema generates a movement toward
it, otherwise it starts looking around for the green, generating a
random direction.

DRINK
Monitors a function Thirst(t) that represents the need of water
and considers the height (pixels in the field of view) of a detected
blue object in the environment as an indirect measure of the
distance from the object. The motor schema is enabled whenever
the σ drink

t = Thirst(t) is greater then a suitable threshold σ drink
max .

When enabled, if a blue blob is detected by the camera, the

motor schema generates a movement toward it, otherwise it starts
looking around as for the EAT behavior.

For each behavior, the clock regulation depends on the moni-
toring function that should be learned at run-time.

MOTIVATED ATTENTIONAL FRAMEWORK
Action and state spaces
In order to cast the RL problem in our case study, we have to
define Abs and Sbs. In our attentional allocation problem, for each
behavior, the action space Ab is represented by a set of possible
periods {pb

1, . . . , pb
k} for the adaptive clock of each behavior b. In

the case study, for each behavior (AVOID, EAT and DRINK) we
assume 1 machine cycle as the minimum clock period and the
following set of possible periods: pa, pe, pd = {1, 4, 8, 12}. As for
the state space Sb, we recall that each state is a triple (σ b, pb

i , cb)

composed of a value in the perceptual domain, a period, and a
curiosity value. The perceptive state of each behavior is obtained
as a discretization in six equidimensional intervals of the per-
ceptive domain [σ b

min,σ b
max]. The perceptive domain for AVOID

spans the interval [0, σ avoid
max ], where σ avoid

max is maximum sonar
range for the behavior; the domain of DRINK is [0, σ drink

max ], where
σ drink

max represents the maximum value for the Thirst function; the
EAT domain is in [0, σ eat

max], where σ eat
max is the maximum state

of hunger the robotic system can assume. The curiosity value
ranges in the conceptual interval [LL, LH, HL, HH], where the
combination of the wanting and liking parameters is considered.

Rewards
We assume the reward always positive except for a strong penalty
if the system cannot survive. For the other cases the reward is
computed as follows. For each behavior, the extrinsic reward
has two additive components. The first evaluates the impact of
frequent activations of a specific behavior. The higher is the fre-
quency, the smaller is the obtained reward. This component is
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equal to zero if pb
t = pb

min. The second component depends on
the specific behavior.

In particular, concerning AVOID, each activation is rewarded
directly proportional to the distance from the obstacle.

Ravoid
e (t) =

⎧⎨
⎩

1
2 ·
[(

pavoid
t − pavoid

min

pavoid
max − pavoid

min

)
+
(

σ avoid
t − σ avoid

min

σ avoid
max −σ avoid

min

)]
, if !crash

penalty, otherwise
(7)

As for EAT behavior, for each activation the reward is inversely
proportional to the current hunger value. That is, a system that is
more hungry takes a smaller reward.

Reat
e (t) =

⎧⎨
⎩

1
2 ·
[(

peat
t − peat

min
peat

max − peat
min

)
+
(

1− σ eat
t

σ eat
max

)]
, if !crash

penalty, otherwise
(8)

Analogously, each activation of DRINK is rewarded in inverse
proportion to the current value of thirst:

Rdrink
e (t) =

⎧⎨
⎩

1
2 ·
[(

pdrink
t − pdrink

min

pdrink
max − pdrink

min

)
+
(

1− σ drink
t

σ drink
max

)]
, if !crash

penalty, otherwise
(9)

Following the description of section 3, we subdivide curiosity into
two components dealing respectively with the feeling of wanting
and liking. We associate the first one to the concept of residual
energy for the robot body, while the second one to the level of
novelty in the exploration of the learning states.

In particular, we assume that the Energy of the system is
defined as follows:

E(t) = E(t − 1)− eu − enb · (nb_act)+ ef · (food_consumed)

+ ew · (water_consumed) (10)

where the current value of the energy E(t) is computed start-
ing from the previous level of energy E(t − 1), decremented of
one unit of energy eu, which represents the energy consumed at
each machine cycle. Then, we also consider the energy spent to
activate each behavior enb, where nb_act is the number of cur-
rently active behaviors. On the other hand, we assume increments
of the energy in correspondence of consummatory behaviors
such as EAT or DRINK, where the added quantity ef (ew) of
energy depends on the consumed food or water (this is added
when boolean conditions related to food_consumed consumed
and water_consumed consumed becomes true).

According to the model of curiosity considered in this paper,
we model the level of the wanting component of the curiosity as
the residue of the Energy value (see Figure 5) ranging within the
interval [0,1].

w =
{

E(t)− E_well
E_max− E_well , if E(t) ≥ E_well

0, otherwise
(11)

That is, the robot can show a curious behavior only when the
situation is not critic (i.e., only when the global energy exceeds

FIGURE 5 | E(t) is the current Energy level; E_min: is the minimum

amount of Energy permitting the system to work; E_well: is the level

of Energy corresponding to a wellness state of the system.

the E_well threshold, indicating a sort of wellness state of the sys-
tem). E_well is supposed to be associated with a state of the system
where the regulation of the different behaviors activation periods
is well balanced and leads to a suitable scheduling of the actions
(reach food and water when necessary while avoiding obstacles).
We can interpret this residual value Ec as the Energy that the sys-
tem can spend on activities which are not associated with primary
needs. In this way, the higher the Ec, the more the curiosity can
drive the system to explore new states, the less the attention is
posed on the primary behaviors (such as EAT, DRINK or AVOID).
According to Equations (11, 4), cb ranges only within an interval
of three values [LL−HL, LH, HH]. LL and HL (i.e., both with
low wanting) are considered as equivalent and correspond to the
case of w equal to 0 (e.g., no curiosity).

The second component of the curiosity is the liking, which we
associate with the pleasure due to novel situations. In particular,
the curiosity in our system is interpreted as the exploration within
the learning states space. We can assume that the novelty of a state
is computed as follows:

Rb
l = 1− NV(σ b

t )

NV_tot
(12)

where, NV is for number of visits and NV(σ b
t )

NV_tot represents the num-

ber of times the percept σ b
t has been observed during the previous

NV_tot observations. We, thus, maintain a sort of temporal win-
dow of value NV_tot. In this way, on the one hand, we capture the
novelty of the observation; on the other hand, we simulate a sort
of lapsing mechanism where the novelty of a state is reduced when
it is frequently visited within the time window. The model of the
temporal window can be compared to the Itti’s model of surprise
(Baldi and Itti, 2010), by interpreting the temporal window as
a rough approximation of a statistic on the perceptual history.
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That is, if the system is not observing a percept for NV_tot times,
the stimulus becomes likable again. While, if the system observes
that particular perceptual state σ b

t many times (i.e., NV_tot), the
stimulus associated becomes boring. The Rl values range in the
interval [0,1], so values grater than 0.5 indicates states with high
liking.

The combination of wanting and liking drives model the
curiosity which will affect the learning system explorative
attitude.

Parameters and settings
In Table 4 we summarize the parameters and the settings used for
our experiments.

Here, the perceptual domain (Perceptions) and the possible
periods (PeriodsActions) are analogous to the ones presented in
Di Nocera et al. (2012). Indeed, this partition for the perceptive
domain and the periods have been selected to obtain a satisfactory
setting for the non-curious system. As for curiosity, it is associ-
ated with the residual Energy with respect to a threshold set as
the 2/3 of the maximum energy E_max. The maximum energy
value E_max is set with respect to the max_cycles that estimates
the maximum clock cycles associated with an episode (180 s to
accomplish the survival task). This regulation is a compromise
between scarce energy (that would keep the system in the non-
curious state) and abundant energy (that would keep the system
in the curious state). The minimal energy E_min is set to 300.
Here, for each behavior activation we have an energy consump-
tion of 1 UoE while the recharge is 150 UoE for food and water.
Concerning the liking, we employed a temporal windows of 10
observations to assess the novelty of a perceptive data. As far as
the learning parameters are concerned, we set α = 0.8 for the
learning rate, γ = 0.9 for the discount factor and τ = 1 for the
temperature. These regulations have been defined after a prelim-
inary phase of experimental testing in the non-curious setting
(analogous to the one presented in Di Nocera et al., 2012).

RESULTS
In this section, we present the experimental results of a robot
that must survive for a predefined amount of time within an
environment (see Figure 3) avoiding obstacles (objects, walls,
etc.) and meeting its energy needs by eating and drinking. We

discuss the approach by considering the performance of the
intrinsically motivated RL in learning attentional allocation poli-
cies in this survival domain. In particular, our aim is to evaluate
the effects of the curiosity on the RL process by comparing
the behavior of the curious system (from now on called CR =
CuriousRobot) with respect the one of system that is not endowed
with the curiosity drive (from now on called NCR = Non−
CuriousRobot). Namely, the difference between the CR and NCR
models is that the latter does not consider the rewards due to the
curiosity. Notice that the parameter regulation process described
in the previous section was carried out in order to obtain the
best regulation for the non-curious system. Since these settings
are shared by the curious and non-curious system, we can assess
the added value of the intrinsically motivated framework in the
testing scenario.

In order to evaluate how the curiosity affects the learning pro-
cess, we first compare the survival time percentage of the CR
with respect to the NCR. In Figure 6 we plot the survival time
percentage averaged every 50 episodes.

FIGURE 6 | Comparison between CR and NCR systems with respect to

the survival time percentage per Episode. The survival time is averaged
every 50 episodes.

Table 4 | Table of the parameters experimental setting (UoE, Unit of Energy; UoR, Units of Reward; mc, machine cycles; m, meters; s, seconds;

obs, observations).

Experimental settings

Perceptions Curiosity Episode

σ avoid
max 1.0 m E_max 6000 UoE (4*max_cycles) max_time 180 s

σ avoid
min 0.4 m E_min 300 UoE max_cycles 1500 mc

σ eat
max 1500 UoE E_well (2/3)*E_max penalty −1500 UoR

σ eat
min 300 UoE NV_tot 10 obs Power of Food/Water

σ drink
max 1500 UoE Learning parameters ef 150 UoE

σ drink
min 300 UoE α 0.8 ew 150 UoE

PeriodsActions γ 0.9 eu 1 UoE

pa, pe, pd {1 mc, 4 mc, 8 mc, 12 mc} τ 1 enb 1 UoE
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As we stated before, the robot must survive in the testing envi-
ronment for a predefined amount of time (max_time). The plot in
Figure 6 shows that during the first 250 episodes the NCR system
is more effective in surviving in the environment. In fact, the sur-
vival time percentage starts from a value over 90%. That is, the
NCR system is more effective in action selection than the CR sys-
tem. This could be due to the fact that the curiosity, initially, leads
the system to prefer the exploration of novel spaces rather than
the goal-directed ones. However, after a while, the CR system
starts to rapidly increase its survival time until it over pass the
NCR system and reaches the convergence (100% of the survival
time) around the episode 300, with respect to the NCR system
that does not reach the convergence before 450 episodes. Hence,
in both the cases we observe that the learning converges after at
most 450 episodes, however, in the case of the robot endowed with
curiosity an earlier convergence is obtained.

In Figure 7, we show the cumulative rewards for each behavior
during the learning process. The red lines describe the trend of
the rewards gained by the system endowed with curiosity, while
the blue ones are for the NCR system. As expected, during the
first episodes the curious robot is not able to learn the atten-
tional strategies needed to regulate the activations of the robot
behaviors. The cumulative rewards related to the behavior AVOID
of the CR system show that the performance remains unsatis-
factory approximately until the episode 200. Then, the values of
the cumulative rewards starts to increase and to converge from,
approximately, the episode 300. In contrast, the NCR system
shows a worst trend of the cumulative rewards for the EAT and
DRINK behaviors. This could be explained by the fact that the
robot is not guided by the curiosity to immediately explore the
spaces of the environment where food or water are not observed.
It only learns to eat or drink when the associated need functions
(hunger and thirst) exceed a certain threshold; while the associ-
ated behaviors remains always relaxed. That is, the learned policy

for the NRC DRINK behavior always selects the maximum value
for the period (pdrink = 12) for all the states associated to low
levels of thirst (i.e., from σ1 to σ4). On the contrary, it selects
the shorter period value (pdrink = 1) for the states with a high
level of thirst (σ5 and σ6). In the case of the CR robot, the pro-
cess of learning is affected by the curiosity, which influences the
robot behavior to explore spaces of the environment with food
or water sources since it is immediately attracted by novel stimuli
(including green and blue blob). Hence, the CR system learns to
eat or drink also when this is not strictly required. For example,
the learned policy for the CR DRINK behavior, in the case of low
curiosity, associates the maximum value for pdrink only to fewer
states with low levels of thirst (from σ1 to σ3), and it selects short
period values (pdrink = 1) for all the other states (from σ4 to σ6).
Finally, the learned policy for the CR DRINK behavior, in the
case of high curiosity, always associates pdrink = 1 or pdrink = 2
to all the levels of thirst (from σ1 to σ6). At the end of the exper-
iments NCR EAT and DRINK rewards converge to higher values,
however, the global reward is higher for the CR. The global cumu-
lative rewards are collected in the last plot of Figure 7 (on the
bottom row), which shows the faster convergence of the CR sys-
tem with respect to the NCR one. Finally, the CR learned policies
for EAT and DRINK can always maintain the Energy value above
the wellness threshold (this is also visible in Figure 10).

In Figure 8A, we show, respectively, (A) the trends of the need
functions within a single episode after the convergence of the
learning process, and (B) the trend of the average value of the
maximum value of the need functions among all the episodes. If
we look at their trends, in Figure 8A we observe some periodi-
cal path for the values of each function. We interpret the plots,
in the case of the CR, as an effective learned attentional shifting
policy of the behaviors EAT and DRINK. The robot seems to find
a rhythmic alternation of its needs of eating and drinking (the
decreasing part of the hunger and thirst functions corresponds

FIGURE 7 | Comparison between CR and NCR rewarding values during learning process evaluated for each episode (A) and considering the data

averaged every 100 episodes (B).
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FIGURE 8 | CR and NCR need functions comparison (A) within one run (single episode) and (B) average maximum value of the Hunger/Thirst

function considering the data mediated every 10 episodes.

FIGURE 9 | Safety function comparison.

to the consuming of food or water, respectively). On the con-
trary, the NCR system just waits to become very hungry or very
thirsty before starting to search for sources of food and water. The
behavior of the NCR robot, while on the one hand, driven by
the thirst and the hunger need functions, achieves better results
in terms of the single rewards, on the other hand, this does not
lead to a global better reward for the NCR with respect to the
CR (see Figure 7). This is also visible in Figure 8B where we can
observe that the need to eat or drink for the NCR is, on aver-
age, always greater than the CR needs. Thus, the CR system is
able to find a configuration of the activation periods (i.e., suit-
able attentional monitoring strategies), associated with the EAT
and DRINK behaviors, such that the robot never suffers because
of some internal need, leading to a best homeostatic regulation of
the internal variables.

In order to evaluate the performance of the two robots we
defines a measure of safety as follows:

Safety(t) = σ avoid
t

σ avoid
max
· pavoid

max − pavoid
t

pavoid
max − pavoid

min

(13)

where the level of safety is calculated with respect to the mini-
mum distance between the current position of the robot and an
obstacle. Here, the danger increases when the distance decreases
and the AVOID activation period is relaxed; and, viceversa, the
safety increases when the activation period of the AVOID is suit-
ably balanced with respect to the distance from an obstacle. The
improved performance of the CR system is visible in the evalua-
tion of the safety function (see Figure 9), where we observe more
pleasurable values for the CR robot, and of the energy function
(see Figure 10), where the CR system is able to maintain the levels

FIGURE 10 | Energy function comparison.

of energy EcwithCuriosity not only above the threshold of well-
ness E_well, but also stabilized at a high value. The eighth row of
Table 5 shows the average rewards of AVOID, EAT, and DRINK
behaviors and the averages values of the global reward for the 100
episodes of validation.

All the results of the above plots are summarized in Table 5,
where we evaluate the average values and the standard deviations
on 100 episodes used to validate our system (after the convergence
of the learning process). Regarding the global energy of the sys-
tem, we already noticed that such values stabilized on a specific
interval for the CR (see Figure 10). In Table 5, we can find that
the average of the Energy mean values (= 3720) is a bit smaller
than the NCR case (= 3809) and that its maximum value (= 4488,
which is above the wellness threshold E_well ) is smaller than the
NCR energy maximum value (= 4525). However, we suppose that
the CR average of the energy mean values is smaller because of
the curiosity (residual energy), which is “consumed” for explor-
ing new states during the learning process. Interestingly, such an
exploration of new states does not imply that the robot is less cau-
tious in moving around. Indeed, the safety average value of the
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Table 5 | Maximum, minimum and average values for the need functions (safety, hunger and thirst) and the energy function.

Robot without Curiosity Robot with Curiosity

Max Min Max Min

Energy 4525 ± 247 2683 ± 212 4484 ± 344 2781 ± 115

Safety 0.97 ± 0.09 0.12 ± 0.02 1.00 0.18 ± 0.04

Energy Safety Hunger Thirst Energy Safety Hunger Thirst

Average value 3809 ± 335 0.38 ± 0.02 420 ± 181 363 ± 135 3720 ± 312 0.61 ± 0.03 328 ± 142 311 ± 137

Avoid Eat Drink Global Avoid Eat Drink Global

Reward 66 ± 2 83 ± 6 85 ± 5 235 ± 7 100 ± 9 70 ± 7 78 ± 11 248 ± 15

Activation 109 ± 3 105 ± 7 103 ± 2 260 ± 22 204 ± 19 130 ± 10 156 ± 10 418 ± 22

Average values of the cumulative eat and drink rewards and of number of activations of the behaviors after the learning process.

CR is almost two times greater (= 0.61) than the NCR (= 0.38).
Moreover, the minimum value for the CR safety (= 0.18) is higher
(so, more safer) than the NCR value (= 0.12). Finally, as noted
in the plots (see Figure 8A) the need functions of hunger and
thirst have smaller average values for the CR (hunger = 328 and
thirst= 311), which means that the robot satisfies its needs more
frequently.

Both CR and NCR are effective in spending computational
resources. This can be observed by considering the last row of
Table 5, where we show the average number of the behavior acti-
vations. The CR has a slightly greater number of activations, in
particular for the AVOID behavior. This leads to an emergent
behavior consistent with what discussed above. The CR robot
eats and drinks more frequently and shows a safer behavior with
respect to the NCR. However, 204 activations out of max_cycles
(around 1150 in this specific case) possible activations (machine
cycles of an episode) seems a satisfactory result for a behavior-
based architecture (i.e., there is a reduction of the 83% of the
number of activations).

Moreover, notice that the global value shown at the end of
this row states for how many cycles at least one behavior was
active during the episode. In the case of NCR, this value is equal
to 260. This shows that it is frequent to find more than one
behavior active at the same time. For the CR robot, this value
is equal to 418, meaning that for the most of the time only one
behavior is active and the robot is able to orchestrate the multi-
ple behaviors by opportunely shifting attentional resources, from
time to time, toward the most salient one according to its need
functions.

Finally, another interesting result regards the curiosity influ-
ence on the actual environmental exploration space. Indeed,
while we expected that our intrinsic motivated RL would lead
the learning process to improve the exploration of the inter-
nal learning states, we did not expect that this would also
produce an increased spatial exploration of the environment.
This result can be illustrated by plotting the paths of the two
systems during the overall experimentation (see Figure 11C).
By comparing the two generated paths, we can note that the
system endowed with internal motivation (see Figure 11A) is
more explorative (the cumulative traces of 500 episodes cov-
ered the 50% of the total area) with respect to the non-curious
one (44% of the total area covered as shown in Figure 11B).
The CR path seems smoother with a better coverage of the

space around obstacles, food, and water while keeping the robot
safe.

DISCUSSION
In this paper, we presented an intrinsically motivated RL
approach to attention allocation and shifting in a robotic sys-
tem. The framework has been demonstrated at work in a survival
domain. Differently from classical RL models of action selection,
where actions are chosen according to the operative/perceptive
contexts, in our case the action selection is mediated by the
attentional status of the robotic behaviors. In the literature
we can find intrinsically motivated RL system where simple
attentional control mechanisms are involved (e.g., eye move-
ment in the playground domain in Barto et al., 2004); in this
paper we tackle the attention allocation and shifting problem,
which is novel in this context. Indeed, in our setting, the learn-
ing process is to adapt and modulate the attentional strategies
used to allocate attentional resources of the system. Specifically,
our attentional mechanism regulates the behavioral activation
periods, hence the amount of computational and operation
resources dedicated to monitor and control the associated activ-
ities. Following this approach, the global behavior of the system
is not directly generated by an action selection policy (as in typ-
ical RL approaches to action selection Sutton and Barto, 1998
and intrinsically motivated RL Barto et al., 2004; Singh et al.,
2004), instead, it emerges as the sum of the outputs of mul-
tiple parallel processes, each activated with its own frequency:
the smaller the activation period of a behavior, the higher its
influence on the global emergent behavior. Following the tax-
onomy proposed by Baldassarre and Mirolli (2013), our system
can also be considered as a competence-based system where the
skill to be learned is the attentional allocation policy, however,
this policy has only an indirect effect on the overall expected
reward.

As the main intrinsic motivation, we considered the curiosity
drive which is inspired by the one proposed by Litman (2005).
This model allows us to account for both optimal arousal and
curiosity-driven approaches to curiosity modeling. In particu-
lar, we related the liking and wanting drives of the Litman’s
model to, respectively, the pleasure of the novelty and the resid-
ual energy of the system (the higher the energy value over
the wellness state, the higher the drive toward to the explo-
ration of novel situations and states). While several models for
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FIGURE 11 | Space of the environment explored during the Curious (A—red line) or Non-Curious (B—blue line) Learning Systems execution. The third
graph represents the comparison between the two systems (C).

novelty-based and knowledge-based (Schmidhuber, 1991; Singh
et al., 2004) curiosity have been proposed in the intrinsically
motivated RL literature, the employment of the Litman account
is less explored. Notice that we do not employ knowledge-based
curiosity models (Schmidhuber, 1991; Singh et al., 2004). Indeed,
while in Schmidhuber (1991) and later in Singh et al. (2004) and
Oudeyer and Kaplan (2007) curiosity should lead the agent to
explore areas of the environment where the learning progress is
expected to be high, in our system, the agent is directly attracted
by novel stimuli as sources of saliency. We want to stress here
that the attentional problem addressed in our work is different
from the ones mentioned since we learn attentional allocation
only. In contrast to Schmidhuber (1991), Singh et al. (2004),
and Oudeyer and Kaplan (2007), we can only enhance atten-
tion with respect to the attracting stimuli, but the movement of
the system toward the stimuli is obtained as an indirect effect.
As for the novelty, the lapsing mechanism we defined for the
liking function (the novelty of a state is reduced when it is fre-
quently visited within the time window) can be related to the
Itti’s model of surprise (Baldi and Itti, 2010), but also to the
approach proposed by Oudeyer and Kaplan (2007), where, once
predictions within a given part of the sensorimotor space are
learned, the system gets bored and starts to execute other actions.
As far as attentional allocation and shifting is concerned, RL
models have been mainly proposed for visual attentions and
gaze control (Bandera et al., 1996), a theoretical link between
visual attentional exploration and novelty-based intrinsic moti-
vations is investigated in Schlesinger (2012) where the author
investigates the way in which goal directed, top–down atten-
tional skills can be incrementally learned exploiting complex
novelty detection strategies. Differently from these cases, here we
investigated an intrinsically motivated RL approach to the gen-
eration of attentional strategies that are suitable for the executive
control.

Our approach has been illustrated and tested in a simulated
survival domain, where a robot was engaged in survival tasks
such as finding food or water while avoiding dangerous situa-
tions. In this context, our goal was to show the feasibility and the

effectiveness of the approach in a typical robotic domain where
basic needs satisfaction and intrinsic (curiosity) motivations were
clearly defined. In particular, we compared the performance of
the intrinsically motivated RL with respect to the same set-
ting except for the fact that the influence of the intrinsic drive
was neglected. The parameter tuning was provided in order to
find the best regulation of the non-curious setting to assess the
added value of the curiosity drive. The collected results support-
sthe hypothesis that the curiosity-driven learning system permits
to find satisfactoryregulations of the attention allocation and
shifting policies, providing different attentional policies,and con-
sequently different emergent behaviors, depending on the current
level of curiosity. Moreover, the overall behavior that emerges-
from the execution of the learned attentional policies seems
safer and capable of keeping therobotic system in a higher well-
ness state during the environment exploration. This is related to
thefact that the curiosity drive stimulates the attention toward
opportunitiesof energy recharging (food and water) more fre-
quently than in the non-curious system. Wealso observed that
the curious system provides a more uniform exploration of the
environment when compared with the non-curious behavior.
While the presented tests illustrate the feasibility and effective-
ness of the approach in a typical survival domain, the extension
of this curiosity-driven attentional regulation method to more
complex domains and more structured tasks (e.g., considering
hierarchical skills Barto et al., 2004 and top–down attentional reg-
ulations Schlesinger, 2012) remains to be investigated as future
work.
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INTRODUCTION
In this brief essay, I seek to demonstrate
the significance of exploratory behavior
for understanding cognitive development.
Historically, organisms were thought to
act solely in the service of achieving bio-
logically significant goals, such as satisfy-
ing thirst, hunger, and reproductive drives.
However, it became apparent that both
animals and humans engage in behavior
where the adaptive goal is unclear (see
Hunt, 1963, 1965). With no obvious exter-
nal target, this activity is best described
as being intrinsically motivated, and often
directed toward the unknown and the
unexpected (Kagan, 2002). Hence novelty,
the discrepancy between what is known
and what is discovered, can elicit activity
and exploration of the environment.

What is the relevance to developmen-
tal process? Attention to novelty plays
a seemingly simple role in learning and
development, directing the senses toward
what is as yet unknown. Yet, research
shows that patterns of attention to nov-
elty are not straightforward, particularly
during infancy. There is considerable evi-
dence that attention is sometimes biased
toward familiarity, rather than novelty.
Unlike our understanding of novelty pref-
erence, we struggle to understand when
and why familiarity preferences occur.
Below I briefly review this area of research
and illustrate how this basic aspect of
learning continues to puzzle developmen-
tal psychologists.

FROM ANIMALS TO INFANTS?
The habituation mechanism, which
directs attention to novelty, has been
widely-studied across the animal king-
dom (Sokolov, 1963; Thompson and
Spencer, 1966). Thorpe (1963) defined
habituation as “the relatively permanent
waning of a response as a result of repeated

stimulation . . . ” (p. 61). An important
feature of habituation is that an organism’s
responding will recover to the presentation
of a different stimulus—an effect known as
dishabituation (Thompson and Spencer,
1966). Hence, habituation is stimulus–
specific and attention will recover to novel
stimuli. A seminal study by Fantz (1964)
demonstrated that infants’ visual attention
to a familiar, repeated image will decrease
relative to their attention to a novel image.
Other early studies of infant habituation
also reveal infants’ interest in novel stimuli
(see Cohen and Gelber, 1975, for a review).
There is evidence that even newborns
will habituate and direct their attention
to novelty (Friedman, 1972; Slater et al.,
1982, 1984). Many infancy researchers are
interested in the use of novelty preferences
as a methodological tool. Habituation–
dishabituation procedures are used to
demonstrate infants’ discrimination of
stimuli, and seemingly precocious cogni-
tive abilities (e.g., Baillargeon, 1987; Spelke
et al., 1992; but see Schilling, 2000, for a
counterargument).

Infants’ interest in novelty is consistent
with theories of habituation accounting
for both human and animal respond-
ing. However, there is substantial evidence
that infants do not always prefer a novel
stimulus—sometimes they prefer to attend
to a familiar stimulus. In Rose et al.
(1982) groups of 3.5- and 6.5-month-olds
were exposed to a visual stimulus for dif-
ferent durations. This familiar stimulus
was then paired with a novel stimulus.
Infants at both ages displayed familiar-
ity preferences after shorter exposures,
and novelty preferences after longer expo-
sures. Similarly, Hunter et al. (1983) pre-
sented 8- and 12-month-olds with a set
of toys, and tested their preference for
the familiar vs. novel toys after differing
amounts of familiarization. The infants

preferred the familiar toys after a shorter
familiarization period, and the novel toys
after a longer familiarization period. In
these studies, familiarization time was
manipulated between groups of infants.
Roder et al. (2000) provide a within-
infants demonstration that 4.5-month-
olds preferences shift from familiarity to
novelty as a function of familiarization
time.

While familiarity and novelty prefer-
ences have largely been investigated for the
visual modality, there is also evidence that
infants display these preferences for audi-
tory stimuli (e.g., Colombo and Bundy,
1983; Spence, 1996). More recent research
has found that infants’ preferences will also
“reverse” as their memory for a familiar-
ized stimulus decays over time. In Bahrick
and Pickens (1995), 3-month-olds dis-
played a novelty preference after a 1 min
retention interval, and a familiarity pref-
erence after a 1 month interval (see also
Spence, 1996; Bahrick et al., 1997; Courage
and Howe, 2001). Familiarity preferences
do not just occur to repetitions of a
specific stimulus. Infants who have cat-
egorized a set of stimuli will sometimes
attend more to a novel stimulus from the
same category, rather than a novel stim-
ulus drawn from a novel category (e.g.,
Gomez and Gerken, 1999; Fiser and Aslin,
2002; Gómez and Maye, 2005; Mather and
Plunkett, 2011). Hunter and Ames (1988)
provide a descriptive model of infants’
familiarity and novelty preferences. The
main factor is familiarization time—with
briefer exposures, the infant attends more
to a familiar stimulus, but with longer
exposures, their attention turns to nov-
elty. How quickly an infant makes this
“familiarity-to-novelty shift” will depend
on their processing speed and the com-
plexity of the stimuli. Hence, familiarity
preferences are more likely for younger
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infants (slower processors), and for more
complex stimuli.

Familiarity preferences are not consis-
tent with the habituation process, where
attention simply declines with repeated
exposure to a stimulus (Thompson and
Spencer, 1966). Some computational
models of infant attention have tenta-
tively linked familiarity preferences with
the process of sensitization (Sirois and
Mareschal, 2004; Schoner and Thelen,
2006). Sensitization occurs when the pre-
sentation of a stimulus leads to heightened
behavioral responding. Importantly, if a
stimulus is repeated, it can have the effect
of sensitizing itself. Under dual-process
theory (Groves and Thompson, 1970),
habituation and sensitization are sepa-
rate, opposing processes which interact
to determine responding. Sensitization
is related to stimuli intensity, and decays
quickly. If sensitization is initially stronger
than habituation, there will be an early
increase in responding to a repeated stim-
ulus, followed by a decrease. This pattern
of response to a repeated stimulus is
similar to the familiarity–novelty shift
sometimes evidenced by infants. However,
in contrast to habituation, sensitization
will generalize to a wide range of stim-
uli (see Domjan, 1998, for examples).
Hence, while sensitization can occur to
a repeated stimulus, it would also gen-
eralize to other stimuli if they were also
present. This means that sensitization can-
not account for the stimulus specificity
of familiarity and novelty preferences (see
also Turk-Browne et al., 2008, for a related
argument).

THE OLD OR THE NEW?
An alternative theoretical perspective
could account for the existence of familiar-
ity preferences. Since the 1950’s, a variety
of arguments have been made that both
adults and infants prefer stimuli which
provide an optimal level of novelty or
information (Dember and Earl, 1957;
Berlyne, 1960; McCall and McGhee, 1977).
The optimum is defined by a “moderate”
discrepancy between a stimulus and an
observer’s representation of that stimulus.
Hence, the more discrepant a stimulus
is from the observer’s state of knowl-
edge, the more novel it is to the observer.
Relatedly, stimulus complexity influences
the amount of learning required to reduce

this discrepancy. Any stimulus which is
more or less discrepant than the opti-
mum is of less interest to the observer.
The familiarity-to-novelty shift displayed
by infants is consistent with optimal-level
theory. It is possible for a familiar stim-
ulus to be favored over a novel stimulus,
because the familiar stimulus could ini-
tially be closer to the optimum. Further
processing of the familiar stimulus will
result in a shift away from the optimum,
and a novel stimulus will be preferred
(see Hunter and Ames, 1988, for an
elaboration).

A problem with obtaining evidence of
the familiarity-to-novelty shift is that there
is a temporally limited window for observ-
ing a familiarity preference. At a certain
point, attention will shift toward novelty,
thus a successful experimental design must
be sensitive to this shift. Different infants
will also process information at different
rates, meaning that individual preferences
can be obscured by group data (see Roder
et al., 2000). Unfortunately, optimal-level
theory does not provide a remedy for
these methodological issues. The key vari-
ables involved—stimulus complexity, pro-
cessing speed, and the optimal level of
novelty—are usually unknown quantities.
This makes it difficult to predict the occur-
rence of familiarity preferences, and to
test the assumptions of the theory (see
Thomas, 1971). A lack of familiarity pref-
erence could be due to the stimuli not
being sufficiently complex, or an infant
rapidly processing the stimuli. Therefore,
while the existence of familiarity prefer-
ences is consistent with optimal-level the-
ory, the theory itself perhaps does little
more than assert that we seek out moder-
ately novel stimuli.

One approach to dealing with the
shortcomings of optimal-level theory has
been to develop more computationally
explicit models of familiarity and nov-
elty preferences (Sirois and Mareschal,
2004; Schoner and Thelen, 2006; see also
Perone et al., 2011) and to mathemati-
cally formalize the information content of
a stimulus (e.g., Kidd et al., 2012). These
recent advances offer an improved level
of theoretical precision over past formula-
tions of optimal-level theory. Nonetheless,
these models incorporate some of the
basic assumptions of optimal-level the-
ory, and may also retain the difficulties

of predicting the familiarity-to-novelty
shift. Our ability to understand exactly
when infants will seek out familiarity
or novelty is likely to require a deeper
understanding of why there is an opti-
mum in the first place. Development
requires a balance of familiarization
with regularities in the environment
(Gibson, 1969) and shifting attention
to what is new and unknown so as to
create new cognitive structures (Piaget,
1936/1952). Therefore, rather than just
focusing on preferences for individual
stimuli, one useful approach might be
to explore the more global consequences
for the abstraction and development of
knowledge.

ORDER AND TIMING: THE CYCLE OF
COGNITIVE DEVELOPMENT
The familiarity-to-novelty shift causes
infants to process stimuli in a particular
sequence. That is, with all other factors
held constant, infants’ will explore differ-
ent stimuli in a systematic fashion, based
on their prior experience and learning.
Beyond the laboratory, how do these pref-
erences shape patterns of learning across
the vast multitude of items and events in
the real world, across multiple timescales?
Computational models and experimental
data demonstrate how the pattern of input
can influence the trajectory and success
of learning. In Elman (1993), recurrent
neural networks were more successful at
acquiring grammatical categories if they
began by only learning about a subset of
the total sentences available, rather than
learning about all sentences together (see
also Plunkett and Marchman, 1991, 1993).
Other research suggests that order effects
may also occur in infant categorization
(Sandhofer and Doumas, 2008; Mather
and Plunkett, 2011). What is particularly
intriguing is that in some cases, expo-
sure to an initially restricted stimulus set
supports learning (Elman, 1993), whereas
in other cases, reduced variability hin-
ders learning (see Mather and Plunkett,
2011). These findings hint at a global
effect of optimal preferences on successful
learning.

Currently, we understand little about
the role that familiarity and novelty prefer-
ences might play in driving successful pat-
terns of learning. However, if we can better
understand the effects of these preferences
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on cognitive development, then we might
make sense of the underlying cause of opti-
mal preferences. Conversely, our explana-
tions of cognitive development would also
benefit from understand the impact of
exploratory behavior on learning. Much
current developmental research is con-
cerned with specifying the mechanisms
of learning, without considering how and
why attention prioritizes certain stim-
uli for learning. Cognitive development
needs to be understood as a cyclical pro-
cess, where attention influences learn-
ing, and learning guides attention. If, as
Piaget (1936/1952) argued, the child is
actively engaged in the construction of
their own knowledge, then exploratory
behavior needs to be placed at the heart of
cognitive development.

CONCLUSIONS
A hallmark of human behavior is that we
seek to explore and understand our envi-
ronments, even in the absence of biological
or externally specified goals. Our interest
in what is new and unknown is evident
from birth. However, we do not yet have
a clear understanding of the mechanisms
which determine whether a child attends
to familiarity or novelty. The function of
optimal preferences may need to be inter-
preted in the context of broader devel-
opmental changes. Both the processes of
cognitive growth and exploratory behavior
can be better understood by considering
their interdependence.
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What motivates children to radically transform themselves during early development?
We addressed this question in the domain of infant visual exploration. Over the first
year, infants’ exploration shifts from familiarity to novelty seeking. This shift is delayed
in preterm relative to term infants and is stable within individuals over the course of
the first year. Laboratory tasks have shed light on the nature of this familiarity-to-novelty
shift, but it is not clear what motivates the infant to change her exploratory style.
We probed this by letting a Dynamic Neural Field (DNF) model of visual exploration
develop itself via accumulating experience in a virtual world. We then situated it in a
canonical laboratory task. Much like infants, the model exhibited a familiarity-to-novelty
shift. When we manipulated the initial conditions of the model, the model’s performance
was developmentally delayed much like preterm infants. This delay was overcome by
enhancing the model’s experience during development. We also found that the model’s
performance was stable at the level of the individual. Our simulations indicate that novelty
seeking emerges with no explicit motivational source via the accumulation of visual
experience within a complex, dynamical exploratory system.

Keywords: visual exploration, dynamic systems, dynamic neural fields, intrinsic motivation

One of the oldest questions in the history of human thought is
what motivates an individual to achieve a level just beyond reach.
Such motivation appears to be a central quality of human behav-
ior, and may be a driving force behind scientific advancement,
corporate innovation, and more generally, cultural evolution.
Striving beyond one’s reach is also an apt characterization of
human development where children undergo a series of aston-
ishing transformations. The newborn has a limited repertoire
including sleeping, eating, and crying. By the end of the first year,
the infant can walk and is beginning to talk. By age 5, the child is
learning to read, write, and sit in a classroom among peers. What
motivates a child to accomplish so much in so little time?

Seminal theories of cognitive development posit that infants’
active exploration of their environments enables them to develop
skilled action and cognitive systems (Piaget, 1952; Gibson, 1988).
Infants are seemingly driven to act by curiosity, ambiguity, and
novelty. These forces characterize intrinsic motivation and are
widely held in developmental psychology to propel development
forward (for a review, see Oudeyer and Kaplan, 2007). Yet the
nature of intrinsic motivation and the mechanisms by which it
creates change remain unclear.

Infancy might offer unique insights into the very nature of
intrinsic motivation and its role in development. But how do
we investigate intrinsic motivation in infants who have a lim-
ited behavioral repertoire? This requires clever methods to assess
how infants think. Such methods first emerged in the 1970s when
researchers developed a battery of novel habituation paradigms
that relied on infants’ looking behavior to measure cognition
(Cohen, 1972a,b; Fantz, 1974). In these paradigms, infants are
given experience looking at one item in isolation or in pairs. Then,

infants’ preference to look at a novel item relative to the familiar
item is measured. Infants’ preference to look at a familiar over
a novel item is taken as evidence that they recognize the famil-
iar item but have not yet formed a robust memory for it. Infants’
preference for novelty is taken as evidence that they have formed
a robust memory for the familiar item and are beginning to learn
about the novel item.

The use of looking paradigms led to the accumulation of a vast
literature on infant cognition. A key finding from this literature
is that infants’ familiarity and novelty preferences change across
multiple timescales, including during learning within a task and
over weeks, months, and years in development (for reviews, see
Hunter and Ames, 1988; Rose et al., 2004). With only brief expo-
sure to a stimulus, infants will exhibit a familiarity preference.
After prolonged exposure to the stimulus, infants will exhibit a
novelty preference (Rose et al., 1982; for exceptions and detailed
analysis, see Roder et al., 2000; Fisher-Thompson and Peterson,
2004). Critically, the rate at which infants move through this
familiarity-to-novelty shift increases with age. In fact, during the
first 1–2 months of life, infants move through this shift so slowly
that they sometimes show no novelty preference even after sev-
eral minutes of exposure (Wetherford and Cohen, 1973; Fantz,
1974). With age, however, infants spend more time looking at
novel items relative to familiar items (Fantz, 1974).

This characterization of familiarity and novelty preferences
is, of course, somewhat oversimplified. Infants’ preferences are
influenced by stimulus conditions, for instance (for reviews, see
Hunter and Ames, 1988; Rose et al., 2004). For some stimuli,
infants show no evidence of familiarity preferences early in
learning (Roder et al., 2000). For other stimuli, infants show a
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familiarity preference late in learning (Shinskey and Munakata,
2005). To complicate matters further, some studies have shown
that individual infants oscillate between familiarity and novelty as
they explore items (Fisher-Thompson and Peterson, 2004). And
even adults will show familiarity preferences under conditions in
which they freely explore visual scenes (Dodd et al., 2009). Thus,
the same exploratory system appears to organize itself differently
across contexts.

In the present report, we focus on the robust, quantitative
increase in infants’ exploration of novelty over development (for a
broader theoretical evaluation of the familiarity-to-novelty shift,
see Perone and Spencer, 2013a). This shift has been attributed
to an increase in visual processing speed over development. Rose
et al. (2002) nicely quantified this shift using a processing speed
task with 5-, 7-, and 12-month-old infants. Infants were pre-
sented with pairs of different stimuli across trials. On each trial,
one stimulus remained unchanged (familiar) and one changed
(novel). This design enabled Rose et al. to quantify the time
infants’ spent looking at the familiar item before shifting over
to explore novel items. Processing speed was measured as the
number of trials to a criterion defined as a looking preference
for the novel item on three consecutive trials. With age, infants
accumulated less time looking to the familiar item and more
quickly shifted toward looking to the novel item. This resulted
in a reduction in the number of trials to reach criterion over
development.

The use of looking paradigms has also led to two other key
observations. First, infants’ birth status influences the develop-
ment of the familiarity-to-novelty shift. For example, Rose et al.
(2002) found that term and preterm infants exhibited different
patterns of familiarity and novelty seeking over development. At
each age group, preterm infants required more trials to criterion
than term infants. Thus, preterm infants exhibited stronger famil-
iarity seeking biases than term infants and those persisted over
development. Second, individual differences in looking behavior
during infancy are stable over time. For example, Rose et al. (2001;
see also Colombo et al., 1987) found that looking measures of
exploration (e.g., frequency of gaze switching) and recognition
(e.g., preference for novelty) are stable within individuals over the
course of the first year. In addition, these looking measures dur-
ing infancy are predictive of cognition during toddlerhood (Rose
et al., 2009) and children’s executive functioning at age 11 (Rose
et al., 2012).

These laboratory-based observations have shed important
light on the nature of the transition from familiarity- to novelty-
seeking in the first year. Novelty-seeking has some distinct advan-
tages over familiarity-seeking, enabling infants to explore and
acquire knowledge about new items. Moreover, this exploratory
process builds a strong base of what is familiar to the infant. But it
is not clear from these data what motivates infants to switch their
exploratory style. Conceptual and formal theories of infant look-
ing and memory formation have attributed this shift to increases
in processing speed (for reviews, see Hunter and Ames, 1988; Rose
et al., 2004). By this view, infants’ switch in exploratory style is
simply a by-product of more efficient processing of visual infor-
mation in the neural systems involved in doing so (Colombo,

1995). Although compelling, such accounts rarely explain where
changes in processing speed come from.

Insights into this question might be obtained by moving
from constrained laboratory tasks to less constrained tasks where
infants can freely and autonomously explore the world around
them. A nice example of this comes from recent studies of the
transition from crawling to walking. What motivates an infant
to move from skilled crawling to unskilled walking? Why move
from an energy-efficient strategy to an energy-inefficient strat-
egy? Adolph et al. (2012; see also Adolph and Robinson, 2013)
observed infants’ who were learning to walk in more naturalis-
tic settings and made two surprising observations. First, infants
engage in massive practice from the onset of walking, walking
up to 8 football fields per day. Second, walking is initially as effi-
cient as crawling. Although newly walking infants often fall, they
also travel more distance. This observation changes the framing of
questions about motivation: if walking is as efficient as crawling,
why not walk? Walking creates no additional cost and has many
other advantages, enabling infants to carry objects from one loca-
tion to another and providing a continuous view of the world as
they move.

The lesson we take from this work on locomotor develop-
ment is that questions about transitions in development must be
framed within the context of the full range of infants’ experiences.
Thus, if we want to understand what motivates the infant to move
from familiarity- to novelty-seeking over development, we must
connect exploration in the laboratory to exploration in the real
world. One approach to connecting up these worlds is to evaluate
infants’ familiarity with items outside of the lab and assess how
they learn about those same classes of items inside the lab. For
example, Quinn et al. (2002) found that infants’ raised by female
caregivers were capable of remembering individual female faces
in the lab. Similarly, Kovack-Lesh et al. (2008) found that infants
raised with pets in the home were capable of remembering indi-
vidual cat exemplars in the lab. These findings show empirically
that the massive visual experience infants acquire outside of the
lab is, in fact, a key driver of development. But these are examples
of how infants’ experience with specific classes of items outside of
the lab influences how they form memories for those same classes
of items in the lab. Do massive quantities of visual experience in
the real world also impact the more general ability to seek novelty?

We examine this possibility in the present report using a
novel approach to understanding visual cognition in infancy—
computational modeling. Our starting point is an autonomous
Dynamic Neural Field (DNF) model of infant looking and learn-
ing developed by Perone and colleagues (Perone et al., 2011;
Perone and Spencer, 2013a,b). We have used this model in the past
to capture data from studies on the familiarity-to-novelty shift.
To do this, we changed parameters of the model over develop-
ment “by hand” to gain an understanding of how this transition
might emerge over development. The insight from this work was
that general parameter changes in the strength with which excita-
tory and inhibitory neurons interact in the model transformed an
initially familiarity-seeking model into a novelty-seeking model.
The key mechanism underlying this change was the emergence of
a new ability—the ability to form a working memory (WM) for
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objects. The ability of the model to quickly form working memo-
ries for objects enabled it to recognize those objects as known and
explore new objects.

Here, we ask if this model can develop itself and show
the autonomous emergence of novelty-seeking behavior. In
particular, can we initialize a model with a given set of param-
eters, situate this model in a virtual world, and let it create its
own developmental shift from familiarity- to novelty-seeking via
autonomous visual exploration. If so, we can then take a step back
and ask: what motivated the model to seek novelty?

In the sections that follow, we describe the DNF model and
the hypothesis that guided our “by hand” exploration of develop-
ment in previous work. We then pursue a demonstration proof
that the model can develop autonomously through a variant of
Hebbian learning. We do this first at a group level. We created a
term infant model, let it develop “outside” the lab, and repeatedly
brought the model “into the lab” to assess whether it exhibited
the familiarity-to-novelty shift in the processing speed task devel-
oped by Rose et al. (2002). Results show that the model effectively
captures many aspects of the developmental shift. We also asked
whether changes in the initial conditions of the model could
mimic the development of preterm infants. Results show that the
model captures the developmental delays this infant population
exhibits.

These simulations provide an initial demonstration that
novelty-seeking can emerge from the accumulation of massive
out-of-lab experience in our computational model. But intrinsic
motivation is not a group-level phenomenon. The motivation to
push boundaries in development happens at the level of the indi-
vidual infant. Thus, in a second study, we looked at the character-
istics of individual simulations and ask whether each simulation
creates its own unique path from familiarity- to novelty-seeking.
These simulation data provide new insights into the sources of
individual differences. We conclude by returning to the issue of
intrinsic motivation and raise the possibility that no explicit moti-
vational force is needed to explain developmental change within
an autonomously behaving complex neural system.

A DYNAMIC NEURAL FIELD MODEL OF INFANT VISUAL
EXPLORATION
Figure 1 shows the DNF model architecture. Model equations
and parameter values are given in the Appendix. For illustration,
the model is situated in a virtual world that consists of a typi-
cal laboratory setting in which relevant stimuli appear at left and
right locations, task-irrelevant stimuli appear at away locations,
and attention-getting stimuli often used to orient infants to the
location at which stimuli appear at a center location. The fixation
system consists of a collection of nodes that fixate left (L), right
(R), center (C), and away (A) locations in a winner-take-all fash-
ion. When a node is suprathreshold (>0), it is said to be in the
fixation state. The presence of objects in space bias the fixation
system to enter the fixation state (see green arrow from space to
fixation system).

The fixation system is reciprocally coupled to a neurocognitive
system shown in the bottom panels of Figure 1. One component
of the neurocognitive system is a perceptual field (PF) that con-
sists of a population of neurons with receptive fields tuned to a

FIGURE 1 | DNF model architecture. At the top is a virtual world at which
the model looks. The virtual world consists of two objects at left and right
locations distributed over a continuous feature dimension (e.g., color). The
presence of items at left and right locations bias the fixation system to look
at those locations (see green arrow from space to fixation system). The
fixation system interacts in a winner-take-all fashion such that fixating a
location suppresses fixation to all other locations (see red arrows between
nodes). Fixating a location acts like a perceptual gate into the cognitive
system, which consists of a perceptual field (PF) and working memory
(WM) field. PF and WM are reciprocally coupled to a shared layer of
inhibitory interneurons (Inhib; not show). Activity in PF supports fixation
(green bi-directional arrow between PF and fixation). Activity in WM
suppresses PF via a strongly tuned connection from WM to Inhib (red
arrow from WM to PF). Activity in PF and WM are influenced by activity in
Hebbian layers, HLPF and HLWM, respectively, which accumulates over
learning and facilitates encoding in PF and memory formation in WM.

continuous feature dimension (e.g., color). The model can repre-
sent stimuli along multiple dimensions (see Perone and Spencer,
2013b). For simplicity, we use one dimension here. When a given
node in the fixation system is in the fixation state, the stimu-
lus at the associated location is input into PF which encodes the
stimulus by forming an activation peak that estimates the fea-
ture value (e.g., blue). Neuronal activity within PF is governed by
local excitatory/lateral inhibitory interactions. These interactions
within PF are relatively weak; thus, once a stimulus is removed,
the activation peak relaxes back to the neuronal resting level.

Encoding within PF has two important functions in the
model. First, encoding supports continued fixation. Activation
in PF feeds back into the fixation system which sustains the
fixation state and supports further encoding of the stimulus.
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Second, encoding leads to the formation of working memories.
In particular, activation in PF passes excitatory input to a layer of
similarly tuned neurons in a WM field. Like PF, neuronal activ-
ity within WM is governed by local excitatory/lateral inhibitory
interactions. Unlike PF, however, neural interactions within WM
are stronger. Consequently, activation peaks can be maintained in
the absence of input via recurrent excitatory and inhibitory inter-
actions. This is the mechanism for maintaining information in
WM in the model.

There are two other patterns of connectivity in the DNF
model. First, PF and WM are reciprocally coupled to a shared
layer of inhibitory interneurons (Inhib; not shown). This con-
nectivity creates the lateral inhibitory interactions within PF and
WM. Critically, the connection from WM to Inhib is set such that
strong activity in WM suppresses activity in similarly tuned neu-
rons in PF (see red arrow from WM to PF). This weakens support
for fixation from PF, leading to the release from the fixation state
when a WM peak is present. Thus, the model encodes a stimulus
which drives sustained looking and forms a WM for the stimulus
which drives looking away. Second, PF and WM are reciprocally
coupled to Hebbian layers (HL; not shown) that implement a
form of Hebbian learning. In particular, suprathreshold activity
in PF and WM leads to the accumulation of activation at sim-
ilarly tuned sites in HLPF and HLWM, respectively. The absence
of suprathreshold activity in PF and WM leads to slow decay in
these HL. Activation traces in HLPF facilitate encoding of pre-
viously encoded stimuli in PF. This supports familiarity-seeking
and is the basis of recognizing what is known early in devel-
opment (Wetherford and Cohen, 1973; Fantz, 1974; Perone and
Spencer, 2013a). Activation traces in HLWM facilitate the forma-
tion of WM peaks. This can lead to the fast suppression of peaks in
PF, freeing the model to look away from familiar or known items
toward novel items. Thus, this supports novelty seeking.

Figure 2 illustrates the real-time process by which the DNF
model learns as it explores objects in a virtual world over time.
The top panels show a model that has accumulated little devel-
opmental experience exploring items distributed over a color
dimension (A–F). The bottom panels show the same model after
it has acquired more experience (G–L). Each panel has the same
format. At the top is a collection of objects that the model is
exploring over time. The cartoon infant head shows what object
is being fixated during each time slice. The next two figures show
activation in PF and WM (see black lines and left y-axis) and the
strength of experience accumulated in HLPF and HLWM (see red
lines and right y-axis).

In Figure 2A, the model first looks at the blue object. This
excites neurons in PF which, in turn, supports continued fixation
and leads to excitation of similarly tuned neurons in WM. The
fixation system is stochastic which enables it to spontaneously dis-
engage fixation and shift gaze direction. In 2B, the fixation system
has switched gaze and is now looking at, encoding, and forming
a WM for the yellow object. Notice that activity associated with
the blue object has subsided within PF and WM; the model is not
encoding the blue object or maintaining a WM of the object. In
2C, the model has again switched gaze and is fixating the blue
object and maintains fixation across 2C,D. This continued fixa-
tion enables the model to form a robust peak in WM and acquire a

long-term memory via the HL (see red “bump” of activity in HLPF

and HLWM in 2D). WM activity is also beginning to suppress
PF activity to below threshold levels which leads to less support
for fixation. Consequently, the model switches gaze. In 2E,F, the
model switches gaze and is fixating, encoding, and forming a WM
for the orange object. Once again, the WM of the blue object is
not maintained.

In Figures 2G–L, the same model has acquired more experi-
ence by exploring a virtual world consisting of objects distributed
over a color dimension. This experience has created the stronger,
densely distributed traces in HLPF and HLWM shown in 2G–L.
This model is now more familiar with the color dimension. This
familiarity has a dramatic impact on looking and learning. In 2G,
the model quickly encodes the blue object into WM, suppress-
ing PF activity to near threshold levels, and biasing the model to
switch gaze. In 2H, the model is fixating the yellow object and,
again, WM activity suppresses PF activity to near threshold levels.
When the model re-fixates the blue object, WM activity sup-
presses PF activity to below threshold levels (2I) and the model
quickly looks away—the model is seeking novelty.

Critically, this novelty seeking behavior is a result of the accu-
mulated long-term experience—the model quickly forms robust
working memories because the Hebbian traces have moved WM
closer to threshold. This can be seen in 2J–L. The model fixates
the orange object (J) and forms a robust memory after maintain-
ing fixation (K). This enables the model to explore a new location
at which the green object is present (L). Notice that WM activity
associated with the orange object is hovering around threshold in
2L even though the model is fixating the green object. This ability
to form an enduring, actively maintained WM enables the model
to seek novelty, actively contrasting what is known with what is
novel. This emerges from a confluence of factors including the
duration with which the model fixates an object, the strength of
HLWM that facilitates activity within WM, and the strong tun-
ing of local excitatory/lateral inhibitory interactions within WM.
This stable WM peak has a dramatic impact of the model’s behav-
ior. For example, when the model re-fixates items that it is actively
maintaining in a WM state, PF activity is quickly suppressed. This
leads to the quick release of fixation and frees the fixation system
to seek novel items.

SIMULATION EXPERIMENT 1
The goal of Simulation Experiment 1 was to probe whether the
model could develop novelty-seeking behavior from autonomous
visual exploration in a “real” world. If so, this might shed light on
where the motivation to seek novelty comes from. As described
previously, this goal emerged from our earlier work using the
DNF model to quantitatively simulate the familiarity-to-novelty
shift in early development (Perone and Spencer, 2013a). We did
this by changing parameters of the model “by hand” according to
the spatial precision hypothesis (SPH) proposed by Schutte and
Spencer (2009; see also Schutte et al., 2003; Simmering et al., 2007;
Perone et al., 2011; Perone and Spencer, 2013a,b).

According to the SPH, excitatory and inhibitory interac-
tions become stronger over development, leading to more
robust neural activation states and “sharper” peaks of activa-
tion. Implementing the SPH involves strengthening within-layer
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FIGURE 2 | Illustrates how the accumulation of experience in HLPF and

HLWM over a continuous dimension influences real-time exploration of

items distributed along that dimension. Shown at the top of each panel
are 5 objects distributed along the color dimension that the model is
exploring over time. The cartoon infant shows the direction of gaze. Panels
(A–F) show how the model explores items after little experience has
accumulated in HLPF and HLWM (see red line, right y-axis). Initially, the model
is fixating, encoding, and forming a working memory for the blue item (see
black line in A). The model spontaneously switches gaze and begins to
encode and form a working memory for the yellow item (B). The model then
looks back to the blue item (C). Dwelling on the blue item leads WM activity
to grow in strength and suppress activity in PF (D). This frees the model to

switch gaze and encode and form a working memory for a new item, which
happens to be the orange item (E,F). Notice the robust long-term memory for
the blue item accumulated in HLPF and HLWM. Panels (G–L) show how the
same model explores items after more experience has accumulated in HLPF

and HLWM (see red line, right y-axis). Initially, the model is fixating, encoding,
and forming and working memory for the blue item (A). The model switches
gaze to the yellow item (B) before switching back to the blue item (C). Now,
the strong experience in HLPF and HLWM enables the model to quickly form a
robust memory for the blue item after dwelling for just a short while. The
model is freed to explore new items and, again, quickly forms a working
memory for the orange item (J,K). The faster rate at which the model
encodes and forms memories enables it to explore more items (L).

excitatory connections in PF and WM and cross-layer inhibitory
interactions from Inhib to PF and WM. When neural interac-
tions are weak, the model slowly encodes and slowly forms peaks
in WM. This creates a familiarity-seeking model that dwells on
familiar items for relatively long durations before looking to novel
items. When neural interactions are stronger, the model quickly
encodes items and quickly forms peaks in WM. This creates a
novelty-seeking model that has short dwell times on familiar
items before looking to novel items (see Perone and Spencer,
2013a).

Implementing the SPH in the DNF model only requires
changes in the strength of excitation and inhibition. Might these
changes emerge from a simple Hebbian learning process? Recall

that HL coupled to PF and WM accumulate memory traces as
peaks are built in PF and WM. This increases the excitability of
previously active sites as well as nearby sites based on a similarity
gradient. As general experience across a dimension accumulates,
this might approximate the increase in excitatory strengths we
implemented by hand. What about the increase in inhibition? As
excitatory interactions strengthen, PF and WM will pass stronger
activation to the shared inhibitory layer. This might give rise to an
effective increase in inhibition as well.

We explore these possibilities here across two groups of sim-
ulations. In one set of simulations, the DNF model was tuned to
mimic the behavior of term infants. In the second set of simula-
tions, the model was tuned to be “less mature” using the SPH as
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a guide. This enabled us to examine how the initial conditions set
by the model parameters impact development relative to the role
of massive “out-of-lab” experience. To benchmark these simula-
tions, we assessed the familiarity- and novelty-seeking biases of
the model in the processing speed task developed by Rose et al.
(2002) by repeatedly bringing the model “into the lab” over the
course of its development.

Figure 3 shows a schematic of the processing speed task. At
the beginning of the task, infants are presented with a pair of
different stimuli. In Rose et al. (2002), faces were used as stim-
uli. The procedure has been used in other studies as well and
is robust to variation in stimuli (Robinson and Sloutsky, 2007).
After the first trial, one item was designated as the familiar item
and remained unchanged across trials (orange star). Infants were
required to accumulate 4 s of looking on each trial. Once infants
met the looking criterion, the trial ended and the next trial began.
On each trial, a novelty score was calculated by dividing looking to
the novel stimulus by total looking accumulated across the novel
and familiar stimulus. The measure of processing speed was the
number of trials required to exhibit a novelty score greater than
55% on three consecutive trials.

Rose et al. (2002) reported three additional measures of look-
ing. The first is looking to the familiar item which is the amount
of time infants accumulated looking to the familiar stimulus prior
to meeting criteria. This is a good index of infants’ familiar-
ity seeking bias and has long been assumed to reflect the time

FIGURE 3 | Processing speed task developed by Rose et al. (2002).

Infants were presented with a pair of different stimuli on each trial. Across
trials, one stimulus remained unchanged (familiar) and one changed (novel).
On each trial, infants were required to accumulate 4 s of looking. Infants
met a learning criterion once they looked at the novel stimulus more than
55% of the time on the 3 consecutive trials or 36 trials had passed. In the
empirical study, stimuli were faces. There were 19 stimuli, one designated
as the familiar and 18 designated as novel. If 18 trials had passed before
infants met the criteria, the 18 novel stimuli were represented.

required for infants to form memories (Cohen, 1972a,b; Hunter
and Ames, 1988; Colombo and Mitchell, 1990). The second is
shift rate which is the rate of gaze switching relative to time spent
looking. Shift rate has been proposed to reflect the efficiency with
which infants distribute their attention through time and space
(Rose et al., 2007). The last is look duration which the average
length of each look. Like shift rate, look duration has been pro-
posed to be a measure of disengaging and distributing attention
(Rose et al., 2007).

Figures 4A–D shows infants’ performance in the processing
speed task (Rose et al., 2002). The left portion of each panel shows
term infants at 5 months of age (blue bars), 7 months of age
(red bars), and 12 months of age (black bars). Over development,
term infants exhibited a decrease in trials to reach criterion (A),
accumulated less time looking to the familiar item (B), exhib-
ited higher shift rates (C), and exhibited shorter look durations
(D). Preterm infants produced a similar pattern of results but,
critically, at each age exhibited behavior that resembled relatively
younger term infants. For example, 7-month-old preterm infants
required about the same number of trials to reach criterion as
5-month-old term infants. This pattern of results indicates that
preterm infants are delayed on these measures.

In the past, we have used the DNF model and SPH to cap-
ture developmental changes in the suite of measures assessed by
Rose et al. (2002) using data from a preferential looking paradigm
(Perone and Spencer, 2013a). Here, we test whether the accumu-
lation of experience in the DNF model can do the work of the SPH
and quantitatively simulate the empirical data shown in Figure 4.

METHOD
The DNF model was situated in a simple virtual world consisting
of two items that varied along a single dimension. The dimension
consisted of 360 degrees of metrically organized continuous fea-
ture space (e.g., color). We randomly sampled items for the model
to explore from a set of 360. A non-fixated item was replaced every
1000 time steps. This enabled the model to sample many different
items over time, consistent with what infants might experience
interacting with parents as they show infants different toys from a
larger set of possible toys.

The simulations were parsed into 30 10,000 time step episodes
of visual exploration (300,000 time steps of experience in total).
Conceptually, these episodes occur over the time scale of months;
however, in the model, we condensed this experience consider-
ably to keep the simulation time reasonable (e.g., even with this
condensed “out-of-lab” experience, it took over 8 h of simulation
time to run a single simulation through the full set of out-of-
lab and in-the-lab experiences). In addition to the 30 episodes of
exploration, we inserted inter-episode intervals of 100 time steps.
During these intervals PF, WM, and Inhib were re-initialized (i.e.,
set to 0 activation). This eliminated any sustained WM peaks and
reset the fields for exploration of new items at the onset of the
next episode.

We wanted to test whether differences in the initial conditions
of the DNF model could account for population differences in
the familiarity-to-novelty shift over development. Thus, we cre-
ated two models with differences in the initial parameter values
using the SPH as our guide. Specifically, we first created a “term”
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FIGURE 4 | Panels (A–D) show empirical results from the processing

speed task reported by Rose et al. (2002) for term (left) and preterm

(right) infants at 5 (blue), 7 (red), and 12 (black) months of age. With
age, term and preterm infants exhibited fewer trials to criterion (A),
accumulated less time looking to the familiar (B), higher shift rates (C),
and shorter look durations (D). Preterm infants’ behavior at every age

resembled that of younger, term infants. Panels (E–H) show results from
the DNF model in the processing speed task for the term (left), preterm
(middle), and intervention (right) models. The DNF model exhibited a
similar pattern of results for the term and preterm infant models. The
intervention model showed performance that resembled the term model
by 12 months of age.

model. To do this, we allowed the DNF model to accumulate
experience in the HL by exploring a virtual world and assessed
its performance in the processing speed task over the course of its
development (see below). We then hand-tuned the DNF model
parameters until we established a parameter set that produced a
pattern of results that was quantitatively similar to the empirical
results for the term infants reported by Rose et al. (2002). After
that, we uniformly weakened the SPH parameters by 20%. We
will refer to this weaker parameter set as the “preterm” model.

The development of the term and preterm models were sim-
ulated 5 times each. During each simulation, we saved the state
of HLPF and HLWM after each episode of exploration. We then

averaged HLPF and HLWM across all 5 simulations. This created
nearly uniform levels of activation across all neuronal sites in the
HL by smoothing out the peaks and valleys of activation in the
layers that were unique to each individual simulation (e.g., com-
pare the HL for group level simulations in Figure 5 to individual
simulations in Figure 7). This uniformity mimics the strength-
ening of excitatory connections across an entire dimension we
implemented by hand when we implemented the SPH in previous
work. Our goal in averaging the HL was to maximize the stabil-
ity of the model’s behavior across simulations when situated in
the processing speed task (see below), much like averaging the
looking behavior across a group of infants.
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FIGURE 5 | The top shows the rate at which DNF model formed a

stable WM peak for the term (A), preterm (B), and intervention (C)

models at 5 (blue), 7 (red), and 12 (black) months of age. Over
development, all models formed a stable WM peak more quickly. The
rate of WM peak formation was delayed for the preterm model but

enhanced by 12 months of age for the intervention model. The bottom
shows the experience accumulated in HLPF and HLWM for the term
(D), preterm (E), and intervention (F) models. The strength of activation
in the Hebbian layers was comparable for the term and preterm infant
models. It was stronger for the intervention model.

Next, we initialized the term and preterm models with their
respective mean HLPF and HLWM accumulated at 5, 10, and 30
episodes and situated each model in the processing speed task
developed by Rose et al. (2002). For ease of comparison to the
empirical data, we refer to these initializations as the term and
preterm infant models at 5, 7, and 12 months of age. We ran
100 simulations of each model. This number of simulations pro-
vided a thorough assessment of the range of the model’s looking
behavior in the processing speed task in the context of the natu-
ral variation the model shows when placed in a laboratory-based
learning task (for a discussion, see Perone and Spencer, 2013a,b).
To precisely map the models’ performance in the lab with the
timing of events in the speed of processing task, we assumed
the mapping used in our previous studies where 200 time steps in
the model was equal to 1 s (Perone and Spencer, 2013b). Note that
in the simulation method described above, learning inside the lab
did not influence the model’s performance outside of the lab.

RESULTS AND DISCUSSION
The simulation results are presented in the following three
sections. In the first section, we describe the DNF model’s
performance in the processing speed task and the underlying
neurocognitive dynamics. In the second section, we probe
whether the development of the preterm infant model might
be modified through an intervention. This helped us assess the

influence of the initial model parameters relative to the accu-
mulation of out-of-the-lab experiences. In the third section, we
probe whether the accumulation of experience in the HL led to
sharper and more robust WM peaks consistent with the SPH we
implemented “by hand” in previous work.

Cognitive and behavioral dynamics
Figures 4E–H shows the DNF model’s performance in the pro-
cessing speed task. Like infants, over development the term infant
model exhibited a decline in trials to reach criterion (E) and accu-
mulated less time looking to the familiar item (F). The model
also showed a small, quantitative increase in shift rate (G) and
decrease in look duration (H) over development. Like infants,
the preterm infant model exhibited a similar, but delayed, pattern
relative to the term infant model.

What are the sources of these developmental changes in the
model’s performance? The top portion of Figure 5 shows one crit-
ical change—the mean trial on which the model first formed a
stable WM peak for the familiar item. A stable WM peak was
defined as sustaining suprathreshold activity across the inter-
stimulus interval (4 s; see Perone and Spencer, 2013a). Over
development, the term (A) and preterm (B) infant models form
WM peaks more quickly, with the preterm model lagging the
term model. This index of the model’s performance is important
because maintaining the familiar item in WM produces strong
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inhibition in PF at sites involved in encoding the item. This, in
turn, leads to less looking to the familiar item and more looking
to the novel item. That is, quick WM formation allows the model
to actively recognize what is known and seek novelty. In addition,
quick WM formation leads to more frequent gaze switching and
shorter look durations over development, allowing the model to
more effectively explore items in the task space.

What drives these changes in WM in the model? These
developmental differences emerge from the accumulation of
distributed memory traces in HLPF and HLWM over time.
Figures 5C,D shows the state of HLPF and HLWM for the 5-
(blue lines), 7- (red lines), and 12-month-old (black lines) mod-
els. Over development, activation across the dimension grew in
strength for the term (C) and preterm (D) models. In other
words, the model became increasingly familiar with the entire
dimension. This, in turn, led PF to encode items more quickly
and WM to maintain those items more robustly.

These simulations shed new light on the origins of intrinsic
motivation. Specifically, the simulations allow us to ask where
the motivation to seek novelty comes from. Novelty seeking has
some distinct advantages over familiarity seeking for infants. For
example, novelty seeking enables infants to compare known with
unknown items, efficiently explore complex environments, and,
more generally, opens the door to discovery. Critically, infants
do not know this ahead of time. Our simulations indicate that
the motivation to seek novelty emerges from the accumulation
of visual experience within a complex, dynamical exploratory
system. A key property of the DNF model is that real-time,
autonomous exploratory behavior creates a history that influ-
ences the behavior of the system at future points in time. The
accumulation of this history over time led to the emergence of
a new ability—quickly forming working memories of “known”
items. This cognitive ability enables an increasing bias to seek
novelty to gradually emerge without an explicit motivational
force. We discuss this topic further in the General Discussion.

These simulations also shed new light on the population
differences in the familiarity-to-novelty shift. In particular, the
Hebbian traces accumulated for the term and preterm model
were quite similar (compare Figures 5D,E) and were not suffi-
cient to overcome the weaker neural interactions in the preterm
infant model. This indicates that population differences in visual
exploration and WM formation are largely attributable to the
initial conditions of the system, while developmental changes
emerge from the accumulation of out-of-the-lab experiences.
Below, we probe whether altering the experience of the preterm
infant model during development influences its novelty seeking
behavior in the processing speed task.

Intervention
The simulations results described above show that novelty seeking
emerges as experience accumulates via a Hebbian learning pro-
cess. However, the initial conditions of the model played a major
role in development: the accumulation of experience did not
enable the preterm model to overcome the initially weaker neural
interactions. How strong is this constraint on development? Are
there ways that we might enhance the model’s experience and, in
turn, foster the development of novelty seeking biases?

There is a large literature showing that how other agents (e.g.,
parents) interact with infants while exploring objects influences
how they distribute their looks (Landry and Chapieskie, 1988;
Perrinello and Ruff, 1988). This is especially salient in interven-
tions with preterm infants. For example, Landry et al. (2006,
2008) have shown that preterm infants benefit in the social, cog-
nitive, and linguistic domains when parents are trained to act
responsively to their infants while exploring objects as part of an
intervention. This involves “following in” on the objects infants
explore and helping infants maintain attention (e.g., by manipu-
lating the object of infants’ focus) rather than shifting attention
to other objects (e.g., manipulating an object elsewhere).

Can we manipulate the nature of the preterm model’s expe-
rience and transform it into a term-looking model in a similar
way? For example, can we bias the model to continue looking
at an object and, in turn, enhance encoding, WM, and long-
term memory formation? Could this enhance traces in HLPF and
HLWM enough to overcome the weaker neural interactions of the
preterm model? This would help us assess the relative impact of
the model’s initial parameter setting versus the accumulation of
out-of-lab experiences.

To test this possibility, we re-simulated the development of the
preterm model. After the fifth episode, we implemented an inter-
vention. We wanted to probe how an intervention might unfold in
the real world where infants do some developing during the first
few months of life, undergo assessment, and are assigned to an
intervention thereafter. In our intervention, the model was biased
to sustain looking at whatever item it happened to be fixating. If
the model was fixating the left location, for example, the input
from the object in at that location in space was increased. This, in
turn, provided a slight boost of excitation to the fixation system,
helping to maintain fixation. In the DNF model, this is equivalent
to another agent manipulating an object in space (see Figure 1).

Figure 4 shows the simulation results. The intervention had
the most dramatic impact on the number of trials to criterion (E)
and looking to the familiar item (F). In particular, by 12 months
the intervention model met criterion at a rate comparable to the
term model at the same age. Similarly, by 12 months the interven-
tion accumulated less time looking to the familiar item much like
the term model at the same age. A substantive amount of inter-
vention experience was required for the intervention to exert its
effects on the model’s performance in the processing speed task.
Ultimately, however, the intervention created a preterm infant
model with a robust novelty-seeking bias comparable to term
infants.

What are the sources of these behavioral changes? Figure 5C
shows the trial on which the intervention model formed a stable
WM peak. At 5 (blue bars) and 7 (red bars) months, the interven-
tion model formed a WM peak at rates comparable to the preterm
infant model (B). By 12 months (black bars), however, the inter-
vention model formed a WM peak at rates that exceeded the term
model (A). This improved capacity of the intervention model to
quickly encode items and maintain items in WM arises from the
strength of activity accumulated in the HL. As can be seen 5D, the
strength of HLPF and HLWM by 12 months (black lines) is much
stronger than at the same time for the term (C) and preterm (D)
infant models. This stronger accumulation of activity in the HL
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enabled the intervention model to overcome the weaker neural
interactions of the preterm infant model.

Spatial precision hypothesis
In our previous work, we implemented the SPH by hand, show-
ing that stronger neural interactions lead the DNF model to form
working memories more quickly (Perone and Spencer, 2013a).
This effective increase in processing speed also led to stronger
biases for novelty, shorter looks, and higher rates of gaze shifting.
Here, we observed these very same patterns of change over devel-
opment. But does the accumulation of experience via Hebbian
learning yield the same changes in neural interactions produced
by SPH?

Implementing the SPH via hand-tuning neural interactions
leads to stronger, narrower WM peaks with deep lateral inhibition
(see Schutte and Spencer, 2009). We tested whether the accumu-
lation of experience in the HL reproduced this activation profile
by initializing the DNF model with the state of the HL after 5, 10,
15, 20, and 25 episodes of exploration. The model was presented
with a single stimulus for 2000 time steps. When the stimulus was
removed, we sampled the state of WM every time step for 1000
time steps. We then averaged the state of WM across all samples
to obtain a representative WM profile. Noise was turned off so
that we could obtain a clean estimate of how the HL impact WM
peaks (see Schutte and Spencer, 2009).

The results are shown in Figure 6. Over development, the
strength of the activation peak increased. After 5 (red), 10 (blue),
and 15 (green) episodes of exploration, the peak was too weak
to maintain a stable WM peak under the task conditions. After
20 episodes of exploration (cyan), the accumulated memory
traces in HLWM enabled WM to maintain a peak at suprathresh-
old (>0) levels. The model effectively acquired a new cognitive

FIGURE 6 | Test results of whether experience accumulated across a

dimension can lead to the SPH at the level of neural interaction. The
model was initialized with the experience accumulated in the Hebbian
layers after every 5 episodes of exploration, which is shown by the different
colored lines. The figure shows the state of WM during the inter-stimulus
interval following stimulus presentation (see text). With experience, the
WM field was able to form a stable peak. This peak had a strong excitatory
component and deep inhibitory component much like implementing the
SPH via hand-tuning the strength of excitatory and inhibitory connections.

ability. In addition, the excitatory component of the peak grew
in strength and became somewhat narrower over development.
The inhibitory component grew broader and deeper as well. It is
notable that these neurodevelopmental changes in excitation and
inhibition were all driven by the accumulation of excitatory mem-
ory traces. As the strength of HLWM increased, excitation in WM
became stronger which passed stronger activation into the layer of
inhibitory interneurons. This, in turn, projected stronger lateral
inhibition back to WM. Thus, the present simulations demon-
strate that the SPH can emerge over development via a variant
of Hebbian learning as the model accumulates “out-of-the lab”
experiences.

Simulation Experiment 1 revealed three key insights. First, the
accumulation of visual experience along a dimension leads to
quicker WM formation for stimuli on a familiar dimension. This
quick recognition, in turn, promotes novelty-seeking. Second,
the impact of visual experience on cognition is influenced by
the initial state of the neurocognitive system. The neurocogni-
tive deficits of the preterm infant model were expressed over
development, leading to slower WM formation along a famil-
iar dimension across the first year. Increasing the intensity of the
experience the preterm infant model acquired with a dimension,
however, enhanced WM formation by strengthening the famil-
iarity with that dimension. Lastly, the accumulation of visual
experience led to stronger neural interactions within the neu-
ral populations involved in encoding and WM formation. This
strengthening was created by the accumulation of Hebbian learn-
ing but resembled the SPH at the neurocognitive (faster WM
formation) and behavioral (less looking to familiar items) levels.
These results indicate that processing speed and, consequently,
the transition to novelty seeking over development emerges from
experience.

SIMULATION EXPERIMENT 2
Simulation Experiment 1 showed that the familiarity-to-novelty
shift emerges over development as experience accumulates via a
Hebbian learning process. It also showed that the motivation to
seek novelty comes for free from the dynamics of a historical cog-
nitive and behavioral system. But these simulations were at the
level of the group. Recall we simulated the development of 5 indi-
viduals and initialized the model in the processing speed task with
the average state of those individual HL. The motivation to push
boundaries in development, however, happens at the level of the
individual. Each individual must forge a unique path and strive
beyond what is currently possible.

In the infant cognition literature, individual differences in
visual exploration have long been attributed to differences across
infants in the neurodevelopmental mechanisms that underlie
basic perceptual and cognitive processes (Colombo and Mitchell,
1990; Rose et al., 2007). This position stems from two observa-
tions. First, numerous studies have shown that individual differ-
ences in looking are stable during the first year of life (Colombo
et al., 1987; Rose et al., 2001). Second, individual differences in
looking are predictive of cognitive developmental outcomes in
toddlerhood (2009) and adolescence (2012).

This view of individual differences is generally consistent with
the group-level differences from Simulation Experiment 1. There,
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differences across simulations reflected, in part, different initial
conditions in parameter values. Applied at the level of individ-
uals, we might create an entire ensemble of individual models,
with some models starting off with slightly stronger excitatory
and inhibitory interactions than others (see, e.g., Perone and
Spencer, 2013a). But individual differences might also reflect the
differential accumulation of experience over development. For
instance, Perone and Spencer (2013a,b) showed that experience
on the task time scale creates variation in looking that mimics
aspects of developmental changes, even when models start with
the same initial conditions. Might the accumulation of experience
over development lead to stable individual differences even when
models—or infants—start out in the same neurodevelopmental
state? We probe this possibility below.

METHOD
We simulated the development of 10 individuals term, preterm,
and intervention models using the same method described above
with one exception. In the simulations above, we averaged the HL
across simulations and situated the model in the processing speed
task after 5, 10, and 30 episodes. Here, we initialized the model
with HLPF and HLWM from each of the 10 individual simulations.
As above, each model was run in the processing speed task 100
times to assess the full range of performance for each individual.

RESULTS AND DISCUSSION
Figure 7 shows a sample of three individual term infant simula-
tions. The left portion shows the activation traces in HLPF and
HLWM for each simulation. Notice that each simulation varies in
the strength, distribution and location of peaks and valleys along
the feature dimension. Also notice that these peaks and valleys are
much more pronounced at the individual level than at the group
level (compare 7A to 5C). This highlights individual differences in
what the model happened to form robust memories for during its
development. The right side of the figure shows three measures
from the processing speed task: trial of stable WM peak forma-
tion, trials to criterion, and looking to the familiar. As can be
seen, each individual follows a distinct, yet similar, developmen-
tal trajectory. For example, the individual in 7A showed a shallow,
steady decrease in the trials to meet criterion over development.
The individual in 7B showed a steep decline. And the individual
in 7C showed little decline from 5 to 7 months but a sharp decline
from 7 to 12 months.

This holds true for the preterm infant model as well. Three
individual simulations of this model are shown in Figures 8A–C.
Consistent with the group level simulations, the structure of the
developmental trajectories for the individual term and preterm
infant models were influenced by the initial conditions. That
is, individual preterm infants exhibited a similar, yet delayed,
developmental trajectory relative to the individual term infant
models. The pattern is somewhat different for the intervention
model. Three individual simulations of this model are shown in
Figures 9A–C. For the intervention simulations, some individu-
als showed a dramatic decline in trials to criterion by 12 months
of age, much like the group level analyses (see 9C). Others, by
contrast, showed an increase in the number of trials to criterion
(see 9A).

Figures 7–9 show that each individual had a unique develop-
mental trajectory. But did the accumulation of experience in the
model create a stable pattern of familiarity and novelty seeking
biases over development? In other words, were familiarity-seeking
individuals early in development also familiarity-seeking individ-
ual later in development? Figure 10 shows the trials to criterion
for the 10 individual term, preterm, and intervention simulations.
Inspection of the plots reveals some stability over development in
each group, even though individual runs of the model in each
group had exactly the same initial conditions. For the term infant
model, S8 (salmon) and S5 (turquoise) are relatively slow pro-
cessors at 5 and 7 months. S1 (blue) and S7 (light blue) are fast
processors at 5 and 7 months. And S3 is neither fast nor slow at
5 and 7 months. The preterm infant model is considerably more
variable. The weaker neural interactions of the preterm model
make it more susceptible to stochastic influences. Nevertheless,
S3 (green) and S6 (orange) are faster than S9 (light green) and
S10 (purple) at all three ages. The intervention model was even
more variable than the preterm infant model, yet it also showed
signs of stability. For example, S10 (light purple) was faster than
S6 (orange) at all three ages.

The striking variability in the individual intervention sim-
ulations indicates that the intervention did not impact every
individual in the same way. For example, S4 (dark purple) and
S10 (light purple) were both quick novelty-seekers by 12 months.
By contrast, S1 (blue) quickly met the novelty-seeking criterion
at 5 months but exhibited in an increase the trials to criterion
at 12 months. Figure 8A shows the accumulation of activation
in the HL for this model. As can be seen, S1 acquired some tall,
broad memory traces (see near site 80) between 7 (red line) and
12 (black line) months in both HL. This pattern of activity can
lead to the model to dwell because the traces in PF are so strong.
Consequently, the model spent more time looking to the famil-
iar item and exhibited longer look durations at 12 months (black
bars) than at 7 months (red bars) even though it actually formed
a WM peak more quickly at 12 months than at 7 months. The
accumulation of activity in the HL for S5 and S10 are shown
in Figures 8B,C, respectively. These simulations acquired a more
evenly distributed pattern of activity, especially in HLPF . This, in
turn, led these simulations to exhibit a relatively consistent shift
from familiarity to novelty seeking over development that aligned
well with their developing capacity to form working memories.
These simulation results raise the exciting possibility that we
can map individual models to individual infants and capture the
impact of real-world interventions. We return to this issue below.

The results from individual simulations suggest that individ-
ual experiences can give rise to stable individual differences over
development. To quantify this across the full set of simulations, we
used hierarchical regression. Table 1 shows the regression anal-
ysis. The table presents the predictor variables entered on each
step and a number of summary statistics. On the left are the pro-
portion of variance accounted for by the predictors (R2), change
in proportion of variance accounted for across steps (change in
R2), change in the F statistic across steps, and the probability
associated with the F statistic. On the right are the unstandardized
beta weights (ß) and standardized beta weights (beta). The weight
is the unique contribution of each predictor. The sign indicates
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FIGURE 7 | Shows the Hebbian layers and performance in the processing speed task for three individual simulations of the term model. Each panel
shows an individual simulation at 5 months (blue), 7 months (red), and 12 months (black).

the direction of the relationship between the predictor and depen-
dent measure. The size of the weight indicates the slope. Steeper
slopes indicate that the dependent measure changes more for each
unit change in the predictor. The p value shows the statistical
significance of each predictor.

In the first step, we controlled for group by entering group
(term= 1, preterm= 2, and intervention= 3) as a predictor and
trials to criterion at 12 months of age as the dependent measure.
Group accounted for a significant proportion of variance in tri-
als to criterion at 12 months of age, R2 = 0.39. In the second

step, we entered trials to criterion at 5 and 7 months. Trials to
criterion early in development did account for a significant pro-
portion of variance at in trials to criterion later, R2 Change =
0.19. Evaluating the beta weights indicts that trials to criterion at
7 months of age was the strongest predictor. The positive slope of
the beta weight indicates that more trials to criterion at 7 months
of age was associated with more trials to criterion at 12 months of
age. In the past, we found that experience in the DNF model on
the task time scale leads to patterns of covariation between look-
ing and novelty preferences like real infants. These results provide
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FIGURE 8 | Shows the Hebbian layers and performance in the processing speed task for three individual simulations of the preterm model. Each
panel shows an individual simulation at 5 months (blue), 7 months (red), and 12 months (black).

compelling evidence that experience creates stability on the devel-
opmental time scale in familiarity and novelty seeking behavior at
the level of the individual.

GENERAL DISCUSSION
Children make astonishing transformations during just a short
period of time, raising the question of why they continu-
ally strive forward in development. Examining the sources of
intrinsic motivation early in development might offer a par-
ticularly compelling case that provides insights into the very

origins of motivational states. Here, we examined a key transi-
tion in exploratory biases in the first year of life as infants move
from familiarity-seeking to novelty-seeking. This familiarity-to-
novelty shift emerges gradually over the first year, differs across
infant populations, and is stable within individuals over time (see
Hunter and Ames, 1988; Rose et al., 2001, 2002, 2007). Novelty
seeking has some distinct advantages. For example, it allows
infants to compare and contrast known items in memory with
new items in the environment (Oakes et al., 2008). This might
help them form categories and inspect multiple items before
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FIGURE 9 | Shows the Hebbian layers and performance in the processing speed task for three individual simulations of the intervention model. Each
panel shows an individual simulation at 5 months (blue), 7 months (red), and 12 months (black).

deciding to approach them for further exploration. But what
motivates the infant to switch exploratory styles?

To address this question in the present report, we used a
DNF model of infant visual exploration that has accounted
for the familiarity-to-novelty shift in previous work (Perone
and Spencer, 2013a,b). Previous findings showed that when we
implemented the SPH “by hand” over development, the DNF
model could capture the qualitative and quantitative aspects of
this shift. This included examples of infants’ robust familiarity
preferences during the first two months of life (Wetherford and

Cohen, 1973; see also Fantz, 1974), as well as the more grad-
ual increase in novelty seeking over the course of the first year.
Here, we asked if the DNF model could transform itself from
a familiarity to novelty seeking model through nothing more
than “out-of-lab” experience. Our strategy was to let the DNF
model accumulate experience in HL via autonomously exploring
a virtual world consisting of objects distributed over a con-
tinuous feature dimension. We then asked whether the model
exhibited the familiarity-to-novelty shift in the processing speed
task.
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FIGURE 10 | Shows trials to criterion for 10 individual simulations at 5, 7, and 12 months for the term (left), preterm (middle), and intervention

(right), models.

Table 1 | Predicting trials to criterion at 12 months.

12 months trials to criterion

Step Predictors R2 R2 change F change p β Beta p

1 Model group 0.39 0.39 17.88 < 0.01 1.67 0.62 < 0.01

2 5 months criterion 0.57 0.19 5.64 0.01 −0.24 −0.26 0.46

7 months criterion 0.73 0.68 0.02

Our results show that the model can autonomously transform
itself from a familiarity to novelty seeking model over develop-
ment. As the model explored its virtual world, it accumulated
traces in the HL. Over time, this experience helped the model
quickly encode items and form stable WM peaks. This, in turn,
enabled the model to actively represent known items and explore
novel ones. Our results also showed that the initial conditions of
the model created differences in the familiarity-to-novelty shift
like those observed between term and preterm infants (Rose
et al., 2002; see also Rose et al., 2001). Specifically, when we set
the initial conditions of the preterm model to have weak neu-
ral interactions, the model shifted toward novelty more slowly
over development, much like preterm infants do. Interestingly,
we found that the experience the preterm infant model accumu-
lated in the HL was comparable to the term infant model. This
indicated that experience can create developmental change in the
familiarity-to-novelty shift but the initial conditions play a major
role in population differences.

Critically, these constraints are soft constraints: when we per-
formed an intervention where we biased the model’s pattern
of looking, the developmental trajectory shifted in individual
simulations. In particular, the intervention helped the mod-
els dwell on objects longer, creating stronger memory traces in
the HL. In some models, this had advantageous effects: these
models encoded items more quickly into WM and exhibited

novelty-seeking behaviors late in the first year that mimicked the
pattern of term infants. In other models, however, the Hebbian
traces in the perceptual field became too strong and the models
showed a developmental regression with a bias toward familiarity.

The large variability in the outcomes of the intervention mod-
els is consistent with recent intervention studies that have trained
caregivers to maintain their infants’ attentional focus on objects.
These interventions have facilitated positive developmental out-
comes for children in areas of language, coordinated joint atten-
tion, and increased frequency with which caregivers maintain
attentional focus (Landry et al., 2008). Nevertheless, the impact
of such intervention studies has been diluted by individual dif-
ferences in infants and caregivers. For example, preterm infants
who experienced severe neonatal complications do not benefit
from caregiver responsiveness to the same degree as infants who
experienced relatively less severe neonatal complications (Landry
et al., 2006). To optimize intervention, then, we need to tailor
intervention to individuals.

We suggest that the DNF model might be a useful tool in
these efforts. For instance, our simulation results suggest that we
could initialize models to capture the performance of very young
preterm infants in standard laboratory tasks. Critically, we could
initialize models to capture the performance of individuals, not
simply groups. We could then simulate different long-term inter-
ventions with these models and observe the predicted outcomes.
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This could help researchers design individualized intervention
regimens. Importantly, the models not only predict long-term
outcomes, but also short-term benchmarks in performance. For
instance, we could assess the models and infants at 3 months
intervals in standard laboratory tasks to determine whether
infants’ looking and learning abilities match what is predicted
by each infant’s model. This provides multiple benchmarks to
determine whether the intervention is on track.

Although the work presented here suggests that the DNF
model could be a useful intervention tool, achieving this vision
will require multiple layers of innovation. Most critically, the
intervention we implemented was overly simplistic and ignores
a fundamental factor in development—the role of other agents
in infants’ cognitive development. Infants develop in a rich social
context that involves other agents such as parents and siblings.
As described above, how other agents interact with infants while
exploring objects can have a profound impact on how infants
distribute their looks in time and in space as well as social inter-
actions between infants and their caregivers (Perrinello and Ruff,
1988; see also Landry and Chapieskie, 1988). We are currently
probing how a dyadic system that consists of parent and infant
models sharing the same environment might explain the role
of individual differences in parents and infants on the outcome
of interventions as well as the emergence of social interactions
in exploratory settings. This advancement will open the door
to probe optimal intervention conditions for each parent-infant
dyad. This may have far reaching practical implications.

Using the DNF model as an intervention tool in future
work will also require tackling several challenges we simpli-
fied in the present simulation experiments. Conceptually, our
model developed over the course of months. In practice, how-
ever, we simulated the model for much less time. This reflected
the goals of this paper—to examine whether it was possible
to have an autonomous model develop its own transition is
visual exploratory biases. But using the model in more practi-
cal applications such as designing interventions will require that
we more closely approximate the real-world experience of indi-
vidual infants. We also encountered several practical challenges
in the simulations that will be even more dramatic in more
realistic simulation efforts. For instance, sometimes our mod-
els showed overly robust WM peaks that would endure for long
periods of time. This would create a strong Hebbian trace that
could dominate the looking and learning dynamics. We prevented
this, in part, by carving the simulations up into episodes and re-
initializing the layers every 10,000 time steps. In a more realistic
model, we suspect this could be handled by adding more noise
sources. For instance, data with infants suggests that their atten-
tional abilities wax and wane over time (Oakes and Ross-Sheehy,
2004). We could implement this type of attentional inertia by
adding a noisy resting level to the WM and PF layers that would
gradually raise and lower slowly over time. The troughs in this
type of attention would de-stabilize even robust WM peaks. This
suggests that noise could serve an adaptive function in early devel-
opment, facilitating exploration and ensuring that the system
does not get stuck focusing too much on one thing.

This brings us back to the central issue we started with: what
motivates infants to move from an initial bias toward familiarity

to a robust bias toward novelty? In one sense, our simulations
suggest that there is no motivational source that propels the
system forward in development. The DNF model propels itself
forward because it is a complex, exploratory, dynamical sys-
tem that accumulates its own history over time. Each time the
DNF model formed a WM peak, this neural event left a trace
in HLWM. The accumulation of this history over time raised
the overall excitability of the WM field, leading to more robust
WM peaks and the active maintenance of familiar items. This
qualitatively new cognitive ability enabled the model to actively
recognize what is known and explore new items in the environ-
ment. Thus, our autonomously developing model shows how
changes in infants’ visual exploratory skill measured in labo-
ratory tasks can emerge from the accumulation of experience
outside of the lab. There is no special motivating force that
propels the model forward through development; rather, explo-
ration and skill development come “for free” given the complex,
self-organizing neural dynamics of the visual exploratory sys-
tem. This is nicely illustrated by the full range of simulations
we reported. Not all of our simulations developed a novelty
bias—at least one of the intervention simulations showed a
developmental regression, returning to familiarity-seeking behav-
ior.

We contend that exploration is a fundamental, emergent prop-
erty of complex dynamical systems—such systems can’t help but
explore (Thelen and Smith, 1994). In particular, given the high-
dimensional nature of coupled behavioral and neural systems,
such systems are inherently variable as they exchange energy with
the surrounds and pass activation back-and-forth among differ-
ent components of the system (Kelso, 1995). Such systems are
also self-organizing, routinely settling in temporarily stable orga-
nizational states. Exploration emerges from the inherent tension
between stability and variability. And in high-dimensional sys-
tems, this tension inevitably leads to new possible patterns of
organization. Critically, complex dynamical systems are also his-
torical, carrying this history forward through time. This sets the
stage for new organizational patterns to be continually revis-
ited and re-evaluated. Selection of adaptive states can then occur
(Edelman, 1987).

There is another sense, however, in which our simulations sug-
gest a motivational source is at work as infants transition from
familiarity- to novelty-seeking. Oudeyer and Kaplan (2007) pro-
posed two characterizations of intrinsic motivation. The first was
a force that propels development forward, the notion of intrin-
sic motivation that is common in developmental psychology. As
described above, this source was seemingly absent from the DNF
model as it transitioned from familiarity- to novelty-seeking. The
second characterization was in terms of the neurocognitive mech-
anisms that drive action. Conceptually, the idea is that subjective
experiences of interestingness, ambiguity, and surprise move one
to act. These subjective experiences might be driven by several
neurocognitive mechanisms. Interestingness, for instance, can be
driven by the degree to which an expected and experienced out-
come differs. This sense of intrinsic motivation is present in the
DNF model. Specifically, the pattern of connectivity among the
layers of excitatory and inhibitory neurons in the model imple-
ments a neurocognitive mechanism that can identify “known”
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from “unknown”—“expected” from “unexpected”—and then
drive exploratory behavior.

If intrinsic motivation is inherent in the architecture of the
model, a central question is where this architecture comes from.
In our simulations, the architecture is assumed to be present
early in development. Data are consistent with this conjecture.
For instance, newborns exhibit evidence of recognizing stimuli
experienced prenatally (DeCasper and Spence, 1986). But such
data merely shifts the question of origins earlier. In our view, the
neural architecture we proposed is likely a result of early prenatal
developmental processes that are heavily dependent on patterned
neural activity. For instance, recent work suggests that the type of
neural architecture used here—DNFs—can emerge from a self-
organizing process (Alecu et al., 2011; Detorakis and Rougier,
2012). Thus, the type of connectivity we assumed does not have
to be “hard wired” in any sense—it can emerge during the course
of early brain development. This also suggests that the neural
system we proposed might be ubiquitous across species, consis-
tent with evidence showing novelty-seeking behaviors in rabbits
(Smith and Litvaitis, 2000), birds (Blough, 1984), and squirrels
(Duncan and Jenkins, 1998).

In this context, it is important to note that novelty-seeking
might not be the only outcome of autonomous visual explo-
ration. In some studies, infants, and even adults, seek familiarity
for items they do in fact have a robust memory for (Dodd et al.,
2009). Seeking familiarity is clearly valuable in achieving practical
goals—we often search for our coffee mug, keys, and so on. We are
currently exploring how the DNF model might organize itself as
a familiarity-seeking model in some contexts and novelty-seeking
model in others.

In summary, a robust developmental trend in infants’ visual
exploration is that infants transition away from familiarity and
toward novelty. This trend has largely been described as a by-
product of faster processing speed; as processing speed increases,
new items become familiar more quickly to infants and they are
free to explore novelty. Our simulations indicate that novelty
seeking and processing speed mutually support the development
of each other. As infants explore more items along a dimen-
sion, they become increasingly familiar with that dimension. This,
in turn, enables them to quickly form memories for items on
that dimension and continue to explore novelty. We gained this
insight by using a DNF model of infant visual exploration to
ask what motivates an infant to switch their exploratory style
from familiarity- to novelty-seeking. The DNF model propelled
itself forward simply by autonomously accumulating a learning
history as it explored a virtual visual world with a reasonable
degree of stimulus variation. In this sense, no motivational force
was required for the model to shift its exploratory style. In
another sense, however, the pattern of neuronal connectivity in
the model clearly sets the stage for this shift to happen. Most crit-
ically, our simulations suggest that the accumulation of real-time
exploratory behavior is powerful enough to create developmental
change.
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APPENDIX
The notation used in the equations is presented in Table A1.

MODEL EQUATIONS
Each neuronal layer is specified by a differential equation numer-
ically integrated using the Euler method.

Perceptual field (PF)
PF consists of reciprocally coupled excitatory, PF(u), and
inhibitory, Inhib(v), layers for dimension x. The excitatory layer
of PF is given by the following equation:

τeu̇(x, t) = − u(x, t)+ hu

+ aul

n∑
l̇=1

g(li)+
n∑

l̇= 1

si(x, t)g(li)

+
∫

cuu(x − x′)g(u(x′, t))dx′

−
∫

cuv(x − x′)g(v(x′, t))dx′

− auv_global

∫
g(v(x′, t))dx′

+
∫

cum(x − x′)m(x′, t)dx′

+
∫

cr(x − x′)ξ(x′, t)dx′

where u̇(x, t) is the rate of change of activation in the excitatory
layer of PF across the continuous behavioral dimension, x, as a
function of time, t. τeis the time constant along which excitatory
activation evolves. Activation within PF is influenced by its cur-
rent state, u(x, t), and its negative neuronal resting level, hu. PF

Table A1 | Notation.

Letter Meaning

a Amplitude/strength parameter

x,y Dimension (x = color, y = shape)

li Looking nodes (i = index of the node)

u Activation variable for PF

v Activation variable for Inhib

w Activation variable for WM

m Activation variable for memory/Hebbian layer

s Stimulus input (Gaussian for fields)

c Connection weight function

g Gating function

t Time

τ Time scale parameter

h Resting level (static or dynamic)

n Number of nodes

r Random contribution

ξ Noise parameter

e Excitatory

i Inhibitory

receives a global boost from the fixation system, aul
∑n

l̇=1
g(li),

which is dictated by the gating function, g(li), and weighted by
the amplitude or “strength” parameter, aul. This means that when
a task-relevant location is fixated, PF receives a boost of activa-
tion. PF also receives stimulus input at the suprathreshold fixated
location,

∑n
l̇=1

si(x, t)g(li), where si(x,t) is a Gaussian input (see
below) distributed across the behavioral dimension, x. Note that
for these inputs n = 2 because only looking nodes associated
with the left and right locations are associated with task-relevant
stimuli in the task space (see “Fixation System” below).

The gating function is given by the following equation which
takes a sigmoidal shape over the activation variable, u:

g(u) =
[

1

1+ exp [−β(u(t)− u0)]

]
,

where β is the slope of the sigmoid function and u0 is the
threshold (0).

The stimulus input takes the form of a Gaussian distributed
over the behavioral dimension, x:

s(x, t) = a exp

[
− (x − μ)2

2σ2

]
χ(t)

with stimulus position centered at μ, strength a (set to 17), and
width σ (set to 3). The gating function, χ(t), is set to 1 when the
stimulus is present and 0 otherwise.

PF dynamics are also influenced by local excitatory within-
layer interactions,

∫
cuu(x − x′)g(u(x′, t))dx′ . These interac-

tions are specified by the convolution of a Gaussian profile,
cuu(x − x′), which determines the neighborhood across which
excitatory interactions propagate and a non-linear gating func-
tion, g(u(x′, t))dx′, dictating that only neurons with above thresh-
old activation (>0) participate in the interactions.

The Gaussian convolution was defined by:

c(x − x′) = a exp

[
− (x − x′)2

2σ2

]

where a sets the amplitude and σ sets the width (i.e., standard
deviation) of the connection matrix function.

PF dynamics are also influenced by two inhibitory com-
ponents. The first is a local inhibitory component,

∫
cuv(x −

x′)g(v(x′, t))dx′. Inhibitory interactions are projected across a
neural neighborhood specified by a Gaussian, cuv(x − x′), and
only above-threshold activity in the inhibitory layer contribute
to interactions. The second is a global inhibitory component,
auv_global

∫
g(v(x′, t))dx′, where the sum of suprathreshold activ-

ity within the inhibitory layer across the behavioral dimension, x,
at time, t, is weighted by auv_global.

