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Editorial on the Research Topic

Biomedical Data Visualization: Methods and Applications

“A picture tells a thousand words.” This is very true in many circumstances but particularly for
modern academia as a nicely illustrative figure grabs our attention and helps us explain scientific
findings. Data visualization is the most effective way to explain and convey rich information,
especially for complex biomedical data. The rapid growth of biomedical data in both volume and
complexity creates new challenges in presenting data effectively and accurately (O’Donoghue et al.,
2018). This includes exploring data to reveal hidden information and presenting analysis findings.
New visualization methods are being developed to address new emerging problems or provide new
insights into old data types. Innovations in visualization will continue to revolutionize how we learn
from our data, and it is extremely important for biomedical research.

Scatter plots and line charts are the most basic form of data visualization through simply
mapping variables to data points. Bar charts, histograms, boxplots, and heatmaps are also
widely used. These methods and their combination solve most of the visualization needs,
including presenting data overview or summary and helping us to identify patterns or trends.
With the rapid growth data volume, effectively utilizing plotting space becomes much in
demand. For example, how to truncate an overly long chart, rearrange and display the key parts
of a graph in the limited space for publication, and how to select parts of them to zoom in or
zoom out while keeping the panorama of the current chart. These are the details that need to be
resolved. The ggbreak package can be used as an example in this respect (Xu et al.). It was
designed to solve the above issues, by increasing the available visual space for a better
presentation of the data and detailed annotations and thus improves our ability to interpret
the data. The ggbreak package is consistent with the ggplot2 package by following the syntax of
the grammar of graphics (Wilkinson, 2010) and implementing such syntax. There is no
additional learning cost to use ggbreak if users are familiar with the ggplot2 syntax.
Another package we introduce here is smplot (Min and Zhou), which is also based on R
and ggplot2, it simplifies the plotting process of commonly statistical graphs for easy visualize,
such as violin plot, slope chart, raincloud plot, and so on. These tools reflect a trend in the
development of basic tools: solving practical problems while no additional cost is added and
keeping it a good user experience.

It is always right to choose the appropriate visualization method according to specific needs.
The Venn diagram can efficiently reflect the relationship between multiple sets. Therefore, it is
often used to distinguish members of gene sets, pathways, species, etc. When the number of sets
is less than 5, the Venn diagram is a more intuitive form of data visualization than heatmap or
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tables. This is also the reason why the Venn diagram appears
frequently in biomedical research publications. The
ggVennDiagram package (Gao et al.) has been developed as
a systematic and easy-to-use method for calculating
overlapping members in different sets and visualizing such
intersection information in Venn diagrams based on the
ggplot2 syntax. It has some features that are not available
in general tools, including novel shapes and color filling of
different proportion regions. When we can provide new
features and perspectives, it is sometimes necessary to
reinvent the wheel. The tools have been continuously
improved during such overthrows.

When discussing biomedical visualization, it is more than a
direct display of given data. Usually, the data sets in the
modern biomedical field are complex. Before coming to
results and conclusions, scientists spend most of their time
processing and exploring data. Therefore, many tailored
visualization tools have been developed to meet the needs
of data exploration. For example, there is a growing demand in
different biomedical research scenarios for network
visualization of the relationship between different types of
nodes with complex metadata. Integrating different attribute
information of nodes and edges in a network may inspire new
insights. The CrossLink package (Liu et al.) was designed to
plot a network diagram with node attributes as graph
annotation aligned to the network. The HandyCNV package
(Zhou et al.) is also developed for a specific need. It provides
common functions for CNV (copy number variant) and ROH
(runs of homozygosity) research, including basic data
processing and also essential visualization. Designed as a
one-stop tool, HandyCNV aims to make analysis easier and
more efficient. Similarly, in the field of microbiome, an easy-
to-use tool called EasyMicroPlot (Liu et al.) provides analysis
and visualization for clinical microbial studies. Overall, these
tools reflect the current needs of visualization methods: to
develop standardized, time-saving, and user-friendly one-stop
tools for corresponding scenarios.

Data from clinical registrations can provide more insights
into patients’ treatments and their outcomes. This is what we
called real-world data, which goes beyond the controlled
clinical trial, and allows us to test the results in an
uncontrolled reality world (Rudrapatna and Butte, 2020).
However, to produce credible conclusions, there are still
many aspects that need to be improved. The most basic
problem is the missing data. It is hard to guarantee the
completeness of real-world data collection, and the
incomplete data will pose challenges for further data
analysis tasks. Therefore, it is important to handle these
missing data in an appropriate way. ImputEHR (Zhou and
Saghapour) evaluates the influence of various imputation
approaches in real-world data sets such as EHR (Electronic
Health Record) and provides a practical and fast imputation
tool. This tool provides a web application, which makes the
operation and visualization interactive. Interactivity is a new
trend in the development of visualization tools. It can
significantly improve the user experience of exploring data.

Among the emerging technologies in recent years, virtual
reality (VR) is more and more widely used in medical fields,
typical include in medical education and training. The
advantage is that VR can dynamically explore complex
biomedical data. But on the other hand, it is also limited
by expensive hardware and complex data preprocessing steps.
SinglecellVR is a web application that utilizes VR to visually
explore single-cell data and common sequencing data,
including transcriptome, epigenome, and proteome data
(Stein et al.). It is designed for cheap and easily available
virtual reality hardware, such as Google Cardboard. As a new
solution of single-cell visualization, SinglecellVR has been
reported within several media, which reflects the interest and
concern of researchers on the use of low-cost VR in
biomedicine. With the increase of data dimensions, VR will
have a wide range of applications in exploring
biomedical data.

Spatial transcriptomic is a popular molecular measurement
technology used in the biomedical field recently. It can
measure transcriptional information while retaining tissue
spatial information. A review on the analysis and
visualization of spatial transcriptomic data is presented in
this research topic (Liu et al.). It covers the latest status of
spatial transcriptome technology, and mainly focus on the
current analysis and visualization tools in the preprocessing of
data, the identification of spatially related gene patterns, and
the visualization in expression domain, spatial domain, and
cell-to-cell communication. As the latest research field of
biomedicine, spatial transcriptomic is expected to reveal
the complex transcriptional structure of heterogeneous
tissues and enhance our understanding of the cellular
mechanism of the disease (Burgess, 2019). Thus, more and
more visualization methods and tools suitable for this field
should be developed.

We have screened parts of the current biomedical
visualization tools and their focus points cover different
scenarios, from basic visual representation to specific field
applications. They could be presented as part of the status of
biomedical data visualization and their design concept also
reflect the current trend of visualization. Moreover,
biomedical data visualization methods play important roles
in exploring and visualizing large-scale omics data, including
genomics, transcriptomics, epigenetics, quantitative imaging,
and so on. Regardless of the changes in data generation
techniques, visualization tools, application scenarios, and
research areas, the main tasks and development trends of
data visualization remain unchanged—to better explore data,
to better represent results, to improve the efficiency of
information sharing and communication, and to improve
user experience.
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Electronic health records (EHRs) have been widely adopted in recent years, but often

include a high proportion of missing data, which can create difficulties in implementing

machine learning and other tools of personalized medicine. Completed datasets are

preferred for a number of analysis methods, and successful imputation of missing EHR

data can improve interpretation and increase our power to predict health outcomes.

However, use of the most popular imputation methods mainly require scripting skills,

and are implemented using various packages and syntax. Thus, the implementation of

a full suite of methods is generally out of reach to all except experienced data scientists.

Moreover, imputation is often considered as a separate exercise from exploratory

data analysis, but should be considered as art of the data exploration process. We

have created a new graphical tool, ImputEHR, that is based on a Python base and

allows implementation of a range of simple and sophisticated (e.g., gradient-boosted

tree-based and neural network) data imputation approaches. In addition to imputation,

the tool enables data exploration for informed decision-making, as well as implementing

machine learning prediction tools for response data selected by the user. Although

the approach works for any missing data problem, the tool is primarily motivated by

problems encountered for EHR and other biomedical data. We illustrate the tool using

multiple real datasets, providing performance measures of imputation and downstream

predictive analysis.

Keywords: electronic health records, imputation, gradient boosting, prediction, decision trees

1. INTRODUCTION

Recently, hospitals in the United States have made a concerted effort to transition their health
records from paper to digital, the proportion of which has dramatically increased, from 9.4% in
2008 to 75.5% in 2014 (Charles et al., 2013). Although we are seeing improvements in the overall
quality of EHR-derived datasets, data missingness remains a substantial and unavoidable issue
(Chan et al., 2010; Weiskopf and Weng, 2013). Missing EHR data could be caused by a lack of
collection or a lack of documentation (Wells et al., 2013), and it could be missing at random or not
at random (Hu et al., 2017). Researchers have noted the problems posed by missing data and are
developing strategies to address it (Haukoos and Newgard, 2007; Newgard and Haukoos, 2007), as
EHR systems become more relevant and adopted worldwide.
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The expectation of collecting real-world data without
missingness is unrealistic. Even the most detailed protocols for
data collection cannot guarantee that every subject will have a
record at each observation. Missing data present a challenge
for analysts, as it can introduce a substantial amount of bias,
makes the handling and analysis of the data more arduous, and
creates reductions in efficiency (Barnard and Meng, 1999). Many
standard analysis methods, including regression, are defeated
by even a single missing value from among many potential
predictors. Thus, it is possible that standard analysis may
essentially “throw away” large portions of the data, even though
a small fraction of the data may actually be missing. Ultimately,
data missingness decreases our ability to discern the deeper
structures and relationships underlying the observations, causing
a significant negative impact on scientific research (McKnight
et al., 2007). Many important scientific and business decisions
are based on results from data analyses, and so dealing with
missing data in an appropriate manner is recognized as a
crucial step.

The process of data imputation (artificially replacing missing
data with an estimated value) offers a practical work-around
so that many downstream data handling steps become feasible.
This process preserves all observations by replacing missing data
with an estimated value based on other available information.
Once all missing values have been imputed, datasets can
then be analyzed using standard techniques for complete data
(Gelman and Hill, 2006). Many advanced analysis methods,
such as machine learning, require a complete dataset, so
imputing missing data enables researchers to apply statistical
and computational association methods that would otherwise
be unavailable. Missing data imputation methods are considered
standard in areas such as genetic association (Schurz et al., 2019)
and proteomics (Jin et al., 2021), where correlation structures are
strong. For electronic health records, the need for imputation
methods have more recently realized (Jazayeri et al., 2020), and
the use of imputation shown to improve prediction accuracy
(Beaulieu-Jones et al., 2017). However, use of many of these
methods requires purpose-built scripting pipelines (Hu et al.,
2017), while we aim in this paper to provide a variety of tools
using a very simple interface.

When imputation is performed, issues of bias and correct
handling of variability/uncertainty arise (Rubin, 2003),
depending on the imputation accuracy. Much of the traditional
statistical literature on handling missing data has dealt with
likelihood inference for low-dimensional problems (Rubin,
1976), or resampling techniques such as multiple imputation,
which can mimic and account for imputation uncertainty.
However, our focus here is on the practical impact of imputation
for downstream analysis, such as EHR-based prediction of
important health measures. For such efforts, the emphasis is
placed on the success of machine-learning methods, which
themselves may involve penalization techniques and estimation
known to be biased. Thus, we consider imputation as a possibly
essential pre-processing step to serve a larger goal, and it should
be judged accordingly. Machine-learning methods have reached
a high degree of sophistication in biology and genomics (Le and
Huynh, 2019; Le et al., 2019), but for electronic health records,

which tend to be less structured, a variety of approaches must be
considered. In this work, we evaluate the effectiveness of various
imputation methods on EHR and other real-world datasets, and
proposed a practical and fast imputation method as a hybrid of
existing methods.

2. DATASETS

2.1. MIMIC-III
The Medical Information Mart for Intensive Care III (MIMIC-
III) is a large database comprising de-identified health-related
data associated with over 40,000 patients who stayed in ICUs
at the Beth Israel Deaconess Medical Center between 2001
and 2012 (Johnson et al., 2016). MIMIC-III is freely available
on PhysioNet (https://mimic.physionet.org). The database
includes information such as demographics, hourly vital sign
measurements, laboratory test results, procedures, medications,
caregiver notes, imaging reports, and mortality (including
post-hospital discharge).

MIMIC-III is disseminated as a relational database consisting
of 26 tables containingmany categorical and continuous features.
We extracted ICD-9 codes from the “DIAGNOSES_ICD”
table, demographics and discharge time or time of death
from the “ADMISSIONS” table, and laboratory measurements
from the “LABEVENTS” table with <30% missing, totaling
603 features. ICD-9 is the actual code corresponding to
the diagnosis assigned to the patient. However, it is often
unclear whether a negative value indicates that the patient
does not have a specific code, or the code is truly missing.
The laboratory measurements are continuous values for 726
unique items. The missing proportion of laboratory tests
can be as high as 90%, which significantly impacts any
downstream analysis of these data. Therefore, it is important
to study the appropriate missing data imputation methods for
laboratory tests.

2.2. Datasets From the UCI Machine
Learning Repository
The UCI Machine Learning Repository is a collection of datasets
that are used by researchers for the empirical analysis of machine
learning algorithms (Dua and Graff, 2017). Although these
datasets are largely complete, we can effectively evaluate our
imputation under complete missing at random assumptions
by artificially masking individual observations and recording
the imputation accuracy. Datasets are maintained on their
website (https://archive.ics.uci.edu/ml/index.php). We selected
the following four datasets for imputation testing: (1) “Boston,”
information for predicting the value of house prices (Harrison
and Rubinfeld, 1978); (2) “Spam,” attributes to determine
whether e-mails were spam (Cranor and LaMacchia, 1998),
(3) “Letter,” character image features to identify a letter of
the alphabet (Frey and Slate, 1991), and (4) “Breast Cancer,”
numerical features of cell images for tumor diagnosis in
357 malignant and 212 benign samples (Street et al., 1993).
These datasets have varying numbers of samples and features,
with both continuous and categorical data, as summarized
in Table 1.
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3. METHODS

ImputEHR is designed to provide several existing imputation
methods in easy-to-use interface, as described below. In addition,
we have noted that tree-based imputation has been relatively
under-represented, and we propose some novel enhancements
here in order to provide effective tree-based imputations
with reasonable computational burden. Gradient boosted trees
are an effective machine learning algorithm that iteratively
combines decision trees in order to make predictions. In
Python, we modified the MissForest algorithm (Stekhoven
and Bühlmann, 2012), which imputes missing values using
random forests (Liaw and Wiener, 2002), by applying the
LightGBM module, a gradient boosting framework known for
its light computational burden and better performance than
previous decision tree-based algorithms (Ke et al., 2017), in
the missingpy Python library for missing data imputation.
Pseudocode for the ImputeEHR1 algorithm is shown in Table 2.
The ImputeEHR2 approach is using the XGBoost (Extreme
Gradient Boosting) module (Chen et al., 2015), a common
boosting algorithm, in the missingpy library. The performance
of ImputeEHR was validated using MIMIC-III and the four
repository datasets.

3.1. Imputing Missing Data
We compared our proposed ImputeEHR1, ImputeEHR2, and
five state-of-the-art imputation methods in Python: MissForest,
MICE (Buuren and Groothuis-Oudshoorn, 2010), KNNImputer
(Troyanskaya et al., 2001), SoftImpute (Mazumder et al.,
2010), and GAIN (Yoon et al., 2018). In addition, we also
performed simple feature-mean and feature-median replacement
as the most basic and simple imputation method. KNNImputer
is based on k-nearest neighbors algorithm. GAIN adapts
the generative adversarial nets framework. The MICE and
SoftImpute methods are implemented in the fancyimpute Python
library. SoftImpute uses an iterative soft-thresholded SVD
algorithm and MICE uses chained equations to impute missing
values. We used default parameter settings for each method,
and parameters for the two ImputeEHR methods are listed
in Supplementary Table 1.

In each dataset, we generated missing data (missing
completely at random), with rates from 10 to 90% in increments
of 10% by randomly removing data and ran the imputation
methods. The Root Mean Squared Error (RMSE) was then
calculated at each missingness rate in comparison of the values

between the real and imputed data. We ran 10 iterations in order
to obtain average RMSEs.

Supplementary Tables 2–5 show the average RMSEs for
each dataset, with the lowest RMSE at each missingness
rate highlighted. Overall, our proposed method significantly
outperforms all of the state-of-the-art models. ImputeEHR has
the lowest RMSE in 24 out of a possible 36 comparisons, followed
by MICE and MissForest methods having 6 and 3, respectively.

3.2. Testing Runtimes Between Methods
We evaluated the speeds of ImputeEHR1, ImputeEHR2, and
MissForest method, since they are each tree-based learning
algorithms, using the scikit-learn Python library (Pedregosa et al.,
2011). We set the number of trees at 100, and used default
values for the remaining parameter settings. Figure 1 shows the
runtimes by missingness rate in each dataset. Our experiments
show that both ImputeEHR1 and ImputeEHR2 can accelerate
the imputation process 20–25 times faster than MissForest
while achieving lower RMSEs. Moreover, ImputeEHR1 is faster
than ImputeEHR2 for the largest dataset. We performed this
experiment on a desktop computer with Windows 10, Intel(R)
Xenon CPU E5-2687W v4@3.00 GHz CPU, 128 GB RAM and
GeForce GTX 1080, 8 GB.

TABLE 2 | Pseudocode of the ImputeEHR algorithm.

Algorithm: ImputeEHR algorithm

Require: X is n×m -dimensional data matrix, with stopping criterion γ

1. Make initial guess using mean or median imputation for missing values;

2. k← A sorted indices vector according to t he amount of missing values of

column X;

w.r.t. increasing amount of missing values;

3. While not γ do

4. X
imp
old ← Store previously imputed matrix;

5. for s in k do

6. Fit a LightGBM or Xgboost : y
(s)
obs ∼ X

(s)
obs;

7. Predict y
(s)
miss using X

(s)
miss;

8. X
imp
new ← update imputed matrix from y

(s)
miss;

9. end for

10. Update γ

11. end while

12. Return Matrix X;

TABLE 1 | The Boston data have information for predicting the value of house prices; the spam data contain the attributes to determine whether e-mails spam; the letter

data have character image features to identify a letter of the alphabet; the breast cancer data gathered the numerical features of cell images for tumor diagnosis.

Dataset Download link # Sample # Features Attribute type

Boston https://archive.ics.uci.edu/ml/machine-learning-databases/housing 506 13 Both

Spam https://archive.ics.uci.edu/ml/datasets/Spambase 4,601 57 Continuous

Letter https://archive.ics.uci.edu/ml/datasets/Letter+Recognition 20,000 16 Categorical

Breast cancer https://archieve.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29 569 30 Continuous
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FIGURE 1 | Running time of ImputeEHR1 (blue), MissForest (orange), and ImputeEHR2 (gray) for each dataset.

FIGURE 2 | Our pipeline of the MIMIC-III data imputation and prediction.

3.3. Evaluating Predictive Performance for
a Variable of Interest, After Imputation
We attempted to predict the mortality for ICU patients in
the MIMIC-III database. Figure 2 provides an illustration of
our pipeline. First, we aggregated the laboratory tests in the
“LABEVENTS” table by averaging the values taken within
the first 24 h of a patient’s first admission to ICU. After
removing laboratory tests which are >70% missing, 64 items
remained. Then, we selected patients with complete records
for the 64 laboratory tests, resulting in 714 patients. So
our filtered “LABEVENTS” data have dimension 714 patients

× 64 laboratory tests, which we used as input for each
imputation method.

Then, we combined the imputed “LABEVENTS” data with
the ICD-9 codes from the “DIAGNOSIS_ICD” table and the
demographics and mortality outcome from the “ADMISSIONS”
table into a model matrix and applied lasso regression
(Tibshirani, 1996) with five-fold cross-validation. This process
involves randomly splitting the samples into five groups, keeping
four groups as a training set, so the model can predict the
outcomes for samples in the fifth group. This process was run five
times so outcomes are predicted in all samples. The area under
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FIGURE 3 | (Left) Receiver operating characteristic curve (ROC) comparison between our pipeline and the method (Sharafoddini et al., 2019) on the mortality

prediction of the MIMIC-III data. (Right) Precision recall curve comparison.

FIGURE 4 | Illustration of the web app for visualization.

the curve (AUC) is the metric we used to compare the predicted
vs. the actual outcomes. The ImputeEHR method has the highest
AUC 0.91, and the tree-based algorithms perform better than
other methods. Our pipeline provides the highest prediction
accuracy comparing the historical mortality prediction in the
literature (Sharafoddini et al., 2019), which reached the best AUC
0.80 (Figure 3). Both receiver operating characteristic curve and
precision recall curve show that our pipeline provides the best
prediction of mortality.

4. WEB APPLICATION

The web application (ImputEHR app), available as a scikit-learn
package in Python, allows users to apply our pre-processing,
feature engineering, and prediction methods on their dataset,
and to visualize the results. Below we briefly describe the six
major components of the web app, illustrated in Figure 4, and
show its capabilities by presenting results of our implementation,
using the “Breast Cancer” dataset from the UC Irvine Machine
Learning Repository as an example.

4.1. Percentage of Missing Rate and
Correlation Features Information
Users can obtain initial information about the missing rates of
each feature in their dataset. Supplementary Figure 1 shows the
percentage of missing values in our example. Since the breast
cancer dataset in Table 1 (Street et al., 1993) does not have
missing values, we randomly set 35–45% of the values as missing
and continue to use it as the toy example for our ImputEHR app.

In addition, the app has the option for users to plot the
correlation between any two features (factors). It also helps
the users to decide if they need to include these factors that
might be highly correlated with each. If the dataset has missing
values, users can show the scatterplot before imputing, removing
the missing values. Three parameters to better visualize the
scatterplot are the color, size, and clarity of the data points
(Supplementary Figure 2).

4.2. Visualization of Missingness Patterns
As an optional feature in our app, the missingness patterns can
be checked by users via the black/white image plot, in which
black is for missing values. The user can also hover mouse around
the Dendrogram and zoom in to check the information for the
grouped factors due to the missingness. Supplementary Figure 3
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FIGURE 5 | Visualization of patterns in the imputed dataset. User has the option to use the number of cluster and dimension reduction method.

FIGURE 6 | Visualization of the important features selected by the four methods.
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FIGURE 7 | Pipeline of the predictive model.

includes the visualization of Dendrogram onmissingness pattern
based on the toy data.

4.3. Imputation Algorithm
Within the app, the nine imputation methods listed in
section 3.1 are available: ImputeEHR1, ImputeEHR2,
MissForest, MICE, KNNImputer, SoftImpute, GAIN, mean,
and median. Supplementary Table 6 provides the important
parameters’ selection for the toy example via ImputeEHR1 and
ImputeEHR2 methods.

Some methods have their own hyperparameters. For
KNNImputer, we set k = 5, which is considered the default
number of nearest neighbors. Four parameters, “batch_size,”
“hint_rate,” “alpha,” and “iteration,” are embedded for the
GAIN method. The “batch_size” defines the number of training
samples present in a single batch. The “hint_rate” reveals the
discriminator partial information about the missingness of the
original sample. The “alpha” is a hyperparameter, and “iteration”
describes the number of times a batch of data passes through the
algorithm to update its parameters.

4.4. Visualization From Combining
Dimensional Reduction Algorithms and
K-Means Clustering
ImputEHR makes it easy for users to visualize patterns in their
imputed dataset. Principal component analysis (PCA) Pearson
(1901) and t-distributed stochastic neighbor embedding (t-SNE)
(Van der Maaten and Hinton, 2008) methods are embedded for
dimension reduction. Users can plot the result of either method,
partitioning the observations into k clusters. Our ImputEHR
app suggests the number of optimal clusters using the Elbow
method (Syakur et al., 2018), which runs k-means clustering
on the imputed dataset for a range of values for k between
1 and 9. For the visualization purpose, the green line in
Supplementary Figure 4 indicates the best choice of k plot on
the toy example. Three parameters considered for the t-SNE
method are “learning rate,” “n_iter” (number of iterations), and
“perplexity.” Perplexity defines the number of close neighbors
at each point, and learning rate affects the convergence of
the embedding. In Figure 5 and Supplementary Figure 5, we

applied k-means method with different numbers of clusters on
the outcome of the PCA and t-SNE methods. In our app, user
can also mouse over the point and see which variable it is.

4.5. Visualization of the Important Features
A very useful feature of our app is that it helps users to nail
down the most important features for further investigation. We
provide the users four methods for feature selection from the
imputed dataset: LightGBM (Ke et al., 2017), lasso (Tibshirani,
1996), ridge (Hoerl and Kennard, 1970), and elastic net (Zou and
Hastie, 2005) (Figure 6). Users can decide how many important
features to visualize.

4.6. Visualization of the Phenotype
Prediction
When performing imputation, if downstream prediction is
intended, then the response variable should be removed from
the imputation process to avoid overtraining datasets in which
cross-validation for prediction of the response must be used.
Accordingly, ImputEHR enables the user to select a response
variable to be excluded from the imputation process. We also
provide the author the visualization of the correlation between
the imputed value and the masked 5% non-missing data for each
variable (Supplementary Figure 4).

Important features from an imputed dataset are selected as
input to predict the phenotype, illustrated in Figure 7, using five-
fold cross-validation to avoid overfitting. Users can select from
a suite of prediction methods including random forests, lasso,
LightGBM, and KNN.

The running time for a job depends largely on the size
of dataset, the missing rate, and the computer hardware. All
analyses were performed in Python 3.6.

5. CONCLUSIONS

ImputeEHR can quickly and accurately impute missing data,
implementing a variety of methods. The ease of performing
imputation can lead to better predictive performance, as many
methods are made feasible by imputation. We have created a
tool covering a range of imputation options, including novel
and fast tree-based methods. We have also included a variety
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of basic phenotype prediction methods, although the user can
easily output the imputed dataset for import into other prediction
routines. As with any imputation tools, the accuracy will be
limited by the correlation structures, and in general the number
of features relative to the sample size. For these and other reasons,
this tool is not designed for genomic imputation (Schurz et al.,
2019) or for proteomics data (Jin et al., 2021), or other areas with
well-understood biological correlation structures. However, the
ease of use and seamless interface for using multiple imputation
methods makes our approach a useful approach in a variety of
analysis pipelines.
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The demand for network visualization of relationships between nodes attributed to
different categories grows in various biomedical research scenarios, such as gene
regulatory networks, drug-target networks, ligand-receptor interactions and association
networks of multi-omics elements. Elegantly visualizing the relationships between nodes
with complex metadata of nodes and edges appended may inspire new insights.
Here, we developed the crosslink R package, tailored for network visualization of
grouped nodes, to provide a series of flexible functions for generating network diagrams.
We first designed a CrossLink class for storage of metadata about nodes and
edges and manipulation of node coordinates. Then affine transformation and function
mapping transformation are implemented to perform fundamental node coordinates
transformation by groups, based on which various network layouts can be defined
easily. For convenience, we predefined several commonly used layouts, including row,
column, arc, polygon and hive, which also can be combined in one layout. Finally,
we designed a user-friendly wrapper function to draw network connections, aesthetic
mappings of metadata and decoration with related annotation graphs in one interface
by taking advantage of the powerful ggplot2 system. Overall, the crosslink R package is
easy-to-use for achieving complex visualization of a network diagram of grouped nodes
surrounded by associated annotation graphs.

Availability and Implementation: Cosslink is an open-source R package,
freely available from github: https://github.com/zzwch/crosslink; A detailed user
documentation can be found in https://zzwch.github.io/crosslink/.

Keywords: R package, network, visualization, grouped data, crosslink

INTRODUCTION

With the rapid development of multi-omic technologies, intricate relationships between different
categories of biomedical molecules were established, which brought huge opportunities and
challenges to network visualization. Visualization of relationships between various biomolecules
from different layers is helpful to explain and extract comprehensive biological information. For
instance, Youqiong Ye etc. presented the network among the identified molecular alterations and
the sensitivity of anticancer drugs to directly display a multi-omic molecular feature landscape of
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FIGURE 1 | Overviw and usage examples of crosslink. (A). A schematic diagram of crosslink showing four modules and associated functions. (B) Schematic
diagram and examples showing transformation effects after using the coordinate transformation functions as indicated. (C) Examples of five predefined layout styles.
(D) A typical application of combination network visualization by using crosslink.
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tumor hypoxia (Ye et al., 2019). And recently, there is a study
characterizing the network among the expression of altered m6A
regulators and cancer related pathways to illustrate the role of
m6A in carcinogenesis (Li et al., 2019). Besides, researches in
brain disease and plant development often provide an intuitive
correlation network diagram to explain the influence of key
regulators on other related layers (Shahan et al., 2018; Gilson
et al., 2020). These cases show the common elements required
for network visualization in many biomedical researches: (1)
connections between multiple groups of biomolecules (i.e.,
grouped nodes), (2) mapping of additional biological information
onto biomolecules and connections (i.e., nodes and edges), (3)
arrangement of biomolecules in columns according to their
categories, and (4) combination of annotation graphs around the
network diagram.

A number of tools have been developed for visualization of
various complex network, such as Cytoscape (Shannon et al.,
2003), igraph (Csardi and Nepusz, 2006), ggraph (Pedersen,
2020) and Gelphi (Bastian et al., 2009). Recently, CellChat (Jin
et al., 2021) was released to specifically analyze and visualize
cell-cell communication network. Importantly, none of the tools
above offer the function to combine the network diagram with
the corresponding annotation graphs for grouped nodes. For the
present, a tool specially designed for network visualization of
grouped nodes that supports nodes decoration with annotation
plots is still lacking.

Therefore, the user-friendly R package crosslink is developed
here to arrange nodes by group, map metadata onto aesthetics
of nodes and edges and align annotation graphs with the
network. This package would hopefully meet various specific
demands on network visualization of grouped biomolecules in
biomedical research.

MATERIALS AND METHODS

The crosslink is developed in R language and mainly
includes four modules, which is CrossLink class, coordinate
transformation methods, layout modules and the plotting
function, as shown in Figure 1A. The CrossLink class is the
basic module, storing the metadata of nodes and edges, node
coordinates and other parameters. The other three modules
are operated on the data structure of CrossLink class. Here,
we termed the group of nodes as “cross” and the edge between
groups as “link”.

First, the function “crosslink” is used to generate a
CrossLink object. With this function users can easily initialize
a default network by inputting nodes and edges information.
Several adjustments including spaces between nodes and gaps
between crosses (groups) are also available for fine-tuning
the default layout.

Second, coordinate transformation module, consisting of
several affine transformation methods and the method to define
the function for mapping transformation, is then applied for
node coordinate transforming by crosses. The “tf_affine” function
is designed for coordinate transforming of grouped nodes in
the network. It requires a CrossLink object as the input and

returns the object with transformed coordinates. This function
provides several designed modes including rotating, shifting,
shearing, flipping and scaling (Figure 1B), which would be
useful when adjusting node coordinates in one or all groups to
beautify presentation of complex relationships among multiple
types of data, as shown in Figure 1D. The “tf_fun” interface
allows users to customize transforming function according
to specific needs. Here, as an example, we designed a “sin”
transformation method using “tf_fun” interface to illustrate its
usage (Figure 1B).

Third, commonly used styles are predefined in the layout
module, including row, column, arc, polygon and hive as shown
in Figure 1C. Users can specify a predefined network layout or
combine multiple predefined layouts to design a diverse network.

Fourth, the plotting function “cl_plot” allows various aesthetic
settings for nodes, edges, node labels and headers by taking
advantage of “ggplot2” system (Ito and Murphy, 2013). In
particular, this function provides the annotation interface
to achieve the combination of the network diagram and
corresponding annotation graphs, with node coordinates aligned
(Figure 1D). Additionally, the plotting module also includes
several data extraction functions, such as “get_cross” and
“get_link”, which can be used to obtain the coordinate and
metadata information. The “set_header” function is provided to
place cross (group) headers.

In summary, crosslink provides a friendly interface for users to
realize diverse network plotting of grouped nodes. This package
can be applied to various biomedical studies for visualizing
complex information and relationships between biomolecules in
different categories (Goh et al., 2007; Neph et al., 2012; Chen and
Wu, 2013; Shahan et al., 2018).

DISCUSSION

This work presented the first network visualization R package
tailored for grouped nodes that implements a series of functions
to store network data, manipulate node coordinates, and plot
network diagram with supports for aesthetic mappings for nodes
and edges and aligned graph annotation.
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Venn diagrams are widely used diagrams to show the set relationships in biomedical
studies. In this study, we developed ggVennDiagram, an R package that could
automatically generate high-quality Venn diagrams with two to seven sets. The
ggVennDiagram is built based on ggplot2, and it integrates the advantages of existing
packages, such as venn, RVenn, VennDiagram, and sf. Satisfactory results can be
obtained with minimal configurations. Furthermore, we designed comprehensive objects
to store the entire data of the Venn diagram, which allowed free access to both
intersection values and Venn plot sub-elements, such as set label/edge and region
label/filling. Therefore, high customization of every Venn plot sub-element can be
fulfilled without increasing the cost of learning when the user is familiar with ggplot2
methods. To date, ggVennDiagram has been cited in more than 10 publications,
and its source code repository has been starred by more than 140 GitHub users,
suggesting a great potential in applications. The package is an open-source software
released under the GPL-3 license, and it is freely available through CRAN (https://cran.r-
project.org/package=ggVennDiagram).

Keywords: Venn diagram, grammar of graphic, data visualization, R software, ggplot2

INTRODUCTION

A Venn diagram is a widely used diagram that shows the relationships between multiple sets. In
biomedical studies, a Venn diagram is frequently used in distinguishing the membership of various
types of data, such as compounds, genes, pathways, and species. When the number of sets is less
than five, Venn diagrams are probably the most intuitive form of data visualization, superior to heat
maps and tables.

In the R environment, one of the most popular platforms in biomedical data visualizations,
many packages are available to plot a Venn diagram including VennDiagram (Chen and Boutros,
2011), colorfulVennPlot (Noma and Manvae, 2013), venn (Dusa, 2020), nVennR (Quesada, 2021),
eulerr (Larsson, 2020), venneuler (Wilkinson, 2011), RVenn (Akyol, 2019), and gplots
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(Warnes et al., 2020), to name a few (see Table 1 for a feature
comparison of these packages). As one of the most popular
software, VennDiagram supports multiple input formats, and
it can also generate Euler diagrams in addition to Venn. In
addition, venn supports the drawing of Venn diagrams with up
to seven sets. RVenn has been developed as a systematic and
easy-to-use method for calculating intersecting and overlapping
members in Venn diagrams. It is impossible to develop a state-
of-the-art Venn tool without absorbing the strengths of the
above-mentioned tools.

However, the above-mentioned software packages also have
their disadvantages. First of all, these packages have limitations
in displaying the difference between various regions in a Venn
diagram in spite of the capability of exhibiting the original sets.
ColorfulVennPlot and venn do support region filling, but users
need to manually specify colors for every region, making it
too complicated to be used by ordinary users. Besides, most
of these packages lack full support for grammar of graphics,
resulting in the failure of adequate integration into the popular
ggplot2 ecosystem. In addition, the inputs of some packages
are very obscure; thus, it is time-consuming to obtain a
qualified input data.

Considering this, we developed ggVennDiagram, an intuitive,
easy-to-use, and customizable R package to generate Venn
diagrams, which supports a two- to seven-set Venn plot
and generates publication-quality figure with minimal
input. Furthermore, we also developed a comprehensive
Venn data structure to simplify the expansion of Venn
diagrams and make the new presentation of the diagram
easy in the future.

RESULTS AND DISCUSSION

Workflow of ggVennDiagram
The main function “ggVennDiagram()” accepts a list input and
outputs a ggplot object. By measuring the length of input list,
it automatically applies internal functions to build a plot in
two steps: data pre-processing and visualization. The second
step relies on ggplot2’s functions; therefore, we mainly focus on
explaining the first step as follows.

Data pre-processing then can be divided into two procedures:
shape generation, which defines the edges of Venn sets and
regions and region value calculation which calculates the region
items and performs necessary statistics, such as counting and
calculating percentages.

Since the returned data after data pre-processing are
compatible with the sf object, these data are directly passed
into “geom_sf()”/“geom_sf_label()”/“geom_sf_text()” functions
intrinsically provided by ggplot2. Filling colors are mapped
to the counts of region items, and a color bar legend is
generated automatically to show the difference between different
regions (Figure 1A).

Shape Generation
In ggVennDiagram, we treated all the edges, labels, and polygons
as simple features, which refer to a standard to describe how the

objects in the real world can be presented in computers, with
emphasis on the spatial geometry of these objects. A total of 15
types of simple features are implemented in R, three of which are
used to describe all the components of a Venn diagram.

Firstly, the edges of sets are inherited from LINESTRING,
which is a sequence of points connected by straight non-self-
intersecting lines. Secondly, all the possible intersecting regions
are inherited from POLYGON, which is formed by a sequence
of closed points. Thirdly, the labels of sets are inherited from
POINT, which is a single point used to anchor a short text. Simple
features are to define the coordinates of Venn plot components.
It is the first time for simple features to be employed in a Venn
diagram. Such a design enhances the ability to describe Venn
diagram components, making it possible to calculate intersection
and overlapping regions between different sets.

To simplify the calculation of simple features, we introduce
an S4 class Polygon object which expands the S4 class Venn
object derived from RVenn. As those methods are implemented
in RVenn, set operation methods are implemented for Polygon
object, resulting in the unified set operation functions for the set
object Venn and the shape object Polygon.

The shape used in the Venn diagram with less than four
sets can be a simple structure, such as a circle or an ellipse,
but when the Venn diagram has more than four sets, irregular
polygons are required. It is hard to generate irregular polygons
with simple geometric functions. Therefore, ggVennDiagram
is designed to bear a built-in preprocessed shape data set
imported from venn, VennDiagram, and some online materials,
which undoubtedly increases the efficiency of shape generation
on the user side.

Region Value Calculation
Region value calculation depends on the RVenn package and new
functions written on its defined Venn object. There are a total of
2n - 1 regions in a Venn diagram, in which n indicates the number
of sets. The member and its number in each region are stored
with region IDs in a tibble and joined with the region shape object
through unique IDs. Likewise, the member and its number in a
set are assigned to the SetEdge through unique IDs in parallel.
By doing this, a complete VennPlotData object is generated for
subsequent plotting (Figure1B).

Stepwise Self-Customization of Venn
Diagrams
After data pre-processing, ggVennDiagram calls native ggplot2
functions to draw Venn diagrams in four layers (Figures 2A,B).
The first layer is to show the number of members in each
region, with gradient color filling exhibiting the differences in
member number among various regions. The second layer is
to show set edges. When an irregular polygon rather than an
ellipse and circle is used to draw a Venn diagram, set edges
are essential for distinguishing the boundary between different
sets. The third layer is to display set labels, and the fourth layer
is to exhibit region labels. The data pre-processing function
is accessible to users. Thus, it is easy for those familiar with
the ggplot2 syntax to revise the details of the image including
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TABLE 1 | Feature comparisons of currently available Venn plot tools (R packages and web tools).

Grammar of
graphics

Data processing Visualization References

Access to region
members

Input format Structured
data storage

Region fillinga Shapes No. of sets Element control (set and
region)

R packages

ggVennDiagram Fully support Yes List Yes Yes Circle, ellipse,
and others

2–7 Set edge/label, region
filling/label

Gao, 2021

VennDiagram No Yes List No No Circle, ellipse 2–5 Set edge/label/filling/area,
region label

Chen and Boutros,
2011

colorfulVennPlot No No Named vector No Yes Circle, ellipse 2–4 Set label, region filling/label Noma and Manvae,
2013

venn Nob No List, formula, set
number, Boolean

values

No Yes Circle, ellipse,
and othersc

2–7c Set edge/label, region
filling/label

Dusa, 2020

nVennR Partial Yes List Yes No Irregular
polygon

(calculated)

2–many Set edge/filling/area, region
label

Quesada, 2021

eulerr No No List, data frame,
table, matrix,
named vector

No No Circle, ellipse 2–4, maybe
manyd

Set label/filling/area, region
label

Larsson, 2020

venneuler No No Formula, matrix,
character vector

No No Circle 2–4, maybe
manyd

Set label/filling/area Wilkinson, 2011

RVenn No Yese Venn object
(derived from list)

No No Circle 2–3 Set filling/edge Akyol, 2019

gplots No Yes List, data frame No No Circle, ellipse 2–5 Set label, region label Warnes et al., 2020

Online webtool

InteractiVenn na Yes List (web interface) na No Circle, ellipse,
and Edwards

2–6 Set label/filling, region label Heberle et al., 2015

Venny na Yes List (web interface) na Yes Circle, ellipse 2–4 Set label, region label/filling Oliveros, 2007

aRegion filling indicates that every single part of set intersections/overlapping can be specified separately.
bvenn has a parameter (“ggplot”) to enable the output of a ggplot object in plotting.
cThe five- to seven-set Venn diagram is plotted by ggVennDiagram on the basis of venn.
dWhen the relationship of different sets is simple enough, eulerr and venneuler can produce an area-proportional Euler plot with more than four sets.
eSet operation of RVenn is expanded in ggVennDiagram to calculate the shapes in different regions. na, not applicable.
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FIGURE 1 | Design of ggVennDiagram. (A) Components of a Venn diagram. SetEdge, SetLabel, and region are highlighted with a green textbox. (B) Logic structure
of ggVennDiagram. The Venn diagram plotted by this package is a ggplot object that stores VennPlotData object. The VennPlotData object is further compiled by the
simple features described in sf and the Venn/Polygon object introduced from RVenn.

FIGURE 2 | Plotting method of ggVennDiagram. The default manner (A) and returned plot (B) when user calls “ggVennDiagram()” with a four-set list of genes
(“gene_list”). (C,D) Stepwise self-customization of the Venn plot by using ordinary ggplot2 functions.

the region fill color, line color/thickness, text style, and so on
(Figures 2C,D).

