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Dysregulation of the Immune
Environment in the Airways
During HIV Infection
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MIT and Harvard, Cambridge, MA, United States, 4 Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems,
Germany, 5 Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape
Town, Cape Town, South Africa, 6 Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA,
United States, 7 Division of Pulmonology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch,
South Africa, 8 Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa,
9 The Francis Crick Institute, London, United Kingdom, 10 Department of Infectious Disease, Imperial College London, London,
United Kingdom, 11 DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research
Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health
Sciences, Stellenbosch University, Cape Town, South Africa

HIV-1 increases susceptibility to pulmonary infection and disease, suggesting
pathogenesis in the lung. However, the lung immune environment during HIV infection
remains poorly characterized. This study examined T cell activation and the cytokine milieu
in paired bronchoalveolar lavage (BAL) and blood from 36 HIV-uninfected and 32 HIV-
infected participants. Concentrations of 27 cytokines were measured by Luminex, and T
cells were phenotyped by flow cytometry. Blood and BAL had distinct cytokine profiles
(p=0.001). In plasma, concentrations of inflammatory cytokines like IFN-g (p=0.004) and
TNF-a (p=0.004) were elevated during HIV infection, as expected. Conversely, BAL
cytokine concentrations were similar in HIV-infected and uninfected individuals, despite
high BAL viral loads (VL; median 48,000 copies/ml epithelial lining fluid). HIV-infected
individuals had greater numbers of T cells in BAL compared to uninfected individuals
(p=0.007); and BAL VL positively associated with CD4+ and CD8+ T cell numbers
(p=0.006 and p=0.0002, respectively) and CXCL10 concentrations (p=0.02). BAL T cells
were highly activated in HIV-infected individuals, with nearly 2-3 fold greater frequencies of
CD4+CD38+ (1.8-fold; p=0.007), CD4+CD38+HLA-DR+ (1.9-fold; p=0.0006), CD8+CD38+
(2.8-fold; p=0.0006), CD8+HLA-DR+ (2-fold; p=0.022) and CD8+CD38+HLA-DR+ (3.6-fold;
p<0.0001) cells compared to HIV-uninfected individuals. Overall, this study demonstrates a
clear disruption of the pulmonary immune environment during HIV infection, with readily
detectable virus and activated T lymphocytes, which may be driven to accumulate by
local chemokines.
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INTRODUCTION

Sub-Saharan Africa has 25.6 million people currently living with
HIV and 970,000 new infections a year (1). HIV-infected
individuals are highly susceptible to both infectious and non-
communicable pulmonary diseases such as tuberculosis [TB],
Pneumocystis pneumonia, chronic obstructive lung disease
[COPD] or pulmonary fibrosis (2–4). Although antiretroviral
treatment (ART) has reduced the overall prevalence of HIV-
associated lung disease, respiratory diseases still contribute to
substantial morbidity and mortality in the HIV-infected
population (5–7). This suggests that HIV pathogenesis extends
to the lungs, requiring additional strategies to reduce the burden
of respiratory diseases in HIV-infected individuals.

HIV infection is characterized by systemic immune
hyperactivation and profound damage to mucosal compartments
due to viral replication (8–16). Consequently, the demonstrated
burden of HIV in the lung has significant implications for local
pathology and impaired immunity to respiratory pathogens (17–
23). HIV-associated lymphocytic alveolitis, the infiltration of
lymphocytes into the airways, is associated with local viral
replication (24–28). However, due to the difficulty in studying
and sampling the lung compartment, the full extent of HIV-
associated pulmonary immune dysfunction is not well understood.

Our previous work established that early HIV infection had a
limited effect on Mycobacterium tuberculosis (M.tb)-specific T
cell responses in BAL (29), warranting a broader investigation of
the immune milieu of the lung. Therefore, in this study, we
examined viral burden, T cell activation and cytokine
concentrations in paired BAL and blood from HIV-uninfected
and HIV-infected participants.
METHODS

Study Participants
Participants were recruited from Cape Town, South Africa and
grouped according to their HIV status: 32 ART-naive HIV-
seropositive persons with CD4+ T-cell counts of >400 cells/mm3

and 36 HIV-seronegative persons. Participants were not eligible
for this study if they had any active respiratory infections. Active
TB was excluded on the basis of symptoms, radiological
evidence, and BAL fluid culture results. All participants had
latent TB infection (LTBI) as confirmed by a positive IFN-g
release assay (IGRA; Quantiferon-TB Gold, Qiagen, Hilden,
Germany). This study was approved by the Research Ethics
Committees of the University of Cape Town (REF158/2010) and
Stellenbosch University (N10/08/275). All participants provided
written, informed consent.

Collection and Processing of Samples
BAL samples were collected and processed as previously
described (29). Briefly, 160ml of saline was instilled in the
middle lobe bronchus and aspirated. After centrifugation,
acellular BAL fluid (BALF) was stored at −80°C and the cell
pellet was washed and filtered through a 100-mm cell strainer
Frontiers in Immunology | www.frontiersin.org 26
(CellTrics, Partec, Münster, Germany). Cells were then counted
using Trypan Blue exclusion and differentially stained in order to
count macrophages, lymphocytes and neutrophils (RapidDiff,
Clinical Sciences Diagnostics, Johannesburg, South Africa). The
absolute number of T lymphocytes in BAL fluid was calculated
using differential staining and microscopy, and the frequencies of
live CD3+, CD4+, or CD8+ T cells from a flow cytometry
phenotyping panel (see below). To correct for epithelial lining
fluid (ELF) dilution due to variable fluid volumes recovered, the
urea method was used (QuantiChrom, Clonagen, Brussels,
Belgium) as described elsewhere (30). BALF viral loads and
BAL cell counts were standardized according to the volume of
ELF sampled (median, 1 mL; IQR, 0.75–1.64 mL) and are
expressed as the number of cells or viral load per ml of ELF.

Blood specimens were collected and processed within 4 hours.
Heparinized whole blood was treated with red blood cell lysis
buffer without a fixative, and the cell pellet was immediately
stained with a panel of antibodies for phenotyping by
flow cytometry.

Phenotyping by Multiparameter
Flow Cytometry
The staining panel consisted of CCR5 PE (2D7), CD38 APC
(HIT2), CD3 PE-Cy7 (SK7), HLA-DR APC-Cy7 (L243; all from
BD Biosciences, New Jersey, USA), CD4 PE-Cy5.5 (S3.5), CD8
Qdot-705 (3B5), CD19 Pacific Blue (SJ25-CI), CD14 Pacific Blue
(T̈k4; all from Invitrogen, California, USA), CD45RO ECD
(UCHL1), CD27 PE-Cy5 (1A4CD27; both from Beckman
Coulter, California, USA). Blood and BAL cells were stained
with a viability marker (violet fixable viability dye, Invitrogen),
followed by CCR5 labelling at 37°C before labelling with
antibodies against surface markers. Cells were fixed in 1x
CellFix (BD Biosciences) for acquisition a BD Fortessa using
FACSDiva software. Data were analysed using FlowJo (TreeStar,
Oregon, USA). Gates were set using fluorescence-minus-one
(FMO) controls.

Measurement of Soluble Analytes
A total of 27 cytokines and chemokines were measured in paired
plasma and concentrated BALF samples using human magnetic
bead multiplex kits (Merck Millipore, Massachusetts, USA). The
Human Th17 magnetic bead kit was used to measure IL-1b, IL-4,
IL-6, IL-10, IL-13, IFN-g, GM-CSF, TNF-a, IL-21, IL-22, IL-23,
IL-15, IL-17 and CCL20. The Human Cytokine/Chemokine
magnetic bead kit was used to measure EGF, IL-12p70, IL-7,
CXCL8 (IL-8), CXCL10 (IP-10), CCL2 (MCP-1), CCL3 (MIP-
1b), CCL4 (MIP-1a), CCL5 (RANTES), CCL7 (MCP-3), CCL11
(eotaxin), CX3CL1 (fractalkine) and sCD40L. Samples were run
in duplicate and the mean was calculated. Cytokine
concentrations were adjusted for BAL fluid concentration
factor. Cytokines that fell below the limit of detection were
reported as half the minimum detectable concentration.
Analytes were excluded if they fell below the empirical cut-off
(either undetectable in 50% or more participants, or with a
median of less than twice the minimum detectable concentration
for that analyte). These were GM-CSF, IL-22, IL-4, IFN-g, CCL11
June 2021 | Volume 12 | Article 707355
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in BAL; and GM-CSF, IL-15, IL-1b, IL-22, IL-4, IL-6 in blood.
Analytes were categorized as pro-inflammatory (IL-1b, IL-6, IL-
12p70, IL-23, TNF-a, sCD40L), adaptive (IFN-g, IL-13, IL-17),
g-chain cytokines (IL-7, IL-15, IL-21), regulatory (IL-10), growth
factors (EGF) and chemokines (CCL2, CCL3, CCL4, CCL5,
CCL7, CCL11, CCL20, CXCL8, CXCL10, CX3CL1) based on
function. The relative proportion of each analyte was calculated
as a percentage of the sum total of the analyte concentrations in
that compartment.

Statistical Analyses
Non-parametric statistical analyses (Mann-Whitney U test, the
Wilcoxon matched pairs test, and the Spearman rank test) were
performed using Prism 7 (GraphPad). Unsupervised hierarchical
clustering, principal component analyses (PCA) and permANOVA
were carried out in R (31) using the following packages: pheatmap
(32), vegan (33), ggfortify (34), RColourBrewer (35). False
discovery rate (FDR) step down procedures were performed to
adjust for multiple comparisons as previously described (36). A p
value of <0.05 was considered statistically significant. The p values,
p≤ 0.05, p≤ 0.01, p≤ 0.001, p≤ 0.0001 are reported as *, **, *** and
****, respectively.
RESULTS

Cohort Description
Blood and BAL were collected from HIV-infected (n=32; median
age, 31 years; 96% female) and uninfected (n=36; median age, 23
years; 60% female) participants from Cape Town, South Africa
(Table 1 and Table S1). HIV-uninfected participants had a
median CD4 count of 832 cells/mm3 (IQR 741-1028 cells/mm3),
while the HIV-infected individuals had a median of 601 cells/mm3

(IQR 523-782 cells/mm3; p<0.0001). HIV-infected persons were
ART-naïve, however persons with CD4 counts < 400 cells/mm3

were excluded in order to study the impact of HIV infection prior to
severe immunodeficiency. HIV-infected participants had a median
HIV viral load in BAL fluid of 48,224 RNA copies/ml ELF (IQR
2,115-27,378 copies/ml ELF) and a median plasma viral load of
6,153 RNA copies/mm3 (IQR 2,125-17,623 copies/mm3; p=ns).
Consistent with previous reports, there was a significant positive
correlation between HIV load in BALF and plasma (p<0.0001;
r=0.696; data not shown) (19, 21). These data demonstrate that
despite relatively well-preserved CD4 counts, the HIV-infected
group had substantial amounts of virus detectable in the airways
and in blood.
Frontiers in Immunology | www.frontiersin.org 37
Distinct Cytokine Profiles in BAL
and Blood
To investigate the immune environment in the airways
compared to peripheral blood, soluble cytokines and
chemokines were measured in BAL fluid and blood plasma
(Tables S2, S3). Most cytokines (22/24; 92%) were significantly
higher in plasma than BAL fluid, regardless of HIV status
(Figure 1A). Consequently, principal component analysis
(PCA) demonstrated a distinct separation of cytokine profiles
by compartment but not HIV status (p=0.001, r2 = 0.508;
Figure 1B). We then examined the relative proportion of each
cytokine adjusted to represent 100% of the overall milieu in each
compartment (Figure 1C). Again, we observed divergent
cytokine profiles between compartments. In plasma, soluble
CD40L was the most abundant and made up 43% of the
milieu in HIV-uninfected individuals, but only contributed 3%
to the BAL cytokine profile in the same individuals. Likewise,
CXCL10 contributed 44% to the milieu in BAL fluid (44%) but
only 11% in plasma. Based on these observations, we focused on
examining the effect of HIV infection on the airways and blood
separately to account for compartmentalisation.
The Cytokine Milieu in BAL Is Less
Affected by HIV Infection Than Blood
We first investigated the soluble cytokine milieu to elucidate
which immune mediators were elevated during HIV infection. In
BAL fluid, there were few differences in the soluble immune
milieu between study populations. Compared to uninfected
individuals, HIV-infected participants had lower concentrations of
EGF (p=0.040, median: 2.02 pg/ml and 0.48 pg/ml, respectively)
and CX3CL1 (p=0.044, median: 4.61 pg/ml and 2.24 pg/ml,
respectively; Figure 2A) after correcting for multiple comparisons.
Furthermore, unsupervised hierarchical clustering showed no clear
clustering of cytokine profiles between HIV-infected and uninfected
individuals (Figure 2B). Consistent with this, PCA demonstrated
that cytokine profiles of the two groups did not visibly separate
according to HIV status, although there was weak but significant
variation in cytokine profiles between HIV-infected and uninfected
groups (p=0.023, r2 = 0.04; Figure 2C).

In contrast to the airways, the plasma cytokine milieu differed
considerably between HIV-infected and uninfected individuals.
Compared to uninfected individuals, HIV-infected individuals
had notably higher concentrations of inflammatory cytokines
IFN-g (p=0.004, median: 6.32 pg/ml vs 12.47 pg/ml), TNF-a
(p=0.004, median: 10.18 pg/ml vs 25.02 pg/ml) and the
chemokine CXCL10 (p=0.002, median: 219.5pg/ml vs 487.41
pg/ml), and lower concentrations of IL-7 (p=0.036, median: 2.21
pg/ml vs 1.17 pg/ml), IL-12p70 (p=0.007, median: 6.91 pg/ml vs
2.43 pg/ml), EGF (p=0.018, median: 15.17 pg/ml vs 7.07 pg/ml)
and the chemokines CCL3 (p=0.002, median: 49.12 pg/ml vs 15
pg/ml), CCL4 (p=0.017, median: 10.4 pg/ml vs 1.81 pg/ml),
CCL7 (p=0.002, median: 20.3 pg/ml vs 9.22 pg/ml), CX3CL1
(p=0.004, median: 169.7 pg/ml vs 95.12 pg/ml) and CXCL8
(p=0.004, median: 15.72 pg/ml vs 5.25 pg/ml; Figure 3A).
Indeed, plasma cytokine profiles of HIV-infected and uninfected
participants displayed a degree of clustering by unsupervised
TABLE 1 | Clinical characteristics of study participants.

HIV-uninfected (n = 36) HIV-infected(n = 32)

Blood CD4 count (cells/mm3) 832 (741-1,028) 601 (523-782)
Plasma viral load
(RNA copies/ml)

– 6,153 (2,125-17,623)

BAL viral load
(RNA copies/ml ELF)

– 48,224 (2,115-27,378)
Data are median (interquartile range). BAL, bronchoalveolar lavage; ELF, epithelial lining fluid.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bunjun et al. Immune Environment in the Lung
hierarchical clustering (Figure 3B). Similarly, principal
component analysis demonstrated partial separation of cytokine
profiles by HIV status (p=0.001, r2 = 0.109; Figure 3C). Overall,
these results demonstrate that there were larger differences in the
cytokine milieu between anatomical compartments than between
HIV-infected and uninfected participants, with notably fewer
differences observed within BAL compared to plasma, despite
high BAL HIV load in these participants.

Chemokine Concentrations Associate
With T Cell Numbers and HIV Viral Load
in the Airways
As reported previously (29), we found that the absolute numbers
of T cells from BAL were significantly higher in HIV-infected
Frontiers in Immunology | www.frontiersin.org 48
participants, and this correlated positively with BAL viral load
(Figure S1). To examine the interplay between HIV, the cytokine
milieu and T cells, we investigated the relationships between
cytokine concentrations, absolute T cell numbers and viral load.
In plasma, CXCL10 concentration was significantly positively
correlated with viral load (p=0.03, r=0.444; Figure 4A) but there
was no relationship with CD4 count (p=ns; Figure 4B). TNF-a
and sCD40L were also associated with plasma viral load
(p=0.0499, r=0.405) and CD4 count (p=0.032, r=-0.439),
respectively (data not shown). In BAL fluid, chemokines were
significantly associated with viral load and T cell numbers.
Specifically, the concentration of CXCL10 positively correlated
with viral load (p=0.02, r=0.471) and the number of CD3+
(p=0.001, r=0.764), CD4+ (p=0.003, r=0.729) and CD8+ T
A

B C

FIGURE 1 | Soluble immune mediators in blood and BAL. (A) Comparison of cytokine concentrations in BAL (blue) and blood (red) of HIV-infected (filled circles) and
HIV-uninfected (open circles) individuals. “R” refers to regulatory cytokines and “GF” refers to growth factors. The blue and red lines denote the median and interquartile
ranges for BAL and blood, respectively. Statistical analyses were performed using a non-parametric Wilcoxon paired test with False Discovery Rate (FDR) step down
correction. (B) Principal component analysis and permutational multivariate analysis of variance (permANOVA) of cytokine concentrations in BAL (blue) and blood (red).
(C) Cytokine concentration expressed as a proportion of the total milieu in BAL and plasma. The relative proportion of each analyte was calculated as a percentage of the
sum total of the analyte concentrations in that compartment. GM-CSF, IL-22 and IL-4 were excluded altogether as they were below the level of detection in both BAL
and blood. Analytes that fell below the limit of detection for some participants were reported as half the minimum detectable concentration. The p values, p ≤ 0.05, p ≤

0.01, p ≤ 0.001, p ≤ 0.0001 are reported as *, **, *** and ****, respectively.
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cells (p=0.001, r=0.764) (Figures 4C–F). To determine whether
outliers drove these correlations, we excluded the two outliers
with high CXCL10 concentrations. Apart from viral load
(p=0.07), the associations remained statistically significant after
the exclusions. Additionally, CCL2 positively associated with
BAL fluid viral load (p=0.0496, r=0.405), and CXCL8 was
positively associated with numbers of CD3+ (p=0.05, r=0.516)
and CD8+ (p=0.0499, r=0.516) T cells (data not shown). These
associations suggest that the presence of HIV in the airways may
lead to elevated levels of chemokines, and concomitant increases
in T cells in the alveolar space.

T Cells From HIV-Infected Participants
Are Highly Activated in BAL and Blood
Although widespread immune hyperactivation is well described
during HIV infection, little is known about the activation state of
lymphocytes in the airways and how this compares to peripheral
Frontiers in Immunology | www.frontiersin.org 59
blood. Thus, we characterized T cell activation, as measured by
CD38 and HLA-DR expression (Figure 5A and Figure S2) and
found that in HIV-uninfected individuals, frequencies
of activated CD4+ T cells were higher in BAL compared to
blood (for HLA-DR+ p<0.0001, median: 22.75% vs 5.49%;
for CD38+HLA-DR+ p=0.0006, median: 3.32% vs 1.22%,
respectively; Figure S3A). However, in HIV-infected individuals,
there were no significant differences in CD4+ T cell activation
between compartments (Figure S3A). There were also no
differences in activated CD8+ T cells between compartments
(Figure S3B). We observed higher frequencies of CCR5-
expressing CD4+ and CD8+ T cells in BAL compared to blood,
regardless of HIV status (Figure S3C). Furthermore, the frequencies
of CD4+CD38+ and CD4+CD38+HLA-DR+ T cells between blood
and BAL were positively correlated in both HIV-infected (p=0.018,
r=0.537 and p=0.033, r=0.491, respectively) and uninfected
individuals (p=0.002, r=0.622 and p=0.049, r=0.424, respectively;
A

B

C

FIGURE 2 | Soluble immune mediators in BAL in HIV-infected and uninfected individuals. (A) Box and whisker plots (min-max) comparing cytokine concentrations in
BAL according to HIV status. “R” refers to regulatory cytokines and “GF” refers to growth factors. Statistical analyses were performed using a non-parametric Mann-
Whitney U test with False Discovery Rate (FDR) step down correction. (B) Unsupervised hierarchical clustering of cytokines in BAL. (C) Principal component analysis
and permutational multivariate analysis of variance (permANOVA) of soluble immune mediators in HIV-infected (pink; n=24) and uninfected (green; n=31) participants.
GM-CSF, IL-22, IL-4, IFN-g and CCL11 were excluded as they were below the level of detection. The p values, p ≤ 0.05, p ≤ 0.01, p ≤ 0.001, p ≤ 0.0001 are
reported as *, **, *** and ****, respectively.
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Figure 5B and data not shown). CD8+CD38+ T cells also correlated
significantly between compartments, but only in HIV-infected
individuals (p=0.002, r=0.762; Figure 5C). There was no
association between T cell activation and BAL or plasma viral
load (data not shown).

Direct comparison of T cell activation according to HIV
status demonstrated that compared to uninfected participants,
HIV-infected participants had higher frequencies of BAL CD4+
T cells expressing CD38 (p=0.007, medians 9.97% vs 17.8%) and
Frontiers in Immunology | www.frontiersin.org 610
co-expressing CD38 and HLA-DR (p=0.0006, medians 3.16% vs
6.05%; Figure 5D). Consistent with this, there were significantly
higher frequencies of activated CD4+ T cells in blood of HIV-
infected individuals compared to uninfected individuals
(p=0.0002, medians 19.55% vs 11.1% for CD4+CD38+;
p<0.0001, medians 15.25% vs 5.36% for CD4+HLA-DR+;
p<0.0001, medians 4.29% vs 1.22% for CD4+CD38+HLA-DR+;
Figure 5D). Higher CD8+ T cell activation was also demonstrated
for HIV-infected individuals compared to uninfected individuals
A

B

C

FIGURE 3 | Soluble immune mediators in blood in HIV-infected and uninfected individuals. (A) Box and whisker plots (min-max) comparing cytokine concentrations
in plasma according to HIV status. “R” refers to regulatory cytokines and “GF” refers to growth factors. Statistical analyses were performed using a non-parametric
Mann-Whitney U test with False Discovery Rate (FDR) step down correction. (B) Unsupervised hierarchical clustering of cytokines in blood. (C) Principal component
analysis and permutational multivariate analysis of variance (permANOVA) of soluble immune mediators in HIV-infected (pink; n=24) and uninfected (green; n=31)
participants. GM-CSF, IL-15, IL-1b, IL-22, IL-4 and IL-6 were excluded as they were below the level of detection. The p values, p ≤ 0.05, p ≤ 0.01, p ≤ 0.001, p ≤

0.0001 are reported as *, **, *** and ****, respectively.
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in both BAL (p=0.0007, medians 22.9% vs 8.0%, for CD8+CD38+;
p=0.022, medians 21.4% vs 10.7% for CD8+HLA-DR+; p<0.0001,
medians 6.3% vs 1.73% for CD8+CD38+HLA-DR+) and blood
(p=0.0002, medians 21.15% vs 6.83% for CD8+CD38+; p<0.0001,
medians 21.1% vs 9.36% for CD8+HLA-DR+; p<0.0001, medians
9.91% vs 2.1% for CD8+CD38+HLA-DR+; Figure 5E). These
observations confirm that T cell activation was consistently higher
in HIV-infected individuals in both BAL and blood.

Limited Influence of BAL Cytokines on
T Cell Activation
The relationships between cytokines and T cell activation in BAL
was examined next. Figure 6 shows the Spearman rho (r) of each
correlation between cytokines and T cells expressing CD38, HLA-
DR or CCR5. Overall, more associations between cytokines and
activated T cells were observed in HIV-uninfected individuals
Frontiers in Immunology | www.frontiersin.org 711
compared to HIV-infected individuals, which could suggest some
regulatory disruptions duringHIV infection. However, no significant
associations remained after adjusting for multiple comparisons, and
linear regression analysis revealed no associations between T cell
activation and cytokine concentrations (data not shown).
DISCUSSION

This study investigated HIV-associated immune changes in the
airways, to better understand the high incidence of lung disease
during HIV infection. We found distinct compartmentalisation
of cytokines between BAL and blood in terms of relative cytokine
abundance and cytokine concentrations, regardless of HIV
status, leading us to examine the effect of HIV on each
compartment individually. In BAL of HIV-infected, ART-naïve
A

B

C

D

E

F

FIGURE 4 | CXCL10 correlates with HIV viral load and T cell numbers in BAL of HIV-infected individuals. The correlation between CXCL10 concentration and
(A) plasma HIV viral load, (B) blood CD4 count in blood, (C) BAL HIV viral load (n=24), (D) BAL CD3, (E) CD4 and (F) CD8 T cell estimates (n=16). Each dot
represents an individual. Only individuals with absolute BAL cell count data were plotted. The dotted line indicates linear regression for statistically significant
correlations. Statistical analyses were performed using a non-parametric Spearman rank correlation.
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individuals, we detected a high viral load, and more T cells
compared to HIV-uninfected individuals. HIV infection was also
associated with increased frequencies of activated T cells. We
observed a significant positive correlation between BAL viral
load, absolute T cell numbers and the concentration of the
chemokine CXCL10.

We detected high concentrations of HIV RNA in BAL fluid,
consistent with earlier studies (19–21). The presence of HIV in
the lung is likely to contribute to immunopathology and immune
dysfunction, increasing susceptibility to respiratory diseases. We
report a greater number of lymphocytes in HIV-infected airways,
as has previously been described as lymphocytic alveolitis,
Frontiers in Immunology | www.frontiersin.org 812
thought to be predominantly made up of cytotoxic CD8+ T
cells (24, 26, 27, 37). On its own, lymphocytic alveolitis causes
limited pathology (25), but may contribute to the increased
prevalence of pulmonary disease during HIV infection. COPD
is associated with an increase in airway CD8+ T cells, particularly
when combined with smoking or other risk factors (38–40).
Lymphocytic alveolitis may also impair the normal response to
pulmonary infections. A CD4+ T cell infiltration to the lungs
would be expected in response to bacterial pathogens (41, 42),
but this may be skewed towards CD8+ T cells during HIV
infection. Indeed, TB-involved lung tissue from co-infected
macaques (SIV and active TB) had fewer CD4+ T cells than
A

B D

C E

FIGURE 5 | T cell activation in BAL and blood. (A) Representative flow cytometry plots of HLA-DR and CD38 expression on T cells in BAL and blood of HIV-
infected and uninfected participants. (B) The association between CD4+ T cells expressing CD38 in blood and BAL of HIV-uninfected (n=22) and infected (n=15)
individuals. (C) The association between CD8+ T cells expressing CD38 in blood and BAL of HIV-uninfected (n=22) and infected (n=15) individuals. (D) CD38 and
HLA-DR expression on CD4+ T cells in blood and BAL of HIV-uninfected (n=31 and n=25, respectively) and infected (n=30 and n=19, respectively) individuals.
(E) CD38 and HLA-DR expression on CD8+ T cells in blood and BAL of HIV-uninfected and infected individuals. Each dot represents an individual. Open circles
represent HIV-uninfected individuals and filled circles represent HIV-infected individuals. Statistical comparisons were performed using the non-parametric Mann
Whitney, Wilcoxon matched pairs and Spearman correlation tests.
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those with active TB alone (43), suggesting SIV may interfere
with the recruitment of CD4+ T cells into involved tissue.
Furthermore, the infiltration of activated, cytotoxic CD8+ T
cells (37), together with local pathology caused by the HIV Nef
protein, may also considerably compromise mucosal barrier
function via endothelial dysfunction and increased epithelial
permeability (44–48). In this study, HIV-infected individuals
also had lower concentrations of EGF in BAL fluid. Together, our
data and these studies suggest reduced mucosal barrier function
and dysregulated migration of T cells, leading to suboptimal
control of infection and disease.

In HIV-uninfected individuals, BAL CD4+ T cells were
significantly more activated than in blood, which is consistent with
a mucosal effector environment (49–51). HIV infection led to similar
levels of activated CD4+ and CD8+ T cells in BAL and blood, the
likely result of systemically activated cells migrating into the airways.

We found a clear compartmentalisation of cytokine profiles
between blood and BAL, with more differences between
compartments than between HIV-infected and uninfected
individuals. This agrees strongly with a recent study reporting
Frontiers in Immunology | www.frontiersin.org 913
distinct transcriptional profiles between BAL cells and PBMC,
regardless of HIV status (37), underscoring the assertion that
blood may be a poor surrogate for immune processes in the
airways. In BAL, CXCL10 was present at the highest relative
proportion. CXCL10 is responsible for T cell chemoattraction
and is upregulated in the healthy human lung during pulmonary
infection and disease (52, 53). Indeed, the preservation and
increase in the BAL T cell population may be driven by the
local presence of chemokines, which are elevated during HIV
infection (19, 54, 55). We also found that the concentration of
CXCL10 positively correlated with BAL viral load and BAL T cell
numbers; and the latter two also associated with each other.
These data suggest a relationship in which HIV may drive the
expression of chemokines from lung cells, which in turn causes
an infiltration of lymphocytes, including HIV-specific and M.tb-
specific T cells (17, 18, 29, 56). We also observed elevated
concentrations of the proinflammatory cytokines TNF-a and
IFN-g in plasma, consistent with previous studies (10, 57–60). In
contrast, we did not detect elevated proinflammatory cytokines
in BAL, despite high viral loads. Excess inflammation in the lung
A B

FIGURE 6 | Univariate associations between T cell activation markers and cytokine concentrations in BAL of HIV-infected (n=14) and uninfected (n=21) individuals.
Spearman rho (r) of the univariate correlation between each cytokine and the expression of activation markers on (A) CD4+ T cells and (B) CD8+ T cells. Open
circles represent HIV-uninfected individuals and filled circles represent HIV-infected individuals. Statistically significant correlations (p<0.05) are indicated in darker
lines and symbols. Spearman correlation tests, of which Spearman rho and the 95% confidence intervals are reported here. None of the correlations remained
statistically significant after adjusting for multiple comparisons by FDR step down procedures. The p values, p ≤ 0.05, p ≤ 0.01, p ≤ 0.001, p ≤ 0.0001 are reported
as *, **, *** and ****, respectively.
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may cause tissue damage, which may be especially detrimental to
the integrity of alveoli, so an aggressive immune response that
would be permissible elsewhere is thought to be tightly
controlled and regulated in the lung (61). Indeed, studies have
reported that BAL CD8+ T cells have lower cytotoxic potential
compared to peripheral blood CD8+ T cells (62).

Although there may be continuous migration of virus
between BAL and the circulation (63), local viral replication
may also be occurring. HIV target cells in the lung include small
alveolar macrophages and resident CD4+ T cells expressing
CCR5 (28, 64). Thus, the lung may also act as a reservoir for
HIV. Previous studies have shown distinct HIV env sequences
isolated from the lung, compared to those isolated from
peripheral blood in the same individual (65, 66). Whether the
lung is an important viral reservoir in the context of viral
suppression and cure needs further investigation.

Our study had several limitations. We were only able to
phenotype BAL T cells on a limited number of participants, due
to the challenge of obtaining sufficient cells from BAL. Although
BAL is representative of the bronchus, it may not necessarily
reflect the immune environment of lung tissue. Further studies
examining lung biopsies or other sources of lung tissue during
HIV infection would give a clearer picture of HIV-associated
pulmonary dysfunction. Longitudinal studies, perhaps in non-
human primate models, are required to fully understand the
dynamics of the immune milieu over the course of HIV infection.

In conclusion, this study demonstrates that the immune
environment of the airways is disrupted during HIV infection,
with readily detectable virus and the accumulation of activated T
lymphocytes that may be driven by high levels of chemokines
such as CXCL10 at this site. Further mechanistic studies are
required to determine whether HIV-associated changes in the
airways contribute to the increased susceptibility to pulmonary
disease during HIV infection.
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Eosinophils are typically a minority population of circulating granulocytes being released
from the bone-marrow as terminally differentiated cells. Besides their function in the
defense against parasites and in promoting allergic airway inflammation, regulatory
functions have now been attributed to eosinophils in various organs. Although
eosinophils are involved in the inflammatory response to allergens, it remains unclear
whether they are drivers of the asthma pathology or merely recruited effector cells. Recent
findings highlight the homeostatic and pro-resolving capacity of eosinophils and raise the
question at what point in time their function is regulated. Similarly, eosinophils from
different physical locations display phenotypic and functional diversity. However, it
remains unclear whether eosinophil plasticity remains as they develop and travel from
the bone marrow to the tissue, in homeostasis or during inflammation. In the tissue,
eosinophils of different ages and origin along the inflammatory trajectory may exhibit
functional diversity as circumstances change. Herein, we outline the inflammatory time line
of allergic airway inflammation from acute, late, adaptive to chronic processes. We
summarize the function of the eosinophils in regards to their resident localization and
time of recruitment to the lung, in all stages of the inflammatory response. In all, we argue
that immunological differences in eosinophils are a function of time and space as the
allergic inflammatory response is initiated and resolved.

Keywords: eosinophils, immunology, asthma, lung, allergic airway inflammation, innate immunity
INTRODUCTION

Eosinophils represent a minority population of peripheral leukocytes of the innate immune system.
They are largely evolutionary conserved and classically considered terminally differentiated end-
stage cells (1). Eosinophils develop in the bone marrow from myeloid precursors under the
influence of interleukin (IL)-5. Although IL-5 is critical for eosinophil differentiation, priming, and
survival, other cytokines, as IL-3 and granulocyte-macrophage colony stimulating factor (GM-CSF)
also promote eosinophil differentiation (2). Upon release into the circulation eosinophils are present
in the peripheral blood for a few hours; however, they can survive in tissues for several weeks and
adopt tissue-specific homeostatic phenotypes (3). The ability of eosinophils to remain in tissues for
org November 2021 | Volume 12 | Article 772004117
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extended periods of time suggest they have a necessary role in
homeostasis or preventing disease (2). As postulated in the Local
Immunity And/or Remodeling/repair (LIAR) hypothesis, by
James Lee, eosinophils can be considered intrinsically
homeostatic cells that are associated with sites characterized by
high cell proliferation/turn-over and cell death (4). Indeed,
eosinophils are, under homeostatic conditions, distributed in
many organs like the lung, spleen, and gastrointestinal tract, as
well as in the blood, lamina propria and adipose tissue (5). As
such, these cells are proposed to have a physiological function in
each of these different organs, which is strengthened by evidence
on the existence of multiple tissue specific subtypes of
eosinophils based on distinct surface marker expression and
functional characteristics (6, 7). Although they are equipped with
an arsenal of pre-formed inflammatory mediators and have the
ability to produce several cytokines, eosinophils are most well-
recognized for their pivotal role in the inflammatory pathology
of a broad range of diseases, including parasitic infections and
allergic disease, such as food allergy, asthma, and atopic
dermatitis (8). Whether eosinophils are also involved in the
resolution phase of these inflammatory afflictions is largely
unknown. In general, the immune response after acute
inflammation and the accompanying tissue damage is meant to
resolve inflammation, repair tissue and re-establish tissue
homeostasis.Therefore, it is essential to accurately study the
function of immune cells, not only regarding their location,
but also include their temporal exposure to different
microenvironments at that location. Here we emphasize the
need to define eosinophils during acute, late, and chronic
inflammatory responses, as well as resolution in lung
inflammation in regards to both time and space.
EOSINOPHILS IN MAINTENANCE OF
IMMUNOLOGICAL HOMEOSTASIS

At birth very few eosinophils are present in the lungs of mice,
however they are recruited by IL-5 from type-2 innate lymphoid
cells (ILC2) under the influence of epithelium-derived IL-33
coinciding with the alveolarization phase at post-natal day
(PND) 3. After which they rapidly increase in number, peaking
on PND14, before the eosinophils decline again after weaning
(9). Importantly, eosinophil adopt a type 2 activated immune
phenotype during this phase (10). In humans, eosinophils have
been shown to be present as early as fetal thymic development
(11). From birth onwards the lungs are constantly exposed to a
variety of airborne particles and these insults typically result in
clearance without acute inflammation, as well as antigenic
tolerance. Several studies, in both mice and humans (12, 13),
have shown that eosinophils spend between 3 and 24 hours in
circulation, however their half-life in the lung is prolonged to
about 36 hours (3). Additionally, homeostatic lung eosinophils
express several genes, like Runx3, Serpinb1a, and Ldlr, that are
implicated in the maintenance of lung immune homeostasis and
negative regulation of T helper cell type 2 (Th2 cell) responses
(14). In line with these observations, studies in eosinophil-
Frontiers in Immunology | www.frontiersin.org 218
deficient mice have revealed that sensitivity to house dust mite
(HDM) is increased in the absence of eosinophils (14). The
unique capability of lung homeostatic eosinophils to prevent
Th2-driven allergic airway inflammation has been linked to their
ability to inhibit the maturation of allergen-loaded dendritic cells
(DCs) (14). However, seeing that eosinophils are central to the
alveolarization phase early in life, the widespread use of
congenital DdblGATA mice and PHIL mice, that both lack
eosinophils, may significantly confound experiments
performed in adult life. It is still unclear how the absence of
eosinophils at birth will impact later respiratory challenges like
allergens, bacterial and viral infections.

In the steady state adult lung, Mesnil et al. have identified a
small population of tissue-resident eosinophils (rEos). These
eosinophils are found to express distinct surface markers like
the L-selectin receptor CD62L, that is distinct from
“inflammatory” eosinophils (iEos) appearing after allergic
inflammation. Even though rEos express the IL-5 receptor,
their presence in the lung seem to be IL-5 independent and
may promote the development of Th1 immunity by impairing
the ability of DCs to induce Th2 immunity (14). In contrast,
earlier findings of Nussbaum et al. suggest that basal
eosinophilopoiesis and accumulation of eosinophils in tissues
is dependent on ILC2-derived IL-5 (15). These apparent
contradictions on the role of IL-5 in basal conditions of tissue-
eosinophilia highlight the need for a better characterization of
the precise role these lung-resident eosinophils have, especially
when translating these findings to the human lung (16). Recently,
an intra vital microscopy study in mice showed patrolling
eosinophils in the lung vasculature, which were differentially
activated after stimulation with ovalbumin (OVA)-allergen,
suggesting these resident cells to be reactive to allergenic
insults (17). Activation of eosinophils to airborne allergens is
often studied with purified molecules, like: IL-33, papain, and
Aspergillus protease. The use of these type-2 inducing agents
allow for a reductionistic experimental system to investigate
airway allergy. However, real-life allergens (e.g. HDM) better
recapitulate the spatiotemporal interplay between innate and
adaptive immunity, including the pleiotropic function of
eosinophils epitomized in this review. With new tools
becoming available homeostatic- or resident-lung eosinophils
can be further characterized and questions on their contribution
to the maintenance of homeostasis and tolerance in the lung and
the presence of different eosinophil subpopulations can
be addressed.
EOSINOPHILS PROMOTE TH2
DIFFERENTIATION DURING
SENSITIZATION (PRE-CHALLENGE)

The first encounter with allergens, like; HDM, and the absence of
type 1 inflammatory signals in early life (“hygiene hypothesis”) –
sets the stage for allergic pathology later in life (18). It is now
clear that the airway epithelial cells (ECs) play an important role
in the induction of allergen-induced inflammatory responses
November 2021 | Volume 12 | Article 772004
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(19). Not only can epithelial cell damage be seen in all
phenotypes of asthma, changes in EC function can be observed
at very young age, cumulating to the idea that ECs may play a
role in the initiation of asthma in early life (20, 21). The link
between epithelial barriers and eosinophils is supported by their
preferred association with epithelial barrier tissues, where foreign
antigens are most often encountered (6). Amongst these
structural barrier cells are pulmonary neuroendocrine cells
(PNECs) that are specialized tissue-resident neuroendocrine
cells in the airway epithelium (22). PNECs can be innervated
by both parasympathetic and sympathetic neuronal fibers (23,
24). With close proximity to steady-state immune cells, like
ILC2, PNECs have the ability to amplify allergen-induced
immune cell recruitment, including eosinophils (25).
Interestingly, eosinophils in turn have been shown to
contribute to increased nerve density and airway nerve
remodeling which serves as a key mechanism for increased
irritant sensitivity and exaggerated airway responsiveness (26).

For the initiation of antigen-specific Th2 responses in the
lung, conventional DC2s (cDC2s) need to migrate to the
draining lymph nodes, a process augmented by ILC2-derived
IL-13, mast cell-derived TNF, epithelial cell-derived GM-CSF,
and by type-1 interferon (27–29). Although unclear in the
pulmonary setting, in the murine intestine it is proposed that
eosinophils play an important role in the activation of DCs and
their migration to the draining lymph nodes (30). Eosinophils
have also been shown to produce an antimicrobial protein,
eosinophil-derived neurotoxin (EDN), that effectively recruits
and activates cytokine producing DCs, thereby enhancing Th2
immune responses (31–33). Besides promoting DC activation,
murine intestinal and lymph node eosinophils have been
reported to express antigen presentation machinery, including;
MHC-II, costimulatory molecules CD80 and CD86, and migrate
to the draining lymph nodes in a CCR7-dependant manner (34–
36). Interestingly, human peripheral blood eosinophils exhibit
very low to undetectable levels of MHC-II, whereas class-II
expression is observed on airway eosinophils (37, 38).
Eosinophils are observed within the T cell zone of the draining
lymph nodes, have the ability to present antigen, and express
transcripts for IL-4 and IL-13. However, the low number of these
cells in the lymph nodes suggest that eosinophils have a minor
role as antigen presenting cells and instead may be required for
the accumulation of DCs within the lymph nodes and
subsequent antigen-specific T effector cell production (39).
Interestingly, these effects were independent of MHC-II
expression on eosinophils, again proposing an accessory role
for eosinophils in the process of T cell stimulation. Moreover,
human blood-derived eosinophils have been shown to induce
DC maturation by physically interacting with DCs in the
presence of bacterial pathogen-associated molecular patterns
(PAMPs) (40).

Together, these data demonstrate that eosinophil-derived
products can promote Th2 inflammation via DC regulation
during the sensitization phase to an allergen. At the same time,
lymph node eosinophils actively suppress DC-induced Th17 and
Th1 responses, thereby promoting Th2 polarization (39). It
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should be noted that timed depletion of eosinophils using
iPHIL mice in the sensitization phase of HDM or OVA allergic
airway inflammation did not affect the outcome of type 2
immunity or lung function following allergen challenge,
suggesting that eosinophils may have a more subtle effect on
downstream adaptive immunity (41). In all, the process of
allergic sensitization, aided by eosinophils, results in the
proliferation of Th2 cells, the appearance of class-switched
plasma cells producing allergen-specific IgE, and the presence
of IgE/FcϵR1-intraepithelial mast cells in the lung.
PHASES OF ALLERGIC LUNG
INFLAMMATION

Any inflammatory response is subject to critical changes through
space and time, especially in damage-prone tissues like the lungs
(42, 43). The allergic inflammatory response has been classified in
terms of three temporal phases of inflammation, the acute, late,
and chronic phase (44). Even though this paradigm is now well
accepted, surprisingly little is known about the differences in
eosinophil functioning during these distinct phases of allergic
inflammation. Indeed, complete eosinophil-deficient animals do
not distinguish between differential functioning in these phases,
significantly hampering understanding of the exact role of
eosinophils. For example, in vitro exposure of murine blood-
derived eosinophils to a certain set of cytokines defines their
phenotype in the lung when adoptively transferred in vivo (45).
Indeed, type 2 cytokines known to affect eosinophils like IL-4, IL-5
and IL-13, chemokines like CCL11 and lipid mediators, like
cysteinyl leukotrienes (CysLTs) are produced by different cell
types, in different locations and at different time points during
the allergic inflammatory process (19). In an effort to holistically
address the multi-wave inflammatory response, Walsh and
colleagues constructed a network model of allergic airway
inflammation that was supported by experimental perturbation
experiments (46). They reported early induction of airway
hyperresponsiveness (AHR) relied on mast cells in the early
phase and on Th2 cells and eosinophils in the late phase.
Interestingly, IL-13 seemed to differentially affect AHR in a
distinctive manner through time. Other efforts are now being
made to conceptualize and visualize these time-dependent
inflammatory processes (47). In this review, by visualizing the
allergic airway response in space and time in Figure 1, we aim to
illuminate the heterogeneity of environments and molecular input
that govern eosinophil functioning in a spatiotemporal manner.

Acute Phase (Minutes to Hours)
In the lower airways, alveolar macrophages (AMs) are the main
immune cell type encountering airborne particles, the lung-
resident commensal microbiome and tasked with maintaining
homeostasis (48). They actively patrol the alveoli in homeostasis
and develop under the influence of epithelial-derived TGFb and
GM-CSF (49–51). As such, it is not surprising that these cell
types are found to behave distinctly different in the allergen-
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FIGURE 1 | Eosinophil function in time and space during allergic airway inflammation.
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challenged lung (52). As the inflammatory response develops
and the alveolar space is intruded by other immune cells, like
eosinophils, the concerted immune response is highly dynamic.
At first, for the AM to initiate and support inflammation, it needs
multiple molecular cues to override the TGFb-driven tolerogenic
phenotype (48, 53). Loss of AMs results in exacerbated cellular
and humoral type 2 immunity (54). Recognition of HDM by
AMs is mediated by Dectin-2 and results in the downstream
production of CysLTs (55, 56). Alveolar macrophages readily
phagocytose airborne particles and it is now recognized that the
phagocytic capacity of these macrophages is dysfunctional in
asthmatic patients (52). Interestingly, phagocytosis of apoptotic
cells suppressed HDM-induced allergic lung inflammation (57).
As the clearing capacity of macrophages is reduced, allergens like
HDM can further induce epithelial responses.

Allergen-induced epithelial responses initiate the production
of the cytokines IL-33, IL-25, and thymic stromal lymphopoietin
(TSLP) that are released upon epithelial activation or damage. In
the (naïve) lung, a wide variety of cells respond to these
cytokines, including ILC2, DCs, macrophages, mast cells,
basophils, and eosinophils (58). Activation of these diverse cell
types leads to reciprocal interactions and the release of additional
mediators. Especially ILC2 have been shown to coordinate
eosinophilia in response to allergen, since they localize and
migrate in close proximity to epithelial cells (59). Several
cytokines can activate ILC2 in the early stage, epithelial-
derived IL33 and TGFb (60), as well as basophil-derived IL-4
(61), and tuft cell-derived IL-25 and CysLTs (62), of which the
end product LTE4 is even detectable in the bronchoalveolar
lavage fluid and urine of patients with asthma exacerbations (63).
ILC2-derived IL-5 will act as an early mediator of eosinophil
differentiation and hematopoiesis. At the same time, ILC2-
derived IL-13 enhances the expression of eotaxins that assist
with eosinophil recruitment (62). In turn, eosinophils can
maintain ILC2 activation through the release of IL-4.
Moreover, eosinophils can directly bind IL-33, inducing a wide
range of transcripts supporting eosinophil activation (64).
Whereas, TSLP has a major role in the recruitment of
eosinophil into the respiratory tract (65), it also induces pro-
survival mechanisms through direct binding of TSLP by its
receptor on eosinophils (66). Besides controlling eosinophil
numbers, ILC2 also license DCs to trigger adaptive Th2 cell
responses (67). Furthermore, epithelial cells in the allergic lung
produce GM-CSF, which controls the recruitment and survival
of eosinophils in the lung directly (68). It has further been shown
that activation of the NF-kB pathway in the epithelial lineage is
crucial for the downstream allergic immune cascade in response
to HDM (69) and interference in this cascade early in life can
prevent the onset of allergic disease (18).