The last contribution to PF dynamics is spatially correlated
noise, which is presented to PF by convolving a field of white noise
with a Gaussian kernel,

∫
cr(x − x′)ξ(x′, t)dx′, with strength, ar ,

set to.025 and width, σr , set to 1.
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Inhibitory field (Inhib)
The excitatory layers PF(u) and WM(w) are reciprocally coupled
to an inhibitory layer, Inhib(v). The equation for Inhib is:

τiv̇(x, t) = − v(x, t)+ hv

+
∫

cvu(x − x′)g(u(x′, t))dx′

+
∫

cvw(x − x′)g(w(x′, t))dx′

+
∫

cr(x − x′)ξ(x′, t)dx′

where v̇(x, t) specifies the rate of change of activation for each
neuron along the behavioral dimension, x, as a function of time,
t. τi is the time constant along which inhibitory activation evolves.
Activation in Inhib is influenced by its current state, v(x, t), and
its resting level, hv. Inhib receives excitatory inputs from PF,∫

cvu(x − x′)g(u(x′, t))dx′, and WM,
∫

cvw(x − x′)g(w(x′, t))dx′.
These inputs are projected across a neural neighborhood specified
by a Gaussian projection, c(x − x′), to which only suprathreshold
neurons in PF and WM contribute as dictated by the gating func-
tion, g. An independent source of spatially correlated noise is also
added to the inhibitory layer,

∫
cr(x − x′)ξ(x′, t)dx′.

Working memory field (WM)
The WM(w) field is given by the following equation:

τeẇ(x, t) = − w(x, t)+ hw

+ aws

n∑
l̇= 1

si(x, t)g(li)

+
∫

cwu(x − x′)g(u(x′, t))dx′

+
∫

cww(x − x′)g(w(x′, t))dx′

+
∫

cwv(x − x′)g(v(x′, t))dx′

− awv_global

∫
g(v(x′, t))dx′

+
∫

cwm(x − x′)m(x′, t)dx′

+
∫

cr(x − x′)ξ(x′, t)dx′

The equation for WM is identical to the equation for PF with two
exceptions. First, the input from the fixation system differs: there
is no global boost in activation from the fixation system into WM,
and the stimulus input to WM, aws

∑n
l̇=1

si(x, t)g(li), is weighted
by a strength parameter, aws, which was set to.05. Second, WM
receives an excitatory input from PF,

∫
cwu(x − x′)g(u(x′, t))dx′.

Memory/Hebbian layers (HL)
Activation in PF and WM is influenced by traces in an associated
memory (m) or Hebbian layer (HL), which implement a form

of Hebbian learning (see text). The equations for each HL are
identical. The equation for the HL associated with PF is:

ṁu(x, t) =
{

(−mu(x, t)+ g(u(x, t))/τm_build if u(x, t) > 0

(−mu(x, t))/τm_decay otherwise

where ṁu(x, t) is the rate of change of activation for each site,
x, in HL as a function of time, t. The constants τm_build and
τm_decay set the time scale along which activation traces accrue
and decay, respectively. Activation in HL only accrues when there
is suprathreshold activation in PF. Otherwise, activation in HL
decays.

Fixation system
The fixation system consists of four nodes that stochastically look
at left and right locations (at which stimuli can appear) and cen-
ter and away locations (at which no task-relevant stimuli appear).
The nodes interact in a mutually inhibitory, winner-takes-all
fashion. The equation for the fixation system is:

τel̇i(t) = − li + hi(t)+ si(t)

+ aiig(li)

+ alug(li)

∫
g(u(x′, t))dx′

− al_global

∑
j �=l̇

g(lj)

where the activation variable, l, is set by the excitatory time scale,
τe. Activation of each looking node is influenced by its current
state, l, and its dynamic negative resting level, hi(t) (described
below). Activation of each looking node is also influenced by a
stimulus input given by:

si(t) = ai_tonic(t)(ai + ξ(t))+ ai_transient(t)

The stimulus associated with each node is different (see “Fixation
System Parameters” below) to reflect the different stimulus prop-
erties of the attention-getter at the central location, the stimuli
at the left and right locations, and non-task-relevant input at all
“away” locations. The left and right nodes are presented with
a noisy input at each time step when a stimulus is present,
ai_tonic(t)(ai + ξ(t)), and a transient input to signify the appear-
ance of a stimulus, ai_transient(t), present for the initial 75 time
steps of each stimulus presentation. The away node is continu-
ously presented with a noisy input to signify the “tonic” presence
of stimuli in the task space. The center node is presented only with
a transient input to reflect attention-getting stimuli briefly present
at the onset of a trial (in our simulations, 50 time steps), effec-
tively driving the fixation system to switch gaze from the away
location to the center location.

The gating function, g, dictates the presence of a self-excitatory
component to each looking node, aiig(li), and the passing of a
negative, inhibitory input to all other nodes, al_global

∑
j �=l̇ g(lj),

with weight al_global. The gating function also regulates the pres-
ence of input to the fixation system from the perceptual field
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Table A2 | Neurocognitive system parameters.

PF(u) WM(w) Inhib(v) Time scales (τ ) Memory layers (M)

Term Preterm Term Preterm Term Preterm

hu −10 – hw −5 – hv −10 – τ e 80 cum 2.5

auu 0.75 0.6 aww 2.0075 1.606 auv 0.459 0.3672 τi 10 σum 3

σuu σww 3 – σuv 10 – τbuild 20,000 cwm 1.5

awu 1.2 – avu 0.2 – τdecay 400,000 σwm 5

σwu 5 – σvu 5 – τh 80

avw 4.5 – awv 0.405 0.324

σv w 5 – σwv 30 –

avw 4.5 3.6

σvw 5 –

awv_global 0.01 –

auv_global 0 –

Table A3 | Fixation system parameters.

Location

Left Right Center Away

al_global 1.8 – – –

aii 2.00 – – –

aiu 0.25 – – –

aui 1.00 – – –

ai_transient 3.00 3.00 15 0

ai_tonic 5.60 – – –

ai 0.70 – – –

ah_rest −5.00 – – –

ah_down −3.60 – – –

across dimension x, alug(li)
∫

g(u(x′, t))dx′, with weight alu. Note
that these inputs are set to 0 for the looking nodes associated
with the center and away locations because there is no stimulus
presented at those locations.

The resting level of each looking node is dynamic and is
governed by the following equation:

τhḣi(t) = −hi(t)+ ah_rest + ah_lowg(li)

where τh sets the time scale along which the resting level of each
node, hi, evolves. When the current level of activation of a look-
ing node is above threshold [determined by the gating function,
g(li)] the resting level decreases toward a low attractor, the sum
ofah_rest and ah_low(which are both negative values). When the
current level of activation of a looking node is below threshold,
the resting level returns to baseline, ah_rest.

MODEL PARAMETERS
Table A2 shows the parameters for the neurocognitive system
and Table A3 shows the parameters for the fixation system
used to simulate the looking behavior of term and preterm
infants. To create the preterm infant model, we began with
the term infant parameters and manipulated the parameters
used to implement the SPH (see Schutte and Spencer, 2009;
see also Perone et al., 2011; Perone and Spencer, 2013a,b).
This involved uniformly decreasing the strength of within-
layer excitatory connections in PF (auu) and WM (aww) and
across layer inhibitory connections from inhib to PF (auv)
and to WM (awv) by 20%. The SPH parameters are shown
in bold. All other parameters were fixed for the term and
preterm models. Note that for the intervention simulations (see
text), 0.0625 was added to ai when left or right node was
supratheshold.
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We propose that free viewing of natural images in human infants can be understood
and analyzed as the product of intrinsically-motivated visual exploration. We examined
this idea by first generating five sets of center-of-gaze (COG) image samples, which
were derived by presenting a series of natural images to groups of both real observers
(i.e., 9-month-olds and adults) and artificial observers (i.e., an image-saliency model,
an image-entropy model, and a random-gaze model). In order to assess the sequential
learnability of the COG samples, we paired each group of samples with a simple recurrent
network, which was trained to reproduce the corresponding sequence of COG samples.
We then asked whether an intrinsically-motivated artificial agent would learn to identify
the most successful network. In Simulation 1, the agent was rewarded for selecting
the observer group and network with the lowest prediction errors, while in Simulation
2 the agent was rewarded for selecting the observer group and network with the
largest rate of improvement. Our prediction was that if visual exploration in infants is
intrinsically-motivated—and more specifically, the goal of exploration is to learn to produce
sequentially-predictable gaze patterns—then the agent would show a preference for
the COG samples produced by the infants over the other four observer groups. The
results from both simulations supported our prediction. We conclude by highlighting
the implications of our approach for understanding visual development in infants, and
discussing how the model can be elaborated and improved.

Keywords: visual exploration, perceptual development, intrinsic motivation, eye movements, image free-viewing

INTRODUCTION
Within minutes of birth, human infants open their eyes and begin
to explore the visual world (Slater, 2002). Although neonates
lack visuomotor experience—and their visual acuity is poor—
their eye movements are not random (Fantz, 1956; Haith, 1980).
Instead, infants’ gaze patterns are organized in a manner that
facilitates the discovery and learning of relevant visual features
and objects, such as the caretaker’s face (e.g., Maurer and Barrera,
1981; Bushnell et al., 1989; Morton and Johnson, 1991).

With additional experience, infants not only gain further con-
trol over their eye movements, but their gaze patterns also con-
tinue to develop. For example, during the first month after birth,
infants tend to limit their scanning to a small portion of an image
(Bronson, 1982, 1991). By age 3 months, however, infants pro-
duce gaze patterns that are more systematically distributed over
visual scenes. During the same age period, comparable changes
also occur in a number of other related visual skills, such as
maintaining fixation of a target object in the presence of distract-
ing stimuli, as well as selecting informative regions of the visual
scene to fixate and encode (e.g., Johnson et al., 2004; Amso and
Johnson, 2005).

There have been several important advances in the study of
infants’ gaze patterns. One approach leverages the tendency for

infants to orient toward salient, predictable events, and in particu-
lar, events that are contingent on infants’ own actions (e.g., Haith
et al., 1988; Kenward, 2010). For example, Wang et al. (2012)
recently developed a gaze-contingent paradigm in which infants
quickly learned to anticipate the appearance of a picture that was
“triggered” by first fixating an object at another location. This
work highlights the fact that infants’ visual-activity is prospective
and future-oriented.

A second advance is the use of image free-viewing methods,
which record and analyze infants’ eye movements as they view a
series of images or video clips, often including naturalistic scenes
(e.g., Aslin, 2009; Frank et al., 2009, 2012). In contrast to methods
that present an implicit task to the infant, such as comparing two
images or locating a target object, image free-viewing is compar-
atively less-constrained, and may more accurately reflect not only
infants’ spontaneous gaze patterns, but also the process of infor-
mation pickup and learning that occurs in real time during visual
exploration. While early work using image-free viewing tended
to rely on somewhat coarse analytical methods, such as compar-
ing time spent viewing specific regions of interest (ROIs; e.g.,
Bronson, 1982, 1991), more recent work in this area has employed
relatively sophisticated quantitative methods. For example, Frank
et al. (2009) computed the frame-by-frame image saliency of a
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short animation clip (i.e., “A Charlie Brown Christmas”), and
then compared infants’ attention to faces in the clip vs. their atten-
tion to high-salience non-face regions. A key finding from their
analysis was that at age 3-months, infants’ gaze patterns were
more strongly influenced by salience than by social stimuli such as
faces; however, by age 9 months, this pattern reversed, and infants
oriented reliably to faces.

Finally, the approach we propose here represents a third
advance. In particular, there are several recent models that suc-
cessfully capture the kinematic properties of infants’ gaze pat-
terns during conventional tasks, such as preferential looking,
gaze following, and visual search (e.g., Schlesinger et al., 2007;
Triesch et al., 2007; Perone and Spencer, 2013). However, to our
knowledge, our model is the first attempt to apply incremen-
tal, adaptive-learning methods (i.e., artificial neural networks and
reinforcement learning) as a computational tool for analyzing
infants’ gaze patterns during image free-viewing.

Specifically, we propose that in addition to analyzing the spa-
tial distribution and timing of infants’ gaze patterns, the sequen-
tial content of their fixations during image free-viewing may also
provide an important source of information. In particular, the
sequence of fixations produced by an observer can be interpreted
as a series of high-resolution visual samples, each centered at the
corresponding gaze point (i.e., center-of-gaze or COG samples;
Dragoi and Sur, 2006; Mohammed et al., 2012). As a form of
exploration in the visual modality, these COG samples are sim-
ilar to the tactile data generated by structured hand and finger
movements during haptic object exploration (i.e., exploratory
procedures or EPs; Klatzky and Lederman, 1990), insofar as dif-
ferent sampling patterns are the result of different exploration
strategies.

In this paper, we propose that infants’ gaze patterns during
image free-viewing are a form of visual exploration, and that the
sequential structure embedded within these patterns can be ana-
lyzed with the theoretical framework of intrinsic motivation. More
specifically, we suggest that:

Learning objective 1: over the short term (i.e., real time), the
goal of visual exploration is to accurately predict the content of
the next fixation (i.e., the subsequent COG sample), given the
current fixation together with the history of recent fixations.
Learning objective 2: superimposed on the timescale of learn-
ing objective 1, a longer-term goal of visual exploration is to
learn how to generate sequentially learnable gaze patterns, that
is, to learn how to scan images or scenes such that the resulting
set of COG samples is sequentially predictable.

Learning objective 1 is predicated on the idea that prediction-
learning and future-oriented actions are pervasive characteristics
of infant development (e.g., Haith, 1994; Johnson et al., 2003; von
Hofsten, 2010). In addition, a related mechanism that may under-
lie prediction-learning is the detection of statistical patterns or
regularities in the environment, such as those in linguistic input
or natural scenes (e.g., Field, 1994; Saffran et al., 1996). However,
a unique aspect of our proposal is that, rather than passively
observing sensory patterns in the external world, infants may

also contribute to the process of pattern detection by embedding
structure in their own exploratory behavior.

The rationale for learning objective 2, meanwhile, is that in
addition to acquiring specific skills, such as learning to grasp
or walk, infants also engage in behaviors that seem to have no
explicit purpose, such as babbling or playing with blocks. In other
words, intrinsically-motivated behaviors are done simply for the
sake of learning (Oudeyer and Kaplan, 2007; Baldassarre and
Mirolli, 2013; Schlesinger, 2013). This contrasts with extrinsically-
motivated behaviors, which have a clear and (typically) biological
benefit, such as obtaining food, rest, or sex (Baldassarre, 2011).

By this view, we argue that visual exploration serves two
developmental functions. First, at the moment-to-moment level
(learning objective 1), infants learn to discover and predict the
particular statistical regularities of the images and scenes they
are scanning (e.g., moving objects tend to remain on contin-
uous trajectories, natural scenes are typically illuminated from
above, “angry” eyes tend to co-occur with a frowning mouth,
etc.). Second, and over a longer timescale (learning objective 2),
infants are also “learning to learn,” that is, their scanning strate-
gies are refined, and in particular, infants are improving in their
ability to detect and attend to relevant visual features. In our
model, we conceptualize this second-order learning process as an
intrinsically-motivated artificial agent, which observes the perfor-
mance of five scanning strategies, and is rewarded for selecting
the strategy that produces the lowest (or most rapidly falling)
prediction errors.

In order to pursue the first learning objective, we assigned
five unique sets of COG samples to each of five simple recur-
rent networks (SRNs). We selected the SRN architecture as a
computational tool for two specific reasons. First, it serves as
a proxy for the statistical-learning mechanism noted above. In
particular, it is well-suited to detecting regularities or statisti-
cal dependencies within temporal sequences of input. Second,
we also exploited SRNs as a means to measure the relative pre-
dictability of the sequences produced by the observer groups.
Specifically, the training errors produced by the SRN provide
a straightforward metric for assessing learnability of the COG
samples.

Each set of COG samples was generated by a different group
of real or artificial observers: 9-month-olds, adults, an image-
saliency model, an image-entropy model, and a random-gaze
model. The task of each SRN is to learn to reproduce the sequence
of COG samples produced by its corresponding group. We then
pursued the second learning objective by creating an intrinsically-
motivated artificial agent, which selects among the five SRNs as
they are trained, and is rewarded for either selecting the SRN with
the lowest errors (Simulation 1), or the SRN that learns the fastest
(Simulation 2). We return to this issue below, where we describe
the specific reward functions used to evaluate the choices of the
intrinsically-motivated agent.

We reasoned that each group of real or artificial observers col-
lectively represents a distinct scanning pattern or strategy, and as
a result, the COG samples generated by each group should be dif-
ferentially learnable. In addition, given our proposal that infants’
visual exploration is specifically geared toward the goals of (1)
sequential predictability and (2) optimal prediction-learning, we
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therefore, hypothesized that the COG samples produced by 9-
month-olds would be selected first by an intrinsically-motivated
agent, whether the reward function is based on learning errors
(Simulation 1) or change in the rate of learning (Simulation 2).
We also predicted that as reward diminishes in Simulation 2 (i.e.,
as learning of the infants’ COG samples asymptotes), the agent
should then shift its preference from the infants’ COG samples
to the adults’ samples. This was an exploratory prediction, based
on the assumption that adults’ gaze patterns are not only influ-
enced by sequential learnability (like infants), but that they are
also informed by the observer’s history of goal-directed activity
(e.g., Shinoda et al., 2001; Hayhoe and Ballard, 2005).

The rest of the paper is organized as follows. We first describe
the set of images presented to the five groups of observers, as well
as the procedure used to acquire the gaze data from the human
observers. We also describe the design of the three groups of arti-
ficial observers, and the analogous procedure used to generate the
gaze data from each of these groups. We conclude this section by
explaining how the gaze data were used to generate COG sam-
ples. In the next section, we then describe the architecture and
learning algorithms used in the SRN prediction networks (PNs)
and the intrinsically-motivated agent. Following this, we present
Simulation 1, in which the artificial agent vicariously explores the
COG samples by selecting among the five SRNs, and learns by
trial-and-error to find the SRN with the lowest prediction errors.
Next, in Simulation 2 we present the findings of a closely-related
reward function, in which the agent is rewarded for finding the
SRN with the fastest learning progress (i.e., the largest decline in
the error rate over successive training epochs). In the final section,
we relate our findings to the development of visual exploration in
infants, and describe some ways to address the limitations of our
current modeling approach.

MATERIALS
TEST IMAGES
Sixteen naturalistic, color images were used as stimuli for col-
lecting eye movements, including 8 indoor and 8 outdoor scenes.
One or more people were present in each image; in some images,
the people were in the foreground, while in others they were in
the background. Figure 1 presents 4 of the 16 test images. The
infant and adult observers were presented with the test images
at the original image resolution (1680× 1050 pixels), while the

FIGURE 1 | Four of the test images.

artificial observers were presented with downscaled versions of
the images (480× 300 pixels). As we note below, all of the
infant and adult fixations were rescaled to the lower resolution,
so that real and artificial observers’ gaze data could be directly
compared.

OBSERVER GROUPS
Real Observers
Eye-movement data were collected from 10 adults and 10 9-
month-olds infants (mean ages = 19 years and 9.5 months,
respectively). Except where noted, a comparable procedure was
used for testing both adult and infant participants. All partici-
pants provided either signed consent for the study, or in the case
of the infants, assent was provided by the infants’ parents.

Participants sat about 70 cm from a 22′′ (55.9 cm) monitor.
Infants sat in a parent’s lap. Eye movements were recorded using
a remote eye tracker (SMI SensoMotoric Instruments RED sys-
tem). In addition, a standard digital video camera (Canon ZR960)
was placed above the computer screen to record children’s head
movements. All calibration and task stimuli were presented using
the Experiment Center software from SMI. Before beginning the
task, point-of-gaze (POG) was calibrated by presenting an attrac-
tive, looming stimulus in the upper left and lower right corners
of the screen. The same calibration stimulus was then presented
in the four corners of the screen in order to validate the accuracy
of the calibration.

We eye tracked participants as they freely scanned 16 color
photographs depicting both indoor and outdoor scenes (see
Figure 1 for examples; for a comparable procedure, see also Amso
et al., 2013). All images were presented for 5 s and spanned the
entire display. The order of image presentation was randomized.
A central fixation target was used to return participants’ POG to
the center of the screen between images.

Artificial Observers
The purpose of creating the artificial observers was to generate a
set of synthetic gaze patterns, in which the underlying mechanism
driving gaze from one location to the next was known in advance.
In addition, the three groups of artificial observers also provide
a well-defined baseline for comparison with the infant and adult
observers (see Frank et al., 2009, for a similar approach).

Saliency model. The saliency model was designed to simulate an
artificial observer whose gaze pattern is determined by bottom-
up visual features, such as edges or regions with strong light/dark
contrast. In particular, each test image was transformed by first
creating three feature maps (tuned to oriented edges, luminance,
and color contrast, respectively), and then summing the feature
maps into a saliency map. We then used each saliency map to
generate a series of simulated fixations.

1. Feature maps. The original images were first downscaled to
480× 300. Next, each image was passed through a bank of
image filters, resulting in three sets of feature maps: 4 ori-
ented edge maps (i.e., tuned to 0◦, 45◦, 90◦, and 135◦), 1
luminance map, and 2 color-contrast maps (i.e., red-green and
blue-yellow color-opponency maps). In addition, this process
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was performed over 3 spatial scales (i.e., to capture the pres-
ence of the corresponding features at high, medium, and low
spatial frequencies), by successively blurring the original image
and then repeating the filtering process [for detailed descrip-
tions of the algorithms used for each filter type, refer to Itti
et al. (1998) and Itti and Koch (2000)]. As a result, 21 total
feature maps were computed for each test image.

2. Saliency maps. The saliency map was produced by first nor-
malizing the 21 corresponding feature maps, and then sum-
ming them together. For the next step (simulating gaze data),
each saliency map was downscaled to 48× 30. These result-
ing maps were then normalized, by dividing each map by
the average of the highest 100 saliency values from that
map. Figure 2 illustrates the saliency map (left image) for
one of the outdoor scenes (compare with the original image
in Figure 1).

3. Simulated gaze data. In order to equate the mean num-
ber and frequency of gaze shifts across the real and artificial
observers, the gaze data of the infants and adults were pooled,
and the corresponding values were computed. This resulted
in a mean of 13 fixations per image, and a mean latency of
300 ms between fixations. For the artificial observers, the sim-
ulated timestep was 33 ms per processing cycle (i.e., 30 updates
per second). These values were then used as fixed parame-
ters for the artificial observers. A single trial was simulated
by iteratively updating a fixation map—which is the difference
between the saliency map and a decaying inhibition map (see
below)—and selecting a location on the fixation map every
300 ms. Note that the inhibition map served as an analog for
an inhibition-of-return (IOR) mechanism, which allowed the
saliency model to release its gaze from the current location and
shift it to other locations on the fixation map.

Each trial began by selecting the initial fixation point at ran-
dom. Next, the inhibition map was initialized to 0, and a 2D
Gaussian surface was added to the map, centered at the current
fixation point, with an activation peak equal to the value at the
corresponding location on the saliency map. Over the subsequent
300 ms, activity on the inhibition map decayed at a rate of 10%
per timestep. At 300 ms, the next fixation point was selected: (a)
the fixation map was updated by subtracting the inhibition map
from the saliency map (negative values were set to zero), (b)
the top 100 values on the saliency map were identified, and (c)

FIGURE 2 | Examples of corresponding saliency and entropy maps (left

and right images, respectively) used to simulate gaze patterns in the

artificial observer groups (compare to original image in Figure 1). The
color legend on the right illustrates the range of possible values for
each map.

the saliency value at each of these locations was converted to a
probability using the softmax function:

Probability of selection = es/τ/

100∑
i= 1

esi/τ (1)

where s is the given saliency value, and τ is the temperature
parameter (fixed at 1). One of these 100 locations on the fix-
ation map was then chosen stochastically, as a function of the
corresponding probability values.

This process of updating the inhibition and fixation maps and
selecting a new fixation point continued until 13 fixations were
performed. The gaze data for 10 artificial observers from the
saliency group were then simulated by sweeping through the set
of 16 images, once per each observer, and then repeating the
process 10 times. It is important to note that repetitions of the
simulation process over the same image resulted in distinct gaze
patterns, due not only to randomization of the initial fixation,
but also to stochasticity in the procedure for selecting subsequent
fixations.

Entropy model. The entropy model simulated an artificial
observer whose gaze pattern is determined by image “informa-
tion,” that is, by the presence of structured or organized visual
patterns within the image (e.g., Raj et al., 2005; Lin et al., 2010).
As a proxy for information, image entropy was estimated for each
image. In particular, image entropy reflects the computational
cost of compressing an image, based on the frequency of repeated
pixel values. The function used for computing image entropy was:

Image entropy = −
256∑
i= 1

pi ∗ log2(pi) (2)

where the original image is converted to grayscale, pixel values are
sorted over 256 bins, and p represents the proportion of pixels in
each bin.

1. Entropy maps. Comparable to the saliency maps, the entropy
maps were produced by first downscaling the original images
to 480× 300 and then converting them to grayscale. Note that
the image entropy function produces a single scalar value over
the entire image. Thus, the entropy map was produced by
sweeping an 11× 11-pixel window over the grayscale image,
and replacing the pixel value at the center of the window
with the corresponding entropy value for that 11× 11 square.
Figure 2 illustrates the entropy map (right image) for one
of the outdoor scenes (compare with the original image in
Figure 1).

2. Simulated gaze data. Once the entropy maps were computed
for the set of 16 test images, they were then downscaled a sec-
ond time and normalized, using the same process as described
above for the saliency maps. Finally, gaze data for 10 simu-
lated observers were generated, also using the same procedure
as described above.
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Random model. The random model was designed as a con-
trol condition, to simulate the gaze pattern of an observer who
explored the test images by following a policy in which all loca-
tions are equally-likely to be selected. Thus, no maps were pro-
duced for this group. Instead, 2080 x- and y-locations were chosen
at random (i.e., 13 fixations× 16 images× 10 observers).

Descriptive statistics. We briefly compare here the gaze data
produced by each of the five observer groups. In all cases, note
that because the random group provides a baseline estimate of
performance at chance level, the results from this group are plot-
ted in Figure 3 as dotted lines (rather than as bars). Figure 3A
presents the results of projecting each observer group’s fixations
onto the saliency and entropy maps, respectively, and then com-
puting the average saliency (blue bars) and entropy values (red
bars) for the corresponding fixation locations. This analysis pro-
vides a measure of the relative influence of saliency vs. entropy
for each group’s scan patterns. In particular, higher mean val-
ues reflect a tendency to orient toward regions in the image with
higher levels of saliency and/or entropy, respectively (recall that
the values on each map were normalized between 0 and 1). Note
that the upper dashed line in Figure 3A represents the mean nor-
malized entropy produced by the random observer group, while
the lower dashed line represents mean normalized saliency for the
same group.

There are three important results. First, as expected, the
saliency and entropy observer groups produce near-maximal val-
ues (i.e., 90%) for their respective maps. Second, for both infants
and adults, the gaze patterns resulted in higher mean levels of
entropy than salience. Third, even for the random group, the same
pattern was also true. As Figure 2 suggests, this may be due to dif-
ferences in how saliency and entropy are distributed over each
image—that is, saliency was sparsely distributed while entropy
was relatively broadly distributed.

In addition, Figures 3B–D present the results of three kine-
matic measures. First, Figure 3B plots the mean dispersion of

FIGURE 3 | Comparison of gaze patterns across the 5 observer groups

(see text for details). (A) Mean map values calculated by projecting each
group’s gaze points on to the saliency (blue) and entropy (red) maps,
respectively; (B) mean dispersion (spread) of fixations; (C) mean gaze shift
distance; and (D) mean proportion of revisits. Dashed lines represent
performance of the random observer group.

fixations for each group. Dispersion was computed by first cal-
culating the centroid of the fixations (i.e., the mean fixation
location) within each trial, and then calculating the mean distance
of the fixations within that trial from the centroid. As Figure 3B
indicates, infants tended to have the least-disperse gaze patterns,
followed by adults. Interestingly, the dispersion of fixations pro-
duced in the saliency observer group was nearly the same as the
random observer group.

Next, Figure 3C presents the mean gaze shift distance for
each group. This distance was calculated by computing how far
the fixation point traveled (in pixels) from each fixation to the
next. Like the previous result, infants produced the shortest gaze
shift distance, again followed by adults. Similarly, the saliency
observer group produced gaze shift distances similar to the ran-
dom observer group, while the entropy observer group had gaze
shift distances that fell midway between the real and artificial
observers.

Finally, Figure 3D presents the mean revisit rate for each
observer group. Revisit rate was estimated by first creating a null
frequency map (a 480× 300 matrix with all locations initial-
ized to zero). Next, for each fixation, the values within a 41× 41
square (centered at the fixation location) on the frequency map
were incremented by 1. This process was repeated for all of the fix-
ations within a trial, and the frequency map was then divided by
the number of fixations. For each trial, the maximum value from
this map was recorded, reflecting the location in the image that
was most frequently visited (as estimated by the 41× 41 fixation
window). The maximum value was then averaged across trials and
observers within each group, providing a metric for the peak pro-
portion of fixations that a particular location in each image was
visited, on average. As Figure 3D illustrates, a key finding from
this analysis is that infants have the highest revisit rate (nearly
50%), while all three of the artificial observer groups have the
lowest rates.

COG IMAGE SAMPLES
To maintain tractability of the training set for the SRNs, we ran-
domly selected 20 trials from each group of observers. Selection
was subject to several constraints, including: (1) within a group,
each observer contributed 2 trials (i.e., gaze data for 2 images),
and (2) selection of the corresponding images was counterbal-
anced both within observer groups and across the 16 images (each
image was selected as equally-often as possible across groups).
Once the specific trials/images were selected for each group, the
gaze data (i.e., sequences of fixation points) were then used to
generate the COG training stimuli.

Specifically, for a given observer and trial, a 41× 41 grayscale
image—centered at the first fixation point—was sampled from
the corresponding test image. The dimensions of the COG sample
were derived from the display size and viewing distance of the live
observers, and correspond to a visual angle of 1.6◦, which falls
within the estimated range of the angle subtended by the human
fovea (Goldstein, 2010). This sampling process continued for the
second fixation point, and so on, until the number of fixations for
that observer and trial was reached. The process for obtaining the
COG samples for a single trial was then repeated through each of
the five observer groups, resulting in 20 trials of COG samples per
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FIGURE 4 | Illustration of the COG samples produced during a single

trial with test image 4, in the infant (A), adult (B), saliency (C), and

entropy (D) observer groups (non-fixated areas are darkened).

group (with an average of 13 samples per trial, or approximately
260 samples per group).

To help illustrate how a typical set of COG samples appears
in relation to its corresponding test image, Figure 4 presents the
samples produced during a single trial (with test image 4), in
the infant, adult, saliency, and entropy observer groups, superim-
posed on to the respective test image. Consistent with Figure 3B,
note that the infant’s fixations tend to fall into two spatial clusters,
while the adult’s fixations are more disperse.

MODEL ARCHITECTURE AND LEARNING ALGORITHMS
Figure 5 illustrates an overview of the model architecture, which
implements a conventional reinforcement-learning model layered
over a bank of recurrent neural networks. We first provide here a
general description of the six major processing steps in the model,
and present below a more-detailed description of the PNs and the
intrinsically-motivated artificial agent (IM agent).

The IM agent learns over a series of discrete episodes. At
the start of each episode (Figure 5A, step 1), the IM agent first
selects one of the five observer groups. This choice is intended
to represent an analog for presenting an image to an observer,
who then explores the image by choosing from a set of dis-
tinct gaze or scanning “strategies” (alternatively, these strategies
could be described as learning goals, behavior or action pat-
terns, etc.). In particular, the IM agent has no direct knowledge
of how each strategy is designed or how it operates. Rather, the
IM agent bases its decision simply on the current set of Q-values
for the set of five choices, which each estimate the long-term
sum of rewards expected to result from selecting the correspond-
ing choice. Once one of the gaze-pattern strategies (i.e., observer
groups) is selected, the COG samples from the corresponding
group of observers are retrieved. For example, in Figure 5A, the
IM agent selects the adult observer group (step 2).

At the next processing step, the 20 sets of COG samples (from
the selected observer group) are then presented to the corre-
sponding SRN (step 3; note that only 1 of the 20 sets is illustrated
here). In particular, we implement a bank of five SRNs, each of
which is devoted to a single observer group, in order (a) to main-
tain learnability estimates of all five groups in parallel, and (b)
to avoid the risk of catastrophic interference by training a single
network on the COG samples from all five groups. We refer to

FIGURE 5 | (A) Illustration of the processing pathway through the model
during a single episode, and (B) architecture of the prediction networks
(PNs).

the SRNs as PNs, as they are explicitly trained to reproduce the
series of 41× 41 samples, one at a time. In the case of Figure 5,
one of the 20 COG sample sets is selected at random from the
adult observer group, and the first sample from this set is pre-
sented to PNadult. The output of the network is its “prediction”
of the second sample (properly speaking, since training is offline,
i.e., after the samples were collected, the PN learns to reproduce a
sequence that is iteratively presented). After each output, a train-
ing signal is computed using backpropagation-of-error and used
to adjust the PN’s connection weights. This continues until all of
the COG samples in the observer group have been presented to
the PN (step 4).

At step 5, the average prediction error for the previous train-
ing sweep is computed, and then transformed into a scalar reward
value. As we highlight below, we investigate two reward functions:
reward based on the magnitude of error (i.e., reward is inversely
related to error), and reward based on learning progress (i.e.,
reduction in error over two consecutive sweeps through the COG
samples in an observer group). During the final processing step
(6), the new reward value is used to update the set of Q-values,
and the IM agent makes its next selection.

PREDICTION NETWORKS
Each PN is a standard 3-layer Elman network, with recurrent
connections from the hidden layer back to the input layer (i.e.,
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context units; Elman, 1990). In particular, the PN implements
a forward model, in which the current sensory input (plus a
planned action) is used to generate a prediction of the next
expected input (e.g., Jordan and Rumelhart, 1992). Prior to train-
ing the PN, each of the COG samples is converted to grayscale
values between 0 and 1. As Figure 5B illustrates, the input layer
is composed of 2083 units, including a vector of 1681 units that
encode the grayscale pixel values of the COG sample, 2 units that
encode the (normalized) x- and y-coordinates of the upcoming
COG sample, and 400 context units (which copy back the activity
of the hidden layer from the previous time step). There are 400
units in the hidden layer (i.e., roughly 75% compression of the
input) and 1681 output units.

All connections in the PN are initialized with random val-
ues between 0 and 1, which are then divided by the number of
incoming units (i.e., fan-in). For each simulation run, the same
PN is cloned five times, so that all five PNs begin with the same
set of initial connection weights. As noted above, each PN is
presented with only the COG samples from its corresponding
observer group. Once an observer group is selected by the IM
agent, the 20 COG sample sets are then presented to the appro-
priate PN in random order. Recall that each set of COG samples
represents the gaze data from a single observer and a single trial.
In order to remove the influence of previous trials on the context
layer activation, the units in the context layer of the PN are ini-
tialized to 0.5 at the start of each trial. A single training epoch is
defined as a sweep through all 20 trials.

Prediction error is measured as the root mean-squared error
(RMSE), computed over the difference between each predicted
and observed next COG sample, and then averaged over the entire
trial. Mean trial errors are then averaged together over the 20 tri-
als; this value represents the mean prediction error for the IM
agent’s current episode, and is used to compute the reward signal.

IM AGENT
The IM agent simulates a naïve, active observer that is reinforced
for visually exploring its environment. As Figure 5 illustrates, the
IM agent is provided with the opportunity to select among five
predefined sets of visual samples and a corresponding PN, each
of which represents (ostensibly) a unique scanning experience
and learning episode over the set of 16 test images. After each
selection, the IM agent receives a reward signal as feedback that
is proportional—not to the content or the quality of the cho-
sen gaze samples per se—but rather, to the relative success of the
chosen PN in predicting the resulting sequence of COG samples.
In other words, the IM agent is rewarded for choosing the set of
COG samples (i.e., a pattern of visual exploration) that is learned
optimally.

In principle, defining an exploration reward on the basis of
learnability runs the risk of generating an unintended outcome.
For example, one way to maximize the performance of the PN is
to hold the fixation point constant, that is, to continue looking at
the same location. Such a strategy, however, also provides limited
visual information (i.e., it maximizes prediction but minimizes
exploration). At the other extreme, a completely random gaze
sequence may be highly informative, but difficult, if not impos-
sible to predict. Given the putative goal of visual exploration,
therefore, a reasonable trade-off is to select a gaze sequence that is

both informative and predictable (i.e., varied but also systemati-
cally structured). We therefore, note here that linking the reward
function to prediction learning captures an important dimen-
sion of visual exploration, but that other facets such as novelty
are also likely to play a role (for a comprehensive discussion of
knowledge-based vs. competence-based approaches to intrinsic
motivation, see Oudeyer and Kaplan, 2007, and Baldassarre and
Mirolli, 2013).

Because the actions selected by the IM agent are influenced by
the performance of the PNs, there are effectively two timescales:
an “inner loop,” which is defined as presenting the selected PN
with the COG samples from a single trial, and the “outer loop,”
which is a single episode and is defined as the IM agent’s selec-
tion of an observer group, a training epoch of the corresponding
PN, the generation of an intrinsic reward signal, and the updat-
ing of the IM agent’s Q-values (as illustrated in Figure 5). For
both Simulations 1 and 2, therefore, a single simulation run
included 500 iterations of the outer loop (i.e., episodes). In addi-
tion, recall that during each iteration of the outer loop, there were
20 iterations of the inner loop for the selected PN.

As we highlight below, the objective or reward function that
we implemented was varied across simulations. In Simulation 1,
the reward was defined as:

rt = 1− Errort (3)

where rt is the reward received for the tth iteration of the outer
loop, and Errort is the mean error produced by the PN selected
during iteration t. This function therefore, rewards the IM agent
for selecting the observer group with the lowest prediction errors
(compare to “predictive novelty,” i.e., Equation 9 in Oudeyer and
Kaplan, 2007). In contrast, during Simulation 2 the reward func-
tion was defined as the percent change in prediction error over
two consecutive iterations of the inner loop:

rt = (Errort− 1 − Errort)/Errort− 1

where Errort is defined as in Equation (3), and Errort− 1 repre-
sents the corresponding mean error from the previous iteration.
Note that in this case, each time a PN was selected, it was trained
for two consecutive epochs before the IM agent received a reward.

Two steps were implemented to ensure that the IM agent suf-
ficiently explored each of the five observer groups. First, at the
start of each simulation run, the IM agent’s Q-values were ini-
tialized optimistically, that is, they were set to initial values higher
than were expected to occur during learning. Second, the Softmax
function [see Equation (1)] was used for action selection, which
provided an additional source of stochasticity and variability into
the IM agent’s choice of observer group.

After selecting an observer group and receiving a reward for
the selection, the IM Agent’s Q-value for that group was updated.
The update rule implemented was:

Qt = Qt− 1 + α(rt − Qt− 1) (4)

where Qt− 1 is the Q-value for the selected observer group before
the most recent iteration of the inner loop, and Qt is the new,
updated value after the iteration. Finally, α represents the learning
rate, which was fixed for each simulation.
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SIMULATION 1
In Simulation 1, the IM agent vicariously explored the 16 test
images by repeatedly selecting from a set of COG samples, each
of which captured the process of scanning the images in either
real or simulated real time. After each selection, the IM agent then
received a reward which represented the relative ease or difficulty
of sequentially predicting the selected gaze samples. In particular,
the IM agent received a larger reward when it picked a set of COG
samples that were “easily” learned (i.e., that resulted in compara-
tively lower prediction errors), while the scalar reward was lower
when the COG samples (and the corresponding PN) produced
higher prediction errors. Our primary prediction was that, given
the assumption that infants are mastering the skill of visual explo-
ration, the COG samples produced by the 9-month-olds would
be the most predictable, and therefore, the IM agent would prefer
samples produced by the 9-month-olds over those from the other
four observer groups.

METHOD
Ten simulation runs were conducted. At the start of each run, the
five PNs were initialized as described above. In addition, the set of
Q-values for the five corresponding actions was uniformly initial-
ized to 1. During Simulation 1, the temperature parameter τ used
in the Softmax function for action selection was 0.01. Finally, the
learning rate value α used for updating the Q-values (Equation
5) was 0.1. Each simulation run was composed of 500 episodes,
during each of which the IM agent chose a set of COG samples,
the corresponding PN was trained on the selected set of samples
for one epoch, and the IM agent then received a reward and the
respective Q-value was updated.

RESULTS
For the purpose of analysis, the results over the 10 simulation runs
were averaged together. We focus here on three questions. First,
during learning, does the IM agent develop a preference for any
of the five observer groups? Second, how does the IM agent dis-
tribute its selections over the five groups? Finally, how well do the
five PNs collectively perform over the 500 episodes?

We addressed the first question by transforming the Q-values
at the end of each episode into standardized “preference” val-
ues, which are simply the probabilities assigned to the choices by
the Softmax function. Figure 6A presents the mean preferences
for the five observer groups as a function of episode, averaged
across 10 simulation runs. Mean preferences were analyzed statis-
tically by dividing the 500 training episodes into 10 blocks, each
50 episodes long. We then conducted a two-factor mixed-model
ANOVA for each of the blocks, with observer group (infant,
adult, saliency, entropy, and random) as the between-subjects fac-
tor, and episode as the within-subjects factor. We report here
the results of the planned paired-comparison tests for the five
observer groups, focusing specifically on whether the group (or
groups) with the highest preference values differed significantly
from the remaining observer groups. Note that the top legend in
Figure 6A illustrates the outcome of these comparisons for each
of the 50-episode blocks, by indicating the group/groups with the
highest preference value and the significance level of the planned
comparison (I = infant, A = adult, S = saliency, E = entropy,
R= random).

There were three major findings. First, for approximately the
first 50 episodes, preference values varied considerably, resulting
in no significant differences between the five observer groups.
Second, a preference for the COG samples from the infant
observer group emerged between episodes 50 and 100, while the
values for the other four groups continued to decline. Third, and
confirming our prediction, this pattern continued and strength-
ened between episodes 100 and 500.

Figure 6B presents the proportion of time that each of the five
observer groups was selected over the 500 episodes. Recall that
because a stochastic decision rule was used to select the groups,
the actual frequency of selection may not necessarily align with
the corresponding preference values. However, as Figure 6B illus-
trates, there was a close match between the IM agent’s preference
values, and the resulting selection pattern. In particular, dur-
ing the last 200 episodes, effectively all of the training time was
directed toward the infant observer group’s PN.

Finally, Figure 6C presents the RMSE—pooled over the five
PNs—as a function of episode. At the start of training, the RMSE
was approximately 0.25 per pixel. Fluctuations in the error level,
between episodes 1 and 300, reflected the fact that the IM agent
continued to explore the observer groups throughout this period.
However, as the infant observer group became the sole preferred
choice, the IM agent focused on the COG samples from this group
and the error rate declined more consistently. By 500 episodes,
the RMSE had fallen below 0.07. Thus, Figure 6C suggests that all
of the PNs improved during training, but the infant group’s PN
eventually received the majority of training time and accordingly
benefited.

SIMULATION 2
While Simulation 1 confirmed our prediction that the IM agent
would prefer the infant observer group’s COG samples, it is also
important to note that the particular reward function used poten-
tially suffers from a “snowball” bias. In other words, because the
reward function favored low prediction errors, the group with
the lowest errors at the start of training would have an advantage
over the other four groups. In addition, a bias toward providing
this group with additional training time would then continue to
improve the predictions of their PN, thereby lowering prediction
errors further and increasing the advantage of that group. Such a
bias would also reduce exploration of the competing groups, and
consequently, leave them with higher errors.

To address this issue, we investigated an alternative reward
function, which favored learning progress, that is, a reduction
in the RMSE over two consecutive episodes. As Equation 4
highlights, the reward function in Simulation 2 was scaled by
the RMSE of the first episode of each pair, which effectively
produced a reward value equal to the percent change in the
RMSE. Interestingly, this solves one problem while creating a
new challenge for the model: in particular, by linking reward to
changes in performance of the PNs, the IM agent’s learning task
becomes non-stationary. Specifically, by selecting the “best” (i.e.,
most-improving) observer group for training, learning in that
group should eventually level off, and thus, the IM agent’s long-
term estimates of the group’s Q-value should systematically drift
downward over time. Fortunately, there is also a hidden advan-
tage to this approach, namely, that the IM agent should therefore,
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FIGURE 6 | Set of 3 performance measures for Simulation 1 (A–C) and Simulation 2 (D–F). The legend at the top of panels (A,D) represents the results of
planned comparisons between the observer groups (n.s. = not significant, †< 0.06, *< 0.05, **< 0.01, ***< 0.001). See the text for additional details.

switch its preference from the COG samples of one observer
group to another, as improvement in the leading group slows. As
we highlight in the discussion, such a switching pattern has the
potential to be interpreted as a developmental pattern, in which
the simulated observer shifts from one visual-exploration strategy
to another.

Recall that our prediction for Simulation 2 was that, like
Simulation 1, the COG samples from the infant observer group
would be preferred first, and that the model would then shift its
preference to the samples from the adult observer group.

METHOD
The same procedures as Simulation 1 were followed in Simulation
2. However, given an expected decline in the absolute magnitude
of the reward (relative to Simulation 1), the Softmax parame-
ter τ was increased to 0.1, the initial Q-values were lowered to

0.01, and the learning rate value α used for updating the Q-values
was lowered to 0.05. In addition, as noted above, the IM agent
selected an observer group on every odd-numbered episode, and
then received a reward value after the subsequent even-numbered
episode. Training of the PNs continued, as in Simulation 1, for all
episodes.

RESULTS
Figure 6D presents the mean preference values for the five
observer groups in Simulation 2, as a function of episode number.
These values were analyzed following the same analytical strat-
egy described in Simulation 1. A key finding from the analysis
is that the range of preference values was considerably nar-
rower than the pattern observed in Simulation 1. In addition,
although we predicted that the COG samples from the infant
observer group would have the highest initial preference values,
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this preference was not as robust as we anticipated. In particu-
lar, there was a marginally-significant preference for the infant
observer group (p < 0.06) between episodes 1 and 50. Between
episodes 50 and 100, there was no longer a significant differ-
ence between the infant and adult observers, though the two real
observer groups had significantly higher preference values than
the artificial observer groups (p < 0.01). This pattern maintained
through episode 150. For the next 100 episodes (150–250) there
was no significant difference between the five groups. Between
episode 250 and 300, the leading preference shifted to the saliency
observer group. This pattern persisted through the remaining
episodes, although as Figure 6D illustrates, the preference val-
ues for the entropy observer group increased toward the end of
training.

In contrast to Simulation 1, in which a clear preference for
one of the observer groups was matched by a tendency for the
corresponding group to also be selected consistently by the IM
agent, there was a comparatively narrower preference pattern in
Simulation 2, and as Figure 6E illustrates, also lack of a clear
selection pattern. Indeed, the proportion of times each group was
selected in Simulation 2 continued to fluctuate throughout the
entire simulation.

Finally, Figure 6F presents the RMSE (pooled over observer
groups) generated by the PNs over 500 episodes. In contrast to
Figure 6C, the error rate declined more slowly in Simulation 2.
There are several factors that may have contributed to this pat-
tern. First, as noted above, the IM agent continued to explore until
the end of Simulation 2, while in Simulation 1, exploratory selec-
tion of the sub-optimal observer groups ended on average by the
300th episode. Another contributing factor is that the relative dif-
ferences in the five Q-values were smaller in Simulation 2, which
also increased the chances of exploratory selections. Indeed, as we
expected, there was no sustained “winner,” but rather, a series of
shifts from one observer group to another.

However, it should be noted the second observer group
that became preferred by the IM agent (i.e., after episode 250)
was not the adult observer group, as we predicted. Instead, as
Figure 6D illustrates, it was instead the saliency observer group.
This result raises an important and interesting property of the
reward function used in Simulation 2. In particular, note that
the saliency observer group is the least preferred in Simulation
1, which is ostensibly due to having the largest initial predic-
tion errors. Nevertheless, these initially high prediction errors
may have helped to make the saliency observer group stand out
in Simulation 2, as the COG samples from this group presum-
ably provided the second-best opportunity for the IM agent to
optimize its learning progress.

GENERAL DISCUSSION
We provided an artificial agent with the opportunity to
select among five sets of visual-exploration patterns, and then
reinforced the agent for selecting COG samples that were
either the easiest to learn (Simulation 1), or afforded the
largest improvements in learning (Simulation 2), as estimated
by a prediction-learning model. The agent was intrinsically-
motivated, in the sense that it was not solving an explicit task—
such as locating an object in a visual scene or comparing two
images—but rather, it was rewarded for how well it learned (or

more accurately, how well it selected a set of training images
together with an artificial neural network that learned the set).

The pattern of findings from two simulation studies confirmed
the first of three predictions, and partially confirmed the sec-
ond. First, in Simulation 1—where the reward function was based
on minimizing prediction errors—we found that the IM agent
showed a consistent preference for learning from the COG image
samples that were produced by human infants, rather than those
produced by human adults, or those from three groups of artifi-
cial observers. Second, in Simulation 2 we predicted that infants’
COG image samples would initially be preferred, and that the
IM agent would then switch its preference to the adult observer
group. While the first half of the prediction was confirmed, there
were two qualifications: (a) the initial preference for the infant
observer group was only marginally significant, and (b) this pref-
erence soon gave way to a collective preference for both the infant
and adult COG image samples—that is, a preference for the real
observer groups over the artificial observer groups. We also did
not observe a clear switch to the adult observer group. Instead and
contrary to our third prediction, the second preference “wave”
in Simulation 2 was for the saliency observer group. While the
data collected in the present study may not provide a comprehen-
sive explanation for this result, we note below that our previous
work highlights the important role of image salience, and may
ultimately provide some insight into the pattern of findings in
Simulation 2.

There are a number of implications for understanding devel-
opment, as well as important questions, which are raised by these
findings. First, our results suggest that if (1) prediction-learning
and future-oriented actions play a central role in early visual
development, and (2) infants are intrinsically-motivated to fine-
tune and improve their ability to predict or forecast upcoming
events, then the gaze patterns produced by 9-month-olds are
well-suited to achieving both of those goals, compared to the
gaze patterns of adults or the artificial observers that we gen-
erated. However, this finding also raises the question: what are
the features of 9-month-olds’ gaze patterns that make their COG
samples easier to learn than those of other observers?

The kinematic analyses presented in Figure 3 suggest that how
infants distribute their gaze over space may provide an impor-
tant clue to answering this question. One possibility is that
because 9-month-olds tend to have less-disperse gaze patterns
than adults, and to shift their gaze a shorter distance, the result-
ing COG samples they produce tend to be more homogenous,
and therefore, easier to learn. Alternatively, it may be the case
that infants have the a priori goal of generating easily-learnable
gaze patterns, and as a result, they therefore, tend to produce
more compact scanpaths, with shorter gaze shifts between fixa-
tions. An essential step toward addressing this “chicken-and-egg”
question is to collect gaze samples from a wider range of infants
(e.g., 3- and 6-month-olds) and to evaluate the model when those
additional COG samples are included. Another approach is to
pit gaze-travel distance against local/global similarity, by using
carefully-designed test images, in which there is high variability at
the local level, with sets of highly-similar regions that are spaced
relatively far apart.

A second issue suggested by our findings is what the develop-
mental pattern will look like when the gaze data from younger
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infants are included. For example, should the agent prefer 3-
month-olds’ COG samples over those from 9-month-olds? In
principle, with data from infants between birth and 12 months,
our intuition is to expect an inverted U-shaped developmental
pattern, in which gaze data from very young infants is poorly-
controlled and therefore, highly unpredictable. We would then
expect maximally-predictable COG samples between 3 and 4
months, and then an increasing trend afterwards of gradually less
and less predictable gaze patterns. Fortunately, this is an empiri-
cal question that can be tested without any major modifications
to our model.

Finally, a third question is whether the pattern of results—in
particular, the shift that we observed during Simulation 2—can
be interpreted as implying a developmental pattern. This is a diffi-
cult question to answer, as the timescale of the simulation reflects
learning in an artificial agent, and does not map directly onto the
infant-developmental timeline. Nevertheless, we might “read off”
the results from Simulation 2 as suggesting that an initial strategy
for visual exploration during infancy is to first focus on producing
relatively dense clusters of fixations (i.e., like those produced by
the two real-observer groups), which then shift toward becoming
more widely distributed, and in particular, increasingly sensitive
to the presence of salient regions in the visual scene. While this
issue remains an open question, our prior work demonstrates that
image saliency is an important factor that successfully accounts
for infants’ performance on a number of perceptual tasks (e.g.,
Schlesinger et al., 2007, 2011, 2012).

There are also a number of ways that our current approach
can be improved. First, it is important to note that the PNs were
trained offline—that is, the networks were trained to predict gaze
sequences that had already been collected or generated. A dis-
advantage of this method is that any changes that occur in the
agent cannot be propagated back to the observer groups. In other
words, while the agent influences the amount of training time that
each PN receives, it cannot influence how the COG samples are
produced. An alternative and perhaps more-informative design
would be for the choices of the agent to have an impact on the
COG sampling process itself. Indeed, such a mechanism could be
designed so that the production of eye movements in the artifi-
cial model is linked to the choices of the agent. However, there is
no obvious way in which a similar connection could also be made
between the agent and a live observer.

A second limitation of our model is that five different PNs were
employed, which might be interpreted to suggest that infants’
generate multiple sets of parallel predictors during visual explo-
ration and then sample among them. While we remain agnostic

to the specific cognitive structures or architectures exploited by
human infants during visual exploration, a more elegant solution
on the computational side would be to employ a single, unified
predictor that learns over a range of sampling strategies (e.g.,
Schmidhuber, 2010).

Finally, a third issue concerns the models of the artificial
observers, and in particular, the procedure used to transform the
saliency and entropy maps into sequences of simulated eye move-
ments. A key difference between the artificial and real observers is
that the artificial observers tended to produce more disperse fixa-
tions, and return to previously-fixated locations less often than
the human infants and adults. This issue can be addressed by
imposing a theoretical energy or metabolic “cost” to the simu-
lated eye movements, which is proportional to the size of the
saccade. In addition, we can also continue to tune and improve
the IOR mechanism, perhaps by modifying the decay rate, so that
inhibition for previously-fixated locations decreases more rapidly.
Another promising approach is to “yoke” the simulated gaze
data to the actual moment-to-moment eye movements produced
by real observers, so that kinematic measures such as fixation
duration or saccade size are matched across the real and artificial
data sets.

We conclude by noting that our work thus far takes advantage
of machine-learning methods—in particular, the set of learning
algorithms and architectures used to study intrinsic motiva-
tion in natural and artificial systems—as a means toward the
goal of understanding visual development in human infants.
Nevertheless, it is important to stress that the influence also runs
in the other direction, that is, what lessons can be taken from
our approach that might prove useful to the design of robots and
artificial agents? One interesting insight is that our findings are
consistent with the idea of “starting small” (e.g., Elman, 1993;
Schlesinger et al., 2000): in other words, infants’ gaze patterns may
provide an advantageous starting point for learning in a naïve
agent, relative to more-experienced observers such as adults. As
we continue to extend and elaborate our model, in particular with
data from younger infants, we anticipate that other important
lessons for designing and developing artificial agents will continue
to emerge.
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Humans and other biological agents are able to autonomously learn and cache different
skills in the absence of any biological pressure or any assigned task. In this respect,
Intrinsic Motivations (i.e., motivations not connected to reward-related stimuli) play a
cardinal role in animal learning, and can be considered as a fundamental tool for developing
more autonomous and more adaptive artificial agents. In this work, we provide an
exhaustive analysis of a scarcely investigated problem: which kind of IM reinforcement
signal is the most suitable for driving the acquisition of multiple skills in the shortest
time? To this purpose we implemented an artificial agent with a hierarchical architecture
that allows to learn and cache different skills. We tested the system in a setup with
continuous states and actions, in particular, with a kinematic robotic arm that has to
learn different reaching tasks. We compare the results of different versions of the system
driven by several different intrinsic motivation signals. The results show (a) that intrinsic
reinforcements purely based on the knowledge of the system are not appropriate to guide
the acquisition of multiple skills, and (b) that the stronger the link between the IM signal
and the competence of the system, the better the performance.

Keywords: intrinsic motivations, learning signals, multiple skills, hierarchical architecture, competence acquisition,

reinforcement learning, simulated robot

1. INTRODUCTION
The ability to learn and cache multiple skills in order to use
them when required is one of the main characteristics of bio-
logical agents: forming ample repertoires of actions is important
to widen the possibility for an agent to better adapt to differ-
ent environments and to improve its chance of survival and
reproduction.

Moreover, humans and other mammals (e.g., rats and mon-
keys) explore the environment and learn new skills not only on
the basis of reward-related stimuli but also on the basis of novel
or unexpected neutral stimuli. The mechanisms related to this
kind of learning processes have been studied since the 1950s, first
in animal psychology (e.g., Harlow, 1950; White, 1959) then in
human psychology (e.g., Berlyne, 1960; Ryan and Deci, 2000),
under the heading of “Intrinsic Motivations” (IMs). Recently,
researchers have also started to investigate the neural basis of
those mechanisms, both through experiments (e.g., Wittmann
et al., 2008; Duzel et al., 2010) and computational models (e.g.,
Kakade and Dayan, 2002; Mirolli et al., 2013), and IMs are nowa-
days an important field of research (Baldassarre and Mirolli,
2013a).

From a computational point of view, IMs can be considered a
useful tool to improve the implementation of more autonomous
and more adaptive artificial agents and robots. In particular, IM
learning signals can drive the acquisition of different skills with-
out any assigned reward or task. Most of the IM computational
models are implemented within the framework of reinforcement
learning (Sutton and Barto, 1998) and, following the seminal

works of Schmidhuber (1991a,b), most of them implement IMs
as intrinsic reinforcements based on the prediction error (PE), or
on the improvement in the prediction error (PEI), of a predictor
of future states of the world.

Despite the increasing number of computational researches
based on IMs (e.g., Barto et al., 2004; Schembri et al., 2007b;
Oudeyer et al., 2007a; Santucci et al., 2010; Baranes and Oudeyer,
2013), it is not yet clear which kind of IM reinforcement sig-
nal is the most suitable for driving a system to learn the largest
number of skills in the shortest time. To our knowledge, there
are only few studies dedicated to this important issue (Lopes and
Oudeyer, 2012; Santucci et al., 2012a, 2013b). In our previous
works (Santucci et al., 2012a, 2013b), we have shown the impor-
tance of coupling the activity of the mechanism generating the
IM signal to the competence of the system in performing the dif-
ferent tasks. However, in Santucci et al. (2012a) we limited our
analysis to the learning of a single skill in a simple grid-world
environment, while in Santucci et al. (2013b), although imple-
menting a hierarchical architecture able to learn multiple tasks
within continuous states and actions spaces, we focused only on
signals based on PE. Lopes and Oudeyer (2012) deal with a sim-
ilar problem, i.e., learning n tasks in the best possible way within
a limited amount of time. The solution they propose is to allocate
each unit of learning time to the task that guarantees the maxi-
mum improvement. However, their work tackles the problem in
an abstract and disembodied setup and, moreover, they assume
that the system has the information on the learning curves of each
task.
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In this work, we provide an exhaustive analysis of this scarcely
investigated problem: which kind of IM reinforcement signal is
the most suitable for driving the learning of skills in the short-
est time. With this work we also aim to validate our hypothesis
on the importance of a close coupling between the IM learn-
ing signal and the actual competence of the system in learning
the different tasks. To this purpose, we implemented an artificial
agent with a hierarchical architecture that allows the acquisition
of several skills and we tested its performance in a setup with
continuous states and actions, comparing both PE-based and
PEI-based IM signals generated by different mechanisms. Some
of the tested systems are taken from the computational litera-
ture related to IMs, including both the works of other researchers
and our own; others derive from existing mechanisms but have
not been tested before. The origin of each mechanism is indi-
cated in section 2.3 where the different algorithms are explained
in detail.

2. MATERIALS AND METHODS
2.1. THE EXPERIMENTAL SETUP AND THE SIMULATED ROBOT
The experimental task (Figure 1) consists in learning to reach for
different circular objects positioned within the work space of a
simulated kinematic robotic arm. The system has to learn in the
best way and possibly shortest time a certain number of different
skills, solely on the basis of IM reinforcement signals.

There are 8 different objects, corresponding to 8 different
tasks: 2 are easy to be learnt, 2 are difficult and 4 are impossi-
ble to reach. The difficulty of the tasks is estimated on the basis of
preliminary experiments where we tested the average time needed
by a non-modular system to learn each of the different tasks with
a performance of 95% (which is the average target performance
in our experiments): easy tasks only need less than 2000 trials to
be learnt while difficult tasks need more than 20,000 trials. Note
that what we needed was not the precise measure of the difficulty
of each task, but two classes of tasks differing substantially in the
amount of trials needed to be learnt.

The choice of presenting tasks with different degrees of com-
plexity derives from the evidence that an agent (be it an animal, a
human, or a robot) can try to learn a great number of different

FIGURE 1 | The two dimensional work space of the simulated

kinematic robotic arm with the target objects. Small light-gray objects
are unreachable by the arm.

abilities that typically vary considerably with respect to their
learning difficulty, including many (probably the majority) that
are not learnable at all (consider, for example, an infant trying to
learn to reach for the ceiling). For this reasons, it is very impor-
tant for a system to avoid trying to acquire unlearnable skills and
to focus on those that can be learnt for the necessary amount
of time (enough for a satisfying learning but no more than
required).

The system is implemented as a simulated kinematic robot
composed by a two degree-of-freedom arm with a “hand” that
can reach for objects. The sensory system of the robot encodes
the proprioception of the arm, i.e., the angles of the two joints.
The output of the controller determines the displacement of the
two joints in the next time step.

2.2. ARM CONTROLLER AND CODING
Since we are looking for a system able to learn different skills and
cache them in its own repertoire of actions, we need an architec-
ture where different abilities are stored in different components of
the system (Baldassarre and Mirolli, 2013c). For this reason, the
controller of the arm consists in a modular architecture (Figure 2)
composed by n experts (8 in this implementation, one for each
possible task) and a selector that determines which expert/task
will be trained. For simplicity, we coupled each expert to a specific
task so that the expert is reinforced only for reaching the associ-
ated object, but this assumption does not affect the generality of
the results presented here.

Note that the values of the parameters in these experiments
were chosen in different ways. The parameters of the experts are
not directly connected to the goals of this work: here we are
interested in which is the best IM signal for driving the acqui-
sition of multiple skills regardless of the specific ability of the
experts. For this reason, the parameters related to the experts
are simply taken from our previous works (Santucci et al., 2010,
2013a; Mirolli et al., 2013). The parameters related to the selec-
tor and the selection procedure, as well as those connected to
the reinforcement signal provided to the selector, derive from a
hand search where we identified the values that guaranteed the
best results. In particular, we isolated the crucial parameters (the

FIGURE 2 | The modular architecture of the system with the controller

based on actor-critic experts, the selector and the predictor that

generates the IM reinforcement signal driving the selector. n is the
number of the tasks; Act A is the output of the actor of the expert,
controlling the displacement of the joints of the arm in the next step; Crt A
is the evaluation made by the critic of the expert.
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learning rate of the predictors, the temperature of the softmax
selection rule, and the temporal parameter α in the Q-learning
rule that determines the activity of the unit of the selector: see
below) and systematically (within limited ranges) changed their
values in order to find a valid setup. Those that guarantee the best
performance are the ones presented in the paper. Note that dif-
ferent values determine worse performances from a quantitative
point of view (all the systems need more time to accomplish the
tasks), but the differences between the experimental conditions
are qualitatively stable.

Each expert is a neural network implementation of the actor-
critic architecture (Barto et al., 1983) adapted to work with
continuous state and action spaces (Doya, 2000). The input to
the experts are the actual angles of the two joints of the arm, α

and β (ranging in [0, 180]), coded through Gaussian radial basis
functions (RBF) (Pouget and Snyder, 2000) in a two dimensional
grid (10 × 10 units).

The evaluation of the critic (V) of each expert is a linear com-
bination of the weighted sum of its input units. The actor of
each expert has two output units, fully connected with the input,
having a logistic transfer function:

oj = �

(
bj +

N∑
i

wjiai

)
�(x) = 1

1 + e−x
(1)

where bj is the bias of output unit j, N is the number of input
units, ai is the activation of unit i and wji is the weight of the con-
nection linking the input unit i to the output unit j. Each motor
command om

j is determined by adding noise to the activation of
the relative output unit:

om
j = oj + q (2)

where q is a random value uniformly drawn in [−0.1; 0.1]. The
resulting commands are limited in [0, 1] and then remapped in
[−25, 25] and control the displacement of the related arm joint
angles.

In each trial, the expert that controls the arm is trained
through a TD reinforcement learning algorithm. The TD-error
δ is computed as:

δ = (
Rt

e + γkVt)− Vt − 1 (3)

where Rt
e is the reinforcement for the expert e at time step t, Vt is

the evaluation of the critic of the expert at time step t, and γ is a
discount factor set to 0.9. The reinforcement is 1 when the hand
touches the object associated with the selected expert, 0 otherwise.

The connection weight wi of critic input unit i is updated in
the standard way (Sutton and Barto, 1998):

�wi = ηcδai (4)

where ηc is a learning rate, set to 0.08.
The weights of each actor are updated as follows (see Schembri

et al., 2007a):

�wji = ηaδ
(

om
j − oj

) (
oj
(
1 − oj

))
ai (5)

where ηa is the learning rate, set to 0.8, om
j − oj is the discrepancy

between the action executed by the system (determined by adding
noise) and that produced by the controller, and oj(1 − oj) is the
derivative of the logistic function.

The selector of the experts is composed by n units, one for each
expert/task to be selected/learnt. At the beginning of every trial
the selector determines the expert controlling the arm during that
trial through a softmax selection rule (Sutton and Barto, 1998).
The probability of unit k to be selected (Pk) is thus:

Pk = exp Qk
τ∑n

i = 0 exp Qi
τ

(6)

where Qk is the Q-value of unit k and τ is the temperature value
that rescales the input values (here the Q-values) and so regulate
the noise of the selection.

The activity of each unit is determined by a Q-learning rule
used to cope with n-armed bandit problems with non-stationary
rewards Sutton and Barto (1998):

Qt + 1
k = Qt

k + α[Rt
s − Qt

k] (7)

where Qt
k is the Q-value of the unit corresponding to the selected

expert during trial t, α is a temporal parameter set to 0.35 and Rt
s

is the reinforcement signal obtained by the selector.
The reinforcement signal (Rt

s) driving the selection of the
experts is the intrinsic reinforcement that we want to analyse in
order to find the one that is the most suitable for autonomously
learning multiple skills. Such signal is based on the error, or the
improvement in the error, of a predictor of future states of the
world. We now consider the different signals compared in this
work.

2.3. IM SIGNALS AND PREDICTORS
2.3.1. Prediction error signals
As mentioned in section 1, we tested the IM signals and the mech-
anisms (predictors) implemented to generate such signals that are
most used in the literature on IMs (see Figure 3 for a scheme of
the different experimental conditions).

FIGURE 3 | Scheme of the different experimental conditions, divided

by typology of signal, typology of intrinsic motivations, input, and

training algorithm. Note that the random (RND) condition is not
mentioned in this table because it does not use any reinforcement signal to
determine the selection of the experts. See Section 2.3.1 and 2.3.2 for a
detailed description of all the different conditions.
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• Knowledge-Based Predictor (KB-PE): The first IM reinforce-
ment signal was the prediction error (PE) of a predictor of
future states of the world (Schmidhuber, 1991a): in this model,
the IM signal is represented by the absolute value of the error
in predicting future states. The proposed mechanism was based
on a forward model receiving the actual state and the planned
action as input and predicting the next state. The idea is that
the system, driven by the intrinsic PE signal, would explore the
environment looking for new states that are not predictable by
the forward model, acquiring at the same time the competence
in new skills related to those states.

However, such predictors generate a signal which is coupled to the
knowledge of the mechanism (learning the model of the world)
and not to the competence of the system (learning skills). This
signal can be considered as a purely knowledge-based prediction
error (KB-PE) IM signal which may turn out to be inadequate
for driving the acquisition of a repertoire of skills (see Santucci
et al., 2012a; Mirolli and Baldassarre, 2013). In order to pro-
vide a stronger link between the predictor and the competence
of the system, an effective solution is to change the target of the
predictions. Instead of trying to anticipate every possible future
configuration, the predictor has to anticipate only one particular
state, the one connected to the trained skill, i.e., the goal state. In
this way the PE signal is generated on the basis of the error in
predicting the achievement of the goal, i.e., the generation of the
final result of the skill that the agent is learning. Unlike KB-IM,
this kind of signals can be considered competence-based (CB) IM
signals and the predictors that generate them can be identified
as CB-IM mechanisms (for the distinction between KB-IM and
CB-IM, see also Oudeyer and Kaplan, 2007b).

Here we tested different CB-IM mechanisms. While all these
mechanisms learn to predict the achievement of the goal state,
they differ in the information received as input. Note that all the
predictors also receive the information on which expert/task is
currently trained by the system.

• State-Action Predictor (SAP-PE): This predictor has the same
input as KB-PE mechanism, that is the actual state (the two
joints of the arm, α and β) and the planned action (�α and
�β), coded through RBFs. Training follows a standard delta
rule. Examples of SAP-PE can be found in Santucci et al. (2010,
2013b).

• State Predictor (SP-PE): The SP-PE is not widespread in the lit-
erature. A similar predictor can be found in Barto et al. (2004),
although this work proposed a system implemented within
the option theory framework (Sutton et al., 1999), where the
focus is more on the learning of the deployment of previously
acquired skills rather than on the learning of the skills them-
selves. In our previous works (Santucci et al., 2012a, 2013b)
we found that because its input is composed only by the actual
state of the agent this kind of predictors are more closely cou-
pled to the competence of the system than the SAP-PE: SP-PE
mechanism is able to anticipate the achievement of the goal
only when the agent has learnt the correct actions from the
different states. Input is coded through RBFs. SP-PE is trained
through a standard delta rule.

• Temporal Difference SAP (SAP-TD-PE): This predictor has
the same input as SAP-PE but it is trained through a TD-
learning algorithm with a discount factor set to 0.99. The
implementation of this mechanism derives from the knowledge
acquired in previous works (Mirolli et al., 2013; Santucci et al.,
2013a) where we found that standard SAP-PE predictors do not
work well with continuous states and actions. Providing the
predictors with a TD algorithm solves some of these problems
(for a generalization of TD-learning to general predictions, see
Sutton and Tanner, 2005).

• SP-TD-PE: As for the SAP-TD-PE mechanisms, this predictor
is the TD-learning version of SP-PE.

• Task Predictor (TP-PE): This predictor is inspired by our work
in a simple grid-world scenario (Santucci et al., 2012a). A
similar mechanism is implemented also in Hart and Grupen
(2013). Differently from all the previous predictors, TP-PE
does not make step-by-step predictions but a single prediction,
at the beginning of the trial, on the achievement of the selected
task. The input of this predictor consists only of the task/expert
that has been selected, encoded in a n-long binary vector, with
n equal to the number of tasks. The predictor is trained through
a standard delta rule. These characteristics should provide a
complete coupling between the signal generated by the predic-
tor and the competence of the system in achieving each task:
the predictor has no further information and can learn to antic-
ipate the achievement of the target state only when the agent
has really acquired a high competence in the related skill. In this
way the selector should give the control to an expert only when
it is effectively learning, shifting to a different expert when the
competence to perform the related task has been completely
acquired.

All CB-PE mechanisms generate a prediction (P) in the range [0,
1] related to the expectation that the system will accomplish the
goal state within the time out of the trial. The error in predicting
the goal state provides the intrinsic reinforcement signal to the
selector of the system, whose activity determines which expert
controls the system during the next trial and, at the same time,
determines the expert that is trained by the system. This PE rein-
forcement signal is always positive: with the KB mechanism it is
equal to the absolute value of the error; with CB mechanisms it is
1-P when the system reach the goal state and 0 otherwise.

For all the systems implemented with the different PE mecha-
nisms, the temperature τ value of Equation 6 is set to 0.01.

2.3.2. Prediction error improvement signals
As pointed out by Schmidhuber (1991b), PE signals may
encounter problems in stochastic environments: if the achieve-
ment of a target state is probabilistic, the predictor will continue
to make errors indefinitely. This means that the reinforcement
will be never completely canceled and the system may keep on try-
ing to train a skill even when it cannot improve any more. In order
to solve this problem several systems (e.g., Schmidhuber, 1991b;
Oudeyer et al., 2007a) use the improvement of the prediction
error (PEI) rather than the PE as the IM signal.

For this reason, we also tested all the mechanisms described
in section 2.3.1 using their PEI (instead of the PE) as the
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reinforcement signal for the selector. Examples of KB-PEI can
be found in Schmidhuber (1991b); Huang and Weng (2002);
Baranes and Oudeyer (2009); an example of a SAP-PEI mech-
anism can be found in Oudeyer et al. (2007a). All the other
mechanisms (SP-PEI, SAP-TD-PEI, SP-TD-PEI and TP-PEI), are
tested here for the first time.

The PEI at time t was calculated as the difference between the
average absolute PEs calculated over a period T of 40 time steps:

PEIt =
∑t − T

i = t − (2T − 1) |PE|i
T

−
∑t

i = t − (T − 1) |PE|i
T

(8)

In addition to the other mechanisms, in the PEI condition
we also tested another CB-IM signal (Schembri et al., 2007a,b;
Baldassarre and Mirolli, 2013b):

• Temporal-Difference Predictor (TD): This mechanism uses
the TD-error (see Equation 3) of the selected expert as the
intrinsic reinforcement signal that drives the selector. More
precisely, here we use the average TD-error within the trial as
the IM signal. Indeed, the TD-error can be considered a mea-
sure of the expert improvement in achieving its reinforcement
and for this reason a measure of the competence improvement.

For all the systems implemented with the different PEI mecha-
nisms the temperature τ value of the Equation 6 is set to 0.008.
For the TD mechanism, the temperature τ is 0.01, while the α of
Equation 7 is 0.25.

In order to better evaluate the performance of the simulated
robot in the experimental setup when driven by the IM signals
generated by the different mechanisms, we also tested a system
that selects experts randomly (RND). Sometimes random strate-
gies can indeed turn out to be surprisingly good: however, the
best IM signal to drive the selection and acquisition of different
skills in the shortest time, should guide the system better than a
random selection.

2.4. HYPOTHESES AND COMPARATIVE CRITERIA
The main purpose of this work is to investigate which is the
most suitable IM learning signal for driving the acquisition of a
repertoire of different skills in the shortest time. In our previous
works (Santucci et al., 2012a, 2013b), we proposed that the most
important feature of such a signal should be its coupling with
the competence in the skill that the system is trying to learn. For
this reason our first hypothesis is that competence based signals
should perform better then knowledge based ones.

With respect to the various CB mechanisms implemented, we
expect that the TD versions of SAP and SP conditions should
perform better than their normal versions since we know from
previous works (Mirolli et al., 2013; Santucci et al., 2013a) that the
latter ones do not work well with continuous states and actions.
Furthermore, we also expect TP to perform better than both SAP
and SP. With respect to PE vs. PEI, we predict that PE signals may
behave a bit better than PEI signals, as the latter are probably more
noisy and less strong than the former. Finally, we do not know
how the TD error signal may perform with respect to the other
PEI signals.

We compare the different IM signals by measuring their veloc-
ity in learning multiple tasks. In particular, we run different
experiments (see section 3) and count the number of trials (aver-
aged over several repetitions of the experiment) needed by each
condition to achieve an average performance of 95% in the 4
learnable tasks. We chose the average of 95% as the target per-
formance since we want a value that is able to identify a satisfying
capability of a system to learn different skills. If we used a different
target performance (e.g., 90 or 99%) they would be qualitatively
the same.

3. RESULTS
Each condition was tested for 400,000 trials. At the beginning of
every trial the selector determines which expert will control the
activity of the arm in that trial. Each trial ends if the selected
expert reaches its target object or after a time out of 20 time steps.

For every mechanism, we ran different simulations varying the
learning rate (LR) of the predictor (9 different values) because
we wanted to be sure that the results were not dependent on the
use of a specific set of LRs. For each LR we ran 20 repetitions
of the experiment. In the TD and RND condition, where there
is not a separate predictor (in RND there is no IM signal, in TD
we use the TD-error of the experts), we ran 180 repetitions of
the experiment to balance the total number of replications in the
other conditions.

3.1. PE SIGNALS
Figure 4 shows the number of trials (averaged over the 180 repli-
cations) needed by the different PE conditions to achieve an
average performance of 95% in the 4 learnable tasks. The results
clearly underline, confirming one of our hypotheses, how the TP-
PE mechanisms is the one that generates the best signal to drive
the system in achieving a high average performance in the learn-
able tasks in the shortest time (average of about 130,000 trials).
As expected (see Section 2.3.1 and 2.4), the SAP-PE and the SP-
PE are not able, working within continuous states and actions,

FIGURE 4 | Average number of trials needed by the different conditions

to achieve an average performance of 95% in the 4 learnable tasks

(average results of 180 replications: 20 replication by 9 learning rates

for the systems with predictors, 180 replications for the random

system) in the different experimental conditions. If a system has not
reached 95% at the end of the 400,000 trials we report on the
corresponding bar the average performance at the end of the simulation.
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to generate a good signal to guide the selection and the learning
of skills. SAP-TD-PE and SP-TD-PE are able to drive the system
in achieving the average target performance within the 400,000
trials but they are slower than the TP-PE system. Both KB-PE and
RND conditions can reach high performance within the end of
the experiment (more than 90%), but they are not able to achieve
the target value of 95%. An interesting result is that the system
driven by the random selection reaches an average performance
(93%) higher than the one driven by KB-PE mechanism (91%).

In Figure 5 we show a detailed analysis of the average per-
formance of the system in the different conditions with different
values of the learning rate for the predictors. SAP-PE and SP-PE
are not able, regardless from the learning rate of the predictor, to
achieve the target performance, while SAP-TD-PE and SP-TD-PE
seems to be sensitive to the value of the learning rate of the pre-
dictor (SP-TD-PE more than SAP-TD-PE). Differently, TP-PE is
very robust with respect to the value of the learning rate of the
predictor: regardless of this value this condition is always the best
performer, being able to achieve a high performance in a short
time.

ThesegeneralresultsareevenmoreevidentifwelookatFigure 6,
where the performance of the best and worst replications of every
condition are shown: the overall best performance is achieved
by a replication of the TP-PE condition that is able to reach the
target performance in about 50,000 trials. As in the case of average

performances, the best replications of SAP-PE and SP-PE are not
able to reach the target performance while KB-PE and RND have
comparable performance. Even more impressive are the results of
the worst replications: the TP-PE mechanism is the only one that
is able to drive the system in achieving the target performance
within the given time also in its worst replication. The other
conditions reflect the average results, with the KB-PE condition
performing worse than random selection in its worst replication.

To understand the causes of these results, for each condition
we analyzed the average selections of the experts connected to
the 4 learnable tasks during time and the average level of per-
formance achieved on those tasks. Data are related to the best
learning rate value of the predictor of each different condition.
In this way we can check if the signal generated by the predictors
is able to drive the selector in a proper way, following the actual
competence acquired by the experts. Data of RND system are not
shown: in this case experts are always selected (on average) uni-
formly, and hence the system wastes time in selecting experts that
cannot learn anything or that have already learnt their tasks (e.g.,
the two easy tasks).

Figure 7 (left) shows the results of the KB-PE mechanisms. In
this condition the system is not driven by an IM signal connected
to the competence of the system in learning the skills, but to the
knowledge acquired by the predictor in anticipating every pos-
sible future state. For this reason the system is not selecting the

FIGURE 5 | Average number of trials needed by the system to

achieve a performance in the 4 learnable tasks of 95% with

different values of the learning rates of the predictors (average on

20 replications per learning rate). If a system has not reached 95%
we report above the corresponding bar the average performance at the
end of the simulation.
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FIGURE 6 | Left: Number of trials needed by the best replication
of each condition to achieve the target performance. When the
target value is not achieved within the time limit, the final

performance is reported inside the bar. Right: Average
performance achieved by the system in the worst replication of
each experimental condition.

FIGURE 7 | Top: Average performance on the 4 learnable tasks in the best condition (with respect to the learning rate of the predictor) of KB-PE, SAP-PE,
SP-PE. Bottom: Average selection probability for the experts associated to the 4 learnable tasks, in the same condition.

experts connected to the tasks that are still to be learnt, but rather
the experts that are surprising the predictor reaching whatever
unpredicted state. These experts include also those related to the
4 non-learnable tasks. This process leads to a random selection
(random-selection value is 0.125 because it is calculated on all the
8 tasks). While this is not a problem for the two easiest tasks (task
1 and task 3) that are learnt after few trials, the canceling of the IM
signal and the consequent absence of a focused learning severely
impairs the learning of the difficult tasks (task 2 and task 4).

The result of the KB-PE condition confirm one of our main
hypotheses, clearly underlining how a KB-IM signal is inadequate
to properly drive an agent in learning different skills: it either
continues to select already learnt tasks, or it does not properly
select those that are still to be learnt. This is the reason why, if we
are looking at improving the competence of a system, we should
use CB-IM mechanisms.

If we look at data related to SAP-PE and SP-PE (Figure 7, cen-
ter and right) it is clear that these mechanisms are not able to
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cancel in a proper way the PE signal provided by the achievement
of the goal states. For this reason SAP-PE, on average, focuses on
one of the easiest tasks (whose target states, on average, are rapidly
discovered by the system) although the robot has completely
acquired the related competence. SP-PE is able to anticipate the
achievement of the easy tasks, but it learns too slowly these pre-
dictions: for this reason, although task 1 and task 2 have both been
learned at about 70,000 trials the system still focuses on them for
further trials, wasting precious time for learning the more difficult
skills.

SAP-TD-PE and SP-TD-PE (Figure 8, left and center) present
the opposite problem: these mechanisms learn very fast to predict
the reaching of the objects, even faster than the actual competence
of the system in those tasks. Although these are CB mechanisms,
the learning process of these predictors is not strictly coupled with
the ability of the system to reach for the objects. This is evident
comparing the progress in the performance with the selections:
the predictors cancel the signals before the system has acquired
the competence related to the different tasks determining a selec-
tion which is not optimally coupled to the actual performance of
the system. However, in spite of this problem, these mechanisms
are able to guide the system in reaching the target performance
within a reasonable time. This is because, differently from KB-PE
and RND, although turning too fast to a random selection, they
perform selections only on the 4 learnable tasks (that are the only
ones that can generate a PE) and not on all the 8 tasks. SAP-TD-
PE and SP-TD-PE do not provide a perfect IM signal, but they are
a good example of how even a sub-optimal CB-IM signal is able
to drive the learning of skills better than a KB signal.

Differently from all the other conditions, the TP-PE mecha-
nism (Figure 8, right) is able to drive the complete learning of
the skills in relatively few trials. The reason of this performance is
connected to the signal generated by the TP-PE mechanism: this
signal is strictly coupled with the competence of the system in the

task that it is learning. Looking at the average development of the
experiment, it is clear how the selector, driven by this CB-IM sig-
nal, assigns the control of the robot only to an expert connected
to a task that has still to be learnt, shifting to another one when
a skill has been fully achieved. Easy skills need just few trials to
be learnt and for this reason the system focuses on their training
(and selection) only for a very short time at the beginning of
the experiment. As soon as the predictor has learnt to anticipate
the achievement of those target states, it cancels their respective
signals and drives the agent to search for other skills to acquire.
Difficult tasks require a longer time to be learnt so the system
focuses on selecting the related experts longer, until a high perfor-
mance has been achieved. When all the tasks have been learnt the
predictor has learnt to anticipate the achievement of all the target
states, so the selector receives no more intrinsic reinforcements
and generates an (almost) random selection.

3.2. PEI SIGNALS
Figure 9 shows the average number of trials needed by the sys-
tem to achieve the target performance of 95% within the different
conditions. As with the PE signal, also with the PEI signal the
TP-PEI condition is the one that is able to guide the system in
achieving the target performance in the shortest time. However,
the average number of trials needed by those conditions that best
perform with PE signals (TP, SAP-TD, SP-TD) is raised. At the
same time, those conditions that with PE signal were not able
to achieve the target average performance (95%) in the learnable
tasks, with PEI significantly improve their results, with SAP-PEI
and SP-PEI reaching a performance similar to SAP-TD-PEI and
SP-TD-PEI. This is due to the properties of PEI signal: if a predic-
tor is not able to improve its ability to anticipate the achievement
of a target state, there is no improvement in the prediction error
and the signal is canceled. So, despite the predictor is not able to
correctly anticipate the achievement of the easy tasks even when

FIGURE 8 | Top: Average performance on the 4 learnable tasks in the best condition (with respect to the learning rate of the predictor) of SAP-TD-PE,
SP-TD-PE, TP-PE. Bottom: Average selection probability for the experts associated to the 4 learnable tasks, in the same conditions.
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FIGURE 9 | Average number of trials needed by the system to achieve

an average performance of 95% in the 4 learnable tasks (average

results of 180 replications: 20 replications by 9 learning rates for the

systems with predictors, and 180 replications for the RND ad TD

conditions) in the different experimental conditions. If a system has not
reached 95% we report on the corresponding bar the average performance
at the end of the simulation.

their competence is fully acquired (as in SAP-PEI and SP-PEI
conditions), the constant error generates no PEI signal and allows
the system to shift to the selection of different experts possibly
discovering new learnable skills. The TD condition guarantees a
performance that is similar to those of the other CB signal (except
for TP-PEI, which is the best performer), while when the system
is driven by the KB-IM signal it is not able to achieve satisfying
results: KB-PEI turns out to be the worst PEI condition.

As anticipated in our hypotheses, PEI signals are much noisier
and weaker than PE signals. This is clear from Figure 10, showing
how all the conditions (including TP) present a high sensitivity
to the variation in the learning rate of the predictors. However,
TP-PEI is the one that is able to drive the system in achieving the
target performance in the shortest number of trials (only 150,000,
on average, with learning rate 0.05).

Data on the average performances are confirmed by Figure 11,
where we show the best (Figure 11, left) and worst (Figure 11,
right) replications of all the different conditions. As for PE signal,
also with PEI the best replication of the TP-PEI condition is
the absolute best among all the replications of all the condi-
tions and even its worst replication is the one that reaches the
highest performance compared to the worst replications of the
other conditions. KB-PEI confirms to be the worst PEI con-
dition: even its best replication (Figure 11, left) is performing
as the RND selector. TD condition shows a great variance in
its different replications: its best replication (Figure 11, left) is
only the 5th performer, while its worst replication is the second
best (among the worst replications of all the conditions) after
the TP.

As with PE experiments (section 3.1), to better understand
the results we analyzed data showing the average selections of the
experts connected to the 4 learnable tasks during time and the
average level of performance achieved on those tasks. Data are
related to the best learning rate value of each different condition,
while for TD condition we look at the average performance and

selections on 20 replications (consecutive and including the best
replication of the condition).

The poor performance of KB-PEI (Figure 12, left) is related
to the bad selection determined by the KB-IM signal: the
experts related to the 4 learnable tasks are clearly selected ran-
domly.

When driven by CB-IM signals the system reaches a better per-
formance, with differences between the conditions implemented
with different mechanisms. In SAP-PEI and SP-PEI conditions
the selection is very noisy (Figure 12, center and right). Although
learnable tasks are selected more than in RND and KB conditions,
the already weak signal is flattened by the activity of the predic-
tors that are not able to significantly improve in their ability to
anticipate the target states.

SAP-TD-PEI and SP-TD-PEI (Figure 13, left and center) are
able to cancel the signal deriving from the rapidly learnt easier
tasks, but at the same time they present the problem we found
with the PE: these mechanisms can be too fast in canceling the IM
signal, determining a decrease in the probability of selecting the
complex tasks even if the system has still competence to acquire.
This is confirmed by looking at data of SAP-TD-PEI condition,
where the PEI signal for task 4 is drastically decreased around
200,000 trials, when the system has reach an average performance
on that task of only about 80%.

As in the experiment with the PE signal, the TP-PEI mecha-
nisms is the one that is able to drive the system in selecting and
learning the different skills in the shortest time. The reason is the
same as with PE results: even in its PEI version, the CB-IM signal
generated by the TP mechanism is the only one that is closely con-
nected to the competence acquired by the system in the different
learnable tasks (Figure 13, right). Easy tasks, which are learnt very
fast, are selected only during the short time needed to raise their
performance. Thanks to the canceling of the intrinsic reinforce-
ment signal provided to the selector, the system is able to shift to
the complex tasks. At about 150,000 trials, on average, the system
has reached a high performance on task 4: due to the connection
of the TP mechanism to the competence of the agent, the PEI-IM
signal related to that task fades away and the system focuses only
on the skill that at that time of the experiment is the least efficient
(task 2).

As mentioned in section 2.3.2, together with the different PEI
signals we also tested another CB-IM signal provided by TD-
error of the selected expert. As previously described, the average
performance of TD condition is similar to those of other CB-
IM conditions with PEI signal (except for TP, which is the best
performer). However, if we look at the average performance on
20 replications (consecutive and including the best replication
of this condition) we can see that when driven by the TD sig-
nal the system reaches a performance that is similar or even
better than those of the other conditions (except for TP) in
their best learning rate condition (confront Figure 14, left, with
Figures 12, 13, top). Indeed, if we look at the average selections
(Figure 14, right), we can see that TD signal is able to generate
a sequence of selections that are connected to the competence
progress of the system, although less than the one provided by
the TP mechanism.
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FIGURE 10 | Average number of trials needed by the system to

achieve a performance in the 4 learnable tasks of 95% with different

values of the learning rates of the predictors (average on 20

replications per learning rate). If a system has not reached 95% we
report above the corresponding bar the average performance at the end
of the simulation.

FIGURE 11 | Left: Number of trials needed by the best replication of each condition to achieve the target performance. Right: Average performance achieved
by the system in the worst replication of each experimental condition.
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FIGURE 12 | Average performance on the 4 learnable tasks (top) and average selection probability for the associated expert (bottom) in the best

condition (with respect to the learning rate) of KB, SAP, SP.

FIGURE 13 | Average performance on the 4 learnable tasks (top) and average selection probability for the associated expert (bottom) in the best

condition (with respect to the learning rate) of SAP-TD-PEI, SP-TD-PEI, TP-PEI.

FIGURE 14 | Average performance and selections in TD condition.
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4. DISCUSSION
In this paper we analyzed different kinds of IM signals in order to
find the most suitable to drive a system in selecting and learning
different skills in the shortest time. To tackle this important issue,
we implemented a simulated two-dimensional kinematic robotic
arm with a hierarchical architecture able to train and cache dif-
ferent skills and we tested it within continuous spaces and actions
in an experimental scenario where the agent had to learn to reach
different objects.

The first important result validate one of our main hypotheses:
a purely KB-IM signal (as those implemented in Schmidhuber,
1991a,b; Huang and Weng, 2002) is not able to satisfactorily drive
the acquisition of multiple skills. This signal is coupled to the
knowledge of the KB predictor that tries to anticipate every pos-
sible future state of the world. The PE or PEI signal deriving from
this kind of mechanism drives the system in exploring the envi-
ronment without any specific target: this is why the performance
of the KB condition is similar to RND condition, where the sys-
tem is guided by a random selection of its experts. Note that the
implementation provided in this work helps the KB mechanisms.
Indeed, here we used the intrinsic reinforcement signal to drive
the selection of the experts. In a previous work (Santucci et al.,
2012a), we showed that if the KB-IM signal is provided directly
to an actor-critic expert the system continues to explore the envi-
ronment to train the predictor without learning any skill. With
our results we are not saying that KB-IM are useless or wrong:
simply they are involved in different processes, which are related
to knowledge acquisition more than competence acquisition.

In order to optimize the IM-based acquisition of skills, learn-
ing signals have to be strictly connected to the actual competence
in those skills, i.e., to the actual competence in achieving target
goals. CB-IM signals provide such a coupling and the results of
our experiments underlie how the stronger that coupling, the bet-
ter the performance of the system (see Figure 15 for the ranking
of the results of all the experimental conditions). Indeed, not
all the CB-IM mechanisms guarantee the same close connec-
tion between the correctness of the predictor and the competence
acquired by the system. Some mechanisms like SAP and SP (espe-
cially when generating a PE signal) are not good predictors in
continuous spaces and actions as they are too slow: they are
not able to properly cancel the IM signal even if the agent has
fully acquired the related competence, thus leading the system to
focus on already trained experts. Other CB mechanisms (SAP-
TD, SP-TD) turned out to provide a useful learning signal for the
acquisition of skills, although they present the problem of being
too fast in canceling the intrinsic reinforcement signal that fades
away before the robot has completely learnt the related skills.

As expected, the condition that was able to learn all the skills
in the shortest time, both in PE and PEI conditions, was the one
where the IM reinforcement signal for the selector was generated
by what we called TP mechanism: a predictor of the goal states
(the target states connected to the different skills) that receives
as input only the information on which expert has been selected
to be trained. The mechanism that we proposed provides a close
connection between the ability of the predictor in anticipating
future target state and the actual competence acquired by the
agent in the related skill. This coupling guarantees an IM signal

FIGURE 15 | Ranking of the different experimental conditions

summarizing the result of both PE and PEI signals with respect to the

ability to reach the target average performance of 95% in the four

learnable tasks. For every condition the performance of the best
replication is also shown. Performances are measured in thousands of
trials. If a condition has not reached 95% at the end of the 400,000 trials of
the experiment we report the average performance at the end of the
simulation.

which is particularly appropriate for the selection and acquisi-
tion of different skills: the intrinsic reinforcement is present when
the system is learning a new task, it is canceled when the com-
petence on that task has been learnt and reappears when a new,
still-to-be-learnt task is encountered by the system.

Moreover, we also tested the TD condition where the TD-error
signal of the active expert is used as the intrinsic reinforcement for
the selector. This solution (Schembri et al., 2007a,b; Baldassarre
and Mirolli, 2013b) is able to cope with the same problems con-
nected to stochastic environments that may lead to use PEI signals
instead of PE signals. The TD condition performs comparably to
the other sub-optimal CB-IM driven conditions in PEI experi-
ments. However, in its best replications, it is able to reach very
high performance and, moreover, it presents important compu-
tational advantages: the absence of a separate component for the
predictions reduces computational time and avoids the setting of
its specific learning rate.

Despite the growing theoretical understanding of the differ-
ences between functions and mechanisms of IM (e.g., Oudeyer
and Kaplan, 2007b; Stout and Barto, 2010; Santucci et al., 2012a;
Mirolli and Baldassarre, 2013), their implications have not been
fully exploited in specific models. In particular, there is still a
confusion between KB mechanisms and CB mechanisms. Some
still use KB-IM signals to drive the acquisition of competence,
leading to inappropriate learning signals as underlined by the
results of our present work. Others shifted, without realizing, to
CB mechanisms probably because they encountered the problems
connected to KB signals and competence acquisition. However,
due to the lack of understanding of the differences between
KB-IM and CB-IM, they turn out to implement sub-optimal
CB mechanisms. An example is Oudeyer et al. (2007a) where,
although they describe the implemented intrinsic signal as the
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PEI of the knowledge of the system, they use the predictor to
anticipate few (three) high-level abstract important states (visual
detection of an object; activation of a biting sensor; perception of
an oscillating object). These high-level states represent few rele-
vant states among a huge number of non-interesting states, and
each of them can be achieved only with sequences of actions. This
predictor is very similar to the SAP we tested in our experiment,
which in fact is a CB mechanism, even if its results are not the best
possible.

Looking at the implementation of our system, a strong limit is
the fact that the possible tasks to be learnt are given at the begin-
ning of the experiment. A further step toward more autonomous
and versatile agents would be to built systems that self-determine
their goals. Recently, some effort has been made in the field of
hierarchical reinforcement learning to find good solutions to the
problem of setting useful goals. Most of these techniques (e.g.,
McGovern and Barto, 2001; Mehta et al., 2008; Konidaris and
Barto, 2009) focus on searching adequate sub-goals on the basis
of externally given tasks (reward functions). Only few works (e.g.,
Mugan and Kuipers, 2009; Vigorito and Barto, 2010) tried to
implement systems able to set their own goals independently
from any specific task, which is a fundamental condition for real
open-ended autonomous development.

Another important point concerns the generality of our
results. In future works it will be interesting to test the different
IM learning signals in different experimental setups (e.g., adding
more dimensions and degrees of freedom; using a dynamic arm)
where different and possibly more difficult tasks have to be learnt:
this would be a further confirmation of our results and conclu-
sions. However, we believe that the main findings of this work are
quite general. Indeed, the differences between KB-IM and CB-IM
lie in the typology of information used to determine such signals
and not on the specific setups they are implemented in. Similarly,
the conclusion that a proper CB-IM mechanism has to generate a
signal which is closely connected to the actual competence of the
system is a general finding that can be exploited regardless of the
particular architecture used to implement the agent.

Our expectation is that testing the different IM signals studied
here in more realistic conditions will strengthen the advantages
of using the TP signal with respect to the other implementations
of IMs. In a real environment the number of skills that can be
acquired is much larger then the one considered here, and the dif-
ficulty to learn the skills is much more heterogeneous. Moreover,
in the real world there are strong dependencies between different
competences, so that some skills can be learnt only after learning
others. All these characteristics of real environments emphasize
the importance for an IM signal to be strongly connected to the
competence of the system, thus avoiding to waste time in easy
(or previously learnt) tasks or in too difficult (or not possible)
tasks, and focussing on the skills that can be learnt at the moment,
which may be later exploited to learn other skills. Our results show
that only a signal that is closely linked to the competence of the
system is able to provide these general features.

Looking at the different typologies of IMs, our intuition is
that they may play complementary roles, with KB-IM being able
to inform the system of novel or unexpected states of the envi-
ronment, driving the agent to generate new target states, and

CB-IM being able to guide the acquisition of the skills related
to those targets. This further model, that tries to integrate the
different typologies of IMs, will probably require a more com-
plex architecture able to manage both the control of the effectors,
the generation and selection of the different motivations and the
combination of different IM learning signals.
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Most of computer science focuses on automatically solving given computational prob-
lems. I focus on automatically inventing or discovering problems in a way inspired by
the playful behavior of animals and humans, to train a more and more general problem
solver from scratch in an unsupervised fashion. Consider the infinite set of all computable
descriptions of tasks with possibly computable solutions. Given a general problem-solving
architecture, at any given time, the novel algorithmic framework PowerPlay (Schmidhu-
ber, 2011) searches the space of possible pairs of new tasks and modifications of the
current problem solver, until it finds a more powerful problem solver that provably solves
all previously learned tasks plus the new one, while the unmodified predecessor does not.
Newly invented tasks may require to achieve a wow-effect by making previously learned
skills more efficient such that they require less time and space. New skills may (partially)
re-use previously learned skills.The greedy search of typical PowerPlay variants uses time-
optimal program search to order candidate pairs of tasks and solver modifications by their
conditional computational (time and space) complexity, given the stored experience so far.
The new task and its corresponding task-solving skill are those first found and validated.
This biases the search toward pairs that can be described compactly and validated quickly.
The computational costs of validating new tasks need not grow with task repertoire size.
Standard problem solver architectures of personal computers or neural networks tend to
generalize by solving numerous tasks outside the self-invented training set; PowerPlay’s
ongoing search for novelty keeps breaking the generalization abilities of its present solver.
This is related to Gödel’s sequence of increasingly powerful formal theories based on adding
formerly unprovable statements to the axioms without affecting previously provable theo-
rems.The continually increasing repertoire of problem-solving procedures can be exploited
by a parallel search for solutions to additional externally posed tasks. PowerPlay may be
viewed as a greedy but practical implementation of basic principles of creativity (Schmidhu-
ber, 2006a, 2010). A first experimental analysis can be found in separate papers (Srivastava
et al., 2012a,b, 2013).

Keywords: problem discovery, task invention, skill learning, general problem solver, intrinsic motivation, curiosity,
creativity

1. INTRODUCTION
Given a realistic piece of computational hardware with specific
resource limitations, how can one devise software for it that will
solve all, or at least many, of the a priori unknown tasks that
are in principle easily solvable on this architecture? In other
words, how to build a practical general problem solver, given
the computational restrictions? It does not need to be universal
and asymptotically optimal (Levin, 1973; Hutter, 2002; Schmid-
huber, 2004b, 2009) like the recent (not necessarily practically
feasible) general problem solvers discussed in Section 7.2; instead
it should take into account all constant architecture-specific slow-
downs ignored in the asymptotic optimality notation of theo-
retical computer science, and be generally useful for real-world
applications.

Let us draw inspiration from biology. How do initially help-
less human babies become rather general problem solvers over
time? Apparently by playing. For example, even in the absence of
external reward or hunger they are curious about what happens
if they move their eyes or fingers in particular ways, creating lit-
tle experiments which lead to initially novel and surprising but
eventually predictable sensory inputs, while also learning motor
skills to reproduce these outcomes. (See Schmidhuber, 1991a,b,
1999, 2006a, 2010; Yi et al., 2011 and Section 7.4 for previous
artificial systems of this type.) Infants continually seem to invent
new tasks that become boring as soon as their solutions become
known. Easy-to-learn new tasks are preferred over unsolvable or
hard-to-learn tasks. Eventually the numerous skills acquired in this
creative, self-supervised way may get re-used to facilitate the search
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for solutions to external problems, such as finding food when hun-
gry. While kids keep inventing new problems for themselves, they
move through remarkable developmental stages (Harlow et al.,
1950; Berlyne, 1954; Piaget, 1955).