Novel Shapes in Venn Diagrams
As has been noted above, a set of built-in shapes from
ggVennDiagram is used to plot the Venn diagram. By default,
only the most appropriate shape is used when the main function

“ggVennDiagram()” is called. However, other applicable shapes
can be specified in a stepwise plot, which has been described in
the previous section (Figure 3A). In addition, ggVennDiagram
provides a series of functions to help users with a novel shape
when they know shape coordinates. For example, a six-set Venn
diagram can be made up of only six triangles (Figure 3B). To
this end, we just need to pass the vertex coordinates and set label
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FIGURE 3 | Application of new shapes and support for a Venn diagram of up to seven sets in ggVennDiagram. (A) A rounded rectangle is used to plot a four-set
Venn diagram. (B) A triangle is used to plot a six-set Venn diagram. (C–E) Five-, six-, and seven-set Venn diagrams plotted based on ggVennDiagram. The
reproducible examples are available from the vignettes attached to the package.

coordinates to the “triangle()” function and “label_position()”
function, respectively, and then construct a VennPlotData object
with the constructor function “VennPlotData()” (Figure 1B).
The generated VennPlotData object now can join with set
and calculated region values through “plotData_add_venn()”
function, and the resultant data can be used in stepwise
customization of the Venn diagram (Figure 3B).

Venn Diagram With More Than Four Sets
From version 1.0, ggVennDiagram supports Venn diagrams with
up to seven sets (Figures 3C–E). This feature is dependent on
the shapes imported from another R package venn (Dusa, 2020).
However, we insist that Venn diagrams with more than four sets
may not be a good choice to display their relationships.

To date, there are three major methods to display set
relationships: Venn diagram, Euler diagram, and UpSet plot
(Conway et al., 2017). The UpSet plot is a state-of-the-art
visualization technique for the quantitative analysis of sets (Lex
et al., 2014), and it supports an unlimited number of sets.

When the number of sets is very large, it is more justified to
choose the UpSet plot.

Integration of ggVennDiagram Into
Bioinformatics Analysis Pipelines
The first version of ggVennDiagram was released on October
9th, 2019 (version 0.3). Since then, it has been applied to
many biomedical research fields. For example, Cook et al.
(2020) used ggVennDiagram to show overlapping differentially
expressed genes across three sample times (days 1, 3, and
5) in both the root and the shoot of canola. Besides, Harris
et al. (2020) used ggVennDiagram to display that 22.5% of
differentially expressed genes were shared by treated mice
and human patients. Furthermore, Maguire et al. (2020) used
ggVennDiagram to confirm that their novel method has low bias
and is more sensitive than three other methods for small RNA
library preparation. In addition, ggVennDiagram is also used for
analyzing the differences between several spatially varied oral
metabolomics samples (Ciurli et al., 2021) and for comparing
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FIGURE 4 | Plots generated by the tools listed in Table 1. The used tools are ggVennDiagram, VennDiagram, colorfulVennPlot, venn, nVennR, eulerr, RVenn, gplots,
interactiVenn, and Venny (A–K), respectively. Except for venn (D), venneuler (G), and RVenn (H), all plots are generated with minimal configuration (using default
parameters) and the same input data, which is a simulated four-set gene list. The input for venn is a named vector, while the input for venneuler is a qualified
expression. Since RVenn do not support four-set Venn plots, only three sets of the gene list are used (H).

single-nucleotide variants between tumor and non-tumor tissues
(Horny et al., 2021). So far, ggVennDiagram has been cited in
more than 20 peer-reviewed articles and open-access preprints,

as retrieved by Google Scholar. It could be speculated that
ggVennDiagram has a very wide range of application scenarios
in biomedical studies.
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Feature Comparisons of Currently
Available Venn Plot Tools
Table 1 presents the features of currently available Venn plot tools
(see also Figure 4 for the comparison of the generated plots by
these tools). First of all, the support for grammar of graphics by
nine R packages and two web tools was assessed. Grammar of
graphics is a general scheme for data visualization, which breaks
up graphs into semantic components, such as scales and layers.
Except ggVennDiagram, none of these tools fully support this
feature in plotting Venn diagrams.

Additionally, ggVennDiagram takes the lead in the following
three aspects of data processing capacity. (1) We can get access
to region members by querying the VennPlotData object. (2) It
should be noted that we only implement the input of list (as
input format). This design is simple enough to understand and
prepare, and it is easy to store set members, which is essential
for the calculation of region members. (3) Via the design of a
layered object, ggVennDiagram can store plotting data into the
VennPlotData object (Figure 1B), thus making it possible to
query and reuse the target data.

Furthermore, ggVennDiagram is superior in four aspects of
visualization. (1) Region filling allows the user to easily identify
the differences between various parts of the Venn diagram, and
this is one of the key features of ggVennDiagram. Although
several other tools have this feature, only ggVennDiagram is
fully automatic since it is driven by ggplot2’s aesthetic mapping.
(2) The ggVennDiagram has built-in shapes consisting of
circles, ellipses, and others. Besides, we also provide functions
to help users to import self-defined shapes (Figures 3A,B).
(3) The ggVennDiagram supports two- to seven-set Venn
diagrams, which is adequate for daily use. (4) Element control
in ggVennDiagram can be applied for set edge/label and region
filling/label, so that it is convenient to set their color/line
type/size, and so on (Figures 1A, 2B,D, 3A–E).

Notably, several tools support both Venn and Euler diagrams.
However, an Euler diagram has two shortages: firstly, it is area
proportional, but the human eye is less sensitive to area than
to color; secondly, it only shows relevant relationships, but
sometimes, it is impossible to show all intersection regions merely
by using simple geometric shapes, such as circles and ellipses.
Therefore, we assume that it is more appropriate to use color
filling for displaying the difference between different regions in
ordinary biomedical studies.

Overall, ggVennDiagram integrates and optimizes a Venn
diagram plotting method, exhibiting multiple advantages in

performance over current existing tools. Compared with webtool,
R scripts are easier to integrate into the existing bioinformatics
analysis pipelines to realize automation and batch drawing of
Venn diagrams. Therefore, it is necessary and useful to develop
ggVennDiagram.
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Detection of CNVs (copy number variants) and ROH (runs of homozygosity) from SNP
(single nucleotide polymorphism) genotyping data is often required in genomic studies.
The post-analysis of CNV and ROH generally involves many steps, potentially across
multiple computing platforms, which requires the researchers to be familiar with many
different tools. In order to get around this problem and improve research efficiency, we
present an R package that integrates the summarization, annotation, map conversion,
comparison and visualization functions involved in studies of CNV and ROH. This one-
stop post-analysis system is standardized, comprehensive, reproducible, timesaving,
and user-friendly for researchers in humans and most diploid livestock species.

Keywords: copy number variant, run of homozygosity, haplotype, SNP, CNVR

INTRODUCTION

Genome-wide data have been accumulated for large numbers of individuals of various species as
the cost of single nucleotide polymorphism (SNP) genotyping continues to decrease. In addition to
using these data for GWAS (genome wide association study) or GS (genomic selection), interesting
genomic information about copy number variant (CNV) and runs of homozygosity (ROH) can
be inferred from these genotypes, and a range of software products [such as PennCNV (Wang
et al., 2007), CNVPartition (Illumina, 2021), SNP and Variation Suite (Bozeman and Golden Helix,
2020)] have been developed to detect CNV and ROH for SNP data. However, few tools can integrate
the summary data with annotations, comparisons, and visualizations of these results. As a result,
extracting useful information from CNV and ROH data sets is time consuming, especially when
it requires processing multiple results from different models and software. In order to get more
comprehensive results, researchers often implement their own pipelines to switch back and forth
between different tools, an approach that is prone to introducing bugs and thereby producing
spurious results.

There are several common “pitfalls” we have observed when conducting CNV analyses using
SNP genotyping data. The most frequent is to annotate the candidate genes in a CNVR (copy
number variation region) without considering the frequency of the CNVs: this can result in undue
weight being given to rare CNVs that affect only one or two samples. A second issue is comparing
CNVs between different studies, and making comparisons only at the population level, and not at
the individual sample level. Comparison at the population level could reflect the ubiquitous nature
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of CNVs, but at the individual level it also provides information
about the robustness of CNV detection algorithms. A third
issue arises when comparing CNVRs that have been detected
using different reference genomes, which requires converting the
coordinates of the regions between the two genomes. Making
these conversions requires careful consideration, as the order
of SNPs on chromosomes might differ between two different
reference assemblies, such that the lengths or even chromosomal
orders of CNVs can change, which might lead to meaningless
comparisons between CNVRs. A fourth common problem is get
the incorrect number of overlapping CNVRs when presenting
comparison results via Venn diagram. Since the number of
overlapping regions is relative to the results, and a single
long interval generated using one approach might overlap
multiple shorter intervals detected using another approach, in
which case representing the results via Venn diagram requires
special annotation.

There are also some steps that may be easily forgotten
performing ROH analysis on SNP genotyping data. For example,
the SNP density distributions may not have been carefully
examined prior to inference of ROH. The density of SNPs may
differ across the chromosome on different SNP chips, but ROH
detection methods are highly affected by characteristics such as
SNP density, window size, tolerance of occasional heterozygosity
in the run, and the presence of missing values in the detection
window. Knowing SNP density can therefore help us to select
better parameters when performing ROH detection. Moreover,
while reporting the candidate genes by functional annotation of
genes that located in ROH regions, we may not examine the
frequencies of haplotypes within these interesting genes, but this
step could provide valuable information about the high frequency
genotypes of these genes, which is useful on designing the further
validation experiments and can provide the valuable reference to
others when they comparing the genes using the same SNP chips
on different populations.

There are several common requirements in studying CNV and
ROH patterns in a new species or population. These include:
the need for preparing summary tables, making summary
figures, generating CNVRs and plotting CNVR distribution
maps with gene annotations, comparing CNVs and CNVRs
between studies, converting genome coordinates and map files
from one reference to another, finding high frequency abnormal
genomic regions, creating consensus gene lists, producing custom
visualization of results, and identifying haplotypes in regions of
interest. Therefore, we built this open-source tool to provide a
standardized, reproducible, time-saving and widely available one-
stop post-analysis system to make research more simple, practical
and efficient while avoiding common “pitfalls” that can affect the
accuracy and interpretability of these studies.

METHOD

Brief Introduction of Main Functions
The functions provided by this package can be categorized into
five sections: Conversion; Summary; Annotation; Comparison;
and Visualization. The most useful features provided are:

integrating summarized results, generating lists of CNVRs,
annotating the results with known gene positions, plotting CNVR
distribution maps, and producing customized visualizations of
CNVs and ROHs with gene and other related information
on one plot (Figure 1). This package supports a range of
customizations, including the color, size of high-resolution
figures, and choice of output folder to avoid conflict between
the results of different runs. Where applicable, output files are
compatible with other software such as PennCNV (Wang et al.,
2007), Plink (Chang et al., 2015), or DAVID annotation tools
(Jiao et al., 2012).

The conversion section handles the conversions of genomic
positions between two reference genomes, and provides two
functions. convert_map is designed to compare SNP map files
for two different reference genomes, matching by SNP name, and
produce SNP maps in a format suitable for use by convert_coord.
The function also reports the density of SNPs by chromosome.
convert_coord is designed to convert the physical positions of
genomic intervals based on a given SNP map file. Currently,
the function is limited to inputs generated by convert_map,
and can only convert the coordinates for intervals on the same
type of SNP chip. Converting coordinates may change the total
length of the intervals, as the positions and orders of the
SNPs on the chromosome will potentially differ between various
reference genomes; therefore, the function produces a table that
summarizes how many intervals were converted successfully, and
reports on the differences in length between the converted and
original intervals.

The summary section contains a group of functions to
summarize CNV results, generate CNVRs, and make CNVR
distribution maps from CNV results. There is also a collection of
functions to summarize ROH results, report frequencies of ROH
regions, inbreeding coefficient by different length groups and to
generate haplotypes on interesting ROH regions.

The functions used for reporting CNV results include
clean_cnv, summary_cnv_plot, and call_cnvr. clean_cnv takes
a CNV list from PennCNV and CNVPartition and reformats
it into a standard format for use in the functions listed
below. cnv_summary_plot generates a range of summary
plots, aggregating CNV results by length group, CNV type,
chromosome, and individual. call_cnvr generates CNV regions
as the union of sets of CNVs that overlap by at least one base
pair (Redon et al., 2006). This function will output three tables:
(a) the list of CNVRs, containing the number of CNVs and
number of samples in each CNVR that can reflect the frequency
of CNVRs; (b) a brief summary table showing numbers of CNVRs
by length and type (Deletion, Duplication, and Mixed, where
Mixed indicates that both duplications and deletions are found
within the CNVR); and (c) the total length and number of CNVRs
on each chromosome.

roh_window will report: a table of high frequency ROH
regions on the autosomes that passed the common frequency
threshold, a table containing inbreeding coefficients by different
length groups of each individual, a brief summary of the total
numbers and lengths of ROHs in length groups, and a plot of
high frequency ROH regions by chromosome. The inbreeding
coefficients are calculated as Froh =

(∑
Lroh

)
/
(∑

Lauto
)
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FIGURE 1 | Example plots illustrating the main functions and output from the HandyCNV package.

(McQuillan et al., 2008), where
∑

Lroh is the total length of
ROH, and

∑
Lauto is the total length of autosomes. Other

functions in this group include prep_phased, closer_snp, and
get_haplotype; see the package vignette for more information
(Jinghang et al., 2021).

The annotation section facilitates downloading and
formatting reference gene lists, and annotating genes on genomic
intervals. get_refgene will automatically download a reference
gene list and invoke clean_ucsc and clean_ensgene from UCSC
(Navarro Gonzalez et al., 2021) websites for human, cow, sheep,
pig, horse, chicken or dog species, then remove the duplicated
genes and report the standard format as output. call_gene is
used to report how many genes are located in the given genomic
intervals. The frequency of genes is calculated from the number
of samples that has the same gene annotated in its CNVs.

The comparison section consists of functions for comparing
sets of CNVs (compare_cnv), CNVRs (compare_cnvr),
gene frequency lists (compare_gene), and other intervals
(compare_interval). These functions were implemented using
the foverlaps function in the data.table R package (Dowle
et al., 2019). compare_gene can produce consensus gene lists,
given lists of genes present in CNVRs in multiple studies. The
remaining functions report numbers, lengths, and proportions of
overlapping intervals (CNVs, CNVRs, etc.) on a population and
individual basis.

Finally, twelve functions in HandyCNV are included in
the visualization section; of these, five produce plots as a
subset of their output, and have been mentioned previously:
cnv_summary_plot, roh_window, compare_cnv, compare_cnvr,
and convert_map. The remaining visualization functions
mainly focus on customizing and integrating the plotting of
all information related to CNV, ROH, and high frequency
CNVR: these are cnvr_plot, plot_gene, cnv_visual, roh_visual,

plot_cnvr_panorama, plot_snp_density, and plot_cnvr_source.
These functions are described in the package vignette
(Jinghang et al., 2021).

Pipelines for the Post Analysis of CNVs
and ROHs
Post-analysis of CNVs and CNVRs
The recommended pipeline contains 14 basic steps depending
on the study purposes (Figure 2), although usage is not limited
to these basic steps, and users are free to explore their data by
customizing the functions. By running through this pipeline,
users can produce a wide range of results, such as summary tables
and plots of CNV results, the CNVR list and its brief summary
information and CNVR distribution plot, the frequency of CNVs
and CNVRs within annotated genes, and comparison results
between CNVs, CNVR, and annotated genes.

Post-analysis of ROHs
The pipeline for the post analysis of ROHs contains eight basic
steps (Figure 3). The main results produced by running through
this pipeline are the high frequency ROH regions list, ROH-
based inbreeding coefficients, a list of genes that are located in
the ROH regions, and the frequency of haplotypes within genes
or regions of interest.

APPLICATION EXAMPLES OF CNV AND
ROH

We now provide two example runs of the pipeline, using two
previously published data sets: the first is a CNV list produced
for a human population in Brazil (de Godoy et al., 2020), and
the second is genotype data for an inbred breed of horses
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FIGURE 2 | Pipeline of post analysis of CNV results using HandyCNV.

(Velie et al., 2016). The purpose of these examples is to introduce
how to use the functions in this package; therefore, further
interpretation of the results is not included.

Example 1. the Post-analysis of CNVs in
a Human Dataset
The CNV result in this example was cited from a study published
in 2020 which comprised 268 microarrays samples in a human
population in Brazil (de Godoy et al., 2020). In this example,
we will introduce how to prepare the standard CNV list, then

produce brief summary, generate CNVRs, annotate genes and
visualize CNVs. Figure 4 presents the code used in example 1,
the R script can be found in Supplementary File 1.

To replicate this example, we first need to download the
dataset “Table S1 – Detailed information about all CNVs analyzed
in our sample” (de Godoy et al., 2020) and save the sheet “All
array platforms’ CNVs” as.csv format file. Then use read.csv to
load the CNV list and select the columns required by cnv_clean
(see Figure 5C).

A formatted clean CNV list will return as an object named
“clean_cnv” in working environment, and a brief summary table
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FIGURE 3 | Pipeline of post-analysis of ROH in HandyCNV.

of CNV (see Figure 5D) will be written out after executing
cnv_clean.

We then take a quick look at the CNV distribution by reading
the “clean_cnv” list as input and customizing parameters in
cnv_visual. In example, we first set “chr_id = 14” to visualize
CNVs distribution on chromosome 14 (see Figure 5E), then
zoom into the region with higher frequency CNVs (see Figure 5I)
by setting “start_position = 105” and “end_position = 110.”
Visualizing other chromosomes or regions and changing the
colors of copy numbers can easily be done by adjusting the
relevant arguments.

The CNV summary plot (see Figure 5A) can be plotted via
cnv_summary_plot by taking “clean_cnv” as input. The CNVR
list (see Figure 5F) is generated using call_cnvr by taking the
“clean_cnv” file as input, producing a brief summary table of
CNVR (see Figure 5G) that will be saved in the working directory
in the meantime. The CNVR distribution map (see Figure 5B) is
generated via cnvr_plot by loading the CNVR list.

For gene annotation steps, the reference gene list can be
downloaded and formatted by assigning the genome version
argument in get_refgene. Then the genes annotation list of CNV
or CNVR are generated by running call_gene. Three input
files need be assigned in the function: the clean CNV file
(“clean_cnv”), the CNVR list (“cnvr”), and the reference gene
list (“human_hg19”); the gene frequency list (see Figure 5J)

will be returned as an object in the R environment. We
can plot all the high frequency CNVRs with gene annotation
results (see one example plot in Figure 5H) at the same time
through cnvr_plot by reading “cnvr,” “clean_cnv” and reference
gene list (“human_hg19”) and setting the “sample_size” and
“common_cnv_threshold” arguments.

Finally, we can extract Sample IDs of CNVs that contain genes
of interest (see Figure 5K) using get_samples, by loading the CNV
annotation list generated by call_gene and assigning the gene
name to the “gene_name” argument.

Since this example only contains one CNV result in
one reference genome, the functions in the comparison and
conversion sections are not applicable in this example. Users of
these functions can browse the vignette of this package from the
Github repository (Jinghang et al., 2021).

Example 2. the Post-analysis of ROH
Using Horse Genotype Samples
The genotype data used to detect ROH in this example is
from the work of Velie et al. (2016) and contains 285 horse
samples. This example aims to present how to use the functions
in HandyCNV to analyze ROHs. This example includes ROH
detection by Plink 1.9 (Chang et al., 2015) and genotype
phasing by Beagle 5.1 (Browning et al., 2018). Figure 6 presents
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FIGURE 4 | Analytical steps of example 1.

the code used in example 2; the R script can be found in
Supplementary File 2.

To run this example, we first need to prepare the genotype
data. The genotype files are read using the fread function (Dowle
et al., 2019). Because the original ped file does not match the
format required by Plink 1.9, we insert a sequential column of
family IDs, plus placeholder columns of zeroes for the father,
mother, and sex code by using data.frame and cbind functions
(R Core Team, 2020). Before testing the ROH, the map file was
loaded as the input file in plot_snp_density to get a brief summary
and visualization of SNP density (Figure 7A). The jpeg and dev.off
functions (R Core Team, 2020) are used to save the plot.

Then, we invoke Plink 1.9 (Chang et al., 2015) by shell (R
Core Team, 2020) from R Studio (Team, 2021) to generate binary
genotype files and call ROH. For Windows operating systems,
ensure that the plink.exe file is either in the current directory
or accessible via the PATH system variable. To run Plink 1.9
on other operation system, please refer to the Plink website
(Chang et al., 2015).

Once we get ROH results, we can run roh_window, which
takes a “plink.hom” file as input to report the brief summary
of ROH by length group (see Figure 7B), high frequency
ROH regions (see Figure 7D), ROH frequency distribution plot
(see Figure 7G), and to calculate the ROH based inbreeding
coefficient (Figure 7K).

In this example, we present visualizations of ROH on
the whole of chromosome 22 (see Figure 7C) and on the
22.81–23.22 Mb region on chromosome 22 (see Figure 7E) via

roh_visual, which needs to load the “plink.hom” data set as
input. The “chr_id” or “target_region” arguments are available
to customize visualization, alongside additional arguments to
customize the colors of ROHs.

The horse reference gene list (“quaCab2”) was downloaded
from the UCSC website (Navarro Gonzalez et al., 2021) by
get_refgene. The genes located in the high frequency ROH
regions (see Figure 7F) were annotated via call_gene, which
requires loading the reference gene list (“quaCab2”) and the high
frequency ROH regions file that was generated by roh_window.
Since we have the reference gene list, we can visualize ROH
region with genes (see Figure 7H) via roh_visual by assigning
the clean ROH file (“clean_roh = clean_roh”), target ROH region
[“target_region = c (1, 139.6, 141.6)”] and reference gene lists
(“refgene = equaCab2”). We can also visualize ROHs in terms
of the gene we are interested in: here, we are looking at the
GABPB1 gene, first, exacting the physical position of this gene
from the reference gene list (“equaCab2”) using the “filter” and
“select” functions (Wickham et al., 2019), then using visual_roh
to load the ROH file (“plink.hom”) as input and assigning the
gene position to the “target_region” argument to present the plot
(see Figure 7E). We can write a loop (R Core Team, 2020) of
visual_roh to plot all regions with genes annotated by iterating
over the high frequency ROHs that contain genes.

To get the haplotype of the genes need the phased genotype
files. Here, we take chromosome 1 as example to present how to
use Plink 1.9 (Chang et al., 2015) and Beagle 5.1 (Browning et al.,
2018) to phase the genotypes. The shell (R Core Team, 2020)
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FIGURE 5 | The main outputs of example 1. Panel (A) is CNV summary plot; panel (B) is CNVR distribution map; panel (C) is CNV input list; panel (D) is the brief
summary table of CNV; panel (E) is a plot of CNVs on Chromosome 14; panel (F) is CNVR list; panel (G) is the brief summary table of CNVRs; panel (H) is an
example plot of the high frequency CNVR; panel (I) is a plot of CNVs on Chr14:105-110 Mb; panel (J) is the gene frequency list; and panel (K) is the sample list that
contain CNVs in the LINC00221 gene.

function is used to invoke plink (Chang et al., 2015) to generate
the VCF format genotype file, then to invoke beagle (Browning
et al., 2018) to phase the genotypes from Rstudio (Team, 2021).
For Windows operating systems, ensure that the plink and java
executables are either in the current directory or accessible via
the PATH system variable. Likewise, adjust the path to the Beagle
JAR file as required for your operating system. For instructions
on installing and running Beagle 5.1, refer to their manual
(Browning et al., 2018).

Finally, we take GABPB1 as an example to show how to get
the haplotypes. First, we use prep_phased to load the phased
genotype file (phased_geno = “orse_chr1_phased.vcf.gz”) that
was generated by Beagle, and set the “convert_letter” argument
as “TRUE” to convert the genotype file into the standard
format used by HandyCNV (returned as “geno_chr1”). Second,
we use closer_snp to extract the gene’s position (returned as
“GABPB1_pos”) from the SNP map file, which requires the SNP
map file (provided using the “phased_input” argument), and to
assign the gene’s physical position we got from reference gene list
to the “chr,” “start,” and “end” arguments, respectively. Finally,
we use get_haplotype to get the haplotype information (see
Figures 7I,J) for the GABPB1 gene by assigning the formatted
phased genotype list (“geno_chr1”) to the “geno” argument

and assigning the gene’s position (“GABPB1_pos”) to the “pos”
argument.

DISCUSSION

Here we present a freely available and open source R package
called HandyCNV, which provides a comprehensive set of
functions to summarize and visualize the CNVs and run of
homozygosity results detected from SNP genotyping data.

Many good software packages have been developed for the
detection of CNV and ROH from SNP chip data [such as
PennCNV (Wang et al., 2007), CNVPartition (Illumina, 2021),
SNP and Variation Suite (Bozeman and Golden Helix, 2020),
and Plink (Chang et al., 2015)], and some well-designed tools
for CNV-based association analysis [such as CNVRuler (Kim
et al., 2012), CNVRanger (da Silva et al., 2019), and CNVassoc
(Subirana et al., 2011)]. However, while they do include some
basic data summary and visualization functions, they do not
contain any features to customize visualization of CNV or
ROH results, or to report the haplotype information for target
genomic regions. In contrast to these tools, the HandyCNV
package is focused on the detailed summarization and custom
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FIGURE 6 | Analytical steps of example 2.

visualization of CNV and ROH results, facilitating tasks such
as converting SNP maps, identifying CNVRs from lists of
CNVs, genome annotation, comparing and visualizing CNV,
CNVR, and ROH, reporting summary results and processing
haplotypes of genomic regions of interest. The integration of
multiple tasks into a single package provides a standardizable,
reproducible and timesaving post-analysis of CNV and ROH,
which can help researchers to produce comprehensive tables and
figures, and easily identify the samples that contains the genomic
regions or genes of most interest for the further validation of
experiment designs.

There are some limitations to this package. For example, the
plot_cnvr_panorama function needs to read genotype data to
plot BAF and LRR information: this can require larger amounts
of storage. We have tested it on 150 k SNP chip with 2,100
samples on a desktop windows system and it performs well;
however, it may not be suitable for higher density chips and very
large data sets. The get_haplotype function is also limited, as it
currently only accepts phased genotypes produced by Beagle 5.1
(Browning et al., 2018) with physical position. In addition, the
functions in the conversion section require users provide the
target and default map files.
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FIGURE 7 | The main outputs of example 2. Panel (A) is SNP density distribution plot; panel (B) is brief summary of ROH by length group; panel (C) is plot of ROH
on Chromosome 22; panel (D) is the high frequency ROH regions list; panel (E) is plot of ROHs on Chr1:139.6-141.6 Mb; panel (F) is genes annotation list of ROH
regions; panel (G) is the ROH frequency distribution plot; panel (H) is plot of ROHs that overlap to the GABPB1 gene; panel (I) is the frequency of haplotypes on
GABPB1 Gene; panel (J) is the frequency of haploids on the GABPB1 gene; and panel (K) is the list of ROHs-based inbreeding coefficient.

SOFTWARE INFORMATION

The current release of HandyCNV is version 1.1.6,
which can be installed in the R environment using the
following code: “remotes::install_github (repo = ‘JH-Zhou/
HandyCNV@v.1.1.6’).” The current development version can
be found at the GitHub repository (github.com/JH-Zhou/
HandyCNV).
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Single-cell assays have transformed our ability to model heterogeneity within cell
populations. As these assays have advanced in their ability to measure various
aspects of molecular processes in cells, computational methods to analyze and
meaningfully visualize such data have required matched innovation. Independently,
Virtual Reality (VR) has recently emerged as a powerful technology to dynamically
explore complex data and shows promise for adaptation to challenges in single-cell
data visualization. However, adopting VR for single-cell data visualization has thus far been
hindered by expensive prerequisite hardware or advanced data preprocessing skills. To
address current shortcomings, we present singlecellVR, a user-friendly web application for
visualizing single-cell data, designed for cheap and easily available virtual reality hardware
(e.g., Google Cardboard, ∼$8). singlecellVR can visualize data from a variety of
sequencing-based technologies including transcriptomic, epigenomic, and proteomic
data as well as combinations thereof. Analysis modalities supported include
approaches to clustering as well as trajectory inference and visualization of dynamical
changes discovered through modelling RNA velocity. We provide a companion software
package, scvr to streamline data conversion from the most widely-adopted single-cell
analysis tools as well as a growing database of pre-analyzed datasets to which users can
contribute.

Keywords: single-cell, scRNA-seq, scATAC-seq, virtual reality, VR, data visualization, clustering, trajectory
inference

1 INTRODUCTION

Characterization of cell type, while once dominated by pathological description, has over the past
decade shifted towards a more quantitative and molecular approach. As such, molecular
measurements in single cells have emerged as the centerpiece of the current paradigm of
mechanistic biological investigation (Trapnell, 2015). Technological advancements have enabled
researchers to measure all aspects of the central dogma of molecular biology at the single-cell level
(Stuart and Satija, 2019). Single-cell RNA sequencing (scRNA-seq), a technique that profiles the
relative expression of genes in individual cells and single-cell Assay for Transposase Accessible
Chromatin using sequencing (scATAC-seq), a technique that surveys genome-wide chromatin
accessibility are the most well-established and widely-used of these methods (Buenrostro et al., 2015;
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Lähnemann et al., 2020). In fact, combined scRNA-seq +
scATAC-seq assays are now routine (Perkel, 2021).
Additionally, assays to profile DNA methylation (Luo et al.,
2018) or protein levels are now maturing and becoming more
widely-accessible (Specht et al., 2019; Labib and Kelley, 2020).
Most recently, combinations of various data modalities can now
routinely be collected in parallel from the same cell (Chen S. et al.,
2019; Zhu et al., 2019; Ma et al., 2020; Xing et al., 2020; Swanson
et al., 2021).

scRNA-seq experiments generate on the order of millions of
sequencing reads that sample the relative expression of
approximately 20,000–30,000 transcribed features (e.g., genes)
in each cell of the sample. Normalized read counts for each
feature can then be compared to discern differences between cells.
scATAC-seq samples comprise a larger feature space wherein
cells are characterized by the genomic coordinates of chromatin
accessible regions and sequence-features derived from these
regions (e.g. transcription factor motifs, k-mer frequencies,
etc.). Initially performed in dozens to hundreds of cells, these
experiments are now performed on the order of millions of cells.
With a high dimensional feature space as a result of thousands of
features being considered for each cell and large (in cell number)
experiments, analysis methods for this data have been required to
advance concurrently with the development of these technologies
(Chen et al., 2019c; Tian et al., 2019).

With the exception of proof-of-concept methods still too
nascent to be widely applied (Chen et al., 2021), omics
measurements of single-cells are generally destructive,
preventing measurement of a cell at more than a single time
point. As a result, most single-cell measurements for studying
dynamic processes are of a “snapshot” nature, imposing inherent
limitations on the study of such processes from this data
(Weinreb et al., 2018). In light of this, transcription rates can
be informative of ongoing processes in cells. The recent advent of
RNA velocity quantifies and models the ratios of spliced and
unspliced RNA (mRNA and pre-mRNA, respectively) such that
they indicate the temporal derivative of gene expression patterns
and thereby reflect dynamic cellular processes, allowing
predictions of past and future cell states (La Manno et al., 2018).

Among others, PCA, t-SNE, and UMAP are dimensional
reduction methods that have become common choices for
enabling the visualization of high-dimensional single-cell
datasets. Dimensionally reduced datasets are plotted such that
similar cells cluster together and those with highly differing
features are likewise clustered apart. In addition to the
visualization and clustering of cells, trajectory inference
methods have been proposed to learn a latent topological
structure to reconstruct the putative time-ordering
(pseudotime) by which cells may progress along a dynamic
biological process (Saelens et al., 2018). As single-cell
technologies have advanced, techniques to cluster and organize
cells based on single-cell assays have advanced alongside them,
allowing key insights toward cell type and state characterization.
Combined with RNA velocity information, trajectory inference
can offer key insights on dynamical changes to cell states. Once in
press however, representation of these dimensionally-reduced
visualizations is limited to just two or three dimensions. Even

using three-dimensional plots from published studies, one cannot
dynamically adjust or rotate the visualization to better
understand the data from another angle. In addition, cells are
typically annotated by features (e.g. time points, cell type or
clusters) to investigate stratification along an axis of some
biological process. To change the annotations presented in
publication, one must often reprocess the raw data, which is
time- and skill-intensive, highlighting the need for more
dynamical visualization tools. While such current data
representations are often limited and static, single-cell omic
datasets are information-rich and, in many cases, important
biological heterogeneity cannot be easily investigated or
visualized outside the scope of the original publication,
without spending considerable cost and time to reanalyze the
datasets from scratch.

VR visualization methods for single cell data have been
recently proposed (Yang et al., 2018; Legetth et al., 2019;
Bressan et al., 2021). However, these methods require either
expensive hardware or specific data inputs that mandate
intermediate to advanced computational skills. Thus, tools and
clear protocols are required to enable researchers, especially those
who are not able to efficiently reprocess the raw data, to explore
the richness of published datasets (or their own unpublished
data) through a simple, easy and affordable VR platform.
Importantly, this platform must be flexible enough to accept
all types of omics data from established and emerging
technologies and processing tools currently employed by the
single-cell community.

At the time of this writing, three non-peer-reviewed methods
employing VR technology that produce two- and three-
dimensional visualizations of single-cell data have recently
been reported. CellexalVR enables the visualization of standard
scRNA-seq data though requires users to preprocess their data
through scripting (Legetth et al., 2019). Unfortunately, this tool
also requires expensive and dedicated VR hardware to operate.
Another recent method for visualizing single-cell data in VR is
Theia (Bressan et al., 2021), which has been designed with a focus
on the exploration of spatial datasets for both RNA and protein
measurements. Similar to CellexalVR, expensive computing
power and VR hardware required to use Theia creates a
barrier to entry. An alternative to these high-performance
methods for VR visualization of single-cell data is starmap
(Yang et al., 2018), which allows the use of inexpensive
cardboard visor hardware. However, starmap lacks the
advanced portability of outputs from commonly-used scRNA-
seq analysis tools and limits cell annotation to clustering results of
transcriptomic data. Of note, there are currently no peer-
reviewed tools available for the visualization of single-cell data
in VR illustrating the novelty in this area of research. To
overcome the limitations of these existing methods as well as
build on their qualities and initial progress, we present
singlecellVR, an interactive web application, which implements
a flexible, innovative visualization for various modalities of
single-cell data built on VR technology. singlecellVR supports
clustering, trajectory inference and abstract graph analysis for
transcriptomic as well as epigenomic and proteomic single cell
data. Importantly, singlecellVR supports visualization of cell
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FIGURE 1 | An overview of the singlecellVR user experience. Top, grey: The outputs of a standard 2-dimensional scRNA-seq analysis. Middle and bottom, purple: a
step-by-step overview of the singlecellVR workflow: 1 Schematic of flexible data conversion. One command to install (via the Python pip package manager) and one
command to convert the data to be VR-compatible. 2.Webpage for uploading and exploring VR data. 3 VR mode visualization using a cheap smartphone enabled
headset.
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dynamics as described by RNA velocity, a recent milestone in the
sequence-based analysis of single cells (La Manno et al., 2018;
Bergen et al., 2020). singlecellVR is a browser-contained, free, and
open-access tool. Notably, we have developed a one-command
conversion tool, scvr to directly prepare the results of commonly-
used single-cell analysis tools for visualization using singlecellVR.

2 RESULTS

2.1 SinglecellVR User Experience and
Overview
SinglecellVR is an easy-to-use web platform and database that can
be operated from inexpensive, cardboard visor hardware that
costs as little as ∼$8 and is available online from popular vendors
including Google and Amazon. The webpage, available at http://
www.singlecellvr.com enables users to explore several preloaded
datasets or upload their own datasets for VR visualization.
Visualization can be done either on a personal computer or
smartphone. To facilitate the transition between the personal
computer browser view and the phone-enabled VR visor (VR
mode), we have implemented an easy way to transition between
these two visualizations as described in the next sections. In VR
mode an interactive visualization is presented to the user,
allowing them to manipulate and visualize single-cell data
using an array of annotations through the cardboard visor.
Additionally, singlecellVR features the ability to receive as
inputs, the standard output files of commonly-used tools for
standard single-cell analysis: Seurat (Hao et al., 2021), Scanpy
(along with EpiScanpy) (Wolf et al., 2018; Danese et al., 2019),
STREAM (Chen et al., 2019a), PAGA (Wolf et al., 2019), and
scVelo (Bergen et al., 2020). A companion package, scvr enables
the conversion of these standard outputs to VR-compatible
objects in a single command.

In the sections below, we will describe the basis for this VR
visualization platform as well as provide descriptive examples of
the visualization that can be performed using singlecellVR. We
will compare singlecellVR to existing methods and describe its
unique advantages that build on the early progress of single-cell
data visualization in VR. We include a detailed protocol and
quick-start guide that describe how the web platform enables
researchers to explore their own data and dually functions as a
database for preformatted datasets that can be explored
immediately in VR (Supplementary Note 1).

2.2 VR Database and scvr Preprocessing
Tool
SinglecellVR provides a growing database of several datasets
processed for VR visualization. Initialization and future
growth of this database is enabled, scale-free through the
streamlined scvr utility. As shown in Figure 1, to use
singlecellVR, the user may select a precomputed dataset or
convert their data from commonly used single-cell workflows.
This conversion can be easily accomplished by using scvr, a
simple one-line command tool for performing data conversion
and produces a simple zipped .json file with all the information

required for visualizing cells and their annotations in VR.
Additionally, datasets for which RNA velocity information has
been calculated may be submitted directly for visualization of
velocity in VR without prior conversion (Supplementary Note 2;
Supplementary Notebook 4).

Conversion from the standard output of any single-cell
analysis tool to this format would normally pose a significant
methodological roadblock to most users, especially non-
computational biologists. To bridge this gap, scvr parses and
converts the outputs of Scanpy, EpiScanpy, Seurat, PAGA, and
STREAM (respectively .loom, .h5ad and .pkl) and creates the
required zipped .json file (Supplementary Note 2). This file
contains the 3-D coordinates of cells in a specified space (e.g.
UMAP, LLE, etc.), cell annotations (e.g. FACS-sorting labels,
clustering solutions, sampling time or pseudotime, etc.), and
feature quantification (gene expression levels, transcription
factor deviation, etc.). It also contains the graph structure (the
coordinates of nodes and edges) obtained from supported
trajectory inference methods. Users interested in visualizing
scRNA-seq dynamics using RNA velocity generated from
spliced and unspliced read counts can likewise prepare this
information for visualization in singlecellVR using the scvr
companion utility. Users can follow established workflows for
obtaining these insights from the raw read file inputs as well as
make use of the tutorials available at the singlecellVR GitHub
Repository (Section 5; Supplementary Notebook 4).

Importantly, scvr has been made available as a Python pip
package to streamline its installation and can convert a processed
dataset for VR visualization with a simple command. To install,
one can simply open their command line utility and run: “pip
install scvr.”Once installation is completed, the user can navigate
to https://github.com/pinellolab/singlecellvr, to copy and
customize the example commands provided to execute the
one-step process for converting their data to a VR-compatible
format. In addition to the documentation of scvr we have filmed a
short video tutorial found on the homepage of singlecellVR to
further assist less experienced users in preparing their data for
visualization.

To showcase the functionality and generalizability of scvr
across data types, we have preprocessed a collection of 17
published datasets, which includes both scRNA-seq as well as
scATAC-seq and single cell proteomic data and made them
available for immediate VR visualization. Taken together we
believe this step addresses a key limitation of previously-
developed VR tools mentioned above, and a formal
comparison is presented in Section 2.5 (Yang et al., 2018;
Legetth et al., 2019; Bressan et al., 2021).

Excitingly, given the small footprint of the files obtained with
scvr, we are offering users the ability to easily submit their
processed data to the singlecellVR GitHub Repository (see
Supplementary Figure S1) to make the tool a general
resource for the field. In this way, we hope to even further
extend the ability of biologists to visualize once static datasets
and easily generate new hypotheses through manipulation of a
large number of rich datasets. Therefore, we envision that our
website will function as a repository for VR visualization data of
single cell biological annotations.
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FIGURE 2 | Step-by-step protocol for data processing and using singlecellVR. Step 1 Single-cell data can be generated using a variety of technologies or
downloaded from online repositories*. Data can then be preprocessed and prepared for use (most often as a feature matrix) with common single-cell analysis tools**.
Step 2 Pre-processed data can be analyzed using common single-cell analysis tools (listed here). Step 3 Users can process their data for use with singlecellVR from any
of the standard outputs created by analysis tools listed in Step 2. listed at the top in a single command. Step 4 Users can select from pre-processed data or upload
their own data (Step 4b) and scan the dynamically generated QR code with their phone to begin the VR visualization (Step 4c). Step 5 Users can use the QR code on the
website to transfer their data to their phone for use with simple hardware. * and ** are explained in the Section 5 section, Step 1.
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FIGURE 3 | VR visualization of single-cell processed datasets profiled by different technologies and analyzed by various computational tools. (A) Scanpy offers
solutions for clustering single-cell data. Shown is a UMAP of the Allen Brain Atlas mouse brain scRNA-seq dataset from Yao (2020) and processed by Scanpy. Leiden
clustering solution (left) and expression of Gad1 (right). (B) Trajectory inference applications. PAGA offers a partition-based graph abstraction to uncover potential
trajectories (edges) between group of cells (nodes) (top-left) relative gene expression (e.g.,Klf1, top-right), amongst other annotations. The PAGA-analyzed dataset
shown here is from Paul, et al. (2015). STREAM offers the visualization of developmental trajectories, which can be visualized by cell identity (bottom-left) or by relative
gene expression (e.g., Gata1, bottom-right), amongst other annotations. The STREAM-analyzed dataset shown here is from Nestorowa, et al. (2016). (C) Epigenomic

(Continued )
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2.3 A Simple, Cloud-Based Web Tool for VR
Visualization
SinglecellVR is available as a webapp at http://www.singlecellvr.
com. This website enables users to explore several preloaded
datasets or upload their own datasets for VR visualization. To
build singlecellVRwe have adopted recent web technologies,Dash
by Plotly and A-FRAME, a recently-developed JavaScript
framework for VR/AR. This allowed us to create a tool that is
portable and does not require any installation. The website can be
reached through any web browser and browser compatibility was
tested against Google Chrome, Apple Safari, and Mozilla Firefox.
Visualization can be done either on a personal computer or
smartphone (both Android and Apple smartphones).