In recent years it has been demonstrated that large functional
heterogeneity exists within the epithelial cell lineage at distinct
areas of the respiratory system. Specialized tuft cells contribute to
type 2 immune responses and eosinophilia through the
production of IL-25 and CysLTs (70, 71). When tuft cells
recognize the epithelial stress trigger ATP, they release LTC4,
LTD4 and LTE4, which can augment the sensitivity of ILC2 to
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type 2 inflammatory mediators (72, 73). PNECs are solitary cells
in the epithelium of the upper airways and function as
chemosensors to respond to changes in oxygen, mechanical-
and chemical stimuli by producing neuroactive mediators (22,
74). Mice lacking PNECs have been shown to exhibit reduced
allergic inflammation and eosinophilia as ILC2 become less
activated (75). In humans, PNECs are found to be increased in
number in asthma patients, producing the neuropeptide CGRP
and the neurotransmitter GABA increasing ILC2-derived IL-5
and promoting goblet cell hyperplasia, respectively (75).
Activation of steady state ILC2 can be further stimulated by
the neuron-derived neuromedin U, especially in the presence of
IL-25 (76, 77). The specific location of these neuroimmune cell
units in the lung and the temporal activation of these early
response hubs in allergic inflammation will need further
investigation in relation to whether and how they have direct
effects on eosinophil activation (78). Importantly, allergen
detection may not only be constrained to the apical side of the
epithelial layer and its associated cells, as epithelial CD23 (the
low-affinity IgE receptor) can bind and transcytose allergen-
specific-IgE, resulting in increased allergic inflammation (79).

After the lung is sensitized to the allergen in a type-2
dominant manner, intraepithelial mast cells are primed by
expressing FCϵR1 binding allergen-specific IgE. Upon allergen
stimulation, membrane-bound IgE clusters FCϵR1 on mast cells
leading to immediate degranulation and the release of pre-
formed vesicles filled with histamine and enzymes like tryptase
and chymase (80). A reciprocal relationship exists between mast
cells and eosinophils, with mast cells supporting eosinophil
survival and activation by secreting IL-5. Genetic knockout of
mast cells reduced eotaxin levels in the lung of HDM challenged
mice and impaired eosinophil recruitment (81). Eosinophil-
derived MBP in turn directly activates mast cells and
basophils, releasing histamine and TNF (2). It has now been
established that mast cell-derived acute phase proteases
modulate asthma pathology (reviewed in (82)). Moreover,
histamine has multiple direct asthma-related effects in the
lung, including; plasma exudation due to increased vascular
permeability, release of mucus, and constriction of small
respiratory passages (83). Tryptase levels in blood and airway
fluid are elevated in asthma patients and correlate with disease
severity (84). Interfering with tryptase using antagonistic
antibodies reduced mast cell activation and the use of tryptase
inhibitors or serine protease inhibitors reduced eosinophil
infiltrates (85, 86). Besides, human b-tryptase has been shown
to enzymatically inhibit eotaxin and RANTES function, possibly
affecting eosinophil recruitment (87). Additionally, human
peripheral blood eosinophils respond to enzymatically active
tryptase by the release of eosinophil peroxidase and beta-
hexosaminidase (88), although it remains to be determined
whether the lung resident eosinophils in mice would contribute
to the acute phase inflammatory response after release of
tryptase. Chymase has been assigned a plethora of asthma-
related activities, including increasing mucus production,
modification of extracellular matrix and modulation of
cytokines like IL-33, IL-4, and IL-1b (89). However,
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exploration of chymase (specifically, the direct mouse
homologue Mcpt4) in murine models of asthma, suggests a
protective role in pathology (90), possibly through the
degradation of IL-33 (91). The effect on eosinophils specifically
includes the suppression of apoptosis and induction of
chemokine production (92).

Secondary to pre-stored granule proteins, mast cells
synthesize eicosanoids within minutes and cytokines,
chemokines, and growth factors in a matter of hours.
Eicosanoids like the arachidonic acid metabolites prostaglandin
(PG) D2, LTB4, LTC4, hydroperoxy-eicosatetraenoic acid, and
hydroxy-eicosatetraenoic acid (5-HETE) influence eosinophil
trafficking and function in asthma and allergic diseases (93,
94). The early CysLTs and PGD2 prime ILC2s by upregulating
cytokine receptors that respond to the epithelial cell-derived
cytokines IL-33 and IL-25 (62). An intravital microscopy study
in mice showed that IL-33 induced CCR8+ ILC2s to patrol the
peribronchial and perivascular spaces, possibly localizing
eosinophil recruitment to CCL8-rich sites of inflammation
(59). Of the prostaglandins, PGD2 can directly bind its
receptor DP2/CRTH2 on eosinophils (95, 96), which is
robustly expressed on both murine and human eosinophils
(97). Exposure of eosinophils to PGD2 induces both activation
and chemotaxis (98, 99). Activated mast cells further promote
the migration of DCs to the draining LN, contributing to the
initiation of adaptive immunity (100). Mast cells further produce
cytokines, like IL-3, TNF, IL-4, IL-8, IL-13 and IL-25 (44) and
especially, mast cell-derived IL-3 is suggested to play a key role in
modulating eosinophil functioning in allergic asthma (101). In
fact, IL3 polymorphisms have been associated with decreased
risk of asthma (102). In both asthmatic and non-allergic lung
eosinophilia, IL-3 production by type 2 CD8+ (Tc2) cells is found
to be increased (103, 104). However, it is unclear at which stage
in the allergic response CD8+ Tc2 cells are a significant source of
IL-3 for eosinophils.

The highly coordinated acute response to allergens at the
epithelial barrier seems to set the stage for the downstream
allergic inflammatory eosinophilia. However, the immediate
response of lung resident eosinophils or the early infiltration of
circulating eosinophils upon antigen challenge are poorly
investigated, with most studies investigating time points often
days after the last antigenic challenge. The early inflammatory
landscape is coordinated by epithelial cells, mast cells, ILC2 and
neurons, and their products will primarily target resident
eosinophils. At the same time, basophil-derived IL-4 and ILC2-
derived IL-5, as well as eotaxin, recruit eosinophils from the
periphery. However, upon arrival in the lung the inflammatory
input for those cells has changed. It is unknown how the lung
resident and infiltrating eosinophils coordinate this response. In
addition, the type and combination of inflammatory triggers in
the lung, may affect the granulocytic composition. For example,
early (30 minute) recruitment of CD101- eosinophils after LPS
instillation in the lung, suppress neutrophilic lung inflammation
(105). However, combined with HDM, LPS induced neutrophil-
derived cytoplasts and neutrophil extracellular trap (NET)
formation in the broncho-alveolar lavage (BAL) after 24 hours
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and increased Th17 cells in the lung-draining lymph nodes
(106). The acute phase response is mostly “outward-in”;
however, some immediate immune reactions can be found in
the alveolar space. Within the alveolar space of allergic asthmatic
patients’ segmental challenge with ragweed showed increases in
histamine, PGD2 and thromboxane B2 within 5 minutes of
exposure (107). Although, no cellular changes were yet
observed at this early timepoint. It will be exciting to see how
the division of labor between resident and incoming eosinophils
is established and how this shapes the propagation of the
allergic response.

Late Phase (Hours to Days)
As local innate inflammation progresses into the late phase, the
tissue-contained response is joined by innate cells from the
circulation, including neutrophils, eosinophils, basophils and
monocytes (44). The lung endothelium is conditioned to allow
the tethering, rolling and extravasation of leukocytes into the
lung tissue (108). Apart from the chemo-attractants discussed
above, endothelial priming is induced by several cell types, like
NKT cells and basophils. Whereas mast cells reside in the lung
tissue, the majority of basophils are recruited from the periphery
into the lung after allergen challenge and affect eosinophil
recruitment and function (109, 110). In the late phase of the
asthmatic response, basophils are the major IgE bearing
granulocyte producing histamine (111). Basophils can, like
mast cells, produce IL-3 in response to IgE/FcϵR triggering and
facilitate an autocrine activation loop (112, 113). However, as
reported above, IL-3 actively affects eosinophil function. In
addition to their pro-inflammatory function, murine basophils
also prime lung ILC2s to respond to the neuropeptide
neuromedin B, possibly to inactivate type 2 immune responses
and to aid resolution (114). Moreover, through production of
lipoxygenases and cyclooxygenases, mast cells and basophils can
balance the metabolism of arachidonic acid into leukotrienes and
prostaglandins. For example, allergen/IgE-stimulated bone-
marrow-derived basophils were found to secrete 5-
lipoxygenase (5-Lox) metabolites LTB4 and LTC4 within 30
minutes of exposure (115). In turn, cyclooxygenase (COX)-
metabolites like PGD2 and PGE2 were secreted 6 hours after
stimulation. This temporal separation adds to their ability to
modulate immune responses and the recruitment of immune
cells like eosinophils.

Recruitment of circulating eosinophils into the inflamed lung
seems to be regulated at several levels. In asthmatic patients,
basophil-derived IL-4 is the cardinal cytokine for recruitment of
eosinophils into the lung and was found in the bronchoalveolar
lavage within 20 hours after segmental allergen challenge (116). The
secreted IL-4 could in turn induce a dose and time-dependent
increase in the levels of eotaxin mRNA within fibroblasts (117).
Additionally, eotaxin-3 expressed by IL-4-stimulated human
vascular endothelial cells may contribute to CCR3-dependent
eosinophil accumulation in the lung (118). Similarly, human
endothelial cells stimulated with IL-4 increased the expression of
VCAM-1, which binds to eosinophil VLA-4 contributing to
eosinophil extravasation after allergen challenge (119). Otherwise,
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Coyle and colleagues reported that IL-4 neutralization just before
allergen challenge had little effect on eosinophil infiltration,
suggesting that although IL-4 is required for the induction of Th2
immunity, it may be dispensable for eosinophil recruitment in the
challenge phase (120). Recently, Felton and colleagues have shown
that eosinophil recruitment into tissues is intrinsically dependent on
expression of the Ikaros zinc-finger family transcription factor
IKZF3 (Aiolos), as Aiolos-deficiency reduced eosinophil CCR3
expression, and subsequent CCL11-induced intracellular ERK1/2
signaling (121). Yi et al. have further shown that it is a network of
cDC2s that converge on lung cDC1s, which produce CCL17 and
CCL22, directly attracting CCR4-expressing eosinophils (122).
Interestingly, the early recruitment within a day was mediated by
CD24- cDC2s producing nitric oxide affecting cDC1 activation,
whereas eosinophil recruitment was aborted via TGFb-producing
CD24+ cDC2s in later phases of the inflammatory response (122).
CCL17 and -22 not only affect eosinophils, as these chemokines are
reported to actively recruit T cells to the lungs sustaining type 2
inflammation (123). The need for eosinophils to induce T cell
infiltration in allergic airway inflammation was further
corroborated (124), although this prerequisite might be less
pronounced in BALB/c mice (125, 126). It is likely that the
division of labor by DCs in the lung upon inflammation is tightly
coordinated in a spatiotemporal manner to allow DC emigration, T
cell activation in the lymph node and T cell recruitment to the lung,
but also supply the lung parenchyma with the proper inflammatory
context. Circulating eosinophils, resident eosinophils, recruited
eosinophils, and bone marrow eosinopoiesis should ideally be
analyzed independently, since they are likely functionally different
or at least different in their susceptibility to external input. In vivo
challenge studies in mild asthmatic patients have shown eosinophil-
specific changes in the BAL transcriptome 48 hours after segmental
bronchoprovocation with allergen (127). These changes may
well be induced by infiltrating eosinophils receiving different
environmental cues. Possibly, tissue damage is sufficient to induce
eosinophil recruitment, as is evidenced by intravital microscopy of
lung tissue at 12 hours post silica particle-induced acute injury (17).
Moreover, radiolabeled eosinophils injected intravenously into
asthmatic patients or healthy volunteers also showed lung
infiltration within minutes, with asthmatic patients showed higher
eosinophil migration to the lung (128).

Neutrophils also play an important role in allergic lung
inflammation and their presence has been related to separate
endotypes of asthma. For example, the presence of high
bronchial neutrophilia with similar levels of eosinophilia was
related to increased serum IgE, IL-17 production and clinical
corticosteroid dependence (129). The recruitment of neutrophils
in the lung is governed by epithelial club cells under the influence
of the circadian rhythm, which mode of attraction underlies the
anti-inflammatory capacity of dexamethasone (130).
Additionally, neutrophil activation in the form of dsDNA-rich
NETosis has been implicated in virally-induced asthma
exacerbations of type-2 responses in the acute phase of the
immune response (131) (discussed in more detail below).
Interestingly, neutrophil depletion in the HDM mouse model
exacerbated type 2 inflammation and airway pathology (132).
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This exacerbation was attributed to increased systemic G-CSF,
which activated ILC2 and enhanced antigen presentation by
monocyte-derived dendritic cells. In addition, a recent study has
shown that IL-17a and TNFs stimulation of lung epithelium
resulted in local G-CSF (CSF3) production, leading to increased
granulopoiesis and both systemic and respiratory neutrophilia
(133). However, the prerequisite of IL-17a and TNF would
suggest this process to be relevant in the adaptive phase of the
inflammatory response, when helper T cell cytokines are
abundant. Increased neutrophilia in asthmatics has been
shown to be dependent on epithelial cells and IL-8 derived
from smooth muscle cells (134, 135). Although IL-8-mediated
neutrophilia may beneficially affect immunity to bacterial lung
infection, the resulting extensive lung remodeling may lead to
impaired lung function in asthmatics (136).

As the lung tissue recruits cells from the circulation, certain
immune cells cross the epithelial barrier to the bronchoalveolar
space, including eosinophils, basophils and lymphocytes (107).
Within 4 hours after segmental allergen challenge in asthmatic
patients, eosinophils are recruited to the alveolar space by
epithelial-derived eotaxin (137). Another study in humans
found increased ILC2 in the BAL at 24 hours after segmental
challenge. Moreover, BAL ILC2 expressed higher levels of IL-13
transcript relative to blood ILC2 (138). At the same time,
allergen-specific IgE, C3a, C5a and IL-9 accumulates in the
BAL (139–141). Allergen-activated macrophages start
producing TNF and IL-6 (142). New alveolar macrophages
may be partly replenished by monocyte-derived cells attracted
by activated epithelial cells (143) and acquire an alternatively-
activated phenotype under the influence of basophil-derived
IL-4 (144). Besides, asthmatic patients showed increased
epithelial-derived MUC5AC levels, at 24 hours after antigen
challenge (145).

During the late phase of the immune response, effector cells
are mainly structural cells, resident immune cells and infiltrating
immune cells from the circulation. In parallel, DCs are activating
allergen-specific T cells in the lymph nodes, which expand and
travel to the lung tissue to introduce the adaptive phase.

Adaptive Phase (Days to Weeks) and
Resolution of Inflammation
Following the initial release of type 2 cytokines in the lung (by
ILC2 and NKT cells), activated eosinophils upregulate multiple
cell surface receptors, allowing them to become dynamically
regulated and in turn drive the production of canonical Th2
cytokines IL-4, IL-5, and IL-13 by T cells (146). A systematic
investigation of these cytokines revealed single and synergistic
effects on eosinophils and lung inflammatory hallmarks, such as
goblet cell metaplasia (147). Over time, plasma cells arise.
Meanwhile, in the bone marrow eosinophil-derived APRIL and
IL-6 have been shown to sustain the survival of co-localizing
plasma cells (148). The adaptive phase of the allergic immune
response is further characterized by the influx of Th2 cells.
Asthmatic patients who clearly present with allergen-specific
Th2 cells, and their associated cytokines, in the bronchoalveolar
lavage, as well as with airway and/or blood eosinophilia are
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clustered as type 2-high patients (149, 150). On the other side,
non- or low-type 2 asthma phenotypes have also been recognized
and are defined by the absence of Th2 cytokine signatures and
eosinophilia. However, within the type 2-high subtype, circulating
Th2 cells appear to be more diverse than initially expected.
Circulating allergen-specific Th2 cells have been identified in the
lungs of mice and in the blood of allergic asthmatic patients. These
Th2 cells have been found to not only produce IL-4, IL-5, IL-6,
IL-13, but also IL-9, IL-17, and IL-21 (151, 152). Th2 cells isolated
from both humans andmice are characterized by the expression of
PPARg, that seems to be crucial in driving Th2 cell pathogenicity
(152, 153). It seems that IL-4 production in the lung is mostly
basophil-derived, while IL-4 present in the draining lymph node
was T cell-derived (154). Furthermore, Tibbitt and colleagues have
shown that while IL-4 may play a more dominant role in the
draining lymph node, IL-5 and IL-13 are more prominent T cell
cytokines in the lung tissue. This indicates that Th2 cells undergo
substantial programming in the lung, making them highly distinct
from their lymph node counterparts (152). We found that IL-21
produced by distinct T cell subsets can promote adaptive Th2 cell
responses (151). It should bementioned that the source of IL-13 in
allergen-induced airway hyperresponsiveness may depend on the
age of first exposure, with IL-13+ CD4+ T cells dominating in
neonatal life and IL-13+ ILC2s dominating in adult mice (155).
Interestingly, it has also been suggested that pulmonary NKT cells,
which are activated by IL-25, IL-33, and TSLP, can license
incoming Th2 cells to induce airway hyperresponsiveness, via
the production of IL-4 and IL-13 (156, 157). Moreover, Va14-
expressing NKT cells, residing in the intravascular space of the
lung microvasculature, can recruit eosinophils after binding of
aGalCer on CD1d (158). However, it is not clear how precisely
NKT cells drive asthma adaptive immune response.

Whereas the classical type 2 cytokines induce the expression of
adhesion molecules, such as ICAM-1 and VCAM1, that allow
extravasation of eosinophils into the lung, the function of the more
enigmatic cytokine IL-9 is largely unknown (159). Besides being
produced by highly-differentiated Th2 cells in allergic asthmatic
patients (160), also referred to as Th9 cells (161), IL-9 is also
produced by human eosinophils and neutrophils (162, 163).
Consequently, increased expression of IL-9 has been found in
the bronchoalveolar lavage in these patients (141). Additionally,
genome-wide expression profiles showed that young asthmatics
with a IL-9 polymorphism were more likely to report a severe
asthma exacerbation to HDM (164). In murine models IL-9 seems
to be critical for the induction of allergic airway inflammation, as
the administration of blocking antibodies reduced asthma features
(165). Moreover, TSLP and IL-25 signaling was shown to promote
Th9 cell differentiation and stimulated IL-9 production by these
cells (166, 167). Elevated levels of IL-9 were further reported to
increase mast cell numbers in the lungs. Mast cell precursors are
attracted to the lung and seem to peak in numbers one day after a
seven-day challenge period (168, 169). In fact, it seems that the
Th9 cells are critical to the IL-9-mediated recruitment of late
phase mast cells (170). The recruited mature mast cells can persist
for weeks post allergen challenge, further reinforcing the Th2
environment. In all, incoming T cells produce high-levels of Th2
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cytokines and thereby maintaining and propagating asthma
features, including the recruitment of eosinophils into the lungs
and airways. Samples derived from human asthmatics showed
that eosinophils may further sustain Th2 inflammation by
maintaining high indoleamine 2,3-dioxygenase (IDO) levels
(171). Interestingly, pulmonary eosinophil trafficking into the
lung lymphatic compartment is shown to be dependent on
LTC4 (172), but independent of eotaxin (34), and has been
proposed to be a prerequisite for DC accumulation in the
draining lymph nodes and allergen-specific T cell proliferation
(39). As mentioned during the sensitization phase, eosinophils can
migrate to the draining lymph nodes and localize to the T cell-rich
paracortical areas. During the adaptive phase of the allergen-
induced immune response, eosinophils have been shown to
stimulate antigen-specific T cell proliferation within the lymph
nodes (34). Additionally, eosinophils have the ability to influence
proliferation and activation of both memory T and B cells, yet
have little effect on naïve T and B cells. Interestingly, eosinophilic
airway inflammation was unaffected in a chronic HDM model in
the absence of B cells or CD40L-dependent B-T cell interactions
(173). As the blood-derived eosinophils infiltrate the inflamed
lung, the circulation is replenished through increased
granulopoiesis in the bone marrow. While the relationship
between systemic infection and emergency neutrophil output
from the bone marrow is well established (174), it is unclear
how acute or chronic allergic lung inflammation affect
eosinopoiesis in the bone marrow. IL-5 is clearly the most
important factor promoting eosinophil production, differentiation,
and in preventing apoptosis (1). Despite the fact that the
developmental pathway of eosinophils has been reviewed
extensively, its precise trajectory under inflammatory conditions
is still a matter of debate (175). Nonetheless, it is worth noting that
allergic lung inflammation leads to increased eosinopoiesis via
systemic IL-5 and further differentiation via systemic or local
IL-3, GM-CSF and eotaxins (CCL11, CCL24, CCL26) (176).

Although often considered pro-inflammatory, eosinophils
have also been suggested to mediate the resolution of
inflammation. For example, immune resolution of the airways
after allergen exposure is defective in PHIL mice, which lack
eosinophils (177). The resolution phase is characterized by
apoptosis of various immune cells, and the subsequent uptake
by macrophages. Eosinophils can induce macrophage CXCL13
expression in the resolution phase, leading to increased
macrophage-dependent phagocytosis and impaired lymphatic
drainage (177). Additionally, CXCL13 recruits B cells and
CD4+ T cells to the lung, where these may contribute to
induced bronchial-associated lymphoid tissue (iBALT). In
turn, iBALT structures may facilitate or reduce the
accumulation of eosinophils in allergic lung inflammation,
depending on the timing and the research model used (178).
As the innate inflammatory response needs resolution, several
inter-/intracellular negative feedback loops exist to resolve
inflammation, remodel damaged tissue and instigate tissue
repair (179). Granulocytes are thought to travel into the
airways, undergo apoptosis and are removed by macrophage
(or epithelial) efferocytosis (180). In the lung, IL-4 and IL-13
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together with apoptotic cells programs macrophages to go into a
tissue repair phenotype (181, 182). This removal of apoptotic
neutrophils is mediated by expression of Gas6 and recognition
by its cognate receptors AXL and MERTK (183). A similar
MerTK-dependent mechanism of efferocytosis of eosinophils
has been described in an ovalbumin-induced allergic
inflammation model (184). Moreover, a failure to undergo
apoptosis through experimental overexpression of the anti-
apoptotic protein Mcl-1 resulted in exacerbated allergic airway
inflammation (185). Furthermore, in a murine asthma model
phagocytosis of apoptotic cells by alveolar macrophages, resulted
in the production of retinoic acid, which promoted regulatory T
cell development (57). The notion that apoptosis is the major
driver of eosinophil removal from the airways is however
contested (186). Eosinophils can undergo a specific type of
lytic cell death, which involves the expulsion of DNA-
contained eosinophil extracellular traps (EET) and granules
(187). Alternatively, eosinophils may undergo ferroptosis-like
cell death, which may reduce allergic airway inflammation in
mice when therapeutically promoted (188). Nonetheless, how
eosinophil death is regulated as part of the resolution phase or
during chronic inflammation is unclear. If the clearance of dying
cells is impaired, apoptotic cells become necrotic and damage-
associated molecular patterns are released, which may actually
result in additional inflammation. To aid the clearance of death
cells, non-professional phagocytes, such as bronchial epithelial
cells, can contribute to apoptotic cell clearance and the
restoration of homeostasis (189). Both innate and adaptive
immune cells are communicating to ensure resolution of
inflammation. For example, IL-33 may stimulate mast cells to
produce IL-2, which promotes the expansion of Tregs. These
Tregs, in turn, suppress the development of papain- or IL-33-
induced eosinophilia in the lung (190). However, the exact time
and cellular context of IL-2 production will affect the final
outcome (191). IL-33 and IL-13 have also been shown to
coordinate macrophage-mediated bronchial epithelial cell
repair after lung injury (182, 192), as well as the production of
amphiregulin by ILC2 (193). The identification of functional
heterogeneity in these immune responses, under the influence
of the changing local tissue microenvironment, may reflect
their differential roles in regulating proinflammatory versus
tissue-protective responses. However, in the case of chronic
inflammation, the line between adequate immune activation,
immune resolution and tissue regeneration remains even less
well defined.

Chronic Phase (Weeks-Years)
Clinical data and investigational reports on mild and severe
asthmatic patients provide invaluable information about the
chronic phase of the allergic lung. A benchmark study by the
groups of Teichmann and Nawijn explored this cellular
landscape of the lower airways of healthy and asthmatic lungs
by single cell RNA sequencing (194). They revealed a shift in
airway structural cell communication to a Th2-dominated
interactome in asthmatic lungs compared to healthy lungs.
Furthermore, bronchoscopy biopsies from asthmatic patients
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showed enriched mast cells with high expression of genes
involved in downstream biosynthesis of PGD2. Repeated
activation of these pulmonary mast cells by allergens in asthma
patients can result in lowering their degranulation threshold
(195, 196). However, whereas increased mast cell numbers were
observed in the bundles of airway smooth muscle from chronic
asthmatics, these bundles had a profound absence of T cells or
eosinophils (197). Nonetheless, intraepithelial mast cell
accumulation is associated with a type 2-high phenotype (198).
These mast cells seem to be actively degranulating and may be
related to fatal cases of asthma (199). Additionally, in children
with severe asthma, mast cells were positively correlated with
high numbers of submucosal eosinophils (200). Likewise, a
negative correlation was observed between eosinophil counts in
atopic individuals and their epithelial barrier integrity (196).
Collectively, it seems that the cellular landscape in the lungs of
chronic asthmatics is thoroughly affected, resulting in airway
dysfunction, as well as mucus- and goblet cell metaplasia.

The relationship between eosinophils and airway dysfunction
has been extensively researched. The exact role of eosinophils in
common mouse models of allergic airway inflammation likely
depends on several factors, including the chronicity of the model,
the genetic background, the number of antigenic exposures,
the type of allergen, and the mode of antigen delivery (201).
Early studies using the OVA protocol with IL-5 knockout mice
(202), congenitally eosinophil-deficient mice (203) and
eosinophil depleting biologics (204) implicated an important
role of eosinophils in airway inflammation. In contrast, Takeda
and colleagues showed that an extensive OVA model (2
sensitizations and 7 or 11 challenges over a 50 to 66 day
period, respectively) developed airway hyperreactivity reaction
(AHR) in both WT and PHIL (eosinophil-deficient) transgenic
animals (179). Importantly, eosinophil-deficient animals showed
eosinophilic-independent AHR, likely through increased goblet
cell numbers after 11 OVA challenges. Jacobsen and colleagues
described a genetic mouse model of chronic Th2–driven
inflammation by overexpressing IL-5 from T cells and human
eotaxin 2 in the lung (I5/hE2), which did not show extensive
pulmonary histopathology regardless of clear eosinophil
activation, type-2 immunity and degranulation (205). Similarly,
clinical studies were unable to find an association between
reduced eosinophilia by mepolizumab (IL-5 blockade) and
airway function/hyperreactivity, although fewer exacerbations
were observed (206).

In chronic asthmatics, both prostaglandins and leukotrienes
are deregulated and the production of 5-HETE, LTB4 and LTE4
was found to be increased in alveolar macrophages, leading to
defective apoptotic cell phagocytosis (207, 208). This may lead to
aberrant cell accumulation and increased necroptosis or
eosinophil cytolysis. Human eosinophils have also been linked
to the deposition of Charcot-Leyden crystals (CLCs), formed
after eosinophils undergo cytolysis and form extracellular traps
(EET) (209, 210). In severe asthmatics peripheral EET-forming
eosinophils are elevated and can stimulate IL-33 and TSLP
production by lung epithelial cells (211). Moreover, CLC
formation leads to the production of IL-1b, IL-6, and TNF, as
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well as the recruitment of several innate and adaptive immune
cells and the induction of mucus production by epithelial cells
(209, 212). CLC crystals are found more abundantly in asthmatic
patients, where they are located within the mucus plugs
potentially changing their rheology and rigidity, making it
harder to cough them up (209, 213). CLC are amply found in
patients with chronic rhinosinusitis with nasal polyps
(CRSwNP), a condition of type 2 inflammation of the nose
and paranasal sinuses. Here, crystals promote neutrophil
recruitment and neutrophil NETosis, creating a favorable niche
for persistent type 2 immune cells (214). In a recent study in mice
EETs were shown to activate PNECs to produce CGRP and
GABA, contributing to asthma pathology (215). Finally, EETosis
also involves the release of intact granules that retain granule
proteins and can still be activated by CCL11 (187). It has been
proposed that these bioactive cell-free granules remain
pathogenic in the tissue after IL-5/IL-5R blockade, possibly
explaining sustained pathology regardless of significant
reductions in eosinophil counts.

In both murine experimental asthma models, as well as in
patients with eosinophilic asthma, a population of CD4+ resident
memory T (Trm) cells was observed (194, 216). Trm cells express
the IL-33 receptor ST2, suggesting they could be directly activated
by epithelial-derived IL-33 and contribute to the chronicity of the
asthma pathogenesis (217). Indeed, higher levels of ST2 were
found on allergen-specific CD4+ T cells in the BAL of asthmatics
after segmental allergen challenge (145). In murine models,
allergen-specific Trm cells produced more Th2 cytokines than
circulating Th2 cells. Interestingly, the functional difference
between the pool of lung Trm and circulating memory cells
could be further explained by their localization. Whereas
circulating Th2 cells preferentially localized in the lung
parenchyma, controlling eosinophil and T cell recruitment, Trm
cells localized primarily near the airways and induced eosinophil
activation, mucus production, and AHR (218). In human tissue
samples from CRSwNP, there was a notable expansion of basal
cells at the expense of epithelial cell diversity. This process was not
only driven by type-2 cytokines (IL-4 and IL-13), but also induced
a possible memory-like phenotype in the basal cell population
(219). When comparing allergic asthmatics with allergic
nonasthmatic controls, both groups developed allergic airway
inflammation in response to allergen. However, in the asthmatic
patients type-2 cytokine levels and mucin levels were substantially
higher compared to controls (145). Interestingly, type-2 cytokine
levels only correlated with mucin production in the asthmatic
subjects, but not in the controls, suggesting differences in the
airway epithelial responses to inflammation (145). Besides, chronic
exposure of the lung to IL-33 seems to drive the allergic immune
response beyond the typical type 2 phenotype towards aberrant
remodeling of lung epithelium and lung parenchyma (220).

Importantly, not only adaptive antigen-specific immune cells
like T and B cells are educated by previous inflammatory insults.
This suggests that alveolar macrophages, ILC2, and lung
epithelial (stem) cells may be functionally and epigenetically
reprogrammed by an inflammatory insult or inflammatory
microenvironment. However, it remains to be determined
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whether it is the same alveolar macrophage lineage or newly
recruited monocyte-derived alveolar macrophages, that are
subject to this environmental imprinting. In settings of allergic
airway inflammation, papain and IL-33 have been shown to
induce long-term changes in lung ILC2, with some persisting up
to two months in the lung and even 4 months in the mLN.
Exposure of these ‘conditioned’ ILC2 to a second unrelated
allergen resulted in exaggerated cytokine responses and
increased type 2 immune response (221). Interestingly, ILC
memory resembles adaptive T cell memory even in absence of
antigen-specificity. A novel finding is the presence of
inflammatory memory in basal cells from allergic nasal polyp
samples (222). Basal cells were found to expand at the expense of
differentiated epithelial cells and displayed IL-4/IL-13 responsive
genes that remained fixed ex vivo. It is unknown whether
eosinophils or granulocyte progenitors display such
immunological memory as a result of chronic allergic airway
inflammation. However, it is clear that chronic asthma patients
are immunologically predisposed to airway insults that result in
repeated acute and adaptive immune responses aimed at antigen
clearing and tissue repair.

Like all chronically ill individuals, asthmatic patients
inevitably enter the clinic with an extensive inflammatory
history involving chronic eosinophilia. Experimental
eradication of eosinophils in animal models before onset of
chronic inflammation severely compound the conclusions that
can be extrapolated in relation to eosinophil functioning in
asthmatics. Another observation of interest is the shortening of
telomere length in peripheral leukocytes of asthmatics (223, 224),
suggesting extensive leukocyte proliferation and found to
correlate with eotaxin 1 expression (225). However,
telomerase-deficient mice showed debilitating eosinophil
responses in the lung and reduced eosinopoiesis, although
eosinophil-independent effects of telomerase cannot be
excluded (226). Whether constant eosinopoiesis in long-term
severe asthmatics induces inflammaging phenotypes in
eosinophils remains unknown.
EOSINOPHILS IN ASTHMA
EXACERBATIONS

Chronic asthmatics are commonly hospitalized for asthma
exacerbations and these account for roughly one-third of all
asthma-related deaths in the US (227). Exacerbations of asthma
can be induced by various different stimuli, including allergens,
pollution, cold air, microbes, and viruses. Amongst the latter,
respiratory viruses and especially respiratory syncytial virus (RSV)
and rhinovirus (RV) are major drivers of asthma exacerbations in
children and adults, respectively (228). Respiratory viruses most
frequently infect lung epithelial cells (229). Remarkably, asthma
exacerbations are mainly induced in patients with high eosinophil
numbers (type 2 high phenotype) (230). Recent studies have
shown that during viral-induced asthma exacerbations, high
levels of IL-33 were produced by airway epithelial cells,
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consequently suppressing type-I IFN production and leaving the
epithelium more vulnerable to repeated infections (231–233).
Likewise, epithelial cells from asthmatics showed defective
interferon l production after infection with rhinovirus (234).
Importantly, a recent study suggests that the response of the
lung epithelium to rhinovirus infection is not qualitatively
changed, but is delayed (235). The epithelium of healthy
patients showed a peak in the anti-viral response at 48 hours
post-infection, whereas lung epithelial cells from asthma of COPD
patients peaked at 96 hours post-infection (235). As exposure to
respiratory viruses increased the levels of IL-33 and TSLP
produced by lung ECs, it comes to no surprise that children
hospitalized with severe respiratory infection had increased ILC2
numbers in the lungs (236). Equivalently, in murine models of
influenza infections, increased numbers of ILC2 were found in the
lungs. Although influenza is rarely involved in asthma
exacerbations, these data may suggest a division of labor
between Th2 cells contributing early in the response and ILC2-
derived cytokines that contribute at a later stage to lung repair via
the production of amphiregulin (237). Recent studies have also
identified a specific population of SIRPa+IFNAR+ conventional
DC2 with strong capacities to activate antiviral CD4+ and CD8+ T
cell responses (238). Such DC responses are dependent on type-I
interferons, which are high during antiviral responses and are
known to inhibit ILC2 functions (239). However, within the Th2
environment, the levels of type-I interferons may be lower and this
may impact the function of SIRPa+IFNAR+ DC2s and the
subsequent antiviral response. It is still unclear how exactly
type-I interferons, SIRPa+IFNAR+ DC2s, and virus-induced
asthma exacerbations are linked. Nonetheless, it is tempting to
speculate that increased levels of IL-33, produced by airway
epithelial cells upon respiratory viral infection, and stronger
activation of Th2 cells and ILC2, would enhance asthmic
features, including BHR and eosinophilia.

A common feature of the asthmatic lung is the disruption of
the airway epithelium (240). An increase of epithelial cells in the
sputum (sometimes referred to as Creola bodies) of pediatric
asthma patients was found during acute exacerbations (241,
242). These exacerbations were related to increased IL-8, which
recruits neutrophils and in turn eosinophils to the lungs (243).
Similar findings were reported in a model of rhinoviral-induced
asthma exacerbation (244), with type 2 cytokines potentially
enhancing the epithelial production of CXCL10, IL-8 and GM-
CSF (245). Of note is the observation that the immune response
to RV is changed by mepolizumab, without directly affecting
eosinophil functioning (246). Taken together, it is clear that both
neutrophils and eosinophils enhance RV exacerbations in
asthmatics (243).

Human eosinophils express several functional Toll-like
receptors (TLRs), including TLR1, 2, 3, 4, 5, 6, 7, and 9, with
some heterogeneity associated with atopic status (247, 248).
Besides, supporting a potential role for eosinophils in PAMP
recognition, TLR expression can provide a mechanism by which
bacterial or viral infections exacerbate allergic disease (249).
However, to complicate things, eosinophils may play an
important role in the protection against viral and bacterial
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pathogens. Mouse studies with the murine equivalent of RSV,
pneumonia virus of mice indicated that eosinophil degranulation
was associated with a more favourable outcome in infected mice
(250). Although, in human rhinovirus infection, eosinophils were
found to lower epithelial interferon production, thereby increasing
viral load (251). In patients with RSV infection, eosinophil
degranulation products, such as ECP and EDN, have been
isolated from the bronchoalveolar lavage of the lower airways
(252). More recently, it has been shown that EDN can enter viral
capsids and degrade RNA from RSV (253). Eosinophils have even
been shown to quickly internalize and inactivate RSV and
influenza virus in vitro; a characteristic that was defective in
eosinophils from asthmatics (254). From murine studies, it is
clear that mice overexpressing both IL-5 and eotaxin-2 were
protected against lethal pneumovirus infection (250).
Eosinophil-driven antiviral activity has further been
demonstrated for other respiratory viruses, including influenza,
parainfluenza, and HIV, although the exact mechanisms by which
eosinophils protect from viral infections have still to be elucidated
(253, 255, 256). Taken together, there is a complexity within
eosinophil function in viral infection and it is unclear how
eosinophil-viral interactions are regulated. As the majority of
the eosinophil-viral interactions comes from RSV research, the
investigation of other viruses, like rotavirus or SARS-CoV2, may
provide further insights regarding eosinophil-viral interactions.
CONCLUDING REMARKS AND
FUTURE DIRECTIONS

Our perspective on the lung has changed dramatically over the
last decades, culminating in the view of the lung as a place where
epithelial cells, stromal cells, and immune cells support a
multifaceted frontline defense system focused on inducing
tolerance, supporting highly-efficient injury-repair responses,
as well as (destructive) inflammatory responses, like asthma.
Indeed, not a single cell seems to be left out of the inflammatory
response to airborne allergens. Over the last years, mouse models
of asthma have evolved from primarily focusing on the role of
eosinophils as proinflammatory cells, to a consensus that
eosinophils have a divers set of functions ranging from
proinflammatory to immune modulating. In these nuanced
disease settings, it can be questioned whether, where, and
when eosinophils are contributing cells, rather than primary
mediators. Shifting the focus of eosinophils being the primary
promotors of the inflammatory cascade, towards a view where
eosinophils play multiple defined roles along the disease
progression trajectory. This may explain the mixed results of
eosinophil-depleting therapies in asthma and other
inflammatory diseases. The traditional view of eosinophils as
being released into circulation as terminally differentiated cells
led us to ask the question at which level within the developmental
pathway functional differentiation and plasticity is arranged.
Recent findings on other granulocytes like neutrophils have
addressed similar questions on plasticity in the overarching
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developmental trajectory and into inflammatory situations. For
example, certain combinations of transcription factors govern
specific parts of the neutrophil inflammatory response (257).
Interestingly, neutrophils are released into circulation in a
circadian rhythm and a recent study showed that this
chronicity (termed “neutrotime”) largely determines the core
transcriptional profile of neutrophils (258), with limited
transcriptional change inducible by external input. Whereas
these significant advances are made possible using scRNA
sequencing, the eosinophil is notoriously difficult to capture in
single cell transcriptomics. Hypotheses that are currently
entertained include the possibility that RNAses are abundant
present in eosinophils and may break down mRNA before it can
be amplified, and the terminally differentiated status that simple
excludes active transcriptional plasticity. A recent study using the
10X scRNAseq platform showed that the transcriptome of
circulating eosinophils is very low, even though eosinophils
can be readily detected by RNA-barcoded antibodies in the
same setup (CITEseq) (259). Even if transcriptional changes
can be found in eosinophils between conditions of in vivo
allergen challenge in asthmatics, it is unclear whether the
readout arises from transcriptional changes in resident
eosinophils or the transcriptionally pre-activated circulating
eosinophils infiltrating the inflamed lung. The study from
Mesnil and colleagues support the latter option, where
“inflammatory” eosinophils are proposed to accumulate
independent of resident eosinophils. This raises the question at
which level local adaptation can occur; are eosinophils victims of
predetermined signaling cascades or can they still change their
core programs upon receiving environmental cues?

The modulation of eosinophils in the allergic lung, and beyond,
may otherwise entail post-transcriptional changes like metabolic
switches or translational modifications. We have recently shown
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that eosinophils participate in the competition for glucose in the
tumor microenvironment of lung metastases, inhibiting anti-
tumor NK cells (260). Interestingly, eosinophils appear to
display greater metabolic flexibility compared to neutrophils,
and can switch metabolic programming during in vitro
differentiation. Hence, eosinophil swarming in the allergic lung
will undoubtedly affect local immunometabolism (261, 262).

Current eosinophil depleting strategies may pose, currently
unknown, pre-dispositions to other diseases. Thus warranting a
more sophisticated approach to modulating their function. If we
are to understand eosinophil functioning in space and time, we
will undoubtedly need to resort to new and more refined modes
of measuring eosinophil states along the developmental
trajectory. As the last frontier in myeloid developmental
understanding on the single cell level, the eosinophil may yet
prove to be a new dimension.
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Major Neutrophil-Derived Soluble
Mediators Associate With Baseline
Lung Pathology and Post-Treatment
Recovery in Tuberculosis Patients
Caleb Nwongbouwoh Muefong1,2*, Olumuyiwa Owolabi1, Simon Donkor1,
Salome Charalambous3, Joseph Mendy1, Isatou C. M. Sey1, Abhishek Bakuli 2,4,
Andrea Rachow2,4, Christof Geldmacher2,4 and Jayne S. Sutherland1

1 Vaccines and Immunity Theme, Medical Research Council (MRC) Unit The Gambia at London School of Hygiene and Tropical
Medicine (LSHTM), Fajara, Gambia, 2 Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig Maximilian
University (LMU) Munich, Munich, Germany, 3 School of Public Health, Aurum Institute, Johannesburg, South Africa, 4 International
Clinical Trials Unit, German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany

Background: The inflammatory response to Mycobacterium tuberculosis results in
variable degrees of lung pathology during active TB (ATB) with central involvement of
neutrophils. Little is known about neutrophil-derived mediators and their role in disease
severity at baseline and recovery upon TB treatment initiation.

Methods: 107 adults with confirmed pulmonary TB were categorised based on lung
pathology at baseline and following successful therapy using chest X-ray scores (Ralph
scores) and GeneXpert bacterial load (Ct values). Plasma, sputum, and antigen-stimulated
levels of MMP1, MMP3, MMP8, MMP9, MPO, S100A8/9, IL8, IL10, IL12/23(p40), GM-
CSF, IFNg, and TNF were analysed using multiplex cytokine arrays.

Results: At baseline, neutrophil counts correlated with plasma levels of MMP8
(rho = 0.45, p = 2.80E−06), S100A8 (rho = 0.52, p = 3.00E−08) and GM-CSF
(rho = 0.43, p = 7.90E−06). Levels of MMP8 (p = 3.00E−03), MMP1 (p = 1.40E−02),
S100A8 (p = 1.80E−02) and IL12/23(p40) (p = 1.00E−02) were associated with severe
lung damage, while sputum MPO levels were directly linked to lung damage (p = 1.80E
−03), Mtb load (p = 2.10E−02) and lung recovery (p = 2.40E−02). Six months of TB
therapy significantly decreased levels of major neutrophil-derived pro-inflammatory
mediators: MMP1 (p = 4.90E−12 and p = 2.20E−07), MMP8 (p = 3.40E−14 and p =
1.30E−05) and MMP9 (p = 1.60E−04 and p = 1.50E−03) in plasma and sputum,
respectively. Interestingly, following H37Rv whole cell lysate stimulation, S100A8 (p =
2.80E−02), MMP9 (p = 3.60E−02) and MPO (p = 9.10E−03) levels at month 6 were
significantly higher compared to baseline. Sputum MMP1 (p = 1.50E−03), MMP3 (p =
7.58E−04), MMP9 (p = 2.60E−02) and TNF (p = 3.80E−02) levels were lower at month
6 compared to baseline in patients with good lung recovery.

Conclusion: In this study, patients with severe lung pathology at baseline and persistent
lung damage after treatment were associated with higher plasma and sputum levels of
major pro-inflammatory neutrophil-derived mediators. Interestingly, low sputum MPO
org November 2021 | Volume 12 | Article 740933136
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levels were associated with severe lung damage, higher Mtb burden and low recovery.
Our data suggest that therapeutic agents which target these mediators should be
considered for future studies on biomarkers and host-directed therapeutic approaches
against TB-related lung pathology and/or lung recovery.
Keywords: tuberculosis, neutrophils, myeloperoxidase, S100A8/9, MMP8, lung pathology
INTRODUCTION

Tuberculosis (TB) caused 1.2 million deaths from HIV-negative
individuals in 2019 (1). While treatment is available, former
patients are more likely to experience long-term pulmonary
disability (2) and only about 50% of patients achieve full
recovery from lung damage (3). It has been suggested that
higher initial inflammatory responses against Mycobacterium
tuberculosis (Mtb) lead to more severe lung damage prior to
treatment initiation (4) and thus reduced of recovery
following treatment.

Inflammatory mediators generated during the natural
immune response to Mtb (5) are linked to increased disease
severity, bacterial burden and delayed culture conversion.
However, the overall inflammatory response depends on the
interplay between pro- and anti-inflammatory mediators (6).
Interestingly, reports show that severe inflammation and lung
damage following Mycoplasma pneumoniae infection in mice
may be a result of oxidant–antioxidant imbalances which can be
reduced by immunosuppression (6). Similarly, certain neutrophil
sub-types have been shown to express immunosuppressive
functions including: CD16brightCD62Llow neutrophils (7) and
granulocytic myeloid-derived suppressor cells (G-MDSCs) (8,
9). These support the idea that an equilibrium between
neutrophilic pro- and anti-inflammatory functions (10–14)
determines the extend of inflammation and lung damage in
TB patients.