Here I introduce a novel unsupervised algorithmic framework
for training a computational problem solver from scratch, con-
tinually searching for the simplest (fastest to find) combination
of task and corresponding task-solving skill to add to its grow-
ing repertoire, without forgetting any previous skills (Section 2),
or at least without decreasing average performance on previously
solved tasks (Section 6.1). New skills may (partially) re-use pre-
viously learned skills. Every new task added to the repertoire is
essentially defined by the time required to invent it, to solve it,
and to demonstrate that no previously learned skills got lost. The
search takes into account that typical problem solvers may learn
to solve tasks outside the growing self-made training set due to
generalization properties of their architectures. The framework
is called PowerPlay because it continually (Ring, 1994) aims
at boosting computational ability and problem-solving capac-
ity, reminiscent of humans or human societies trying to boost
their general power/capabilities/knowledge/skills in playful ways,
even in the absence of externally defined goals, although the skills
learned by this type of pure curiosity may later help to solve
externally posed tasks.

Unlike our first implementations of curious/creative/playful
agents from the 1990s (Schmidhuber, 1991a, 1999; Storck et al.,
1995) (Section 7.4; compare (Barto, 2013; Dayan, 2013; Nehm-
zow et al., 2013; Oudeyer et al., 2013)), PowerPlay provably
(by design) does not have any problems with online learning – it
cannot forget previously learned skills, automatically segmenting
its life into a sequence of clearly identified tasks with explicitly
recorded solutions. Unlike the task search of theoretically opti-
mal creative agents (Schmidhuber, 2006a, 2010) (Section 7.4),
PowerPlay’s task search is greedy, but at least practically feasible.

Some claim that scientists often invent appropriate problems
for their methods, rather than inventing methods to solve given
problems. The present paper formalizes this in a way that may be
more convenient to implement than those of our previous work
(Schmidhuber, 1991a, 1999, 2006a, 2010), and describes a sim-
ple practical framework for building creative artificial scientists or
explorers that by design continually come up with the fastest to
find, initially novel, but eventually solvable problems.

1.1. BASIC IDEAS
In traditional computer science, given some formally defined task,
a search algorithm is used to search a space of solution candidates
until a solution to the task is found and verified. If the task is hard
the search may take long.

To automatically construct an increasingly general problem
solver, let us expand the traditional search space in an unusual
way, such that it includes all possible pairs of computable tasks
with possibly computable solutions, and problem solvers. Given
an old problem solver that can already solve a finite known set of
previously learned tasks, a search algorithm is used to find a new
pair that provably has the following properties: (1) the new task
cannot be solved by the old problem solver. (2) The new task can
be solved by the new problem solver (some modification of the old

one). (3) The new solver can still solve the known set of previously
learned tasks.

Once such a pair is found, the cycle repeats itself. This will result
in a continually growing set of known tasks solvable by an increas-
ingly more powerful problem solver. Solutions to new tasks may
(partially) re-use solutions to previously learned tasks.

Smart search (e.g., Section 4.1 and Algorithm 4.1) orders can-
didate pairs of the type (task, solver) by computational complexity,
using concepts of optimal universal search (Levin, 1973; Schmid-
huber, 2004b), with a bias toward pairs that can be described by
few additional bits of information (given the experience so far)
and that can be validated quickly.

At first glance it might seem harder to search for pairs of tasks
and solvers instead of solvers only, due to the apparently larger
search space. However, the additional freedom of inventing the
tasks to be solved may actually greatly reduce the time inter-
vals between problem solver advances, because the system may
often have the option of inventing a rather simple task with an
easy-to-find solution.

A new task may be about simplifying the old solver such that it
can still solve all tasks learned so far, but with less computational
resources such as time and storage space (e.g., Section 3.1 and
Algorithm 6.1).

Since the new pair (task, solver) is the first one found and vali-
dated, the search automatically trades off the time-varying efforts
required to either invent completely new, previously unsolvable
problems, or compressing/speeding up previous solutions. Some-
times it is easier to refine or simplify known skills, sometimes to
invent new skills.

On typical problem solver architectures of personal computers
(PCs) or neural networks (NNs), while a limited known number
of previously learned tasks has become solvable, so too has a large
number of unknown, never-tested tasks (in the field of Machine
Learning, this is known as generalization). PowerPlay’s ongoing
search is continually testing (and always trying to go beyond) the
generalization abilities of the most recent solver instance; some of
its search time has to be spent on demonstrating that self-invented
new tasks are not already solvable.

Often, however, much more time will have to be spent on mak-
ing sure that a newly modified solver did not forget any of the
possibly many previously learned skills. Problem solver modular-
ization (Section 3.3, especially 3.3.2) may greatly reduce this time
though, making PowerPlay prefer pairs whose validation does
not require the re-testing of too many previously learned skills,
thus decomposing at least part of the search space into some-
what independent regions, realizing divide and conquer strategies
as by-products of its built-in drive to invent and validate novel
tasks/skills as quickly as possible.

A biologically inspired hope is that as the problem solver is
becoming more and more general, it will find it easier and eas-
ier to solve externally posed tasks (Section 5), just like growing
infants often seem to re-use their playfully acquired skills to solve
teacher-given problems.

1.2. OUTLINE OF REMAINDER
Section 2 will introduce basic notation and Variant 1 of
the algorithmic framework PowerPlay, which invokes the
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essential procedures Task Invention, Solver Modification,
and Correctness Demonstration. Section 3 will discuss details
of these procedures.

More detailed instantiations of PowerPlay will be described in
Section 4.3 (an evolutionary method, Algorithm 4.3) and Section
4.1 (an asymptotically optimal program search method,Algorithm
4.1).

As mentioned above, the skills acquired to solve self-generated
tasks may later greatly facilitate solutions to externally posed tasks,
just like the numerous motor skills learned by babies during curi-
ous exploration of its world often can be re-used later to maximize
external reward. Sections 5 and 6.1 will discuss variants of the
framework (e.g., Algorithm 6.1) in which some of the tasks can be
defined externally.

Section 6.1 will also describe a natural variant of the frame-
work that explicitly penalizes solution costs (including time and
space complexity), and allows for forgetting aspects of previous
solutions, provided the average performance on previously solved
tasks does not decrease.

Section 7 will point to illustrative experiments (Section 7.8)
described in separate papers (Srivastava et al., 2012b, 2013), and
discuss relations to previous work.

2. NOTATION AND ALGORITHMIC FRAMEWORK
POWERPLAY (VARIANT I)

B∗ denotes the set of finite sequences or bitstrings over the binary
alphabet B= {0, 1}, λ the empty string, x, y, z, p, q, r, u strings in
B∗, N the natural numbers, R the real numbers, ε ∈ R a positive
constant, m, n, n0, k, i, j, k, l non-negative integers, L(x) the num-
ber of bits in x (where L(λ)= 0), f, g functions mapping integers
to integers. We write f (n)=O(g (n)) if there exist positive c, n0

such that f(n)≤ cg (n) for all n> n0.
The computational architecture of the problem solver may be

a deterministic universal computer, or a more limited device such
as a finite state automaton or a feedforward neural network (NN)
(Bishop, 2006). All such problem solvers can be uniquely encoded
(Gödel, 1931) or implemented on universal computers (Church,
1936; Post, 1936; Turing, 1936) such as universal Turing Machines
(TM). Therefore, without loss of generality, the remainder of this
paper assumes a fixed universal reference computer whose input
programs and outputs are elements of B∗. A user-defined subset
S ⊂B∗ defines the set of possible problem solvers. For example,
if the problem solver’s architecture is itself a binary universal TM
or a standard computer, then S represents its set of possible pro-
grams, or a limited subset thereof – compare Sections 3.2 and 4.1.
If it is a feedforward NN, thenS could be a highly restricted subset
of programs encoding the NN’s possible topologies and weights
(floating point numbers) – compare Section 7.8 and the original
SLIM NN paper (Schmidhuber, 2012).

In what follows, for convenience I will often identify bitstrings
in B∗ with things they encode, such as integers, real-valued vectors,
weight matrices, or programs – the context will always make clear
what is meant.

The problem solver’s initial program is called s0. There is a set
of possible task descriptions T ⊂B∗. T may be the infinite set of
all possible computable descriptions of tasks with possibly com-
putable solutions, or just a small subset thereof. For example, a

simple task may require the solver to answer a particular input
pattern with a particular output pattern (more formal details on
pattern recognition tasks are given in Section 3.1.1). Or it may
require the solver to steer a robot toward a goal through a sequence
of actions (more formal details on sequential decision-making
tasks in unknown environments are given in Section 3.1.2). There
is a particular sequence of task descriptions T 1, T 2, . . ., where each
unique Ti ∈T (i= 1, 2, . . .) is chosen or “invented” by a search
method described below such that the solutions of T 1, T 2, . . ., Ti

can be computed by si, the i-th instance of the program, but not
by s i−1 (i= 1, 2, . . .). Each Ti consists of a unique problem identi-
fier that can be read by si through some built-in input processing
mechanism (e.g., input neurons of an NN (Schmidhuber, 2012)),
and a unique description of a deterministic procedure for deter-
mining whether the problem has been solved. Denote T≤i = {T 1,
. . ., Ti}; T<i = {T 1, . . ., Ti−1}.

A valid task Ti(i> 1) may require solving at least one previously
solved task Tk(k< i) more efficiently, by using less resources such
as storage space, computation time, energy, etc., thus achieving a
wow-effect. See Section 3.1.

Tasks and problem solver modifications are computed and vali-
dated by elements of another appropriate set of programs P ⊂B*.
Programs p ∈P may contain instructions for reading and execut-
ing (parts of) the code of the present problem solver and reading
(parts of) a recorded history Trace ∈B∗ of previous events that
led to the present solver. The algorithmic framework (Algorithm
2) incrementally trains the problem solver by finding p ∈P that
increase the set of solvable tasks.

3. TASK INVENTION, SOLVER MODIFICATION,
CORRECTNESS DEMO

A program tested by Algorithm 2 has to allocate its runtime to solve
three main jobs, namely, Task Invention, Solver Modification,
Correctness Demonstration. Now examples of each will be
listed.

3.1. IMPLEMENTING TASK INVENTION
Part of the job of pi ∈P is to compute Ti ∈T . This will consume
some of the total computation time allocated to pi. Two examples
will be given: pattern recognition tasks are treated in Section 3.1.1;
sequential decision-making tasks in Section 3.1.2.

3.1.1. Example: pattern recognition tasks
In the context of learning to recognize or analyze patterns, Ti could
be a 4-tuple (Ii, Oi, ti, ni)∈I ×O×N×N, where I, O⊂B∗,
and Ti is solved if si satisfies L(si)< ni and needs at most ti dis-
crete time steps to read Ii and compute Oi and halt. Here Ii itself
may be a pair (I 1

i , I 2
i ) ∈ B∗ × B∗, where I1

i is constrained to be
the address of an image in a given database of patterns, and I2

i
is a pi-generated “query” that uniquely specifies how the image
should be classified through target pattern Oi, such that the same
image can be analyzed in different ways during different tasks. For
example, depending on the nature of the invented task sequence,
the problem solver could eventually learn that O= 1 if I 2

= 1001
(suppressing task indices) and the image addressed by I 1 contains
at least one black pixel, or if I 2

= 0111 and the image shows a cow.
Since the definition of task Ti includes bounds ni, ti on compu-

tational resources, Ti may be about solving at least one Tk(k< i)
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Algorithm 2: Algorithmic Framework PowerPlay (Variant I)

Initialize s0 in some way.
for i: = 1, 2, …do

repeat
Let a search algorithm (examples in Section 4) create a new candidate program p ∈ P .
Give p limited time to do (not necessarily in this order):
∗ Task Invention: Let p compute a task T ∈ T . See Section 3.1.
∗ Solver Modification: Let p compute a value of the variable q ∈ S ⊂ B∗ (a candidate for si)
by computing a modification of s i−1. See Section 3.2.
∗ Correctness Demonstration: Let p try to show that T cannot be solved by s i−1, but that
T and all Tk(k < i) can be solved by q. See Section 3.3.

until Correctness Demonstration was successful
Set pi: = p;Ti: = T ;si: = q; update Trace.

end for

more efficiently, corresponding to a wow-effect. This in turn may
also yield more efficient solutions to other tasks Tl(l< i, l 6= k).
In practical applications one may insist that such efficiency gains
must exceed a certain threshold ε > 0, to avoid task series causing
sequences of very minor improvements.

Note that ni and ti may be unnecessary in special cases such
as the problem solver being a fixed topology feedforward NN
(Bishop, 2006) whose input and target patterns have constant size
and whose computational efforts per pattern need constant time
and space resources.

Assuming sufficiently powerful S , P , in the beginning, trivial
tasks such as simply copying I 2

i onto Oi may be interesting in the
sense that PowerPlay can still validate and accept them, but they
will become boring (inadmissible) as soon as they are solvable by
solutions to previous tasks that generalize to new tasks.

3.1.2. Example: general decision-making tasks in dynamic
environments

In the more general context of general problem solving/sequential
decision making/reinforcement learning/reward optimization
(Newell and Simon, 1963; Kaelbling et al., 1996; Sutton and Barto,
1998) in unknown environments, there may be a set I ⊂B∗ of
possible task identification patterns and a set J ⊂B∗ of programs
that test properties of bitstrings. Ti could then encode a 4-tuple (Ii,
Ji, ti, ni)∈I ×J ×N×N of finite bitstrings with the following
interpretation: si must satisfy L(si)< ni and may spend at most ti

discrete time steps on first reading Ii and then interacting with an
environment through a sequence of perceptions and actions, to
achieve some computable goal defined by Ji.

More precisely, while Ti is being solved within ti time steps, at
any given time 1≤ t≤ ti, the internal state of the problem solver
at time t is denoted ui(t )∈B∗; its initial default value is ui(0).
For example, ui(t ) may encode the current contents of the inter-
nal tape of a TM, or of certain addresses in the dynamic storage
area of a PC, or the present activations of an LSTM recurrent
NN (Hochreiter and Schmidhuber, 1997). At time t, si can spend
a constant number of elementary computational instructions to
copy the task description Ti or the present environmental input
xi(t )∈B∗ and a reward signal ri(t )∈B∗ (interpreted as a real num-
ber) into parts of ui(t ), then update other parts of ui(t ) (a function

of ui(t− 1)) and compute action yi(t )∈B∗ encoded as a part of
ui(t ). yi(t ) may affect the environment, and thus future inputs.

If P allows for programs that can dynamically acquire addi-
tional physical computational resources such as additional CPUs
and storage, then the above constant number of elementary com-
putational instructions should be replaced by a constant amount
of real time, to be measured by a reliable physical clock.

The sequence of 4-tuples (xi(t ), ri(t ), ui(t ), yi(t )) (t= 1, . . ., ti)
gets recorded by the so-called trace Tracei ∈B∗. If at the end of the
interaction a desirable computable property Ji(Tracei) (computed
by applying program Ji to Tracei) is satisfied, then by definition the
task is solved. The set J of possible Ji may represent an infinite
set of all computable tasks with solutions computable by the given
hardware. For practical reasons, however, the set J of possible Ji

may also be restricted to bit sequences encoding just a few possible
goals. For example, Ji may only encode goals of the form: a robot
arm steered by program or “policy” si has reached a certain tar-
get (a desired final observation xi(ti) recorded in Tracei) without
measurably bumping into an obstacle along the way, that is, there
were no negative rewards, that is, ri(τ )≥ 0 for τ = 1 . . . ti.

If the environment is deterministic, e.g., a digital physics
simulation of a robot, then its current state can be encoded
as part of u(t ), and it is straight-forward for Correctness
Demonstration to test whether some si still can solve a previously
solved task Tj(j< i). However, what if the environment is only par-
tially observable, like the real world, and non-stationary, changing in
unknown ways? Then Correctness Demonstration must check
whether si still produces the same action sequence in response to
the input sequence recorded in Tracej (often this replay-based test
will actually be computationally cheaper than a test involving the
environment). Achieving the same goal in a changed environment
must be considered a different task, even if the changes are just due to
noise on the environmental inputs. (Sure, in the real world sj(j> i)
might actually achieve Ji faster than si, given the description of
Ti, but Correctness Demonstration in general cannot know
whether this acceleration was due to plain luck – it must stick to
reproducing Tracej to make sure it did not forget anything.)

See Section 6.2, however, for a less strict PowerPlay variant
whose Correctness Demonstration directly interacts with the
real world to collect sufficient problem-solving statistics through
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repeated trials, making certain assumptions about the probabilistic
nature of the environment, and the repeatability of experiments.

3.2. IMPLEMENTING SOLVER MODIFICATION
Part of the job of pi ∈P is also to compute si, possibly profiting
from having access to si−1, because only few changes of si−1 may
be necessary to come up with an si that goes beyond si−1. For
example, if the problem solver is a standard PC, then just a few
bits of the previous software si−1 may need to be changed.

For practical reasons, the set S of possible si may be greatly
restricted to bit sequences encoding programs that obey the syntax
of a standard programing language such as LISP or Java. In turn,
the programing language describingP should be greatly restricted
such that any pi ∈P can only produce syntactically correct si.

If the problem solver is a feedforward NN with pre-wired,
unmodifiable topology, then S will be restricted to those bit
sequences encoding valid weight matrices, si will encode its i-
th weight matrix, and P will be restricted to those p ∈P that
can produce some si ∈S . Depending on the user-defined pro-
graming language, pi may invoke complex pre-wired subprograms
(e.g., well-known learning algorithms) as primitive instructions –
compare separate experimental analysis (Srivastava et al., 2012b,
2013).

In general, p itself determines how much time to spend on
Solver Modification – enough time must be left for Task
Invention and Correctness Demonstration.

3.3. IMPLEMENTING CORRECTNESS DEMONSTRATION
Correctness demonstration may be the most time-consuming
obligation of pi. At first glance it may seem that as the sequence T 1,
T 2, . . . is growing, more and more time will be needed to show
that si but not s i−1 can solve T 1, T 2, . . ., Ti, because one naive
way of ensuring correctness is to re-test si on all previously solved
tasks. Theoretically more efficient ways are considered next.

3.3.1. Most general: proof search
The most general way of demonstrating correctness is to encode
(in read-only storage) an axiomatic system A that formally
describes computational properties of the problem solver and pos-
sible si, and to allow pi to search the space of possible proofs
derivable from A, using a proof searcher subroutine that sys-
tematically generates proofs until it finds a theorem stating that
si but not s i−1 solves T 1, T 2, . . ., Ti (proof search may achieve
this efficiently without explicitly re-testing si on T 1, T 2, . . ., Ti).
This could be done like in the Gödel Machine (Schmidhuber,
2009) (Section 7.2), which uses an online extension of Univer-
sal Search (Levin, 1973) to systematically test proof techniques:
proof-generating programs that may invoke special instructions
for generating axioms and applying inference rules to prolong an
initially empty proof∈B∗ by theorems, which are either axioms
or inferred from previous theorems through rules such as modus
ponens combined with unification, e.g., (Fitting, 1996). P can be
easily limited to programs generating only syntactically correct
proofs (Schmidhuber, 2009). A has to subsume axioms describing
how any instruction invoked by some s ∈S will change the state u
of the problem solver from one step to the next (such that proof
techniques can reason about the effects of any si). Other axioms

encode knowledge about arithmetics etc (such that proof tech-
niques can reason about spatial and temporal resources consumed
by si).

In what follows, Correctness Demonstrations will be dis-
cussed that are less general but sometimes more convenient to
implement.

3.3.2. Keeping track which components of the solver affect which
tasks

Often it is possible to partition s ∈S into components, such as
individual bits of the software of a PC, or weights of a NN. Here
the k-th component of s is denoted sk. For each k (k= 1, 2, . . .)
a variable list Lk

= (T k
1 , T k

2 , . . .) is introduced. Its initial value
before the start of PowerPlay is Lk

0 , an empty list. Whenever pi

found si and Ti at the end of Correctness Demonstration, each
Lk is updated as follows: its new value Lk

i is obtained by append-

ing to Lk
i−1 those Tj /∈ Lk

i−1(j = 1, . . . , i) whose current (possibly

revised) solutions now need sk at least once during the solution-
computing process, and deleting those Tj whose current solutions

do not use sk any more.
PowerPlay’s Correctness Demonstration thus has to test

only tasks in the union of all Lk
i . That is, if the most recent task

does not require changes of many components of s, and if the
changed bits do not affect many previous tasks, then Correctness
Demonstration may be very efficient.

Since every new task added to the repertoire is essentially
defined by the time required to invent it, to solve it, and to show that
no previous tasks became unsolvable in the process, PowerPlay is
generally“motivated”to invent tasks whose validity check does not
require too much computational effort. That is, PowerPlay will
often find pi that generate si−1-modifications that don’t affect too
many previous tasks, thus decomposing at least part of the spaces
of tasks and their solutions into more or less independent regions,
realizing divide and conquer strategies as by-products. Compare a
recent experimental analysis of this effect (Srivastava et al., 2012b,
2013).

3.3.3. Advantages of prefix code-based problem solvers
Let us restrict P such that tested p ∈P cannot change any com-
ponents of si−1 during Solver Modification, but can create a
new si only by adding new components to si−1. (This means
freezing all used components of any sk once Tk is found.) By
restricting S to self-delimiting prefix codes like those generated
by the Optimal Ordered Problem Solver (OOPS) (Schmidhuber,
2004b), one can now profit from a sometimes particularly efficient
type of Correctness Demonstration, ensuring that differences
between si and si−1 cannot affect solutions to T<i under certain
conditions. More precisely, to obtain si, half the search time is
spent on trying to process Ti first by si−1, extending or prolong-
ing si−1 only when the ongoing computation requests to add new
components through special instructions (Schmidhuber, 2004b) –
then Correctness Demonstration has less to do as the set
T<i is guaranteed to remain solvable, by induction. The other
half of the time is spent on processing Ti by a new sub-program
with new components s ′i , a part of si but not of si−1, where s ′i
may read s i−1 or invoke parts of si−1 as sub-programs to solve
T≤i – only then Correctness Demonstration has to test si
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not only on Ti but also on T<i (see (Schmidhuber, 2004b) for
details).

A simple but not very general way of doing something sim-
ilar is to interleave Task Invention, Solver Modification,
Correctness Demonstration as follows: restrict all p ∈P such
that they must define Ii:= i as the unique task identifier Ii for Ti

(see Section 3.1.2); restrict all s ∈S such that the input of Ii= i
automatically invokes sub-program s ′i , a part of si but not of si−1

(although s ′i may read si−1 or invoke parts of si−1 as sub-programs
to solve Ti). Restrict Ji to a subset of acceptable computational
outcomes (Section 3.1.2). Run si until it halts and has computed a
novel output acceptable by Ji that is different from all outputs com-
puted by the (halting) solutions to T<i ; this novel output becomes
Ti ’s goal. By induction over i, since all previously used components
of si−1 remain unmodified, the set T<i is guaranteed to remain
solvable, no matter s ′i . That is, Correctness Demonstration
on previous tasks becomes trivial. However, in this simple setup
there is no immediate generalization across tasks like in OOPS
(Schmidhuber, 2004b) and the previous paragraph: the trivial
task identifier i will always first invoke some s ′i different from
all s ′k(k 6= i), instead of allowing for solving a new task solely by
previously found code.

4. IMPLEMENTATIONS OF POWERPLAY
PowerPlay is a general framework that allows for plugging
in many differents search and learning algorithms. The present
section will discuss some of them.

4.1. IMPLEMENTATION BASED ON OPTIMAL ORDERED PROBLEM
SOLVER OOPS

The i-th problem is to find a program pi ∈P that creates si and
Ti and demonstrates that si but not si−1 can solve T 1, T 2, . . ., Ti.
This yields a perfectly ordered problem sequence for a variant of
the Optimal Ordered Problem Solver OOPS (Schmidhuber, 2004b)
(Algorithm 4.1).

While a candidate program p ∈P is executed, at any given dis-
crete time step t= 1, 2, . . ., its internal state or dynamical storage U
at time t is denoted U (t )∈B∗ (not to be confused with the solver’s
internal state u(t ) of Section 3.1.2). Its initial default value is U (0).
E.g., U (t ) could encode the current contents of the internal tape
of a TM (to be modified by p), or of certain cells in the dynamic
storage area of a PC.

Once pi is found, pi, si, Ti, Tracei (if applicable; see Section 3.1.2)
will be saved in unmodifiable read-only storage, possibly together
with other data observed during the search so far. This may greatly
facilitate the search for pk, k> i, since pk may contain instructions
for addressing and reading pj, sj, Tj, Tracej(j= 1, . . ., k− 1) and
for copying the read code into modifiable storage U, where pk may
further edit the code, and execute the result, which may be a useful
subprogram (Schmidhuber, 2004b).

Define a probability distribution P(p) on P to represent the
searcher’s initial bias (more likely programs p will be tested ear-
lier (Levin, 1973)). P could be based on program length, e.g.,
P(p)= 2−L(p), or on a probabilistic syntax diagram (Schmidhuber,
2004a,b). See Algorithm 4.1.

OOPS keeps doubling the time limit until there is sufficient
runtime for a sufficiently likely program to compute a novel,

previously unsolvable task, plus its solver, which provably does
not forget previous solutions. OOPS allocates time to programs
according to an asymptotically optimal universal search method
(Levin, 1973) for problems with easily verifiable solutions, that is,
solutions whose validity can be quickly tested. Given some prob-
lem class, if some unknown optimal program p requires f (k) steps
to solve a problem instance of size k and demonstrate the cor-
rectness of the result, then this search method will need at most
O(f (k)/P(p))=O(f (k)) steps – the constant factor 1/P(p) may be
large but does not depend on k. Since OOPS may re-use previously
generated solutions and solution-computing programs, however,
it may be possible to greatly reduce the constant factor associated
with plain universal search (Schmidhuber, 2004b).

The big difference to previous implementations of OOPS is that
PowerPlay has the additional freedom to define its own tasks. As
always, every new task added to the repertoire is essentially defined
by the time required to invent it, to solve it, and to demonstrate
that no previously learned skills got lost.

4.1.1. Building on existing OOPS source code
Existing OOPS source code (Schmidhuber, 2004a) uses a FORTH-
like universal programing language to defineP . It already contains
a framework for testing new code on previously solved tasks, and
for efficiently undoing all U -modifications of each tested program.
The source code requires few changes to implement the additional
task search described above.

4.1.2. Alternative problem solvers based on recurrent neural
networks

Recurrent NNs (RNNs, e.g., (Robinson and Fallside, 1987; Werbos,
1988; Schmidhuber, 1992a; Williams and Zipser, 1994; Hochre-
iter and Schmidhuber, 1997)) are general computers that allow
for both sequential and parallel computations, unlike the strictly
sequential FORTH-like language of Section 4.1.1. They can com-
pute any function computable by a standard PC (Schmidhuber,
1990). The original PowerPlay report (Schmidhuber, 2011) used
a fully connected RNN called RNN1 to define S , where wlk is
the real-valued weight on the directed connection between the l-
th and k-th neuron. To program RNN1 means to set the weight
matrix s=〈wlk

〉. Given enough neurons with appropriate activa-
tion functions and an appropriate 〈wlk

〉, Algorithm 4.1 can be
used to train s. P may itself be the set of weight matrices of
a separate RNN called RNN2, computing tasks for RNN1, and
modifications of RNN1, using techniques for network-modifying
networks as described in previous work (Schmidhuber, 1992b,
1993a,b).

In first experiments (Srivastava et al., 2012b, 2013), a par-
ticularly suited NN called a self-delimiting NN or SLIM NN
(Schmidhuber, 2012) is used. During program execution or acti-
vation spreading in the SLIM NN, lists are used to trace only those
neurons and connections used at least once. This also allows for
efficient resets of large NNs which may use only a small fraction of
their weights per task. Unlike standard RNNs, SLIM NNs are eas-
ily combined with techniques of asymptotically optimal program
search (Levin, 1973; Schmidhuber et al., 1997; Schmidhuber, 2003,
2004b) (Section 4.1). To address overfitting, instead of depending
on pre-wired regularizers and hyper-parameters (Bishop, 2006),
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Algorithm 4.1: Implementing PowerPlay with Procedure OOPS (Schmidhuber, 2004b)

(see text for details) - initialize s0 and u (internal dynamic storage for s ∈ S) and U (internal dynamic storage for p ∈ P),
where each possible p is a sequence of subprograms p’, p”, p”’.
for i:= 1, 2, …do

set variable time limit tlim:= 1;
let the variable set H be empty;
set Boolean variable DONE: = FALSE
repeat

if H is empty then
set tlim := 2tlim; H := {p ∈ P : P(p)tlim≥ 1}

else
choose and remove some p from H
while not DONE and less than P(p)tlim time was spent on p do

execute the next time step of the following computation:
1. Let p’ compute some task T ∈ T and halt.
2. Let p” compute q ∈ S by modifying a copy of s i−1, and halt.
3. Let p”’ try to show that q but not si-1 can solve T 1, T 2, …, Ti-1, T.

If p”’ was successful set DONE:=TRUE.
end while
Undo all modifications of u and U due to p. This does not cost more time than executing p in the
while loop above (Schmidhuber, 2004b).

end if
until DONE
set pi:=p; Ti:=T; si:=q;
add a unique encoding of the 5-tuple (i, pi, si, Ti, Tracei) to read-only storage
readable by programs to be tested in the future.

end for

SLIM NNs can in principle learn to select by themselves their own
runtime and their own numbers of free parameters, becoming
fast and slim when necessary. Efficient SLIM NN learning algo-
rithms (LAs) track which weights are used for which tasks (Section
3.3.2), to greatly speed up performance evaluations in response to
limited weight changes. LAs may penalize the task-specific total
length of connections used by SLIM NNs implemented on the 3-
dimensional brain-like multi-processor hardware to be expected
in the future. This encourages SLIM NNs to solve many sub-
tasks by subsets of neurons that are physically close (Schmidhuber,
2012).

4.2. ADAPTING THE PROBABILITY DISTRIBUTION ON PROGRAMS
A straight-forward extension of the above works as follows: when-
ever a new pi is found, P is updated to make either only pi or all p1,
p2, . . ., pi more likely. Simple ways of doing this are described in
previous work (Schmidhuber et al., 1997). This may be justified to
the extent that future successful programs turn out to be similar
to previous ones.

4.3. IMPLEMENTATION BASED ON STOCHASTIC OR EVOLUTIONARY
SEARCH

A possibly simpler but less general approach is to use an evolu-
tionary algorithm to produce an s-modifying and task-generating
program p as requested by PowerPlay, according to Algorithm
4.3, which refers to the recurrent net problem solver of Section
4.1.2.

5. ADDING EXTERNAL TASKS
The growing repertoire of the problem solver may facilitate learn-
ing of solutions to externally posed tasks. For example, one may
modify PowerPlay such that for certain i, Ti is defined exter-
nally, instead of being invented by the system itself. In general,
the resulting si will contain an externally inserted bias in form
of code that will make some future self-generated tasks easier to
find than others. It should be possible to push the system in a
human-understandable or otherwise useful direction by regularly
inserting appropriate external goals. See Algorithm 6.1.

Another way of exploiting the growing repertoire is to sim-
ply copy si for some I and use it as a starting point for a search
for a solution to an externally posed task T, without insisting
that the modified si also can solve T 1, T 2, . . ., Ti. This may be
much faster than trying to solve T from scratch, to the extent the
solutions to self-generated tasks reflect general knowledge (code)
re-usable for T.

In general, however, it will be possible to design external
tasks whose solutions do not profit from those of self-generated
tasks – the latter even may turn out to slow down the search.

On the other hand, in the real world the benefits of curi-
ous exploration seem obvious. One should analyze theoretically
and experimentally under which conditions the creation of self-
generated tasks can accelerate the solution to externally generated
tasks – see (Schmidhuber, 1991a, 1999, 2002; Storck et al., 1995;
Cuccu et al., 2011; Luciw et al., 2011; Schaul et al., 2011; Yi et al.,
2011) for previous simple experimental studies in this vein.
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Algorithm 4.3: PowerPlay for RNNs Using Stochastic or Evolutionary Search

Randomly initialize RNN1’s variable weight matrix 〈wlk
〉 and use the result as s0 (see Section 4.1.2)

for i:= 1, 2, …do
set Boolean variable DONE = FALSE
repeat

use a black box optimization algorithm BBOA (many are possible (Rechenberg, 1971; Gomez et al., 2008; Wierstra et al., 2008;
Sehnke et al., 2010)) with adaptive parameter vector θ to create some T ∈ T (to define the task input to RNN1; see Section 3.1)
and a modification of s i−1, the current 〈wlk

〉 of RNN1, thus obtaining a new candidate q ∈S
if q but not s i−1 can solve T and all Tk(k < i) (see Sections 3.3, 3.3.2) then

set DONE = TRUE
end if

until DONE
set si:= q; 〈wlk

〉:= q; Ti:= T; (also store Tracei if applicable, see Section 3.1.2). Use the information stored so far to adapt the
parameters θ of the BBOA, e.g., by gradient-based search (Wierstra et al., 2008; Sehnke et al., 2010), or according to the principles of
evolutionary computation (Rechenberg, 1971; Gomez et al., 2008; Wierstra et al., 2008).

end for

5.1. SELF-REFERENCE THROUGH NOVEL TASK SEARCH AS AN
EXTERNAL TASK

PowerPlay’s i-th goal is to find a pi ∈P that creates Ti and si

(a modification of si−1) and shows that si but not si−1 can solve
T≤i . As s itself is becoming a more and more general problem
solver, s may help in many ways to achieve such goals in self-
referential fashion. For example, the old solver si−1 may be able to
read a unique formal description (provided by pi) of PowerPlay’s
i-th goal, viewing it as an external task, and produce an output
unambiguously describing a candidate for (Ti, si). If s has a the-
orem prover component (Section 3.3.1), si−1 might even output
a full proof of (Ti, si)’s validity; alternatively pi could just use the
possibly suboptimal suggestions of si−1 to narrow down and speed
up the search. This is one of the reasons why Section 2 already
mentioned that programs p ∈P should contain instructions for
reading (and running) the code of the present problem solver.

6. SOFTENING TASK ACCEPTANCE CRITERIA OF
POWERPLAY

The PowerPlay variants above insist that s may not solve new
tasks at the expense of forgetting to solve any previously solved
task within its previously established time and space bounds. For
example, let us consider the sequential decision-making tasks from
Section 3.1.2. Suppose the problem solver can already solve task
Tk= (Ik, Jk, tk, nk)∈I ×J ×N×N. A very similar but admissible
new task Ti= (Ik, Jk, ti, nk), (i> k), would be to solve Tk substan-
tially faster: ti< tk – ε, as long as Ti is not already solvable by si−1,
and no solution to some Tl(l< i) is forgotten in the process.

Here I discuss variants of PowerPlay that soften the accep-
tance criteria for new tasks in various ways, for example, by
allowing some of the computations of solutions to previous non-
external (Section 5) tasks to slow down by a certain amount of
time, provided the sum of their runtimes does not increase. This
also permits the system to invent new previously unsolved tasks at
the expense of slightly increasing time bounds for certain already
solved non-external tasks, but without decreasing the average per-
formance on the latter. Of course, PowerPlay has to be modified
accordingly, updating average runtime bounds when necessary.

Alternatively, one may allow for trading off space and time
constraints in reasonable ways, e.g., in the style of asymptotically
optimal Universal Search (Levin, 1973), which essentially trades
one bit of additional space complexity for a runtime speedup
factor of 2.

6.1. POWERPLAY VARIANT II: EXPLICITLY PENALIZING TIME AND
SPACE COMPLEXITY

Let us remove time and space bounds from the task definitions of
Section 3.1.2, since the modified cost-based PowerPlay frame-
work below (Algorithm 6.1) will handle computational costs (such
as time and space complexity of solutions) more directly. In the
present section, Ti encodes a tuple (Ii, Ji)∈I ×J with interpre-
tation: si must first read Ii and then interact with an environment
through a sequence of perceptions and actions, to achieve some
computable goal defined by Ji within a certain maximal time
interval tmax (a positive constant). Let t ′s (T ) be tmax if s cannot
solve task T, otherwise it is the time needed to solve T by s. Let
l ′s(T ) be the positive constant lmax if s cannot solve T, otherwise
it is the number of components of s needed to solve task T by
s. The non-negative real-valued reward r(T ) for solving T is a
positive constant rnew for self-defined previously unsolvable T,
or user-defined if T is an external task solved by s (Section 5).
The real-valued cost Cost (s, TSET ) of solving all tasks in a task
set TSET through s is a real-valued function of: all l ′s(T ), t ′s (T )
(for all T ∈TSET ), L(s), and 6T∈TSET r(T ). For example, the
cost function Cost (s, TSET ) = L(s) + α

∑
T∈TSET [t ′s (T ) − r(T )]

encourages compact and fast solvers solving many different tasks
with the same components of s, where the real-valued positive
parameter α weighs space costs against time costs, and rnew should
exceed tmax to encourage solutions of novel self-generated tasks,
whose cost contributions should be below zero (alternative cost
definitions could also take into account energy consumption etc.).

Let us keep an analog of the remaining notation of Section
3.1.2, such as ui(t ), xi(t ), ri(t ), yi(t ), Tracei, Ji(Tracei). As always,
if the environment is unknown and possibly changing over time,
to test performance of a new solver s on a previous task Tk, only
Tracek is necessary – see Section 3.1.2. As always, let T≤i denote the
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set containing all tasks T 1, . . ., Ti (note that if Ti=Tk for some
k< i then it will appear only once in T≤i), and let ε > 0 again
define what is acceptable progress:

By Algorithm 6.1, si may forget certain abilities of si−1, provided
that the overall performance as measured by Cost (si, T≤i) has
improved, either because a new task became solvable, or previous
tasks became solvable more efficiently.

Following Section 3.3, Correctness Demonstration can
often be facilitated, for example, by tracking which components of
si are used for solving which tasks (Section 3.3.2).

To further refine this approach, consider that in phase i, the
list Lk

i (defined in Section 3.3.2) contains all previously learned

tasks whose solutions depend on sk. This can be used to deter-
mine the current value Val(sk

i ) of some component sk of s:

Val(sk
i ) = −

∑
T∈Lk

i
Cost (si , T≤i). It is a simple exercise to invent

PowerPlay variants that do not forget valuable components as
easily as less valuable ones.

The implementations of Sections 4.1 and 4.3 are easily adapted
to the cost-based PowerPlay framework. Compare separate
papers (Srivastava et al., 2012b, 2013).

6.2. PROBABILISTIC POWERPLAY VARIANTS
Section 3.1.2 pointed out that in partially observable
and/or non-stationary unknown environments Correctness
Demonstration must use Tracek to check whether a new si still
knows how to solve an earlier task Tk(k< i). A less strict variant of
PowerPlay, however, will simply make certain assumptions about
the probabilistic nature of the environment and the repeatability
of trials, assuming that a limited fixed number of interactions
with the real world are sufficient to estimate the costs c∗i , ci in
Algorithm 6.1.

Another probabilistic way of softening PowerPlay is to add
new tasks without proof that s won’t forget solutions to previous
tasks, provided Correctness Demonstration can at least show
that the probability of forgetting any previous solution is below
some real-valued positive constant threshold.

7. DISCUSSION
Here I briefly mention illustrative experiments described in detail
elsewhere (Srivastava et al., 2012b, 2013) and discuss certain
aspects and limitations of PowerPlay. I also discuss related
research, in particular, why the present work is of interest despite
the recent advent of theoretically optimal universal problem
solvers (Section 7.2), and how it can be viewed as a greedy but fea-
sible and sound implementation of the formal theory of creativity
(Section 7.4).

7.1. OUTGROWING TRIVIAL TASKS – COMPRESSING PREVIOUS
SOLUTIONS

What prevents PowerPlay from inventing trivial tasks forever by
extreme modularization, simply allocating a previously unused
solver part to each new task, which thus becomes rather quickly
verifiable, as its solution does not affect solutions to previous tasks
(Section 3.3.3)? On realistic but general architectures such as PCs
and RNNs, at least once the upper storage size limit of s is reached,
PowerPlay will start “compressing” previous solutions, making s

generalize in the sense that the same relatively short piece of code
(some part of s) helps to solve different tasks.

With many computational architectures, this type of compres-
sion will start much earlier though, because new tasks solvable by
partial reuse of earlier discovered code will often be easier to find
than new tasks solvable by previously unused parts of s. This also
holds for growing architectures with potentially unlimited storage
space.

Compare also PowerPlay Variant II of Section 6.1 whose
tasks may explicitly require improving the average time and space
complexity of previous solutions by some minimal value.

In general, however, over time the system will find it more and
more difficult to invent novel tasks without forgetting previous
solutions, a bit like humans find it harder and harder to learn
truly novel behaviors once they are leaving behind the initial rapid
exploration phase typical for babies. Experiments with various
problem solver architectures (e.g., (Srivastava et al., 2012b, 2013))
help to analyze such effects in detail.

7.2. RELATION TO THEORETICALLY OPTIMAL UNIVERSAL PROBLEM
SOLVERS

The new millenium brought universal problem solvers that are
theoretically optimal in a certain sense. The fully self-referential
(Gödel, 1931) Gödel machine (Schmidhuber, 2006b, 2009) may
interact with some initially unknown, partially observable envi-
ronment to maximize future expected utility or reward by solving
arbitrary user-defined computational tasks. Its initial algorithm
is not hardwired; it can completely rewrite itself without essen-
tial limits apart from the limits of computability, but only if a
proof searcher embedded within the initial algorithm can first
prove that the rewrite is useful, according to the formalized utility
function taking into account the limited computational resources.
Self-rewrites due to this approach can be shown to be globally
optimal, relative to Gödel’s well-known fundamental restrictions
of provability (Gödel, 1931). To make sure the Gödel machine
is at least asymptotically optimal even before the first self-rewrite,
one may initialize it by Hutter’s non-self-referential but asymptoti-
cally fastest algorithm for all well-defined problems Hsearch (Hutter,
2002), which uses a hardwired brute force proof searcher and
ignores the costs of proof search. Assuming discrete input/output
domains X/Y ⊂B∗, a formal problem specification f: X→Y (say,
a functional description of how integers are decomposed into their
prime factors), and a particular x ∈X (say, an integer to be factor-
ized), Hsearch orders all proofs of an appropriate axiomatic system
by size to find programs q that for all z ∈X provably compute f(z)
within time bound tq(z). Simultaneously it spends most of its time
on executing the q with the best currently proven time bound tq(x).
Hsearch is as fast as the fastest algorithm that provably computes
f(z) for all z ∈X, save for a constant factor smaller than 1+ ε (arbi-
trarily small real-valued ε > 0) and an f-specific but x-independent
additive constant (Hutter, 2002). Given some problem, the Gödel
machine may decide to replace Hsearch by a faster method suf-
fering less from large constant overhead, but even if it doesn’t, its
performance won’t be less than asymptotically optimal.

Why doesn’t everybody use such universal problem solvers
for all computational real-world problems? Because most real-
world problems are so small that the ominous constant slowdowns
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Algorithm 6.1: PowerPlay Framework (Variant II) Explicitly Handling Costs of SolvingTasks

Initialize s0 in some way
for i:= 1, 2, …do

Create new global variables Ti ∈ T , si ∈ S , pi ∈ P , ci , c∗i ∈ R (to be fixed by the end of repeat)
repeat

Let a search algorithm (Section 4.1) set pi, a new candidate program. Give pi limited time to do:
∗ Task Invention: Unless the user specifies Ti (Section 5), let pi set Ti.
∗ Solver Modification: Let pi set si by computing a modification of si-1 (Section 3.2).
∗ Correctness Demonstration: Let pi compute ci := Cost (si , T≤i), and c∗i := Cost (si−1, T≤i)

until c∗i − ci > ε (minimal savings of costs such as time/space/etc on all tasks so far)
Freeze/store forever pi, Ti, si, ci, c∗i

end for

(potentially relevant at least before the first self-rewrite) may be
large enough to prevent the universal methods from being feasible.

PowerPlay, on the other hand, is designed to incrementally
build a practical more and more general problem solver that can
solve numerous tasks quickly, not in the asymptotic sense, but by
exploiting to the max its given particular search algorithm and
computational architecture, with all its space and time limitations,
including those reflected by constants ignored by the asymptotic
optimality notation.

As mentioned in Section 5, however, one must now analyze
under which conditions PowerPlay’s self-generated tasks can
accelerate the solution to externally generated tasks (compare pre-
vious experimental studies of this type (Schmidhuber,1991a,1999,
2002; Storck et al., 1995)).

7.3. CONNECTION TO TRADITIONAL ACTIVE LEARNING
Traditional active learning methods (Fedorov, 1972) such as
AdaBoost (Freund and Schapire, 1997) have a totally different
set-up and purpose: there the user provides a set of samples
to be learned, then each new classifier in a series of classi-
fiers focuses on samples badly classified by previous classifiers.
Open-ended PowerPlay, however, (1) considers arbitrary com-
putational problems (not necessarily classification tasks); (2) can
self-invent all computational tasks; (3) takes into account all com-
putational costs, ordering task candidates by time and space com-
plexity, relative to the present knowledge. There is no need for a
pre-defined global set of tasks that each new solver tries to solve
better, instead the task set continually grows based on which task
is easy to invent and validate, given what is already known.

7.4. GREEDY IMPLEMENTATION OF ASPECTS OF THE FORMAL
THEORY OF CREATIVITY

The Formal Theory of Creativity (Schmidhuber, 2006a, 2010) con-
siders agents living in initially unknown environments. At any
given time, such an agent uses a reinforcement learning (RL)
method (Kaelbling et al., 1996) to maximize not only expected
future external reward for achieving certain goals, but also intrin-
sic reward for improving an internal model of the environmental
responses to its actions, learning to better predict or compress1

1It is hard to overestimate the cognitive significance of compressing the observation
history. For example, consider the video-like image sequence perceived by your brain

the growing history of observations influenced by its behavior,
thus achieving wow-effects, actively learning skills to influence
the input stream such that it contains previously unknown but
learnable algorithmic regularities. I have argued that the the-
ory explains essential aspects of intelligence including selective
attention, curiosity, creativity, science, art, music, humor, e.g.,
(Schmidhuber, 2006a, 2010). Compare recent related work, e.g.,
(Salge et al., 2012; Barto, 2013; Dayan, 2013; Nehmzow et al., 2013;
Oudeyer et al., 2013).

Like PowerPlay, such a creative agent produces a sequence of
self-generated tasks and their solutions, each task still unsolvable
before learning, yet becoming solvable after learning. The costs of
learning as well as the learning progress are measured, and enter
the reward function. Thus, in the absence of external reward for
reaching user-defined goals, at any given time the agent is moti-
vated to invent a series of additional tasks that maximize future
expected learning progress.

For example, by restricting its input stream to self-generated
pairs (I, O)∈I ×O like in Section 3.1.1, and limiting it to predict
only O, given I (instead of also trying to predict future (I, O) pairs
from previous ones, which the general agent would do), there will
be a motivation to actively generate a sequence of (I, O) pairs such
that the O are first subjectively unpredictable from their I but
then become predictable with little effort, given the limitations of
whatever learning algorithm is used.

Below some of PowerPlay’s apparent drawbacks are listed in
light of the above, followed by certain thoughts relativizing those
drawbacks.

as you are moving through your office. The natural way of greatly compressing it is
to construct an internal 3D model of the office space (here I am generalizing a pre-
vious analysis of the emergence of the concept of space (Philipona et al., 2004)). The
3D model allows for re-computing the entire high-resolution video from a com-
pact sequence of very low-dimensional eye coordinates and eye directions. (The
model itself typically can be specified by far fewer bits of information than needed
to store raw pixel data of a long video.) Even if the 3D model is not quite precise,
only relatively few extra bits will be required to encode the observed deviations
from the predictions of the model. It seems clear that the enormous compression of
sensory inputs achievable through an internal 3D world model is the main reason
for the latter’s existence. Data compression also explains the emergence of office
space-independent internal representations of movable objects such as pens. Many
additional examples of data compression in art and science and humor can be found
in previous papers (Schmidhuber, 2006a, 2010).
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1. Instead of maximizing future expected reward, PowerPlay
is greedy, always trying to find the simplest (easiest to find
and validate) task to add to the repertoire, or the simplest
way of improving the efficiency or compressibility of previ-
ous solutions, instead of looking further ahead, as a universal
RL method (Schmidhuber, 2006a, 2010) would do. That is,
PowerPlay may potentially sacrifice large long-term gains for
small short-term gains: the discovery of many easily solvable
tasks may at least temporarily prevent it from learning to solve
hard tasks.

However, on general computational architectures such as
RNNs (Section 4.1.2), PowerPlay is expected to soon run
out of easy tasks that are not yet solvable, due to the architec-
ture’s limited capacity and its unavoidable generalization effects
(many never-tried tasks will become solvable by solutions to the
few explicitly tested Ti). Compare Section 7.1.

2. The general creative agent above (Schmidhuber, 2006a, 2010)
is motivated to improve performance on the entire history of
previous still unsolved tasks, while PowerPlay may discard
much of this history, keeping only a selective list of previously
solved tasks.

However, as the system is interacting with its environment,
one could store the entire continually growing history, and
make sure that T always allows for defining the task of better
compressing the history so far.

3. PowerPlay as in Section 2 has a binary criterion for adding
knowledge (was the new task solvable without forgetting old
solutions?), while the general agent (Schmidhuber, 2006a,
2010) uses a more informative information-theoretic measure.

However, the cost-based PowerPlay framework (Algo-
rithm 6.1) of Section 6 offers similar, more flexible options,
rewarding compression or speedup of solutions to previously
solved tasks.

On the other hand, drawbacks of previous implementations of
formal creativity theory include:

1. Some previous approximative implementations (Schmidhu-
ber, 1991a; Storck et al., 1995) used traditional RL methods
(Kaelbling et al., 1996) with theoretically unlimited look-ahead.
But those are limited in many ways and not guaranteed to
work well in partially observable and/or non-stationary envi-
ronments where the reward function changes over time. They
won’t necessarily generate an optimal sequence of future tasks
or experiments.

2. Theoretically optimal implementations (Schmidhuber, 2006a,
2010) are currently still impractical, for reasons similar to those
discussed in Section 7.2.

Hence PowerPlay may be viewed as a greedy but feasible imple-
mentation of certain basic principles of creativity (Schmidhuber,
2006a, 2010). PowerPlay-based systems are continually moti-
vated to invent new tasks solvable by formerly unknown proce-
dures, or to compress or speed up problem-solving procedures
discovered earlier. Unlike previous implementations, PowerPlay
extracts from the lifelong experience history a sequence of clearly
identified and separated tasks with explicitly recorded solutions.

By design it cannot suffer from online learning problems affecting
its solver’s performance on previously solved problems.

7.5. BEYOND ALGORITHMIC ZERO-SUM TASK-INVENTION GAMES
PowerPlay’s most closely related previous task-inventing sys-
tem is the dual brain (Schmidhuber, 1997, 1999, 2002). There,
to address the computational costs of learning, and the costs of
measuring learning progress, computationally powerful encoders
and problem solvers (Schmidhuber, 1997, 2002) are implemented
as two very general, co-evolving, symmetric, opposing modules
called the right brain and the left brain. Both are able to influence
the construction of self-modifying probabilistic programs written
in a universal programing language. An internal storage for tem-
porary computational results of the programs is viewed as part of
the changing environment. Each module can suggest experiments
or self-invented computational tasks in the form of probabilis-
tic algorithms to be executed, and make predictions about their
effects, betting intrinsic reward on their outcomes. The opposing
module may accept such a bet in a zero-sum game by making a
contrary prediction, or reject it. In case of acceptance, the win-
ner is determined by executing the experiment and checking its
outcome; the intrinsic reward eventually gets transferred from the
surprised loser to the confirmed winner. Both modules try to max-
imize reward using a rather general RL algorithm (the so-called
success-story algorithm SSA (Schmidhuber et al., 1997)) designed
for complex stochastic policies (alternative RL algorithms could be
plugged in as well). Thus both modules are motivated to discover
novel tasks exhibiting novel algorithmic patterns/compressibility
(=surprising wow-effects), where the subjective baseline for nov-
elty is given by what the opponent already knows about the (exter-
nal or internal) world’s repetitive patterns. Since the execution of
any computational or physical action costs something (as it will
reduce the cumulative reward per time ratio), both modules are
motivated to focus on self-invented tasks that involve those parts
of the dynamic world that currently make surprises and learn-
ing progress easy, to minimize the costs of identifying promising
experiments and executing them. The system learns a partly hier-
archical structure of more and more complex skills or programs
necessary to solve the growing sequence of self-generated tasks,
reusing previously acquired simpler skills where this is benefi-
cial. Experimental studies exhibit several sequential developmental
stages, with and without external reward (Schmidhuber, 1999,
2002).

However, the dual brain system (Schmidhuber, 1999, 2002)
did not have a built-in guarantee that it cannot forget previously
learned skills, while PowerPlay as in Section 2 does (and the
time and space complexity-based variant Algorithm 6.1 of Section
6 can forget only if this improves the average efficiency of previous
solutions).

7.6. OPPOSING FORCES: IMPROVING GENERALIZATION THROUGH
COMPRESSION, BREAKING GENERALIZATION THROUGH NOVELTY
Two opposing forces are at work in PowerPlay. On the one hand,
the system continually tries to improve previously learned skills,
by speeding them up, and by compressing the used parameters
of the problem solver, reducing its effective size. The compression
drive tends to improve generalization performance, according to
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the principles of Occam’s Razor and Minimum Description Length
(MDL) and Minimum Message Length (MML) (Solomonoff, 1964,
1978; Kolmogorov, 1965; Wallace and Boulton, 1968; Rissanen,
1978; Wallace and Freeman, 1987; Li and Vitányi, 1997; Hutter,
2005). On the other hand, the system also continually tries to
invent new tasks that break the generalization capabilities of the
present solver.

PowerPlay’s time-minimizing search for new tasks auto-
matically manages the trade-off between these opposing forces.
Sometimes it is easier (because fewer computational resources are
required) to invent and solve a completely new, previously unsolv-
able problem. Sometimes it is easier to compress (or speed up)
solutions to previously invented problems.

7.7. RELATION TO GÖDEL’S SEQUENCE OF INCREASINGLY POWERFUL
AXIOMATIC SYSTEMS
In 1931, Kurt Gödel showed that for each sufficiently powerful
(ω-) consistent axiomatic system there is a statement that must be
true but cannot be proven from the axioms through an algorith-
mic theorem-proving procedure (Gödel, 1931). This unprovable
statement can then be added to the axioms, to obtain a more
powerful formal theory in which new formerly unprovable the-
orems become provable, without affecting previously provable
theorems.

In a sense, PowerPlay is doing something similar. Assume
the architecture of the solver is a universal computer (Gödel,
1931; Church, 1936; Post, 1936; Turing, 1936). Its software s can
be viewed as a theorem-proving procedure implementing certain
enumerable axioms and computable inference rules. PowerPlay
continually tries to modify s such that the previously proven the-
orems remain provable within certain time bounds, and a new
previously unprovable theorem becomes provable.

7.8. FIRST ILLUSTRATIVE EXPERIMENTS
First experiments with PowerPlay were reported in separate
papers (Srivastava et al., 2012b, 2013) (some experiments were also
briefly mentioned in the original report (Schmidhuber, 2011)).
Standard NNs as well as SLIM RNNs (Schmidhuber, 2012) were
used as computational problem-solving architectures. The weights
of SLIM RNNs can encode essentially arbitrary computable tasks
as well as arbitrary, self-delimiting, halting or non-halting pro-
grams solving those tasks (Section 4.1.2). Such programs may
affect both environment (through effectors) and internal states
encoding abstractions of event sequences. For example, in the
experiments a SLIM RNN learned to control a fovea that can
be shifted across a visual scene. The sequences of dynamically

changing sensory inputs from the fovea contributed to the for-
mation of internal SLIM RNN states, that is, vectors of neural
activations encoding possible goals. In open-ended fashion, our
PowerPlay-driven NNs learned to become increasingly gen-
eral solvers of self-invented tasks. Sometimes they added new
problem-solving procedures to the growing repertoire. Sometimes
they preferred to compress/speed up previously invented skills,
depending on what was computationally easiest at this point in
time. The NNs also exhibited interesting developmental stages,
incrementally moving from apparently simple self-invented prob-
lems to more complex ones. Furthermore, it was shown how
a PowerPlay-driven SLIM NN automatically self-modularizes
(Srivastava et al., 2013), frequently re-using code for previously
invented skills, keeping track which connections affect which tasks
(Section 3.3.2), always trying to invent novel tasks that can be
quickly validated because they do not require too many weight
changes affecting too many previous tasks.

8. WORDS OF CAUTION
The behavior of PowerPlay is determined by the nature and the
limitations of T , S , P , and its algorithm for searching P . If T
includes all computable task descriptions, and both S and P allow
for implementing arbitrary programs, and the search algorithm
is a general method for search in program space (Section 4), then
there are few limits to what PowerPlay may do (besides the limits
of computability (Gödel, 1931)).

It may not be advisable to let a general variant of PowerPlay
loose in an uncontrolled situation, e.g., on a multi-computer net-
work on the internet, possibly with access to control of physical
devices, and the potential to acquire additional computational
and physical resources (Section 3.1.2) through programs exe-
cuted during PowerPlay. Unlike, say, traditional virus programs,
PowerPlay-based systems will continually change in a way hard
to predict, incessantly inventing and solving novel, self-generated
tasks, only driven by a desire to increase their general problem-
solving capacity, perhaps a bit like many humans seek to increase
their power once their basic needs are satisfied. This type of
artificial curiosity/creativity, however, may conflict with human
intentions on occasion. On the other hand, unchecked curiosity
may sometimes also be harmful or fatal to the learning system
itself (Section 5) – curiosity can kill the cat.
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A reinforcement learning agent that autonomously explores its environment can utilize
a curiosity drive to enable continual learning of skills, in the absence of any external
rewards. We formulate curiosity-driven exploration, and eventual skill acquisition, as a
selective sampling problem. Each environment setting provides the agent with a stream of
instances. An instance is a sensory observation that, when queried, causes an outcome
that the agent is trying to predict. After an instance is observed, a query condition, derived
herein, tells whether its outcome is statistically known or unknown to the agent, based on
the confidence interval of an online linear classifier. Upon encountering the first unknown
instance, the agent “queries” the environment to observe the outcome, which is expected
to improve its confidence in the corresponding predictor. If the environment is in a setting
where all instances are known, the agent generates a plan of actions to reach a new
setting, where an unknown instance is likely to be encountered. The desired setting is a
self-generated goal, and the plan of action, essentially a program to solve a problem, is a
skill. The success of the plan depends on the quality of the agent’s predictors, which are
improved as mentioned above. For validation, this method is applied to both a simulated
and real Katana robot arm in its “blocks-world” environment. Results show that the
proposed method generates sample-efficient curious exploration behavior, which exhibits
developmental stages, continual learning, and skill acquisition, in an intrinsically-motivated
playful agent.

Keywords: intrinsic motivation, artificial curiosity, continual learning, developmental robotics, online active

learning, markov decision processes, AI planning, systematic exploration

1. INTRODUCTION
During our lifetimes, we continually learn, and our learning is
often intrinsically motivated (Piaget, 1955; Berlyne, 1966). We
do not just learn declarative knowledge, such as that exhibited
by contestants appearing on the popular quiz show Jeopardy, but
also procedural knowledge, such as how to write a Ph.D. thesis.
In general, a skill is a program able to solve a limited set of prob-
lems (Schmidhuber, 1997; Srivastava et al., 2013), but the notion
of a skill is often coupled with procedural knowledge, which is
typically demonstrated through action. In continually learning
artificial agents, skill acquisition (Newell et al., 1959; Ring, 1994;
Barto et al., 2004; Konidaris, 2011; Lang, 2011; Sutton et al.,
2011) is a process involving the discovery of new skills, learning
to reproduce the skills reliably and efficiently, and building upon
the acquired skills to support the acquisition of more skills. This
process should never stop. An eventual goal of ours, and others,
is the development of lifelong learning robot agents (Ring, 1994;
Thrun and Mitchell, 1995; Ring, 1997; Sutton et al., 2011).

Traditional Markovian Reinforcement Learning (RL) (Sutton
and Barto, 1998; Szepesvári, 2010) provides a formal frame-
work that facilitates autonomous skill acquisition. In the Markov
Decision Process (MDP) framework, a skill is represented as a
policy that, when executed, is guaranteed to efficiently reach a
particular state, which would be a “goal” state for that skill. RL
involves optimizing a policy, to allow the agent to achieve the
maximum expected reward.

There exist iterative planning methods, such as value itera-
tion (Bellman, 1957) and policy iteration (Howard, 1960), to
find an optimal policy for an MDP if a model of the environ-
ment is known to the agent; see (Mausam and Kolobov, 2012)
for recent reviews. The model is the set of transition probabilities
P(st+ 1|st, at) of reaching successor state st+ 1, together with the
associated expected immediate rewards R(st, at) when the agent
takes action at in state st . By selecting different goal states and
creating appropriate “phantom” rewards, which are not provided
by the environment, the agent could calculate a policy for a self-
generated goal immediately through planning (Luciw et al., 2011;
Hester and Stone, 2012; Ngo et al., 2012). An autonomous skill
learner for model-based Markovian RL needs only learn a single
transition model (or another type of predictive world model) and
to be able to generate a different reward function for each skill.

An important issue in learning a world model is system-
atic exploration. How can an agent explore the environment
to quickly and effectively learn? Early methods were based
on common-sense heuristics such as “visit previously unvis-
ited states,” or “visit states that have not been visited in a
while” (Sutton, 1990). More recent methods are those based
on Artificial Curiosity (Schmidhuber, 1991; Storck et al., 1995;
Wiering and Schmidhuber, 1998; Meuleau and Bourgine, 1999;
Barto et al., 2004; Şimşek and Barto, 2006; Schmidhuber, 2010;
Ngo et al., 2011), which can be exploited in developmental
robotics (Weng et al., 2001; Lungarella et al., 2003; Oudeyer
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et al., 2007; Asada et al., 2009; Hester and Stone, 2012,
Ngo et al., 2012).

Artificial curiosity uses an intrinsic reward, which is the learn-
ing progress, or expected improvement, of the adaptive world
model [i.e., predictor/compressor of the agent’s growing his-
tory of perceptions and actions (Schmidhuber, 2006)]. The
expected learning progress becomes an intrinsic reward for the
reinforcement learner. To maximize expected intrinsic reward
accumulation, the reinforcement learner is motivated to cre-
ate new experiences such that the adaptive learner makes quick
progress.

We investigate an autonomous learning system that utilizes
such a progress-based curiosity drive to explore its environment.
This is a “pure exploration” setting, as there are no external
rewards. The general framework is formulated as a selective sam-
pling problem in which an agent samples any action in its current
situation as soon as it sees that the effects of this action are statis-
tically unknown. We present one possible implementation of the
framework, using online linear classifiers (Azoury and Warmuth,
2001; Vovk, 2001; Cesa-Bianchi and Lugosi, 2006) as predictive
action models, which essentially predict some aspects of the next
state, given the current state-action features.

If no available actions have a statistically unknown outcome,
the agent generates a plan of actions to reach a new setting
where it expects to find such an action. The planning is imple-
mented using approximate policy iteration, and depends on the
procedural knowledge accumulated so far in the adaptive world
model. The agent acquires a collection of skills through these
self-generated exploration goals and the associated plans.

The framework is applied to a simulated and actual Katana
robot arm manipulating blocks. Results show that our method
is able to generate sample-efficient curious exploratory behav-
ior, which exhibits developmental stages, continual learning,
and skill acquisition, in an intrinsically motivated playful agent.
Specifically, a desirable characteristic of a lifelong learning agent
is exhibited: it should gradually move away from learned skills
to focus on yet unknown but learnable skills. One particularly
notable skill learned, as a by-product of its curiosity-satisfying
drive, is the stable placement of a block. Another skill learned is
that of stacking several blocks.

2. MATERIALS AND METHODS
In this section, we describe the setting of the learning environ-
ment, followed by introducing the selective sampling formulation
(which is not environment specific). We then describe the planner
and the online learning of the world model, and finally present the
derivation of the query condition.

2.1. KATANA IN ITS BLOCKS-WORLD ENVIRONMENT
Our robot, a Katana arm (Neuronics, 2004), and its environment,
called blocks-world, are shown in Figure 1. There are four differ-
ent colored blocks scattered in the robot’s play area. In Section 3.1
we describe a simulated version of blocks-world with eight blocks.
We use the simulated version for a thorough evaluation of our
method. In both versions, the agent “plays” with the blocks,
through the curiosity-driven exploration framework, and learns
how the world works.

FIGURE 1 | The Katana robot arm in its blocks-world environment.

In the real-world environment, detection and localization of
the blocks is done with straightforward computer vision tech-
niques. The overhead camera was calibrated using the toolbox
developed by Bouguet (2009), so that the system can convert 2D
image coordinates to the robot’s arm-centered Cartesian coor-
dinates. Since all the blocks have different colors, a color-based
detection and pixel grouping is used for segmentation, lead-
ing to a perceptual system that reliably detects the positions
and orientations (in the image coordinate system) of the visible,
non-occluded blocks. The positions and orientations of occluded
blocks are stored in a memory module. Since any occluded block
was once a fully visible block, and the occluded block positions
do not change, the memory module updating is also straightfor-
ward, requiring basic logic. The purpose of the memory module
is to infer the heights of the blocks on top of occluded ones, since
the overhead camera does not provide the height information.

When a block is selected for grasping, or a location selected
for placement, the system converts the image coordinates to the
arm-centered Cartesian coordinates. For reaching and grasping,
we use the Katana’s inverse kinematics module, which solves for
joint angles given the desired pose (position and orientation) of
the gripper, and its motion planning module.

In each environment setting, defined as a configuration of
blocks, the agent first moves the gripper out of view of the camera,
and takes a snapshot of the workspace below. The fundamental
choice it needs to make is to decide what the most interest-
ing block placement location would be. A placement location is
specified by a vector including pixel-coordinates and orienta-
tion parameters in the workspace image, as well as the height, in
terms of the number of blocks. After the desired placement loca-
tion is decided, the agent needs to decide which block to pick
up for placement. The block that is grasped could be selected
via a variety of heuristics. We choose to have the robot grasp
the accessible (e.g., non-occluded) block furthest away from the
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desired placement location, which avoids interference with the
blocks at the selected placement location. Grasping will succeed
as long as the perception is accurate enough and the block is
within the workspace. In the real experiments, grasping is rarely
not successful. In these cases, we reset the situation (including
internal values related to learning) and have the robot do it again.
After grasping, the robot performs another reach, while holding a
block, and places it at the desired location.

Next we will illustrate how the robot represents its world,
and how this representation leads to something resembling, and
which, functionally, serves as an MDP.

2.2. FOVEA AND GRAPH REPRESENTATION
The top-down camera image (640× 480 pixels) is searched using
a subwindow of 40× 40 pixels, which we call a fovea. Each fovea
center location represents a possible block placement location.

At any fovea location, the state s is the maximum height of a
stack of blocks visible in the fovea window. The action a is a func-
tion of the feature vector that encapsulates the placement location
relative to the blocks in any stacks below. How this feature vector
is computed will be described below. Any feature vector is con-
verted into one of six possible actions. After an action is executed,
i.e., a block is picked and placed at the fovea central location,
the outcome state s′ is identified in the same way as s, with the
fovea location unchanged. The resulting graph resembles a dis-
crete MDP and serves as a basis for tractable exploration in the
blocks-world environment.

In a given setting (block configuration), each fovea location
maps onto a single (s, a, s′) transition in a graph. But only s and
a are visible before the placement experiment. The missing piece
of knowledge, which the agent needs to place a block to acquire,
is the outcome state s′. The fovea can be thought of as a window
into a “world” where the robot can do an experiment. Yet, what
the robot learns in one “world” applies to all other “worlds.” The
question is: which transition is most worth sampling?

Instead of being provided a single state and having to choose
an action, as in a classical RL formulation, our system is able to
choose one of multiple available state-action pairs from each set-
ting. Availability is determined from the known block positions.
The agent’s estimated global state-action value function Q(s, a) is
used to identify an available state-action pair (s∗t , a∗t ) with the
highest value, constrained by availability. The agent knows the
heights of all blocks in the workspace, which informs it of the
possible states currently available. It also knows the fovea location
that centers on each block. The desired state s∗t is selected from the
available heights in the current setting, by selecting the one with
maximum state value. Next, the desired action a∗t is selected as the
one with maximum Q-value of all action pairings with s∗t . To find
a fovea location for the desired (s∗t , a∗t ), the agent searches by mov-
ing the fovea to different placement locations around the stacks
of height s∗t , until the contextual information (feature vector xt)
associated with the action is matched.

The fovea search occurs in this “top-down” way, since it is
computationally burdensome to extract the contextual informa-
tion of state-action pairs at all fovea positions in each setting. This
biased and informed search mechanism is much more efficient.
As a future extension, fovea movement would be learned as well
[(Whitehead and Ballard, 1990; Schmidhuber and Huber, 1991);
see also recent work by Butko and Movellan (2010)].

Figure 2 (left) shows six examples to illustrate the features
used. The thick black lines represent the boundaries of actual
blocks. Example fovea locations are represented by the blue
dashed squares. The central point of the fovea is shown as a
small blue circle. The pink dotted lines show the convex hulls
constructed from the block pixels inside the fovea. If the central
placement point is inside the convex hull, the feature value is set
to one, and zero otherwise. Note the case shown in (c), where the
central placement point is not on top of any block at the fovea,
but still within the convex hull, and so the feature is set to one.
For stacks of several blocks as in (d), the intersection of all the

A

C

B

D

E F

FIGURE 2 | Left: (a–f) Examples illustrating the features that were used. Right: An example showing how the state and action are encoded (bottom) for a given
blocks-world setting (top). See text for details.
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block pixels are constructed, and used to construct the convex
hull.

As shown in (e) and (f), the features are calculated around the
central location, which results in a five-element feature group. In
our real robot implementation we use this setup. With a place-
ment location as in (e) four bits are “on,” while in (f), only one
bit is “on.” The number of bits that are on, plus one, provides
the action index. For example, a fovea location with only one bit
on, as described above, would correspond to action a = A2 and
is encoded by feature vector x = (0, 1, 0, 0, 0, 0). Figure 2 (right)
shows an illustration of states and actions at different fovea loca-
tions for a particular block configuration. In the lower subfigure,
we see the state-action representation underneath a few sampled
fovea locations. This representation allows for generalization: the
same state-action (S1, A2) can be accessed at both the red block
(to the lower right) and the black block.

We note in passing that this Katana and blocks-world envi-
ronment is simplified to become functionally discrete, but the
method we use for learning, approximate policy iteration, is not
tabular( as the name suggests), nor is the way we use linear basis
functions to convert each observation to a feature vector. Our
general framework, which will be described next, does not require
a tabular environment. Furthermore, the subsystem relevant to a
“placement experiment,” i.e., the blocks in the stack right below
the fovea, is an MDP according to the formulated graph we use.
The approach of considering only relevant features in learning
and planning makes the learning, and particularly the planning
process, more efficient, as well as tractable1.

2.3. SELECTIVE SAMPLING FORMULATION
Consider an online learning scenario where a learner L inter-
acts with nature N (its environment) in rounds. At each round
i, nature presents a setting Si. A setting may refer to a single state,
or a set of subsystem states (as in our Katana blocks-world envi-
ronment). Within each setting, the learner will observe a sequence
of instances xt ∈ R

d. Here, and for the remainder of this article,
we use subscript i to denote the setting, and the subscript t to
denote the instances observed within. Every time the setting is
updated, i← i+ 1, and the observation counter t persists (e.g., if
there were five instances in setting S1, the first observation in the
next setting S2 will be x6).

For every instance, the learner must decide whether or not to
“query” nature for the true label yt of the current instance xt ,
where yt ∈ {±1} (for binary classification2). By query we mean
the learner takes an action (interact with nature) and observes its
outcome. Hence, we can think of xt as the contextual information
associated with each action at . An observed feature vector, once
queried, becomes a training instance to improve the learner. The
training will be described in Section 2.5.

Let Qt ∈ {0, 1} denote the query indicator at time t. If a query
is issued, i.e., Qt = 1, the setting is updated (i← i+ 1), and the
learner observes the label of the queried instance. It then updates

1For more information on subspace planning, see related work in relational
RL by Lang and Toussaint (2009).
2A more general framework would consider the multiclass and regression
cases, which we leave for future extension.

its hypothesis, taking into account the queried example (xi, yi)

as well as the previous hypothesis, which was learned over previ-
ous queries. Otherwise, i.e., Qt = 0, the learner skips the current
instance xt (meaning its label is not revealed) and continues to
observe new instances from the current setting (i← i).

Clearly, this constitutes a sequential decision process, which
generates training examples for the learner. Since each interaction
can require the learner to spend time and effort, i.e., labels are
expensive to get, it is reasonable to set the objective of the decision
process to be such that the learner learns as much and as fast as
it can.

As a concrete example of this framework, consider our blocks-
world environment. Here, a setting is a configuration of all the
blocks on the table, while an instance xt is a feature vector encod-
ing a possible placement location. The fovea sequentially provides
possible placement locations, and, for each one, a new instance
xt is observed. For each new instance in turn, the agent predicts
the outcome of placement. Here, the binary outcome label indi-
cates the success or failure of stacking. The label yt = 1 indicates
a stable placement, while the label yt = −1 indicates an unstable
placement.

After the action is taken, “nature” reveals a new setting Si+ 1

and the agent obtains, through observation, the outcome and
therefore the label, which will be used to improve its world model.
In implementation, the agent obtains the outcome label by com-
paring two images of the configurations before and after the
placement. This is possibly noisy, but usually correct.

2.4. PLANNING IN EXPLORATION
Our system has a set of adaptive classifiers to predict the block
placement outcomes, which, together, constitute the world model
M. These obtain knowledge about the world, and a curiosity-
drive causes the agent to desire to accumulate such knowledge
(learning progress) as quickly as possible.

The agent is greedy in its pursuit of knowledge. For every
instance xt observed during setting i, a query condition Qt ∈ {0, 1}
is generated. The query condition is used to decide if this instance
is worth querying for its label (outcome), based on the current
model Mt =Mi. As soon as it encounters a true query condi-
tion, it executes the query, observes the outcome, and updates the
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FIGURE 3 | A single robot-environment interaction, illustrating a setting

change. Each pick and place “experiment” causes a change in setting. The
outcome of the previous experiment was that the robot placed the blue block
on top of the yellow block, and observed the label +1, corresponding to
“stable.” Now (middle), the robot examines three fovea locations (t, t′ and

t ′′), each of which involves a query. The query is false for t′ and t ′′, but true
for t, and the robot immediately (greedily) grasps the furthest block, which
happens to be the red one, and places it at the queried location. The action
causes a change in setting to i + 1 and the outcome −1 is observed
(“unstable”).

model to Mi+ 1. Figure 3 illustrates this exploration behavior in
our blocks-world environment.

But in the case where no instances in the setting are deemed
to be valuable to query, the agent has to plan. In that case, the
curiosity drive wants to quickly reach a new setting from which
an instance worth querying can be observed. To decide which
instances are worth querying, the agent simulates future expe-
rience of performing different actions from the current setting,
and sees, for the simulated new settings, if the query condition
becomes true at any point. If so, an intrinsic reward is placed
at that transition. A true query condition in simulated experi-
ence becomes a binary curiosity reward indicating if an instance
is worth exploring. By planning on the induced MDP with “phan-
tom” reward function, the agent generates an efficient exploration
policy whenever it needs to. These policies for reaching self-
generated goals are the skills learned by the agent. Note that this
curiosity reward is instantaneous, taking into account the current
state of the learners, and not a previous learner. See Algorithm 1
for a sketch of this process.

The planner can be implemented using any relevant MDP
planning algorithms (Mausam and Kolobov, 2012), for instance,
local methods (i.e., for the current state only) like UCT (Kocsis
and Szepesvári, 2006), or global methods (for every state) like
LSPI (Lagoudakis and Parr, 2003). In our implementation we
use approximate policy iteration (LSPI, specifically the algorithm
LSTDQ-Model), a global method, to allow the agent to choose
between different states/heights (if several stacks are available) in
each setting.

In the MDP constructed for our Katana blocks-world environ-
ment, the transition probabilities are derived from the adaptive
classifiers. At planning time, we update the transition matrix
P(s′|s, a) for all state-action-state triplets as follows: P(s′|s, a) = 0
if s′ > s+ 1; P(s′|s, a) = (1+ �̂)/2 if s′ = s+ 1; and P(s′|s, a) =
(1− �̂)/2/s if s′ ≤ s, with the prediction margin �̂ computed
as the inner product between the contextual feature x represent-
ing action a, and the linear weight vector w of the predictor, i.e.,
�̂ = w · x (more details will be provided in the next section). In
other words, the transition probability to current height plus one
is equal to the probability of a stable placement. It is zero for
any height which is two or higher above the current one, and is

a uniform fraction of the probability of instability for the lower
heights. Note that this is just an approximation, but it is good
enough for effective planning to reach higher heights.

The next two sections describe our adaptive learners and the
derivation of query condition, based on these learning models.

2.5. ONLINE LEARNERS
We focus on adaptive binary linear classifiers. There are multiple
such classifiers in our system—one per height—but the discourse
in this subsection will be with respect to a single classifier, for
simplicity. For such a classifier, with weight vector wt ∈ R

d, a clas-
sification of instance xt is then of the form ŷt = sign(wt · xt).
The term �̂t = wt · xt is often referred to as the prediction mar-
gin attained on instance xt , and the magnitude of the margin |�̂t |
is a measure of confidence of the classifier in label prediction3.

In the setting of a developmental robot interacting with nature,
training instances are generated in a biased manner. They are
not independent and identically distributed—the sampling/query
process depends on the learner’s adaptive model Mt . However,
their corresponding labels can be assumed to be generated from
a linear stochastic model. Specifically, we make the following
assumptions: 1) The labels yt ∈ {−1,+1} are realizations of inde-
pendent random variables Yt sampled from a stochastic source
with a probability density function P(Yt |xt) continuous at all xt .
This entails that, if �t = E[Yt |xt] ∈ [−1, 1], then sign(�t) is the
Bayes optimal classification. 2) There exists a fixed but unknown
vector u ∈ R

d for which u · xt = �t for all t. Hence u is the Bayes
optimal classifier under this noise model.

Note that when running our algorithms in a reproducing ker-
nel Hilbert space (RKHS) H with a universal kernel (Steinwart,
2002), the classifiers are implicitly non-linear, and �t is well
approximated by f (xt), for some non-linear function f ∈ H,
hence assumption 2 becomes quite general.

The key elements in designing an online learning algorithm
include the comparator class U ⊆ R

d, the loss function �, and
the update rule. For an arbitrary classifier v ∈ U , denote by
�(v; xt, yt) its non-negative instantaneous loss suffered on the

3Note that the terms weight vector, linear hypothesis, classifier, and learner are
fairly interchangeable for the purposes of this article.
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current example (xt, yt), and abbreviated by �t(v), i.e., �t(v) =
�(v; xt, yt). We define the total loss of an adaptive learner
L on a particular sequence of examples D = {(xt, yt)}Tt= 1 as

LT(L,D) =∑T
t= 1 �t(wt), and we also define the total loss of

some (fixed) classifier v as LT(v,D) =∑T
t= 1 �t(v). A good

learner that makes few online prediction mistakes also has small
relative loss compared to the best linear hypothesis u:

LT(L,D)− inf
v∈ULT(v,D), (1)

for any sequence D. Since the online learner only observes one
example at a time, the relative loss is the price of hiding future
examples from the learner (Azoury and Warmuth, 2001). A
desired analysis step in designing online learners is then to prove
upper bounds on such a relative loss. This bound should grow
sublinearly in T, so that it vanishes when T approaches infinity.

We use a modified version of the widely used regularized
least square (RLS) classifier (Azoury and Warmuth, 2001; Cesa-
Bianchi et al., 2009; Dekel et al., 2010)—a variant of the online
ridge-regression algorithm—as our online learner. As the name
suggests, this class of algorithms uses the squared loss function,
and possesses a proven relative loss bound under our label noise
model (Vovk, 2001; Dekel et al., 2012), with the desired sublin-
ear growth. Established results for the algorithm will be used to
derive our query condition (Section 2.6).

Given the sequence of queried (i.e., training) examples up to
setting i, {(xj, yj)}ij= 1, the RLS classifier maintains a data cor-

relation matrix, Ai = I +∑i− 1
j= 1 xjx�j , with I the d× d identity

matrix and A1 = I. For the i-th queried instance xi, the weight
vector can be updated as wi+ 1 = A−1

i+ 1

(
Aiwi + yixi

)
.

The inverse matrix A−1
i+ 1 can be updated incrementally using

the Sherman-Morrison method,

A−1
i+ 1 = A−1

i −
bib�i
1+ ci

,

where

bi = A−1
i xi

and

ci = x�i A−1
i xi = xi · bi.

Using the fact that A−1
i+ 1xi = bi/(1+ ci), the weight vector update

is simplified as:

wi+ 1 = wi + (yi − wi · xi)

1+ ci
bi.

An implementation-efficient pseudocode of this modified RLS
update rule is presented in Algorithm 2.

2.6. QUERY CONDITION
Our query condition is greatly inspired by work in selective sam-
pling, a “stream-based” setting of active learning (Atlas et al.,
1989; Freund et al., 1997). In selective sampling, the learner has
access to an incremental stream of inputs and has to choose, for
each datum in order, whether to query its label or not. State of the
art methods in selective sampling, with theoretical performance
guarantees, include BBQ (Orabona and Cesa-Bianchi, 2011) and
DGS (Dekel et al., 2012). These methods also use variants of the
RLS algorithm (Azoury and Warmuth, 2001; Vovk, 2001; Auer,
2003; Cesa-Bianchi et al., 2005; Cesa-Bianchi and Lugosi, 2006;
Cavallanti et al., 2008; Strehl and Littman, 2008; Cesa-Bianchi
et al., 2009), and maintain a data correlation matrix to calculate a
confidence interval or uncertainty level in their prediction, which
is essentially an estimate of the variance of the RLS margin for the
current instance.

The query condition must indicate when the outcome is statis-
tically known or unknown. Here we derive a query condition for
this purpose, based on the expected learning progress. Essentially,
when the learner is certain in what it predicts, it can ignore the
instance, since, with high probability, its learning model will not
get updated much on this example if it is queried. Inversely, only
those instances that the learner is uncertain in its prediction are
worth querying for labels, since the model of the learner will
undergo a large update on such training examples.

The following lemma from Orabona and Cesa-Bianchi (2011)
defines χt , the uncertainty level, or confidence interval of the RLS
prediction.

Lemma 1. Let δ ∈ (0, 1] be a confidence level parameter, hδ, u(t) be
a function of the form

hδ, u(t) = ||u||2 + 4
i∑

k= 1

rk + 36 log
t

δ
,

where ||u|| is the unknown squared norm of the optimal Bayes
classifier, and ri = x�i A−1

i+ 1xi.
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Now, define χt =
√

cthδ, u(t) with ct = x�t A−1
i+ 1xt . With prob-

ability at least 1− δ, the following inequality holds simultaneously
for all t:

|�t − �̂t | ≤ χt .

This inequality can be rewritten as,

�t�̂t ≥ �2
t + �̂2

t − χ2
t

2
≥ �̂2

t − χ2
t

2
,

which essentially implies that if |�̂t | > χt , the learner is certain
(with probability at least 1− δ) that �̂t and �t have the same
sign (i.e., �̂t�t > 0), and there is no need to query for the true
label. Inversely, when |�̂t | ≤ χt , the learner is uncertain about
its prediction, and it needs to issue a query. Formally, the query
condition is stated as follows:

isQuery(Mi+ 1, xt) : Qt ←
[
χt > |�̂t |

]
,

where [·] denotes the indicator function of the enclosed event.
Now, from Lemma 1 we also have |�t | ≤ |�̂t | + χt .

Combined with the query condition derived above, we have
|�t | ≤ 2χt with probability at least 1− δ when a query is
issued. When the magnitude |�t | of the optimal prediction mar-
gin is small, the instance label is almost certainly noise, i.e.,
the prediction is nearly a random guess. These instances are
“hard” or even “impossible” to learn, and the learner should
instead focus on other instances that it can improve its pre-
diction capability. We derive another query condition to reflect
this insight, by enforcing another threshold θ on the uncertainty
level,

isQuery(Mi+ 1, xt) : Qt ←
[[χt > |�̂t |] ∧ [χt > θ]] . (2)

In implementation, a surrogate or proxy function is used to avoid
dependency on the optimal yet unknown u. This takes the form,

χt = α
√

cth(t),

where α is a tunable positive parameter, and

h(t) = log(1+ i)

is a simplification of hδ, u(t). Importantly, the confidence inter-
val does not depend on the squared norm of the optimal but
unknown Bayes classifier u. See Dekel et al. (2012) Equation (12)
and Lemma 7, notice the additional assumption of ||u|| ≤ 1. See
also Orabona and Cesa-Bianchi (2011) Algorithm 2 for another
proxy function.

3. RESULTS
In all implementations we used the following parameter val-
ues: discount factor γ = 0.95, and query condition scaling

factor α = 1. The confidence-interval threshold θ = 0.01
for simulations, while θ = 0.1 was used in the real robot
experiments.

3.1. SIMULATED BLOCKS-WORLD ENVIRONMENT
We designed a stripped-down simulated version of the actual
blocks-world, in order to test our system. In simulation, thou-
sands of trials can be run, which would take far too long on
the real robot. Of course we cannot capture all aspects of the
real-world robot setting, but we can capture enough so that the
insights and conclusions arising from simulated results suffice to
evaluate our system’s performance.

The simulated environment also allows us to use any num-
ber of blocks and any number of features. For any configuration
of blocks, some set of heights will be available for the agent to
place upon, corresponding to the heights of the top blocks in the
stack(s), and height zero. In the simulation, we use eight blocks,
and 21 features. Each height’s feature vector is of length 21 bits,
with only one bit set. All 21 feature vectors are available for each
available height. The agent must select one of them. Unlike the
actual robot setting, in simulation, the features do not correspond
to any physical aspect of the simulated world. In simulation, each
of the 21 features are associated with a different probability of
stability, which is randomly generated.

Each possible height s has a different weight vector us, which
is the randomly generated “true model” for the result of placing
a block upon it. This was done in order to generate simulated
block placement outcomes in an easy-to-implement way. There
are 21 components 4 of each us, which are randomly gener-
ated in the range [−1, 1]. An outcome (stable/falling) is gener-
ated using the corresponding height’s true (probabilistic) model,
where the actual outcome label sign(u · xt) is flipped with prob-
ability 1−|u · xt |

2 . For the purpose of generating orderly plots in
Section 3.2, we re-order the 21 feature vectors of each height in
ascending order of their likelihood of stability, then re-assign their
feature indices from 1 to 21. Thus, the smaller the feature index,
the lower likelihood the placement will be stable. For an outcome
of falling, there is a chance that the entire stack underneath the
placement position collapses, in which case all blocks in that stack
are reset to height one.

The eight blocks’ configuration is represented by vector q. The
absolute value of each element |qj| is the height of the correspond-
ing block j. We set sign(qj) = −1 if block j is occluded (stacked
upon), while sign(qj) = 1 means block j is on the top of its stack,
which means its both graspable and another block can be placed
upon it. The set of different positive elements of q constitute the
set of current available states (heights to place upon) in addition
to height zero (which is always available). For example, vector
q = (−1,−2,−3, 4,−1, 4,−2,−3) means the configuration has
two different stacks of height four, having block IDs 4 and 6 on
top of the two stacks. Here, the set of available placement heights
is height zero and height four.

4To allow generalization in learning, each weight vector is extended with
one extra bias component, corresponding to an extra augmented feature
of 1. Thus, |u| = |w| = |xt | = 22 in the implementation of the simulated
environment, and |w| = |xt | = 7 in the implementation on the real robot.
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After selecting the state and action, the agent picks an “avail-
able” top block, and “places it.” By available, we mean it is the
top block of another stack. Another block in the stack (if any)
of the block that is grasped becomes a top block. If the place-
ment is stable, the highest block in the placement stack has its
sign reversed, and the placed block becomes the top block of that
stack. If the placement outcome turns out to be unstable, a “top-
pling” event occurs, where one randomly selected block in the
stack of placement, with a lower height, becomes a top block of
the remaining stack, with blocks below unchanged. The (unsuc-
cessfully) placed block and the other, higher blocks in the stack
topple to the surface, and their values are all set to+1.

3.2. RESULTS IN SIMULATED BLOCKS-WORLD
Figure 4 shows the averaged exploration behavior of our system
over time, for all different heights. “Direct exploration” refers to
settings where the query condition is true, while “planning expe-
rience” refers to settings where the algorithm has to execute a
planned action (since the query condition is always false for that
setting). On the y-axis, “cumulative experience” is a count of the
number of times these types of actions are generated. The dif-
ferent colored lines indicate different heights. The vertical lines
are from a single run, and indicate when, during that run, the
learner switches from direct exploration of one height to planning
exploration of higher heights.

These plots show the developmental stages of the learning
agent, where easier problems, such as direct exploration at height
one, are learned first, and more difficult problems are learned
later. They also show cumulative learning, as the acquired knowl-
edge at lower heights is exploited for planning, and this planning
helps the agent get to the higher heights, in order to acquire more
knowledge. The difficulty of this problem is shown by the time
the learner needs to spend to fully explore its environment, espe-
cially in achieving the highest heights. For instance, to even get
to height six to do experiments, the agent first needs to stack

blocks from lower heights each time the stack collapses, which
is a regular occurrence.

The agent does not necessarily explore a single height until
everything at that height is statistically known. There are some-
times situations where several heights worth exploring are avail-
able simultaneously in the environment. In such cases, the agent
starts with the height having the largest “future exploration
value” as estimated by LSPI. The planning step helps to trade
off “easy-to-get” small learning progress rewards with “harder-to-
get” larger ones. As shown in Figure 4, the exploration at higher
heights does, in fact, start before the direct exploration of lower
heights terminates.

Figure 5 shows the learning progress, measured with Kullback-
Leibler (KL) divergence between the learned models and the
true models. These distances tend to diminish exponentially with
experience, and they diminish faster at lower heights, where expe-
rience is easier to get. When each line in the graph saturates, it cor-
responds to the associated knowledge being “known” and ready
for exploitation in planning. The saturation levels are non-zero
due to the noise level in the training labels, the query condition
scaling factor α, and the confidence-interval threshold θ.

Figure 6 shows how the exploration focus changes over time,
for height one. In each subgraph row, the figure on the left
shows the distribution of the experience up until the timestep
in the subfigure title. The shaded area between the two verti-
cal lines represents the “unknown” region of input features that
is deemed to still be worth exploring. This will be the “explo-
ration focus” of the agent, in subsequent interactions. Regions
outside of this shaded area are considered “known” by the
learning agent, and not worth exploring any more. Going from
the top to the bottom of Figure 6, note that the query region
shrinks with the amount of experience. Additionally, note that
the middle features, associated with the most uncertain outcomes
(as mentioned in Section 3.1) stay interesting longer than the
others.
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FIGURE 4 | Exploration history (averaged over 10 runs).
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FIGURE 5 | KL-divergence between learned models and ground-truth models (averaged over 10 runs). Best viewed in color.

An interesting observation that is worth elaborating on, is
as follows. At timestep #2000, when every prediction is statisti-
cally known, the agent starts to exploit the acquired knowledge
for planning (i.e., taking its estimated “best” action #16 to reach
height two). It also keeps on refining the learned model, which
reveals, as a result of generalization in learning that the optimal
action (i.e., the most stable placement position) is action #20
instead. Afterwards, the agent switches its optimal policy for this
height, as shown in timesteps #3000 and #4000.

The plots on the right shows the learned predictive model
(blue dashed lines), with two thin black lines representing
the confidence intervals for each prediction. As more data are
observed, the associated confidence interval will shrink, reflecting
the learning progress. Note that as a result of generalization, the
neighboring area of the input feature space also gets improved,
indirectly, in its confidence interval. Recall that we re-arranged
the input feature indices so that their prediction margin (hence,
probability of stable/unstable outcomes) are in ascending order.

A measure of the difficulty of a learning problem is the sample
complexity needed to achieve some desired level of confidence.
The shaded regions (i.e., “unknown” and worth exploring) shrink
with experience, toward the input feature values with small pre-
diction margin ground-truth. These feature values correspond
to the input subspace with prediction outcomes close to noise,
i.e., hard to predict. However, these instances lying close to the
decision boundary are the most informative instances for con-
structing a good decision plan. Our system first explores much
of the input space, then quickly shifts its attention to this “hard-
to-learn” input region, where most of its exploration effort is
spent. As a result, the learned predictive model gets closer to the
true model over time. Note that for “known” regions outside the
shaded area, even though the number of experiences is small,
and the confidence interval (i.e., uncertainty level) is large, the
learning algorithm is still confident that its prediction (sign of the
margin) is close to the optimal one with high probability. Thus,
these regions are not worth exploring any more.

The same exploration behavior is observed when we analyze
the data for other heights, as shown in Figure 7 for height two,
and Figure 8 for the first six heights when exploration terminates.
In all the experiments, the agent first explores the whole input
feature space, then focuses on subspaces of input features that are
informative but for which high confidence is hard to achieve, then
on features that are useful for planning. This typically occurs for
each height in turn. As a result of learning how to plan, which
necessarily entails reliably transitioning from one state (height)
to another, the skill of block stacking is achieved.

To further analyze the effectiveness of our method, we com-
pare its performance to three other methods. The comparison
measure is the KL-divergence with respect to the true model.
The first method simply is uniform random action selection,
which results in undirected, babbling-like, behavior. The second
method, which we call Conf (Ngo et al., 2012), uses confidence
intervals χt of the prediction margin directly as phantom rewards
to generate the exploration policy through planning. Intuitively,
this is also an informed exploration method since it promotes
exploration in parts of the environment with high uncertainty.
The main difference is the confidence intervals are used them-
selves as rewards, instead of using a query condition. The third
method is a variant of our proposed method, but the exploration
policy is updated (i.e., planning) after every 10 observations,
instead of on-demand whenever exploration planning is invoked.
We denote this variant as Q10, and our proposed method as Q1.

The results are shown in Figure 9, with each subgraph showing
the KL-divergence between learned models and their ground-
truth at each timestep. Inspecting carefully the subgraph for
height one and two, we see that Q1 gets close to the true model
exponentially fast in the first 1000 timesteps, then saturates. The
random method, on the other hand, though making much slower
progress than Q1 and Q10 in the first 1000 timesteps, keeps
improving its learned models and achieves the best models for
height one and two, among the four methods. However, for the
other five higher heights, its learned models are much worse
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FIGURE 6 | How the focus of the self-generated exploration goals at height 1 changes over time as the learned predictive model gets closer to the

true one.
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FIGURE 7 | How the focus of the self-generated exploration goals at height 2 changes over time as the learned predictive model gets closer to the

true one.
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FIGURE 8 | Experience distribution after the last timestep (learning has completed) for heights 1–6.

Frontiers in Psychology | Cognitive Science November 2013 | Volume 4 | Article 833 | 199

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


Ngo et al. Curiosity with confidence

0 2000 4000 6000 8000
0

2

4

6

8

10

12

14

timestep

#b
its

height 1

 

 
Rand
Conf
Q10
Q1

0 2000 4000 6000 8000
0

2

4

6

8

10

timestep

#b
its

height 2

 

 
Rand
Conf
Q10
Q1

0 2000 4000 6000 8000
0

2

4

6

8

10

timestep

#b
its

height 3

 

 
Rand
Conf
Q10
Q1

0 2000 4000 6000 8000
0

2

4

6

8

10

timestep

#b
its

height 4

 

 
Rand
Conf
Q10
Q1

0 2000 4000 6000 8000
0

2

4

6

8

timestep

#b
its

height 5

 

 
Rand
Conf
Q10
Q1

0 2000 4000 6000 8000
0

2

4

6

8

10

12

timestep

#b
its

height 6

 

 
Rand
Conf
Q10
Q1

0 2000 4000 6000 8000
0

2

4

6

8

10

timestep

#b
its

height 7

 

 
Rand
Conf
Q10
Q1

0 2000 4000 6000 8000
0

10

20

30

40

50

timestep

#b
its

ALL heights

 

 
Rand
Conf
Q10
Q1

FIGURE 9 | A comparison of exploration methods in terms of the KL-divergence between the learned predictive models at each time step and their

ground-truth models. Results are averaged over 10 runs.

compared to the rest. This can be explained by the fact that the
blocks-world environment naturally generates unbalanced expe-
rience distribution among all the states under random action
selection, and lower heights will get much more learning expe-
rience compared to higher ones. This undirected exploration
behavior makes random exploration the least efficient method
compared to the other three (informed) exploration methods, as
shown in the overall results in the last subgraph at the bottom-
right corner. The confidence-based method performs much better
than random method, but is still inferior compared to query-
based methods Q1 and Q10. The overall performance of Q1 is
the best, closely followed by Q10, which is less efficient due to less
frequent planning updates.

3.3. RESULTS ON THE REAL ROBOT
Now, we show the learning behavior on the real robot.
Figures 10–12 show a snippet of experience consisting of 12 con-
secutive experiment sequences. In each frame, one should focus
on the configuration of the blocks in the workspace and track

the changes from the previous frame. Each sequence starts with
i) a fovea-based search for the desired placement in the cur-
rent block configuration (i.e., either the query condition returns
“unknown” or the best planned action is selected), as shown in
the first column, followed by ii) an action picking a block unre-
lated to the placement experiment (second column), then iii)
placing the block at the desired height, orientation, and rela-
tive position with respect to the stack below (third column). The
sequence ends with an observation process to self-generate the
label (last column). The end of one sequence is also the begin-
ning of the next sequence. Since the robot has already had some
prior experience before continuing from sequence #1 of the snip-
pet, it now focuses on exploring height two. Specifically, from all
the 12 sequences, we find that the robot gradually shifted its atten-
tion (from the second sequence in Figure 11 to the second last
sequence in Figure 12 to trying actions A3 and A4 (correspond-
ing to relative placement positions with two and three bits set),
which are actually the actions with the most uncertain placement
outcomes among the six actions. Note that with tower height four,
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FIGURE 10 | Sample query sequence on real robot (1/3).

the robot arm does not have many feasible workspace points for
the pick and place task. Hence we limit the maximum height to
three.

Figure 13 shows the predictive models the Katana robot arm
acquired in a single run with 30 interactions (see demo video at
www.idsia.ch/∼ngo/frontiers2013/katana_curious.html; the last
12 interactions shown in Figures 10–12 start from 1:52).

Figure 14 shows a “tricky” situation for the robot, which it can
overcome if it has learned the model well. Here, the robot must
demonstrate its block stacking skill, as an externally imposed
goal.

4. DISCUSSION
4.1. SYSTEMATIC EXPLORATION
This work was conceived with pure exploration in mind, which
is contrasted with the treatment of exploration in classical RL.
There, exploration is discussed in terms of the exploration-
exploitation tradeoff. On the one hand, the agent should exploit
the acquired knowledge by selecting the current best (greedy)
action, thereby not spending too much time in low-value areas
of the state space. On the other hand, it needs to explore promis-
ing actions to improve its estimation of the value function, or to
build a more accurate model of the environment.
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FIGURE 11 | Sample query sequence on real robot (2/3).

The most widely used method for balancing exploration and
exploitation is the ε-greedy algorithm (Watkins and Dayan, 1992;
Sutton and Barto, 1998). At each state, with probability of 1− ε

the agent selects the greedy action with respect to the estimated
value function, and with a small probability of ε it selects a ran-
dom action for exploration. Optimistic initialization is another
common method for exploration (Sutton and Barto, 1998). By
initializing the value function for all states with high values, the
agent will try to reach less visited states until their values converge
to near-optimal ones, which is much lower than the initial values.
The initial values strongly affect the exploration time. Progress-
driven artificial curiosity is a more general method for balancing

exploration and exploitation which 1. removes the reliance on
randomness—the exploration is informed, instead of relying on
randomness (uninformed), and 2. promotes exploration of states
where learning can occur over states where not much can be
learned. To contrast, in optimistic initialization, every state is
equally worth exploring.

Somewhat recently, several algorithms modifying optimistic
initialization have been proposed that guarantee to find near-
optimal external policies in a polynomial number of time steps
(PAC-MDP). These algorithms, such as E3 (Kearns and Singh,
2002) and R-max (Brafman and Tennenholtz, 2003), maintain
a counter for the number of times each state-action pair is
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FIGURE 12 | Sample query sequence on real robot (3/3).

tried. When this number exceeds some threshold, the estimated
state-action value is quite accurate, and the state-action pair will
be considered “known”—thus with high probability the greedy
action will be near-optimal (exploitation). Otherwise, the value
is replaced with a highly optimistic one, encouraging the agent to
explore such “less-selected” state-action pairs. Recent work in this
model-based line of research extends R-max in several aspects.
Rao and Whiteson (2012) give a better estimate of the optimistic
reward using a weighted average between experienced and opti-
mistic ones, resulting in the V-MAX algorithm that is capable of
exploiting its experience more quickly. Lopes et al. (2012) propose
to replace the counter of visits to a state with expected learning

progress based on leave-one-out cross-validation on the whole
interaction history. Our method for estimating learning progress
is, in contrast, instantaneous and online. Furthermore, it is able
to generalize across different actions, instead of treating them
separately.