Once the users have uploaded their data to singlecellVR, they
have the option to view and explore the data in 3-D directly in
their web browser or to quickly jettison the data to their mobile
device for visualization in a VR headset (Figure 2 and
Supplementary Figure S2). A key challenge associated with
developing a method for visualization of single-cell data is
transporting data that is typically processed in desktop settings
to the smartphone-based VR visualization. In fact, we predict that
in most cases, users will prefer to upload their data through a
computer in which they may have run their analyses. To
overcome this challenge and enable a seamless transition to a
smartphone for VR view, our website dynamically generates a QR
code that enables users to open the VR view on their phone to
view data uploaded through a personal computer. This mixed
approach is particularly useful because, as mentioned before,
most users are not processing single-cell data analysis from a
phone nor would they keep the files on a mobile device.

2.4 Supported Tools and Analysis
2.4.1 Visualizing Single-Cell Clustering Solutions in VR
As previously mentioned, Scanpy and Seurat are two commonly-
used tools for performing cell clustering as well as differential
expression analysis. Here we demonstrate the utility of
singlecellVR to visualize the common outputs of these tools,
showcasing both the clustering solutions as well as
differentially expressed genes or other technical or biological
features that are visualized easily through the VR interface
(Figure 3). A key advantage of our tool is the ability to supply
multiple annotations to cells to visualize various attributes of the
measured data, for example based on a biological query of interest
or experimental design. This may include stratification by cluster
identity, time points, tissues, or FACS-based labels. In Figure 3,
we demonstrate the ability to select visualizations by various
cluster identifications, which are user-customizable. With the
advent of cross-experiment integration methods that can
integrate not only multiple scRNA-seq experiments but
experiments across modalities of single-cell data collection,

this flexible labelling strategy should enable the user in the
future to visualize even the most novel and complicated
experiments in rich detail.

In addition to flexibility for visualizing complex experimental
setups, singlecellVR is able to visualize large experiments. To
demonstrate this utility, we first processed (using Scanpy and
scvr) and visualized on singlecellVR, scRNA-seq data from the
Chan-Zuckerberg Biohub Tabula Muris project, a dataset
consisting of 44,949 cells and 20 tissues from seven mice
(Schaum et al., 2018). In Supplementary Figure S3A,
clustering analyses of this dataset are projected into VR,
colored by mouse tissue (left) and Louvain cluster identity
(right). With a quick rendering time (<1 s) for the Tabula
Muris dataset, we next explored the realm of visualization for
a modern, large atlas-scale dataset (>1 M cells). Using Scanpy and
scvr, we successfully processed and visualized on our website, cells
from the Allen Brain Institute that capture cortical and
hippocampal development inside the mouse brain (Figure 3A)
(Yao, 2020). This dataset consists of 1,093,785 cells and is among
the largest scRNA-seq datasets created, to date. Visualization of
this dataset in a dynamic VR setting creates the opportunity for
more in-depth study of sub-sections of the data, which is
particularly valuable for such a large dataset. While the
datasets visualized in this manuscript were obtained in their
pre-processed state, we have created IPython notebook
tutorials for integrating datasets from multiple transcriptomic
experiments as is performed in Seurat; these may be accessed in
the associated GitHub repository.

2.4.2 Visualizing Single-Cell Trajectory Inference
Results in VR
Single-cell measurements are particularly useful for capturing
cross-section snapshots of a biological process. With dense cell
sampling, one can often observe transient cell states that exist
between two, more stable states. However, without an intrinsic
understanding of the process being studied, it may be difficult to
order these cells along a time axis of a biological process. To
enable ordering cells by transcriptional (or epigenomic) states,
pseudotemporal ordering, based on trajectory inference and
machine learning algorithms has become a useful technique
for the single-cell field. Trajectory inference, like clustering,
describes a high-dimensional biological process and being
limited to a two/three-dimensional static visualization on
paper, with a limited selection of genes or annotations is not
ideal. Thus, we intend for our tool to leverage the richness of these
datasets and make their general usefulness to the field more
widespread. We therefore wanted to extend our VR visualization
to the results of common trajectory inference tools (Figure 3B).
singlecellVR supports two trajectory inference tools: PAGA, a
partition-based graph abstraction trajectory inference method
and STREAM, a method based on principal graphs (Albergante

FIGURE 3 | applications. EpiScanpy enables the clustering and visualization of scATAC-seq data (left). PBMC (healthy donor) 10,000 cells dataset analyzed by
EpiScanpy and with colors corresponding to clustering solutions (Louvain clustering). STREAM was used to perform trajectory inference on th scATAC-seq dataset
Buenrostro et al. (2018) (right). (D) Seurat offers solutions for clustering single-cell data as well as integrating datasets across experiments. Shown is a Seurat-integrated
scRNA-seq and scATAC-seq PBMC dataset from 10x Genomics, colored by technology (left) and cell type (right).
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et al., 2020) that recovers a tree like structure to summarize
developmental trajectories and to visualize the relative densities
of cell populations along each branch.

To showcase the ability of singlecellVR to visualize trajectory
inference results, we reprocessed a popular myeloid and erythroid
differentiation dataset (Paul et al., 2015), performing trajectory
inference using PAGA. PAGA is designed specifically to preserve
relative cell topology in constructing the trajectory along a
pseudotime axis. In the depiction of the PAGA-generated
trajectory, nodes (gray) correspond to cell groups, and edges
(black lines between nodes) connecting the groups quantify their
connectivity and confidence (thickness) (Figure 3B, top). To
showcase the VR output of STREAM we reprocessed a popular
mouse blood dataset (Nestorowa et al., 2016). In STREAM, a set
of smooth curves, termed principal graph, are fitted to the data
and each curve represents a developmental branch. Within
singlecellVR, we are able to easily explore these trajectories and
observe qualitatively, the distribution of cells along each branch
in the UMAP space (Figure 3B, bottom). The branches of these
trajectories are represented by the curves that cut through
the cells.

SinglecellVR and scvr also support processing and visualizing
single-cell epigenomic data. To demonstrate this functionality, we
first used the EpiScanpy workflow to cluster a scATAC-seq
dataset from 10x Genomics containing 10,000 cell PBMC
(healthy donor) (Figure 3C, left). Next we reprocessed with
STREAM a scATAC-seq dataset profiling human
hematopoiesis (Buenrostro et al., 2018) (Figure 3C, right). In
addition, we extend singlecellVR to single-cell quantitative
proteomics data. To this end we reprocessed data from
SCoPE2, a recent assay to quantitate proteins in single cells
using mass spectrometry (Specht et al., 2019). We performed
trajectory inference using STREAM on one SCoPE2 dataset
profiling the transition from monocytes to macrophages in the
absence of polarizing cytokines. Our analysis revealed a
bifurcated branch structure as cells progress towards
macrophage phenotypes (Supplementary Figure S3B).
Importantly, such bifurcation is not readily visualized in
previous reports in two dimensions. Finally, we took
advantage of the recent advances in the multi-omics field,

using Seurat to integrate and co-embed PBMC cells profiled
by scRNA-seq and scATAC-seq by 10x Genomics (Figure 3D).

2.4.3 Visualizing RNA Velocity Analysis in VR
Having successfully applied the singlecellVR framework to the
visualization of trajectory inference analyses for multiple
modalities of single-cell data, we sought to extend the
framework further to visualize dynamical changes at single-cell
resolution by way of RNA velocity. We first demonstrated this on
a popular endocrine pancreas dataset (Figure 4), which has been
previously employed to demonstrate the utility of visualizing
dynamic processes using velocity.

Visualization of RNA velocity using singlecellVR has two modes.
In the default mode, each cell is represented by an arrow where the
magnitude and direction of the arrow denote the velocity of that cell
(Figure 4A). For larger datasets, cells may be represented as spheres
while a surrounding grid system of arrows denotes the predicted
trajectory of a given cell (Figure 4B). This is particularly helpful for
interpreting the overall direction of cells in various clustering regions
or subsets of a given trajectory. In either mode, the arrows are
animated to gravitate towards the direction of the corresponding cell
trajectory. Latent time, t is a parameter of the velocity calculation for
a given cell. To aid in user comprehension of observed velocity, the
speed and distance of the animated velocity vector may be calibrated
on the fly during the VR experience through adjustment of the t
parameter using the floating VR assistance menu. These results
taken together with the visualizations of clustering analyses as well as
trajectory inference analyses indicate that singlecellVR is a robust,
generalizable tool across multiple modalities of single-cell analysis.

2.4.4 Creating Reproducible Visualizations
To enable singlecellVR users to create visualizations that can be
reproduced upon sharing, we have included a feature in the VR
interface, which captures absolute x, y, and z coordinates such
that one may navigate to an identical position with precision. In
line with this, we have also included pitch, yaw, and roll
descriptions of the camera angle view. These position
descriptions of the VR viewpoint can be captured and shared
as part of the visualization. Viewpoint descriptions may also be
toggled on or off (Supplementary Figure S4).

FIGURE 4 | VR visualization of single-cell datasets with RNA Velocity. scVelo enables efficient analysis of the RNA velocity attributes of single-cell data. Shown is a
3-D UMAP of an endocrine pancreas dataset (Bastidas-Ponce et al., 2019). (A): Cells are displayed as their corresponding 3-D velocity vectors and colored according to
cluster annotation. (B): Cells are displayed as 3-D orbs surrounded by a corresponding grid of velocity vectors. Cells are colored according to cluster annotation.
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2.5 Comparison of singlecellVR to Existing
Methods
As mentioned above, there are currently three unpublished
reports of VR tools created to visualize single-cell data:
CellexalVR (Legetth et al., 2019), starmap (Yang et al., 2018),
and Theia (Bressan et al., 2021). In this section, we compare these
tools to singlecellVR on two axes: 1) ease of use and 2) overall
performance for visualization and analysis in VR.

2.5.1 Ease of Use
Competing Tools
Both CellexalVR and Theia require or recommend HTC Vive or
HTC Vive Pro VR hardware (∼$500–1,000), an Intel Core i7
processor (∼$300) or better, an NVIDIA GTX1080 or NVIDIA
GeForce RTX 3080/3090 (∼$1,500–3,000), 16–32 GB RAM
(∼$50–150) and a solid-state hard drive (SSD) (1 TB SSD
recommended for CellexalVR) (∼$50–100). Altogether, this
equipment requires a minimum investment of roughly
$,2300–$4,550. These are computational equipment that most
biologists will not have at their disposal within their lab, likely
limiting use of this tool to more computationally-focused labs.

CellexalVR requires software and boilerplate-level to pre-
process the data in preparation for VR visualization is
required and therefore requires the user to perform scripting
to prepare data for downstream use with the VR visualization.
While Theia has provided a convenient python script to convert
AnnData objects, their software is not open-source, hindering
further community contribution.

A contrasting alternative to CellexalVR and Theia is Starmap,
which is compatible with low-cost hardware such as Google
Cardboard. However, Starmap takes as input comma-separated
values containing information of the three-dimensional
coordinates of cells in the visualization as well as annotations
(e.g., cluster ID), and up to 12 features per cell. This file must be
prepared entirely by the user without assistance from the Starmap
platform, limiting the audience of this tool to experienced
computational biologists.

singlecellVR
The single-command companion package for data preparation,
scvr described above enables users to visualize their own
precomputed data directly from the outputs of commonly-
used single-cell RNA-seq analysis tools. Currently supported
tools include Scanpy, EpiScanpy, Seurat, PAGA, STREAM, and
scVelo. singlecellVR is the only tool of the three discussed
(CellexalVR, Theia, and Starmap) that features a QR code to
quickly transport the VR data visualization to another device.

2.5.2 VR Performance and Analysis Capabilities
Competing Tools
CellexalVR proposes a versatile, user-friendly visualization for
standard scRNA-seq workflow outputs and demonstrates
comparable utility on scATAC-seq data. Theia offers a
similarly high-performance visualization of single-cell data.
Theia’s key distinguishing contribution is it’s visualization of
spatial transcriptomic single-cell datasets.

Starmap is only demonstrated on scRNA-seq data and lacks
the ability to visualize analyses beyond clustering (such as
trajectory inference or an illustration of velocity). Further,
Starmap is only capable of displaying up to 12 features for a
given cell, limiting the throughput with which users may analyze
their data.

singlecellVR
In contrast to existing methods, singlecellVR offers both a high-
performance visualization with in-depth analysis and the ability
to visualize all modalities of data at scale, while at the same time
offering a software that is compatible with low-cost hardware and
requires minimal computational abilities. These advances, which
build on the progress made by these initial methods create a tool,
which offers a low-cost alternative to existing tools with virtually
zero barrier to entry, while maintaining high-performance VR
visualizations.

3 DISCUSSION

The amount of publicly available scRNA-seq data has exploded in
recent years. With new assays to capture chromatin accessibility,
DNA methylation and protein levels in single cells, we predict a
second wave of dataset generation. Each of these datasets is
extremely high-dimensional and thus, rich with latent
information about a given biological sample. Ideally, biologists
would be able to explore this treasure-trove of data from any
angle and make hypotheses assisted by in silico analysis at little
to no time cost. Often however, experimental biologists lack the
advanced computational skills and/or time required to reprocess and
reanalyze raw data from published experiments to gain an
understanding of the data from their desired angle of interest.
Additionally, biologists who wish to thoroughly explore data
prior to publication may rely on a computational specialist who
is less connected to the biological problem of interest, introducing a
disconnect in hypothesis-driven experimental turnover.

While once primarily reserved for entertainment, VR has found
utility in both industrial and academic applications. In this
manuscript we present a protocol for visualizing single-cell data
in VR. This protocol is based on singlecellVR, a VR-based
visualization platform for single cell data and discusses its
innovations and differences with existing methods. Importantly,
we provide a simple mechanism to prepare results from commonly-
used single-cell analysis tools for VR visualization with a single
command to considerably increase accessibility (see Section 5).With
this added utility, we seek to empower non-computational biologists
to explore their data and employ rapid hypothesis testing that could
not be made from the traditional static representations typical of
communication in a scientific report on paper or a computer screen.

We anticipate that VR will become increasingly useful as a
research and education tool and that the construction of
software libraries will aid such advancements. VR has also
recently found application in other sources of biological data,
including single-neuron morphological imaging data (Wang
et al., 2019), three-dimensional confocal microscopy data for
fluorescent molecule localization (i.e., fluorophore-tagged
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proteins) within cells (Stefani et al., 2018), and three-
dimensional single-molecule localization super-resolution
microscopy (Spark et al., 2020). Our scalable and flexible
VR visualization framework is not limited to scRNA-seq
and it can be also easily adapted to other single-cell assays
and tools that already support epigenomic data and/or single-
cell proteomic data (EpiScanpy (Danese et al., 2019), Seurat
(Stuart et al., 2019), and STREAM (Chen et al., 2019a)).
Finally, we extend our framework to computational
methods that derive the RNA velocity of single cells for
visualization in VR (La Manno et al., 2018; Bergen et al.,
2020). With the recent advances in spatially-resolved
transcriptomics (Welch et al., 2019) and corresponding
analysis methods (Hao et al., 2021; Miller et al., 2021),
visualization of such data has already been extended to a
VR framework (Bressan et al., 2021). We believe this new
sort of three-dimensional VR will also become especially useful
once made available to the general research community via
inexpensive hardware and facile data preprocessing and
preparation for VR visualization. As software to analyze
single cells reach their maturity, one could imagine the
incorporation of such visualizations into more clinically
translatable settings, such as medical devices.

4 CONCLUSION

This manuscript presents singlecellVR, a scalable web
platform for the VR visualization of single-cell data and its
associated preprocessing software, scvr, which streamlines the
results of commonly used single-cell workflows for
visualization in VR. singlecellVR enables any researcher to
easily visualize single-cell data in VR. The platform is user-
friendly, requires no advanced technical skills or dedicated
hardware. Importantly, we have curated and preprocessed
several recent single-cell datasets from key studies across
various modalities of data generation and analysis
approaches, providing the scientific community with an
important resource from which they may readily explore
and extract biological insight.

4.1 Key Points
• singlecellVR is a web platform that enables quick and easy
visualization of single-cell data in virtual reality. This is
highlighted by a database of pre-loaded datasets ready for
exploration at a single click or via a QR code to quickly
jettison the visualization to a smartphone enabled VR visor.

• scvr is a companion package to easily convert standard
outputs of common single-cell tools in a single command

• singlecellVR is made for use with cheap and easily-available
VR hardware such as Google Cardboard (∼$8).

• singlecellVR can visualize both clustering solutions as well as
trajectory inference models of single-cell data for
transcriptomic, epigenomic, and proteomic data as well
as multi-modally integrated datasets. Additionally,
singlecellVR offers a three-dimensional VR visualization
of RNA velocity dynamics.

5 MATERIALS AND METHODS

5.1 Single-Cell Data Preparation
All datasets were processed using Scanpy (version 1.5.1, RRID:
SCR_018139), AnnData (version 0.7.6, RRID:SCR_018209),
EpiScanpy (version 0.1.8), Seurat (version 3.1.5, RRID:
SCR_007322), PAGA (part of Scanpy, version 1.5.1, RRID:
SCR_018139), STREAM (version 1.0), and scVelo (version 0.2.3,
RRID:SCR_018168) following their documentations. Jupyter
notebooks to reproduce data processing are available at https://
github.com/pinellolab/singlecellvr. Analyses were performed on a
2019 MacBook Pro (2.4 GHz Intel Core i9, 16 GB RAM).

5.2 Preparation of Processed Data for
Visualization in VR
The preprocessing package, scvr generates a series of .json files
containing the spatial coordinates representative of cell
embeddings in 3D embedding (e.g. PCA, UMAP, etc.) and
information including labels and features (e.g., gene
expression, TF motif deviation, etc.). These .json files are
zipped upon output from scvr into a single file that can be
easily uploaded to singlecellVR for visualization.

5.3 SinglecellVR Webapp Construction
To build singlecellVR, we used A-FRAME (version 1.2.0), Dash by
Plotly (version 1.13.3).

DATA AVAILABILITY STATEMENT

The source code and the supporting data for this study are
available online on GitHub at https://github.com/pinellolab/
singlecellvr. The preprocessing package, scvr is included within
that repository https://pypi.org/project/scvr/. The documentation
for scvr is available here: https://github.com/pinellolab/
singlecellvr. Video tutorials for learning about and running
visualization experiments with singlecellVR (and using scvr to
prepare the data) are available on YouTube, here: https://www.
youtube.com/playlist?list�PLXqLNtGqlbeMaAuiBStnBzUNE6a-
ULYx8. All the analyses in this article can be reproduced using the
Jupyter notebooks available at https://github.com/pinellolab/
singlecellvr. Additionally, we have provided a wiki within the
same repository for a more detailed guide to reproducing results
from the paper as they pertain to the supplementary materials.

AUTHOR CONTRIBUTIONS

Authors DFS, HC, MEV, and QQ contributed equally to this
publication. DFS, HC, MEV, and LP conceived this project and
designed the experiment, which was begun at the 2019 HackSeq,
at the University of British Columbia where input from
collaborators mentioned in the acknowledgements was
received. DFS, HC, MEV, and RDC processed the data hosted
in the database as well as produced the VR image demonstrations
of singlecellVR shown in this manuscript. DFS led the

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 76417010

Stein et al. singlecellVR

48

https://github.com/pinellolab/singlecellvr
https://github.com/pinellolab/singlecellvr
https://github.com/pinellolab/singlecellvr
https://github.com/pinellolab/singlecellvr
https://pypi.org/project/scvr/
https://github.com/pinellolab/singlecellvr
https://github.com/pinellolab/singlecellvr
https://www.youtube.com/playlist?list=PLXqLNtGqlbeMaAuiBStnBzUNE6a-ULYx8
https://www.youtube.com/playlist?list=PLXqLNtGqlbeMaAuiBStnBzUNE6a-ULYx8
https://www.youtube.com/playlist?list=PLXqLNtGqlbeMaAuiBStnBzUNE6a-ULYx8
https://www.youtube.com/playlist?list=PLXqLNtGqlbeMaAuiBStnBzUNE6a-ULYx8
https://github.com/pinellolab/singlecellvr
https://github.com/pinellolab/singlecellvr
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


development of the virtual reality framework. HC led the
development of Dash-based website and the preprocessing
module, scvr. QQ contributed to extending the VR tool with
velocity and new API. QZ contributed to extending the VR tool to
incorporate single-cell protein analysis. MEV led the preparation
of the manuscript. All authors performed user-testing of the
software. LP supervised the development of this work and
provided guidance. All authors wrote and approved the final
manuscript.

FUNDING

This project has been made possible in part by grant number 2019-
202669 from the Chan Zuckerberg Foundation. LP is also partially
supported by the National Human Genome Research Institute
(NHGRI) Career Development Award (R00HG008399) and
Genomic Innovator Award (R35HG010717). MEV is supported
by the National Cancer Institute (NCI) Ruth L. Kirschstein NRSA
Individual Predoctoral Fellowship (1F31CA257625-01).

ACKNOWLEDGMENTS

We would like to acknowledge the organizers and participants
of HackSeq19 (University of British Columbia), where this
project began. We would like to especially acknowledge
those HackSeq19 participants that contributed to the
development of this project: Michelle Crown, Alexander
Dungate, David Lin, Terry Lin, and Sepand Dyanatkar
Motaghed. Additionally, we would like to thank Ashley
Browne, Salma Ibrahim, and Kate McCurley for their
contributions to the construction of the singlecellVR
database through the Winsor Science Internship Program.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
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full#supplementary-material

Supplementary Figure 1 | Instructions for contributing VR-processed data to the
singlecellVR data repository. Users can contribute to the growing repository of VR
datasets by submitting a pull request to our GitHub repository: https://github.com/
pinellolab/singlecellvr. To do so, first fork and clone the repository (steps 1 and 2,
above). Next, add your data (step 3). Finally, create a pull request (step 4) to be
submitted for approval. Once approved, your data will be incorporated into the
growing repository of VR datasets. It is necessary to add the “VR Dataset” flag
(purple, already added to the sidebar) to the pull request. In addition, we ask users to
describe the data, methods used and available annotations (e.g. genes, timepoints,
clusters labels etc.) in the commit message or comment section of the pull request.
Note: for velocity results, files >50 MB are too large to be shared through GitHub
and must be shared via other channels. However, coordination of this sharing may
proceed through GitHub as shown in this figure. For more, see Supplementary
Note 2 and Supplementary Notebook 4.

Supplementary Figure 2 | Tips for using the VR interface. (A) It is not required but
one can easily connect a keyboard with your smartphone using a Bluetooth-enabled
keyboard (a small portable keyboard can be purchased from Amazon for ∼$10).
However, you can still use a normal computer with your browser and explore using
your mouse and keyboard, the three-dimensional transcriptional space with cells,
trajectories and graph abstractions. The full set of interactive keyboard
functionalities are detailed above. (B) There are several similar versions of
cardboard VR adapters available for ∼$8. Many VR headsets such as Google
Cardboard have a single button that allows a user to click the screen of their phone
while immersed in a virtual reality experience. By holding down this button, users
without a keyboard may move forward in the direction of their gaze. You can also
simply use your computer screen to do initial exploration of the data in 2-D. (C)
Users may navigate the VR visualization via a combination of gaze controls and
keyboard inputs. A circle, centered in the user’s field of view indicates the direction
that a user will move through the virtual space and also acts as the appendage
through which the user will interact with objects in the visualization. Additionally,
users may select the “keyboard” button on the menu to render a virtual keyboard.
Cardboard users may use this keyboard to search for available features to render on
the display. The “Enter/Return” key on the virtual keyboard clears the current search.
Subsequently selecting the “keyboard” button will hide the keyboard from view.

Supplemental Figure 3 | (A) Rendering the single-cell virtual reality visualization.
Scanpy offers tools for clustering, which can be visualized using singlecellVR. Cells
can be visualized and colored by various annotations. Shown: mouse tissue type,
(left) or their cluster ID (right). The Scanpy-analyzed dataset shown here is from the
Chan Zuckerberg Initiative’s Tabula Muris dataset (Schaum et al., 2018). (B)
STREAM-processed single-cell proteomics data from SCoPE2 (Specht et al.,
2019). These visualizations are an example of an advantage gained by trajectory
analysis and three-dimensional visualization. 3-D UMAP plots (ordered left to right,
top to bottom) generated by STREAM, respectively colored by pseudotime
progression, cell type (orange: monocyte, blue: macrophage), expression of
Safb, and expression of Pfn1.

Supplementary Figure 4 | Camera coordinates and angle descriptions enable
reproducible visualizations. Shown is a UMAP of the Allen Brain Atlas mouse brain
scRNA-seq dataset Yao, et al., 2020 (Yao, 2020) and processed by Scanpy colored
by the Leiden clustering solution. Close-ups of the coordinates as well as the toggle
for displaying coordinates are shown.
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Use ggbreak to Effectively Utilize
Plotting Space to Deal With Large
Datasets and Outliers
Shuangbin Xu†, Meijun Chen†, Tingze Feng, Li Zhan, Lang Zhou and Guangchuang Yu*

Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China

With the rapid increase of large-scale datasets, biomedical data visualization is facing challenges.
The datamay be large, have different orders ofmagnitude, contain extreme values, and the data
distribution is not clear. Here we present an R package ggbreak that allows users to create
broken axes using ggplot2 syntax. It can effectively use the plotting area to deal with large
datasets (especially for long sequential data), datawith differentmagnitudes, andcontain outliers.
The ggbreak package increases the available visual space for a better presentation of the data
and detailed annotation, thus improves our ability to interpret the data. The ggbreak package is
fully compatible with ggplot2 and it is easy to superpose additional layers and applies scale and
theme to adjust the plot using the ggplot2 syntax. The ggbreak package is open-source
software released under the Artistic-2.0 license, and it is freely available onCRAN (https://CRAN.
R-project.org/package�ggbreak) and Github (https://github.com/YuLab-SMU/ggbreak).

Keywords: axis break, gap plot, long sequential data, outlier, ggplot2

INTRODUCTION

Many visualization methods would not be able to display a graph on a print page and this limits the
publication of these results. There are several reasons. For example, the amount of data is large, the
data contains outliers and squeezes the main part of the graph or both. As the volume and complexity
of biomedical data are growing rapidly (O’Donoghue et al., 2018), circular graphs such as chord
diagrams, sunburst diagrams, and circular phylograms, are becoming popular to save space for big
data applications. However, not all horizontal methods have corresponding circular counterparts.
Moreover, a circular graph also has its limitations. Compared with a horizontal chart, a circular
graph is not intuitive and not easy to compare. One of the approaches to explore a large dataset is to
split the data into several rows of graphs, especially for long sequences of data (e.g., time-series plot).
Splitting a graph into multiple rows helps to improve the identification of data trends and patterns.

Outliers are unusual values that lie outside the overall pattern of distribution. It’s bad practice to
simply exclude outlier data points since they are not always due to experimental errors or instrument
errors. Outliers can be legitimate observations and could represent significant scientific effects. The
identification of meaningful outliers can often lead to unexpected findings. Many analytical methods
are looking for outliers. Such as differentially expressed gene detection, genome-wide association
studies. Visualizing data with outliers can be challenging as the graph will be stretched or squeezed by
the outliers. To overcome this issue, data transformation methods, such as log transformation, are
often used to transform skewed data. Nonetheless, the transformation should be motivated by the
data type. The normal distribution is widely used in biomedical research studies to model continuous
outcomes and the log transformation is the most popular method that was used to reduce the
skewness of the distribution. A previous study showed that log transformation would introduce new
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problems that are even more difficult to deal with (Feng et al.,
2014). Applying log-transformation to data sets that are not log-
normal distributed does not reduce skewness. If we are looking
for outliers in our data, a process like a log transformation
would de-emphasize them (Metcalf and Casey, 2016).
Furthermore, log-transformed data shares little in common
with the original data. Some plot patterns like boxplots have
been implemented to solve the visualization problem of outliers
that still can’t meet the requirement (Williamson et al., 1989).
Broken axes have become a common feature of graphs in
biomedical studies and also other research areas. Breaking
the axis can simplify the outlier visualization, improve
aesthetics, and save space (Amos and MedImmune, 2015).
Advantages include applying to different distributions and
preserving the original data scale, and thus more easy to
convey the difference and variation between the low and
high groups.

Displaying a plot with a gapped axis (i.e., missing range on one
axis) is often used for the visualization of highly skewed data. When
the bulk of the values get squeezed into a smaller region of the plot due
to outliers, the gapped axis allows the plot to eliminate the open space
between the outliers and the other data. Thus both data can be
presented on the graph clearly. The R programming language has
become one of the most popular tools for biomedical data
visualization. However, creating gap plots is not well supported in
R. The plotrix package provides gap.plot(), gap.barplot() and
gap.boxplot() functions (Lemon, 2006), and the gg.gap package
provides gg.gap() function to draw gap plots in base graphics and
ggplot2 respectively. Unfortunately, these functions do not support
overlay graphic layers after creating a gapped axis. Allowing further
annotation on the graph is quite important because before the gapped
plot is created, the graph is stretched or squeezed and it is not easy to
add an annotation at the exact position. Moreover, in addition to gap
plot, axis break has other applications, including displaying long
sequence data in multiple rows, splitting a graph into multiple
slices to zoom in and out to help interpretation of selected parts.
These features are not implemented in R. To fill these gaps, we
developed an R package, ggbreak, for creating an elegant axis break
based on the grammar of graphic syntax implemented in ggplot2. This
package provides a better solution to set axis break and can be widely
applied in tailored visualization for various types of plots and data.

DESCRIPTION

Overview of the ggbreak Package
The ggbreak package was developed with themerits of ggplot2which
is intuitive and flexible for data visualization (Wickham, 2009). The

ggbreak package provides several scale functions including
scale_x_break(), scale_y_break(), scale_x_cut(), scale_y_cut() and
scale_wrap() to set axis break of ggplot2 graphics (Table 1). The
scale_x_break() and scale_y_break() functions create a gap plot with
one or multiple missing ranges and allow users to adjust the relative
width or height of plot slices (i.e., zoom in or zoomout different parts
of the plot). The ticklabels parameter can be used to specify
customized axis labels of the plot slices. The scale_x_cut() and
scale_y_cut() functions cut the plot into multiple slices to allow
zoom in or zoom out of selected parts (e.g., allocating more space to
display differentially expressed genes with labels in a volcano plot).
The scale_wrap() function splits a plot over multiple rows to make
the plot with a long x-axis (e.g., time-series graphics) easier to
read. The ggbreak package is fully compatible with ggplot2. After
wrapping, breaking, and cutting axes of a plot, users are free to
superpose multiple geometric layers from different data sources
and apply theme and other scale settings. Plots created by
ggbreak are compatible with patchwork and aplot to produce
a composite plot.

Case Study
Example 1: Automatically Wrap Plot with Long x-Axis
Scale
Graphs for long sequence data usually are squeezed and
difficult to interpret due to the limited size of a print page.
Wrapping plot for large-scale data into multiple panels helps
users to identify sequential patterns. Here we provided an
example to demonstrate the wrap plot implemented in
ggbreak. The amino acid scales are numeric features of
amino acids that are used to analyze protein sequences.
Especially hydrophilicity/hydrophobicity scales are
frequently used to characterize protein structures. Results of
hydrophilicity/hydrophobicity scales usual are presented as a
line chart. For long protein sequences, the line would be
crowded in the graph because of highly divergent trends of
the hydrophilicity/hydrophobicity scales. The protein
sequence was downloaded from the NCBI database (PDB:
7MWE_A) and then the hydrophilicity/hydrophobicity
scales were analyzed using Expasy-ProtScale with default
parameters (Gasteiger et al., 2003). As showed in
Figure 1A, the line is highly squeezed which makes it
difficult for interpreting and understanding the sequential
patterns. Splitting the plot into four rows makes the trends
more clear to read (Figure 1B). The hydrophilicity regions and
hydrophobicity regions are easier to identify through the
whole sequence. Highlighted regions showed a clear division
of hydrophilicity regions and hydrophobicity regions.

Example 2: Shrank Outlier Long Branch of a
Phylogenetic Tree
Data outliers may have their biological meanings and are important
in the studies. It is not appropriate to simply discard outliers in these
scenarios. Data transformation de-emphasizes the outliers and is not
always appropriate. Using broken axes is much simple and
convenient for outlier data visualization since it preserves the
original scale and works for known and unknown data
distributions. A phylogenetic tree is widely used to model

TABLE 1 | Major functions of ggbreak.

Function Description

scale_wrap Wraps a ‘gg’ plot over multiple rows
scale_x_break Set an x-axis break point
scale_y_break Set a y-axis break point
scale_x_cut Set an x-axis divide point
scale_y_cut Set a y-axis divide point
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FIGURE 1 | The amino acid hydrophobicity or hydrophilicity scales of human E3 ubiquitin-protein ligase HUWE1 Chain A. The protein sequence was downloaded
from the NCBI database (PDB: 7MWE_A). (A) The original plot of the amino acid scales. (B) The amino acid scales were wrapped into four rows and further annotated to
highlight hydrophilicity and hydrophobicity regions.
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FIGURE 2 | Phylogenetic tree with outlier long branch. (A) The original plot fails to present the detailed topological structure of the main group. (B) The tree with a
gapped axis to shrank the outlier long branch improves the readability of the main group. All sequences were collected from NCBI database (Ehrlichia chaffeens:
ABD45276; Ehrlichia canis:ABV02080, ADF30849, ABV02079, AAK01145, AAZ68408).

FIGURE 3 |Manhattan plots showed loci significantly associated with the relative abundance of gut bacterial diversity using Chao1 index from 541 East Asians. (A)
Original Manhattan plot. (B)Manhattan plot with significant region zoomed in. The dashed line represents a genome-wide suggestive level (p � 1 × 10–5). The GWAS data
was downloaded from the GWAS Catalog database (Study accession: GCST90007012).
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evolutionary relationships. An outgroup is usually employed to root
the unrooted tree. As the outgroup is dissimilar to the main group, it
may be placed on the outlier long branch. Phylogenetic tree with
outlier long branch is difficult to display well as the main group will
be squeezed into a smaller space (Figure 2A). The example data were
collected from the NCBI database (Huang et al., 2010). After
shrinking the outlier long branch using ggbreak, the detailed
topological structure of the highlighted region can be displayed
(Figure 2B).

Example 3: Cut Manhattan Plot to Create More Space
for Annotation
Data presented on the graph is not equally important and
researchers may want to zoom in on specific regions that are
significant to the results. For instance, biologists want to focus on
the differentially expressed genes (DEGs) of transcriptome data
on a volcano plot. The scale_x_cut() and scale_y_cut() functions
implemented in ggbreak allow users to zoom in significant regions
of a plot. Here we use the Manhattan plot to demonstrate this
feature. Manhattan plot is a kind of scatter plot and is commonly
used in genome-wide association studies (GWAS) to display
significant single nucleotide polymorphisms (SNPs).
Researchers usually focus on the upper part of the graph that
displays many significant results. It is difficult to label these
significant results because these labels tend to overlap in a limited
space andmake it difficult to read.With the scale_y_cut() function, it
is easy to zoom in on significant regions. The example data was
collected from the GWAS Catalog database (Study accession:
GCST90007012) (Buniello et al., 2019; Ishida et al., 2020). The

lower part was zoomed out to save space for further annotation of
the upper part and thus making it easier to highlight and interpret
significant results (Figure 3).

Example 4: Display Discontinuous Axis on a Bar Chart
Since data have different magnitudes, visualizing data with gaps
(missing ranges) is frequently used in biomedicine studies,
especially for bar charts. For example, in metagenomics
research, microbe abundance often has different orders of
magnitude, with dominant microbes account for the major
proportion, while other minor catalogs only account for a
small fraction. To show microbe abundances properly, a
common way is to create gaps in an axis. The data used in the
following example was obtained from a published paper that has
described relative abundances of the top 15 genera showing
significant differences among samples from the TiO2NPs-
treated group and Control group (Li et al., 2020). The value of
Methylobacterium in the Control group is much higher than
other observations (Figure 4A). Log transformation is a widely
used method to reduce the skewness of the data (Figure 4B).
However, the transformed data and the original data are not on
the same scale, which will affect the interpretation of the data.
Inserting two gaps in the axis makes it much more visible for
other small observations. So that the relative abundance pattern
of microbes is clear at a glance (Figure 4C). In addition, the
gapped plot shares similar features with the log-transformed one
and the result is intuitive and easy to interpret. Unlike log-
transformation, a gapped plot can be applied to all data.
Furthermore, it is easier to annotate the gapped plot (e.g.,

FIGURE 4 | Visualizing relative microbe abundances using bar charts to show the top 15 significant genera between two groups. (A) Ordinary bar chart that is
difficult to deal with outliers. (B) Bar chart with log transformation on the x-axis to remove skewness. (C) Bar chart with a gapped axis that can effectively deal with data of
different magnitude. (D). Superposed significant level layer to the gapped plot (C). The example data was collected from a paper published in 2020 (Li et al., 2020).
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superpose labels of significant level) since the scale of the value is
the same as the original data (Figure 4D).

CONCLUSION

Gapped axis is quite regularly used in biomedical data visualization, but
it is not well implemented inR.Here, we provide a fully functional tool,
ggbreak, which can easily use the ggplot2 grammar of graphics syntax to
create a gapped axis. The output is still a ggplot object that can be
further superposed annotation layers and customized by applying
scale and theme settings. Unlike other software designed mainly for
bar charts, ggbreak can be applied to all graphics generated by
ggplot2. Moreover, ggbreak expands the usage of broken axes by
applying it to wrap long sequential data and zoom in on important
regions. The usage of axes breaks should depend on the data type.
Inserting axis breaks appropriately would make the graphs much
more readable and improve our ability to interpret the data.

CODE AVAILABILITY

The ggbreak package is freely available on CRAN (https://CRAN.
R-project.org/package=ggbreak). The excerpts of the source code
that produced Figures 1-4 are presented in Figure 5. The complete
code is available in Supplemental Material. R markdown file and
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Autophagy-Related Gene Signature
for the Prediction of Prognosis in
Early-Stage Colorectal Cancer
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Purpose: A certain number of early-stage colorectal cancer (CRC) patients suffer tumor
recurrence after initial curative resection. In this context, an effective prognostic biomarker
model is constantly in need. Autophagy exhibits a dual role in tumorigenesis. Our study
aims to develop an autophagy-related gene (ATG) signature-based on high-throughput
data analysis for disease-free survival (DFS) prognosis of patients with stage I/II CRC.

Methods: Gene expression profiles and clinical information of CRC patients extracted
from four public datasets were distributed to discovery and training cohort (GSE39582),
validation cohort (TCGA CRC, n � 624), and meta-validation cohort (GSE37892 and
GSE14333, n � 420). Autophagy genes significantly associated with prognosis were
identified.

Results: Among 655 autophagy-related genes, a 10-gene ATG signature, which was
significantly associated with DFS in the training cohort (HR, 2.76[1.56–4.82]; p � 2.06 ×
10–4), was constructed. The ATG signature, stratifying patients into high and low
autophagy risk groups, was validated in the validation (HR, 2.29[1.15–4.55]; p � 1.5 ×
10–2) and meta-validation cohorts (HR, 2.5[1.03–6.06]; p � 3.63 × 10–2) and proved to be
prognostic in a multivariate analysis. Functional analysis revealed enrichment of several
immune/inflammatory pathways in the high autophagy risk group, where increased
infiltration of T regulatory cells (Tregs) and decreased infiltration of M1 macrophages
were observed.

Conclusion: Our study established a prognostic ATG signature that effectively predicted
DFS for early-stage CRC patients. Meanwhile, the study also revealed the possible
relationship among autophagy process, immune/inflammatory response, and
tumorigenesis.
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INTRODUCTION

CRC is currently the second leading cause of cancer deaths
worldwide, ranking third in morbidity (Bray et al., 2018).
Depending upon the tumor stage at diagnosis, relative 5-year
survival rates for patients with CRC range from 65% for all stages
to 91, 82, and 12% for patients diagnosed with stage I, II, and IV,
respectively (Miller et al., 2019). Although increasing awareness
of cancer screening and advances in technology have improved
early detection (Dekker et al., 2019) and enabled treatments
without chemotherapy, around one-third of patients with
stages I-III CRC still encounter tumor relapse after so-called
curative treatment (Van Der Stok et al., 2017). Therefore, it is
particularly important to identify these high-risk patients with
poor prognosis. The National Comprehensive Cancer Network
(NCCN) suggested such clinicopathologic features as high-risk
factors for stage II colorectal cancer, including tumor size,
number of lymph nodes investigated, degree of differentiation,
tumor perforation, bowel obstruction, and lymphovascular
invasion. However, some studies have shown that these
pathological features are inadequate to accurately identify such
high-risk patients (O’Connor et al., 2011; Kannarkatt et al., 2017).
Accordingly, there is a growing need for novel molecular markers
for prognosis patterns, which might provide valuable information
for supplementary adjuvant chemotherapy or other targeted
therapy. Recently, the predictive potency of KRAS and BRAF
mutations, microsatellite instability (MSI) status, and CpG island
methylator phenotype (CIMP) status in CRC had been studied
extensively. Kim et al. (Kim et al., 2019) investigated a novel
prognostic predictor based on an 11-gene signature for
identifying high-risk CRC and predicting patients who will
have the worst response to adjuvant chemotherapy. However,
more markers await to be discovered.