Previous studies have investigated a broad range of
biomarkers for TB disease progression and lung damage
severity in humans (15–19), recently reviewed (20–22). While
some neutrophilic activities have been tested, major neutrophil-
derived mediators have not been the main focus. Neutrophils are
mainly pro-inflammatory but recent studies reveal that different
subtypes also display anti-inflammatory functions (11, 14, 23,
24) depending on the type and quantity of inflammatory
mediators produced. A current challenge is to elucidate which
neutrophil subtypes and mediators are predominantly pro- or
anti-inflammatory during active TB and to determine the
underlying immunological mechanisms involved in protective
outcomes. Muefong and Sutherland reviewed (12) promising
neutrophil-derived targets for developing host directed therapies
(HDTs) against TB-induced lung pathology. We also recently
showed, in a smaller group of participants from this Gambian
cohort, that immature (banded) neutrophils and IL10-expressing
CD16dimCD62Llow neutrophils are associated with reduced lung
damage in active TB patients pre-treatment (13). Additionally,
MDSCs are currently considered in the development of HDTs
against TB progression and Mtb control (9, 25, 26) due to their
org 237
role as effectors of Mtb pathogenesis and their modulatory role
on T-cell function.

Studies in mice (27), macaques (28, 29) and humans (30, 31)
suggest that heightened neutrophil function correlates with
tissue injury. For example, during hypoxic conditions, human
neutrophils have been shown to drive tissue destruction during
ATB by secreting matrix metalloproteinases (MMPs) like MMP8
and MMP9 (32). Sputum MMP levels have also been associated
with disease severity in ATB patients pre-treatment (33) and
excess MMP activity enhances tissue injury in clinical studies and
preclinical models of pulmonary pathology (34). S100A8/9 is
another neutrophil-derived mediator known to exacerbate the
inflammatory response to Mtb infection and it is currently
targeted in Mtb control studies (28, 35).

On theotherhand, recent studies highlight an immunoregulatory
effect of granulocytes (36). Inmice exposed to zymosan, deficiency in
myeloperoxidase (MPO)—a major constituent of neutrophil
granules—results in severe lung inflammation (37), suggesting that
MPO could play immunomodulatory functions; an observation
which has not been made in TB. Hence, different neutrophil-
related mediators could differentially influence ATB-related
lung pathology.

We contribute to the field of TB biomarkers by focusing on
major neutrophil-derived inflammatory mediator levels in ATB
patients and relate this to chest X-ray (CXR) based lung
pathology scores and bacterial load before and after TB
therapy. We address gaps in our understanding of TB
pathogenesis by monitoring the impact of neutrophil-derived
mediators on the severity of TB-induced lung pathology to
inform future experiments in controlled animal models
investigating TB HDTs.
METHODS

Ethics Approval
Ethical approval was obtained from the Medical Research
Council/Gambia government joint ethics committee
(SCC1523). All study participants provided written informed
consent prior to collection of samples.

Participants
Adult, TB patients with positive GeneXpert (Cepheid, USA)
results were recruited from the TB clinic at the MRC Unit The
Gambia at LSHTM between April 2018 and October 2019 as part
of a parent study, TB Sequel (3). This study was conducted on a
sub-cohort of TB Sequel and patients were selected based on
their lung recovery outcome post-treatment. All participants
November 2021 | Volume 12 | Article 740933
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were later confirmed to have a positive mycobacteria growth
indicator tube (MGIT) culture result at baseline, were drug
sensitive and had not previously received anti-TB therapy
(ATT). They were given standard TB therapy consisting of 2
months intensive phase and 4 months continuation phase.
Sputum liquid MGIT culture was performed at baseline (BL), 2
months (2M) and 6 months (6M) after ATT initiation.
Heparinised blood and sputum samples were collected and
processed at BL, 2M and 6M of standard treatment. All
patients were culture negative by 6M and HIV positive patients
were excluded from analysis.

Scoring of Chest Radiographs
Chest radiographs were analysed based on the Ralph score (RS)
(38). Briefly, posteroanterior chest radiographs were assessed for
the percentage of the lung fields affected by known ATB features.
When at least one cavity could be identified, 40 points were
added to the value of percentage lung affected. The median
[interquartile range (IQR)] RS score at baseline (RSMed) of all
participants in our cohort was determined, 65 [29–80]. Lung
damage severity (pre- and post-treatment) groupings were
defined as follows: “mild pathology” (RS < RSMed) and “severe
pathology” (RS ≥ RSMed).

GeneXpert MTB/RIF Results
The GeneXpert® machine (Cepheid, USA) was used to
determine cycle threshold (Ct) values at baseline. The lowest
Ct value generated among the five rpoB probes of Xpert MTB/
RIF (or of the four rpoB probes in the nested-PCR stage for
GeneXpert Ultra) was taken as a measure of the Mtb cell number
(39). The median [interquartile range (IQR)] Ct value (CtMed) of
all participants was computed, 17.4 [17.1–18.4]. Patients were
grouped into: “high Mtb load” (Ct < CtMed) and “low Mtb load”
(Ct > CtMed) groups.

Recovery from Severe Lung Pathology
After Treatment
For each patient, RS changes (DRS) from BL to 6M (DRS = RS at
BL/RS at 6M) and median change [IQR] in RS of the entire
cohort (DRSMed) were computed, 6.5 [1.6–14]. Patients were
grouped into: “Good” (DRS ≥ DRSMed) and “Poor” (DRS <
DRSMed) lung recovery groups. Nine participants had a DRS
equal to the DRSMed.

Sputum Sample Supernatant Collection
Aliquots of sputum were digested with an equal volume of
Sputolysin (MerckMillipore, USA) for 15 min and centrifuged.
The supernatant was harvested and stored at −80°C until use.

Whole Blood Processing, Storage
and Stimulation
Plasma was obtained from blood vials by centrifugation at 2,500
rpm and stored at −80°C prior to use. Approximately 500 µl of
whole blood was stimulated with either ESAT-6/CFP-10 peptide
pool (EC; at 2.5 µg/ml/peptide), purified protein derivative (PPD
at 10 µg/ml; Staten Serum Institute, Denmark), H37Rv whole cell
lysate (WCL; at 10 µg/ml; BEI Resources, USA) or phorbol
Frontiers in Immunology | www.frontiersin.org 338
12-myristate 13-acetate (PMA; positive control; 10 µg/ml) along
with co-stimulatory antibodies (anti-CD28, anti-CD49d; Becton
Dickinson, USA); or unstimulated/cultured with medium alone
(NIL; negative control). Following overnight incubation at 37°C,
5% CO2, plates were spun (1,500 rpm, 5 min) and 200–250 ml of
supernatant was harvested from each well into 0.5 ml Sarstedt
tubes prior to storage at −80°C for multiplex cytokine assays.

Multiplex Cytokine Arrays
Multiplex cytokine arrays were performed using a customised
13-plex inflammatory marker panel (R&D Systems, USA)
according to the manufacturer’s instructions. The 13 analytes
measured were GM-CSF, IL8/CXCL8, IL12/23(p40), MMP3,
MMP9, S100A8, S100A9, TNF, IFNg, IL10, MMP1, MMP8,
and MPO. The minimum levels of detection for these were:
11.52, 2.96, 383.13, 78.48, 128.31, 74.86, 8.44, 42.35, 3.70, 40.95,
241.11, 113.00, and 26.87 pg/ml, respectively. Briefly, lyophilised
standards were reconstituted and serial dilutions performed.
Coupled beads were diluted in assay buffer and 50 ml were
added to each well of the assay plate. Approximately 50 ml of
diluted standards, blanks, samples (plasma, ag-stimulated
supernatants or ex vivo sputum) and controls were added per
well. Plates were then incubated at room temperature (RT), with
shaking (350 rpm, 2 h) followed by three washes in wash buffer.
Detection antibodies were diluted in detection antibody diluent
as recommended and 50 ml added to each well followed by
another 1 h incubation period. Following three washes, 100×
streptavidin-PE was diluted in wash buffer (one in 100) and 50 ml
added to each well. Plates were then incubated for 30 min and
washed three times. Approximately 100 ml of assay buffer were
then added to each well, plates were shaken for 2 min and read
using Bioplex 200 plate reader with Bio-Plex Manager Software
(version 6.1; Bio-Rad, Belgium).

Data Analysis
All statistical analyses were performed using R version 3.5.2 (40).
For antigen-specific blood responses, background was subtracted
using the unstimulated (NIL) samples. Non-parametric tests were
used for all comparisons. Differences between BL, 2M and 6M
samples within each group were analysed using a Kruskal–Wallis
test with Dunn’s post-test comparison. For comparisons between
severity, treatment response and recovery groups, a Wilcoxon
rank sum test was performed. The Benjamini–Hochberg test (41)
was used to adjust for multiple comparisons throughout. Adjusted
p values (q values) of less than 0.05 were considered statistically
significant. Linear regression models were used to determine
significant differences after adjusting for sex.
RESULTS

Patient Demographics
We analysed pre-selected plasma and sputum samples from 107
adult HIV negative, pulmonary TB patients of which 77% were
males (Table 1). The median [interquartile range (IQR)] CXR score
at baseline was 65 [29–80] with 46 patients in the mild (RS <65) and
61 patients in the severe group (RS ≥65). The median [IQR] CXR
November 2021 | Volume 12 | Article 740933
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score for the mild and severe groups at baseline was 25 [16.2–51.5]
and 75 [65–90] respectively. For patients with severe damage at
baseline, the median [IQR] change in CXR scores (DRS) from
baseline to 6 months was 6.5 [1.6–14] with 30 patients in the good
recovery (DRS ≥6.5) and 22 in the poor recovery group (DRS <6.5).
Within the good and poor recovery groups, the median [IQR] DRS
was 14 [9.5–18] and 1.5 [1.3–2.6], respectively. Nine of the patients
with severe damage at BL could not be classified into either good or
poor recovery groups due to missing month 6 CXR scores (NA). At
the end of treatment (6M) the median [IQR] CXR for the mild and
severe groups was 5 [0–10] and 5 [5–13.5], respectively. For
bacterial load calculations, we analysed the Xpert Ct values for all
participants. The median [IQR] Ct value was 17.4 [17.1–18.4] with
45 patients in the high bacterial load group (Ct <17.4) and 53
patients in the low bacterial low group (Ct >17.4). The median
[IQR] Ct values for the high and low bacterial load groups were 17.0
[16.8–17.1] and 18.4 [17.8–19.6], respectively. CXR-derived Ralph
scores and Xpert MTB/RIF cycle threshold weakly correlated (rho =
−0.24, p = 1.40E−02) at baseline. No differences in age were
observed in the mild vs. severe lung damage, low vs. high Mtb
load and good vs. poor recovery groups (Table 1). Male sex was
associated with higher levels of lung damage (p = 3.90E−03) and
Mtb loads (p = 4.50E−03) but not with reduced lung recovery (ns).

Analysis of ATB Severity
The two measures of ATB severity that we used were sputum
GeneXpert Ct values and CXR Ralph scores. There was a weak
negative correlation between patient Ct values and Ralph scores
at baseline (rho = −0.24, p = 1.40E−02) (Supplementary
Figure 1A) as previously reported (42). We also observed a
weak positive correlation between baseline Ralph scores and
neutrophil counts (rho = 0.22, p = 2.50E−02) but not between
baseline Ct values and baseline percentage neutrophil counts
(Supplementary Figures 1B, C).

Neutrophil levels are associated with higher risk of lung damage
(10) and death in TB patients (30) and we recently showed that
neutrophil activation and function vary in ATB patients based on
the severity of the lung pathology (43). Hence, we monitored the
impact of neutrophil counts and neutrophilic inflammatory
mediator levels on lung damage severity or Mtb burden.

Association Between Neutrophil Count
and Analyte Concentrations in
Plasma at Baseline
At baseline, plasma concentrations of all inflammatory mediators,
excluding MPO and MMP9, correlated with absolute neutrophil
Frontiers in Immunology | www.frontiersin.org 439
counts (Table 2). The strongest correlations were observed forMMP8
(rho = 0.45, p = 2.80E−06), S100A8 (rho = 0.52, p = 3.00E−08),
S100A9 (rho = 0.33, p = 6.30E−04) and GM-CSF (rho = 0.43, p =
7.90E−06). Analysis within groups showed that plasma MPO was
associated with neutrophil counts in patients with highMtb load only
(rho = 0.37, p = 1.50E−02) and MMP9 was associated with
neutrophil counts in patients with severe lung damage only (rho =
0.26, p = 4.10E−02) (Table 3). S100A8, MMP8, S100A9, IL10, GM-
CSF, TNF, and IFNg correlated with neutrophil count in patients with
both severe lung damage and high Mtb load at baseline (Table 3).

For patients with mild lung damage at baseline, correlations
were weaker and only significant for MMP8, S100A8, and S100A9
(Table 3). Likewise, within the low Mtb load group, significant
correlations were only observed for S100A8, TNF, and GM-CSF
(Table 3). These values reveal that while most plasma neutrophilic
inflammatory marker levels are generally associated with
neutrophil counts irrespective of the severity of lung pathology,
MPO and MMP9 are only associated with neutrophil counts in
patients with a severe form of lung pathology.

Analysis of Neutrophil Mediators in
Relation to Lung Pathology and
Sex at Baseline
Plasma concentrations of MMP8, MMP1, S100A8, IL12/23(p40),
IFNg, IL8, and TNF were significantly elevated in patients
with severe lung damage at baseline compared to those
with mild damage (p = 9.00E−04, p = 9.30E−03, p = 2.50E−03,
TABLE 2 | Correlation between neutrophil count and analyte concentrations
at baseline.

rho p-value

MMP1 0.20 ns
MMP3 0.23 2.20E−02
MMP8 0.45 2.80E−06
MMP9 0.16 ns
MPO 0.021 ns
S1000A8 0.52 3.00E−08
S100A9 0.33 6.30E−04
IL8 0.22 3.00E−02
IL10 0.32 1.30E−03
IL12/23(p40) 0.32 1.10E−03
GM-CSF 0.43 7.90E−06
TNF 0.38 1.00E−05
IFNg 0.36 2.40E−04
Nove
mber 2021 | Volume 12 | Artic
ns, not significant; rho, spearman’s rank correlation coefficient.
TABLE 1 | Patient demographics.

Total CXR-defined GeneXpert-defined Lung Recovery

Mild
N = 46

Severe
N = 61

Low
N = 53

High
N = 45

NA
N = 9

Good
N = 30

Poor
N = 22

Age 32 [23–40] 29.5 [21–39] 32 [26–41] 29 [22–40] 31 [25–40] 32 [30–34] 32 [24–41] 32 [26–37]
Male
n (%)

82 (77) 29 (63) 53 (87) 34 (64) 40 (89) 8 (89) 26 (87) 19 (86)

p = 3.90E−03 p = 4.50E−03 ns
ns, not significant; CXR, chest X-ray; age = median [interquartile range].
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p = 3.50E−03, p = 7.70E−03, p = 2.10E−02, and p = 4.20E−02,
respectively; Figure 1A).

Severe lung damage was associated with plasma MMP8,
MMP1, S100A8, IL12/23(p40), and IFNg (p = 3.00E−03,
p = 1.40E−02, p = 1.80E−02, p = 1.00E−02, and p = 1.90E−02,
respectively) even after adjusting for sex (Supplementary
Table 5 and Supplementary Figure 2A). With respect to Mtb
burden at baseline, the only difference in plasma inflammatory
Frontiers in Immunology | www.frontiersin.org 540
mediator levels between high Mtb and low Mtb load groups was
observed for S100A9 (p = 4.60E−02, adjusted for sex)
(Supplementary Table 5).

In sputum, MMP8 (p = 7.40E−03) levels were higher in
patients with severe lung damage at baseline (Figure 1B)
however, this was not significant after adjusting for sex. TNF
levels were associated with lung damage severity only after
adjusting for sex (p = 5.70E−02 and p = 4.50E−02; unadjusted
A

B

C

FIGURE 1 | Comparisons of inflammatory mediator concentrations at baseline. (A) In plasma, patients with severe lung damage (n = 61) had higher levels of
proinflammatory mediators than those with mild lung damage (n = 46). (B) Sputum levels of mmp8 were higher whilst MPO and IL10 were lower in patients with
severe (n = 60) compared to mild lung (n = 36) damage. (C) Whereas sputum S100A8 was higher and MPO was lower in patients with high Mtb loads (n = 45)
compared to low Mtb loads (n = 53). Boxes represent the first and third quartiles and horizontal bars within indicate median concentration. Whiskers indicate minimum
and maximum values. Each dot represents one individual patient. P-values were obtained using the Wilcoxon signed rank test.
TABLE 3 | Correlation between neutrophil count and analyte concentrations in plasma for patients with different degree of lung damage (CXR) and Mtb load
(GeneXpert) at baseline.

Analyte Lung damage Mtb load

Mild Severe Low High

rho p-value rho p-value rho p-value rho p-value

MMP1 0.16 ns 0.16 ns 0.20 ns 0.18 ns
MMP3 0.13 ns 0.26 ns 0.26 ns 0.11 ns
MMP8 0.46 2.00E−03 0.40 2.10E−03 0.27 ns 0.65 2.80E−06
MMP9 −0.13 ns 0.26 4.10E−02 0.04 ns 0.29 ns
MPO −0.13 ns 0.10 ns −0.18 ns 0.37 1.50E−02
S1000A8 0.39 9.70E−03 0.49 8.20E−05 0.41 3.50E−03 0.59 2.60E−05
S100A9 0.39 1.00E−02 0.27 4.00E−02 0.26 ns 0.47 1.40E−03
IL8 0.06 ns 0.26 4.70E−02 0.09 ns 0.30 ns
IL10 0.28 ns 0.38 3.80E−03 0.20 ns 0.42 6.40E−03
IL12/23(p40) 0.18 ns 0.35 6.40E−03 0.13 ns 0.50 7.20E−04
GM-CSF 0.27 ns 0.50 5.40E−05 0.34 1.50E−02 0.51 5.50E−04
TNF 0.18 ns 0.45 4.10E−04 0.38 7.30E−03 0.37 1.50E−02
IFNg 0.18 ns 0.43 8.20E−04 0.21 ns 0.46 1.90E−03
November 2021 | V
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and adjusted for sex, respectively) (Supplementary Table 6). In
contrast, baseline sputum levels of IL10 (p = 5.00E−02) and
MPO (p = 1.20E−03) were significantly lower in severe lung
damage compared to mild lung damage group (Figure 1B). For
MPO, the association with lung damage was significant (p =
1.80E−02) even after adjusting for sex (Supplementary Table 6
and Supplementary Figure 2B). Additionally, sputum MPO
(p = 4.40E−03) and S100A8 (p = 1.30E−02) concentrations
were significantly lower and higher, respectively in patients
with high Mtb load compared to those with low Mtb load
(Figure 1C). This association between MPO levels and Mtb
load was significant (p = 2.10E−02) even after adjusting for sex
(Supplementary Table 6). For whole blood stimulated samples
(EC, PPD, WCL, and PMA), there was no significant difference
in baseline inflammatory mediator levels between either severe
and mild lung damage or high and low Mtb loads (not shown).

We also observed that sputum MMP1 (p = 2.70E−02) and
plasma concentrations of MMP3, IL8, IL10, IL12/23(p40), GM-
CSF, and TNF (p = 3.00E−03, p = 3.76E−02, p = 4.03E−02, p =
3.30E−02, p = 2.65E−02, and p = 3.36E−02, respectively) were
higher in males compared to females (Supplementary Table 1).
Interestingly, sputum MPO concentrations were higher females
(p = 1.85E−02) (Supplementary Table 1).

Changes in Neutrophil Mediator
Concentrations Post-Treatment
The majority of pro-inflammatory mediators in plasma
decreased during TB treatment except for MMP3, MPO, and
IL8 (Supplementary Table 2). Compared to baseline, plasma
levels were lower at month 2 and month 6, respectively for
MMP1, MMP8, MMP9, S100A8, S100A9, TNF, IFNg, GM-CSF,
IL10, and IL12/23(p40) (Supplementary Table 2). In sputum,
concentrations of MMP1, MMP3, MMP8, MMP9, and TNF
were significantly lower at both month 2 and month 6, when
compared with baseline (Supplementary Table 2).

Additionally, sputum GM-CSF (p = 5.50E−07), TNF (p =
2.10E−05), IFNg (ns), S100A8 (ns), and MPO (ns) were higher at
month 6 compared to baseline (Supplementary Table 2).
Interestingly, the concentrations of these specific mediators in
whole blood stimulated samples were also higher after treatment
compared to baseline. Notably, this increase was significant at
month 6 for GM-CSF [EC, p = 2.70E−02; PPD, p = 1.50E−09;
WCL, p = 2.80E−05, and PMA, p = 6.70E−11], TNF [EC, p =
2.80E−02; PPD, p = 2.00E−03; WCL, p = 2.00E−04 and PMA,
p = 2.00E−02], IFNg [EC, (ns); PPD, p = 3.20E−08; WCL, p =
6.30E−03 and PMA, p = 1.00E−11], S100A8 [EC, (ns); PPD, (ns);
WCL, p = 2.80E−02 and PMA, (ns)), MPO (EC, (ns); PPD, (ns);
WCL, p = 9.10E−03 and PMA (ns)] and MMP9 [EC, (ns); PPD,
p = 1.90E−08; WCL, p = 3.60E−02 and PMA, p = 5.40E−07]
(Supplementary Table 2).

The decrease in plasma and sputum concentrations of these
mediators at month 6 compared to baseline was more
pronounced in patients with initially (at baseline) severe lung
damage (Supplementary Table 3) or initially high Mtb loads
(Supplementary Table 4). Interestingly, this decrease in
concentrations was exclusive to the initially severe lung
Frontiers in Immunology | www.frontiersin.org 641
damage group for S100A8 (p = 4.61E−09), MMP9 (p = 1.26E
−02), IL10 (p = 3.86E−04), TNF (p = 3.77E−06), IFNg (p = 3.84E
−07) and GM-CSF (p = 4.54E−05) levels in plasma; and for
MMP1 (p = 1.90E−05), MMP8 (p = 4.99E−05) and TNF (p =
1.31E−03) levels in sputum (Supplementary Table 3). No such
analogy was observed when groups defined by Mtb burden were
considered (Supplementary Table 4).

Patients with good lung recovery had higher baseline sputum
MPO (p = 4.70E−02) and IL10 (p = 2.70E−02) levels compared
to patients with poor recovery (Figure 2A). For MPO, the
association with lung recovery was significant (p = 2.40E−02)
after adjusting for sex (Supplementary Table 6). Additionally,
logistic regression revealed significant associations between and
lung recovery and levels of plasma MMP8 (Supplementary
Table 5) and sputum TNF (Supplementary Table 6) after
adjusting for sex (p = 3.90E−02 and p = 3.80E−02, respectively).

Additionally, sputumMMP1, MMP3, MMP9, and TNF levels
decreased significantly (p = 1.50E−03, p = 7.58E−04, p = 2.06E
−02, and p = 3.81E−02, respectively) from baseline to month 6 in
patients with good lung recovery but not in those with poor
recovery (Figure 2B). We also saw significantly higher levels of
MMP1 (p = 4.40E−02), MMP9 (p = 2.90E−02) and IL8 (p =
3.50E−02) in sputum from patients with poor lung recovery
compared to good lung recovery at month 6 (Figure 2C).

In whole blood stimulated supernatants, with the exception of
IFNg (WCL at BL; p = 1.60E−02), IL12/23(p40) (WCL at 6M; p =
4.80E−02) and S100A8 (EC at BL; p = 3.00E−02) concentrations
which were higher in mild compared to severe lung damage;
MMP1 (PPD at BL; p = 5.00E−03) which was higher in high
compared to lowMtb load and; S100A8 (EC at BL; p = 3.00E−02)
which was higher in low compared to high Mtb load, there were
no other significant differences in inflammatory mediator levels
of whole blood stimulated samples (EC, PPD and WCL) from
patients in severe vs mild lung damage or high vs low Mtb loads
at any time point (not shown).

Finally, S100A9 concentrations at month 6 were significantly
higher in severe lung damage and high Mtb load groups
compared to mild damage and low Mtb load groups,
respectively (p = 3.00E−02, and p = 2.10E−02, respectively) at
month 6 (Figures 3A, B). Additionally, sputum levels of MMP9
declined significantly from baseline to month 6 in patients with
low Mtb load (p = 3.20E−03) but not in patients with high Mtb
load (Figure 3C). Moreover, these sputum concentrations of
MMP9 remained significantly higher in the high Mtb load
compared to the low Mtb load group at month 6 (p = 2.00E
−02) (Figure 3C).
DISCUSSION

The aim of this study was to analyse neutrophil-associated
soluble mediators in lung and blood samples from patients
with different levels of lung pathology at baseline and recovery
following treatment. We report stronger correlations between
neutrophil counts and primarily neutrophil-derived mediators
like MMP8, S100A8/A9, TNF, and GM-CSF as compared to
November 2021 | Volume 12 | Article 740933
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other known TB-related inflammatory markers like IFNg, IL10
or IL12/23(p40), for which neutrophils are not necessarily the
major sources.

GM-CSF is a known neutrophil primer and MMP8
concentrations have previously been linked to clinical and
radiological TB severity (44, 45), while S100A8/9 regulates
CD11b expression and accumulation in chronic TB mouse
models (28, 35). Our data supports these previous
observations. We show that pre-treatment plasma levels of
S100A8/9, MMP8 and GM-CSF correlate strongly with
neutrophil counts and lung damage severity. Interestingly,
while sputum levels of MMP8 correlate positively, MPO
correlates negatively with lung damage and Mtb burden at
baseline. This suggest that lung pathology results from
increased systemic and pulmonary inflammation. It also hints
that MPO could dampen the inflammatory response in ATB,
thereby preventing excessive bacterial load and lung damage. We
recently revealed that neutrophil subsets are associated with
protective or detrimental effects on the severity of TB-linked
lung pathology (13). Gideon and collaborators also showed pro-
(IFNg) and anti-inflammatory (IL10) cytokine expression by
different neutrophil subsets in granulomas from Mtb-infected
cynomolgus macaques (24), suggesting an immunoregulatory
Frontiers in Immunology | www.frontiersin.org 742
function of neutrophils in TB granulomas. Also, neutrophil
elastase dissociation is triggered by reactive oxygen species
(ROS) in an MPO-dependent manner during NETosis (46, 47),
suggesting that NETs are involved in an MPO-related protective
mechanism. Additionally, Mtb control by HIV-coinfected
macrophages is enhanced by apoptotic neutrophils in via an
MPO-dependent process (48). Whilst MPO inhibition is
reported to block Mtb-induced necrotic cell death (49), MPO-
deficient mice develop severe lung inflammation following
exposure to zymosan (37). In fact, a recent review details the
numerous protective and harmful functions of MPO in human
disease (50). Whilst IL10 is released by several immune cell types
during TB and monocytes/macrophages also produce MPO,
neutrophil granules are the main source of MPO (48). This to
our knowledge, is the first report of an MPO-related beneficial
role in TB-related lung pathology and recovery.

The current literature overwhelmingly supports a detrimental
effect of neutrophils on lung pathology in TB patients, however,
some neutrophil subsets are protective. Specific neutrophil
subsets were associated with protective outcomes against TB
lung pathology suggesting that the variations observed in disease
outcomes may be driven by different immunomodulatory
mediators or interactions with other immunocytes (13).
A

B

C

FIGURE 2 | Comparison of sputum inflammatory mediator levels between good and poor lung recovery groups with treatment time. (A) MPO and IL10 were higher
in good (BL, n = 29; 2M, n = 16; 6M, n = 16) compared to poor (BL, n = 22; 2M, n = 16; 6M, n = 16) lung recovery groups at baseline. Data represent median
[IQR]. Differences between lung pathology groups at any given time point were compared using the Wilcoxon signed rank test. (B) Most MMP1, 3, 9, and TNF levels
were significantly lower at month 6 compared to baseline in patients with good lung recovery but not in those with poor lung recovery. Boxes represent the first and
third quartiles and horizontal bars within indicate median concentration. Whiskers indicate minimum and maximum values. Each dot represents one individual patient.
Kruskal–Wallis test with Dunn’s post-test comparison was performed to analyse differences between time points. (C) At the end of standard TB treatment, MMP1,
MMP9 and IL8 concentrations were still higher in patients with poor lung recovery compared to those with poor lung recovery. Groups were compared using the
Wilcoxon signed rank test. Data represent median [IQR]. ns, not significant.
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Additionally, a neutrophil-driven regulatory effect is not unheard
of. In fact, neutrophils (via CD11b-dependent responses) and
endothelial cells have been shown to cooperate in detection and
capture of pathogens in lung capillaries (51). Also, neutrophils
play a central role in controlling human metapneumovirus-
induced inflammation by regulating gd T cell recruitment to
the lung (52). Meanwhile, neutrophils were found to suppress of
lymphocyte function by secreting MPO and hydrogen peroxide
(53) and Mtb-specific stimulation of neutrophils inhibits
antigen-specific T-cell production of IFNg (24). More recently,
this neutrophil-related immunosuppressive function on
lymphocytes has been attributed to hyper-segmented subsets
(7) and to the neutrophil-like MDSCs (54, 55) (in cancer
(56, 57), leukaemia (58) and lately TB (9, 59). While the
immunosuppressive roles of MDSCs on Mtb pathogenesis are
still under investigation, recent experimental models show
benefits in limiting their accumulation during TB HDTs (25,
60). We suggest that MPO could be protective against TB
progression and lung damage.

We understand that functional analysis of neutrophils is
technically difficult considering that they are short-lived, easily
activated by laboratory processing methods and cannot be
Frontiers in Immunology | www.frontiersin.org 843
cryopreserved. Nevertheless, we support future investigation of
mechanistical pathways that promote the secretion of these
mediators or increased production of neutrophil subsets that
produce them to achieve desirable outcomes during ATB. We
could not confirm the link between MPO and bacterial burden
using Mtb killing assays in-vitro. However, prospective studies
within the TB sequel project are being designed to achieve that by
assessing the levels of these mediators in the presence/absence of
TB-targeted HDTs. We also recommend studies using isolated
neutrophils from patients within these different lung pathology
and gender groups to address this gap in knowledge (potentially
also in animal models).

Variability in immune responses between genders have been
linked to: specific immune cell types, age, levels of sex hormones,
environmental factors (e.g., nutritional status or microbiome
composition) and disease states (61). In accordance with
previous studies (62, 63), ATB prevalence in our Gambian
cohort is higher in males. Also similar to previous studies on
chronic inflammatory diseases (64, 65), we observe that the pro-
inflammatory response in males is higher than that in females. We
report higher plasma levels of notoriously pro-inflammatory
mediators like TNF, MMP3, GM-CSF, and IL8 in males
A
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FIGURE 3 | Comparison of inflammatory mediator levels between lung damage and Mtb burden defined groups with treatment time. (A) In plasma, the decrease in
S100A9 concentrations was comparable between lung damage groups (mild: BL, n = 46; 2M, n = 25; 6M, n = 14 and severe: BL, n = 61; 2M, n = 42; 6M, n = 43)
over time. However, at month 6, S100A9 was significantly higher in patients with initially severe lung damage compared to mild lung damage. (B) The same observation
made between initially high Mtb and low Mtb loads with S100A9 levels being higher in the former at month 6. Boxes represent the first and third quartiles and horizontal
bars within indicate median concentration. Whiskers indicate minimum and maximum values. Each dot represents one individual patient. Kruskal–Wallis test with Dunn’s
post-test comparison was performed to analyse differences between time points. Differences between lung pathology groups at any given time point were compared
using the Wilcoxon signed rank test. Data represent median [IQR]. (C) Sputum (low: BL, n = 46; 2M, n = 21; 6M, n = 16 and high: BL, n = 42; 2M, n = 22; 6M, n = 17)
MMP9 levels were significantly lower at month 6 compared to baseline in patients with low but not in those with high Mtb loads. Additionally, S100A9 concentration at
month 6 was significantly higher in patients with high Mtb compared to low Mtb load. ns, not significant.
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compared to females. This is in accordance with the observation
that male neutrophils are more responsive to LPS and IFNg
stimulation than female neutrophils; with the former expressing
higher levels of toll-like receptor 4 (TLR4) and producing more
TNF (66). Meanwhile, we also observe higher sputum MPO levels
in females, supporting the idea that increased MPO concentration
is linked to suppressed inflammation.

Moreover, patients showing good lung recovery had higher
sputumMPO concentrations at baseline. In contrast, MMP8 and
sputum TNF levels were positively associated with poor recovery
after adjusting for sex. These suggest that MPO, MMP8, and
TNF play a considerable role in determining the degree of
recovery from severe TB-related lung damage after treatment.
It also supports future investigation of these mediators as proxies
for predicting lung recovery following injury.

As treatment progresses, sputum and plasma concentrations
of MMP1, 8, 9 and plasma levels of S100A8/9 and MMP3
decrease rapidly, suggesting that the neutrophil-related
inflammatory response and matrix-degrading activity are not
only fuelled by MMPs ((32, 33, 67)) and calprotectin (28) activity
but also potentially resolved by variations in levels of these
mediators with treatment. In contrast, sputum levels of IL8
and MPO remain fairly constant, suggesting that variations in
neutrophil (and potentially monocyte) recruitment and overall
activity during ATB treatment may be more complexly
regulated. This is supported by our other observation that the
decrease in concentrations of S100A8, MMP9, IL10, TNF, IFNg,
and GM-CSF in plasma and MMP1, MMP8, and TNF in sputum
are exclusive to the severe lung damage group; suggesting that
these inflammatory mediators are major contributors to severe
TB-related lung pathology pre-treatment. The fact that no such
analogy was observed when groups defined by Mtb burden were
considered also supports the idea that high Mtb loads are not
necessarily ascribed to severe lung damage outcomes (42).

Post-therapy, we observed high plasma S100A8 levels in
severe compared to mild lung damage group, meanwhile plasma
S100A8 and sputum MMP9 were significantly higher in
patients with initially high Mtb load compared to the initially
low Mtb load group. S100A9 and MMP9 are neutrophil-derived
mediators, suggesting that severe lung damage at presentation
may contribute to heightened residual neutrophil activity
after treatment. Also, post-treatment levels of sputum MMP1,
MMP9, and IL8 were higher in patients with poor lung
recovery compared to those with good lung recovery. This
suggests that unresolved lung damage is linked to continuous
neutrophil activity and persistent leucocyte infiltration in the lungs
post-treatment. While, previous studies suggested that for patients
with severe lung damage, recovery may only begin many months
after the end of standard ATT (68, 69), a possible reason for this
was not provided. This, to our knowledge is the first report of
several major neutrophil-derived mediators (in plasma and
sputum) being directly linked to TB lung pathology and
unresolved lung damage. Furthermore, higher levels of
MMP1, MMP9, and IL8 in sputum from patients with poor
compared to good lung recovery at month 6 suggest that poor
lung recovery results from continuous neutrophil activity and
Frontiers in Immunology | www.frontiersin.org 944
persistent leucocyte infiltration in the lungs even after
treatment completion.

For whole blood stimulated supernatants (notably with
H37Rv whole cell lysate), the increased levels of GM-CSF (also
increased in sputum), TNF (also increased in sputum), IFNg,
S100A8, MPO and MMP9 after treatment compared to baseline
hint at an enhanced sensitivity of immune cells to pathogen
stimulation. Previous studies have reported lower cytokine
production by T-cells pre-treatment, suggesting that continual
pathogen stimulation results in T-cell exhaustion which is then
restored after treatment (reviewed in (70). To our knowledge,
this is the first report of increased concentrations of major
neutrophil-derived mediator levels in ATB post-treatment
compared with pre-treatment levels. These suggest that chronic
TB could directly (or indirectly, via T-cell exhaustion which
leads to either higher levels of immune-inhibitory molecules like
PD-1 (71, 72) and TIM3 (73) or reduced release of innate
immune cell activators like IFNg and TNF) result in reduced
neutrophil activity pre-treatment. It also highlights the need to
monitor the impact of neutrophil interactions with other
immunocytes on TB pathogenesis. Finally, we suggest that toll-
like receptor (TLR)-mediated pathogen sensing by lung
epithelial/innate immune cells, MPO-regulated NET formation,
neutrophil migration/activation following increased secretion of
inflammatory mediators (e.g., S100A8/9, MMP8, GM-CSF, TNF,
IFNg and potentially IL17/IL17R, RANTES, IL6, ICAM1, etc.)
and ROS release/NADPH-dependent leucocyte recruitment (74–
76) are immune pathways potentially involved in balancing the
neutrophilic inflammatory response during ATB.
CONCLUSION

We show that S100A8/9 and MMP8 contribute to increased lung
damage and that MPO acts as an anti-inflammatory agent which
potentially regulates TB-related lung pathology and promotes
lung recovery. We also suggest that increased MPO-mediated
immunosuppression could limit lung pathology in females.
Treatment results in decreased inflammation characterised by
lower sputum and plasma concentrations of neutrophil-derived
pro-inflammatory mediators especially in patients with severe
lung pathology (but not High Mtb load) at presentation. We
hereby highlight the relationship between neutrophil-derived
inflammatory mediator levels and radiological disease severity
irrespective of Mtb burden. We also report that S100A8/9 and
other neutrophilic mediators like MMP9 and IL8 may be
responsible for unresolving lung damage in patients with poor
lung recovery. Finally, we recommend targeting S100A8/9,
MMP8, and MPO for developing host-directed therapies
against TB-induced lung pathology and to promote recovery.
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Flagellin From Pseudomonas
aeruginosa Modulates SARS-CoV-2
Infectivity in Cystic Fibrosis Airway
Epithelial Cells by Increasing
TMPRSS2 Expression
Manon Ruffin1†, Jeanne Bigot1,2†, Claire Calmel1, Julia Mercier1, Maëlle Givelet1,
Justine Oliva3, Andrés Pizzorno3, Manuel Rosa-Calatrava3, Harriet Corvol1,4,
Viviane Balloy1, Olivier Terrier3 and Loïc Guillot1*

1 Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France, 2 Laboratoire de Parasitologie-
Mycologie, APHP, Hôpital Saint-Antoine, Paris, France, 3 CIRI, Centre International de Recherche en Infectiologie, Team
VirPath, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon,
France, 4 Pneumologie Pédiatrique, APHP, Hôpital Trousseau, Paris, France

In the coronavirus disease 2019 (COVID-19) health crisis, one major challenge is to identify
the susceptibility factors of severe acute respiratory syndrome-coronavirus-2 (SARS-
CoV-2) in order to adapt the recommendations for populations, as well as to reduce the
risk of COVID-19 development in the most vulnerable people, especially patients with
chronic respiratory diseases such as cystic fibrosis (CF). Airway epithelial cells (AECs) play
a critical role in the modulation of both immune responses and COVID-19 severity. SARS-
CoV-2 infects the airway through the receptor angiotensin-converting enzyme 2, and a
host protease, transmembrane serine protease 2 (TMPRSS2), plays a major role in SARS-
CoV-2 infectivity. Here, we show that Pseudomonas aeruginosa increases TMPRSS2
expression, notably in primary AECs with deficiency of the ion channel CF transmembrane
conductance regulator (CFTR). Further, we show that the main component of
P. aeruginosa flagella, the protein flagellin, increases TMPRSS2 expression in primary
AECs and Calu-3 cells, through activation of Toll-like receptor-5 and p38 MAPK. This
increase is particularly seen in Calu-3 cells deficient for CFTR and is associated with an
intracellular increased level of SARS-CoV-2 infection, however, with no effect on the
amount of virus particles released. Considering the urgency of the COVID-19 health crisis,
this result may be of clinical significance for CF patients, who are frequently infected with
and colonized by P. aeruginosa during the course of CF and might develop COVID-19.
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INTRODUCTION

As of October 30, 2021, the coronavirus disease 2019 (COVID-
19) pandemic, caused by severe acute respiratory syndrome
(SARS)-coronavirus (CoV)-2, has infected nearly 245 million
people globally and led to >4.9 million deaths (https://covid19.
who.int). In this health crisis, one of the major challenges is to
identify the susceptibility factors of the infecting virus in order to
adapt public health recommendations and to reduce the risk of
getting COVID-19, particularly in the case of the most
vulnerable people: patients with common chronic respiratory
diseases such as asthma and chronic obstructive pulmonary
disease, and patients with less common or rare chronic
respiratory diseases such as cystic fibrosis (CF). Given their
lung impairments, patients with chronic respiratory diseases
can reasonably be expected to face an elevated risk of
developing severe COVID-19, but the magnitude of this risk
remains uncertain (1). Together with clinical follow-up studies
conducted to more accurately estimate the disease risk of these
patients, basic research on the pathophysiology of SARS-CoV-2
infection should provide critical insights into how COVID-19
affects patients with respiratory diseases.

The aforementioned COVID-19 development in patients is
particularly relevant in the case of people with CF (pwCF). CF is
caused by variants in the gene CFTR (CF transmembrane
conductance regulator), with the most frequent variant being
F508del, which leads to aberrant function of airway epithelial
cells (AECs). During the course of CF, the lungs of the patients are
inflamed and chronically infected by various pathogens, including
Pseudomonas aeruginosa, the most prevalent pathogen (2). The
most recent multinational report identified 181 cases of pwCF
infected by SARS-CoV-2, and recorded 7 deaths (3); among the
181 pwCF, 82% were symptomatic, 47% were hospitalized, and
51% showed airway infection by P. aeruginosa.

AECs play a critical role in the regulation of both the immune
response and the severity of COVID-19 (4). Notably, several
studies examining SARS-CoV-2 cellular tropism have
demonstrated that ciliated and secretory cells are the major
targets of infection (4–8). SARS-CoV-2 infects the airway
mainly through the cell-surface receptor angiotensin-converting
enzyme-2 (ACE2), and two specific host proteases, TMPRSS2
(transmembrane serine protease 2) and FURIN, have been shown
to play a major role in SARS-CoV-2 infectivity (9–13).

Here, we show that the main component of P. aeruginosa
flagella, the protein flagellin (Pa-F), upregulates TMPRSS2
expression in AECs, especially in patients’ cells deficient for
CFTR, through Toll-like receptor-5 (TLR5) and p38 activation.
Importantly, this enhanced TMPRSS2 expression is associated
with an increase in the level of SARS-CoV-2 infection.
MATERIAL AND METHODS

Reagents
Ultrapure flagellin from P. aeruginosa (tlrl-pafla) and ultrapure
(tlrl-epstfla), recombinant (tlrl-flic), and vaccigrade (vac-fla)
Frontiers in Immunology | www.frontiersin.org 249
flagellin from Salmonella enterica serovar Typhimurium were
from InvivoGen (San Diego, CA, USA). Anti-TLR5 antibody and
NF-kB inhibitor (BAY 11-7082) were from InvivoGen. DMSO
and p38 inhibitor (SB203580) were from Sigma-Aldrich (Saint-
Louis, MO, USA).

Cell Culture
Calu-3 cells (ATCC HTB-55™/Lot: 62657853) and Calu-3-
CFTR-WT and Calu-3-CFTR-KD cells (generously provided by
Prof. Marc Chanson, University of Geneva, Switzerland) were
cultured in MEM-Glutamax (Gibco, Paisley, UK) supplemented
with 10% fetal calf serum (FCS; Eurobio, Les Ulis, France) and
1% non-essential amino acids, 10 mmol/L HEPES (pH 7.2-7.5),
1% sodium pyruvate, and 1% antibiotics (all from Gibco). They
grow at the air-liquid interface, in Transwell® dishes (12 mm;
3460, Corning, Kennebunk, ME, USA), to obtain polarized cells
as previously described (14). Primary human bronchial epithelial
cells (source characteristics listed in Table 1) were cultured as
recommended by the manufacturer by using hAEC complete
culture medium (Epithelix, Geneva, Switzerland). Beas-2B cells
(CRL-9609™/Lot: 59227035) were cultured in F12 medium
supplemented with 10% FCS, 10 mmol/L HEPES, and 1%
antibiotics. 16HBE14o- cells were generously supplied by Pr.
Dieter Gruenert (originator) and Dr. Beate Illek (provider) from
the University of California San Francisco (UCSF); the cells were
cultured in MEM-Glutamax supplemented with 10% FCS and
1% antibiotics, as recommended by the provider. Caco-2/TC7
cell line, a clonal population established from human colon
carcinoma Caco-2 cells at late passage (15), were generously
provided by Dr. Véronique Carrière (Sorbonne Université/
Centre de recherche St-Antoine); the cells were cultured in
high-glucose DMEM-Glutamax (Gibco) supplemented with
20% FCS, 1% non-essential amino acids, and 1% antibiotics.

Reverse Transcription-qPCR
Human RNA was isolated using a NucleoSpin RNA/miRNA kit
(Macherey Nagel, Duren, Germany). RT was performed using a
high-capacity cDNA kit (Applied Biosystems, Foster City, CA,
USA). Real-time qPCR was performed by using an ABI QS3 with
a Sensifast Probe Lo-Rox Kit (Bio-technofix, Guibeville, France),
TaqMan probes for ACE2 (Hs01085333_m1), TMPRSS2
(Hs00237175_m1), FURIN (Hs00965485_g1), and GAPDH
(Hs02786624_g1), and a cDNA template. For relative
quantification, the expression level of target genes was
normalized to the expression of GAPDH relative to the
reference group (specified in the figure legends) used as a
calibrator and was calculated using the 2−DDCt method.

SARS-CoV-2 Infection and Viral
Quantification
Fully polarized Calu-3 cells grown at the air-liquid interface were
infected with SARS-CoV-2 (strain BetaCoV/France/IDF0571/
2020; accession ID EPI_ISL_411218) at a multiplicity of
infection of 1, as previously described (1 h of contact with the
virus followed by a change of the medium, and analysis at 24h)
(16). Viral quantification through RT-qPCR targeting of ORF1b-
nsp14 was performed as described (16).
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Western Blotting
Total proteins were extracted using RIPA buffer (Euromedex,
Souffelweyersheim, France), and then equal amounts of proteins
were reduced, size-separated on 12% stain-free precast SDS-
polyacrylamide gels (Bio-Rad, Hercules, CA, USA), and
transferred to nitrocellulose membranes by using an iBlot2
apparatus (Thermo Fisher Scientific). The membranes were
blocked in 5% milk in TBS-Tween 0.1% and incubated with
specific primary antibodies overnight at 4°C; the antibodies were
against ACE2 (AF933, R&D Systems, Minneapolis, MN, USA;
1:200), phospho- and total p38 (9211 and 9212, Cell Signaling
Technology, Danvers, MA, USA; 1:2,000), phospho- and total
NF-kB p65 (3039 and 8242, Cell Signaling Technology; 1:2,000),
and b-actin (A2228, Sigma-Aldrich; 1:5,000). The blots
were exposed to horseradish peroxidase-conjugated anti-rabbit
(Cell Signaling Technology, 7074; 1:10,000) and anti-goat
(A27104, Thermo Fisher Scientific; 1:2,000) secondary
antibodies, and bound antibodies were detected using Clarity
chemiluminescent substrate (Bio-Rad). Images were recorded
using a Fujifilm LAS-3000 bioimaging system (Stamford,
CT, USA).