The common theme in many intrinsically motivated RL
approaches is that the estimated learning progress is used as
secondary to external rewards. The purpose of the behav-
ior (i.e., the policy) of the agent has a goal of achieving
external rewards. Exceptions include, for instance, Şimşek and
Barto (2006), where the agent’s behavior is based on a sec-
ond value function using an intrinsic reward signal, which is
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FIGURE 13 | Learning progress of the Katana robot arm’s predictive models at height 1 and 2 after 30 settings. Action 1 (no bits set) is the most
unstable. Action 6 (all bits set) is the most stable. See earlier discussion on the features and Figure 2.

FIGURE 14 | A “tricky” situation to test the robot’s stacking skill. We
show this case to illustrate the value of exploring to learn how the world
works. Consider the robot is faced with a task to build a stack of blocks as
fast as possible from this initial setting. Given its learned model of the
world, the robot will decide to start stacking from height 1 instead of height
2, as with high probability the stack of two blocks will fall after placing
another block upon them.

calculated based on the changes in value estimates of external
rewards.

Besides our preceding work (Ngo et al., 2012), which this
work is an extension of, some recent work in the pure explo-
ration setting also uses planning. Yi et al. (2011) develop a

theoretically optimal framework based on the Bayesian meth-
ods, in which the agent aims to maximize the information gain
in estimating the distribution of model parameters. An approxi-
mate, tractable solution based on Dynamic Programming is also
described. Hester and Stone (2012) present results on simulated
environments, where two progress-based intrinsic reward signals
are used for exploration: one based on the variance in predictions
of a decision tree model, and one based on the “novelty” of the
state-action pair, to promote the exploration focus to shift toward
more complex situations. In our system, we use a single curios-
ity reward signal based on the derived query condition, and our
approach has been shown to be more effective than the previous
variance-based approaches, since observations with large variance
will not be worth querying if the learner is confident about its
predictions.

In all the aforementioned work with pure exploration, plan-
ning is used to generate exploration policies, which must be
invoked at every timestep. It has been observed (Gordon and
Ahissar, 2011; Luciw et al., 2011) that quickly learning agents do
not update their exploration policies fast enough to achieve the
intrinsic rewards they expect to achieve. In such cases, learning
progress-based exploration is no better than random action selec-
tion or various simple heuristics. In other words, the update speed
of the policy generation must be much greater than the learn-
ing speed of the underlying learner. This can be computationally
demanding. It can also be wasteful, when the intrinsic reward that
the agent plans to achieve is, while non-zero, quite small.

Our approach allows the agent to choose the most informa-
tive observations (possibly several steps ahead) to sample, and
only invoke expensive planning when the current situation is
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already “known.” A statistically “known” prediction means the
agent knows with high probability that its prediction is almost
as correct as that of the Bayes optimal predictor. Due to this
approach, the computational demands are reduced compared to
a regular planner, and further, the agent will know when to stop
its planning efforts—when everything is “known.”

4.2. CONCLUSION
Goal-driven exploration is very common in the traditional RL
setting. In the pure-exploration setting, self-generated goals are
needed. The agent described here generates goals based on its con-
fidence in its predictions about how the environment reacts to
its actions. When a state-action outcome is statistically unknown,
the environment setting where that experience can be sampled
becomes a goal. The agent uses planning to manipulate the envi-
ronment so that the goal is quickly reached. Without planning,
only local, myopic exploration behavior can be achieved. The
result is a sample-efficient, curiosity-driven, exploration behav-
ior, which exhibits developmental stages, continual learning, and
skill acquisition, in an intrinsically-motivated playful agent. Key
characteristics of our proposed framework include: a mechanism
of informed exploration (with no randomness involved), a clear
distinction between direct and planned exploration (i.e., plan-
ning is done only when all local instances are statistically known),
and a mathematically-solid way of deciding when to stop learning
something and when to seek out something new to learn.
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One of the main challenges in the field of embodied artificial intelligence is the open-ended
autonomous learning of complex behaviors. Our approach is to use task-independent,
information-driven intrinsic motivation(s) to support task-dependent learning. The work
presented here is a preliminary step in which we investigate the predictive information
(the mutual information of the past and future of the sensor stream) as an intrinsic drive,
ideally supporting any kind of task acquisition. Previous experiments have shown that
the predictive information (PI) is a good candidate to support autonomous, open-ended
learning of complex behaviors, because a maximization of the PI corresponds to an
exploration of morphology- and environment-dependent behavioral regularities. The idea
is that these regularities can then be exploited in order to solve any given task. Three
different experiments are presented and their results lead to the conclusion that the
linear combination of the one-step PI with an external reward function is not generally
recommended in an episodic policy gradient setting. Only for hard tasks a great speed-up
can be achieved at the cost of an asymptotic performance lost.

Keywords: information-driven self-organization, predictive information, reinforcement learning, embodied artificial

intelligence, embodied machine learning

1. INTRODUCTION
One of the main challenges in the field of embodied
artificial intelligence (EAI) is the open-ended autonomous
learning of complex behaviors. Our approach is to use task-
independent, information-driven intrinsic motivation to support
task-dependent learning in the context of reinforcement learning
(RL) and EAI. The work presented here is a first step into this
direction. RL is of growing importance in the field of EAI, mainly
for two reasons. First, it allows to learn the behaviors of high-
dimensional and complex systems with simple objective func-
tions. Second, it has a well-established theoretical (Sutton and
Barto, 1998; Bellman, 2003) and biological foundation (Dayan
and Balleine, 2002). In the context of EAI, where the agent has
a morphology and is situated in an environment, the concepts of
the agent’s intrinsic and extrinsic perspective rise naturally. As a
direct consequence, several questions about intrinsic and extrin-
sic reward functions, denoted by IRF and ERF, follow from the
EAI’s point of view. The questions that are of interest to us are;
what distinguishes an IRF from an ERF, what is a good candidate
for a first principled IRF, and finally, how should IRFs and ERFs
be combined?

The first question, of how to distinguish between IRF and
ERF is addressed in the second section of this work, which starts
with the conceptual framework of the sensorimotor loop and its
representation as a causal graph. This leads to a natural distinc-
tion of variables that are intrinsic and extrinsic to the agent. We
define an IRF that models an internal drive or motivation as a

task-independent function which operates on the agent’s intrin-
sic variables only. In general, an ERF is a task-dependent function
that may operate on intrinsic and extrinsic variables.

The main focus of this work is the second question, which
deals with finding a first principled IRF. We propose the predictive
information (PI) (Bialek et al., 2001) for the following reasons.
Information-driven self-organization, by the means of maximiz-
ing the one-step approximation of the PI has proved to produce
a coordinated behavior among physically coupled but otherwise
independent agents (Ay et al., 2008; Zahedi et al., 2010). The
reason is that the PI inherently addresses two important issues
of self-organized adaptation, as the following equation shows:
I(St; St+ 1) = H(St+ 1)−H(St+ 1|St), where St is the vector of
intrinsically accessible sensor values at time t. The first term leads
to a diversity of the behavior, as every possible sensor state must
be visited with equal probability. The second term ensures that the
behavior is compliant with the constraints given by the environ-
ment and the morphology, as the behavior must be predictable.
This means that an agent maximizing the PI explores behavioral
regularities, which can then be exploited to solve a task. In a dif-
ferently motivated work, namely to obtain purely self-organizing
behavior, a time-local version of the PI was successfully used to
drive the learning process of a robot controller (Martius et al.,
2013). A similar learning rule was obtained from the principle
of Homeokinesis (Der and Martius, 2012). In both cases a gradi-
ent information was derived to pursue local optimization. For the
integration of external goals a set of methods have been proposed
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by (Martius and Herrmann, 2012), which, however, cannot deal
with the standard reinforcement setting of arbitrary time-delayed
rewards that we study here. Prokopenko et al. (2006) used the
PI, estimated on the spatio-temporal phase-space of an embodied
system, as part of fitness function in an artificial evolution setting.
It was shown that the resulting locomotion behavior of a snake-
bot was more robust, compared to the setting, in which only the
traveled distance determined the fitness.

The third question, which deals with how to combine the IRF
and ERF, is in the focus of the ongoing research that was briefly
described above and of which this publication is a first step. As
the PI maximization is considered to be an exploration of behav-
ioral regularities, it would be natural to exchange the exploration
method of a RL algorithm by a gradient on the PI. The work pre-
sented here is a preliminary step in which we concentrate on the
effect of the PI in a RL context to understand for which type of
learning problems it is beneficial and in which it might not be.
Therefore, we chose a linear combination of IRF and ERF in an
episodic RL setting to evaluate the PI as an IRF in different exper-
iments. Combining an IRF and an ERF in this way is justified as
ERFs are often linear combinations of different terms, such as one
term for fast locomotion and another for low energy consump-
tion. Nevertheless, the results of the experiments presented in this
work show that the one-step PI should not be combined in this
way with an ERF in an episodic policy gradient setting.

We are not the first to address the question of IRF and ERF
in the context of RL and EAI. This idea goes back to the pio-
neering work of Schmidhuber (1990) and is also in the focus
of more recent work (Kaplan and Oudeyer, 2004; Schmidhuber,
2006; Oudeyer et al., 2007) which are based on the prediction
progress and Barto et al. (2004), who considers the predic-
tion error. In Storck et al. (1995); Yi et al. (2011) an intrin-
sic reward for information gain was proposed (KL-divergence
between subsequent models), which results in their experiments
in a state-entropy maximization. A different approach (Little and
Sommer, 2013) uses a greedy policy on the predicted informa-
tion gain of the world model to select the next action of an
agent. However, only discrete state/action spaces have been con-
sidered in both approaches. A similar work (Cuccu et al., 2011)
uses compression quality as the intrinsic motivation, which was
particularly beneficial because it performed a reduction of the
high-dimensional visual input space. In comparison to our work
only one experiment (comparable to the self-rescue task below)
with a one-dimensional action-space was used without consid-
ering asymptotic performance, which is where we found most
problems.

This paper investigates continuous space high-dimensional
control problems where random exploration becomes difficult.
The PI, measured on the sensor values, accompanies (and might
eventually replace) the exploration of a RL method such that the
policy adaptations are conducted compliant to the morphology
and environment. The actual embodiment is taken into account,
without modeling it explicitly in the learning process.

The work is organized in the following way. The next section
gives an overview of the methods, beginning with the sensorimo-
tor loop and its causal representation. This is then followed by a
presentation of the PI and the episodic RL method PGPE (Sehnke

et al., 2010). The third section describes the results received by
applying the methods to three experiments, and the last section
closes with a discussion.

2. METHODS
This section describes the methods used in this work. It begins
with the conceptual framework of the sensorimotor loop. This is
then followed by a discussion of the PI and entropy, which both
are used as IRF in all presented experiments. Finally, the RL algo-
rithm utilized in this work is introduced as far as it is required to
understand how the results were obtained.

2.1. EMBODIED AGENTS AND THE SENSORIMOTOR LOOP
There are three main reasons why we prefer to experiment with
embodied agents (EA). First, scalability: EA are high-dimensional
systems which live in a continuous world. Hence, the algorithms
face the curse of dimensionality if they are evaluated on different
EAs. Second, validation: we are interested in understanding natural
cognitive systems by the means of building artificial agents (Brooks,
1991). Using EA ensures that the models are validated against
the same (or similar) physical constraints that natural systems
are exposed to. Third, guidance: there is good evidence that the
constraints posed by the morphology and environment can be used
to reduce the required controller complexity, and hence, reduce
the size of the search space for a learning algorithm (Zahedi et al.,
2010; Pfeifer and Bongard, 2006). Consequently, understanding
the interplay between the body, brain and environment, also called
the sensorimotor loop (SML, see Figure 1), is a general focus of
our work. The next paragraph will introduce the general concept
of the SML and discuss its representation as a causal graph.

A cognitive system consists of a brain or controller that sends
signals to the system’s actuators, which then affect the system’s
environment. We prefer the notion of the system’s Umwelt (von
Uexkuell, 1934; Clark, 1996; Zahedi et al., 2010; Zahedi and Ay,
2013), which is the part of the system’s environment that can be
affected by the system, and which itself affects the system. The
state of the actuators and the Umwelt are not directly accessible to
the cognitive system, but the loop is closed as information about
both, the Umwelt and the actuators are provided to the controller
by the system’s sensors. In addition to this general concept, which
is widely used in the EAI community (see e.g., Pfeifer et al., 2007),
we introduce the notion of world to the sensorimotor loop, and by
that we mean the system’s morphology and the system’s Umwelt.
We can now distinguish between the agent’s intrinsic and extrin-
sic perspective in this context. The world is everything that is
extrinsic from the perspective of the cognitive system, whereas
the controller, sensor and actuator signals are intrinsic to the
system.

The distinction between intrinsic and extrinsic is also cap-
tured in the representation of the sensorimotor loop as a causal or
Bayesian graph (see Figure 1, right-hand side). The random vari-
ables C, A, W , and S refer to the controller state, actuator signals,
world and sensor signals, and the directed edges reflect causal
dependencies between the random variables (see Klyubin et al.,
2004; Ay and Polani, 2008; Zahedi et al., 2010). Everything that is
extrinsic to the system is captured in the variable W , whereas S,
C, and A are intrinsic to the system.
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FIGURE 1 | The sensorimotor loop. Left: Schematic diagram of a cognitive system with its interaction with the world. Right: Corresponding causal graph.

In this context, we distinguish between internal and external
reward function (IRF, ERF) in the following way. An ERF may
access any variable, especially those that are not available to an
agent by its sensors, i.e., anything that we summarized as the
world state W . An IRF may access intrinsically available informa-
tion only (St ,At ,Ct , see Figure 1). We are interested in first princi-
pled model of an intrinsic motivation, i.e., a model that requires
as few assumptions as possible. The idea is that IRF should not
depend on a specific task but rather be a task-independent inter-
nal driving force, which supports any task-dependent learning.
This is why we refer to it as task-independent internal motivation
or drive. This closes the discussion of embodied agents and their
formalization in terms of the sensorimotor loop. The next section
describes the information-theoretic measures that are used in the
remainder of this work.

2.2. PREDICTIVE INFORMATION
The predictive information (PI) (Bialek et al., 2001), which is
also known as excess entropy (Crutchfield and Young, 1989) and
effective measure complexity (Grassberger, 1986) is defined as the
mutual information of the entire past and future of the sensor
data stream:

Ipred(S) := I(Sp; Sf ) (1)

where Sp = {S1, S2, . . . , St} is the entire past of the system’s
sensor data at some time t ∈ N and Sf = {St+ 1, St+ 2, . . .} its
entire future. The PI captures how much information the past
carries about the future. Unfortunately, it cannot be calculated
for most applications because of technical reasons. Hence, we use
the one-step PI, which is given by

I∗pred(S) := I(St+ 1; St)

= H(St+ 1)︸ ︷︷ ︸
diversity

−H(St+ 1|St)︸ ︷︷ ︸
compliance

, (2)

which was previously investigated in the context of EAI (Ay
et al., 2008) and as a first principle learning rule (Zahedi et al.,
2010; Martius et al., 2013). A different motivation for the PI

is based on maximizing the mutual information of an inten-
tion state S̃t , which is internally generated by the agent, and the
next sensor state St+ 1 (Ay and Zahedi, 2013). The Equation
(2) displays how maximizing the PI affects the behavior of a
system. The first term in Equation (2) leads to a maximiza-
tion of the entropy over the sensor states. This means that the
agent has to explore its world in order to sense every state with
equal probability. The second term in Equation (2) states that
the uncertainty of the next sensor state must be minimal if the
current sensor state is known. This means that an agent has
to choose actions which lead to predictable next sensor states.
This can be rephrased in the following way. Maximizing the
entropy H(St+ 1) increases the diversity of the behavior whereas
minimizing the conditional entropy −H(St+ 1|St) increases the
compliance of the behavior. The result is a system that explores
its sensors space to find as many regularities in its behavior as
possible.

For completeness we will also maximize the entropy H(St)

only and compare the results to the maximization of the PI. This
concludes the presentation of the PI (and entropy) as a model for
a task-independent internal motivation in the context of RL. The
next section presents the utilized RL algorithm.

2.3. POLICY GRADIENTS WITH PARAMETER-BASED EXPLORATION
(PGPE)

We chose an episodic RL method named PGPE (Sehnke et al.,
2010) to investigate the effect of the PI as an IRF, because it is
not restricted to a specific class of policies. Any policy, which
can be represented by a vector μ ∈ R

n with fixed length n ∈
N
+ can be optimized by this method. In the work presented

here, we use it to learn the synaptic strengths and bias val-
ues of neural networks with fixed structures only. Nevertheless,
we can apply the framework to other parametrizations, in par-
ticular to stochastic policies, which is why PGPE attracted
our attention for ongoing the project in which this work is
embedded.

The algorithm can be summarized in the following way (for
details, see (Sehnke et al., 2010)). In each roll-out or episode,
two policy instances are drawn from μ by adding and sub-
tracting a random vector ε ∼ N (0, σ) to it. The resulting two
policy parametrizations �+ = μ+ ε and �− = μ− ε are then
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evaluated and their final rewards r+, r− are used to determine the
modifications on μ and σ according to the following equations

mn = max(mn− 1, r+, n, r−, n) (3)

bn = (1 − δ)bn− 1 + δ
∑

n

r+, n + r−, n

2
(4)

Δμi = αεi(r+ − r−)

2m− r+ − r−
(5)

Δσi = α

m− b

(
r+ − r−

2
− b

)(
ε2 − σ2

i

σi

)
. (6)

Roll-outs can be repeated several times before a learning step is
performed. Every learning step concludes a batch. PGPE requires
an initial μinit, an initial σinit, a learning rate α, baseline b, baseline
adaptation parameter δ, and an initialized maximal reward m =
minit. We have set δ to the recommended value of 0.1, μinit = 0,
and we have achieved the best results in all experiments by set-
ting minit small enough that m is definitely overwritten in the first
roll-out (see Equation (3)). The other parameters are evaluated
in each experiment, such that the best results were achieved when
no IRF was used and then fixed for the remaining experiments.

3. RESULTS
This section presents three different experiments and their results.
The first experiment is the cart-pole swing-up, a standard con-
trol theory problem that is also widely used in machine learning
(Barto et al., 1983; Geva and Sitte, 1993; Doya, 2000; Pasemann
et al., 1999). The cart-pole experiment is also chosen because bal-
ancing a pole minimizes the entropy, and hence, it contradicts
the maximization of the PI. The second experiment is the learn-
ing of a locomotion behavior for a hexapod and it was chosen to
demonstrate the effect of the PI maximization on a more com-
mon, well-structured experimental setting. By well-structured we
mean that the controller, morphology, environment, and ERF
are chosen such that they result in a good hexapod locomotion
without any additional support by an IRF in only a few policy
updates. The third experiment is designed to be challenging, as it
combines a high-dimensional system, an unconventional control
structure, an unsteady ERF with an unsteady environment. We
believe that these three experiments span a broad range of pos-
sible applications for information-theoretic IRF in the context of
episodic RL.

3.1. CART-POLE SWING-UP
The cart-pole swing-up experiment is ideal to investigate the
effect of the PI on an episodic RL task, mainly for two reasons.
First, the experiment is well-defined by a set of equations and
parameters that are widely used in literature (Barto et al., 1983;
Geva and Sitte, 1993; Doya, 2000; Pasemann et al., 1999). This
ensures that the results are comparable and reproducible by oth-
ers with little effort. Second, the successful execution of the task
contradicts the maximization of the PI. The task is to balance the
pole in the center of the environment, and hence, to minimize the
entropy of the sensor states. The maximization of the PI demands

a maximization of the entropy (see Equation 2). The remainder of
this section first describes the experimental and controller setting
and then closes with a discussion of the results.

The experiment was conducted by implementing the equa-
tions that can be found in (Barto et al., 1983; Geva and Sitte, 1993;
Doya, 2000). The state of the cart-pole is given by x, ẋ, ϑ, ϑ̇ , which
are the position of the cart, the speed of the cart, the pole angle
and the pole’s angular velocity. The cart is controlled by a force
F ∈ [−10N, 10N] that is applied to its center of mass. The four
state variables and the force define the input and output config-
uration of our controllers for this task. The initial controller (see
Figure 2A) was chosen from (Pasemann et al., 1999), where net-
work structures were evolved for the same task. To ensure that
the evolved structure is not especially unsuitable for RL, different
variations were chosen for evaluation too (see Figures 2B–D). In
this approach, the input neurons are simple buffer neurons, with
the identity as transfer-function, whereas all other neurons use
the hyperbolic tangent transfer-function.

The evaluation time was set to T = 2000 iterations, which cor-
responds to 20 seconds (c.f. Doya, 2000). Different values, starting
from the values proposed in (Sehnke et al., 2010), for the learning
rate α ∈ {0.1, 0.2, 0.5}, the initial variation σinit ∈ {2, 5}, and the
initial maximal reward minit ∈ {−∞, 10, 100, 1000} were evalu-
ated in experiments without applying an IRF to the learning of the
task. The underlined values showed the best results, and hence,
are chosen for presentation here. Each experiment consisted of
B = 10000 batches, i.e., updates of μ and σ (see Equations 5 and
6) with two roll-outs each (i.e., four evaluated policies θ

+,−
1, 2 ).

The results are obtained by conducting every experiment 100
times. To ensure comparability among the experiments with dif-
ferent parameters and controllers, the random number generator
was initialized from a fixed set of 100 integer values for each
experiment.

The presentation of the reward function is split into two parts.
The first part handles the ERF, whereas the second part handles
the IRF. We use the terms intrinsic/internal and extrinsic/external
with respect to the agent’s perspective, as discussed in the previous
section (see Section 2.1). The controller has access to the full state
of the system, and hence, the separation into internal and external
is artificial in this case. Nevertheless, we keep this terminology for
consistency, as the next experiments will reflect this distinction
in a natural way. We denote IRF by Rin and ERF by Rex, where a
super-script is added to distinguish between the different reward
functions (PI and entropy).

The ERF for the cart-pole swing-up task is defined such that it
is not a smooth gradient in the reward space, and therefore, does
not directly guide the learning process. The controller is only
rewarded if the pole is pointing upwards and the reward is scaled
with the distance of the pole to the center of the environment,
which is given by

Rex(t) :=
{

2− |x(t)| if |ϑ(t)| < 5◦
0 otherwise.

(7)

The IRF is calculated at the end of each episode based on
the recordings of the pole angles {St = ϑ(t)|t = 1, 2, . . . , T}.
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FIGURE 2 | Controller architectures for the cart-pole swing-up

task. The input neurons are bare buffer neurons whereas the
hidden and output neurons have tanh transfer-function. (A) from

Pasemann et al. (1999); (B) with 4 hidden neurons and fully
connected; (C,D) recurrent variations without and with lateral
connections.

We use a discrete-valued computation of the PI, and hence, the
data is binned prior to the calculation. All IRFs are normalized
with respect to their theoretical upper bound of I(St+ 1; St) ≤
H(St) ≤ log |S| (see (Cover and Thomas, 2006)). This leads to the
two following IRFs:

RPI
in := |I(St+ 1; St)| and RH

in := |H(St)|. (8)

The overall reward functions are then given by

RPI :=
T∑

t= 1

Rex(t)+ β(γ)RPI
in ,

RH :=
T∑

t= 1

Rex(t)+ β(γ)RH
in, β(γ) = γ · T · max

x, ϑ, t
{Rex(t)} (9)

where β(γ) is a factor to scale the IRF with respect to the maximal
possible value of the ERF. This allows us to compare the effects of
RPI

in and RH
in across different experiments.

The results are discussed only for the fully connect feed-
forward network (see Figures 3A–D) in detail as this controller
shows the most distinguishable results with respect to the varia-
tion of the IRF scaling parameter γ ∈ {0, 1.25, 2.5, 3.75, and 5%}.
It is important to note that the plots only show the averages of the
100 experiments and not the standard deviation for the following
reason. Few controllers succeed early, others later during the pro-
cess. Due to the unsteady ERF the resulting standard deviation
is very large, as those controllers that succeed receive signifi-
cantly higher reward compared to those not succeeding (which
remain close to zero, as a rotational behavior is not permitted).
We intentionally chose an unsteady ERF, that returns zero for
almost all states, and hence, we know beforehand that the stan-
dard deviation is large and no further information is provided if
it is plotted.

Figures 3A,B show the progress of the ERF RPI
ex and IRF RPI

in
for the PI maximization. It is shown that there is a significant
speed-up in learning during the first 4000 batches for all γ > 0%
(see Figure 3A). At this point in time the average ERF of γ = 0%
succeeds that of γ = 5%. After approximately 5000 batches the
ERF for γ = 2.5% and γ = 3.75% are very close to or slightly
succeeded by the ERF for γ = 0%, whereas the ERF for γ =

1.25% remains higher. The conclusion from this experiment is
that small values of γ < 5% are beneficial in this learning task
as less batches are required to solve this task and the asymp-
totic learning performances are almost identical to γ = 0%. The
results, however, are not significant and the choice of γ is crit-
ical. This leads to the conclusion that the one-step PI is not
significantly beneficial in the learning of this task.

Figures 3C,D show the progress of the ERF RH
ex and IRF RH

in
for the entropy maximization. The results show a different pic-
ture. Any parameter γ > 0% speeds up the learning and improves
the overall performance. The comparison of entropy and PI is
addressed in the discussion again.

3.2. HEXAPOD LOCOMOTION
If a specific task should be learned by an embodied agent, it
is more common to choose an environment, morphology, con-
trol structure and a smooth ERF which are well-suited for the
desired task. In order to investigate which effect the PI has on
such a well-defined learning task, the set-up of the experiment
presented in this section is chosen such that all components
are known to work well if there is no IRF present. The goal
is to learn a locomotion behavior of a hexapod, where the
maximal deviation angles ensure that it cannot flip over. The
controller is known to perform well in a similar task (Markelić
and Zahedi, 2007) and its modularity significantly reduces the
number of parameters that must be learned. The ERF defines
a smooth gradient in the reward space, ensuring that small
changes in the controller parameters show an immediate effect
in the ERF. The environment is an even plane without any
obstacles.

The experimental platform (see Figure 4) is a hexapod, with 12
degrees of freedom (two actuators in each leg) and with 18 sensors
(angular positions of the actuators and binary foot contact sen-
sors). The two actuators of each leg are positioned in the shoulder
(Thorax-Coxa or ThC joint) and in the knee (Femur-Tibia or
FTi joint) of the walking machine, similar to the morphology
presented in (von Twickel et al., 2011). We omit the second
shoulder-joint (CTr) because it is not required for locomotion.
Each joint accepts the desired angular position as its input and
returns the actual current angular position as its output. The sim-
ulator YARS (Zahedi et al., 2008) was used for all experiments
conducted in this section.
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FIGURE 3 | Results for cart-pole experiments. Each row shows the
results for one controller architecture, see Figure 2. The
corresponding connection matrix is provided in the first column
(gray: connection, black: no connection). For simplicity only the row

for the second controller is discussed in detail. (A,B) ERF and IRF
for PI maximization—small values of γ > 0 are advantageous.
(C,D) ERF and IRF for entropy maximization—all values of γ > 0
have positive effect.

FIGURE 4 | Hexapod for locomotion task and controller set-up. (A) Hexapod robot with marked actuated joints and sensors; (B) leg module of controller;
(C) entire controller; and (D) schematic pairings for PI and entropy calculation.

Different values for the PGPE parameters were evaluated. The
best results for γ = 0 (see Equation 9) were achieved with σinit =
2 and α = 0.1. To ensure comparability with the previous experi-
ment, two roll-outs were chosen here, although it is not required
to obtain the following results. The evaluation time was set to
T = 1000 and B = 250 batches were sufficient to observe a con-
vergence of the policy parameters μ. The values for γ were chosen
from the previous experiment.

The ERF is calculated once at the end of each episode and
it is defined as the euclidean distance between the hexapod

at time T and its initial position (0, 0) projected onto the
xy-plane:

Rex :=
√

x2
T + y2

T, (10)

where (xT, yT) are the coordinates of the center of the robot in
world coordinates at time t = T.

The IRF is calculated differently compared to the previous
experiment. In a high-dimensional system as the hexapod, it is
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not possible to compute the PI of the entire system with a rea-
sonable effort, as the computational cost of I(St; St+ 1) grows
exponentially for every new sensor. It would be natural to reduce
the computational cost by calculating the PI based on a model
of the morphology, but this would violate our claim that the
PI incorporates the morphology without the need of explicitly
modeling it. Hence, we decided to use the following method
to approximate the PI and the entropy H (see Figure 4D). Let
Si(t), i = 1, 2, . . . , 12, be the angular position sensors for the 12
actuators. We then chose two sensors k, l with 1 ≤ k, l ≤ 12, k �=
l, randomly from the 12 possibles sensors, and calculated

PIu := I (Sk(t + 1), Sl(t + 1); Sk(t), Sl(t))

Hu := H (Sk(t), Sl(t)) . (11)

The overall PI and entropy are then calculated as the sum of n ran-
domly chosen PIu and Hu pairings, with the additional constraint
that each sensor pair k, l appears only once in the approximations.
The resulting IRFs are then given by:

RPI
in :=

n∑
u= 1

PIu and RH
in :=

n∑
u= 1

Hu, (12)

where n is the number of pairings. For n > 20 no difference was
found for the approximated PI, which is why n = 20 was chosen
for the remainder of this work.

The overall reward functions are then given by:

RPI := Rex + β(γ)RPI
in RH := Rex + β(γ)RH

in (13)

where β(γ) is defined as in the cart-pole swing-up experiment (see
Equation 9).

A common recurrent neural network central pattern genera-
tor layout is chosen, which can also be found in literature (e.g.,
Campos et al., 2010; von Twickel et al., 2011; Markelić and Zahedi,
2007), thereby using the same neuron model as in the cart-pole
experiment (see above). As all legs in the hexapod are morpholog-
ically equivalent, only the synaptic weights of one leg controller
are open to parameter adaptation in the PGPE algorithm. The
values are then copied to the other leg controllers. This reduces
the number of parameters for the entire controller to 32 (see
Figures 4B,C).

The results (see Figure 5) show that neither the PI nor the
entropy have a noticeable effect on the learning performance. The
mean values of the 100 experiments for each parameter as well
as the standard deviation are almost identical. This point will be
addressed in the discussion of this work (see Section 4).

3.3. HEXAPOD SELF-RESCUE
The third experiment is designed to combine and extend the two
previous experiments. It combines them as a high-dimensional
morphology, similar to that used in the locomotion experiment,
is trained with an unsteady ERF, which is similar to that used
in the cart-pole experiment. It extends the previous experiments
as the number of parameters in the controller is a magnitude
larger and because an unconventional control structure is used for
the desired task. The most distinctive difference to the previous
experiments is the non-trivial environment. The next paragraphs
will explain the experimental set-up in detail before the section
closes with a discussion of the results.

We used the simulated hexapod robot of the LPZROBOTS sim-
ulator (Martius et al., 2012). The hexapod has 12 active and 16
passive degrees of freedom (see Figure 6). The active joints take
the desired next angular position as their input and deliver the
current actual angular position as their output. The controller is
a fully connected one-layer feed-forward neural network without
lateral connections and the hyperbolic transfer function at+ 1 =
tanh(Wst + v), where at+ 1 and st are the next action and the cur-
rent sensor values, W is the connection matrix, and v is the vector
of biases. The resulting controller is parameterized by 156 param-
eters, 144 for the synaptic weights and 12 for the bias values. Note,
that the controller is generic and has no a priori structuring or
other robot-specific details.

The task for the hexapod is to rescue itself from a trap. For this
purpose, it is placed in a closed rectangular arena (see Figure 7).
The difficulty of the task is determined by the height of the
arena’s walls, denoted by h ∈ {0.0m, 0.1m, 0.2m} (see Figure 6).
For comparison, the length of the lower leg (up to the knees) is
0.45 m. The size-proportion of the robot and the trap can be seen
in Figure 6B.

The ERF is given by

Rex :=
{√

x2
T + y2

T − r if
√

x2
T + y2

T − r > 0

0 otherwise,
(14)

FIGURE 5 | Results for hexapod locomotion task. ERF and IRF with PI maximization (A,B) and entropy maximization (C,D). No significant effect is observed.
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FIGURE 6 | Hexapod robot for self-rescue and the experimental

setup. (A) The robot has 6 legs where the hind legs are 10%
larger than the other legs. Each leg has two active DoF in the hip
joint and one passive DoF in both the knee and the ankle joint

equipped with a spring. Additionally the whiskers have each two
spring-joints. (B) The robot starts in the center of the trap with a
certain barrier height and has to escape from it. The reward is the
distance from the outside of the trap or zero otherwise.

FIGURE 7 | Performance in the self-rescue task depending on the

internal reward type and factor γ. Plotted are the ERF and the IRF in case
of PI (A,B,E,F,I,J) and entropy (C,D,G,H,K,L) over the number of batches for
different values of γ and barrier heights h: (A–D) no barrier (h = 0), (E–H) low

barrier (h = 0.1) and (I–L) high barrier (h = 0.2). For each value of γ the mean
and standard deviation of 30 experiments are displayed. In all cases a
speed-up in learning is achieved with IRF, however, the asymptotic
performance is worse.

where r is the radius of the trap (Figure 6) and (xT, yT) is the posi-
tion of the center of the robot in world coordinates at the end of a
roll-out (t = T). The IRFs and overall reward functions are iden-
tical to those used in the previous experiment (see Equations (11)
and (12)).

As before, the performance of PGPE with γ = 0 for different
values for σinit and α were evaluated, and the best are chosen
for presentation here, which are σinit = 2 and α = 0.5. A differ-
ent learning rate ασ = 0.05 was chosen for the update of σ (see
Equation 3). Each episode consisted of T = 1250 iterations (25s)
with one roll-out per episode. A total of B = 5000, 7000, and
35000 batches were conducted for the different heights h.

We compare the performance for different values of the IRF
factor γ ∈ {0, 0.05, 1, 5, and 25%} and performed 30 experiments
for each setting. Figure 7 displays the results. As for the cart-pole
experiment, the plots for the PI and entropy in Figure 7 report a
clear picture of an exploration phase (high value) followed by an
exploitation phase (lower value).

To compare the results, we set two threshold values at Rex = 5
and Rex = 20 which refer to a 5m and 20m distance between the
hexapod and the walls of the arena. The first threshold reflects
a successful learning of the task, because it means that hexapod
reliably escapes the arena. The second threshold represents the
case when in addition also a high locomotion speed is achieved
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after a successful escape. For the simplicity of argumentation,
we compare two cases, i.e., γ = 0% and γ = 1%. If there is no
wall (h = 0m) the system with IRF γ = 1% requires only half
the amount of batches compared to no IRF (250 batches vs. 500
batches, see Figures 7A,C). For the arena with a medium height
(h = 0.1m), the learning success speed ratio increases to approx-
imately three (350 batches vs. 1100 batches, see Figures 7E,F).
The results are decisive for the arena with high walls (h = 0.2m),
as the system with IRF requires about 1000 batches on average
compared to the 5000 batches on average that a required by the
systems without IRF (see Figures 7I,K).

This leads to the conclusion that both, PI and entropy, are ben-
eficial if the short-term learning success is of the primary interest.
However, the asymptotic learning success of those hexapods with
IRF is either equal or lower compared to those without an IRF
in all experiments. This is valid for the one-step PI and for the
entropy. Thus, both are not necessarily beneficial if the long-term,
asymptotic learning performance in an episodic policy gradient
setting is important.

4. DISCUSSION
This paper discussed the one-step PI (Bialek et al., 2001) as an
information-driven intrinsic reward in the context of an episodic
policy gradient method. The reward is considered to be intrinsic,
because it is task-independent and it relies only on the informa-
tion of the sensors of an agent, which, by definition, represent the
agent’s intrinsic view on the world. We chose the maximization
of the one-step PI as an IRF, because it has proved to encourage
behaviors which show properties of morphological computation
without the need to model the morphology (Zahedi et al., 2010).

The IRF was linearly combined with a task-dependent ERF in
an episodic RL setting. Specifically, PGPE (Sehnke et al., 2010)
was chosen as RL method, because it allows to learn arbitrary
policy parametrizations. Within this set-up, three different types
of experiments were performed. The following paragraph will
summarize the results before they are discussed.

The first experiment was the learning of the cart-pole swing-
up task. Four controllers were evaluated of which three were less
successful and one showed good results. The ERF was designed
to be difficult to maximize without the IRF, and the task con-
tradicted the maximization of the entropy and PI. The best
controller did not show a significant improvement of the learning
performance with respect to its asymptotic behavior. An improve-
ment could only be observed during the first learning steps.
Moreover, the choice of the linear combination factor γ is criti-
cal. For all controllers a minor and not significant improvement
is observable. In case of the entropy maximization, any factor
γ > 0% showed an improvement in learning speed and learning
performance.

A locomotion behavior was learned for a hexapod in the sec-
ond experiment. The entire set-up used well-known components
for the environment, modular controller, ERF, and morphology
so that the task was solved without IRF in only a few learning
steps. No effect of the PI and entropy was observed.

The third experiment combined the previous two and
extended them by a non-trivial environment. A hexapod had to
escape from a trap and was only rewarded outside of it. The

results showed no significant difference between the PI and the
entropy as IRFs. The learning speed was significantly improved
by both IRFs with increasing difficulty of the task. The asymp-
totic performance was either equal or worse when an IRF was
introduced.

The hexapod locomotion experiment teaches us that the
information-theoretic reward functions (PI and entropy) has no
effect in well-defined experimental set-ups.

The cart-pole and the hexapod self-rescue experiments teach
us that the maximal values of the IRF should be around one per-
cent of the maximal ERF value to improve the learning speed and
learning performance in the short-term. The asymptotic behav-
ior is either not or negatively effected by the one-step PI. The
cart-pole experiment indicates that maximizing the entropy is
superior to maximizing the PI, whereas the hexapod self-rescue
does not show such a clear picture. The success of the entropy in
both experiments is explained by the ERFs. Due to their nature,
random changes in the policy parameters are unlikely to result in
changes in the ERF during the first batches. Hence, maximizing
the entropy results in an exploration until the ERF is triggered.

The PI, defined as the entropy over the sensor states subtracted
by the conditional entropy of consecutive sensor states does not
result in superior results for the cart-pole compared to just using
the entropy for the following reason. In this set-up, the mor-
phology and environment are very simple and deterministic, and
therefore, do not produce any noise or other uncertainties in the
sensor data stream. The uncertainty about the next possible angu-
lar position of the pole is small, if the current pole position is
known. In other words, the cart-pole system is regular by defi-
nition and no further regularities can be found by maximizing
the PI. We speculate that the conditional entropy, which cannot
be reduced by the learning in this setting, dampens the explo-
ration effect of the entropy term in the PI maximization. For the
hexapod rescue experiment, the situation is different. There is an
uncertainty about the next sensor state, given the current sensor
state which result from the morphology and the construction of
the arena. The PI maximization is able to find regularities which
can then be exploited to maximize the ERF in the RL setting.

The results contradict our intuition, as the one-step pre-
dictive information has shown good results when applied as
an information-driven self-organization principle in the context
of embodied artificial intelligence (Zahedi et al., 2010; Martius
et al., 2013). The intuitively plausible next step was to guide
the information-driven self-organization toward solving a goal
by combining it with an external reward signal in an reinforce-
ment learning context. The approach evaluated in this paper was
to linearly combine the PI with and external reward signal in an
episodic policy gradient learning. If anything, then the PI showed
positive short-term results, if the world was considerably prob-
abilistic and if the external reward was sparse. Compared to no
intrinsic reward the PI showed negative results for its asymp-
totic behavior. The performance of the PI was either equal or
worse compared to the entropy in all cases. This leads to the
conclusion that research in the context of information-driven
intrinsic rewards and reinforcement learning should be carried
out in other directions, which are briefly described in the final
paragraph.
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We have used a constant combination factor γ for all experi-
ments presented in this work. It is known from general learning
theory that a decaying learning rate is required for the conver-
gence of a system. We chose not to use a decaying learning factor,
because this means that the internal drive is slowly dampened
until its effect is neglectable (at least in a technical applica-
tion). This would contradict the idea of motivation-driven and
open-ended learning of embodied agents. However, the results of
our present paper reveal a disadvantage of this approach in the
asymptotic limit, and therefore, suggest, contrary to our origi-
nal thoughts, to pursue a strategy with a decaying combination
factor. The second possible modification of this approach is to
exchange the linear combination of the internal and external
reward by a non-linear function, of which multiplicative and
exponential functions are two examples. Third, using a gradi-
ent of the PI instead of a random exploration in the context

of RL is a promising approach that is currently investigated. In
this approach, we will use a gradient on an estimate of the PI
and not the error of a predictor as in e.g., (Schmidhuber, 1991).
Fourth, we will continue to evaluate other information-theoretic
measures in the context of task-dependent learning with the
support of information-driven intrinsic motivation. In addition
to using correlation measures, such as the mutual information,
we believe that causal measures in the sensorimotor loop (Ay
and Zahedi, 2013), such as the measure considered in (Zahedi
and Ay, 2013), are good candidates for future research in this
field.
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Markelić, I., and Zahedi, K. (2007).
“An evolved neural network for
fast quadrupedal locomotion,”
in Advances in Climbing and
Walking Robots, Proceedings of
10th International Conference
(CLAWAR 2007), eds M. Xie and
S. Dubowsky, (World Scientific
Publishing Company), 65–72.

Martius, G., Der, R., and Ay, N.
(2013). Information driven
self-organization of com-
plex robotic behaviors. PLoS
ONE Singapore 8:e63400. doi:
10.1371/journal.pone.0063400

Martius, G., and Herrmann, J. M.
(2012). Variants of guided self-
organization for robot control.
Theory Biosci. 131, 129–137. doi:
10.1007/s12064-011-0141-0

Martius, G., Hesse, F., Güttler, F., and
Der, R. (2012). LPZROBOTS: a free
and powerful robot simulator, version

0.7. Available online at: http://robot.
informatik.uni-leipzig.de/software

Oudeyer, P.-Y., Kaplan, F., and Hafner,
V. V. (2007). Intrinsic motiva-
tion systems for autonomous men-
tal development. IEEE Trans. Evo.
Comput. 11, 265–286. doi: 10.1109/
TEVC.2006.890271

Pasemann, F., Steinmetz, U., and
Dieckman, U. (1999). “Evolving
structure and function of neuro-
controllers,” in Proceedings of the
Congress Evolutionary Computation
CEC 99, Vol. 3, (Washington, DC).

Pfeifer, R., and Bongard, J. C. (2006).
How the Body Shapes the Way We
Think: A New View of Intelligence,
(Cambridge, MA: The MIT Press;
Bradford Books).

Pfeifer, R., Lungarella, M., and Iida, F.
(2007). Self-organization, embod-
iment, and biologically inspired
robotics. Science 318, 1088–1093.
doi: 10.1126/science.1145803

Prokopenko, M., Gerasimov, V., and
Tanev, I. (2006). “Evolving spa-
tiotemporal coordination in a mod-
ular robotic system,” in Proceedings
on SAB’06, Vol. 4095, (Rome, Italy),
558–569.

Schmidhuber, J. (1990). “A possi-
bility for implementing curiosity
and boredom in model-building
neural controllers,” in Proceedings
of SAB’90, (Cambridge, MA),
222–227.

Schmidhuber, J. (1991). “Curious
model-building control systems,” in
In Proceedings on International
Joint Conference on Neural
Networks, Singapore, (IEEE),
1458–1463.

Schmidhuber, J. (2006). Developmental
robotics, optimal artificial curiosity,
creativity, music, and the fine arts.
Connect. Sci. 18, 173–187. doi:
10.1080/09540090600768658

Frontiers in Psychology | Cognitive Science November 2013 | Volume 4 | Article 801 | 216

http://robot.informatik.uni-leipzig.de/software
http://robot.informatik.uni-leipzig.de/software
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


Zahedi et al. One-step PI and episodic RL

Sehnke, F., Osendorfer, C., Rückstiess,
T., Graves, A., Peters, J., and
Schmidhuber, J. (2010). Parameter-
exploring policy gradients. Neural
Netw. 23, 551–559. doi: 10.1016/j.
neunet.2009.12.004

Storck, J., Hochreiter, S., and
Schmidhuber, J. (1995).
“Reinforcement driven information
acquisition in non-deterministic
environments,” in Proceedings of
the International Conference on
Artificial Neural Networks, Vol. 2,
(Paris: EC2 & Cie), 159–164.

Sutton, R. S., and Barto, A. G.
(1998). Reinforcement Learning: An
Introduction, Cambridge, MA: MIT
Press.

von Twickel, A., Büschges, A., and
Pasemann, F. (2011). Deriving
neural network controllers
from neuro-biological data:
implementation of a single-leg

stick insect controller. Biol. Cybern.
104, 95–119. doi: 10.1007/s00422-
011-0422-1

vonUexkuell, J. (1934).“Astroll through
the worlds of animals and men,” in
Instinctive Behavior, ed C. H. Schiller,
(New York, NY: International
Universities Press), 5–80.

Yi, S., Gomez, F., and Schmidhuber, J.
(2011). “Planning to be surprised:
optimal Bayesian exploration
in dynamic environments,” in
Proceedings on Fourth Conference on
Artificial General Intelligence (AGI),
(Mountain View, CA: Google).

Zahedi, K., and Ay, N. (2013).
Quantifying morphological com-
putation. Entropy 15, 1887–1915.
doi: 10.3390/e15051887

Zahedi, K., Ay, N., and Der, R. (2010).
Higher coordination with less
control—a result of information
maximization in the sensori-motor

loop. Adapt. Behav. 18,
338–355. doi: 10.1177/10597
12310375314

Zahedi, K., von Twickel, A., and
Pasemann, F. (2008). “Yars: a
physical 3d simulator for evolving
controllers for real robots,” in
SIMPAR 2008 Vol. 5325, eds S.
Carpin, I. Noda, E. Pagello, M.
Reggiani, and O. von Stryk (Berlin;
Heidelberg: Springer), 71—82.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 21 June 2013; accepted: 10
October 2013; published online: 04
November 2013.

Citation: Zahedi K, Martius G and
Ay N (2013) Linear combination of
one-step predictive information with an
external reward in an episodic policy
gradient setting: a critical analysis.
Front. Psychol. 4:801. doi: 10.3389/fpsyg.
2013.00801
This article was submitted to Cognitive
Science, a section of the journal Frontiers
in Psychology.
Copyright © 2013 Zahedi, Martius and
Ay. This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction
in other forums is permitted, provided
the original author(s) or licensor are
credited and that the original publica-
tion in this journal is cited, in accor-
dance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

www.frontiersin.org November 2013 | Volume 4 | Article 801 | 217

http://dx.doi.org/10.3389/fpsyg.2013.00801
http://dx.doi.org/10.3389/fpsyg.2013.00801
http://dx.doi.org/10.3389/fpsyg.2013.00801
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


METHODS ARTICLE
published: 26 July 2013

doi: 10.3389/fnbot.2013.00011

Incremental learning of skill collections based on
intrinsic motivation
Jan H. Metzen 1* and Frank Kirchner1,2

1 Robotics Research Group, Faculty 3 – Mathematics and Computer Science, Universität Bremen, Bremen, Germany
2 Robotics Innovation Center, German Research Center for Artificial Intelligence (DFKI), Bremen, Germany

Edited by:
Tom Stafford, University of
Sheffield, UK

Reviewed by:
Antonio Novellino, ett s.r.l., Italy
Frank Van Der Velde, University of
Twente, Netherlands

*Correspondence:
Jan H. Metzen, Robotics Research
Group, Faculty 3 - Mathematics and
Computer Science, Universität
Bremen, Robert-Hooke-Str. 5,
Bremen, 28359, Germany
e-mail: jhm@informatik.uni-
bremen.de

Life-long learning of reusable, versatile skills is a key prerequisite for embodied agents
that act in a complex, dynamic environment and are faced with different tasks over their
lifetime. We address the question of how an agent can learn useful skills efficiently during
a developmental period, i.e., when no task is imposed on him and no external reward
signal is provided. Learning of skills in a developmental period needs to be incremental
and self-motivated. We propose a new incremental, task-independent skill discovery
approach that is suited for continuous domains. Furthermore, the agent learns specific
skills based on intrinsic motivation mechanisms that determine on which skills learning is
focused at a given point in time. We evaluate the approach in a reinforcement learning
setup in two continuous domains with complex dynamics. We show that an intrinsically
motivated, skill learning agent outperforms an agent which learns task solutions from
scratch. Furthermore, we compare different intrinsic motivation mechanisms and how
efficiently they make use of the agent’s developmental period.

Keywords: hierarchical reinforcement learning, skill discovery, intrinsic motivation, life-long learning, graph-based

representation

1. INTRODUCTION
Embodied agents like robots are used in increasingly complex,
real-world domains, such as domestic and extraterrestrial set-
tings. A simple, reactive control approach is not sufficient as it
lacks the ability to predict and control the environment on larger
scales of time and space. For this, agents must be able to build up
competencies and knowledge about the world and store these in
a convenient way so that they can be accessed fast and reliably.
This requires control architectures which allow, inter alia, model-
learning, predictive control, learning reusable skills, and even the
integration of high-level cognitive elements. See Figure 1 for an
example of such an architecture.

In this work, we focus on the middle, “decision” layer of
such an architecture. One main objective on this layer is to
learn a repertoire of reusable skills. Such skills may be the abil-
ity to reliable grasp objects, to throw, catch, or hit a ball, or
to use a tool for a specific task like using a hammer to drive
a nail into a wall. A repertoire of skills is useful for embod-
ied agents which have to solve several different but related tasks
during their lifetime. Instead of learning every novel task from
scratch, learning skills allows that acquired capabilities are reused,
i.e., transferred between tasks. Furthermore, being able to use
prelearned skills may dramatically increase response times and
therefore reduce the probability of system failure. One approach
to skill learning is hierarchical reinforcement learning (Barto
and Mahadevan, 2003), which has been applied successfully in
robotic applications (see, e.g., Kirchner, 1998). Since the acquired
skills shall be reusable, they should not be driven by external,
task-specific reward. Instead, the agent should learn skills in a
task-independent manner. In addition, an autonomous agent

must decide on its own what constitutes a useful skill; this is
denoted as skill discovery.

Existing skill discovery approaches are mostly tailored to
discrete domains or to decomposing a specific task into sub-
tasks. While the former have limited significance for contin-
uous domains like robotics, the latter might yield skills that
are task-specific and not reusable. The main contribution of
this paper is a new skill discovery method which is suited for
continuous domains and does not require external tasks and
rewards. This method allows the agent to generate a collec-
tion of skills during a developmental period, in which the agent
can explore freely without having to maximize external reward.
The proposed skill discovery method is based on an incremen-
tal, hierarchical clustering of a learned state transition graph.
This graph encodes the structure and dynamics of a domain.
Densely connected subgraphs (“clusters”) of this graph corre-
spond to qualitatively similar situations in the domain. Skills
are learned for transitioning from one cluster to an adjacent
one, i.e., for purposefully reaching a specific configuration of the
domain.

In large domains with complex dynamics, exploring the envi-
ronment, which is a prerequisite for skill discovery, is challenging
by itself as is the decision whether the agent should engage in
skill learning or exploration. We consider intrinsic motivation to
reward the agent for (a) exploring novel parts of the environment
and for (b) engaging in learning skills whose predictive model
exhibits large error. We define novelty with regard to a set of
observed states and predict skill effects based on a learned skill
model which allows predicting state transitions conditioned on
the specific skill.
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FIGURE 1 | A 3-layer control architecture, which allows the integration

of reflexive reactive behaviors, more flexible decision-based behaviors,

and explanation-based approaches for novel situations. Extrinsic
motivation is provided by homeostatic need regulation and prediction of
fitness-enhancing events. We refer to Köhler et al. (2012) for more details.

We present an empirical analysis of the proposed approach
in two continuous, high-dimensional domains with complex
dynamics. We evaluate empirically to which extent the agent can
benefit from reusing skills, which influence the specific skill dis-
covery approach and the definition of intrinsic motivation have
onto the agent’s performance, and how the length of the agent’s
developmental period affects the task performance. Furthermore,
we present evidence that the intrinsic motivation mechanisms
can identify how much time should be spent on learning specific
skills.

The paper is structured as follows: section 2 provides the nec-
essary background and summarizes some of the most closely
related works. Section 3 gives details of the main methodological
contributions of this paper. In section 4, we present and discuss
the results obtained in the empirical analysis. In section 5, we
draw a conclusion and provide an outlook.

2. BACKGROUND AND RELATED WORK
In this section, we present briefly the required background in hier-
archical reinforcement learning and give a review of related works
in the areas of skill discovery and intrinsic motivation.

2.1. HIERARCHICAL REINFORCEMENT LEARNING
Computational Reinforcement Learning (RL) (Sutton and Barto,
1998) refers to a class of learning methods that aims at learn-
ing behavior policies which are optimal with regard to a reward
signal, through interaction with an environment. The most pop-
ular problem class for RL are Markov Decision Processes (MDPs).
An MDP M can be formalized as a 4-tuple M = (S, A, Pa

ss′ , Ra
ss′)

where S is a set of states of the environment, A is a set of
actions, Pa

ss′ = P(st+ 1 = s′|st = s, at = a) is the 1-step state tran-
sition probability also referred to as the “dynamics,” and Ra

ss′ =
E{rt+ 1|st = s, at = a, st+ 1 = s′} is the expected reward. In RL,
these quantities are usually unknown to the agent but can be esti-
mated based on samples collected during exploration. If both S

and A are finite, we call M a discrete MDP, otherwise we call it
a continuous MDP. The goal of RL is to learn without explicit
knowledge of M a policy π∗ such that some measure of the long-
term reward is maximized. Popular approaches to RL include
value-function based methods, which are based on approximat-
ing the optimal action-value function Q∗(s, a) =∑s′ P

a
ss′ [Ra

ss′ +
γ maxa′ Q∗(s′, a′)], where γ ∈ [0, 1] is a discount factor, and
direct policy search methods, which search directly in the space
of policies based on, e.g., evolutionary computation (Whiteson,
2012).

This paper focuses on learning skills using Hierarchical RL
(Barto and Mahadevan, 2003). In Hierarchical RL, behavior is not
represented by a monolithic policy but by a hierarchy of policies,
where policies on the lowest layer correspond to simple skills and
policies on higher layer are based on these skills and represent
more complex behavior. One popular approach to Hierarchical
RL is the options framework (Sutton et al., 1999). An option o
is the formalization of a temporally extended action or skill and
consists of three components: the option’s initiation set Io ⊂ S
that defines the states in which the option may be invoked, the
option’s termination condition βo : S→ [0, 1]which specifies the
probability of option execution terminating in a given state, and
the option’s policy πo which defines the probability of executing
an action in a state under option o. In the options framework,
a policy on a higher layer may in any state s decide not solely
to execute a primitive action but also to call any of the lower-
layer options for which s ∈ Io. If an option is invoked, the option’s
policy πo is followed for several time steps until the option termi-
nates according to βo. The option’s policy πo is defined relative
to an option-specific “pseudo-reward” function Ro that rewards
the option for achieving the skill’s objective. Skill learning denotes
learning πo given Io, βo, and Ro. Skill discovery, on the other hand,
requires choosing appropriate Io, βo, and Ro for a new option o.
Skill discovery is very desirable since the quantities Io, βo, and Ro

need not be predefined but can be identified by the agent itself
and thus, skill discovery increase the agent’s autonomy. We give a
review of related works in the next section.

2.2. SKILL DISCOVERY
Most prior work on autonomous skill discovery is based on the
concept of bottleneck areas in the state space. Informally, bottle-
neck areas have been described as the border states of densely
connected areas in the state space (Menache et al., 2002) or as
states that allow transitions to a different part of the environ-
ment (Şimşek and Barto, 2004). A more formal definition is given
by Şimşek and Barto (2009), in which bottleneck areas are states
that are local maxima of betweenness—a measure of centrality
on graphs—on the transition graph. Once bottleneck areas have
been identified, typically one (or several) skills are defined that try
to reach this bottleneck, i.e., that terminate with positive pseudo-
reward if the bottleneck area is reached, can be invoked in a local
neighborhood of the bottleneck, and terminate with a negative
pseudo-reward when departing too far from the bottleneck.

Since betweenness requires complete knowledge of the tran-
sition graph and is computationally expensive, several heuristics
have been proposed to identify bottlenecks. One class of heuris-
tics are frequency-based approaches that compute local statistics of
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states like diverse density (McGovern and Barto, 2001) and rela-
tive novelty (Şimşek and Barto, 2004). An other class of heuristics
that is typically more sample-efficient are graph-based approaches
which are based on estimates of the domain’s state transition
graph. Graph-based approaches to skill discovery aim at parti-
tioning this graph into subgraphs which are densely connected
internally but only weakly connected with each other. Menache
et al. (2002) propose a top–down approach for partitioning the
global transition graph based on the max-flow/min-cut heuris-
tic. Şimşek et al. (2005) follow a similar approach but partition
local estimates of the global transition graph using a spectral
clustering algorithm and use repeated sampling for identifying
globally consistent bottlenecks. Mannor et al. (2004) propose a
bottom–up approach that partitions the global transition graph
using agglomerative hierarchical clustering. Metzen (2012) pro-
poses an extension of this approach called OGAHC. OGAHC is
incremental and can thus be performed several times during the
learning process. A further approach for identifying bottlenecks is
to monitor the propagation of Q-values in the planning phase of a
model-based RL architecture. For instance, Kirchner and Richter
(2000) have shown that the so-called significance values become
large close to bottlenecks of the domain.

Relatively few works on autonomous skill discovery in
domains with continuous state spaces exist. Frequency-based
approaches do not easily generalize to such domains since their
statistics are typically related to individual states and there exist
infinitely many such states in continuous domains. Similarly, the
1-to-1 relationship between states and graph nodes hinders the
direct applicability of graph-based approaches. Mannor et al.
(2004) have evaluated their agglomerative hierarchical clustering
approach in the mountain car domain by uniformly discretizing
the state space. However, this uniform discretization is subop-
timal since it suffers from alignment effects and the “curse of
dimensionality.” Learning an adaptive discretization in the form
of a transition graph that captures the domain’s dynamics using
the FIGE heuristic (see section 3.2) is shown to perform consider-
ably better (Metzen, in press). However, FIGE is a batch method
and requires that skill discovery is performed at a prespecified
point in time.

One skill discovery method that has been designed for con-
tinuous domains is “skill chaining” (Konidaris and Barto, 2009).
Skill chaining produces chains (or more general: trees) of skills
such that each skill allows reaching a specific region of the state
space, such as a terminal region or a region where an other skill
can be invoked. In which region of the state space a skill can be
invoked depends mainly on the representability and learnability
of the skill in the specific learning system and not directly on con-
cepts like bottlenecks or densely connected regions. Skill chaining
requires to specify an area of interest (typically the terminal region
of the state space) which is used as target for the skill at the root
of the tree. For multi-task domains with several goal regions or
domains without a goal region, it is unclear how the root of the
skill tree should be chosen.

2.3. LIFELONG LEARNING AND INTRINSIC MOTIVATION
Thrun (1996) suggested the notion of lifelong learning in the
context of supervised learning for object recognition. In lifelong

learning, a learner experiences a sequence of different but related
tasks. Due to this relatedness, learned knowledge can be trans-
ferred across multiple learning tasks, which can allow generalizing
more accurately from less training data. The concept of lifelong
learning was extended to RL by, e.g., Sutton et al. (2007). In RL,
lifelong learning is often combined with shaping, which denotes a
process where a trainer rewards an agent for a behavior that pro-
gresses toward a desired target behavior which solves a complex
task. Thus, shaping can be seen as a training procedure for guid-
ing the agent’s learning process. Shaping was originally proposed
in psychology as an experimental procedure for training animals
(Skinner, 1938) and has been adopted for training of artificial
systems later on (Randløv Alstrøm, 1998). One disadvantage of
shaping is that an external teacher is required which selects tasks
of a specific complexity carefully by taking the current develop-
mental state of the agent into account. This reduces the agent’s
autonomy.

A different approach to lifelong learning, in which no exter-
nal teacher is required, is to provide the agent with a means for
intrinsic motivations. The term “intrinsically motivated” stems
from biology and one of its first appearances was in a paper by
Harlow (1950) on the manipulation behavior of rhesus monkeys.
According to Baldassarre (2011) “extrinsic motivations guide
learning of behaviors that directly increase (evolutionary) fitness”
while “intrinsic motivations drive the acquisition of knowledge
and skills that contribute to produce behaviors that increase fit-
ness only in a later stage.” Thus, similar to shaping, intrinsic
motivations contribute to learning not as a learning mecha-
nism per se, but rather as a guiding mechanism which guides
learning mechanisms to acquire behaviors that increase fitness.
According to Baldassarre “(intrinsic motivations) drive organ-
isms to continue to engage in a certain activity if their competence
in achieving some interesting outcomes is improving, or if their
capacity to predict, abstract, or recognize percepts is not yet
good or is improving. . ..” Accordingly, learning signals produced
by intrinsic motivations tend to decrease or disappear once the
corresponding skill is acquired.

Computational approaches to intrinsic motivation [see
Oudeyer and Kaplan (2007) for a typology] have become popu-
lar in hierarchical RL in the last decade resulting in the area of
Intrinsically Motivated Reinforcement Learning (IMRL) (Barto
et al., 2004). Work on intrinsic motivation in RL, however,
dates back to the early 1990s (Schmidhuber, 1991). IMRL often
employs a developmental setting [see, e.g., Stout and Barto (2010)
and Schembri et al. (2007)], which differs slightly from the usual
RL setting where the objective is to maximize the accumulated
external reward. In the developmental setting, the agent is given
a developmental period, which can be considered as its “child-
hood,” in which no external reward is given to the agent. This
allows the agent to explore its environment freely without having
to maximize the accumulated reward (exploitation). On the other
hand, the agent is not guided by external reward but needs to
have a means for intrinsic motivation. The objective in the devel-
opmental setting is to learn skills which allow to quickly learn
high-quality policies in tasks that are later on imposed onto the
agent. Thus, the objective can be seen as a kind of optimal explo-
ration for skill learning, in contrast to finding the optimal balance
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between exploration and exploitation as in usual RL. Different
mechanisms for intrinsic motivation have been proposed. A com-
plete review is beyond the scope of this paper, we discuss a
selected subset of methods and refer to Oudeyer et al. (2007) for a
review.

Barto et al. (2004) investigate how a hierarchically organized
collection of reusable skills can be acquired based on intrinsic
reward. Their notion of intrinsic reward is based on the nov-
elty response of dopamine neurons. More precisely, the intrinsic
reward for a salient event is proportional to the error of predicting
this salient event based on a learned skill model for this event. This
skill model is not only a passive model of the environment but it
is also dependent on the agent’s action preferences. As a result of
the intrinsic reward, once the agent encounters an unpredicted
salient event, it is driven to attempt to achieve this event until it
has learned to predict it satisfyingly.

Oudeyer et al. (2007) propose an intrinsic motivation sys-
tem that encourages the robot to explore situations in which
its current learning progress is maximized. More specifically,
the robot obtains a positive intrinsic reward for situations in
which the error rate of internal predictive models decreases and
a negative one for situations in which it increases. Thereby,
the robot focuses on exploring situations whose complexity
matches its current stage of development, i.e., situations which
are neither too complex (too unpredictable) nor too simple (too
predictable).

Hester and Stone (2012) propose a model-based approach
for a developing, curious agent called TEXPLORE-VANIR. This
approach uses two kinds of intrinsic reward that are derived from
the learned model. The first one rewards the agent for exploring
parts of the environment for which the variance in the model’s
prediction is large while the second one rewards the agent for
exploring parts of the environment that are novel to the agent.
The authors show empirically that these intrinsic rewards are
helpful for an agent in a developmental setting. Furthermore,
the intrinsic rewards also improve the performance of an agent
faced with an external task from the very beginning by providing
a reasonable explorative bias.

Stout and Barto (2010) propose “competence progress moti-
vation,” which generates intrinsic rewards based on the skill
competence progress, i.e., how strongly the agent’s competence
to achieve self-determined goals progresses. The authors show
on a simple problem that the approach is able to focus learning
efforts onto skills that are neither too simple not too difficult at
the moment. While the authors predefine the set of skills that
shall be learned, they note that “identifying what skills should
be learned is a very important problem and one that a complete
motivational system would address.” This problem is addressed in
this paper.

Note that intrinsic motivations need not be the only source of
motivation in a biologically-inspired robotic control architecture
such as the one shown in Figure 1; rather, extrinsic motivations
based on homeostatic need regulation and prediction of fitness-
enhancing visceral-body changes (compare Baldassarre, 2011)
should be taken into account as well. However, since we focus on
the “decision” layer of the architecture, we do not consider these
kinds of motivations in detail here.

3. METHODS
In this section, we present an architecture for an IMRL-agent
and propose new methods for skill discovery and intrinsic
motivation.

3.1. AGENT ARCHITECTURE
We consider an agent situated in an environment with state space
S and action space A. We are particularly interested in problems
where the state and/or the action space are continuous, more
specifically where S ⊆ R

ns and/or A ⊆ R
na . We assume that the

state transitions (the effects of executing an action in a state) have
the Markov property. During its lifetime, the agent may be faced
with different tasks in this environment; we assume that each
task Tj is specified by a reward function Rj = E(rt+ 1|st = s, at =
a, st+ 1 = s′) and the agent needs to maximize a long-term notion
of this reward. Note that each task thus corresponds to a MDP
Mj = (S, A,P,Rj), where all tasks share S, A, and P .

We adopt the developmental setting of IMRL (see section 2.3),
i.e., we assume that the agent has a developmental period before
it is faced with an external task. The agent-environment interac-
tion during the developmental period can be modeled as an MDP
without reward M\R = (S, A,P). Thus, we implicitly assume
that the developmental period takes place in the same environ-
ment where the agent has to solve tasks later on, i.e., we assume S,
A, and P to be identical. While no external objective is imposed
on the agent, the agent should use the developmental period nev-
ertheless for learning a repertoire of skills O that can later on help
in solving tasks Tj. Furthermore, we do not provide the agent with
a set of subgoals or salient events but require the agent to identify
these on its own.

For this, two questions need to be addressed: (a) how are use-
ful and task-independent skills identified autonomously? and (b)
how does the agent select actions and skills when no external
reward is available? We address these questions in section 3.2 and
section 3.3, respectively. For now, we assume that two modules
for intrinsic motivation (IM) and skill discovery (SD) exist where
IM generates an intrinsic reward signal ri which the agent uses
in place of external reward and SD identifies new skills which
are added to the skill repertoire O and whose policy is learned
later on by the agent using option learning. The agent’s internal
architecture during its developmental period is depicted in the left
diagram in Figure 2.

Once an external task Tj is imposed onto the agent, the intrin-
sic reward and the skill discovery modules are disabled, and the
agent learns a hierarchical policy πe over the set of discovered
skills O that maximizes the external reward re (see right dia-
gram in Figure 2). Note that the agent continues to learn option
policies πo based on experience collected; however, the exter-
nal reward is ignored in skill learning such that options remain
task-independent.

3.2. ITERATIVE GRAPH-BASED SKILL DISCOVERY
A skill discovery method which can be used in the outlined archi-
tecture needs to exhibit the following properties: (1) it needs
to be suited for continuous domains, (2) it needs to be incre-
mental, i.e., the agent must be able to identify new skills at
any time and not just once after some predefined amount of
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FIGURE 2 | Left plot: Agent architecture employed during the developmental
period. No external reward is provided but the motivational system IM creates
an intrinsic reward ri . In parallel, new skills o are identified using the skill
discovery module SD and added to the skill pool O. The policy πi selects skills

according to their intrinsic reward; both πi and the policy πo of the active skill
are learned. Right plot: Agent architecture for learning to solve external tasks
Tj . A hierarchical policy πe is learned based on the external reward re using
the fixed set of skills O. The policy πo of the active skill is also improved.

experience was collected, and (3) it must not require that an exter-
nal reward signal or a goal region of a task exist. None of the
methods discussed in section 2.2 fulfills all these requirements.
In this work, we propose IFIGE, an incremental extension of
FIGE (Metzen, in press), which is combined with an extension
of OGAHC (Metzen, 2012) to continuous domains. This combi-
nation fulfills all of requirements given above. The key idea of the
approach is that a transition graph, which captures the domain’s
dynamics, is learned incrementally from experience using FIGE
and that the learned graphs are clustered into densely connected
subgraphs using OGAHC. These clusters correspond to subareas
of the domain’s state space and the connections between these
subparts form bottlenecks of the domain. Learning skills which
allow traversing these bottlenecks is a common approach to skill
discovery in discrete domains (compare section 2.2).

3.2.1. Incremental transition graph estimation in
continuous domains

A transition graph G = (V, E, w) can be seen as a model of
the domain’s 1-step state transition probability (the domain’s
“dynamics”), where the nodes v ∈ V represent “typical” states
of the domain and edges (v, v′)a ∈ E represent possible transi-
tions in the domain under a specific action a. The edge weights
w encode the corresponding probabilities Pa

vv′ . In a model-free
setting, G needs to be learned from experience. While this is
straightforward in domains with discrete state space, it is more
challenging in continuous domains. Force-based Iterative Graph
Estimation (FIGE) is an heuristic approach to this problem with
a solid theoretical motivation. FIGE learns transition graphs of
size vnum from a set of state transitions T = {(si, ai, s′i)}ni= 1 that
have been experienced by the agent while acting in the domain.
The transition graph is considered to be a generative model of
state transitions and FIGE aims at finding graph node positions
V which maximizes the likelihood of the observed transition
(Metzen, in press).

FIGE is summarized in Algorithm 1: the set of graph nodes V
with cardinality |V | = vnum is initialized such that it covers the

Algorithm 1 | Force-based Iterative Graph Estimation (FIGE)

1: Input: T = {(si , ai , s′i )}ni = 1, parameters vnum, K

2: V = INITIALIZE(T , vnum)

3: For i = 0 to K − 1 do

4: for all v ∈ V do

5: SV (v) = {s | (s, a, s′) ∈ T : NNV (s) = v
}

6: FS [v] =MEAN(SV (v)) − v

7: T→(v) = {NNV (s′)− s′ + s | (s, a, s′) ∈ T : NNV (s) = v
}

8: T←(v) = {NNV (s)− s + s′ | (s, a, s′) ∈ T : NNV (s′) = v
}

9: FG[v] = 0.5 · [MEAN(T→(v)) +MEAN(T←(v))
] − v

10: end for

11: V = V + αi · 0.5(FS [V ] + FG[V ])
12: end for

13: Na
vv ′ =

∣∣{(s, s′) | ∃ (s, a, s′) ∈ T : NNV (s) = v ∧NNV (s′) = v ′
}∣∣

14: E = {(v, v ′)a | v, v ′ ∈ V a ∈ A : Na
vv ′ > 0

}
15: wa

vv ′ = Na
vv ′/

∑
ṽ Na

vṽ

set of states contained in T uniformly by, e.g., maximizing the dis-
tance of the closest pair of graph nodes (line 2). Afterwards, for
K iterations, the graph nodes are moved according to two kind of
“forces” that act on them: the “sample representation” force (lines
5, 6) pulls each graph node v to the mean of all states SV for which
it is responsible, i.e., the states s for which it is the nearest neighbor
NNV (s) in V . Thus, this force corresponds to an intrinsic k-
means clustering of the observed states. The “graph consistency”
force (lines 7–9) pulls each graph node v to a position where for
all (s, a, s′) ∈ T with NNV (s) = v there is a vertex v′ such that
v′ − v is similar to s′ − s, i.e., both vectors are close to parallel.
Thus, this force encourages node positions which can represent
the domain’s dynamics well. The nodes are then moved accord-
ing to the two forces (line 11), where the parameter αi ∈ (0, 1]
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controls how greedily the node is moved to the position where the
forces would become minimal. In order to ensure convergence of
the graph nodes, αi should go to 0 for i approaching K. An edge
labeled with action a is added between two nodes v and v′ if there
exists at least one transition (s, a, s′) ∈ T with v being the nearest
neighbor of s in V and v′ being the nearest neighbor of s′ in V
(line 14). Furthermore, the edge weights are chosen as the empir-
ical transition probabilities P̂a

vv′ from node v to v′ under action a
(line 15). For details and a derivation of FIGE, we refer to Metzen
(in press).

The main drawbacks of FIGE are that the number of nodes
of the transition graph need to be pre-specified and that FIGE
is a batch algorithm and thus not well suited for incremental
skill discovery. We present now Incremental FIGE (IFIGE) which
does not suffer from these problems. IFIGE updates the graph’s
node positions after every experienced transition. Furthermore,
IFIGE stores for every graph node v a set of exemplar states Sv =
{si | i = 1, . . . , nv} and exemplar transitions Tv = {(si, ai, s′i) |
i = 1, . . . , nv}, with all si being “similar” to v and nv being set
typically to 25.

IFIGE starts with a single graph node V = {s0} and Ss0 =
Ts0 = ∅, where s0 is the start state. For any encountered transi-
tion (s, a, s′), the most similar graph node v = NNV (s), i.e., the
nearest neighbor of s in V , is determined, s is added to the set
of state exemplars Sv, and (s, a, s′) to Tv. If the size of Sv or Tv

exceeds nv, old exemplars are deleted. Afterwards, the position of
vertex v is updated using lines 5–9 of Algorithm 1 for T = Tv.
This changes the position of v; thus, IFIGE checks afterwards for
all state exemplars in Sv and transition exemplars in Tv whether
any other node in V would be a better representative and moves
the exemplars if required. Afterwards, IFIGE checks whether v is
responsible for a too large area of the state space by computing
the distance of the farthest pair in Sv. If this distance is above a
threshold ζ, v is removed from V and two new nodes v1 and v2

are added to V . v1 and v2 are chosen as the cluster centers of a
k-means clustering of Sv for k = 2. Sv and Tv are split into two
subsets accordingly. Splitting nodes ensures that the number of
graph nodes grows with the size of the state space explored by the
agent.

When the current transition graph needs to be generated for
skill discovery, IFIGE adds for all graph nodes v and any transition
(s, a, s′) ∈ Tv an edge between v and v′ = NNV\{v}(s′) for action
a. Edge weights are determined by counting the frequencies of
edges from v to v′ relative to all edges starting from v.

3.2.2. Online graph-based agglomerative hierarchical clustering
Based on the transition graph, we identify task-independent and
thus reusable skills using “Online Graph-based Agglomerative
Hierarchical Clustering” (OGAHC). We give a brief summary
of OGAHC and discuss how it can be extended to continuous
domains; for more details we refer to the original publication
(Metzen, 2012). OGAHC identifies skills by computing a parti-
tion P∗ of the nodes V of a given transition graph G with respect
to a prespecified linkage criterion l. Formally:

P∗ = arg min
P∈P(V)

|P| s.t. max
pi ∈ P, qi ⊂ pi

l(pi\qi, qi) ≤ ψ,

with P(V) being the set of all possible partitions of V and ψ being
a threshold which controls the granularity of the partition, i.e.,
the number of elements of the partition (called “cluster”). The
aim is thus to compute a partition of the graph nodes with mini-
mal cardinality such that the linkage between any pair of clusters
of the partition is small, i.e., below ψ. Since this problem is NP-
hard, we use agglomerative hierarchical clustering as proposed by
Mannor et al. (2004) for identifying an approximately optimal
solution. As proposed by Şimşek et al. (2005), we use the normal-
ized cut N̂cut as linkage. The N̂cut of two disjoint subgraphs A, B ⊂
G is an approximation of the probability that a random walk on G
transitions in one time step from a state in subgraph A to a state in
subgraph B or vice versa. Thus, we identify areas of the state space
(corresponding to clusters of the graph) such that a randomly
behaving agent would very unlikely leave one of these areas.

The connections of these clusters form bottlenecks of the graph
and thus also of the domain. OGAHC creates one skill prototype
for each pair of clusters c1, c2 ∈ P∗ which are connected in G; this
skill can be invoked any state s with NNV (s) ∈ c1 and terminates
in any state with NNV (s) /∈ c1. It terminates successfully if
NNV (s) ∈ c2 and fails otherwise. Thus, the skill’s objective is to
guide the agent through one of the domain’s bottlenecks from the
area corresponding to cluster c1 to the area of cluster c2.

Since the transition graph, which is the basis for OGAHC, is
learned from experience and thus changes over time, performing
the clustering only once is problematic: performing it early might
result in a bad clustering of the domain since the transition graph
might be inaccurate, while performing it late can overly increase
the amount of experience the agent requires for skill discovery.
Thus, it is desirable to perform the clustering several times during
learning. For this, OGAHC assumes “dense local connectivity in
the face of uncertainty,” which prevents premature identification
of bottlenecks and the corresponding skills, and adds constraints
to the clustering process, which ensure that subsequent parti-
tions remain consistent with prior ones. These constraints enforce
that graph nodes that have been assigned to different clusters in
one invocation of OGAHC remain in different clusters in later
invocations.

The main hindrance of OGAHC in domains with continuous
state space is that the constraints are based on the assumption
that the graph nodes do not change over time. This is not the
case when OGAHC is applied on top of IFIGE. This problem can
be alleviated by adapting the current partition to the changes in
the graph prior to any invocation of OGAHC. For this, let P∗(V)

be the partition of the graph nodes V of the last invocation of
OGAHC and V ′ the current node positions. We extend P∗(V)

to a (pre-)partition Ppre of V ′ by assigning nodes v′a, v′b ∈ V ′ to
the same cluster if NNV (v′a) and NNV (v′b) are in the same cluster
in P∗(V) . Now, OGAHC can be invoked with the usual con-
straints that nodes which are in different clusters in Ppre(V ′) must
be in different clusters in P∗(V ′). For nodes v′ ∈ V ′ whose near-
est neighbor NNV (v′) is very different from v′ , this constraint is
relaxed, i.e., these nodes can be assigned to any cluster in P∗(V ′).
This corresponds to a situation where the agent has visited a par-
ticular area of the state space for the first time and the prior
invocations of OGAHC put no restrictions on the bottlenecks in
this novel part.
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3.3. INTRINSIC MOTIVATION
In the context of this paper, intrinsic motivation refers to the
process of mapping a transition from state s under option o to
successor state s′ onto an intrinsic reward ri. We investigate two
different intrinsic motivation mechanisms, one based on the nov-
elty of a state under a skill and one based on the prediction error
of a learned skill model.

For the novelty based motivation criterion, the agent stores for
each option o the states it has encountered under this option so
far in the set So

1. When transitioning to state s′ under option o, the
intrinsic reward is computed via

ri = −
∑

j∈NN10
So

(s′)

exp

(
−||s

′ − sj||22
b2

)
,

where NN10
So

(s′) denotes the indices of the 10-nearest neighbors of
s′ in So and b is a domain-dependent scale parameter. Thus, the
intrinsic reward is upper-bounded by 0 with values close to 0 if the
10 nearest neighbor are very different (large euclidean distance)
from s′ and very small values when s′ is similar to several states
in So. Thus, the novelty criterion discourages to execute options
in regions of the state space where this option has been executed
already several times. This mechanism is similar to the mecha-
nism proposed by Hester and Stone (2012); however, in contrast
to their work, it is also suited for domains with continuous state
spaces.

For the prediction error criterion, the agent learns for each
option a model P̂o that predicts the successor state of states s when
following option o. The intrinsic reward is determined based on
the error of the model’s prediction via

ri = −1+ tanh(σ||s′ − P̂o(s)||22),

where σ is a domain-dependent scale parameter. The intrinsic
reward ri is large (close to 0) when the difference of predicted suc-
cessor P̂o(s) and actual successor s′ is large. The intrinsic reward
becomes small (close to −1) when the model correctly predicts
the effect of executing option o in state s. Thus, the prediction
error criterion encourages to execute options whose effects are
unknown or unpredictable in the current area of the state space.
Note that in contrast to the novelty criterion, for the prediction
error criterion the intrinsic reward in a state depends on the
option’s policy.

The option model P̂o stores internally a set To = {(sj, s′j)} of
transitions encountered under option o. The model’s prediction
is based on 10-nearest neighbors regression:

Po(s) = s+ 1

10

∑
j∈NN10

To
(s)

(s′j − sj),

1In order to keep the size of So limited, we remove states from So once |So| >
2500. The heuristic for selecting the state that is removed is to remove one of
the states of the (approximate) closest state pair in So. This results in covering
the effective state space of the problem approximately uniform.

where NN10
To

(s) denotes the indices of the 10-nearest neighbors of
s in the start states in To. If the size of To exceeds a threshold (in
the experiments 2500) and a transition from s to s′ is added, the
oldest transition among NN10

To
(s) is removed. This is required to

keep the memory consumption limited and, more importantly, to
track the non-stationarity in the target function that is induced by
learning the option o concurrently and thus changing o’s policy.

4. RESULTS
In this section, we present an empirical evaluation of the pro-
posed methods in two continuous and challenging RL benchmark
domains. We evaluate both the behavior of the agent during the
developmental period and its performance in external tasks. We
have chosen these benchmark domains since they allow other
researchers to compare their methods easily to our results.

4.1. 2D MULTI-VALLEY
4.1.1. Problem domain
The 2D Multi-Valley environment (see Figure 3) is an extension
of the basic mountain car domain. The car the agent controls is
not restrained to a one-dimensional surface, however, but to a
two-dimensional surface. This two-dimensional surface consists
of 2× 2 = 4 valleys, whose borders are at (π/6± π/3,π/6±
π/3). The agent observes four continuous state variables: the
positions in the two dimensions (x and y) and the two corre-
sponding velocities (vx and vy). The agent can choose among the
four discrete actions northwest, northeast, southwest,
southeast which add (±0.001,±0.001) to (vx, vy). In each
time step, due to gravity 0.004 cos(3x) is added to vx and
0.004 cos(3y) to vy. The maximal absolute velocity in each dimen-
sion is restrained to 0.07. The four valleys correspond naturally to
clusters of the domain since transitioning from one valley to the
other is unlikely under random behavior, i.e., represents a bot-
tleneck. Thus, we would expect that one skill is created for each
combination of adjacent valleys.

4.1.2. Developmental period
During its developmental period, the agent can explore the
domain freely while engaging in skill discovery and following its
intrinsic motivations. Initially, the agent has only a single option

FIGURE 3 | 2D Multi-Valley domain. Gray-scale contours depict the height
of the two-dimensional surface. The black boxes denote the target regions
of the different tasks and the white lines the boundaries of the valleys.
Shown is one example trajectory with color-coded actions.
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oe in its skill pool O, which can be invoked in any state of the envi-
ronment, i.e., Ioe = S, and terminates with probability βoe (s) =
0.05. This option can be considered to be the agent’s exploration
option, which can always be invoked if the agent prefers to explore
the environment over learning a specific skill. We set the greedi-
ness of IFIGE to αi = 0.25 and the split node distance to ζ = 0.3.
For OGAHC, we set the maximal linkage to ψ = −0.075 and
performed skill discovery every 5000 steps.

Each option’s value function has been represented by an
CMAC function approximator consisting of 10 independent
tilings with 72 · 52 tiles, where the higher resolutions have been
used for the x and y dimensions. The pseudo-reward for each
option’s policy has been set to ro = −1 for each step and ro =
−1000 if an option terminates unsuccessfully, i.e., leaves its
initiation set Io without reaching its goal cluster c2. Value func-
tions have been initialized to −100. For learning the higher-level
policy πi, a lower resolution of 52 · 32 tiles has been used and the
value functions have been initialized to 0. The discounting fac-
tor has been set to γ = 0.99 and all policies were ε-greedy with
ε = 0.01. The value functions were learned using Q-Learning and
updated only for currently active options with a learning rate
of 1. The scale-parameters of the intrinsic motivation mecha-
nisms have been set to b = 0.1 (novelty) and σ = 104 (prediction
error). All parameters have been chosen based on preliminary
investigations.

Figure 4 shows the transition graphs generated by IFIGE
after 20,000, 30,000, and 50,000 developmental steps. The two-
dimensional embeddings of the graphs have been determined
using Isomap (Tenenbaum et al., 2000). The four valleys of the
domain clearly correspond to four densely connected subgraphs
of the transition graph. The figure also shows that it would be dif-
ficult to determine a single point in time at which skill discovery
should be performed: for instance, are the valleys (0, 1) and (1, 0)

explored sufficiently after 30,000 steps to perform graph cluster-
ing? Since skill discovery with OGAHC is incremental, i.e., can be
performed several times during learning, this choice need not be
made.

Figure 5 shows the success ratio, i.e., how often a skill reaches
its goal cluster, of the skills discovered during the developmental
period. Initially, skills are unlikely to reach their goal area, with
success ratios of approximately 0.25. Under both intrinsic moti-
vation systems, the agent invests time in learning skill policies
and the success ratio increases to 0.7 for the prediction error
and 0.8 for the novelty criterion after approximately 105 steps of
development. Note that success ratios of 1.0 are not possible since

for some states in s ∈ Io, there is no way of reaching the option’s
goal area without leaving the initiation set, e.g., when the agent is
moving with high velocity in the direction of the wrong neighbor
valley. A possible explanation for the different performance under
the two motivational systems is given below.

Figure 6 shows the ratio of selecting the option oe

(“Exploration”) or any of the other, discovered options in
O (“Skill Learning”) under the policy πi for different intrinsic
motivations. Initially, no skills have been discovered and the agent
thus has to explore. Once the first skills have been discovered, the
agent focuses onto learning these skills. Over time, as the skill
policies converge, a better predictive model for these skills can
be learned. Similarly, the more time is spend on learning a skill,
the less novel states are encountered under this skill. Accordingly,
both intrinsic motivation mechanisms reduce the ratio of skill
learning and focus on exploration again in order to discover
new skills. Note that at this point in time, there are no further
skills to be discovered in this domain but this is unknown to
the agent.

In general, the prediction error-based motivation chooses the
exploration option more often and reduces skill learning more
abruptly than the novelty criterion. This can be explained by
the fact that the exploration policy changes more strongly over
time and it is thus harder to learn a model of this option. Once
the policies of the other skills have settled, they are chosen only
rarely. However, the results in Figure 5 suggest that this happens
too early as the final “fine-tuning” of the skill policies is not

FIGURE 5 | Success ratio of learned skills over developmental period.

Shown are mean and standard error of mean averaged over 10 independent
runs.

FIGURE 4 | Two-dimensional embedding (determined using Isomap) of the learned transition graphs. Densely connected subgraphs correspond to the
four valleys.
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finished and the success ratio is smaller than for the novelty
criterion. Thus, the results indicate that using the prediction error
for intrinsic motivation can be detrimental in situations where
different option policies explore to different degrees since the
prediction error criterion will favor the options with stronger
exploration. Thus, it is recommended to base motivation on cri-
teria like novelty or on the change of prediction error rather than
on the error itself.

FIGURE 6 | Ratio of skill learning to exploration during developmental

period. Shown is mean over 10 independent runs.

4.1.3. Task performance
In its “adulthood,” the agent is faced with a multi-task scenario:
in each episode, the agent has to solve one out of 12 tasks. Each
task is associated with a combination of two distinct valleys; e.g.,
in task (0, 1) the agent starts in the floor2 of valley 0 and has to
navigate to the floor of valley 1 and reduce its velocity such that∣∣∣∣(vx, vy)

∣∣∣∣
2 ≤ 0.03. In each time step, the agent receives an exter-

nal reward of re = −1. Once a task is solved, the next episode
starts with the car remaining at its current position and one of
the tasks that starts in this valley is drawn at random. Episodes
have been interrupted after 104 steps without solving the task and
a new task was chosen at random. The current task is commu-
nicated as an additional state space dimension to the agent. The
agent uses this task information and the reward re for learning
the task policy πe but ignores those information when improving
πo such that skills remain reusable in different tasks. The explo-
ration option oe used in the developmental period was removed
from the skill set O such that the agent can only choose among
self-discovered skills.

Figure 7 shows the results for different intrinsic motivation
mechanisms and different lengths of the developmental period.
As baseline, “No Skills” shows the performance of an agent
that learns a monolithic policy for each task separately. For a
very short developmental period of 10,000 steps, the hierarchi-
cal agent, which uses skills learned in the developmental period,
learns initially faster than the monolithic agent, however, it con-
verges to considerably worse policies. This is probably due to
the fact that not all relevant skills have been discovered in the
developmental period. See Jong et al. (2008) for a discussion of
why an incomplete set of skills might have a detrimental effect

2The floor of valley 0 (see Figure 3) corresponds to the region ((−1/6±
2/15)π, (−1/6± 2/15)π).

FIGURE 7 | Cost (negative return) of IMRL agent in the 12 tasks 2D

Multi-Valley domain for different intrinsic motivation systems and

different lengths of the developmental period. “No Skills” shows the
performance of a monolithic agent that does not learn skills and has no

developmental period. The horizontal black line shows the average cost of
the policy learned by the monolithic agent after 5000 episodes. Shown is the
mean over 10 independent runs that have been smoothened by a moving
window average with window length 50.
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on an agent’s performance. For 30,000 developmental steps, the
skills acquired under the novelty motivation allow already to
achieve close-to-optimal performance while the ones from the
prediction-error motivation do not. This corresponds to the dif-
ferent qualities of the learned skills under the two motivation
systems (compare Figure 5). For 50,000 or more developmen-
tal steps, the performance of the hierarchical agent approaches
the optimal performance considerably faster than the monolithic
agent, irrespective of the intrinsic motivation system used. This
is interesting since after 50,000 steps, the learned skills are far
from optimal (compare Figure 5). Apparently, also skills with
sub-optimal policies can help the agent considerably. It should
also be noted that even though a close-to-optimal performance
is reached relatively fast, the performance remains slightly below
the optimum which is reached by the monolithic agent after 5000
episodes. This is probably due to the (temporal) abstraction intro-
duced by the skills which on the one hand helps the agent in
learning faster but on the other hand also reduces the class of
representable policies.

4.2. OCTOPUS
4.2.1. Problem domain
In the octopus arm domain3 (Yekutieli et al., 2005), the agent
has to learn to control an Octopus arm. The base of the arm is
restricted and cannot be actuated directly. The agent may control
the arm in the following way: elongating or contracting the entire
arm, bending the first half of the arm in either of the two direc-
tions, and bending the second half of the arm in either of the two
directions. In each time step, the agent can set the elongation and
the bending of the first and second half of the arm to an arbitrary
value in [−1, 1], resulting in 3 continuous action dimensions. The
agent observes the positions xi, yi and velocities ẋi, ẏi of 24 selected
parts of its arm (denoted by small black dots in Figure 8) and
the angle and angular velocity of the arm’s base. Thus, the state
space is continuous and consists of 98 dimensions. Because of the
high-dimensional and continuous state and action spaces and the
complex dynamics of the domain, the octopus arm problem is a
challenging task. It can also be seen as an easy simulation-based
benchmark for actual robotic manipulation tasks.

3Source code available via http://cs.mcgill.ca/dprecup/workshops/ICML06/
octopus.html.

FIGURE 8 | Visualization of the octopus arm task. The circles represent
target objects used in different tasks which yield an external reward when
touched.

4.2.2. Developmental period
Similar to the developmental period in the 2D multi-valley
domain, the agent can explore the domain freely while engaging
in skill discovery and following its intrinsic motivations. However,
the basis for skill discovery is not to identify bottlenecks (there
are no bottlenecks in this domain) but to cluster the transition
graph into regions which correspond to similar qualitative states.
Thus, a different linkage criterion lG has been used: for two sub-
graphs A and B of the transition graph G, the linkage is set
to lG(A, B) = 1/|A ∪ B|2∑v,v′ ∈A∪B dsp(v, v′), i.e., the average
length of the shortest paths dsp between two nodes in A ∪ B. This
linkage results in clusters with similar states in the sense that the
agent can traverse from one state of the cluster to the other with
a small number of steps. The maximum linkage ψ of a cluster in
OGAHC has been set to 3.0 and skill discovery with OGAHC was
performed every 10,000 steps. The greediness of IFIGE has been
set to αi = 0.25 and the split node distance to ζ = 7.5. Intrinsic
motivation was based on the novelty mechanism with b = 1
and the length of the developmental period was set to 50,000
steps.

Because of the continuous action space, we have used direct
policy search based on evolutionary computation for learning
option policies πo. The value for j-the action dimension is deter-
mined via aj = tanh(

∑98
k= 0 wjksk), where sk is the value of the

k-th state dimension and s98 = 1 is a bias. The policy’s weights
wjk have been optimized using 16+ 40 evolution strategy (ES)
and each weight vector has been evaluated 10 times. The pseudo-
reward for each option’s policy has been set to ro = −1 for each
step and ro = −100 if an option terminates unsuccessfully. The
ES’ objective is to maximize the pseudo-reward accumulated in
10 steps, after which the option is interrupted.

As in the multi-valley domain, the agent has initially only
a single option oe in its skill pool O, which can be invoked
in any state of the environment, i.e., Ioe = S, and terminates
with probability βoe(s) = 0.1. πoe selects actions uniform ran-
domly from the action space. The higher-level policy πi, which
determines the option that is executed, has been learned using Q-
Learning with discounting factor γ = 0.99 and exploration rate
ε = 0.01. Because of the high dimensionality of the state space,
the value function was not represented using a CMAC function
approximator but using a linear combination of state values, i.e.,
Q(s, o) =∑98

k= 0 woksk. The learning rate has been set to 0.1.

4.2.3. Task performance
Different tasks can be imposed onto the agent; in this work, we
require that the agent learns to reach for certain objects that
are located at different positions (compare Figure 8). The agent
obtains an external reward of −0.01 per time step and a reward
of 100 for reaching the target object. The episode ends after 1000
time steps or once the target object is reached.

Figure 9 depicts an example trajectory of the octopus arm
learned by the IMRL agent for reaching a target located at position
C: the goal is reached after 22 steps and the agent invokes three
different skills during this trajectory. The skill executed in the first
11 steps contracts the arm and brings it into an ∩-shape. The skill
chosen for the next 6 steps unrolls the first part of the arm until
an S-shape is reached. The skill executed in the last 5 steps unrolls
the second half of the arm such that the target object is reached by
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FIGURE 9 | Example trajectory of the octopus arm controlled by the IMRL agent. The trajectory corresponds to a sequence of three skills. Yellowly colored
arms correspond to states at the beginning of skill execution while redly colored arms correspond to states at the end of skill execution.

FIGURE 10 | Return of IMRL agent in the Octopus domain under the

“novelty” motivation after 50,000 developmental steps. The circle
patches indicate the respective targets used in the runs (compare Figure 8).
“No Skills” shows the performance of an agent that does not learn skills and

has no developmental period. The horizontal black line shows the average
cost of the policy learned by the monolithic agent after 2500 episodes. All
curves show median performance over 5 independent runs and have been
smoothened by a moving window average with window length 25.

an ∪-shape. Note that bending the arm directly into an ∪-shape
would not be successful but result in a state like the one depicted
in Figure 8.

Figure 10 shows the learning curves of the IMRL agent and a
monolithic agent, which learns a flat global policy with the same
parametrization as the skill policies, for different target positions
in the Octopus domain. Given sufficient time, the monolithic
agent can learn policies of similar quality as the IMRL agent.
Thus, close-to-optimal behavior can be represented by a flat
global policy. However, in general, the IMRL agent learns close-
to-optimal policies faster and the learning curves exhibit less
variance across all tasks. Thus, the temporal abstraction of the
skills that were learned in the developmental period seem to make
learning close-to-optimal behavior easier by providing a useful
explorative bias. On the other hand, as in the multi-valley domain
these abstractions may impair performance slightly in the long
run.

5. CONCLUSION AND FUTURE WORK
We have presented a novel skill discovery approach suited for
continuous domains that can be used by an IMRL agent in
its developmental period. Our empirical results in two contin-
uous RL domains suggest that the IMRL agent benefits from
the discovered skills once it is faced with external tasks: close-
to-optimal behaviors can be learned in less trials because of
the explorative bias provided by the temporal abstractions of

the skill hierarchy. However, this explorative bias is only help-
ful if the developmental period was sufficiently long: if the
learning and discovery of skills is interrupted prematurely,
an IMRL agent might perform worse than an agent which
learns a monolithic policy from scratch. Furthermore, we have
compared two intrinsic motivation mechanisms and presented
evidence that intrinsic motivation allows to reasonably deter-
mine how much time should be spend on learning specific
skills.

This work can be extended in numerous ways: for instance,
instead of performing skill discovery only in the developmen-
tal period, the agent could also discover novel skills and learn
based on intrinsic motivation while he is faced with an external
task. This, however, requires trading off intrinsic and external
rewards and facing the exploration-exploitation dilemma. We
leave this to future work; however, we would like to emphasize
that the proposed skill discovery approach is in no way restricted
to the developmental setting. A further direction of future work
would be to combine the proposed skill discovery approach
with more sophisticated intrinsic motivation mechanisms such
as competence progress intrinsic motivation (Stout and Barto,
2010) or other means for empirically estimating the learning
progress (see, e.g., Lopes et al., 2012). Furthermore, it would
be desirable to learn more complex hierarchies of skills, where
skills can invoke other skills. The dendrogram generated by the
hierarchical clustering in OGAHC could be an interesting starting
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point for this. For being useful in a realistic robotic setup, the
proposed methods would need to be integrated into a control
architecture with, e.g., reactive behaviors and predictive control,
such as the one shown in Figure 1. This should allow to deal better
with non-markovian, noisy, and partial observable problems.
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During development, infants learn to differentiate their motor behaviors relative to various
contexts by exploring and identifying the correct structures of causes and effects that they
can perform; these structures of actions are called task sets or internal models. The ability
to detect the structure of new actions, to learn them and to select on the fly the proper
one given the current task set is one great leap in infants cognition. This behavior is an
important component of the child’s ability of learning-to-learn, a mechanism akin to the
one of intrinsic motivation that is argued to drive cognitive development. Accordingly, we
propose to model a dual system based on (1) the learning of new task sets and on (2) their
evaluation relative to their uncertainty and prediction error. The architecture is designed
as a two-level-based neural system for context-dependent behavior (the first system) and
task exploration and exploitation (the second system). In our model, the task sets are
learned separately by reinforcement learning in the first network after their evaluation and
selection in the second one. We perform two different experimental setups to show the
sensorimotor mapping and switching between tasks, a first one in a neural simulation
for modeling cognitive tasks and a second one with an arm-robot for motor task learning
and switching. We show that the interplay of several intrinsic mechanisms drive the rapid
formation of the neural populations with respect to novel task sets.

Keywords: task sets, fronto-parietal system, decision making, incremental learning, cortical plasticity, error-reward

processing, gain-field mechanism, tool-use

1. INTRODUCTION
The design of a multi-tasks robot that can cope with novelty and
evolve in an open-ended manner is still an open challenge for
robotics. It is however an important goal (1) for conceiving per-
sonal assistive robots that are adaptive (e.g., to infants, the elderly
and to the handicapped people) and (2) for studying from an
inter-disciplinary viewpoint the intrinsic mechanisms underlying
decision making, goal-setting and the ability to respond on the fly
and adaptively to novel problems.

For instance, robots cannot yet reach the level of infants for
exploring alternative ways to surmount an obstacle, searching for
a hidden toy in a new environment, finding themselves the proper
way to use a tool, or solving a jigsaw puzzle. All these tasks require
to be solved within boundaries of their given problem space, with-
out exploring it entirely. Thus, robots lack this ability to detect
and explore new behaviors and action sequences oriented toward
a goal; i.e., what is called a task set (Harlow, 1949; Collins and
Koechlin, 2012).

The ability to manipulate dynamically task sets is however a
fundamental aspect of cognitive development (Johnson, 2012).
Early in infancy, infants are capable to perform flexible decision-
making and dynamic executive control even at a simple level
in order to deal with the unexpected (Tenenbaum et al., 2011).
Later on, when they are more mature, they learn to explore the
tasks space, to select goals and to focus progressively on tasks
of increasing complexity. One example in motor development is
the learning of different postural configurations. Karen Adolph

explains for instance how infants progressively differentiate their
motor behaviors into task sets (i.e., the motor repertoire) and
explore thoroughly the boundaries of each postural behavior
till becoming expert on what they discover (Adolph and Joh,
2005, 2009). Adolph further argues that the building of a motor
repertoire is not preprogrammed with a specific developmental
timeline but that each postural behavior can be learned indepen-
dently as separated tasks without pre-ordered dependencies to the
other ones (crawling, sitting, or standing).

This viewpoint is also shared by neurobiologists who conceive
the motor system to structure the actions repertoire into “internal
models” for each goal to achieve (Wolpert and Flanagan, 2010;
Wolpert et al., 2011). Each novel contextual cue (e.g., handling
a novel object) promotes the acquisition and the use of a dis-
tinct internal model that does not modify the existing neural
representations used to control the limb on its own (White and
Diedrichsen, 2013). Moreover, each task set is evaluated depend-
ing on the current dynamics and on the current goal we want
to perform (Orban and Wolpert, 2011). For instance, we switch
dynamically from different motor strategies to the most appro-
priate one depending on the context; e.g., tilting the racket to the
correct angle in order to give the desired effect on the ball, or
for executing the proper handling of objets with respect to their
estimated masses (Cothros et al., 2006).