Autophagy plays a dual role in tumorigenesis (Rosich et al.,
2013). It inhibits early tumor initiation by the clearance of
damaged mitochondria, peroxisome, and other cytotoxic
substance and also caters to the high metabolic demands from
accelerated proliferating tumors by degrading intracellular
organelle and macromolecule substances (Kongara and
Karantza, 2012; Carroll and Martin, 2013). The autophagy
process includes initiation of autophagy, biogenesis of the
phagophore, expansion of the phagophore, formation of the
autophagosome, fusion with the lysosome, and reformation of
the lysosome (Zhi et al., 2018). A few gene mutations on the
autophagy process reveal correlated with human cancer. PARK2
(Parkin), an autophagy-related gene participating in mitophagy
and autophagy-independent functions that regulate the cell cycle,
was identified as a potential tumor suppressor on chromosome
6q25-q26 which is frequently deleted in human cancers.
Autophagy substrate p62 deficiency triggered by autophagy
deficiency was found to suppress tumorigenesis in mouse liver.
P62 regulates NRF2 and also mTOR and NFκB, all of which are
important in cancer signaling (White et al., 2015). Recent studies
have started working on autophagy-related gene model building
in CRC (Huang et al., 2019; Zhou et al., 2019; Cheng et al., 2021;
Zhao et al., 2021). Most of them constructed different autophagy
gene signatures to monitor the CRC prognosis, regardless of

tumor stages. However, early-stage CRC patients may need more
accurate prognostic guidance, wondering about the need for
additional chemotherapy. So, to further investigate how
autophagy affects the prognosis of early-stage CRC patients,
we identified an autophagy-related gene (ATG) signature from
CRC-specific transcriptomes based on high-throughput data
analysis. The ATG signature, which stratified the stage I/II
CRC patients into distinct risk groups, together with
functional analysis, might provide insights into the mechanism
of CRC recurrence and targeted treatment.

METHODS

Public Datasets
Gene expression data of CRC tissue samples and corresponding
clinical information obtained from the public database were
retrospectively analyzed. A total of 1,610 patient samples from
four independent public cohorts were included. Three hundred
nine patients without adjuvant chemotherapy but with survival
information in the GSE39582 dataset (n � 566) served as the
discovery cohort; stage I and II patients among these 309 patients
were intended for training. The Cancer Genome Atlas (TCGA)
CRC dataset (n � 624) was used for independent validation, while
the GSE37892 and GSE14333 datasets (n � 420) were combined
for meta-validation. All datasets are from Affymetrix Human
Genome U133 Plus 2.0 Array. TCGA cohort data were
downloaded from Broad GDAC Firehose before transcripts
per million (TPM) of level 3 RNA-Seq data in the log2 scale
were applied to calibrate the gene expression levels. Other
datasets were obtained directly in their processed format from
the Gene Expression Omnibus database (GEO) through the
Bioconductor package “GEOquery.” The “combat” algorithm
of the R package “sva” and the z-scores were used to correct
the batch effects, so as to standardize microarray data across
multiple experiments and compare them independent of the
original hybridization intensities.

Construction of a Prognostic ATG Signature
The absolute median difference (MAD) was used to select the
ATGs (Guinney et al., 2015). MAD is a robust statistic of
statistical divergence that is more adaptable to outliers in a
dataset than the standard deviation. To construct a
prognostic ATG signature, we focused on 655 ATGs from
eight gene sets identified via MSigDB (version 6.2)
(Subramanian et al., 2005; Liberzon et al., 2011; Liberzon
et al., 2015) with the keyword “autophagy.” Only 617 genes
measured on all platforms involved in this study with high
variation (MAD >0.5) were selected. After 1,000 times
random Cox univariate regressions, genes with repeated
significance, which indicated a strong relationship between
ATGs and patients’ disease-free survival (DFS), were selected
as candidates for the signature. A Cox proportional hazard
regression model on CRC samples together with the least
absolute shrinkage and selection operator (LASSO) was
applied to minimize the risk of overfitting as well as to
generate a risk model.
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Patients were divided into low and high autophagy risk groups
in accordance with the optimal ATG signature cutoff, which was
defined by the time-dependent receiver operating characteristic
(ROC) curve analysis at 5 years of DFS in the training cohort. The
ATG signature score with the largest Youden’s index in the ROC
curve was deemed as the cutoff value.

Validation of ATG Signature
Oncotype DX is a quantitative multi-gene, real-time polymerase
chain reaction (RT-PCR) assay that measures gene expression in
paraffin-embedded tumor tissues. The C-index was employed in
the GSE39582 cohort, TCGA cohorts, and meta-validation
cohorts respectively in comparison to Oncotype DX colon to
assess the predictive capability of the model. For further
validation, the prognostic value of the ATG signature was
evaluated in CRC patients with early stages (stage I and II)
and all stages in different cohorts through survival analysis.
Univariate and multivariate analyses of the ATG signature and
available clinical parameters were performed to assess whether
the ATG signature is an independent risk factor. The independent
risk factors identified by multivariate Cox regression analysis
were applied to construct the nomogram for estimating the DFS
of 5 years in CRC.

Functional Analysis
Enrichment of potential pathways of the ATG signature by gene
ontology (GO) analysis was performed on gProfiler (https://biit.
cs.ut.ee/gprofiler/), and gene set enrichment analysis (GSEA)
(Newman et al., 2015) was conducted using the Bioconductor
package “fgsea.” Gene sets of cancer hallmarks from MSigDB
with statistical significance (FDR-adjusted p<0.05) were selected
(Markle et al., 2010). CIBERSORT (Mokarram et al., 2017)

was used to dissect immune cell infiltration in different risk
groups.

Statistical Analysis
All statistical analyses were performed in R software (version
3.5.1). Categorical variables were reported as count. Continuous
data were reported as mean with standard deviation (SD) and
compared with the Student’s t-test. The LASSO regression was
plotted using the “glmnet” R package (version: 2.0-16). Time-
dependent ROC curve analysis was done by the R package
“survivalROC” (version: 1.0.3). Survival analysis was
conducted using the Kaplan–Meier method and compared
with the log-rank test. Univariate and multivariate analyses of
ATG signature and clinical parameters were performed using the
log-rank test. The statistical significance level was set at α � 0.05,
two-sided.

RESULTS

ATG Signature Establishment
After filtration with MAD >0.5, 617 genes measured on all
platforms were selected for this study. By 1,000 times random
Cox univariate regressions, 58 ATGs were identified to be
strongly relevant to DFS and considered as candidates for the
signature (Figure 1). A LASSO Cox regression in stage I and II
patients in the training cohort (Table 1) revealed 10 ATGs for the
risk model (Figure 2), with the coefficient of each ATG listed in
Table 2. The risk model was formulated as follows: autophagy-
related risk score � 0.040346631 × exp CD163L1 + 0.040346631 ×
exp FAM13B + 0.160103165 × exp HDAC6 + 0.05063732× exp
HPR − 0.012205947 × exp NR2C2 − 0.027104325 × exp RAB12 +

FIGURE 1 | Flowchart.
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TABLE 1 | Characteristics of GSE39582, TCGA, and meta-validation cohorts.

GSE39582 (discovery and
training)

TCGA (validation) Meta-validation

Number of patients 566 624 420
Patients with survival data 557 509 356
Mean age, years 66.85 ± 13.29 66.27 ± 12.76 66.66 ± 12.60
Gender, n
Male 310 332 233
Female 256 292 187

TNM stage, n
Stage I 33 105 44
Stage II 264 230 167
Stage III 205 180 148
Stage IV 60 88 61
NA 4 21 -

CMS system, n
CMS1 91 68 74
CMS2 232 207 168
CMS3 69 64 69
CMS4 127 117 97
NA 47 168 12

Tumor location
Left 342 354 233
Right 224 270 185
NA — — 2

RFS event, n
Yes 177 100 87
No 380 416 269
NA 9 108 64

OS event, n
Yes 191 67 NA
No 371 557 NA
NA 4 — 420

DFS event, n
Yes 248 146 87
No 314 386 269
NA 4 92 64

MMR status, n
MSI 75 189 -
MSS 444 431 -
NA 47 4 420

CIMP status, n
Positive 91 — —

Negative 405 — —

NA 70 624 420
CIN status, n
Positive 353 — —

Negative 110 — —

NA 103 624 420
TP53 status, n
Wild type 161 — —

Mutation 190 — —

NA 215 624 420
KRAS status, n
Wild type 328 34 —

Mutation 217 30 —

NA 21 560 420
BRAF status, n
Wild type 461 32 —

Mutation 51 3 —

NA 54 589 420
Chemotherapy adjuvant, n
Yes 233 231 118
No 316 393 171
NA 17 — 131

RFS, relapse-free survival; OS, overall survival; DFS, disease-free survival; MMR, mismatch repair; CIMP, CpG island methylator phenotype; CIN, chromosomal instability; NA, not
available.
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0.055095935 × exp SIRT2 − 0.084226324 × exp TBC1D14 −
0.012613054 × exp TLK2 − 0.001301898 × exp TBC1D12 (each
gene represents its mRNA expression level).

Based on the time-dependent ROC curve analysis of 5-year
DFS in the training cohort, the optimal cutoff of ATG signature
that divided the patients into high and low autophagy risk

groups was −0.0087 (Figure 3). The risk scores of all patients
are shown in Supplementary Table S1. Survival analysis
showed that the DFS rate was higher in the low autophagy
risk group compared to the high autophagy risk group for
patients with early stages (stages I and II) in the training
cohort (Figures 4A–C, HR, 2.76[1.56–4.82]; p � 2.06 ×

FIGURE 2 | Discovered ATG signature for prognostic prediction of colorectal cancer. (A) Ten ATGs signatures were found from the LASSO Cox regression. (B)
Heatmap of the identified 10-gene signature.

TABLE 2 | Model information.

Gene Name Frequency in resampling Average p-value Coefficient

CD163L1 CD163 molecule-like 1 674 0.050594905 0.040346631
FAM13B Family with sequence similarity 13 member B 625 0.050594905 0.040346631
HDAC6 Histone deacetylase 6 719 0.042438619 0.160103165
HPR Haptoglobin-related protein 769 0.051952291 0.05063732
NR2C2 Nuclear receptor subfamily 2 group C member 2 898 0.019300065 -0.012205947
RAB12 RAB12, member RAS oncogene family 866 0.025407812 -0.027104325
SIRT2 Sirtuin 2 877 0.023493248 0.055095935
TBC1D14 TBC1 domain family member 14 998 0.002105817 -0.084226324
TLK2 Tousled like kinase 2 743 0.040418795 -0.012613054
TBC1D12 TBC1 domain family member 12 999 0.002072649 -0.001301898
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10–4). So it was indicated for patients in all stages in the
GSE39582 dataset (Figures 5A–C, HR, 1.7[1.25–2.31]; p �
5.21 × 10–4).

Validation of the ATG Signature
To assess the predictive capability of the risk model, the
C-index was first applied to various cohorts which turned
out to be 0.74 (95% CI, 0.63–0.85) in the GSE39582 cohort,
0.70 (95% CI, 0.54–0.85) in the TCGA cohort, and 0.70 (95%
CI, 0.51–0.89) in the meta-validation cohort (Table 3), higher
than those of Oncotype DX colon. We employed the same
formula to the independent validation cohort (TCGA) and the
meta-validation cohort (GSE37892 and GSE14333). Patients
were significantly stratified into different risk groups by the
ATG signature considering DFS. For early stages, CRC patients
in the high autophagy risk group displayed poorer DFS in both
the independent validation cohort (Figures 4D–F, HR, 2.29
[1.15–4.55]; p � 1.5 × 10–2) and the meta-validation cohort
(Figures 4G–I, HR, 2.5[1.03–6.06]; p � 3.63 × 10–2). So it was
indicated for patients with all stages in both the independent
validation (Figures 5D–F, HR, 1.79[1.16–2.7]; p � 5.3 × 10–3)
and meta-validation cohorts (Figures 5G–I, HR, 1.64
[1.04–2.52]; p � 3.16 × 10–2). Besides, the univariate and
multivariate analyses further proved ATG as an independent
prognostic factor after adjusting for clinical parameters such as
sex and tumor stage (Table 4). Nomogram is displayed in
Supplementary Figure S1.

Functional Analysis of the ATG Signature
GO analysis and GSEA were carried out to explore the biological
function and signaling pathways of genes from the ATG
signature. GO analysis revealed that the genes within the
ATG signature were mostly involved in the regulation of
autophagy and catabolic processes (Figure 6A; Supplement
Table S2). GSEA was performed between different risk groups
to further investigate the pathways that were significantly
affected. We found a significant enrichment in multiple
immune/inflammatory pathways in the high autophagy risk
group, including the IL6/JAK/STAT3 signaling pathway, the
IL2/STAT5 pathway, the IFN-α pathway, the IFN-γ pathway,
and the inflammatory response pathway (Figure 6B, p value <
0.005). Some cell cycle/metabolism-associated pathways,
including G2-M, oxidative phosphorylation, E2F, and MYC,
were also significantly enriched in the high autophagy risk
group, in addition to a few classic pathways like mTORC1
and epithelial–mesenchymal transmission (EMT; p value <
0.005).

As there was a significant enrichment in the immune/
inflammatory pathway through GSEA analysis, we conducted
immune infiltration analysis. The ESTIMATE algorithm
displayed significant differences in the immune score (p �
0.02) and ESTIMATE score (p � 0.027) between the high and
low autophagy risk groups in the TCGACRC cohort (Figure 7A).
Infiltration of plasma cells and Tregs was enriched significantly in
the high autophagy risk group compared with the low autophagy
risk group in the GSE39582 and TCGA cohorts (Figure 7B–C).
By contrast, M1 macrophage infiltration turned out to be
significantly lower in the high autophagy risk group
(Figure 7B–C). Similar results are shown in Supplementary
Figure S2.

Adjuvant Chemotherapy Effects on
Different Autophagy Risk Groups
Survival analysis conducted for different autophagy risk groups
with and without adjuvant chemotherapy respectively showed
that for early-stage CRC patients without adjuvant chemotherapy
in the high autophagy risk group displayed poorer DFS in the
GSE39582 cohort (Figures 8A, HR, 5[2.38–10.5]; p � 2.42 ×
10–6). However, DFS showed no significant difference between
high and low autophagy risk groups for early CRC patients with
adjuvant chemotherapy (Figure 8B, p � 4.46 × 10–1). Similar
results were observed in the TCGA cohort (Figure 8C, HR, 2.05
[0.9–4.67]; p � 8.22 × 10–2 and Figure 8D, p � 5.84 × 10–1). In
addition, according to the cutoff values, we divided 48 kinds of
cell lines related to colorectal cancer into high and low autophagy
risk groups to test the effects of different chemotherapy drugs on
cell lines and found that the half-maximal inhibitory
concentrations (IC-50) of oxaliplatin, fluorouracil, and
irinotecan were lower in the low autophagy risk group
(Figures 9A–C). These results indicate that the model can be
used to predict the drug sensitivity of cell lines to
chemotherapeutic drugs under different autophagy risk groups.

FIGURE 3 | Time-dependent ROC curve for 5-year disease-free survival
(DFS) in stage I/II CRC patients in the training cohort.
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DISCUSSION

Thanks to the improved awareness of cancer screening, CRC is
now detected at an early stage, resulting in a better rate of survival.
Surgery without chemotherapy, which was deemed as the curative
treatment, was carried out on the majority of patients with stage
I/II colon cancer and in some cases of stage I/II rectal cancer
(Miller et al., 2019). Indeed, it enabled prevention from
unnecessary side effects of chemotherapy. Nevertheless, more
than 20% of patients with stage I/II CRC who underwent surgical
resection still suffered recurrence (Markle et al., 2010). Quite a
few multigene prognostic signatures have been developed for
CRC, but none of them graduated to the widespread application

due to the uncertainty of prognostic accuracy. Accordingly, an
effective prognostic model composed of multiple biomarkers to
distinguish early-stage patients with a high risk of recurrence is
crucial and necessary for elective adjuvant chemotherapy or other
targeted treatments.

Emerging studies have revealed that autophagy functions
diversely in the development, maintenance, and progression of
tumors. While autophagy may prevent cellular cancerous
transformation in normal tissue, it acts as a survival
mechanism in established tumors, especially under stress
conditions and in response to chemotherapy (Mokarram et al.,
2017). Several autophagy inhibitors and activators have been
brought up as improved chemotherapeutic options for cancer

FIGURE 4 | The association of the ATG signature with DFS in early-stage (stage I and II) patients with CRC. Patients with CRC of the early stage were ranked by
autophagy risk scores in the training cohort (A), the TCGA cohort (D), and themeta-validation cohort (G). Time-dependent ROC curves for DFS in early stage (stage I and
II) patients achieved with different durations in the training cohort (B), the TCGA cohort (E), and the meta-validation cohort (H). Kaplan–Meier curves showed DFS of
early-stage patients in low and high autophagy groups in the training cohort (C), the TCGA cohort (F), and meta-validation cohort (I), respectively. p values
comparing risk groups were calculated with the log-rank test. Hazard ratios (HRs) and 95% CIs are for low vs. high autophagy risk. CRC, colorectal cancer; ATG,
autophagy-related gene; DFS, disease-free survival.
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treatment (Koustas et al., 2019), but without sufficient clinically
significant results, especially in CRC. Accordingly, further
investigation on the biological mechanism of autophagy in the

tumor microenvironment deserves attention, and more targets
associated with autophagy await to be found.

In our study, we developed a prognostic model comprised of
10 ATGs for stage I/II CRC. This ATG signature, which classified
patients into high and low autophagy risk groups, demonstrated a
significant difference in 5-year DFS. The C-index of the ATG
signature exhibited a good clinical predicting fitness superior to
the Oncotype DX colon. Validation results suggested that the
ATG signature could successfully predict DFS for stage I/II CRC
patients after treatment. This novel model enabled us to identify
CRC patients with high autophagy risk which stood for increased
risk of tumor recurrence. Surprisingly, despite the original
intention for DFS prediction of early-stage CRC patients, the
ATG signature also showed a significant effect in the prediction

FIGURE 5 | The association of the ATG signature with DFS in CRC patients with all stages. Patients with CRC of the early stage were ranked by autophagy risk
scores in the GSE39582 cohort (A), the TCGA cohort (D), and the meta-validation cohort (G). Time-dependent ROC curves for DFS in CRC patients were achieved with
different durations in the GSE39582 cohort (B), the TCGA cohort (E), and the meta-validation cohort (H). Kaplan–Meier curves showed DFS of CRC patients in low and
high autophagy groups in the GSE39582 cohort (C), TCGA cohort (F), andmeta-validation cohort (I), respectively. p values comparing risk groups were calculated
with the log-rank test. Hazard ratios (HRs) and 95% CIs are for low vs. high autophagy risk. CRC, colorectal cancer; ATG, autophagy-related gene; DFS, disease-free
survival.

TABLE 3 | C-index for autophagy risk compared with Oncotype DX colon in three
cohorts.

Cohorts Autophagy risk Oncotype DX colon

C-index 95% CI C-index 95% CI

GSE39582 0.74 0.63–0.85 0.65 0.53–0.77
TCGA 0.70 0.54–0.85 0.61 0.44–0.77
Meta-validation 0.70 0.51–0.89 0.62 0.43–0.82

TCGA, The Cancer Genome Atlas.
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for all stages. Therefore, this model could be applied to predict
tumor recurrence in all CRC patients regardless of tumor stage.

As we looked over the genes within the ATG signature, some of
them have been found correlated with CRC butmostly bear context-
dependent biological functions in cancers, similar to autophagy. For
example, the cytosolic histone deacetylase 6 (HDAC6) served as a
tumor suppressor in hepatocellular carcinogenesis (Yang et al.,
2019), while another study revealed that the HDAC6 inhibitor
significantly suppressed the proliferation and viability and
induced apoptosis in CRC cells, where autophagy activation was
observed (Chen et al., 2019). Elevated Sirtuin 2 (SIRT2) was found to
be associated with poor prognosis in CRC patients via its
participation in tumor angiogenesis (Hu et al., 2019). Meanwhile,
in a separate study SIRT2 was found to be downregulated in colon
cancer biopsies compared to adjacent noncancerous tissues, and
overexpression of SIRT2 inhibited the proliferation and metastatic
progression of SW480 cells (Zhang et al., 2017). In terms of
autophagy-related functions, a previous investigation reported
that in response to oxidative stress or serum starvation, SIRT2
dissociated as acetylated FOXO1, which later bound to autophagy
protein 7 (ATG7) and induced autophagy in tumors (Zhao et al.,
2010). As these inconsistencies make it difficult to clarify the role of
autophagy in CRC, we further investigated the biological functions of
the ATG signature, expecting to find some clues in the autophagy-
related functions in tumors.

GSEA revealed that the ATG signature included genes that were
robustly involved in multiple immune/inflammatory pathways
including IL6/JAK/STAT3, IL2/STAT5, IFN-α, IFN-γ, and
TNF-α/NF-κB, and the inflammatory response presented a
particular relation to CRC proliferation or prognosis as previous
studies revealed (Nichols et al., 1994; Eguchi et al., 2003; De Simone
et al., 2015; Park et al., 2017; Giordano et al., 2019). As our findings
suggested that a high autophagy risk score correlated with the
downregulation of these immune/inflammatory pathways, we
speculated that autophagy might play a role in CRC
tumorigenesis and tumor proliferation via an anti-immune/anti-
inflammatory response. Moreover, increased infiltration of Tregs
and decreased infiltration of M1macrophages observed in the high
autophagy risk group during immune infiltration analysis
seemingly catered to the anti-immune/anti-inflammatory
response. Tregs are known to suppress both antibody-mediated
and cell-mediated immune responses (Wing and Sakaguchi, 2010).
The pro-inflammatory M1 macrophages, a phenotype of tumor-
associated macrophages (TAMs), correlated with a better
prognosis in CRC patients for its tumor-suppressing function
(Edin et al., 2012; Shapouri-Moghaddam et al., 2018). By
triggering an anti-immune or anti-inflammatory response,
autophagy might promote polarization or re-polarization toward
the M2 phenotype spontaneously and thus lead to the decrease of
M1 infiltration observed. Previous studies have described the link
between autophagy and macrophage polarization in the tumor
microenvironment. For example, mTOR which functions as a
conserved kinase protein in the regulation of autophagy also
participates in the polarization of monocytes into TAMs (Chen
et al., 2014). More new strategies targeting TAM polarization as
well as autophagy await exploration, and further studies are needed
to clarify the above speculations.T
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FIGURE 6 | Functional analysis of the 10 autophagy signature genes. (A). Gene ontology (GO) of the 10 autophagy signature genes. (B). GSEA showed some
immune/inflammatory pathways downregulated in high autophagy risk patients.

FIGURE 7 | Immune infiltration status of ATG signature risk groups. (A) ESTIMATE algorithm in the TCGA cohort. (B) Twenty-two immune cells abundance for
different immune risk groups. (C) Plasma cells and T cells regulatory were enriched in the high-risk group. The macrophage M1 was enriched in the low-risk group.
p-values are based on the Wilcoxon test. Hazard ratios (HRs) and 95% CIs are for low vs. high autophagy risk. CRC, colorectal cancer; DFS, disease-free survival.
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Upon the prognostic prediction, clinicians could thus make an
informed decision regarding supplementary treatment regimens.
For example, we can selectively apply more aggressive
chemotherapy strategies to early CRC patients of high
autophagy risk groups. As our statistics suggest, DFS showed no
significant difference between high and low autophagy risk groups
for early CRC patients with adjuvant chemotherapy. However, the
predicted results of the IC-50 of the colorectal cancer-associated
cell lines showed a higher sensitivity to chemotherapy in the low
autophagy risk group. This may be due to the limitations of
retrospective studies, in which clinicians choose chemotherapy
based on the patient’s condition rather than random assignment.
Cell experiments can reduce heterogeneity. It is hard to state

whether those antitumor agents of chemotherapy are inhibiting
autophagy or not. However, combined with our findings that a
high autophagy risk score correlated with the downregulation of
these immune/inflammatory pathways, chemotherapy may
prevent tumor proliferation or recurrence by triggering specific
immune/inflammatory responses or modifying the tumor
microenvironment through TAMs. Besides, it is possible that
chemotherapy just reduces the impact of autophagy on tumor
relapse through massive, indiscriminate cell killing, and
immunosuppression. Possible mechanisms will be explored in
the further basic experiment and prospective clinical studies.

However, our prognostic ATG signature relies on the gene
expression profiles from microarray platforms, which makes it too

FIGURE 8 | Effects of adjuvant chemotherapy on DFS between different autophagy risk groups in early stage (stage I and II) patients with CRC. Kaplan–Meier
curves showed DFS of early-stage patients between low and high autophagy groups with and without adjuvant chemotherapy respectively in the GSE39582 (A,B)
cohort and the TCGA cohort (C,D). p values comparing risk groups were calculated with the log-rank test.
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expensive and time-consuming to popularize in clinical application. In
addition to the dataset limitations from retrospective studies, further
prospective clinical tests are recommended to validate our results.
Despite the limitations, our research proposes a novel perspective to
predicting the prognosis of early CRC patients and offers valuable
insights into the relationship between autophagy, immune/
inflammatory response, and tumorigenesis.

In conclusion, our study established a prognostic ATG
signature that can effectively predict DFS for early-stage CRC
patients. Meanwhile, our study also revealed the possibility that
CRC patients in the high autophagy risk group might suffer
tumor relapse via anti-immune/anti-inflammatory response.
Moreover, higher sensitivity to chemotherapy in the low
autophagy risk group was discovered in colorectal cancer-
associated cell lines.
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Key Regulatory Differentially
Expressed Genes in the Blood of Atrial
Septal Defect Children Treated With
Occlusion Devices
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Atrial septal defects (ASDs) are the most common types of cardiac septal defects in
congenital heart defects. In addition to traditional therapy, interventional closure has
become the main treatment method. However, the molecular events and mechanisms
underlying the repair progress by occlusion device remain unknown. In this study, we
aimed to characterize differentially expressed genes (DEGs) in the blood of patients treated
with occlusion devices (metal or poly-L-lactic acid devices) using RNA-sequencing, and
further validated them by qRT-PCR analysis to finally determine the expression of key
mediating genes after closure of ASD treatment. The result showed that total 1,045 genes
and 1,523 genes were expressed differently with significance in metal and poly-L-lactic
acid devices treatment, respectively. The 115 overlap genes from the different sub-
analyses are illustrated. The similarities and differences in gene expression reflect that
the body response process involved after interventional therapy for ASDs has both
different parts that do not overlap and the same part that crosses. The same portion
of body response regulatory genes are key regulatory genes expressed in the blood of
patients with ASDs treated with closure devices. The gene ontology enrichment analysis
showed that biological processes affected in metal device therapy are immune response
with CXCR4 genes and poly-L-lactic acid device treatment, and the key pathways are
nuclear-transcribed mRNA catabolic process and proteins targeting endoplasmic
reticulum process with ribosomal proteins (such as RPS26). We confirmed that
CXCR4, TOB1, and DDIT4 gene expression are significantly downregulated toward the
pre-therapy level after the post-treatment in both therapy groups by qRT-PCR. Our study
suggests that the potential role of CXCR4, DDIT4, and TOB1 may be key regulatory genes
in the process of endothelialization in the repair progress of ASDs, providing molecular
insights into this progress for future studies.

Keywords: atrial septal defects, interventional closure, differentiated expressed genes, RNA-sequencing analysis,
congenital heart defects
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INTRODUCTION

Atrial septal defects (ASDs) are the most common types of
congenital heart defects (CHDs) and typically present with left
to right shunts, which account for up to 10% and 40% of all
CHDs, respectively (Penny and Vick, 2011; Rao and Harris,
2017). The patients with ASDs may exhibit poor growth and
development, decreased activity tolerance, repeated respiratory
infections, and hyperhidrosis, and they are accompanied by heart
enlargement, increased pulmonary circulation pressure and
resistance, heart failure, and atrial arrhythmia (Huang et al.,
2013; Leppert et al., 2016; Karunanithi et al., 2017; Wu et al.,
2018; Pillai et al., 2019). Surgery as the traditional method to treat
ASDs has several disadvantages including large trauma, long
recovery time and permanent scar left. It is more serious that
residual septal defects are frequently associated with surgery-
related side-effect complications, such as reoperation, infection,
sternotomy scarring, and even death (Gaynor et al., 2001; Oses
et al., 2010). To avoid those side effects of surgery, interventional
closure has been developed to the main treatment to septal defects
(Huang et al., 2013; Shimpo et al., 2013; Morray, 2019).

During the past four decades, several nondegradable types of
occluders based on shape memory alloys have been used in
clinical settings. Compared with surgery, interventional therapy
has become the first choice for ASDs with the advantages of less
trauma, less pain, no scar, short hospital stays, less complications, and
no need for blood transfusion and extracorporeal circulation. With
the recent development of occlusion devices and improved
implantation techniques, the use of transcatheter closure of ASDs
has increased over the years, considering that the permanent existence
of foreign non-degradable materials in vivo can cause many potential
complications in the long term (Luermans et al., 2010; Abaci et al.,
2013). On the other hand, the use of biodegradable materials in the
construction of occluders may overcome the drawbacks of metal
devices (Shi et al., 2019). So, the research and development of
biodegradable occluders has emerged as a crucial field for
interventional treatment of ASDs. However, the main biological
phenomena triggered after treatment with either degradable
occluders or metal occluders are the same, including cardiac
remodeling phenomena triggered by hemodynamic changes and
biological responses induced by occluders. Because metal and
biodegradable occluders are derived from different materials and
have different structures, the phenomenon of cardiac remodeling after
treatment behaves differently. The same point lies in the biological
response of the body induced by the occluder. In general, the
occlusion device is used to provide a temporary scaffold for tissue
endothelialization (Tang et al., 2018). Some studies revealed that
endothelialization is related to cell proliferation, cell migration, and
cell junction (Bazzoni and Dejana, 2004; Dejana 2004). The previous
studies showed that normal expression of genes encoding
transcription factors, cell signaling molecules, and structural
proteins are important for heart development (Williams et al.,
2019). It was also reported that both metal and biodegradable
occluders are beneficial to endothelial cell coverage by histological
and electron microscopic examinations (Li et al., 2019). However,
whether the occlusion device affects ASD repair by regulating the
expression of key genes remains unclear.

RNA-sequencing (RNA-Seq) is a useful method to explore the
molecular events in many different samples, including blood,
cells, and tissues. In this study, we performed differentially
expressed genes (DEGs) analysis on RNA-sequencing data in
blood samples of patients with the occlusion device (metal or
biodegradable device) post-treatment group compared to the pre-
therapy group. Combining with the expression level validation of
DEGs by quantitative real-time PCR, our study aims to discover
DEGs and overlap genes in ASDs, to illustrate the potential role of
specific overlap genes and its function on biological processes.

MATERIALS AND METHODS

Preparation of Samples
Between January 2019 and December 2019, pediatric patients
undergoing closure of secundum ASD with either metal occluder
or PLLA occluder in our hospital were included in this study.
Indications for ASD closure were as follows: an ASD ≥5mm and
≤30mm in diameter, with sufficient rims of atrial tissue (superior to
the coronary sinus, superior/inferior vena cava, and pulmonary vein
by 5mm and superior to the mitral valve by 7mm), signs of right
ventricular volume overload, and/or evidence of significant left-to-
right shunting (Qp:Qs ≥ 1.5:1). Patients with other congenital or
significant cardiac defects, history of ASD repair, metal implant, or
PLLA implant were excluded from the study. The study was
approved by the Committee on the Ethics of Shenzhen Children’s
Hospital (202000903), and written informed consent was obtained
from all guardians. The samples used for RNA-sequencing analysis
were collected from Shenzhen Children’s Hospital, including two
patient samples before and after metal device therapy (Cera™,
Lifetech Scientific, Shenzhen, China), three patient samples before
and after poly-L-lactic acid (PLLA) device therapy (Absnow™,
Lifetech Scientific, Shenzhen, China), two patient samples before
metal device therapy and one patient sample after PLLA device
therapy, and four samples from healthy volunteers; the basic clinical
characteristics of these children are listed inTable 1A. For qRT-PCR,
the blood sample of treatment groups was randomly selected,
including 11 samples before and after PLLA device therapy, 10
samples before and after metal device therapy, and 8 healthy
people as the control group. The basic characteristics of the
children for qRT-PCR analysis are listed in Table 1B. All patients
with ASDs underwent interventional therapy and samples were
collected that day before and 30 days after the intervention.

RNA Extraction
The RNA was extracted from whole blood sample following the
Trizol reagent manual (Invitrogen Life Technologies, Carlsbad,
CA). In brief, 5 ml of Trizol reagent was added to 1 ml of whole
blood sample for 10 min on ice, and then RNAwas precipitated in
1:1 isopropanol/Trizol (v/v) and 1 μl of glycogen at −20°C
overnight followed by use for mRNA-sequencing.

Library Preparation
cDNA library preparation: total RNA (200 ng) was used to
prepare cDNA libraries using the NEBNext Ultra RNA library
prep kit for Illumina (New England Biolabs) following the

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7904262

Li et al. Gene of Atrial Septal Defects

73

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


manufacturer’s protocol. Quality and integrity of the tagged
libraries were initially assessed with the HT DNA HiSens
Reagent kit (Perkin Elmer) using a LabChip GX bioanalyzer
(Caliper Life Sciences/Perkin Elmer). Tagged libraries were then
sized and quantitated in duplicate (Agilent TapeStation system)
using D1000 ScreenTape and reagents (Agilent). Sequencing was
performed as PE150 on an Illumina NovaSeq 6000 sequencer.
The high-quality reads that passed the Illumina filter were
subjected to the subsequent bioinformatics analysis.

Transcriptome Profiling
Adapters and low-quality bases with the sequencing reads for
each sample were preprocessed by fastp (https://academic.oup.
com/bioinformatics/article/34/17/i884/5093234) with a default
setting. Filtered reads were mapped to the latest version of
human genome (Homo sapiens, GRCh38) by STAR (https://
doi.org/10.1093/bioinformatics/bts635) aligner with
parameters: --outSAMtype BAM SortedByCoordinate, and the
mapping results were summarized into a gene expression matrix
using featureCounts v1.6 (https://doi.org/10.1093/
bioinformatics/btt656). Output data were then processed with
customized R scripts.

Differential Expression Genes (DEGs)
Analysis
Gene-level differential expression was analyzed using DESeq
(https://doi.org/10.1089/omi.2011.0118) for the metal or poly-
L-lactic acid device sample group, respectively. The ASDs pre-
therapy or post-treatment were specified as the experimental

design. Benjamini and Hochberg p-value adjustment methods
were used for multiple comparisons. Parameter alpha
(significance cutoff) was set to 0.1 and lfcThreadshold (log2
fold change threshold) was set to 0 following the best practice
of DESeq pipeline. Genes with an absolute fold change (FC)
greater two and a p-value less than 0.05 were selected for the
downstream analysis.

Gene Ontology Enrichment Analysis
DEGs were annotated by pre-defined terminologies such as GO
analysis, and over-representation analysis (ORA) was performed
by clusterProfiler (https://doi.org/10.1089/omi.2011.0118).

Weighted Gene Co-Expression Network
Analysis
Weighted Gene Co-Expression Network Analysis (WGCNA) was
carried out to evaluate the correlation between genes and to
classify highly correlated genes into the same module. The data
submitted to the WGCNA R package (https://doi.org/10.1186/
1471-2105-9-559) was firstly processed by differential expression
analysis to filter out irrelevant information. The data submitted to
WGCNA R package was firstly processed by Variance Stabilizing
Transformation (VST) algorithm. The topological overlap
measure (TOM) was employed to identify modules of highly
co-expressed genes, and genes with high absolute correlations
were clustered into the same modules by cutting the dendrogram
into branches. The only number of genes that exceed 30 will be
defined as a module. Then, pairwise correlations between gene
modules and clinical datasets were calculated. Modules with

TABLE 1A | Basic characteristics of the patient samples of atrial septal defects used for RNA-sequencing analysis.

Samples
source

Cases Male/
Female

Before/
After

therapy

Before/
After

therapy

Age (months) Weight
(kg)

Sptal
defect
(mm)

Qp/
Qs

Occluder
(mm)

PLLA device therapy patients 1 F B A 56 17.4 9 2.1 12
2 F B A 68 14.2 9 1.9 14
3 F B A 52 17.3 8 2.0 16
4 M — A 13 10.3 6 1.8 12

Metal device therapy patients 5 F B A 10 9.3 7 1.9 12
6 M B A 19 11.5 10 2.3 14
7 F B — 29 13 8 1.7 12
8 M B — 56 19 6 1.6 10

Healthy volunteers 9 M — — 11 8 — — —

10 F — — 13 11 — — —

11 F — — 19 12.2 — — —

12 F — — 16 10.2 — — —

PLLA: poly-L-lactic acid; Qp/Qs: Pulmonary-to-Systemic-Blood-Flow Ratio.

TABLE 1B | Basic characteristics of the patient samples of atrial septal defects used for qRT-PCR.

Samples source Cases Male/Female Age (months) Weight (kg) Sptal defect (mm) Qp/Qs Occluder (mm)

PLLA device therapy patients N � 11 4/7 34.5 ± 20.2 12.8 ± 4.6 13.5 ± 5.0 2.1 ± 0.4 18.0 ± 5.4
Metal device therapy patients N � 10 4/6 29.1 ± 21.1 12.9 ± 3.9 12.1 ± 0.8 1.9 ± 0.3 16.0 ± 1.5
Healthy volunteers N � 8 2/6 24.1 ± 15.1 12.0 ± 3.0 — — —

PLLA: poly-L-lactic acid; Qp/Qs: Pulmonary-to-Systemic-Blood-Flow Ratio.
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FIGURE 1 | The differential expression genes (DEGs) analysis of atrial septal defects patients before and after metal and PLLA device therapy. (A) Samples can be
distinguished by principal component analysis (PCA). (B) Venn diagram showing the genes identified in PLLA and metal device after and before therapy. (C) Significantly
changed genes were discovered from differentially expression analysis. Gene with a p-value less than 0.05 and an absolute fold change greater than 2 is considered as a
significantly changed gene. In each panel, the blue dots represented downregulated genes and the red dots represented upregulated genes.
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higher correlation will be merged (r < 0.25); each module was
assigned to different colors for visualization.

Protein–Protein Interactions Analysis
PPIs are physical contacts of high specificity established between
two or more protein molecules as a result of biochemical events
steered by interactions that include electrostatic forces, hydrogen
bonding, and the hydrophobic effect. PPI with known disease
genes have been used to find new disease genes by identifying key
core genes. We derived core genes by network connection scores
to describe the module elements, including core and ring
components. Functions of core genes were highly correlated
with those of essential genes in the same modules.

Quantitative Reverse
Transcriptase-Polymerase Chain Reaction
Analysis
Total RNA was extracted with Trizol according to the
manufacturer’s instructions. Unique genomic DNA remover is
combined with EasyScript® First-Strand cDNA Synthesis
SuperMix to achieve simultaneous genomic DNA removal and
cDNA synthesis. The cDNA levels weremeasured by SYBRGreen
in real-time PCR using the LightCycler. The housekeeping gene
GAPDH was used as normalized in each individual sample and
the 2−ΔΔCt method was used to quantify relative expression
changes. The sequences of specific primers used for qRT-PCR
assays in this study are listed in Supplementary Table S1.

Statistical Analysis
Statistical significance was performed using Student’s t-test and
p < 0.05 was considered statistically significant.

RESULTS

The Expression Profile Diverse Before and
After the Occlusion Device Therapy
Previous studies showed that the occlusion device is used to
provide a temporary scaffold for tissue endothelialization,15 but
whether it plays a role in biological processes is unclear.
Therefore, we explore the effects of the occlusion device on
biological processes by RNA-Seq. The DEGs analysis was
performed for ASDs cases and healthy control. Principal
component analysis and inspection of the first two principal
components illustrate the presence of four groups of samples
(Figure 1A). DEGs were tested utilizing two strategies. Firstly, the
occlusion device post-treatment pools were compared against the
occlusion device pre-therapy pools. Secondly, the overlap genes of
DEGs between PLLA and metal device post-treatment and pre-
therapy pools were analyzed. From the sub-analyses, we obtained
1,523 genes and 1,045 genes that were statistically significantly
differently expressed between the occlusion device post- and pre-
treatment (Figure 1B). The overlap genes in the results from the
different sub-analyses are illustrated, with 115 genes differently
expressed (Figure 1B). The distribution of DEGs between the
metal device post-treatment and pre-therapy or the PLLA device

post-treatment and pre-therapy is shown in a volcano plot,
respectively (Figure 1C). Among these genes, 337 genes were
downregulated (blue dots) and 668 genes were upregulated (red
dots) in metal device post-treatment vs. pre-therapy. Compared
to the PLLA device pre-therapy, 737 genes were downregulated
(blue dots) and 786 genes were upregulated (red dots) in PLLA
device post-treatment (Figure 1C). Overlap of the top 50 DEGs in
metal device groups and the top 50 PLLA device groups is shown
in Figures 2A–C. In addition, Supplementary Tables S2–4 show
the DEGs of metal device groups, PLLA device groups, and
overlap genes by the occlusion device post-treatment vs. pre-
therapy, respectively.

Pathway and Functional Enrichment
Analysis
DEGs that the occlusion device treatment induced were
analyzed in the above results. We subsequently compiled a
list of the most frequently altered linked genes (including
upregulated and downregulated genes), prior to analyzing
this gene list using the GO tools in clusterProfiler (https://doi.
org/10.1089/omi.2011.0118). Figure 3 summarizes the most
significantly overrepresented GO terms in the biological
process category and also PPI core gene analysis in metal and
PLLA device therapy, respectively. We found that the following
processes were affected by the occlusion device treatment: DEGs
in the metal device group were enriched in immune response-
regulating signaling pathway, immune response-regulating cell
surface receptor, leukocyte migration, immune response-
activating signal transduction, and immune response-activating
cell surface receptor (Figure 3A). DEGs in the PLLA device
group were most highly enriched for the GO terms establishment
of proteins localization to membrane, nuclear-transcribed
mRNA catabolic process, proteins targeting the membrane,
proteins targeting the endoplasmic reticulum process, and
establishment of protein localization to endoplasmic reticulum
(Figure 3B). The biological processes identified in this analysis
are likely to contribute to the pathobiology of the occlusion device
treatment. These results suggest that mechanisms of development
and remodeling of ASDs might be different in metal or PLLA
device treatment. PPI analysis shows the core and ring genes in
the immune response pathway and the CXCR4 are the core genes
identified in the metal device group (Figure 3C), and the key
pathways are nuclear-transcribed mRNA catabolic process and
proteins targeting the endoplasmic reticulum process with
ribosomal proteins (such as RPS26) in the PLLA device group
(Figure 3D).