Immunofluorescence
After various treatments, Calu-3 grown at the air-liquid
interface were rinsed with PBS and fixed with ice-cold 4%
paraformaldehyde for 20 min, permeabilized for 10 min with
0.1% Triton X-100 in PBS, and then washed with PBS and
incubated in a blocking solution (PBS + 5% BSA) for 1 h. Next,
the cells were incubated overnight at 4°C with primary
antibodies against TMPRSS2 (14437-1-AP, Thermo Fisher
Scientific; 1:100) or ACE2 (AF933, R&D Systems; 1:60) in PBS
supplemented with 1% BSA, and on the following day, the cells
were washed (3 × 5 min) with PBS and incubated for 1 h at room
temperature with secondary antibodies, anti-rabbit Alexa 488
(4412, Cell Signaling Technology, 1:2,000) or anti-goat Alexa 488
(A11078, Thermo Fisher Scientific, 1:2,000). After staining with
4,6-diamidino-2-phenylindole (DAPI), coverslips were mounted
and sealed with ProLong diamond mounting medium (Thermo
Fisher Scientific). Fluorescent images were obtained using an
Olympus BX43 microscope (Hamburg, Germany).

ELISA
Concentrations of human IL-8, IL-6, IFN-b, IFN-l in cell
supernatants were measured using ELISA kits (DY208, DY206,
DY814 and DY1598B, R&D Systems), according to the
Frontiers in Immunology | www.frontiersin.org 350
manufacturer ’s instructions. The substrate 3,3 ′ ,5,5′-
tetramethylbenzidine was from Cell Signaling Technology.

Statistical Analysis
Differences among groups were assessed for statistical
significance by using Prism 9.00 software (GraphPad Software,
La Jolla, CA, USA), as indicated in the figure legends. P < 0.05
was considered statistically significant.

Ethics
This project was approved (Opinion number 20-688) by the
Inserm Institutional Review Board (IRB00003888, IORG0003254,
FWA00005831).

Data Availability
RNAseq data used here are from a transcriptomic study (17)
which RNAseq raw datafiles are available in the European
Nucleotide Archive (ENA) (primary accession number
PRJEB9292). http://www.ebi.ac.uk/ena/data/view/PRJEB9292.
RESULTS

ACE2, FURIN, and TMPRSS2 Expression
In CF and Non-CF Primary Human AECs
Upon P. aeruginosa Infection
We first examined ACE2, FURIN, and TMPRSS2 expression
from a previous transcriptomic study performed using primary
hAECs; the cells were isolated from control (non-CF) donors and
pwCF homozygous for the CFTR F508del variant, and were
infected by P. aeruginosa (17). At baseline (time 0 h), similar
ACE2 and FURIN mRNA expression levels were observed in
non-CF and CF primary hAECs (Figure 1A), whereas TMPRSS2
expression was significantly higher in CF primary hAECs
(Figures 1A, B). Importantly, P. aeruginosa infection increased
TMPRSS2 mRNA expression over time in CF but not in non-CF
primary hAECs (Figures 1A, B), whereas the infection did not
affect ACE2 and FURIN expression (Figure 1A).

Because the most critical proinflammatory factor from P.
aeruginosa present in the sputum of pwCF is flagellin (18), we
next exposed CF primary hAECs to flagellin. Treatment with
flagellin increased the mRNA level of TMPRSS2 without
increasing that of ACE2 (Figure 1C) or FURIN (not
illustrated). This effect was observed in both non-CF and CF
TABLE 1 | Characteristics of donors of bronchial epithelial cells.

Group Reference Origin Sex Age CFTR variant Smoker Used in

WT 02AB077201F2 Caucasian Male 63 – No Figure 1C
02AB068001F2 Caucasian Female 71 – No Figure 1C
02AB067101 Caucasian Male 72 – No Figure 1C
02AB0839.01 Caucasian Male 54 – No Figure 1C

CF CFAB043703 Unknown Male 27 F508del/F508del No Figure 1C
CFAB060901 Unknown Female 21 F508del/F508del No Figure 1C
CFAB045202 Unknown Male 32 F508del/F508del No Figure 1C
CFAB064901 Unknown Female 37 F508del/1717-1G>A No Figures 1C, 3D, E
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primary hAECs, although in both groups, the level of induction
varied considerably between individuals.

ACE2, FURIN, and TMPRSS2 Expression
in CFTR-Sufficient and -Deficient Calu-3
Cells Exposed to P. aeruginosa Flagellin
To investigate the mechanism underlying the aforementioned
increase in TMPRSS2 expression and to eliminate the
Frontiers in Immunology | www.frontiersin.org 451
interindividual variability, we sought to identify AEC lines
expressing detectable levels of ACE2 and TMPRSS2 mRNA
and protein. Thus, we measured ACE2 and TMPRSS2
expression in the AEC lines Calu-3, Beas-2B, and 16HBE
(Figure 2A), which revealed that Calu-3 cells expressed higher
mRNA levels of ACE2 and TMPRSS2 relative to the other cell
lines, and that ACE2 protein was detected only in Calu-3 cells.
These results agree with the documented higher ability of SARS-
CoV-2 to replicate in Calu-3 cells than in Beas-2B cells (10).
Thus, we hereafter used the Calu-3 cell line, specifically isogenic
CFTR-sufficient (Calu-3-CFTR-WT) and CFTR-deficient Calu-3
(Calu-3-CFTR-KD) cells.

In accord with what was observed in CF primary hAECs, we
found that exposure of Calu-3 cells to P. aeruginosa flagellin
significantly increased TMPRSS2 mRNA expression (Figure 2B)
in a dose-dependent manner (Supplementary Figure 1) without
affecting the transcripts levels of ACE2 (Figure 2C) and FURIN
(not illustrated). This increase in TMPRSS2 expression was more
notable in Calu-3-CFTR-KD than in Calu-3-CFTR-WT
(Figure 2B), and the TMPRSS2 upregulation was also detected
at the protein level (Figure 2D). As expected, flagellin induced
the synthesis of the proinflammatory cytokines interleukin (IL)-8
and IL-6 (Supplementary Figure 2A, B) both in Calu-3-CFTR-
WT and Calu-3-CFTR-KD cells, and this inflammatory response
was relatively higher in the Calu-3-CFTR-KD cells, which agrees
with previous work showing that CF epithelial cells from human
(19) or porcine (20) origin exhibit an enhanced inflammatory
response to flagellin.

To ascertain whether the observed effect of flagellin is specific to
the bacterial source of the protein, we used ultrapure flagellin isolated
from S. Typhimurium serovar Typhimurium (St-F) in our assays,
which revealed that St-F induced similar TMPRSS2 expression in
Calu-3 cells as did flagellin isolated from P. aeruginosa (Figure 3A).
By contrast, recombinant flagellins (standard or vaccigrade™) from
S. Typhimurium did not affect the expression (Figure 3A).

Flagellin is known to activate TLR5 and the downstream p38
mitogen-activated protein kinase (MAPK) signaling pathway
(21); thus, we tested the involvement of this pathway in the
observed TMPRSS2 induction. We showed that the upregulation
of TMPRSS2 expression depended on TLR5 signaling
(Figure 3B). When a p38 inhibitor was used, flagellin-induced
TMPRSS2 expression was diminished in Calu-3-CFTR-KD cells
(Figure 3C) and primary CF hAECs (Figure 3D). Furthermore,
an inhibitor of nuclear factor-kappa B (NF-kB) also reduced the
TMPRSS2 induction by flagellin. Accordingly, the results of
western blotting confirmed that flagellin stimulated p38
phosphorylation as well as NF-kB activation (Figure 3E).
Moreover, as shown previously (21), we further observed that
this NF-kB activation depended on p38 activity (Figure 3E).

To determine whether TMPRSS2 induction was restricted to
the lung epithelium, we examined the flagellin effect in an
intestinal cell line, Caco-2/TC7. Our results showed that
flagellins from P. aeruginosa and S. Typhimurium, which were
able to induce IL-8 production (Supplementary Figure 3A),
exerted no effect on TMPRSS2 expression in these cells
(Supplementary Figure 3B).
A

B

C

FIGURE 1 | Effect of P. aeruginosa infection on ACE2, TMPRSS2, and FURIN
expression in primary hAECs. Heatmap of ACE2, TMPRSS2, and FURIN
expression (fold-change) (A) and kinetics of TMPRSS2 expression (shown in
reads) (B) in primary hAECs isolated from non-CF and CF patients and infected
with P. aeruginosa (multiplicity of infection = 0.25) [RNA-seq data extracted from
a previous study (17), Benjamini-Hochberg adjusted p value (*p)]. (C) ACE2 and
TMPRSS2 mRNA expression (in arbitrary units, a.u.) in submerged non-CF
(n=4) and CF (n=4) primary hAECs stimulated with control medium (reference
group) or Pa-F (50 ng/mL) for 6 h (ANOVA with Bonferroni’s multiple-
comparison test, *P < 0.05).
December 2021 | Volume 12 | Article 714027
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Influence of TMPRSS2 Induction by
P. aeruginosa Flagellin on SARS-CoV-2
Infectivity in CFTR-Sufficient and
-Deficient Calu-3 Cells
Lastly, we investigated whether TMPRSS2 induction by flagellin
influences SARS-CoV-2 infectivity. After infection with SARS-
CoV-2, the intracellular nsp14 viral mRNA level was increased,
and this level was significantly higher in Calu-3-CFTR-KD than
-CFTR-WT cells and was even more notably elevated when the
cells were pre-stimulated with flagellin (Figure 4A). By contrast,
the extracellular nsp14 viral mRNA level, measured in the apical
supernatant of AECs as a surrogate for viral production, was
significantly lower in Calu-3-CFTR-KD cells than in Calu-3-
CFTR-WT cells (Figure 4B). Whereas pre-stimulation with
flagellin did not affect viral-particle release in Calu-3-CFTR-
WT cells, a lower, albeit not statistically significant, level of nsp14
mRNA was measured at the apical side of Calu-3-CFTR-KD cells
pre-stimulated with flagellin. To ensure that viral particles
Frontiers in Immunology | www.frontiersin.org 552
release was not due to an increase in the permeability of the
epithelial barrier by flagellin, we measured TEER and observed
that flagellin treatment was not associated with a loss of epithelial
integrity (Supplementary Figure 4). Lastly, IFN-b and IFN-l
measurements in basal supernatants were not induced either by
the virus or the flagellin in the different conditions tested
(not illustrated).
DISCUSSION

In this study, we showed that exposure of AECs to flagellin from
P. aeruginosa induces an increase in TMPRSS2 expression,
which is dependent on TLR5 and p38 MAPK activation.
Notably, prior exposure of AECs to flagellin results in
increased infectivity of SARS-CoV-2 (illustrated in Figure 5).

We found that TMPRSS2 is more expressed in hAECs from
pwCF as compared with the level in controls. Although the
A B

C D

FIGURE 2 | Effect of P. aeruginosa flagellin on ACE2, FURIN, and TMPRSS2 expression in CFTR-deficient Calu-3 cells. (A) ACE2 and TMPRSS2 mRNA expression
in submerged cultures of Calu-3, Beas-2B (reference), and 16HBE14o- cell lines (n = 3, ANOVA with Dunnett’s multiple-comparison test, control group: Calu-3, ****P
< 0.0001). GAPDH, housekeeping gene. Representative western blot (with 20 mg of protein) showing ACE2 and b-actin protein expression in submerged cultures of
Calu-3, Beas-2B, and 16HBE14o- cell lines. TMPRSS2 (B) and ACE2 (C) mRNA expression (relative to that of housekeeping gene GAPDH) in Calu-3-CFTR-WT
(reference group) and -CFTR-KD cells grown at the air-liquid interface and either not stimulated (–) or stimulated for 3 or 6 h with P. aeruginosa flagellin (Pa-F, 50 ng/
mL) (n = 5, ANOVA with Bonferroni’s multiple-comparison test, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). (D) Immunofluorescence analysis of TMPRSS2
and ACE2 protein expression in Calu-3 cells (ATCC) grown at the air-liquid interface and stimulated with Pa-F for 18 h; scale bar, 20 mm.
December 2021 | Volume 12 | Article 714027

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ruffin et al. TMPRSS2 and SARS-CoV2 in CF Bronchial Cells
hAECs were isolated from a limited number of pwCF, this
observation agrees with previous results obtained using excised
lungs, where RNA in situ hybridization revealed that TMPRSS2
expression was higher in pwCF than in non-CF patients (7). We
also observed that flagellin from P. aeruginosa increases
TMPRSS2 expression in primary bronchial epithelial cells from
both pwCF and controls. The variability of the flagellin-elicited
response in the two groups is likely due to the effect of several
donor-related factors, such as sex, age, and CF clinical history in
the case of pwCF. An age-related increase in TLR5 expression
and sensing has been observed in human monocytes (22).
Moreover, the single-nucleotide polymorphism TLR5
c.1174C>T, which is common in the general population (23)
and generates a variant that acts as a modifier gene in CF (24),
might also contribute to this variability. Unfortunately, it was not
possible to have age-matched donors which constitutes a
limitation in our study.

To elucidate the specific contribution of CFTR in the level of
TMPRSS2 induction by flagellin, we used isogenic Calu-3-CFTR-
Frontiers in Immunology | www.frontiersin.org 653
WT and Calu-3-CFTR-KD cells. We found that TMPRSS2 is
highly induced in Calu-3-CFTR-KD cells, and we further
confirmed previous observations indicating that CFTR-
deficient bronchial cells show an elevated inflammatory
response to flagellin, characterized by increased levels of IL-6
and IL-8 (19). Flagellin is known to activate TLR5 and
downstream p38 and NF-kB in Calu-3 cells (21). Confirming
these results, TMPRSS2 induction by flagellin was found here to
depend on p38 and NF-kB, both in Calu-3 cells and primary CF
hAECs. Interestingly, a recent phosphoproteomic study in Vero-
6 cells revealed that SARS-CoV-2 stimulates the p38 pathway,
and that pharmacological inhibition of p38 shows antiviral
efficacy (25). Thus, this study and our results here suggest that
inhibiting the p38 pathway could represent a potential COVID-
19 therapy.

The increase in intracellular viral mRNA levels in CF cells
exposed to flagellin, which indicates an elevated level of infection,
is likely the result of the upregulated expression of TMPRSS2.
Accordingly, TMPRSS2 inhibition by using the serine-protease
A B C

D E

FIGURE 3 | Effect of TLR5 and p38 inhibition on flagellin induced-TMPRSS2 expression in CFTR-deficient cells. (A) TMPRSS2 mRNA expression in Calu-3-CFTR-KD grown
at the air-liquid interface and either not stimulated or stimulated for 6 h with 50 ng/mL ultrapure flagellin from S. Typhimurium (St)-F, recombinant St-F, vaccigrade St-F, or Pa-F
(n = 3, ANOVA with Dunnett’s multiple-comparison test, *P < 0.05). (B) TMPRSS2 mRNA expression in Calu-3-CFTR-KD cells grown at the air-liquid interface and incubated
for 1 h with isotype control (reference) or anti-TLR5 antibody (10 mg/mL) and then either not stimulated or stimulated for 6 h with Pa-F (50 ng/mL) (n = 3, ANOVA with
Dunnett’s multiple-comparison test, control group: Isotype/Pa-F, *P < 0.05). TMPRSS2 mRNA expression in Calu-3-CFTR-KD cells grown at the air-liquid interface (C) or in
primary CF hAECs (D) that were preincubated for 1 h with 20 mmol/L p38 or 20 mmol/L NF-kB inhibitors and then stimulated for 6 h with 50 ng/mL Pa-F in the presence of
the inhibitor. ANOVA with Dunnett’s multiple-comparison test, control group: -/Pa-F, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. (E) Western blot (with 10 mg of
protein) of phospho- and total p38 and phospho- and total NF-kB in primary hAECs stimulated with 50 ng/mL Pa-F.
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inhibitor camostat mesylate is sufficient for preventing infection
with SARS-CoV-2 (10). Intriguingly, we observed a lower level of
viral particles at the apical side of CF cells as compared with the
levels in non-CF cells; this could be the result of an increased
host-defense capacity of CF cells against viral infection, or a delay
in the kinetics of virus release. Interestingly, a recent
transcriptomic study shows that despite the fact that influenza
virus (IAV) replication in Calu3-CFTR-WT and Calu-3-CFTR-
KD cells is similar, a specific immune gene profile is observed in
Calu-3-CFTR-KD before and after infection with IAV. It is also
shown by RNAseq analysis that flagellin stimulation revealed
potential dysregulation of pathways involved in viral infection.
FIGURE 5 | Schematic illustrating the results. P. aeruginosa interacts with the airway e
its virulence factor, flagellin. This activation, dependent on p38 MAPK and NF-kB, leads
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Importantly, by stimulating cells with IFNs and using a
transcription network analysis, they also demonstrated that
IFN signaling is altered in CFTR deficient cells (26) which
could explain in part our results. Future studies specifically
investigating infection kinetics, viral-particle release, and the
resulting antiviral response including the production of IL-6
and Type I/III interferons should facilitate definitive assessment
of whether prior exposure to flagellin induces either a protective
or damaging effect after SARS-CoV-2 infection of CF cells. The
non-detection of IFN-b and IFN-l in our viral infection
conditions is probably related to the very short infection time
chosen, which if it allows to study the initiation of the viral
A B

FIGURE 4 | Effect of TMPRSS2 induction by P. aeruginosa flagellin on SARS-CoV-2 infectivity in CFTR-deficient Calu-3 cells. (A) Intracellular nsp14/GAPDH and
(B) apical (supernatant) nsp14 mRNA expression in Calu-3-CFTR-WT (reference group) and -CFTR-KD cells grown at the air-liquid interface and either not stimulated
(black circle) or stimulated (red circle) for 16 h with Pa-F 50 ng/mL), and then infected for 24 h with SARS-CoV-2 (multiplicity of infection = 1) (n = 3, ANOVA with
Bonferroni’s multiple-comparison test, *P < 0.05, **P < 0.01, ***P < 0.001).
pithelial cells of pwCF, notably by activating the TLR5 signaling pathway through
to an increase in TMPRSS2 which could regulate SARS-CoV-2 infectivity.

December 2021 | Volume 12 | Article 714027

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ruffin et al. TMPRSS2 and SARS-CoV2 in CF Bronchial Cells
infection process does not allow to study at best the resulting
inflammatory response. Indeed, it was shown in Calu-3 cells that
SARS-CoV-2 induces a significant but delayed IFN-b in
comparison to Sendaï virus or synthetic dsRNA (poly I:C) (27).

Further investigations conducted using primary cells
differentiated at the air-liquid interface will be necessary to
specifically characterize the response of CF bronchial epithelial
cells. Nevertheless, the model used here is relevant. As noted in the
introduction section, secretory cells are infected by SARS-CoV-2;
this was demonstrated in previous studies conducted using single-
cell RNA-seq, either ex vivo with lung biopsies of patients infected
with SARS-CoV-2 (4), or in vitro with a reconstituted epithelium
at the air-liquid interface (6, 8). Calu-3 cells polarized at the air-
liquid interface present the characteristics of secretory cells (mucus
production) and express naturally (i.e., without exogenous
overexpression) the required proteins (ACE2, TMPRSS2) for
infection by SARS-CoV-2, which is not the case with the other
epithelial cell lines tested in this study.

Several studies have delineated the antiviral capacity endowed
by flagellin against other respiratory viruses, including influenza A
(28). Furthermore, flagellin was recently suggested to be capable of
modulating the innate immune response and thereby eliminating
SARS-CoV-2 and resolving COVID-19 (29). Accordingly, the use
of recombinant flagellin as an adjuvant in vaccine development has
been considered (30). However, we observed here that recombinant
flagellin (standard or vaccigrade™) from S. Typhimurium did not
affect TMPRSS2 expression. Thus, although these data were
obtained in vitro, it is likely based on the aforementioned finding
that pathogen-targeting vaccines developed using recombinant
flagellin as an adjuvant will not produce negative effects in the
case of concomitant exposure to SARS-CoV-2. Moreover, the
observed upregulation of TMPRSS2 expression induced by
flagellin appears specific to the lung epithelium, because the
effect was not replicated in Caco-2/TC7 cells, which are epithelial
cells of intestinal origin. During their lifetime, pwCF are also
infected with other flagellated bacteria including Burkholderia
cenocepacia and Stenotrophomonas maltophilia (31). In
particular, flagellin from Burkholderia cenocepacia also known to
activate TLR5 (32, 33), could also modulate TMPRSS2 expression.

The question of whether CF patients face an increased risk of
developing a severe form of COVID-19 is a topical one and a
source of discussion (34). Clinical follow-up results obtained to
date indicate that pwCF, both adults (3, 35) and children (36), do
not show an elevated risk of developing severe COVID-19 as
compared with the general population. However, pwCF with
advanced CF disease (associated with older age, CF-related
diabetes, lower lung function, having received an organ
transplant) might develop a severe clinical course (3, 35).

In a recent French study, we compared the baseline clinical
characteristics of 31 pwCF infected by SARS-CoV-2 during the first
wave of the pandemic to that of the overall French CF population
(n = 6,913; >90% of all French CF cases) (37). The pwCF with
COVID-19 were found to be older and more frequently chronically
colonized with P. aeruginosa (37). However, considering the small
number of patients, these results must be interpreted with caution.
Thus, whether the risk of developing severe COVID-19 is increased
Frontiers in Immunology | www.frontiersin.org 855
in pwCF because of their P. aeruginosa infection remains
unresolved and will require further meta-analysis performed using
international cohorts. Moreover, a recent study including 874
individuals with COVID-19 showed that carriers of CF-causing
variants (N=40) may be more likely to develop severe COVID-19
(38). This reinforces the interest in studying the specific role of
CFTR in the pathogenesis of COVID-19.

In conclusion, we have shown that exposure of CF AECs to
flagellin from P. aeruginosa can enhance SARS-CoV-2
infectivity. Further clinical follow-up studies and in vitro
experimental investigations into the mechanisms associated
with the specific host response of primary CF cells to SARS-
CoV-2 infection should help elucidate this matter and provide
insights for future clinical care.
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Lavage: Applications for Mixed Cell
Paediatric Pulmonary Studies
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4 Molecular Immunity, Murdoch Children’s Research Institute, Parkville, VIC, Australia, 5 Computational Biology Program,
Peter MacCallum Cancer Centre, Parkville, VIC, Australia, 6 Sir Peter MacCallum Department of Oncology, University of
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In epigenome-wide association studies analysing DNA methylation from samples
containing multiple cell types, it is essential to adjust the analysis for cell type
composition. One well established strategy for achieving this is reference-based cell
type deconvolution, which relies on knowledge of the DNA methylation profiles of purified
constituent cell types. These are then used to estimate the cell type proportions of each
sample, which can then be incorporated to adjust the association analysis.
Bronchoalveolar lavage is commonly used to sample the lung in clinical practice and
contains a mixture of different cell types that can vary in proportion across samples,
affecting the overall methylation profile. A current barrier to the use of bronchoalveolar
lavage in DNA methylation-based research is the lack of reference DNA methylation
profiles for each of the constituent cell types, thus making reference-based cell
composition estimation difficult. Herein, we use bronchoalveolar lavage samples
collected from children with cystic fibrosis to define DNA methylation profiles for the
four most common and clinically relevant cell types: alveolar macrophages, granulocytes,
lymphocytes and alveolar epithelial cells. We then demonstrate the use of these
methylation profiles in conjunction with an established reference-based methylation
deconvolution method to estimate the cell type composition of two different tissue
types; a publicly available dataset derived from artificial blood-based cell mixtures and
further bronchoalveolar lavage samples. The reference DNA methylation profiles
developed in this work can be used for future reference-based cell type composition
estimation of bronchoalveolar lavage. This will facilitate the use of this tissue in studies
examining the role of DNA methylation in lung health and disease.

Keywords: DNA methylation, bronchoalveolar lavage, paediatrics, cystic fibrosis, pulmonary disease, epigenetics
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INTRODUCTION

DNAmethylation (DNAm) is the most widely studied epigenetic
mark and is important in both development and disease (1). It
has been studied in numerous diseases to improve understanding
of pathophysiology and to identify novel therapeutic targets and
disease biomarkers (2). The advent of genome-wide DNAm
arrays has enabled large, epigenome-wide association studies
(EWAS). Specifically, the Illumina HumanMethylation450
(450k) and HumanMethylationEPIC (EPIC) BeadChips, which
interrogate over 450,000 and 850,000 CpGs, respectively, have
allowed researchers to interrogate human DNAm at an
unprecedented scale.

The DNAm profile of each tissue and cell type is unique and
can therefore differentiate cells from different organs (e.g., brain vs.
lung), as well as different cell types within an organ (e.g., grey
matter and white matter tissue in the brain have unique profiles)
(3). As such, the biological sample used for EWAS should ideally
be from a relevant organ/tissue (4). However, this is generally not
possible in living humans. Furthermore, in samples which consist
of multiple cell types, the outcome of interest may be confounded
by differences in cell type composition (5). To address this,
previous work has shown that the unique DNAm signature of
individual cell types can be leveraged to estimate their relative
proportions in mixed-cell samples such as blood (6). These cell
type proportions can then be accounted for in downstream
statistical analysis (6). However, as was demonstrated by
Bakulski et al (7), reference DNAm signatures of cell types from
one source (e.g., adult blood) may not be perfectly representative
of similar cell types from a different source (e.g., cord blood).

Clinical research of pulmonary diseases is currently limited by
a lack of data from tissue and cell type specific samples.
According to the EWAS Atlas, an online repository of
published EWAS studies, there are 19 published EWAS studies
in non-cancer lung diseases such as asthma, cystic fibrosis (CF),
chronic obstructive pulmonary disease, acute respiratory distress
syndrome and granulomatous lung disease (8). The majority
have utilised samples from adult participants (13/19). Blood was
the most commonly used biological sample in these studies (8/19
studies), followed by nasal and airway epithelial cells (6/19). The
majority of these sample types do not contain immune cells,
which are an integral part of the cellular milieu of the lung and
are relevant to many lung diseases (9).

Bronchoalveolar lavage (BAL) is commonly collected as part
of clinical care of lung disease. Particularly in young children,
who cannot expectorate sputum, it is considered the gold-
standard method of sampling the lung. BAL fluid permits
assessment a variety of cells in the lung, including both
circulating and resident immune cells, as well as respiratory
epithelial cells (10). The predominant cell types in BAL are
alveolar macrophages, granulocytes, lymphocytes and alveolar
epithelial cells (AEC) (10–12). A current barrier to the
widespread use of BAL samples in EWAS is the lack of a BAL-
derived set of reference DNAm profiles for constituent cell types.
Only three prior EWAS have utilised BAL samples, with varying
approaches for adjustment of cell composition. One study,
involving 8 participants (18-33years old), investigated only
Frontiers in Immunology | www.frontiersin.org 259
BAL macrophages, and used a reference-free approach to
estimate and adjust for alveolar macrophage subtype
composition (8). Another study, involving 48 adult
participants, used microscopy derived lymphocyte cell counts
to estimate the proportion of lymphocytes in the sample and
adjust their analysis (13). This approach is limited by the
resolution of microscopy and only accounts for lymphocytes in
BAL, omitting other cell types (14, 15). A final study (16),
involving 35 adult participants (median age 25.0, range: 22.0–
29.0), used the publicly available eFORGE tool (17) to adjust for
cell type composition. This tool was developed using a number of
biological specimens such as fetal lung tissue and purified
immune cell subsets. However, lung resident macrophages,
which are the most common cell type in BAL, were not
assessed. At present, there are no studies that have profiled the
genome-wide DNAm of the cell types found in BAL, particularly
from paediatric samples.

Here, we collected and purified individual cell populations
from BAL collected from children with CF and generated cell-
specific DNA methylation profiles with the aim of creating a
BAL-derived DNAm reference panel of constituent cell types.
Genome-wide DNAm profiles for 4 clinically-relevant BAL cell
types (lymphocytes, granulocytes, alveolar macrophages, AECs)
were measured using the Illumina EPIC array. We then used our
BAL-derived reference panel in conjunction with a well-
established deconvolution method to demonstrate its utility in
the estimation of cell type proportions of BAL DNAm data. This
BAL-specific reference panel will be useful for epigenetic studies
of paediatric pulmonary disease.
MATERIALS AND METHODS

A summary of the experimental workflow is shown in Figure 1.
All analysis code presented in this manuscript can be found at
https://jovmaksimovic.github.io/paed-BAL-meth-ref/index.
html. The analysis website was created using the workflowr
(1.6.2) R package (18). The GitHub repository associated with
the analysis website is at: https://github.com/JovMaksimovic/
paed-BAL-meth-ref.

Sample Population and Biospecimen
Collection
The 17 BAL samples used to establish the methylation reference
panel of constituent cell types were obtained as part of the AREST
CF study, with ethics approval (HREC #25054). We utilised excess
BAL takenat the timeofa clinically indicatedprocedures inchildren
withCF(age0–6 years). Flexible bronchoscopywas conductedbya
respiratory physician under general anaesthesia. BAL was
performed by instillation of sterile 0.9% normal saline in aliquots
of oneml/kg (maximum20ml). The aliquots used in this studywere
the secondwash in the same bronchial tree location, which samples
the distal airways this increasing the chances of sampling alveolar
macrophages (19, 20). Sampleswere kept on ice after collection and
cryopreserved within one hour, using previously described
methods (10).
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For estimation of constituent cell type proportions, BAL was
collected from a further 6 subjects involved in the AREST CF
study, as described above. Prior to processing, 1 mL of raw lavage
was collected and stored at -80°C. The remaining BAL was
cryopreserved as described. The cryopreserved fraction was
then thawed and cell composition determined via flow
cytometry using previously described methods (see “Cell
selection and Purification” section for brief description) (10).

Cell Selection and Purification
Cryopreserved samples were thawed and then fluorescence
activated cell sorting was used to isolate alveolar macrophages,
granulocytes, lymphocytes and AEC using previously described
methods (10). Briefly the following markers were used to identify
cell types: alveolar macrophages: CD45+, CD206+, granulocytes:
CD45+, CD206-, CD15+, lymphocytes: CD45+, CD206-, CD15-,
low forward scatter/side scatter, and AEC: CD45-, EpCAM+.
Purified cell pellets were resuspended in 350uL of RLT buffer
(Qiagen, Venlo, Netherlands) with 1% ß-mercaptoethanol (Gibco,
New York, USA), and stored at -80°C until DNA extraction.

DNA Extraction and Methylation Profiling
DNA was extracted from samples using the QIAamp DNAMicro
Kit (Qiagen, Venlo, Netherlands). Aside from initial storage of the
sample in RLT buffer with 1% ß-mercaptoethanol, the standard
protocol for DNA extraction was used. DNA quantity and quality
were assessed using a QUBIT<sp>® fluorometer and Nanodrop™

spectrophotometer respectively.
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For purified cell type samples, the yield from an individual
BAL was found to be insufficient for downstream whole genome
methylation analysis. Thus, to avoid potential biases resulting
from whole genome amplification (21, 22), DNA extracted from
purified cell populations from the 17 individuals were pooled.
This produced 5 macrophage pools (4 pools comprised of cells
from 3 individuals, 1 comprised of cells from 2 individuals), 4
granulocyte pools (3 pools comprised of cells from 3 individuals,
1 pool comprised of cells from 5 individuals), 3 lymphocyte pools
(2 pools comprised of cells from 6 individuals, 1 pool comprised
of cells from 5 individuals) and 2 AEC pools (1 pool comprised of
cells from 12 individuals, 1 pool comprised of cells from 5
individuals). To assess the impact of our pooling strategy, we
examined the relationship between the number of individuals
contributing to a pool and the variance across CpGs in the
sample (Supplementary Figure 1). Regression analysis showed
no statistically significant association between the number of
individuals contributing to a pool and variance across CpGs
(Adj. R2 = -0.02; p-value = 0.43), indicating that the sample pools
were representative of the sorted cell types. Following extraction
and pooling, DNA was stored at -30°C until further analysis.

The raw BAL samples, from 6 individuals, intended for cell
composition estimation were thawed, and DNA was extracted
and assessed for quality as previously described.

Genome-wide methylation profiling was performed for all
samples using the Infinium MethylationEPIC array (EPIC array,
Ilumina, San Diego, USA) at either GenomeScan (Leiden,
Netherlands) or ErasmusMedical Centre (Rotterdam, Netherlands).
A

B

C

FIGURE 1 | Study outline. (A) BAL samples were collected, cryopreserved and sorted using fluorescence-activated single cell sorting, resulting in 4 purified cell
populations (Alveolar Epithelial Cells, Alveolar Macrophages, Granulocytes, and Lymphocytes). Their DNA was extracted and pooled and DNAm profiled on EPIC
arrays. Unique DNAm profiles for constituent cell types were identified. These DNAm profiles were then used to estimate cell type compositions in subsequent
validation experiments. (B) Data from a publicly available blood-derived artificial cell mixture with known cell composition, and matching DNAm data, was used to
validate our BAL-derived reference panel. The BAL-derived DNAm profiles we developed were used in conjunction with a reference-based deconvolution method to
estimate cell composition from the DNAm data of the artificial cell mixtures. This was then compared to the known cell composition. (C) BAL samples were collected
and divided into a raw fraction and a cryopreserved fraction. DNA was extracted from the raw fraction, DNAm profiled, and our BAL-derived DNAm profiles used in
conjunction with a reference-based deconvolution method to estimate cell composition. The cryopreserved fraction was profiled using flow cytometry, and cell
composition estimated. The methylation-based estimates were compared to the flow-cytometry cell composition measurements.
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All of the data is available from the Gene Expression
Omnibus: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE185556.

DNAm Data Pre-Processing
The EPIC array data were analysed using the R programming
language (23) (Version 4.0.3) according to best practices for
methylation array analysis (24). Raw IDAT files were imported
using minfi (25, 26), followed by quality control. Firstly, as a
measure of the quality of the array data, the detection p-value
was calculated for each probe and any poor-quality samples with
a mean detection p-value > 0.01 were excluded from subsequent
analysis. The data was then normalised, using subset quantile
normalisation (SQN) (27). Poor performing probes with
detection p-value > 0.01 in one or more samples were
excluded. In addition, probes known to have a single
nucleotide polymorphism at the CpG site, probes that map to
sex chromosomes, and cross-reactive probes that have been
shown map to multiple places in the genome, were also
excluded (28).

Identification DNAm Cell Type
Signature Probes
Amodified version of the estimateCellCounts2 function from the
FlowSorted.Blood.EPIC package (29), estimateCellCounts2Mod,
was used to identify DNAm profiles unique to each cell type, and
then estimate cell type proportions. This function implements
the Houseman (6) deconvolution algorithm, but unlike the
original minfi implementation, allows the use of a custom
panel of reference epigenomes. Our estimateCellCounts2Mod
function was specifically modified (https://github.com/
JovMaksimovic/paed-BAL-meth-ref/blob/main/code/functions.R)
to allow for the removal of probes excluded during quality
control, prior to identification of DNAm cell type signature
probes and cell proportion estimation.

We explored two probeSelect parameter options for DNAm cell
type signature probe selection; “both” and “any”. Using
“both”selects the top 50 hypermethylated and 50 hypomethylated
probes (F-stat p-value < 1E-8) with the greatest methylation
difference between each cell type compared to all the others.
Using “any” selects the top 100 probes (F-stat p-value < 1E-8)
with the greatest methylation difference between each cell type
compared to all the others, regardless of direction of effect. The
processMethod parameter, which determines how data will be
normalised, was set to SQN (27).

Gene set enrichment analysis of probes selected using either
the “any” or “both” options, and the probes that are in common
and different between them was performed using the gometh
function from the missMethyl (30) R Bioconductor package to
account for known biases in gene set testing of methylation array
data (31).

Cell Type Proportion Estimation of
Artificial Cell Mixtures
To assess the accuracy of cell proportions estimated using our BAL-
derived reference panel in conjunction with the Houseman (6)
Frontiers in Immunology | www.frontiersin.org 461
algorithm, we utilised 12 publicly available artificial DNA mixtures
profiled using Illumina Infinium HumanMethylationEPIC
BeadChips (GSE110554). The mixtures were generated by
combining known proportions of flow-sorted neutrophils,
monocytes, B-lymphocytes, CD4+ T cells, CD8+ T cells, and
natural killer cells (29). The data was downloaded using the
ExperimentHub Bioconductor package (29). The known
proportions of T, B and NK cells were summed to allow for
comparison to the lymphocyte proportion estimated from the
DNAm data using our BAL-derived reference panel, which only
profiled total lymphocytes.
RESULTS

Generation of a Methylation Reference
Panel for BAL Derived Purified Cell
Populations
Seventeen BAL samples obtained from children with CF were
used for development of the BAL-specific reference panel. The
median (range) age of the children was 36 months (14-70
months), and 11/17 (64.7%) were female. One child was of
South-Asian ethnicity, and all other children were of European
ethnicity. On average six mL of BAL was used. The median
(range) cell composition of samples, determined by flow
cytometry, was alveolar macrophages 63.7% (5.2%-95.9%),
granulocytes 23.7% (2.9%-86.1%), lymphocytes 8.1% (0.7%-
26.5%), and AEC 1.5% (0.2%-8.3%).

DNAm of pooled purified BAL-derived macrophage,
granulocyte, lymphocyte and AEC samples was profiled on
EPIC arrays in 2 batches; 9 arrays were run at Erasmus MC
and 11 arrays at GenomeScan. Following quality control, there
were 732,778 probes remaining for further analysis.
Multidimensional scaling (MDS) plots show strong clustering
of the samples by cell type (Figure 2). A scree plot
(Supplementary Figure 2) of the sources of variation in the
data shows that the vast majority of the variation is explained by
the first 4 principal components.

The Houseman (6) deconvolution algorithm, as implemented in
the estimateCellCounts2 function from the FlowSorted.Blood.EPIC
Bioconductor package (29), was used to identify DNA methylation
profiles unique to each cell type. Briefly, the Houseman (6)
algorithm is a type of regression calibration, originally developed
using white blood cells, where a methylation pattern is considered
to be a high-dimensional multivariate surrogate for the proportion
of constituent cell in a sample of mixed cell types. It essentially
leverages the DNAm profiles of purified cell types to estimate their
relative proportions in a mixture. These estimates can subsequently
be incorporated into statistical models to adjust for cell type
composition in an EWAS (6, 32, 33), or independently
investigated for their association with disease or environmental
exposures (34–36). Cell composition was estimated with the
probeSelect parameter set to “both” and then repeated with the
“any” option. As shown in Figure 3, the probes selected using
either option were able to clearly delineate the 4 cell types using
hierarchical clustering. The selected probes are primarily associated
December 2021 | Volume 12 | Article 788705
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with genes and overlap DNase hypersensitivity sites but most are
not within CpG islands or in close proximity to the transcription
start site (Supplementary Figure 3). Although there were no
statistically significant terms at a false discovery rate less than
0.05, gene set enrichment analysis (GSEA) of probes selected using
either option suggests that they are enriched for immune related-
genes, which is unsurprising as ¾ of the contributing cell types were
immune cells. Using the “any” option, the top 5 ranked Gene
Ontology (GO) terms were “leukocyte activation”, “T cell
activation”, “immune response” and “leukocyte cell-cell adhesion”
(Supplementary Table 1). Similarly, using the “both” option, the
top ranked GO terms were “leukocyte cell-cell adhesion”, “T cell
activation”, leukocyte activation”, “lymphocyte activation” and
Frontiers in Immunology | www.frontiersin.org 562
“regulation of leukocyte cell-cell adhesion” (Supplementary
Table 2). Of the 400 probes selected by each option, 221
(55.25%) were the same. GSEA of the overlapping probes also
ranked various immune-related terms highly (Supplementary
Table 3). The probes that differed between the “any” and “both”
options also ranked some immune-specific terms highly, however,
the top ranked terms were dominated by processes related to the
JNK, JUN and MAPK cascades (Supplementary Table 4).

Methylation-Based Cell Type Proportions
Validated Using Artificial Cell Mixtures
We initially assessed cell proportion estimates underpinned by our
BAL-specific cell reference panel using a publicly available dataset
A B

FIGURE 3 | Heatmaps showing unique DNA methylation profiles for constituent cell types. The probes shown were algorithmically selected based on their ability to
discriminate between the different cell types. The heatmaps demonstrate the different probe set selected when the probeSelect parameter is set to (A) “any” or (B)
“both”. “Both” selects the top 50 hypermethylated and 50 hypomethylated probes (F-stat p-value < 1E-8) with the greatest methylation difference between each cell
type compared to all the others. “Any” selects the top 100 probes (F-stat p-value < 1E-8) with the greatest methylation difference between each cell type compared
to all the others, regardless of direction of effect.
FIGURE 2 | MDS plots showing the first 3 principal components of methylation data from pooled BAL macrophage (n=5), granulocyte (n=4), lymphocyte (n=3) and
AEC (n=2) samples. Each pool contained purified cells from multiple individuals (see Methods). Clear separation of the different cell populations is seen in the first 3
principal components, which account for 60.1% of the total variation, and there is no evidence of a significant batch affect related to samples run at different service
providers (Erasmus MC or GenomeScan).
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(29) of twelve artificially created cell mixtures. This allowed for
validation of the accuracy of methylation-based estimates of BAL
lymphocyte and granulocyte proportions. The results are
summarised in Figure 4. For the cell types with available
reference epigenomes (lymphocytes and granulocytes), there is a
tight correlation between the true cell proportion and the
methylation-based cell proportion estimated using our reference
(Figure 4A). As expected, the sum of the estimated cell proportions
was close to one (6). The methylation-based estimates include a
proportion of alveolar macrophages not contained in the artificial
cell mixture (Figure 4A). We expect that this is due to the presence
of monocytes in the artificial cell mixture, which are macrophage
precursor cells and are likely to share some similarity in their
methylation patterns (37, 38). Furthermore, a fraction of alveolar
macrophages is made up of circulating monocytes that migrate to
the lungs and become a resident population (39, 40).

Overall, the mean squared error (MSE) (Figures 4B, C)
between the true proportions and methylation-based estimates
was close to zero for both lymphocytes and granulocytes, using
either the “any” or “both” probeSelect option, indicating very high
performance. However, the MSE for granulocytes was slightly
higher than for lymphocytes, for both probeSelect options.

Methylation-Based Cell Type Proportions
in Paediatric BAL Samples
Six BAL samples were obtained for comparing cell type proportions
determined by flow cytometry to methylation-based estimates
generated using the Houseman method (6), in conjunction with
our BAL-specific reference epigenomes. Five BALs were from
children with CF, and one was from a “control” subject. Four of
the six children (66.7%) were female. The median (range) age of the
children was 57months (23-89months), which is slightly older than
those used to derive the reference panel (median age 36 months,
range 14-70 months). Five children were of European ethnicity and
one was of South Asian ethnicity. All BAL samples had sufficient
DNA extracted for methylation analysis.

The cell composition of all samples was determined using flow
cytometry on cryopreserved BAL fractions (Table 1). For flow
cytometry data, the proportion of cells identified ranged between
46.2% - 89.0%. Themajority of the unidentified cells were CD45 –ve
and EpCAM –ve indicating they were likely red blood cells. As red
blood cells do not contain DNA, they do not contribute a DNA
methylation signature. To support this, we identified 3479 CpG
probes with mean ß values that were either ≥0.95 or ≤0.05 in all the
sorted cell types, which should also be either fully methylated or
unmethylated in the raw BAL samples if no other nucleated cell
types are present. As shown in Supplementary Figure 4, these
probes have consistent methylation levels across all the sorted cell
types and the raw BAL samples, suggesting that cells not identified
by flow cytometry were indeed red blood cells. Consequently,
analysis was conducted including both the unknown cells
(referred to as “original”) in the cell proportions and excluding
them (referred to as “scaled”). The cell composition of most samples
was as expected; however, two samples (CF1, CF5) had a CD45-,
EpCAM- fraction in excess of 30% which is higher than expected
and may relate to a traumatic blood-stained BAL.
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As for the artificial cell mixture data, methylation-based cell
proportion estimates using the “any” or “both” probe selection
methods were highly consistent across all cell types (Figure 5A).
An MDS plot of the 6 BAL samples in the context of the purified
cell type samples show them positioned centrally relative to the
sorted cell samples (Supplementary Figure 5), with one BAL
sample closer to the granulocyte cluster, suggesting a higher
granulocyte proportion (Supplementary Figure 5). Cell
proportions estimated using the methylation data and flow
cytometry are compared in Table 1 and Figure 5. The MSE
between the “original” and “scaled” flow and methylation-based
estimates was generally close to zero for all cell types and both
probeSelect options, indicating reasonable concordance between
the technologies (Figures 5B, C). The AEC and lymphocyte
methylation-based estimates were the most concordant with the
flow cytometry data. The alveolar macrophage and granulocyte
proportions were more variable; in certain subjects (CF1 and
control) there was a larger discrepancy between flow cytometry
and DNAm estimated cell composition, reflected by a larger MSE
of ~0.06, relative to the “original” flow estimates. Comparison to
the “scaled” flow values markedly reduced the MSE for subjects
CF1, CF4 and CF5 but had a negligible effect on the others.
DISCUSSION

We used the EPIC array to generate a reference panel of DNAm
profiles for the four most common and clinically-relevant cell
types in paediatric BAL: alveolar macrophages, granulocytes,
lymphocytes and alveolar epithelial cells. The DNAm reference
panel was then used to demonstrate estimation of cell composition
of samples in two different datasets. Strengths of the work include
purification of individual cell populations using FACS which was
undertaken using previously validated, high-quality methods (10).
The DNA methylation analysis and, in particular, the methods
used for identifying cell-specific methylation probes have been
well-established and widely used (6, 24, 29).

We compared known proportions of lymphocytes and
granulocytes in an artificial cell mixture to estimates using
DNAm with our BAL-specific reference panel in conjunction
with the Houseman (6) deconvolution method. The known and
estimated lymphocyte and granulocyte proportions were highly
correlated, with MSE close to zero for cell types in all samples. In a
subset of samples, the granulocyte proportion was slightly
overestimated. This may be because the reference sample
contains eosinophils as well as neutrophils and thus is therefore
not a direct reflection of the cellular composition of the artificial
cell mixture. Furthermore, in their original study, Houseman et al
(6) also observed the most significant discrepancy between the true
and estimated proportion for granulocytes.