From a developmental viewpoint, the capability for flex-
ible decision-making gradually improves in 18 months-old
infants (Tenenbaum et al., 2011). Decision-making endows
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infants to evaluate the different alternatives they have for achiev-
ing one goal with respect to the ongoing sequence and to select the
correct one(s) among different alternatives. It owes them also the
possibility to inhibit some previously learned strategies in order
to explore new ones never seen before (Yokoyama et al., 2005).

IN AI, this craving to explore, to test and to embed new
behaviors is known as intrinsic motivation (Kaplan and Oudeyer,
2007). In Kaplan and Oudeyer’s words: “The idea is that a robot
(...) would be able to autonomously explore its environment not
to fulfill predefined tasks but driven by some form of intrinsic
motivation that pushes it to search for situations where learn-
ing happens efficiently”. In this paper, we focus more on the idea
that the rewards are self-generated by the machine itself (Singh
et al., 2010) and that the function of intrinsic motivation is
mainly to regulate the exploration/exploitation problem, driving
exploratory behavior and looking for different successful behav-
iors in pursuing a goal. In that context, we propose that the ability
to choose whether or not to follow the same plan or to create a
novel one out of nothing—in regard to the current situation—is
an intrinsic motivation. We studied for instance the role of the
neuromodulator acetylcholine in the hippocampus for novelty
detection and memory formation (Pitti and Kuniyoshi, 2011).

Meanwhile, the capability to make decision and to select
between many options is one important aspect of intrinsic moti-
vation because otherwise the system would be only passive and
would not be able to select or encourage one particular behavior.
Taking decisions in deadlock situations requires therefore some
problem-solving capabilities like means-end reasoning (Koechlin
et al., 2003) and error-based learning capabilities (Adolph and
Joh, 2009). For instance, means-end reasoning and error-based
learning are involved in some major psychological tests such
as the Piagetian “A-not-B error test” (Diamond, 1985; Smith
et al., 1999; Schöner and Dineva, 2007), Harlow’s learning set
test (Harlow, 1949) and tool-use (Lockman, 2000; Fagard et al.,
2012; Vaesen, 2012; Guerin et al., 2013). The A-not-B error test
describes a decision-making problem where a 9-month old infant
still pertains to select an automatic wrong response (e.g., the
location A) and cannot switch dynamically from this erronous
situation to the correct one (e.g., the location B). Above this age,
however, infants do not make the error and switch rapidly to the
right location. A similar observation is found in Harlow’s experi-
ments on higher learning (Harlow, 1949) where Rhesus monkeys
and humans have to catch the pattern of the experiment in a
series of learning experiences. Persons and monkeys demonstrate
that they learn to respond faster when facing a novel and simi-
lar situation by switching to the correct strategy, by catching the
pattern to stop making the error: they show therefore that they
do not master isolated tasks but, instead, they grasp the relation
between the events. In one situation, if the animal guessed wrong
on the first trial, then it should switch directly to the other solu-
tion. In another situation, if it guessed right on the first trial, then
it should continue. This performance seems to require that the
monkey, the baby or the person use an abstract rule and solve
the problem with an apparent inductive reasoning (Tenenbaum
et al., 2011). In line with these observations on the develop-
ment of flexible behaviors, researchers focused on tool-use: when
infants start to use an object as a means to an end, they serialize

their actions toward a specific goal, as for example reaching a toy
with a stick (Fagard et al., 2012; Rat-Fischer et al., 2012; Guerin
et al., 2013). Tool-use requires also finding patterns like the
shape of grasping, order and sequentiality of patterns (Cothros
et al., 2006).

Considering the mechanisms it may involve, Karen Adolph
emphasizes the ability of learning-to-learn (Adolph and Joh,
2005), a process akin to Harlow (1949). Harlow coined the expres-
sion to distinguish the means for finding solutions to novel
problems from simple associative learning and stimulus gener-
alization (Adolph, 2008). Adolph reinterprets this proposal and
suggests that two different kinds of thinking and learning are at
work in the infant brain, governing the aspects of exploration and
of generalization (Adolph and Joh, 2009). On the one hand, one
learning system is devoted to the learning of task sets from sim-
ple stimulus-response associations. For instance, when an infant
recognizes the context, he selects his most familiar strategy and
reinforces it within his delimiting parameter ranges. On the other
hand, a second learning is devoted to detect a new situation as is
and to find a solution dynamically in a series of steps. Here, the
acceptance of uncertainty gradually leads for making choices and
decisions in situation never seen before. However, which brain
regions and which neural mechanisms this framework underlies?

Among the different brain regions, we emphasize that the post-
parietal cortex (PPC) and the pre-frontal cortex (PFC) are found
important (1) for learning context-dependent behavior and (2)
for evaluating and selecting these behaviors relative to their uncer-
tainty and error prediction. Regarding the PPC, different senso-
rimotor maps co-exist to represent structured information like
spatial information or the reaching of a target, built on coordinate
transform mechanisms (Stricanne et al., 1996; Andersen, 1997;
Pouget and Snyder, 2000). Furthermore, recent studies acknowl-
edge the existence of context-specific neurons in the parieto-
motor system for different grasp movements (Brozovic et al.,
2007; Andersen and Cui, 2009; Baumann et al., 2009; Fluet et al.,
2010). Regarding the PFC, Johnson identifies the early develop-
ment of the pre-frontal cortex as an important component for
enabling executive functions (Johnson, 2012) while other studies
have demonstrated difficulty in learning set formation following
extensive damage of the prefrontal cortex (Warren and Harlow,
1952; Yokoyama et al., 2005). The PFC manipulates informa-
tion on the basis of the current plan (Fuster, 2001), and it is
active when new rules need to be learned and other ones rejected.
Besides, its behavior is strongly modulated by the anterior cin-
gulate cortex (ACC) which plays an active role for evaluating task
sets and for detecting errors during the current episode (Botvinick
et al., 2001; Holroyd and Coles, 2002; Khamassi et al., 2011). If we
look now at the functional organization of these brain structures,
many authors emphasize the interplay between an associative
memory of action selection in the temporal and parietal cortices
(i.e., an integrative model) and a working memory for actions
prediction and decision making in the frontal area (i.e., a serial
model) (Fuster, 2001; Andersen and Cui, 2009; Holtmaat and
Svoboda, 2009). All-in-all, these considerations permit us to draw
a scenario based on a two complementary learning systems.

More precisely, we propose to model a dual system based
on (1) the learning of task sets and on (2) the evaluation of
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these task sets relative to their uncertainty, and error prediction.
Accordingly, we design a two-level based neural system for
context-dependent behavior (PPC) and task exploration and pre-
diction (ACC and PFC); see Figure 1. In our model, the task sets
are learned separately by reinforcement learning in the post pari-
etal cortex after their evaluation and selection in the prefrontal
cortex and anterior cyngulate cortex. On the one hand, the learner
or agent stores and exploits its familiar knowledge through a rein-
forcement learning algorithm into contextual patterns called and
collected from all its different modalities. On the other hand, the
learner evaluates and compares the way it learns, and selects the
useful strategies while it discards others or tests new ones on
the fly if no relevant strategy is found. We perform two differ-
ent experimental setups to show the sensorimotor mapping and
switching between tasks, one in a neural simulation for model-
ing cognitive tasks and another with an arm-robot for motor task
learning and switching. We use neural networks to learn simple
sensorimotor mapping for different tasks and compute their vari-
ance and error for estimating the sensorimotor prediction. Above
a certain threshold, the error signal is used to select and to valu-
ate the current strategy. If no strategy is found pertinent for the
current situation, this corresponds to a novel motor schema that
is learned independently by a different map. In a cognitive exper-
iment similar to Harlow (1949) and Diamond (1990), we employ
this neural structure to learn multiple spatio-temporal sequences
and switch between different strategies if an error has occurred or
if a reward has been received (error-learning). In a psycho-physic
experiment similar to Wolpert and Flanagan (2010), we show how
a robotic arm learns the visuomotor strategies for stabilizing the
end-point of its own arm when it moves it alone and when it is
holding a long stick. Here, the uncertainty on the spatial location
of the end-point triggers the decision-making from the two strate-
gies by selecting the best one given the proprioceptive and visual
feedback and the error signal delivered.

2. MATERIALS AND METHODS
In this section, we present the neural architecture and the mecha-
nisms that govern the dynamics of the neurons, of reinforcement
learning and of decision-making. We describe first the bio-
inspired mechanism of rank-order coding from which we derive
the activity of the parietal and of the pre-frontal neurons. In

second, we describe the reinforcement learning algorithm, the
error prediction reward and the decision-making rules.

2.1. PPC—GAIN-FIELD MODULATION AND SENSORIMOTOR MAPPING
We employ the rank-order coding neurons to model the sen-
sorimotor mapping between input and output signals with an
architecture that we have used in a previous research (Pitti
et al., 2012). This architecture implements multiplicative neu-
rons, called gain-field neurons, that multiply unit by unit the
value of two or more incoming neural populations, see Figure 2.
Its organization is interesting because it transforms the incom-
ing signals into a basis functions’ representation that could be
used to simultaneously represent stimuli in various reference
frames (Salinas and Thier, 2000). The multiplication between
afferent sensory signals in this case from two population codes,
Xm1 and Xm2 , {m1, m2 ∈ M1, M2}, produces the signal activity Xn

to the n gain-field neurons, n ∈ N:

XGF = XM1 × XM2 (1)

The key idea here is that the gain-field neurons encode two
information at once and that the amplitude of the gain-field neu-
rons relates the values of one modality conditionally to the other;
see Figure 2A. The task is therefore encoded into a space of lower
dimension (Braun et al., 2009, 2010). We exploit this feature to
model the parietal circuits for different contextual cues and inter-
nal models, which means that, after the encoding, the output
layers learn the receptive fields of the gain-field map and trans-
lates this information into various gain levels. In Figure 2B, we
give a concrete example of one implementation, here delineated
to two modalities, with N gain-fields projecting to three different
tasks set of different size. We explain thereinafter (1) how the gain
fields neurons learn the associations between various modalities
and (2) how the neurons of the output map learn from the gain
fields neurons for each desired task.

2.2. RANK-ORDER CODING ALGORITHM
We implement a hebbian-like learning algorithm proposed by
Van Rullen et al. (1998) called the Rank-Order Coding (ROC)
algorithm. The ROC algorithm has been proposed as a dis-
crete and faster model of the derivative integrate-and-fire neu-
ron (Van Rullen and Thorpe, 2002). ROC neurons are sensitive

FIGURE 1 | Framework for task set selection. The whole system is
composed of three distinct neural networks, inspired from Khamassi et al.
(2011). The PPC network conforms to an associative network. It binds the
afferent sensory inputs from each other and map them to different motor
outputs with respect to a task set. The ACC system is a error-based working

memory that processes the incoming PPC signals and feeds back an error to
them with respect to current task. This modulated signal is used to tune the
population of neurons in PPC by reinforcement learning, it is also conveyed to
the PFC map, which is a recurrent network that learns dynamically the
spatio-temporal patterns of the ongoing episodes with respect to the task.
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to the sequential order of the incoming signals; that is, its rank
code, see Figure 3A. The distance similarity to this code is trans-
formed into an amplitude value. A scalar product between the
input’s rank code with the synaptic weights furnishes then a dis-
tance measure and the activity level of the neuron. More precisely,
the ordinal rank code can be obtained by sorting the signals’ vec-
tor relative to their amplitude levels or to their temporal order in a
sequence. We use this property respectively for modeling the sig-
nal’s amplitude for the parietal neurons and the spatio-temporal
patterns for the prefrontal neurons. If the rank code of the input
signal matches perfectly the one of the synaptic weights, then
the neuron fully integrates this activity over time and fires, see
Figure 3A. At contrary, if the rank order of the signal vector does
not match properly the ordinal sequence of the synaptic weights,
then integration is weak and the neuron discharges proportionally
to it, see Figure 3B.

The neurons’ output X is computed by multiplying the rank
order of the sensory signal vector I, rank(I), by the synaptic
weights w; w ∈ [0, 1]. For a vector signal of dimension M and for
a population of N neurons (M afferent synapses), we have for the

GF neurons and for the output PPC neurons:

{
XGF

n =∑m∈M
1

rank(Im)
w

GF−Modality
n, m

XPPC
n =∑m∈M

1
rank(Im)

wPPC−GF
n, m

(2)

The updating rule of the neurons’ weights is similar to the
winner-takes-all learning algorithm of Kohonen’s self-organizing
maps (Kohonen, 1982). For the best neuron s ∈ N and for all
afferent signals m ∈ M, we have for the neurons of the output
layer: {

wPPC−GF
s, m = wPPC−GF

s, m +�wPPC−GF
s, m

�wPPC−GF
s, m = 1

rank(Im)
− wPPC−GF

s, m ,
(3)

the equations are the same for GF neurons (not reproduced here).
We make the note that the synaptic weights follow a power-scale
density distribution that makes the rank-order coding neurons
similar to basis functions. This attribute permits to use them as
receptive fields so that the more distant the input signal is to the
receptive field, the lower is its activity level; e.g., Figure 3B.

FIGURE 2 | Task sets mapping, the mechanism of gain-fields. (A)

Gain-fields neurons are units used for sensorimotor transformation.
They transform the input activity into another base, which is then
fed forward to various outputs with respect to their task. Gain-fields
can be seen as meta-parameters that decrease the complexity of the

sensory-motor problem into a linear one. (B) example of GF neurons
sensorimotor transformation for two modalities projecting to three
different task sets; each GF neuron contributes to one particular
feature of the tasks (Pouget and Snyder, 2000; Orban and Wolpert,
2011).

FIGURE 3 | Rank-Order Coding principle (Thorpe et al., 2001). This
type of neuron encodes the rank code of an input signal. Its
amplitude is translated into an ordered sequence and the neuron’s

synaptic weights are associated to this sequence. The neural activity
is salient to this particular order only, see (A), and otherwise not,
see (B).
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2.3. REINFORCEMENT LEARNING AND ERROR REWARD PROCESSING
The use of the rank-order coding algorithm provides an easy
framework for reinforcement learning and error-based learn-
ing (Barto, 1995). For instance, the adaptation of the weights in
Equation 3 can be modified simply with a variable α ∈ [0, 1] that
can ponder �w; see Equation 4. If α = 0, then the weights are not
reinforced: Wt+ 1 = Wt . If α = 1, then the weights are reinforced
in the direction of �W : Wt+ 1 = Wt + α�W . In addition, condi-
tional learning can be made simply by summing an external bias
β to the neurons output X. By changing the amplitude of the neu-
rons, we change also the rank-order to be learned and influence
therefore the long-term the overall organization of the network;
see Equation 5.

�w ← α�w, α ∈ [0, 1] (4)

X ← X + β, β ∈ [−1,+1] (5)

2.3.1. Cortical plasticity in PPC
For modeling the cortical plasticity in the PPC output maps,
we implement an experience-driven plasticity mechanism.
Observations done in rats show that during the learning of novel
motor skills the synapses rapidly spread in the neocortex imme-
diately as the animal learns a new task (Xu et al., 2009; Ziv and
Ahissar, 2009). Rougier and Boniface proposed a dynamic learn-
ing rule in self-organizing maps to combine both the stability of
the synapses’ population to familiar inputs and the plasticity of
the synapses’ population to novel patterns (Rougier and Boniface,
2011). In order to model this feature in our PPC map, we rede-
fine the coefficient α in Equation 5 and we rearrange the formula
proposed by Rougier and Boniface:

α = e1/η2/||max(XPPC)−XPPC
s || ∈ [0, 1] (6)

where η is the elasticity or plasticity parameter that we set to 1 and
max(XPPC) is the upper bound of the neural activity, its maximal
value, whereas max(XPPC) is the current maximum value within
the neural population, with α = 0 when XPPC

s = max(XPPC). In
this equation, the winner neuron learns the data according to its
own distance to the data. If the winner neuron is close enough
to it, it converges slowly to represent the data. At contrary, if the
winner neuron is far from the data, it converges rapidly to it.

2.3.2. Error-reward function in ACC
For modeling ACC, we implement an error-reward function sim-
ilar to Khamassi et al. (2011) and to Q-learning based algorithms.
The neurons’ value is updated afterwards only when an error
occurs, then a ihnibitory feedback error signal is sent to the win-
ning neuron to diminish its activity Xwin: ACC(Xwin) = −1; the
neurons equation X is updated as follows:

XPPC
n =

∑
m∈M

1

rank(Im)
wn, m + ACC(XPPC

n ). (7)

The neurons activity in ACC is cleared everytime the sys-
tem responds correctly or provides a good answer. ACC can be
seen then as a contextual working memory, a saliency buffer

extracted from the current context when errors occur inhibiting
the wrong actions performed. Its activity may permit to establish
an exploration-based type of learning by trial and errors and an
attentional switch signal from automatic responses, in order to
deal with the unexpected when a novel situation occurs.

2.4. PFC—SPATIO-TEMPORAL LEARNING IN A RECURRENT NETWORK
We can employ the rank-order coding for modeling spike-based
recurrent neural network in which the amplitude values of the
incoming input signals are replaced by its past spatio-temporal
activity pattern. Although the rank-order coding algorithm has
been used at first to model the fast processing of the feed-forward
neurons in V1, its action has been demonstrated to replicate
also the hebbian learning mechanism of Spike Timing-Dependent
Plasticity (STDP) in cortical neurons (Bi and Poo, 1998; Abbott
and Nelson, 2000; Izhikevich et al., 2004). For a population of
N neurons, we arbitrarily choose to connect each neuron to a
buffer of size 20× N so that they encode the rank code of the
neurons amplitude value over the past 20 iterations. At each
iteration, this buffer is shifted to accept the new values of the
neurons.

XPFC
n =

∑
m∈M

1

rank(bufferm)
wn, m + XPPC

n . (8)

Recurrent networks can generate novel patterns on the fly
based on their previous activity pattern while, at each iteration,
a winning neuron gets its links reinforced. Over time, the sys-
tem regulates its own activity whereas coordinated dynamics can
be observed. These behaviors can be used for anticipation and
predictive control.

3. RESULTS
We propose to study the overall behavior of each neural system
during the learning of task sets and the dynamics of the ensemble
working together. The first three experiments are performed in
a computer simulation only. They describe the behavior of the
PPC maps working solely, working along the ACC system and
working along the ACC and PFC systems for learning and select-
ing context-dependent task sets. Experiment 4 is performed on
a robot arm. This experiment describes the acquisition and the
learning of two different task set during the manipulation or not
of a tool.

3.1. EXPERIMENT 1—PLASTICITY vs STABILITY IN LEARNING TASK
SETS

In this first experiment, we test the capabilities of our net-
work to learn incrementally novel contexts without forgetting the
older ones, which corresponds to the so-called plasticity/stability
dilemma of a memory system to retain the familiar inputs as well
as to incorporate flexibly the novel ones. Our protocol follows the
diagram in Figure 4 in which we show gradually four different
contexts for two input modalities with vectors of ten indices. The
input patterns are randomly selected from an area in the current
context chosen randomly and for a period of time also variable. In
this experiment, the PPC output map has 50 neurons that receive
the activity of twenty gain-fields neurons, see Figure 2B.
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We display in Figure 5A the raster plot of the PPC neurons’
dynamics with distinct colors with respect to the context.
Contexts are given gradually, one at a time, so that some neu-
rons have to unlearn their previous cluster first in order to fit
the new context. It is important to note that categorization is
unsupervised and decided due to the experience-driven plastic-
ity rule in Equation 6. In order to demonstrate the plasticity of
the PPC network during the presentation of a new context, we
present the context number four, plotted in magenta and never
seen before, at t = 11500. Here, the new cluster is rapidly formed

FIGURE 4 | Protocol setup in task sets learning. This simple protocol
explains how the experimental setup is done for acquiring different
contexts incrementally and for selecting them.

and stable over time due again to the cortical plasticity mech-
anism from Equation 6. The graph displays therefore not only
the plasticity of the clusters in the PPC network but also their
robustness.

This property is also shown in Figure 5B where the conver-
gence rates of the PPC weights vary differently for each task. This
result explains how the PPC self-organizes itself into different
clusters that specialize flexibly with respect to the task. The ratio
between stability and plasticity in shown in Figure 5C within the
network with the histogram of the neuron’s membership over a
certain time interval. The stability of one neuron is computed as
its probability distribution relative to each context. The higher
values correspond to very stable neurons, which are set to one
context only and do not deviate from it, whereas the lower val-
ues correspond to very flexible neurons that change frequently
context from one to another.

The histogram shows two probability distributions within the
system and therefore two behaviors. For the neurons correspond-
ing to values near the strong peak at 1.0, their activity is very stable
and strongly identified to one context. This shows that for one
third of the neurons, the behavior of the neural population is very
stable. At reverse, the power law curve centered on 0.0 shows the

FIGURE 5 | Raster plot of the PPC output map and plasticity vs.

stability within the map. (A) the graph displays the neural dynamics
during task switch among four different contexts. (B) Convergence rate
of the PPC network with respect to each task. (C) The degree of
plasticity and stability within the PPC output map is represented as the
probability distribution of the neurons membership to the cluster relative

to a context. This histogram shows two behaviors within the system. On
the one hand, one third of the neurons present very stable dynamics
with membership to one context only. On the other hand, two third of
the neurons are part of different clusters and therefore to different
contexts. The later neurons follow a power law distribution showing very
plastic dynamics.
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high variability of certain neurons, which are very dynamic for
one third of the neural population.

We study now the neurons’ activity during a task switch
in Figure 6. In graph (A), the blue lines correspond to the neu-
rons’ dynamic belonging to the context before the switch and
the red lines correspond to the neurons’ dynamic belonging to
the context after the switch. The activity level in each cluster
is very salient for each context. The probability distribution of
the neurons’ dynamic, with respect to each context is plotted
in Figure 6B. It shows a small overlap between the contexts before
and after the switch.

3.2. EXPERIMENT 2—LEARNING TASK SETS WITH A REINFORCEMENT
SIGNAL

In this second experiment, we reproduce a decision-making prob-
lem similar to those done in monkeys and humans with multiple
choices and rewards (Churchland and Ditterich, 2012). The rules
are not given in advance and the tasks switch randomly after a
certain period of time with no regular pattern. The goal of the
experiment is to catch the input-output correspondence pattern
to stop making the error. The patterns are learned dynamically
by reinforcement learning within each map and should ideally be
done without interference from each other. The error signal indi-
cates when an input-output association is erronous with respect
to a hidden policy, however, we make the note that it does not
provide any hint about how to minimize the error. To understand
how the whole system works, we focus our experiment on the PPC
network with the ACC error processing system first, then with the
PFC network. We choose to perform a two-choices experiment,
with two output PPC maps initialized with random connections
from the PPC map. The PPC network consists therefore of the
gain-field architecture with the two output maps for modeling the
two contexts. The two maps are then bidirectionally linked to the
ACC system; the input signals for modality 1 and 2 are projected
to the PPC input vectors of twenty units each; map1 has twelve
output units and map2 has thirteen output units and project to
ACC of dimension twenty-five units.

The hidden context we want the PPC maps to learn is to have
output signals activated for specific interval range of the inputs

signals, namely, the first output map has to be activated when
input neurons of indices below ten are activated, and recipro-
cally, the second output map has to be activated when input
neurons of indices above ten are activated—this corresponds to
the two first contexts in Figure 4. The error prediction signal is
updated anytime a mistake has been done on the interval range
to learn. As expressed in the previous section, the ACC error sig-
nal resets always its activity when the PPC maps start to behave
correctly.

We analyze the performance of the PPC-ACC system in the
following. We display in Figures 7A,B the raster plots of the PPC
and ACC dynamics with respect to the context changes for dif-
ferent periods of time. The chart on the top displays the timing
for context switch, the chart on the middle plots the ACC sys-
tem working memory and the chart below plots the output of
the PPC units. The Figure 7A is focusing on the beginning of
the learning phase and the Figure 7B when the system has con-
verged. We observe from these graphs that the units of the output
maps self-organize very rapidly to avoid the error. ACC modulates
negatively the PPC signals. We make the note that the error sig-
nal does not explicitly inhibit one map or the other but only the
wrongly actived neuron of the map. As it can be observed, over
time, each map specializes to its task. As a result, learning is not
homogenous and depends also to the dimension of the context;
that is, each map learns with a different convergence rate. ACC
error rapidly reduces its overall activity for the learning of task1
with respect to map1, although the error persists for the learn-
ing of task2 with respect to map2 where some neurons still fires
wrongly.

We propose to study the convergence of the two maps and
the confidence level of the overall system for the two tasks. We
define a confidence level index as the difference of amplitude
between the most active neurons in map1 and map2. We plot
its graph in Figure 8 where the blue color corresponds to the
confidence level for task1 with vs_map1 − vs_map2 and the color
red corresponds to the confidence level for task2 with vs_map2 −
vs_map1 during the learning phase. The dynamics reproduce sim-
ilar trends from Figure 7 where the confidence level constantly
progresses till convergence to a stable performance rate, with a

FIGURE 6 | Cluster dynamics at the time to switch. (A) Neural dynamics of the active clusters before and after the switch; resp. in blue and in red.
(B) Histogram of the neural population at the time to switch with respect to the active clusters before and after the switch.
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FIGURE 7 | Experiment on two-choices decision making and task

switching. (A) Neural dynamics of PPC neurons and ACC error system
during task switch. We plot in the chart in the top the temporal interval for
each task. Below the, neural dynamics of the PPC maps and in the middle, its
erronous activity retranscribed in the ACC system. ACC works as a working

memory that keep tracks of the erronous outputs, which is used during the
learning stage. ACC is reset each time the PPC system gives a correct
answer. Through reinforcement learning, the PPC maps converge gradually to
the correct probability distribution. (B) Snapshot of the PPC maps in blue
modulated negatively by ACC in red.

FIGURE 8 | Confidence Level of PPC maps during task switch, dynamics

and histogram. (A) The confidence level is the difference between the
amplitude of most activated neuron and the second one within each map.
After one thousand iterations, the two maps rapidly specialize their dynamics
to its associated task. This behavior is due to the ACC error-based learning.

(B) histogram of the probability distribution of the confidence level with and
without ACC. With ACC, we observe a clear separation in two distributions,
which correspond to a decrease of uncertainty with respect to the task. In
comparison, the confidence level in an associative network without an error
feedback gives a uniform distribution.

threshold around 0.4 above which a contextual state is recog-
nized or not. Before 1000 iterations, the maps are very plastic so
the confidence level fluctuates rapidly and continuously between
different values but at the end of the learning phase, the maps
are more static so the confidence level appears more discrete.
This state is clearly observable from the histogram of the con-
fidence level plotted on the right in Figure 8B for the case
where the ACC error signal is injected to the associative net-
work. The graph presents a probability distribution with two
bell-shaped centred on 0.1 and 0.7, which corresponds to the
cases of recognition or not of the task space. In comparison,
the probability distribution for the associative learning without
error-feedback is uniform, irrespective to the task; see Figure 8B
in blue.

3.3. EXPERIMENT 3—ADAPTIVE LEARNING ON A TEMPORAL
SEQUENCE BASED ON ERROR PREDICTION REWARD

We attempt to replicate now Harlow’s experiments on adaptive
learning, but, in comparison to the previous experiments, it is the
temporal sequence of task sets that is taken into account for the
reward. We employ our neural system in a cognitive experiment
first to learn multiple spatio-temporal sequences and then to pre-
dict when a change of strategy has occurred based on the error
or on the reward received. With respect to the previous section
also, we add the PFC-like recurrent neural network to learn the
temporal sequence from the PPC and ACC signals, see Figure 1.

The experiment is similar to the previous two-choices
decision-making task, expect that the inputs follow now a tempo-
ral sequence within each map. When the inputs reach a particular
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point in the sequence–, a point to switch,– we proceed to a
random choice between one or the two trajectories. As in the
previous section, the learning phase for the PPC rapidly con-
verges to the specialization of the two maps thanks to the ACC
error-learning processing. Meanwhile, the PFC learns the tem-
poral organization of the PPC outputs based on their sequential
order, Figure 9A. We do not give to the PFC any information
about length, the number of patterns or the order of the sequence.
Besides, each firing neuron reinforces its links with the current
pre-synaptic neurons; see the raster plot in Figure 9B. After the
learning phase, each PFC neuron has learned to predict some por-
tion of the sequence based on the past and current PFC activity.
Their saliency to the current sequence is retranscribed in their
amplitude level. We plot the activity level of the neurons #10 and
#14 respectively in black and red in the second chart. This graph
shows that their activity level gradually increases for period inter-
vals of at least ten iterations till their firing. The points to switch
are also learned by the network and they are observable when the
variance of the neurons’ activity level becomes low, which is also
seen when the confidence level goes under 0.4; which corresponds
to the dashed black line in the first chart. For instance, we plot
the dynamics of the PPC neurons and of the PFC neurons during
such situation in Figure 10A at time t = 1653. The neural dynam-
ics of each map display different patterns and therefore, different
decisions. The PPC activates more the neurons of the first map
(the neurons with indices below thirteen in blue) whereas the PFC
activates more the neurons of the second map (the neurons with
indices above thirteen in dashed red). This shows that the PFC
is not a purely passive system driven by the current activity in
PPC/ACC. Besides, it learns also to predict the future events based
on its past activity. The PFC fuses the two systems in its dynam-
ics, and this is why it generates here a noisy output distribution
due to the conflicting signals. We plot in Figure 10B the influ-
ence of PPC on the PFC dynamics. In 60% of the cases, the two
systems agree to predict the current dynamics. This corresponds

to the case of an automatic response when familiar dynamics are
predicted. During conflicts, a prediction error is done by one of
the two systems and in more cases the PPC dynamics, modulated
by ACC, overwrite the values of the PFC units (blue bar). This sit-
uation occurs during a task switch for instance. At reverse, when
PFC elicites its own values with respect to PPC (red bar), this situ-
ation occurs more when there is ambiguous sensory information
that can be overpassed.

In order to understand better the decision-making process
within the PFC map, we display in Figures 11A,B the temporal
integration done dynamically at each iteration within the net-
work. Temporal integration means the process of summing the
weights in Equation 2 at each iteration with respect to the current
order. If the sequence order is well recognized, then the neu-
ron’s value goes high very rapidly, otherwise its value remains to
a low value. As we explained it in the previous paragraph, each
neuron is sensitive to certain patterns in the current sequence
based on the synaptic links within the recurrent network. This
is translated in the graph by the integration of bigger values. The
spatio-temporal sequences they correspond to are darkened pro-
portionally to their activation level. The higher is the activation
level integration during the integration period, the faster is the
anticipation of the sequence. We present the cases for a unam-
biguous pattern in Figure 11A and for an ambiguous sequence
activity in Figure 11B. The case for a salient sequence recogni-
tion in Figure 11A indicates that the current part of the sequence
is well estimated by at least one neuron, the winning neuron,
which predicts well the sequence over twenty steps in advance,
see the chart below. In comparison, the dynamics in Figure 11B
show a more uniform probability distribution. This situation
arises when a bifurcation point is near in the sequence, it indi-
cates that the system cannot predict correctly the next steps of the
sequence.

Considering the decision-making process per se, there is not
a strict competition between the neurons, however, each neuron

FIGURE 9 | Raster plot for PFC neurons. In (A), the PFC learns the
particular temporal sequence from PPC outputs and it is sensitive to the
temporal order of each unit in the sequence. In (B) on the top chart, the
confidence level on the incoming signals from the PPC is plotted. The chart

in the middle displays the neural activity for two neurons from the two
distinct clusters. The neuron #10 in black (resp. cluster #1) and the neuron
#14 in red (resp. cluster #2). The raster plot of the whole system is plotted
in the chart below.
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FIGURE 10 | PFC vs. PPC dynamics. (A) The snapshot of the PPC/PFC
dynamics at time t = 1653 show conflicting choices between the two maps,
which correspond to a bifurcation point. After temporal integration, the PFC is
processing the decision-making of a winner neuron different from the PPC
choice. (B) Three PPC/PFC interactions occur, when PPC overwrites the

values of PFC units, when PFC elicites its own values with respect to PPC
and when both agree on the current predict. The PPC-PFC system works
mostly in coherence from each other for 60% of the time (green bar) but in
situations of conflict, the PPC overwrites twice the dynamics of the PFC
network (blue bar) than the reverse (red bar).

FIGURE 11 | PFC neuron’s integration at time t = 604 and t = 2400.

(A) Depending on the current situation, a neuron will be more
selective to one part of the sequence or to another. The earlier a

sequence is detected, the farther the prediction of the trajectory. (B)

At bifurcation points, the trajectories are fuzzier and several patterns
are elicited.

promotes one spatio-temporal sequence and one probability
distribution. Therefore, we have within the system 25 spatio-
temporal trajectories embedded. Based on the current situation,
some neurons will detect better one portion of the sequence than
others and the probability distribution will be updated in conse-
quence to chain the actions sequentially, whereas other portions
will collapse. The decision-making looks therefore similar to a
self-organization process.

At this point, no inhibitory system has been implemented
directly in PFC that would avoid a conflict in the sequence
order. Instead, the PFC integrates the PPC signals with the ACC
error signals. The temporal sequences done in the PPC to avoid
the errors at the next moves are learned little by little by reinforce-
ment in the PFC. These sequences become strategies for error
avoidance and explorative search. Over time, they learn the pre-
diction of reward and the prediction of errors (Schultz et al., 1997;
Schultz and Dickinson, 2000).

We perform some functional analysis on the PFC network
in Figure 12. The connectivity circle in Figure 12A can permit
to visualize the functional organization of the network at the
neurons’ level. We subdivide the PFC network into two sub-
maps corresponding to the task dynamics in blue and red. We
draw the strong intra-map connections between the neurons in
the same color to their corresponding sub-maps as well as the
strong inter-map connections between neurons of each map.
Each neuron has a different connectivity in the network and
the more it has connection the more it is central in the net-
work. These neurons propagate information within and between
the sub-maps, see Figure 12B. In complex systems terms, they
are hub-like neurons from which different trajectories can be
elicited. In decision-making, they are critical points for changing
task. The density probability distribution plotted in Figure 12C
shows that the maximum number of connections per neuron with
strong synaptic weights reaches the number of four connections.
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FIGURE 12 | PFC network analysis. (A) Connectivity circle for the neurons
of the PFC map. In blue are displayed the neurons belonging to cluster 1 and
in red are displayed the neurons belonging to cluster 2. The number of links
within each cluster (intra-map connectivity) is higher than the number of links
between them (inter-map connectivity). Moreover, the number of highly
connected neurons is also weak. these charateristic replicate the ones of
complex systems and of small-world networks in particular. (B) Task switch is

done through these hub-like neurons which can direct the trajectory from one
or the other task. (C) The connectivity level per neurons within the network
follows a logarithmic curve typical of complex networks, where the mostly
connected neurons are also the fewer and the most critical with 4 distant
connections. (D) The PFC network contributes to enhance the
decision-making process in comparison to the PPC-ACC system due to the
learning of the temporal sequence and to its better organization.

Their number drastically diminishes with respect to the num-
ber of connections and their trend follows a logarithmic curve.
These characteristics correspond the properties of small-world
and scale-free networks.

In Figure 12D, we analyze the performance of the overall sys-
tem when the PFC is added. The decision-making done in the
PFC permits to decrease the error by a factor two: ten percents
error in comparison to experiment 2. The prediction done in the
recurrent map shows that the PFC is well organized to anticipate
rewards and also task switch.

3.4. EXPERIMENT 4—ROBOTIC EXPERIMENT ON SENSORIMOTOR
MAPPING AND ACTION SELECTION

We want to perform now a robotic experiment on action selection
and decision making in the motor domain with a robotic arm of
6 degrees of freedom from the company Kinova; see Figure 13.
We inspire ourself on the one hand from Wolpert’s experiments
on structural learning and representation of uncertainty in motor
learning (Wolpert and Flanagan, 2010; Orban and Wolpert, 2011)
and on the other hand from Iriki’s experiments on the spatial
adaptation following active tool-use (Iriki et al., 1996; Maravita

and Iriki, 2004). Here, we attempt to learn different relations
between states and motor commands when the robot controls its
own arm alone and when it handles a tool. The question arises
whether the robot will learn the structural affordances of the tool
as a distinct representation or, instead, as part of its limb’s rep-
resentation (Cothros et al., 2006; Kluzik et al., 2008). Iriki et al.
(1996) reported that bimodal-cell visual receptive fields (vRFs)
show spatial adaptation following active tool-use, but not passive
holding. The spatial estimation of its own body limits—that is, its
body image,—is different depending on the attention to the tool.
The goal is therefore to estimate properly the current situation on
which the robot is, which means handling a stick or not, actively
or passively.

In our framework, we expect that the errors of spatial esti-
mation on the end-point can be gradually learned and that
sensorimotor mapping will change with respect to the tasks the
robot has to perform (Wolpert and Flanagan, 2010; Orban and
Wolpert, 2011). Figures 13A,B display the arm robot when it
holds a salient toy and when it handles a stick with the toy at
its end-point. In this experiment, a fixed camera is mapping the
x-y coordinates of the salient points (i.e., the toy) while the robot
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moves its arm around its elbow; we make the note that we cir-
cumscribe the problem to two modalities only in order to control
just one articulation with respect to the Y axis in the camera.

In the previous experiments, we did not exploit specifically the
properties of the gain-field neurons for mapping sensorimotor

FIGURE 13 | Robot arm Kinova for task-set selection. The two task-sets
correspond to (A) the situation when it is moving its hand alone with the
red target on its hand and (B) the situation when it is moving the stick on its
hand with the red target on the tip of the tool.

transformation. Here instead, we use the gain-field mechanism
to combine the visuomotor information into the PPC system for
the two contexts. With respect to the task, the PPC output maps
will learn the specific amplitude of the gain-field neurons corre-
sponding to the specific visuomotor relationships (Holmes et al.,
2007).

For instance, we plot in Figures 14A–D the activity level of
four different gain-field neurons relative to the motor angle θ0

of the robot arm. The blue dots represent the situation when it
weaves the hand in front of the camera and the red dots repre-
sent the situation when it is handling the tool. As the gain-field
neurons learn the specific relationship between certain values
of the XY coordinates of the end-point effector and the motor
angle θ0, this value is modulated when the robot arm uses the
stick; see resp. Figures 14A–D. The visuo-motor translation in
the XY plane when the robot is handling the tool produces a gain
modulation that decreases or increases the neurons’ activity level.

Hence, the visuomotor coordination changes instantaneously
the GF neurons’ activity level relative to the current task set
and the PPC is dynamically driven by the input activity (not
displayed). The neural activity in the PFC map, instead, can
evolve autonomously and independently with respect to the input
activity, even if the PPC dynamics are presented for a short expo-
sure; this behavior is displayed in the raster plot in Figure 15A.

FIGURE 14 | Dynamics of the gain-field neurons relative to the task. (A–D) In blue, the robot moves its hand freely. In red, the robot is handling the tool.
Depending on what the GF neurons have learned, their peak level will diminish or increase when changing the task (i.e., using a tool).

FIGURE 15 | PFC Attention decision during contextual change, hand-free

or tool-use. (A) we expose to the PFC dynamics some incomplete patterns
for a short period of time of 20 iterations, every 500 iterations. The PFC is

capable to switch to the reconstruct back the missing part of the
spatio-temporal sequence; in blue for hand-free and in red for tol-use.
(B) Neural activity for one neuron when one of the two contexts is set.
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When we expose the PFC neurons to the PPC dynamics for a
small period of time—20 iterations every 500 iterations (the seg-
ments on the top chart),—the network is able to reconstruct
dynamically the rest of the ongoing sequence; see Figure 15B. For
instance, the neuron #8 is selective to the particular context of
hand-free (blue lines). The contextual information is maintainted
as a stable pattern of the neural activity in the working memory
and the contexts are accessible and available for influencing the
ongoing processing. As a recurrent network, the PFC behaves sim-
ilarly to a working memory. It embeds the two different strategies
depending on the context, even in presence of incomplete inputs
and can select to attend or not to the tool.

4. DISCUSSION
The ability to learn the structure of actions and to select on
the fly the proper one given the current task is one great leap
in infants cognition. During development, infants learn to dif-
ferentiate their motor behaviors relative to various contexts by
exploring and identifying the correct structures of causes and
effects that they can perform by trial and errors. This behav-
ior corresponds to an intrinsic motivation, a mechanism that is
argued to drive cognitive development. Besides, Karen Adolph
emphasizes the idea of “learning-to-learn” in motor develop-
ment, an expression akin to Harlow that appears in line with
the one of intrinsic motivation. She proposes that two learn-
ing mechanisms embody this concept during the development
of the motor system—, respectively an associative memory and
a category-based memory,– and that the combination of these
two learning systems is involved in this capacity of learning-to-
learn. Braun et al. (2010) foster a similar concept and suggest
that motor categorization requires 1) a critic for learning the
structure, i.e., an error-based system, and 2) a learning system
that will learn the conditional relationships between the incom-
ing variables; which means, the parameters of the task. They
argue that once these parameters are found, it is easier to trans-
fer knowledge from one initial task to many others. All-in-all, we
believe that these different concepts on structural learning are
important to scaffold motor development and to have intrinsic
motivation in one system. Thus the question arises what are the
neural mechanisms involved in structural learning and in flexible
behaviors?

To investigate this question, we have modeled an architec-
ture that attempts to replicate the functional organization of the
fronto-parietal structures, namely, a sensorimotor mapping sys-
tem, an error-processing system and a reward predictor (Platt
and Glimcher, 1999; Westendorff et al., 2010). The fronto-parietal
cortices are involved in activities related to observations of alter-
natives and to action planning, and the anterior cyngulate cortex
is a part of this decision-making network. Each of these neural
systems contribute to one functional part of it. The ACC system is
processing the error-negativity reward to the PPC maps for spe-
cialization and to the PFC network for reward prediction. The
PPC network organizes the sensorimotor mapping for different
tasks whereas the PFC learns the spatio-temporal patterns during
the act.

In particular, the PPC is organized around the mechanism
of gain-modulation where the gain-fields neurons combine the

sensory inputs from each other. We suggest that the mechanism of
gain-modulation can implement the idea of structural learning in
motor tasks proposed by Braun and Wolpert (Braun et al., 2009,
2010). In their framework, the gain-field neurons can be seen as
basis functions and as the parameters of the learning problem. It
is interesting to note that Braun and al. make a parallel with the
bayesian framework, which has been also proposed to describe the
gain-field mechanism. For instance, Deneve explains the compu-
tational capabilities of gain-fields in the context of the bayesian
framework to efficiently represent the joint distribution of a set of
random variables (Denève and Pouget, 2004).

Parallely, we used three specific intrinsic mechanisms for
enhancing structural learning: the rank-order coding algorithm,
the cortical plasticity and an error-based reward. For instance, the
rank-order coding algorithm was used to emulate efficiently
the so-called spike timing-dependent plasticity to learn spatio-
temporal sequences in a recurrent network (Bi and Poo, 1998;
Abbott and Nelson, 2000). The PFC system exploits their prop-
erties for self-organizing itself by learning the sequences of each
task as well as the switch points. PFC neurons learn specific tra-
jectories and at each iteration, a competition process is at work to
promote the new steps of the ongoing sequence. Besides, cortical
plasticity was modeled in PPC maps with an activity-dependent
learning mechanism that promotes the rapid learning of novel
(experienced-based) tasks and the stabilization of the old ones.
An advantageous side-effect of this mechanism is that PPC neu-
rons become context-dependent, which is a behavior observed
also in the reaching neurons of the parieto-motor system, the
so-called mirror neurons (Gallese et al., 1996; Brozovic et al.,
2007). The results found on cortical plasticity are in line with
observations on the rapid adaptation of the body image and
of the motor control. Wolpert observed that the motor system
incorporates a slow learning mechanism along a fast one for
the rapid formation of task sets (Wolpert and Flanagan, 2010).
The cortical plasticity is also influenced by an error-based sys-
tem in ACC that reshape the PPC dynamics with respect to the
task. The negative reward permits to inhibit the wrong dynam-
ics but not to elicite the correct ones. Those ones are gradu-
ally found by trial and errors, which replicate an exploration
process.

We believe that these different mechanisms are important for
incremental learning and intrinsic motivation. However, many
gaps remain. For instance, a truly adaptive system should show
more flexibility during familiar situations than during unfamiliar
ones. Retranscribed from Adolph and Joh (2005), a key to flexibil-
ity is (1) to refrain from forming automatic responses and (2) to
identify the critical features that allow online problem solving to
occur. This ability is still missing in current robots. In the context
of problem solving in tool-use, Fagard and O’Regan emphasizes
the similar difficulty for infants to use a stick for reaching a toy.
They also observe that below a certain age, attention is limited
to one object only as they just cannot “hold in mind” the main
goal in order to perform one subgoal (Fagard et al., 2012; Rat-
Fischer et al., 2012). Above this period, however, Fagard and
O’Regan observe an abrupt transition in their behaviors when
they became capable to relate two actions at a time, to plan con-
secutive actions and to use recursion. They hypothesize that after
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16 months, infants are able to enlarge their focus of atten-
tion to two objects simultaneously and to “bufferize” the main
goal. We make a parallel with the works of Koechlin and col-
leagues Koechlin et al. (2003); Collins and Koechlin (2012)
who attribute a monitoring role to the frontal cortex for
maintaining the working memory relative to the current tasks
and for prospecting the different action sequences or episodic

memories (Koechlin and Summerfield, 2007), which will be our
next steps.
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Most previous work on artificial curiosity (AC) and intrinsic motivation focuses on basic
concepts and theory. Experimental results are generally limited to toy scenarios, such as
navigation in a simulated maze, or control of a simple mechanical system with one or two
degrees of freedom. To study AC in a more realistic setting, we embody a curious agent
in the complex iCub humanoid robot. Our novel reinforcement learning (RL) framework
consists of a state-of-the-art, low-level, reactive control layer, which controls the iCub
while respecting constraints, and a high-level curious agent, which explores the iCub’s
state-action space through information gain maximization, learning a world model from
experience, controlling the actual iCub hardware in real-time. To the best of our knowledge,
this is the first ever embodied, curious agent for real-time motion planning on a humanoid.
We demonstrate that it can learn compact Markov models to represent large regions of
the iCub’s configuration space, and that the iCub explores intelligently, showing interest
in its physical constraints as well as in objects it finds in its environment.

Keywords: artificial curiosity, intrinsic motivation, reinforcement learning, humanoid, iCub, embodied AI

1. INTRODUCTION
Reinforcement Learning (RL) (Barto et al., 1983; Sutton and
Barto, 1998; Kaelbling et al., 1996) allows an agent in an environ-
ment to learn a policy to maximize some sort of reward. Rather
than optimizing the policy directly, many RL algorithms instead
learn a value function, defined as expected future discounted
cumulative reward. Much of early RL research focused on dis-
crete states and actions instead of continuous ones dealt with by
function approximation and feature-based representations.

An RL agents needs to explore its environment. Undirected
exploration methods (Barto et al., 1983), rely on randomly
selected actions, and do not differentiate between already
explored regions and others. Contrastingly, directed exploration
methods can focus the agent’s efforts on novel regions. They
include the classic and often effective optimistic initialization,
go-to the least-visited state, and go-to the least recently visited
state.

1.1. ARTIFICIAL CURIOSITY (AC)
Artificial Curiosity (AC) refers to directed exploration driven by
a world model-dependent value function designed to direct the
agent toward regions where it can learn something. The first
implementation (Schmidhuber, 1991b) was based on an intrinsic
reward inversely proportional to the predictability of the environ-
ment. A subsequent AC paper (Schmidhuber, 1991a) emphasized
that the reward should actually be based on the learning progress,
as the previous agent was motivated to fixate on inherently
unpredictable regions of the environment. Subsequently, a prob-
abilistic AC version (Storck et al., 1995) used the well known

Kullback-Leibler (KL) divergence (Lindley, 1956; Fedorov, 1972)
to define non-stationary, intrinsic rewards reflecting the changes
of a probabilistic model of the environment after new experiences.
Itti and Baldi (2005) called this measure Bayesian Surprise and
demonstrated experimentally that it explains certain patterns of
human visual attention better than previous approaches.

Over the past decade, robot-oriented applications of curios-
ity research have emerged in the closely related fields of
Autonomous Mental Development (AMD) (Weng et al., 2001)
and Developmental Robotics (Lungarella et al., 2003). Inspired by
child psychology studies of Piaget (Piaget and Cook, 1952), they
seek to learn a strong base of useful skills, which might be com-
bined to solve some externally posed task, or built upon to learn
more complex skills.

Curiosity-driven RL for developmental learning
(Schmidhuber, 2006) encourages the learning of appropri-
ate skills. Skill learning can be made more explicit by identifying
learned skills (Barto et al., 2004) within the option frame-
work (Sutton et al., 1999). A very general skill learning setting is
assumed by the PowerPlay framework, where skills actually corre-
spond to arbitrary computational problem solvers (Schmidhuber,
2013; Srivastava et al., 2013).

Luciw et al. (2011) built a curious planner with a high-
dimensional sensory space. It learns to perceive its world
and predict the consequences of its actions, and continu-
ally plans ahead with its imperfect but optimistic model.
Mugan and Kuipers developed QLAP (Mugan and Kuipers,
2012) to build predictive models on a low-level visuomo-
tor space. Curiosity-Driven Modular Incremental Slow Feature
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Analysis (Kompella et al., 2012) provides an intrinsic reward for
an agent’s progress toward learning new spatiotemporal abstrac-
tions of its high-dimensional raw pixel input streams. Learned
abstractions become option-specific feature sets that enable skill
learning.

1.2. DEVELOPMENTAL ROBOTICS
Developmental Robotics (Lungarella et al., 2003) seeks to enable
robots to learn to do things in a general and adaptive way, by trial-
and-error, and it is thus closely related to AMD and the work on
curiosity-driven RL, described in the previous section. However,
developmental robotic implementations have been few.

What was possibly the first AC-like implementation to run on
hardware (Huang and Weng, 2002) rotated the head of the SAIL
robot back and forth. The agent/controller was rewarded based on
reconstruction error between its improving internal perceptual
model and its high-dimensional sensory input.

AC based on learning progress was first applied to a physical
system to explore a playroom using a Sony AIBO robotic dog. The
system (Oudeyer et al., 2007) selects from a variety of pre-built
behaviors, rather than performing any kind of low-level con-
trol. It also relies on a remarkably high degree of random action
selection, 30%, and only optimizes the immediate (next-step)
expected reward, instead of the more general delayed reward.

Model-based RL with curiosity-driven exploration has been
implemented on a Katana manipulator (Ngo et al., 2012), such
that the agent learns to build a tower, without explicitly reward-
ing any kind of stacking. The implementation does use pre-
programmed pick and place motion primitives, as well as a set of
specialized pre-designed features on the images from an overhead
camera.

A curiosity-driven modular reinforcement learner has recently
been applied to surface classification (Pape et al., 2012), using
a robotic finger equipped with an advanced tactile sensor on
the fingertip. The system was able to differentiate distinct tactile
events, while simultaneously learning behaviors (how to move the
finger to cause different kinds of physical interactions between the
sensor and the surface) to generate the events.

The so-called hierarchical curiosity loops architec-
ture (Gordon and Ahissar, 2011) has recently enabled a 1-DOF
LEGO Mindstorms arm to learn simple reaching (Gordon and
Ahissar, 2012).

Curiosity implementations in developmental robotics have
sometimes used high dimensional sensory spaces, but each one,
in its own way, greatly simplified the action spaces of the robots by
using pre-programmed high-level motion primitives, discretizing
motor control commands, or just using very, very simple robots.
We are unaware of any AC (or other intrinsic motivation) imple-
mentation, which is capable of learning in, and taking advantage
of a complex robot’s high-dimensional configuration space.

Some methods learn internal models, such as hand-eye motor
maps (Nori et al., 2007), inverse kinematic mappings (D’Souza
et al., 2001), and operational space control laws (Peters and
Schaal, 2008), but these are not curiosity-driven. Moreover, they
lack the generality and robustness of full-blown path planning
algorithms (Latombe et al., 1996; LaValle, 1998; Li and Shie, 2007;
Perez et al., 2011).

1.3. THE PATH PLANNING PROBLEM
The Path Planning Problem is to find motions that pursue goals
while deliberately avoiding arbitrary non-linear constraints, usu-
ally obstacles. The ability to solve the path planning problem in
practice is absolutely critical to the eventual goal of deploying
complex/humanoid robots in unstructured environments. The
recent textbook, “Planning Algorithms” (LaValle, 2006), offers
many interesting approaches to planning motions for complex
manipulators. These are expensive algorithms, which search the
configuration space to generate trajectories that often require
post-processing. Thus robots, controlled by algorithmic planners,
are typically very deliberate and slow, first “thinking,” often for
quite some time, then executing a motion, which would be simple
and intuitive for humans.

1.4. REACTIVE CONTROL
In the 1980s, a control strategy emerged, which was completely
different from the established plan first, act later paradigm.
The idea was to use potential fields (Khatib, 1986; Kim and
Khosla, 1992), and/or dynamical systems (Schoner and Dose,
1992; Iossifidis and Schoner, 2004, 2006), and/or the sensor sig-
nals directly (Brooks, 1991) to generate control commands fast,
without searching the configuration space. Control is based on
some kind of local gradient, which is evaluated at the robot’s cur-
rent configuration. As a result, sensors and actuators are tightly
coupled in a fast, light weight action/observation loop, allowing
a robot to react quickly and smoothly to changing circumstances.
Nevertheless, reactive controllers are shortsighted and prone to
getting stuck in local minima/maxima, making them relatively
bad path planners.

1.5. A CURIOUS CONFLUENCE
In this paper, we introduce a curiosity-driven reinforcement
learner for the iCub humanoid robot (Metta et al., 2008), which
autonomously learns a powerful, reusable solver of motion plan-
ning problems from experience controlling the actual, physical
robot.

The application of RL to the path planning problem (or more
precisely the process of embodying the agent at a sufficiently low
level of control) has allowed us to incorporate two approaches,
planning and reactive control, which for the most part have been
treated separately by roboticists until now. The integrated system
benefits from both approaches while avoiding their most prob-
lematic drawbacks, and we believe it to be an important step
toward realizing a practical, feasible, developmental approach to
real, non-trivial robotics problems. Furthermore, the system is
novel in the following ways:

1. In contrast to previous implementations of artificial curiosity
and/or intrinsic motivation in the context of developmental
robotics, our system learns to control many degrees of freedom
(DOFs) of a complex robot.

2. Planning algorithms typically generate reference trajectories,
which must then be passed to a controller. Our RL system,
on the other hand, learns control commands directly, while
still yielding a resolution complete planner. This greatly sim-
plifies many practical issues that arise from tracking a reference
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trajectory and results in a lighter, faster action/observation
loop.

3. Rather than relying on reactive control to generate entire
motions, we only use it to implement actions. Thus the com-
pleteness of the planner is preserved, although its robustness
is improved by the added capacity of each action react to
unforeseen and/or changing constraints.

2. MATERIAL AND METHODS
In order to build a developmental learning system capable of
exploiting the iCub’s high DOF configuration space, we begin
by looking at the path planning literature, where there exist
two classes of algorithms, capable of generating high dimen-
sional reference trajectories. Single query algorithms, such as
Rapidly Exploring Random Trees (RRT) (LaValle, 1998; Perez
et al., 2011), interpolate two points in configuration space, with-
out reusing knowledge from one query to the next. Multiple query
algorithms on the other hand, such as Probabilistic Road Maps
(PRM) (Latombe et al., 1996; Sun et al., 2005), store a compressed
representation of the configuration space and satisfy queries by
operating on that data structure, rather than searching the high
DOF configuration space directly. In the case of PRM, the config-
uration space is represented by a graph, which can even be grown
incrementally (Li and Shie, 2007). PRM’s compact, incrementally
expandable representation of known motions makes it a likely
antecedent to or template for a development learning system,
but there are several problems, which are all related to separation
between planning and control.

To build up a PRM planner, one must first sample the con-
figuration space to obtain a set of vertices for the graph. The
samples are then interpolated by trajectories, which form the set
of edges that connect the vertices. The feasibility of each sam-
ple (vertex) and trajectory (edge) must be preemptively verified,
typically by forward kinematics and collision detection computa-
tions, which collectively amount to a computationally expensive
pre-processing step. The configuration of the robot must remain
on the verified network of samples and trajectories at all times, or
there may be unwanted collisions. This implies that all the trajec-
tories in the graph must also be controllable, which is in general
difficult to verify in simulation for complex robots, such as the
iCub, which exhibit non-linear dynamics (due to do friction and
deformation) and are thus very difficult to model faithfully. If
these problems can be surmounted, then a PRM planner can be
constructed, however, the configuration of the robot’s workspace
must be static, because moving anything therein may affect the
feasibility of the graph edges.

All of these problems can be avoided by embodying the plan-
ner and giving the system the capacity to react. If there were a
low-level control system, which could enforce all necessary con-
straints (to keep the robot safe and operational) in real time,
then the planner could simply try things out, without the need to
exhaustively and preemptively verify the feasibility of each poten-
tial movement. In this case, reference trajectories would become
unnecessary, and the planner could simply store, recall, and issue
control commands directly. Lastly, and perhaps most importantly,
with the capacity to react in real time, there would be no need to
require a static workspace.

This new embodied planner would differ from its antecedent
PRM planner in several important ways. There would be no
need to require that the configuration of the robot be on any
of the graph edges. In fact the graph would no longer repre-
sent a network of distinct trajectories, but rather the topology
of the continuous configuration space. Each edge would no
longer represent a particular trajectory, but rather a more gen-
eral kind of action that implements something like try to go
to that region of the configuration space. Such actions would be
available not when the true robot configuration is on a graph
vertex, but rather when it is near that vertex. The actions may
or may not succeed depending on the particular initial configu-
ration of the robot when the action was initiated as well as the
configuration of the workspace, which must not necessarily be
static.

Allowing the planner to control the hardware directly offers
considerable benefits, but it also requires a more complex repre-
sentation of the configuration space than the plan first, act later
paradigm did. Whereas the PRM planner made do with a sim-
ple graph, representing a network of trajectories, the embodied
version seems to require a probabilistic model, which can cope
with actions that may have a number of different outcomes.
In light of this requirement, the embodied planner begins to
look like a Markov Decision Process (MDP), and in order to
exploit such a planner, the state transition probabilities, which
govern the MDP, must first be learned. However, this presents a
problem in that experiments (trying out actions) are very expen-
sive when run on robotic hardware, which is bound to real
time, as opposed to simulations, which can be run faster than
real time, or parallelized, or both. Therefore, an efficient explo-
ration method is absolutely critical, which motivates our use of
curiosity-driven RL.

2.1. ACTION IMPLEMENTATION
We have put considerable energy into developing the low-
level control system described above, the Modular Behavioral
Environment (MoBeE; Figures 1 and 2) (Frank et al., 2012), the
details of which are beyond the scope of this paper. In this section,
we describe MoBeE only insofar as to define the notion of action
as it pertains to our RL system.

MoBeE controls the robot constantly, at a high frequency,
according to the following second order dynamical system:

Mq̈(t)+ Cq̇(t)+ K(q(t)− q∗) =
∑

fi(t) (1)

The vector function q(t) ∈ R
n is the robot configuration, and

the matrices M, C, and K contain mass, damping, and spring
constants, respectively. The position vector q∗ is an attrac-
tor, and constraints on the system are implemented by forcing
it via fi(t), which provides automatic avoidance of kinematic
infeasibilites having to do with joint limits, cable lengths, and
collisions.

An action, for the purposes of RL, means setting the attractor
q∗ to some desired configuration. When such an action is taken,
q(t) begins to move toward q∗. The action terminates either when
the dynamical system settles or when a timeout occurs. The action
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FIGURE 1 | MoBeE and the iCub. MoBeE (left) prevents the iCub
humanoid robot (right) from colliding with the table.
Semi-transparent geometries represent force fields, and when these

collide with one another (shown in red), they generate repulsive,
constraint forces, which in this case push the hands away from
the table surface.

FIGURE 2 | The modular behavioral environment (MoBeE) architecture.

MoBeE implements low-level control and enforces all necessary
constraints to keep the robot safe and operational in real time, such that the
curious RL agent (left) is able to experiment with arbitrary control
commands. A kinematic/geometric model of the iCub humanoid robot (top)

is driven by streaming motor encoder positions from the hardware (right).
The model computes fictitious constraint forces, which repel the robot from
collisions, joint limits, and other infeasibilities. These forces, fi (t) in
Equation (1), are passed to the controller (middle), which computes the
attractor dynamics that governs the actual movement of the robot.

may or may not settle on q∗, depending on what constraint forces,
fi(t) are encountered during the transient response.

2.2. STATE-ACTION SPACE
The true configuration of the robot at any time t can be any real
valued q ∈ R

n, however, in order to define a tractable RL problem,

we discretize the configuration space (Figure 3) by selecting m
samples, Q = {qj|j = 1 . . . m} ⊂ R

n. The sample set Q defines

a set of states 1 S = {sj|j = 1 . . . m}, such that
m⋃

j= 1
sj = R

n. Each

state, sj ∈ S, is the Voronoi region associated with the correspond-
ing sample, qj ∈ Q. That is to say, each sample, qj ∈ R

n, defines a
state, sj ⊂ R

n, where every point, q ∈ sj, is closer2 to qj than to any
other point q ∈ Q. The states in our Markov model are the sets,
s ∈ S, not the points, q ∈ Q, and to say that the robot is in some
particular state, s, at some particular time, t, means that the real
valued configuration of the robot, q(t) ∈ s.

An action is defined by setting MoBeE’s attractor, q∗ = qg

(Equation 1), where qg ∈ Q is the sample in some goal state sg(a).
When an action is tried, the robot moves according to the tran-
sient response, q(t), of the dynamical system, which eventually
settles at q(t →∞) = q∞. However, depending on the constraint
forces encountered, it may be that q∞ ∈ sg(a) or not.

2.2.1. Connecting states with actions
An action, a, intends to move the robot to some goal state sg(a),
a waypoint along the path that will eventually be generated by
the reinforcement learner. But which states should be connected
to which other states? In order that our Markov model devel-
ops into an effective path planner, we want to connect each

1Generally, throughout this formalism we use uppercase letters to denote sets
and lowercase letters to denote points. However, we have made an exception
for the states, sj ∈ S, which themselves comprise sets of robot configurations,
sj ⊂ R

n. Although this is somewhat abusive from a set theoretic standpoint, it
allows us to be consistent with the standard RL notation later in the paper.
2The distance metric employed is the Euclidean norm, in this case:√

(q− qj) · (q− qj).
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FIGURE 3 | The discrete state-action space. The sample set
Q = {qj |j = 1 . . . m} (dots) defines the Voronoi regions, or states
S = {sj |j = 1 . . . m} (bounded by dotted lines). An action a (gradient),
exploits MoBeE’s attractor dynamics to pull the robot toward some goal
state, sg(a) ∈ S. When the robot is in the initial state, q(t0) ∈ s, and
the agent selects a, MoBeE switches on the attractor (Equation 1) at
the point qg ∈ sg(a). The agent then waits for the dynamical system to
settle or for a timeout to occur, and at some time, t1, checks which of
the states, sj contains the final real valued configuration of the robot,
q(t1). Often the state-action, (s, a), terminates in the goal state sg(a),
but sometimes, due to constraint forces, it does not. This gives rise to
a set of state transition probabilities
T (s, a) = {T (s, a, s′1), T (s, a, s′2), . . . , T (s, a, s′m)}, which correspond to the
states, {sj |j = 1 . . . m}.

state to its k nearest neighbors 3 in a way that makes sense with
respect to the dimensionality of the configuration space, n. To
this end, we choose k = 2n, as an n-dimensional hypercube has 2n

vertices.
With each state, s, is associated a set of actions, A(s), which

intend to move the robot from s to each of k nearby goal states,
A(s) = {ag |g = 1 . . . k}, and the set of all possible actions, A, can
therefore be expressed as the union of the action sets belonging to

each state, A =
m⋃

s= 1
A(s).

This notion of connecting neighboring states makes intuitive
sense given the problem domain at hand and the resulting Markov
model resembles the Roadmap graph used by the PRM plan-
ner (Latombe et al., 1996). Although the action set, A, is quite
large (|A| = |S|), each state only has access to the actions, A(s),
which lead to its k nearest neighbors (|A(s)| = k). Therefore, the
number of state-actions remains linear in the number of states.
We advise the reader that wherever the standard state-action
notation, (s, a), is used, it is implied that a ∈ A(s).

2.2.2. Modeling transition probabilities
Although each action intends to move the robot to some par-
ticular goal state, in principal they can terminate in any state in
the set {sj|j = 1 . . . m}. Therefore, we must learn state transition
probabilities to represent the connectivity of the configuration

3Again, the distance metric employed is the Euclidean norm, in this case:√
(qg − qi) · (qg − qi).

space. A straightforward way of doing this would be to define
a probability distribution over all possible outcomes sj for each
state-action (s, a):

T(q∞ ∈ sj|s, a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p(q∞ ∈ s1|s, a)

p(q∞ ∈ s2|s, a)

...

p(q∞ ∈ sm|s, a)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2)

To build up the distributions, T(q∞ ∈ sj|s, a), we would simply
initialize all probabilities to zero and then count the occur-
rences of observed transitions to the various states, sj, result-
ing from the various state-actions (s, a). We would, however,
find this approach to be relatively wasteful, because much of
the state-action space is deterministic. In practice, we find that
there are only three kinds of distributions that come out of
applying RL algorithms to our Markov model. A state-action,
(s, a), can terminate deterministically in the goal state sg(a)

(Equation 3), it can terminate deterministically in some other
state sj �= sg(a) (Equation 4), or it can be truly non-deterministic
(Equation 5), although the non-zero components of T are
always relatively few compared to the number of states in the
model.

p(q∞ ∈ sj|s, a) =
{

1 if sj = sg(a)

0 if sj �= sg(a)
(3)

p(q∞ ∈ sj|s, a) =
{

1 if sj = s∗ �= sg(a)

0 if sj �= s∗ (4)

p(q∞ ∈ sj|s, a)

{
> 0 if sj ∈ S1

= 0 if sj ∈ S0

∣∣∣∣ S0 ∪ S1 = S, |S0| 
 |S1| (5)

This is intuitive upon reflection. Much of the configuration space
is not affected by constraints, and actions always complete as
planned. Sometimes constraints are encountered, such as joint
limits and cable length infeasibilities, which deflect the trajec-
tory in a predictable manner. Only when the agent encounters
changing constraints, typically non-static objects in the robot’s
operational space, do we see a variety of outcomes for a particular
state-action. However, even in this case, the possible outcomes, s′,
are a relatively small number of states, which are usually in the
neighborhood of the initial state, s. We have never constructed
an experiment, using this framework, in which a particular state-
action, (s, a), yields more than a handful of possible outcome
states, s′.

We can and have used distributions of the form shown in
Equation (2) to model the outcomes of state-actions in our RL
framework. However, we have found a better way to represent the
distribution, which is more parsimonious, and facilitates a better
AC signal.

2.3. ARTIFICIAL CURIOSITY
What is interesting? For us humans, interestingness seems closely
related to the rate of our learning progress (Schmidhuber, 2006).
If we try doing something, and we rapidly get better at doing it,
we are often interested. Contrastingly, if we find a task trivially
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easy, or impossibly difficult, we do not enjoy a high rate of learn-
ing progress, and are often bored. We model this phenomenon
using the information theoretic notion of information gain, or KL
divergence.

2.3.1. KL divergence
KL Divergence, DKL is defined as follows, where Pj and Tj are the
scalar components of the discrete probability distributions P and
T, respectively.

DKL(P||T) =
∑

j

ln

(
Pj

Tj

)
Pj (6)

For our purposes, T represents the estimated state transition
probability distribution (Equation 2) for a particular state-action,
(s, a), after the agent has accumulated some amount of experi-
ence. Once the agent tries (s, a) again, an s′ is observed, and the
state transition probability distribution for (s, a) is updated. This
new distribution, P, is a better estimate of the state transition
probabilities for (s, a), as it is based on more data.

By computing DKL(P||T), we can measure how much our
Markov model improved by trying the state-action, (s, a), and we
can use this information gain to reward our curious agent. Thus,
the agent is motivated to improve its model of the state-action
space, and it will gravitate toward regions thereof, where learning
is progressing quickly.

There is, however, a problem. The KL divergence is not defined
if there exist components of P or T, which are equal to zero. This
is somewhat inconvenient in light of the fact that for our appli-
cation, most of the components of most of the distributions, T
(Equation 2), are actually zero. We must therefore initialize P and
T cleverly.

Perhaps the most obvious solution would be to initialize T
with a uniform distribution, before trying some action for the first
time. After observing the outcome of the selected action, P would
be defined and DKL(P||T) computed, yielding the interestingness
of the action taken.

Some examples of this kind of initialization are given in
Equations (7–10) 4. Clearly the approach solves the numerical
problem with the zeros, but it means that initially, every action
the agent tries will be equally interesting. Moreover, how inter-
esting those first actions are, |DKL(P||T)|, depends on the size of
the state space.

DKL({1, 2, 1} || {1, 1, 1}) = 0.0589 (7)

DKL({2, 1, 1} || {1, 1, 1}) = 0.0589 (8)

DKL({1, 1, 2, 1, 1} || {1, 1, 1, 1, 1}) = 0.0487 (9)

DKL({1, 1, 1, 2, 1, 1, 1} || {1, 1, 1, 1, 1, 1, 1}) = 0.0398 (10)

The first two examples, Equations (7), (8), show that regardless
of the outcome, all actions generate the same numerical inter-
estingness the first time they are tried. While not a problem in

4We have intentionally not normalized P and T, to show how they are gen-
erated by counting observations of q∞ ∈ sj. In order to actually compute
DKL(P||T), P and T must first be normalized.

Algorithm 1: Observe(s,a,s′,T(s, a),R(s, a))

begin
if there is no bin, Ts′(s, a), in T(s, a) to count occurrences
of s′ then

append a bin, Ts′(s, a) to T(s, a)

Ts′(s, a)← 1
end
P← T(s, a)

Ps′ ← Ps′ + 1
R(s, a)← DKL(P||T(s, a))

T(s, a)← P
end

theory, in practice this means our robot will need many tries
to gather enough information to differentiate the boring, deter-
ministic states from the interesting, non-deterministic ones. Since
our actions are designed to take the agent to a goal state, sg(a),
it would be intuitive if observing a transition to sg(a) were less
interesting than observing one to some other state. This would
drastically speed up the learning process.

The second two examples, Equations (9), (10) show that the
interestingness of that first try decreases in larger state spaces, or
alternatively, small state spaces are numerically more interesting
than large ones. This is not a problem if there is only one learner
operating in a single state-action space. However, in the case of
a multi-agent system, say one learner per body part, it would be
convenient if the intrinsic rewards gotten by the different agents
were numerically comparable to one another, regardless of the
relative sizes of those learners’ state-action spaces.

In summary, we have two potential problems with KL
Divergence as a reward signal:

1. Slowness of initial learning
2. Sensitivity to the cardinality of the distributions

Nevertheless, in many ways, KL Divergence captures exactly what
we would like our curious agent to focus on. It turns out we can
address both of these problems by representing T with an array of
variable size, and initializing the distribution optimistically with
respect to the expected behavior of the action (s, a).

2.3.2. Dynamic state transition distributions
By compressing the distributions T and P, i.e., not explicitly rep-
resenting any bins that contain a zero, we can compute the KL
divergence between only their non-zero components. The process
begins with T and P having no bins at all. However, they grow in
cardinality as follows: Every time we observe a novel s′ as the result
of trying a state-action (s, a), we append a new bin to the distribu-
tion T(s, a), and initialize it with a 1, and copy it to yield P(s, a).
Then, since we just observed (s, a) result in s′, we increment the
corresponding bin in P(s, a), and compute KL(P||T). This process
is formalized in Algorithm 1.

The optimistic initialization is straightforward. Initially, the
distribution T(s, a) is empty. Then we observe (Algorithm 1)
that (s, a) fails, leaving the agent in the initial state, s. The KL
divergence between the trivial distributions {1} and {2} is 0, and
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therefore, so is the reward, R(s, a). Next, we observe that (s, a)

succeeds, moving the agent to the intended goal state, sg(a).
The distribution, T(s, a), becomes non-trivial, a non-zero KL
divergence is computed, and thus R(s, a) gets an optimistically
initialized reward, which does not depend on the size of the state-
action space. Algorithm 2 describes the steps of this optimistic
initialization, and Table 1 shows how T(s, a) and R(s, a) develop
throughout the initialization process.

The distributions T, as initialized above, are compact and
parsimonious, and they faithfully represent the most likely out-
comes of the actions. Moreover, the second initialization step
yields a non-zero KL Divergence, which is not sensitive to the

Algorithm 2: Curious_Explore(S,A,T,R,γ,δ)

begin
for each state-action (s ∈ S, a ∈ A(s)) do

Observe(s, a, s, T(s, a), R(s, a))

Observe(s, a, sg(a), T(s, a), R(s, a))

end
while true do

Value_Iteration(S, A, T, R, γ, δ)

s← sj|q(tbefore) ∈ sj

agreedy ← a |V(s, a) = argmax({V(s, a)|a ∈ A(s)})
run agreedy on the robot
s′ ← sj|q(tafter) ∈ sj

Observe(s, a, s′, T(s, a), R(s, a))

end
end

Algorithm 3: Value_Iteration(S,A,T,R,γ,δ)

begin
for each state-action (s ∈ S, a ∈ A(s)) do

V(s, a)← 0.0
end
for each state s ∈ S do

V(s)← 0.0
end
while true do

max_delta← 0.0
for each state-action (s ∈ S, a ∈ A(s)) do

Vnew(s, a)← R(s, a)+ γ
∑

s′ T(s, a, s′)V(s′)
if Vnew(s, a)− V(s, a) > max_delta then

max_delta← Vnew(s, a)− V(s, a)

end
V(s, a)← Vnew(s, a)

end
for each state s ∈ S do

V(s)← argmax({V(s, a)|i = s})
end
if max_delta < δ then

break
end

end
end

size of the state space. Importantly, the fact that our initial-
ization of the state transition probabilities provides an initial
measure of interestingness for each state-action allows us, without
choosing parameters, to optimistically initialize the reward matrix
with well defined intrinsic rewards. Consequently, we can employ
a greedy policy, and aggressively explore the state-action space
while focusing extra attention on the most interesting regions.
As the curious agent explores, the intrinsic rewards decay in a
logical way. A state-action, which deterministically leads to its
goal state (Table 2) is less interesting over time than a state-
action that leads to some other state (Table 3), and of course
most interesting are state-actions with more possible outcomes
(Table 4).

2.4. REINFORCEMENT LEARNING
At the beginning of section 2, we made the claim that a PRM
planner’s compact, incrementally expandable representation of
known motions makes it a likely antecedent to a developmen-
tal learning system. Furthermore, we observed that many of the

Table 1 | Initialization of state transition probabilities.

Observation T P R = DKL(P||T)

– {} {} –

si {1} {2} 0

sg(a) {2,1} {2,2} 0.0589

Table 2 | A predictable action ends in the predicted state.

Observation T P R = DKL(P||T)

init {2,1} {2,2} 0.0589

sg(a) {2,2} {2,3} 0.0201

sg(a) {2,3} {2,4} 0.0095

sg(a) {2,4} {2,5} 0.0052

Table 3 | A predictable action ends in a surprising state.

Observation T P R = DKL(P||T)

init {2,1} {2,2} 0.0589

sj {2,2,1} {2,2,2} 0.0487

sj {2,2,2} {2,2,3} 0.0196

sj {2,2,3} {2,2,4} 0.0103

Table 4 | An unpredictable action.

Observation T P R = DKL(P||T)

init {2,1} {2,2} 0.0589

sa {2,2,1} {2,2,2} 0.0487

sb {2,2,2,1} {2,2,2,2} 0.0345

sc {2,2,2,2,1} {2,2,2,2,2} 0.0283

sg(a) {2,2,2,2,2} {2,3,2,2,2} 0.0142

sa {2,3,2,2,2} {2,3,3,2,2} 0.0133

sb {2,3,3,2,2} {2,3,3,3,2} 0.0125
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weaknesses of PRMs can be avoided by embodying the planner
and coupling it to a low-level reactive controller. Proxied by this
low-level controller, the planner is empowered to try out arbitrary
control signals, however, it does not necessarily know what will
happen. Therefore, the PRM’s original model of the robot’s state-
action space, a simple graph, is insufficient, and a more powerful,
probabilistic model, an MDP is required. Thus, modeling the
robot-workspace system using an MDP arises naturally from the
effort to improve the robustness of a PRM planner, and accord-
ingly, Model-Based RL is the most appropriate class of learning
algorithms to operate on the MDP.

Having specified what action means in terms of robot control
(section 2.1), described the layout and meaning of the state-
action space (section 2.2), and defined the way in which intrinsic
reward is computed according to the AC principal (section 2.3),
we are ready to incorporate these pieces in a Model-Based RL sys-
tem, which develop into a path planner as follows: Initially, sets
of states and actions will be chosen, according to some heuris-
tic(s), such that the robot’s configuration space is reasonably well
covered and the RL computations are tractable. Then, the state
transition probabilities will be learned for each state-action pair,
as the agent explores the MDP by moving the robot about. This
exploration for the purposes of model learning will be guided
entirely by the intrinsic reward defined in section 2.3, and the
curious agent will continually improve its model of the iCub and
its configuration space. In order to exploit the planner, an exter-
nal reward must be introduced, which can either be added to or
replace the intrinsic reward function.

The MDP, which constitutes the path planner, is a tuple,
< S, A, T, R, γ >, where S is a finite set of m states, A is a finite
set of actions, T is a set of state transition probability distribu-
tions, R is a reward function, and γ is a discount factor, which
represents the importance of future rewards. This MDP is some-
what unusual in that not all of the actions a ∈ A are available
in every state s ∈ S. Therefore, we define sets, A(s), which com-
prise the actions a ∈ A that are available to the agent when it

finds itself in state s, and A =
m⋃

s= 1
A(s). The set of state transition

probabilities becomes T :
m⋃

s= 1
A(s)× S→ [0, 1], and in general,

the reward function becomes R :
m⋃

s= 1
A(s)× S→ R, although

the intrinsic reward, Rintrinsic :
m⋃

s= 1
A(s)→ R, varies only with

state-action pairs (s, a), as opposed to state-action-state triples
(s, a, s′). The state transition probabilities, T, are learned by
curious exploration (Algorithm 2, γ = 0.9, δ = 0.001), the RL
algorithm employed is value iteration (Algorithm 3), and the
intrinsic reward is computed as shown in Algorithm 1.

3. RESULTS
Here we present the results of two online learning experiments.
The first one learns a motion planner for a single limb, the iCub’s
arm, operating in an unobstructed workspace, while other body
parts remain motionless. The planner must contend with self-
collisions, and infeasibilities due to the relative lengths of the
cables, which move the shoulder joints. These constraints are

static, in that they represent properties of the robot itself, which
do not change regardless of the configuration of the workspace.
Due to the static environment, a PRM planner would in prin-
cipal be applicable, and the experiment provides a context in
which to compare and contrast the PRM versus MDP planners.
Still, the primary question addressed by this first experiment
is: “To what extent does AC help the agent learn the state
transition probabilities for the MDP planner in this real-world
setting?”

In the second experiment, the iCub is positioned at a work
table, which constitutes a large obstacle in its workspace. Three
curious agents, unaware of one another’s states, learn planners for
the iCub’s torso and two arms, respectively. One could in princi-
pal define a single curious MDP planner for the whole body, but
this would result in an explosion of the state-action space such
that running actual experiments on the iCub hardware would be
prohibitively time consuming. The modular, parallel, multi-agent
configuration of this second experiment is designed to address
the question: “Can curious MDP planners scale to intelligently
control the entire iCub robot?” And in observing the behavior
emergent from the interactions between the 3 learners, this will
be the question of primary importance. Also noteworthy, how-
ever, is that from the perspective of the arms, which do not
know that the torso is moving, the table seems to be non-static.
By analyzing the arm learning while disregarding the torso, one
can gain insight into how the curious MDP planner copes with
non-static environments, which would render the PRM planner
inoperable.

3.1. PLANNING IN A STATIC ENVIRONMENT—LEARNING TO AVOID
SELF-COLLISIONS AND CABLE LENGTH INFEASIBILITIES

In the first experiment, “Planning in a static environment,” we
compare the exploration of our artificially curious agent (AC),
to two other agents using benchmark exploration strategies from
the RL literature. One explores randomly (RAND), and the other
always selects the state-action least tried (LT)5.

The state space is defined by choosing samples, which vary
in 4 dimensions corresponding to three shoulder joints and the
elbow. Each of these joints is sampled at 25%, 50%, and 75%
of its range of motion, resulting in a 4D hyper-lattice with 81
vertices, which are connected to their 24 = 16 nearest neighbors
as per section 2.2.1, yielding 81× 16 = 1296 state-actions. The
intuition behind this choice of state space it comprises a compact
yet reasonably well dispersed set of pre-reach poses.

The task is to find the infeasible region(s) of the configura-
tion space, and learn the according state transition probabilities
such that the agent can plan motions effectively. The task is rel-
atively simple, but it is none the less a crucial aspect of any
path planning that should take place on the iCub. Without delib-
erately avoiding self-collisions and cable length infeasibilities,
a controller can and will break the iCub’s cables, rendering it
inoperable.

In comparing the AC agent with the RAND agent and the
LT agent, we find that AC produces, by far, the best explorer

5If there are multiple least-tried state-actions (for example when none have
been tried), a random one from the least tried set is selected.
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FIGURE 4 | State-action space coverage during early learning. The policy based on Artificial Curiosity (AC) explores the state-action space most efficiently,
compared to policies based on random exploration (RAND) and always selecting the least tried state-action (LT). Time is measured in state transitions.

(Figure 4). In the early stages of learning, AC and LT try only
novel actions, whereas RAND tries some actions repeatedly. Early
on (before the agent has experienced about 220 state transitions),
the only difference evident between AC and LT is that AC visits
novel states more aggressively. This is intuitive upon reflection,
as AC values states with many untried state-actions, and will tra-
verse the state space to go find them, whereas LT has no global
knowledge and just chooses the locally least tried state-action,
regardless of where it leads. As learning continues, this key dif-
ference between AC and LT also begins to manifest in terms of
the coverage of the action space. In fact, AC tries all possible
state-actions in about 1

2 the time it takes LT.
Moving on to the tabulated number of times that each state

was visited and each state-action was tried, after 4000 state tran-
sitions, again we see that AC exhibits preferable behavior to LT
and RAND (Figure 5). AC results in distributions of visits over
states and tries over state-actions, which are more uniform than
those resultant of RAND and LT. Moreover, we see a number of
large spikes, where the AC agent became very interested in certain
state-actions. In fact, these are the actions that run the robot into
its constraints, and therefore do not cause the anticipated state
transition (Equation 4). While most of the state-actions’ rewards
decay according to Table 2, these spikes were generated by state-
actions whose rewards are governed by Table 3, and they are thus
more interesting to the agent.

The decay of the intrinsic reward over the state-action space
over time is shown in Figure 6. The uniformity of the decay is
intuitive, since whenever there exists a spike in the reward func-
tion, the AC agent goes and gets it, thereby gaining experience and

decrementing the reward for the state-action tried. Thus, differing
rates of decay (Tables 1–4) govern the frequency with which the
agent tries the different state-actions.

The learned MDP is pictured in Figure 7. Since the workspace
of the arm is unobstructed, most of the state-actions behave
as expected, reliably taking the agent to the intended goal
state (Equation 3). These deterministic state-actions, shown
in gray, are boring. The interesting ones, each shown in a
different color, took the agent to a novel state, which was
not represented in the initial state transition distribution for
that state-action. Since the environment is static, one would
expect even these novel state transitions to be determinis-
tic (Equation 4), and some of them are (red, yellow, purple,
light blue). However, the other state-actions (green, brown,
and dark blue) sometimes lead to the intended goal state
and sometimes lead to one other state, despite the static con-
straints and the fact that each state-action always runs the same
control code.

The fact that static constraints do not necessarily lead to
deterministic state transitions is quite interesting. It shows that
the iCub, an advanced, light-weight, cable-driven robot, exhibits
important non-linearities, due to its mechanics and/or embed-
ded control systems, which prevent it from reliably and repeat-
ably executing precise motions. Therefore, a plan first, act later
approach, such as PRM planning, will never work well on robots
such as the iCub. Plans will sometimes fail at runtime, and not
necessarily in a repeatable manner. In fact the lighter and more
flexible robots get, the more non-linearities will dominate their
dynamics, which is an important motivation for continuing to
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FIGURE 5 | Distributions of visits over states and tries over

actions. Our curious agent (AC) visits states and tries actions in a
more uniformly than to policies based on random exploration (RAND)
and always selecting the least tried state-action (LT). Note the few
state-actions, which have been tried many times by AC. These are

affected by the cable length constraints in the iCub’s shoulder. They
terminate in an unexpected way, which is interesting or surprising to
the agent, and they therefore receive more attention. These data are
compiled over 4000 state transitions, observed while controlling the
real, physical iCub humanoid robot.

develop more robust solutions, such as the MDP motion planning
presented here.

3.2. DISCOVERING THE TABLE WITH A MULTI-AGENT RL SYSTEM
In the second experiment, we control both of the iCub’s arms and
its torso, 12 DOF in total. A hypercube in 12 dimensions has 4096
vertices, and a rank 3 hyper-lattice has 531,441 vertices. Clearly,
uniform sampling in 12 dimensions will not yield a feasible RL
problem. Therefore, we have parallelized the problem, employing
three curious agents that control each arm and the torso sepa-
rately, not having access to one another’s state. The state-action
spaces for the arms are exactly as described in the previous exper-
iment, and the state-action space for the 3D torso is defined in
an analogous manner (25%, 50%, and 75% of each joint’s range
of motion), resulting in a 3D lattice with 27 vertices, which are
connected to their 23 = 8 nearest neighbors as per section 2.2.1,
yielding 27× 8 = 216 state-actions.

We place the iCub in front of a work table, and all three learn-
ers begin exploring (Figure 8). The three agents operate strictly
in parallel, having no access to any state information from the
others, however, they are loosely coupled through their effects
on the robot. For example, the operational space position of the
hand (and therefore whether or not it is colliding with the table)

depends not only on the positions of the joints in the arm, but
also on the positions of the joints in the torso. Thus, we have
three interacting POMDPs, each of which has access to a different
piece of the complete robot state, and the most interesting parts of
the state-action spaces are where the state of one POMDP affects
some state transition(s) of another.

When the torso is upright, each arm can reach all of the states
in its state space, but when the iCub is bent over at the waist,
the shoulders are much closer to the table, and some of the
arms’ state-actions become infeasible, because the robot’s hands
hit the table. Such interactions between the learners produce
state-transition distributions, like the one shown in Figure 9,
which are much richer than those from the previous experiment.
Moreover these state-actions are the most interesting because
they generate the most slowly decaying intrinsic reward of the
type shown in Table 4. The result is that the arms learn to avoid
constraints as in the first experiment, but over time, another
behavior emerges. The iCub becomes interested in the table, and
begins to touch it frequently. Throughout the learning process,
it spends periods of time exploring, investigating its static arm
constraints, and touching the table, in a cyclic manner, as all
the intrinsic rewards decay over time in a manner similar to
Figure 6.
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FIGURE 6 | Decay of intrinsic reward over time. These snapshots of the reward distribution state-actions (x-axis) over time (from top to bottom) show how
our curious agent becomes bored as it builds a better and better model of the state-action space. Time is measured in state transitions.

In Figure 10, we have tabulated the distribution of tries over
the state-action space for each of the three learners after 18,000
state transitions, or a little more than two full days of learning.
As in the previous experiment, we see that the curious agent
prefers certain state-actions, selecting them often. Observing the
behavior of the robot during the learning process, it is clear that
these frequently chosen state-actions correspond to putting the
arm down low, and leaning forward, which result in the iCub’s
hand interacting with the table. Furthermore, the distribution
of selected state-actions for the right arm and the left arm are
very similar indeed. This is to be expected, since the arms are
mechanically very similar and their configuration spaces have
been discretized the same way. It is an encouraging result, which
seems to indicate that the variation in the number of times dif-
ferent state-actions are selected does indeed capture the extent to
which those state-actions interfere with (or are interfered with by)
the other learners.

The emergence of the table exploration behavior is quite
promising with respect to the ultimate goal of using MDP based
motion planning to control an entire humanoid intelligently. We
partitioned an intractable configuration space into several loosely
coupled RL problems, and with only intrinsic rewards to guide
their exploration, the learning modules coordinated their behav-
ior, causing the iCub to explore the surface of the work table

in front of it. Although the state spaces were generated using a
coarse uniform sampling, and the object being explored was large
and quite simple, the experiment nevertheless demonstrates that
MDP motion planning with AC can empower a humanoid robot
with many DOF to explore its environment in a structured way
and build useful, reusable models.

3.2.1. Planning in a dynamic environment
There is an alternative way to view the multi-agent experiment.
Because the arm does not have access to the torso’s state, the
experiment is exactly analogous to one in which the arm is the
only learner and the table is a dynamic obstacle, moving about as
the arm learns. Even from this alternative viewpoint, it is none the
less true that some actions will have different outcomes, depend-
ing on the table configuration, and will result in state transition
distributions like the one shown in Figure 9. The key thing to
observe here is that if we were to exploit the planner by placing an
external reward at some goal, removing the intrinsic rewards, and
recomputing the value function, then the resulting policy/plan
will try to avoid the unpredictable regions of the state-action
space, where state transition probabilities are relatively low. In
other words, training an MDP planner in an environment with
dynamic obstacles, will produce policies that plan around regions
where there tend to be obstacles.
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FIGURE 7 | The learned single-arm MDP planner. The 4D state
space is labeled as follows: shoulder flexion/extension (1,2,3), arm
abduction/adduction (a,b,c), lateral/medial arm rotation (I,II,III), elbow
flexion/extension (A,B,C). Each color represents an interesting
state-action, which often takes the agent to some unexpected state.
Each arrow of a particular color represents a state transition
probability and the weight of the arrow is proportional to the
magnitude of that probability. Arrows in gray represent boring
state-actions. These work as expected, reliably taking the agent to
the intended goal state, to which they point.

FIGURE 8 | Autonomous exploration. This composite consists of images
taken every 30 s or so over the first hour of the experiment described in
section 3.2.1. Although learning has just begun, we already begin to see
that the cloud of robot poses is densest (most opaque) near the table. Note
that the compositing technique as well as the wide angle lens used here
create the illusion that the hands and arms are farther from the table than
they really are. In fact, the low arm poses put the hand or the elbow within
2 cm of the table, as shown in Figure 8.

4. DISCUSSION
In this paper we have developed an embodied, curious agent, and
presented the first experiments we are aware of, which exploit
AC to learn an MDP based motion planner for a real, physical

FIGURE 9 | State space and transition distribution for an interesting
arm action in multi-agent system. The 4D state space is labeled as
follows: shoulder flexion/extension (1,2,3), arm abduction/adduction (a,b,c),
lateral/medial arm rotation (I,II,III), elbow flexion/extension (A,B,C). The red
arrows show the distribution of next states resultant of an interesting
state-action, which causes the hand to interact with the table. Each arrow
represents a state transition probability and the weight of the arrow is
proportional to the magnitude of that probability. Arrows in gray represent
boring state-actions. These work as expected, reliably taking the agent to
the intended goal state, to which they point.

humanoid robot. We demonstrated the efficacy of the AC concept
with a simple learning experiment wherein one learner controls
one of the iCub humanoid’s arms. The primary result of this first
experiment was that the iCub’s autonomous exploratory behav-
ior, guided by AC, efficiently generated a continually improving
Markov model, which can be (re)used at any time to quickly
satisfy path planning queries.

Furthermore, we conducted a second experiment, in which
the iCub was situated at a work table while three curious agents
controlled the its arms and torso, respectively. Acting in parallel,
the three agents had no access to one another’s state, however,
the interaction between the three learners produced an inter-
esting emergent behavior; guided only by intrinsic rewards, the
torso and arm coordinated their movements such that the iCub
explored the surface of the table.

4.1. SCALABILITY
From the standpoint of scalability, the state spaces used for the
arms and torso were more than tractable. In fact the time it took
the robot to move from one pose/state to another exceeded the
time it took to update the value function by approximately an
order of magnitude. From an experimental standpoint, the limit-
ing factor with respect to the size of the state-action space was the
time it took to try all the state-actions a few times. In these exper-
iments we connected states to their 2n nearest neighbors, where n
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FIGURE 10 | Frequency of actions taken by three curious agents in

parallel. The most interesting actions are selected much more often
than the others. They correspond to moving the arm down and

leaning the torso forward. This results in the iCub robot being
interested in the table surface. Note the similarity in the behavior of
the two arms.

is the dimensionality of the configuration space, and we ran the
learning experiments for some 12 and 50 h, respectively.

Increasing the number of states in the MDPs would undoubt-
edly yield a more powerful planner, but it would also increase the
time required to learn the models sufficiently. One way to mit-
igate this effect would be to reduce the number of connections
between states. In fact, our impression from qualitative observa-
tion of the learning process is that the connectivity of the state
space was denser than necessary. Alternatively, we could of course
allow the robot to learn for longer. After all, children require years
to learn the kinds of skills we are trying to replicate.

4.2. DIVERSITY OF ACTIONS
In these experiments, the implementation of actions (section 2.1)
was designed to facilitate motion planning for the purpose of
avoiding non-linear constraints on the robot configuration such
as such as unwanted collisions. The actions simply set an attractor
in configuration space via the MoBeE framework at the Voronoi
center of a region of configuration space, which defines a state.
The robot then moved according to the transient response of the
dynamical system within MoBeE. The result was that our MDP
functioned as a sort of enhanced version of a PRM planner, how-
ever, the RL framework presented here is in principal capable of
much more.

In addition to the position control presented here, our MoBeE
framework supports force control in both joint space and opera-
tional space, and as far as our RL implementation is concerned,
actions can contain arbitrary control code. Therefore, future
curious agents for the iCub will benefit from different action
modalities, such as operational space reaches or even learned
dynamic motion primitives (Schaal et al., 2005).

4.3. BOOTSTRAPPING THE STATE SPACE
In our view, the main shortcoming of the work presented here
is that we have constructed the state-action spaces by hand. In
the future, it would be greatly desirable to automate this process,
perhaps in the form of an offline process that can run in the back-
ground, searching for sets of interesting poses (Stollenga et al.,
2013), and incrementally expanding the state-action space. The
only part of this proposition, which is unclear, is how to evalu-
ate the quality of the samples that should potentially define new
states.

4.4. HIERARCHIES OF AGENTS
The experiment “Discovering the table” is promising with respect
to the goal of extending our multi-agent MDP motion planning
to hierarchies of agents. The interesting (most frequently selected)
state-actions, as discovered by the current system, constitute each
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agent’s ability to interact with the others. Therefore they are
exactly the actions that should be considered by a parent agent,
whose job it would be to coordinate the different body parts. It
is our strong suspicion that all state-actions, which are not inter-
esting to the current system, can be compressed as “irrelevant” in
the eyes of such a hypothetical parent agent. However, to develop
the particulars of the communication up and down the hierarchy
remains a difficult challenge, and the topic of ongoing work.
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A major challenge in robotics is the ability to learn, from novel experiences, new behavior
that is useful for achieving new goals and skills. Autonomous systems must be able to
learn solely through the environment, thus ruling out a priori task knowledge, tuning,
extensive training, or other forms of pre-programming. Learning must also be cumulative
and incremental, as complex skills are built on top of primitive skills. Additionally, it must be
driven by intrinsic motivation because formative experience is gained through autonomous
activity, even in the absence of extrinsic goals or tasks. This paper presents an approach to
these issues through robotic implementations inspired by the learning behavior of human
infants. We describe an approach to developmental learning and present results from
a demonstration of longitudinal development on an iCub humanoid robot. The results
cover the rapid emergence of staged behavior, the role of constraints in development, the
effect of bootstrapping between stages, and the use of a schema memory of experiential
fragments in learning new skills. The context is a longitudinal experiment in which the
robot advanced from uncontrolled motor babbling to skilled hand/eye integrated reaching
and basic manipulation of objects. This approach offers promise for further fast and
effective sensory-motor learning techniques for robotic learning.

Keywords: development, robotics, intrinsic motivation, staged learning, constraints

1. INTRODUCTION
The question of autonomy poses a particularly hard challenge
for robotics research—how can robots grow through the “open-
ended acquisition of novel behavior?” That is, given an embodied
robot system with some primitive actions, how can it learn appro-
priate new behaviors to deal with new and novel experiences. It is
apparent that this will involve the integration of past experience
with new sensorimotor possibilities, but this remains a difficult,
important, and unsolved research area. We report on experiments
that illustrate the value of a developmental attack on this issue.

Developmental robotics is a recent field of study that recog-
nizes the role of epigenetic development as a new paradigm for
adaptation and learning in robotics. Most research in this field
reports on specific topics in development such as motivation,
embodiment, enactive growth, imitation, self-awareness, agent
interaction and other issues. Such investigations are exploring
effective modeling methods and increasing our understanding of
the many and varied aspects of the phenomenon of development.
For general principles and reviews see Lungarella et al. (2003);
Asada et al. (2009); Stoytchev (2009).

In our research, presented here, we place emphasis on two key
features: the role of psychological theories in development; and
the importance of longitudinal studies.

While all work in this field takes account of current knowledge
in both neuroscience and experimental psychology, there exists a
significant lacuna between psychological theories of development
and our ability to implement those theories as working develop-
mental algorithms. There is a large body of experimental work in

psychology and we view psychological theory as a distillation of
the understanding gained from such work that can guide mod-
eling and help focus on key issues. In our work we are inspired
by Piaget’s extensive studies, particularly his emphasis on: staged
growth; the fundamental role of sensory-motor development; and
his constructivist approach (Piaget, 1973).

While recognizing that longitudinal development is a central
issue, much current research has been focused on topics at partic-
ular stages in development, often involving cross-sectional data.
This means that correspondingly less attention is being paid to
the cumulative effects of continuous growth and the totality of
the developmental trajectory. Some significant studies on longi-
tudinal aspects have resulted in various time-lines or roadmaps
being produced. These translate the developmental progression
seen in human infants into a suggested or plausible trajectory
of behavioral competence that might be expected of a success-
ful robot model. Examples of roadmaps include that from the
iTalk project (Cangelosi et al., 2010), the broad approach of the
Jst Erato Asada project (http://jeap.jp/), and the output from the
RobotCub project (Vernon et al., 2010). The work reported here
is based on a detailed infant timeline (Law et al., 2011).

This paper presents a model of longitudinal development anal-
ogous to part of the sensory-motor development of a human
infant from birth to 6 months. Figure 1 gives an overview of the
development timeline we use which is fully described in Law et al.
(2011). We use an iCub humanoid robot (Natale et al., 2013) as
the platform for our experiment. The robot is given no prior abil-
ities and the task is to learn to coordinate and gain control of
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FIGURE 1 | A conceptual diagram of the increase in motor control competence in infancy, highlighting behaviors identified in the infant literature.

Darker shading indicates greater competency. This figure is abstracted from the detailed timeline compiled in Law et al. (2011).

the motor system through some form of exploratory process. The
criteria for success is in achieving sufficient competence to visu-
ally detect objects, reach toward and grasp them, and move them
around in the environment. In other words, the aim is to advance
from no understanding of the structure of the sensory-motor
hardware to achieving skilled hand-eye coordination, involving
reaching skills and mastery of the local egocentric space. To enable
this, we provide the robot with a suitable architecture, on which
to learn sensorimotor coordination, and a series of constraints
designed to shape learning along a trajectory similar to that seen
in infancy.

In this paper we present results from a complete longitudi-
nal experiment that shows a full developmental cycle, progressing
through several distinct behavioral stages and increasing com-
petence from essentially no control (random motor action) to
skilled visio-integrated reaching and manipulation of objects.
This experiment was made possible by guidance from the results
of several investigations into the various subsystems involved:
eyes, head, arms, etc. While there is insufficient space to expand
on all these prior studies, we reference them where appropriate
in order to provide further background on particular aspects of
our architecture. Particular new contributions include the use and
control of the torso, reaching for objects, and schema learning for
novel actions. The key findings reported here include: evidence
for the speed and effectiveness of staged behavior; evidence for
the role of constraints in staged development; the effect of boot-
strapping between stages; and the use of a schema memory of
experiential fragments in learning new skills. These are seen in
the context of a longitudinal sequence showing the development
in a continuous process—to our knowledge, this has not been
performed on an iCub robot previously.

2. MATERIALS AND METHODS
The experiments we describe here were performed on an iCub
humanoid robot (Natale et al., 2013), depicted in terms of the
sensor and motor systems of interest in Figure 2. The robot has
a total of 53 independent degrees of freedom, however, here we
only consider the 15 that are involved in hand/eye coordination
(excluding the legs, hips, wrists and fingers). Although fine hand
control (e.g., grasp adaptation to affordances) is not part of our

study we do use some of the wrist and finger motors for simple
hand closing reflexes.

The robot has joint angle sensors to provide proprioception
and touch sensors in the hand that can simulate a primitive tac-
tile sense. The eyes are color CCD cameras and so provide two
2D images, but the center of the retinal image is taken to be the
loci of interest and the two eyes converge on a fixation point in
a 3D visual space 1. This visual space can be affected by several
motor systems that cause bodily movement; for example if the
head moves it will disturb the gaze point. However, the pattern
of the disruption to vision is repeatable and lasting and so can be
learned. This is shown in Figure 2 as a mapping process result-
ing in the gaze space—the space of visual fixation produced by
the full range of eye and head movements. The gaze can move in
this space without affecting the hands and vice versa and these
two spaces must be related in some way to support hand/eye cor-
relation and coordination. This is indicated as another mapping.
Movement of the torso affects both hands and eyes and the result-
ing disturbance effects must be similarly mapped onto the gaze
space. Figure 2 also indicates that memory will be necessary to
record learning of significant and successful experiences, and we
use a schema formalism for this.