Weighted Gene Co-Expression Network
Analysis of Differentially Expressed Genes
To investigate the important role of gene interactions in ASDs,
the weighted gene co-expression network analysis was used to
construct an interaction network with genes, in which the nodes
represent the genes and the edges depict their associations, the
genes having expression commonality are in the same gene
network, and the co-expression relationship between genes is
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generally measured by the expression correlation coefficient
between them. By setting soft-thresholding power as 18 (scale
free R2 � 0.85) and cut height as 0.25, we eventually identified 18
modules (Figures 4A–D; non-clustering DEGs shown in gray).

From the heatmap of module–trait correlations, we identified that
the M2 was the most highly correlated with therapy of septal
defects. In addition, Module annotation by KEGG pathway is
shown in Supplementary Table S5.

FIGURE 2 | Expression levels of DEGs from metal and PLLA device groups. (A) Color key of the heatmap shows the relative expression level of DEGs in metal
device pre-therapy group vs. post-treatment group. (B) Heatmap showing DEGs in PLLA device pre-therapy group vs. post-treatment group. (C) Heatmap of overlap
DEGs between metal and PLLA device groups.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7904266

Li et al. Gene of Atrial Septal Defects

77

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Differentially Expressed Genes Were
Validated by Quantitative Reverse
Transcriptase-Polymerase Chain Reaction
Of the total 1,045 genes and 1,523 genes induced by metal and
PLLA device treatment, respectively, which were differently
expressed in the RNA-seq, down- and upregulated genes with

relevance to occlusion device treatment differentially expressed below
the p < 0.01 and with a logFC >2 were selected for further validation
by quantitative RT-PCR. Downregulated genes in both metal and
poly-L-lactic acid device treatment (DDIT4, BTG1, CXCR4, IRS2,
RGS1, PEG10, and TOB1), upregulated genes in poly-L-lactic acid
device treatment (LY6E and ERBB3), and downregulated genes in

FIGURE 3 | DEGs are significantly enriched in multiple functional groups. The position of each dot represents the ratio of gene number for each GO term. The
absolute number of gene and significant level are annotated by size and color, respectively. (A) Significant GO terms for DEGs between the metal device post-treatment
group and pre-therapy. (B) Significant GO terms for DEGs between the PLLA device post-treatment group and pre-therapy. (C) Protein–protein interactions (PPIs) for
the metal device therapy group. The CXCR4 gene is the core gene for the immunity response pathway. (D) PPI analysis for the PLLA device therapy group. The
RPS26 gene is the core gene for the proteins targeting the endoplasmic reticulum process pathway.
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metal device treatment (CDK5R1 and TXNIP). In addition, the
upregulated gene (ID3) in both PLLA and metal device treatment
was also selected. The results of qRT-PCR are shown in Figure 5. As
expected, the expression levels ofDDIT4, IRS2, TOB1, BTG1, PEG10,
CXCR4, and RGS1 in both poly-L-lactic acid and metal device
treatment were significantly downregulated, which was consistent
with a significant decrease in the expression of these genes in the
DESeq differential expression analysis. The upregulated ID3 gene in
the DESeq2 differential expression analysis was significantly

upregulated by qRT-PCR validated in PLLA and metal device
treatment. LY6E and ERBB3 in PLLA device treatment showed
upregulation by qRT-PCR and CDK5R1 in metal device treatment
showed downregulation by qRT-PCR validation. However, there were
some exceptions to some gene expression; TXNIP in metal device
treatment was not significantly changed by qRT-PCR validation
(Figures 5A,B). The inconsistency between qRT-PCR validation
and DESeq2 differential expression analysis may be accounted
from varying mRNA levels of the gene in different patient samples.

FIGURE 4 | Identification of key modules through WGCNA. (A) Analysis of the scale-free fit index (up) and the mean connectivity (down) for various soft-
thresholding powers. (B) Eigengenes adjacency heatmap. (C) Dendrogram of all DEGs clustered based on a dissimilarity measure (1-TOM). (D) Heatmap of the
correlation between module eigengenes (ME) and traits of septal defects or therapy. Each grid of the heatmap contains the correlation coefficient and p-value.
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DISCUSSION

With the advancement of interventional therapy for congenital
heart disease and the progress of device research and
development, more and more patients with ASD receive
interventional therapy, in which metal and degradable

occluders are the two kinds of the most used closure devices
in these days (Morray, 2019; Shi et al., 2019; O’Byrne and Levi,
2019; Alnasser et al., 2018). One of the most important indicators
for evaluating the histocompatibility of the occluder is the
endothelialization induced by the occluders. Endothelialization
is crucial and of major clinical importance and impaired

FIGURE 5 | Validation of DEGs by qRT-PCR. (A) Gene expression differences in the PLLA device pre-therapy group and post-treatment group. (B) Gene
expression differences in the metal device pre-therapy group and post-treatment group. NS, no significant; *p < 0.05, **p < 0.01.
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endothelialization may lead to prolonged anticoagulant therapy
and even serious complications such as residual shunt, device-
related thrombosis, endocarditis, and occluder displacement
(Chessa et al., 2004; Nguyen et al., 2016; Kalayc and Kalayc,
2017; Chen et al., 2018; Li et al., 2020). Therefore, the observation
of endothelialization after occluder implantation is particularly
important. However, due to the characteristics that the occluder
cannot be removed after implantation in vivo, whether the
degradable occluders are comparable with the metal occluder
in endothelialization is critical. The evaluation of
endothelialization is mostly based on the data obtained from
animal experiments or a few cases of surgery and autopsy. The
observation methods are also limited to electron microscopy,
histopathology, and immunohistochemistry (Kuhn et al., 1996;
Zahn et al., 2001; Foth et al., 2009; Morray, 2019; Shi et al., 2019).

Few reports have evaluated the process of occluder
endothelialization in human by observing the differential
expression of genes by RNA-sequencing technology, as well as
studies on the mechanism of gene regulation of this process.
Therefore, in this study, we carried out RNA-sequencing
technology combined with qRT-PCR validation to determine
the DEGs and its function on biological processes in the
occlusion device (metal or PLLA device) treatment.
Transcriptome profile revealed that a total of 1,045 and 1,523
confidently detected genes, respectively, are differentially
expressed (FDR < 0.05), of which 337 genes were
downregulated and 668 genes were upregulated in metal
device post-treatment, and 737 genes were downregulated and
786 genes were upregulated in PLLA device post-treatment. GO
analysis revealed the enrichment of these DEGs on the biological
process. Then, the differential expression of RNA-Seq data was
verified by qRT-PCR, and this differential expression finding
confirmed that occluder implantation produced a series of
molecular biological changes at the level of gene regulation in
the human body, which was finally manifested as
endothelialization on the device surface. Theoretically, by
observing the differential expression of RNA-Seq data at
different time points in the same individual after occluder
implantation, it can reflect the degree of endothelialization on
the surface of the occluder, making it possible to monitor the
endothelialization induced by occluder in vivo by RNA-
sequencing technology, and also providing a basis for further
study of the specific mechanism of gene-level regulation of
endothelialization after occluder implantation in patients.

Since the closure of different materials at the same site may
involve many similar gene regulatory mechanisms, there are too
many overlapping genes, and it is difficult to highlight the genes
that play the most critical regulatory role. Therefore, in this study,
different material occluders were selected to occlude ASDs, that
is, biodegradable or metal materials to occlude ASDs, hoping to
select genes that play a key regulatory role among the overlapping
expressed genes by RNA-sequencing technology. According to
many previous studies observing the process of occluder
endothelial coverage, it has been confirmed that the process of
endothelialization is similar to wound healing and is a complex
biological process of tissue repair (Lock et al., 1989; Sideris et al.,
1990; Das et al., 1993; Kuhn et al., 1996; Sharafuddin et al., 1997;

Thomsen et al., 1998; Zahn et al., 2001). These include fibroblasts
embedded in loose collagen extracellular matrix, newly formed
blood vessels, and inflammatory cells (Reinke and Sorg, 2012;
Sinno and Prakash, 2013). Degradable occluders differ from
metal occluders in structure, require different
endothelialization time, but have similar pathophysiological
changes, and neo-endothelialization, angiogenesis, and
extracellular matrix accumulation are the key events to control
the process. Therefore, it is reasonable to believe that in the
overlapping part of gene expression between degradable and
metal occluders, genes that play a role in regulating cytokines
related to neo-endothelialization, angiogenesis, or extracellular
matrix accumulation are key regulatory genes.

Our results showed that CXCR4, DDIT4, and TOB1 were the
highest before occluder treatment and downregulated after
treatment with both PLLA and metal device. Previous studies
demonstrated that DDIT4 regulates cell growth, proliferation,
and survival by inhibiting the activity of mammalian mTORC1
targets (Wang et al., 2015), while TOB1, as an anti-proliferative
gene, can regulate cell growth and differentiation and has a
migratory role (Liu et al., 2015; Guan et al., 2017; Shangguan
et al., 2019). Finally, we also confirmed that CXCR4 is a
candidate gene responsible for cardiac congenital pathologies
in human as previously suggested in mouse studies (Escot et al.,
2013; Wang et al., 2014; Zhong and Rajagopalan, 2015; Page
et al., 2018).

Immune response genes and pathways (Supplementary Table
S2, Figure 3C) were also identified in our study. Similar clinical
studies in device closures of ASDs in children also found that
systemic inflammatory reactions occurred after device closure of
ASDs in pediatric patients. However, these inflammatory
reactions were more significant in patients who underwent a
transthoracic approach than in patients who underwent a
transcatheter approach (Hong et al., 2020).

Several studies showed that ribosomal protein mutations are
associated with patients in Diamond–Blackfan anemia patients
with septal defects (Gazda et al., 2008; Chae et al., 2014). Our GO
and PPI analysis also provided support for these findings
(Figure 3D).

Therefore, it can be preliminarily speculated that CXCR4,
DDIT4, and TOB1 may be key regulatory genes in the process
of endothelialization, and the process of endothelialization may
be promoted by downregulation of CXCR4, DDIT4, and TOB1
expression after occluder implantation. The differential changes
of CXCR4, DDIT4, and TOB1 before and after closure also
provide a direction for further establishment of knockout
model studies to verify the key regulatory genes of
endothelialization after implantation.

CONCLUSION

In this study, we analyzed RNA-Seq data from the PLLA device
therapy group, metal device treatment group, and healthy
volunteer group. We found potential genes and pathways that
may be involved in endothelialization and remodeling in the
progress of atrial septal defect repair, making it possible to
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monitor the endothelialization of occluders in vivo by RNA-seq
and RT-PCR methods. At the same time, the changes in gene
expression levels and their involvement in different pathways
showed that CXCR4, DDIT4, and TOB1 may be key regulatory
genes for endothelialization induced by occluder implantation in
vivo. Our study provides a basis for further research on the
underlying mechanisms of regulation endothelialization
progression at the transcriptional level after occluder
implantation in human.
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smplot: An R Package for Easy and
Elegant Data Visualization
Seung Hyun Min* and Jiawei Zhou*

School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision
Science, Wenzhou Medical University, Wenzhou, China

R, a programming language, is an attractive tool for data visualization because it is free
and open source. However, learning R can be intimidating and cumbersome for many. In
this report, we introduce an R package called “smplot” for easy and elegant data
visualization. The R package “smplot” generates graphs with defaults that are visually
pleasing and informative. Although it requires basic knowledge of R and ggplot2, it
significantly simplifies the process of plotting a bar graph, a violin plot, a correlation plot, a
slope chart, a Bland-Altman plot and a raincloud plot. The aesthetics of the plots
generated from the package are elegant, highly customisable and adhere to important
practices of data visualization. The functions from smplot can be used in a modular
fashion, thereby allowing the user to further customise the aesthetics. The smplot
package is open source under the MIT license and available on Github (https://
github.com/smin95/smplot), where updates will be posted. All the example figures in
this report are reproducible and the codes and data are provided for the reader in a
separate online guide (https://smin95.github.io/dataviz/).

Keywords: smplot, data visualisation, R software, data analysis, ggplot2

INTRODUCTION

Data visualization is an important skill in scientific writing. The reader may agree that most
memorable aspects of a scientific paper are its figures rather than texts. There are various programs
for plotting data. However, some require subscription fees, such as Matlab. On the other hand, others
such as matplotlib in Python (Hunter, 2007) and ggplot2 in R (Wickham, 2016) are free and open
source but can overwhelm incoming research trainees because the students are often required to
overcome a steep learning curve. Moreover, the learning curves can enforce students to spend a long
time to change typesetting or making such minute changes, forcing them to use vector graphics
editor such as Adobe Illustrator to polish the figures instead of modifying the codes that generate the
original plot. This practice of creating a figure using multiple programs, however, can be time-
consuming in the long run. For instance, when the trainee is asked to make changes in the figure, one
must make changes in all programs that one has used sequentially, which can be tedious and
laborious. In this report, we hope to convince the reader that a polished, satisfying figure can be
created using only one software environment by introducing a new, free, and easy-to-use tool for data
visualization.

Biomedical research increasingly incorporates the usage of complex, computational tools for data
analysis. For this reason, we introduce an R package “smplot” that is an intuitive and quick tool for
performing elegant data visualization for research trainees. Since the use of smplot requires a basic
knowledge of R and ggplot2, an online tutorial about R that incorporates smplot has been posted on a
separate webpage entitled Data Visualization in R Using smplot (https://smin95.github.io/dataviz).
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FIGURE 1 | Correlation plots with and without smplot. (A) A correlation plot without using smplot. (B) A correlation plot with a default theme of smplot. The theme
can added in a modular fashion by adding “sm_corr_theme()” to the base plot. This function provides a theme with a minimalistic background, a larger font and a
centered title. (C) A correlation plot with the default theme of smplot, printed statistical information (R � correlation coefficient, p � statistical significance) and a best-fit
regression line. The R and p values as well as the regression line can be printed by adding the “sm_statCorr()” to the given plot in a modular fashion.
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Why R?
In R, one can plot data without necessarily using programming
concepts such as the for loop. This is because the ggplot2 package
in R can automatically plot all data points if necessary. However,
this is not the case with Python (matplotlib) and Matlab. All the
codes and data for the figures in this report can be found in
Chapter 6 of the online guide entitled Data Visualization in R
Using smplot (https://smin95.github.io/dataviz).

METHODS

Installation of the smplot Package
At the time of writing the paper, the smplot package is only
available on Github. Therefore, if the reader is interested in
installing the package, the reader must open RStudio and
directly download the package by typing these commands:

install.packages (‘devtools).
devtools:install_github (“smin95/smplot”)
To load the smplot package into the local environment (and

therefore use it), the reader must type this code below:
library (smplot).
A complete tutorial on smplot is available in Chapter 4 of the

online guide (https://smin95.github.io/dataviz/). If the reader is
not familiar with R, then please consider reading the online guide
from Chapter 1 (https://smin95.github.io/dataviz/download-
rstudio-basics-of-r.html). If the reader is familiar with ggplot2
and only interested in recreating the figures in this report, please
read Chapter 6 (https://smin95.github.io/dataviz/recreating-the-
manuscript-figures.html). The package is scheduled to be
submitted to the CRAN (The Comprehensive R Archive
Network) in near future. All updates will be posted on Github
and the online guide.

RESULTS AND DISCUSSION

Correlation Plot
A correlation refers to a relationship between two variables. The
smplot package provides some functions for plotting a
correlation.

Figure 1A shows a correlation plot with defaults of ggplot2
and without smplot. The example is cluttered with distracting
features, such as the grey background, and major and minor
vertical and horizontal grid lines. Also, the title is not centered.
These issues can be resolved by modularly adding a single line of
code provided by smplot, as shown in Figure 1B. The example in
Figure 1B uses the default theme of smplot [with the function
“sm_corr_theme()”]. Theminor grid lines have been removed and
the title has been centered. Also, the font is generally larger and
consistent. The aesthetics can be modified by adding the ggplot2
functions to the base plot. However, smplot provides a wrapper
function for a clean default theme that can be added in a modular
fashion to the base plot. This modularity can allow the user to
customise further with ease.

When plotting a correlation, one is often recommended to
report statistics and print a best-fit regression line. A function

called “sm_statCorr()” can be added modularly to print the
correlation coefficient (R, not R2) and the p-value for
statistical significance of the relationship between two variables
(see Figure 1C). There are several arguments that are used in this
function. The regression is set to be linear by default but can also
be set to be non-linear by specifying the argument “lm_method”
(ex., “lm_method � lm” for linear regression, “lm_method � loess”
for non-linear local regression). Also, the type of the correlation
test can be specified into either Pearson, Spearman or Kendall
using the argument “corr_method” (ex., “corr_method � pearson”
is the default). When the user adds “sm_statCorr()”modularly to
the base plot without specifying these arguments, the function
uses the defaults for the two arguments.

Bar Plot
Plotting a bar graph in ggplot2 can appear to be not
straightforward because the functions that plot the bar graph
depend on the structure of the data file that is uploaded in
RStudio. For instance, although both “geom_bar()” and
“stat_summary(),” which has multiple usages, can both plot
the bar graph in a ggplot2 setting, “geom_bar()” requires that
the loaded data contain summarised data (ex., mean, standard
error of the sample), whereas “stat_summary()” requires that the
loaded data contain individual data so that function can directly
summarise the data as the mean and the standard deviation. This
subtle difference between the functions can be confusing. Also,
the arguments for the function “stat_summary()” are not
always clear.

In Figure 2A, a bar graph that uses the default theme of ggplot2
is shown. Individual data points and error bars are missing. Major
and minor vertical and horizontal grids overly crowd the graph.
In a bar graph, since explanatory variables (levels in the x-axis)
are often categorical, vertical grids are often not necessary. Also,
the bar graph alone does not represent the distribution of data
accurately, so plotting individual points and the error bar (ex.,
standard error, standard deviation or 95% confidence interval)
are often recommended when the bar graph is plotted. These
issues in Figure 2A can be resolved by modularly adding the
function “sm_bar()” to the base plot, as shown in Figure 2B. This
function enlarges the font, plots individual data points,
automatically removes unnecessary grids, centers the title,
narrows the bar width for aesthetics, and plots the error bar
(in this example: standard error). These aesthetic features, such as
the transparency, color and shape of the points, can be
customised by using the specifying the arguments of
“sm_bar(),” such as “bar_alpha,” “point_alpha” and
“point_size.” If the reader is interested in learning more about
the function, please visit Chapter 4 of the online guide
(smin95.github.io/dataviz/).

Boxplot
A preferred method of illustration to a bar graph when reporting
data across different groups/time is a boxplot. It reports the
median, 25 and 75% quartiles, spread of the data, distribution and
outliers, all of which the bar graph does not show. For instance,
the minimum and maximum data points are depicted with the
whiskers that extend to the top and the bottom of the box in the
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center. The horizontal line within the box represents the sample
median. Points that are residing above or below the whiskers
represent outliers.

In Figure 3A, a boxplot using the default themes of ggplot2
is shown. On its own, it is not very informative because the
individual points are not displayed. Aesthetically, there are
some distracting features such as the major and minor
vertical and horizontal grids and unnecessarily wide boxes.
If the reader adds “sm_boxplot()” to the given plot in
Figure 3A, she will be able to resolve these aesthetic issues
(see Figure 3B).

Violin Plot
Another alternative to a bar graph is a violin plot. A violin plot is
sometimes preferred to a boxplot because it shows the full
distribution of the data while the boxplot fails to do so. The
“violin” of the violin plot represents the data distribution (see
Figure 4A). The region with the largest width denotes the highest

density of the data. The upper- and lowermost tips of the “violin”
represent the maximum and minimum values of the data.

In Figure 4A, a violin plot using the default theme of ggplot2
(and without smplot) is shown. It lacks individual points and
error bars, such as standard deviation. The aesthetics also need
some improvement. Instead, when “sm_violin()” is modularly
added to the plot in Figure 4A, the violin plot gets improved
visually (see Figure 4B).

Slope Chart
A slope chart is often used to directly compare paired data at
different timepoints or instances (see Figures 5A,B). With a
slope chart, one can track changes over time for each data
point (i.e., before and after experimental manipulation). If one
is interested in performing a statistical test that accounts for
repeated measures (ex., repeated measures one-way analysis
of variance), a slope chart can be a good choice for
plotting data.

FIGURE 2 | Bar plots with and without smplot. (A) A bar plot drawn with “stat_summary()”, which is a function of ggplot2. (B) A bar plot drawn with “sm_bar()”,
which is a function of smplot. This function automatically provides several features, such as individual data points, larger font, minimalistic theme, centered title, narrower
bar width and error bars, such as standard error, standard deviation or 95% confidence interval.
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The ggplot2 package does not offer a single function that plots
a slope chart. To use ggplot2, one might need to code multiple line
of code to strip away the default ggplot2 theme and construct an
appropriate slope chart, a task that can be tedious and repetitive.
For this reason, “sm_slope()” has been created.

Figure 5A shows a slope chart that has two levels in the x-axis,
whereas Figure 5B shows a slope chart that has four levels in the
x-axis. “sm_slope()” plots these slope charts with the same
command code by automatically detecting the number of
discrete x-levels, provided that the loaded data has a proper
data frame structure (see example: https://github.com/smin95/
dataviz/blob/master/data.csv).

Raincloud Plot = Violin Plot + Boxplot +
Individual Data
A raincloud plot is a combination of a violin plot (halved), a
boxplot and jittered individual data (Allen et al., 2021). Plotting
a raincloud plot might be challenging for newcomers in R.

Although there exists an R package (the raincloudplots package)
that plots a raincloud plot (Allen et al., 2021), the function
“sm_raincloud()” has been created to allow for more visual
customisation.

Figure 6A shows a raincloud plot that has two discrete
levels in the x-axis (Day 1 and Day 2). These levels are denoted
by the distinct colors pink and blue. In this example, the
jittered points, boxplot and violin plot overlap with each other
because the separation level is set to 0 (“sep_level � 0”).
“sep_level” is an argument for the function
“sm_raincloud().” The separation level ranges from 0 to 4,
so one can increase the separation amongst the plots by setting
“sep_level � 2” within the “sm_raincloud()” function as shown
in Figure 5B. When “sep_level � 2,” the violin plot and the
boxplot overlap each other but not the individual data points
are located apart.

Another argument for “sm_raincloud()” is “which_side.” The
reader may notice that the direction at which the pink violin plot
is facing is to the left rather than the right (see Figure 6A). If the

FIGURE 3 |Boxplots with and without smplot. (A) A boxplot drawn with “geom_boxplot()”, which is a function of ggplot2. (B) A boxplot drawn with “sm_boxplot()”.
This function automatically provides several features, such as individual data points, larger font, minimalistic theme, and centered title.
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argument “which_side” is set to right, all the violin plots face to
the right (see Figure 6A). However, if “which_side � mixed,”
then the directions of the violin plots become asymmetric so
that the jittered individual points at each of the two x-level are
closest to one another (Figure 6B). Also, “which_side � mixed”
is only allowed when there are two discrete levels of x-axis, and
the function “sm_raincloud()” throws an error when the
condition is not met.

In Figure 6C, separation level has been specified to 4,
i.e., “sep_level � 4.” This allows the features of the raincloud to
be separated from one another more. Also, the violin plots at each
x level are facing to the left, i.e., “which_side � left.”

The function “sm_raincloud()” also plots a raincloud plot
when the x-level exceeds 2 (see Figure 6D). This is a novel
feature that is not included in the original R package (the
raincloudplots package) that draws a raincloud plot. It also
automatically counts the number of discrete x levels if the

loaded data has a proper data frame structure (see example:
https://github.com/smin95/dataviz/blob/master/data.csv).

Case Study Using smplot: Test-Retest
Reliability of a Novel Method
When one is interested in introducing a new measurement
method, one must examine whether the new method
(i.e., Method 2) shows agreeable results to those obtained from
the standard method (i.e., Method 1). In this section, we present a
case study where smplot might be useful. All data and codes are
uploaded in Chapter 6 of the online guide (https://smin95.github.
io/dataviz/).

If the data across two different instances/methods are paired,
one can draw a slope chart, rather than a bar plot, to see if the data
between these two instances show a small variability. For
instance, each dot in Figure 7A can represent an individual

FIGURE 4 | Violin plots with and without smplot. (A) A violin plot drawn with “geom_violin()”, which is a function of ggplot2. (B) A violin plot drawn with “sm_violin()”.
This function automatically provides several features, such as individual data points, larger font, minimalistic theme, centered title, narrower bar width and error bars, such
as standard error, standard deviation and 95% confidence interval.
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sample (ex. Patient 1 out of 20) from which the gene expression
level is measured. In this example, if a new method is consistent
with the standard method, the individual data from each
specimen will have a flat grey line. As we have previously
mentioned, this can be achieved by using the “sm_slope()”
function.

Another popular method to demonstrate that a new
technique is reliable is to compute whether there is a high
correlation coefficient (see Figure 7B; Pearson’s correlation test
is provided in this example). Unfortunately, a high correlation
does not indicate a good replicability. In Figure 7B, we see that
the correlation is robust (R � 0.64, p � 0.014). However, the
correlation seems to be heavily dependent on one single point in
the top-right corner of Figure 7B (Method 1 � 2.5, Method 2 �
2.5). If the correlation coefficient is computed without the
extreme point, it might be more representative of whether
the new method is truly correlated with the standard
method. In this example, the correlation without the extreme
point turns out to be weak, R � 0.24, p � 0.32. If the reader
encounters a similar situation to this case study, we suggest that
the reader compute the correlation with and without the outlier,
and then determine which of the two correlation coefficients is
more representative.

An appropriate approach to report test-retest variability is to
show a Bland-Altman plot (see Figure 7C), which is also known
as a MA plot (M � minus, A � average) in the field of genomics
(Bland and Altman, 1986; Giavarina, 2015). The y-axis of the
Bland-Altman is the difference between data from the two
methods, whereas the x-axis denotes the mean of the data
from the two methods. This plot aims to describe agreements
between data from two instances. Bland and Altman have stated
that 95% of the scatter points in a Bland-Altman plot should
reside within the limits of agreement (dashed line in Figure 6C),
which represent ±1.96 standard deviations from the mean
difference between data from two sessions (Bland and Altman,

1986). Whether the mean difference between two instances is too
large or not can be determined by calculating the mean difference
of all paired individual data. If the mean difference of the data is
not significantly different from 0 (i.e., one-sample t-test), then it is
acceptable to surmise from the given data that there is a good
agreement between the two methods. This is also the case in
Figure 7C. A Bland-Altman plot can be drawn using these two
functions “sm_statBlandAlt()” and “sm_bland_altman().”

Who Is smplot for?
The smplot package is for those who is interested in plotting
elegant graphs with minimal codes in a modular fashion. It aims
to simplify the process of data visualization for incoming research
trainees in fields such as biomedical sciences. That being said, it is
not necessary to produce high-quality graphs. We have
encountered numerous medical students who use multiple
software environments to create and polish figures, a process
that is often laborious and tedious. For instance, if students have
already created a figure and decide to collect additional data, they
will find themselves to change their figures across multiple
software platforms, such as Matlab and Adobe Illustrator. We
hope to have convinced the reader that smplot can be used to
create a polished, satisfying figure within one software
environment with minimal coding.

If the reader is interested in learning more about R, please
consider reading R for Data Science by Hadley Wickham
(Wickham and Grolemund, 2016). If the reader is interested
in developing her own color palette, please visit the online
guide of Seaborn (https://seaborn.pydata.org/tutorial/color_
palettes.html), which is a data visualization library in
Python (Waskom, 2021). If the reader is interested in
learning important practices of data visualization, please
consider reading Fundamentals of Data Visualization by
Claus Wilke (Wilke, 2019b); he is the author of the cowplot
package (Wilke, 2019a).

FIGURE 5 | Slope charts drawn with “sm_slope ()”, which is a function of smplot. (A) A slope chart with two discrete x-levels. (B) A slope chart with four discrete
x-levels.
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Contributions of the Package
The smplot package provides numerous functions that
quicken the process of data visualization. Most functions
are wrapper functions around ggplot2 that aim to change the
default of the aesthetics. We also provide new functions, such
as “sm_bland_altman()” and “sm_raincloud()” that do more
than changing the default theme of ggplot2.
“sm_bland_altman()” plots a Bland-Altman plot (along
with the mean, upper and lower limits) and a grey shaded
region that represents the 95% confidence interval; these
labels are all necessary but the R package (ex. the
BlandAltmanLeh package) for Bland-Altman plots do not
necessarily plot all of these features by default and do not use
the ggplot2 interface. Moreover, “sm_raincloud()” draws a
raincloud plot that is more customisable than the original
package that draws a raincloud plot (the raincloudplots
package). smplot does not impose the limits of the number
of discrete x-levels unlike the original package (the
raincloudplots package). For example, the raincloudplots
package is not capable of plotting Figure 6D because the
graph requires 4 discrete x-levels. In addition, the
configuration of the violin plots in the raincloud plot as
well as the aesthetics can also be more customised than
before. Lastly, unlike the raincloudplots package, the data
structure can have the same format as the one required for
ggplot2; this consistency of the data structure between
raincloud plots and other ggplot2 figures can allow the
user to draw multiple graphs without modifying the data
structure.

The ggpubr package is a well-known R package for data
visualization. However, many plotting functions of the ggpubr
package are one-liner, rather than modular, functions that plot a
complete graph. For this reason, there are numerous stored
defaults that might not be accessible for the user to modify. If a
modular function is added to a plot that is created with ggpubr to
change default aesthetics of ggpubr, warnings may appear. For
this reason, the smplot package provides functions that can be
added modularly (ex. “sm_hgrid” and “sm_statCorr”) to the
given plot built with ggplot2 or be added to
(“sm_bland_altman” and “sm_raincloud”) by other modular
functions.

The smplot package provides multiple themes with an
interesting feature. First, as is the case of the themes of the
cowplot package, they can be added in a modular fashion to a
given ggplot2 plot (ex. base plot “+ sm_hgrid()”). Also, the theme
functions of smplot provide a separate argument for the border
and the legend (ex. “sm_hgrid(legends � FALSE, borders �
TRUE).” If “legends � FALSE,” the legend will be hidden; if
“borders � TRUE,” there will be a border around the panel.
When these settings are flipped (“legends � TRUE” and “borders �

FIGURE 6 | Raincloud plots drawn with “sm_raincloud ()”. (A) A
raincloud plot with two discrete x-levels. In this example, the halved violin plots
face to the right because the violins have been specified to face to the right,
i.e., “which_side � “right””. Also, the violin plots, boxplots and jittered
individual data points all overlap among each other because the separation
level has been specified to 0, i.e., “sep_level � 0”. (B) A raincloud plot with two
discrete x-levels. In this example, the halved violin plots both face to the left
and right, i.e., “which_side � “mixed””. This mixed configuration allows the
individual points to be paired visually using the grey lines. Also, although the
halved violin plots and boxplots overlap, the jittered individual data are located
separately because the separation level has been specified to 2,
i.e., “sep_level � 2”. (C) A raincloud plot with two discrete x-levels. In this
example, the halved violin plots face to the left because the argument

(Continued )

FIGURE 6 | “which_side � “left””. Also, the halved violin plots, boxplots and
the jittered individual data do not overlap. There is more separating distance
than the plot in panels A and B because the separation level has been
specified to 4, i.e., “sep_level � 4”. (D) A raincloud plot with four discrete
x-levels.
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TRUE”), the relative proportion of the figure as well as the
perceived size of the text have been set to appear the same.
These features have been added for convenience because the user
is otherwise forced to use “theme(),” which can be tedious and
confusing to use. The themes provided by the cowplot package do
not offer these features.

DATA AVAILABILITY STATEMENT

The smplotR package is free and open source. All sample data and
codes of the figures can be accessed in the online guide (https://
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Network Pharmacology and
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Background: Glioblastoma (GBM) is the most common and aggressive primary
intracranial tumor of the central nervous system, and the prognosis of GBM remains a
challenge using the standard methods of treatment—TMZ, radiation, and surgical
resection. Traditional Chinese medicine (TCM) is a helpful complementary and
alternative medicine. However, there are relatively few studies on TCM for GBM.

Purpose: We aimed to find the connection between TCM and anti-GBM.

Study design:Network pharmacology and inflammatory microenvironment strategy were
used to predict Siraitia grosvenorii (Luo Han Guo) target for treating glioblastoma.

Methods: We mainly used network pharmacology and bioinformatics.

Results: CCL5 was significantly highly expressed in GBM with poor prognostics. Uni-cox
and randomForest were used to determine that CCL5 was especially a biomarker in GBM.
CCL5 was also the target for SG and TMZ. The active ingredient of Luo Han Guo
— squalene and CCL5 —showed high binding efficiency. CCL5, a chemotactic ligand,
was enriched and positively correlated in eosinophils. CCL5 was also the target of Luo Han
Guo, and its effective active integrate compound –— squalene — might act on CCL5.

Conclusion: SG might be a new complementary therapy of the same medicine and food,
working on the target CCL5 and playing an anti-GBM effect. CCL5 might affect the
immune microenvironment of GBM.

Keywords: Siraitia grosvenorii, CCL5, glioblastoma, in silico, network pharmacology

INTRODUCTION

Glioblastoma (GBM) is the most common and aggressive primary intracranial tumor of the central
nervous system (Barthel et al., 2019; Miller et al., 2019). Most of them are induced by genetic
mutations of high penetrance genes related to rare syndromes, mainly manifested as increased
intracranial pressure, neurocognitive dysfunction, and seizures, resulting in central nervous system
damage and endangering the lives of patients (Zanders et al., 2019). The standard treatment for GBM
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is surgery, drug therapy, and radiation therapy, and the median
survival time of patients is only 15 months (Kumar et al., 2019).
With the changes in eating habits, living environment, and work
pressure, the incidence of GBM is increasing and getting younger.
Surgical resection combined with postoperative radiotherapy,
chemotherapy, and immunotherapy will inevitably damage the
body’s normal function and cause adverse reactions. Multi-drug
resistance, especially temozolomide (TMZ), leads to frequent
GBM recurrences, which is a challenge in treating GBM, and
its underlying molecular mechanism is still unclear (Yin et al.,
2019). Since the blood-brain barrier (BBB) can prevent the
accumulation of charged or macromolecules in the tumor
microenvironment at a physically relevant concentration,
thereby exerting an oncolytic effect, the content of TMZ in the
brain is only 40% percent of the content in the blood, and new
component pharmacological methods must be developed to
enhance the curative effect of the current treatment, prolong
the median survival time of the patient to exceed the median
survival time of 15 months (Kumar et al., 2019).

The plants of traditional Chinese medicine (TCM) were used
for the treatment of various cancers (Dai et al., 2016), such as
GBM (Wang et al., 2019). The use of TCM to promote health and
adjuvant therapy is becoming increasingly popular worldwide
(Khan and Tania, 2020). The active components of Salvia
miltiorrhiza can inhibit the proliferation of U87 cells, induce
apoptosis, and enhance the efficacy of TMZ (Wang et al., 2019).
Lycium chinense can up-regulate CD3+T, CD8+T, and TNF-α,
inhibit the proliferation of mouse C6 cells, and up-regulate
CD4+CD5+T cells to prolong survival and regulate the BBB
(Wang et al., 2019). Magnolol inhibits the migration and
proliferation of GBM cells through the JAK-STAT3 signal
pathway, mainly by inhibiting the production of GBM stem
cell-like cells (Fan et al., 2019). However, the clinical
application value of TCM in the treatment of GBM has not
been promoted, and more molecular mechanism studies are
needed to verify it. Therefore, our research aims to provide
new potential for the treatment of GBM with a medicinal plant.

The TCM Siraitia grosvenori (SG) is a perennial herbaceous
plant of the Cucurbitaceae family with huge resource reserves and
native to southern China, also known as monk fruit and Luo Han
Guo, which is a medicinal food homologous species granted by
the China Food and Drug Administration with significant clinical
effects (Xia et al., 2018). Mogroside has an excellent biological
development, which can inhibit the excessive activation of Signal
Transducer and Activator of Transcription 3 (STAT3) and
promote tumor cell apoptosis (Liu et al., 2018), and targeting
STAT3 can improve tumor progression and anticancer immunity
response (Lee et al., 2019); reversing emergency medical
technician (EMT) and destroying the cytoskeleton to inhibit
hyperglycemia-induced lung cancer cell metastasis (Guan
et al., 2019). Mogroside IIV and IIIV activate AMP-activated
protein kinase (AMPK) and produce anti-hyperglycemic and
anti-lipid properties in the body (Abdel-Hamid et al., 2020);
mogroside V can cross the BBB and affect schizophrenia-like
behavior (Ju et al., 2020) and can also exert neuroprotective
activity (Xia et al., 2013); mogroside IVe may be potentially used
as a bioactive phytochemical supplement for the treatment of

colorectal cancer and laryngeal cancer (Liu et al., 2016). Monk
fruit also has other pharmacological effects, such as up-regulating
Sirtuin 1 (SIRT1) to reduce oxidative stress and alleviate the
decline in oocyte quality during in vitro aging (Nie et al., 2019).

Network pharmacology is based on the high-throughput
multi-omics data analysis to clarify the mechanism of multi-
component/multi-target/multiple action pathways in medicinal
plants (Hopkins, 2008). The newly network pharmacology
analysis was employed to integrate active compounds, targets
and pathways prediction, and network analysis which may
provide novel insights into the therapeutic effects and
molecular mechanisms of SG in the treatment for GBM
(Abdel-Hamid et al., 2020). Then, we offered a new flowchart
to explain the potential target of Siraitia grosvenorii (Luo Han
Guo) for GBM (Figure 1).

MATERIALS AND METHODS

The Integration of SG-TMZ-GBM (Siraitia
grosvenori - Temozolomide - Glioblastoma)
Targets
Through PubMed database (https://pubmed.ncbi.nlm.nih.gov)
text mining, we selected the most effective clinical drug in the
treatment of GBM. Based on the TCMSP (Ru et al., 2014)
database (blood-brain barrier (BBB) ≥ 0.3, drug-like (DL) ≥ 0.
18, oral bioavailability (OB) ≥ 30%), and TCMID (Huang et al.,
2018), we collected the active ingredients and targets in monk
fruit. Then, we used the chemical components to obtain the
structure files by the PubChem Compound database (Kim et al.,
2019) and uploaded the structure files to predict the targets across
the PharmMapper (Wang et al., 2017) and Swiss Target
Prediction (Gfeller et al., 2014). A Venn diagram (http://
bioinformatics.psb.ugent.be/webtools/Venn/) was drawn for
visualizing the SG-TMZ interacting targets. Gliomas-related
targets were predicted by OMIM (Amberger et al., 2015),
DrugBank (Wishart et al., 2018), and PubMed. Then, taking
the intersection with the prediction targets of SG-TMZ, which is
named Siraitia grosvenori - temozolomide – gene (SG-TMZ-G).

We downloaded GBM’s transcriptomic and clinical data and
normal brain tissues from XENA TCGA and GTEx (https://xena.
ucsc.edu/public/). Differentially expressed GBMs (DE-GBMs) were
computed by limma (Smyth, 2005) with |logFoldChange (logFC)|> 2
and q-value < 0.05 as previously reported (Jiang et al., 2020a; Jiang
et al., 2020b). Subsequently, common GBM-related targets were
integrated between SG-TMZ-G. A volcano plot was used to show
the distribution of SG-TMZ-GBM (SG-TMZ-glioblastoma).

Functional Analysis and Network
Construction of SG-TMZ-GBM
STRING v11.5 was used to construct a protein-protein
interaction (PPI) network, scores >0.70 were considered to
have high confidence (Szklarczyk et al., 2021). Functional
analyses of the gene ontology (GO), the Kyoto Encyclopedia
of Genes and Genomes (KEGG) were performed by ClueGO

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7997992

Li et al. Luo Han Guo for Glioblastoma

95

https://pubmed.ncbi.nlm.nih.gov/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://xena.ucsc.edu/public/
https://xena.ucsc.edu/public/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


plug-in (Bindea et al., 2009) in Cytoscape v3.8.2 (Reimand et al.,
2019) with q-value ≤ 0.001. The compound-target-pathway
network was built by Cytoscape (Reimand et al., 2019).

The Determination of the Key
SG-TMZ-GBMs
Hazard ratios (HR) were applied using univariable Cox (uni-cox)
regression analysis (p-value < 0.05). We then detected the key SG-
TMZ-GBMs by “survival” and “survminer” package (Jiang et al.,
2020b). Random forest was calculated by randomSurvivalForest to
rank the importance of survival-related SG-TMZ-GBMs, with a
relative importance >0.7 as the final feature (Liu et al., 2021).
Survival analysis was built with the best cutoff value (Liu et al.,
2021), the Kaplan-Meier method was used to draw survival curves,
and the log-rank test was used to evaluate differences. A scatter plot of
C-CMotif Chemokine Ligand 5 (CCL5) expression and survival time
inGBMpatients were drawn by ggrisk (Jiang et al., 2020b). The forest
plot was used for performing uni-cox and multiple cox (multi-cox)
regression analysis (Jiang et al., 2020b). We also used the receiver
operating characteristic curve (ROC), concordance index (c-index) to
evaluate the multi-clinical prognostic performance (Longato et al.,
2020).

INFLAMMATORY MICROENVIRONMENT
AND MUTATION ANALYSIS

The microenvironment cell population-counter method was
chosen to evaluate the association between CCL5 and immune
cell populations (Petitprez et al., 2020). We used immune cells
markers and GBM transcriptome data to validate the strong
correlation between CCL5 and 24 immune cells markers
(Bindea et al., 2013). Gene mutations of GBM expression by
“maftools” package (Mayakonda et al., 2018). CCL5 protein
expression was detected by immunohistochemistry from the
HPA database (https://www.proteinatlas.org/
ENSG00000271503-CCL5/pathology/glioma#).