We also estimated the cell type proportions of six paediatric
BAL samples using our BAL-specific DNAm reference panel
with the Houseman (6) deconvolution method and compared
them to proportions measured using flow-cytometry. Two of the
six subjects showed the greatest divergence between the flow-
cytometry and DNAm estimates largely driven by differences
December 2021 | Volume 12 | Article 788705
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FIGURE 4 | Comparison of known proportions of artificial cell mixtures (with T Cells, B Cells, and Natural Killer cells combined into a Lymphocyte population), to
methylation-based estimated cell proportions derived using BAL purified cell population data. Cell type discriminating probes were selected using “any” and “both”
approaches (see methods for details). (A) Comparison of known proportions of artificial cell mixtures (with T Cells, B Cells, and Natural Killer cells combined into a
Lymphocyte population), to methylation-based estimated cell proportions derived using BAL purified cell population data. Cell type discriminating probes were
selected using “any” and “both” approaches (see methods for details). (B, C) Bland Altman Plots Comparing Known Artificial Cell Mixture Proportions (“Truth”) and
methylation-based cell proportion estimates (“Estimate”). The data point numbers represent which cell mixture the data pertains to. Cell type discriminating probes
were selected using either (B) “any” and (C) “both” approaches (see Methods for details). The mean squared error (MSE) between the known proportion and
estimated proportion was calculated for each cell type and probe selection Method.
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between the granulocyte and alveolar macrophage proportions.
The discrepancy in the granulocyte estimate is likely due to the
effect of cryopreservation on the BAL fraction, which is known to
reduce the proportion of granulocytes in a sample due to cell lysis
(10). However, the BAL fraction profiled on EPIC arrays was not
cryopreserved, thus retaining a higher proportion of
granulocytes. The methylation-based estimate was consistently
higher than that of flow cytometry strongly suggesting that the
observed difference in proportions between flow-cytometry and
DNAm granulocyte proportions is best explained by the effect of
cryopreservation. The variable size of the discrepancy, may be
due to the fact that cryopreservation primarily reduces the
CD16+ granulocyte fraction (10). Thus, samples that originally
had a large CD16+ granulocyte proportion are likely to have a
larger discrepancy than those with a smaller CD16+ granulocyte
proportion. We have previously shown the proportion of CD16+
granulocytes in BAL ranges from 0.09%-9% indicating
substantial variation (10).

The variation in the methylation-based estimates of
macrophages may be a consequence of the issues with the
granulocyte estimate. The sum of the cell type proportions
estimated by the Houseman method is expected to be close to
one (6). Thus, if one cell proportion is inaccurately estimated there
will be a reciprocal effect on other cell proportions. In this case, the
consistent overestimation of granulocytes (when compared to flow
cytometry data), may also result in the observed underestimation
of the alveolar macrophage proportion. An alternate explanation
could be heterogeneity of alveolar macrophage subpopulations,
potentially related to disease severity. Recently, single cell
transcriptomic analysis of adult BAL has revealed 13 alveolar
macrophage subpopulations (41). The composition of a patient’s
alveolar macrophage pool is likely related to disease severity, and
each of the alveolar macrophage subpopulations will have a
unique epigenetic profile. Thus, the discrepancy between the
flow cytometry and methylation-based estimates of alveolar
Frontiers in Immunology | www.frontiersin.org 865
macrophage proportion seen in some subjects may be due to
differences in the composition of their alveolar macrophage
subtypes relative to the samples used to generate the reference
epigenome. The relatively large discrepancy between the flow
cytometry and methylation-based estimates of alveolar
macrophage proportions for the control patient may reflect
potentially altered alveolar macrophage DNA methylation
profiles between control and CF patients (8).

It has been demonstrated that DNAm patterns related to
exposure or disease can be confounded with differences in cell
type proportions (32, 42). Furthermore, Bakulski et al (7) have
shown that ensuring the DNAm reference panel used for cell
proportion estimation is matched to the age of the study
participants is especially important for some cell types.
Adjusting using inaccurate cell proportion estimates may not
completely resolve any confounding, underscoring the need to
adjust for cell type proportions in BAL samples using an
appropriate reference panel. The use of BAL in EWAS of
pulmonary disease or exposure is appealing as it allows
simultaneous assessment of methylation of local immune and
epithelial cells, both of which are relevant to paediatric lung
disease. Alternate biospecimens such as blood or bronchial
brushings will omit cell types of interest. Our BAL-specific
reference panel allows for deconvolution of multiple clinically-
relevant cell types using any compatible reference-based method.
While we used the Houseman method for estimating proportions,
as this is a well-established and commonly used reference-based
deconvolution method implemented in R, other methods could
also be used in conjunction with the EPIC array data generated in
this study. Furthermore, using a different probe selection strategy
or varying F-statistic or beta value thresholds However, given the
reference panel was derived from children with CF, it may need
further validation prior to use on samples from different disease
groups and ages. Although, its excellent performance when used to
estimate the composition of artificial cell mixtures derived from
TABLE 1 | Cell composition of BAL determined by both DNA methylation-based estimate and flow cytometry.

Alveolar Macrophage Lymphocyte Granulocyte Alveolar Epithelial Cell

Scaled
Flow

Cytometry

DNAm
Estimate
(Any)

DNAm
Estimate
(Both)

Scaled
Flow

Cytometry

DNAm
Estimate
(Any)

DNAm
Estimate
(Both)

Scaled
Flow

Cytometry

DNAm
Estimate
(Any)

DNAm
Estimate
(Both)

Scaled
Flow

Cytometry

DNAm
Estimate
(Any)

DNAm
Estimate
(Both)

CF1 5.2 0.7 0.5 5.5 1.6 1.8 86.1 88.8 89.8 3.2 9.2 8.7
CF2 55.7 29.9 33.7 8.9 19.7 16.3 32.5 43.1 48.0 2.9 11.2 10.5
CF3 64.6 37.3 39.3 8 22.3 20.7 23.9 22.1 25.7 3.4 21.0 20.0
CF4 72.5 66.6 68.6 7.2 11.6 10.0 19.7 13.7 15.4 0.6 9.9 9.7
CF5 63.2 50.7 52.8 7.2 11.0 9.5 29.4 34.5 35.7 0.2 5.6 5.4
Control 51.1 13.7 13.1 20.5 17.8 16.7 21.5 58.7 61.7 6.9 12.9 12.8

Unscaled
Flow

Cytometry

DNAm
Estimate
(Any)

DNAm
Estimate
(Both)

Unscaled
Flow

Cytometry

DNAm
Estimate
(Any)

DNAm
Estimate
(Both)

Unscaled
Flow

Cytometry

DNAm
Estimate
(Any)

DNAm
Estimate
(Both)

Unscaled
Flow

Cytometry

DNAm
Estimate
(Any)

DNAm
Estimate
(Both)

CF1 2.4 0.7 0.5 2.5 1.6 1.8 39.7 88.8 89.8 1.5 9.2 8.7
CF2 46.1 29.9 33.7 7.4 19.7 16.3 26.9 43.1 48.0 2.4 11.2 10.5
CF3 42.5 37.3 39.3 5.3 22.3 20.7 15.8 22.1 25.7 2.3 21.0 20.0
CF4 50.2 66.6 68.6 5 11.6 10.0 13.6 13.7 15.4 0.4 9.9 9.7
CF5 31.3 50.7 52.8 3.6 11.0 9.5 14.5 34.5 35.7 0.1 5.6 5.4
Control 34.8 13.7 13.1 13.9 17.8 16.7 14.6 58.7 61.7 4.7 12.9 12.8
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For DNA methylation-based estimates cell type discriminating probes were selected using “Any” and “Both” approaches (see Methods for details). Regarding flow cytometry the “scaled”
proportions were calculated not including the CD45-, EpCAM – cells which are likely Red Blood Cells that do not contribute to DNA methylation data.
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FIGURE 5 | (A) Comparison of cell proportions measured via flow cytometry to methylation-based estimated cell proportions derived using BAL purified cell
population data. Cell type discriminating probes were selected using “any” and “both” approaches (see methods for details). “Original” refers to the proportion of
cells from flow cytometry in the total live cell population. “Scaled” refers to the proportion of cells when limited to just the four cell types of interest. (B, C) Bland
Altman Plots Comparing cell proportions measured by flow cytometry (“Flow”) and methylation-based cell proportion estimates (“Meth. Est.”). The shapes indicate
use of “original” (circle) or “scaled” (cross) flow cytometry proportions. The colour indicates the cell type (see legend). Probes were selected using either (B) “any” or
(C) “both” approaches (see Methods for details). The mean squared error (MSE) between the known proportion and estimated proportion was calculated for each
cell type and probe selection Method.
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healthy adult blood, does support that the reference panel will be
suitable for broader populations.

We expect that this novel BAL-specific sorted cell type
DNAm reference panel will be widely utilised by the paediatric
pulmonary research community for facilitating EWAS of
paediatric pulmonary diseases. Based on our findings, we
would recommend the use of this reference panel on genomic
DNA extracted from freshly isolated BAL samples.
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The nasal epithelium represents the first line of defense against inhaled pathogens, allergens,
and irritants and plays a key role in the pathogenesis of a spectrum of acute and chronic
airways diseases. Despite age-dependent clinical phenotypes triggered by these noxious
stimuli, little is known about how aging affects the structure and function of the airway
epithelium that is crucial for lung homeostasis and host defense. The aim of this study was
therefore to determine age-related differences in structural and functional properties of primary
nasal epithelial cultures from healthy children and non-smoking elderly people. To achieve this
goal, highly differentiated nasal epithelial cultures were established from nasal brushes at air–
liquid interface and used to study epithelial cell type composition, mucin (MUC5AC and
MUC5B) expression, and ion transport properties. Furthermore, we determined age-
dependent molecular signatures using global proteomic analysis. We found lower numeric
densities of ciliated cells and higher levels of MUC5AC expression in cultures from children vs.
elderly people. Bioelectric studies showed no differences in basal ion transport properties,
ENaC-mediated sodium absorption, or CFTR-mediated chloride transport, but detected
decreased calcium-activated TMEM16A-mediated chloride secretory responses in cultures
from children vs. elderly people. Proteome analysis identified distinct age-dependent
molecular signatures associated with ciliation and mucin biosynthesis, as well as other
pathways implicated in aging. Our data identified intrinsic, age-related differences in
structure and function of the nasal epithelium and provide a basis for further studies on the
role of these findings in age-dependent airways disease phenotypes observed with a
spectrum of respiratory infections and other noxious stimuli.
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INTRODUCTION

The airway mucosa represents the first line of defense of the
respiratory system against pathogens, pollutants, and irritants that
are constantly inhaled during tidal breathing. At the interface with
the environment, airway epithelial cells have developed specialized
functions to provide host protection, such as barrier function,
secretion of anti-microbial mediators, interaction with cells of the
immune system, as well as elimination of potentially harmful
stimuli by mucociliary clearance (MCC) (1, 2). MCC operates
through the coordinated function of (i) the motile cilia, (ii) the
airway surface liquid layer, and (iii) the mucus layer (3–6). Airway
mucus is a viscoelastic hydrogel composed of ~97% water and
~3% solids, including the highly glycosylated polymeric mucin
glycoproteins MUC5AC and MUC5B, as well as salts, lipids, and
anti-microbial peptides (7). Hydration and transportability of
mucus are critically dependent on ion and fluid transport across
the airway epithelium, which is primarily determined by the
activity of sodium absorption through the epithelial sodium
channel (ENaC) and chloride secretion through the cyclic
adenosine monophosphate (cAMP)-regulated chloride channel
cystic fibrosis transmembrane conductance regulator (CFTR), as
well as the calcium activated chloride channel transmembrane
protein 16A (TMEM16A) (8, 9). In health, a well-hydrated mucus
layer is continuously transported by directional beating of the cilia
towards the throat, providing effective elimination of mucus
entrapped particles (10, 11). Proper MCC is crucial for airway
homeostasis, and mucociliary dysfunction has been implicated in
the pathogenesis of acute and chronic airways diseases caused by a
spectrum of pathogens, allergens, and other environmental
pollutants (4, 12). Of note, the clinical airways disease
phenotypes triggered by some of these noxious stimuli are
strikingly age-dependent, suggesting a potential role of age-
related differences in airway epithelial defense properties (13–
20). However, the relationship between age and airway epithelial
structure and function has not been studied.

In vitro studies utilizing highly differentiated primary human
airway epithelial cell cultures grown at air–liquid interface (ALI)
provided an essential contribution to our current understanding of
airway epithelial innate defense (21). ALI cultures recapitulate key
physiological features of the airways in vivo including the
pseudostratified morphology, composition of relevant proportions
of airway epithelial cell types, barrier function, coordinated ciliary
beating, andmucus secretion (22–24). The emergence of improved
cell expansion protocols enabled the generation of sufficient cell
numbers to differentiate cultures from nasal brushings that can be
obtained non-invasively (25). The ALI culture system has been
instrumental to study genetically determined airways diseases such
as cysticfibrosis or primary ciliary dyskinesia (26, 27). Furthermore,
a number of studies demonstrated that ALI cultures retain donor-
dependent phenotypic characteristics such as signatures of tobacco
smoking, inflammation, or even aging, suggesting that epigenetic
factors may remain stable even through rounds of proliferative
expansion (28–31).

The aim of this study was to determine the effects of aging on
the structure and function of the nasal epithelium. To achieve
this goal, we generated highly differentiated nasal epithelial ALI
Frontiers in Immunology | www.frontiersin.org 270
cultures from healthy children and non-smoking elderly people
and compared cell-type composition, mucin (MUC5AC and
MUC5B) expression, transepithelial ion transport properties,
and global proteome changes between these age groups.
MATERIALS AND METHODS

Study Population
This study was conducted in accordance with the Declaration of
Helsinki and approved by the ethics committee at the Charité-
Universitätsmedizin Berlin (EA2/066/20). Written informed
consent was obtained from all study participants, their parents,
or legal guardians. In total, our study included nasal swabs from
17 healthy children (≤10 years old) and 14 healthy non-smoking
elderly people (≥60 years old). Demographics and clinical
characteristics of the study population are provided in Table 1.

Culture of Primary Human Nasal Epithelial
Cells
Primary human nasal epithelial cells were obtained by nasal
brushings. Cultivation of cells was performed by the
conditionally reprogrammed cell culture method as previously
described (25). In brief, brushed cells were expanded in co-
culture with irradiated mouse 3T3 fibroblasts in the presence of
RhoA kinase inhibitor Y-27632. Epithelial cells were seeded at
passage 2 or 3 on human placental type IV collagen–coated, 0.4-
mm pore size Snapwell or Transwell 1.1 cm2 supports (Corning,
Glendale, NY, USA) at a density of 200,000 cells/cm2 in UNC-
ALI medium and differentiated at ALI for at least 4 weeks.
Cultures were used for analysis when transepithelial electrical
resistance (TEER) was ≥500 Ω*cm2.

Immunostaining
Cultures were first washed with PBS, then fixed by 4%
paraformaldehyde for 10 min, and permeabilized with 0.1%
Triton X-100 for 8 min and blocked with 5% goat serum for
30 min. The primary antibodies used were rat monoclonal anti-a-
tubulin (mAb1864, Millipore, Burlington, MA, USA), mouse
monoclonal anti-MUC5AC (sc-59951, Santa Cruz, Dallas, TX,
USA), and rabbit polyclonal anti-KRT5 (SAB1410739, Sigma, St.
Louis, MO, USA) at dilution of 1:200 for 1 h. For TMEM16A
localization, rabbit polyclonal anti-TMEM16A antibody
(HPA032148, Atlas Antibodies, Stockholm, Sweden) was used at
a dilution of 1:50 overnight at 4°C. The secondary antibodies used
TABLE 1 | Demographics of the study population.

Children Elderly

Number (n) 17 14
Mean age (years ± SD) 4.9 ± 3.1 73.1 ± 9.4
Sex (% male) 76.5 50.0
Smoker (n) 0 0
Asthma (n) 0 0
Allergy (n)* 0 3
Febru
ary 2022 | Volume 13 | Arti
*Allergy to house dust mite or pollen.
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were Alexa Fluor 488-conjugated goat anti-rat IgG (SA5-10018,
Thermo Fisher Scientific, Waltham, MA, USA), Alexa Fluor 647-
conjugated goat anti-mouse IgG (A-21235, Thermo Fisher
Scientific, Waltham, MA, USA), and Alexa Fluor 750-conjugated
goat anti-rabbit IgG (A-21039 Thermo Fisher Scientific, Waltham,
MA, USA) at 1:300 dilution for 30 min. Zonula occludens (ZO-1)
antibody conjugated with Alexa Fluor 555 (MA3-39100-A555,
Thermo Fisher Scientific, Waltham, MA, USA) and Hoechst
33342 (Thermo Fisher Scientific, Waltham, MA, USA) was
incubated for 30 min at 1:300 and 1:5,000 dilution, respectively.
Filters were cut out with a scalpel and mounted with ProLong™

Gold anti-fade reagent (Thermo Fisher Scientific, Waltham,
MA, USA). All steps were performed at room temperature,
unless indicated otherwise. Images were acquired using a Leica
Stellaris 8 confocal laser scanning microscope equipped with
Hamamatsu Orca Flash 4.0 V3 sCMOS camera for wide-field
fluorescence imaging.

Quantification of Cell Types
Due to the heterogeneity of ciliated cell distribution within one
filter, tile scans of the whole filter area were acquired and stitched
together in a single image (~40 mm2

filter area on average). The
cultures were imaged with 10× air objective in wide-field mode
(a-tubulin+ cells) or in confocal mode with opened pin-hole
(KRT5+ or MUC5AC+ cells). Images were analyzed with FIJI
software (32). Cells with positive signal (a-tubulin+, MUC5AC+

or KRT5+) were segmented by creating a binary mask with the
application of an intensity threshold, where over/under-
saturated pixels were adjusted based on visual control of the
original image. Pixels were dilated and overlapping objects were
separated by watershed command. Particles between 20 and 150
µm2 were analyzed and cell counts per surface area were
determined. Representative stacks were acquired with 20×
immersion objective in confocal mode with Lightning module
and maximal Z-projections are shown.

RNA Extraction and RT-PCR
Total RNA was isolated using RNeasy Micro Kit (Qiagen,
Hilden, Germany) according to the manufacturer ’s
instructions. RNA was transcribed by high-capacity cDNA
reverse transcription kit (Applied Biosystems, Darmstadt,
Germany). Real-time PCR was performed using Applied
Biosystems 7500 Real-Time PCR system with TaqMan
Universal PCR master mix and inventoried TaqMan gene
expression assays (Applied Biosystems, Darmstadt, Germany)
f o r human CFTR (Hs00357011_m1) , TMEM16A
(Hs00216121_M1), MUC5AC (Hs01365616_m1), MUC5B
(Hs00861595_m1), and ACTB (4333762F). The relative
expression ratios were calculated from the RT-PCR efficiencies
and the crossing point deviation of target gene transcripts in
comparison to the reference gene transcript ACTB (33).

Preparation of Cell Lysates
Filters were washed with PBS and 80 µl of RIPA buffer (Thermo
Fisher Scientific, Waltham, MA, USA) containing cOmplete
protease inhibitor (Merck, Darmstadt, Germany) was added;
the cells were scraped and vortexed briefly. Three filters/
Frontiers in Immunology | www.frontiersin.org 371
individual were pooled, and samples from different individuals
were considered as biological replicates. After 30-min incubation
on ice, the lysates were cleared by centrifugation. The protein
concentration of the supernatant was determined using Pierce™

BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA,
USA), according to the manufacturer’s instructions.

Mucin Agarose Gel Electrophoresis
Mucin Western blot was performed as previously described (34). In
brief, 36 µg of total protein was loaded in equal volume of 30 µl.
Agarose gel electrophoresis using 0.8% agarose was combined with
transfer onto a nitrocellulose membrane via vacuum. After loading
the gels, proteins were separated on 0.8% agarose gel at 80 V (1 h)
with Tris-acetate-EDTA/SDS buffer. For an efficient mucin transfer,
the gel was reduced for 20 min in a solution containing 10 mM
dithiothreitol (DTT) and proteins were then transferred by vacuum
blotting (MP Biomedicals, Irvine, CA, USA) to nitrocellulose
membranes. For total protein normalization, Ponceau S
(Advansta, San Jose, CA, USA) staining was used. Blots were
probed with mouse monoclonal antibodies against MUC5B (sc-
393952, Santa Cruz, Dallas, TX, USA) and MUC5AC (MA5-12178,
Invitrogen, Waltham, MA, USA). Primary antibodies were diluted
1:250 in 1%milk-PBS. The secondary antibody was goat anti-mouse
immunoglobulins/HRP (P0047, Dako, Glostrup, Denmark), diluted
1:2,000 in 1% milk-PBS. Restore™ PLUS Western Blot Stripping
Buffer (Thermo Fisher Scientific, Waltham, MA, USA) was used for
membrane stripping according to the manufacturer’s instructions.
Pierce™ ECLWestern Blotting-Substrate (Thermo Fisher Scientific,
Waltham, MA, USA) in combination with ChemiDoc Imaging
System (Bio-Rad, Hercules, CA, USA) were used for the detection.
Densitometric analysis was performed by FIJI software (32).

Ussing Chamber Experiments
Transepithelial ion transport experiments were performed in
EasyMount Ussing chambers (Physiologic Instruments, San Diego,
CA, USA) using voltage clamp configuration to measure the short-
circuit current (Isc). The Isc was continuously recorded using Lab-
Chart8 (AF Instruments, Oxfordshire, UK), and transepithelial
resistance was monitored by application of short voltage pulses (2
mV)every60s.Experimentswereperformedunderchloridegradient
conditions (basolateral 145 mM vs. apical 5 mM) to increase the
electrochemical driving force for chloride secretion and augment
chloride secretory responses across the epithelium as previously
described (24, 35, 36). After 15–20 min equilibration, basal Isc was
measured and amiloride (100 µM) was added to inhibit sodium
absorption via ENaC.Next, forskolin (Fsk, 10 µM) and 3-isobutyl-1-
methylxanthin (IBMX, 100 µM) were added together, followed by
CFTR-inhibitor 172 (CFTRinh172, 20µM) toassessCFTR-mediated
chloride secretion.Uridine-triphosphate (UTP, 10 µM)was added to
evaluate the calcium-activated chloride secretion. In a subset of
experiments, UTP was followed by small molecular weight
TMEM16A inhibitor Ani9 (10 µM).

Sample Preparation for Proteomic
Analysis
One hundred micrograms of protein was transferred to AFA
tubes (PN 520292, 500639) and filled to 60 µl with RIPA buffer.
February 2022 | Volume 13 | Article 822437
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Proteins were extracted and DNA sheared DNA (Covaris
LE220Rsc: PIP 350 W, DF 25%, CPB 200, 2 repeats, 300 s
pulse, 20 C). Protein (25 µg) was used for SP3 protein
preparation on a Biomek i7 workstation with single-step
reduction and alkylation (37). Briefly, 16.6 ml reduction and
alkylation buffer (40 mM TCEP, 160 mM CAA, and 200 mM
ABC) were added, and samples were incubated for 5 min at 95°C
and cooled to room temperature. Proteins were bound to 2.5 mg
of paramagnetic beads (1:1 ratio of hydrophilic/hydrophobic
beads) by adding acetonitrile (ACN) to 50%. Samples were
washed twice with 80% ethanol and once with 100% ACN,
before reconstitution in 35 ml of 100 mM ABC. Digestion was
completed overnight at 37°C using a trypsin/LysC enzyme mix
(Promega, Madison, WI, USA) at a protein:enzyme ratio of 50:1
(w/w) and stopped with formic acid (0.1%). The peptides were
stored at −80°C until analysis by LC-MS/MS without further
conditioning or clean-up.

Liquid Chromatography Mass
Spectrometry
The tryptic digests were injected on the 25-cm Aurora Series with
emitter column (CSI, 25 cm × 75 µm ID, 1.6 µm C18,
IonOpticks), installed in the nano-electrospray source
(CaptiveSpray source, Bruker Daltonics, Germany) at 50°C
using UltiMate 3000 (Thermo Scientific Dionex) coupled with
TIMS quadrupole time-of-flight instrument (timsTOF Pro2,
Bruker Daltonics, Germany) and measured in diaPASEF mode
(38). The mobile phases water/0.1% FA and ACN/0.1% FA (A
and B, respectively) were applied in linear gradients starting from
2% B and increasing to 17% in 87 min, followed by an increase to
25% B in 93 min, 37% B in 98 min, and 80% B in 99 min to
104 min; the column was equilibrated in 2% B in the next 15 min.
For calibration of ion mobility dimension, three ions of Agilent
ESI-Low Tuning Mix ions were selected (m/z [Th], 1/K0 [Th]:
622.0289, 0.9848; 922.0097, 1.1895; 1221.9906, 1.3820). The
diaPASEF windows scheme was ranging in dimension m/z
from 396 to 1,103 Th and in dimension 1/K0 0.7–1.3 Vs/cm2,
with 59 × 12 Th windows). All measurements were done in low
sample amount mode with ramp time 166 ms.

Protein Identification and Quantification
The raw data were processed using DIA-NN 1.8 (39) with the ion
mobility module for diaPASEF (40). MS2 and MS1 mass
accuracies were both set to 10 ppm, and scan window size was
set to 10. DIA-NN was run in library-free mode with standard
settings (fasta digest and deep learning-based spectra, RT and
IMs prediction) using the uniprot human reference proteome
annotations (41) (downloaded on 2019.12.20) and the match-
between-runs (MBR) option.

Proteomics Data Processing, and
Statistical and Functional Analysis
Peptide normalized intensities were subjected to quality
control with all 27 samples passing acceptance criteria.
Peptides with excessive missing values (>35% per group) were
excluded from analysis. The missing values of the remaining
Frontiers in Immunology | www.frontiersin.org 472
peptides were imputed group-based using the PCA method
(42). Normalization was performed with LIMMA (43)
implementation of cyclic loess method (44) with option
“fast” (45). To obtain a quantitative protein data matrix, the
log2 intensities of peptides were filtered, and only peptides
belonging to one protein group were kept and then
summarized into protein log intensity by the “maxLFQ”
method (46), implemented in R package iq (47). Sample
protein distributions were median centered. Statistical analysis
of proteomics data was carried out using internally developed R
scripts based on publicly available packages. PCA exploratory
analysis was carried out using the R package FactoMineR (48).
Linear modeling was based on the R package LIMMA (43). The
following model was applied to each tissue dataset (log(p) is log2
transformed expression of a protein): log(p) ~ 0 + Class. The
categorical factor Class had two levels: old, young; reference level:
young. To find regulated features, the following criteria were
applied: Significance level alpha was set to guarantee the false
discovery rate below ~5%. We found that alpha = 0.005 was
delivering the required level of Benjamini–Hochberg FDR (49).
The log fold-change criterion was applied to guarantee that the
measured signal is above the average noise level. As such, we
have taken median residual standard deviation of linear model:
log2 (T) = median residual SD of linear modeling (= log2(1.38)).
Functional analysis was carried out using the R package
clusterProfiler (50) for GSEA. Log2 fold-changes old/young of
all quantified proteins were used for their ranking and
calculation of the enrichment score. For selecting the most (de)
regulated GO terms, we applied the following filter: 5 ≤ term
size ≤ 350. Unless specified separately, analyses were carried out
with Benjamini–Hochberg FDR threshold 5%. To identify
epithelial cell subtypes from our proteome data, we extracted
cell-type markers from the Single-cell atlas of the airway
epithelium scRNAseq dataset (grch38 genes annotation) and
associated the log2 fold-change proteome values (51).

Statistics
Data were analyzed with GraphPad Prism 9.1.2 for Windows
(GraphPad Software, San Diego, CA, USA) and are reported as
mean ± standard error of the mean (SEM). Two group
comparisons were performed with Student’s t-test or Mann–
Whitney Rank Sum test as appropriate. p < 0.05 was accepted to
indicate statistical significance.
RESULTS

Nasal Epithelial Cultures From Children
Display Lower Numbers of Ciliated Cells,
Higher Numbers of MUC5AC+ Secretory
Cells, and Elevated MUC5AC Expression
To investigate potential morphological differences between nasal
epithelia of children and elderly people, we established highly
differentiated primary cultures at ALI. Cultures were fully
differentiated from week 4 onwards and displayed the expected
pseudostratified morphology of the respiratory epithelium with
February 2022 | Volume 13 | Article 822437
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visible ciliary beating and mucus secretion. To characterize cell-
type composition, we performed whole-mount immuno-
histochemistry and quantified ciliated cells (a-tubulin+),
secretory cells (MUC5AC+), and basal cells (KRT5+)
(Figures 1A–E). We found a lower number of ciliated cells in
cultures from children compared to elderly people and higher
number of MUC5AC+ cells, while the number of basal cells did
not differ between age groups (Figures 1C–E). TEER values were
measured as indicators of cell confluence and quality control and
were comparable in both age groups (Figure 1F). Furthermore, we
investigated the transcript and protein levels of the two major
secreted mucins MUC5AC and MUC5B. We found that
MUC5AC expression was higher both at the transcript and
protein level in cultures from children vs. elderly people
(Figures 1G, I, J). MUC5B expression levels were comparable
between age groups, both by RT-PCR and by Western blot
analysis (Figures 1H, I, K).

TMEM16A-Mediated Chloride Secretion Is
Decreased in Nasal Epithelial Cultures
From Children
To compare bioelectrical properties of cultures from healthy
children and elderly people, we performed transepithelial ion
transport measurements in Ussing chambers (Figures 2A, B).
Basal Isc, amiloride-insensitive Isc, amiloride-sensitive Isc
reflecting ENaC-mediated sodium absorption, and cAMP-
Frontiers in Immunology | www.frontiersin.org 573
activated and CFTRinh172-sensitive Isc reflecting CFTR-
mediated chloride secretion did not differ between cultures
from children and elderly people (Figures 2C–G). However,
calcium-activated chloride secretion induced by apical
stimulation of purinergic signaling by UTP showed an ~50%
lower response in children compared to elderly people
(Figure 2H). Transcript levels of CFTR as well as calcium-
activated chloride channel TMEM16A did not differ in nasal
cultures from children compared to elderly, although there was a
trend toward higher expression of TMEM16A in the elderly group
(Figures 2I, J). We also analyzed cellular localization of
TMEM16A protein by immunostaining, which showed no
expression in ciliated cells and low expression in MUC5AC+

cells, whereas most of the TMEM16A signal was localized to other
cells that do not express MUC5AC (Supplementary Figure 1).
To assess the role of TMEM16A in the age-dependent difference
in calcium-activated chloride secretion, we determined UTP-
induced chloride secretory responses in the absence and
presence of the TMEM16A inhibitor Ani9 (Figures 3A–D).
Ani9 blocked 80%–100% of the UTP-induced Isc in both
children and elderly (Figure 3E).

Proteome Analysis of Nasal Epithelial
Cultures From Children and Elderly People
Next, we assessed age-related proteome profiles in nasal epithelial
cultures from children and elderly people by liquid
A B D E F

G IH J K

C

FIGURE 1 | Age-related differences in numeric densities of ciliated cells and MUC5AC expression in nasal epithelial cultures from children compared to elderly people.
(A, B) Representative images of immunofluorescence of nasal epithelial cultures from healthy children and elderly people. Green: a-tubulin (ciliated cells), magenta: KRT5
(basal cells), yellow: MUC5AC (secretory cells), white: ZO-1 (tight junctions), and blue: Hoechst (cell nuclei). Scale bar, 100 µm. (C–E) Quantification of a-tubulin+ (ciliated)
cells (C), KRT5+ (basal) cells (D), and MUC5AC+ (secretory) cells (E) (n = 14 and 11 individuals per group). (F) Transepithelial electrical resistance (TEER) (n = 17
and 14 individuals per group). (G, H) Transcript levels of MUC5AC (G) and MUC5B (H) (n = 16 and 12 individuals per group). (I) Representative MUC5AC and
MUC5B Western blot. (J, K) Protein quantification of MUC5AC (J) and MUC5B (K) by densitometry (n = 15 and 11 individuals per group). *p < 0.05 compared
to children. Data are shown as mean ± S.E.M. Statistical analysis was performed with unpaired two-tailed t test in (D-F, J), and with two-tailed Mann–Whitney
test in (C, G, H, K).
February 2022 | Volume 13 | Article 822437
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chromatography tandem mass spectrometry. Overall, 7,073
proteins were detected. Principal component analysis confirmed
absence of outliers and showed separation of samples according to
age already using the full proteome, indicating that age is a primary
source of variance (Supplementary Figure 2). Linear modeling
revealed that among the differentially expressed proteins [alpha =
0.005 (FDR < 5%), |log2(FC)| > median residual SD], 364 proteins
were upregulated and 254 proteins were downregulated in the
elderly group compared to children (Figure 4A and
Supplementary Table 1). Note that increasing the stringency of
feature selection to the very high level [alpha = 0.0001 (FDR <
0.7%), |log2(FC)| > 1] resulted in full separation of elderly group
from children in the post-hoc PCA and hierarchical clustering
(Supplementary Figure 3). Some of the most significantly
upregulated proteins in elderly are involved in mitochondrial
function (ABCB10, ATAD3B, ATP5PD, and MRPL49), while
upregulated proteins in children were related to immune-
epithelial cell interactions (DPP4 and ADA) and extracellular
matrix organization (FN1, ITGA5, ITGB6, and ADAM9). To
capture potential differences in epithelial cell populations
between children and elderly, we analyzed the expression pattern
of epithelial cell-type markers (51). Taking the top 20 significantly
differentially expressed markers for each subtype, proteins
associated with basal cells were overall decreased in elderly (log2
fold-change = −0.47 ± 0.26), accompanied by an increase in the
abundance of suprabasal (log2 fold-change = 0.51 ± 0.19) markers.
Secretory cell markers showed higher variability (“Secretory”
cluster: log2 fold-change = −0.26 ± 0.28; “Secretory N” cluster:
log2 fold-change = −0.04 ± 0.21, “Submucosal gland goblet cell”
cluster: log2 fold-change = 0.02 ± 0.23), whereas genes associated
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with serous cells were increased in elderly samples (log2 fold-
change = 0.39 ± 0.24). Ciliated cell markers were significantly
upregulated in the elderly group (log2 fold-change = 0.62 ± 0.18)
(Supplementary Table 4). To visualize protein expression patterns,
a subset of known cell-type markers are showcased in Figure 4B.
Next, we performed gene set enrichment analysis (GSEA) to
understand patterns of age-dependent changes in protein
expression and related biological processes. This analysis revealed
an upregulation of protein sets related to mitochondria and
oxidative phosphorylation, as well as cilia-related processes in the
elderly. Furthermore, gene sets related to extracellular matrix were
downregulated in elderly people compared to children (Figure 4C,
Supplementary Tables 2, 3 and Supplementary Figure 4).
DISCUSSION

This study provides an integrated comparison of age-related
differences in the cell-type composition, mucin expression, ion
transport properties, and the proteome of highly differentiated
primary nasal epithelial cultures from children and elderly
people. Our data show that cultures from children displayed
less ciliated cells and more MUC5AC+ secretory cells, as well as
expressed more MUC5AC (Figure 1), while TMEM16A-
mediated chloride secretion was lower compared to cultures
from elderly people (Figures 2, 3). These findings were
complemented by proteome analysis, which revealed age-
dependent differences in protein signatures related to cilia
development and mucin secretion in addition to other
pathways consistent with aging (Figure 4). Collectively, these
A B D
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C

FIGURE 2 | Age-related differences in calcium-activated chloride secretion in nasal epithelial cultures from healthy children compared to elderly people.
(A, B) Representative original recordings of transepithelial Ussing chamber measurements in primary nasal epithelial cultures from children and elderly people.
(C–G) Summary of individual effects of basal Isc (C), amiloride-sensitive Isc (D), amiloride-insensitive Isc (E), cAMP-activated Isc (F), CFTR inhibitor 172-sensitive Isc
(G), and UTP-activated Isc (H) (n = 17 and 14 individuals per group, data represent mean values of 2–3 filters per individual). (I, J) Transcript levels of CFTR (I) and
TMEM16A (J) (n = 16 and 12 individuals per group). *p < 0.05 compared to children. Data are shown as mean ± S.E.M. Statistical analysis was performed with
unpaired two-tailed t-test in (D–G), and with two-tailed Mann–Whitney test in (C, H–J).
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data provide novel insights into aging of the airway epithelium
and may aid our understanding of its role in the pathogenesis of
age-dependent phenotypes observed in a spectrum of acute and
chronic airways diseases.

In our study, we used highly differentiated primary epithelial
cultures from brushed cells collected by a non-invasive sampling
technique, which enabled the comparison of healthy children
and elderly people. Our morphological analysis revealed a lower
number of ciliated cells and higher levels of MUC5AC+ secretory
cells in children, suggesting that the differentiation and cell-type
composition of nasal epithelial cultures are age-dependent
(Figure 1). These observations are in line with data from a
recent single-cell RNA sequencing study that showed lower
number of ciliated cells and higher amount of goblet cells in
nasal brushes from children vs. adults (20). In the same report,
epithelial cells from children displayed a pre-activated innate
response profile, which is concordant with our findings of
elevated immune cell–epithelial cell interaction signatures in
children vs. elderly people by proteome analysis (Figure 4,
Supplementary Table 3 and Supplementary Figure 4). Age-
related changes in airway epithelial cell lineages are further
supported by another study describing a higher ciliated cell-to-
club cell ratio in aged mice (52). The molecular basis of enhanced
ciliary differentiation with advanced age and its role in airway
homeostasis remain unknown. We speculate that a higher
density of ciliated cells may help to maintain effective MCC in
the aging airways. When viewed in combination, these studies
indicate that our in vitro cultures retained age-dependent in vivo
characteristics, supporting the relevance of this model system.
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Our electrophysiological studies showed an overall similar
transepithelial ion transport profile of nasal epithelial cultures
from children and elderly people. Specifically, we did not find
evidence of age-dependent differences in basal bioelectric
properties, ENaC-mediated sodium absorption, or CFTR-
mediated anion secretion across the nasal epithelium
(Figure 2). However, we found selective upregulation of UTP-
induced chloride secretory responses in the elderly group
(Figures 2, 3). A direct role of TMEM16A was supported by
pharmacological inhibition of UTP-responses by the TMEM16A
inhibitor Ani9 (Figure 3) (53, 54). These data suggest that
calcium-activated chloride/fluid secretion and airway surface
liquid regulation via TMEM16A may be more relevant in the
airways at older age. However, the functional relevance of this
finding needs to be tested in future studies.

Our proteome analysis provided independent evidence of
substantial age-dependent differences in airway epithelial
structure and function in children compared to elderly people.
Consistent with our morphological analysis, an upregulation of
ciliated cell markers (AGR3 and CAPS), axoneme components
(DYNLL1, IFT43, and IFT80), and enrichment of cilia-related
pathways was characteristic of the epithelial proteome of elderly
people (Figures 1, 4) (55). We also observed a decreased
expression of basal cell markers in the elderly proteome,
suggesting cellular senescence, a well-known hallmark of aging
(56, 57). Furthermore, we found significantly increased
expression of the cyclin-dependent kinase inhibitor CDKN1B
(p27) in elderly, a known inducer of the senescence cell cycle
arrest (58). While MUC5AC was below the detection limit in the
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FIGURE 3 | Age-related differences in calcium-activated chloride secretion in nasal epithelial cultures are mediated by TMEM16A. (A–E) Representative original
recordings and summary data of transepithelial Ussing chamber measurements in primary nasal epithelial cultures from healthy children (A, B, E) and elderly people
(C–E) showing the effect of UTP-induced Isc in the absence (A, C, E) and presence (B, D, E) of the TMEM16A inhibitor Ani9 (n = 4 and 9 individuals per group, data
represent mean values of 2–3 filters per individual). *p < 0.05 and **p < 0.01 compared to Ani9- group. Data are shown as mean ± S.E.M. Statistical analysis was
performed with paired two-tailed t test in (E).
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proteome analysis, we found an upregulation of proteins related
to mucin glycosylation (C1GALT1, GALNT2, and GALNT7)
and mucin secretion (SLC12A2 and IL1R1) in children, in
agreement with the observed increase of MUC5AC by Western
blot (59, 60). Consistent with enhanced MUC5AC production,
we also observed increased type-2 inflammatory response
signature in children (Supplementary Figure 4). While mucin-
related genes were elevated, markers associated with serous cells
(LYZ and PIP) and anti-microbial secreted proteins (SLPI and
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CLU) had decreased levels in children (Supplementary
Figure 4). To the best of our knowledge, changes in MUC5AC
expression have not been reported in the context of aging.
However, this finding may contribute to the age-dependent
predisposition to certain muco-obstructive diseases, such as
allergen-induced asthma in children where MUC5AC has been
implicated in the pathogenesis of asthma severity, compared to
COPD in elderly patients that is characterized predominately by
an increase in MUC5B (61–63). Interestingly, we observed a
A B

C

FIGURE 4 | Age-related differences in proteome signatures of nasal epithelial cultures from healthy children compared to elderly people. (A) Differential protein
expression between age groups with reference to children (volcano plot) illustrates fold-change expression (log2 scaling) and significance (–log10 scaling, adjusted p-
value). Significantly differently abundant proteins are colored red (adjusted p-value < 0.05 and fold-change > 1.38). (B) Protein expression of airway cell subtype
markers. The log2 fold-change with 95% confidence interval (CI) of detected proteins for each marker is plotted on the x-axis. (C) Enrichment map of top 60 gene
ontology/biological process terms yielded by GSEA. Each node corresponds to a gene set with either high (red) or low (blue) normalized enrichment score (NES) in
the elderly group. Node size correlates with number of genes that are annotated to the term.
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strong increase in mitochondria-related proteins and pathways
in nasal cultures from elderly people. While higher abundance of
ciliated cells in the elderly may be associated with higher energy
expenditure (64), we also found enrichment of glycolytic
pathways in children (Supplementary Figure 4), which may
suggest a shift towards oxidative phosphorylation with aging,
which would be similar to metabolic changes described in the
aging brain and muscle tissue (65, 66). Increased mitochondrial
mass and mitochondrial dysfunction, accompanied by increased
generation of reactive oxygen species (ROS), are also markers of
cellular senescence (67, 68). We found that not only
mitochondrial proteins were upregulated in the elderly, but
also a number of enzymes with antioxidant functions were
increased, including the mitochondrial superoxide dismutase
SOD1 (Supplementary Figure 4), suggesting an adaptive
response to dampen the oxidative phenotype of cellular
senescence and aging (69, 70). While we observed markers
associated with increased cellular senescence in the elderly as
compared to children, future studies should determine its role in
the aging epithelium.

Although we could link our morphological observations with
proteome data, we did not find evidence for differences in
purinergic receptor activation or calcium signaling pathways
that may explain our functional findings. This is likely related
to the low abundance of regulatory proteins in those signaling
cascades as well as the limitations of the global proteomics
approach to capture post-translational modifications that
govern many signaling events (71). However, mitochondria are
known to play a role in the compartmentalization of calcium
signals upon P2Y2-receptor stimulation in airway epithelial cells,
by acting as a calcium-buffering system (72). It is possible that
aging-associated mitochondrial dysfunction may disrupt the
spatiotemporal fine-tuning of intracellular calcium levels,
leading to enhanced calcium-activated chloride secretion
by TMEM16A.

In summary, this is the first study describing age-dependent
structural and functional differences in highly differentiated
human primary nasal epithelial cultures, including an in-depth
comparison by proteome analysis. We observed lower abundance
of ciliated cells and higher expression of MUC5AC in children vs.
elderly people, which correlated with age-dependent proteome
signatures. Ion transport studies showed overall similarities in
ENaC and CFTR function, with lower TMEM16A-mediated
chloride secretion in children. These data indicate intrinsic, age-
related phenotypic differences in the airway epithelium, which
may help to better understand the effect of aging on innate
mucosal defense and age-dependent airways disease phenotypes.
Further work is needed to identify the underlying mechanisms and
clinical relevance of these findings.
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et al. A Single-Cell Atlas of the Human Healthy Airways. Am J Respir Crit
Care Med (2020) 202:1636–45. doi: 10.1164/rccm.201911-2199OC

52. Angelidis I, Simon LM, Fernandez IE, Strunz M, Mayr CH, Greiffo FR, et al. An
Atlas of the Aging Lung Mapped by Single Cell Transcriptomics and Deep Tissue
Proteomics. Nat Commun (2019) 10:963. doi: 10.1038/s41467-019-08831-9

53. Scudieri P, Sondo E, Ferrera L, Galietta LJV. The Anoctamin Family:
TMEM16A and TMEM16B as Calcium-Activated Chloride Channels. Exp
Physiol (2012) 97:177–83. doi: 10.1113/expphysiol.2011.058198

54. Danahay HL, Lilley S, Fox R, Charlton H, Sabater J, Button B, et al.
TMEM16A Potentiation: A Novel Therapeutic Approach for the Treatment
of Cystic Fibrosis. Am J Respir Crit Care Med (2020) 201:946–54. doi: 10.1164/
rccm.201908-1641OC

55. Patir A, Fraser AM, Barnett MW, McTeir L, Rainger J, Davey MG, et al. The
Transcriptional Signature Associated With Human Motile Cilia. Sci Rep
(2020) 10:10814. doi: 10.1038/s41598-020-66453-4
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Objective: This study aims to identify clinically relevant diagnostic biomarkers in chronic
obstructive pulmonary disease (COPD) while exploring how immune cell infiltration
contributes towards COPD pathogenesis.

Methods: The GEO database provided two human COPD gene expression datasets
(GSE38974 and GSE76925; n=134) along with the relevant controls (n=49) for
differentially expressed gene (DEG) analyses. Candidate biomarkers were identified
using the support vector machine recursive feature elimination (SVM-RFE) analysis and
the LASSO regression model. The discriminatory ability was determined using the area
under the receiver operating characteristic curve (AUC) values. These candidate
biomarkers were characterized in the GSE106986 dataset (14 COPD patients and 5
controls) in terms of their respective diagnostic values and expression levels. The
CIBERSORT program was used to estimate patterns of tissue infiltration of 22 types of
immune cells. Furthermore, the in vivo and in vitro model of COPD was established using
cigarette smoke extract (CSE) to validated the bioinformatics results.

Results: 80 genes were identified via DEG analysis that were primarily involved in cellular
amino acid and metabolic processes, regulation of telomerase activity and phagocytosis,
antigen processing and MHC class I-mediated peptide antigen presentation, and other
biological processes. LASSO and SVM-RFE were used to further characterize the
candidate diagnostic markers for COPD, SLC27A3, and STAU1. SLC27A3 and STAU1
were found to be diagnostic markers of COPD in the metadata cohort (AUC=0.734,
AUC=0.745). Their relevance in COPD were validated in the GSE106986 dataset
(AUC=0.900 AUC=0.971). Subsequent analysis of immune cell infiltration discovered an
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association between SLC27A3 and STAU1 with resting NK cells, plasma cells,
eosinophils, activated mast cells, memory B cells, CD8+, CD4+, and helper follicular
T-cells. The expressions of SLC27A3 and STAU1 were upregulated in COPD models
both in vivo and in vitro. Immune infiltration activation was observed in COPD models,
accompanied by the enhanced expression of SLC27A3 and STAU1. Whereas, the
knockdown of SLC27A3 or STAU1 attenuated the effect of CSE on BEAS-2B cells.