Given this anatomy we can now define the initial state of
the system prior to the experiment. The robot will be furnished
with a framework upon which to learn hand-eye coordination
and object interaction. This framework will support learning in
the various sensor and motor modalities, coordination between
modalities, and the creation and integration of schemas. Initially
it will not contain any schemas or data on the coordination of sen-
sor and motor systems, with this being learnt through exploration
and interaction.

The goal of the experiment is for the robot to progress from
the initial state to a state where it has control over its subsystems
so that hand-eye coordinated reaching is achieved. We can mea-
sure attainment of the goal by an ability to reach for objects and to
move them in the environment. A second objective is to achieve

1The iCub is designed to be closely modeled on infant anatomy. For example,
the eyes can saccade at speeds approaching human performance; we set the
saccade velocity to be 80 degrees/s.
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FIGURE 2 | A schematic representation of the iCub highlighting the sensorimotor spaces explored in the experiment, and the relationships between

them.

this through a process of novelty-driven learning that models the
development shown by infants. This means learning must not
involve supervision, yet it must also be constrained within an
acceptable rate for real robot systems.

2.1. DESIGN OF THE EXPERIMENTAL ARCHITECTURE—INTRINSIC
MOTIVATION

There are several key concepts implemented in our experimen-
tal software that form the basis of our approach. These include a
motivational mechanism, a staged learning framework, a spatial
sensorimotor substrate, and a schema memory for the recall and
generalization of previous experiences.

The first concern is intrinsic motivation: as our robot is
not given any goals or tasks, how (or even why) can it per-
form actions? Extrinsic goals are not sufficient to explain all
behavior—some behavior is essentially internally driven, and this
is particularly significant for the developing infant. For example,
in a quiescent state with no external demands or priorities there
may be a range of possible actions available but no indication or
experience of the outcomes of those actions. In such cases many
robotic projects have used the idea of “motor babbling” to select
the next action randomly, e.g., Caligiore et al. (2008) and Saegusa
et al. (2009). This relates to an enactive view of cognition in which
action is seen as part of sensory data gathering. An interesting line
of investigation is the work of Kuniyoshi and Sangawa (2006),
who study and simulate the class of general movements in the
fetus as a bootstrapping stage for postnatal exploitation.

Following Bruner et al. (1976), we use novelty as a driver.
Novel events that can be repeated and possibly correlated with
other events are given high saliency. We prefer a broad and general

definition of novelty that can be widely scientifically applicable.
So our mechanism for novelty is simply to define any new event
as stimulating. This is very general in that it includes new exter-
nal stimuli, new internal experiences (such as from muscles or
proprioception), new forms of interaction, or new sequencing of
known events. Whether an event is detected as new by the robot,
depends on it being sufficient to be detected by the sensing abil-
ities of the system, and whether or not it was predicted, i.e., had
a prior representation of it being experienced before2. For exam-
ple, a visual stimulus will be detected as new because it appears
in a new location, or has changed color (provided neither were
predicted). A movement of the robot will be considered new if
it results in a detectable position that has not been previously
encountered. An action combination will be considered new if it
results in a change of world state that was not predicted. As an
event or perceived structure becomes familiar so it will no longer
be novel and becomes of less interest. This means the scope of
novelty will change and evolve: initially even basic movements of
the body parts are novel but later on objects become more inter-
esting, followed by interactions with moving objects, animated
objects and people.

In our implementation we assign all distinct stimuli, objects
or other sensed entities, with an excitation variable that is given
a high value on first encounter. All excitations decay with time

2In our system visual detection is based on objects represented as patches of
color. An object, consisting of a cluster of pixels of minimum radius 5 pixels, is
considered to have changed if 20% of the pixels change. Prediction or expec-
tation is determined by the sensory data matching, or partially matching, an
existing stored schema.
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and a habituation function provides a brief sensitization period
followed by a decline in excitation on repeated stimuli. This exci-
tation regime provides a saliency device and a winner-takes-all
selector then acts as an attention mechanism. With this arrange-
ment the focus of attention is attracted toward the items that have
been the most novel most recently. Over time the decay function
will cause past events to be forgotten, thus effecting a short-term
memory, and it then becomes possible for an old experience to
become stimulating again.

When attention is attracted to a novel stimulus then activity
is initiated in the form of motor babbling. Sometimes the stim-
ulus will have no further existence but sometimes an action may
co-occur with a repeat of the stimulus. In our approach, a major
assumption is based on repeated events; if a novel stimulus can
be repeated when a given action is performed then the stimulus
and the action are likely to be causally linked (Lee et al., 2007).
Hence, repetition is an important part of motor babbling. When
a babbling action apparently disturbs a sensory signal of interest
then the system is strongly motivated to repeat the action, and
if the effect is confirmed then an association can be recorded in
the developing perceptual structures. This form of correlation is
correspondence-based with tight temporal constraints for simul-
taneous events—in neuroscience the window for events that are
perceived to be the same or connected is reported to be lower
than 10 ms (Caporale and Dan, 2008; Markram et al., 2011).
For actions that need to be completed before their effect can be
correlated with a stimulus we note that the basal ganglia uses
dopamine effects for identifying which of several ongoing actions
is the correlating action (Redgrave et al., 2013).

Figure 3 shows the algorithm for this process. Motor action
is driven by novel stimuli, with correlations (mappings) between
sensor and motor pairings being reinforced through repetition.
Global excitation is the summation of all the excitation variables
and is used to select motor babbling when there has been a period
with no novel events.

In our systems novelty usually comes in the form of an unex-
pected sensory stimulus (visual, tactile, audio, etc.) or a stimulus
that correlates with a motor act (arm movement and proprio-
ception, hand movement and visual regard, object contact and
movement, etc.). In the former case the saliency mechanism uses
excitation values to select the most novel stimuli to attend to.
There is no threshold limit: the highest excitation wins. In the
latter case, the algorithm compares sensor and motor pairs with
those stored in memory. If the new event is not already stored,
then it is deemed novel and selected for further exploration. If it is
repeatable and temporally coincident, it becomes saved as reliable
experience.

2.2. TASK LEARNING COMPLEXITY
The second design issue concerns the complexity of the task
of learning how a many degree of freedom system is related
and structured. This becomes very difficult and computation-
ally expensive for high orders and for our 15 DoF robot it is
impracticable to consider learning over all the motor systems at
once. However, infants face an identical problem, and they solve
it incrementally and in real-time. Infant development is char-
acterized by the phenomenon of staged behavior, during which
prominent sequences are readily observed, for example, sitting,
crawling, and walking. Competence in a task is preceded by mas-
tery of other subtasks, and such stages involve periods of learning
followed by consolidation (Piaget and Cook, 1952). Transitions
between stages are neither instantaneous nor absolute, as one
pattern of behavior supersedes or merges into another as the
underlying control schemas change (Guerin et al., 2013). Piaget’s
theories were extended by Kalnins and Bruner (1973) and Bruner
(1990), suggesting mechanisms that could explain the relation of
symbols to motor acts, especially concerning the manipulation of
objects and the interpretation of observations.

Table 1 has been derived from the developmental literature
and shows the sequence of development of motor control for

FIGURE 3 | Algorithm for novelty-driven action selection (derived from experiments in Law et al., 2011).
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Table 1 | Infant development and learning targets.

Age (months) Observed behavior Robot targets

Pre-natal Grasp reflex Butterworth and Harris, 1994 Grasp on tactile feedback

1 Sufficient muscle tone to support brief head movements Fiorentino, 1981 Constraint on head movement

1 Eyes and head move to targets Sheridan, 1973 Learning of saccade mappings

1 Saccades are few in number Maurer and Maurer, 1988

2 More saccades Maurer and Maurer, 1988 and improved control
Fiorentino, 1981

Refinement of saccade mappings

2 Head only contributes to larger gaze shifts due to lack of muscle tone
Goodkin, 1980

Release of constraint on head motion, and beginnings of
eye-head mapping

2 Involuntary grasp release Fiorentino, 1981 Release grasp when hand attention is low

3 Head contributes to small gaze shifts 25% of the time, and always to large
gaze shifts Goodkin, 1980

Refinement of eye-head gaze control

3 Reach and miss Shirley, 1933 with some contacts Fiorentino, 1981 Reaching triggered by visual stimulation

3 Hand regard and hands to mouth Fiorentino, 1981 Initial learning of eye-hand mappings with return to
“home” position

3 Clasps and unclasps hands Sheridan, 1973 Learning of raking grasp

4 Good eye and head control Fiorentino, 1981 Gaze mapping completed

4 Beginning thumb opposition Bayley, 1936 Enable independent thumb movement

5 Rotation in upper trunk Fiorentino, 1981 Begin torso mapping

5 Palmar grasp Fiorentino, 1981 Learning of palmar grasp

6 Successful reach and grasp Sheridan, 1973 Refinement of visually-guided reaching

7 Thumb opposition complete Bayley, 1936 Refined thumb use

8 Pincer grasp, bilateral, unilateral, transfer Fiorentino, 1981 Learning of pincer grasp

8 Crude voluntary release of objects Fiorentino, 1981 Voluntary release

9 Leans forward without losing balance Sheridan, 1973 Torso mapping complete

the period up to 9 months. It shows the cephalocaudal direction
of development, beginning with the eyes and head, and flowing
down through the arms, hands, and torso. Early grasping and
ungrasping, appearing before birth and at 2 months, respectively,
are reflexive, but are included here as they provide vital actions
for the development of behaviors. They enable the infant to per-
form basic manual interaction, and thus gain additional sensory
information, without having to wait for controlled grasping to
appear. These early, reflexive, actions are likely to help bootstrap
later behavior, and highlight the importance of the concept of
staged development: that it significantly reduces the complexity
of the learning task.

Table 2 shows a similar set of data specifically for the behav-
ioral stages identified in the development of reaching. We note
that early reaching is driven by tactile and proprioceptive feed-
back, before vision is well established. As vision improves, so too
does the level of involvement of vision in the feedback process:
early arm movements are triggered by visual stimuli; the first
successful reaches are visually elicited, with the eyes fixated on
the target and not the hand; later reaches use visual feedback to
reduce the error between the hand position and the target. There
is also an element of proximo-distal development, with control of
the shoulder appearing before the elbow and hands.

Together with the infant behaviors are a suggested series of
stages that a robot could follow to achieve the same perfor-
mance. These have been generated by relating the infant data to
the specification of the iCub robot. However, they are general
enough as to be applicable to most humanoid robot platforms.

In the experiment described here we aim to reconstruct the first
5 months of development indicated by these tables as a series of
behavioral stages on the iCub robot.

The phenomenon of staged growth has been linked to the
existence of maturational or environmental constraints. Various
forms of constraint can be identified that restrict the range of sen-
sorimotor functionality available to the young infant. One exam-
ple of underlying constraints is seen in the development of the
newborn that proceeds in a cephalocaudal manner, with behav-
iors emerging sequentially down through the body and including
looking, orienting, swiping, reaching, grasping, standing, and
walking. We modeled these effects in our robot experiments by
restricting the information and action possibilities available to
the robot; thus the complexity of the learning space is reduced,
with related restrictions on the behaviors produced. In partic-
ular, we focus on how maturational constraints and individual
experience affect the emergence of stages. In our robotic systems
constraints can be structured (Type A), or emergent (Type B).
Type A constraints are analogous to maturation in neurolog-
ical and physiological structures, and cover changes in myeli-
nation, sensory resolution, muscle tone, etc. In contrast, Type
B constraints emerge from interactions and experience. As the
infant/robot develops, both types of constraints can be released,
through maturation or interaction, leading to new abilities and
behaviors.

Type A constraints are considered to be hard constraints on the
developmental trajectory due to the physical growth or maturity
necessary for their removal. Individual infants develop at different
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Table 2 | Reach development and learning targets.

Age (months) Observed behavior Robot targets

Pre-natal Arm babbling in the womb De Vries et al., 1984 Proprioceptive-motor mapping of general movements

1 Hand-mouth movements Rochat, 1993 Learning of home position through tactile feedback

1 Directed (to the hemifield in which a target appears), but
unsuccessful, hand movements von Hofsten and Rönnqvist, 1993;
Ennouri and Bloch, 1996

Initial mapping of general movements to vision

1 Initial reaching is goal directed, and triggered by a visual stimulus,
but visual feedback is not used to correct movements mid-reach
Bremner, 1994, p. 38

Visual stimuli trigger general reach movements

3 Infants often move their hand to a pre-reaching position near the
head before starting a reach Berthier et al., 1999, which then follows
the line of sight Bruner, 1968, p. 44

Reaches conducted from “home” position

3 Infants engaged in early reaching maintained a constant hand-body
distance by locking the elbow, and instead used torso movements
to alter the distance to targets Berthier et al., 1999

Constraints on elbow movements reduce learning
space

3 Successful reaching appears around 3–4 months after birth Shirley,
1933; Fiorentino, 1981; Berthier et al., 1999; Berthier and Keen,
2006

Primitive hand-eye mapping

3 Gaze still focused on the target and not the hand Clifton et al., 1993;
Butterworth and Harris, 1994; Clifton et al., 1994; Berthier and
Carrico, 2010

Reaches are visually elicited, but without continuous
feedback

4 From 4 months, infants begin to use visual feedback to refine the
movement of the hand White et al., 1964

Begin to map joint-visual changes and use visual
feedback to correct reaches

4 As infants age their reaching becomes straighter, with the hand
following the shortest path Carvalho et al., 2007

Refined reaching with smooth and direct movements

rates, making timings of constraint releases difficult to define,
however, the trajectories tend to be similar, following a regular
sequence of stages. A timeline is presented in Law et al. (2011)
and can be applied to a developing robot by using internal state
variables as the indicator to trigger removal of constraints in a
semi-structured manner (Lee et al., 2007). This will cause the
robot to follow the general infant trajectory, where the timings of
constraint release are based on its own individual circumstances.

Type B constraints are caused by external factors that effect
development, such as the level of stimulation in the environ-
ment or the amount and form of interaction with carers. The
strong influence of these factors on the order in which develop-
ment occurs has been recorded in observation and demonstrated
in various experiments. For example the use of a “sticky mitten”
to compensate for the lack of competence in grasping, facilitated
infants with a precocious and greater level of manual interaction
with objects (Needham et al., 2002).

Both types of constraint play an important role in this exper-
iment. The development of muscle tone, a Type A constraint, is
cited as a driver for cephalocaudal development, and provides us
with our basis for creating the pattern of behavior in Table 1. As
we are not able to accurately model this type of development, we
simulate it as a series of constraints preventing movement at each
set of joints. These constraints are released in sequence, starting
with the eyes at the outset, and progressing down the body as the
experiment continues. Whereas muscle tone is likely to be related
to age, our constraints are related to level of ability, as our devel-
opmental sequence has a much shorter time scale than that of the
infant.

Other Type A constraints, in the form of sensory availabil-
ity and resolution, are used to shape reaching actions. Initial
arm movements are formed using tactile and proprioceptive
feedback without any visual information. Once vision is active,
it can be incorporated into reach learning, but resolution in
the infant gradually increases, and we model this growth. Early
visually triggered reaches generate very coarse visual stimuli, so
result in inaccurate swiping behaviors in the general direction of
objects. As vision and gaze control improve, so does the quality of
reach. However, visual feedback is not enabled to guide reaching
until visually elicited reaches have become successful. Due to the
requirement for physical interaction during reach learning and
the need to avoid potentially harmful robot actions, we conduct
these stages in simulation and transfer them to the robot when
accurate reaching has been achieved.

In addition to these Type A constraints, our experiment relies
on Type B constraints arising from the environment. Although
the effects are often quite subtle they can also be quite pro-
nounced, for instance the number and positioning of stimuli
impact on the extent of learning. Due to the size and nature of
the experiment these influences make it very difficult to mea-
sure their effects or replicate data precisely. To show the impact
of these constraints we investigate how changing the environ-
ment affects learning of gaze control. Details of the constraints
used in this experiment are given in Tables 3, 4. In Table 3 , the
Type A constraint on the torso and arm learning is the same,
i.e., restriction of movement due to immaturity. However, if these
two components tried to learn in parallel then a number of vari-
ables and unconstrained degrees of freedom would be active at
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Table 3 | Constraints used to structure behavioral stages on the robot.

Constraint Type Effect Removal trigger

Environment B Affects data available for learning at all stages None. Influenced by robot and experimenter

Eye motor A Prevents eye motion Start of experiment

Neck motor A Prevents head motion Threshold on eye control

Neck learning B Neck learning requires accurate eye control Emerges as eye control develops

Shoulder motors A + B Prevents arm movement Threshold on gaze control, exclusive of torso learning

Elbow motors A + B Limits forearm extension/flexion Threshold on gaze control, exclusive of torso learning

Reflex grasp A Causes hand to close on tactile stimuli Active until reaching threshold attained

Controlled grasp A Prevents voluntary grasping of objects Released with shoulder

Torso motor A + B Prevents motion at waist Threshold on gaze control, exclusive of arm learning

Table 4 | Constraints used to structure reaching stages in simulation.

Constraint Type Effect Removal trigger

No vision A Arm movements learnt through tactile and
proprioceptive feedback only

Start of experiment

Crude gaze fields (large) A Arm movements coarsely correlated with vision Threshold on maturity of internal structures

Fine gaze fields (small) A Fine correlation between hand position and vision Threshold on development of reaching

Visual feedback A Prevents visual guidance during reaching Threshold on successful reaching

the same time. It would be very difficult to identify which motor
movements caused which effects, making it very difficult to learn
anything meaningful. As a result, the constraints are used to
prevent them learning at exactly the same time, but the order
in which they learn is flexible being based on stimulation and
events in the environment. Consequently, we label these as con-
taining both type A and B constraints. It is equally possible that
the two could alternate in their learning, with constraints being
intermittently applied to alternating components. Neck learning
is also shown in Table 3 as Type B; this is because neck learn-
ing does not need a threshold or trigger as it is only effective
when eye control is well developed. Hence, it can be permanently
enabled but will only emerge as and when the eye system achieves
sufficient competence. Such emergence is typical of Type B
constraints.

2.3. MAPPING TECHNIQUE
The third key issue concerns the design of a suitable compu-
tational substrate that will support the representation of what-
ever sensorimotor structure is discovered by experience. This
involves spatial data as can be seen from the robot hardware
in Figure 2. This figure suggests the fundamental spaces pro-
duced by the sensory-motor configuration of the iCub robot and,
following the embodiment principle, this will vary for differ-
ent anatomies. Considering the staged organization mentioned
above, we designed the architecture shown in Figure 4 to capture
the relations and mappings indicated in Figure 2.

Learning data in this experiment is based on visual and pro-
prioceptive data. That is, the image data collected by the two
cameras, and the information from the position of each joint.
Tactile sensors trigger reflexive grasping, but are not directly used
in learning. The main components of the architecture are as
follows:

• Visual stimuli on the camera sensor are encoded on a 2D
retinotopic map and linked to 2D motor maps for the eyes
and neck. These enable the robot to learn the correspondence
between moving the eyes and neck, and movements of visual
stimuli. A mechanism for gaze control based on biological data
interacts with both the eye and neck motor maps to gener-
ate stereotypical gaze shifts. The combination of both eyes and
neck displacements defines the gaze space—the 3D egocentric
model of space used to coordinate the robot’s actions (see Law
et al., 2013, for further details).

• 4D arm motor movements are mapped to a portion of the gaze
space, for hand-eye coordination.

• 2D torso motor movements are mapped to the gaze space to
define how body movements affect the movement of visual
targets.

• The memory schema records the positions and details of
objects in the 3D gaze space, but the relationship between the
current gaze direction and the remembered positions changes
as the robot moves. Data from the learnt torso mapping is
used to transform remembered positions into relative gaze
positions.

The architecture is thus a cross-modal representation of the
robot and its personal space. At the core of our architecture is
the 3D egocentric gaze space, which maps the proprioceptively-
sensed gaze direction of the eye and head to the visual space
of the retina and the proprioceptively-sensed position of the
limbs in joint space. This building up of an internal body
model from a collection of smaller spaces has been investi-
gated by others, e.g., Morasso and Sanguineti (1995) and Fuke
et al. (2009) but the key challenge is in keeping the computa-
tional demands of the techniques within the bounds of biological
plausibility.
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FIGURE 4 | System architecture.

Piaget suggested infants first construct an egocentric represen-
tation of space through sensorimotor interaction, and that this
gradually gave way, over the first year of life, to the ability to locate
objects in relation to external landmarks (Piaget and Inhelder,

1956). More recently, this has given way to the idea of infants
developing an allocentric representation of space, based on a
variety of coding mechanisms (Newcombe and Huttenlocher,
2006). This shift is most noticeable in the latter half of the first
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year (Acredolo and Evans, 1980; Newcombe and Huttenlocher,
2006; Vasilyeva and Lourenco, 2012), beyond the period of our
current investigation, but has also been suggested to appear as
early as 4 months (Kaufman et al., 2006; Bremner et al., 2008).
The shift from egocentric to allocentric representation is noted
to be slow, and could be related to a number of factors includ-
ing identification of visual landmarks, rotation of the torso,
and crawling (Newcombe and Huttenlocher, 2006; Vasilyeva and
Lourenco, 2012), and that it could be impaired by cognitive
load (Kaufman et al., 2006). Our vision system is not capa-
ble of identifying relationships between objects, nor does the
robot perform any relocation of the body until the torso devel-
ops late in the experiment. Therefore, we currently restrict our
model to the early egocentric and proprioceptive representation
of space.

Motor babbling generates candidate data for learning this
sensorimotor coordination. The discovered associations between
stimuli properties and motor acts represent important informa-
tion that will support further competencies. For example, in
controlling the eyeball to move to fixate on a target it is neces-
sary to know the relationship between the target distance from
the center of the retina and the strength of the motor signals
required to move the eye to this point. As targets vary their loca-
tion in the retinal periphery so the required motor command also
varies.

We use a mapping method as a framework for sensorimotor
coordination (Lee et al., 2007). A mapping consists of two 2D
arrays (or maps), representing sensory or motor variables, con-
nected together by a set of explicit links that join points or small
regions, known as fields, in each array. Although three dimensions
might seem appropriate for representing spatial events, we take
inspiration from neuroscience, which shows that most areas of
the brain are organized in topographical two-dimensional layers3

(Mallot et al., 1990; Braitenberg and Schüz, 1991). This remark-
able structural consistency suggests some potential advantage or
efficacy in such two-dimensional arrangements (Kaas, 1997).

Fields are analogous to receptive fields in the brain, and iden-
tify regions of equivalence. Any stimulus falling within a field
produces an output. A single stimulus may activate a number of
fields if it occurs in an area of overlap between fields. Further stud-
ies of the map structure and how it relates to neural sheets in the
brain is presented in Earland et al. (2014).

For the saccade example, a 2D map of the retina is connected
to a 2D array of motor values corresponding to the two degrees
of freedom provided by the two axes of movement of the eye-
ball (pan and tilt). The connections (representing the mapping)
between the two arrays are established from sensory-motor pairs
that are produced during learning. Eventually the maps are fully
populated and linked, but even before then they can be used to
drive saccades if entries have been created for the current target
location.

Mappings provide us with a method of connecting multiple
sensor and motor systems that are directly related. This is suf-
ficient for simple control of independent motor systems, such

3Each field can hold a range of variables, effectively providing a 2.5D repre-
sentation. This is how space is represented with depth as a field value.

as by generating eye-motor commands to fixate on a particular
stimulus. However, more complex and interdependent combina-
tions of sensor and motor systems require additional circuitry
and mechanisms in order to provide the required functionality.
For example, audio-visual localization requires the correlation of
audible stimuli in head-centered coordinates, with visual stimuli
in eye-centered coordinates. The system has the added complexity
that the eye is free to rotate within the head, making a direct map-
ping between audio and visual stimuli impossible. Just as in the
brain, careful organization and structuring of these mechanisms
and mappings is required.

To control coupled sensorimotor systems, such as the eye and
head during gaze shifts, we take inspiration from the relevant
biological literature (Guitton and Volle, 1987; Goossens and van
Opstal, 1997; Girard and Berthoz, 2005; Freedman, 2008; Gandhi
and Katnani, 2011). Our aim is to reproduce the mechanisms
at a functional level, and connect them to form an appropriate
abstraction of their biological counterparts. We do not endeavor
to create accurate neurophysiological models but rather to create
plausible models at a functional level based on well-established
hypotheses. Consequently we use mappings to transform between
sensorimotor domains, and incorporate standard robotic sensors
and actuators, and low-level motor control techniques in place of
their biological equivalents.

2.4. SENSORIMOTOR MEMORY
The final design issue concerns the requirement to remember
learned skills.The system as described above has a rich sensori-
motor model of the immediate events being experienced but has
limited memory of these experiences.

Until this point the mappings have acted as the sole mem-
ory component, storing both short term sensory, and long term
coordination information. The sensory events are mainly spa-
tially encoded, in the robot’s “egosphere” as indicated above, and
these have short term memory—when their excitation decays
they may be experienced again as “new” events. On the other
hand, the coordinations between motor and sensory subsystems
are stored as connections and thus represent long term memories
(with scope for plastic variation). These are also mainly spa-
tially encoded experiences and so represent, for example, how to
reach and touch an object seen at a specific location. What is not
represented is any sensorimotor experience that has temporally
dependent aspects. For example, consider a sequence of actions
such as: reach to object, grasp object, move to another location,
release object. This can be seen as a single compound action
(move object) consisting of four temporally ordered actions.

For this reason we introduced a long term associative mem-
ory mechanism that supports: the memory of successful basic
action patterns; the associative matching of current sensorimotor
experience to the stored action patterns; the generalization of sev-
eral similar experiences into single parameterized patterns; and
the composition of action chains for the temporal execution of
more powerful action sequences. A concomitant feature of such
requirements is that the patterns in long term memory should
be useful as predictors of action outcome—a function that is
unavailable without action memory. Inspired by Piaget’s notions
of schemas (Piaget and Cook, 1952) we implemented a schema
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FIGURE 5 | Motor dynamics in the horizontal plane during a typical gaze and reach action (see text for details)4.

memory system that stores action representations as triples con-
sisting of: the pre-conditions that existed before the action; the
action performed; and the resulting post-conditions (see Sheldon,
2012, for further details). The schema memory provides long
term memory in order to prevent repeated attention on past stim-
uli, and to match previous actions to new events. This formalism
has been used by others, e.g., (Guerin et al., 2013), and is a flexible
and general representation that allows extensions and supports all
the above requirements.

3. RESULTS
There are four significant results from this longitudinal
experiment.

3.1. EMERGENCE OF DEVELOPMENTAL STAGES
The first result concerns the emergence of a series of distinct
qualitative stages in the robot’s behavior over the duration of the
experiment. The results described here used maturity levels for
constraint release that previous experiments suggested as reason-
able. This gave competence for reaching to be performed with
an end-point accuracy of 1 cm, which is sufficient for the iCub
to grasp 6–8 cm objects. Further data on the effects of staged
constraint release can be found in Shaw et al. (2014).

An example of the motor dynamics exhibited during reaching,
using maps learnt in this experiment, is given in Figure 5. This
shows the use of the eyes, head, torso, and arm joints to gaze to
a novel target, bring it into reach, and place the hand at its loca-
tion. At around 4 s into the experiment a novel target appears and
the robot initiates a gaze shift. This is produced using the eye and
head motor movements mapped to the location of the stimulus
in the retina map. The eye is the first system to move, and fixates

on the target at around 6 s. The head then begins to contribute to
the gaze shift, and the eye counter-rotates to keep the target fix-
ated (the mapping resolution and dynamics of the system result
in jerky head movements and some fluctuation of the gaze direc-
tion). The gaze shift completes at 14 s and is followed by a separate
vergence movement to determine the distance to the target (this
has a small effect on the gaze direction, which is based on readings
from the dominant eye). Full fixation occurs around 19 s. Next the
robot selects a torso movement to position the target within the
reach space. This takes place between 31 and 35 s and is accompa-
nied by compensatory eye and head movements, which complete
at 48 s. Finally arm movements are triggered at 65 s, which result
in the hand arriving at the target at 71 s.

Table 5 records these stages and also their rapid rate of devel-
opment. As previously explained, the early reaching actions are
first learnt in simulation before being integrated with other
actions learnt on the real robot. Aside from this deviation for
safety purposes, all actions are learnt on-line on the robot. All
actions learnt in simulation are performed at a speed equivalent
to real-time on the physical robot in order that the results are
comparable5.

Tables 6, 7 expand on the detail and show the time point when
each stage was observed to first appear.6 The resultant behavior
patterns are similar to those in Tables 1, 2, with the omission

4The version angle is the combined pan angle of the two cameras.
5A time lapse video of the longitudinal process on the iCub can be found at
http://youtu.be/OhWeKIyNcj8
6Videos of the robot performing some of these stages, with basic reaching and
torso movements, can be found at http://youtu.be/_ZIkbU8FZbU and http://
youtu.be/3zb88qYmxMw. Full reaching and torso control is shown in http://
youtu.be/OhWeKIyNcj8
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Table 5 | Observable experimental behaviors.

Behavior Description Duration (min) Platform

Fetal babbling General arm movements 10 Simulator
Saccading Eye movements only, trying to fixate on stimuli 20 Robot
Gazing Eyes and head move to fixate on stimuli 40 Robot
Swiping Arms make swiping actions in the general direction of visual stimuli 10 Simulator
Visually elicited reaching Reaches toward visual targets with some success 10 Simulator
Guided reaching Successful and smoother reaches toward visual targets 60 Both
Torso movement Moves at waist to reach objects 20 Robot
Object play Grasps objects and moves them around 40 Robot

Table 6 | Behaviors observed on the iCub.

Behavior Description Time of

appearance (min)

Saccading Eye movements only, trying
to fixate on stimuli

0

Gazing Eyes and head move to fixate
on stimuli

20

Guided reaching Successful and smoother
reaches toward visual targets

60

Torso movement Moves at waist to reach
objects

120

Repeated touching Repeatedly reaches out and
touches objects

140

Pointing Points to objects out of reach 160
Object play Explores object affordances

and actions
170

Stacks objects Places one object on top of
another

210

Learning ends Experiment ends 230

Table 7 | Behaviors observed in simulation.

Behavior Description Time of

appearance (min)

Fetal babbling General arm
movements

0

Pre-reaching position Moves hand to the side
of the head before
reaching

10

Swiping Arms make swiping
actions in the general
direction of visual stimuli

10

Visually elicited reaching Reaches toward visual
targets with some
success

20

Guided reaching Successful and
smoother reaches
toward visual targets

30

Learning ends Refined hand-eye
coordination

90

of some of the finer details. In general, however, robot develop-
ment progresses along cephalocaudal and proximo-distal learning
directions. Whilst this is to be expected due to the choice of
constraints, the experiment also demonstrates the efficiency in

this learning pattern. Tables 6, 7 show the time taken for the
robot to advance from the experiment’s initial state to the final
goal state is less than 4 h. This is possible because the constraints
limit the size of the learning space, whilst the resultant ordering
of stages generates a sequence whereby earlier behaviors create
data for bootstrapping learning of later behaviors. For example,
eye saccades provide data for learning of gaze control, which
is in turn used as a basis for hand-eye coordination. Similarly,
in the arm system, the staged increase of gaze field resolution
enables mappings to be created that are initially very sparse,
but which are then refined as resolution improves. Without
bootstrapping, the high dimensionality of the space means con-
siderably more learning will be required to reach a similar level
of ability across all areas. For further material on this, for head
and eye learning see Shaw et al. (2012), and for reaching see
Law et al. (2014).

Table 8 highlights the dimensionality issue, and shows how
stages break down the mappings into manageable chunks. 15
degrees of freedom in the motor space are mapped to 15 dimen-
sions in the sensory space, using seven core stages. Movements
of the eyes, head, and torso are all mapped to the gaze space
to provide visual orientation, but the series nature of the joints
requires learning to follow the pattern eyes-head-torso. Reaching
is learnt through four stages, with both arms learning in parallel.
The four stages correspond to a shift from tactile and proprio-
ceptive to visual mapping, followed by improvements in visual
resolution.

3.2. IMPACT OF CONSTRAINTS
The second result concerns the impact of different constraints,
and the timing of their removal, on learning. We use the eye and
head components of the gaze system to illustrate the effects of
both Type A and Type B constraints on the development of gaze
control.

Gaze control is learnt in two stages: mapping of visual changes
to the eye motors, and mapping of visual changes to the neck
motors. In reflection of the human gaze system, a stabilizing
ocular reflex causes the eyes to rotate to compensate for move-
ments of the head, and maintain fixation on a stimulus. This
prevents a direct mapping from neck motors to vision, as the eye
reflex minimizes visual change. Therefore, the mapping must take
into account changes in eye position and their known effect on
visual stimuli, which requires a well developed eye mapping [for
a detailed description of the gaze-learning algorithm see Law et al.
(2013)].
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We simulated the documented effect of poor muscle tone in
the neck by imposing a constraint on head movement. We varied
the time at which this constraint was released to model a Type A
constraint, and varied the level of stimulation in the environment
to model the effect of a Type B constraint. In the case of the Type
A constraint, we compared the effect of reducing the head con-
straint at 10 min intervals over seven 1 h learning periods. In most
cases this resulted in the eye and head systems learning in paral-
lel for part of the learning period. In the case where the constraint
was removed at time t = 0, an emergent constraint appeared with
the head system failing to learn correct movements until the eye
mapping was partially developed. Over the whole course of the
learning period, this resulted in slower learning as both systems
attempted to develop in parallel. In comparison, when the con-
straint lifting was delayed, the eye mapping was initially able to
develop more rapidly on its own. When the constraint was even-
tually lifted, data from the eye map was available to support head
learning, resulting in immediate learning of correc movements.

Figure 6 shows the number of links in the head mapping learnt
over time. The most links were learnt when the constraint was
released between 10 and 20 min after eye learning had begun. This

Table 8 | Learning times using developmental processes.

System Motor Sensory map Stages Learning time

DoF dimensionality (min)

Eyes 3 3 1 20

Head 2 2 1 40

Tactile 1

Torso 2 3 1 20

Arms 4*2 3*2 4 90

represents a trade-off between the level of eye control required
to support head learning, and the remaining time available for
learning.

In order to evaluate the impact of a Type B constraint on
the eye and head development, we varied the level of stimula-
tion within the environment. Previously a selection of static visual
stimuli had been available for the robot to select as targets for sac-
cade learning, however, in this case only a single static target was
presented centrally in front of the robot. The effect of this was to
limit the size of eye motor movements that could be made without
losing sight of the target, thus limiting eye learning. Here, removal
of the constraint on head movement enables the target to appear
off-center of the eye, simulating its appearance at new locations.

Figure 7 shows the coverage in the eye map, in terms of fields,
as links are learnt. This is a measure of how much of the visual
space can be reached by a known saccade. With only a sin-
gle, stationary visual stimulus available, eye learning saturates
at around 50% coverage. The effect of repositioning the stim-
ulus can be clearly seen in the periods following the constraint
removal, where coverage increases to around 80% without sat-
urating. Further explanation of this phenomena can be found
in Shaw et al. (2012).

These results show that both types of constraint impact on
learning in significant ways. Maturational constraints prevent
specific abilities, and limit the size of the learning space, whereas
environmental constraints limit the complexity of the stimuli,
and result in emergence of behaviors. Our experience is that both
are required to drive efficient learning, but a balance is required.
Too little constraint results in over stimulation, and problems in
identifying correspondence, whereas over-constraint restricts and
slows learning. Other mechanisms for releasing constraints are
possible, e.g., Nagai et al. (2006) who compare an error measure
method against fixed time scheduling.

FIGURE 6 | Graph showing head learning with a Type A constraint lifted at 10 min intervals.
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FIGURE 7 | Graph showing the effect of a Type B constraint on eye learning, when the head constraint is lifted at 10 min intervals.

3.3. IMPACT OF BOOTSTRAPPING BETWEEN STAGES
The third result concerns the impact of bootstrapping between
stages, that is, the value of priming new behavior with previ-
ously learnt data. We use the problem of learning arm reaching
to illustrate this.

In order for the robot to be able to reach to and pick up objects,
it is very desirable that the trajectory of the hand follows a reason-
ably direct route to the target, avoiding dangerous configurations,
obstacles, and possible damage to the robot. To achieve this we
developed a vector based reaching algorithm using an adaptation
of our mapping technique. For each arm a 4-to-3 dimensional
mapping is created between the joint space of the shoulders and
elbow, and the gaze space. This enables learning the correspon-
dence between arm postures and the corresponding position of
the hand in the visual space. An important addition is the abil-
ity of fields in both maps to store vectors. These allow movement
directions in the gaze space to be mapped to motor movements
in the joint space by performing and observing small movements
of the arm. As vectors are stored as part of the field data, move-
ments are learnt in correspondence to particular arm poses. When
reaching, combinations of vectors from the current or nearby
postures can be used to move the hand in a desired direction.

Although it is possible to learn this mapping in one stage, using
our novelty-driven motor babbling, we have found that learn-
ing can be made much more efficient by using multiple stages,
and using data learnt in earlier stages to bootstrap learning in
later ones.

We note that the eyes of the fetus do not open until 26 weeks
after conception, and that any vision is likely to be very limited.
However, arm movements and tactile perception appear at 7–9
weeks, and there is the possibility for early learning through pro-
prioception and tactile feedback. To simulate this we created a

very basic model of activity in the womb, through which sim-
ple arm movements are learnt using coarse proprioception. These
are generated by motor babbling, and learning is triggered by tac-
tile stimulation resulting from interaction with a modeled uterine
wall. After 10 min of learning, a range of proprioceptive arm posi-
tions have been generated corresponding to these interactions,
without any information on their position in space being stored.
This data is then used to bootstrap hand-eye coordination and
reaching.

In our experiment, we consider how even very primitive
bootstrapping is important. During the immediate post-swiping
stages in Table 5 the robot performs hand regard. That is, it looks
to the position of the hand and makes small movements in sev-
eral directions to generate the vector mapping described above.
As the vectors are only valid for the pose in which they are learnt,
hand regard must be performed over a range of poses for them
to be useful to control reaching. The bootstrapping data from
the previous stages provides a set of known positions at which
hand regard can be performed and, due to the ballistic character
of much of the motor babbling behaviors, the locations tend to be
at the extremities of the operating (reachable) space. This distri-
bution in space is an advantage because movements between the
locations provide a good covering of the space, whereas without
this data, hand regard would tend to cluster around the central
area and take much longer to explore the extremities. Figure 8
shows images of the arm fields generated after 10 min of hand
regard and reach learning. Using bootstrapping produces 36 fields
with an average of 8.4 vectors per field, while without boot-
strapping there are 22 fields with an average of 15.9 vectors per
field. This shows how learning without bootstrapping is centered
around a smaller set of configurations. Further data on the stages
of reach learning can be found in Law et al. (2014).
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Another aspect of staged transfer is seen in the removal of
the gaze field constraint shown in Table 4. When vision is first
used the generated fields are restricted to a large radius (0.7)
and hence the covering of space is coarse. After 15 fields are
produced the field size constraint is lifted (to radii = 0.2) and
then the number of fields increase to 33 before the next stage.
Thus the spatial covering becomes more exact and more accurate
movements can be made. This differentiation of coarse or diffuse
values into finer resolutions is seen in other developmental stud-
ies, e.g., regarding visual immaturity, Nagai et al. (2011) have
shown how early sensorimotor associations formed during peri-
ods of poor discrimination can continue to be important when
much finer discrimination has been achieved.

The results in Figure 9 show the distances covered by the
hand when reaching to a set of predefined targets using learnt

FIGURE 8 | Arm fields after 10 min of hand regard behavior. The left
image is with bootstrapping and the right is without bootstrapping.

vector-based reach mappings. The three different data sets cor-
respond to three different learning strategies: the first uses the
method described above, performing hand regard at the poses
in the bootstrapping data. The second ignores the bootstrapping
data, but performs hand regard at positions it encounters whilst
trying to reach to a target. The third uses neither bootstrapping
nor hand regard, and only learns vectors corresponding to move-
ments it makes whilst trying to reach to the targets. The main
difference between these last two is that with hand regard the
robot learns vectors in multiple directions, whereas without hand
regard it can only learn vectors corresponding to the direction of
motion. If no suitable vector to direct reaching was known, then a
random movement is made. Learning was conducted for the same
duration for each approach and then the mappings used to con-
trol reaches to 24 target positions, 12 for each arm, distributed
throughout the robot’s reachable space.

The results display the clear advantage in using bootstrapping
data from previous stages. Table 9 illustrates this by using devia-
tion from the most direct path as an error measure. By comparing
the average distance covered by the hand to the ideal straight-
line path, of the three approaches, the one using bootstrapping
resulted in a near ideal case.

3.4. LONG-TERM MEMORY FOR IDENTIFYING NOVEL EVENTS
Our fourth significant result shows how a memory of experienced
actions enables appropriate responses to novel events and thus
provides a framework for the emergence of new action skills.

As described in section 2.4, without a long-term memory
the sensorimotor mappings can only support repeated actions

FIGURE 9 | Effect of bootstrapping on reach learning.
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Table 9 | Reach length comparison.

Learning method Average hand trajectory length

compared to the direct path (%)

Bootstrapping and hand regard 107.5

Hand regard, no bootstrapping 149.5

No bootstrapping or hand regard 179.5

over short-term events, hence we use a schema learning mech-
anism that can record more complex actions and their con-
sequences (Sheldon and Lee, 2011). A schema is a structure
that encodes the context in which an action may be performed
together with the action detail and its result, or more formally:
<preconditions : action : postconditions>. An example schema
for touching an object, A, at a specific location can be written:

<A at (35, 66) : Reach to (35, 66) : A at (35, 66), Hand at (35, 66),
Touching A>

Schemas are created when an action is first performed, using
the action and a set of observations. They also carry excitation
values and data relating to the probability of their occurrence.
Schema recall occurs when a new sensory event is detected and
the schemas are scanned to find those that most match the cur-
rent situation. This is achieved by exciting the schemas using a
combination of the novelty of the current experience and their
similarity to past experiences. The level of excitation increases
with the novelty of the current sensation and the similarity to a
remembered sensation (see Sheldon, 2012, for full details of the
schema creation, matching, and generalization algorithms).

Just like stimuli, schema excitation values decrease as they
are used. This means newly discovered schemas are more likely
to be repeated and tested. Schema probability values track the
likelihood of the schema succeeding and the more excited and
predictable schemas are selected in preference to less excited
and unpredictable ones. The result is that, initially, simple but
reliable schemas are selected and explored. However, as their exci-
tation levels drop more complex and potentially useful behaviors
come to the fore. This promotes exploration when there are few
immediate novelties, and can result in unexpected behavior. For
example, in the later stages of the experiment the iCub had learnt
schemas for reaching, pressing buttons and grasping objects. The
iCub next learned that it could reach to, and grasp, an object,
and that it could move that object by reaching to new locations.
Figure 10 illustrates how these actions can occur. The diagram
indicates some possible states of the sensory data that schema
actions can cause to change. At the top-left in Figure 10 an object,
A, is known to be located at position X. The sequence of schema
applications along the diagonal toward bottom-right correspond
to grasping an object and moving it to another place. Several
other schemas are illustrated: the earlier schema of grasping but
not moving an object is at center-right; and the pressing action is
shown at top-right.

After the reaching-whilst-holding schema had become estab-
lished, the iCub discovered that it could conduct a pressing action
whilst holding an object; this was composed from the two above

FIGURE 10 | A schematic map of some schema chaining possibilities.

Rectangular boxes represent actions or state transitions and elliptical boxes
represent different states known to the robot.

unrelated actions and is seen at left-bottom in Figure 10 7. The
motivational conditions that caused this, through the excitation
and matching of prior experience to new situations, demonstrated
how two unrelated actions may be combined to form new skills,
and opens up the exciting prospect of learning tool use.

An important property of the schema framework is the ability
to make generalizations. The generalization mechanism produces
schemas containing parameters which can be populated based
upon the current experiences of the robot when being executed.
Beyond simply determining which aspects of the schema may
be interchangeable with other values as many existing schema
systems do, this mechanism attempts to find generalizable rela-
tionships between the preconditions, the action and the post-
conditions of a schema. This allows the generalized schemas
which are produced as a result of this process, to represent the
agent’s hypotheses about how an interaction may work at a more
abstract level (see Sheldon, 2012, for further details).

Along with stages, generalization offers the means to reduce
complexity in the learning environment. Table 10 shows the
number of schemas learnt to enable the robot to be able to reach
and touch objects at any location within its workspace, or point
to those out of reach. Without stages all combinations of stimuli
and events create potential schemas, and so the prohibitive num-
bers of robot actions mean simulation is necessary to investigate

7A video of this behavior can be found at http://youtu.be/VmFOoobKd9A
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this aspect. These results show that staged learning dramatically
reduces the number of schemas that are learnt by a simulated
robot, and that combining a staged approach with the generaliza-
tion mechanism reduces this number even further. Interestingly,
experiments on the real robot produce even fewer schemas due
to an additional constraint; the visual range of the cameras used
on the real robot was more restricted than that in the simulator
model.

Table 11 gives an example of a sequence of schemas learnt
on the iCub, and the times of their creation 8. Initially the robot
has access to the primitive sensorimotor actions contained in the

Table 10 | Effect of development and generalization on schema

production.

Scenario Number of

schemas produced

Generalization only (Simulated Robot) 19,244

Stages only (Simulated Robot) 347

Stages, generalization (Simulated Robot) 227

Stages, generalization (Physical Robot) 115

8A video of this sequence can be seen at http://youtu.be/3zb88qYmxMw

learnt mappings, which include gazing and reaching. It also has
preprogrammed reflex grasp and button-pressing actions.

At the outset the robot is presented with a green object. As the
most novel stimuli this triggers available actions: first gaze, then
reach. At 0:18, the robot receives tactile feedback from this action,
which results in the generation of a new schema for touching a
green object at that location. The excitation of this schema causes
the action to be repeated. Noise in the system creates some subtle
variation, and leads to the generation of some similar schemas.
At 0:50 these are generalized into a schema for touching any col-
ored object at any location (note that in this experiment we have
set the requirements for generalization to a minimum to enable
fast learning). The robot then tests the generalization by repeat-
ing the action. At 1:45 the excitation of the touching schemas have
dwindled, and the grasp action now has the highest excitation.
This is due to the similarity between the existing touch sensation
and the recorded touch sensation triggered by closing the hand
on itself. At 1:56 the robot generates a new schema for grasp-
ing a green object at that location, and this is quickly followed
by the generalized version due to the similarity with the exist-
ing generalized touching schema. The robot cannot re-grasp, and
so reaching again becomes the most excited action. At 2:19 the
robot has moved its hand to a new position whilst still holding
the object. This creates a new schema for moving an object that,
following more repetition, becomes generalized at 2:36. At 3:32,

Table 11 | Schema discovery on the iCub.

Time (mm:ss) Preconditions Action Postconditions Description

00:18 Green object at (17.5, 72.4) Reach to (17.5, 72.4) Hand at (17.5, 72.4) New touch schema

Green object at (17.5, 72.4)

Touch sensation

00:50 $z color object at ($x,$y) Reach to ($x,$y) Hand at ($x,$y) Generalized touch

$z color object at ($x,$y) schema

Touch sensation

01:56 Green object at (17.5, 72.4) Grasp Hand at (17.5, 72.4) New grasping schema

Touch sensation Green object at (17.5, 72.4)

Holding object

02:01 $z color object at ($x,$y) Grasp Hand at ($x,$y) Generalized grasp

Touch sensation $z color object at ($x,$y) schema

Holding object

02:19 Hand at (17.5, 72.4) Reach to (8.8, 62.6) Hand at (8.8, 62.6) New transport schema

Green object at (17.5, 72.4) Green object at (8.8, 62.6)

Holding object Holding object

02:36 Hand at ($x,$y) Reach to ($u,$v) Hand at ($u,$v) Generalized transport

Green object at ($x,$y) Green object at ($u,$v) schema

Holding object Holding object

03:42 Hand at (17.5, 72.4) Release Hand at (17.5, 72.4) New release schema

Green object at (17.5, 72.4) Green object at (17.5, 72.4)

Holding object Touch sensation

The $ notation specifies variable bindings, in left to right order.
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after further repetition, the most excited option becomes the press
action. This is particularly interesting as the robot is still holding
the object, and provides the opportunity for learning basic tool
use. However, in this instance the action does not cause a change
in the world state, so no schema is generated. Finally, the release
action becomes most exciting, and so the robot drops the object,
learning the “release” schema.

4. DISCUSSION
This paper has described a longitudinal experiment in robotic
developmental learning. Starting from a state of uncontrolled
motor babbling, the iCub robot displayed a developmental pro-
gression, passing through several distinct behavioral stages, until
skilled visio-motor behavior, involving reaching and manipula-
tion of objects, was achieved. The result tables show the various
learning times required for the robot to reach repeatable perfor-
mance with reasonable accuracy and the total time for the whole
process is less than 4 h. Such fast learning rates are crucial in
real robot systems where online learning is essential, and train-
ing through many thousands of action cycles is quite impossible.
This performance, which is typical of all our experiments, show
that developmental learning algorithms offer serious potential for
future real-time autonomous robots that must cope with novel
events.

Whilst most comparable work in developmental robotics is
focused on mechanisms within a single developmental stage,
we are investigating longitudinal development and the transi-
tions between multiple stages of behavior. Our methodology
has been to implement the various subsystems in a way that
facilitates their interaction, guided by the psychological liter-
ature to provide insight and inspiration. By closely following
the stages evident in infancy, we find that learning in the
robot is well directed along a trajectory that simplifies and
reduces the amount of learning required. Furthermore, just as
with infants, these trajectories will be similar but never exactly
the same. In the early stages, where sensor and motor activ-
ity is being coordinated, learning is affected by variation in
stimuli and motor babbling. In the later stages, the trajectory
of schema development is dependent on the learnt primitive
skills, the initial excitation of schemas, and the environment.
Therefore trajectories can, and do, vary in their appearance across
experiments.

Imposing carefully selected constraints can very effectively
reduce the complexity of learning at each stage, with earlier stages
providing valuable data for bootstrapping later stages. The experi-
ments show some of the conditions for the interaction of different
constraints (maturational or environmental) that can enhance
learning rates. Whilst we have imposed the general order of con-
straints to structure the earlier stages of development, their release
has been determined by internal measures, allowing the varia-
tions described above. Furthermore, we have shown how the early
and late release of constraints impacts on development. We have
also shown how stages may emerge based on environmental fac-
tors, or through experience, as shown by our schema experiments.
Although it is possible to trigger constraint release by various
means, as is sometimes necessary in experiment, we believe that
emergent states based on current levels of development may

account for this process without recourse to specific mechanisms.
This requires further investigation.

In following the longitudinal approach it becomes necessary to
recognize that any current stage under study is conditioned by the
previous stages which may feed in structures and experience that
can influence the resultant performance. This means the earliest
stage possible should be the start point and although we origi-
nally started with the newborn we realized that the fetal stage can
make an important contribution in the bootstrapping sense. It
seems the early sensorimotor organization occurring at this stage
could be of considerable significance for the development of later
abilities.

We have drawn on various sources for guidance on these
issues, these include: the emergence of stereotypical movements
and actions in the prenatal period (Mori and Kuniyoshi, 2010;
Yamada and Kuniyoshi, 2012); learning to control saccades and
gaze shifts (Srinivasa and Grossberg, 2008); and the emergence of
stereotypical reaching behavior (Schlesinger et al., 2000), includ-
ing the benefits of the ordered release of constraints (Savastano
and Nolfi, 2012). Other relevant work includes that of Grupen
and colleagues who were amongst the first to recognize the poten-
tial of the cephalocaudal progression of infant development as
a robotic technique (Coelho et al., 2001; Grupen, 2005; Hart
and Grupen, 2013), and the proximo-distal heuristic has been
widely recognized, e.g., Elman (1993). Other key projects are
investigating periods of cognitive growth through a variety of
robotic platforms and models (Asada et al., 2009; Mori and
Kuniyoshi, 2010), and reaching has received particular attention
regarding the staged release of constraints (Savastano and Nolfi,
2012), their impact (Ramırez-Contla et al., 2012), and possible
emergence (Stulp and Oudeyer, 2012).

Another distinct feature of the results is the use of motor
babbling behavior to drive learning. Whilst most other similar
systems use goal-driven and error-reducing methods, we note
that goals and errors are usually specified by the system design-
ers. We consider it important to investigate general action and
open-ended exploratory/goal-finding behavior. In this context
goals and errors are to be discovered or given significance by the
agent itself. The simple novelty algorithm combined with motor
babbling provides an effective exploratory learning mechanism
that generates much pertinent data for learning about senso-
rimotor experience. Motor babbling is a form of spontaneous
action and the excitation method applies to both single actions
and action sequences during schema selection. This means that
novel action patterns can emerge, as seen in the experiment, and
this type of behavior is very reminiscent of infant play, which is
also an exploratory goal-free behavior. Play has been long recog-
nized as a critical and integral part of child development and the
importance of novelty-driven play in infant development is well
established (Bruner et al., 1976). We view play as an extension of
motor babbling behavior, and schemas as the substrate to support
this process. This hypothesis is described further in Lee (2011).

To summarise, this experiment has provided a demonstration
of longitudinal development as a particularly fast and effective
sensory-motor learning technique. Constraints have been used to
shape infant-like behavior development, and we find these have
an important role in speeding learning in robotic models. In
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particular, data learnt at a more constrained stage can bootstrap
later learning, leading to improved performance. Finally, the com-
bination of very simple novelty detection mechanisms and intrin-
sic babbling algorithms are, at least, sufficient to drive learning of
early sensory-motor coordination and basic skill acquisition.
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An emerging body of research is focusing on understanding and building artificial
systems that can achieve open-ended development influenced by intrinsic motivations. In
particular, research in robotics and machine learning is yielding systems and algorithms
with increasing capacity for self-directed learning and autonomy. Traditional software
architectures and algorithms are being augmented with intrinsic motivations to drive
cumulative acquisition of knowledge and skills. Intrinsic motivations have recently been
considered in reinforcement learning, active learning and supervised learning settings
among others. This paper considers game theory as a novel setting for intrinsic motivation.
A game theoretic framework for intrinsic motivation is formulated by introducing the
concept of optimally motivating incentive as a lens through which players perceive a game.
Transformations of four well-known mixed-motive games are presented to demonstrate
the perceived games when players’ optimally motivating incentive falls in three cases
corresponding to strong power, affiliation and achievement motivation. We use agent-
based simulations to demonstrate that players with different optimally motivating incentive
act differently as a result of their altered perception of the game. We discuss the
implications of these results both for modeling human behavior and for designing artificial
agents or robots.

Keywords: intrinsic motivation, game theory, agents, prisoner’s dilemma, leader, chicken, battle of the sexes

INTRODUCTION
Game theory is the study of strategic decision-making
(Guillermo, 1995). It has been used to study a variety of
human and animal behaviors in economics, political science,
psychology, biology, and other areas. Game theoretic approaches
have also been utilized in robotics for tasks such as multi-robot
coordination and optimization (Meng, 2008; Kaminka et al.,
2010) as well as for analyzing and implementing behavior in
software agents (Parsons and Wooldridge, 2002). This paper
presents a game theoretic framework for intrinsic motivation and
considers how motivation might drive cultural learning during
strategic interactions. The work provides stepping stones toward
intrinsically motivated, game theoretic approaches to modeling
strategic interactions. Potential applications include the study of
human behavior or modeling open-ended development in robots
or artificial agents.

In humans, individual differences in the strength of motives
such as power, achievement and affiliation have been shown to
have a significant impact on behavior in social dilemma games
(Terhune, 1968; Kuhlman and Marshello, 1975; Kuhlman and
Wimberley, 1976; Van Run and Liebrand, 1985) and during other
kinds of strategic interactions (Atkinson and Litwin, 1960). Some
models of these phenomena exist for artificial agents (Simkins
et al., 2010; Merrick and Shafi, 2011), but these models have not
yet been widely studied for strategic interactions, competition
and cooperation between artificial agents.

This paper presents a game theoretic approach to model-
ing differences in decision-making between individuals caused

by differences in their perception of the payoff during certain
strategic interactions. Specifically we consider cases where dif-
ferences in perception are caused by different motivational pref-
erences held by individuals. We study strategic decision-making
in the context of mixed-motive games. Four archetypical two-
by-two mixed-motive games are considered: prisoner’s dilemma
(PD), leader, chicken, and battle-of-the-sexes (BoS) (Rapoport,
1967; Colman, 1982). We introduce the concept of optimally
motivating incentive and demonstrate that agents with different
optimally motivating incentives perceive the four games differ-
ently. We show that the perceived games have different Nash
Equilibrium (NE) points (Nash, 1950) to the original games. This
causes agents with different optimally motivating incentives to act
differently. We discuss the implications of these results both for
modeling human behavior and for designing artificial agents or
robots with certain behavioral characteristics.

In the remainder of this Section, section Mixed-Motive Games
introduces mixed-motive games and section Solution Strategies
for Mixed-Motive Games reviews relevant existing models of
strategic decision-making. Section Solution Strategies for Mixed-
Motive Games also discusses the specific contributions of this
paper in that context and introduces the background formal
notations used in the rest of the paper. Section Incentive-Based
Models of Motivation reviews literature from motivational psy-
chology about the influence of incentive-based motivation on
decision-making as inspiration for the new models in sections
Materials and Methods. Sections Materials and Methods intro-
duces our new notation for incentives and shows how each of
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the four mixed-motive games are transformed into various new
games when different optimally motivating incentives are chosen
for agent players. Section Results presents a suite of agent-based
simulations demonstrating that players with different optimally
motivating incentive act differently as a result of their altered per-
ception of the game. We conclude in section Discussion with a
discussion of the implications of the work and future directions it
may take.

MIXED-MOTIVE GAMES
This paper will consider two-player mixed motive games with
the generic structure shown in Matrix 1. Each player, (Player 1
and Player 2) has a choice of two actions: C or D. Depending
on the combination of actions chosen by both players, Player 1 is
assigned a payoff value V1 and Player 2 is assigned a payoff value
V2. V1 and V2 can have values of T, R, P, or S. The value R is the
reward if both players choose C. In other words, R is the reward
for a (C, C) outcome. P is the punishment if both players defect
[joint D choices leading to a (D, D) outcome]. In a mixed-motive
game, P must be less than R. T represents the temptation to defect
(choose action D) from the (C, C) outcome and thus, in a mixed-
motive game T must be greater than R. Finally, S is the sucker’s
payoff for choosing C when the other player chooses D.

Formally, the game G presents players with a payoff matrix:

G =
[

P T
S R

]

The generic game G can be used to define a number of specific
games by fixing the relationships between T, R, P, and S. Four
well-known two-by-two mixed motive games and the relation-
ships that define them are (Colman, 1982):

1. Prisoner’s Dilemma: T > R > P > S
2. Leader: T > S > R > P
3. Chicken: T > R > S > P
4. Battle of the Sexes: S > T > R > P

A number of variations of these games do exist (as well as other
distinct games), but this paper will focus on the four games as
defined above.

Matrix 1. A generic two-by-two mixed-motive game G. T
must be greater than R and R must be greater than P.

Player 2

Player 1 D C

D P, P T, S

C S, T R, R

The PD game (Rapoport and Chammah, 1965; Poundstone,
1992) is perhaps the most well-known of the four games stud-
ied in this paper. It derives its name from a hypothetical strategic
interaction in which two people are arrested for involvement in
a crime. They are held in separate cells and cannot communi-
cate with each other. The police have insufficient evidence for a
conviction unless at least one of the prisoners discloses certain
incriminating information. Each prisoner has a choice between
concealing information from the police (action C) or disclosing it

(action D). If both conceal, both with be acquitted and the pay-
off to both will be V1 = V2 = R. If both disclose, both will be
convicted and receive minor punishments: V1 = V2 = P. If only
one prisoner discloses information he will be acquitted and, in
addition, receive a reward for his information. In this case, the
prisoner who conceals information will receive a heavy punish-
ment. For example if Player 1 discloses and Player 2 conceals,
the payoffs will be V1 = T and V2 = S. Player 2 in this situa-
tion is sometimes referred to as the “martyr” because he generates
the highest payoff for the other player and the lowest payoff for
himself.

The PD game has been used as a model for arms races,
voluntary wage restraint, conservation of scarce resources and
the iconic “tragedy of the commons” (see Colman, 1982, for
a review). More recently, however, biologists have argued that
individual variation in motivation and perception means that a
majority of strategic interactions do not, in fact, conform to the
PD model (Johnson et al., 2002). The models presented in our
paper demonstrate one possible explanation for this latter view.
Specifically, they show how a valid PD matrix can be transformed
into another game that no longer represents a PD scenario as a
result of individuals having different motives.

The game of Leader (Rapoport, 1967) is an analogy for real-
world interactions such as those between pedestrians or drivers
in traffic. For example, suppose two pedestrians wish to enter
a turnstile. Each must decide whether to walk into the turnstile
first (action D) or concede right of way and wait for the other
to walk in (action C). If both pedestrians wait, then both will be
delayed and receive payoffs V1 = V2 = R. If they both decide to
walk first, a socially awkward situation results in the worst payoff
V1 = V2 = P to both. If one decides to walk and the other waits,
the “leader” will be able to walk through unimpeded, receiving
the highest payoff T, while the “follower” will be able to walk
through afterwards giving the second best payoff S. Other exam-
ples of real world interactions abstracted by the Leader game
include two drivers at opposite ends of a narrow, one-lane bridge,
or two drivers about to merge from two lanes into one. In some
such real-world situations there are rules of thumb that prevent
the leader game from emerging, for example flashing headlights
at a bridge to concede right of way. However, when such commu-
nication fails or is impossible, individuals’ motivations have an
influential role in decision-making and in how individuals inter-
pret the scenario. We make the standard assumption that there is
no communication between agents.

In the game of Chicken two motorists speed toward each other
on a collision course. Each has the option of swerving to avoid a
collision, and thereby showing themselves to be “chicken” (action
C) or of driving straight ahead (action D). If both players are
“chicken,” each gets a payoff of V1 = V2 = R. If only one player
is “chicken” and the other drives straight on, then the “chicken”
loses face and the other player, the “exploiter,” wins a prestige
victory. For example if Player 1 is “chicken” and Player 2 drives,
the payoffs will be V1 = S and V2 = T. If both players drive a
collision will occur and both players will receive the worst pay-
off V1 = V2 = P. The game of Chicken has also been used to
model real-world scenarios in national and international poli-
tics involving bilateral threats, as well as animal conflicts and
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Darwinian selection of evolutionarily stable strategies (Maynard-
Smith, 1982).

Finally, the BoS game can be thought of as modeling a
predicament between two friends with different interests in enter-
tainment. Each prefers a certain form of entertainment that is
different to the other, but both would rather go out together than
alone. If both opt for their preferred entertainment, leading to
a (C, C) outcome, then each ends up going alone and receiv-
ing a payoff of V1 = V2 = R. A worse outcome (D, D) results
if both make the sacrifice of going to the entertainments they
dislike as they both end up alone and V1 = V2 = P. If, how-
ever, one chooses their preferred entertainment and the other
plays the role of “hero” and makes the sacrifice of attending the
entertainment they dislike then the outcome is better for both
of them (either V1 = T and V2 = S or V1 = S and V2 = T).
The payoff matrix for BoS is relatively similar to that of Leader,
with the only difference in the definition being the relation-
ship between T and S. In Leader T > S, while in BoS S > T.
This reflects the real-world relationship that is often perceived
between leadership and sacrifice (Van Knippenberg and Van
Knippenberg, 2005). We will see in section Results that some
of the game transformations that are perceived by agents using
our model of optimally motivating incentive also reflect this
relationship.

SOLUTION STRATEGIES FOR MIXED-MOTIVE GAMES
A strategy σ is a function that takes a game as input and out-
puts an action to perform according to some plan of play. This
paper will focus on pure strategies, such as “always choose action
C” and mixed strategies that make a stochastic choice between
two pure strategies with a fixed frequency. Suppose we denote
the probability that Player 2 will choose action C as P2(C), then
the expected payoff for the two pure strategies available to Player
1 (“always play C” or “always play D”) can be computed as
follows:

E1(C) = P2(C)R+ [1− P2(C)]S
E1(D) = P2(C)T + [1− P2(C)]P

Using this information, a player can choose the strategy with the
maximum expected payoff. A variation on this idea that takes
into account individual differences in preference is utility the-
ory (Keeney and Raiffa, 1976; Glimcher, 2011). Utility theory
acknowledges that the values of different outcomes for different
people are not necessarily equivalent to their raw payoff values V.
Formally, a utility function U(V) is a twice differentiable func-
tion defined for V > 0 which has the properties of non-satiation
[the first derivative U ′(V) > 0] and risk aversion [the second
derivative U ′′(V) < 0]. The non-satiation property implies that
the utility function is monotonic, while the risk aversion property
implies that it is concave. Utility theories were first proposed in
the 1700s and have been developed and critiqued in a range of
fields including economics (Kahneman and Tversky, 1979) and
game theory (Von Neumann and Morgenstern, 1953).

Alternatives have also been proposed to model effects that
are inconsistent to utility theory. Examples include prospect the-
ory (Kahneman and Tversky, 1979) and lexicographic preferences

(Fishburn, 1974). The models in this paper can also be thought
of as an alternative to utility theory that uses theories of moti-
vation to determine how to compute individuals’ preferences.
Various other techniques have been proposed to model decision-
making under uncertainty, that is, when it is not possible to assign
meaningful probabilities to alternative outcomes. Many of these
techniques capture “rules of thumb” or heuristics used in human
decision-making (Gigerenzer and Todd, 1999). Examples include
the maximax, maximin, and regret principles.

The strategies chosen by players and their corresponding
payoffs constitute a NE (Nash, 1950) if no player can ben-
efit by changing their strategy while the other player keeps
theirs unchanged. This latter definition covers mixed strategies
M in which players make probabilistic random choices between
actions. Formally, if we consider a pair of strategies, σ1 and σ2,
and denote the expected payoff for Player 1 using σ1 against
Player 2 using σ2 as E1(σ1, σ2), then the two strategies are in
equilibrium if E1(σ1, σ2) ≥ E1(σ

′
1, σ2) for all σ′1 �= σ1. In other

words, the strategies are in equilibrium if there is no alterna-
tive strategy for Player 1 that would improve Player 1’s expected
payoff against Player 2 if Player 2 continues to use strategy σ2

(Guillermo, 1995).
Suppose we consider the principles discussed above with refer-

ence to the four games described in section Mixed-Motive Games.
In the PD game there is a pure strategy equilibrium point (D, D)
from which neither player benefits from unilateral deviation,
although both benefit from joint deviation. We can visualize this
game in terms of expected payoff as shown in Figure 1. We denote
the probability of Player 2 choosing C as P2(C), the expected pay-
off if Player 1 chooses D as E1(D), and the expected payoff for
Player 1 choosing C as E1(C). The visualization shows that the
definition of PD (T > R > P > S) implies that E1(D) > E1(C)

regardless of P2(C). In other words, the strategy of choosing D
dominates the strategy of choosing C. The NE for this game
(D, D) is shown circled in Figure 1.

In contrast to the PD game, the Leader, Chicken and BoS
games all have E1(D) > E1(C) for P2(C) = 1 and E1(D) < E1(C)

for P2(C) = 0. In other words, these games have two asymmet-
ric equilibrium points (C, D) and (D, C). However, neither of
these equilibrium points is strongly stable because the players dis-
agree about which is preferable. The three games do, however,
have a mixed-strategy NE, meaning that players will tend to evolve
strategies that choose C with some fixed probability. We can also
visualize these games in terms of their expected payoff as shown

FIGURE 1 | Visualization of the Prisoner’s Dilemma payoff structure

T > R > P > S. The Nash Equilibrium (NE) is circled.
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A B C

FIGURE 2 | Visualization of the payoff structures for (A) Leader

T > S > R > P , (B) Chicken T > R > S > P and (C) Battle of the Sexes

S > T > R > P .

in Figure 2. The NE probability of players choosing C is defined
by the point at which E1(D) and E1(C) intersect, i.e.:

E1(C) = E1(D)

[R− S]P2(C)+ S = [T − P]P2(C)+ P

P2(C) = P − S

R− S− T + P

and likewise for P1(C).
Evolutionary game theory (Maynard-Smith, 1982) combines

classical game theory with learning. Evolutionary dynamics pre-
dict the equilibrium outcomes of a multi-agent system when
the individual agents use learning algorithms to choose actions
in iterative game-play. Two-population replicator dynamics, for
example, model learning when players may have different strate-
gies. In this model, suppose we combine the probabilities of Player
1 playing C and D in a vector form p = [pC, pD] such that pC =
P1(C) and pD = P1(D) and the probabilities of Player 2 playing C
and D q = [qC, qD] such that qC = P2(C) and qD = P2(D). The
replicator dynamics in this case are:

�pi = pi[(Gq)i − pGqT] (1)

�qi = qi[(pGT)i − pGT qT] (2)

where G is the payoff matrix defined by the game being played. In
this model, pure strategies tend to dominate over time and mixed-
strategies are unstable.

In this paper, we use two-population replicator dynamics to
model cultural learning (as opposed to biological evolution)
when mixed-motive games are played iteratively. Borgers and
Sarin (1997) showed that Cross’ learning model for two players
iteratively playing “habit forming games” converges to asym-
metric continuous time replicator dynamics. Our approach is a
stepping-stone toward simulating and analyzing strategic interac-
tions between agents modeling known motive profiles.

While classical game theory discussed above offers a wide
range of insights into behavior in strategic interactions, it is not
necessarily designed to model human decision-making. In fact,
there is evidence of humans not conforming to NE strategies in
many kinds of strategic interaction (Terhune, 1968; McKelvey and
Palfrey, 1992; Li et al., 2010). As a result, researchers have started
to develop alternative approaches. The field of behavioral game
theory (Camerer, 2003, 2004) is concerned with developing mod-
els of behavior under assumptions of bounded rationality. These

models take into account factors such as the heterogeneity of a
population, the ability of individuals to learn and adapt during
strategic interactions and the role of emotional and psychological
factors in strategic decision-making. The purposes of this work
fall into two broad categories: (1) to produce computational mod-
els that can explain and predict human behavior during strategic
interactions that does not conform to classical game theoretic
models (Valluri, 2006) and (2) to build artificial systems that can
exhibit certain desirable behavioral characteristics such as cooper-
ation or competitiveness (Sandholm and Crites, 1996; Claus and
Boutilier, 1998; Vassiliades and Christodoulou, 2010), coopera-
tion during strategic interactions (Valluri, 2006) and improved
performance against human adversaries who also have bounded
rationality and limited observation (Pita et al., 2010). The work
in our paper differs from previous work in this area by its focus
on the role of motivation in decision-making.

INCENTIVE-BASED MODELS OF MOTIVATION
In motivational psychology, incentive is defined as a situational
characteristic associated with possible satisfaction of a motive
(Heckhausen and Heckhausen, 2008). A range of incentive-based
motivation theories exist, dealing with both internal and exter-
nal incentives. Examples of internal incentives include the novelty,
difficulty or complexity of a situation. Examples of external incen-
tives include money and points or “payoff” in a game. For the
remainder of this paper we define incentive I as a value that is
proportional to payoff V defined in section Mixed-Motive Games.
The key aspect of incentive-based motivation to be embedded in
the game theoretic framework in this paper is that different indi-
viduals have different intrinsic preferences for incentives. These
different intrinsic motivations cause individuals to perceive the
payoff matrix specified by a game differently and act according to
their own transformation of that matrix.

The following sub-sections describe three incentive-based
models of motivation and the different motivational prefer-
ences they inspire. While we do not explicitly embed these
models in our proposed game theoretic framework, they inform
the cases of optimally motivating incentive and correspond-
ing game transformations that we study in section Materials
and Methods. The three motives considered are the “influential
trio” proposed by Heckhausen and Heckhausen (2008): achieve-
ment, affiliation, and power motivation. These theories are the
basis of competence-seeking behavior, relationship-building and
resource-controlling behavior in humans.

Achievement motivation
Achievement motivation drives humans to strive for excellence
by improving on personal and societal standards of performance.
Perhaps the foremost psychological model of achievement moti-
vation is Atkinson’s Risk-Taking Model (RTM) (Atkinson, 1957).
It defines achievement motivation in terms of conflicting desires
to approach success or avoid failure. Six variables are used:
incentive for success (equated with value of success); probabil-
ity of success (equated with difficulty); strength of motivation
to approach success; incentive for avoiding failure; probability of
failure; and strength of motivation to avoid failure. Success moti-
vated individuals perceive an inverse linear relationship between
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incentive and probability of success (Atkinson and Litwin, 1960;
Atkinson and Raynor, 1974). They tend to favor goals or
actions with moderate incentives which can be interpreted as
indicating a moderate probability of success or moderate dif-
ficulty. We examine the case of success-motivated individuals
in this paper, by examining the case where individuals with
a moderate optimally motivating incentive engage in strategic
interactions.

Affiliation motivation
Affiliation refers to a class of social interactions that seek contact
with formerly unknown or little known individuals and main-
tain contact with those individuals in a manner that both parties
experience as satisfying, stimulating and enriching (Heckhausen
and Heckhausen, 2008). The need for affiliation is activated when
an individual comes into contact with another unknown or lit-
tle known individual. While theories of affiliation have not been
developed mathematically to the extent of the RTM, affiliation
can be considered from the perspective of incentive and probabil-
ity of success (Heckhausen and Heckhausen, 2008). In contrast
to success-motivated individuals, individuals high in affiliation
motivation may select goals with a higher probability of success
and/or lower incentive. This often counter-intuitive preference
can be understood as avoiding public competition and conflict.
Affiliation motivation is thus an important balance to power
motivation, but can also lead to individuals with high affilia-
tion motivation underperforming their achievement motivated
colleagues.

Power motivation
Power can be described as a domain-specific relationship between
two individuals, characterized by the asymmetric distribu-
tion of social competence, access to resources or social status
(Heckhausen and Heckhausen, 2008). Power is manifested by
unilateral behavioral control and can occur in a number of differ-
ent ways. Types of power include reward power, coercive power,
legitimate power, referent power, expert power, and informational
power. As with affiliation, power motivation can be considered
with respect to incentive and probability of success. Specifically,
there is evidence to indicate that the strength of satisfaction of the
power motive depends solely on incentive and is unaffected by
the probability of success (McClelland and Watson, 1973). Power
motivated individuals select high-incentive goals, as achieving
these goals gives them significant control of the resources and
reinforcers of others.

Computational models of achievement, affiliation, and power
motivation
Previous work has modeled incentive-based motivation functions
computationally for agents with power, achievement, and affilia-
tion motive profiles making one-off decisions (Merrick and Shafi,
2011). For example, Figure 3 shows a possible computational
motive profile as a sum of three curves for achievement, affilia-
tion, and power motivation. Unlike utility functions, motivation
functions may be non-monotonic and non-concave. The highest
peak indicates the level of incentive I that produces the strongest
resultant motivational tendency m(I) for action. Assuming a

FIGURE 3 | A computational motive-profile as the sum of achievement,

affiliation and power motivation. The resultant tendency for action is
highest for incentive of 0.8 (the optimally motivating incentive for this
agent). This agent may be qualitatively classified as “power-motivated” as
its optimally motivating incentive is relatively high on the [0, 1] scale for
incentive. Image from (Merrick and Shafi, 2011).

[0, 1] scale for incentive, agents are qualitatively classified as
power, achievement or affiliation motivated if their optimally
motivating incentive is high, moderate or low, respectively.

MATERIALS AND METHODS
The previous section establishes that individuals can view incen-
tives differently. Broadly speaking, individuals with strong power,
achievement, or affiliation may favor high, moderate, and low
incentives, respectively. In a game theoretic setting this suggests
that individuals may not play an explicitly described game, but
rather act in response to their own idiosyncratic payoff matrix.
This phenomenon is not captured by classical game theory or util-
ity based models because of the non-monotonic and non-concave
nature of motivation functions.

Our approach in this paper brings the idea of a non-
monotonic intrinsic motivation function to game theory by
modeling players as having different “optimally motivating incen-
tives.” Optimally motivating incentives are scalar values that rep-
resent different motive profiles in a compressed form. Formally,
suppose we have two agents A1 and A2 playing a mixed-motive
game G. We denote the optimally motivating incentive of A1 as
I∗1 and the optimally motivating incentive of A2 as I∗2 . I∗j is thus
the value that maximizes the motivation function mj(I) of agent
Aj. This paper is not concerned further with the definition of the
function m. We focus instead on the game transformations that
result from introducing I∗j .

As we have seen, in a two-by-two game, there are four possible
outcomes: (C, C), (D, D), (C, D), and (D, C). The incentive val-
ues for each possible outcome from the perspective of the player
playing the first listed action are I = R, I = P, I = S, or I = T.
(See section Mixed-Motive Games and Matrix 1.) Suppose each
agent Aj wishes to adopt a strategy that results in an outcome that
minimizes the difference between I and their individual optimally
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motivating incentive I∗j . That is, each agent wishes to minimize

|I − I∗j |. This means that agents with different values of I∗j will
perceive the incentives T, S, R, and P differently.

We define perceived incentive I′j as a measure of the perceived
value of a particular incentive I, for a particular agent Aj. If we
further suppose that the maximum perceived incentive must be
equal to the maximum incentive Imax in the original game, then
we can formalize the notion of perceived incentive I′j as:

I′j = Imax − |I − I∗j |
That is, perceived incentive is equal to maximum incentive minus
the error between actual and optimal incentive. This means that
Imax only has the highest perceived value if it is closest to the
agent’s optimally motivating incentive I∗j . In practice the impli-
cations are that each incentive I will be perceived differently by
agents with different optimally motivating incentives I∗j . In addi-
tion, the highest actual incentive may not be the highest perceived
incentive for all agents.

We can now define the perceived incentives T′, P′, S′, and R′ of
each incentive in the original game. In PD, Leader, and Chicken
the maximum incentive is Imax = T so we have:

T′j = T − |T − I∗j | R′j = T − |R− I∗j |
P′j = T − |P − I∗j | S′j = T − |S− I∗j |

This gives us the perceived game G′ in Matrix 2. For BoS the
maximum incentive is Imax = S giving:

S′j = S− |S− I∗j | T′j = S− |T − I∗j |
R′j = S− |R− I∗j | P′j = S− |P − I∗j |

This produces the perceived game G′ in Matrix 3. The next
sections examine these perceived games when different values
of I∗j are assumed. We show that the games transform further
into a series of new games with different NE depending on the
value of I∗j . There are numerous possible transformations of the
game, but the remainder of this section focuses in theory on
three cases of interest corresponding to individuals with strong
power, achievement, and affiliation motivation. The simulations
in section Results consider the intermediate cases as well.

Matrix 2. Perceived game G′ for PD, Leader, and Chicken.

Agent A2

Agent A1

D C

D T − |P − I∗1 |, T − |P − I∗2 | T − |T − I∗1 |, T − |S− I∗2 |
C T − |S− I∗1 |, T − |T − I∗2 | T − |R− I∗1 |, T − |R− I∗2 |

Matrix 3. Perceived game G′ for Battle of the Sexes.

Agent A2

Agent A1 D C

D S− |P − I∗1 |, S− |P − I∗2 | S− |T − I∗1 |, S− |S− I∗2 |
C S− |S− I∗1 |, S− |T − I∗2 | S− |R− I∗1 |, S− |R− I∗2 |

TRANSFORMING PRISONER’S DILEMMA
Using the PD game as an example, we can now consider how a
game is transformed into new games, depending on the value of

I∗j . Three cases are considered corresponding to individuals with
strong power, achievement, and affiliation motivation.

Case 1 (Power): The first case examines a range of high opti-
mally motivating incentives: T > I∗j > ½(T + R). We consider

this range “high” because I∗j is closest to the maximum incen-
tive T. This gives us the following transformation of the PD game
using Matrix 2 and simplifying the absolute values using the
assumption that T > I∗j > ½(T + R) > R > P > S:

T′j = T − (T − I∗j ) = I∗j (3)

R′j = T − (I∗j − R) = T + R− I∗j (4)

P′j = T − (I∗j − P) = T + P − I∗j (5)

S′j = T − (I∗j − S) = T + S− I∗j (6)

Theorem 1. For a PD game G with T > R > P > S, when T >

I∗j > ½(T + R) the perceived game G′ is still a valid PD with T′j >

R′j > P′j > S′j.

Proof. If we assume R′j ≥ T′j then we have T + R− I∗j ≥ I∗j which

simplifies to ½(T + R) ≥ I∗j . This contradicts the assumption

that T > I∗j > ½(T + R) so it must be true that T′j > R′j. If we

assume that P′j ≥ R′j then we have T + P − I∗j ≥ T + R− I∗j or
P ≥ R which contradicts the definition of PD. Thus, it must be
true that R′j > P′j . Likewise, if we assume that S′j ≥ P′j then we

have T + S− I∗j ≥ T + P − I∗j which simplifies to S ≥ P which
contradicts the definition of PD. Thus, it must be true that
P′j > S′j

Case 2 (Achievement): The second case examines a range of
moderate optimally motivating incentives: ½(T + R) > I∗j > R.

In other words, in this case I∗j is closest to R. This gives us the
same basic transformation of the PD game as in Case 1 (Equations
3–6), but now defines a different set of perceived game as follows:

Theorem 2. For a PD game G with T > R > P > S, when ½(T +
R) > I∗j > R the perceived game G′ has R′j > T′j and P′j > S′j.

Proof. If we assume T′j ≥ R′j then we have I∗j ≥ T + R− I∗j which

simplifies to I∗j ≥ ½(T + R). This contradicts the assumption in

this case that ½(T + R) > I∗j so it must be true that R′j > T′j . If

we assume that S′j ≥ P′j then we have T + S− I∗j ≥ T + P − I∗j
which simplifies to S ≥ P which contradicts the definition of PD.
Thus, it must be true that P′j > S′j

Case 3 (Affiliation): The third case examines a range of low
optimally motivating incentives: ½(P + S) > I∗j > S. We con-

sider this range “low” because I∗j is closest to S. This gives us
the following transformation of the PD game using Matrix 2 and
simplifying absolute values:

T′j = T − (T − I∗j ) = I∗j
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R′j = T − (R− I∗j ) = T + I∗j − R

P′j = T − (P − I∗j ) = T + I∗j − P

S′j = T − (I∗j − S) = T + S− I∗j

Theorem 3. For a PD game G with T > R > P > S, when ½(P +
S) > I∗j > S the perceived game G′ has S′j > P′j > R′j > T′j .

Proof. If we assume P′j = S′j then we have T + I∗j − P ≥ T +
S− I∗j which simplifies to I∗j ≥ ½(P + S). This contradicts the

assumption that ½(P + S) > I∗j . Thus, it must be true that S′j >

P′j . If we assume R′j ≥ P′j then we have T + I∗j − R ≥ T + I∗j − P
which simplifies to P ≥ R. This contradicts the definition of
PD. Thus, it must be true that P′j > R′j. Likewise, if we assume

T′j ≥ R′j then we have I∗j ≥ T + I∗j − R which simplifies to R ≥ T.
This contradicts the definition of PD. Thus, it must be true that
R′j > T′j

The three cases above result in a number of different perceived
games. Case 1 still results in a valid PD game, but in Case 2 and
Case 3 the perceived games are new games. An example of the
payoff structure of the new perceived game from Case 2 is visual-
ized in Figure 4A. In this game E1(D) > E1(C) for P2(C) = 0 and
E1(D) < E1(C) for P2(C) = 1. E1(D) and E1(C) intersect at:

P2(C) = P′ − S′

R′ − S′ − T′ + P′
= M

There are now two pure NE and the strategy that emerges depends
on the initial values of P1(C) and P2(C). If P1(C)+ P2(C) > 2M
at t = 0 then the (C, C) equilibrium will emerge. Alternatively if
P1(C)+ P2(C) < 2M at t = 0 then the (D, D) equilibrium will
emerge.

In Case 3 the agents also do not perceive a PD game. The per-
ceived game in this case is visualized in Figure 4B. In this game
E1(C) > E1(D) for all P2(C). The (C, C) strategy is now dom-
inant, indicating that the agents will tend to evolve cooperative
(C, C) strategies over time.

TRANSFORMING LEADER
We can follow the same process to construct perceived versions of
Leader.

A B

FIGURE 4 | Visualization of the Prisoner’s Dilemma game when

perceived by agents with optimally motivating incentives of (A)

½(T + R) > I∗j > R and (B) ½(P + S) > I∗L > S. The pure strategy Nash
Equilibria (NE) are circled.

Case 1 (Power): The first case again examines a range of high
optimally motivating incentives: T > I∗j > ½(T + S). This gives
us the same basic transformations in Equations 3–6, and the
perceived game is still a Leader game.

Theorem 1. In a Leader game G with T > S > R > P, when T >

I∗j > ½(T + S) the perceived game G′ is still a valid Leader game

T′j > S′j > R′j > P′j .

Proof. If we assume S′j ≥ T′j then we have T + S− I∗j ≥ I∗j which

simplifies to ½(T + S) ≥ I∗j . This contradicts the assumption in

this case that T > I∗j > ½(T + S) so it must be true that T′j > S′j.
If we assume that R′j ≥ S′j then we have T + R− I∗j ≥ T + S− I∗j
which simplifies to R ≥ S which contradicts the definition of
Leader. Thus, it must be true that S′j > R′j. Likewise, if we assume

that P′j ≥ R′j then we have T + P − I∗j ≥ T + R− I∗j which sim-
plifies to P ≥ R which contradicts the definition of Leader. Thus,
it must be true that R′j > P′j

Case 2 (Achievement): The second case examines a range of
moderate-high optimally motivating incentive: ½(T + S) > I∗j >

S. This also gives us the transformations in Equations 3–6, but the
perceived game is no longer a Leader game. In fact, a number of
interesting variations occur:

Lemma 1. In a Leader game G with T > S > R > P, when ½(T +
S) > I∗j > S the perceived game G’ has S′j > T′j and R′j > P′j .

Proof. If we assume T′j ≥ S′j then we have I∗j ≥ T + S− I∗j which

simplifies to I∗j ≥ ½(T + S). This contradicts the assumption in

this case that ½(T + S) > I∗j so it must be true that S′j > T′j . If

we assume that P′j ≥ R′j then we have T + P − I∗j ≥ T + R− I∗j
which simplifies to P ≥ R which contradicts the definition of
Leader. Thus, it must be true that R′j > P′j

Theorem 2. In a Leader game G with T > S > R > P, when
½(T + S) > I∗j > S and I∗j > ½(T + R) the perceived game G′ is
a BoS game S′j > T′j > R′j > P′j

Proof. S′j > T′j and R′j > P′j by Lemma 3.2.2. I∗j > ½(T + R)

expands to I∗j > T + R− I∗j . Substitution of Equations 3–4 gives

us T′j > R′j

Theorem 3. In a Leader game G with T > S > R > P, when
½(T + S) > I∗j > S and I∗j < ½(T + R) the perceived game G′ is
S′j > R′j > T′j > P′j .

Proof. S′j > T′j and R′j > P′j by Lemma 3.2.2. I∗j < ½(T + R)

expands to I∗j < T + R− I∗j . Substitution of Equations 3–4 gives

us T′j < R′j.

Case 3 (Affiliation): The third case examines a range of low opti-
mally motivating incentives: ½(R+P) > I∗j >P. This gives us the
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following transformation:

T′j = T − [T − I∗j ] = I∗j (7)

R′j = T − [R− I∗j ] = T + I∗j − R (8)

P′j = T − [I∗j − P] = T + P − I∗j (9)

S′j = T − [S− I∗j ] = T + I∗j − S (10)

Theorem 4. In a Leader game G with T > S > R > P, when
½(R+ P) > I∗j > P the perceived game G′ is P′j > R′j > S′j > T′j .

Proof. If we assume R′j ≥ P′j we have T + I∗j − R ≥ T + P −
I∗j which simplifies to I∗j ≥ 1/2(R+ P) which contradicts the

assumption that 1/2(R+ P) > I∗j . If we assume S′j ≥ R′j we have

T + I∗j − S ≥ T + I∗j − R or R ≥ S which contradicts the defi-

nition of Leader. Thus, it must be true that R′j > S′j. Likewise

if we assume T′j ≥ S′j we have I∗j ≥ T + I∗j − S or S ≥ T which
contradicts the definition of Leader. Thus, it must be true that
S′j > T′j

TRANSFORMING CHICKEN
We can follow the same process again to construct the perceived
versions of Chicken. Proofs are omitted for brevity.

Case 1 (Power): The first case again assumes a high optimally
motivating incentive: T > I∗j > 1/2(T + R). This gives us the
transformation in Equations 3–6, and the perceived game is a
Chicken game:

Theorem 1. For a Chicken game G with T > R > S > P, when
T > I∗j > 1/2(T + R) the perceived game G′ is still a valid

Chicken game T′j > R′j > S′j > P′j .

Proof. Omitted.

Case 2 (Achievement): The second case again assumes a
moderate-high optimally motivating incentive: ½(T + R) >

I∗j > R. This also gives us the transformation in Equations 3–6,
but the perceived game is no longer a Chicken game:

Theorem 2. For a Chicken game G with T > R > S > P, when
½(T + R) > I∗j > R the perceived game G′ has R′j > T′j and

S′j > P′j .

Proof. Omitted.

Case 3 (Affiliation): The third case again assumes a low opti-
mally motivating incentive: ½(S+ P) > I∗j > P. This gives us the
transformations in Equations 7–10.

Theorem 3. For a Chicken game G with T > R > S > P, when
½(S+ P) > I∗j > P the perceived game G′ is P′j > S′j > R′j > T′j

Proof. Omitted.

TRANSFORMING BATTLE OF THE SEXES
Finally, we can follow the process above to construct the perceived
versions of BoS.

Case 1 (Power): The first case again assumes a high optimally
motivating incentive: S > I∗j > ½(T + S). This gives us the fol-
lowing transformation of the BoS game:

T′j = S− (I∗j − T) = S+ T − I∗j (11)

R′j = S− (I∗j − R) = S+ R− I∗j (12)

P′j = S− (I∗j − P) = S+ P − I∗j (13)

S′j = S− (S− I∗j ) = I∗j (14)

Theorem 1. For a BoS game G with S > T > R > P, when S >

I∗j > ½(T + S) the perceived game G′ is still a valid BoS game

S′j > T′j > R′j > P′j .

Proof. Omitted.

Case 2 (Achievement): The second case again assumes
a moderate-high optimally motivating incentive:
¡(T + S) > I∗j > T. This gives us the transformation of the
BoS game in Equations 11–14, but the perceived game is no
longer a BoS.

Lemma 1. For a BoS game G with S > T > R > P, when ½(T +
S) > I∗j > T the perceived game G′ has T′j > S′j and R′j > P′j .

Proof. If we assume S′j ≥ T′j then we have I∗j ≥ S+ T − I∗j which

simplifies to I∗j ≥ ½(T + S) which contradicts the assumption

that ½(T + S) > I∗j . Thus, it must be true that S′j > T′j . If we

assume P′j ≥ R′j then we have S+ P − I∗j ≥ S+ R− I∗j which
simplifies to P ≥ R which contradicts the definition of BoS. Thus,
it must be true that R′j > P′j

Theorem 2. For a BoS game G with S > T > R > P, when ½(T +
S) > I∗j > T and I∗j > ½(S+ R) the perceived game G′ is a

Leader game T′j > S′j > R′j > P′j .

Proof. T′j > S′j and R′j > P′j by Lemma 3.4.2. I∗j > ½(S+ R)

expands to I∗j > S+ R− I∗j . Substitution of Equations 14 and 12

gives us S′j > R′j

Theorem 3. For a BoS game G with S > T > R > P, when ½(T +
S) > I∗j > T and I∗j < ½(S+ R) the perceived game G′ is a

Chicken game T′j > R′j > S′j > P′j .

Proof. T′j > S′j and R′j > P′j by Lemma 3.4.2. I∗j < ½(S+ R)

expands to I∗j < S+ R− I∗j . Substitution of Equations 14 and 12

gives us S′j < R′j

Case 3 (Affiliation): The third case again assumes a low opti-
mally motivating incentive: ½(R+ P) > I∗j > P. This gives us the
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following transformation of the BoS game:

T′j = S− (T − I∗j ) = S+ I∗j − T

R′j = S− (R− I∗j ) = S+ I∗j − R

P′j = S− (I∗j − P) = S+ P − I∗j
S′j = S− (S− I∗j ) = I∗j

Theorem 4. For a BoS game G with S > T > R > P, when ½(R+
P) > I∗j > P the perceived game G′ is P′j > R′j > T′j > S′j.

Proof. If we assume R′j ≥ P′j then we have S+ I∗j − R ≥ S+
P − I∗j or I∗j ≥ ½(R+ P) which contradicts the assumption that

½(R+ P) > I∗j . Thus, it must be true that P′j > R′j. If we assume

that T′j ≥ R′j then we have S+ I∗j − T ≥ S+ I∗j − R or R ≥ T
which contradicts the definition of BoS. Thus, it must be true
that R′j > T′j . Likewise, if we assume that S′j ≥ T′j then we have

I∗j ≥ S+ I∗j − T or T ≥ S which contradicts the definition of

BoS. Thus, it must be true that T′j > S′j

RESULTS
This section presents simulations of the each of the four games
studied in section Materials and Methods played by agents with
optimally motivating incentives conforming to the three cases
studied, as well as the intermediate cases not studied above.
We use two-population replicator dynamics to model cultural
learning when mixed-motive games are played iteratively. We
demonstrate that individuals with different optimally motivating
incentives may adopt different strategies when playing a particu-
lar game, or may learn at different rates. We also discuss how the
NE of the transformed games reflects a number of results from
human experiments that are not well-modeled by the NE of the
original game.

PRISONERS’ DILEMMA
Figures 5, 6 use the two population replicator dynamics in
Equations 1 and 2 to simulate one hundred pairs of agents (A1

and A2) playing the iterated PD (IPD1) game:

G =
[

2 4
1 3

]

The initial probabilities pC (for agents A1) and qC (for agents A2)
are randomized and the agent pairs learn while playing thirty con-
secutive games. A range of [1, 4] is assumed for incentive. The
lines in Figure 5 trace the learned values of pC and qC over time.
In Figure 5 all agents have a “high” optimally motivating incen-
tive I∗1 = I∗2 = 4.0, representing power-motivated individuals. We
see that the perceived games are identical to the original game, ie:
G′1 = G′2 = G and all agent pairs tend to converge on the (D, D)
equilibrium over time.

In Figure 6 the agents share progressively lower values of I∗1
and I∗2 , ranging from I∗1 = I∗2 = 3.8 in Figure 6A to I∗1 = I∗2 =
1.0 in Figure 6O. Figures 6A,B show Case 1 games in which
the (D, D) outcome emerges as the equilibrium as predicted by

FIGURE 5 | Simulation of one hundred pairs of agents playing thirty

iterations of the Prisoner’s Dilemma game. All agents have I∗j = 4.0, but
initial values of pC and qC are randomized.

Theorem 2.1.1. These agents still perceive a PD game. In contrast,
Figures 6C,D show Case 2 games in which some agents converge
on the (C, C) equilibrium and some on the (D, D) equilibrium, as
predicted by Theorem 2.1.2. The equilibrium approached by the
agent pairs in this case depends on their initial values of pC and
qC . In Figures 6E–L the (C, C) outcome becomes more frequent
as the values of I∗1 and I∗2 decrease. Figures 6M,N shows Case 3
games in which all agents converge on the (C, C) equilibrium as
predicted by Theorem 2.1.3.

In general, these results support the idea proposed by Johnson
et al. (2002), that individual variation means that true PD scenar-
ios occur relatively infrequently in nature. Johnson et al. (2002)
show that if there is variance in perception of twice the pay-
off interval in a linear PD game (a game in which the intervals
between T, R, S, and P are the same) then only 15.8% remain
valid PD games. Our transformations show that a true PD sce-
nario will only occur if both agents have optimally motivating
incentives that fall in the range T > I∗ > ½(T + R). If we assume
I∗ can only fall within the range of T ≥ I∗ ≥ S, the fraction v of
valid PD games will be:

v = T − 1/2(T + R)

T − S
= T − R

2(T − S)

In a linear PD game 3(T − R) = (T − S) so v = 1/6 = 16.6% if
we assume a uniform distribution of optimally motivating incen-
tives. This is, qualitatively speaking, similar to the result proposed
by Johnson et al. (2002), and offers support for our methodology
for modeling differences in motivations.

Case 1 and Case 2 also provide computational insight into
some of the findings reported by Terhune (1968). Terhune
observed pairs of humans classified as either power, affiliation
and achievement motivated playing single-shot and iterative
PD games in controlled conditions. One of these experiments
observed the influence of the first trial outcome on different
types of people. He found that if the first outcome was (C, C),
pairs of achievement motivated individuals had the highest sub-
sequent proportion of (C, C) outcomes (46.8%). In contrast,
power motivated individuals had (C, C) outcomes only 9.4%
of the time after a (C, C) outcome on the first trial. In other
words people with different motives respond differently to the
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FIGURE 6 | Simulations of one hundred pairs of agents playing thirty

iterations of the Prisoner’s Dilemma game. Agents share different values
of I∗j in each simulation. (A) I∗j = 3.8; (B) I∗j = 3.6; (C) I∗j = 3.4; (D) I∗j = 3.2;

(E) I∗j = 3.0; (F) I∗j = 2.8; (G) I∗j = 2.6; (H) I∗j = 2.4; (i) I∗j = 2.2; (J) I∗j = 2.0;
(K) I∗j = 1.8; (L) I∗j = 1.6; (M) I∗j = 1.4; (N) I∗j = 1.2; (o) I∗j = 1.0. Initial values
of pC and qC are randomized. See Figure 5 for legend.

same experience (in this case the first trial outcome). The results
above suggest that this can be captured computationally using
our model by using high values of I∗ for power motivated indi-
viduals, so that they tend to perceive a Case 1 game and lower
values of I∗ for achievement motivated individuals, so that they
tend to perceive a Case 2 game. A further discussion of this
avenue for future work is made in section Human-Computer
Interaction.

The Case 3 result is perhaps less instructive from a human
modeling perspective, but is still useful from an artificial sys-
tems perspective. If we wish to design agents that will cooperate
when faced with PD situations, then we can use agents with low
optimally motivating incentives in the range ½(P + S) > I∗1 > S.
These agents perceive a game with a dominant (C, C) strategy
and will thus tend to evolve cooperative strategies over time.
Likewise, if we wish to model “martyrs” then an agent A1 with
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½(P + S) > I∗1 > S will be a martyr (C chooser) when playing
an agent A2 with T > I∗2 > ½(T + R). This type of personality
modeling has application to areas such as believable non-player
characters (NPCs) in computer games.

LEADER
If we consider Case 1(power-motivated) agents playing the leader
game, we see that E1(C) > E1(D) for P2(C) = 0 and E1(D) >

E1(C) for P2(C) = 1. E1(C) and E1(D) intersect at the point:

P2(C) = S− P

2I∗ + S− P − T − R

Now, suppose we have two pairs of players. The first pair of players
have optimally motivating incentives I∗1 = I∗2 = I∗j . The second

pair of players have optimally motivating incentives I∗1 = I∗2 = I∗k
such that I∗j > I∗k . Substitution gives us

S− P

2I∗j + S− P − T − R
<

S− P

2I∗k + S− P − T − R

That is, Pj(C) < Pk(C). In other words the probability of conced-
ing right of way increases in games between players with weaker
power motivation, although the equilibria are still at (C, D)
and (D, C) as indicated by Theorem 2.2.1. This phenomenon is
evident in the simulations in Figure 7. Figure 7 uses the two pop-
ulation replicator dynamics in Equations 1 and 2 to simulate one
hundred pairs of learning agents (A1 and A2) playing the Leader
game:

G =
[

1 4
3 2

]

The Case 1 simulations are shown in Figures 7A,B and the trend
to concede is evident in the progressively less direct paths the
agent’s take to the equilibria. As I∗j is further decreased in Case
2 (achievement motivated agents), two types of perceived games
occur. Either the game is perceived as a BoS game (Theorem
2.2.3), or as a game with a dominant (C, C) strategy (Theorem
2.2.4).

The Leader game is perceived as a BoS game when ½(T + S) >

I∗j > S and I∗j = ½(T + R). The payoff structure for a BoS game
is visualized in Figure 2C. Figures 7C,D simulates the behavior of
agents that perceive a Leader game as a BoS game. The paths taken
to the (C, D) and (D, C) equilibria by these agents are quite indi-
rect as both are initially motivated to concede right of way by their
perception of leadership as an act of sacrifice. Leader-follower
behavior [(C, D) or (D, C)] does emerge, but it does so more
slowly than for agents with high values of I∗j because leadership
is now perceived as an act of sacrifice.

Figures 7E–J shows simulations of games between agents with
S > I∗j > R. These agents perceive games of the form S′j > R′j >

T′j > P′j with dominant (C, C) strategies. As a result, leadership
behavior does not emerge as an equilibrium as the agents always
concede right of way. In Case 3(affiliation motivated agents) there
are two pure equilibria in the perceived game: (D, D) and (C, C).