RESULTS

SG-TMZ-GBM Detection
PubMed text mining showed 2121 literature reports on the
treatment of GBM with TMZ (Figure 2A). Through the text
data mining of the Therapeutic Target Database (TTD) database
and PubMed published articles, we identified 1092 target genes
for treating GBM with TMZ.

FIGURE 1 | Graphical abstract. The new flowchart explains the potential target of Siraitia grosvenorii (Luo Han Guo) for glioblastoma.
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FIGURE 2 | SG-TMZ-GBM detection. (A) The analysis result on the clinical drug in treating gliomas in PubMed database (updated by 2021-8-10); (B) co-target
genes predicted between the ingredients of Siraitia grosvenorii and temozolomide; (C) co-target genes predicted between the ingredients of Siraitia grosvenorii
-temozolomide and gliomas; (D) co-target genes predicted network between the ingredients of Siraitia grosvenorii and gliomas, a triangle means Siraitia grosvenorii, a
diamond means the 12 ingredients of Siraitia grosvenorii, an oval means co-target genes in gliomas; (E) volcano plot for differentially expressed target genes.
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FIGURE 3 | Targeted gene functional analysis. (A) PPI network analysis; (B) GO enrichment analysis; (C) KEGG pathway enrichment analysis; (D) the study of
GSEA KEGG enrichment plot. (E) Compound-target-KEGG pathway network. The network was generated by Cytoscape 3.8.2. Yellow circles represent 11 ingredient
targets from Siraitia grosvenorii. Red circles represent 36 common targets between ingredient targets from Siraitia grosvenorii and GBM significant targets. Blue circles
represent 76 KEGG pathways.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7997995

Li et al. Luo Han Guo for Glioblastoma

98

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


We obtained 12 chemical compositions in SG by TCMSP and
TCMID, and gained the compound structure by PubChem, and
predicted the 474 target genes of SG by the Swiss Target
Prediction and PharmMapper. A total of 113 SG-TMZ targets
were found by taking the intersection (Figure 2B). We further
discovered 4542 target genes related to gliomas through PALM-
IST, filtered 86 target genes as SG-TMZ-G (Figure 2C), and drew
a network diagram (Figure 2D). For example, IL6 was a co-target
gene in the gamma-aminobutyric acid, lauric acid, and methyl
palmitate of SG and GBM; CCL5 was a co-target gene in squalene.
According to the cutoff log2FoldChange> 2 and q-value <0.05,
we screened the interaction of differentially expressed genes
(DEGs) in GBM-normal brain tissues and SG-TMZ-G,
Volcano plot for 42 SG-TMZ-GBM targets were detected for
the following research (Figure 2E).

Luo Han Guo Compound-Target-Disease
Interaction Network and Functional
Enrichment Analysis
We imported 42 SG-TMZ-GBMs into the STRING database to
construct a protein-protein interaction (PPI) network, the
primary connection in the network which might have
pharmacological effects in GBM. In addition, the four targets,
including Protection of Telomeres 1 (POT1), Adenylosuccinate
Lyase (ADSL), FosB Proto-Oncogene, AP-1 Transcription Factor
Subunit (FOSB), and Calcium Activated Nucleotidase 1
(CANT1), did not interact with other targets (Figure 3A).
Tumor Protein P53 (TP53) and MDM2 Proto-Oncogene
(MDM2), Cyclin Dependent kinase 2 (CDK2) and Cyclin D1
(CCND1) (scores >0.70) were considered to have high
confidence. We further explore the correlation between 42 SG-
TMZ-GBMs and glioblastoma by GO (Figure 3B), KEGG
(Figure 3C), and GSEA (Figure 3D) enrichment analyses. We
discovered that 54 significant GO enrichment results, such as
“lactation,” “response to iron ion,” “apoptotic mitochondrial
changes,” CCL5 was enriched in “human cytomegalovirus
infection,” “toll-like receptor signaling pathway” and
“epithelial cell signaling in helicobacter pylori infection,”
Vascular Endothelial Growth Factor A (VEGFA), Rac Family
Small GTPase 1 (RAC1), Protein kinase C Beta (PRKCB), and
AKT Serine/Threonine kinase 1 (AKT1) were enriched in
Vascular Endothelial Growth Factor (VEGF) signaling
pathway (Figure 3B); pathway analysis revealed that SG-TMZ-
GBMs were associated with cancer-related pathway, including
glioma, non-small cell lung cancer, pancreatic cancer, and thyroid
cancer, AKT1, BCL2 Associated X, Apoptosis Regulator (BAX),
CCND1, E2F Transcription Factor 1 (E2F1), MDM2, PRKCB,
and TP53 were enriched in “glioma” pathway, suggesting Luo
Han Guo may play a role in cancer treatment; PRKCB, RELA
Proto-Oncogene, NF-KB Subunit (RELA), STAT3, and VEGFA
were enriched in “AGE-RAGE signaling pathway” and “HIF-1
signaling pathway” might be related in the inflammation-related
diseases (Figure 3C). The GSEA KEGG enrichment analysis is
shown in Figure 3D, and we found the top three significantly
activated KEGG pathways were “KEGG hematopoietic cell
lineage”, “KEGG leishmania infection”, and “KEGG nod like

receptor signaling pathway”. A compound-target-pathway
network was established based on the target recognition and
pathway analysis, with nodes mapping compounds, targets, or
pathways, and indicated interactions by Cytoscape (Figure 3E).

The Determination of the Key
SG-TMZ-GBMs
Uni-cox analysis revealed that 9 SG-TMZ-GBMs were
determined as the significant survival-related risk genes. CCL5
was the most significant gene (p-value � 0.008) (Figure 4A). We
found CCL5 was the key SG-TMZ-GBM (importance � 1) by
random forest calculation (Figures 4B,C) and the survival
analysis with p-value � 0.004 (Figure 4D). To further explore
the effect of CCL5 on tshe GBM prognosis, a scatter plot of CCL5
expression and survival time in GBM patients was created
(Figures 4E,F). Uni-cox and multi-cox regression analysis
revealed that radiation (p-value < 0.001) and risk score
(p-value � 0.008) were independent risk factors for overall
survival analysis (Figures 4G,H). ROC c-index analysis
illustrated that risk score + age + radiation, age + radiation,
and radiation were the top three (Figure 4I).

INFLAMMATORY MICROENVIRONMENT
AND MUTATION ANALYSIS

The microenvironment cell population-counter method evaluated
the association between CCL5 and 10 immune cell populations from
transcriptomic data. A strong correlation between CCL5 and CD8
T cells, T cells, B lineage, and fibroblasts were seen (Figure 5A). Then
we further found the significant correlation (p-value < 0.05) between
CCL5 and 9 of 24 immune cells markers (Figure 5B), such as the
positive correlation in eosinophils (Figure 5C) and the negative
correlation in Tcm (Figure 5D). In addition, exploring somatic
mutations is helpful to understand the occurrence and
development of GBM. The lollipop map shows the mutation
distribution and protein domain of CCL5 with somatic mutation
(Figure 5E). The distribution of the mutation spectrum of GBM
samples can also be identified by a rainfall map (Figure 5F). The
transition plot classified single nuclear variants into six categories
(Figure 5G). Among them, the C > T mutation accounted for more
than 50% of the total mutations. Furthermore, CCL5 protein
expression can be detected by immunohistochemistry from the
HPA database (Figure 5H).

DISCUSSION

GBM is the most frequent and the least treatable type of brain
tumor, and the prognosis of GBM remains a challenge using the
standard methods of treatment—TMZ, radiation, and surgical
resection (Jiang et al., 2020b). TMZ is a novel methylating agent
that demonstrated activity against recurrent GBM and is
ineffective due to drug resistance (Wu et al., 2021). TCMs
were considered anti-GBM auxiliary drugs, such as Solanum
nigrum L. (Li et al., 2021), Panax ginseng, licorice, Lycium
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barbarum, Salvia miltiorrhiza bunge, Coptis rhizoma, and
Sophora flavescens (Wang et al., 2019). TCM is a helpful
complementary and alternative medicine, however, there are
few studies on TCM for GBM (Wang et al., 2019). The anti-
GBM effects of TCM extract provided the new medium for the
treatment of GBM (Li et al., 2021).

We tried to find a new TCM complementary method to treat
GBM and hope that through combining Chinese and Western
medicine, TMZ resistance could be reversed and anti-tumor
therapeutic effects could be achieved. Luo Han Guo is a TCM
with the same medicine and food. The multiple compounds in
Luo Han Guo not only act on the same target protein, but a single

FIGURE 4 | The determination of the key SG-TMZ-GBMs. (A) Uni-cox analysis; (B) error tree of randomForest; (C) variable relative importance of randomForest;
(D) survival analysis; (E) the curve of risk score; (F) survival status by ggrisk; (G) uni-cox with clinical information; (H) multi-cox with clinical information; and (I) ROC-
concordance index.
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FIGURE 5 | Inflammatory microenvironment and mutation analysis. (A) Association between CCL5 expression and 10 immune cell populations in GBM. (B) The
association between CCL5 expression and 24 immune cell markers in GBM. (C) A scatter plot of the positive correlation between CCL5 expression and eosinophils. (D)
A scatter plot of the negative correlation between CCL5 expression and Tcm. (E) The lollipop map shows the mutation distribution and protein domain of CCL5 with
somatic mutation. (F) The rainfall map of TCGA-AC-A23H-01A-11D-A159-09 in the GBM sample. (G) The transition and crosscut graphs show the distribution of
SNV in GBM with six transition and crosscut events. The stacked bar graph (bottom) shows the mutation spectrum distribution of each sample. (H) CCL5 protein
expression can be detected by immunohistochemistry from the HPA database.
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compound also acts on various target proteins and multiple
pathways, which reflects the “multiple components, multiple
targets, and multiple pathways” of Luo Han Guo’s synergistic
effect. Luo Han Guo may work with ar-turmerone, methyl
palmitate, lauric acid, beta-sitosterol, gamma-aminobutyric
acid, coumarin, mogroside V, and squalene. GO functional
enrichment analyses reflected that most of the active
ingredients in SG might target nerve cells.

Through network pharmacology and bioinformatics analysis,
we found that the CCL5 molecule is a potential target of SG,
TMZ, and GBM, maybe the key to the clinical development of
TMZ resistance (Figure 1). CCL5-CCR5 paracrine signaling
could be an effective therapeutic strategy to improve
chemotherapeutic efficacy against GBM (Zhang et al., 2021).
CCL5 of glioma-associated microglia/macrophages regulates
glioma migration and invasion via calcium-dependent matrix
metalloproteinase 2 (Yu-Ju Wu et al., 2020). Knockdown or
pharmacological inhibition of CCL5 increased the sensitivity
of GBM cells treated with pericyte conditioned media to TMZ
(Sprowls and Lathia, 2021). CCL5 was significantly highly
expressed in GBM with poor prognostic. Uni-cox and
randomForest were used to determine that CCL5 was a
significantly important biomarker in GBM. CCL5 was also the
target for SG and TMZ. The active ingredient of Luo Han Guo
— squalene and CCL5—show high binding efficiency. SGmay be
used as a new complementary therapy of the same medicine and
food, acting on the target CCL5 and playing an anti-glioblastoma
effect. Increasing the effective content of squalene in SG also
needs further research. The radiation-related factors were the
most critical in ROC c-index analysis. CCL5 plays a vital role in
maintaining chemotherapy and radiation resistance.

Compared to genetically distinct syngeneic GBM models, the
difference in mouse GBM models was eosinophils, reported in

GBM (Khalsa and Shah, 2021). Eosinophils were associated with
prognostic risk in the GBM microenvironment (Liang et al.,
2020). We found that the SG-TMZ-GBM target, CCL5, a
chemotactic ligand, is enriched and positively correlated in
eosinophils. CCL5 is also the target of Luo Han Guo, and its
effective active integrate compound – squalene—might act on
CCL5, thereby affecting the immune microenvironment of GBM.
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GLOSSARY

ADSL adenylosuccinate lyase

AKT1 AKT serine/threonine kinase 1

AMPK AMP-activated protein kinase;

BAX BCL2 associated X, apoptosis regulator

BBB blood-brain barrier

c-index concordance index

CCL5 C-C motif chemokine ligand 5

CANT1 calcium activated nucleotidase 1

CDK2 CDKCyclin dependent kinase 2

CCND1 cyclin D1

DEGs differentially expressed genes

DL drug-like

DE-GBMs differentially expressed GBMs

EMT emergency medical technician

E2F1 E2F transcription factor 1

FOSB FosB proto-oncogene, AP-1 transcription factor subunit

GBM glioblastoma

GO gene ontology

HR hazard ratios

KEGG kyoto encyclopedia of genes and Genomes

logFC logFoldChange

MDM2 MDM2 proto-oncogene

multi-cox multivariate cox

OB oral bioavailability

PPI protein-protein interaction

POT1 protection of telomeres 1

PRKCB protein kinase C beta

RELA RELA proto-oncogene, NF-KB subunit

RAC1 Rac family small GTPase 1

ROC receiver operating characteristic curve

SG Siraitia grosvenorii

SG-TMZ-GBM Siraitia grosvenorii - temozolomide – glioblastoma

STAT3 signal transducer and activator of transcription 3

SIRT1 sirtuin 1

TP53 tumor protein P53

TCM traditional chinese medicine

TMZ temozolomide; uni-cox, univariable Cox

VEGFA vascular endothelial growth factor A

VEGF vascular endothelial growth factor
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EasyMicroPlot: An Efficient and
Convenient R Package in Microbiome
Downstream Analysis and
Visualization for Clinical Study
Bingdong Liu1,2, Liujing Huang2,3, Zhihong Liu2, Xiaohan Pan4, Zongbing Cui2, Jiyang Pan1*
and Liwei Xie2,3,5*

1The First Affiliated Hospital of Jinan University, Guangzhou, China, 2State Key Laboratory of Applied Microbiology Southern
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Southern Medical University, Guangzhou, China, 4Department of Applied Biology and Chemical Technology, The Hong Kong
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Advances in next-generation sequencing (NGS) have revolutionized microbial studies in
many fields, especially in clinical investigation. As the second human genome, microbiota
has been recognized as a new approach and perspective to understand the biological and
pathologic basis of various diseases. However, massive amounts of sequencing data
remain a huge challenge to researchers, especially those who are unfamiliar with microbial
data analysis. The mathematic algorithm and approaches introduced from another
scientific field will bring a bewildering array of computational tools and acquire higher
quality of script experience. Moreover, a large cohort research together with extensive
meta-data including age, body mass index (BMI), gender, medical results, and others
related to subjects also aggravate this situation. Thus, it is necessary to develop an efficient
and convenient software for clinical microbiome data analysis. EasyMicroPlot (EMP)
package aims to provide an easy-to-use microbial analysis tool based on R platform
that accomplishes the core tasks of metagenomic downstream analysis, specially
designed by incorporation of popular microbial analysis and visualization used in
clinical microbial studies. To illustrate how EMP works, 694 bio-samples from
Guangdong Gut Microbiome Project (GGMP) were selected and analyzed with EMP
package. Our analysis demonstrated the influence of dietary style on gut microbiota and
proved EMP package’s powerful ability and excellent convenience to address problems
for this field.

Keywords: 16s rDNA sequencing, next-generation sequencing, microbiota, script, clinical data

INTRODUCTION

The in-depth understanding of human microbiome has dramatically reshaped our understanding of
the relationship between human health and microbiome (Marchesi et al., 2016; Fan and Pedersen,
2021). A tremendous number of studies have demonstrated that microbiomes residing in the human
body are key contributors in modulating host physiology and metabolism (Van Treuren and Dodd,
2020). As the second genome of the human being, the microbiomes are thought to be responsible for
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the complex pathophysiology nature of various diseases, e.g.,
neurological, metabolic, and immunity disorders (Oleskin and
Shenderov, 2016; Cryan et al., 2019). Undeniably, the revolution
in DNA sequencing technologies has enabled us to generate
massive amounts of microbial data and accelerate the
progression of studies and researches to explore the
relationship between microbiomes and human health. Thus, a
growing number of hospitals and medical centers endeavored
largely to recruit volunteers and collect bio-samples associated
with microbiomes (Claesson et al., 2017). For example, the
Human Microbiome Project (HMP) in 2007 expanded our
understanding of the microbiome across different body sites of
a healthy person and its physiological roles in human genetic and
metabolic landscapes (Peterson et al., 2009). Furthermore,
emerging evidence indicate that microbiomes could be used as
a non-invasive approach serving as novel diagnostic biomarkers
and therapeutic targets. For example, 30 bacterial taxa identified
from a cohort study could distinguish patients with early
hepatocellular carcinoma with area under the curve (AUC) of
80.64% (Ren et al., 2018), and Bacteroides vulgatus may alter bile
acid metabolism to improve the risk of polycystic ovary syndrome
(Qi et al., 2019). In this regard, there is an urgent necessity to
integrate microbial data into clinical practice for evidence-based
medicine.

With the advancement of next-generation sequencing (NGS)
and bioinformatics in basic and clinical biomedicine
investigation, mathematics and statistical approaches in
microbial downstream analysis are able to provide us
comprehensive information of the relationship between
microbiomes and human health and diseases (Knight et al.,
2018). For example, diversity metric was introduced from
ecology to access microbiota richness (Faith, 1992), while
machine learning technology was popularly used for bacterial
biomarkers screening (Vangay et al., 2019). In order to perform
such measurements, clinical researchers usually have to take
additional bioinformatics courses, which significantly obstruct
the progression and frustrate amateurs without computational
and coding experience (Knight et al., 2018). Here are three aspects
of problems that clinical investigators face if they want to perform
microbiome-related studies: First, clinical meta-data generally
consist of a wide range of information including but not limited to
age, body mass index (BMI), gender, and medical diagnostics,
which brings about giant challenges for researchers to estimate
and select proper features to determine inclusion criteria (He
et al., 2018b). Moreover, in many retrospective studies, due to the
complexity of subjects in hospitals, clinicians are not able to
clearly determine grouping information based on meta-data,
which challenges clinical researchers, especially various
missing value in meta-data. Second, a large scale of microbial
data always contains various information bias. For example, low
abundance and occurrence taxa are often observed in microbial
data analysis, which may be due to experimental contamination,
sequence alignment error, and other factors. Normally, these taxa
are filtered in downstream analysis according to study design and
researchers’ experience due to the lack of a well-recognized
protocol, which may lead to biased and poorly reproducible
results. Particularly, due to poor coding abilities, clinical

researchers may find unexpected difficulties without enough
knowledge in the data filtering step. Third, although many
existing software (Caporaso et al., 2010) and R packages (Liu
et al., 2021; Zhao et al., 2021) have been developed and integrated
multiple methods from various fields, none of them are specially
designed for clinical studies and could not address problems such
as missing data, data filtering, and sample regrouping easily and
efficiently. Moreover, due to large and comprehensive function
and workflow, clinical researchers may spend additional time to
learn and modify clinical data. The manual step to select the most
appropriate parameters is still puzzling and tedious, and
inconsistent application of such tools may reduce the
reproducibility of the results. Thus, an efficient and convenient
tool to meet the fast-developed clinical microbial studies is
necessary.

Here, EasyMicroPlot (EMP) incorporates packages used in
basic and clinical microbial studies for data analysis and
visualization. In this package, regular downstream analysis
covering core tasks of metagenomic analysis could be
performed efficiently and conveniently in this field.

MATERIALS AND METHODS

Package Description
EMP is developed based on R language 3.6 version and contains
three main modules, which include EMP_META, EMP_MICRO,
and EMP_COR. Compared to existing microbial analysis
software in this filed, EMP extremely simplifies the whole
process to the best and focuses on core microbiota and meta-
data analysis in clinical studies. Each function in the EMP
package is standalone and flexible, which enables users to
design their own pipeline and utilize necessary functions
without tedious parameterization and scripts. The overall
design and workflow of EMP package is illustrated in Figure 1.

EMP_META module includes two functional units: the
meta_summary and meta_regroup. The meta_summary
function could enable users to easily visualize the distribution
of missing value in meta-data, summarize basic information, and
generate bivariate tables. The other function, meta_regroup, is
designed to utilize various cluster analyses and 26 evaluation
algorithms to determine the best regroup strategy based on
different kinds of clinical information containing categorical
and continuous variables.

EMP_MICRO module consists of data_filter, beta_plot,
cooc_plot, structure_plot, tax_plot, RFCV, and RFCV_roc
functions and mainly aims to provide investigators a fast and
simple approach to accomplish the core tasks of data filter, such
as α-diversity analysis, β-diversity analysis, co-occurrence
network analysis, taxonomic stack bar plot, and random forest
models for key taxa screening. The function EMP_MICRO could
automatically identify data directly from R workspace and
transform these into core microbial data at six levels (phylum,
class, order, family, genus, and species). The feature allows users
to activate a complete workflow with default parameters and
generate results in workspace by applying function EMP_MICRO
with only microbial abundance files and mapping file in user’s R
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workspace. Most analysis functions including α-diversity,
β-diversity, and taxonomy boxplot not only provide Student
t-test and one-way analysis of variance (ANOVA) comparison
methods but also offer an interactive plot in html format, which
means users could easily identify outliers and recognize abnormal
samples. Moreover, most of the existing microbial analysis
software suggest investigators to provide well-matched
microbial abundance files and mapping files. In this case,
investigators have to modify all the files if they want to
perform sub-group analysis or regroup analysis. To avoid such
problem, EMP is designed in a way that users only need to edit
their mapping file without modifying microbial abundance data.

EMP_COR module is designed to integrate metagenomic and
clinical data. Investigators can explore links between meta-data
and microbial abundance using Pearson index and Spearman and
Kendall index, and we have developed two artistic styles for data
visualization in this module.

Data Preparation
To test our package, we selected a part of 16S rDNA sequencing data
from Guangdong Gut Microbiome Project (GGMP) (He et al.,
2018b). This dataset is composed of samples from a population in
Shenzhen, China, of GGMP. A total of 618 16S rDNA sequencing
data with meta-data including diets, districts, defecation, and
metabolic syndrome (MetS) status in Shenzhen province was
included in this analysis. Microbial relative abundance was
generated at phylum, class, order, family, genus, and species levels
using a standard QIIME 1.91 pipeline. All meta-data and microbial
abundance were deposited in the Supplementary material.

RESULTS

Subjects Enrollment
After data preparation, the function meta_summary in
EMP_META could map the distribution of missing data

and generate a general summary of meta-data based on
MetS status (Figure 2A and Supplementary material).
There are more than 20 missing information in features of
“salt,” “plant oil,” “soy sauce,” and “sugar” intake. A three-line
table also showed detailed dietary structure information
among groups (Supplementary Table S1). Consider that
gastrointestinal disorder, antibiotic therapy, and probiotics
are closely linked to the dysbiosis of gut microbiota. Finally,
only 394 samples were qualified and included into
downstream analysis, and those who have experience of
diarrhea, astriction, antibiotics, and synbiotics were
excluded. In order to explore the microbial difference
without bias of dietary pattern, the function of
meta_regroup incorporated 26 indexes to estimate the
cluster for dietary structure to determine the best
regrouping design utilizing “Kmeans” and “Euclidean”
parameter (Figure 2B). After calculation for continuous
and categorical variables, 394 samples were included into
downstream analysis and divided into four groups based on
dietary structure and MetS status (Control_1: subjects
without Mets whose dietary structure belong to type 1;
Control_2: subjects without Mets whose dietary structure
belong to type 2; Cases_1: subjects with MetS whose
dietary structure belong to type 1; Cases_2: subjects with
MetS whose dietary structure belong to type 2). Those who
have experience of diarrhea, astriction, antibiotics, and
synbiotics were excluded.

Diets Are Associated With Significant
Structural Changes of Gut Microbiota
To avoid interference of rare taxa, species data whose relative
abundance was below 1‰ or prevalence rate was not more than
70% in any group was excluded using function of data_filter.
Function structure_plot provided a general composition picture
for these core data at species level (Figure 2F and Supplementary

FIGURE 1 | Overall design and workflow of EasyMicroPlot package.
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FIGURE 2 | Diets are associated with significantly structural changes of gut microbiota. (A) The distribution of missing value in the meta data. (B) Twenty-six
estimate indices vote for the best cluster number based on dietary structure. (C) α-Diversity on Pielou, Shannon, Simpson, and InvSimpson index among different
subgroups. (D, E) β-Diversity on Bray–Curtis index and permutational MANOVA test among different subgroups with consideration of dietary structure. (F) The structure
plot for top 10 gut bacterial taxa.
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Material). With this core microbiota in hand, rarefaction
measurement of Pielou, Shannon, Simpson, and InvSimpson
index showed α-diversity difference was not significant with
each other (p > 0.05) (Figure 2C). β-Diversity calculated with
Bray–Curtis distance showed samples in Cases_1 group was far
away from the other three groups in two-dimensional space
(Figure 2D), which indicated these microbiota structures for
MetS subjects with type A diet were significantly different from
others (least significant difference p < 0.05). Particularly, when
only two groups including Cases_1 and Control_2 were
performed in PCoA analysis, permutational multivariate
analysis of variance (MANOVA) test was almost statistically
significant (r2 � 0.01, p � 0.083) (Figure 2E). In contrast, we
also performed β-diversity with the same parameter and could

not observe significant change, which suggested diets indeed
disturb the structure of the microbiota (Supplementary
Figure S1).

Diets Perturb the Ecology and Network of
Gut Microbiota
In order to explore whether diet may influence the gut microbiota
community network, EMP provides an easy function to perform
co-occurrence analysis and generate network plot for each group.
Co-occurrence analysis at species level with parameter of
Spearman confident index [abs(r) > 0.3, p < 0.05] showed each
group has almost the same vertices but presented totally different
cross-talk among core gut bacterial taxa (Figure 3). For example,

FIGURE 3 | Co-occurrence analysis of bacterial interaction under different dietary pattern and MetS status.
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FIGURE 4 | Identification of the signature gut microbiota by random forest. (A, B) To explore the signature biomarkers, a fivefold cross validation together with
random forest was performed. (C, D) Based on key bacterial taxa generated by EMP package, receiver operating characteristic curves (ROC) were performed to test
prediction models.
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Control_1 group has unique V745 (Veillonellaceae
Phascolarctobacterium) and V1060 (Alcaligenaceae Sutterella)
in its network, while Cases_1 has V328 (Prevotella copri) and
V1225 (Aeromonadales Succinivibrionaceae) in its network.
Another comparison demonstrated that other than the
common species between Control_2 and Cases_2, Control_2
group has V1225 (Aeromonadales Succinivibrionaceae), while
case_2 includes additional three species, that is, V654
(Clostridiaceae Clostridium), V745 (Veillonellaceae
Phascolarctobacterium), and V1060 (Alcaligenaceae Sutterella).
Particularly, Cases_1 group with high network complexity
(transitivity � 0.6315789, centralization degree � 0.3006536,
graph density � 0.3464052) was obviously higher than others
(Supplementary material), which suggested different dietary
structures may change the systemic ecology of gut bacteria.

Diets Significantly Interfere With the
Accuracy of Random Forest Prediction for
Patients With MetS
Emerging evidence proved microbiota could be characterized as
markers for clinical auxiliary approach. As the most popular
machine learning, random forest together with cross validation
could robustly select key bacteria as biomarkers to build
prediction model. In our MicroEasyPlot, RFCV function
allows users to utilize relative abundance data to generate
random forest prediction model and select potential maker
taxa according to mean and standard deviation at a series of
random number. With this, we constructed random forest model
together with cross validation and explored microbial biomarkers
to distinguish individuals with MetS from healthy ones
(Figure 4B, Supplementary Figure S2, and Supplementary
material). Fifteen bacterial taxa at species level were
considered to be the most important biomarkers by a union of
10 random processes, while V647 (Clostridia Clostridiales), V671
(Clostridiales Lachnospiraceae), V725 (Faecalibacterium
prausnitzii), V726 (Ruminococcaceae Oscillospira), and V718
(Clostridiales Ruminococcaceae) changed between groups
significantly (p � 0.0088, 0.095, 0.018, 0.04, 0.088)
(Supplementary Figure S3). RFCV_roc function also could be
used to test this prediction model, through which we established
receiver operating characteristic curve with AUC area 0.63
(Figure 4D). As a control, random forest model with the same
parameters was performed to test the relative abundance data
directly without subgroup analysis; AUC area only achieved 0.51,
which indicated dietary style affected gut microbiota composition
indeed and should be included into downstream microbial
analysis in clinical studies (Figures 4A, C).

Identification of the Relationship Between
Dietary Structure and Microbial Abundance
To explore the detailed relationship of diets and core microbiota,
function cor_plot_heat and cor_plot_detail module provides two
kinds of visualization using “pearson,” “spearman,” and “kendall”
measurement. Correlation analysis showed 17 species of 23 core
taxa generated from data_fiter function were strongly associated

with dietary changes. Especially for several key taxa identified by
random forest model below, V647 (Clostridia Clostridiales) was
positively correlated with red wine intake (r � 0.121, p � 0.017),
V726 (Ruminococcaceae Oscillospira) was positively correlated
with sugar (r � 0.136, p � 0.007), V671 (Clostridiales
Lachnospiraceae) was highly correlated with salt consumption
(r � −0.163, p � 0.001), and V718 (Clostridiales
Ruminococcaceae) was highly correlated with fruits
(r � −0.107, p � 0.034) and plant oil (r � −0.113, p � 0.025)
(Figures 5A, B and Supplementary material). On the other
hand, vegetarian diet including fruits, vegetables, and fruit juice
influenced nine core gut bacterial taxa, which was considered to
be the most influencing factor. High- and low-degree alcohol
affected three taxa core gut bacteria, while red and rice wine
disturbed four taxa. Seasoning including salt, sugar, soy sauce,
and plant and animal oil also presented close relationships with
various gut bacteria.

DISCUSSION

Due to the advent of bioinformatics and high-throughput
sequencing technology, bioinformatics has become a well-
qualified tool in establishing auxiliary diagnostic measurement
in clinical practice (Kordahi et al., 2021). Notably, microbiome
has gained more attention in fields investigating the biological
and pathological nature of various diseases (Claesson et al., 2017).
However, clinical researchers often encountered several
difficulties in data analysis and visualization. In order to fill
the gap between clinical researchers and microbiome data
mining, we collected 16S rDNA sequencing data set from
GGMP and performed data analysis with EMP to present the
convenience and professional practice of our tool. With this
dataset, we proved dietary pattern is an important contributor
to different gut microbiota patterns.

Notably, huge meta-data analysis with detailed participants’
information usually brings tremendous problems. Employing
inappropriate strategy to estimate the features including
continuous and categorical variables may lead to unexpected
bias and errors. For example, dietary pattern could dramatically
change or in the long term reshape the composition of gut
microbiota (Singh et al., 2017). However, in previous studies,
researchers may ether ignore the effects of diets in downstream
microbial analysis or divide subjects into different groups
according to dietary classification such as Western diet,
Mediterranean diet, Vegetarian diet, etc. (Bian et al., 2017;
Garcia-Mantrana et al., 2018). In the present study, 394
qualified subjects were selected from 618 volunteers in
Shenzhen, Guangdong province of China. However, in the
process of 26 estimating votes under different algorithms,
“Kmeans” successfully divided them into two groups based on
“Euclidean” distance, which indicated those 394 subjects from the
same districts had two different dietary structures. Among the
regrouped subjects only based on MetS status, the present study
observed more changes of microbial structure and diversity under
different dietary status indeed. Regrouping based on diet also
improved the robustness of random forest prediction and
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increased AUC area in receiver operating characteristic curves
(ROC) model. Additionally, correlation analysis further
confirmed dietary components including fruits, vegetables,
alcohol, sugar, oil, and salt significantly alter the core bacterial
taxa. Animal studies have revealed that additional salt
supplement could significantly deplete genera Clostridia, which
was consistent with our observation (Wilck et al., 2017).
Furthermore, in two large cohort studies (1,879 middle-aged
elderly Chinese adults from Guangzhou Nutrition and Health
Study and 6,626 subjects from GGMP), dietary fruit and
vegetables were also proved to reshape gut microbiota (Jiang
et al., 2020). Altogether, these results confirmed the importance of
regrouping based on diet, suggesting microbiome-related clinical
studies should take the dietary factor into consideration for
participants’ regrouping. Moreover, factors including smoking,
education, life style, and others could also exert a great influence
on the structure and diversity of gut microbiota (He et al., 2018a).
A big cohort study demonstrated prolonged sedentary lifestyle
may increase the prevalence of MetS through modulation of gut
microbiota (He et al., 2018a). Other studies also suggested various
sports and exercise could reshape human microbiota. Of note,
elite athletes harbor several special taxa in the gut, which were
proven to be able to catalyze lactate into propionate to extend
running time (Scheiman et al., 2019). Thus, multiple factors
should be taken into consideration and estimate their
influence carefully in microbiota-related studies.

Secondly, low abundance and prevalent bacterial taxa may
affect reliability and reproducibility of microbial-related studies
and analysis and were thus considered to be contaminants
(Claesson et al., 2017). Researchers have reached a consensus
that it was hard for bacteria with low abundance to exert
significant effects on the host, and taxa with low prevalence

were likely to lead to false positive and negative results in
classification and prediction models (Knight et al., 2018). For
example, in our previous study, random forest model based on
species data observed several markers in mathematics to
distinguish patients with insomnia from healthy control, while
many taxa determined by classification model without
decontamination were actually outliers and lack biological
significance between groups (Liu et al., 2019). Another cohort
study has also set a strict decontamination standard with >0.5%
of relative abundance and >30% of prevalence in downstream
analysis to avoid potential bias (Biagi et al., 2016). Thus, an
appropriate threshold for data filter is extremely necessary.
Though the concept of filtering microbial data is well accepted
in microbial studies, there is no professional tool in this area. Data
analysts always filter data by self-developed script, while others
even modified data in excel format manually. EMP package
provides a convenient function, data_filter, to address this
problem. Bacteria could be excluded by two thresholds
including minimum abundance and prevalence, which means
users could easily customize the filter according to study design
and generate core bacterial taxa in one step. Before the
application of data filter function, a total of 1,503 species
annotated from 394 feces samples were generated, and a
handful of taxa only presented in few samples with low
abundance. In terms of biologic aspect, these taxa were
believed to originate from contamination and annotation error
and may have an adverse effect on downstream computation.
Utilizing data filter function in EMP package with 0.001
minimum relative abundance and 0.7 minimum prevalence
threshold, only 23 core species were qualified for the following
analysis, which dramatically economized the computational
resources and reduced the bias and errors. Among these core

FIGURE 5 | Correlation analysis between relative abundance of core bacterial taxa and meta data in clinical study.
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species, 17 taxa were proven to be highly correlated with diet,
which further confirmed the value of data filter function. For the
first time, clinical researchers could easily decontaminate
microbial data sets and generate core bacteria for downstream
analysis with a well-recognized process.

Third, solid and meaningful results were normally generated
under standardized and scientific approaches in data analysis.
Although tremendous tools and online platforms were developed
in the past decade, clinical researchers without coding experience
were not satisfied with the complicated instruction or limited
functions. Particularly, certain tutorials in written books or online
websites about microbial data analysis only offer sets of scripts
containing the usage of many independent software, and
following such tutorials is time consuming. Even worse, it is
common to see codes shared by publishers containing kinds of
errors without peer review, including but not limited to the
inappropriate usage of certain software and tools. Additionally,
most of the researchers did not provide detailed script pipeline,
and editors merely require researchers to upload key codes and
scripts in Supplementary material or open-source platform due
to the complexity of script. Without confirmation of the
correctness of the self-written codes, it is hard to realize the
unexpected false positive and false negative conclusion, and this
makes it impossible to reproduce the computational results. On
the other hand, researchers also need an easy way to design their
own pipeline to continue attempting and computing results many
times. Given a lot of independent software were integrated into
code text by hand, collaborators may find it different to read and
use, which may largely increase the risk of error and bugs. Thus,
after collecting and screening popular analysis strategy, EMP
package divides the whole analyzing process into three modules,
and each module could be utilized separately, which provides
enormous convenience in research work. In the present study,
EMP package helped to estimate missing data and classify 394
samples into four groups according to dietary structure. After
receiving group information, Microplot module could simply
analyze microbial data in one script covering α-diversity,
β-diversity, co-occurrence, structure plot, and random forest
models. At last, correlation analysis revealed the influence of
dietary structure on gut microbiota.

There are three main advantages of the current EMP package:
First of all, packages integrated into EMP package are well
accepted by users in this field and documented on the
Comprehensive R Archive Network (CRAN). All of these
packages are widely utilized to perform microbial data analysis
and visualization. Moreover, EMP package is an open-source
tool, and users are welcome to report any bugs. Second, the
existing tools and R packages made great effort to incorporate a
wide range of microbial analysis approaches and statistics
method, while EMP package focuses on clinical studies, and
the whole process is divided into three parts for the core
microbial data analysis. Given many retrospective studies
cannot determine groups for samples, EMP provides scientific
method to help clinical scientists screen and regroup samples.
Besides, EMP package does not need well-matched relative
abundance files and mapping file and could automatically
identify bacterial level and perform data analysis according to

mapping file containing samples identifiers and group
information in text format or data frame generated from R
script without modifying bacterial data, which may
significantly reduce mistakes in many attempts. Third, in
order to maximally simplify the operating procedure, EMP
package allows users to perform the whole workflow with only
one step and generate all results in the workspace. Each core
analysis in workflow also could be performed by applying one
function, which means researchers could design their own
pipeline in a few lines of script with modules they are
interested in for the study. In this case, EMP simplified
clinical users’ self-developed codes, allowing peer reviewers
and readers to also test and reproduce specific results with few
codes. Thus, with EMP package, clinical investigators could
explore a huge scale of clinical data together with microbial
abundance information and publish their result easily and
reliably.

CONCLUSION

EMP package incorporates widely used microbial data analysis
and visualization tools deposited in CRAN and provides clinical
investigators with a convenient approach to perform downstream
data filtering, analysis, and visualization. From the demo data, we
demonstrated that researchers could simply utilize different
modules to identify missing data, classify patients into
different groups, and regroup them based on different
parameters. Most importantly, this package could help
clinicians robustly select key microbial biomarkers and
calculate the correlation index between core microbiota and
clinical parameters, such as BMI, age, and height, etc. Overall,
EMP package provides an efficient and convenient downstream
microbiome analysis pipeline, especially for clinical investigators
without additional script experience.
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BioInfograph: AnOnline Tool to Design
and Display Multi-Panel Scientific
Figure Interactively
Kejie Li, Jessica Hurt, Christopher D. Whelan, Ravi Challa, Dongdong Lin and
Baohong Zhang*

Translational Biology, Biogen Inc., Cambridge, MA, United States

Many fit-for-purpose bioinformatics tools generate plots to interpret complex biological
data and illustrate findings. However, assembling individual plots in different formats
from various sources into one high-resolution figure in the desired layout requires
mastery of commercial tools or even programming skills. In addition, it is a time-
consuming and sometimes frustrating process even for a computationally savvy
scientist who frequently takes a trial-and-error iterative approach to get satisfactory
results. To address the challenge, we developed bioInfograph, a web-based tool that
allows users to interactively arrange high-resolution images in diversified formats, mainly
Scalable Vector Graphics (SVG), to produce one multi-panel publication-quality
composite figure in both PDF and HTML formats in a user-friendly manner, requiring
no programming skills. It solves stylesheet conflicts of coexisting SVG plots, integrates a
rich-text editor, and allows creative design by providing advanced functionalities like
image transparency, controlled vertical stacking of plots, versatile image formats, and
layout templates. To highlight, the sharable interactive HTML output with zoom-in
function is a unique feature not seen in any other similar tools. In the end, we make the
online tool publicly available at https://baohongz.github.io/bioInfograph while releasing
the source code at https://github.com/baohongz/bioInfograph under MIT open-source
license.

Keywords: bioinformatics, infographic, high-resolution, Scalable Vector Graphics, multi-panel figure

INTRODUCTION

Popular computational biology databases such as Reactome (Jassal et al., 2020), WikiPathways
(Martens et al., 2021), and visualization tools such as Coral (Metz et al., 2018) and
ComplexHeatmap (Gu et al., 2016) often produce biological images in Scalable Vector
Graphics (SVG) format. SVG is an Extensible Markup Language (XML)-based vector image
format, scalable to any resolution without blurry pixelization that happens in other popular image
formats such as png, gif, and jpg. This format has become one of the most broadly used image
outputs adopted by many data analysis tools used by computational biologists, notably R
(Venables et al., 2002), ggplot2 (Wickham, 2016), and numerous R and Bioconductor
(Gentleman et al., 2004) packages. In addition, SVG is usually set as the default image output
by many JavaScript-based plotting libraries like D3 (Bostock et al., 2011). To point out, these SVG
images are rendered naturally by modern web browsers including Chrome, Firefox, Safari, and
Microsoft Edge.
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Composing multi-panel publication-ready figures, such as the
one presented in Figure 1, usually poses a challenge for biologists
with no or modest programming skills after gathering individual
plots from various sources in diversified formats, such as png, gif,
jpg, tiff, pdf, and svg. Nevertheless, creating graphical abstracts like
Figure 1 to give a high-level comprehensive story becomes a routine
task in biological publication. And often, such illustration is
required to be in high resolution. Biologists usually turn to user-
friendly commercial tools, such as Microsoft PowerPoint, as viable
options to arrange such plots. But these tools either cannot deal with
complex pathway diagrams in SVG format fromWikiPathways, or
render this format in low resolution with missing colors, sometimes
even in malformed appearance as shown in Figure 2.

A previously developed web-based plot designing tool,
canvasDesigner (Zhang et al., 2018), attempted to provide a
solution but with limited success. It fails to handle stylesheet
conflicts caused by SVG files from different tools and lacks
flexibility in design where images are required to overlay onto
each other. Moreover, singular input image format and
rudimentary text support hinder its usability. To address these
major shortcomings, we revamped the new version to accept
more image formats in bioInfograph beyond only SVG, as
acquiring such format might be unfeasible in certain
circumstances such as scanned gel images, and we improved
usability tremendously by implementing advanced functions
outlined in the Materials and Methods section.