Conclusion: STUA1 and SLC27A3 are valuable diagnostic biomarkers of COPD. COPD
pathogenesis is heavily influenced by patterns of immune cell infiltration. This study
provides a molecular biology insight into COPD occurrence and in exploring new
therapeutic means useful in COPD.
Keywords: COPD, LASSO, SVM-RFE, STAU1, SLC27A3, immune infiltration
INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is an extremely
common debilitating ailment of the modern world and
represents a slowly progressive destructive pulmonary disease
that involves chronic inflammation (1). COPD is currently
ranked as the fourth cause of death in the world and is
common in both developed and developing countries (2, 3).
Early COPD diagnosis and initiation of treatment are clinically
important in improving prognosis and overall survival of COPD
patients. COPD is definitively diagnosed with pulmonary
function testing, which offers the advantage of being a simple
and easily implemented measurement that accurately gauges the
severity of COPD. A wide array of imaging modalities such as
chest x-rays, magnetic resonance imaging (MRI), and computed
tomography (CT) have further improved COPD diagnosis (4).
However, due to sensitivity and specificity limitations, current
diagnostic mechanisms are not well suited in detecting early
COPD. COPD develops on well-established disease drivers such
as genetic factors, a history of smoking, infection,
and inflammation, along with an imbalance in protease and
antiprotease expression (5). COPD is indeed a complex and
multifactorial entity that arises due to an amalgamation of
environmental and genetic influences (6).

In recent years, the application of microarray technology and
integrated bioinformatics analyses have been used to identify
novel diagnostic and prognostic genes (7–11). In the realm of
COPD, for example, the ROBO2 and SLIT2 genes were founded
to be downregulated in COPD and inversely correlated with
COPD disease stage (12, 13). FHL1 expression was associated
with cigarette smoke-induced COPD (14). Additionally,
increasingly evidences highlight the importance of immune cell
infiltration in generation progression of various diseases (7, 15–
17). However, little is known about immune cell infiltration
in COPD.

This investigation involves a metadata cohort comprising of 2
COPD microarray datasets extracted from the GEO database.
Differentially expressed gene (DEG) analysis was then performed
between healthy samples and in COPD samples. Potentially
diagnostic COPD biomarkers were discerned using machine-
org 281
learning algorithms which were then validated in a separate
cohort, with a logistic regression method utilizing in constructing
a diagnostic prediction model. Immune cell gene expression was
analyzed using CIBERSORT which successfully identified and
quantified various immune cells that infiltrated into the lung
parenchyma in COPD and control samples. The relationship
between immune cell infiltration and identified COPD
biomarkers was also characterized.
MATERIALS AND METHODS

Data Collection and Download
COPD gene expression data collected from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). The GSE38974,
GSE76925, and GSE106986 datasets were downloaded. The
GSE106986 dataset (14 COPD samples and 5 control samples)
was derived from GPL13497 platform of the Agilent-026652
Whole Human Genome Microarray 4x44K v2. The GSE76925
dataset (111 COPD samples and 40 control samples) was derived
from the GPL10558 platform of Illumina HumanHT-12 V4.0
expression beadchip. GSE38974 dataset (23 COPD samples and
9 control samples) was derived from the GPL4133 platform of
the Agilent-014850 Whole Human Genome Microarray 4x44K
G4112F. All samples from the 3 different databases were
obtained from human lung tissue.

Data Preprocessing and Differentially
Expressed Genes (DEGs) Screening
Each dataset was background corrected and normalized using
the “limma” package and converted to gene symbols referencing
the probe annotation files of the probe names in each dataset. A
metadata cohort comprising of merged GSE38974 and
GSE76925 cohorts was created for further analysis. Batch
variability between platforms was eliminated using the combat
function of the “SVA” package (18). The GSE106986 dataset was
used as the validation cohort. Similarly, 134 COPD and 49
normal samples were analyzed for DEGs using the R package
“limma” with DEGs selected based on thresholds of P < 0.05 and
|log2 FC| > 1.
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Functional Enrichment Analysis
The Metascape (http://metascape.org) database allowed for
further understanding of the DEG biological significance using
Gene Ontology enrichment analysis. The Molecular Signatures
Database (MSigDB) Hallmark Gene Sets and Kyoto
Encyclopedia of Genes and Genomes (KEGG) Pathway were
used for pathway enrichment analysis. Meanwhile, the most
significant terms which arose in statistical analysis were
selected for visualization.

Screening of Candidate Diagnostic
Biomarkers
Two machine-learning algorithms, the support vector machine
recursive feature elimination (SVM-RFE) and least absolute
shrinkage and selection operator (LASSO) were used in this
study to screen for significant prognostic variables. SVM-RFE
represents a widely used supervised machine-learning protocol
for classification and regression that is applied using the “e1071”
package. The SVM-RFE algorithm was used to identify genes
with higher discriminative power (19). LASSO was performed
using the “glmnet” package in R and represents a regression
analysis algorithm that applies regularization for variable
selection. Using LASSO, we were able to identify genes
significantly associated with COPD and normal samples. We
applied two algorithms in the metadata cohort and utilized the
GSE106986 dataset to analyze overlapping genes from the two
algorithms to further validate the expression levels of candidate
diagnostic biomarkers.

Evaluation of Immune Cell Infiltration
CIBERSORT is a deconvolution algorithm that quantifies
immune cell infiltration (22 various cell types) in COPD gene
expression profiles (20). The “corrplot” R package was used to
carry out visualization and correlation analysis of 22 types of
infiltrating immune cells. Differences in infiltrating immune cells
between COPD and healthy samples were visualized using
boxplots drawn with the “ggplot2” package in R.

Correlation Analysis Between Diagnostic
Biomarkers and Infiltrating Immune Cells
Pearson correlation analysis allowed for in-depth scrutiny of
relationships between diagnostic biological markers and
infiltrating immune cells. “ggplot2” of the R package was used
to visualize the results of the analysis.

The Establishment of COPD Model
Six-week-old C57BL/6 mice was used to establish the COPD
model. The details procedure was as described by He et al. (21).
Cigarette smoke extract (CSE) was prepared by dissolving the
smoke of non-filter Furong cigarette in to PBS (21). The
histological changes and immune infiltration of lung tissues
were then detected (21, 22). Bronchoalveolar lavage fluid
(BALF) was collected. Lung tissue was cut into small pieces and
digested into single cell suspension by Collagenase A (4 mg/ml in
RPMI1640) for further detection.
Frontiers in Immunology | www.frontiersin.org 382
Histological Staining
After treatment, lung tissues were collected. Paraffin embeded
lung tissues were cut into slices for histological staining. HE
staining was performed according to the manufacturer’s
instructions (Solarbio). The mean alveolar septal thickness
(MAST), mean linear intercept (MLI), and destructive index
(DI) were calculated. Immunohistochemistry staining was
conducted using primary ant ibodies for SLC27A3
(Proteintech), STAU1 (Affinity), CD57 (Affinity), and CD8a
(Affinity). Immunofluorescence staining was performed using
primary antibodies for CD19 (Affinity) and CD27 (Santa), and
secondary antibodies including Cy3-labeled goat anti-rabbit IgG
(Invitrogen) and FITC-labeled goat anti-mouse IgG (Abcam).

Cell Transfection and CCK-8 Assay
BEAS-2B cells were cultured in DMEM cultural medium
(Servivebio) with 10% fetal bovine serum (EVERY GREEN) in
an incubator (37°C and 5% CO2). COPD cell model was induced
by 5% CSE for 24 h (23). Small interfering RNAs targeting
SLC27A3 (si-SLS27A3) and STAU1 (si-STAU1), as well was
negative control RNA (si-NC) were transfected into BEAS-2B
cells by Lipo 3000 (Invitrogen), respectively. CCK-8 assay kit
(Wanleibio) was used to detect viability of BEAS-2B cells
according to the manufacturer’s instructions. The optical
density was measured by a microplate reader (BIOTEK).

Western Blot Assay
Total protein was extracted from lung tissues and BEAS-2B cells
by protein extraction kit (Wanleibio). The concentration of
protein was detected by BCA kit (Wanleibio). The protein was
separated by SDS-PAGE and transferred to PVDF membrane
(Millipore). The membrane was blocked by non-fat milk and
then incubated with primary antibodies for SLC27A3
(Proteintech), STAU1 (Affinity), ACPL2 (Bioss), RABL4
(Biorbyt), and b-actin (Wanleibio), respectively. After 12-h of
incubation at 4°C, the membrane was washed, incubated by the
secondary antibody, and visualized by CEL (Wanleibio). b-actin
serves as an internal control.

Real-Time PCR Assay
Total RNA was extracted from lung tissues and BEAS-2B cells by
TRIpure (BioTeke). The RNA was reverse transcribed into
cDNA using BeyoRT™ II M-MLV RNase H- (Beyotime).
Real-time PCR assay was conducted on Exicycler 96 system
(BIONEER) using SYBR Green (Solarbio). The results was
calculated using 2-△△CT method. The primer sequences are as
follows. Mus musculus ACPL2: F, AATCGCTTCTTGGTGCTG;
R, CTACGCTTGGAATGTTGC. Mus musculus RABL4: F,
GAAATGCTGGATAAGTTGTG; R, GAGGGAGATG
CCTGAAGT. Mus musculus SLC27A3: F , GCATT
GTGGGCTGCTTGG; R, GGGCTGGTTGACGAGGTAT. Mus
musculus STAU1 F, GTAAAGAAACCAGGAGACG;
R, CTGCTGATGGCTAAGATAA.

Mus musculus b-actin: F, CTGTGCCCATCTACG
AGGGCTAT; R, TTTGATGTCACGCACGATTTCC. Homo
sapiens ACPL2: F, ATGGAGCACTTCAAGGTAA; R,
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AGCAGAGTAGAGGGCAAA. Homo sapiens RABL4: F, GG
AATGGATTTGGTGGTGAA; R, GAGATGCCTGGAG
CCTGTGA. Homo sapiens SLC27A3: F, GTTCGGAT
GGCAAATGAGG; R, TGTACCGGGCAGTTGTGAG. Homo
sapiens STAU1 F, ATCCGATTAGCCGACTGG; R, AC
TTGAGTGCGGGTTTGG. Homo sapiens b-actin: F, GG
CACCCAGCACAATGAA; R, TAGAAGCATTTGCGGTGG.

ELISA Assay
The concentration of IL-6, IL-1b, and TNFa was measured by
ELISA. ELISA kits (Wanleibio) for IL-6, IL-1b, and TNFa were
used in this study and conducted according to the
manufacturer’s instructions. The optical density was measured
by a microplate reader (BIOTEK).

Statistical Analysis
All statistical analyses were performed in R (version 3.6.1). The
nonparametric Kruskal-Wallis test was used to perform
intergroup comparisons of continuous variables. The degree of
efficacy of each diagnostic biomarker was assessed using receiver
operating characteristic (ROC) curves. Pearson correlation was
used to analyze the relationship between the expression of
diagnostic biomarkers and infiltrating immune cells.
Comparison between two groups or among multiple groups
were analyzed by student t-test or one-way ANOVA,
respectively. Statistical significance was identified based on P <
0.05. Furthermore, bioinformatics analysis almost run for
two months.
RESULTS

Screening of DEGs in COPD
Differential expression analysis between 134 COPD samples and
49 normal samples in the metadata (GSE38974 and GSE76925)
cohort was carried out utilizing the “limma” R package. Of the 80
identified DEGs, 4 genes were significantly upregulated and 76
genes were significantly downregulated (Figure 1A). The
heatmap of DEGs is depicted in Figure 1B.

Functional Enrichment Analysis of DEGs
GOand pathway analyses were performed to identify the biological
functions of DEG using the Metascape database. DEGs were
primarily involved with telomerase regulation, cellular amino acid
metabolic processes, multicellular organic homeostasis, MHC class
I-mediated peptide antigen presentation and antigen processing in
addition to various other biological processes (Figure 2A).
Moreover, these DEGs were also mainly enriched in the S phase,
TriC/CCT association with target proteins during biosynthesis and
nucleotide metabolism pathways. Figure 2B shows the
relationships between the enriched terms.

Identification and Verification of
Diagnostic Biomarkers
Candidate diagnostic biomarkers were screened by two different
algorithms. We utilized the LASSO logistic regression algorithm
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to identify and COPD related 5 feature variables from DEGs
(Figure 3A). The SVM-RFE algorithm was used to identify a
subset of 42 features in the determined DEGs (Figure 3B). 4
overlapping diagnostic related genes (ACPL2, RABL4, SLC27A3,
and STAU1) of these two algorithms were finally selected
(Figure 3C). The GSE106986 dataset was used to validate the
accuracy of this method as well as the expression levels of the
four candidate diagnostic biomarkers. ACPL2 and RABL4
expressions levels were not significantly different between
COPD and normal samples (Figures 4A, B). However, the
expression levels of SLC27A3 and STAU1 in COPD samples
were notably raised in COPD samples in contrast to controls
(Figures 4C, D; all P < 0.05). To further test the diagnostic
efficacy of SLC27A3 and STAU1, we validated them using
metadata and the GSE106986 dataset, respectively. The AUCs
B

A

FIGURE 1 | Differentially expressed genes (DEGs) between chronic
obstructive pulmonary disease tissues and normal samples in metadata
(GSE38974 and GSE76925 datasets) cohort. (A) Volcano plot of DEGs;
orange dots represent up-regulated differential genes, gray dots represent
nonsignificant genes, and green dots represent down-regulated differential
genes. (B) Heatmap plot of DEGs.
March 2022 | Volume 13 | Article 740513

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. Gene Biomarkers Related to COPD
of SLC27A3 and STAU1 in the metadata cohort were 0.734 and
0.745, respectively (Figures 5A, B). Furthermore, the AUCs of
SLC27A3 and STAU1 in the GSE106986 dataset were 0.900 and
0.971, respectively (Figures 5C, D), indicating that both
SLC27A3 and STAU1 have high diagnostic values.

Immune Cell Infiltration Landscape
With the CIBERSORT algorithm, we firstly calculated the
proportion of immune cell infiltration in COPD and normal
tissues. The results showed that the degree of infiltration of
resting mast cells (P = 0.001), M1 macrophages (P = 0.049), and
memory B cells (P = 0.020) in COPD tissues were notably raised
in COPD samples in contrast to controls. Conversely, control
samples demonstrated a higher proportion of infiltration of
eosinophils (P = 0.002), activated mast cells (P = 0.006),
resting NK cells (P = 0.004) and plasma cells (P = 0.003)
compared to those found in COPD tissues (Figure 6A).
Furthermore, we calculated the correlation between the 22
types of infiltrating immune cells (Figure 6B). Plasma cells
and resting NK cells both individually correlated negatively
with resting mast cells but positively with activated mast cells.
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Moreover, activated mast cells correlated positively with memory
B cells.

Correlation Analysis Between SLC27A3,
STAU1 and Infiltrating Immune Cells
SLC27A3 was significantly positively correlated with memory B
cells (r=0.218, P=0.003), CD4 memory resting T-cells (r=0.245,
P<0.001), CD8 T-cells (r=0.276, P<0.001), follicular T-helper
cells (r=0.353, P<0.001), resting NK cells (r=0.406, P<0.001),
eosinophils (r=0.411, P<0.001), activated mast cells (r=0.598,
P<0.001) and plasma cells (r=0.619, P<0.001), and significantly
negatively correlated with naive B cells (r=-0.657, P<0.001), CD4
memory activated T-cells (r=-0.578, P<0.001), resting mast cells
(r=-0.388, P<0.001), resting dendritic cells (r=-0.289, P<0.001),
activated NK cells (r=-0.274, P<0.001) and gamma delta T-cells
(r=-0.169, P=0.022; Figure 7A). STAU1 was significantly
positively correlated with regulatory T-cells (r=0.157, P=0.033),
CD4 memory resting T-cells (r=0.174, P=0.019), CD8 T-cells
(r=0.237, P=0.001), memory B cells (r=0.244, P<0.001), follicular
T-helper cells (r=0.327, P<0.001), eosinophils (r=0.369,
P<0.001), resting NK cells (r=0.468, P<0.001), activated mast
B

A

FIGURE 2 | Functional enrichment analysis of DEGs. (A) Bar plot of DEGs functional enrichment terms. (B) Network relationship plots among all terms.
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cells (r=0.548, P<0.001) and plasma cells (r=0.575, P<0.001), and
significantly negatively correlated with naive B cells (r=-0.590,
P<0.001), CD4 memory activated T-cells (r=-0.513, P<0.001),
resting mast cells (r=-0.422, P<0.001), resting dendritic cells (r=-
0.230, P=0.002), activated NK cells (r=-0.299, P<0.001), gamma
delta T-cells (r=-0.193, P=0.009) and M2 macrophages (r=-
0.156, P=0.035; Figure 7B).

Immune Cell Infiltration in COPD
Mouse Models
Subsequently, we established a COPD mouse model using GSE.
The body weight of mouse in COPD group was significantly
lower than that in control group (Figure 8A). HE staining
showed that the MAST was shorter, and the MLI was larger in
COPD group compared with that in control group (Figures 8B–
E). We then observed the immune cell infiltrating in COPD
group. The proportion of leukocyte, and the percentage of
neutrophil and macrophage were larger in COPD group
(Figure 8F). Simultaneously, the expression levels of IL-6, IL-
1b, and TNF-a were all increased in bronchoalveolar lavage fluid
(BRLF) and lung tissues from COPD group (Figures 8G–I).
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In addition, the expression of immune cell markers including
CD8a, CD57, CD19, and CD20 were upregulated in lung tissues
from mouse in COPD group (Figures 8J, K).

The Expression of SLC27A3 and STAU1
in COPD Models
GSE-induced COPD models were established both in vivo and in
vitro. Immunohistochemistry staining, real-time PCR and
western blot assay showed that the mRNA and protein levels
of SLC27A3 and STAU1 were upregulated in lung tissues of mice
from COPD group (Figures 9A–F). In accordance with these
results, SLC27A3 and STAU1 were upregulated in GSE-treated
BEAS-2B cells (Figures 9G–J). Besides, ALCPL2 was also
upregulated in COPD models, while RABL4 was not
significantly changed (Figure S1).

Knockdown of SLC27A3 and STAU1
Reversed the Effect of CSE on
BEAS-2B Cells
Finally, we observed the effect of SLC27A3 and STAU1
knockdown on CSE-treated BEAS-2B cells. There siRNAs
B

C

A

FIGURE 3 | Screening candidate diagnostic markers for chronic obstructive pulmonary disease. (A) Diagnostic markers were screened by the least absolute
shrinkage and selection operator (LASSO) logistic regression algorithm. (B) Diagnostic markers were screened by a support vector machine-recursive feature
elimination (SVM-RFE) algorithm. (C) Venn diagram of variables screened by LASSO and SVM-RFE algorithms.
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sequences were designed to downregulate SLC27A3 and
STAU1, respectively. The expression of SLC27A3 and
STAU1 were significantly downregulated by transfection of
corresponding siRNAs (Figures 10A–D). CSE treatment
decreased the viability and increased the expression
inflammatory cytokines (IL-6, IL-1b, and TNF-a) in BEAS-2B
cells, which were attenuated by knockdown of SLC27A3 or
STAU1 (Figures 10E–H).
DISCUSSION

COPD remains the third leading cause of death globally, with
over three million dying annually from this debilitating disease
despite significant advancements in diagnostic and therapeutic
options over the last decade (24). Diagnosing COPD early is
virtually impossible given the paucity of valuable biomarkers, a
phenomenon that further results in poor clinical outcomes.
Recent literature demonstrates that immune cell infiltration
Frontiers in Immunology | www.frontiersin.org 786
appears to be intricately involved in the occurrence and
progress of COPD (25–27). Therefore, seeking for effective
and novel diagnostic biomarkers for COPD amongst immune
cell components is a promising avenue of research that may
potentially result means of intervening early in COPD, thereby
improving clinical prognosis. Recently, differentially expressed
genes have been regarded as promising biomarkers in
respiratory diseases, and especially in regards to COPD.
For instance, HIF-1a could upregulate the expression of
inflammatory factors, further aggravating the pathological
process of COPD (28). In addition, FHL1 was found to be
significantly modulated in CSE-treatment Beas-2B cells,
providing important information on the role of inflammatory
factors in COPD (14). However, there are few studies on
biomarkers comprising of abnormally expressed genes
associated with COPD and immune infiltration in normal
tissues. Therefore, the purpose of this study is to search for
candidate diagnostic biomarkers for COPD and explore how
immune infiltration influences the progress of COPD.
BA

DC

FIGURE 4 | Validation of the expression of candidate diagnostic markers in the GSE106986 dataset. (A) ACPL2; (B) RABL4; (C) SLC27A3; (D) STAU1.
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This study is a novel retrospective report that comprehensively
explores GEO datasets for likely diagnostic biomarkers amongst
DEGs and immune cell infiltration in COPD patients. A metadata
cohort was first formed by merging two GEO datasets which was
then used to identify DEGs between COPD and control samples.
Our study identified 4 significantly upregulated and 76 notably
downregulated genes. Subsequent enrichment analysis found that
these DEGs were primarily associated with cellular amino acid
metabolic process, telomerase activity, phagocytosis regulation,
MHC class I-related peptide antigen presentation and antigen
processing, along with other biological processes. Moreover,
DEGs were also enriched in the S phase and nucleotide
metabolism. These findings are consistent with previously
discovered factors related to COPD. Earlier experiments have
detected altered amino acid levels in patients with serve COPD
which may be helpful in the diagnosis and treatment of
COPD (29, 30). Chronic inflammation is a prominent feature
in COPD that results to airway remodeling and lung parenchyma
destruction (31). The abnormalities in telomere function
Frontiers in Immunology | www.frontiersin.org 887
contributed significantly to sustained local inflammation in the
lungs as well as systemic inflammation in COPD patients (32).
COPD alveolar macrophages have defective phagocytic functions
with regards to the uptake and processing of respiratory
pathogens and cellular debris (33). Research shows that
cigarette smoke can result in an increased percentage of human
fetal lung fibroblasts cells in G1 and G2/m phases in addition to a
reduced percentage of cells in S phase of cell cycle. Therefore,
changes in the cell cycle potentially impact COPD pathogenesis
(34). Immune cells have been proven to carry out an extremely
vital role in COPD, and changes in the MHC I surface expression
and MHC I-mediated presentation of a specific antigen caused by
cigarette smoke may lead to a distorted adaptive immune
response in viral and bacterial exacerbations of COPD patients
(31, 35). These findings are consistent with our experimental
results, suggesting that our discoveries are accurate as well as
further solidifying the critical role of the immune response in
COPD. Therefore, precise control of various types of immune
cells remains a promising means of developing novel COPD
BA

DC

FIGURE 5 | Validation of diagnostic validity of two diagnostic markers. (A, B) Receiver operating characteristic (ROC) curves of SLC27A3 and STAU1 in the
metadata cohort. (C, D) ROC curves of SLC27A3 and STAU1 in the GSE106986 dataset.
March 2022 | Volume 13 | Article 740513

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. Gene Biomarkers Related to COPD
treatment that may offer improved clinical prognosis.
Bioinformatics analysis enables identification of significant
novel COPD biomarkers associated with the degree of immune
cell infiltration that may be beneficial for early diagnosis and
treatment of COPD.

Our study identified two diagnostic markers via machine-
learning algorithms. Staufen 1 (STAU1) is an RNA-binding
protein that is related to post transcriptional mRNA regulation
and is critical in cellular defense mechanisms against stressful
stimuli such as oxidative and endoplasmic reticulum (36).
Dysregulated STAU1-mediated post-transcriptional genetic
modulation appears to regulate apoptosis while also being a
pivotal occurrence in cancer progression (37, 38). Studies have
Frontiers in Immunology | www.frontiersin.org 988
revealed that STAU1 selectively regulates genes related to
inflammation and immune responses and plays a substantial
role in the human immune response against the influenza virus
and human immunodeficiency virus type I (HIV-1) (39–42).
These facts further underscore the vital function of STAU1 in
inflammation and immunity. The solute carrier 27A (SLC27A)
gene belongs to a family of genes that encodes fatty acids
transport proteins (FATPs). FATPs are located in the cell
membrane and intracellular space and are mainly related to
fatty acid activation and absorption (43). The encoding product
of SLC27A3 gene (FATP3) plays an important role in long-chain
fatty acids transport and very-long-chain fatty acids activation,
the upregulation of which could promote lipid metabolism (44).
B

A

FIGURE 6 | Landscape of immune cell infiltration in chronic obstructive pulmonary disease. (A) Boxplot of the proportion of 22 types of immune cell infiltrates. Red in the
boxes represents the chronic obstructive pulmonary disease group and blue represents the normal group. *P < 0.05; **P < 0.01; ns, not significant. (B) Heatmap plot of
correlations among 22 types of immune cells. Blue and red indicate positive and negative correlation, respectively. The darker the color the stronger the correlation.
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COPD pathogenesis has been found to be closely related to
altered lipid metabolism (45). As a result, we infer that SLC27A
may function to critically modulate the initiation and
progression of COPD.

The CIBERSORT assessment was used in the study to
determine the profiles of immune cell infiltration in COPD
subjects and in healthy controls. A myriad of immune cell
subtypes has been characterized in relation to COPD.
Increased infiltration of memory B cells, M1 macrophages, and
resting mast cells were found in COPD in contrast to normal
tissues. However, proportions of eosinophils, activated mast
cells, resting NK cells, and plasma cells were found to be
decreased. Furthermore, the correlation analysis of STAU1,
SLC27A3, and immune cells indicated that STAU1 and
SLC27A3 correlated to plasma cells, activated mast cells,
eosinophils, resting NK cells, CD8+, CD4+, and helper
Frontiers in Immunology | www.frontiersin.org 1089
follicular T-cells, as well as in resting memory B cells. We then
established GSE-induced COPDmodels both in vivo and in vitro.
Immune infiltration and inflammatory cytokines production
were increased in COPD models. Enhanced expression of
STAU1 and SLC27A3 were observed in COPD models both in
vivo and in vitro. Knockdown of SLC27A3 and STAU1 reversed
the effect of CSE on BEAS-2B cells. Moreover, knockdown of
SLC27A3 and STAU1 reversed the effect of CSE on the viability
and the expression inflammatory cytokines in BEAS-2B cells.
These findings were in accordance with the bioinformatics
analysis results.

Primary pathological changes of COPD mainly comprise of
emphysema and chronic bronchitis. Continual airflow restriction
leads to pulmonary ventilation dysfunction, which in turn leads
to progressively deteriorating lung function (46). Inflammatory
mechanisms lie at the core of COPD development. Various
B
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FIGURE 7 | Correlation of two diagnostic markers with 22 types of immune cell infiltration in chronic obstructive pulmonary disease. (A) SLC27A3; (B) STAU1.
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FIGURE 8 | Immune cell infiltration in COPD mouse models. (A) Body weight of mice. (B) The mean alveolar septal thickness (MAST). (C) Mean linear intercept
(MLI). (D) Destructive index (DI). (E) Representative HE staining images (100x and 400x). (F) The proportion of immune cells. (G) The expression of IL-6 in
bronchoalveolar lavage fluid (BRLF) and lung tissues of mice. (H) The expression of IL-1b in BRLF and lung tissues of mice. (I) The expression of TNF-a in BRLF and
lung tissues of mice. (J) Representative immunohistochemistry images of CD8a and CD57 (400x). (K) Representative immunofluorescence images of CD19 and
CD20 (400x). For panel G, H, and I, the unit for BRLF is pg/mL, and the unit for lung tissue is pg/mg. *P < 0.05, **P < 0.01, ***P < 0.001 vs. Control.
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factors can lead to inflammatory cell infiltration and release of
inflammatory mediators. Inflammatory cells subsequently
produce destructive enzymes that lead to the progressive
destruction of lung tissue in COPD (47, 48). Studies have also
found elevated expressions of CD8+T-cells in COPD lung
tissues. CD8+ T-cells primarily secrete IL-4 and IL-5 cytokines,
both of which are implicated in lung parenchymal tissue damage
that exacerbates the development of emphysema (49). Some
studies have reported that NK cells can secrete cytotoxic
mediators, such as granzyme B and perforin, which may play
an important role in inducing lung cell apoptosis and thereby
Frontiers in Immunology | www.frontiersin.org 1291
promoting emphysema (50). There is evidence demonstrating
that NK cells exert cytotoxic effects on COPD lung epithelial cells
and are enhanced by the transport of IL-LS by dendritic cells of
the IL-I5 receptor subUnita (LL-15RA) (51). In addition, it has
been confirmed that the level of memory B cells in the peripheral
blood of smokers increases, and smoking in patients is also one
of the main causes of COPD (52). The wealth of evidence
supporting the direct or indirect effects of inflammatory cells
on COPD pathogenesis are consistent with our study findings. It
is of great interest for future studies to identify potential immune
targets for COPD immunotherapy.
BA

EC FD

IG JH

FIGURE 9 | The expression of SLC27A3 and STAU1 in COPD models. (A) Representative immunohistochemistry images of SLC27A3 in lung tissues of mice.
(B) Representative immunohistochemistry images of STAU1 in lung tissues of mice. (C) The expression of SLC27A3 mRNA in lung tissues of mice. (D) The
expression of SLC27A3 protein in lung tissues of mice. (E) The expression of STAU1 mRNA in lung tissues of mice. (F) The expression of STAU1 protein in lung
tissues of mice. (G) The expression of SLC27A3 mRNA in BEAS-2B cells. (H) The expression of SLC27A3 protein in BEAS-2B cells. (I) The expression of STAU1
mRNA in BEAS-2B cells. (J) The expression of STAU1 protein in BEAS-2B cells. **P < 0.01, ***P < 0.001 vs. Control.
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Our study is firstly limited by its retrospective design and lack
of analysis of important clinical data. Our identified upregulated
genes seen to be associated with immune infiltration in COPD
here require further validation in cohorts with clinical data.
Secondly, the size of our GSE106986 validation cohort is small.
We stress that our results should be validated in larger cohorts to
determine the reproducibility of the findings. Although the
functions of the two biomarkers and immune cell infiltration
in COPD were assessed using bioinformatics analysis and
biological experiments, larger prospective studies are needed to
verify our conclusions.
CONCLUSION

To sum up, the present study strongly suggests that STAU1 and
SLC27A3 are significant diagnostic biomarkers in COPD. Plasma
cells, resting NK cells, activated mast cells, eosinophils, CD8+,
CD4+, and helper follicular T-cells, as well as memory B-cells are
important factors in COPD development. Mechanisms of
immune infiltration should be focused on in the search of
novel therapeutics for COPD and these immune cells are
Frontiers in Immunology | www.frontiersin.org 1392
expected to be promising targets for immunotherapy in
patients with COPD.
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1 Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research
Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical
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Objective: This study aims to explore the potential of in situ airway differentiation of
eosinophil progenitors (EoPs) and hematopoietic progenitor cells (HPCs) in sputum and
peripheral blood from patients with non-asthmatic eosinophilic bronchitis (NAEB),
eosinophilic asthma (EA), and healthy controls (HC).

Methods: Using flow cytometry, we enumerated sputum and blood HPCs and EoPs in
patients with NAEB (n=15), EA (n=15), and HC (n=14) at baseline. Patients with NAEB
and EA were then treated for 1 month with budesonide (200 mg, bid) or budesonide
and formoterol (200/6 mg, bid), respectively. HPCs and EoPs in both compartments
were re-evaluated.

Results: At baseline, NAEB and EA both had significantly greater numbers of sputum but
not blood HPCs and EoPs (p<0.05) compared to HC. There were no differences between
NAEB and EA. After 1 month of inhaled corticosteroid (ICS) treatment, NAEB patients
showed a significant improvement in cough symptoms, but the attenuation of sputum
HPC and EoP levels was not significant.

Conclusions: NAEB patients have increased airway levels of HPCs and EoPs. One-
month treatment with ICS did not fully suppress the level of EoPs in NAEB. Controlling in
situ airway differentiation of EoPs may control airway eosinophilia and provide long-term
resolution of symptoms in NAEB.

Keywords: non-asthmatic eosinophilic bronchitis, hematopoietic progenitor cells, eosinophil progenitors, airway
inflammation, eosinophil
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INTRODUCTION

Non-asthmatic eosinophilic bronchitis (NAEB) is a common
cause of chronic cough (1, 2). It is characterized by persistent
troublesome cough and airway eosinophilia but lack of airway
hyper-responsiveness (3). NAEB patients often respond well to
inhaled corticosteroids but frequently relapse (4).

Previous studies have shown that NAEB is a T-helper 2
(Th2)-driven disease. In addition to airway eosinophilia, it was
reported that, like asthmatics, NAEB patients have raised levels
of inflammatory mediators and cytokines, such as histamine,
cysteinyl-leukotrienes, interleukin (IL)-5, and eosinophilic
cationic protein (5–7). Persistent sputum eosinophilia is a risk
factor for relapse (8), suggesting that airway eosinophilia may be
one major pathogenic mechanism in NAEB. Investigating
the immunological processes that promote eosinophilic
inflammation in the airways is important for the development
of novel NAEB therapies.

Mature eosinophils differentiate from eosinophil-lineage
committed progenitor cells (EoPs), which arise from bone-
marrow-derived CD34+ hematopoietic progenitor cells (HPCs)
(9). The differentiation and maturation of EoPs was originally
thought to be restricted to the bone marrow (10, 11). However,
increased numbers of HPCs and EoPs have been detected in the
peripheral blood and tissue compartments from atopic subjects
(12–15). It has now been proposed that in situ differentiation of
EoPs can rapidly increase mucosal numbers of mature
eosinophils during an inflammatory response, an element that
may drive airway eosinophilia (16, 17). This suggests an
important role of in situ eosinophil differentiation in the
pathology of allergic diseases including asthma and
allergic rhinitis.

We hypothesized that in situ differentiation of EoPs play a
potential role in the pathogenesis of airway eosinophilia in
NAEB. In the current study, we enumerated levels of HPCs
and EoPs in induced sputum and peripheral blood from NAEB
patients compared to eosinophilic asthmatics (EAs) and normal
healthy controls (HCs). In addition, we repeated these
measurements in NAEB and EA patients after 1 month of
treatment with inhaled corticosteroids (ICS) or ICS plus long-
acting beta-agonists (LABA), respectively.
MATERIALS AND METHODS

Study Design and Participants
Fifteen patients with NAEB were recruited in the First Affiliated
Hospital of Guangzhou Medical University between June 2016
and May 2017. Fifteen patients with EA and 14 HCs were
included as disease and health controls. Pulmonary function,
fractional exhaled nitric oxide, sputum differential counts,
complete blood counts (CBC), serum IgE, symptom scores,
and questionnaires including Asthma Control Test (ACT),
Leicester Cough Questionnaires (LCQ), and Visual Analogue
Scale (VAS) were recorded. Levels of sputum and blood HPCs
and EoPs were enumerated by flow cytometry in all participants.
Frontiers in Immunology | www.frontiersin.org 296
NAEB patients were prescribed budesonide (200 mg, bid), and
EA patients were prescribed budesonide/formoterol (200/6 mg,
bid) for 1 month. Following this, FeNO, sputum differential
count, CBC, and flow cytometric assessments of progenitor cells
were re-evaluated in both patient groups.

NAEB was diagnosed according to the Chinese cough
guidelines (18). The subjects had (1) persistent cough for more
than 8 weeks; (2) a normal chest radiograph; (3) sputum
eosinophilia (sputum Eos% ≥ 2.5%); and (4) normal spirometry
and normal methacholine airway responsiveness. The subjects
with EA were diagnosed according to the GINA 2015 criteria (19).
All patients with EA had characteristic symptoms (such as
wheezing, shortness of breath, chest tightness, or cough);
increased sputum eosinophilia (sputum Eos% ≥ 3%), and >12%
forced expiratory volume in 1 s (FEV1) reversibility after short-
acting bronchodilator or a positive methacholine provocative test.
All patients with NAEB or EA were not currently on any steroid
therapy. The healthy controls (n=14) had normal spirometry,
negative methacholine provocative test, and no history of
respiratory disease, allergies, or systemic disease. All subjects
were non-smokers. Subjects were excluded if they had
experienced a respiratory infection in the past 4 weeks or had a
history of bronchiectasis, chronic obstructive pulmonary disease,
or other chronic pulmonary diseases.

Sputum Induction and Cell Isolation
Sputum was induced by inhalation of an aerosol of hypertonic
saline as previously described (20). Sputum samples were
processed by selecting the mucus plugs, mixing with 4 parts
0.1% dithiothreitol, then filtered through a 48-mm nylon mesh
and centrifuged at 3,000 rpm for 10 min at 4°C. The cell pellet
was re-suspended in phosphate-buffered saline (PBS). The
sputum supernatants were stored at −80°C. The cell smear was
prepared and stained with hematoxylin–eosin stain. The
differential cell counts of sputum samples were obtained by
counting 400 non-squamous cells. The remaining cells were
subjected to immunofluorescence staining and enumeration by
flow cytometry.

PBMC Isolation
Peripheral blood mononuclear cells (PBMCs) were isolated from
venous blood by Ficoll density gradient centrifugation. In brief,
whole blood was diluted 1:1 with PBS and layered onto Ficoll-
PAQUE Plus (GE Healthcare, Marlborough, MA, USA),
centrifuged at 1,200g and 4°C for 25 min with the brake off. The
buffy coat was collected and washed twice (500g for 5 min) with
PBS. Cell count and viability were quantified in a Neubauer’s
chamber with 0.4% Trypan Blue Solution.

Flow Cytometry
Freshly isolated blood-derived mononuclear cells and sputum-
extracted cells were immediately incubated with fluorescence-
labeled antibodies to define cell subpopulations. Antibodies (BD
Biosciences) used for flow cytometry were FITC-CD45, PE-Cy5-
CD34, and PE-CD125. Cells were analyzed by FACSVerse
analytical flow cytometry (BD Company, San Diego, CA, USA).
The percentage of HPCs (FSCmediumSSClowCD45dullCD34+) and
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EoPs (FSCmediumSSClowCD45dullCD34+CD125+) were determined
using FlowJo software (BD Biosciences). The absolute numbers of
HPCs or EoPs were calculated by multiplying percentage of HPCs
or EoPs within R2 (singlets with medium FSC and low SSC) in
flow cytometry with the absolute number of lymphocytes in blood
routine test or sputum cell counts. The gating strategy is shown in
Supplementary Figure S1.

Statistical Analysis
Statistical analysis was performed by using SPSS Version23.0 (SPSS
Inc., Chicago, IL, USA). Age, body mass index (BMI), FEV1pred,
MMEFpred, FEV1/forced vital capacity (FEV1/FVC), and blood
eosinophil were presented as mean ± SD and analyzed by one-way
ANOVA followed by the Tukey post-test formultiple comparisons.
Sputum differential counts, FeNO, serum total IgE, HPCs, and
EoPs levels were presented as median (IQR) and analyzed by
Kruskal–Wallis test and Dunn’s post-hoc analyses for multiple
comparisons. Comparisons of LCQ, VAS, ACT, FeNO, sputum
and blood eosinophils, HPCs, and EoPs before and after treatment
were calculated using a paired t-test or Wilcoxon matched-pairs
sign rank test. Correlations among clinical parameters were
computed using a Spearman test. Differences were considered to
be statistically significant when p<0.05.
RESULTS

Demographics and Clinical Characteristics
at Baseline
Baseline characteristics of participants in the study are shown in
Table 1. NAEB and EA patients were significantly older and had
a higher BMI than HC controls (all p<0.01). Similar to EA,
NAEB showed higher levels of FeNO, sputum eosinophils, and
blood eosinophils compared with HC (p<0.05). No differences of
Frontiers in Immunology | www.frontiersin.org 397
FeNO, sputum, and blood eosinophils were found between
NAEB and EA.

Airway HPCs and EoPs Are Increased in
Patients With NAEB
PBMCs were successful obtained from all subjects for flow
cytometry detection. Sputum samples for flow cytometry were
obtained from 14 patients with NAEB, 11 patients with EA, and
9 subjects with HC.

In the airway, sputum HPCs levels in NAEB [770 (8,219)
cells/ml] and EA [742 (1,322) cells/ml] were significantly higher
than in the HC group [135 (343) cells/ml] (both p<0.05,
Figure 1A). In addition, sputum EoPs levels were significantly
higher in patients with NAEB [91 (219) cells/ml] and EA [69
(199) cells/ml] compared to the HC group [17 (26) cells/ml]
(both p<0.05, Figure 1B). In contrast, there were no significant
differences in sputum HPCs or EoPs levels between NAEB and
EA. Overall, there was a strong correlation between sputum
HPCs and EoPs levels (r=0.778, p<0.001, Supplementary Figure
S2) and a moderate association between sputum EoPs and
eosinophils levels (r=0.378, p<0.05, Supplementary Figure S2).

In the blood, there was no significant difference in HPCs or
EoPs levels in NAEB [HPCs, 1,123 (650)/ml; EoPs, 71 (110)/ml]
compared with the HC [HPCs, 952 (1,246)/ml; EoPs, 118 (117)/
ml] or EA group [HPCs, 1,498 (1,109)/ml; EoPs, 121 (156)]
(Figures 1C, D). Neither blood HPCs levels nor EoPs levels
correlated with blood eosinophil, sputum HPCs, or EoPs levels
(Supplementary Figure S1).

HPCs and EoPs Levels Following
Treatment With ICS for NAEB or
ICS/LABA for EA
After 1-month ICS treatment, patients with NAEB presented an
improvement in cough symptoms as reflected by a significant
TABLE 1 | Demographics and clinical characteristics at baseline.

HC NAEB EA
n=14 n=15 n=15

Sex, F/M 8/6 5/10 9/6
Age, y 29.2 ± 6.4 46.7 ± 14.6# 44.5 ± 10.9#
BMI 20.1 ± 2.5 23.5 ± 2.9* 23.9 ± 3.9*
FeNO. ppb 16.0 (9.0, 23.0) 34.0 (23.0, 61.0) # 50.0 (36.0, 79.0) #
FEV1, pred% 95.6 ± 8.2 100.8 ± 12.8‡ 81.6 ± 22.3
FEV1/FVC, % 87.7 ± 8.0 83.4 ± 6.6‡ 69.8 ± 12.1#
MMEF, pred% 84.0 ± 24.6 88.7 ± 25.5‡ 44.0 ± 21.9#
Induced Sputum
TCC, x106/mL 2.3 (0.8-5.8) 2.8 (1.4-13.2) 2.3 (0.9-11.2)
Neutrophils, % 60.2 (40.5, 65.5) 59.0 (26.0, 77.5) 49.0 (21.5, 78.0)
Macrophage, % 37.5 (23.8, 58.5) 21.0 (8.5, 47.0) 11.8 (1.5, 53.5)
Eosinophils, % 0.2 (0.0, 1.0) 4.5 (3.5, 18.5)# 16.0 (8.2, 37.8)#
Lymphocyte, % 1.5 (0.8, 2.2) 1.5 (1.0, 11.5) 2.0 (1.0, 2.5)
Blood
Eosinophils, % 2.2 ± 1.6 5.2 ± 3.2* 6.4 ± 3.2#
Eosinophils, (109/L) 0.1 ± 0.1 0.3 ± 0.2* 0.4 ± 0.2#
Total IgE (KU/L) 55.7 (27.4, 89.9) 98.7 (50.6, 180.0) 107.2 (67.2, 327.0)
March 2022 | Volume
Age, BMI, FeNO, FEV1pred, FEV1/FVC, MMEFpred and blood eosinophil are presented as mean ± SD and analyzed by one-way ANOVA. Sputum different counts and Total IgE are
presented as median (IQR); sputum TCC is presented asmedian (min–max) and calculated by Kruskal–Wallis test. The distribution of sex was calculated by chi-square test. Compared with
EA: ‡p < 0.01; compared with healthy control: *p < 0.05, #p < 0.01.
13 | Article 737968

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhan et al. EoPs in NAEB
improvement of LCQ [16.2 ± 2.4 vs. 20.4 ± 3.5] and VAS [50 (30)
vs. 10 (5)] (all p<0.05). One patient reported complete resolution
of symptoms. In addition, the NAEB group displayed decreased
levels of FeNO [59 (53) vs. 25 (11)] and blood eosinophils [0.3
(0.2) vs. 0.2 (0.1)] (all p<0.05). There was reduction in the level of
sputum HPCs, EoPs, and eosinophils [HPCs, 1,345(11,476) vs.
887(1,370); EoPs, 169(275) vs. 7(200), cells/ml; Eos, 5.0(37.8) vs.
3.8(10.3), %], although this change did not achieve significance
(Figure 2 and Table 2).

In patients with EA, an improvement in symptoms was
observed as reflected by an increasing ACT score (19.4 ± 3.7
vs. 23.3 ± 1.7) (p<0.05). A significant reduction was found in
blood HPCs and EoPs levels [HPCs, 1,553(1,697) vs. 775(1,160);
EoPs, 145(328) vs. 84 (90), cells/ml] (all p<0.05) but not mature
eosinophils. In contrast, no differences were found in FeNO
levels or sputum eosinophils, HPCs, or EoPs after treatment in
these patients (Figure 2 and Table 2). For the follow-up time
point, when data from EA and NAEB patients were combined,
the sputum EoPs level did not correlate with sputum HPCs nor
eosinophils levels (Supplementary Figure S2B).
DISCUSSION

The current study has demonstrated, for the first time, that NAEB
patients have significantly increased levels of EoPs and HPC in the
airways when compared to healthy controls. One-month ICS
therapy improved symptoms in NAEB patients; however, the
reduction in inflammatory indices including airway EoPs, HPCs,
and mature eosinophils was not significant. The results suggest
that in situ airway differentiation of EoPs may be one of the
Frontiers in Immunology | www.frontiersin.org 498
possible pathways mediating the airway eosinophilia in NAEB. In
addition, longer treatment strategies may be required to
investigate whether normalization of lung inflammatory cells
may further improve symptoms of NAEB and chances of
future relapse.