The Case 3 payoff structure is simulated in Figures 7M,N. The
emergent equilibrium strategy for any pair of agents depends
on the initial values of P1(C) and P2(C). If P1(C)+ P2(C) >

2M at t = 0 then the (C, C) equilibrium will occur over time.
Alternatively if P1(C)+ P2(C) < 2M at t = 0 then the (D, D)
equilibrium will occur over time. These pure strategy equilibria
preclude the emergence of leader-follower behavior and result,
instead, in collisions (both players driving) or procrastination
(both players conceding right of way). Thus, to achieve leaders
and followers agents with high values of I∗ are required.

CHICKEN
In the chicken game, Case 1(power-motivated) agents also per-
ceive a valid Chicken game resulting in the emergence of an
“exploiter” agent. However, with a small reduction in I∗j Case 2
(achievement motivated) agents perceive a transformed game in
which the more cautious (C, C) strategy is dominant (Theorem
2.3.2). This is, in fact, the most common perceived game, covering
½(T + R) > I∗j > ½(S+ P). This can be thought of as reflecting
the real-world reluctance to engage in a game of Chicken, which is
in principle the same as playing and choosing C (Colman, 1982).

The prevalence of the perceived dominant (C, C) strategy is
evidenced in the simulations in Figure 8. Figure 8 uses the two
population replicator dynamics in Equations 1 and 2 to simu-
late one hundred pairs of learning agents (A1 and A2) playing the
Chicken game:

G =
[

1 4
2 3

]

Figures 8C–L all show agents approaching the (C, C) equilib-
rium. One other case does exist (Case 3) in which the perceived
game has two pure NE: (D, D) and (C, C). The emergent equi-
librium for two agents depends on the initial values of P1(C) and
P2(C). If P1(C)+ P2(C) > 2M at t = 0 then the (C, C) equilib-
rium will occur over time. Alternatively if P1(C)+ P2(C) < 2M
at t = 0 then the (D, D) equilibrium will occur over time. These
pure strategy equilibria result in either certain collision (both
players driving on) or mutually cautious behavior (both play-
ers swerving to avoid a collision). Examples of Case 3 agents
interacting are shown in Figures 7M,N.

Comparison of Case 1 and Case 3 demonstrates how the same
outcome may result from different motives. In Case 1 the (D, D)
outcome results from a preference for high incentives. In Case 3
the (D, D) outcome results from a preference for low incentives
to avoid conflict. The strategy clearly backfires, but this sort of
trend has been observed in a general sense in humans. Individuals
with high affiliation motivation have been observed to underper-
form their achievement motivated colleagues precisely because
their desire to avoid conflict situations often means they also
miss opportunities to cooperate (Heckhausen and Heckhausen,
2008).

BATTLE OF THE SEXES
If we consider Case 1 (power-motivated) agents playing BoS, we
see that E1(C) > E1(D) for P2(C) = 0 and E1(D) > E1(C) for
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FIGURE 7 | Simulations of one hundred pairs of agents playing thirty

iterations of the Leader game. Agents share different values of I∗j in each
simulation. (A) I∗j = 3.8; (B) I∗j = 3.6; (c) I∗j = 3.4; (D) I∗j = 3.2; (E) I∗j = 3.0;

(F) I∗j = 2.8; (G) I∗j = 2.6; (H) I∗j = 2.4; (I) I∗j = 2.2; (J) I∗j = 2.0; (K) I∗j = 1.8;
(L) I∗j = 1.6; (M) I∗j = 1.4; (N) I∗j = 1.2; (O) I∗j = 1.0. Initial values of pC and
qC are randomized. See Figure 5 for legend.

P2(C) = 1. E1(C) and E1(D) intersect at the point:

P2(C) = 2I∗ − S− P

2I∗ − S− P + T − R

Now, suppose we have two pairs of learning agents playing
a BoS game. The first pair of agents has optimally moti-
vating incentives I∗1 = I∗2 = I∗j . The second pair has optimally

motivating incentives I∗1 = I∗2 = I∗k such that I∗j < I∗k . This
implies Pj(C) < Pk(C) as the (T − R) term in the denominator
becomes increasingly significant as I∗ decreases. In other words,
the probability of choosing C decreases in agents with lower val-
ues of I∗ as they begin to perceive the D choice as a desirable act
of leadership rather than as a less desirable act of sacrifice. This is
evident in the simulations in Figure 9. Figure 9 uses the two pop-
ulation replicator dynamics in Equations 1 and 2 to simulate one
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FIGURE 8 | Simulations of one hundred pairs of agents playing thirty

iterations of the Chicken game. Agents share different values of I∗j in each
simulation. (A) I∗j = 3.8; (B) I∗j = 3.6; (C) I∗j = 3.4; (D) I∗j = 3.2; (E) I∗j = 3.0;

(F) I∗j = 2.8; (G) I∗j = 2.6; (H) I∗j = 2.4; (I) I∗j = 2.2; (J) I∗j = 2.0; (K) I∗j = 1.8;
(L) I∗j = 1.6; (M) I∗j = 1.4; (N) I∗j = 1.2; (O) I∗j = 1.0. Initial values of pC and
qC are randomized. See Figure 5 for legend.

hundred pairs of agents (A1 and A2) playing the BoS game:

G =
[

1 3
4 2

]

Figures 9A,B show Case 1 simulations while Figures 9C,D show
Case 2 simulations in which the learning agents perceive a
Leader game (Theorem 2.4.3) rather than the original BoS game.

Progressively more direct trajectories towards the (C, D) and
(D, C) outcomes are evident in these simulations as I∗j decreases.

Figures 9E–G show simulations in which the agents perceive
a Chicken game rather than a BoS game. This is followed by
another change in perception in Figures 9H,L. In these simula-
tions, and in the Case 3 games in Figures 9M,N the perceived
games have two pure NE: (D, D) and (C, C). The strategy chosen
by the agents depends on the initial values of pC and qC . These
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FIGURE 9 | Simulations of one hundred pairs of agents playing thirty

iterations of the Battle-of-the-Sexes game. Agents share different values
of I∗j in each simulation. (A) I∗j = 3.8; (B) I∗j = 3.6; (C) I∗j = 3.4; (D) I∗j = 3.2;

(E) I∗j = 3.0; (F) I∗j = 2.8; (G) I∗j = 2.6; (H) I∗j = 2.4; (I) I∗j = 2.2; (J) I∗j = 2.0;
(K) I∗j = 1.8; (L) I∗j = 1.6; (M) I∗j = 1.4; (N) I∗j = 1.2; (O) I∗j = 1.0. Initial values
of pC and qC are randomized. See Figure 5 for legend.

pure strategy equilibria result in both players attending entertain-
ment alone. For the best outcome to emerge, either a “hero,” a
“leader,” or a “chicken” personality is required.

STRATEGIC INTERACTIONS BETWEEN AGENTS WITH DIFFERENT
MOTIVES
The simulations so far consider pairs of agents with the same
optimally motivating incentives. However, it is also possible to

simulate the outcomes when pairs of learning agents with dif-
ferent optimally motivating incentives interact. Figures 10A–D
simulates such pairs of agents playing each of the four games, PD,
Leader, Chicken, and BoS, respectively. In each pair, one agent A1

has a high optimally motivating incentive I∗1 = 3.9 and the other
A2 has a low optimally motivating incentive I∗1 = 1.1.

The results in Figure 10 show that agents with high opti-
mally motivating incentive tend to be the “exploiters” in PD and
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FIGURE 10 | Simulations of one hundred pairs of agents playing thirty

iterations of (A) the Prisoner’s Dilemma game; (B) the Leader game;

(C) the Chicken game; and (D) the Battle-of-the-Sexes game. In each
simulation, one agent in each pair has I∗1 = 3.9 and the other has I∗2 = 1.1.
Initial values of pC and qC are randomized. See Figure 5 for legend.

Chicken games, the “leaders” in a Leader game, and the “heroes”
in a BoS game. In contrast, agents with low optimally motivat-
ing incentive (less than the average of the lowest two payoffs of a
game) tend to be the “martyrs” in a PD game, the “followers” in a
Leader game, the “chickens” in a Chicken game and the “selfish”
in a BoS game.

DISCUSSION
In this paper we have represented agents with an optimally moti-
vating incentive that influences the way they perceive the pay-
offs in strategic interactions. By using two-by-two mixed-motive
games to represent different kinds of strategic interactions, we
have shown that agents with different optimally motivating incen-
tives perceive the original game differently. In many cases the
perceived games have different equilibrium points to the origi-
nal game. We can draw a number of general conclusions about
the perceptions of agents with different optimally motivating
incentives:

• Agents with high optimally motivating incentive (greater than
the average of the highest two payoffs of a game) perceive a
game that still conforms to the conditions defining the original
game. For example, an agent with high optimally motivating
incentive playing a PD game will still perceive a valid PD game
and so on.
• Agents with moderate or lower optimally motivating incen-

tive perceive new games that do not conform to the conditions
defining the original game. This changes the NE and the
behavior of the agents over time.

When agents with different optimally motivating incentives
interact:

• Agents with high optimally motivating incentive will tend
to be the “exploiters” in PD and Chicken games, the

“leaders” in a Leader game, and the “heroes” in a BoS
game.
• Agents with low optimally motivating incentive (less than the

average of the lowest two payoffs of a game) will tend to be the
“martyrs” in a PD game, the “followers” in a Leader game, the
“chickens” in a Chicken game and the “selfish” in a BoS game.

The concept of optimally motivating incentive thus provides an
approach to building artificial agents with different personalities
using motivation. Personality in this case is expressed through
behavior. For example, using the language of Colman (1982),
agents in the simulations in section Results can be interpreted
as demonstrating behavioral characteristics such as “aggression,”
“leadership,” “heroism,” “martyrdom,” and “caution.” This sug-
gests a number of possible applications including the design of
more believable agents, human-computer interaction and sim-
ulation of human decision-making. These are discussed in the
following sub-sections.

BELIEVABLE AGENTS
Agents with distinguishable personalities have applications in
areas such as animated entertainment where believable agents
increase the sense of immersion in a virtual environment.
According to Loyall (1997), believable agents should “allow people
to not just watch, but also interact with. . . powerful, personality-
rich characters.” The work in this paper specifically explores the
role of intrinsic motivation for artificial agents engaged in social
interactions. While the experiments in this paper are abstracted
to the decision-making level, it is feasible to imagine an extension
of this work in which this decision making controls the animated
behaviour of a virtual character.

Some existing work has studied self-motivated behavior such
as curiosity and novelty-seeking in NPCs in computer games
(Merrick and Maher, 2009). Merrick and Maher (2009) demon-
strate that intrinsically motivated reinforcement learning agents
can learn in open-ended environments by generating goals in
response to their experiences. The simulations in this paper
combined optimally motivating incentive with learning using
replicator dynamics, to complement the analytical description
of each game transformation. However, in future it is feasible
that motive profiles may be combined with learning algorithms
that learn from actual interaction and experimentation with their
environment during strategic interactions. Reinforcement learn-
ing variants such as frequency adjusted Q-learning (Kaisers and
Tuyls, 2010) have been specifically developed for such multi-agent
systems and suggest a starting point for such work. This would
permit a wider range of motives to be used in NPCs. It would
also extend existing work with intrinsically motivated NPCs from
scenarios in which individual agents interact with their environ-
ment to scenarios in which multiple intrinsically motivated agents
interact with each other.

HUMAN-COMPUTER INTERACTION
Just as the study of computational models of motivation lies
at the intersection of computer science and cognitive science,
another area of future work lies at the boundary where com-
puter and human interact. In particular, computers are increas-
ingly applied to problems that require them to develop beliefs
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about the motives and intentions of the humans with whom they
interact. Maher et al. (2007) for example, propose “curious places”
in which a building is an “immobile robot” with sensors an actu-
ators permitting it to monitor and control the built environment.
The aim of the immobile robot is to intervene proactively on
behalf of the human and modify the environment in a manner
that supports the human’s goals. In order to do this, it must first
identify those goals.

The framework in this paper can be conceived as a foundation
for agents to simulate and reason about the decision-making of
other agents or humans. As discussed in section Mixed-Motive
Games, the four games studied in this paper represent abstrac-
tions of real-world interaction scenarios. A robot equipped with
appropriate sensors might monitor the behavior of a given human
in such scenarios and deduce their motive profile from their
behavior. By engaging in such “autonomous mental simulation”
of the intrinsically motivated reasoning of another, such an agent
may ultimately be better equipped to estimate and support the
goals of humans.

SIMULATION OF HUMAN DECISION-MAKING
The theories presented in this paper provide a starting point
for developing populations of agents that can reproduce certain
aspects of human decision-making during strategic interactions.
Merrick and Shafi (2011) showed that it is possible to calibrate
power, achievement and affiliation motivated agents such that

they can accurately simulate human decision-making under cer-
tain constrained conditions. Specifically, their work focused on
single-shot decisions by individual agents. The work in this paper
provides a foundation for extending their work to scenarios in
which agents interact. In future, such simulations may permit
us to examine hypotheses about how individuals with different
motives may behave during strategic interactions.

Key research challenges in this area include understanding
the ranges of optimally motivating incentives that best repre-
sent motivation types such as power, affiliation and achieve-
ment motivated individuals. In practice it seems that there is
significant overlap between individuals in the three groups. In
addition, motivation psychologists have identified hybrid pro-
files where more than one motive is dominant (Heckhausen
and Heckhausen, 2008). For example in the leadership profile
both power and achievement motivation are believed to have
approximately equal strength. In terms of the work in this paper,
this would mean that agents have more than one optimally
motivating incentive. Exploration of profiles such as this is a
direction for future work that can provide insight into both
the role of motivation in humans and its modeling in artificial
systems.
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A hypothesis regarding the development of imitation learning is presented that is rooted in
intrinsic motivations. It is derived from a recently proposed form of intrinsically motivated
learning (IML) for efficient coding in active perception, wherein an agent learns to perform
actions with its sense organs to facilitate efficient encoding of the sensory data. To this
end, actions of the sense organs that improve the encoding of the sensory data trigger an
internally generated reinforcement signal. Here it is argued that the same IML mechanism
might also support the development of imitation when general actions beyond those of
the sense organs are considered: The learner first observes a tutor performing a behavior
and learns a model of the the behavior’s sensory consequences. The learner then acts
itself and receives an internally generated reinforcement signal reflecting how well the
sensory consequences of its own behavior are encoded by the sensory model. Actions
that are more similar to those of the tutor will lead to sensory signals that are easier to
encode and produce a higher reinforcement signal. Through this, the learner’s behavior is
progressively tuned to make the sensory consequences of its actions match the learned
sensory model. I discuss this mechanism in the context of human language acquisition and
bird song learning where similar ideas have been proposed. The suggested mechanism
also offers an account for the development of mirror neurons and makes a number of
predictions. Overall, it establishes a connection between principles of efficient coding,
intrinsic motivations and imitation.

Keywords: intrinsic motivation, imitation, efficient coding, active perception, language development, bird song,

mirror neuron, perceptual fluency

1. INTRODUCTION
Imitation is a powerful form of learning where an agent acquires a
skill from observing the skill being performed by a second agent.
This can dramatically speed up the learning of useful behaviors
compared to random exploration (Miller and Dollard, 1941). In
the animal learning literature, imitation has been defined as “the
copying of a novel or otherwise improbable act or utterance,
or some act for which there is clearly no instinctive tendency”
(Thorpe, 1963), but many other more or less stringent definitions
exist. Many authors reserve the term imitation to situations where
the behavior in question is not yet in the behavioral repertoire of
the imitating agent (Clayton, 1978), but assessing the behavioral
repertoire of an animal is in itself problematic. In the following, I
will simply use imitation as an umbrella term for various forms of
social learning and highlight important distinctions in the context
of specific examples.

Despite many years of research, the origin and development of
imitation abilities in animals and humans are still poorly under-
stood (Heyes, 2001). While some theories have proposed that
the ability to imitate relies on sophisticated innate mechanisms
(Meltzoff and Moore, 1997), other accounts have emphasized
the role of generic learning mechanisms for the development of
imitative behaviors (Miller and Dollard, 1941; Gewirtz, 1969).
Recent learning accounts considering possible underlying neu-
robiological mechanisms have rested on associative (Hebbian)

learning (Heyes and Ray, 2000; Keysers and Perrett, 2004) or
reinforcement learning (Triesch et al., 2007). These are sufficient
for the development of a simple form of imitation also called
response facilitation, where the agent learns to map the observa-
tion of a behavior performed by a second agent onto an already
existing motor representation for performing the same behav-
ior. This motor representation could already be present at birth
or have been learned previously through random exploration of
movement possibilities, often referred to as babbling. Importantly,
however, these accounts have difficulties explaining the devel-
opment of what is sometimes called true imitation, where the
to-be-learned skill is not yet in the behavioral repertoire of the
developing agent. This is the much more difficult and interest-
ing case, because it addresses how imitation could accelerate the
acquisition of novel skills.

An important example is speech acquisition, where the infant
learns to produce utterances from her native language based on
interactions with her caregivers. Infants are capable of statistical
learning and readily discover statistical patterns of their native
language, but also the social interaction with caregivers is criti-
cal for normal development of speech, see Kuhl (2004) for review.
A closely related case is the acquisition of songs in certain species
of song birds. This learning has been related to human language
learning (Marler, 1970; Doupe and Kuhl, 1999) and is used as a
model system for it. As early as 1773 it was shown that birds learn
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their song(s) from experience during development (Barrington,
1773). For example, male juvenile zebra finches usually learn
to sing a song that closely resembles that of their father. The
learning proceeds in two phases. During a first phase of purely
sensory learning, the juvenile bird is suspected to form an audi-
tory template of the father’s (or other social tutor’s) song (Baptista
and Petrinovich, 1984; Konishi, 2010). During a second phase
of sensory-motor learning, the bird learns to produce a song to
match the learned template. Depending on the species, the sen-
sory and sensory-motor phases may or may not overlap. Presently
it is still unclear through what precise mechanisms the juvenile
bird manages to better and better approximate the father’s song.
Here I discuss how a recently proposed intrinsically motivated
learning (IML) mechanism for efficient coding in active percep-
tion might be generalized for this form of imitation learning.
This suggests that principles of efficient sensory coding may be
a foundation for song learning in birds and speech acquisition in
humans.

Intrinsic motivations have recently come into focus as impor-
tant driving forces in the development of complex behaviors
(Baldassarre and Mirolli, 2013). While there is still much debate
about the correct definition of intrinsic motivations (Baldassarre,
2011), the term is usually used when referring to behaviors such as
play or other “curious” exploration of the environment that seem
unrelated to any immediate “extrinsic” goal such as the acquisi-
tion of food. This hypothesis article does not propose any specific
computational model nor does it present any empirical results. It
is merely discussing the new hypothesis in the context of existing
work. In the following, I briefly review a recently proposed form
of IML for efficient sensory coding in active perception. Then I
show how a generalization of this mechanism may account for the
development of imitative behaviors. This also suggests a mecha-
nism for the development of mirror neurons. Finally, I discuss
predictions that the proposed mechanism makes.

2. INTRINSICALLY MOTIVATED LEARNING FOR EFFICIENT
CODING IN ACTIVE PERCEPTION

The efficient coding hypothesis posits that sensory systems strive
to encode sensory information in an efficient manner by exploit-
ing the statistical structure and redundancies present in the
sensory data (Attneave, 1954; Barlow, 1961). Since its first formu-
lation, numerous aspects of sensory coding have been successfully
explained in this context. This includes research on how early
visual representations can be understood as adaptations to the
statistics of natural images (Simoncelli and Olshausen, 2001)
as well as related findings in the auditory (Smith and Lewicki,
2006) and olfactory (Perez-Orive et al., 2002) modalities. While
this research program has been highly successful, it has typically
neglected the active nature of perception. In particular, the statis-
tics of sensory signals are a result of both the natural environment
and the organism’s behavior. This implies that the behavior of
the organism and in particular the movement of the sense organs
could be utilized to make the encoding of sensory information
more efficient.

Along these lines and inspired by previous work from
Schmidhuber (2009) proposing compression progress as an
objective for IML, Zhao et al. (2012) have recently presented a

model that learns to efficiently encode visual input from two eyes,
see Figure 1A. Their approach proposes a form of IML using
an internally generated reinforcement signal for learning efficient
coding strategies in active perception. The method works as fol-
lows: A sensory model learns to encode sensory data, while a
reinforcement learner generates actions of the sense organs that
help the agent to encode the sensory data efficiently. To this end,
an internally generated reinforcement signal is given to the rein-
forcement learner that reflects how well the sensory model is able
to encode the input.

In the context of binocular vision Zhao et al. (2012) have
shown that this mechanism elegantly explains the joint devel-
opment of an efficient representation for stereo disparity in
the sensory model and an accurate controller for vergence eye
movements. In this setting, the system discovers that it is useful
(intrinsically rewarding) to verge both eyes onto a common phys-
ical point, because then the sensory model is able to encode the
data more efficiently. This is because the images from both eyes
become more redundant and their joint encoding by the sensory
model becomes more accurate. We may think of this in terms of
the affordance concept. The observation of a certain disparity at
the center of gaze is found to afford a certain vergence command
that will lead to an improved representation of this input.

FIGURE 1 | The recently proposed intrinsically motivated learning

architecture for efficient coding in active perception (A) also gives rise

to the development of imitation (B). (A) The learning architecture
comprises an efficient coding model for the sensory input and an
intrinsically motivated reinforcement learning mechanism for generating
behavior. In the example of Zhao et al. (2012), the efficient coding model
learns a sparse code for binocular images, while the reinforcement learner
generates vergence eye movements. To this end, it receives from the
sensory coding model a representation of the sensory input (thin arrow)
and an internally generated reward signal reflecting how well the sensory
model could encode the binocular input (thick arrow). Both the sensory
coding model and the reinforcement learner try to optimize the encoding of
the data. The system discovers that the input data can be encoded most
efficiently when vergence commands are used to minimize binocular
disparity. (B) The learner acquires an efficient encoding of speech signals
provided by a tutor (big mouth). When the learner starts babbling (small
mouth), the resulting acoustic signals are encoded by the sensory model
that has been tuned to the tutor’s speech. Signals that are easy to encode
for the sensory model because the utterance sounds similar to the tutor’s
speech will produce a high reinforcement signal. Through this, the system’s
utterances are progressively driven to approximate the tutor’s speech.
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Importantly, the learning of the sensory model and the eye
movement control develop jointly in this approach, driven by
the identical objective of encoding the data efficiently. This
mechanism has been shown to lead to fully autonomous and
self-calibrating development of binocular vision and has been val-
idated on a real robot (Lonini et al., 2013). More recently, it has
also been extended to the development of smooth pursuit eye
movements. Whether this approach can be extended to actions
beyond eye movements is still an open question.

The central assumption of this approach is the existence of an
internally generated reinforcement signal that encourages move-
ments of the sense organs leading to an improved encoding of
the sensory stimulus. Research on perceptual fluency supports the
plausibility of this assumption. It has been found that the ease
of processing of a sensory stimulus is related to positive affect
(Reber et al., 1998). Assuming that the ease of processing reflects
the quality of encoding of the stimulus by the sensory model,
then easy to encode stimuli should produce positive affect. This
positive affect may be due to the proposed internally generated
reinforcement signal.

One point requires some discussion, however. Simply trying to
behave such that the incoming sensory signals are encoded most
easily might drive the agent to more or less abolish sensory input.
In the case of visual perception, the agent could simply close the
eyes or stare at a blank wall. This would make the sensory sig-
nals be encoded most easily, but is of little use otherwise. There
are several ways to avoid this. A first solution is to introduce
a separate mechanism for selecting what the agent will look at,
while the described IML mechanism ensures that how the target
object is being looked at is most efficient. For example, an atten-
tion mechanism selects what object in the scene should be looked
at, while the proposed IML mechanism ensures that this partic-
ular object is well represented through vergence, smooth pursuit,
and possibly other eye, head, and body movements. At the same
time, it provides an optimized sensory encoding of the stimulus
by properly taking into account the statistics of the sensory sig-
nals resulting from these movements. A second solution to the
problem is to measure the ease of encoding of the sensory data
in relation to some notion of the complexity of the data or the
amount of information it contains. For example, the sensory sig-
nals resulting from staring at the blank wall may indeed be easy
to encode (e.g., lead to a low reconstruction error of a genera-
tive model), but they may contain very little information to start
with. There are various ways of making these notions mathemat-
ically precise, but the details are not important for the present
paper.

Having introduced the recently proposed IML mechanism for
efficient coding in active perception, we are now ready to con-
sider its connection to imitation learning, which will require us
to generalize it from movements of the sense organs to other
motor acts.

3. HOW INTRINSICALLY MOTIVATED LEARNING FOR
EFFICIENT CODING MAY SUPPORT IMITATION

The mechanism for IML in active perception discussed above
could also lead to the development of a form of imitation learn-
ing, as illustrated in Figure 1B. Consider the example of an infant

faced with the problem of acquiring speech by imitating the utter-
ances of her caregivers (or that of a juvenile song bird learning the
father’s song). Let’s assume that at a certain point in development
the infant has already learned a reasonably good sensory repre-
sentation of what her native language sounds like Kuhl (2004).
This representation will continue to improve with age and expe-
rience. When the infant vocalizes, her utterances will be processed
by her own auditory system, which has already been tuned toward
the sounds and words of her mother tongue. According to the
IML mechanism described above, utterances that sound more like
her mother tongue will be more easily encoded by her auditory
system, which will lead to the generation of a higher reinforce-
ment signal compared to utterances that sound dissimilar from
her mother tongue. Thus, over time, the infant will adapt her
utterances to the language she is exposed to driven by her intrin-
sic motivation to behave in such a way that the sensory data are
encoded easily for her auditory system. Importantly, this suggests
that language specific information could enter the babbling pro-
cess early on, with each utterance being evaluated in the light of
already learned sensory representations. We will return to this
point in the Discussion.

An important question in this context is how the sensory
model will learn to encode the caregiver’s speech and when exactly
the infant’s speech will be easy to encode for the sensory model.
The caregiver’s utterances will necessarily sound different from
the infant’s utterances due to the different structure of their vocal
tracts. For example, it is not lcear why the sound of a certain
vowel produced by the infant with her vocal tract should be easy
to encode for her auditory system, if this has been tuned to speech
of her caregiver, whose vowels will generally differ in fundamental
frequency and other parameters. For the case of vowel acquisition
in the context of infant caregiver interactions, it has been argued
that an automirroring bias can overcome this difficulty Ishihara
et al. (2009); Miura et al. (2012).

3.1. RELATIVE TIMING OF SENSORY AND MOTOR LEARNING
For The proposed IML mechanism it may be maladaptive for the
learner to produce utterances at an excessive rate right after birth.
If a sensory representation properly reflecting the correct target
language (or song) is not acquired first, then the learner’s auditory
representation may become tuned to or even dominated by its
own utterances. According to the proposed IML mechanism, the
learner would then find rewarding whatever it is producing itself.
This could potentially slow down learning of the native language.
Enforcing a sufficient amount of passive exposure to the language
may avoid this problem.

Similarly, reducing plasticity in sensory areas at the end of a
critical period and before the onset of vocalizations may also alle-
viate this problem, because it prevents the sensory representation
from becoming dominated by the sensory consequences of the
agent’s own actions.

An alternative solution to the problem would be to reduce
or switch off sensory learning during one’s own vocalizations.
Instead, the auditory feedback could be used to train a forward
model that predicts the auditory feedback based on an effer-
ence copy of the motor signals. Note that an accurate forward
model allows planning and off-line learning without the need for
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producing actual motor output and observing the consequences.
This can dramatically speed up learning (Sutton and Barto, 1998)
and could even happen during sleep.

3.2. LEARNING ONE THING OR MANY?
As discussed above, the absence of sensory input might be par-
ticularly easy to encode for the sensory system. This might lead
the infant to not vocalize at all. Several solutions are conceiv-
able. First, as suggested above the quality of encoding of the
sensory model could be relative to the complexity of the sen-
sory input or the amount of information contained in it. In this
way, the situation of not babbling at all could be made compara-
tively undesirable. Second, a mechanism reinforcing the learning
of novel cause and effect relationships or the “discovery of novel
actions” (Redgrave and Gurney, 2006) could foster varied bab-
bling. Third and maybe most obviously, the infant may want to
communicate.

The question remains what and how many different things
might be acquired through this IML mechanism. Note that while
some bird species only learn a single song that “crystallizes” dur-
ing development, others learn thousands of utterances during
their life time (Catchpole and Slater, 2003) as do humans. If
the sensory model allowed for only a single song “template” to
be stored, this might explain why only a single song is learned.
If, however, the sensory model had a high capacity for storing
many acoustic patterns with high fidelity, then a large repertoire
of actions would be learned with this mechanism. In general, for
any kind of sensory model there will be a trade-off: given a fixed
storage capacity more patterns can only be stored at the cost of
storing them with smaller fidelity. Such differences could con-
tribute to the varied vocabulary sizes in different species of song
birds.

3.3. CONTEXT DEPENDENCE
The mechanism described thus far will allow an agent to learn to
imitate a range of utterances or behaviors whose sensory conse-
quences match those of its learned sensory model. In the simplest
case, however, all of these behaviors will appear equally “good” in
any situation, i.e., what vocalization is performed would not nec-
essarily depend on the current context. This could lead to behav-
iors being produced in inappropriate contexts. How could the
agent learn to generate a certain behavior only in the appropriate
context?

One solution is certainly through instrumental learning. If, say,
the behavior has undesirable consequences in the present con-
text, its execution may be made less probable because of this.
A second solution to the problem is that during learning of the
sensory model, contextual information is also integrated into the
representation. Thus, the model will not be a purely sensory
model anymore but a sensory-plus-context model. Specifically,
if during the sensory-only phase of development, the infant or
the song bird hears an utterance only in a specific context, then
the developing sensory-plus-context model may encode this rela-
tionship. Thereby, if the learner generates the behavior in the
same context, this will be particularly easy to encode for the
sensory-plus-context model. Conversely, if the behavior is pro-
duced in a different context, this will be less easy to encode for the

sensory-plus-context model, because there is a mismatch between
the context and the sensory input. Obviously, relevant contexts
are also perceived based on sensory, e.g., visual information. Thus
a strict separation of sensory information and context may not
always be possible. Interestingly, the context could be the pres-
ence of a certain object to which the infant pays attention. In
this case, an initial association between the visual appearance
of the object, it’s acoustic label, and the motor representation
for generating the acoustic label can be established. In this sit-
uation, the presense of the object would afford producing the
object’s name.

4. DEVELOPMENT OF MIRROR NEURONS
Mirror neurons are a class of neurons first observed in the pre-
motor cortex of monkeys (Gallese et al., 1996) whose defining
characteristic is that they can be activated if the monkey observes
another agent performing a certain behavior or if the monkey
plans and executes the same behavior. Because of this, they have
been implicated in action understanding, imitation, empathy and
language acquisition (Rizzolatti and Arbib, 1998; Gallese et al.,
2004; Rizzolatti and Craighero, 2004). While originally discovered
in monkeys, there is converging evidence for a mirror neuron sys-
tem in humans (Iacoboni et al., 1999) and song birds (Prather
et al., 2008). While the question how mirror neurons could sup-
port imitation has received much interest (Iacoboni et al., 1999;
Iacoboni, 2005, 2009), comparatively little work has investigated
how mirror neurons develop ontogenetically and what learning
processes drive this development (Heyes, 2010).

Complementary mechanisms have been proposed for the
development of mirror neurons based on generic learning prin-
ciples. The most popular one is that mirror neurons develop
through associative learning mechanisms such as Hebbian learn-
ing (Heyes and Ray, 2000; Keysers and Perrett, 2004; Heyes
et al., 2005; Catmur et al., 2007; Cooper et al., 2013). A second
mechanism is that mirror neurons could develop through reward-
dependent (instrumental, reinforcement) learning (Triesch et al.,
2007). We will take a look at both mechanisms before describ-
ing a new one based on IML for efficient coding, which combines
aspects of the other two.

4.1. HEBBIAN DEVELOPMENT OF MIRROR NEURONS
Hebbian accounts works as follows (Heyes and Ray, 2000; Keysers
and Perrett, 2004; Del Giudice et al., 2009). In the case of behav-
iors whose sensory consequences are easily observed such as
seeing one’s own reaching movement or hearing one’s own utter-
ances, it is assumed that Hebbian learning forms associations
between simultaneously active sensory and motor representations
for already learned skills. As a result, neurons involved in the
execution of a specific behavior receive strong excitatory connec-
tions from neurons representing its sensory consequences and
vice versa. When another agent is then observed performing the
same action, the same sensory representations will be triggered
due to their ability to generalize to similar sensory stimuli. It
has been argued that such generalization ability may stem from
maturational constraints of the visual system Nagai et al. (2011).
The activated sensory representation then excites the correspond-
ing motor representation via the associative connections learned
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through the Hebbian mechanism. Through this the motor rep-
resentation has obtained mirror properties: it is activated by
planning or executing a behavior and by merely observing it in
another agent.

The situation is more difficult for behaviors where the agent
cannot fully perceive the sensory consequences of its actions as
in the generation of facial expressions. For such “opaque” cases it
is assumed that the agent learns to imitate by first being imitated
by another agent—usually the caregiver. For example, when an
infant smiles and his mother imitates the smile, the infant can
learn to associate the visual representation of the mother’s smiling
face with her own motor representation for smiling. Again, the
motor representation assumes mirror properties due to Hebbian
learning. While overall the account appears plausible, a limitation
is that it only develops mirror representations for skills that have
already been learned. The learning of novel behaviors is left to
random exploration which is very inefficient when many motor
degrees-of-freedom are involved as is the case in speech or song
production, i.e., when learning takes place in a high-dimensional
space.

4.2. REWARD-DRIVEN DEVELOPMENT OF MIRROR NEURONS
In the reward-based learning account, the agent discovers that
performing a certain behavior is useful whenever it sees another
agent perform this behavior. For example, when a developing
monkey observes a conspecific grasping a peanut from a source,
the resulting sensory representation can become associated with
the monkeys own motor plan for grasping a peanut from the same
source, which is inherently rewarding—especially when hungry.
Note that this mechanism does not require the ability to observe
the sensory appearance of one’s own action, but only whether
it leads to a positive, i.e., reinforcing outcome. Circumstantial
evidence for the importance of reward-driven learning in the
development of mirror neurons comes from a recent finding that
mirror neurons in monkey premotor area F5 are modulated by
the value the monkey assigns to a grasped object (Caggiano et al.,
2012).

The reward-driven account was studied in greatest detail in the
context of gaze following, where an agent learns to look where
others are looking. This is an example of a behavior where the
sensory appearance of the behavior cannot be observed while
the agent performs it. Triesch et al. (2007) proposed a compu-
tational model for the development of gaze following and showed
that it produced mirror neurons for looking behaviors. It also
explained various other aspects of the development of gaze fol-
lowing (Jasso et al., 2012). The existence of mirror neurons was
the central prediction of the model and it was later confirmed
neurophysiologically (Shepherd et al., 2009).

Interestingly, the reward-driven learning mechanism also pre-
dicts the possibility of generalized mirror neurons (Triesch et al.,
2007). An agent may discover that it is useful to perform some
action A whenever another agent is observed performing an
action B. Gaze following represents a simple example of this:
when two agents face each other, proper gaze following requires
the learning agent to turn the head to his left if the model
is observed turning the head to its right. Thus, not the phys-
ical appearance of the movement matters, but the goal of the

action: where should I look? Through the reward driven learn-
ing mechanism an association can be learned from the sensory
representation corresponding to the observation of the other
agent performing action B and one’s own motor representation of
action A. This would lead to generalized mirror neurons for which
the observed action triggering them is not necessarily identical to
the action being generated.

4.3. INTRINSICALLY MOTIVATED DEVELOPMENT OF MIRROR
NEURONS

The proposed IML mechanism integrates ideas from the Hebbian
and the reward-based accounts. Like the Hebbian mechanism,
it requires that the sensory consequences of the actions can be
perceived. The development of mirror neurons could proceed
along the following steps. (1) During sensory-only learning, a
sensory model of various behaviors produced by the tutor is
learned. Associated with this model, we assume that there will be
populations of neurons specific to the perception of these differ-
ent behaviors. (2) During the sensory-motor phase, the learner
acquires motor representations that produce the same sensory
consequences by virtue of the proposed IML mechanism. This
involves the learner’s reward system, but the reinforcement signals
are internally generated. In the end, specific motor representa-
tions and the associated populations of neurons will code for
specific behaviors. (3) Since these motor representations trigger
specific sensory consequences, Hebbian learning mechanisms can
establish a bidirectional association between the motor represen-
tation and the sensory representation. Through this, the sensory
representation will acquire some motor properties and the motor
representation will acquire some sensory properties. The clear
distinction between sensory and motor representations dissolves
and neurons with mirror properties develop: They are active
when their sensory representation is triggered during observation
of the behavior of another agent and during planning and exe-
cution of the corresponding behavior. Note that, the three steps
could also overlap in time.

The computational benefit of the IML mechanism over the
Hebbian mechanism is that the discovery of new skills is not left to
random exploration, but occurs under guidance from the sensory
model. Exploration is focused on those behaviors that produce
similar sensory consequences as the behavior of conspecifics. The
computational advantage over the reward-based mechanism is
similar. The discovery of new skills does not require an external
reward such as the peanut in the above example, but guarantees
that matching one’s behavior with that of a conspecific is intrin-
sically rewarding. This seems to better reflect the true nature of at
least human imitation.

5. DISCUSSION
I have described how a recently proposed mechanism for IML
for efficient coding in active perception can be generalized to
support imitative learning. In addition, a corresponding account
for the development of mirror neurons was presented. It com-
bines previous proposals based on associative Hebbian learning
and instrumental or reinforcement learning in the framework
of IML. These mechanisms represent parallel pathways through
which mirror neurons can be acquired. Once established through
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either of these mechanisms, it is easy to see how mirror neu-
rons could contribute to various forms of imitation including
automatic imitation (Heyes, 2010) and vocal mimicry.

The IML mechanism proposed here is compatible with many
previous theoretical accounts and computational models of song
bird learning. A full review of these works is beyond the scope of
this article. Existing works typically assume that a reinforcement
signal is derived from matching auditory feedback to a stored
sensory template (Doya and Sejnowski, 1995; Troyer and Doupe,
2000). Here I have proposed that such a reward signal could be
derived from an evaluation of how well the auditory feedback is
encoded by a sensory model. This distinction is admittedly sub-
tle, but it connects the present approach to theories on efficient
coding and sparse coding models as we have used in our work on
the role of the same IML mechanism in active perception (Zhao
et al., 2012; Lonini et al., 2013). This may be important, since neu-
ral representations in certain parts of the song system are known
to be very sparse (Hahnloser et al., 2002).

The examples of human language acquisition and bird song
learning are special in that the sensory consequences of the behav-
ior are readily perceived. Obviously, the proposed mechanism can
be extended to other actions that are easily perceived such as man-
ual actions. For other actions such as facial expressions, this is not
straight forward (unless a mirror is available). Learning to imitate
facial expressions may require other mechanisms such as being
imitated by caregivers (Heyes, 2001) or rely on reinforcement
learning mechanisms and social feedback.

The presented mechanism is rooted in the efficient coding
hypothesis. As such, it somewhat downplays the importance of
social feedback during speech and song acquisition. But the social
context in which learning takes place is known to play a very
important role both in human language acquisition and bird song
learning Goldstein et al. (2003); Kuhl et al. (2003). In the words
of Goldstein and Schwade (2008): “infants’ prelinguistic vocaliza-
tions, and caregivers’ reactions to those immature sounds, create
opportunities for social learning that afford infants knowledge of
phonology.”

The proposed IML mechanism also shares some aspects of
previous work on imitation in the developmental robotics litera-
ture. For instance, (Gaussier et al., 1998) and (Andry et al., 2001)
propose a robot where a mechanism of “cognitive homeosta-
sis” would give rise to imitative behaviors. Due to a “perceptual
ambiguity” the robot may mistake an optic flow field caused by
observing a moving agent with the flow field produced by its
own locomotion. The homeostasis drive would try to minimize
the mismatch between the sensory input stream and the robot’s
motor commands such that the robot will start moving. This is
suggested to lead to an immediate following behavior. They then
present experiments with a real robot that has a different prewired
following mechanism. It learns to store extended sequences of
movements resulting from following another robot or a human
if these sequences lead to a reward. In our case, imitation does
not emerge from a drive to reduce the mismatch between sensory
percepts and own motor commands or from a prewired following
mechanism but from a reinforcement signal that favors move-
ments whose sensory consequences can be encoded efficiently by
the sensory system.

Kaplan and Oudeyer (2007) have considered an intrinsic moti-
vation for maximizing learning progress and discussed its poten-
tial role in the development of imitation. After illustrating how
an intrinsic motivation for learning progress allows an agent
to tackle progressively more difficult learning problems by dis-
covering “progress niches,” they speculate that such an intrinsic
motivation may also contribute to the development of imitation.
Specifically, they argue that “(1) the meaningful distinctions nec-
essary for the development of imitation (self, others and objects
in the environment) may be the result of discriminations con-
structed during a progress-driven process and that (2) imitative
behavior can more generally be understood as a way of producing
actions in order to experience learning progress.” They specu-
late that at different stages of development infants may engage
in different kinds of imitative behaviors because they maximize
the infant’s current learning progress. Here we argue that imita-
tive behaviors are reinforced because their sensory consequences
can be encoded efficiently by the learner’s sensory model.

How could the proposed IML mechanism be tested experi-
mentally? In the context of human language learning, it suggests
that the babbling process might already reflect some aspects of the
statistical properties of the language to which the infant has been
exposed. This in turn predicts that the babbling process of infants
could be shaped by carefully controlling their language input. For
example, we may speculate that when caregivers intuitively reply
to babbling attempts by uttering “close” words from the target
language, they will affect the infant’s sensory model in such a way
that the correct pronunciation of the “close” word is reinforced
during future babbling attempts. In contrast, replying to infant’s
babbling attempts with arbitrary different-sounding words will
not produce this effect. Other aspects of child-directed speech
such as hyperarticulation are also thought to aid the infant in
learning a sensory model of the target language (Kuhl et al., 1997).
More research is needed to investigate if and how infants’ babbling
is shaped by their developing sensory model of the target language
through internally generated reinforcement signals.

In the context of bird song learning, the IML mechanism could
be tested most directly by recording from reward circuits in the
song bird brain as the animal is learning its song. The most obvi-
ous and direct prediction is that utterances sounding more similar
to the father’s song will generate a higher reward signal because
they are easier to encode for the bird’s auditory system, while
utterances sounding dissimilar from the father’s song will gen-
erate a lower reward signal because they are harder to encode.
By manipulating the auditory feedback the bird is receiving, the
causal role of this sensory feedback in learning can be tested. Note,
however, that disentangling whether a stronger reinforcement sig-
nal is due to an easier encoding of the sensory signals or a greater
similarity of the auditory feedback to a stored template may be
difficult. To this end, it may be important to consider song bird
species learning many different songs.

Next to testing the proposed mechanism and its possible neu-
ral implementation in biological experiments, it will also be
interesting to apply the idea in the context of robots. For example,
future work could try to exploit the proposed IML mechanism
for language learning in robots. This will help to identify possible
limitations or inconsistencies of the approach. The experiences
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gained would help to further develop and refine the current pro-
posal. In conclusion, it is intriguing that the venerable principle
of efficient sensory coding may play a central role in sophisticated
cognitive phenomena such as imitation and language acquisition.
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We bridge the gap between two issues in infant development: vocal development and
intrinsic motivation. We propose and experimentally test the hypothesis that general
mechanisms of intrinsically motivated spontaneous exploration, also called curiosity-driven
learning, can self-organize developmental stages during early vocal learning. We introduce
a computational model of intrinsically motivated vocal exploration, which allows the learner
to autonomously structure its own vocal experiments, and thus its own learning schedule,
through a drive to maximize competence progress. This model relies on a physical
model of the vocal tract, the auditory system and the agent’s motor control as well
as vocalizations of social peers. We present computational experiments that show how
such a mechanism can explain the adaptive transition from vocal self-exploration with
little influence from the speech environment, to a later stage where vocal exploration
becomes influenced by vocalizations of peers. Within the initial self-exploration phase, we
show that a sequence of vocal production stages self-organizes, and shares properties
with data from infant developmental psychology: the vocal learner first discovers how
to control phonation, then focuses on vocal variations of unarticulated sounds, and
finally automatically discovers and focuses on babbling with articulated proto-syllables.
As the vocal learner becomes more proficient at producing complex sounds, imitating
vocalizations of peers starts to provide high learning progress explaining an automatic
shift from self-exploration to vocal imitation.

Keywords: vocal development, intrinsic motivation, curiosity-driven learning, imitation, self-organization,

interactive learning, goal babbling

1. INTRODUCTION
1.1. VOCAL DEVELOPMENT AND INTRINSIC MOTIVATION
Early on, babies seem to explore vocalizations as if it was a game
in itself, as reported by Oller (2000) who cites two studies from
the nineteenth century:

“[At] 3 months were heard, for the first time, the loud and high
crowing sounds, uttered by the child sponteaneously, [. . . ] the
child seemed to take pleasure in making sounds.” (Sigismund,
1971)
“[He] first made the sound mm spontaneously by blowing nois-
ily with closed lips. This amused [him] and was a discovery for
[him].”1 (Taine, 1971)

Such play with his vocal tract, where the baby discovers the sounds
he can make, echoes other forms of body play, such as explo-
ration of arm movements or how he can touch, grasp, mouth or
throw objects. The concept of intrinsic motivation has been pro-
posed in psychology to account for such spontaneous exploration

1We have changed the gender of the subject to a male in this quotation, in
order to follow the convention of the present article. Throughout this paper,
we will use “he” for an infant, “she” for a caregiver (e.g., the mother) and “it”
for a learning agent (the model).

(Berlyne, 1954; Deci and Ryan, 1985; Csikszentmihalyi, 1997;
Ryan and Deci, 2000; Gottlieb et al., 2013):

“Intrinsic motivation is defined as the doing of an activity for its
inherent satisfaction rather than for some separable consequence.
When intrinsically motivated, a person is moved to act for the
fun or challenge entailed rather than because of external products,
pressures or reward.” (Ryan and Deci, 2000)

Intrinsic motivation refers to a mechanism pushing individuals
to select and engage in activities for their own sake because they
are inherently interesting (in opposition to extrinsic motivation,
which refers to doing something because it leads to a separable
outcome). A key idea of recent approaches to intrinsic motivation
is that learning progress in sensorimotor activities can generate
intrinsic rewards in and for itself, and drive such spontaneous
exploration (Gottlieb et al., 2013). Learning progress refers to
the infant’s improvement of his predictions or control over activ-
ity they practice, which can also be described as reduction of
uncertainty (Friston et al., 2012).

Although spontaneous vocal exploration is an identified phe-
nomenon, occurring in the early stages of infant development, the
specific mechanisms of such exploration and the role of intrinsic
motivation for the structuration of early vocal development has
not received much attention so far to our knowledge. We propose
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that mechanisms of intrinsically motivated spontaneous explo-
ration, which we also refer to as curiosity-driven learning, play
an important role in speech acquisition, by driving the infant to
follow a self-organized developmental sequence which will allow
him to progressively learn to control his vocal tract. This is to
our knowledge a largely unexplored hypothesis. The goal of this
article is to formalize in detail this hypothesis and study general
properties of such mechanisms in computer experiments.

Several computational models of speech development, where
speech acquisition is organized along a developmental pathway,
have been elaborated so far. They have shown how such stage-like
organization can ease the acquisition of complex realistic speech
skills.

The DIVA model (Guenther et al., 1998; Guenther, 2006),
as well as Kröger’s model (Kröger et al., 2009), propose archi-
tectures partly inspired by neurolinguistics. They involve two
learning phases. The first one is analogous to infant babbling and
corresponds to semi-random articulator movements producing
auditory and somatosensory feedbacks. This is used to tune the
correspondences between representation maps within a neural
network . In the second phase, the vocal learner is presented with
external speech sounds analogous to an ambient language and
learns how to produce them adequately. The Elija model (Howard
and Messum, 2011) also distinguishes several learning phases. In
the first phase of exploration, the agent is driven by a reward
function, including intrinsic rewards such as sound salience
and diversity, as well as articulatory effort. Various parameter-
izations of this reward function allows the model to produce
vocalizations in line with Oller’s vocal developmental stages of
infants. In a subsequent phase, the sounds produced by the model
attract the attention of a caregiver, providing an external rein-
forcement signal. Other models also use a reinforcement signal,
either from human listeners [social reinforcement (Warlaumont,
2012, 2013b)] or based on sound saliency [intrinsic reinforce-
ment (Warlaumont, 2013a)], and show how this can influence a
spiking neural network to produce canonical syllables. Such com-
putational models of speech acquisition pre-determine the global
ordering and timing of learning experiences, which amounts to
preprograming the developmental sequence. Understanding how
a vocal developmental sequence can be formed is still a major
mystery to solve, and this article attempts a first step in this
direction.

We build on recent models of skill learning in other modal-
ities (e.g., locomotion or object manipulation), where it was
shown that mechanisms of intrinsically motivated learning can
self-organize developmental pathways, adaptively guiding explo-
ration and learning in high-dimensional sensorimotor spaces,
involving highly redundant and non-linear mappings (Oudeyer
et al., 2007; Baranes and Oudeyer, 2013; Gottlieb et al., 2013;
Oudeyer et al., 2013). Such models concretely formalize con-
cepts of intrinsic motivation described in the psychology litera-
ture into algorithmic architectures that can be experimented in
computers and robots (Schmidhuber, 1991; Barto et al., 2004;
Oudeyer and Kaplan, 2007; Baldassarre, 2011). Detailed discus-
sions of the engineering aspects of such intrinsic motivation
mechanisms, casted in the statistical framework of active learn-
ing, have been recently published and showed their algorithmic

efficiency to learn sensorimotor coordination skills in redundant
non-linear high-dimensional mappings (Baldassarre and Mirolli,
2013; Baranes and Oudeyer, 2013; Srivastava et al., 2013).

Indeed, transposed in curiosity-driven learning machines
(Schmidhuber, 1991; Barto et al., 2004; Schembri et al., 2007;
Hart, 2009; Merrick and Maher, 2009; Schmidhuber, 2010; Stout
and Barto, 2010) and robots (Oudeyer et al., 2007; Baranes
and Oudeyer, 2013), these developmental mechanisms have been
shown to yield highly efficient learning of inverse models in
high-dimensional redundant sensorimotor spaces (Baranes and
Oudeyer, 2010, 2013). These spaces share many mathematical
properties with vocal spaces. Efficient versions of such mech-
anisms are based on the active choice of learning experiments
that maximize learning progress, e.g., improvement of predictions
or of competences to reach goals (Schmidhuber, 1991; Oudeyer
and Kaplan, 2007; Oudeyer et al., 2007; Baranes and Oudeyer,
2013; Srivastava et al., 2013). Such learning experiments are called
“progress niches” (Oudeyer et al., 2007).

Yet, beyond pure considerations of learning efficiency, explo-
ration driven by intrinsic rewards measuring learning progress
was also shown to self-organize structured developmental path-
ways, both behaviorally and cognitively. Indeed, such mecha-
nisms automatically drive the system to explore and learn first
easy skills, and then progressively explore skills of increasing
complexity (Oudeyer et al., 2007). They have been shown to
generate automatically behavioral and cognitive developmental
structures and have been analyzed in relation to their similarities
with infant development (Oudeyer and Kaplan, 2006; Kaplan and
Oudeyer, 2007a; Oudeyer et al., 2007; Moulin-Frier and Oudeyer,
2012). For example, in the Playground Experiment, a curiosity-
driven learning robot was shown to self-organize its own learning
experiences into a sequence of behavioral and cognitive stages
where it spontaneously acquired various affordances and skills of
increasing complexity (Oudeyer et al., 2007). It was also shown
how it could discover and focus on elementary vocal interac-
tion with a peer as a spontaneous consequence of its general
drive to explore situations where it can improve its predictions
(Oudeyer and Kaplan, 2006). Focusing on vocal interactions was
thus explained as a special case of focusing on an activity that
provides learning progress (i.e., a particular progress niche). This
therefore allowed to generate some novel hypotheses to explain
infant development, from the behavioral (Oudeyer and Kaplan,
2006), cognitive (Kaplan and Oudeyer, 2007a), or brain cir-
cuitry (Kaplan and Oudeyer, 2007b) perspectives [see Gottlieb
et al. (2013) for a review on these novel perspectives]. Intrinsically
motivated spontaneous learning has also been combined with
mechanisms of imitation learning within the SGIM-ACTS archi-
tecture, as detailed in Nguyen and Oudeyer (2012). In this model,
formulated within the framework of strategic learning (Lopes and
Oudeyer, 2012), a hierarchical active learning architecture allows
an interactive learning agent to choose by itself when to explore
autonomously, and when, what and who to imitate, based on
measures of competence progress.

Although intrinsic motivation and socially guided learning
have already been considered in computational models specifi-
cally studying speech acquisition, to our knowledge, they have
so far been considered as two distinct learning phases with a
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hard-coded switch between them (e.g., Guenther et al., 1998;
Guenther, 2006; Kröger et al., 2009; Howard and Messum, 2011).
In other words, the existence of distinct developmental stages was
presupposed in these models. In contrast, these distinct learn-
ing phases emerge from the Playground Experiment, even though
only a simplistic vocal system was considered (only pitch and
duration were controlled, and no physical model of the vocal tract
was used; modeling of speech acquisition per se was not the focus
of this study).

Our main contribution in this paper is to show how mech-
anisms of intrinsically motivated exploration applied on a real-
istic articulatory-auditory system self-organizes autonomously
into coherent vocal developmental sequences. This follows the
approach of our previous works (Moulin-Frier and Oudeyer,
2012, 2013a,b), which were preliminary studies limited to vowel
production and focusing only on autonomous learning, i.e.,
without considering a surrounding ambient language.

In such a conceptual framework, developmental structures are
neither learnt from “tabula rasa” nor a pre-determined result
of an innate “program”: they self-organize out of the dynamic
interaction between constrained cognitive mechanisms (includ-
ing curiosity, learning, and abstraction), the morphological prop-
erties of the body, and the physical and social environment
which itself is constrained and ordered by the developmental
level of the organism (Thelen and Smith, 1996; Oudeyer et al.,
2007). Thus, the approach we take can be viewed as an instan-
tiation of the concept of epigenesis, in the sense proposed by
(Gottlieb, 1991).

The study of such a dynamical systems approach, where
curiosity-driven learning is an important force, can take ample
advantage of computer modeling as a research tool. Here in par-
ticular, it can help to understand better the dynamics underlying
early vocal development, and in particular understand what are
the mechanisms which generate the developmental sequence(s) in
vocal productions and capabilities observed in infants. In partic-
ular, it can help to understand what is the precise role of intrinsic
motivation.

In the next sections of this introduction, we summarize prop-
erties of vocal development during the first year and describe the
general principles of the computational model we study in this
article.

1.2. DEVELOPMENT OF VOCALIZATIONS
Despite inter-individual variations in infant vocal development
(e.g., Vihman et al., 1986), strong regularities in the global struc-
turation of vocal development are identified (Oller, 2000; Kuhl,
2004). In this article, we adopt the view from Oller (2000) as
well as Kuhl (2004). Figure 1 schematizes this vocal development
during the first year of infant. It can be summarized as follows.
First, until the age of approximately 3 months, an infant produces
non-speech sounds like squeals, growls and yeals. During this
period, he seems to learn to control infrastructural speech prop-
erties, e.g., phonation and primitive articulation (Oller, 2000).
Then, from 3 to 7 months, he begins to produce vowel-like sounds
(or quasi-vowels) while he probably learns to control his vocal
tract resonances. At 7 months, canonical babbling emerges where
well-timed sequences of proto-syllables are mastered. But it is

only around the age of 10 months that infant vocal productions
become more influenced by the ambient language, leading to first
word productions around 1 year of age.

Two features of this developmental sketch are particularly
salient.

• Infants seem to first play with their vocal tracts in a rela-
tively language-independent way, and then are progressively
influenced by the ambient speech sounds.
• In the initial phase, when sounds produced by their peers influ-

ence little their vocalizations, infants seem to learn skills of
increasing complexity: normal phonation, then quasi-vowels
and finally proto-syllables. According to Oller (2000), such a
sequence displays a so-called natural, or logical hierarchy. For
example, it is impossible to master quasi-vowel production
without previously mastering normal phonation.

1.3. A COMPUTATIONAL MODEL OF VOCAL DEVELOPMENT
To articulate hypotheses about the possible roles of intrinsic moti-
vation in the first year of vocal development, we build here a com-
putational model of an intrinsically motivated vocalizing agent,
in contact with vocalizations of peers. In the model, an individ-
ual speech learner has the following characteristics, described in
detail in next sections:

• It embeds a realistic model of a human vocal tract: the artic-
ulatory synthesizer used in the DIVA model (Guenther et al.,
2006). This model provides the way to produce sequences of
vocal commands and to compute corresponding sequences
of acoustic features, both in multi-dimensional continuous
domains.
• It embeds a dynamical model for producing motions of the

vocal tract, based on a an over-damped spring-mass model.
This model describes dynamical aspects such as co-articulation
in sequences of vocal targets.
• It is able to iteratively learn a probabilistic sensorimotor model

of the articulatory-auditory relationships according to its own
experience with the vocal tract model. Because the sensorimo-
tor learning is iterative during the life time of the agent, it will
first be inefficient at using this model for control, and then
progresses by learning from its own experience.
• It is equipped with an intrinsically motivated exploration

mechanism, which allows it to generate and select its own
auditory goal sequences. Such mechanism includes a capa-
bility to empirically measure its own competence progress to
reach sequences of goals. Then, an action selection system
stochastically self-selects target goals that maximize compe-
tence progress.
• It is able to hear sounds of a simulated ambient language, and

its intrinsic motivation system is also used to decide whether
to self-explore self-generated auditory goals, or to try to emu-
late adult sounds. This choice is also based on a measure of
competence progress for each strategy.

Then, we present experiments allowing us to study how the
developmental structuration of early vocal exploration could be
self-organized in an intrinsically motivated speech learner, under
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FIGURE 1 | The first year of infant vocal development.

the influence of sounds in the environment and constrained by
the physical properties of the sensorimotor system.

In a first series of experiments, we consider a speech learner
who is not exposed to external speech sounds. This allows the
study of the role of intrinsic motivation independently of any
social influence. We show how a cognitive architecture for intrin-
sically motivated autonomous exploration (SAGG-RIAC; Baranes
and Oudeyer, 2013; Moulin-Frier and Oudeyer, 2013a), applied
to learning to control an articulatory synthesizer (i.e., a vocal
tract model able to produce speech sounds from articulatory
configurations), can self-organize coherent vocal developmental
sequences. This work extends preliminary studies (Moulin-Frier
and Oudeyer, 2012, 2013a,b) through the use of a different
vocal tract model and a more complex model of motion con-
trol dynamics with an overdamped spring-mass dynamical sys-
tem, providing the agent with a more realistic and powerful
mechanism to produce (un)articulated sounds.

In a second series of experiments, the speech learner is exposed
to speech sounds from its environment. The cognitive archi-
tecture is extended to strategic interactive intrinsically moti-
vated learning (SGIM-ACTS; Nguyen and Oudeyer, 2012), where
intrinsic motivation is also used by the learner to decide when to
self-explore and when to try to imitate sounds in the environ-
ment. In the present study, we suppose that the sounds of the
adult are directly imitable (we do not account for the pitch and
formant differences between infants and adults for instance). We
show that the system first focuses on self-exploration of vocaliza-
tion. It later on shifts to vocal imitation, which then influences its
vocal learning in ways that are specific to the speech environment.
Yet, in this paper, we do not study the social interaction aspect of
the teacher and, in particular, we do not model the behavior of
the adult in response to the learner behavior.

Our aim is to study how important aspects of infant vocal
development in the first year of life, described in the previous sec-
tion, could be explained by the interaction between these building
blocks: an intrinsic motivation system, a dynamic motor sys-
tem associated to morphological and physiological constraints,
an imitation system and a system for learning a sensorimotor
model out of physical experiments. We will show that compe-
tence progress based autonomous exploration is able to provide
a unified explanation for both the tendency to produce vocaliza-
tions of increasing complexity and the progressive influence of
the ambient adult sounds. Imitating adult sounds becomes inter-
esting for the speech learner only when basic speech production
principles have been previously mastered. Contrarily to existing
models of speech acquisition we described so far, our aim is not
to reproduce infant vocalizations in a phonetically detailed man-
ner, but rather to suggest an hypothesis about how a succession

of distinct developmental stages can self-organize autonomously.
Howard and Messum’s model (Howard and Messum, 2011) for
example, shows how distinct parameterizations of an intrinsic
reward function can enable a vocal agent to discover several
type of sounds coherent with observed developmental stages in
infants. These parameterizations however, are hard-coded. In
contrast, our model is not designed to reproduce precisely infant
vocalizations within distinct vocalization stages, but rather to
understand how the transition from one stage to another can be
explained by a drive to maximize the competence progress to
reach self-generated or ambient auditory goals. In consequence,
the switch from self-generated auditory goals to the imitation of
adult sounds is not hard-coded in our model, but emerges as a
by-product of the drive to focus on progress niches.

2. MODEL
In this section, we describe the models that we use for the vocal
tract and auditory signals. We describe the learning of the internal
model of the sensorimotor mapping, and the intrinsic motivation
mechanism which allows the learner to decide adaptively which
vocalization to experiment at given moments during its develop-
ment, and whether to do so through self-exploration or through
imitation of external sounds.

2.1. SENSORIMOTOR SYSTEM
2.1.1. Vocal tract and auditory system
Our computational model involves the articulatory synthesizer
of the DIVA model described in Guenther et al. (2006) 2 based
on Maeda’s model (Maeda, 1989). Without going into technical
details, the model corresponds to a computational approxima-
tion of the general speech production principles illustrated in
Figure 2. The model receives 13 articulatory parameters as input.
The first 10 are from a principal component analysis (PCA) per-
formed on sagittal contours of images of the vocal tract of a
human speaker, allowing to reconstruct the sagittal contour of
the vocal tract from a 10-dimensional vector. The effect of the
10 articulatory parameters from the PCA on the vocal tract shape
is displayed Figure 3. In this study, we will only use the 7 first
parameters (the effect of the others on the vocal tract shape is
negligible), fixing the 3 last in the neutral position (value 0 in
the software). Through an area function, associating sections of
the vocal tract with their respective area, the model can compute
the 3 first formants of the resulted signal if phonation occurs.

2Available online at http://www.bu.edu/speechlab/software/diva-source-code.
DIVA is a complete neurocomputational model of speech acquisition, in
which we only use the synthesizer computing the articulatory-to-auditory
function.
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FIGURE 2 | Speech production general principles. The vocal fold
vibration by the lung air flow provides a source signal: a complex sound
wave with fundamental frequency F0. According to the vocal tract shape,
acting as a resonator, the harmonics of the source fundamental frequency
are selectively amplified or faded. The local maxima of the resulting
spectrum are called the formants, ordered from the lower to the higher
frequencies. They belong to the major features of speech perception.

Phonation is controlled through the 3 last parameters: glottal
pressure controlling the intensity of the signal (from quiet to
loud), voicing controlling the voice (from voiceless to voiced) and
pitch controlling the tone (from low-pitched to high-pitched). It
is then able to compute the formants of the signal (among other
auditory and somato-sensory features) through the area function.
In this study, we only use the glottal pressure and voicing param-
eters. In addition to the 7 articulatory parameters from the PCA,
a vocal command is therefore defined by a 9-dimensional vector.
From the vocal command, the synthesizer computes the auditory
and somatosensory consequences of the motor command, thus
approximating the speech production principles of Figure 2.

On the perception side of our model, we use the first two for-
mants of the signal, F1 and F2, approximately scaled between −1
and 1. We also define a third parameter I which measures the
intensity (or phonation level) of the auditory outcome. I is sup-
posed to be 0 when the agent perceives no sound, and 1 when
it perceives a sound. Technically, I = 1 if and only if two condi-
tions are checked: (1) both pressure and voicing parameters are
above a fixed threshold (null value) and (2) the vocal tract is not
closed (i.e., the area function is positive everywhere). In human
speech indeed, the formants are not measurable when phonation
is under a certain threshold. We model this by setting that when
I = 0, the formants do not exist anymore and are set to 0. This
drastic simplification is yet arguable in term of realism, but what
we want to model here is the fact that no control of the formant
values can be learnt when no phonation occurs.

2.1.2. Dynamical properties
Speech production and perception are dynamical processes and
the principles of Figure 2 have to be extended with this respect.
Humans control their vocal tract by variations in muscle activa-
tions during a vocalization, modulating the produced sound in a
complex way. Closure or opening movements during a particular

FIGURE 3 | Articulatory dimensions controlling vocal tract shape (10

dimensions, from left to right and top to bottom), adapted from the

documentation of the DIVA source code. Each subplot shows a sagittal
contour of the vocal tract, where we can identify the nose and the lips on
the right side. Bold contours correspond to a positive value of the
articulatory parameter, the two thin contours are for a null (neutral position)
and negative values. These dimensions globally correspond to the
dimensions of movements of the human vocal tract articulators. For
example, Art1 mainly controls the jaw height, whereas Art3 rather controls
the tongue front-back position.

vocalization, coupled with variations in phonation level, are able
to generate a wide variety of modulated sounds. We thus define a
vocalization as a trajectory of the 9 motor parameters over time,
lasting 800 ms, from which the articulatory synthesizer is able to
compute the corresponding trajectories in the auditory space (i.e.,
trajectories in the 3-dimensional space of F1, F2, and I). The
agent is able to control this trajectory by setting 2 commands
for each articulator: one from 0 to 250 ms, the other one from
250 to 800 ms. Then, the motor system is modeled as an over-
damped spring-mass system driven by the following second-order
dynamical equation:

ẍ + 2ζω0ẋ + ω2
0(x −m) = 0, (1)

where x is a motor parameter, and m is the command for that
motor parameter. ζ is set to 1.01, ensuring that the system is
overdamped (no oscillation), and ω0 to 2π

0.8 (0.8 being the dura-
tion of the vocalization in seconds). Thus, the agent’s policy for
a vocalization is defined by two vectors m1 and m2 (one for each
command) of 9 real values each (one for each motor parameter).
The policy space is 18-dimensional. The first command is applied
for the beginning of the vocalization to 250 ms, the second one
from 250 to 800 ms.

Figure 4A illustrates the process by showing a typical syllabic
vocalization. In this illustrative example, the controlled articu-
lators are the first and third articulators of Figure 3 (roughly
controlling the jaw height and the tongue front/back dimensions),
as well as pressure and voicing. The two last ones are set to 0.5
and 0.7, respectively, for both commands, to allow phonation to
occur. The “jaw parameter” (art1 on the figure) is set to 2.0 (jaw
closed) for the first command and to −3.0 for the second one
(jaw open). We observe that these commands, quite far from the
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FIGURE 4 | An illustrative vocalization example. (A) Articularory
trajectories of 5 articulators during the 800 ms of the vocalization
(4 articulators, from art4 to art7 are not plotted for the sake of readability but
display the same trajectory as art2). Circles at 250 and 800 ms represents the
values of the first and second commands, respectively, for each trajectory.
The first commands are active from 0 to 250 ms and second ones from 250
to 800 ms, as represented by dotted black boxes. The trajectories are
computed by the second order dynamical Equation (1), starting in a neutral

position (all articulators set to 0). (B) Resulting vocal tract shapes at the end
of each command, i.e., at 250 and 800 ms. Each subplot displays a sagittal
view with the nose and the lips on the left side. The tongue is therefore to
the right of the lower lip. (C) Sound wave resulting from the vocalization.
(D) Trajectories of the 3 auditory parameters, the intensity I and the two first
formants F1 and F2. Dotted black boxes represent the two perception time
windows. The agent perceives the mean value of the auditory parameters in
each time window, represented by the circles at 250 and 650 ms.

neutral position, are not completely reached by the motor system.
This is due to the particular dynamics of the system, defined with
ζ and ω0 in the dynamical system. For the third articulator (art3),
the commands are both at 2.0. We observe that, whereas the value
2.0 cannot be achieved completely at 250 ms, it can however be
reached before the end of the vocalization.

This motor system implies interaction between the two com-
mands, i.e., a form of co-articulation. Indeed, a given motor
configuration may sometimes be harder to reach if it is set as the
first command, because time allocated to reach the first command
is less than for the second command. Reversely, some movements
may be harder to control in the second command because the
final articulator positions will depend both on the first and the
second commands (e.g., it is harder to reach the value −3.0 for
the second command if the first command is set to 2.0, than
if the first command is set to −3.0, as seen in the example of
Figure 4).

These characteristics are the results of modeling speech
production as a damped spring-mass system (Equation 1), which
is a common practice in the literature (Markey, 1994; Boersma,
1998; Howard and Messum, 2011).

Figure 4B shows the resulting vocal tract shape at the end of
the 2 commands (i.e., at 250 ms and at 800 ms). We observe that
the vocal tract is closed at the end of the first command, open at
the end of the second one.

Figure 4C shows the resulting sound. We observe that there is
no sound during vocal tract closure.

Figure 4D shows the resulting trajectories of auditory parame-
ters. In our experiments, we model the auditory perception of the
agent of its own vocalization as the mean value of each param-
eter I, F1, and F2 in two different time windows lasting 150 ms:
the first one from 250 to 400 ms, the second one from 650 to
800 ms. The auditory representation of a vocalization is there-
fore a 6-dimensional vector [I(1), I(2), F1(1), F1(2), F2(1), F2(2)].
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Perceived auditory values are represented by circles on Figure 4D.
Note that the agent does not have any perception of what happens
before 250 ms, and that I(1) and I(2) can take continuous values
in [0, 1] due to the averaging in a given perception time win-
dow. We will refer to the perceived “phone” of a given command
for the perception occurring around the end of that command,
although such an association will not be assumed in the inter-
nal sensorimotor model of the agent. Indeed, this sensorimotor
system has the interesting property that the perceptions in both
time windows depend on both motor commands. In the example
of Figure 4, the perception for the first command, i.e., the mean
auditory values between 250 and 400 ms, would not be the same if
the second motor command did not cause the vocal tract opening.

2.1.3. Vocalization classification
We define three types of phones, according to the value of I for
a given command. In this description, we use common concepts
like vowels or consonants to make an analogy with the human
types of phones, although this analogy is limited.

• Those where I > 0.9, i.e., phonation occurs during almost all
the 150 ms of perception around the end of the command. We
call them Vowels (V).
• Those where I < 0.1, i.e., there is almost no phonation during

the 150 ms of perception around the end of the command. We
call them None (N).
• Those where 0.1 < I < 0.9, i.e., phonation occurs partially

during the 0.15 s of perception around the end of the com-
mand. This means that the phonation level I has switched
during that period. This can be due either to a closure or open-
ing of the vocal tract, or to variations in the pressure and
voicing parameters. We call them Consonants (C), although
they are sometimes more comparable to a sort of prosody
(when due to a variation in the phonation level).

This classification will be used as a tool for the analysis of the
results in section 3, but is never known by the agent (which only
has access to the values of I, F1, and F2).

Thus, each vocalization produced by the agent, belongs to
the combination of 2 of these 3 types (because a vocalization
corresponds to 2 commands), i.e., there are 32 = 9 types of vocal-
izations: VV, VN, VC, NV, NN, NC, CV, CN, CC. An example of
each type is given in the Appendix, section .

Then, we suggest to group these 9 types into 3 classes.

• The class No Phonation contains only NN: the agent has not
produced an audible sound. This is due either to the fact
the pressure and voicing motor variables have never been
sufficiently high (not both positive, as explained in the descrip-
tion of the motor system) during the two 150 ms perception
periods, or that the vocal tract was totally closed.
• The class Unarticulated contains VN, NV, CN, NC: the vocal-

ization is not well-formed. Either the first or the second
command produces a phone of type None (I < 0.1, see above).
• The class Articulated contains CV, VC, VV and CC: the vocal-

ization is well-formed, in the sense that there is no None phone.
Phonation is modulated in most cases (i.e., except in the rare

case where the two commands of a VV are very similar).
Note that according to the definition of consonants, phonation
necessarily occurs in both the perception time windows (see
Figure A1 in the Appendix).

It is important to note that the auditory values of these vocal-
ization classes span subspaces of increasing complexity. Indeed,
whereas various articulatory configurations belong to the No
Phonation class, their associated auditory values are always null,
inducing a 0-dimensional auditory subspace (i.e., a point).
Regarding the Unarticulated class, the associated auditory values
span a 3-dimensional subspace because at least one command
produces a phone of type None (i.e., the corresponding auditory
values are null). Finally, in the Articulated classes, the auditory
values span the entire 6-dimensional auditory space. These prop-
erties will have important consequences for the learning of a
sensorimotor model by the agent, as we will see.

2.2. INTERNAL SENSORIMOTOR MODEL
The sensorimotor internal model and the intrinsic motivation
system which follow were firstly described in conference papers
(Moulin-Frier and Oudeyer, 2013a,b) in a more general context
where the goal was to compare various exploration strategies. In
this paper, we use the active goal exploration strategy—analog to
the SAGG-RIAC algorithm in Baranes and Oudeyer (2010, 2013).

During its life time, the agent iteratively updates an internal
sensorimotor model by observing the auditory results of its vocal
experiments. We denote motor commands M and sensory per-
ceptions S. We call f : M→ S the unknown function defining
the physical properties of the environment (including the agent’s
body). When the agent produces a motor command m ∈ M, it
then perceives s = f (m) ∈ S, modulo an environmental noise and
sensorimotor constraints. In the sensorimotor system defined in
the previous section, M is 18-dimensional and S is 6-dimensional.
f corresponds to the transformation defined section 2.1 and illus-
trated Figure 4, and has a Gaussian noise with a standard devia-
tion of 0.01. By collecting (m, s) pairs through vocal experiments,
the agent learns the joint probability distribution defined over the
entire sensorimotor space SM (therefore 24-dimensional). This
distribution is encoded in a Gaussian Mixture Model (GMM)
of 28 components, i.e., a weighted sum of 28 multivariate nor-
mal distributions 3. Let us note GSM this GMM. It is learnt
using an online version of the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977) proposed by Calinon (2009)
where incoming data are considered incrementally. Each update
is executed once each sm_step(= 400) vocalizations are collected.
GSM is thus refined incrementally during the agent life, updat-
ing each time a number sm_step of new (m, s) pairs are collected.
Moreover, we adapted this online version of EM to introduce a
learning rate parameter α which decreases logarithmically from
0.1 to 0.01 over time. α allows to set the relative weight of the new
learning data with respect to the old ones.

This GMM internal model is used to solve the inverse prob-
lem of inferring motor commands m ∈ M that allow the learner

3We empirically chose a number of components which is a suitable trade-off
between learning capacity and computational complexity.
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to reach a given auditory goal sg ∈ S. From this sensorimo-
tor model GSM , the agent can compute the distribution of the
motor variables knowing a given auditory goal to reach sg , noted
GSM(M | sg). This is done by Bayesian inference on the joint dis-
tribution, and results in a new GMM over the motor variables
M (see e.g., Calinon, 2009), from which the agent can sample
configurations in M.

The whole process is illustrated Figure 5, on a toy example
with mono-dimensional M and S. Given the current state of
the sensorimotor model, the agent tries to achieve three goals,
s1 = −9, s2 = 0, and s3 = 8, i.e., three points in S (how the
agent is going to self-generate such goals with intrinsic motiva-
tion will be explained below). At the beginning of the life time, the
model is very poor at finding a good solution because the GMM
is trained with only a few data, not necessarily concentrated in
the regions useful to achieve the goals. For example, at t = 500,
the agent is only able to correctly reach s2 = 0 but is inefficient
at reaching s1 = −9 and s3 = 8, as shown by the distributions
over S in the top left corner (rotated 90 degrees anti-clockwise).
Then it becomes better and better while the agent produces
new vocalizations, covering a larger part of the sensorimotor

space: at t = 1500, the agent is able to reach the three
goals.

The sensorimotor system we specified in the previous sec-
tion, however, involves a 24-dimensional sensorimotor space (18
articularory dimensions and 6 auditory ones). Moreover, as we
have already noted, the three vocalization classes we defined
(No Phonation, Unarticulated, and Articulated) span subspaces of
the 6-dimensional auditory space with increasing dimensional-
ity. Learning an inverse model using GMMs with a fixed number
of Gaussians is harder, i.e., requires more sensorimotor experi-
ments, as the spanned auditory subspace is of higher dimension-
ality. Although we do not provide mathematical arguments to
this claim in this paper, it seems clear that learning an inverse
model to produce No Phonation requires fewer learning data than
learning an inverse model to produce various Articulated vocal-
izations, because the range of sensory effect is much larger in the
second case.

2.3. INTRINSICALLY MOTIVATED ACTIVE EXPLORATION
In order to provide training data to the sensorimotor model we
just described, the agent autonomously and adaptively decides

FIGURE 5 | Illustration of incremental learning and inference in the

sensorimotor model in a toy 2-dimensional sensorimotor space. The
figure has three columns, corresponding to the state of a learning agent
after 500, 1000, and 1500 sensorimotor experiments (t = 500, 1000, 1500).
Each column is divided in three panels A, B, and C, as indicated in the
middle column (boxed letters in gray panels). X-axis (M space) and y-axis
(S space) of (A) are shared by (B) and (C), respectively. (A) The unknown
function s = f (m) is represented by the blue curve. The red points are the
sensorimotor experiments made at this stage (i.e., until the corresponding
time index t): when m is produced, s = f (m)+ ε is perceived, where ε is
here a Gaussian noise with a standard deviation of 0.5. The ellipses
represent the state of GSM learned from the sensorimotor experiments,
which is here a GMM with 6 components (each ellipse represents a 2D
Gaussian). (B) The three vertically-aligned plots show the motor
distributions GSM (M | sg) for 3 different goals, s1 = −9.0 (top), s2 = 0.0

(middle), and s3 = 8.0 (bottom), in each of three columns (i.e., at the
three time indexes). They are inferred from GSM in (A) using Bayesian
inference. (C) The probability distributions on S (rotated 90 degrees
anti-clockwise) resulting from sampling motor configurations according to
GSM (M | sg), to reach the three goals s1, s2, and s3, the shade of gray of
each one corresponding to that used in (B): this means for example that,
at a given time index t, producing motor commands according to the
distribution GSM (M | s3) (panel B, bottom) will result in sensory
consequences following the darker distribution in panel (C). The three
considered goals s1, s2, and s3 are represented by the three horizontal red
lines, which are the same in the three columns. The distributions in (C)
thus reflect how the learner is able to reach one of the three considered
goals using the current state of its sensorimotor model: we observe that
at t = 500, it can only reach s2 = 0; at t = 1000, it can also reach s1 = −9
and at t = 1500 it can reach those three goals.
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which vocal experiments to make. The key idea is to self-generate
and choose goals for which the learner predicts that experi-
ments to reach these goals will lead to maximal competence
progress.

The specific model we use in the first series of experiments
(section 3.1) is a probabilistic version of the SAGG-RIAC archi-
tecture (Baranes and Oudeyer, 2010, 2013). This architecture
was itself derived as a functional model (Oudeyer and Kaplan,
2007; Gottlieb et al., 2013) of theories in psychology (Berlyne,
1954; Deci and Ryan, 1985; Csikszentmihalyi, 1997; Ryan and
Deci, 2000) which describe spontaneous exploration and curios-
ity in humans. It combines two principles: (1) goal babbling,
also called goal exploration; (2) active learning driven by the
maximization of empirically measured learning progress [which
corresponds to the active goal strategy in Moulin-Frier and
Oudeyer (2013a,b)]. In practice, the learner self-generates its
own auditory goals in the sensory space S. One goal is here a
sequence of two auditory targets encoded in a 6-dimensional
vector sg = [I(1), I(2), F1(1), F1(2), F2(1), F2(2)] (see section 2.1).
For each goal, it uses the current sensorimotor estimation to
infer a motor program m ∈ M in order to reach that goal.
Through the sensorimotor system, this produces a vocalization
and the agent perceives the auditory outcome s ∈ S, hence a new
(m, s) training data. Goals are selected stochastically so as to
maximize the expected competence progress (i.e., the learner is

interested in goals where it predicts it can improve maximally its
competence to reach them at a particular moment of its devel-
opment). This allows the learner to avoid spending too much
time on unreachable or trivial goals, and progressively explore
self-generated goals/tasks of increasing complexity. As a conse-
quence, the learner self-explores and learns only sub-parts of
the sensorimotor space that are sufficient for reachable goals:
this allows to leverage the redundancy of these spaces by build-
ing dense tubes of learning data only where it is necessary for
control.

We define the competence c associated to a particular exper-
iment (m, s) to reach the goal sg as c = comp(sg, s) = e−‖sg−s‖.
This measure is in [0, 1] and exponentially increases toward 1
when the Euclidean distance between the goal and the actual
realization s = f (m)+ ε tends to 0.

The measure of competence progress uses another GMM, GIM ,
learnt using the classical version of EM on the recent goals and
their associated competences. This GMM provides an interest dis-
tribution GIM(S) used to sample goals in the auditory space S
maximizing the competence progress in the recent sensorimotor
experiments of the agent. This was firstly formalized in Moulin-
Frier and Oudeyer (2013a,b). In this paper, we provide a graphical
explanation of the process in Figure 6.

Following all the previous definitions, we now consider that
the agent possesses the following abilities:

FIGURE 6 | Illustration of interest distribution computation. Top-Left:

the recent history of competences of the agent, corresponding to blue
points in the space T × S × C, where T is the space of recent time indexes
(in R

+), S the space of recently chosen goals sg (mono-dimensional in this
toy example) and C the space of recent competences of reaching those
goals (in R

+). For the sake of the illustration, the competence variations
over time are here hand-defined (surf surface) and proportional to the
values in S (increases for positive values, decreases for negative values).
We train a GMM of 6 components, GIM , to learn the joint distribution over
T × S × C, represented by the six 3D ellipses. Projections of these ellipses
are shown in 2D spaces S × C and T × C in the Top-Right and

Bottom-Left plots. To reflect the competence progress in this dataset, we
then bias the weight of each Gaussian to favor those which display a
higher competence progress, that we measure as the covariance between
time and competence for each Gaussian (in the example the magenta
ellipse shows the higher covariance in the Bottom-Left plot, then the
green one, the sky blue one etc). We weight the Gaussians with a
negative covariance between time T and competence C (blue, black, and
red ellipses) with a negligible factor, such that they do not contribute to
the mixture. Using Bayesian inference in this biased GMM, we finally
compute the distribution over the goal space S, GIM (S), thus favoring
regions of S displaying the highest competence progress (Bottom-Right).
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• Producing a complex vocalization, sequencing two motor com-
mands interpolated in a dynamical system. It is encoded by a
18-dimensional motor configuration m ∈ M.
• Perceiving the 6-dimensional auditory consequence s =

f (m)+ ε ∈ S, computed by an articularory synthesizer. f is
unknown to the agent.
• Iteratively learning a sensorimotor model from lots of (m, s)

pairs it collects by vocalizing through time. It is encoded in
a GMM GSM over the 24-dimensional sensorimotor space
M × S.
• Controling its vocal tract to achieve a particular goal sg . This

is done by computing GSM(M | sg), the distribution over the
motor space M knowing a goal to achieve sg .
• Actively choosing goals to reach in the sensory space S by learn-

ing an interest model GIM in the recent history of experiences.
By sampling in the interest distribution GIM(S), the agent
favors goals in regions of S which maximizes the competence
progress.

This agent is thus able to act at two different levels. At a high
level, it chooses auditory goals to reach according to its interest
model GIM maximizing the competence progress. At a lower level,
it attempts to reach those goals using Bayesian inference over its
sensorimotor model GSM , and incrementally refines this latter
with its new experiences. The combination of both levels results
in a self-exploration algorithm (Algorithm 1).

The agent starts in line 1 with no experience in vocalizing. Both
GMMs have to be initialized in order to be used. To do this, the
agent acquires a first set of (m, s) pairs, by sampling in M around
the neutral values of the articulators (see Figure 3). Regarding
the pressure and voicing motor parameters, we consider that the
neutral value is at −0.25, which leads to no phonation (recall
that both these parameters have to be positive for phonation to
occur, section 2.1). This models the fact that the agent does not
phonate in its neutral configuration, and has at least to raise the
pressure and voicing parameters to be able do do it. The agent
then executes this first set of motor configurations (mostly not
phonatory), observes the sensory consequences, and initializes
GSM with the corresponding (m, s) pairs using incremental EM.
GIM is initialized by setting the interest distribution GIM(S) to
the distributions of the sounds it just produced with this first
set of experiences. Thus, at the first iteration of the algorithm,
the agent tries to achieve auditory goals corresponding to the

Algorithm 1 | Self-exploration with active goal babbling (stochastic

SAGG-RIAC architecture).

1: initialise GSM and GIM

2: while true do

3: sg ∼ GIM(S)

4: m ∼ GSM(M | sg)

5: s = f (m)+ ε

6: c = comp(sg , s)

7: update(GSM, (m, s))

8: update(GIM, (sg , c))

9: end while

sounds it produced during the initialization phase. Then, in the
subsequent iterations, the interest distribution GIM(S) reflects
the competence progress measure, and is computed as explained
above.

Line 3, the agent thus selects stochastically sg ∈ S with high
interest values. Then it uses GSM(M | sg) to sample a vocalization
m ∈ M to reach sg (line 4). The execution of m will actually pro-
duce an auditory outcome s (line 5), and a competence measure to
reach the goal, c = comp(sg, s), is computed (line 6). This allows it
to update the sensorimotor model GSM with the new (m, s) pairs
(line 7). Finally, it updates the interest model GIM (line 8) with
the competence c to reach sg

Algorithm 1 will be run and the results analyzed in section 3.1.

2.4. SOCIAL (OR IMITATION) SYSTEM
In language acquisition and vocalization, the social environment
plays naturally an important role. Thus we consider an active
speech learner that not only can self-explore its sensorimotor
space, but can also learn by imitation. In a second series of exper-
iments (section 3.2), we extend the previous model by integrating
the previous learning algorithm in the SGIM-ACTS architecture,
which has been proposed in Nguyen and Oudeyer (2012).

We consider here that the learning agent can use one of two
learning strategies, which it chooses adaptively:

• explore autonomously with intrinsically motivated goal
babbling, as described previously,
• or explore with imitation learning. We distinguish mimicry,

in which the learner copies the policies of others without
an appreciation of their purpose, from emulation, where
the observer witnesses someone producing an outcome, but
then employs its own policy repertoire to reproduce the out-
come, as formalized in Whiten (2000); Call and Carpenter
(2002); Nehaniv and Dautenhahn (2007); Lopes et al. (2010).
As the learner a priori can not observe the vocal tract
of the demonstrator, it can only emulate the demonstra-
tor by trying to reproduce the auditory outcome observed,
by using its own means, finding its own policy to repro-
duce the outcome. We consider that the demonstrator (the
social peer) has a finite set of auditory outcomes, and every
time the learner chooses to learn by social guidance, it
chooses at random an auditory outcome among the set to
emulate.

The learner can monitor the competence progress resulting
from using each of the strategies. This measure is used to
decide which strategy is the best progress niche at a given
moment: a strategy is chosen with a probability directly depend-
ing on its associated expected competence progress. Thus, com-
petence progress is used at two hierarchical levels of active
learning, forming what is called strategic learning (Lopes and
Oudeyer, 2012): at the higher-level, it is used to decide when
to explore autonomously, and when to imitate; at the lower-
level, if self-exploration is selected, it is used to decide which
goal to self-explore (as in the previous model). Since compe-
tence progress is a non-stationary measure and is continuously
re-evaluated, the individual learns to choose both the strategy
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str ∈ {autonomous_exploration, social_guidance} and the auditory
goals sg ∈ S to target, by choosing which combination enables
highest competence progress.

For the particular implementation of SGIM-ACTS of this
paper, we use the same formalism and implementation as in
Algorithm 1 and consider that the strategy is another choice
made by the agent. This leads to Algorithm 2, where the interest
model GIM now learns an interest distribution as in section 2.3.
The difference is that the space of interest is now the union
of the strategy space {autonomous_exploration, social_guidance}
and the auditory space S. We call StrS this new space StrS =
{autonomous_exploration, social_guidance} × S . Hence GIM is
a distribution over StrS (Algorithm 2, line 3). If the self-
exploration strategy is chosen (str = autonomous_exploration),
the agent acts as in Algorithm 2. If the social guidance strategy
is chosen (str = social_guidance, line 4), the learner then emu-
lates an auditory demonstration sg ∈ S chosen randomly among
the demonstration set of adult sounds (line 5), overwriting sg

of line 3. It then uses its sensorimotor model GSM to choose a
vocalization m ∈ M to reach sg , by drawing according to the dis-
tribution GSM(M | sg) (line 7), as in the self-exploration strategy.
The execution of m will produce an auditory outcome s (line
8), from which it updates its models GIM and GSM (lines 10
and 11).

Thus, this new exploration algorithm is augmented with yet
another level of learning, allowing to choose between different
exploration strategies. This strategy choice moreover uses the
same mechanism as the choice of auditory goals, by means of the
interest model GIM .

Algorithm 2 will be run and the results analyzed in
section 3.2.

3. RESULTS
The results of our experiments are presented in this section.
We first run experiments where our agent learns in a pure
self-exploration mode (Algorithm 1), without any social environ-
ment or sounds to imitate. In a second time, we introduce an
auditory environment to study the influence of ambient language
(Algorithm 2).

Algorithm 2 | Strategic active exploration (active goal babbling and

imitation with stochastic SGIM-ACTS architecture).

1: Initialize GSM and GIM

2: while true do

3: (str, sg) ∼ GIM(StrS)

4: if (str = social_guidance) then

5: sg ← random auditory demonstration from the ambient language

6: end if

7: m ∼ GSM(M |sg)

8: s = f (m)+ ε

9: c = comp(sg , s)

10: update(GSM, (m, s))

11: update(GIM, (str, sg , c))

12: end while

3.1. EMERGENCE OF DEVELOPMENTAL SEQUENCES IN AUTONOMOUS
VOCAL EXPLORATION

We ran 9 independent simulations of Algorithm 1 with the same
parameters but different random seeds, of 240, 000 vocalizations
each 4. Most of these 9 simulations display the formation of a
developmental sequence, as we will see. Before describing the reg-
ularities and variations observed in this set of simulations, let us
first analyse a particular one where the developmental sequence
is clearly observable. Figure 7 exhibits such a simulation. We
observe three clear developmental stages, i.e., three relatively
homogeneous phases with rather sharp transitions. These stages
are not pre-programmed, but emerge from the interaction of the
vocal productions of the sensorimotor system, learning within the
sensorimotor model, and the active choice of goals by intrinsically
motivated active exploration. First (until � 30, 000 vocaliza-
tions), the agent produces mainly motor commands which results
in no phonation or in unarticulated vocalizations (in the sense of
the classes defined section 2.1.3). Second (until� 150, 000 vocal-
izations), phonation almost always occurs, but the vocalizations
are mostly unarticulated. Third, it produces mainly articulated
vocalizations.

The visualization of the developmental sequence of the 9
independent simulations, provided Figure A2 in the Appendix,
shows important interindividual variations whereas initial con-
ditions are statistically similar due to initialization in line 1 of
Algorithm 1. These variations can be understood through the

Unarticulated
Articulated

FIGURE 7 | Self-organization of vocal developmental stages. At each
time step t (x-axis), the percentage of each vocalization class between t
and t + 30, 000 is plotted (y-axis), in a cumulative manner (sum to 100%).
Vocalization classes are defined in section 2.1.3. Roman numerals shows
three distinct developmental stages. I: mainly no phonation or unarticulated
vocalizations. II: mainly unarticulated. III: mainly articulated. The boundaries
between these stages are not preprogrammed and are here manually set
by the authors, looking at sharp transitions between relatively
homogeneous phases.

4Each simulation involves several hours of computing on a desktop computer,
due to the complexity of Algorithm 1, in particular in the Bayesian inference
and update procedures.
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interaction of the sensorimotor system f , the internal sensorimo-
tor model GSM and the interest model GIM , resulting in a complex
dynamical system where observed developmental sequences are
particular attractors (see e.g., Van Geert, 1991; Smith and Thelen,
2003). Moreover the sensorimotor and the interest models are
probabilistic, thus inducing a non-negligible source of variabil-
ity all along a particular simulation. Another factor is that using
an online learning process on a GMM can result in a sort of
forgetting, leading sometimes to the re-exploration of previously
learnt parts of the sensorimotor space 5. However, the sequence
No phonation→ Unarticulated→ Articulated appears as a global
tendency, as shown in Table 1. We observe that despite varia-
tions, most simulations begin with a mix of no phonation and
unarticulated vocalizations, then mainly produce unarticulated
vocalizations, and often end up with articulated vocalizations. An
analogy can be made with human phonological systems, which
are all different in the details but display strong statistical ten-
dencies (Maddieson and Precoda, 1989; Schwartz et al., 1997;
Oudeyer, 2005; Moulin-Frier et al., 2011).

This suggests that the agent explores its sensorimotor space
by producing vocalizations of increasing complexity. The class no
phonation is indeed the easiest to learn to produce for two reasons:
the rest positions of the pressure and voicing motor parameters
do not allow phonation (both around −0.25 at the initialization
of the agent, line 1 of Algorithm 1) ; and there is no variations on
the formant values, which makes the control task trivial as soon

Table 1 | Count of vocalization stages in the 9 simulations of the

supplementary data.

Types of sounds

produced

Stage I Stage II Stage III Stage IV

No phonation-
unarticulated

7 0 2 0

Unarticulated 0 7 0 3

Articulated 0 2 4 0

Other 2 0 1 0

The “types of sounds produced” (first column of the table) correspond to the

most prominent class in a given stage, where stages are manually set, looking at

sharp transitions between relatively homogeneous phases. These developmen-

tal stages are therefore subjective to a certain extent, in the sense that another

observer could have set different ones (but hopefully also would observe major

structural changes). “No phonation-Unarticulated” means a mix between No

phonation and Unarticulated classes (as defined in section 2.1.3 in that stage). A

number x in a cell means this type of vocalizations (row) appears x times at the

nth stage of development (column) in the set of 9 simulations. Two to four devel-

opmental stages were identified in each simulation, explaining why the “Stage

I” and “Stage II” columns sum up to 9 (the total number of simulations), but not

the “Stage III” and “Stage IV” columns.

The bold number indicates the sequence (No phonation - unarticulated) →
Unarticulated→ Articulated is relatively stable across simulations.

5This is why we limited the simulations to 240,000 vocalizations each, in order
to avoid this unwanted effect of forgetting. However, the fact that the system
is able to adaptively re-explore sensorimotor regions that have been forgotten
is an interesting feature of curiosity-driven learning.

as the agent has a bit of experience. There is more to learn with
unarticulated vocalizations, where formant values are varying in
at least one part of the vocalization, and still more with articulated
ones where they are varying in both parts (for the first and second
command).

Figure 8 shows what happens in the particular simulation of
Figure 7 in more details.

This developmental sequence is divided into 3 stages, I, II,
and III, stages being separated by vertical dark lines on Figure 8,
identical on each subplot (stage boundaries are the same than in
Figure 7).

In stage I, until approximately 30,000 vocalizations, the agent
produces mainly no phonation and unarticulated vocalizations.
We observe that the agent set goals for I(1) either around 0, either
around 1, whereas the goals for I(2) stay around 0 (last row in
“Goals”). By trying to achieve these goals, the agent progres-
sively refines its sensorimotor model and progresses by raising
the values of the pressure and voicing motor parameter in the
first command (two last rows of the section “Motor commands,”
1st column). Other articulators remain around the neutral posi-
tion (value 0). The agent is learning to phonate. The percentages
of vocalization belonging to each vocalization class is provided
Table 2.

Then, in stage II, from 30, 000 to approximately 150, 000
vocalizations, the agent is mainly interested in producing vocal-
izations which begin with a Vowels [I(1) > 0.9, see the definition
of phone types in section 2.1.3] and finish with a None [I(2) <

0.1]. An example of such a VN vocalization can be observed in
the Appendix, Figure A1 in section . During this stage, it learns
to produce relatively high F1(1) values, in particular by decreas-
ing the Art1(1) parameter (approximately controlling the jaw
height, see Figure 3). Regarding the second command, although
the agent self-generates various goals for F1(2) and F2(2), and pro-
duces various motor commands to try to reach them, the sound
produced mostly corresponds to a None [I(2) = 0, and therefore
F1(2) = F2(2) = 0]. This is due both to the negative value of the
voicing parameter (last row in “Motor commands,” second col-
umn), and to the fact that the vocal tract often ends in a closed
configuration due to the poor quality of the sensorimotor model
in this region (because phonation occurs very rarely for the sec-
ond command, leaving the agent without an adequate learning
set). During this stage, the agent explores a limited part of the
sensorimotor space both in time (sound only for the first com-
mand) and space (around the neutral position), until it finally
manages to phonate more globally at the end of this stage. This
could be correlated to the acquisition of articulated vocalizations.
The percentages of vocalization belonging to each vocalization
class is provided in Table 3.

Finally, in stage III (until 150, 000 to the end), phonation
almost always occurs during both the perception time windows
(see I densities, both for goals and reached values). An exam-
ple of such a VV vocalization can be observed in the Appendix,
Figure A1 in section . This is much harder to achieve for two
reasons: firstly because there is a need to control a sequence of
2 articulators movement in order to reach two formant values
in sequence [i.e., F1(1), F1(2), F2(1), F2(2)] instead of one in the
previous stage (the second command leading to no sound), and
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FIGURE 8 | Evolution of the distribution of auditory goals, motor

commands and sounds actually produced over the life time of a vocal

agent (the same agent as in Figure 7). The variables are in three groups
(horizontal red lines): the goals chosen by the agent in line 3 of
Algorithm 1 (top group), the motor commands it inferred to reach the
goals using its inverse model in line 4 (middle group), and the actual
perceptions resulting from the motor commands through the synthesizer
in line 5 (bottom group). There are two columns (1st and 2nd), because of
the sequential nature of vocalizations (two motor commands per

vocalization). Each subplot shows the density of the values taken by each
parameter (y-axis) over the life time of the agent (x-axis, in number of
vocalizations since the start). It is computed using an histogram on the data
(with 100 bins per axis), on which we apply a 3-bins wide Gaussian filter.
The darker the color, the denser the data: e.g., the auditory parameter I
actually reached by the second command (I(2), last row in “Reached,” 2nd
column), especially takes values around 0 (y-axis) until approximately
150, 000th vocalization (x-axis), then it takes rather values around 1. The
three developmental stages of Figure 7 are reported at the top.

secondly because the position of the articulators reached for the
second command also depends on the position of the articulators
reached for the first one (a kind of coarticulation due to the
dynamical properties of the motor system). We observe that the
range of values explored in the sensorimotor space is larger than
for the previous stage (both in motor and auditory spaces). The
percentages of vocalizations belonging to each vocalization class
is provided in Table 4.

3.2. INFLUENCE OF THE AUDITORY ENVIRONMENT
In a second set of experiments, we integrated a social envi-
ronment providing a set of adult vocalizations. As explained in
section 2.4, the learner has an additional choice: it can explore
autonomously, or emulate the adult vocalizations. An “ambient
language” is here modeled as a set of two speech sounds. To
make it coherent with human language and the learning process
observed in development, we chose speech-like sounds, typically
vowel or consonant-vowel sounds. In terms of our sensorimotor
descriptions, the adult sounds correspond to I1 with low val-
ues and I2 with high values. Figure 9 shows such vocalizations
corresponding to those used by Teacher 1 in Figure 10 .

Figure 10 shows a significant evolution in the agent’s vocal-
izations. In the early stage of its development, it can only
make a few sounds. Most sounds correspond to small values of
I1(2), F1(1), F1(2), F2(1), and F2(2), as in the first developmental

Table 2 | Percentage of vocalization classes produced in stage I of the

studied developmental sequence.

NN CN NC VN NV VV CV VC CC

45.3% 13.4% 0.6% 18.9% 4.5% 9.9% 6.6% 0.7% 0.2%

Table 3 | Percentage of vocalization classes produced in stage II of the

studied developmental sequence.

NN CN NC VN NV VV CV VC CC

4.0 % 26.9 % 0.1 % 62.2 % 0.1 % 3.4 % 0.5 % 2.5 % 0.2 %

Table 4 | Percentage of vocalization classes produced in stage III of

the studied developmental sequence.

NN CN NC VN NV VV CV VC CC

1.6 % 3.7 % 0.1 % 12.1 % 0.8 % 67.5 % 6.5 % 6.8 % 0.8 %

stage of the previous experiment (see Table 2 and Figure 8).
Therefore the agent is not able to reproduce the ambient
sounds of its environment. In contrast, in later periods of its
development, its vocalizations cover a wider range of sounds, with
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FIGURE 9 | The two vocalizations of the adult Teacher 1 used in Figure 10, with the same convention as in Figure 4 .