MATERIALS AND METHODS

Implementation and Usage of BioInfograph
With simplicity and accessibility in mind, it is implemented as a
one-page, client-only, web-based application without the server-
side component, available online at https://baohongz.github.io/
bioInfograph. Written in plain JavaScript language, bioInfograph
takes advantage of open-source JavaScript libraries including
common ones like jQuery, bootstrap, and lodash. As shown in
Figure 3A, other special JavaScript libraries are listed under each of
three functional modules, “Upload images,” “Layout images,” and
“Save HTML,” to show the design of the software. First, dropzone.js
makes it easy to upload or drag and drop image files to the tool. The
content of uploaded or dropped files will be put on the canvas for
layout. The source code in the library is modified to allow emitting
“previewReady” status when an image is fully loaded into memory
and displayed in the preview box; see https://bit.ly/3Gup4Zp for
details. Second, gridstack.js is used to layout draggable, resizable,
responsive bootstrap-friendly panels in a grid on the designing
canvas. Each panel in the grid holds one image that can be panned
or zoomed in and out by attached control provided by svg-pan-
zoom.js. Modifications are made in gridstack.js to preserve inline
styles, including positions, size, and z-index in order to drag a panel
to an accurate location instead of pre-defined stops; see https://bit.
ly/3CaOg3T for details. Functions of tinymce.js and svg-inject.js
libraries are discussed in the following related sections. Third,

FIGURE 1 | High-resolution plots generated by various tools are arranged by the online tool, bioInfograph, to produce a composite plot. Unless specified, the
source plot is in Scalable Vector Graphics (SVG) format. (A) Human kinome tree generated by Coral web app. (B) Gene expression heatmap by R package
ComplexHeatmap. (C) Blood cell lineage from Wikimedia Commons (https://bit.ly/2Wjc5aS). (D) Human cell cycle pathway diagram from WikiPathways. (E) Human
immune system illustration from Reactome. (F) Protein 3D structure ribbon form in png format by PyMOL (DeLano, 2000). An interactive version of the figure for the
enlarged view of individual panels is available at https://bit.ly/39ClQnD.
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FIGURE 2 | An example of a pathway diagram from WikiPathways is not properly rendered by (A) Microsoft PowerPoint or (B) Inkscape. Please note the
unexpected black triangles generated by both tools and loss of green color in the text (e.g., DNA replication) by PowerPoint, while the same Scalable Vector Graphics
(SVG) image is rendered perfectly by bioInfograph as shown in Figure 1D.
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FIGURE 3 |Overview of the software architecture and main features. (A) The one-page web app is powered by general JavaScript libraries listed in the rotated box
and specific libraries used in each of three functional modules, “Upload images,” “Layout images,” and “Save HTML.” (B) BioInfograph allows users to easily arrange
multiple plots in Scalable Vector Graphics (SVG), png, jpeg, or gif format exported by other tools. Each plot can be adjusted in size and placed freely on the canvas. A
minimal workflow is outlined by numbered callout boxes in red, while important features not required by the minimal workflow are briefed in un-numbered boxes.

FIGURE 4 | Input of paragraphs of text by clicking on “Add Text Box” and then typing in the resizable box that was added to the canvas a moment ago. Clicking on
the text will fire up the formatting menu, while clicking on any area outside the box will exit the menu. Formatting is always applied to selected text.
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FileSaver.js is utilized to save image content and associated
metadata about size, position, opacity, and zoom scale in an
HTML file. When taken together, an intuitive user interface is
built and shown in action as illustrated in Figure 3B, where control
elements are located at the top, functional modules in the middle,
and a movable, dynamically resizable canvas at the bottom. A very
basic workflow is outlined by numbered callout boxes consisting of
five steps: 1) uploading images; 2) adding pan-zoom control to fine-
tune image size and position; 3) adding labels; 4) saving the work as
an HTML file; and 5) printing as PDF. While not required in the
minimal setting, all other un-numbered boxes highlight important
features to smooth the design process, such asmoving the canvas up
to create more working space, changing the size of an individual
panel, dropping a panel to a trash bin, and adding text box for
typing paragraphs of text with spell checking. Due to the space
limitation of the figure, some features are discussed in more
detail below.

Besides online access, users can install it as a desktop app by
downloading the html page or creating a shortcut of the page on
the desktop by following the instruction in GitHub repo, https://
bit.ly/3wTxoxk. To be aware, the tool is fully tested in the Chrome
browser, which provides the best experience.

Flexible Text Input
Regular characters plus built-in Emoji and symbols from Chrome
browser can be typed in the title of a plot, which can be fully
formatted in various font families, styles, sizes, shades, and colors
by using an integrated text editor, TinyMCE (https://www.tiny.

cloud). Moreover, resizable text boxes can be placed freely on the
canvas to input paragraphs of text by following the instructions in
Figure 4. The markdown language has gained popularity in
authoring simple documents especially within R and GitHub
communities. A very simple markdown processor is enabled by
using tinymce’s text pattern plugin that matches the following
patterns (source code block from index.html) in the text and
applies corresponding formats on these patterns; e.g., “*test*” will
become “test” in the editor.

Versatile Image Formats
Besides the SVG format, bioInfograph accepts directly additional
popular image formats including png, gif, and jpg as input. For
other formats like tiff or pdf, free tools such as Inkscape (https://
inkscape.org) (Bah, 2007) or pdf2svg (https://bit.ly/2NVtj6E) can

textpattern_patterns: [
{start: ’*’, end: ’*’, format: ’italic’},
{start: ’**’, end: ’**’, format: ’bold’},
{start: ’#’, format: ’h1’},
{start: ’##’, format: ’h2’},
{start: ’###’, format: ’h3’},
{start: ’####’, format: ’h4’},
{start: ’#####’, format: ’h5’},
{start: ’######’, format: ’h6’},
{start: ’1. ’, cmd: ’InsertOrderedList’},
{start: ’* ’, cmd: ’InsertUnorderedList’},
{start: ’- ’, cmd: ’InsertUnorderedList’}
],

FIGURE 5 | Each plot will get a button handle when it is loaded onto the canvas. A plot and the linked handle will be highlighted in yellow when hovering the mouse
over a handle. Dragging the handle and dropping it at the desired position among these buttons will change the relative vertical stacking, also known as z-index of the
plot. The bottom position represents the top layer of the stack of plots on the canvas.
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be utilized to convert these to one of the acceptable formats,
preferably SVG.

Stylesheet Conflict
Since stylesheet definitions in SVG files are always applied
globally to style elements, they share the same parse tree when
multiple inline SVGs are embedded in a single document.
Therefore, style overwriting and component id collisions can
occur and upset the rendering in canvasDesigner as shown in
Supplementary Figure S1. To overcome these shortcomings,
bioInfograph automatically converts global definitions into inline
styles embedded in each targeting element individually, stores it
locally, and then removes these definitions from the global scope
to solve the overwriting issue. Then, it utilizes a modified version
of svg-inject.js (see https://bit.ly/3Gus3kz for details) to make ids
in the document unique by appending original ids with a suffix in
the form of “--inject-X”, where X is a running number that is
incremented with each added SVG image.

Vertical Stacking
Each image is associated with a vertically stacked control button.
Desired vertical stacking order (z-index) is attainable by moving
these control buttons up or down by mouse as demonstrated in
Figure 5, which provides an additional dimension for creative
design that often requires overlapped images in a certain order.

Image Transparency
The white background in the SVG file is optionally removable to
make it transparent so that plots can be overlaid onto each other
to create appealing art. Opacities of individual images can be
adjusted granularly as well to make a comprehensive effect of
overlaid images as showcased in visualizing spatial
transcriptomics data, which is displayed in Figure 6. In this
use case, vertical stacking of gene expression data on top of
histopathology images or vice versa with adjustable transparency
is a crucial visualization capability to investigate the relationship
between the transcriptional signals and disease pathology.

Interactive HTMLOutput and Saved Session
The finished work can be saved as a self-contained HTML file
with necessary JavaScript code embedded for easy sharing by
email or hosting at GitHub-like services as exemplified at https://
bit.ly/39ClQnD. An individual plot can be enlarged and further
zoomed in to view details in high resolution by clicking on the
plot and then the button with a plus sign in the popup window.
Unique to this HTML presentation, links to detailed information
of proteins in UniProt database (The UniProt Consortium, 2021)
are active in panel A of the interactive figure as shown in Figure 7.
Therefore, bioInfograph output can act as an information portal
beyond mere pictures by embedding links to dissipated
computational biology resources in SVG figures. Meanwhile,

FIGURE 6 | Overlaying colored spatial clustering plot and histological image to illustrate the relationship of histological features and clusters based on 10X
Genomics spatial transcriptomics data (https://bit.ly/3F0xKWD). Users can adjust the opacity of a selected plot by clicking a plot handle to select the plot and then typing
a number or using the slide to change the value. The zoom scale sensitivity of the plot is tuned to the smallest number for fine alignment of overlaid plots.
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the saved HTML file also serves as a session file that can be loaded
back into the tool to restore the work for further modification.

RESULTS

We developed bioInfograph, an interactive web-based tool with a
focus on computational biology, which arranges high-resolution

images in various formats, mainly SVG, to produce one multi-
panel publication-quality composite figure in both PDF and
interactive HTML formats in a user-friendly manner,
requiring no programming skills.

We compared it with several popular tools to illustrate the
advanced features of bioInfograph. Among the six tools listed
in Table 1, except patchwork (Pedersen, 2019), which is a
command line based tool, the rest offers an interactive user-

FIGURE 7 | Interactive online HTML presentation of Figure 1with zoom-in and link-out features. Clicking on an individual plot will bring up a popupwindowwith the
enlarged zoomable version. Links in Scalable Vector Graphics (SVG) are active, so clicking on “IRAK4” on the node in the phylogenetic tree will show detailed information
about the protein in UniProt database.

TABLE 1 | Comparison scorecard of figure design tools.

BioInfograph v1.0 Canvasdesigner v1.0 MS powerpoint
v16.3

Adobe acrobat
pro DC

v2020.006

Patchwork v1.0 Inkscape v0.92

Open source/cost Yes/free Yes/free No/license fee No/license fee Yes/free Yes/free
Multi-image formats Yes No Yes Yes No Yes
Rendering speed Fast Fast Fast Fast Fast Slow
Text input Yes No Yes Yes Yes Yes
Interactive HTML output Yes Yes No No No No
SVG input Yes Yes Yes No No Yes
SVG stylesheet compatibility Yes No Yes N/A N/A No
Image transparency Yes No Yes No N/A Yes
Saving session Yes No Yes No No No
Installation free Yes Yes No No No No

SVG, Scalable Vector Graphics.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7845317

Li et al. BioInfograph: Interactive Figure Designer

121

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


friendly interface. In addition, bioInfograph and
canvasDesigner are conveniently accessible web-based tools.
Regarding image formats, Adobe Acrobat and patchwork will
not take SVG as input natively, while PowerPoint and Inkscape
have issues when rendering complex pathway diagrams in SVG
format as shown in Figure 2. Although canvasDesigner and
bioInfograph share many common features, bioInfograph
breaks the limitations of canvasDesigner by solving
conflicting stylesheet issues, accepting images in various
formats, overlaying images in any order vertically, adjusting
image transparency, and providing flexible text input. In
summary, we outline a comparison scorecard of features
among these tools including both open source solutions and
popular commercial tools available to the authors in Table 1.

CONCLUSION

BioInfograph is an open-source and publicly available web-based
tool that can be accessed online or downloaded as a desktop
application. It has the most feasible features to improve
productivity in the case of creating high-resolution multi-panel
figures for scientific publication. Furthermore, the innovative
HTML output brings a new way of illustrating high-resolution

figures interactively with unlimited zoom-in capability, which
could be a nice feature for journals to incorporate in online
publishing.
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Analysis and Visualization of Spatial
Transcriptomic Data
Boxiang Liu*†, Yanjun Li† and Liang Zhang

Baidu Research, Sunnyvale, CA, United States

Human and animal tissues consist of heterogeneous cell types that organize and interact in
highly structuredmanners. Bulk and single-cell sequencing technologies remove cells from
their original microenvironments, resulting in a loss of spatial information. Spatial
transcriptomics is a recent technological innovation that measures transcriptomic
information while preserving spatial information. Spatial transcriptomic data can be
generated in several ways. RNA molecules are measured by in situ sequencing, in situ
hybridization, or spatial barcoding to recover original spatial coordinates. The inclusion of
spatial information expands the range of possibilities for analysis and visualization, and
spurred the development of numerous novel methods. In this review, we summarize the
core concepts of spatial genomics technology and provide a comprehensive review of
current analysis and visualization methods for spatial transcriptomics.

Keywords: spatial transcriptomics, single-cell RNA-seq (scRNA-seq), clustering, cell-type identification,
dimensionality reduction, spatial expression pattern, spatial interaction, visualization

1 INTRODUCTION

Quantification of gene expression has important applications across various aspects of biology.
Understanding the spatial distribution of gene expression has helped to answer fundamental
questions in developmental biology (Asp et al., 2019; Rödelsperger et al., 2021), pathology
(Maniatis et al., 2019; Chen et al., 2020), cancer microenvironment (Berglund et al., 2018;
Thrane et al., 2018; Ji et al., 2020; Moncada et al., 2020), and neuroscience (Shah et al., 2016;
Moffitt et al., 2018; Close et al., 2021). Two widely used methods for gene expression quantification
are fluorescent in situ hybridization (FISH) and next-generation sequencing. With FISH,
fluorescently-labeled RNA sequences are used as probes to identify its naturally occurring
complementary sequence in cells while preserving the spatial location of the target sequences
(Schwarzacher and Heslop-Harrison, 2000). Traditionally, the number of target sequences
simultaneously identified by in situ hybridization is restricted by the number of fluorescent
channels, making this method suitable for targeted gene detection. On the other hand, next-
generation sequencing methods use a shotgun approach to quantify RNAmolecules across the entire
transcriptome (Metzker, 2010). To achieve transcriptome-wide quantification, RNA must be first
isolated and purified, which removes RNA molecules from their native microenvironment. Even
with single-cell sequencing, where the cellular origin of RNA molecules is preserved, spatial
information of cells can only be inferred but not directly measured (Shapiro et al., 2013; Gawad
et al., 2016).

Various approaches have been made to measure gene expression while preserving spatial
information. Tomo-seq applied the principle of tomography to measure spatial transcriptomic
information in 3D. In tomo-seq, tissue samples are sliced by cryosection and measured with RNA-
seq. Each measurement corresponds to the average gene expression within a slice. Measurements are
taken along multiple axes to reconstruct pixel-wise 3D gene expression information. (Junker et al.,
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2014). LCM-seq isolates single cells with laser capture microscopy
(LCM) and measures captured cells with single-cell RNA-
sequencing. LCM can capture cells of desired types and with
specific spatial locations of the tissue specimen (Nichterwitz et al.,
2016). While these methods retain the spatial location of RNA-
seq measurements, they suffer from high labor costs and
incomplete spatial coverage. In this review, we cover recent
advances in spatial transcriptomic methods that attempt to
address these challenges. In addition, we provide a
comprehensive review of analysis and visualization techniques
for spatial transcriptomic datasets.

The following sections are organized as follows (Figure 1).
Section 2 discusses the latest developments in experimental
spatial transcriptomic technologies. Section 3 discusses
preprocessing of spatial transcriptomic data, an essential step
prior to any analysis or visualization. Section 4 dissects methods
whose inputs are gene expression without spatial coordinates.
This includes dimensionality reduction, clustering, and cell-type
identification. Section 5 describes methods whose inputs are gene
expression combined with spatial coordinates. This includes
identification of spatially coherent gene expression patterns
and identification of spatial domains. Section 6 describes
methods that analyze the interaction between cells or genes.
All methods reviewed are listed in Table 1. This includes the
identification of cell-to-cell communication and gene interaction.
We note that other reviews on spatial transcriptomic technology

(Dries et al., 2021a) have been published during the peer review of
this article.

2 SPATIAL TRANSCRIPTOMIC
TECHNOLOGIES

Integration of spatial information with transcriptome-wide
quantification has given rise to the emerging field of spatial
transcriptomics. Currently, spatial transcriptome quantification
falls into three broad categories (Table 2). First, spatial barcoding
methods ligate oligonucleotide barcodes with known spatial
locations to RNA molecules prior to sequencing (Ståhl et al.,
2016; Rodriques et al., 2019; Vickovic et al., 2019; Liu et al., 2020;
Chen et al., 2021; Cho et al., 2021; Stickels et al., 2021). Both
barcodes and RNA molecules are jointly sequenced, and spatial
information of sequenced RNA molecules can be recovered from
associated barcodes. Second, in situ hybridization methods
coupled with combinatorial indexing can vastly increase the
number of RNA species identified (Lubeck et al., 2014; Chen
et al., 2015; Moffitt et al., 2016; Eng et al., 2019). The latest in situ
hybridization methods can detect around 10,000 RNA species
from a given sample (Eng et al., 2019). Third, in situ sequencing
method uses fluorescent-based direct sequencing to read out base
pair information from RNA molecules in their original spatial
location (Lee et al., 2014; Wang et al., 2018).

FIGURE 1 | An overview of spatial transcriptomic tasks. (A) Spatial transcriptomic datasets map gene expression measurements to their respective locations. (B) A
spatial transcriptomic dataset can be analyzed in gene expression space, irrespective of spatial locations. Tasks such as clustering and cell-type identification fall into this
category. (C) Spatial information can be used jointly with gene expression to detect spatial expression patterns and spatial domains. (D) These two sources of
information can also be used to detect cell-cell and gene-gene interactions.
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TABLE 1 | Current analysis and visualization tools for spatial transcriptomic datasets (accession date: 12/22/2021).

Task Tool Inputs Description Language Availability

Preprocessing Space Ranger Microscope images and
FASTQ files

Space Ranger is an analysis pipeline for
alignment, tissue and fiducial detection,
barcode/UMI counting, and feature-
spot matrix generation.

Bash
and GUI

https://support.10xgenomics.com/
spatial-gene-expression/software/
pipelines/latest/what-is-space-ranger

Scran (2016); Lun
et al. (2016)

Gene expression Scran uses pool-based and
deconvoluted cell-based size factors for
single-cell gene expression
normalization.

R http://bioconductor.org/packages/
release/bioc/html/scran.html

SCNorm (2017);
Bacher et al. (2017)

Gene expression SCNorm uses double quantile
regression-based model for gene-group
normalization.

R https://www.bioconductor.org/
packages/release/bioc/html/SCnorm.
html

Clustering K-means Gene expression K-means iteratively assigns
observations to the cluster with the
nearest left.

R and
Python

R: https://www.rdocumentation.org/
packages/stats/versions/3.6.2/topics/
kmeans; Python: https://scikit-learn.org/
stable/modules/generated/sklearn.
cluster.KMeans.html

Gaussian mixture
model

Gene expression GMM is similar to K-means but softly
assigns observations to clusters based
on the Gaussian distribution.

R and
Python

R: https://cran.r-project.org/web/
packages/ClusterR/vignettes/the_
clusterR_package.html; Python: https://
scikit-learn.org/stable/modules/mixture.
html

hierarchical clustering Gene expression Hierarchical clustering iteratively merges
closest observations.

R and
Python

R: https://www.rdocumentation.org/
packages/stats/versions/3.6.2/topics/
hclust; Python: https://scikit-learn.org/
stable/modules/clustering.
html#hierarchical-clustering

Louvain (2008);
Blondel et al. (2008)

Gene expression Louvain performs community detection
within networks by iterative optimization
of modularity.

R and
Python

R: https://igraph.org/r/doc/cluster_
louvain.html; Python: https://github.
com/vtraag/louvain-igraph

Leiden (2019); Traag
et al. (2019)

Gene expression Leiden is a variant of the Louvain
algorithm that guarantees well-
connected communities.

R and
Python

R: https://cran.r-project.org/web/
packages/leiden/; Python: https://
github.com/vtraag/leidenalg

SC3 (2017); Kiselev
et al. (2017)

Gene expression SC3 performs consensus clustering of
single-cell RNA-seq data.

R http://bioconductor.org/packages/
release/bioc/html/SC3.html

SIMLR (2017); Wang
et al. (2017)

Gene expression SIMLR is a multi-kernel learning
approach for single-cell RNA-seq
clustering.

R and
MATLAB

MATLAB: https://github.com/
BatzoglouLabSU/SIMLR; R: https://
www.bioconductor.org/packages/
release/bioc/html/SIMLR.html

Cell-specific
marker genes

scran (2016); Lun
et al. (2016)

Gene expression Scran identifies consistently up-
regulated genes through pairwise
comparisons between clusters.

R https://bioconductor.org/packages/
devel/bioc/vignettes/scran/inst/doc/
scran.html#6_Identifying_marker_genes

scGeneFit (2021);
Dumitrascu et al.
(2021)

Gene expression ScGeneFit is a label-aware compressive
classification method to select
informative marker genes.

Python https://github.com/solevillar/scGeneFit-
python

Cell-type
identification

scmap (2018);
Kiselev et al. (2018)

Gene expression Scmap projects single-cell to
References data sets with an
approximate k-nearest-neighbor
search.

R http://bioconductor.org/packages/
release/bioc/html/scmap.html; Web
version: https://www.sanger.ac.uk/tool/
scmap/

SingleR (2019); Aran
et al., 2019

Gene expression SingleR iteratively calculates pairwise
correlation across single cells and
remove lowly correlated cell type for
noise control.

R https://github.com/dviraran/SingleR

Cell-ID (2021); Cortal
et al. (2021)

Gene expression of
References and target
single-cell datasets

Cell-ID performs multiple
correspondence analysis (MCA) based
gene signature extraction and cell
identification

R https://bioconductor.org/packages/
devel/bioc/html/CelliD.html

JSTA (2021); Littman
et al. (2021)

in situ hybridization
dataset

JSTA is a deep-learning-based cell
segmentation and type annotation
method by iteratively adjusting the
assignment of boundary pixels based on
the cell type probabilities for each pixel.

Python https://github.com/wollmanlab/JSTA;
https://github.com/wollmanlab/PySpots

(Continued on following page)
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Several metrics need to be considered when selecting a method
for a specific application (Table 2). Methods employing in situ
hybridization provide subcellular resolution. Leveraging super-
resolution microscopy, in situ hybridization methods can achieve

a resolution of ∼10nm, sufficient to distinguish single RNA
molecules (Schermelleh et al., 2019). In addition, in situ
methods require no PCR amplification of cDNA, thus
avoiding amplification bias. However, the number of RNA

TABLE 1 | (Continued) Current analysis and visualization tools for spatial transcriptomic datasets (accession date: 12/22/2021).

Task Tool Inputs Description Language Availability

Dimensionality
reduction

Principal component
analysis

Gene expression PCA identifies orthogonal vectors that
maximize the variance of projections
from data points.

R and
Python

R: https://www.rdocumentation.org/
packages/stats/versions/3.6.2/topics/
prcomp; Python: https://scikit-learn.org/
stable/modules/generated/sklearn.
decomposition.PCA.html

t-SNE (2008); Van der
Maaten and Hinton.
(2008)

Gene expression T-SNE iteratively refines projections in
the low dimensional space to match
pairwise distances in the high dimension
space.

R and
Python

R: https://cran.r-project.org/web/
packages/Rtsne/; Python: https://scikit-
learn.org/stable/modules/generated/
sklearn.manifold.TSNE.html

UMAP (2018);
McInnes et al. (2018)

Gene expression UMAP is similar to t-SNE but faster and
better preserves high dimensional
structure.

R and
Python

R: https://cran.r-project.org/web/
packages/umap/index.html; Python:
https://umap-learn.readthedocs.io/en/
latest/

Spatially coherent
genes

SpatialDE (2018);
Svensson et al.
(2018)

Gene expression +
spatial coordinates

SpatialDE uses gaussian process
regression to decompose variability into
spatial and non-spatial components.

Python https://github.com/Teichlab/SpatialDE

Trendsceek (2018);
Edsgärd et al. (2018)

Gene expression +
spatial coordinates

Trendsceek uses marked point
processes to identify spatial expression
patterns.

R https://github.com/edsgard/trendsceek

Spark (2018); Sun
et al. (2020)

Gene expression +
spatial coordinates

Spark is a generalized linear spatial
model to identify spatial expression
patterns.

R https://xzhoulab.github.io/SPARK/

Spatial domains Zhu et al. (2018); Zhu
et al. (2018)

Gene expression +
spatial coordinates

Zhu et al. uses a hidden Markov random
field to compare gene expression of
neighboring cells to identify coherent
expression patterns.

R and
Python

R: https://bitbucket.org/qzhudfci/
smfishhmrf-r/src/master/; Python:
https://bitbucket.org/qzhudfci/
smfishhmrf-py/src/master/

SpaGCN (2021); Hu
et al. (2021b)

Gene expression +
spatial coordinates +
histology image

SpaGCN is a graph-convolutional-
network-based method to jointly identify
spatial domains and spatially variable
genes.

Python https://github.com/jianhuupenn/
SpaGCN

Spot
deconvolution

DSTG (2021); Song
and Su (2021)

Gene expression +
spatial coordinates

DSTG builds a graph consisting of real
and pseudo spatial transcriptomic data
and apply graph convolutional network
to predict real data’s cell type
composition with help from pseudo
data’s label.

Python https://github.com/Su-informatics-lab/
DSTG

Super-resolution BayesSpace (2021);
Zhao et al. (2021)

Gene expression +
spatial coordinates

BayesSpace is a Bayesian model to
leverage neighborhood information to
enhance resolution.

R http://www.bioconductor.org/
packages/release/bioc/html/
BayesSpace.html

Cell-cell
interaction

SpaOTsc (2020);
Cang and Nie (2020)

Gene expression +
spatial coordinates

SpaOTsc uses structured optimal
transport between distribution of sender
and receiver cells to identify cell-cell
communication.

Python https://github.com/zcang/SpaOTsc

Receptor-ligand
interaction

GCNG (2020); Yuan
and Bar-Joseph,
(2020)

Gene expression +
spatial coordinates

GCNG is a graph convolutional neural
network to encode the spatial
information as a graph and to predict
whether a gene pair will interact.

Python https://github.com/xiaoyeye/GCNG

Integrative Seurat (2018);
Waltman and Van
Eck. (2013)

Gene expression +
spatial coordinates

Seurat is an R package for integrative
single-cell transcriptomic analysis.

R https://cran.r-project.org/web/
packages/Seurat/index.html

Giotto (2021); Dries
et al. (2021b)

Gene expression +
spatial coordinates

Giotto is an R package for integrative
spatial transcriptomic analysis.

R https://rubd.github.io/Giotto_site/

Scanpy (2018); Wolf
et al. (2018)

Gene expression +
spatial coordinates

Scanpy is a Python package for
integrative single-cell transcriptomic
analysis.

Python https://scanpy.readthedocs.io/en/
latest/

Squidpy (2021); Palla
et al. (2021)

Gene expression +
spatial coordinates

Squidpy is a Python package for
integrative spatial transcriptomic
analysis.

Python https://squidpy.readthedocs.io/en/
stable/
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species detected by in situmethods is limited by the indexing scheme.
The current detection limit is∼10,000 genes but will likely improve in
the future. Furthermore, the area examined by in situ methods is
limited by the field-of-view of the microscope objective lens. In
contrast, spatial barcoding followed by shotgun sequencing can in
principle sample the whole transcriptome. This is ideal if the target
molecules are unknown a priori. Spatial barcoding can also examine
larger tissue areas, making it ideal for larger samples such as tissue
slices from the brain. However, the density of measurement spots
limits the spatial resolution of current spatial barcoding methods,
ranging from multicellular to subcellular. In addition, shotgun
sequencing inevitably suffers from PCR amplification bias (Aird
et al., 2011), as well as “dropout” when sequencing read depth is
insufficient (Kim et al., 2020). Thus far, we have provided an overall
picture of different spatial transcriptomic methods and their
characteristics. Because this review focuses on analysis and
visualization of spatial transcriptomics, readers who wish to
understand the experimental details can refer to comprehensive
reviews elsewhere (Crosetto et al., 2015).

3 PREPROCESSING

Spatial transcriptomic datasets add a new dimension to
transcriptomic analyses. Spatial coordinates of cells enable novel
analyses such as spatial differential expression (Svensson et al.,
2018) and cell-cell interaction (Cang and Nie, 2020). Similar to
single-cell RNA-seq datasets, a spatial transcriptomic dataset can
be represented by a gene-by-cell count matrix. A second matrix of
coordinates is attached to the cell dimension of the count matrix to
represent spatial information. Comprehensive toolkits such as Space
Ranger can process raw sequence reads into count matrices. Taking a
microscope image and FASTQ files as input, Space Ranger can
perform alignment, tissue and fiducial detection, barcode/UMI
counting, and feature-spot matrices generation.

Various preprocessing steps may be performed prior to any
analysis. First, genes and cells may be filtered based on a
threshold specific to the dataset. For example, a cell may be
removed if it has 1) less than 1,000 expressed genes or 2) a high
proportion of mitochondria RNA. A gene may be removed if it is
detected in less than ten cells (Wolf et al., 2018; Lun et al., 1000).
Transformation of count data may be performed according to
downstream modeling assumptions. Methods modeling raw

counts do not require any transformation (Sun et al., 2020).
Otherwise, gene expression per cell may be normalized to have
the same total library size such that expression levels are comparable
across cells. The gene expressionmatrixmay then be log-transformed
and be regressed against confounders such as batch effect, percentage
of mitochondria genes, and other technical variations. Although
preprocessing steps mentioned above are widely adopted, the
exact configuration should follow input data modality and
modeling assumptions, and there is no one-size-fits-all strategy.

3.1 Gene Expression Normalization
Current spatial transcriptomic techniques introduce unwanted
technical artifacts. Raw data commonly exhibit spot-to-spot
variation and high dropout rates, which may impact downstream
analyses. Several normalization strategies have been created to
address these challenges. Due to the similarity between spatial
transcriptomics and scRNA-seq, many normalization methods for
spatial transcriptomics data are inspired by scRNA-seq studies.

A widely-used normalization tool is scran, a method based on
the summation of expression values and deconvolution of pooled
size factors (Lun et al., 2016). In the first step, expression values of
all cells in the data set are averaged to serve as a reference. The
cells are then partitioned into different pools, where the
summation of expression values in each pool is normalized
against the reference to generate a pool-based size factor. A
linear system can be constructed by repeating the above
normalization over multiple pools. Finally, the normalized
cell-based counterparts can be calculated by solving the linear
system with standard least-squares methods, i.e., deconvolving
the pool-based size factor to individual cells. By representing the
individual cells with multiple pools of cells, scran is capable of
avoiding estimation inaccuracy in the presence of stochastic
zeroes and is robust to differentially expressed genes. Similar
to scran, a number of methods adopt the global scale factor
strategy, where one normalization factor is applied to each cell,
and all genes in this cell share the same factor. When the
relationship between transcript-specific expression and
sequencing depth is not shared across genes, such strategy will
likely lead to overcorrection for weakly and moderately expressed
genes. To address the problem, Bacher et al. proposed SCnorm, a
quantile-regression based method that can estimate the
dependence of expression on sequencing depth for each gene
(Bacher et al., 2017). Then genes are grouped based on the

TABLE 2 | Current experimental methods for spatial transcriptomic profiling.

Method Type Resolution Genes References

Visium Spatial barcoding 55 μm Whole transcriptome Ståhl et al. (2016)
Slide-seq Spatial barcoding 10 μm Whole transcriptome Rodriques et al. (2019), Stickels et al. (2021)
HDST Spatial barcoding 2 μm Whole transcriptome Vickovic et al. (2019)
DBiT-Seq Spatial barcoding 10 μm Whole transcriptome Liu et al. (2020)
Seq-scope Spatial barcoding 0.5-0.8 μm Whole transcriptome Cho et al. (2021)
Stereo-seq Spatial barcoding 0.5 or 0.715 μm Whole transcriptome Chen et al. (2021)
SeqFISH in situ hybridization single-molecule >10,000 Lubeck et al. (2014), Eng et al. (2019)
MerFISH in situ hybridization single-molecule 100–1,000 Chen et al. (2015), Moffitt et al. (2016)
STARmap in situ sequencing single-cell 160–1,020 Wang et al. (2018)
FISSEQ in situ sequencing subcellular ∼8,000 Lee et al. (2014)

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7852905

Liu et al. Analysis and Visualization for Spatial Transcriptomics

127

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


similarity of dependence, and a second quantile regression is used
to estimate a shared scale factor within each group.

Lytal et al. conducted an empirical survey to evaluate the
effectiveness of seven single-cell normalization methods. Based
on the experimental results over several real and simulated data
sets, the study concludes that there is no “one-size-fits-all”
normalization technique for every data set (Lytal et al., 2020).
Further, Saiselet et al. investigated whether normalization is
warranted for spatial transcriptomic datasets. They discovered
that variation of total read counts is related to morphology and
local cell density. Therefore, total counts per spot are biologically
informative and do not necessarily need to be normalized out
(Saiselet et al., 2020).

4 ANALYSIS AND VISUALIZATION IN THE
EXPRESSION DOMAIN

A first step in the spatial transcriptomic analysis is to identify the
cell type (for datasets of single-cell resolution) or cell mixture (for
datasets of multicellular resolution) of each spatial unit or spot.
Cell type identification usually starts with the dimensionality
reduction technique to reduce time and space complexity for
downstream analysis. The reduced representations are used to
cluster cells based on the assumption that cells of the same type
fall into the same cluster.

4.1 Clustering
The selection of clustering techniques is critical for obtaining
good clustering results. Certain methods with assumptions about
cluster shapes may not be suitable for spatial genomic data. For
example, K-means clustering assumes that the shapes of clusters
are spherical and that clusters are of similar size (Kanungo et al.,
2002), and Gaussian mixture models assume that points with
each cluster follow a Gaussian distribution (Reynolds, 2009).
These assumptions are rarely satisfied by spatial
transcriptomic data.

Agglomerative clustering methods are a class of methods that
iteratively aggregate data points into clusters. These methods do
not carry assumptions about the shape and size of clusters. At
each iteration, data points are aggregated to optimize a pre-
defined metric. Popular agglomerative clustering methods
include hierarchical agglomerative clustering (Johnson, 1967)
and community detection methods such as Louvain (Blondel
et al., 2008) and Leiden (Traag et al., 2019) algorithms.
Hierarchical agglomerative clustering is initialized by treating
each point as its own cluster. Each iteration aggregates two
clusters with the closest distance to form a new cluster until
no clusters can be merged. Community detection methods,
i.e., Louvain (Blondel et al., 2008) and Leiden (Traag et al.,
2019) algorithms, have seen wide adoption in the single-cell
and the spatial transcriptomics community. Both algorithms
try to iteratively maximize the modularity, which can be
understood as the difference between the number of observed
and expected edges. Intuitively, a tightly connected community or
cluster should have a large number of observed edges relative to
the expected number of edges. The Louvain algorithm is

initialized by assigning each node to its own community. At
each iteration, each node moves from its own community to all
neighboring communities, and changes in modularity are
calculated. The node is moved to the community, which
results in the largest increase in H. At the end of each
iteration, a new network is built by aggregating all nodes
within the same community, and a new iteration begins. The
procedure will terminate when the increase inH can no longer be
achieved.

These general-purpose methods can be combined into more
sophisticated pipelines tailored towards single-cell clustering. SC3
is an ensemble clustering method in which multiple clustering
outcomes are merged into a consensus. SC3 first calculates
distance matrices using the Euclidean distance, as well as
Pearson and Spearman correlations. Spectral clustering is
performed on these distance matrices with a varying number
of eigenvectors. These results were combined to assign a
consensus cluster membership to each point (Kiselev et al.,
2017). Seurat uses a smart local moving (SLM) algorithm
(Waltman and Van Eck, 2013) to perform modularity-based
clustering. Seurat first constructs a distance matrix based on
canonical correlation vectors and a shared nearest neighbor
(SNN) graph based on the distance matrix. The SNN graph is
used as an input to the SLM algorithm to find clusters (Butler
et al., 2018). SIMLR calculates a distance matrix as a weighted
sum of multiple distance kernels and solves for a similarity
matrix to minimize the product between the distance and
similarity matrices. To ensure a fixed number of connected
components, SIMLR uses constrained optimization to
encourage a block diagonal structure in the similarity matrix
(Wang et al., 2017).

4.2 Identification of Cell Types
Identification of cell types starts by defining cell-type specific
genes or marker genes. A straightforward approach is to perform
differential expression analysis (McCarthy et al., 2012; Love et al.,
2014) between all pairs of clusters. Genes that are consistently
over-expressed in one cluster are considered the cluster’s marker
genes. This is the approach implemented in scran (Lun et al.,
1000) and Mast (Finak et al., 2015).

Another method, scGeneFit, uses a label-aware compression
method to find marker genes (Dumitrascu et al., 2021). Given
cell-by-gene expression matrix and corresponding cell labels
inferred from clustering results, scGeneFit finds a projection
onto a lower-dimensional space, in which cells with the same
labels are closer in the lower-dimensional space than cells with
different labels. The projection is constrained such that the axes in
the lower-dimensional space align with a single gene. Therefore,
the marker genes will be the set of axes in the lower-dimensional
space that best conserves label structures. The marker genes can
then be matched with an expert-curated list of cell-type specific
genes to infer cell types (Kim and Volsky, 2005; Subramanian
et al., 2005). Other methods directly map unknown cell types
onto a reference dataset, bypassing the target gene identification
step. Scmap projects the query cells onto the reference cell types
from other experiments and datasets (Kiselev et al., 2018). The
known reference cluster is represented by its centroid, and the
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projection is carried out by a fast approximate k-nearest-neighbor
(KNN) search by cluster using product quantization (Jégou et al.,
2010), where a similarity matrix between the query cell and
reference clusters is used as the distance in KNN search.
Another reference-based method is SingleR (Aran et al., 2019).
The method proceeds by first identifying variable genes among
cell types in the reference set. Next, SingleR calculates the
Spearman correlation between each single cell and the
reference variable genes. Multiple correlation coefficients
within each cell type are aggregated to form one correlation
per reference cell type per single cell. Only the top 80% of
correlation values are selected to remove random noise. In the
fine-tuning step, the correlation analysis is iteratively re-run but
only for the top cell types from the previous step, and the lowly
correlated cell types are removed. Eventually, the cell type with
the top correlation is assigned to the query single-cell. Using
SingleR, the authors identified a novel disease-associated
macrophage subgroup between monocyte-derived and alveolar
macrophages. Cortal et al. proposed a clustering-free multivariate
statistical method named Cell-ID for gene signature extraction
and cell identification (Cortal et al., 2021). Cell-ID first performs a
dimensionality reduction on the cell-by-gene expression matrix
using the multiple correspondence analysis (MCA). Both cells
and genes are simultaneously projected in a common low-
dimensional space, where the distance between a gene and a
cell represents the specific degree between them. According to the
distance, Cell-ID can build up a gene-rank for each cell, and the
top-ranked genes are defined as the cell’s gene signature. With the
gene signature of the query cell, Cell-ID can perform automatic
cell type and functional annotation via the hypergeometric tests
against reference marker gene lists and/or gene signatures of
reference single-cell datasets. The authors demonstrated the
consistently reproducible gene signatures across diverse
benchmarks, which helps to improve biological interpretation
at the individual cell level. Unlike the above approaches, JSTA
uses deep learning for cell-type identification and incorporates
three distinct and interactive components: a segmentation map
and two deep neural network-based cell type classifiers for pixel-
level and cell-level classification (Littman et al., 2021). JSTA first
trains a taxonomy-based cell-level classifier with the external data
from the Neocortical Cell Type Taxonomy (NCTT) set (Yuste
et al., 2020). Then the segmentation map and pixel-level classifier
are iteratively refined with an expectation-maximization (EM)
algorithm. Specifically, the segmentation map is initialized by a
classical image segmentation algorithm watershed (Roerdink and
Meijster, 2000) and paired with the trained cell-level type
classifier to predict the current cell (sub)types. Given the local
mRNA density at each pixel as the input, the pixel-level classifier
is optimized to closely match each pixel’s current cell type
assignment. Next, the updated pixel-level classifier reclassifies
the cell types of all border pixels, and the resulting segmentation
map requires an update of the cell-level classification, which
further triggers an update of pixel-level classifier training. This
learning process is repeated until convergence. The eventual
segmentation map tends to maximize consistency between
local RNA density and cell-type expression priors. Abdellaal
et al. benchmarked 22 broadly used cell identification methods

on 27 publicly available single-cell RNA data. Interested readers
are referred to (Abdelaal et al., 2019).

4.3 Visualization of Gene Expression in Low
Dimensions
The identified clusters can be visualized to ensure cells assigned to
the same cluster are close in expression space. Dimensionality
reduction techniques are necessary to project the high
dimensional data into 2D or 3D. Principal component analysis
(PCA) is widely adopted in the single-cell and spatial
transcriptomic literature (Wold et al., 1987). This method
identifies linear combinations of the original dimensions, or
principal components (PC), that maximize the projection
variance from data points onto the principal components
(Figure 2A). The principal components can be computed in
an iterative way: the first PC can point in any direction to
maximize the variance of projections, and each subsequent PC
is orthogonal to previous PCs (Tsuyuzaki et al., 2020).