Immune cells that contribute to airway eosinophilia in NAEB
are not clearly defined. Brightling et al. (6) previously reported that
the proportion of BALF IL-4+CD4+ T cells and the number of IL-
4+ and IL-5+ cells in bronchial submucosa are significantly higher
in NAEB compared to HC controls, suggesting that the Th2 cell
may drive airway eosinophilia in these patients. In addition to the
traffic of mature eosinophils from the periphery, in situ
eosinophilopoiesis has been proposed as an additional process
that may drive airway eosinophilia in allergic asthma and rhinitis.
It can rapidly increase mucosal levels of mature eosinophils during
an inflammatory response. Studies have shown that the increase in
numbers of sputum EoPs precedes the development of airway
eosinophilia after allergen inhalational challenge in asthmatics
(21). Cameron et al. (16) found that local IL-5-dependent
differentiation of EoPs was observed when nasal biopsies were
cultured ex vivo with IL-5 or ragweed allergen resulting in a
reduction in CD34 immunopositive/IL-5Ra mRNA+ cells and a
concurrent increase in the number of MBP immunoreactive cells,
likely mature eosinophils. Our data showed increased levels of
sputum HPCs, EoPs in NAEB, and a moderate association
between sputum EoPs and sputum eosinophilia indicating, that
in situ differentiation may mediate local increases in mature
eosinophil levels in NAEB. Consistent with this hypothesis,
NAEB patients had increased concentrations of IL-5 and
granulocyte-macrophage colony-stimulating factor (GM-CSF),
which could induce HPCs and EoPs differentiation into
A B

DC

FIGURE 1 | Absolute numbers of hematopoietic progenitor cells (HPC) and eosinophilic progenitor cells (EoPs) in three groups at baseline. Absolute numbers of
sputum HPC cells (A) and EoP cells (B), and the peripheral blood HPC cells (C) and EoP cells (D). Absolute cell numbers enumerated by flow cytometry are
presented as cells/ml, and data are presented as median (IQR) values. HC, healthy control group; NAEB, non-asthmatic eosinophilic bronchitis group; EA,
eosinophilic asthmatics group.
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eosinophils within the airways (6, 22, 23). In addition, recent
studies have suggested that HPCs and EoPs may act as pro-
inflammatory effector cells following activation by epithelial cell-
derived alarmin cytokines (24). Upon stimulation with thymic
stomal lymphopoietin (TSLP) and/or interleukin-33 (IL-33),
HPCs shown to express TSLPR and ST2 (25) release high levels
of IL-5, IL-13, and GM-CSF (26). Whether NAEB has higher
levels of alarmin cytokines in the airways and whether sputum
HPC and EoP express greater amounts of type 2 cytokines
compared to healthy controls remains to be investigated.

In line with previous studies (17, 21), we found that asthmatic
patients showed elevated levels of airway HPCs and EoPs.
However, no differences in blood EoPs were observed. This
Frontiers in Immunology | www.frontiersin.org 599
might be related to the severity of the asthmatic patients
enrolled, as blood and sputum EoPs in severe asthma are
significantly higher than in mild asthma (17). In the current
study, the asthmatic patients were mild and steroid naive. Our
previous data (17) found a 10-fold greater number of sputum
EoPs in prednisone-dependent severe asthmatics compared to
mild asthmatics, while these cells were comparable in the PB
of both subject groups, suggesting that an enhanced
eosinophilopoietic environment exits in the airways of severe
asthmatics with persistent eosinophilia.

In contrast to the EA group, neither blood HPCs nor blood
EoPs in the NAEB group were different when compared to HC
controls. We speculated that there may be systemic component
A B

DC

FIGURE 2 | Enumeration of hematopoietic progenitor cells (HPC) and eosinophilic progenitor cells (EoPs) in sputum and peripheral blood after 1 month of ICS
treatment in NAEB and ICS/LABA treatment in EA. The changes in sputum HPC counts (A) and EoP counts (B), and blood HPC counts (C) and EoP counts (D)
before (open circle) and after (open square) therapy. NAEB, Non-asthmatic eosinophilic bronchitis group. EA, eosinophilic asthmatics group.
TABLE 2 | Changes of biomarkers after one-month treatment in NAEB and EA Group.

NAEB (n=9) EA (n=10)

Baseline Follow-up p-value Baseline Follow-up p-value

FeNO, ppb 59(53) 25(11)* 0.020 46.5(57.3) 28.5(51.7) 0.416
LCQ 16.2 ± 2.4 20.4 ± 3.5* 0.049 NA NA NA
VAS 50(30) 10(5)# <0.001 NA NA NA
ACT NA NA NA 19.4 ± 3.7 23.3 ± 1.7* 0.014
Sputum Eos, % 5.0(37.8) 3.8(10.3) 0.148 16.4(36) 5(41.6) 0.734
Sputum Eos (109/L) 0.20(0.80) 0.18(0.40) 0.461 0.41(1.70) 0.10(0.70) 0.160
Blood Eos (109/L) 0.3(0.2) 0.2(0.1)* 0.050 0.4(0.2) 0.3(0.2) 0.456
Blood HPC (cells/ml) 939(822) 843(1,726) 0.820 1553(1,697) 775(1,160)* 0.014
Blood EoP (cells/ml) 68(229) 76(143) 0.637 145(328) 84 (90)* 0.020

NAEB (n=7) EA (n=6)
Sputum HPC (cells/ml) 1345(11476) 887(1370) 0.297 742(2051) 432(1574) 0.900
Sputum EoP (cells/ml) 169(275) 7(200) 0.297 69(294) 31(41) 0.438
March 20
22 | Volume 13 | Article
FeNO, LCQ, VAS, and ACT were presented as mean ± SD and analyzed by pair t-test. Other variables were presented as median (IQR) calculated by Wilcoxon matched-pairs sign rank
test. Absolute cell numbers enumerated by means of flow cytometry are presented as cells per milliliter. Compared with baseline: *p < 0.05, #p < 0.01
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involving mobilization of progenitor cells from bone marrow in
EA compared to NAEB where the inflammatory responses
appear to be localized to the airways. Eotaxin/CCR3 and SDF-
1/CXCR4 axes are reported to play a role promoting progenitors
release from the bone marrow in EA and might be less
prominent or involved in progenitor cell trafficking to the
airways in NAEB (27, 28). This is supported by our previous
findings where we found no difference in serum levels of eotaxin
or IL-5 in NAEB compared to HC, suggesting that NAEB
displayed only mild systemic inflammation (21).

After 1 month of treatment with ICS in NAEB, or ICS/LABA
in EA, we found an inconsistent relationship between the
improvement of symptoms and relief of inflammation. Despite
a significant reduction in blood eosinophils, sputum levels of
HPCs, EoPs, and mature eosinophil only showed a trend of not a
significant decline in NAEB. In addition, a moderate correlation
was found between sputum EoPs and eosinophils in these
patients; this might fit out with the hypothesis that that local
airway levels of EoP may contribute to the airway eosinophilia.
Despite that the attenuation of sputum HPC and EoP levels in
EA patients after ICS treatment was not significant, ICS
treatment may still have a suppression role on local airway
eosinophil differentiation to mature cells. The reasons are as
follows: first, the weaker correlation between sputum EOS and
HPC or EoP might provide indirect evidence that ICS treatment
suppresses differentiation of EoPs into mature eosinophils
(Supplementary Figure S2B). Second, Kim et al. reported that
an increase in CD34+ mononuclear cells occurs in steroid-
treated nasal polyps (29). A possible mechanism that they
proposed is that inhibition of the differentiation of mature cells
from progenitors may cause more residing CD34+ progenitor
cells in the local tissue. Since we have previously reported a
higher rate of recurring episodes after 1 month of ICS treatment
compared to 3 months treatment, during a 1-year follow-up in
NAEB (30), our current data suggest that a longer treatment
strategy may be required to fully investigate whether reduction in
local eosinophilopoietic processes may reduce airway
eosinophilia and further improve the management of NAEB.

Some limitations of the study should be noted. First, we
measured the total numbers of HPCs and EoPs, and the
numbers of activated or cytokine-producing HPCs and EoPs
were not determined. Second, our current study is an initial
observational, small group study that is hypothesis generating,
which provides indirect evidence of the existence of in situ airway
differentiation in NAEB as reflected by the increased sputum EoPs
in NAEB and its moderate correlation with sputum eosinophils.
The significance of in situ airway differentiation of EoPs leading to
airway eosinophilia in NAEB needs to be further investigated.

In summary, this study demonstrated that increases in HPCs
and EoPs in NAEB are predominantly found in the airways and
Frontiers in Immunology | www.frontiersin.org 6100
that these cells may contribute to the airway eosinophilia. One-
month ICS treatment improved the symptoms in NAEB but did
not fully suppress the airway inflammatory responses.
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Increased Expression of LASI
lncRNA Regulates the Cigarette
Smoke and COPD Associated
Airway Inflammation and
Mucous Cell Hyperplasia
Marko Manevski1, Dinesh Devadoss1, Christopher Long1, Shashi P. Singh2,
Mohd Wasim Nasser3, Glen M. Borchert4, Madhavan N. Nair1, Irfan Rahman5,
Mohan Sopori2 and Hitendra S. Chand1*

1 Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University,
Miami, FL, United States, 2 Respiratory Immunology Program, Lovelace Respiratory Research Institute, Albuquerque, NM,
United States, 3 Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE,
United States, 4 Department of Pharmacology, University of South Alabama, Mobile, AL, United States, 5 Department of
Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States

Research Impact: Cigarette smoke (CS) exposure is strongly associated with chronic
obstructive pulmonary disease (COPD). In respiratory airways, CS exposure disrupts
airway barrier functions, mucous/phlegm production, and basic immune responses of
airway epithelial cells. Based on our recent identification of a specific immunomodulatory
long noncoding RNA (lncRNA), we investigated its role in CS-induced responses in
bronchial airways of cynomolgus macaque model of CS-induced COPD and in former
smokers with and without COPD. The lncRNA was significantly upregulated in CS-
induced macaque airways and in COPD airways that exhibited higher mucus expression
and goblet cell hyperplasia. Experimental models of cells derived from COPD subjects
recapitulated the augmented inflammation and mucus expression following the smoke
challenge. Blocking of lncRNA expression in cell culture setting suppressed the smoke-
induced and COPD-associated dysregulated mucoinflammatory response suggesting
that this airway specific immunomodulatory lncRNA may represent a novel target to
mitigate the smoke-mediated inflammation and mucus hyperexpression.

Rationale: In conducting airways, CS disrupts airway epithelial functions, mucociliary
clearances, and innate immune responses that are primarily orchestrated by human
bronchial epithelial cells (HBECs). Mucus hypersecretion and dysregulated immune
response are the hallmarks of chronic bronchitis (CB) that is often exacerbated by CS.
Notably, we recently identified a long noncoding RNA (lncRNA) antisense to ICAM-1 (LASI)
that mediates airway epithelial responses.

Objective: To investigate the role of LASI lncRNA in CS-induced airway inflammation and
mucin hyperexpression in an animal model of COPD, and in HBECs and lung tissues from
org June 2022 | Volume 13 | Article 8033621102
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former smokers with and without COPD. To interrogate LASI lncRNA role in CS-mediated
airway mucoinflammatory responses by targeted gene editing.

Methods: Small airway tissue sections from cynomolgus macaques exposed to long-
term mainstream CS, and those from former smokers with and without COPD were
analyzed. The structured-illumination imaging, RNA fluorescence in-situ hybridization
(FISH), and qRT-PCR were used to characterize lncRNA expression and the expression
of inflammatory factors and airway mucins in a cell culture model of CS extract (CSE)
exposure using HBECs from COPD (CHBEs) in comparison with cells from normal control
(NHBEs) subjects. The protein levels of mucin MUC5AC, and inflammatory factors ICAM-
1, and IL-6 were determined using specific ELISAs. RNA silencing was used to block LASI
lncRNA expression and lentivirus encoding LASI lncRNA was used to achieve LASI
overexpression (LASI-OE).

Results:Compared to controls, LASI lncRNAwas upregulated in CS-exposedmacaques
and in COPD smoker airways, correlating with mucus hyperexpression and mucus cell
hyperplasia in severe COPD airways. At baseline, the unstimulated CHBEs showed
increased LASI lncRNA expression with higher expression of secretory mucin MUC5AC,
and inflammatory factors, ICAM-1, and IL-6 compared to NHBEs. CSE exposure of
CHBEs resulted in augmented inflammation and mucus expression compared to controls.
While RNA silencing-mediated LASI knockdown suppressed the mucoinflammatory
response, cells overexpressing LASI lncRNA showed elevated mRNA levels of
inflammatory factors.

Conclusions: Altogether, LASI lncRNA may represent a novel target to control the
smoke-mediated dysregulation in airway responses and COPD exacerbations.
Keywords: bronchial epithelial cells, cigarette smoke (CS), chronic obstructive pulmonary disease (COPD), long
noncoding RNA (lncRNA), mucus hyperexpression, lncRNA antisense to ICAM-1 (LASI)
INTRODUCTION

COPD is the third leading cause of death globally, with over 300
million diagnosed cases and over 3 million COPD-related
fatalities annually (1, 2). Environmental exposure to toxins or
allergens exacerbates the disease and are associated with a very
high (55%) 5-year mortality rate among COPD patients (3).
COPD is an aging-associated condition characterized by
progressive and irreversible airway obstruction and tissue
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remodeling which presents as chronic bronchitis (CB) and
alveolar tissue destruction (4). CB patients often suffer from
dyspnea, cough and sputum production leading to increased
rates of exacerbation, accelerated lung tissue aging and decline
in lung function, reduced quality of life, and increased mortality
(4, 5). CB is more prevalent among COPD patients, with
approximately 74% patients reportedly affected with CB (5).

Among the environmental factors, cigarette smoke (CS) is the
primary risk factor associated with COPD development. CS
exposure induces inflammatory pathways and epithelial tissue
remodeling in conducting airways through goblet cell
hyperplasia and the loss of ciliary cells (2). CS exposure
induces epigenetic events such as DNA methylation, histone
modifications and notably, changes in expression of noncoding
transcripts such as microRNAs (miRNAs) and long noncoding
RNAs (lncRNAs) (6, 7). LncRNAs are noncoding transcripts
over 200 bases in length and may interact with proteins, DNA,
chromatin, and other RNAs to induce epigenetic and
transcriptomic changes, affecting cell and tissue functions (8).
A growing number of lncRNAs have been implicated in chronic
pulmonary conditions, including CS-related immune responses,
and inflammatory dysregulation (6, 9, 10). LncRNA-mediated
regulation of immune responses is potentially central to the
June 2022 | Volume 13 | Article 803362
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establishment of innate mucosal immunity, and dysregulated
expressions may promote hyperactive immune responses like
those observed in COPD subjects, following exacerbations. To
understand the molecular mechanisms through which lncRNA
regulate innate immune responses, we recently identified novel
lncRNAs that impact lung pathology. Specifically, we identified a
specific immunomodulatory lncRNA referred to as LASI, a
lncRNA antisense to ICAM-1, and confirmed its direct
involvement in modulating airway inflammatory and mucus
hyperexpression responses (11).

We recently observed that long-term mainstream CS
exposure results in airway remodeling in cynomologus
macaques (Macaca fascicularis) with augmented chronic
bronchitis (CB) and reduction in lung functions similar to
those observed in smoke-associated COPD (12). Based on the
important role of lncRNAs in COPD (6) and specifically LASI
lncRNA in airway epithelial cells (11), we hypothesized that LASI
lncRNA affected the CS-induced airway inflammation and
mucus hypersecretion in COPD. Herein, using the structured-
illumination imaging and RNA FISH, we found that LASI
lncRNA was upregulated in the small airway epithelium of an
animal model of chronic CS exposure as well as in former
smokers with COPD, and its expression correlates with
aggravated inflammatory and mucus secretory responses. In
addition, unstimulated airway cells from COPD subjects
showed strong association of higher LASI expression with
upregulated expression of mucin and other inflammatory
factors. Most importantly, we find blocking LASI expression
rescues impaired airway responses due to CS-mediated
dysregulations in COPD bronchial epithelial cells and the
ectopic overexpression of LASI lncRNA resulted in increased
expression of airway epithelial inflammatory factors.
MATERIALS AND METHODS

Human Lung Tissue Samples
Lung tissue samples were obtained from the Lung Tissue
Research Consortium (LTRC) from the National Institutes of
Health (NIH). The COPD patient cohorts are defined as patients
with a post-bronchodilator FEV1/FVC <0.7, currently the most
widely accepted and robust test for COPD. Although reports
have shown that early-stage COPD may present with
emphysematous or other pathologic changes prior to a
presentation of an FEV1/FVC <0.7, this test remains the
standard confirmation of COPD diagnosis. COPD patient
samples were compared to samples from GOLD stage 0
patients, which are defined as having normal spirometry
results, however, may have chronic symptoms such as cough
and sputum product, and may present with risk factors for
COPD such as smoking behavior (13). GOLD 0 individuals
may or may not progress to active COPD status and are classified
as pre-COPD (14). Both male and female subjects in each GOLD
stage were grouped together and all groups include both active
and former smokers. GOLD stage determination was made by
spirometry testing and assigned to the appropriate GOLD stage
Frontiers in Immunology | www.frontiersin.org 3104
group, per the protocols described by the National Heart, Lung,
and Blood Institute and World Health Organization (13). In this
report, GOLD stages I and II were defined as patients with mild
COPD status and GOLD stages III and IV were defined as
patients with severe COPD status. Each group had a minimum
n=6 with a mean age between 59.7 and 65.2 years old. All COPD
patients had a smoking history with average packs per year (PY)
ranging between 22.4 and 41.5 and former smokers had not been
smoking for an average of 13.2 and 22.9 years. Smoking history
was self-reported for all patients. Lung tissue homogenates
include epithelial tissue as well as other tissues and cell types.
Samples were obtained from varying anatomical regions of the
lungs, however all samples contained bronchial epithelial cells as
confirmed by expression of pan-cytokeratin (pan-CK) from
epithelial cells and MUC5AC mucin from secretory goblet cells.

M. fascicularis Cigarette Smoke Exposure
Female cynomolgus macaques (M. fascicularis) were exposed to
mainstream CS in H2000 whole body exposure chambers at 250
mg/m3 total suspended particulate matter (TPM) for 6 hours per
day, 5 days per week, corresponding to 4 packs of cigarettes per
day as described previously (12). At these concentrations C.
macaques develop observable changes in lung physiology within
three months of exposure. Lung resections and tissue sections
were obtained as described previously (12).

Human Bronchial Epithelial Cell Culture
and CSE Treatment
The primary HBECs from COPD and non-COPD donors were
obtained from the commercial suppliers (Lonza Inc. or MatTek
Corp). All primary cell lines were grown and treated in bronchial
epithelial cell growth media (BEGM from Lonza or UNC MLI
Tissue Procurement and Cell Culture Core). Air-liquid interface
(ALI) cultures of primary cells were grown in BEGM and
differentiated in bronchial ALI (B-ALI) differentiation media
(Lonza or UNC MLI Tissue Procurement and Cell Culture
Core), as described previously (11). ALI cultures were seeded
at a density of 5 x 105 cells/cm2 on collagen IV-coated Costar®

6.5 mm Transwells with 0.4 µm pore polyester membranes
(Corning Costar Corporation). Cells were differentiated for a
minimum of 21 days before treatments. Epithelial differentiation
was confirmed by live cell imaging of ciliary beatings and mucus
glycoprotein expression. For CSE preparation, CS particulate
matter collected on the filter membranes from mainstream
smoke of 3RF4 research cigarettes (courtesy Philip Kuehl,
Lovelace Biomedical) were used and final treatments at 20 µg/
ml CSE were used. Apical side epithelial cells were exposed to
treatments for 30 minutes at each treatment point. In addition,
paraffin-embedded tissue sections human COPD and healthy
control lungs were obtained from the LTRC.

Quantitative Real-Time PCR With Reverse
Transcription (qRT-PCR)
For all RT-qPCR analysis, total RNA extraction was performed
using the RNeasy Mini kit (Qiagen) according to manufacturer’s
instructions. RNA concentration was quantified using the
June 2022 | Volume 13 | Article 803362
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Synergy HTX reader (BioTek, VT). Complementary (c)DNA was
synthesized using the iScript Advanced cDNA synthesis kit (Bio-
Rad), per manufacturer’s instructions. FAM-based and SYBR
Green primers were used. The LASI, ICR, WAKMAR-2, NEAT1,
MALAT1 lncRNAs andMUC5AC and SPDEFmRNA levels were
quantified using FAM-based primer/probe sets and TaqMan
gene expression kit or the SsoFast qPCR master mix (Applied
Biosystems, Thermo Fisher). ICAM-1, IL6, and CXCL8 mRNA
levels were quantified using SYBR Green-based primers and the
iTaq master mix (Bio-Rad). qRT-PCR was conducted using the
Bio-Rad CFX Real-Time PCR detection system. Quantification
of the results was performed using the delta-delta (DD)Ct method
and U6 noncoding small nuclear RNA (snRNA) was used as a
reference gene for lncRNA expression levels and beta-actin and
GAPDH were used for mRNA expression levels as described
recently (15).

RNA Fluorescence In-Situ
Hybridization (FISH)
The RNAScope® 2.5 HD duplex assay and reagent kit (Advanced
Cell Diagnostics, Biotechne) was used for RNA FISH as per the
manufacturer’s instructions. A double-Z probe set against LASI
was designed containing 20 dual probes targeting various
segments across the LASI lncRNA. RNA FISH was conducted
on paraffin-embedded 5 µm tissue sections obtained from the
LTRC of the NIH. Deparaffinization was conducted in
consecutive xylene, graded ethanol, and deionized water.
Pretreatment was conducted with hydrogen peroxide solution
and the RNAScope® target retrieval buffer and protease plus
solutions were used to exposure the antigen. Probe hybridization
was conducted for 2 hours at 40°C in the HybEZ® II oven. The
signal was amplified using the Amp1, Amp2, Amp3 and the HRP
probe at 40°C in the HybEZ® II oven. The signal was detected
using the tyramide signal amplification (TSA) reaction with an
Alexa fluor labeled TSA kit (Perkin Elmer). Sections were then
processed for immunohistochemistry or directly mounted with
the 4 ’ ,6-diamidino-2-phenylindole (DAPI)-containing
Fluormount-G (Southern Biotechnology). Images were
captured using the Keyence BZ-X700 structured illumination
fluorescent microscope. Analysis was conducted with the
Keyence BZ-X analysis software and using the ImageJ software
(NIH). RNA FISH quantification was conducted according the
RNAScope® histo (H)-score methodology. In each image, probe
signals were counted for each cell, both in the nuclear and
cytosolic region and assigned to appropriate bins: bin 0 (no
signals), bin 1 (1-3 signals/cell), bin 2 (4-9 signals/cell), bin 3 (10-
15 signals/cell) and bin 4 (>15 signals/cell). The H-score was
calculated as follows: H-score was the sum of each bin multiplied
by the percentage of cells that fall into that bin. H-score = (0 x %
cells in bin 0) + (1 x % cells in bin 1) + (2 x % cells in bin 2) + (3 x
% cells in bin 3) + (4 x % cells in bin 4). Final H-scores ranged
from 0 to 400 per group.

Immunohistochemistry
Tissue sections or fixed cells were washed in 0.05% V Brij-35 in
PBS+. Antigen retrieval was performed using 10 mM citrate
Frontiers in Immunology | www.frontiersin.org 4105
buffer (pH 6.0). Blocking solution (1% NDS, 3% BSA, 1% gel,
0.2% TX-1000 and 0.2% saponin in PBS+) incubation was
conducted for 1 hour at room temperature followed by
incubation at 4°C overnight with primary antibodies against
mucin MUC5AC (Millipore Sigma) and pan-cytokeratin (pan-
CK, Santa Cruz Biotechnology). Appropriate DyLight®

fluorescently-conjugated secondary antibodies (Abcam) were
used, and sections were incubated for 1 hour at room
temperature. Sections were mounted with DAPI-containing
Fluormount-G. Immunofluorescent images were captured
using the Keyence BZ-X700 microscope and image analysis
was conducted using the ImageJ software (NIH). Mean
fluorescence intensity per number of epithelial cells was used
to compare mucin MUC5AC expression levels. Pan-CK was used
as a confirmation of epithelial cell identity.

Histochemical Analyses
Tissue sections were deparaffinized and hydrated in graded
ethanol and deionized water. Histochemical staining was
conducted with Alcian blue-period acid Schiff (AB-PAS) or AB
followed by hematoxylin and eosin (H&E) or AB-H&E staining
as described (16). The mucus secretory cells (goblet/mucous
cells) were quantified as a total number of AB-PAS+ or just AB+
cells per mm basal lamina for each image.

Enzyme-Linked Immunosorbent
Assays (ELISAs)
Culture media and apical cell culture washes from NHBEs and
CHBEs differentiated in 3D ALI culture for 28 days was collected
prior to CSE treatment and every two days after treatment. Final
apical washes and culture media supernatant were collected prior
to the termination of the experiment and was either stored at
-80°CC or processed for analysis. The protein levels of
MUC5AC, ICAM-1, and IL-6 were determined using human
ELISA kits against MUC5AC (MyBioSource Inc., San Diego,
CA), ICAM-1 (LifeSpan Biosciences Inc., Seattle, WA), and IL-6
(BioLegend Inc., San Diego, CA), respectively, as per
manufacturers’ instructions.

Immunofluorescent Cytometry
For immunostaining analyses, cell cultures grown in Nunc™ Lab-
Tek™ II 8-chamber slide system were washed using 0.05% v Brij-35
in PBS(+) and immunostained as described previously (11). Cells
were stained with antibodies to mucin MUC5AC (Millipore, Inc.),
ICAM-1 (Cell Signaling Technology, Inc.) and pan cytokeratin (Cell
Signaling Technology, Inc.). Immunostained cells were detected
using respective secondary fluor-conjugated antibodies (Thermo
Fisher Scientific, Inc) and mounted with DAPI-containing
mounting media. Immunofluorescent images were captured using
a Keyence BZ-X710 all-in-one fluorescence microscopy system and
were analyzed using Keyence analysis software and Image J software
(National Institutes of Health). Labtech slides of NHBEs and
CHBEs treated with or without CSE were immunostained
for MUC5AC or ICAM-1 separately. Labtech slides stained for
eitherMUC5AC or ICAM-1were imaged, three random images per
well were captured with 2 wells per treatment and a total of 200
June 2022 | Volume 13 | Article 803362
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cellswere counted per treatment group and the percent positive cells
were calculated, as described earlier (11).

lncRNA LASI Overexpression
A full-length LASI lncRNA sequence was cloned into a pLenti-
GIII-CMV-GFP-2A-Puro vector and a high titer lentivirus
preparation was obtained from Applied Biological Materials Inc.
(Richmond, Canada). Primary HBECs cultured overnight in 6-
well plates were transduced with LASI-overexpression (LASI-OE)
lentiviral preparation at 0.5 and 2 MOI (multiplicity of infection)
using a culture media containing 8 µg/ml of polybrene (Sigma). Set
of control cells were also transduced similarly with empty vector
lentiviral preparation (Lenti-EV) at 0.5 and 2 MOI. The GFP-tag
fluorescence was followed to assess the transduction efficiency.
Forty-eight-hour post-transfection, cells were harvested, and
qPCR was performed for expression analysis of LASI lncRNA
and other transcripts. Mock-transduced cells (or cells with 0 MOI)
were used as controls to analyze the expression levels.

Statistical Analysis
Grouped results were expressed as mean ± SEM and p<0.05 was
considered significant. Data were analyzed using GraphPad
Prism Software (GraphPad Software Inc.) using one-way
analysis of variance (ANOVA) with and Tukey’s multiple
comparison test or using a two-tailed t test for comparison
between two groups. When significant main effects were
detected (p<0.05), student’s t test was used to determine
differences between the groups. All in-vitro studies were
performed following 3 separate experiments. NHBEs and
Frontiers in Immunology | www.frontiersin.org 5106
CHBEs were obtained from three different donors for the
baseline and the CSE-treatment analysis.
RESULTS

Chronic CS Exposure Results in Goblet/
Mucous Cell Hyperplasia and Increased
LASI lncRNA Expression in Bronchial
Airway Epithelium
We recently analyzed the effects of long-term CS exposure in a
large animal model where cynomologus macaques (M.
fascicularis) were exposed to mainstream CS for twenty-seven
weeks, where CS-exposed macaques showed COPD-like
respiratory phenotypes (12). Here, we specifically analyzed
the bronchial epithelial responses in archived lung tissues of CS-
exposed macaques and filtered room-air (FA) exposed control
macaques (n=4 each). Compared to FA group, CS-exposed
macaque lungs showed significant bronchial airway epithelial
remodeling with augmented goblet/mucous cell hyperplasia
(Figure 1A) as analyzed by histochemical staining using AB-
PAS reagent. There were 2.6-fold higher number of AB-PAS+
goblet/mucous cells per mm basal lamina (BL) in CS-exposed
macaques compared to FA group (Figure 1B). The expression
levels of secretory mucin MUC5AC mRNA were 3-fold higher in
CS group compared to FA macaques (Figure 1C) as determined
by qRT-PCR. CS-induced MUC5AC expression was also
corroborated by immunostaining of bronchial tissue sections
A B D E

F G H

C

FIGURE 1 | Chronic cigarette smoke (CS) exposure of cynomolgus macaques results in goblet/mucous cell hyperplasia that is strongly associated with increased
LASI lncRNA expression in bronchial airways. Bronchial airway tissues from C. macaques exposed to mainstream CS or control filtered-air (FA) for 27 weeks as
reported recently (12) were analyzed. (A) Representative histomicrographs of bronchial tissue sections showing AB-PAS-stained goblet/mucous cells in CS- and FA-
exposed macaques, scale – 10 µm. (B) Number of AB-PAS+ cells quantified per mm of basal lamina (BL) in each group. (C) Relative quantity of secretory mucin
MUC5AC mRNA in CS-exposed macaques compared to FA-controls as determined by qPCR. (D) Representative micrographs of bronchial tissue sections showing
MUC5AC immunopositivity in CS- and FA-exposed macaques, scale – 5 µm. (E) Percentage of MUC5AC+ cells over the total epithelial cells quantified for each
group. (F) Relative quantity of LASI lncRNA in CS-exposed macaques versus FA-controls as determined by qPCR. (G) Representative micrographs showing LASI
lncRNA expression in FA and CS macaques as determined by FISH, scale – 5 µm. (H) Quantification of LASI lncRNA expression in bronchial epithelial cells of each
group as determined by H-score analysis described earlier (11). Data shown as mean ± SEM; n=4/gp and analyzed by student’s t-test; **p<0.01; ***p<0.001.
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(Figure 1D) with 7.9-fold higher percentage of MUC5AC-positive
(MUC5AC+) cells observed in CS macaques over FA group
(Figure 1E). Thus, chronic CS exposure results in goblet cell
hyperplasia with increased expression of MUC5AC mucin.

LncRNAs are essential regulators of smoke mediated
inflammatory responses (6, 7) and based on the critical role of
LASI lncRNA in airway inflammatory andmucus hyperexpression
(11), we analyzed the effects of CS on bronchial epithelial LASI
lncRNA expression. Compared to the FA group, we observed a
2.4-fold increase in LASI transcript levels in CS-exposed macaques
(Figure 1F). Cellular LASI expression levels were further analyzed
by performing RNA-FISH as described previously (11), which
allowed for single RNA molecule-level resolution and subcellular
localization evaluation (Figure 1G). We found that the number of
LASI lncRNA transcripts per cell was significantly upregulated
upon CS treatment (Figure 1H). Overall, in a large animal model
of chronic CS exposure, bronchial epithelial cells show a strong
correlative increase in LASI lncRNA levels and MUC5AC
mucin expression.

Disease Severity Associated Increased
Mucin Expression, Inflammation, and
Mucous Cell Hyperplasia in COPD Airways
Next, we analyzed the archived lung tissue samples obtained
from 14 COPD patients and 6 control donors with no-COPD
(Table 1). All the samples were from former smokers with or
without COPD were stratified based on the NIH and WHO’s
Global Initiative for Chronic Obstructive Lung Disease
(GOLD) criteria (17). According to these criteria, six donor
patients had mild (GOLD stage 1 or 2) COPD, and eight donor
patients had severe (GOLD stage 3 or 4) COPD. To evaluate
airway mucoglycoproteins (mucins) and mucous/goblet cells,
tissue sections were stained with AB-H&E as described (11).
Among the severe COPD patients, the small airways had
disproportionately prominent mucus masses or plugs
(Figure 2A). Based on the number of AB+ mucous cells in
each group, there was a significant increase in mucus expressing
cells in severe COPD tissue samples (Figure 2B). Specifically,
there were 31.6, 82.9, and 113.4 mucous cells per mm BL in no-
COPD, mild-COPD, and severe-COPD samples, respectively.
Mucus hypersecretion is a driving factor of COPD pathology
and CS exposure induces the of secretory mucin MUC5AC
levels (17–21). We also found thatMUC5ACmRNA levels were
significantly upregulated in mild and severe COPD tissue
samples, with 44- and 30-fold higher expression, respectively,
compared to no-COPD control tissues (Figure 2C). In
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addition, we immunoprobed the tissue samples for MUC5AC
protein expression and both mild and severe COPD samples
showed higher MUC5AC immunopositivity (Figure 2D).
Compared to no-COPD controls, there was a 4.2-fold and
6.8-fold increase in the percentage of MUC5AC+ cells in
mild and severe COPD samples, respectively (Figure 2E).
However, there was no significant change in the expression
levels of a master transcriptional regulator of mucus response,
SPDEF (Supplementary Figure S1A). Among inflammatory
factors, mRNA levels of IL-6 were upregulated in mild COPD
samples only (Supplementary Figure S1B) and ICAM-1
mRNAs showed a trend towards upregulated expression in
mild and severe COPD tissue samples, as compared to no-
COPD controls (Supplementary Figure S1C). These data
corroborate the association of small airway tissue pathology
with clinically defined COPD disease status and increased
mucoinflammatory responses among COPD subjects.

LASI lncRNA Levels Are Upregulated in
COPD Airway Epithelium
We next investigated the correlation between the airway
epithelial LASI lncRNA expression and the mucoinflammatory
phenotype of COPD tissue samples. The transcript expression
levels in lung tissue homogenates of COPD and no COPD
control samples were evaluated by qRT-PCR. LASI transcript
levels were 4-fold and 6-fold higher in the mild COPD (n=6) and
severe COPD tissue samples, (n=8), respectively, compared to
no-COPD control tissues (n=6) (Figure 2F). We also
investigated of the expression of other lncRNAs such as,
ICAM-1-related lncRNA (ICR), which regulates ICAM-1
expression by mRNA stabilization via direct interaction
and duplex formation (22), but there was no significant change
in ICR levels among COPD tissue samples (Supplementary
Figure S1D). Similarly, there was no change in the expression
levels of highly prevalent lncRNA NEAT1 or nuclear enriched
assembly transcript 1 (Supplementary Figure S1E) and
MALAT1 or metastasis associated lung adenocarcinoma
transcript 1 (Supplementary Figure S1F). NEAT1 lncRNA has
been implicated as a potential prognostic marker of COPD
exacerbations where its expression level correlated with disease
severity (23). Similarly, MALAT1 lncRNA has been proposed as
a potential therapeutic target because silencing its expression
blocked the COPD-associated lung remodeling (10). We also
analyzed the expression levels of lncRNA calledWAKMAR2 or a
wound and keratinocyte migration-associated lncRNA, which
regulates the proinflammatory responses in keratinocytes (24)
and there were no significant changes among COPD subjects
(Supplementary Figure S1G).

To further corroborate the COPD-associated LASI lncRNA
expression levels and to evaluate airway epithelium specific
expression, we conducted RNA-FISH to examine LASI expression
at a single RNA molecule resolution and evaluate the LASI
subcellular localization (Figure 2G). We found that in small
airways, both mild and severe COPD tissue samples present with
significantly upregulated LASI expression as compared to non-
COPD controls. There was 1.4- and 1.6-fold higher LASI expression
TABLE 1 | Demographics of the study cohort of COPD patients with clinically-
defined GOLD stage severity and self-reported smoking history.

No COPD Mild COPD Severe COPD

Age* 54.2±3.2 69.2±3.9 65.1±2.7
Gender, M/F 3M/3F 4M/2F 3M/5F
Smoking in PY* 54.0±12.6 (2) 29.9±10.7 (3) 35.0±2.8 (3)
Stop Smoking (Y)* 6.6 ± 1.6 21.4±12.8 11.9±2.5
*Mean±SEM; M, Male; F, Female; PY, Packs per Year; Y, Years.
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in pan-cytokeratin+ epithelial cells of mild and severe COPD
tissues, respectively (Figure 2H). LASI transcripts were found
both in the perinuclear and the cytosolic regions of bronchial
epithelial cells. Collectively, these data suggest a strong correlation
between LASI lncRNA expression and mucus hypersecretion,
mucous cell hyperplasia, and COPD pathogenesis.
Primary HBECs From COPD Patients
Show Higher Transcript Levels of LASI
lncRNA and Mucoinflammatory Factors
To assess epithelial cell-specific responses, we next cultured
primary differentiated human bronchial epithelial cells
(HBECs) obtained from COPD donors (CHBEs) and
compared with HBECs from control donors with no-COPD
(NHBEs). Primary NHBEs and CHBEs were differentiated on
air-liquid interface (ALI), as 3D airway cultures. We first
compared the baseline differences between differentiated
Frontiers in Immunology | www.frontiersin.org 7108
NHBEs and CHBEs, without any treatment or stimulation.
Among the lncRNAs analyzed, expression levels of ICAM-1
loci associated lncRNAs, LASI (Figure 3A) and ICR
(Figure 3B) were 6.2- and 8.0-fold higher in unstimulated
CHBEs compared to NHBEs, respectively. Expression levels of
other lncRNAs were also higher in CHBEs with NEAT1,
MALAT1, and WAKMAR-2 lncRNAs expressed at 3.3-, 1.6-,
and 3.2-fold higher in CHBEs compared to NHBEs, respectively
(Supplementary Figures S2A–C).

Next, we examined the baseline expression of epithelial
inflammatory factors and secretory mucins in NHBEs and
CHBEs. Compared to NHBEs, the MUC5AC mucin
(Figure 3C), ICAM-1 (Figure 3D), and IL-6 (Figure 3E)
mRNA levels were 3.0-, 4.6-, and 6.0-fold higher in CHBEs. In
order to determine whether the changes in transcript levels
recapitulate the secretory protein levels, we analyzed the
MUC5AC protein levels in apical wash samples and found that
MUC5AC levels were approximately 39.1 ng/ml and 152.2 ng/ml
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FIGURE 2 | Archived airway sections of COPD patients show increased mucus expression and goblet cell hyperplasia along with increased LASI lncRNA
expression in epithelial cells. (A) Representative histomicrographs of airway tissue sections from subjects with No, Mild, or Severe COPD stained with alcian blue
(AB). Images are shown at 100x magnification and inset images are magnified 400x in the right panels. (B) Quantification of AB+ mucous/goblet cells per mm of
basal lamina (BL). (C) Relative quantities of MUC5AC mRNA levels in tissues from mild and severe COPD subjects compared to control subjects with no COPD,
analyzed by qRT-PCR. (D) Micrographs showing MUC5AC mucin immunopositivity (green) in tissue sections and counterstained with DAPI (shown in blue) to
identify nuclei, scale – 10 µm. (E) Quantification of MUC5AC+ cells per mm BL in each group. (F) Quantitation of LASI lncRNA levels in mild and severe COPD
subjects compared to control subjects with No COPD. (G) Micrographs showing LASI lncRNA levels in airway epithelial cells of patient bronchial tissues. LASI
lncRNAs were detected by RNA-FISH (shown in red) and epithelial cells were immunostained by pan-cytokeratin (panCK, shown in green) antibody, and nuclei
(shown in blue) were stained by DAPI. Lower panels show magnified images of the insets drawn in upper panels (scale – 5µm). (H) Quantitation for LASI
lncRNAs per epithelial cell as measured by H-score analysis. Data shown as mean ± SEM; n=6-8/gp; data analyzed by ANOVA with multiple comparisons;
*p<0.05; **p<0.01; ***p<0.001.
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in NHBEs and CHBEs, respectively (Figure 3F). Protein levels of
ICAM-1 and IL-6 were analyzed in NHBE and CHBE basal
culture media supernatants. Secreted ICAM-1 levels were
approximately 29.9 pg/ml and 200.8 pg/ml in NHBE and
CHBE culture media, respectively (Figure 3G), with a 6.7-fold
increase in CHBEs. Similarly, average secreted IL-6 level in
NHBE culture media was 60.6 pg/ml whereas in CHBE culture
media was 399.8 pg/ml (Figure 3H). Collectively, these data
suggest a strong dysregulation of inflammatory responses in the
bronchial epithelial cells in COPD with coordinated changes in
lncRNA, mRNA, and protein expression.

CS Exposure Results in an Augmented
Inflammatory Response in COPD HBECs
To evaluate the CS-induced response, CHBEs and NHBEs were
treated with 20 mg/ml CSE for 48h as described previously (25), and
Frontiers in Immunology | www.frontiersin.org 8109
total cell RNA was evaluated for changes in lncRNAs and
inflammatory factors’ expression. Interestingly, both ICAM-loci
associated lncRNAs, LASI (Figure 4A) and ICR (Figure 4B) were
significantly upregulated with 3.3-fold and 1.9-fold upregulation in
CSE-treated CHBEs, respectively, as compared to CSE-treated
NHBEs. However, expression levels of NEAT1 and MALAT1
lncRNAs failed to show any significant change following CSE
treatment (Supplementary Figures S3A, B), but the WAKMAR-2
lncRNA levels were 2.8-fold higher following CSE-treatment of
CHBEs over NHBEs (Supplementary Figure S3C). This change
in CSE-induced lncRNAs directly correlated with expression of
ICAM-1 mRNA, which was 2.0-fold upregulated in CSE-treated
CHBEs than NHBEs (Figure 4C). No significant changes were
observed in CSE-induced IL-6 and CXCL-8 mRNA expression
between CHBEs and NHBEs (Figures 4D, E). These data suggest
that the CSE induces a dysregulated response in NHBEs, and the
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FIGURE 3 | Differentiated bronchial epithelial cells from COPD subjects show increased expression of immunomodulatory lncRNAs, MUC5AC mucin, and IL-6 and
ICAM-1 compared to control cells from non-COPD donors. Relative transcript levels for lncRNA LASI (A), and ICR (B) in 3D cultured and unstimulated NHBE and
CHBE cells as determined by qRT-PCR. Relative mRNA levels of MUC5AC (C), ICAM-1 (D), and IL-6 (E) inflammatory factors. Quantification of secretory MUC5AC
mucin levels (F) in the apical washes, and the secreted ICAM-1 (G), and IL-6 (H) levels in basal media supernatant as analyzed by specific sandwich ELISA assays.
Data shown as mean ± SEM as fold-change over NHBEs; n = 3/gp; data analyzed by student’s t-test; *p<0.05; **p<0.01.
A B D EC

FIGURE 4 | Cigarette smoke exposure of COPD bronchial epithelial cells induces higher levels of immunomodulatory lncRNAs, and inflammatory factor mRNAs
compared to non-COPD control cells. Primary NHBEs and CHBEs grown in submerged culture setting were treated with a 20 µg/ml cigarette smoke extract (CSE)
and forty-eight hours after treatment cells were harvested and qRT-PCR was performed. Relative transcript levels for lncRNA LASI (A), and ICR (B) in CSE-treated
NHBE and CHBE cells as determined by qRT-PCR. Relative mRNA levels of ICAM-1 (C), IL-6 (D), and CXCL-8 (E) inflammatory factors. Data shown as mean ±
SEM as fold-change over NHBEs; n=3/gp; data analyzed by student’s t-test; *p<0.05; **p<0.01.
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responses are further potentiated in CHBEs; and that there is a
potential direct regulatory relationship between LASI and ICR
lncRNAs and ICAM-1 expression.

To further substantiate these findings, we additionally
performed cytometric analysis of MUC5AC and ICAM-1
protein expression in NHBEs and CHBEs grown on Labtech®

slides and treated with 20µg/ml CSE for 48h. The cells showing
immunopositivity for MUC5AC (MUC5AC+) and ICAM-1
(ICAM-1+) were quantified and there was a 2.3-fold increase
in MUC5AC+ cells in CSE-treated NHBEs, and a 15.4-fold
increase in CSE-treated CHBEs (Figures 5A, B). Similarly,
NHBEs showed a 2.3-fold increase in ICAM-1+ cells, while
CHBEs showed a 2.9-fold increase in ICAM-1+ cells upon CSE
treatment (Figures 5C, D). These data further suggest that CS
insult causes CHBEs to respond with a significantly more severe,
dysregulated mucus secretory and inflammatory response.

Knocking Down LASI Expression
Suppresses the Smoke-Induced
Inflammation, Mucin Expression, and
Mucus Cell Hyperplasia
In order to determine whether the correlation between LASI
lncRNA with MUC5AC and ICAM-1 expression is functionally
Frontiers in Immunology | www.frontiersin.org 9110
significant, we genetically silenced LASI lncRNA expression
using siRNAs targeting LASI (siLASI), as described previously
(11), in differentiated CHBEs then challenged with 20 mg/ml CSE
for 48h. CHBEs transfected with negative control siRNA
(siCTRL) followed by 48 h 20 mg/ml CSE treatment served as
controls. Compared to siCTRL, the siLASI-transfected CHBEs
showed a 37.5% reduction in LASI lncRNA expression
(Figure 6A). Interestingly, even with this moderate reduction
in LASI expression, there was a 63.9% reduction in CSE-induced
MUC5AC mRNA levels in siLASI-transfected CHBEs
(Figure 6B), suggesting that functional availability of LASI
lncRNA is necessary for CSE-mediated induction of MUC5AC
expression in CHBEs. Notably, we found no change in SPDEF
transcription factor levels (Supplementary Figure S4A),
suggesting that a CSE-induced and LASI-mediated MUC5AC
expression may not be dependent on SPDEF-mediated
transcriptional upregulation. Expression levels of another
airway secretory mucin, MUC5B mRNA were not changed in
siLASI-transfected CHBEs (Supplementary Figure S4B). We
also evaluated the changes in the CSE-mediated inflammatory
responses in siLASI-transfected CHBEs. Notably, we found that
siLASI induced a significant 36.2% reduction in ICAM-1 mRNA
levels (Figure 6C) and a 66% reduction in IL-6 mRNA levels
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FIGURE 5 | Cigarette smoke treatment augments mucous cell hyperplasia in CHBEs with higher ICAM-1 protein expression compared to non-COPD control cells. Primary
NHBEs and CHBEs grown in LabTek-II® slides were treated with a 20 µg/ml CSE and forty-eight hours after treatment cells were fixed with 4% paraformaldehyde (PFA) and
processed for staining with antibodies against MUC5AC and ICAM-1. (A) Representative micrographs showing MUC5AC immunopositivity (shown in green) in NHBEs and
CHBEs treated with CSE or left non-treated (NT), and nuclei were stained by DAPI (shown in blue), scale – 10µm. (B) Quantification of MUC5AC-positive (+) cells in NHBEs
and CHBEs treated with CSE compared to NT cells. (C) Representative micrographs showing ICAM-1 immunopositivity (shown in red) in NHBEs and CHBEs treated with or
without CSE, scale – 10 µm. (D) Quantification of ICAM-1-positive (+) cells in NHBEs and CHBEs treated with CSE compared to NT controls. Data shown as mean ± SEM as
fold-change compared to NT cells; n=3/gp; data analyzed by ANOVA; *p<0.05; ****p<0.0001.
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(Figure 6D), suggesting that LASI lncRNAmay contribute to the
expression of these inflammatory factors. However, expression
levels of inflammatory factor CXCL-8 mRNAs were not changed
in siLASI-transfected CHBEs (Supplementary Figure S4C).