A B

FIGURE 10 | Vocalizations of the learning agent in the early and

mature stages of vocal development. (A) All auditory outcomes s
produced by the agent in its early stage of vocalization are
represented by blue dots in the 6-dimensional space of the auditory
outcomes. The adult sounds are represented in red circles. The
actually produced auditory outcomes only cover a small area of

physically possible auditory outcomes, and correspond mostly to
I(2) = 0, which represent vowel-consonant or consonant-consonant
types of syllables. (B) The auditory outcomes produced by the infant
in its mature stage of vocalization cover a much larger area of
auditory outcomes and extend in particular over areas in which
vocalizations of the social peer are located.

notably I(1) and I(2) both positive, which means it now produces
more articulated sounds. The development of vocalizations for a
self-exploring agent in the last section showed that it progressively
was able to produce articulated vocalizations, which we observed
at times at the end of its development. This effect has been
reinforced by the environment: with articulated vocalizations to
emulate, it produces this class more regularly.

Another important result is that mature vocalizations can now
reproduce the ambient sounds of the environment: the regions
of the sounds produced by the learner (blue dots) overlap the
teacher’s demonstrations (red circles). It seems that, during the

first vocalizations, the agent cannot emulate the ambient sounds
because they are too far away from its possible productions, and
thus it can hardly make any progress and approach these demon-
strations. Figure 11 confirms this interpretation. In the begin-
ning, the agent makes no progress with emulation, and it is only
around t = 450 that it makes progress with the emulation strat-
egy. At that point, as we can see in Figure 12, it uses equally both
strategies. This enables the agent to make considerable progress
from t = 450 to t = 800. Indeed, once its mastery improves
and the set of sounds it can produce increases, it then increas-
ingly emulates ambient sounds. Once it manages to emulate the
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FIGURE 11 | Progress made by each strategy with respect to the

number of updates of the sensorimotor model GSM . These values have
been smoothened over a window of 100 updates. For t < 450, the agent
makes no progress using emulation strategy. After t = 450, both strategies
enable the agent to make progress.

FIGURE 12 | Percentage of times each strategy is chosen with respect

to the number of updates of the sensorimotor model GSM . These
values have been smoothened over a window of 100 updates. For t < 450,
the agent mainly uses self-exploration strategy. When its knowledge
enables it to make progress in emulation, it chooses emulation strategy
until it can emulate the ambient sounds well (and its competence progress
decreases).

ambient sounds well, and thus its competence progress decreases,
it uses less the emulation strategy and more the self-exploration
strategy.

To analyse better this emulation phenomenon and assess the
influence of the ambient language, we run the same experiment
with different acoustic environments. We used two other sets of
speech sound demonstrations from simulated peers, and anal-
ysed the auditory productions of the agent in Figure 13. The first
property that can be noted is that in the early phase of the vocal
exploration (Figures 13A,C), the auditory productions of the two
agents are alike, and do not depend on the speech environment.
On the contrary, the mature vocalizations vary with respect to the
speech environment. With Teacher 1, the productions have their
values F2(1) and F2(2) along the axis formed by the demonstra-
tion (Figure 10A, last column). Comparatively, Teacher 2’s speech

sounds have different F1(1), F1(2), F2(1), and F2(2). As repre-
sented in Figure 13B, the two speech sounds now differ mainly by
their F1(1) (instead of F1(2)) and in their subspace [F2(1), F2(2)]
the speech sounds have approximately rotated from those of
Teacher 1. The produced auditory outcomes of the learner look
like they have changed in the same way. Whereas the reached
space (blue area) seemed to be along axis F1(2) and F2(2) and lit-
tle on F1(1) or F2(1) for Teacher 1, it has extended its exploration
along F1(2) and F2(2) for Teacher 2. With Teacher 3, the demon-
strations are more localized in the auditory space, with F1(1) < 0
and F2(2) > 0. The effect we observe in Figure 13D is that the
exploration is more localized too: the explored space is more ori-
ented toward areas where F1(1) < 0 and F2(2) > 0. Thus, these
three examples strongly suggest a progressive influence of the
auditory environment, in the sense that the first vocalizations in
Figures 10, 13 are very similar, whereas we observe a clear influ-
ence of the speech environment on the produced vocalizations in
later stages.

Altogether, the results of these experiments provide a com-
putational support to the hypothesis that the progressive influ-
ence of the ambient language observed in infant vocalizations
can be driven by an intrinsic motivation to maximize compe-
tence progress. At early developmental stages, attempts to imitate
adult vocalizations are certainly largely unsuccessful because basic
speech principles, such as phonation, are not yet mastered. In this
case, focusing on simpler goals probably yields better progress
niches than an imitative behavior. While they are progressively
mastered, the interest in these goals decreases whereas the ability
to imitate adult vocalizations increases. Imitation thus becomes a
new progress niche to explore.

4. DISCUSSION
Our main contribution with respect to previous computational
models of speech acquisition is that we do not presuppose the
existence of successive developmental stages, but rather they can
emerge from an intrinsic drive to maximize the competence
progress. We showed that vocal developmental stages can self-
organize autonomously, from simple sensorimotor activities to
more complex ones. The agent starts producing no phonation and
unarticulated vocalizations, which are easy to produce because
limited in the range of their auditory effects. This can be related
to the first stage in infant vocal development (Figure 1), where
the agent produces non speech-sounds (e.g., growls, squeals...)
before learning phonation and then produces not well-articulated
quasi-vowels. Later on, once the agent does not progress much in
producing unarticulated vocalizations, it focuses on more com-
plex vocalizations of the articulated class. The reason is that, due
to the properties of the sensorimotor system and internal model,
the mastering of complex tasks require first the mastering of sim-
pler tasks in order to yield significant competence progress, so
that these complex tasks are selected as interesting goals.

We also showed that intrinsically motivated exploration can
lead to a progressive interest toward the sounds of the ambient
language. Whereas the first vocalizations are mainly the result
of self-exploration, they progressively lead to mastering neces-
sary speech principles (e.g., phonation). This progressive master-
ing allows in turn to make significant progress in adult-speech
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FIGURE 13 | Vocalizations of the learning agent in the early and mature

stage of vocalization in two different speech environments (Teacher 2

and Teacher 3). (A,C) All auditory outcomes produced by the vocal learner in
its early stage of vocal development are represented by blue dots in the
6-dimensional space of the auditory outcomes. The sounds of the

environment are represented in red circles. The auditory outcomes only
cover a small area, and do not depend on the speech environment. (B,D) The
auditory outcomes produced by the infant in its mature stage of vocal
development cover a larger area of auditory outcome, which depend on the
speech environment.

imitation, which explains why the vocal learner starts to choose
more often as targets the sound of its environment. Competence-
progress based curiosity-driven exploration could thus explain
a progressive influence of the ambient language on infant
vocalizations.

We therefore showed that intrinsically motivated active explo-
ration can self-organize a coherent developmental sequence,
without any external clock or preset specification of this sequence.
This possible role of intrinsic motivation, providing a mecha-
nism to discover autonomously necessary developmental stages to
structure the learning process, is here validated computationally.
We believe that it could be of major interest for understanding
the structuration of early vocal development in infants. Speech
acquisition is such a complex task that intrinsic motivation could
be a crucial component to make it possible in the infant’s first year
of life.

Our model, however, has a number of limitations. Firstly, our
modeling choices of the articulatory and auditory representa-
tions, as well as the implementation of the transformation from
the former to the latter, is somewhat less realistic than in some
previous models: articulatory trajectories are specified using two
commands per articulator with fixed durations and the auditory
representation uses only three acoustic parameters (the intensity
and the two first formants) averaged in fixed and relatively arbi-
trary perception time windows. Moreover, the fact that formant
values are set to 0 whenever the intensity of the signal is null can
appear quite unrealistic. Although previous models often provide
more meticulous implementations of the sensorimotor system,
including e.g., pitch or tactile information, what is important

to us is a sensorimotor system where all vocalizations are not
equally easy to learn in terms of control. Such a requirement is
certainly necessary for a clear developmental sequence to emerge.
Secondly, we did not treat a major issue in speech acquisition
research, the so-called correspondence problem: how the child is
able to relate its own vocalizations to adult vocalizations, whereas
the vocal tract of the child is very different in size and geometry
than the one of an adult, and therefore the spectral characteristics
of the produced sounds are different. Solutions to overcome this
problem have been proposed, generally based on adult feedback
or reformulations associated with infant productions (Ishihara
et al., 2009; Howard and Messum, 2011; Miura et al., 2012). This
is outside the scope of this paper where our focus is on the self-
organization of the developmental sequence in successive stages
of increasing complexity. Extending our model to the interaction
with real humans would definitely require to consider this issue.

Further works will consider higher-dimensional sensorimo-
tor spaces for more realism. For example, the free software
Praat (Boersma, 2012) is a powerful tool allowing to synthesize
a speech signal from a trajectory in a 29-dimensional space of
respiratory and oro-facial muscles. Numerous acoustic features
can in turn be extracted from the synthesized sound, among
which the Mel-frequency cepstral coefficients (MFCC; Davis and
Mermelstein, 1980). It would also be interesting to study the effect
of a vocal tract growing during the learning process, to study if
our intrinsically motivated agent could re-explore only parts of
the sensorimotor space which were the most affected by the vocal
tract shape change. Generally, we believe that a developmental
robotics approach applied to a realistic articulatory model can
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appropriately manage the learning process of a complex and
changing mapping in high-dimensional spaces, and that observed
developmental sequences can lead to interesting comparisons
with infant data and predictions. Regarding the present study,
such a prediction could be that a human infant should be influ-
enced by adult sounds earlier if they were easier to produce
than well-formed syllables. For example, one could imagine an
experiment in which a very young infant is put in an envi-
ronment where he hears external sounds that are simpler than
vowels/consonants/syllables (e.g., growls) and test whether his
vocalizations become influenced by external environment ear-
lier and/or if we can measure a greater interest than in a normal
speech environment.
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APPENDIX
VOCALIZATION TYPES
Figure A1 shows the 9 types of vocalizations defined in
section 2.1.3 (NN, CN, NC, VN, NV, VV, VC, CV and CC).

DEVELOPMENTAL SEQUENCES OF 9 INDEPENDENT SIMULATIONS
The figures of this section display the emerging developmental
sequence of 9 independent simulations in pure self-exploration
mode (section 3.1). At each time step t (x-axis), the percentage of

FIGURE A1 | Examples of each vocalization types. Rows (1st)
correspond to the type of the first phone and columns (2nd) to the type
of the second phone of the vocalization. There are three possible phone
types, as defined in section 2.1.3: the Vowels (V) which have a high

intensity (I > 0.9), the Consonants (C) which have a low intensity
(0.1 < I < 0.9) and the None which have almost no intensity (I < 0.1). For
example, the plot in the second row (C) third column (V) corresponds to a
CV vocalization, with the same convention as in Figure 4.

each vocalization class during between t and t + 30, 000 is
plotted (y-axis), in a cumulative manner. Vocalization classes
are defined in section 2.1.3. For each one, we show bound-
aries between developmental stages. These boundaries are set
manually, by looking at sharp transitions between relatively
homogeneous phases. They are therefore subjective to a certain
extent, in the sense that another observer could have set dif-
ferent ones (but hopefully also would observe major structural
changes).
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FIGURE A2 | Developmental sequences emerging from the 9

simulations for the experiment described in section 3.1.

Each subplot follows the same convention as in Figure 7.
The simulations have been ordered, also in a subjective

manner, from those which display a clear developmental
sequence of the type No phonation → Unarticulated →
Articulated to those less organized (from left to right, then
top to bottom).
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In parent-child communication, emotions are evoked by various types of intrinsic and
extrinsic motivation. Those emotions encourage actions that promote more interactions.
We present a motivation model of infant-caregiver interactions, in which relatedness,
one of the most important basic psychological needs, is a variable that increases
with experiences of emotion sharing. Besides being an important factor of pleasure,
relatedness is a meta-factor that affects other factors such as stress and emotional
mirroring. The proposed model is implemented in an artificial agent equipped with a
system to recognize gestures and facial expressions. The baby-like agent successfully
interacts with an actual human and adversely reacts when the caregiver suddenly
ceases facial expressions, similar to the “still-face paradigm” demonstrated by infants in
psychological experiments. In the simulation experiment, two agents, each controlled by
the proposed motivation model, show relatedness-dependent emotional communication
that mimics actual human communication.

Keywords: intrinsic motivation, relatedness, interaction, emotion

1. INTRODUCTION
Humans acquire knowledge and skills voluntarily by interacting
with the environment. This voluntary learning process is driven
by intrinsic motivation, which embodies curiosity and interest.
By contrast, extrinsic motivation results in rewards such as food.
White (1959) proposed that the intrinsic desire to interact with
the environment and others underlies human exploratory behav-
ior. Intrinsic motivation encourages individuals to seek novelty,
uncertainty, and complexity (Berlyne, 1960). According to the
self-determination theory of Ryan and Deci (2000), humans have
three inherent fundamental needs: autonomy, competence, and
relatedness. Autonomy is the perception that one’s behavior is
compatible with one’s approval. Competence is fulfilled when
expected or desired results are achieved. Relatedness is gained
when one senses a close relationship with others. Ryan and Deci
insist that these fundamental needs and individual differences are
shaped by the social context.

Fundamental needs are closely related to emotions. Reis et al.
(2000) showed that satisfaction levels of fundamental needs are
correlated with emotional evaluation indices. Interestingly, while
the satisfaction levels of autonomy and competence correlate
with both positive and negative emotions, the relatedness level
correlates only with positive emotions. Closely related persons
evoke more emotions than strangers. If relatedness is not satis-
fied, unpleasant emotions are not necessarily evoked, but people
sense discomfort when an expected reaction is not delivered by
the related person. Thus, compared with the other two needs,
relatedness exerts a more complicated effect on emotions.

The need for relatedness becomes apparent from the early
stage of infant development. Still-face paradigm experiments have
shown that infants are socially sensitive to others (Adamson and
Frick, 2003; Striano, 2004). In these experiments, the caregiver

suddenly ceases normal interaction with the infant and shows a
still face. Throughout this phase, the caregiver reduces the num-
ber and extent of positive activities, such as smiles or attention.
Infants react to this behavior with restore reactions such as clap-
ping or reaching to the caregiver to draw their attention. The
reactions shown by infants depend on their development stages
(Adamson and Frick, 2003). These experiments show that infants
are motivated to establish relatedness with others and that they
require attachment to others.

Several studies in cognitive developmental robotics (Asada
et al., 2009) have sought to understand initial communication
by computational models (Ogino et al., 2007; Watanabe et al.,
2007). However, these studies focused on acquiring communica-
tive actions, rather than the factors that motivate communication.
The mechanism that encourages an agent to behave according to
internal discipline rather than external reward has been identified
as intrinsic motivation (Barto et al., 2004; Oudeyer et al., 2007).
However, intrinsic motivation studies continue to adopt self-
learning tasks such as skill acquisition. The question remains: how
do intrinsic motivation mechanisms promote communicative
interactions?

This paper proposes a motivation model of early communica-
tion between an infant and his/her parent, in which the need for
relatedness triggers emotional change and behavior learning. The
proposed model aims for dynamic interaction between two agents
who estimate each other’s the internal state. Throughout the
interaction, an interpersonal relationship is established in which
approaching and sharing another’s emotion encourages interest
and relatedness to him/her, alters emotional states, and pro-
motes mutual behavior. While relatedness directly and indirectly
affects the emotional state of an agent, it also changes the reward
for action selection. We consider that the network of dopamine
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neurons plays an important role in activating communication.
Dopamine neurons are known to code the prediction error for
reward in reinforcement learning (Schultz, 1998). In robotics,
(Kaplan and Oudeyer, 2007) hypothesized that dopamine neu-
rons encode signals for encouraging behavior that decreases the
prediction error. Recent studies reveal that dopamine neurons
are activated not only by explicit reward but also by novel sig-
nals that are not directly related to these rewards (Dayan and
Balleine, 2002; Kakade and Dayan, 2002). This indicates that
dopamine neurons play an important role in intrinsic motivation.
Dopamine neurons are also associated with emotional reactions
in the amygdala (Phillips et al., 2010). From these neuroscience
findings, it is reasonable to consider a model in which a variable
corresponding to dopamine neurons mediates emotional change
and behavior. In parentâĂŞinfant interactions, the activation of
dopamine neurons will arouse the infant’s interest, and the parent
will act to maintain this interest.

2. MATERIALS AND METHODS
2.1. MOTIVATION MODEL OF PARENT–INFANT INTERACTION
In the communication situation of this study, an infant atten-
tively interacts with his/her caregiver and displays emotional
facial expressions such as laughing and crying. The interaction
situation and variables used in the proposed model are shown
in Figure 1A. The infant and the parent update their internal
state, e, based on the observed information, x, and output their
facial expressions, f , and actions, a. The facial expressions and
actions are assumed to be produced and observed independently.
The facial expressions are based on the agent’s internal state, e,
which partly depends on the facial expressions of the other agent,
eother. We suppose that both agents (parent and child) possess the
same emotional system, comprising emotional elements, emotion,
and action selection modules (Figure 1B). The emotional elements
module contains two main elements for intrinsic needs, Novelty
and Relatedness, and other three sub-elements, Stress, Emotion
Mirror and Expectation. The value of each element is determined
by the other’s facial expressions and actions. The emotion ele-
ments are used to compute the current emotional state of the
agent in the emotion module. Finally, in the action module, the
reward value is evaluated from the emotional elements (pleasure
and arousal), and gesture and facial expressions are selected. The
following subsections describe the mechanisms of the internal
state.

2.1.1. Emotion
Russell (1980) proposed that all emotional states lie within a
two-dimensional space comprising an arousal–sleep axis and a
pleasure–unpleasure axis. Following Russell’s model, we define
the emotional state e as a vector of arousal and pleasure elements.

e(t) =
(

eArousal(t)
ePleasure(t)

)
=
(

eA(t)
eP(t)

)
(1)

The emotional state is updated by the reward, Re, as follows;

e(t + 1) = e(t)+ η(Re(t)− e(t)). (2)

A

B

FIGURE 1 | (A) Variables used in the proposed model in an interaction
situation. (B) Overview of the emotion system.

The elements of the reward corresponding to arousal and plea-
sure, RA

e · RP
e , are composed of various psychological factors—

novelty, relatedness, emotional contagion, and expectancy—
denoted nov, rel, econst, str, and Egrad, respectively.

RA
e (t) = αAnov(t)+ βAstr(t)+ γeA

cont(t) (3)

RP
e (t) = αPrel(t)+ βPEgrad(t)+ γeP

cont(t). (4)

The novelty, nov, indicates the degree of interest in novel sur-
rounding objects, and it is defined as

nov(t) = 1/(1+ exp(−m(I(t)− θ)), (5)

where I(t) is information gain, and m and θ are constants.
The information gain, I(t), is based on a state transition model
constructed by the agent’s observations,

I(t) = − log p(s(t + 1) | s(t)). (6)

Stern (1985) proposed that the emotional attunement of a par-
ent is important in establishing a parent–child relationship. Such
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emotional attunement is thought to be necessary for the sharing
mind states. Thus, we assume that the relatedness variable, rel,
depends on the synchronization of emotional states:

rel(t) = (1− μ)rel(t − 1)+ νsim(t), (7)

where μ and ν are constants. sim is the emotional similarity, i.e.,
the extent to which other’s emotional states are shared between
the agents. sim is the inner product of the self and other’s emotion
vectors:

sim(t) = e(t)eother(t). (8)

As suggested by fMRI experiments (Singer et al., 2004), humans
possess an emotional mirror system. A person’s emotional state
is slightly altered by the perceived emotional state of another.
In this paper, the variable for emotional contagion variable,
econt, is the product of relatedness and the emotional state of
the other:

econt(t) = rel(t)eother(t). (9)

Note that the emotional contagion increases with increasing
degree of relatedness.

When a parent is unwilling to relate to his/her infant, the
heart rate of the infant increases, and the infant’s gaze is averted
from the parent, apparently because the infant is temporarily
aroused by the stress of communication failure (Field, 1981). In
our model, the stress variable increases when emotional sharing
with the related person fails; that is

str(t) = rel(t) exp(−σsim(t)). (10)

where σ is a positive constant.
While emotional contagion and stress cause temporary effects,

the impact of emotional expectancy is long lasting. For exam-
ple, pleasure is enhanced when one’s action appears to please
another. Thus, we define emotional expectancy as temporal gra-
dient of expected pleasure, defined by multiplying the action
selection probability by the pleasure of the other at the present
and preceding moments, and taking their difference.

Egrad(t) = rel(t)
(
pa(t)eP

other(t)− pa(t − tb)eP
other(t − tb)

)
(11)

The emotional expectancy is large when the action selection prob-
ability and the pleasure emotion increase together. Emotional
expectancy is also affected by relatedness.

2.1.2. Motivation mechanism for action
Dopamine neurons in the midbrain are considered to encode
values; they are activated and suppressed in desirable and
undesirable situations, respectively. However, some dopamine
neurons have recently been reported as activated even in unde-
sirable situations. Bromberg-Martin et al. (2010) proposed that
dopamine neurons encode either motivational value or motiva-
tional salience. Thus, we model two classes of dopamine neurons,
as follows.

Dopamine neurons belonging to the first class, encoding a
motivational value, are projected from the basal ganglia and
contribute to the exploratory and evaluative learning of whether
the current situation is desirable/undesirable. In infant–parent
communication, actions that attract the infant’s interest and
establish relatedness will score high motivational value. Thus,
we suppose that the first class of dopamine neurons encodes the
other’s arousal emotion and relatedness,

RValue
a (t) = êA

other(t)+ ωrel(t), (12)

where ω is a positive constant.
Dopamine neurons belonging to the second class, motiva-

tional salience, are projected from the amygdala. The neurons
contribute to the learning of motivationally important events that
may not be related to reward and are thought to aid attention and
working memory. We suppose that the second class of dopamine
neurons encodes the arousal emotion

RSalience
a (t) = eA(t). (13)

Both rewards are summed to give the total reward

Ra(t) = ρRValue
a (t)+ (1− ρ)RSalience

a (t), (14)

where ρ is a weighting constant (0 ≤ ρ ≤ 1). As ρ increases, an
agent acts upon predictions of the other’s emotional state. If ρ is
small, an agent acts more upon its own emotional response.

Reinforcement learning is used to update the action policy.
Although various sensor information is important in actual com-
munication, here we consider actions alone. When an action a
yields a reward Ra, the corresponding action value function R̂a is
updated as

R̂a(t + 1)← R̂a(t)+ ηRa

(
Ra(t)− R̂a(t)

)
, (15)

where ηRa is a learning coefficient.
The parent agent adopts an ε-greedy policy. That is, with prob-

ability ε, the parent agent selects the highest-valued action, R̂a,
among its own action repertoire, and otherwise chooses random
actions,

πparent(t) =
{

random action (ζ < ε)

arg maxa R̂a(t) (otherwise)
, (16)

where ζ is randomly drawn from a uniform distribution in the
interval [0, 1].

The actions performed by the infant agent depend on the
action value R̂a. The movements of infants appear random and
occasional, whereas those of their parents are voluntary. Thus,
we model the selection and performance of infant actions by a
Boltzmann equation

πchild(t) =
exp

(
R̂a(t)/τ

)

c + exp
(

R̂a(t)/τ
) , (17)
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where c is the initial probability that an action is taken. The
temperature parameter τ determines the randomness of action
selection.

2.2. INTERACTION EXPERIMENT WITH A VIRTUAL ROBOT
To validate its applicability in real communication, the proposed
model was implemented in a virtual agent. The virtual agent com-
municates with a human experimenter who mimics parent-like
facial expressions and behavior.

The experimental setup is shown in Figure 2. Displayed on
a laptop computer, the virtual agent (Figure 2A) observes facial
expressions and behavior of the experimenter by a USB camera
attached to the top of the laptop display.

The virtual agent displays four types of facial expressions
depending on its emotional state. It also exhibits an appealing
behavior by arm movement. The facial expressions and appealing
behavior are shown in Figure 3.

The experiment was undertaken in two phases. In the first
(learning) phase, the virtual agent learns the relationship between
the experimenter’s facial expressions and its corresponding emo-
tional states and constructs a layered network for behavior
recognition. In the second (interaction) phase, the virtual agent
communicates with the experimenter.

In the learning phase, information for emotional estimation
and behavior detection is processed from camera images. During

FIGURE 2 | Experimental setup. (A) Virtual agent. (B) Communication
scene.

FIGURE 3 | Facial expressions and appealing behavior of the virtual

agent. (A) Calm, (B) laugh, (C) surprise, (D) cry, and (E) appealing.

emotional estimation, the estimated emotional state of the exper-
imenter, eother, is output from the camera image, x. The facial area
in the captured image is extracted by the facial recognition algo-
rithm in OpenCV (Bradski, 2000), converted to a gray scale image
of size 128× 128 pixels, and binarized by a specified threshold.
In the learning phase, a certain number of facial images, Ii, is
recorded and each is stored with its corresponding emotional
state, ei. The correspondence between the emotions of the virtual
and human agents is learned by imitation (Watanabe et al., 2007);
that is, the human agent imitates the facial expressions of the vir-
tual agent when presented with a stimulus such as a blue object or
keyboard pressing (these responses of the virtual agents are pre-
programmed). In the interaction phase, the input facial image Ix

is compared with the stored images and the best-matched facial
image is selected as

Imin = arg min
I i

|Ix − Ii|2 (18)

Let ψ be the mapping function. The momentary estimated emo-
tional state of the experimenter is calculated as

enow = ψ(Imin). (19)

The estimated emotional state is the temporal average of the
momentary estimated emotional states,

eother = (1− δ)eother + δenow (20)

where δ is an update constant.
Figure 4 shows the learned map of the facial images and their

corresponding emotional states. The vertical and horizontal axes
indicate the arousal and pleasure levels, respectively. For this
experiment, the emotional state of the experimenter is estimated
from 25 images.

FIGURE 4 | Learned map of facial images and emotional states.
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Behavior recognition is achieved by a layered neural net-
work of slow feature analysis (SFA). The SFA learning algorithm
extracts the slowly changing components from the input signals
and estimates the inherent information based on their statisti-
cal properties (Wiskott and Sejnowski, 2002). According to some
studies, SFA exhibits stronger gesture recognition performance
than existing methods such as the hidden Markov model and
random forest (Koch et al., 2010).

The input to the SFA layered network is an image of the
experimenter waving a red object in his hand in various direc-
tions. The learning data are 2000 steps of images. The input
image (320× 240 pixels) is segmented into the small areas of
size 16× 12 pixels. Each small area is labeled as “1” if the num-
ber of red pixels (specified by RGB content R ≥ 160G ≤ 50B
≤ 80) exceeds half; otherwise, it is labeled “0”. The resultant
128-dimensional vector is used to construct a state transition
model. The range of the j-th unit in the SFA output layer, yj, is
divided into Sj bins. The output signal is described by the discrete
states s(yj) (s ∈ {1, 2, . . . , Sj}). from which the state transition
probability in the j-th output signal, yj, is calculated as

p
j
ss′ = Pr

{
s
(
yj(t + 1)

) = s′ | s
(
yj(t)

) = s
}
. (21)

This state transition model is iteratively updated when a new state
is observed.

The information gain of yj, Ij(t), is calculated by the state
transition model as

Ij(t) = − 1
ta+1

∑t
t= t− ta

log p
(
s
(
yj(t + 1)

) | s
(
yj(t)

))
. (22)

From 22, the novelty of the j-th output signal is evaluated as

novj(t) = 1
1+exp(−m(Ij(t)− θ))

. (23)

Finally, the novelty of the whole output signal, nov(t), is calcu-
lated as the average of the novelty of each output signal

nov(t) = 1
n

∑n
j novj(t). (24)

During the interaction phase, the experimenter communicates
with the virtual infant agent with a red object in his/her hand.
The communication mimics the still-face paradigm experiment

in developmental psychology, passing through the three phases of
interaction, still face, and reunion. During the interaction phase,
the experimenter looks at the camera and expresses surprise, sim-
ulating a parent seeking the attention of his/her infant. Then,
when the agent similarly expresses surprise, the experimenter
ensures that the arousal emotion is shared and begins laughing to
the virtual agent. Throughout the interaction, the experimenter
moves the red object, starting with the action patterns shown in
Figure 5, and later by free motion. The persistent changes in the
action pattern maintain the arousal level and the attention of the
virtual infant.

During the second phase (still face), the experimenter ceases
object movement and shows a blank facial expression. The
possible unfamiliarity between experimenter and agent is non-
problematic, because in actual still-face paradigm experiments,
the still-face effect is elicited in infants meeting a person for the
first time (Adamson and Frick, 2003).

During the last phase (reunion), the experimenter reverts to
the interaction phase; that is, moving the red object and present-
ing emotional facial expressions.

The virtual agent shows simulates laughing (eP > 0.4), cry-
ing (eP < 0), surprise (0 < eP < 0.4, eA > 0.4), and normal
(otherwise). The relationship between the emotional states and

FIGURE 6 | Facial expressions and emotional states of a virtual infant

agent.

FIGURE 5 | Actions made by experimenter. (A) Action a0. (B) Action a1. (C) Action a2.
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the facial expressions is shown in Figure 6. The agent appeals
(Figure 3E) to the experimenter based on the probability of
action taken (Equation 17).

The simulated still-face paradigm experiment was conducted
over the time frame of the equivalent developmental psychol-
ogy experiment (Adamson and Frick, 2003); 2 min for the first
interaction, 2 min for the still face, and 2 min for the reunion.

While the emotional expressions and actions of the human
experimenter are continuous, they are undertaken by the virtual
agent in a numerical time step (430 ms). To maintain natu-
ral interaction, the agent retains the triggered facial expression
and action for 4 s. The experimenter’s emotional state is esti-
mated every 5 steps. The emotional state of the agent and all
other variables are updated at each step. The novelty is eval-
uated after each 30-step sequence of human actions (i.e., the
ta is set to 30 in Equation 22). The constants and param-
eter settings of the infant agent are described in the next
section.

2.3. SIMULATION EXPERIMENT OF PARENT–INFANT INTERACTION
We suppose that parent–infant interaction is enabled by a moti-
vation mechanism that is common to both individuals. The com-
munication dynamics are governed by mutual attraction between
the infant’s and parent’s motivation. In this section, the pro-
posed model is implemented in two agents to determine whether
the parent–infant interaction emerges through interplay between
emotion and action in a simulation environment. We also exam-
ine how the relatedness of the infant agent changes in response to
varying patterns of action and emotional expressions presented
by the parent agent.

Both agents are assigned three actions, a0, a1 and a2, as shown
in Figure 5. The parent agent selects its action from the reper-
toire when the action value is updated. If the probability of action
(Equation17) exceeds a given threshold, the infant agent adopts
the action taken by the parent in the previous step.

Action recognition is based on the image sequence recorded
in the interaction experiment between the human and the vir-
tual agent. When its partner performs an action, the observing
agent accepts an image sequence (30 images 9 of the active agent
as input. When no action of the agent is observed, the novelty of
the observer decreased by a factor of λ,

nov(t) = λnov(t − 1) (if no action is observed). (25)

In emotional expression and recognition, we assume for simplic-
ity that one agent can observe the emotion of another agent, eother,
from his/her facial expression, fother without mistakes.

We also assume that two steps of simulation time correspond
to 1 s. An action is selected, and the action value, together with
the emotional estimate of another agent, is updated every 5 steps.
All other variables, including the emotional state, are updated at
each step.

We allocated the following five conditions of facial expression
and action patterns of a parent agent.

1. normal
2. still face

3. fixed action
4. random emotion/action
5. no relatedness

Under condition (1) normal, the parent agent behaves according
to the proposed emotional system.

Under condition (2) still face, the parent agent adopts the
still-face behavior in human-agent interaction experiments. The
simulated experiment is undertaken in three phases; interac-
tion phase (0–999 steps), still face phase (1000–1199 steps), and
reunion phase (1200–1399 steps). Each phase corresponds to 2–3
min in real time. While both agents follow the proposed model
during the interaction phase, the parent ceases facial expression
and activity in the still-face phase. During this phase, the emo-
tional state of the parent agent is set to eA = 0 and eP = 0. In the
reunion phase, the parent agent recovers its emotional expression
and resumes action.

Under condition (3), fixed action, the parent agent selects the
same action, a1, while its emotional expressions are governed
by the proposed model. Unlike the normal condition, in which
action selection by the parent depends on the action value, R̂a, the
fixed action arouses marginal emotion in the infant. The resulting
lack of novelty perceived by the infant reduces the relatedness.

Under condition (4), random emotion/action, the parent
expresses random emotion expressions and performs actions ran-
domly. The arousal and pleasure values are randomly selected
from −1 to 1. Among the three-action repertoire, each action is
selected with equal probability. While emotions are continuously
shared between the parent and infant agents under normal con-
ditions, emotional sharing is interrupted under this condition.

Under condition (5), no relation, the relatedness of the par-
ent agent is not updated (and remains fixed at 0). This condition
enables the observation of how relatedness between the agents
affects their emotional sharing.

The parameters and coefficients used in this experiment are
listed in Tables 1–4.

3. RESULTS
3.1. EXPERIMENTAL RESULTS IN INTERACTION EXPERIMENT WITH

VIRTUAL ROBOT
Throughout the 6-min interaction period, the virtual agent com-
pleted 828 calculation steps. Figure 7 shows the temporal profiles
of relatedness during the interaction. Throughout the first inter-
action phase, the relatedness increases to its maximum value
1.0 in 118 s. The relatedness declines throughout the still-face
phase (from 120 to 240 s) is minimized (0.33) at 247 s and

Table 1 | Parameters of emotional elements.

Parameter Explanation Parent/

Infant

m Coefficient of information gain for novelty 100

θ Threshold of information gain for novelty 0.9

μ Decay constant for relatedness 0.006

ν Coefficient of vector similarity for relatedness 0.025

σ Coefficient of similarity for stress 5
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Table 2 | Parameters of emotional change.

Parameter Explanation Parent Infant

αA Coefficient of novelty for arousal
reward

0.8 0.5

βA Coefficient of stress for arousal reward 0 2

αP Coefficient of relatedness for pleasure
reward

0.8 0.45

βP Coefficient of expectancy for pleasure
reward

0 40

γ Coefficient of emotional contagion for
pleasure reward

0.6 1

ηRe Coefficient for update of emotional
state

0.03

Table 3 | Parameters of action motivation.

Parameter Explanation Parent Infant

ω Coefficient of relatedness for
motivational value

0.3 –

ρ Weight of motivational value for action
reward

1 0

ηRa Coefficient of action value update 0.6

ε Probability that parent selects random
action

0.1 –

c Initial constant of action selection of
infant

– 4

τ Temperature constant of action
occurrence probability of infant

– 0.3

Table 4 | Other system parameters.

Parameter Explanation Parent/

Infant

n Number of input signals for novelty detection 20

Sj Number of bins in input signals for novelty detection 20

ηe Coefficient for emotion estimation 0.05

recovers throughout the reunion phase (after 240 s) when normal
interaction is resumed.

Figure 8A shows the emotional state of the experimenter esti-
mated by the infant agent. While the experimenter shows a
positive emotional state in the interaction and reunion phases, its
arousal and pleasure value fall to 0 during the still-face phase.

Figure 8B shows how the emotional state of the infant vir-
tual agent changes over time. During the first interaction phase,
positive emotion continues, and the pleasure level increases with
increasing relatedness. Note that the arousal level suddenly esca-
lates in the still-face phase, while the pleasure level decreases.
During the reunion phase, the arousal settles around 0.5, and the
pleasure recovers. Figure 9 shows the probability of action taken
by the agent. This probability increases with increasing pleasure
level throughout the interaction phase, but suddenly leaps in
the still-face phase. This trend mirrors the appealing behavior of
infants real-time still-face experiments.

FIGURE 7 | Relatedness of virtual agent as a function of time in the

simulated still-face experiment.

3.2. EXPERIMENTAL RESULTS OF SIMULATED PARENT–INFANT
INTERACTION

Figure 10 shows the temporal dynamics of relatedness in the
infant agent while interacting with the parent agent under the
five conditions. While the relatedness increases to its maximum as
the interaction proceeds under normal and still-face conditions,
it remains low under the remaining three conditions. During
the 860 steps of the interaction phase under the sitll-face con-
dition (corresponding to the normal condition), the relatedness
increases to 1. However, while the relatedness remains at 1 under
normal conditions, it declines throughout the still-face phase,
because the parent shows not emotional expression, and the
degree of emotional sharing, sim, reduces to 0. In the reunion
phase, after 1202 steps, the relatedness recovers as observed in the
human–robot interaction experiment.

Figure 11 shows the emotional states of infant and parent
agents. Throughout the interaction phase, the actions of the par-
ent engage the infant agent, raising its arousal level. The increased
relatedness enhances the pleasure level in both agents. During the
still-face phase, both the arousal and pleasure levels of the parent
agent decrease to 0 (Figure 11A). On the other hand, the resulting
stress to the infant (described by Equation 10) increase its arousal
level (Figure 11B). Increased arousal is accompanied by a decline
in the pleasure level shortly after entering the still-face phase. This
negative emotion is induced by the negative value of expectancy
value (Equation 11). During the reunion phase, the arousal level
of the infant decreases to pre-stress levels, and the pleasure level is
recovered as relatedness is restored.

Under the fixed action condition, the relatedness increases to
0.1 and gradually declines to a low level. By contrast, related-
ness remains low under random action/emotion conditions. As
defined in Equation (7), relatedness is determined by the sim-
ilarity of emotional states between the two agents. Throughout
the interaction phase, the arousal level of both agents necessar-
ily increases, as specified in the still-face condition. However,
when the parent performs fixed actions, it stimulates no novelty
in the infant. Although random actions do stimulate novelty in

www.frontiersin.org September 2013 | Volume 4 | Article 618 | 330

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Ogino et al. Relatedness-based motivation model for interaction

A B

FIGURE 8 | Emotional state of experimenter (estimated by virtual agent) (A) and virtual agent (B).

FIGURE 9 | Probability of agent action as a function of time in the

simulated still-face experiment.

the infant, the randomness of the parent’s emotional expressions
interrupts emotional sharing, thereby reducing the relatedness
under random action/emotion conditions.

Under the no relatedness condition, the relatedness of the
infant agent increases up to around 0.2 during the first 400 steps
and remains at 0.2 thereafter. During the interaction phase, the
shared arousal emotion enhances the relatedness. Subsequently,
the shared pleasure emotion further increases the similarity, sim,
and thus the relatedness. However, since relatedness dominates
the pleasure level, pleasure cannot increase if the parent lacks
relatedness. Thus, high relatedness in the infant agent can be
achieved only by the sharing of arousal emotion.

4. DISCUSSION AND CONCLUSION
In our model, parent infant interactions are primarily mediated
through novelty and relatedness. Novelty motivates interaction
with the environment. Since the novelty value is evaluated from
a pre-learned state transition model, it is increased by the per-
ception of dynamic movement and reduced in still environments.
Based on this property, the parent predicts which action will
elicit higher novelty in an infant, such as moving an object.

As the infant detects novelty in his/her parent’s behavior, its
arousal level and response frequency are enhanced. In turn, the
infant responses evoke novelty, and hence arousal, in the parent.
Increased arousal in both agents increases emotional sharing, and
hence the relatedness, between the agents. This enhanced relat-
edness encourages pleasurable emotions and further emotional
sharing. The simulation experiment demonstrated this positive
feedback effect of mutually exchanged rewards.

In the proposed model, novelty and the state transition prob-
abilities of other agent’s actions are evaluated by SFA networks.
Such networks are effective for extracting similar action structures
from image sequences, because they can integrate temporarily
similar information. This property of SFA networks renders them
suitable for gesture recognition, where repeat observations of the
same action are perturbed by human motion and lighting con-
ditions. In fact, unvarying repeated action decreases the novelty,
because the same state transition is observed.

The relatedness modeled in this paper does not consider
long-term relationships. We reiterate that the still-face paradigm
is applicable not only to parent–infant interactions but also
to stranger–infant interactions (Adamson and Frick, 2003).
Furthermore, the still-face response is absent during interactions
with impersonal objects. This finding indicates that infants can
relatively quickly identify whether an object/person is amenable
to social interaction and can related to that object or per-
son. Humans do not empathize with objects and other humans
that fail to comply with expectation, unless relatedness is also
present. Relatedness is regarded as a precursor to all social emo-
tions, including social expectation, social contagion, and social
stress. For this reason, the modeled terms of social contagion,
stress, and expectation of emotional reward include multiples of
relatedness.

An interesting result of the proposed model is that surprise
appears first in the interaction, followed by pleasure. This is
attributable to the evocation of arousal by novelty detection,
which occurs regardless of relatedness, while the pleasure emo-
tion arises only through relatedness. Thus, during in the initial
interaction, when relatedness is low, arousal is elicited first. Next,
as arousal is shared, the relatedness is increased, followed by plea-
sure, which elicits the smiling response. In this way, emotional
contagion encourages further emotional sharing.
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A B

FIGURE 10 | Relatedness during simulated parent–infant interactions. (A) Relatedness of infant agent. (B) Relatedness of parent agent.

A B

FIGURE 11 | Emotional states during simulated still-face interactions. Red and green lines indicate the arousal and pleasure levels, respectively. (A) Parent
agent. (B) Infant agent.

Although the parent frequently changes action during inter-
action phase, the frequency of change decreases as relatedness
increases. High relatedness maintains the motivation at a high
level and prevents the decline of the action value. Indeed, in the
simulation experiment, the parent altered its actions 41 times
through the interaction phase, increasing to 96 times when relat-
edness was set to 0. In actual human communications, this trend
might signify a shift from a unidirectional form, in which a par-
ent attracts the attention of an infant, to a bidirectional form, in
which both parent and child pursue pleasurable emotions.

The simulation experiment investigated how the interaction
between the parent–infant interaction changes when the related-
ness of the parent agent is not updated. Under this condition,
the emotional state of the parent is static, and the action pat-
terns depend on emotional sharing with the infant. During the
first phase, the arousal level increases in both parent and infant
agents, increasing the relatedness and pleasure levels of the infant,
while those of the parent remain fixed. In this case, because the
emotional state vectors of both agents diverge, the relatedness
and pleasure levels of the infant remain low. Thus, if one agent
seeks relatedness and its accompanying pleasure, it must find
another agent with the same goal at the same time. Baumeister
and Leary (1995) proposed that human beings are fundamentally
and pervasively motivated by a need to belong; that is, to form
enduring interpersonal attachments. According to these authors,
this need is satisfied when pleasant interactions occur within a

temporally stable and enduring framework of affective concern
for each other’s welfare. In our simulation study, a similar recip-
rocal relationship between two agents was required to maintain
interpersonal attachments.

In the simulation experiment, the relatedness was initialized to
0 both in both agents. In an actual interaction, the parent who
establishes communication with his/her infant possesses high
relatedness at the beginning of the interaction. However, if the
initial pleasure value of the parent agent is set to 1, the related-
ness decreases, because the pleasure level does not match that
of the infant. This occurs because relatedness in the proposed
model depends only on emotional similarity. This problem might
be solved by including a top–down mechanism, such as a bias
term, when calculating the relatedness in the parent agent. Such
a term would account for the parent’s desire to interact with the
infant.

In this paper, the emotional state of an agent is defined in a
two-dimensional plane whose aces are arousal and pleasure. This
low-dimensional model of emotions has been previously adopted
in robotics studies (Breazeal and Scassellati, 1999; Itoha et al.,
2005; Watanabe et al., 2007). In psychology, low-dimensional
models are based on descriptive taxonomies and have proven rea-
sonably successful for describing measures of self-reported emo-
tion and relative confusion of various facial expressions. However,
the sections of brain corresponds to each dimension are not
clear. Arguably, such models cannot explain selective emotional
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impairments (Calder et al., 2001). The difficulties in model-
ing emotions necessitate a direct quantitative comparison of the
model with psychological experiments. Facial expressions and
physiological data such as Galvanic skin response are superfi-
cial expressions of internal emotional states. In this paper, the
still-face effect is qualitatively compared with the psychologi-
cal still-face paradigm experiment. Although emotions appear
to be dispersed within the human brain, unlike the phys-
ical sense of touch, which is located in the somatosensory
area, separated areas are probably connected within the state
space of emotion. In future experiments, we plan to incor-
porate brain mechanisms, including the relationships among
brain regions related to emotion, and to compare the theoreti-
cal model with brain activities during interactions (Dumas et al.,
2010).

Gaze is one of the most important challenges in extending
the proposed model. Arousal is closely related to attention. In
the proposed model, an agent informs its interest to another by
arousal-induced actions but does not inform the item of inter-
est. Furthermore, the parent’s action value varies over time, but it
is independent of sensor information. Supplied with gaze infor-
mation, a parent could locate and identify the item commanding
the infant’s attention, which would enrich communication. For
example, parental behavior such as intentionally shifting the tim-
ing of an action or showing exaggerated facial expressions after

attracting the infant’s attention would further enhance pleasure
in the infant.

The proposed model does not explain the decrease of the
infant’s attention toward the parent in the still-face phase. Such
behavior is thought to decrease the stress experienced by the
infant (Field, 1981). If true, our model must introduce attention
mechanisms for controlling emotion. Furthermore, including
gaze information, we could extend our simulated interactions
from dyadic interactions to triadic relationships among par-
ent, infant, and object. Especially, joint attention, in which the
infant attends to the object occupying the parent’s attention
or promotes the parent to attend to his/her object of interest,
is an important topic in the communication of shared emo-
tion. The learning of joint attention has already been mod-
eled in developmental cognitive robotics (Nagai et al., 2003;
Triesch et al., 2006). In future extensions of our model, we
aspire to understand how higher cognitive functions such as joint
attention relate to motivational behavior such as novelty and
relatedness.
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Autonomy and self-improvement capabilities are still challenging in the fields of
robotics and machine learning. Allowing a robot to autonomously navigate in wide and
unknown environments not only requires a repertoire of robust strategies to cope with
miscellaneous situations, but also needs mechanisms of self-assessment for guiding
learning and for monitoring strategies. Monitoring strategies requires feedbacks on the
behavior’s quality, from a given fitness system in order to take correct decisions. In this
work, we focus on how a second-order controller can be used to (1) manage behaviors
according to the situation and (2) seek for human interactions to improve skills. Following
an incremental and constructivist approach, we present a generic neural architecture,
based on an on-line novelty detection algorithm that may be able to self-evaluate any
sensory-motor strategies. This architecture learns contingencies between sensations and
actions, giving the expected sensation from the previous perception. Prediction error,
coming from surprising events, provides a measure of the quality of the underlying
sensory-motor contingencies. We show how a simple second-order controller (emotional
system) based on the prediction progress allows the system to regulate its behavior to
solve complex navigation tasks and also succeeds in asking for help if it detects dead-lock
situations. We propose that this model could be a key structure toward self-assessment
and autonomy. We made several experiments that can account for such properties for
two different strategies (road following and place cells based navigation) in different
situations.

Keywords: bio-inspired robotics, self-assessment, action selection, metalearning, sensory-motor system, neural-

networks

1. INTRODUCTION
Autonomy, in the field of robotics, is still an open and poorly
defined problem for which concepts remain to be invented. By
autonomous, we mean a system able to develop and evaluate
their skills and decide whether its behavior is relevant or not
according to the context. When we talk about autonomy rela-
tive to the behavior, we mean the ability to learn behaviors in
an open-ended manner but also to manage them. The concepts
of open-ended development and cumulative learning have been
studied for years in psychology, machine learning and robotics.
Those capacities highly depend on intrinsic motivations, involved
in exploration and curiosity. The study of intrinsic motivations
is gaining more and more attention lately as artificial systems
face autonomous cumulative learning problems. Several compu-
tational models have been proposed to overcome these problems
where some are based on the knowledge of the learning system,
while others are based on its competence. The first knowledge-
based model, proposed by Schmidhuber (1991), consisted in a
world model that learned to predict the next perception given
the current one and the action. Prediction progress is used as an
intrinsic reward for the system. More recently, a similar model
of artificial curiosity proposed by Oudeyer et al. (2007) allows
an agent to focus on novel stimuli to improve its learning in

challenging situations, avoiding well known and totally unknown
ones. The first competence-based model was proposed by Barto
et al. (2004) where the intrinsic reward is given on the basis of
the inability of the system to reach its goal. In the same way,
Baldassarre and Mirolli (Schembri et al., 2007; Santucci et al.,
2012) proposed a reinforcement learning architecture that imple-
ments skills on the basis of experts. See (Mirolli and Baldassarre,
2013) for a global state of the art of both approaches.

Here, we do not address the problem of learning new skills in
a fully autonomous and open-ended manner. We propose in a
first step to study open-ended development through the frame-
work of human interaction. In our view, the agent requires a
teacher to learn from demonstration but not in a prescriptive way.
Since a long time, we develop models allowing robots to learn
autonomously different navigation tasks such as: using latent
learning to build a cognitive map to be able to reach several goals
(Gaussier et al., 2002; Giovannangeli et al., 2006; Laroque et al.,
2010; Cuperlier et al., 2007; Hasson et al., 2011; Hirel et al., 2013)
or to use explicit or implicit reward to learn different kind of
sensori-motor behaviors (Andry et al., 2002, 2004). Yet, it cannot
be avoided that at some point the robot fails because of an incom-
plete learning or because of some changes in the environment. For
complex task learning, autonomy means also being able to ask for
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help and/or to learn from others. It can be made through several
ways from stimulus enhancement, response facilitation to differ-
ent level of imitation. Here we propose to focus on how to allow
a system that can be fully autonomous (see previous papers) to
work for some time under the supervision of a trainer in order
to discover efficiently the solution of a complex problem and/or
to complete its learning. To fit natural low level interactions, the
training is performed thanks to a leash. Like a dog or a horse,
our robot cannot avoid turning its head in the direction of the
force applied on the leash. One key difference with a classically
supervised system is that the robot has to evaluate when and how
to take into account the supervision signal. For sake of simplic-
ity, we will suppose, in this paper, there is no opposition between
the robot needs and the trainer requirement. Hence we will not
focus on how the robot use latent learning for building some cog-
nitive map or exploit various reinforcement signals to modify its
sensory-motor associations [see (Hirel et al., 2013) for the use of
a similar architecture focusing on these issues].

Adding self-assessment capabilities to robots should be an
interesting solution in this framework of social robotics where
humans play a role in the cognitive development of the robot. It
could allow the robot to seek for more interactions when needed
as in the collaborative control system of Fong et al. (2003). The
robot could also communicate its inability to improve its learning.
It means that not only does the robot need to code its knowl-
edge but also the limits of its knowledge. This becomes all the
more important in integrated robotic systems which have to make
decisions based on observations drawn from multiple modalities
(Zillich et al., 2011).

Evaluating behavior performance requires the ability to pre-
dict the behavior itself at first. Then, it requires to detect potential
problems by considering aspects of novelty in these predictions.
Novelty is thus an important signal to consider since it repre-
sent a key feature providing feedbacks on the behavior’s quality.
The problem of self-assessment is then sensibly close to the class
of novelty detection problems. Novelty detection is a commonly
used technique to detect that an input differs in some respect
from previous inputs. It is a useful ability for animals to recog-
nize an unexpected perception that could be a potential predator
or a possible prey. One of the main goal for self-assessment is self-
protection. It is strongly used in situations that caused a failure or
a threat in the past, or in the prediction of a threat or a future
challenge (Taylor et al., 1995). It reduces the large amount of
information received by the animal so that it can focus on unusual
stimuli [see (Marsland, 2002) for a global state of the art].

A variety of novelty filters has been proposed where most of
them work by learning a representation of a training set (contain-
ing only normal data), then trying to underline data that differ
significantly from this training set. In the literature, one can find
different classes of methods such as statistical outlier detection,
novelty detection with supervised neural networks, techniques
based on self-organizing map and gated dipole methods.

The standard approach to the problem of outlier detection
(Sidak et al., 1967; Devroye and Wise, 1980) is to estimate the
unknown distribution μ of a set of n independent random vari-
ables in order to be able to detect that a new input X does not
belong to the support of μ. In the same way, extreme value

theory (Gumbel, 1958) focuses on distributions of data that have
abnormal values in the tails of the distribution that generates
the data.

The first known adaptive novelty filter is that of Kohonen
and Oja (1976). It proposes a pattern matching algorithm where
new inputs are compared with the best-matching learned pat-
tern, meaning that non-zero output is only seen for novel stimuli.
Self-organizing networks also provide solutions to detect novelty
using unsupervised learning (Kaski et al., 1998) and particularly
the so-called Adaptive Resonance Theory (ART) (Carpenter and
Grossberg) network that uses a fixed vigilance threshold to add
new nodes whenever none of the current categories represents
the data. In a sense, the process of the ART network is a form
of novelty detection depending on a vigilance threshold.

Supervised neural networks methods propose also novelty
detection solutions by recognizing inputs that the classifier can-
not categorize reliably. Such methods estimate kernel densities
to compute novelty detection in the Bayesian formalism (Bishop,
1994; Roberts and Tarassenko, 1994).

Another solution is given by gated dipole fields, first proposed
by Grossberg (1972a,b), then used to compare stimuli and model
animal’s attention to novelty (Levine and Prueitt, 1992).

Neural models of memory can also detect novelty by learning
sequences of states that provide a simple mean of representing
pathways through the environment (Hasselmo and McClelland,
1999). Dollé (2011) and Caluwaerts et al. (2012) propose models
of metacontroller for spatial navigation that select on the fly the
best strategy in a given situation. A competition following by a
reinforcement learning allows to associate the action that best fits
to the situation. Categorizing contexts are then required to recall
the learned action.

Some studies propose that the hippocampus structure, besides
its implication in spatial navigation, could be involved in novelty
detection, since identifying novelty implies storing memories of
normal situations and building expectations from these situations
(Knight, 1996; Lisman and Otmakhova, 2001). The importance
of novelty in emotional processes was suggested by appraisal the-
ory (Lazarus, 1991; Scherer, 1984; Lewis, 2005). Novelty is closely
related to surprise (which could be either positive or negative)
but is also determinant in assessment processes for several other
emotions (Grandjean and Peters, 2011). Emotional processes are
particularly important in decision making while they can guide
or bias behavior faster than rational processes, or when rational
inferences are insufficient (Damasio, 2003). Griffiths proposes a
taxonomy of emotions divided in 2 classes: primary emotions
managed by the amygdala and cognitive ones that operate in the
prefrontal cortex (Griffiths, 1997).

The role of emotions in communication are also important
and have been studied in infants-adults interaction (Tronick,
1989). Infants show self-appraisal capability very early (before the
age of 2) while trying to perform a task, but they show a few inter-
est for parents approbation and focus on another goal in case
of failure. From the age of 2 the children show reactions (cry-
ing, hooking on parents) when facing negative assessment (Stipek
et al., 1992; Kelley et al., 2000).

Following the concept of bio-inspired robotics and a construc-
tivist approach, we present integrated robotic control architecture
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resulting from a close feedback loop between experiments on
animals and robots. This leads to a better understanding of the
mechanisms by which the brain processes spatial information. In
the next sections we first present our previous model of visual
place cells that allows a robot to exhibit simple and robust naviga-
tion behaviors (Gaussier et al., 2002; Banquet et al., 2005). Since
this strategy has been successfully tested in small environments,
we met issues while trying to navigate in larger and more com-
plex ones (see Section 2.1.1). We propose to add a second strategy
based on a simple, efficient and biologically plausible road follow-
ing algorithm in order to overcome issues we met with the first
one (see Section 2.1.2). Then, we propose a generic neural archi-
tecture able to evaluate both sensory-motor navigation strategies
(see Section 2.2) based on novelty detection techniques. Finally,
we show how a second-order controller, based on the compu-
tational literature on intrinsic motivations, can monitor novelty
tendencies to modulate both strategies depending on their rele-
vance in a given situation (see Section 2.3). We show how such
a controller could also communicates the inability for the robot
to perform its task, in order to learn from teacher demonstra-
tion. We claim that frustration could be a key feature to improve
autonomy in an open-ended manner.

2. MATERIALS AND METHODS
2.1. TWO SENSORY-MOTOR NAVIGATION STRATEGIES
Here, we assume that a robot is given a repertoire of behaviors
by the designer. In the following, we shortly present 2 of these
behaviors that are available to the robot and on which evaluation
and regulation mechanisms have been tested.

2.1.1. A model of Place Cells to perform sensory-motor navigation
In previous works, we developed a biologically plausible model of
the hippocampus and entorhinal cortex in order to obtain visual
place cells (VPCs) (O’Keefe and Nadel, 1978). VPCs are pyrami-
dal neurons exhibiting high firing rates at a particular location
in the environment (place field). Our model allowed controlling
mobile robots for visual navigation tasks (Gaussier et al., 2002;
Banquet et al., 2005).

1. A visual place cell (VPC) learns to recognize a constella-
tion of landmarks-azimuths pattern in the panorama (see

Figure 1). VPCs activity depends on the recognition level
of corresponding constellations. A winner-takes-all (WTA)
competition selects the winning VPC [see (Giovannangeli
et al., 2006) for more details].

2. Next, a neural network learns to associate a particular VPC
with an action (a direction to follow in our case). The robot
perform the action associated with the winning VPC. This
sensory-motor architecture [Per-Ac (Gaussier and Zrehen,
1995)] allows the system to learn robust behaviors.

VPCs activity, even in outdoor conditions, shows a peak for the
learned locations (see Figure 2) and generalizes quite correctly
over large distances (2–3 m inside and 20–30 m outside).

Our architecture has been successfully tested in small sized
environments (typically one room). However, our visual-only
based mechanism shows limitations when trying to scale to larger
and more complex environments (multi-room, outdoors). We
encounter some situations where the large number of trees all
around the system does not leave enough available landmarks to
recognize a specific place (the entire panorama is full of green
leaves that only represent noise for the system) and the only way
to overcome such a problem is to follow the road below. We pro-
pose to overcome this issue by adding to our current architecture
a biologically plausible road following strategy. Such a strategy
allows the robot to follow roads rather than learning Place Cells,
in situations where it is neither necessary, nor efficient to do so.
Providing two different strategies to the robot is not sufficient by
itself to navigate autonomously. The system also needs an action
selection mechanism that evaluates both strategies (on the basis
of a “meta” learning) to be able to select the right one in a given
situation.

2.1.2. A model to perform road following behavior
In previous works, we presented a fast and robust biologically
plausible road following strategy (Jauffret et al., 2013). Our algo-
rithm consists in finding the best vanishing point among N
potential points in an image. For example, lets consider 5 van-
ishing points equally distributed on the skyline. The robot will
orient itself toward the winning vanishing point.

1. The system processes to an edge extraction of incoming
images.

FIGURE 1 | Sensory-motor model of visual place cells (VPCs).

Gradient images are convolved with a DoG filter that highlights points
of interest on which the system focuses on to extract local views. A
VPC learns a specific landmarks-azitmuths pattern. A winner-takes-all

competition (WTA) allows to select the winning VPC. Then, an
association between the current action (robot’s direction) and the
winning VPC is learned, after what the system is able to move in such
a direction each time that VPC wins.

Frontiers in Neurorobotics www.frontiersin.org October 2013 | Volume 7 | Article 16 | 337

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Jauffret et al. From self-assessment to frustration

FIGURE 2 | (A) Activity of 4 PCs recorded on a linear track in a real
outdoor environment. Each maximum of activity corresponds to the
learned position of the corresponding PC. Our architecture provides
good generalization properties since activities present large place field.

(B) PerAc principle: Only a few Place/Action associations are needed to
perform simple and robust behaviors such as Path learning (a) or
Homing (b). The agent converges to the goal by falling into an
attraction field (c).

FIGURE 3 | (A) Road following principle for 5 vanishing point neurons (from
V1 to V5) for outdoor and indoor cases (red dotted line: preferred directions of
the winning neuron). Up: V2 is the best candidate. Down: V3 is the best
candidate. (B–E) Results obtained with our algorithm on real images. For each
cases: Up: real image of a road. Down: activity levels of 41 neurons, each one
firing for a particular vanishing point location on the image. (B) Road with

boundaries: the vanishing point is well detected in the center of the image
and generalized quite correctly to neighborhood (C) Without boundaries: the
vanishing point remain salient since there is a significant gradient between
road and grass. (D) Twisting road: 2 vanishing points are detected, one on the
left and one in the middle. Nevertheless, the more active is the one on the
left. (E) A vanishing point is detected on the right side.

2. For each vanishing point considered corresponds one
“vanishing” neuron Vn that integrates pixels whose edge ori-
entation is aligned to this vanishing point (see Figure 3). The
most active vanishing neuron corresponds to that where edges
are mostly convergent to.

3. Then, a simple WTA competition selects the best candidate
between the N vanishing neurons.

The motor control of our model is directly inspired by control
theories of Braitenberg vehicles (Braitenberg, 1986). This con-
trol is quite simple: when a vanishing point is detected on the
right (resp. left), the robot will turn right (resp. left). Convergent
behavior emerges from sensory-motor interactions between the
system and its environment, without any need for an internal
representation of the environment, or inference. Consequently,
angular precision is less important than sample rate in such a con-
trol. We tested this algorithm on real images of road (see Figure 3)
in several situations.

Our system succeeds in following any types of vanishing points
such as roads, corridors, paths or railways. Furthermore, this
algorithm has a satisfying framerate of 20 images per seconds

(for 41 vanishing point neurons tested on a I7 core proces-
sor) and this framerate increases when considering less neurons.
Such a high framerate is obtained because only the higher gra-
dients are considered in our algorithm. Therefore, the inten-
sity of the gradient have been normalized by using the cosi-
nus of the angle. So, in Figure 3 (case B) the gradient of road
edges is not really high even though the vanishing point is
detected.

A drawback of this method is the adjustment of the skyline
position. Moreover, in some environments, the vanishing lines
above the horizon can be an information (like in a corridor or
in forest) although high reliefs or clouds can disturb localization
of the vanishing point.

2.2. A NEURAL MODEL FOR NOVELTY DETECTION
Here we present a generic model for self-assessment based on
novelty detection techniques. Our model consists in two steps.
First, the learning of the sensory-motor contingencies induced
by the navigation strategy involved in a normal situation (train-
ing set), second the ability to detect extraneous sensory-motor
patterns in novel situations (see Figure 4).
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FIGURE 4 | Neural architecture relying on self-assessment. Left: network
used to detect unexpected events. It learns the sensory-motor contingency
of a given strategy by learning to predict the current sensation from the
previous perception. Perception is defined as a short-term-memory of recent
sensation/action tuples. Such a perception is used to predict an
approximation of the error, variance and skewness relative to the sensation y .
A global novelty level gives to the system a direct feedback on the quality of

the behavior involved. Right: Emotional controller regulating the behavior. A
recurrent neuron (Distress) integrates instant progress and regress of the
prediction error, and novelty activity to take into account stagnation of such a
prediction error. Actions proposed by the corresponding strategy are inhibited
proportionally to the distress level. A neuron (Frustration) fires only when the
distress activity reaches a threshold allowing the system to call for help. αx

and βx represent weights of the regulator’s parameters.

2.2.1. Modeling the dynamic interaction between the agent and the
environment

Learning to predict the sensory-motor contingencies of a strategy
can be viewed as finding invariants in the robot’s perception. In
visual perception (Gibson, 1979), an affordance can be defined as
building or accessing to an invariant characterizing one particular
sensory-motor behavior. Based from this statement, we consider
perception as the result of the learning of sensation/action asso-
ciations allowing a globally consistent behavior (see (Gaussier
et al., 2004; Maillard et al., 2005) for a complete mathematical
definition of perception).

Following this assumption, we defined robot’s perception as
the integral of all its affordances. An affordance referring to a
particular sensations/actions state:

Per(t) =
∫ t

−∞
SenT(t).Ac(t).dt (1)

Where Sen denotes a vector of sensations (sensory input), and Ac
a vector of actions (given by agent’s proprioception).
Lets denote y like Sen., a vector of n neurons yi relative to agent’s
own sensations, i ∈ N. It can be both place cells or vanishing
point cells in our case. y can be viewed as a set of random variable
yi. x is a vector of neurons xi relative to agent’s proprioception,
where the winning neuron code for the current orientation. A
matrix Per estimates the robot’s perception by integrating sensa-
tions y and actions x in a finite shifting temporal window defined
by the recurrent weight α. Per is the tensorial product between
x and y with recurrent connections of weight α. It codes a short
term memory of the agent’s perception, where Peri,j denotes the
particular tuple of both xi and yi neurons:

Per(t + 1) = α.Per(t)+ (1− α).SenT(t).Ac(t) (2)

Per(t) =
t∑

i= 0

αi− 1.(1− α).SenT(t).Ac(t) (3)

Basically, it means that recent inputs have a higher weight in our
process than older ones. This type of filter has been tested by
Richefeu and Manzanera (2006) in a motion detection context.
The parameter α is used in order to attach more importance to
the near past than to the far past.

2.2.2. Detecting novelty by processing absolute differences
between predicted and real sensation:

Following this internal model of the robot’s perception, we
defined a vector ŷ, same size as y, that estimates the mean E[y]
of the current sensation y from the perception matrix Per by an
online least mean square algorithm (LMS) (Widrow and Hoff,
1960): As a classical conditionning (Pavlov, 1927) the vector ŷ
modifies on the fly the weights of connections coming from
the perception matrix (unconditionned stimulus US) in order
to estimate the sensation vector y (conditionned stimulus CS).
We make the assumption that y follows a Gaussian distribution
required by least-squares. An absolute difference between y and
ŷ defines the instant error vector e. In the same manner, a vec-
tor ê, estimates the first moment about the mean μ2 = E[e], of
the current error e = y − ŷ, from the perception matrix Per by
an online LMS algorithm. The second-order error is defined as
e2 = e− μ2. The second moment about the mean is defined as
μ3 = E[|e− μ2|].

The third order error is defined as e3 = e2 − μ3. Novelty N is
defined as the global third moment about the mean. N is a single
neuron that integrates all e3 neurons activities: N = |∑n

i= 1 e3i |.
N is summarized by:

N = E[||(||y − E[y]|| − E[||y − E[y]||])− E[||y − E[y]||
− E[||y − E[y]||]] (4)

where ||y|| =
√√√√ n∑

i= 0

y2
i (L2 − norm) or

n∑
i= 0

|y2
i | (L1− norm) (5)
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N represents the prediction error of the network, that will be
used to detect unexpected events. Here, we defined novelty as
the third order moment about the mean for empirical reasons
while it is a good trade-off between precision and latency. Here,
the different moments μ2, μ3, and μ4 represent respectively the
pseudo-variance, the pseudo-skewness and the pseudo-kurtosis
while their measure follows the L1-norm rather than the L2-
norm. Our architecture is thus able to learn an internal model
of the dynamical interactions the system has with the external
world.

2.3. MODELING FRUSTRATION TO REGULATE BEHAVIORS AND
IMPROVE LEARNING

We showed that our model for self-assessment is able to give feed-
backs on the quality of the behavior of the strategy involved.
However, the system was not using such a confidence feed-
back to regulate its behavior. Here, we propose to implement
an emotional controller able to make use of the novelty level,
coming from the prediction mechanism. We propose that only
considering the absolute novelty level is not sufficient to take
correct decisions and regulate behaviors. First, short pertur-
bations (small obstacles, sensor disturbance, visual ambiguities
or singular false recognitions) should not affect so much the
robot’s behavior. Most of the time, the good generalization prop-
erties of our sensory-motor strategies allow the robot to stay
inside the “attraction field” of the learned behavior (see Figure 2)
and thus perform its task correctly, even if unexpected events
appear. Because it is more interesting to consider the evolu-
tion of such a novelty activity rather than its absolute level,
the agent should integrate the novelty activity over time and
monitor its evolution to be able to judge its own behavior.
If the prediction error remains high or increases whatever the
agent tries, then the behavior should be considered as ineffi-
cient. And if this inefficiency is lasting this means the agent
is caught in a deadlock. Similar assumptions have been pro-
posed by Schmidhuber (1991) in a model-building control system
driven by curiosity. This model deals with both problems of (1)
do not take into account parts of the environment which are
inherently unpredictable and (2) try to solve easy tasks before
focusing on harder tasks. The author proposes to learn to predict
cumulative error changes rather than simply learning to predict
errors.

Based on previous works (Hasson et al., 2011), we propose
to compute the instantaneous progress P(t) = N(t − δt)− N(t)
and the instantaneous regress R(t) = N(t)− N(t − δt) as the
derivatives of the novelty level N(t).

Lets define an analog potential of frustration as a recurrent
neuron that integrates instant progress and regress (see Figure 4).
It also integrates novelty activity N(t) to take into account
stagnation of such a prediction error. This potential of frustra-
tion is called the distress level D(t) in the followings. Actions
proposed by the corresponding strategy are inhibited propor-
tionally to this level. Frustration is then defined as a binary
decision F(t):

F(t) =
{

1 if D(t) > T
0 otherwise

(6)

with T a threshold parameter, and D(t) the distress level
defined as:

D(t) = αDD(t − δt)+ βSS+ βRR(t)− βPP(t)+ βN N(t) (7)

with S(t) a reward coming from the supervisor and αD, βS, βP, βN

weights of each variable. The binary frustration neuron fires only
when the distress activity reach a threshold T (0.9 in our experi-
ments). It allows the system to stop and call for help in order to
improve its learning in novel situations.

2.4. SELECTING AND MERGING STRATEGIES WITH A DYNAMIC
NEURAL FIELD

In our architecture, both strategies (place/action associations and
vanishing point following) and their respective metacontroller
run in parallel as independent channels (see Figure 5). Each
strategy provides an action (an orientation) in a separate field
of 361 neurons. Each neuron of the field codes for a particu-
lar orientation. Each field of action is inhibited proportionally
to the distress level of the corresponding strategy. Both fields
are merged into a global Dynamic Neural Field providing solu-
tions for action selection/merging rather than a strict competition
(Amari, 1977). The neural fields properties have already been
successfully tested to move robot arms by imitation using visual
tracking of movement (Andry et al., 2004), or motor control for
the navigation of mobile robots (Schoner et al., 1995; Quoy et al.,
2003). Neural Fields can account for interesting properties such
as action selection according to contextual inputs or persistence
in more detailed models (Prescott et al., 2001; Guillot-Gurnett
et al., 2002). The neural field equation proposed by Amari is the
following:

τ.
u(x, t)

dt
= −u(x, t)+ I(x, t)+ h+

∫
zεVx

w(z).f (x − z, t)dz

(8)
where u(x, t) refers to the activity of neuron x (coding for an
angle), at time t. I(x, t) is the input to the system. h is a neg-
ative constant that ensures the stability. τ is the relaxation rate
of the system. w is the interaction kernel in the neural field
activation. A difference of Gaussian (DOG) models these lateral
interactions that can be excitatory or inhibitory. Vx is the lat-
eral interaction interval defining the neighborhood. Properties
of this equation allow the computation of attractors correspond-
ing to fixed points of the dynamics and to local maxima of
the neural field activity. Selecting or merging multiple actions
depends on the distance between them. Indeed, if two inputs
are spatially close, the dynamic gives rise to a single attractor
corresponding to the average of them (merging). Otherwise, if
we progressively amplify the distance between inputs, a bifurca-
tion point appears for a critical distance. The previous attractor
becomes a repeller and two new attractors emerge. Oscillations
between multiple actions are avoided by the hysteresis prop-
erty of this competition/cooperation mechanism. Finally, a sim-
ple derivative of the robot orientation allows for motor con-
trol of the robot speed [see (Cuperlier et al., 2005) for more
details].
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2.5. EXPERIMENTAL SETUP
We have tested our models in several situations for both strate-
gies. We first present experiments running in simulation showing
the model principles. Next, we present an experiment with a real
robot showing how our model deals with known difficulties of
real life experiments such as odometry correction, noisy sensors,
dynamic of obstacles, people moving, lights changing, etc.

2.5.1. Simulations
We used a 40 ∗ 40 cm wide simulated robotic platform (see
Figure 6A) equipped with 2 wheels, proximity sensors for obsta-
cle avoidance and a pan-tilt camera used to extract points of
interest in the visual panorama and a fixed camera to perceive
vanishing points (a copy of our robulab platform from Robosoft).
Our simulation software (Webots from Cyberbotics) provides
physically realistic model for the robot and obstacles but nei-
ther noise nor 3D objects near walls are taken into account
(2D realistic snapshots of our lab are simply stuck on simulated
walls).

Setup 1: The place/action strategy is put ON while the road
following strategy stays OFF. The purpose of the experiment is to
test the self-assessment mechanism on the place/action strategy.

The environment is a simulated room of 15 ∗ 15 m (see Figure 6B
with a uniform floor and salient landmarks on walls. The robot is
trained by a human teacher (supervised learning) to perform a
round path by learning Place Cell/Action associations. No more
than 8 place/action associations were sufficient for the robot to
perform a robust round trip in our experiment. A second smaller
room is unknown by the system as no places have been learned
in it. Consequently, navigating in this room results in inconsis-
tent movements. The evaluation mechanism learns to predict the
sensory-motor contingencies of the place/action strategy while
the robot performs its round trip in a normal situation (simi-
lar to the training set). In this setup, the vector of sensation Sen
is defined by the vector of 8 Place Cells learned by the system.
We set the recurrent weight α = 0.95 empirically, based on the
frequency of changes in sensations. The sensory-motor loop of
that strategy is quite slow since states only change when the robot
navigates from one place to another (it mainly depends on the
distance between 2 places and the robot’s linear velocity). Indeed,
an α near to 1 results in a long temporal window (old states are
more important than recent ones). 3 laps were necessary for the
evaluation mechanism to completely predict its sensation from all
sensory-motor states perceived during the trip. Indeed, learning

FIGURE 5 | Neural architecture relying on action selection. Down:

both strategies provide an action in a field (each neuron of the field
coding for a particular orientation). All action fields are merged into a
dynamic neural field. This neural field provides a solution for decision
making by selecting or merging actions in a robust manner (dynamic

attractors) and also provides good properties such as temporal filtering.
Up: an emotional metacontroller learns to predict both strategies from
its sensations and from the action proposed by the neural field
(feedback link). Distress levels, depending on prediction errors, are used
to modulate the action choice.

FIGURE 6 | Setup in Webots simulated environments. (A) Robotic
platform used in our simulations. (B) Setup 1 used to test the
place/action strategy. The system evolves in a simulated room of 15 x
15 m. It learns a few places associated with different actions (in red) to
perform an ideal round behavior (black dotted line). (C) Setup 2 used to
test the road following strategy. The system evolves in a simulated

outside environment of 40 x 40 m and can navigate both on road or
grass. (D) Setup 3 used to test strategies selection/cooperation. A road
links both rooms. No more than 7 place/action associations are needed
for the robot to perform the entire loop (black dotted line). It does not
need to learn anything off road while following the road is sufficient
here.
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is completed only when the novelty level reaches a minimum
(typically below 0.4) and remains flat in all places.

Setup 2: The road following strategy is put ON while the
place/action strategy stays OFF. The purpose of the experiment
is to test the self-assessment mechanism on the road following
strategy. The environment is a simulated garden of 40 ∗ 40 m (see
Figure 6C) with a white road passing over grass on the floor
and trees texture on walls. The system is able to correctly follow
roads when one is in its field of view. On the other side, navi-
gating on grass results in random movements since there is no
stable and well-defined vanishing point to follow. The evaluation
mechanism learns to predict the sensory-motor contingencies of
this strategy while the robot performs road following in a nor-
mal situation (training set). In this setup, the vector of sensation
y is defined by 13 vanishing point neurons processed by the
system. We set the recurrent weight α = 0.7 empirically, based
on the velocity of the sensory-motor loop. Indeed, the sensory-
motor loop of that strategy is significantly faster than for the
place/action strategy while vanishing point states change at a
speed that directly depends on the robot’s angular velocity. 2 min.
of navigation were sufficient for the system to completely pre-
dict its sensation from sensory-motor situations perceived while
following a road. Learning is completed when the novelty level
reaches a minimum of 0.4 and stagnates.

Setup 3: This time, both strategies are active and run in paral-
lel. The purpose of the experiment is to test strategies cooperation
in a complex environment that is a mix of Setup 1 an 2 (see
Figure 6D). A road is now linking both rooms by an outdoor
part so that the robot can perform the entire loop. The system
is trained to perform the loop: passing through both rooms and
outside environment. Our model allows the system to correctly
perform the entire loop by the learning of only 7 place/action
associations. Indeed, the system does not need to learn any place
on the outside part while following the road is sufficient in that
part to perform the desired task. Consequently, the teacher does
not have to correct the system in that part since the behavior
resulting from the road following strategy is already the desired
one.

2.5.2. Experiment on real robot
The following experiment runs in a real indoor environment
(part of our laboratory). We used a real robotic platform similar
to the simulated one (see Figure 7A). The environment is com-
posed by 2 different rooms and a corridor (see Figures 7C–E).
The place/action strategy is put ON while the road following
strategy stays OFF. The purpose of the experiment is to test the
frustration mechanism on the place/action strategy on a real
robot experiment. The task for the robot is to achieve a complete
loop passing through both rooms and corridor. 14 place/action
were necessary for the robot to learn to perform the loop (see
Figure 7F). As a stereotypical human/dog training interaction
(Giovannangeli et al., 2006), the teacher uses a leash to pull the
robot in the desired direction (see Figure 7B). Thus, the robot
is detecting prediction error by comparing human order to its
own will. This novelty detection neuromodulates the vigilance
of the system so that it decides to recruit a new place cell and
learns the association to its current orientation. Following such
interactions, the robot is able to learn the path the human is
teaching. A proscriptive learning (correcting the system rather
than showing it the path) is necessary to get a stable and robust
attraction field.

3. RESULTS
3.1. RESULTS RELYING ON NOVELTY DETECTION EXPERIMENTS
After the system has completely learned the desired trajectory (see
Setup 1, Figure 6) and also learned to predict the sensory-motor
contingencies relative to this trajectory, we tested it in several sit-
uations to show the ability for our model to detect whether such
a situation is normal or abnormal.

In a first experiment, we tested the robustness of the strategy in
a normal situation (see Figure 8A). The robot performs 12 stan-
dard laps without disturbance. Results show a robust and stable
behavior with a trajectory close to the desired one. The novelty
level stays relatively low since it never gets over 0.4, with a mean
value of 0.2. It defines the minimum prediction error the system
is able to achieve for this task. Such a minimum error is directly
linked to the degree of deepness of the prediction process (the nth

FIGURE 7 | Experimental setup in our laboratory. (A) Robotic platform
used (Robulab from Robosoft). (B) Supervised learning: the teacher
uses a leash to pull the robot in the desired direction. The robot learns
the path autonomously. (C–E) The 3 different rooms of the experiment.

(F) Learned behavior. The robot learns to travel from room 1, passing
through the corridor, to room 2, then back to room 1. About 14
place/action associations (red arrows) are learned to perform an ideal
loop (black dotted line).
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FIGURE 8 | (A–D) Results of Setup 1 (see Figure 6). (A) Up: trajectory after
performing 12 laps autonomously without disturbance. Down:novelty level
stays below 0.5 with a constant variance as no abnormal event appears. (B)

Up: an obstacle suddenly appears in the environment. Obstacle detection
allows the robot to avoid it. Generalization capabilities of place cells allow it to
go back into the learned path. Down: novelty level shows peaks for
respectively the first (1) and second (2) time the system faces the obstacle.
(C) Up: the system performs its task correctly (from START to 1) when the
ambient light is suddenly switched off (1). It results in random movements,

as no cues are visible. The robot is totally lost (from 1 to END) Down: novelty
mean grows significantly. (D) Up: the robot performs its task correctly (from
START to 1) when the north direction is suddenly shifted by 90 degrees (1). It
results in random movements since unexpected actions are performed in
each places (from 1 to END). Down: novelty variance grows significantly. (E)

Results of Setup 2. Up:the robot starts on grass, converges to the road
(dotted line), then follows it until its end. Down: novelty level decreases as
the system converges to the road. It grows up progressively at the end of the
road (1).

pseudo-moment about the mean). Since we defined the novelty
as the third pseudo-moment about the mean, our model is not
able to characterize statistical variations over such a precision. A
fourth and fifth moment should be able to respectively learn the
novelty mean and its variance.

In a second experiment, we introduce an obstacle in the envi-
ronment so that the robot is forced to avoid it (see Figure 8B).
Direct priority is given to the obstacle avoidance strategy by a
subsomption architecture. The system avoids the obstacle, then
successfully goes back to its original path thanks to the general-
ization properties of place cells/action associations. Novelty level
shows peaks when the robot is avoiding the obstacle, since the
orientation taken does not correspond to the learned one in that
place.

In a fourth experiment, the light is suddenly put OFF while
the robot performs its task (see Figure 8C). Consequently, the
visual system is not able to maintain coherent place cells activity
and the robot becomes totally lost. It results in random move-
ments. Novelty level shows a sudden offset after the light is put
OFF but keeps more or less the same variance. Indeed, the sys-
tem is not able to recognize places anymore, even if it tries to
predict it.

In the same way, a fifth experiment proposes to suddenly shift
the north direction by 90 degrees (see Figure 8D). The system
performs its task when the north is suddenly shifted. The robot
behavior tends to be random a few seconds after the event. The
novelty level shows large variations. Indeed, the system sometimes
takes an unexpected orientation, sometimes a predicted one.

Finally, a sixth experiment proposes to test generalization
capabilities of the novelty detection mechanism on the road
following strategy (see Setup 2, Figure 6). The environment con-
tains one road stopping in the middle, and grass elsewhere. The
robot starts on grass, in a corner, oriented toward the road (see
Figure 8E). Results show that the robot converges to the road in

order to be aligned with the road, then it correctly follows it until
its end. Finally, it ends its trip by random movements onto grass
after leaving the road, as no coherent vanishing point is perceived.
Novelty level shows a progressive decrease while the robot con-
verges to the road, then stays minimum and quite stable while
following it. Novelty level increases progressively when leaving the
road and stays high until the end of the experiment.

We also tested the robustness of the self-evaluation mechanism
on a 1 h navigation experiment (not shown here).

3.2. RESULTS RELYING ON FRUSTRATION EXPERIMENT
In this experiment, we highlight the need for a frustration mech-
anism to request help in distress situations. The robot has learned
to perform a squared loop in a room (see Setup 1, Figure 6). In a
first period, the robot performs its task without disturbance (see
Figure 9A). Results show a robust behavior with a stable trajec-
tory close to the desired one. The distress level stays relatively low
(below 0.4), with a mean below 0.3. It is the minimum predic-
tion error the system is able to achieve for this task in a normal
situation.

After some time, the teacher suddenly interferes with the robot
to deviate its trajectory toward the second room (see Figure 9B).
The robot tries to perform its task by taking the orientation asso-
ciated with the winning place cell. The distress level increases
while there is no consistency in the perceived sensory-motor
sequence. After a while, the system stops for a distress call when
the distress level reaches a frustration threshold (0.9 in our exper-
iment). The teacher assists the robot by pulling it in the right
direction to escape the small room (see Figure 9C). The teacher
correction pushes the system to learn a new place/action asso-
ciation and the prediction mechanism to learn to predict this
new situation. The robot successfully escapes the small room.
The distress level decreases fast because the interaction with the
teacher acts as an inhibitory signal in our emotional model. Once
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FIGURE 9 | Simultaion highlighting the need for a frustration

mechanism (see Setup 1, Figure 6). Up: (A) Trajectory after performing
some laps autonomously without disturbance. (B) The supervisor suddenly
interferes to deviate the robot into the second room (1). The robot tries to
perform its task without success. The distress level increases progressively
while there is no consistency in the perceived sensory-motor sequence.
Finally, the system stops and call for help (2). (C) The supervisor assists the
robot by pulling it in the right direction to escape this room (3). The system

learns the new place/action association . Once leaving the small room, it goes
back to its stable attractor (4) and perform its task correctly. (D) After human
demonstration, the simulated robot is able to escape autonomously from the
small room. Down:evolution of the distress level in time. It increases as the
robot becomes lost in the small room (1). It reaches a frustration threshold of
0.9 (red dotted line) (2), then goes back to normal after human help (4). It
increases when the robot is between both rooms (5), indicating that a
learning refinement is possible. However stays below the threshold.

leaving the small room, the robot goes back to the first room and
converges again to a stable attractor. It continues performing its
original task correctly. In another experiment, the robot starts in
the small room, in a place different from the learned one (see
Figure 9D). Since the robot already faces this situation in the past
and thanks to the good generalization properties of place cells,
it knows what to do to escape the room and to get back to its
stable attractor. Results show that the robot takes the learned ori-
entation to escape the room. The distress level stays low because
the situation is considered as normal (predicted) this time. As the
robot reaches the frontier between both rooms, its behavior tends
to be a bit hesitating. This is due to place ambiguity since the
robot hesitates between two place cells associated with contradic-
tory actions. The distress level increases progressively. However,
such an odd situation is not long enough to trigger a distress call,
and the robot finally successes in getting back to its stable attrac-
tor. The distress level decreases slowly and the situation goes back
to normal.

Such an interaction allows the system to learn from the teacher
how to solve the problem so that it will be able to escape
autonomously next time.

3.3. RESULTS RELYING ON STRATEGIES COOPERATION EXPERIMENT
In the following experiments, we highlight the need for an
emotional controller to regulate behaviors to solve complex nav-
igation tasks. Navigating in a wide and complex environment
requires a metacontroller to make different strategies cooperate in
a coherent manner. The robot has learned to perform a complete
loop, passing from one room, to the other, to the garden, then
back to the first room (see Setup 3, Figure 6). Both strategies and
their evaluation mechanisms run in parallel. Strategies cooperate
by proposing their actions weighted in real time by their own eval-
uation. Actions coming from the different strategies are merged

into a dynamic neural field that controls robot’s movement (see
Part.2.4). It allows a smooth cooperation rather than a strict
competition. It is also important to notice here that the frus-
tration mechanism does not trigger a distress call procedure in
the following experiments. Since we want to test smooth coop-
eration, the robot does not stop even if both strategies reach the
frustration threshold.

In a first simulation, we tested each strategy alone to ensure
the system can not solve such a complex task with only a single
strategy. When testing the place/action strategy (see Figure 10A),
results show that the robot performs its task correctly in both
room, but falls into a deadlock when navigating outdoors and
finally get frustrated. In the same way, when testing the road
following strategy (see Figure 10B), the robot follows the road
correctly in the garden, but falls into a deadlock when entering
a room and finally get frustrated.

In a second simulation, the robot performs one lap
autonomously (see Figure 11A). It starts in the middle of the road
at the bottom of the environment. It performs the loop correctly
but fails to finish it and falls into a deadlock when entering the
garden. It is due to the orientation the robot takes when leav-
ing the room. If this orientation is too much different from the
direction of the road, the system is not able to converge to it.

The distress level shows the cooperation of both strategies dur-
ing the loop. The place/action strategy is strongly inhibited as
the system navigates in the garden and strongly active inside.
Conversely, the road following strategy is strongly active when
navigating on road outside but almost inhibited inside.

In a third simulation, the robot starts in the first room, suc-
cesses in converging to the road after a few hesitation, but fails to
enter the small room (see Figure 11B). The reason for this suc-
cess in converging to the road this time is mainly by chance. Next,
the robot fails to enter the small room because the generalization
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FIGURE 10 | Unitary tests (Setup 2, Figure 6). We tested only one
active strategy at a time to be sure that the task can not be solved
by a single strategy. (A) Trajectory of the robot once the robot has
learned to perform the path. It performs its task correctly by the only
use of the place/action strategy. Behavior does not stay consistent
when entering the outside part while there is no place/action

association learned here. The distress level grows and reaches the
frustration threshold. (B) We bring the robot to the beginning of the
road. It follows the road correctly by the only use of the road following
strategy. Behavior does not stay consistent when entering the small
room while there no consistent vanishing point to follow. The distress
level grows and reaches the frustration threshold.

FIGURE 11 | Simulations highlighting the synergy of cooperating

strategies (see Setup 2, Figure 6). (A) The robot starts on the road and
performs one lap autonomously. It fails to finish the loop and falls into a
deadlock (3). The distress level shows the cooperation of both strategies. The
place/action strategy is strongly inhibited as the system navigates outside
(start to 1) and strongly active inside (1–2). Conversely, the road following
strategy is strongly active outside (start to 1) but almost inhibited inside (1–2).
At the end, the robot leaves the inside part but fails to converge to the road

because of its orientation (2–3). (B) In another example, the robot successes
in following the road after a few hesitation (1), but fails in entering the small
room (2). (C) The robot performs 3 laps. (1) and (2) indicates respectively
each times where the robot get in and outside. Results show that distress
levels of both strategies are, most of the time, opposite in phase. Ends of
each lap are indicated by vertical red-dotted lines. The behavior is mostly
driven by the place/action strategy in both rooms but driven by the road
following strategy outdoors.

properties of place cells allow the robot to recognize this room
before entering in it. As a result, it decided to turn too soon and
falls into a local minimum. Such a problem can be solved by learn-
ing a new place/action association at the end of the road, ensuring
to correctly enter the room.

In a fourth experiment, the robot performs 3 laps
autonomously (see Figure 11C). The robot starts in the
middle of the road at the bottom of the environment. Results
show that, most of the time, the distress levels of both strategy
are opposite in phase. The distress level of the place/action
strategy stays low indoors as the sensory-motor sequence stays
predictable. It is high outside while no discriminant landmarks
are recognized and no places have been categorized in that

part. On the other hand, one can see that the distress level
of the vanishing point following strategy is low when the
robot follows the road outside. It is mostly high indoors while
there is no consistent vanishing point to follow. Distress levels
induce proportional inhibition of corresponding behaviors.
Accordingly, the robot’s behavior is mostly driven by the vanish-
ing point following strategy while navigating on the road outside.
Conversely, it is mostly driven by the place/action strategy on the
inside part.

Beyond such predictable results, the experiment exhibits good
properties that emerge from the synergy of both strategies. As
a matter of fact, we encounter several situations where the
cooperation enhance the performance obtained with a single
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strategy. It usually happens in situations where a place/action
association allows the robot to pass through a door. In several
cases, the contrast induced by an open door make it be perceived
as a coherent vanishing point by the system so that the robot
naturally converges in its direction without the need for mul-
tiple and precise place/action associations. Despite the fact that
such a property increases the quality of the behavior, it may be a
constraint in others.

Finally, our results also underline some issues during transi-
tions from a place/action to a road following strategy. Indeed, the
teacher has to be careful pulling the robot in the direction of the
road, otherwise the system can not evaluate the vanishing point
correctly and allow the robot to follow the road. It is due to the
delay the controller needs to evaluate a strategy. This can results in
a deadlock situation where the system switches from one strategy
to another without being frustrated enough to call for help.

3.4. RESULTS RELYING ON REAL ROBOT EXPERIMENT
The following experiments were performed in our laboratory
using a robot similar to the simulated one (see Figure 7). The
purpose of the experiment is to test the frustration mechanism on
the place/action strategy on a real robot experiment (person and
furniture moving, ambient light changing). The road following
strategy is disabled. The robot has learned to perform a complete
loop, navigating from the first room, to the corridor, to the sec-
ond room, then back to the first one. The prediction mechanism
starts to learn to predict the place/action contingencies after the
system finishes the first lap (see Figure 12). We choose not to let
the prediction mechanism learn during the first lap in order to get
a stable behavior before the system tries to predict it.

The second lap corresponds to an intense metalearning stage
since the predictor starts to learn and each place is new for the
system (see Figure 13A). Distress level (Dl) shows peaks for each
place. The Dl decreases while ending the loop, because the starting
point is already predicted.

After this training stage, we let the robot performing its task
for a while, correcting its trajectory only when needed (see
Figure 13B). In this normal situation the distress level stays low
(below 0.5) except for one area where it shows peaks. Such an
area corresponds to a place where the robot navigates close to the
window and is disturbed by the sunset at the time of the experi-
ment. It means that the robot is less confident in its place/action
strategy in this area. However it is not sufficient to frustrate the
robot and the behavior stays coherent.

Later, the robot performs its task when the teacher suddenly
deviates it into a small and unknown room (see Figure 13C).
As the robot becomes lost, the distress level increases and finally
reaches the frustration threshold. The robot stops and call for
help. The teacher then assists the robot in escaping the room. The
system learns that new state, gets out of the room and goes back to
its stable attractor. The area where the robot were unconfident is
now totally predicted since the sun is down and does not disturb
it anymore.

4. DISCUSSION
In this paper, we have addressed two different roles of a self-
assessment mechanism for long range and complex robotic

navigation. We presented its regulatory role in managing
behaviors according to the situation, and its social role in
communicating frustration to avoid deadlocks and improve
learning.

First of all, we briefly presented our previous model of place
cells that allows robots to perform simple and robust sensory-
motor behaviors in small size environments. We highlighted the
need to find solutions to overcome some issues we met while
trying to navigate in more complex ones. We underlined situa-
tions where the number of available landmarks in the panorama
is very low and the visual system deals with noisy information. We
proposed to overcome these issues by taking into account other
strategies. We extended our architecture by adding a robust and
biologically plausible road following strategy that allows the robot
to naturally converge to visible roads. Such a strategy allows to
follow potential vanishing points instead of learning place/action
associations, in situations where it is neither necessary, nor effi-
cient to do so.

These behaviors defined the robot’s skills for facing the situa-
tions encountered in the environment. However, these behaviors
are in competition. The robot needs a second-order controller
to manage them. Such a metacontroller needs a mechanism
that evaluates behaviors. We argue that for evaluating its behav-
ior, the system requires to monitor novelty in its predictions.
Monitoring novelty or abnormality in the behavior is thus iden-
tified as a key feature for a second-order controller to manage
robot’s strategies. Following this statement, we proposed a model
for self-assessment based on novelty detections in a dynamical
point of view. In this view, the system must, at first, (1) learn to
predict its sensations from its past perception in a training sit-
uation, next (2) monitor novelty and respond accordingly. We
defined perception as an internal model of the sensory-motor
interactions the system has with the external world. This model of
perception provides a generic grounding to perform predictions
on agent’s sensation. The model could be adapted to any sensa-
tion/action loop and thus for a reasonable computational cost if
one considers that, most of the time, sensation and action are cor-
related (except pathological cases). However, since the dimension
of the “Perception” tensor might be large, it is important to define
abstract input vectors (e.g. few landmark neurons instead of raw
visual data) to avoid combinatorial explosion.

Even if we choose in this paper to stay at a theoretical level, the
analogy with the computation that could be performed in the hip-
pocampal system are strong enough to provide solutions to avoid
scaling issues. In future works, we plan to replace the complete Per
matrix by a sparse matrix where the encountered products could
be learned by specific units (see our work on parahippocampal
and perirhinal merging in prph (Giovannangeli et al., 2006)). To
go one step further, the number of states could be also reduced if
we avoid “grand mother” cells solution (both for landmarks and
place cells) and replace them by a sparse coding allowing to use
combinatorial aspects at our advantage. Another solution could
be to represent the sensory activity by a compressed code having
a low probability of ambiguity (something similar to a hach code
or a random M to N projection with M >> N for instance).

It should also be noted that the model by itself could
not learn different timing or periodic phenomena since
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the recurrent weight α has to be set empirically for each
sensory-motor behavior. But the problem should be solved
if we consider a set of novelty detectors with different time
constants.

Then, we proposed to estimate the different moments about
the mean by an online least-mean-square algorithm. One can
note that least-mean-square requires independent and identi-
cally distributed (iid) random examples to ensure its convergence.

FIGURE 12 | Details of the learning stage over 6 laps. Up: rhythm of
human/robot interactions (HRI): Dirac pulses correspond to guiding
instants. The frequency of interaction decreases over time. It gives a
direct measure of the system’s autonomy (inversely proportional to
frequency). Down:novelty (red) and Progress (green) level. We observe
3 different periods: (A) corresponds to the beginning of the learning
session (first lap). The high frequency of pulses indicates that the
human teacher is roughly directive as the robot does not know

anything about the task. The metacontroller is OFF during this stage.
(B) corresponds to the evaluation stage (second and third lap). The
teacher evaluates the robot’s behavior and correct it only when needed.
The metacontroller is ON and starts to learn to predict the
sensory-motor sequences. Consequently, both novelty and progress
levels are high during this stage. (C) corresponds to the final stage
where the robot is autonomous enough to stop learning. Rare
corrections are still needed at some points.

FIGURE 13 | Results relying on real robot experiment (see Figure 7).

(A) 1 lap trajectory during the metalearning stage. The robot has
already learned to perform the task and learns to predict it. The distress
level is high each time the robot get from one predicted state to a
unknown one. Then the distress level goes down as the robot learns to
predict that unknown state. All sensory-motor states are almost
predictable after one lap. (B) After the metalearning stage, we let the
robot perform some laps autonomously. The distress level stays low

except in one particular place (1) which corresponds to a place where
the robot is close to the window and is slightly disturbed by the
sunset. The robot is less confident in this area, however it is not
sufficient to frustrate it. (C) Later, the robot performs its task when the
supervisor suddenly interferes to deviate the robot into an unknown
room (2). It tries to perform its task without success and finally get
frustrated (3). The supervisor shows how to escape the room, afterward
the system is able to escape autonomously.
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However, even if such iid examples are not available in our exper-
iments, the iid constraint is negligible here. Indeed, thanks to the
large dimension of the perception matrix, (1) the problem is lin-
ear (except pathological cases) and (2) the system does not care
about any complex unlearning processes nor does it need a high
precision on its output.

Novelty is then measured based on the deviation of the mon-
itored perception from the expected one. It is defined as the
prediction error at a n′th level. Here, we defined novelty as
the third order moment about the mean for empirical reasons.
Actually, one can choose an arbitrary order to define novelty,
depending on the desired accuracy. For example, modeling nov-
elty by a first order error (simple difference between raw sensation
and its average) results in a rather poor detection but decreases
the time needed by the predictor to learn to predict the task.
With such a poor system, periodical or sporadic events generates
novelty as they differ from the average. Thus, they cannot be con-
sidered as normal by the system since variance is not taken into
account. Conversely, defining novelty as a high order error results
in a finer detection. However, in this case, the predictor needs a lot
of time to completely predict a normal sensory-motor situation.
Because of the online and memory-less constraints of our model,
the estimation of a particular moment requires to wait for the
estimation of each previous order. It raises few questions: Do ani-
mals predict in the same way? And do they have some estimation
latency which increases by the level of precision?

Results showed that our novelty detection model presents
good generalization capabilities since the same architecture can
work at least for two different sensory-motor strategies.

Finally we showed that only considering the absolute nov-
elty level was not sufficient to take correct decisions and regulate
behaviors. For example, short perturbations might not affect so
much the behavior. Most of the time, the robot stays in its attrac-
tion basin and performs the task correctly, even if unexpected
events appear. The reason is that novelty does not refer by itself
to a positive or negative reward. We showed that it is more
interesting to consider the evolution of such a novelty activity
rather than its absolute level. Monitoring the novelty tendency,
by integrating its activity over time, provides a solution for the
system to judge its own behavior. If the prediction error stag-
nates at a high level or if it increases whatever the robot tries,
then the behavior should be considered as inefficient. And if
this inefficiency is lasting this means the agent is caught in a
deadlock.

Following these assumptions, we propose an emotional
metacontroller (modeling frustration) that monitors prediction
progress to modulate both strategies and adapt the behavior to the
situation. We made several experiments that highlight the need
for such a metacontroller to switch between strategies.

Moreover, we underline the role of emotions in communica-
tion by adding a simple distress call procedure triggered by the
robot’s frustration. This procedure allows the robot to communi-
cate its inability to achieve the task by calling for help if no rele-
vant strategies are found (if switching strategy does not increase
any progress at all). Even if this procedure uses an ad-hoc distress
call mechanism, it is triggered by a meaningful signal that point

out situations where a refinement is possible. However, our emo-
tional controller is not sufficient by itself to reach a full autonomy.
Unlike intrinsically motivated systems such as (Schmidhuber,
1991; Barto et al., 2004; Oudeyer et al., 2007; Schembri et al., 2007;
Baranes, 2011; Santucci et al., 2012), our system still requires a
teacher to learn from demonstration but not in a prescriptive
way. In this paper, frustration is presented as a useful intrinsic
motivation for the agent to gradually develop its autonomy in
an open-ended but supervised manner. Future works will focus
on how to make use of this internal signal to improve learn-
ing in a fully autonomous way (without the need for human
supervision).

Yet, our model has 3 main drawbacks that we should solve in a
near future:

• The recurrent weight α, that defines the short-term-memory of
the agent’s perception, has to be different from one strategy to
an other. Indeed, it highly depends on the own dynamic of the
strategy involved.
• The size of the sensation vector y has a direct impact on the

prediction dynamics. Indeed, the impact of a sensation neu-
ron yi on the novelty level is divided by the number of neurons
in y.
• Yet, the learning stage is still separated from the use stage. This

leads to the first role of emotions that could allow the agent
to directly regulate its learning. The system should then decide
whether to learn a situation as normal or abnormal.

Current works focus on testing the model performance on long
range outside experiments (navigating several kilometers) with
a real outdoor robot. We also focus on how a simple feedback
loop can help the system to disambiguate its perception in an
active way. Because of the ambiguity of perception, our system
sometimes needs changes in its sensation to be able to cor-
rectly measure the quality of a given strategy. Thus, we study
how to use the prediction error as a feedback signal that mod-
ulates actions accordingly. A high prediction error will trigger
a high noise on robot’s actions, inducing changes in sensation.
Such changes will decrease the prediction error only if sensory-
motor contingencies become predictable, and will increase it if
not. Behavioral alteration is directly proportional to the pre-
diction error. We wish this homeostatic mechanism will allow
the system to regulate itself, updating its knowledge by actively
altering its behavior in order to check whether its expectation
is true.
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