In contrast to PCA, manifold learning is a class of non-linear
dimensionality reduction techniques that aims to project the data
to a lower dimension while maintaining the distance relations in
the original high-dimension space; points close to each other in
the original space will be close in the low-dimensional space
(Figure 2B). Uniform manifold approximate and projection
(UMAP) and t-distributed stochastic neighbor embedding
(t-SNE) are two manifold learning methods widely adopted in
single-cell and spatial transcriptomic literature (Van der Maaten
and Hinton, 2008; McInnes et al., 2018). Both methods follow a
two-step procedure. In the first step, a similarity matrix is
computed based on a pre-defined distance metric. In the
second step, all data points are placed in a low-dimensional
Euclidean space such that the structure of the similarity
matrix is preserved. This step is initialized by randomly
placing data points in the low-dimensional space. At each
iteration, data points are moved according to the similarity
matrix from the high-dimensional space; points with high
similarity in the high-dimensional space will attract, and those
with low similarity will repel. Because optimization is done
iteratively, UMAP and t-SNE results are stochastic and vary
between runs. Random seeds are needed for reproducibility.
The two methods differ in their construction of similarity
matrix. In t-SNE, a distance matrix is calculated according to
probability density functions (PDF) of the Gaussian distribution
in the high-dimension space and PDFs of the t-distribution in the
low-dimension embedding. In UMAP, an adjacency matrix is
constructed by extending a sphere whose radius depends on the
local density of nearby points; two points are connected if their
spheres overlap. In practice, UMAP is faster than t-SNE and tends
to preserve the high-dimensional structure better.

5 ANALYSIS AND VISUALIZATION IN THE
SPATIAL DOMAIN

An important question in spatial transcriptomic data analysis is
to identify genes whose expression follow coherent spatial
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patterns. Genes with spatial expression patterns are critical
determinants of polarity and anatomical structures. For
example, the gene wingless is a member of the wnt family that
plays a central role in anterior-posterior pattern generation
during the embryonic development of Drosophila
melanogaster. It is expressed in alternating stripes across the
entire embryo (van den Heuvel et al., 1989). Another example is
the neocortex of mammalian brains, which contain six distinct
layers. Each layer consists of different types of neurons and glial
cells that express cell-type specific marker genes (Lui et al., 2011).
Spatial transcriptomic data enables unbiased transcriptome-wide
identification of spatially expressed genes, but it is excessively
labor-intensive to visually examine all genes. This prompted the
development methods including SpatialDE (Svensson et al.,
2018), trendsceek (Edsgärd et al., 2018), and Spark (Sun et al.,
2020).

5.1 Identification of Genes with Spatial
Expression Patterns
SpatialDE (Svensson et al., 2018) uses a Gaussian process to
model gene expression levels. Intuitively, a Gaussian process
model treats all data points as observations from a random
variable that follows a multivariate Gaussian (MVN)
distribution (Wang, 2020). To test whether expression levels
follow a spatial pattern, the authors specify a null model, in
which the covariance matrix is diagonal, and an alternative
model, in which the covariance matrix follows a radial basis
function kernel:

K(xi, xj) � exp( − γ‖xi − xj‖2) (1)

where K(xi, xj) is the covariance between ith and jth
measurement; xi and xj represent the spatial coordinates of the
ith and the jth measurement; γ is a scale factor. Intuitively, the
Gaussian kernel describes a spatial relationship in which nearby

points have similar expression values. This kernel assumes that
cells of similar origins tend to neighbor each other in space. A
likelihood ratio test can be done by comparing the likelihood of
the null and the alternative model. Because SpatialDE is a
Gaussian process model, the expression values must be log-
transformed which decreases power.

Trendsceek (Edsgärd et al., 2018) uses a marked point process
model in which each point of measurement, or a spot, is treated as
a point process, and each point is marked with a gene expression
value. To decide whether a gene whose expression follows a
spatial pattern, trendsceek test whether the probability of finding
two marks given the distance between two points deviates from
what would be expected if the marks were randomly distributed
over points. To calculate the null distribution given no spatial
pattern, trendsceek implements a sampling procedure in which
marks are permuted with the location of points fixed. In practice,
such sampling procedure is computationally expensive and
makes trendsceek only suitable for small datasets.

Spark (Sun et al., 2020) uses a generalized linear spatial model
(GLSM) to directly model count data (McCullagh and Nelder,
1983; Gotway and Stroup, 1997), which results in better power
than SpatialDE. A simplified model is presented below:

y(s) ∼ Poisson(λ(s)) (2)

log(λ(s)) � x(s)Tβ + b(s) + ϵ (3)

b(s) ∼ MVN(0, τK(s)) (4)

Where y(s) is the gene expression of sample s. λ is a Poisson rate
parameter, which is modeled as a linear combination of three
terms. The first term x(s) represents covariates such as batch
effect and library size for sample s. The second term b(s) is the
spatial correlation pattern modeled as a Gaussian process. The
last term ϵ is random noise. To determine whether a gene follows
a spatial pattern, Spark tests whether τ � 0. Parameter estimation
is difficult due to the random effects. Monte Carlo methods are
the gold standard for parameter estimation for GLSM but are

FIGURE 2 | Comparison between principal component analysis and t-SNE. (A) Principal component analysis iteratively identifies vectors that minimize the sum of
squared distances to the direction of the vector. Each vector is orthogonal to all previously selected vectors. (B) t-SNE calculates a pairwise similarity based on the
probability density function of the Gaussian distribution in the original high dimension space. The points are randomly projected to a low dimensional space and iteratively
refined so that the similarity in low dimension matches that in high dimension. At each iteration, similar pairs attract, and dissimilar pairs repel each other.
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computationally expensive. Instead, the authors developed a
penalized quasi-likelihood (PQL) estimation procedure to
make computation tractable for large datasets (Wedderburn,
1974; McCullagh and Nelder, 1983; Breslow and Clayton,
1993). Spark produces well-calibrated p-values and is more
powerful than trendsceek and SpatialDE through a series of
simulation experiments.

5.2 Identification of Spatial Domains
Spatially coherent domains often underly important anatomical
regions (Figure 3A). A motivating example is the histological
staining of cancer tissue slides. Cancer regions and normal tissues
can be visually distinguished due to differential affinities to staining
agents. This enables pathologists to grade and stage individual
cancer tissue slides according to the location and size of the cancer
regions (Fletcher, 2007). Spatial transcriptomics enables histology-
like identification of spatial domains. Regular histology slides can
be visualized conveniently with RGB pixels. In contrast, spatial
transcriptomic data cannot be directly visualized because each spot
(i.e., pixel) in spatial transcriptomic data has a dimension equal to
the number of genes. This prompts the development of methods to
detect spatial domains, including BayesSpace (Zhao et al., 2021),
SpatialDE (Svensson et al., 2018), and a hidden Markov random
field (HMRF) method (Zhu et al., 2018).

The three methods share a common assumption that hidden
spatial domains can be described by latent variables, which are not
directly observed but can be inferred from observed gene
expression values. However, these methods use different
modeling assumptions to infer latent variables. Zhu et al. (Zhu
et al., 2018) developed an HMRF-based method, a widely adopted
model in the image processing community to identify patterns in
2D images (Li, 2000; Blake et al., 2011), to identify spatial domains.
An HMRF has two components: it uses a Markov random field to
describe the joint distribution of latent variables and a set of
observed examples that depends on them. The latent variables
are assumed to satisfy the Markov property, in which any node in
the network is conditionally independent of other nodes given its
neighbors. Following this assumption, a Markov random field of
latent variables can be decomposed into a set of subgraphs, called
cliques, which gives rise to the observed gene expression. The
parameters of the model by Zhu et al. are estimated with an EM
algorithm (Dempster et al., 1977; Moon, 1996).

Both SpatialDE (Svensson et al., 2018) and BayesSpace (Zhao
et al., 2021) model observed gene expression values as a mixture
of Gaussian random variables. The means of the Gaussian
random variables are determined by the spatial domain
membership. In SpatialDE, the mean expression value of each
spatial domain is described by a Gaussian process, whose

FIGURE 3 | Visualization of gene expression in the Euclidean space. (A) Spatially coherent genes and spatial domains can be visualized as 2D images. (B) Spot
deconvolution methods estimate the proportion of each cell type within each spot. Pie charts are routinely used to represent cell type proportions within each spot. (C)
Spot super-resolution methods estimate the cell type of sub-pixels based on correlation with neighbor spots. In this case, each spot of the original dataset is divided into
nine spots in the super-resolved dataset.
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covariance follows a radial basis function kernel. The observed
expression follows a Gaussian distribution centered around the
mean expression value of a given spatial domain. The posterior
distribution of parameters and the latent spatial domain
membership is estimated by variational inference. Different
from SpatialDE, BayesSpace uses a diagonal matrix to model
the covariance of the mean expression of each spatial domain.
The observed gene expression is modeled as a Gaussian random
variable centered around the mean expression and has a diagonal
covariance matrix modeled as a Wishart random variable.
BayesSpace uses a Markov chain Monte Carlo (MCMC)
method to estimate model parameters (Geyer, 1992).

While the above methods consider spatial genes and spatial
domain as two separate tasks, SpaGCN proposed a graph
convolutional network-based (GCN) approach to address these
two tasks jointly (Hu et al., 2021b). With the integration of gene
expression, spatial location, and histology information, SpaGCN
models spatial dependency of gene expression for clustering
analysis of spatial domains and identification of domain
enriched spatial variable genes (SVG) or meta genes. SpaGCN
first converts the spatial transcriptomics data into an undirected
weighted graph of spots, and the graph structure represents the
spatial dependency of the data. Next, a GCN (Kipf and Welling,
2016) is utilized to aggregate gene expression information from
the neighboring spots and update every spot’s representation.
Then, SpaGCN adopts an unsupervised clustering algorithm (Xie
et al., 2016) to cluster the spots iteratively, and each identified
cluster will be considered as a spatial domain. The resulting
domains guide the differential expression analysis to detect the
SVG or meta genes with enriched expression patterns in the
identified domains.

5.3 Spot Deconvolution and
Super-resolution
Because spots in the spatial transcriptomic dataset may not
correspond to cell boundaries, several additional features can
be included when plotting on the spatial domain. When the
spatial transcriptomic measurement technology has a
multicellular resolution, spots can be decomposed into
constituent cell types. A 2D array of pie charts can be used to
represent the cell types’ percentages of spots, as demonstrated in
DSTG (Figure 3B). To enable the investigation of cellular
architecture at higher resolution, DSTG uses a GCN to
uncover the cellular compositions within each spot (Song and
Su, 2021). DSTG first leverages single-cell RNA-seq data to
construct pseudo spatial transcriptomic (pseudo-ST) data by
selecting two to eight single cells from the same tissue and
combining their transcriptomic profiles. This pseudo-ST data
is designed to mimic the cell mixture in the real spatial
transcriptomic data and provide the basis for model training.
Via canonical correlation analysis, DSTG identifies a link graph of
spots with the integration of the pseudo-ST data and the real
spatial transcriptomic data. A GCN (Kipf and Welling, 2016)
iteratively updates the representation of each spot by aggregating
its neighborhoods’ information. The GCN model is trained in a
semi-supervised manner, where the known cell compositions of

the pseudo-ST nodes are served as the labeled data, and the real
spatial transcriptomic nodes are the prediction targets. The
resulting cell type proportions can be displayed as a pie chart
at each spot (Figure 3B).

While cell type deconvolution provides an estimation of
cellular constituents, it does not directly increase the
resolution of the dataset. BayesSpace uses a Bayesian model to
increase the resolution to the subspot level, which approaches
single-cell resolution with the Visium platform (Figure 3C). The
model specification is similar to the spatial domain detection
model described above, except that unit of analysis is the subspot
rather than the spot. Since gene expression is not observed at the
subspot level, BayesSpace models it as another latent variable and
estimates it using MCMC. The increase in resolution is different
across measurement technology. For square spots (Ståhl et al.,
2016), BayesSpace by default divides each spot into nine subspots.
For hexagonal spots like Visium, they are divided into six
subspots by default. The subspots can be visualized in
Euclidean space similar to regular spots.

5.4 Visualization in Euclidean Space
After obtaining spatial genes and domains, visualization in the
Euclidean space is relatively straightforward. Spatial genes can be
visualized by plotting their log-transformed expression values.
Spatial domains can be colored by mean expression values or by
their identities. Several packages such as Giotto (Dries et al.,
2021b), Scanpy (Wolf et al., 2018), Seurat (Hao et al., 2021), and
Squidpy (Palla et al., 2021) provide functionalities to plot spatial
transcriptomic data in Euclidean space.

6 ANALYSIS AND VISUALIZATION IN THE
INTERACTION DOMAIN

Cell signaling describes the process in which cells send, receive,
process, and transmit signals within the environment and with
themselves. Based on the signaling distance and the sender-
receiver identities, cell signaling can be classified into
autocrine, paracrine, endocrine, intracrine, and juxtacrine
(Bradshaw and Dennis, 2009). It serves critical functions in
development (Wei et al., 2004), immunity (Dustin and Chan,
2000), and homeostasis (Taguchi and White, 2008) across all
organisms. For example, the Hedgehog signaling pathway is
involved in tissue patterning and orientation, and aberrant
activations of hedgehog signaling lead to several types of
cancers (Taipale and Beachy, 2001). Single-cell datasets enable
correlation analysis to unravel cell-to-cell interaction
(Krishnaswamy et al., 2014; Friedman et al., 2018; Wirka
et al., 2019). Due to the lack of spatial information, single-cell
analysis cannot distinguish short-distance (juxtacrine and
paracrine) and long-distance (endocrine) signaling. Spatial
transcriptomic datasets provide the spatial coordinate of each
cell or spot and enable spatial dissection of cell signaling.

6.1 Cell-to-Cell Interaction
Cell signaling frequently occurs between cells in spatial
proximity. Giotto takes spatial proximity into consideration to
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identify cell-to-cell interaction. It first constructs a spatial
neighborhood network to identify cell types that occur in
spatial proximity. Each node of the network represents a cell,
and pair of neighboring cells are connected through an edge. The
neighbors of each cell can be determined by extending a circle of a
predefined radius, selecting the k-nearest neighbors, or
constructing a Delaunay network (Chen and Xu, 2004). Cell
types connected in the network more than expected are
considered interacting. Giotto permutes the cell type labels
without changing the topology of the network and calculates
the expected frequencies between every pair of cell types. p-values
are derived based on where the observed frequency falls on the
distribution of expected frequencies.

Another method, SpaOTsc, leverages both single-cell and
spatial transcriptomic data for a comprehensive profile of
spatial interaction (Cang and Nie, 2020). It uses an optimal
transport algorithm to map single-cell to spatial transcriptomic
data. An optimal transport is a function that maps a source
distribution to a target distribution while minimizing the amount
of effort with respect to a predefined cost function (Villani, 2009).
SpaOTsc generates a cost function based on the expression profile
dissimilarity of shared genes across the single-cell and the spatial
transcriptomic datasets. The optimal transport plan maps single
cells onto spatial locations. SpaOTsc then formulates cell-to-cell
communication as a second optimal transport problem between
sender and receiver cells. The expression of ligand and receptor
genes are used to estimate sender and receiver cells, and the
spatial distance is the cost function. The resultant optimal
transport plan represents the likelihood of cell-to-cell
communication.

6.2 Ligand-Receptor Pairing
Another aspect of cell signaling is the pairings between ligands
and receptors. Giotto identifies ligand-receptor pairs whose mean
expression is higher than expected. To obtain the observed
expression of ligand-receptor pairs for a pair of cell types,
Giotto averages the expression of ligand in all sender cells and
the expression of receptors in all receiver cells in proximity of the
sender cells. Giotto then permutes the location of cells to obtain
an expected expression of the ligand-receptor pair. A p-value can
be obtained by mapping the observed expression onto the
distribution of expected expression. Different from Giotto,
SpaOTsc uses a partial information decomposition (PID)
approach to determine gene-to-gene interaction. Intuitively,
PID decomposes the mutual information between multiple
source variables and a target variable into unique information
contributed by each source variable, redundant information
shared by many source variables, and synergistic information
contributed by the combination of source variables (Kunert-Graf
et al., 2020). SpaOTsc estimates the unique information from a
source gene to a target gene that is within a predefined spatial
distance, taking into consideration all other genes. Yuan et al.
proposed a method called GCNG (Yuan and Bar-Joseph, 2020) to
infer the extracellular gene relationship using Graph
convolutional neural networks (GCN). Single-cell spatial
expression data is represented as a graph of cells. Cell
locations are encoded as a binary cell adjacency matrix with a

selected distance threshold, and expression of gene pairs within
each cell is encoded as corresponding node features. A GCN is
used to combine the graph structure and node information as
input and predict whether the studied gene pair can interact. The
deep learning model is trained in a supervised manner, where
positive samples are built from known ligand-receptor pairs, and
negative samples are randomly selected from non-interacting
genes. In addition to the methods specifically designed to utilize
the spatial expression information for cell-to-cell interaction,
many other tools developed for expression data without spatial
information can also be applied to the spatial transcriptomic data.
Interested readers can refer to a recent review of these methods
(Armingol et al., 2021).

6.3 Visualization of Interactions Between
Cells and Genes
Cell-to-cell and gene-to-gene interactions are naturally
represented as networks and correlation matrices (Figure 4).
Integrative packages such as Giotto (Dries et al., 2021b) provide
functions to visualize cell-to-cell and gene-to-gene interactions as
heatmaps, dot plots, or networks. A heatmap is a visual depiction
of a matrix whose values are represented as colored boxes on a
grid. With heatmaps, large blocks of highly connected cells or
genes can be visually identified. A dot plot is similar to a heatmap,
except that the boxes are replaced by dots of varying sizes. A dot
plot can use both the size and the color of each dot to represent
values in each interaction. Different from heatmaps and dot plots,
networks use nodes to represent cells or genes and edges to
represent their interactions. The widths and colors of edges can be
used to describe the strength of interactions. Besides Giotto, the
igraph package is widely adopted for network visualization and
provides programming interfaces in R, python, C/C++, and
Mathematica (Csardi and Nepusz, 2006). Cytoscape is another
widely used package to visualize complex network interaction. Its
graphical user interface makes it easy to manipulate and examine
nodes and edges in the network (Shannon et al., 2003).

7 DISCUSSIONS

Spatial transcriptomic technologies have made tremendous
progress in recent years. Although earlier technologies are
restricted by the number of profiled genes (Chen et al., 2015;
Moffitt et al., 2016; Shah et al., 2016) or the spatial resolution
(Ståhl et al., 2016), current methods can profile the whole
transcriptome at single-cell or subcellular resolution (Liu et al.,
2020; Chen et al., 2021; Cho et al., 2021). While available
commercialized methods (Visium) cannot achieve cellular
resolution, we believe newer technologies will soon be
production-ready. As commercial platforms become more
affordable, we believe the speed at which spatial
transcriptomic datasets become publicly available will only
accelerate. For example, phase two of the Brain Initiative Cell
Census Network (BICCN) will map the spatial organization of
more than 300,000 cells from the mouse’s primary motor cortex
(Marx, 2021). Large-scale projects to comprehensively profile
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spatial gene expression are currently limited, but we envision that
these projects will expand in three directions. First, more model
organisms will be profiled, enabling comparative analysis of cell
types and their spatial organizations across evolution. Second,
more organ and tissue types will be profiled for a comprehensive
understanding of spatial expression architecture. Third, cell states
(e.g., stimulated vs resting) and disease states (cancer vs normal)
will be profiled to understand cellular activation and disease
pathology.

As spatial transcriptomic datasets become more abundant,
meta-analysis across published datasets will become
commonplace. Methods to remove batch effects are needed to
account for technical confounders across datasets. Unlike bulk
and single-cell sequencing, batch effects in spatial transcriptomic
data must account for correlation across space. Further, the batch
effect may also occur on companion histology images, and
methods to jointly analyze histology image and spatial
transcriptomic data are required. Although several methods
have been developed for batch effect removal in bulk (Leek
et al., 2012; Stegle et al., 2012) and single-cell (Korsunsky
et al., 2019; Li et al., 2020) sequencing, it is still an under-
explored area for spatial transcriptomics.

Histopathology is widely adopted across various domains of
medicine and is considered the gold standard for certain
diagnoses such as cancer staging (Edge et al., 2010). However,
histology is limited by the type and number of cellular features

delineated by staining agents. Spatial transcriptomics extends
histology to test for both imaging andmolecular features and may
enable testing for oncogenic driver mutations critical for
determining cancer subtypes. A recent method named SpaCell
integrates both histology and spatial transcriptomic information
to predict cancer staging (Tan et al., 2020). In this method,
histological images are tiled into patches, where each patch
corresponds to a spatial transcriptomic spot in a tissue. A
convolutional neural network is used to extract image features
from each patch, and combine the features with the spot gene
count. A subsequent deep network is applied to predict the
disease stages. We envision that spatial transcriptomics will
become a diagnostic routine as it becomes more affordable
and the clinical interpretation becomes more streamlined.

In this review, we surveyed state-of-the-art methods for spatial
transcriptomic data analysis and visualization, and categorized
them into three main categories according to the way their output
is visualized. It is unlikely that we covered all available methods
for spatial transcriptomics, but we hope this review will serve as a
stepping stone and attract more researchers to this field.
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SSAM-lite: A Light-Weight Web App
for Rapid Analysis of Spatially
Resolved Transcriptomics Data
Sebastian Tiesmeyer1*, Shashwat Sahay1, Niklas Müller-Bötticher 1, Roland Eils1,2,
Sebastian D. Mackowiak1 and Naveed Ishaque1*

1Digital Health Center, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany, 2Health Data Science Unit,
Heidelberg University Hospital, Heidelberg, Germany

The combination of a cell’s transcriptional profile and location defines its function in a
spatial context. Spatially resolved transcriptomics (SRT) has emerged as the assay of
choice for characterizing cells in situ. SRT methods can resolve gene expression up to
single-molecule resolution. A particular computational problem with single-molecule SRT
methods is the correct aggregation of mRNA molecules into cells. Traditionally,
aggregating mRNA molecules into cell-based features begins with the identification of
cells via segmentation of the nucleus or the cell membrane. However, recently a number of
cell-segmentation-free approaches have emerged. While these methods have been
demonstrated to be more performant than segmentation-based approaches, they are
still not easily accessible since they require specialized knowledge of programming
languages and access to large computational resources. Here we present SSAM-lite,
a tool that provides an easy-to-use graphical interface to perform rapid and segmentation-
free cell-typing of SRT data in a web browser. SSAM-lite runs locally and does not require
computational experts or specialized hardware. Analysis of a tissue slice of the mouse
somatosensory cortex took less than a minute on a laptop with modest hardware.
Parameters can interactively be optimized on small portions of the data before the
entire tissue image is analyzed. A server version of SSAM-lite can be run completely
offline using local infrastructure. Overall, SSAM-lite is portable, lightweight, and easy to
use, thus enabling a broad audience to investigate and analyze single-molecule SRT data.

Keywords: spatial transcriptomics, web application, cell typing, in situ sequencing, in situ hybridization, spatially
resolved transcriptomics

1 INTRODUCTION

The biological function of a cell is governed not only by its expression profile but also by its location
(Lee, 2017). A cell’s spatial embedding defines its cellular neighborhood and determines how
intercellular signaling operates to achieve higher-order tissue function. Spatially resolved
transcriptomics (SRT) has emerged as the assay of choice for characterizing cells in a tissue
context (Burgess, 2019; Marx, 2021). There are a number of SRT methods, with each being able
to resolve gene expression to various spatial resolutions, from anatomical features up to sub-cellular
resolution of identifying single mRNA molecules (Asp et al., 2020). Single-molecule SRT methods
usually require the assignment of each decodedmRNA spot to a cell, which first requires the cell to be
identified via segmentation. Cell segmentation is usually performed by identifying cell landmark
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features such as the cell nucleus or protoplasm via DAPI or total
mRNA density (Najman and Schmitt, 1994; Chen et al., 2015; Eng
et al., 2019). However, accurate cell segmentation remains
difficult due to many factors such as staining not covering all
features of a cell, imaging artifacts, and overlapping cells (Thomas
and John, 2017). Inaccurate cell segmentation can lead to
misassignment of mRNA molecules to cells, leading to errors
in downstream analysis such as misclassifying cell types. To
overcome this issue, a number of computational tools have
been developed to improve the assignment of mRNA
molecules to cells (Qian et al., 2020; Prabhakaran et al., 2021),
incorporate cell typing as part of the segmentation process
(Littman et al., 2021), and perform cell-segmentation free
analysis (Petukhov et al., 2020; He et al., 2021; Park et al.,
2021). While these tools improve cell typing, they all share the
problem of being specialized tools that require access to Linux
command line terminals, programming expertise, and high-
performance hardware. This renders them less accessible to a
large proportion of the biomedical research community.

Our prior work (Park et al., 2021) demonstrated improved
accuracy and sensitivity of spatial cell typing over traditional
segmentation-based approaches by applying the SSAM algorithm
to the mouse somatosensory cortex dataset profiled by osmFISH.
In particular, our segmentation-free approach identified many
more astrocyte cell types that were missed due to low signal.
Furthermore, we could reconstruct the ventricle region that was
missed due to high occlusion in the segmentation-based approach
used in the original study of the data.

Here we present SSAM-lite which is an easy-to-use and
lightweight browser-based web application on top of the
segmentation-free SRT algorithm SSAM (Park et al., 2021) to
make spatial cell typing accessible to biomedical researchers.
SSAM-lite runs on modest hardware in any modern browser
with JavaScript support and internet access, thus lowering the
barrier to analyzing high-dimensional SRT data. To ensure

privacy and security, data does not leave the user’s machine.
Furthermore, our tool has an easy-to-use graphical user interface
that provides intuitive visualizations of SRT data. SSAM-lite can
be used on mobile devices to analyze smaller datasets.
Departments or institutes with access restricted to local
networks due to security reasons or which deal with extremely
large datasets can make use of SSAM-lite-server. This is a server-
side implementation of SSAM-lite that can be installed with
minimal effort, providing offline access to SSAM-lite
functionality and without limitations of client-side resources.

2 METHODS

2.1 SSAM-lite
SSAM-lite builds on top of the guided mode of the SSAM algorithm
(Park et al., 2021) (Figure 1). In brief, the algorithm uses Kernel
Density Estimation (KDE) to transform the spatial mRNA
coordinates into gene expression probability densities that are
subsequently cell typed and then projected into the final image of
the cell-type map. SSAM-lite is an integrated pipeline aimed at
simplifying exploratory data analyses of SRT data with only a few
clicks in a web browser. The pipeline workflow combines state-of-
the-art web programming libraries such as Bootstrap, plotly.js, and
TensorFlow.js (Figure 1A). The modern web interface with
convenient interactive elements was generated using the Bootstrap
library, which provides a large body of CSS functions for creating a
state-of-the-art and user-friendly layout. In particular, the layout
scripts for SSAM-lite make use of Bootstrap’s sophisticated scalable
grid layout that optimizes user experience on a range of devices from
handhelds to desktop machines. The data preparation and
presentation routines were implemented using plotly.js, and
TensorFlow.jswas chosen to implement amachine learning backend.

A typical SSAM-lite workflow can be summarized in three
steps: data upload, parameter selection and optimization, and the

FIGURE 1 | Schematic of SSAM-lite. (A) Schematic diagram of SSAM-lite, accessible as a web browser application, and (B) a locally installed SSAM-lite-server. (C)
Schematic of the underlying data processing algorithm proposed by SSAM.
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final analysis phase. Each step has a dedicated area in the web
interface (Figure 2).

2.1.1 Data Upload
Data upload is performed in the Data Center section by either
using drag-and-drop or an interactive file selection window
(Figure 2A). The user needs to provide a file with mRNA
coordinates from an SRT experiment alongside a so-called
signature file that contains gene expression signatures for the
cell types of the tissue of interest. Both input files are plain text csv
files. The mRNA coordinate file contains gene names and the x-
and y-coordinates of all molecules in the analyzed image,
consistent with the DecodedSpot format defined by the Starfish
pipeline (http://github.com/spacetx/starfish). The signature file
contains a gene expressionmatrix with cell types as rows and gene
names as columns. The values can either be binary or be
normalized gene expression.

After loading, the mRNA molecule coordinate data is
displayed in an interactive scatter plot using plotly.js’s scattergl
layout, which is designed explicitly to handle large data sets. The
plot is designed to be interactive, so the user can zoom in to
investigate local mRNA expression or hide parts of the data to
reveal the expression patterns of individual genes. The expression
signature matrix is also displayed in an interactive plot after
loading using plotly.js’s heatmap layout, which provides an
overview of the data through color coding and by displaying
hovering information on each gene-cell type expression indicator.

2.1.2 Parameter Selection and Optimization
In this section, the user can interactively tune the input
parameters for the SSAM spatial modeling algorithm

(Figure 2B; Supplementary Figure S1). The three most
important parameters of the SSAM algorithm are the
bandwidth of the Gaussian KDE function, the pixel width of
the output cell-type map, and the total expression threshold
value. The bandwidth parameter is necessary to accurately
model the local spatial molecular dynamics. To model
expression in a sparse dataset (e.g., 3-5 mRNA molecules per
cell) a larger bandwidth would need to be employed, and in a
dense dataset (e.g., 20–30 mRNA per cell) a smaller bandwidth
should be sufficient. As a guideline, we suggest using values
between 2 and 25 μm based on analysis of dense and sparse
datasets (Figure 3). The pixel width of the cell-type map
determines the memory footprint and the accuracy of the
internal spatial gene expression model. The expression
threshold parameter defines the gene expression signal
threshold for the foreground (i.e., parts of the image with high
gene expression, likely originating from cells) and background
(i.e., parts of the image with low gene expression), hence
discerning actual spatial expression patterns from background
noise. A high number of extracellular, diffused mRNA spots
requires a higher expression threshold, where the optimal value
differs greatly across data sets.

These parameters can be set in numerical input fields and the
analysis of the full data set can be started. However, the user can
also try to optimize the parameters on a small section of the image
before starting the complete image analysis. This will launch an
initial small-scale analysis with instant output to the screen and
will show three figure panels that allow for direct evaluation of the
chosen parameters.

Of these panels, the left figure panel is an interactive plotly.js
scattergl plot of the entire mRNA location data set, which can be

FIGURE 2 | The SSAM-lite interface. The panels display the sections of the SSAM-lite web page demonstrated on osmFISH data of the mouse SSp (Codeluppi
et al., 2018): (A) the data center for uploading data; (B) the parameter selection and optimization section; (C) the first analysis section for displaying the results of the KDE
analysis; and (D) the second analysis section for displaying the final cell-type map image.
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used to define the local sub-section of the overall data set that is
used for optimization. A rectangle displays the currently chosen
sub-section, and the location of the subsection can be changed
interactively by clicking onto the desired new central spot in the
scatterplot.

The middle figure panel shows an intermediate output of the
KDE for the chosen sub-section from the first subfigure using
plotly.js’s heatmap layout. The heatmap is a spatial representation
of SSAM-lite’s internal model of integrated local signal strength,
with the heatmap value indicating the probability for the presence
of a cell at a particular location. The value of the modeled signal
for each pixel is color-coded and shows up when hovering over it
with the mouse pointer. The heatmap is especially useful for
choosing an appropriate expression threshold parameter from

the signal strength landscape. The KDE figure panel also provides
a visual impression of the amount of smoothing produced by the
KDE, which helps the user to set the bandwidth parameter. The
bandwidth parameter should be large enough to smooth out noise
and integrate mRNA signals belonging to the same spatial
structure, but low enough to keep individual spatial structures
separate and retain their shape. The heatmap plot gets updated in
real-time whenever the subsample location or KDE parameters
change, and in practice, the parameters can be set reasonably after
2–3 trials.

The rightmost figure panel shows the final output cell-type
map of the SSAM-lite algorithm for the chosen tissue
subsection. The cell-type map is useful to identify persisting
noise in the output, which can be reduced by adjusting the

FIGURE 3 | SSAM-lite generates accurate cell-type maps. Demonstrative cell-type maps for osmFISH data of the mouse SSp generated by (A) SSAM and (B)
SSAM-lite, and ISS data of human pancreas generated by (C) SSAM and (D) SSAM-lite. Resultant cell-type maps generated by SSAM are similar to previous
publications (Park et al., 2021; Tosti et al., 2021). Cell-type colors of the original SSAM figures were modified to match the SSAM-lite figure.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 7858774

Tiesmeyer et al. SSAM-lite Spatial Transcriptomics Application

141

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


bandwidth and/or the expression threshold parameters. The
cell-type map panel is updated whenever the parameters
change.

2.1.3 Analysis and Visualization
The last section is dedicated to data analysis and the visualization
of results. The section provides interfaces to the two more
resource-intensive TensorFlow.js backend functions that
perform the KDE and the correlation analysis.

2.1.3.1 Kernel Density Estimation (KDE)
Once the parameters are optimized, the user can perform the
KDE, which typically takes below a minute to generate SSAM-
lite’s internal, pixel-based spatial model of local signal strength
(Figure 2C). In a pre-processing step, the mRNA coordinates are
rescaled linearly to fit the user-defined pixel width of the spatial
model. The respective height is determined to match the vertical
spread of the coordinate data and the bandwidth parameter is
scaled accordingly to match the new internal unit of computation.
SSAM-lite computes an independent local signal strength pixel
matrix for each type of mRNA defined in the input data. For this, a
large TensorFlow.js buffer is initiated by stacking all empty pixel
matrices. The KDE implementation in SSAM-lite employs two
heuristics to optimize computing performance. The first is to
iterate over all mRNA locations and round them to their closest
output pixel, allowing us to use a pre-calculated Gaussian mass
function for all mRNA spots. The second is to ignore long tails of
the Gaussian mass function by limiting its calculation to two
bandwidths. This heuristics approximates the naive KDE
implementation well, with negligible differences at reasonable
bandwidth (Supplementary Figure S2). This new
implementation results in a 1000-fold performance increase
over the default SSAM implementation of the KDE step
(Supplementary Figure S3).

Further differences to the original SSAM-guided mode
implementation are described in the Supplementary Material.

After KDE computation is completed, the collected sum of
all pixel matrices is displayed using a plotly.js heatmap layout
analogous to the optimization panel. If the results do not
match expectations, parameters can be adapted and the
KDE function can be re-run. Otherwise, the user can move
on to generate the cell-type map.

2.1.3.2 Correlation Analysis and Cell-Type Map Generation
As in the original SSAM algorithm, the last step of analysis
computes the cell-type map through correlation analysis with
known gene expression signatures (Figure 2D). The combined
expression arrays of each x- and y-location in the stacked pixel
matrixes are compared to the expression signature data and
each pixel is assigned the cell type with the highest correlating
signature. All pixels whose sum across matrices are below the
user-defined expression threshold parameter are considered
background and not assigned any cell type. The final result is
displayed as a cell-type map using a modified version of
plotly.js’s heatmap layout. The heatmap element is fed with
a custom generated list of colors and altered to display the x-
and y-coordinates and the assigned cell-type name during

mouse hover events. The plot offers plotly.js’s elementary
functions like zooming, panning, resetting as well as a save
to disk option. Furthermore, a custom scale bar is added that
adapts to the current zoom factor and displays the bar width in
micrometers.

2.1.3.3 Cell-type Localization and Abundance
An important part of the downstream analysis of the cell-type
map is the localization of cell types and the quantification of cell-
type signals in the entire and parts of the tissue (Figure 2D;
Supplementary Figure S4A). We therefore implement an
interactive barplot that quantifies the relative cell-type
abundance based on classified pixels in the current view of the
cell-type map. This quantification is updated when zooming into
or panning over different regions (Supplementary Figures
S4B,C). The user can also provide custom color palettes and
select only certain cell-types to be rendered by double-clicking the
cell-type labels (Supplementary Figure S5).

The code itself is documented and organized according to the
model-view-controller paradigm, which allows the user to easily
adapt the code base to the needs of their own specific project. One
example would be to use an alternative kernel shape, e.g., a
circular Epanechnikov kernel could be achieved by adding a
logical threshold expression to the runKDE function inside
model.js. Any changes are integrated into the code execution
right away and available after a simple browser page refresh.

2.1.4 SSAM-lite-Server
SSAM-lite is an efficient tool that is dependent on client-side
hardware. While we demonstrate that a modest laptop is capable
of processing real-world SRT datasets (Figure 3), we also
recognize possible limitations due to client-side hardware
constraints. To address this issue, we developed a server-side
version called SSAM-lite-server (Figure 1A). SSAM-lite-server
runs the computationally expensive KDE and cell assignment
algorithms at the server-side. SSAM-lite-server preserves the
overall implementation of SSAM-lite in Javascript, HTML,
CSS, and allows a server running a Flask (v0.8) framework to
take over computationally expensive functionalities of SSAM-lite.
Flask was chosen due to its lightweight nature and extensibility.
To further make the backend data structures memory-efficient we
use Python’s numerical libraryNumPy (v1.20.3). Python’s pandas
package (v1.3.2) is used to handle the signature data. For privacy
preservation, the data streamed to the server for processing do not
persist on the server file systems but is only stored in memory for
the duration of the computation.

SSAM-lite-server runs the KDE algorithm by streaming
variables such as coordinates, signature matrix, input and
output image width, bandwidth, gene expression threshold
to the server as an Ajax POST request, which then returns
JSON objects to the user. The server-side computation
includes the computation of KDE and the generation of the
cell-type map.

To enhance the overall security, SSAM-lite-server offers the
option to host all libraries locally, thus enabling SSAM-lite-
server to run in closed networks without an internet
connection.
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2.1.5 Benchmarking
Benchmarking was carried out on a Lenovo X1 Carbon laptop
with Intel Core i7-8565u CPU, 16GB of RAM, and Windows
10. We used Google Chrome (v93.0) to run SSAM-lite (v0.1.0).
The benchmark was performed using the Chrome DevTools
Performance monitor to evaluate the runtime of the
runFullKDE function and the maximum memory heap
while carrying out a complete analysis (not using the
parameter preview) with the pixel width of the cell-type
map set to 500, the kernel bandwidth to five and the
expression threshold for assigning cell types to two.

To simulate different complexities of the mouse brain
primary somatosensory cortex (SSp) data we performed
downscaling and upscaling of the data. A 0.5× dataset was
created by randomly downsampling to 50% of the molecules
present in the coordinate file. A 2× data set was created by
appending the mRNA coordinate locations to itself after
carrying out a pixel shift of 1 μm along both axes to each of
the molecules. A 3× dataset was created by pixel shifting the
original coordinate matrix by -1 μm and appending it to the 2×
coordinate matrix. Finally, a 5× dataset was created by
appending the dataset to itself, the first time pixel-shifting
+1 along x and y, the second time +2, and so on. Each of the
above datasets was then tested in three replicates.

Furthermore, to demonstrate usable performance on modest
hardware we report the runtimes of SSAM-lite on a Lenovo b570e
with 4GB of RAM and a 2.20 GHz Intel dual-core processor
running Windows 10, and a Samsung Galaxy S8+ Android 9
smartphone running Chrome v96 (Supplementary Materials).

3 RESULTS

To demonstrate equivalent cell-type map performance to our
previously published SSAM algorithm, we applied SSAM-lite
to two datasets using a laptop computer (Section 2.1.5 in
Section 2). The first dataset was mouse SSp profiled by
osmFISH (Zeisel et al., 2015; Marques et al., 2016), profiling
1,802,589 mRNA spots for 33 genes and 31 cell-types
signatures derived from scRNAseq (Zeisel et al., 2015;
Marques et al., 2016). The coordinate matrix was uploaded
and rendered in 4 s on average, and the uploading and
rendering time for the signature matrix was negligible in
comparison. The cell-type map width was set to 1,500, KDE
bandwidth to 2.5, and the gene expression threshold to 13. The
resultant image of the cell-type map was very similar to those
previously published (Figures 3A,B). To demonstrate SSAM-
lite’s performance on a sparse dataset, we applied it to human
pancreas profiled by ISS, profiling 461,078 mRNA spots for
138 genes and 16 cell-type signatures (Tosti et al., 2021). The
cell-type map width was set to 750, KDE bandwidth to 22, and
the gene expression threshold to 2.4. The resultant image of the
cell-type map was highly comparable to those previously
published (Figures 3C,D).

To investigate how SSAM-lite's performance scales with
regards to memory requirements and CPU time, we performed
a synthetic benchmark on the mouse brain SSp dataset with

different dataset sizes (Supplementary Figure S6). Overall, the
CPU time for calculating the KDE (Supplementary Figure
S6A) scales linearly with the number of profiled mRNA
molecules. Further, the total memory footprint for a
complete analysis also depends linearly on the dataset size
(Supplementary Figure S6A).

4 DISCUSSION

Analysis of spatial transcriptomics data was so far limited by
excessive hardware requirements and an understanding of
navigation in a terminal window using the Linux command
line. With SSAM-lite we overcome these limitations by
providing an easy-to-use graphical user interface that runs
in any modern web browser on common laptop computers.
Input files are text files that can be loaded by drag-and-drop
into the browser window. This circumvents the need to
provide certain command-line arguments or editing of
configuration files. SSAM-lite makes the analysis of spatial
transcriptomics data accessible to a broad range of researchers
that may not have a high-performance computing cluster or
experience with command-line tools. SSAM-lite was able to
generate similar results to those previously published (Park
et al., 2021; Tosti et al., 2021) in only a few minutes. SSAM-lite
provides an easy-to-use interface to analyze high-dimensional
SRT data to the wider biomedical research community. In
addition, we see the additional utility in SSAM-lite for SRT
data generators to perform rapid quality control of
experiments and to provide customers with an easy-to-use
exploratory tool. We also expect that specialized
computational scientists may want to use SSAM-lite to
rapidly identify optimal parameters for downstream analysis
and to compare the resultant cell-type map of more
parameterized and resource-hungry analysis tools.

In addition, SSAM-lite-server mitigates much of the
computational burden to the server-side, enabling analysis
of very large datasets, and also analysis of datasets on
mobile devices. The stand-alone implementation of SSAM-
lite-server is amenable to networks with limited access to the
internet such as in many university hospitals.

AVAILABILITY AND IMPLEMENTATION

SSAM-lite is an open-source browser-based web application with
source code freely available on Github via https://github.com/
HiDiHlabs/ssam-lite. Stable releases can be accessed via https://
ssam-lite.bihealth.org and https://ssam-lite.netlify.app, and
developmental releases can be accessed via https://dev–ssam-
lite.netlify.app. The source code for a locally deployable server
version, SSAM-lite-server, is available on GitHub via https://
github.com/HiDiHlabs/ssam-lite-server. Both versions require a
modern browser with JavaScript and WebGL support. Detailed
user guides and documentation can be found at https://ssam-lite.
readthedocs.io.
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