Next, we used sandwich ELISA to measure the secreted
protein levels of mucin MUC5AC, and cytokines ICAM-1 and
IL-6 in siLASI-transfected CHBEs followed by 48h CSE
treatment. Interestingly, apical wash from siCTRL-transfected
CHBEs had 236.6 ng/ml of mucin MUC5AC while the siLASI-
transfected CHBEs had 73.9 ng/ml (Figure 6E). Furthermore,
the culture media supernatants from the siLASI-transfected
CHBEs had 298.2 pg/ml IL-6 levels compared to the 765.8 pg/
ml in siCTRL-transfected CHBEs (Figure 6F), Similarly, siLASI-
transfected CHBEs secreted 105.3 pg/ml ICAM-1 levels whereas
the siCTRL-treated CHBEs secreted 138.3 pg/ml (Figure 6G).
Overall, siLASI-transfected CHBEs showed a 2.6-fold reduction
in IL-6 and a 1.3-fold reduction in ICAM-1 secretory levels
following CSE treatment over siCTRL-transfected CHBEs.
Notably, CSE-induced MUC5AC mucin secretion was reduced
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by 3.2-fold in siLASI-transfected CHBEs compared to the
siCTRL-transfected CHBEs.

We further corroborated the data by immunoprobing the
siCTRL- and siLASI- transfected CHBEs for MUC5AC and
ICAM-1 protein expression following 48 h CSE treatment
(Figures 6H, J). We found that silencing LASI expression by
siLASI resulted in a 3.1-reduction in MUC5AC-expressing
(MUC5AC+) cells (Figure 6I) and a 2.5-fold reduction in cell
expressing ICAM-1 protein (Figure 6K). These data strongly
suggest lncRNA LASI represents an important regulatory
mediator in the CS-induced pathophysiological changes
observed in COPD airways, including dysregulated immune
response and chronic mucus hypersecretion.

Ectopic LASI lncRNA Expression
Results in Increased Expression of
Inflammatory Factors
To determine whether LASI lncRNA directly mediates the
expression of inflammatory factors, a lentiviral preparation
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FIGURE 6 | Silencing LASI lncRNA suppresses the CSE-induced mucoinflammatory responses whereas LASI overexpression augments the expression of
inflammatory factors. CHBEs grown in 3D ALI tissue culture conditions were transfected with either siRNA targeting LASI (siLASI) or scrambled control siRNA
(siCTRL), and cells were treated with 20 µg/ml CSE to obtain CSE+siLASI and CSE+siCTRL cells, respectively. Cells harvested forty-eight hours post CSE-treatment
were analyzed for the expression levels of LASI lncRNA (A), and mRNA levels of MUC5AC (B), ICAM-1 (C), and IL-6 (D) by qRT-PCR. Apical washes from 3D tissue
cultures were analyzed for MUC5AC mucin (E) by ELISA, and the basal media supernatants were analyzed for ICAM-1 (F), and IL-6 (G) protein levels by specific
ELISA assays. (H) Representative micrographs of CHBEs transfected with siCTRL or siLASI and treated with CSE showing MUC5AC mucin immunopositivity (shown
in green) and nuclei were stained by DAPI (shown in blue), scale – 5µm. (I) Quantification of MUC5AC+ cells among CSE+siLASI CHBEs, shown as percentage of
CSE+siCTRL cells. (J) Micrographs of CHBEs showing ICAM-1 immunopositivity (shown in red), scale – 5 µm. (K) Quantification of ICAM-1+ CHBEs. Data shown as
mean ± SEM compared to CSE+siCTRL cells (n=4); data analyzed by student’s t-test; *p<0.05; ***p<0.001; ****p<0.0001. (L) Representative micrographs of cells
transduced with 0, 0.5, and 2 MOI of LASI-OE lentiviral preparation showing GFP reporter fluorescence (shown in green) and phase contrast images of cells, scale –

5µm. Cells harvested forty-eight hours post-transduction were analyzed for expression levels of LASI lncRNA (M), and mRNA levels of ICAM-1 (N), IL-6 (O), and
CXCL-8 (P) by qRT-PCR. Data shown as mean ± SEM compared to mock-transduced cells (0 MOI); data analyzed by ANOVA with multiple comparisons; **p<0.01;
***p<0.001; ****p<0.0001.
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encoding LASI lncRNA was used to transduce airway epithelial
cells, and the ectopic LASI overexpression (LASI-OE) was
followed by assessing GFP-tag fluorescence (Figure 6L).
Compared to mock-transduced (0 MOI) controls, cells
transduced with 0.5 and 2.0 MOI of lentivirus-LASI resulted in
1.7- and 4.0-fold increased expression of LASI lncRNA,
respectively (Figure 6M). Set of control cells transduced with
empty vector lentiviral preparation (Lenti-EV) showed no
change in the expression of airway LASI lncRNA or associated
inflammatory factor mRNAs (Supplementary Figure S5).
Interestingly, LASI-OE cells showed two-fold or higher levels
of ICAM-1 mRNA expression (Figure 6N) and expression levels
of IL-6 (Figure 6O) and CXCL-8 (Figure 6P) mRNAs were also
increased by as much as eight- and four-fold, respectively. Thus,
ectopic overexpression of LASI lncRNA directly upregulates the
airway epithelial inflammatory factor mRNA levels.
DISCUSSION

CS exposure is the most important and the best-studied risk
factor associated with COPD. That said, studies are needed to
unravel novel underlying molecular pathways for improved
diagnostic and therapeutic interventions for CS-induced
pathologies and COPD-related comorbidities. The newly
discovered lncRNA molecular species are now being proposed
as novel cellular entities that play an important role in physiology
and pathophysiology (6, 26). We have recently identified novel
immunomodulatory lncRNAs that may play a crucial role in
airway inflammatory responses. In the present study, we find a
strong association of immunomodulatory LASI lncRNA
FIGURE 7 | Schematic representation on the potential role of bronchial epithelial LAS
and inflammatory responses.
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expression with CS-induced airway mucus hyperexpression
and inflammatory responses as summarized in Figure 7. The
correlation was observed both in a large animal model of CS-
induced COPD, and in lung tissue samples from former smokers
with COPD in comparison with tissues from former smokers
with no COPD. We found that lung tissue samples of CS-
exposed macaques and those of COPD patients (with mild and
severe COPD) presented with an increased LASI lncRNA
expression in bronchial airway epithelial cells. LASI lncRNA
expression correlated to the increased expression of secretory
mucin MUC5AC, and innate airway inflammatory factors, IL-6,
and ICAM-1, which were all upregulated in COPD tissue
samples and in macaques exposed to mainstream CS. These
data suggested that LASI lncRNA may play a role in smoke-
associated bronchial epithelial remodeling and COPD. To
validate the airway epithelial specific significance of LASI
lncRNA in CS-induced responses, we utilized a 3D airway
tissue culture model of primary HBECs from COPD and
compared the baseline and CSE-induced responses to that of
control cells from donors with no COPD. We found that
unstimulated CHBEs, show a baseline upregulation of LASI
lncRNA, along with other immunomodulatory lncRNAs such
as ICR, NEAT1, MALAT1, and WAKMAR2. However, none of
these lncRNAs were responsive to CSE-treatment except for
LASI and ICR lncRNAs. This led us to explore the responses to
CS exposure and LASI was the only lncRNA explored in this
report which showed a potentiated dysregulated response to CSE
treatment in CHBEs as compared to NHBEs. LASI lncRNA
further showed a strong correlation with expression levels of
ICAM-1, as well as IL-6 and CXCL-8, suggesting a functional
importance in COPD pathogenesis. Accordingly, we knocked
I lncRNA in CS-induced and COPD-associated airway mucus hyperexpression
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down LASI lncRNA expression in CHBEs and discovered that a
reduction in LASI lncRNA expression resulted in a significant
reduction in CSE-induced mucoinflammatory response by
reducing the expression of MUC5AC, IL-6, and ICAM-1 levels
both at mRNA and protein levels. These data thus collectively
implicate LASI lncRNA as a novel mediator of CS-induced and
COPD-associated airway pathophysiologies. Moreover, even in
the absence of any external stimulation, the ectopic
overexpression of LASI lncRNA directly upregulated the
transcript levels of airway inflammatory factors, suggesting that
LASI lncRNA may be directly involved in the transcriptional
upregulation or mRNA stability of these inflammatory factors.

Cigarette smoking is strongly associated with COPD where
more than 50% of COPD patients are active smokers and over
70% have a history of smoking. Notably, over 50% of COPD
mortality is attributable to active smoking (27). Patients who are
exposed to CS present with exacerbated mucus secretory and
airway inflammatory conditions. As such, the dysregulated
response to smoke exposure may provide the most useful
insight into the severe COPD pathology and potentially fatal
exacerbations (28, 29). However, due to limitation of the
longitudinal sampling from human COPD subjects and the
other genetic and environmental heterogeneity, animal models
of COPD following chronic CS exposure are widely studied to
understand the smoke-mediated disease pathogenesis. Small
animal models of CS exposure do not recapitulate all aspects of
human COPD specifically in bronchial airway remodeling and
therefore, we recently performed a study using the cynomologus
macaque model of chronic CS exposure. Following 27-weeks of
mainstream CS exposure, these animals show reduced lung
functions and chronic bronchitis similar to that observed in
COPD smokers compared to control macaques kept in room air.
Thus, we were able to employ the archived lung tissues from
these well-characterized macaques to establish the correlation
of CS-induced airway inflammatory responses with airway
lncRNA expression. Due to the labor- and time-intensive
nature of these large animal model studies, we are currently
analyzing whether there is a murine homolog of LASI lncRNA or
if there is any other airway-specific lncRNA of rodent airways
involved in CS-mediated inflammation. Accordingly, future
studies will be planned to test the in-vivo efficacy of targeting
lncRNAs in suppressing CS-mediated airway remodeling and
mucoinflammatory responses.

Airway mucus hypersecretion is the hallmark of COPD
pathogenesis, enabling the compounding cascade of
inflammation, ROS generation, and airborne pathogen
retention in airways due to compromised mucociliary
clearance, distal airway occlusion and inability to effectively
clear the airways (4). Airway mucins MUC5AC and MUC5B
are the predominant gel-forming mucins in COPD, and CS
exposure and frequent bacter ia l or vira l infect ion
synergistically amplify MUC5AC levels (17–21). Several other
inflammatory biomarkers have been implicated with COPD and
smoke-associated exacerbations (26). Among the most
prominent factors are the ICAM-family proteins, specifically
ICAM-1, and an innate inflammatory cytokine, IL-6 which
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have shown strong association to decreased lung function in
COPD, both in active and former smokers with varying degree of
severity (30). Airway epithelial cells play a vital role in the
secretion of ICAM-1 and IL-6, and could serve as drivers of
the chronic changes observed in COPD (31).

Till date, thousands of lncRNAs have been discovered,
however, studies on the functional significance of the changes
in lncRNA expression are lacking. The structural flexibility and
3D-conformation enables lncRNAs to interact with large
number of cellular macromolecules including proteins, DNA,
RNA, and chromatin to modulate epigenetic and transcriptomic
changes and associated cellular responses (8). Large number of
lncRNAs have been implicated in pathology, including chronic
pulmonary conditions, CS-related immune responses, and
inflammatory regulation (6, 9, 10). LncRNA-mediated
regulation of innate immune responses is potentially central
for the establishment of host-beneficial trained immunity (32),
but these responses could be dysregulated in case of chronic
pulmonary disease resulting in hyperactive inflammatory
responses. Microarray analysis has shown over 39,000
lncRNAs are differentially expressed in COPD patients,
stratified by smoking status (33). Numerous lncRNAs have
been experimentally characterized and shown to affect the
inflammatory responses of airway epithelium via epigenetic
and/or transcriptomic mechanisms and induce an accelerated
aging of lung epithelium associated with COPD (6).

Goblet cell hyperplasia is a salient feature of COPD pathology
where the 33% of distal conducting airway epithelium is
comprised of goblet cells in COPD lungs, versus less than 5%
observed in the distal airways of non-COPD lungs (34). We also
report a disease severity associated increase in goblet cell
hyperplasia in COPD tissue samples, with a 2.1- to 3.0-fold
increase in goblet cell numbers per mm BL in mild and severe
COPD tissues, respectively. This suggests accurate modeling of
molecular level changes in COPD epithelium. We found that the
lncRNA LASI correlates with disease severity, while other
lncRNAs do not, suggesting a potential regulatory role which
we further explored using an in vitro COPD model. Our panel of
lncRNAs showed the NEAT1, MALAT1 and WAKMAR2 were
not upregulated following CSE- treatments. Interestingly, Hu
and colleagues (2020) reported increased expression of MALAT1
in COPD lung tissue specimens, however we found that there
was no change in MALAT1 expression in correlation with
disease severity (10). However, to evaluate whether the effects
observed were specifically driven by CS exposure, we relied on
the archived tissue samples from C. macaques that were exposed
to CS chronically and the data strongly suggests that long-term
CS exposure is a driving factor behind the airway pathology
observed. Importantly, we used primary HBECs from controls
with no COPD and with COPD i.e., NHBEs and CHBEs for in-
vitro validation of our ex-vivo findings. Recent reports have
shown that the pathologic changes in epithelial histology, goblet
cell numbers, and mucus hypersecretion are preserved in
differentiated COPD subject-derived lung epithelial cells in ALI
culture settings, and transcriptomic analysis showed over 200
differentially expressed transcripts (35). The ciliary beating
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impairment has also been found to be reflected in differentiated
CHBEs versus NHBEs. Here, we report a significant higher
baseline expression, of MUC5AC, ICAM-1, and IL-6 in
CHBEs, as compared to NHBEs without any treatment or
stimulation. Thus, our in-vitro model do recapitulates the
differences observed in COPD subjects thus suggesting of
epigenetic and transcriptomic transformations that are
preserved in bronchial epithelial cells. Further, CHBEs also
showed a significantly increased baseline levels of LASI
lncRNA as compared to NHBEs. In addition, there was an
increased expression of ICR , NEAT1 , MALAT1 , and
WAKMAR2 lncRNAs in cultured CHBEs, however, we did not
observe any significant change in these lncRNAs in lung tissue
homogenates of COPD subjects. This suggests that these
lncRNAs may respond in cell/tissue-context manner, and the
epithelial expression of these lncRNA may not play a direct role
in COPD pathogenesis.

Also of note, we found that blocking LASI lncRNA expression
in CHBEs led to a suppressed induction of MUC5AC mucin
expression with no change in transcription factor SPDEF
expression, suggesting that CSE-mediated mucin expression
may not directly involve the previously observed LASI
lncRNA-and SPDEF-mediated mucin upregulation observed in
allergic asthma studies (11). CSE exposure induces SPDEF via
NOTCH3 signaling, suggest ing that LASI-mediated
dysregulation is not dependent on NOTCH3, and further
suggests a need to evaluate the role of LASI lncRNA on other
signaling pathways involved in CS-mediated mucoinflammatory
responses such as epithelial growth factor receptor (EGFR)-
mediated inflammation (36). EGFR-mediated signaling is likely
to be the predominant driver of airway remodeling and mucus
cell hyperplasia in CS-induced COPD pathogenesis, and this
pathway may not involve SPDEF-mediated mucous responses
(11, 37). In terms of molecular regulation of other inflammatory
factors' expression, lncRNAs are shown to act as molecular
sponges/scaffolds for miRNAs as reported recently in COPD
(38–40). For example, lncRNA TUG1 promotes airway
remodeling via suppressing the miR-145-5p in CS-induced
COPD models. The lncRNA NNT-AS1 was shown to regulate
COPD associated airway cell proliferation/cell death,
inflammation, and remodeling via the miR-582-5p and
FBXO11 pathways. Interestingly, high levels of IL-6 and
lncRNA IL6-AS1 were reported in COPD subjects with
concurrent upregulation of miR-149-5p and early B-cell factor
1. Similar studies are underway to determine possible LASI
lncRNA binding partners using the LASI-OE approach
described in the present study to identify the molecular
mechanisms responsible for plausible increased transcriptional
activity or mRNA stability that augments the airway
inflammatory responses.

LncRNAs modulate gene expression at multiple levels to alter
the cell functions/responses. They are known to modulate
chromatin structure or bind to directly to DNA. They can also
bind to and suppress the expression of miRNAs or pre-miRNAs
(8, 41). LncRNAs can directly enhance or suppress the
expression of many mRNAs or functional transcripts. In our
Frontiers in Immunology | www.frontiersin.org 13114
studies, knockdown of LASI lncRNA led to a suppressed
expression of CSE-induced ICAM-1 and IL-6 mRNAs
suggesting that there is no direct interaction between LASI
lncRNA and ICAM-1 or IL-6 mRNAs. Instead, LASI lncRNA
may be indirectly affecting the transcription of ICAM-1 and IL-6,
whereby LASI lncRNA may be regulating the other intermediary
immunoregulatory elements such as miRNAs or promoters
upstream of ICAM-1 and IL-6. Accordingly, our data posit
that LASI lncRNA may not be directly interacting with ICAM-
1 protein, mRNA, or pre-mRNA, but experimental validation are
needed. In a separate study we have observed that silencing
ICAM-1 expression does not affect the LASI lncRNA levels (data
not shown), thus implicating that the expression levels of these
transcripts are driven independently via possible mutually
exclusive transcriptional regulation of the opposite strands.
The data further suggests that at the transcription level, a
direct induction of LASI lncRNA by CSE treatment may be
one of the drivers for the COPD-associated mucoinflammatory
responses. Furthermore, we observed that LASI lncRNA was
expressed in perinuclear region and cytosolic regions of
bronchial airway epithelial cells of both macaques and human
tissues. RNA-interference based silencing works primarily in the
cytosolic region and even with only 37.5% suppression of LASI
lncRNA levels, we observed a highly significant reduction in
CSE-induced MUC5AC, ICAM-1, and IL-6 expression. This
data does suggest that cytosolic LASI lncRNA may be
important mediator of mucoinflammatory response, but
further cell fractionation studies are needed to determine the
subcellular location specific role of LASI lncRNAs in driving the
CSE-treatment and COPD associated inflammatory responses.

The present study has several limitations as outlined here and
should be strongly considered for drawing the inferences. Firstly,
the archived lung tissues from the large animal model study are
from female macaques only as human epidemiological studies
suggest that female smokers show higher prevalence of COPD
than males but the data presented here should be interpreted
accordingly. Secondly, human lung tissue samples were provided
by LTRC (NIH), but the COPD patient cohort data collection
relies on self-reported smoking history and lacks accuracy.
Thirdly, the in-vitro modeling studies used NHBEs and CHBEs
from three separate donors only and are from a commercial
supplier with no information provided on the race, age, gender,
or smoking history. Moreover, the in-vitro modeling used
bronchial airway epithelial cells only and responses in other
epithelial and submucosal cells are not investigated that could
drive smoke- and COPD-associated airway remodeling.
Additionally, this study is focused on LASI lncRNA only,
which may act synergistically with additional lncRNAs,
specifically with ICR lncRNA. Furthermore, the studies
reported here used acute model of CS exposure using CS
extract instead of direct mainstream smoke exposure.
However, with data presented from animal model of CS
exposure, and from COPD tissue and airway epithelial cells,
this study does corroborate the strong association of LASI
lncRNA with CS-induced transcriptional modulation of airway
mucoinflammatory responses.
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In conclusion, this study elucidates LASI lncRNA as a novel
regulator of CSE-induced and COPD-associated airway
epithelial dysregulation and further suggests that targeting
LASI lncRNA expression could present a novel therapeutic
intervention modality to treat COPD phenotypes of upper
airways. Specifically, the currently available therapies
have limited success in treating COPD pathophysiologies
creating an unmet need in discovery of novel therapeutic
avenues (42–44). Recent epidemiological and pathological
studies have shown that mucus hypersecretion is a prime
target of COPD treatment avenues (45). Thus, airway epithelial
expressed LASI lncRNAmay provide additional novel method of
controlling mucous responses specifically when noncoding
RNA-based therapeutics are shown to be promising treatment
modalities (46). Present study also suggests that the lncRNA ICR
may play a similarly important role in CHBE dysregulation and
requires further investigation. Future experiments will
investigate the mechanism of action of LASI lncRNA to
identify its binding partners and potential interactions that
regulate airway innate immune responses.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.
ETHICS STATEMENT

The animal study was reviewed and approved by Institutional
Animal Care and Use Committee of Lovelace Respiratory
Research Institute, Albuquerque, NM.
Frontiers in Immunology | www.frontiersin.org 14115
AUTHOR CONTRIBUTIONS

MM and DD designed and conducted the experiments. MM and
HC wrote, edited, and/or revised the manuscript. MM, DD, and
CL was responsible for data curation. HC conceptually de-signed
the overall experiments and manuscript, and acquired funding.
SS, MWN, GB, MNN, IR, and MS provided the oversight on the
study design and edited the manuscript. All authors contributed
to the article and approved the submitted version.
FUNDING

The National Institutes of Health (NIH) AI159237, AI144374,
HL149898, and CA241752 supported this work.
ACKNOWLEDGMENTS

The authors would like to acknowledge Alejandro Perez and
Natalia Orso for their assistance in optimization of study
protocols. Authors would also like to acknowledge, Dr. Philip
Kuehl of Lovelace Biomedical for providing the filter membranes
with mainstream cigarette smoke particulate matters, Dr. Binoy
Appukuttan of Flinders University, Adelaide, Australia for ICR
lncRNA primer-probe sequences, and Dr. Madepalli Lakshmana
of Florida International University, Miami, FL for providing the
empty vector lentiviral preparation.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2022.
803362/full#supplementary-material
REFERENCES

1. James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global,
Regional, and National Incidence, Prevalence, and Years Lived With
Disability for 354 Diseases and Injuries for 195 Countries and Territories,
1990-2017: A Systematic Analysis for the Global Burden of Disease Study
2017. Lancet (2018) 392(10159):1789–858. doi: 10.1016/s0140-6736(18)
32279-7

2. Rabe KF, Watz H. Chronic Obstructive Pulmonary Disease. Lancet (2017)
389(10082):1931–40. doi: 10.1016/s0140-6736(17)31222-9

3. Wong AWM, Gan WQ, Burns J, Sin DD, van Eeden SF. Acute Exacerbation
of Chronic Obstructive Pulmonary Disease: Influence of Social Factors in
Determining Length of Hospital Stay and Readmission Rates. Can Respir J
(2008) 15(7):361–4. doi: 10.1155/2008/569496

4. Kim V, Criner GJ. Chronic Bronchitis and Chronic Obstructive Pulmonary
Disease. Am J Respir Crit Care Med (2013) 187(3):228–37. doi: 10.1164/
rccm.201210-1843CI

5. Vogelmeier CF, Román-Rodrıǵuez M, Singh D, Han MK, Rodrıǵuez-Roisin R,
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A corrigendum on

Increased expression of LASI LncRNA regulates the cigarette smoke and
COPD associated airway inflammation and mucous cell hyperplasia

by Manevski M, Devadoss D, Long C, Singh SP, Nasser MW, Borchert GM, Nair MN, Rahman I,
Sopori M, Chand HS (2022). Front. in Immunol. 2022 Jun 14; 13:803362.
doi: 10.3389/fimmu.2022.803362
In the published article, there was an error in Table 1 as published. The information

about the smoking history (Stop Smoking) for the subjects with ‘No COPD’ was

duplicated. The corrected Table 1 and its caption appear below.

The authors state that this does not change the scientific conclusions of the article in

any way. The original article has been updated.
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claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
TABLE 1 Demographics of the study cohort of COPD patients with clinically-defined GOLD stage severity and self-reported smoking history.

No COPD Mild COPD Severe COPD

Age* 54.2 ± 3.2 69.2 ± 3.9 65.1 ± 2.7

Gender, M/F 3M/3F 4M/2F 3M/5F

Smoking in PY* 54.0 ± 12.6 (2) 29.9 ± 10.7 (3) 35.0 ± 2.8 (3)

Stop Smoking (Y)* 6.6 ± 1.6 21.4 ± 12.8 11.9 ± 2.5
*Mean, ± SEM; M, Male; F, Female; PY, Packs per Year; Y, Years.
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Senescence of alveolar
epithelial cells impacts initiation
and chronic phases of murine
fibrosing interstitial lung disease

Zento Yamada1,2, Junko Nishio2,3*, Kaori Motomura2,
Satoshi Mizutani2, Soichi Yamada2, Tetuo Mikami4

and Toshihiro Nanki1,2*

1Department of Internal Medicine, Toho University Graduate School of Medicine, Tokyo, Japan,
2Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine,
Tokyo, Japan, 3Department of Immunopathology and Immunoregulation, Toho University School
of Medicine, Tokyo, Japan, 4Department of Pathology, Toho University School of Medicine, Tokyo,
Japan
Fibrosing interstitial lung disease (ILD) develops due to the impaired reparative

processes following lung tissue damage. Cellular senescence has been

reported to contribute to the progression of fibrosis. However, the

mechanisms by which these senescent cells initiate and/or drive the

progression of lung tissue fibrosis are not yet fully understood. We

demonstrated that p21WAF1/CIP1- and p16INK4A-pathway-dependent

senescence in type 2 alveolar epithelial cells (AEC2) were both involved in

the initiation and progression of lung fibrosis in murine bleomycin (BLM)-

induced ILD. p21WAF1/CIP1-senescent AEC2 emerged rapidly, as early as 1 day

after the intratracheal instillation of BLM. Their number subsequently increased

and persisted until the later fibrosis phase. Very few p16INK4A-senescent AEC2

emerged upon the instillation of BLM, and their increase was slower and milder

than that of p21WAF1/CIP1+ AEC2. AEC2 enriched with senescent cells sorted

from BLM-ILD lungs expressed senescence-associated secretory phenotype

(SASP)-related genes, including Il6, Serpin1, Tnfa, Ccl2, Tgfb, and Pdgfa, at the

initiation and chronic phases of fibrosis, exhibiting distinct expression patterns

of magnitude that were dependent on the disease phase. Ly6C+ inflammatory

monocytes increased in the lungs immediately after the instillation of BLM and

interstitial macrophages increased from day 3. The expression of Acta2 and

Col1a1was upregulated as early as day 1, indicating the activation of fibroblasts.

We speculated that IL-6, plasminogen activator inhibitor-1 (PAI-1), and TGF-b
contributed to the accumulation of senescent cells during the progression of

fibrosis in an autocrine and paracrine manner. In addition, CCL2, produced in

large amounts by senescent AEC2, may have induced the infiltration of Ly6C+

inflammatory monocytes in the early phase, and TGF-b and PDGFa from

senescent AEC2 may contribute to the activation of fibroblasts in the very

early phases. Our study indicated that senescent AEC2 plays a role in the

pathogenesis of fibrosing ILD throughout the course of the disease and
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provides insights into its pathogenesis, which may lead to the development of

new therapeutic methods targeting senescent cells or SASP molecules.
KEYWORDS

interstitial lung disease, p21, p16, senescence-associated secretary phenotype, type 2
alveolar epithelial cell, IL-6, interstitial macrophages
Introduction

Fibrosing interstitial lung diseases (ILDs) are a group of diseases

in which excessive extracellular matrix proteins are produced by

persistently activated fibroblasts causing the destruction of the

alveolar architecture (1). Fibrosis occurs in the normal wound

healing process and resolves over time. However, continuous

inflammation and unresolved cellular damage impair reparative

processes, leading to the progression of fibrosis and tissue

remodeling (2). While smoking (3) and the inhalation of silica (4)

are well-known environmental factors that cause idiopathic

pulmonary fibrosis (IPF), several genetic variants for surfactant

protein-C, surfactant protein-A2, telomerase reverse transcriptase,

telomerase RNA component, and MUC5B have been identified

as factors associated with IPF or familial interstitial pulmonary

fibrosis (5–8). Autoimmune reactions are also triggering factors that

initiate tissue injury in fibrosing ILD in association with connective

tissue diseases, including rheumatoid arthritis, systemic

scleroderma, polymyositis, and dermatomyositis (9). Regardless of

the triggers and/or causative genetic variants, the molecular

mechanisms underlying tissue/cellular damage and resultant

fibrosis are not fully understood, and they involve complex

interactions between immune cells, epithelial cells, fibroblasts, and

endothelial cells (9).

The paradigm that the damage of alveolar epithelial cells

(AECs) and impaired reparative processes drive lung fibrosis has

recently become prominent in the pathogenesis of ILD (10). AECs

are classified as type 1 (AEC1) and type 2 (AEC2). AEC2 are

progenitor cells that self-renew and transdifferentiate into AEC1,

and are also producers of surfactant phospholipids and proteins,

which reduce surface tension at the alveolar air-liquid interface (10).

Continuous environmental stimuli from airways have been

suggested to cause AEC2 dysfunction, such as a hyper-activated

state, apoptosis, or senescence, leading to inflammatory cell

infiltration and parenchymal fibrosis in the lungs.

Cellular senescence is a state of permanent cell cycle arrest

induced by various types of extrinsic or intrinsic stresses, including

DNA damage by telomere shortening, genotoxic stress, reactive

oxidative stress, mitochondrial dysfunction, and oncogene

activation (11, 12). These stressors activate the p53-p21WAF1/CIP1

and/or the p16INK4A-pRB pathways. p21WAF1/CIP1 and p16INK4A are

both cyclin-dependent kinase (CDK) inhibitors that inhibit the
02
121
kinase activity of cyclin–CDK complexes, which are required for cell

cycle progression (13). The prolonged activation of either pathway,

p53-p21WAF1/CIP1 or p16INK4A-pRB, is sufficient to induce

senescence (13). Although p21WAF1/CIP1 is more relevant for the

initiation of senescence, the expression of p16INK4A is critical for

persistent senescence (14).

Cell cycle markers, typically p21WAF1/CIP1, p16INK4A, p53,

phospho-p53, a decrease in pRB, and the absence of

proliferation, are used to detect cellular senescence. However,

these are not universal markers because they are also expressed in

non-senescent cells (15). Moreover, whereas p53-p21WAF1/CIP1 is

transiently activated and more relevant for the initiation of

senescence, the expression of p16INK4A is critical for persistent

senescence (14). Therefore, additional hallmarks are used in

combination to conclusively identify senescence: structural

changes associated with senescence, such as an increased

lysosomal mass detected by a morphologically enlarged cell size;

senescence-associated b-galactosidase (SA-bgal) activity; changes
in organelle structures represented by the downregulation of

Lamin B1; and nuclear alterations detected by DNA damage

response-associated proteins or phosphorylated H2A histone

family member X (g-H2AX) (15).
Although cell growth is arrested, senescent cells remain

metabolically active and acquire a senescence-associated

secretory phenotype (SASP), by which senescent cells produce

a wide array of soluble molecules, including cytokines,

chemokines, matrix remodeling proteases, extracellular matrix

components, and growth modulators (11, 13). These mediators

alter the state of the surrounding cells. In addition, SASP

promotes senescence in an autocrine manner and that of

neighboring cells in a paracrine manner, thereby spreading

senescent cells throughout the entire tissue (12, 13, 16).

Cellular senescence was recently reported to contribute to

various age-related inflammatory diseases, including obesity,

atherosclerosis, osteoarthritis, Alzheimer’s disease, and lung

diseases, such as IPF (17). Since senescent cells are resistant to

apoptosis, they accumulate in aged organs, leading to these

inflammatory diseases due to SASP (17). SA-bgal, p16INK4A,
p53, or p21WAF1/CIP1 and disease-dependent SASP are present at

inflamed sites. In murine disease models, these diseases are

ameliorated by the elimination of senescent cells using

genetically engineered mice or senolytics (18–21).
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Previous studies have shown that in human IPF, DNA damage

and expressions of SA-bgal, p16INK4A, p53, or p21WAF1/CIP1 have

been observed in lung fibroblasts and/or epithelial cells (22–28).

Similar to human IPF, senescence markers or SASP have been

detected in AEC and/or fibroblasts in bleomycin-induced ILD

(BLM-ILD) (29–33). Since BLM elicits DNA damage in cell lines

and primary cells, including epithelial cells and fibroblasts (34), its

intratracheal instillation is considered to induce DNA damage and

resultant senescence in the lung cells of BLM-ILD. However, these

studies have stressed the importance of the senescence of different

cell types, including AECs, fibroblasts, and endothelial cells, in

BLM-ILD.

Although the emergence of senescent cells has been

demonstrated in human IPF as well as in its murine model, the

mechanisms by which these senescent cells initiate and/or promote

the progression of lung tissue fibrosis are not yet fully understood.

Furthermore, most studies on murine BLM-ILD have analyzed

SASP-associated mediators in the chronic phase of lung fibrosis on

day 14 or 28 after the instillation of BLM. No studies have focused

on the role of senescence at the initiation phase. Furthermore, the

link between SASP and pathogenesis, such as immune cell

infiltration and fibroblast activation, remains unknown.

To investigate how cellular senescence and SASP contribute to

the development and progression of fibrosing ILD, we investigated

the dynamics of p21WAF1/CIP1- and p16INK4A-dependent senescence

from disease initiation to the established fibrosis phase in murine

BLM-ILD. We found that type 2 AEC (AEC2) expressed both

p21WAF1/CIP1 and p16INK4A proteins upon the BLM instillation with

a distinct pattern of expression dynamics. Senescent cell-enriched

AEC2 subsets highly expressed a set of inflammatory SASP-related

genes at both the initiation and fibrosis phases. These inflammatory

mediators may promote the infiltration of monocytes and

activation of fibroblasts from the early phase of the progression of

fibrosis. These results suggest a critical role for senescent AEC2

throughout the course offibrosing ILD and provide insights into its

pathogenesis, which may lead to the development of new

therapeutic methods targeting senescent cells or SASP molecules.
Results

p21WAF1/CIP1-expressing cells in the early
phase in BLM-ILD

Although the emergence of senescent cells in BLM-ILD has

been demonstrated, most studies detected these cells in the late

phase of fibrosis. To elucidate the dynamics of the emergence of

senescent cells, we first examined the expression of p21WAF1/CIP1, a

cell cycle arrest marker, in lung tissue by immunohistochemistry in

parallel with an evaluation of histological fibrosis during the

progression of BLM-ILD. Lung tissue stained with hematoxylin

and eosin (HE) and Masson’s trichrome (MT) exhibited normal

alveolar wall thickness and very limited infiltration in a small area at
Frontiers in Immunology 03
122
day 3 post-BLM instillation (Figure 1A). The infiltration and

thickening of alveolar septa appeared on day 7. The accumulation

of collagen became evident and gradually increased after day 7. The

extensive formation of fibrotic loci was observed after day 10. Mice

intratracheally instilled with saline did not show any cell infiltration

or septal collagen fibers, even on day 14 (Figure 1A). The Ashcroft

score (35), a semi-quantitative method to score lung fibrosis based

on cell infiltration and the accumulation of collagen, showed that

the area of cell infiltration with accumulated collagen gradually

increased (Figure 1C). The quantitative analysis of MT-stained

sections revealed a gradual increase in collagen deposition from the

early phase to the fibrosis phase on day 14 (Figure 1D). Cells

expressing the senescence marker p21WAF1/CIP1 appeared in some

alveoli and were scattered throughout the lungs on day 3 post-BLM

instillation, when fibrosis was not evident by HE or MT staining

(Figure 1B). The number of p21WAF1/CIP1+ cells increased after day

3 and were more concentrated in fibrotic loci on days 10 and 14.

Most p21WAF1/CIP1+ cells were morphologically enlarged, which is a

characteristic of senescent cells. The quantitative analysis revealed

that the number of p21WAF1/CIP1+ cells was increased as early as on

day 1. After day 3, the number of p21WAF1/CIP1+ cells was

significantly higher than on day 0, and gradually increased,

persisting after day 10 (Figure 1E). In contrast, the expression of

Cdkn1a, encoding p21WAF1/CIP1, was strongly induced as early as

day 1 after the instillation of BLM.However, it decreased from day 7

(Figure 1F). The divergence of expression dynamics between

p21WAF1/CIP1 and Cdkn1a might be attributed to the transient

expression of p21WAF1/CIP1 in some cells upon the BLM

stimulation and the post-translational regulation of p21WAF1/CIP1

(see Discussion). Thus, these results suggested that the cellular

senescence of alveolar cells was induced immediately upon the

BLM instillation and preceded the histological formation offibrosis.

We speculated that most p21WAF1/CIP1+ cells were AEC2

based on their spherical shape and relatively large round nuclei,

as shown in Figure 1B. As expected, double color

immunofluorescence of p21WAF1/CIP1 and prosurfactant

protein C (proSP-C), a marker of AEC2, showed that

p21WAF1/CIP1 was stained on the nuclei of proSP-C-positive

AEC2 (Figure 2). Approximately 30% of AEC2 were positive

for p21 WAF1/CIP1 (Supplementary Table 1). Taken together,

these results indicated that AEC2 highly expressed p21WAF1/CIP1

from the initiation phase of BLM-ILD and that p21WAF1/CIP1+

AEC2 increased and persisted until the later fibrosis phase.
Distinct expression dynamics of p16INK4A

in the progression of lung fibrosis in
BLM-ILD

Since there are no highly sensitive and specific markers of

cellular senescence (15, 36), we examined the expression of

another cell cycle arrest marker, p16INK4A, in the lungs

throughout the progression of BLM-ILD. We observed the
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expression of p16INK4A in the nuclei of a very small number of

AEC as early as on day 1, and p16INK4A+ cells increased as the

disease progressed (Figures 3A, B), but were not detected on day

0. Most p16INK4A+ cells had a spherical shape, suggesting AEC2.

They were also enlarged, similar to p21WAF1/CIP1+ cells. It is
Frontiers in Immunology 04
123
important to note that increases in the number of p16INK4A+

AEC2 were milder and slower in the early phase (Figure 3B) than

those in p21WAF1/CIP1+ AEC2 (Figure 1E). p16INK4A+ AEC2

exhibited a marked increase after day 7 (Figure 3B). The

expression of Cdkn2a encoding p16INK4A gradually increased
B

C D

E F

A

FIGURE 1

Emergence of p21WAF1/CIP1+ cells in lungs in the early phase of bleomycin-induced ILD (BLM-ILD).C57BL/6 mice were intratracheally instilled
with BLM to induce BLM-ILD. Control mice were intratracheally instilled with saline. The lungs were obtained before and 1, 3, 7, 10, and 14 days
after the instillation of BLM and 14 days after the instillation of saline. (A) Representative images of hematoxylin and eosin (HE) and Masson’s
trichrome (MT) staining of paraffin-embedded lung tissue on the indicated days. (B) Representative images of the immunohistochemical staining
of p21WAF1/CIP1 of lung tissue from mice on the indicated days. (C) The Ashcroft scale using MT-stained lung tissue from pooled mice. (D)
Percentage of the collagen fiber area in MT-stained lung tissue. The MT-stained area was measured by ImageJ in 20 randomly selected areas
(360 × 240 µm) and the average was plotted. (E) Number of p21WAF1/CIP1+ cells per area of the right lung from pooled mice. p21WAF1/CIP1+
cells were counted in 10 randomly selected areas (180 × 120 µm) and the average was plotted. (F) Cdkn1a expression relative to 18S rRNA (18S)
of the lung by quantitative RT-PCR (qRT-PCR). Scale bars indicate 5 µm. n = 3–4 per day (C–E); n = 4 per day (F). Data are presented as the
mean ± SEM. Statistics show p-values from a one-way ANOVA with Dunnett’s multiple comparisons test as a post-hoc test comparing values
on day 0. ns, not significant. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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upon the BLM instillation, with a significant increase being

observed on day 14 (Figure 3C). These results showed that the

slight increase in p16INK4A+ AEC2 in the early phase was in

contrast to the sudden emergence of a relatively large number of

p21WAF1/CIP1+ AEC2 upon the BLM instillation. Moreover,

p16INK4A and p21WAF1/CIP1 were both persistently expressed in

AEC2 in the later fibrosis phase, indicating that senescence

dependent on both pathways continued to exist in AEC2 of

fibrotic lung tissue. Therefore, p16INK4A expression may be more

strongly affected by tissue environmental changes induced after

the BLM instillation rather than by the direct effects of BLM.
AEC2 in BLM-ILD lungs show senescent
cell characteristics

As described above, a combination of markers is used to prove

the cellular senescence of AEC2. Although SA-bgal is a common

marker for identifying senescent cells, it was not possible tomeasure

its enzyme activity in the paraffinized sections used in this study.

AEC2 did not express Ki-67 in fibrotic areas in the later phases

(Figure 3D), supporting the lack of proliferation, which is also a

characteristic of senescence. In contrast, Ki-67+ cells from the same

lung section were localized in the area with cell infiltration, in which

senescent cells were absent (Figure 3D).We also examined g-H2AX,
indicating DNA damage, which is another hallmark of senescent

cells, in BLM-ILD on day 3 (Figure 3E). We found that g-H2AX-
stained cells were morphologically identified as enlarged AEC2,

indicating that double-stranded DNA damage was induced in these

cells by BLM (Figures 3E, F). On the other hand, its expression

decreased on day 14 (Figures 3E, F). Since DNA damage may lead

to apoptosis, we also examined cleaved caspase 3 (CC-3). Although

a subset of cells with the shape of AEC2 expressed CC-3 on day 3,

very few cells expressed it on day 14 (Figures 3G, H). These results

suggested that the majority of p21WAF1/CIP1-expressing AEC2 cells

had acquired senescence, but that a small subset of p21WAF1/CIP1+

AEC2 cells underwent apoptosis due to BLM-induced double-
Frontiers in Immunology 05
124
stranded DNA breaks in the early phase of BLM-ILD. These

results also indicated that the persistent expression of p21WAF1/

CIP1 in the later fibrosis phase was not driven by DNA damage.

Collectively, enlarged AEC2 were positive with another cell cycle

arrest marker, p16INK4A, and did not proliferate, indicating that a

subset of AEC2 were senescent cells. Furthermore, the senescence of

AEC2 occurred due to DNA breakage through the direct effects of

BLM in the early phase; however, persistent senescence in the

fibrosis phase may be driven by other factors. This senescence

appeared to be dependent on environmental alterations caused by

tissue damage.
AEC2 acquired SASP in BLM-ILD

Previous studies reported the senescence of fibroblasts, AEC,

and/or endothelial cells in human IPF (22–28) as well as in murine

BLM-ILD (29–33). However, which senescent cells exhibit the

SASP-mediated production of inflammatory mediators and

contribute to the development of lung fibrosis has not been

clarified. Since we found a robust senescence phenotype in AEC2

from the early phase to the fibrosis phase, we hypothesized a critical

role for the cellular senescence of AEC2 in fibrosing ILD. Therefore,

we examined the gene expression of SASP-related mediators of

AEC2 in the early phase before the accumulation of collagen as well

as in the later phases of fibrosis, and investigated whether senescent

AEC2 acquire SASP and contributes to the initiation/progression of

fibrosing ILD. It was challenging to collect live AEC2 because of the

limited availability of surface markers. We confirmed that proSP-C,

an intracellular marker of AEC2, was expressed in the limited

population highly expressing EpCAM (EpCAMhi cells) by a flow

cytometric analysis (Figure 4A). Therefore, we isolated EpCAMhi

cells as an AEC2 subset by flow cytometric sorting on days 3 and 14

after the BLM instillation (Figure 4B) and examined their

expression of canonical pro-inflammatory cytokines, chemokines,

and growth factors associated with SASP by qRT-PCR (Figure 4C).

We confirmed that Cdkn1a was more highly expressed in BLM-
FIGURE 2

Type 2 alveolar epithelial cells (AEC2) undergo senescence in BLM-ILD.Paraffin-embedded lung tissue sections from mice 14 days after the
instillation of BLM were used for double immunofluorescence staining for prosurfactant protein C (proSP-C) (red) and p21WAF1/CIP1 (p21)
(green) with 4,6-diamidino-2-phenylindole (DAPI) (blue) counterstaining for nuclei. Yellow arrows indicate double-positive cells. The scale bar
indicates 20 µm.
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FIGURE 3

AEC2 in BLM-ILD express other cellular senescence markers.Paraffin-embedded lung tissue was prepared as described in Figure 1. (A)
Representative images of immunohistochemical staining for p16INK4A on the indicated days. (B) Numbers of p16INK4A+ cells per area of the
right lung from pooled mice. p16INK4A+ cells were counted in 10 randomly selected areas (180 × 120 µm) and the average was plotted. n = 3–
4 per day. (C) Cdkn2a expression relative to 18S rRNA in the lungs of pooled mice by qRT-PCR. n = 4 per day. (D–H) Immunohistochemical
analysis of Ki-67 (D), g-H2AX (E, F), and cleaved caspase-3 (CC-3, G, H) in the lungs of mice 3 and/or 14 days after the instillation of BLM. The
numbers of g-H2AX+ (F) cells per area or the total number of CC-3+ (H) cells in 10 areas were plotted as described in Figure 1E. Red arrows
indicate positive cells. Scale bars indicate 5 µm. Data are presented as the mean ± SEM. A one-way ANOVA with Dunnett’s multiple
comparisons test was used as a post-hoc test comparing values on day 0 (B, C). Unpaired t-tests were used for two-group comparisons (F, H).
ns, not significant. *p < 0.05; ***p < 0.001.
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instilled lungs than in saline-instilled lungs on days 3 and 14. Of

note, Cdkn1a expression levels were >10-fold higher than in saline-

instilled lungs on day 3. Although its expression level was decreased

on day 14, it was still fourfold higher than in saline-instilled mice.

These results are consistent with those shown in Figure 1F.We were

unable to quantify Cdkn2a from 10,000 to 20,000 sorted AEC2,

which was the maximum number of cells obtained with high purity

from the lungs of a mouse. The canonical SASP-related genes, Il6

and Serpine1 encoding plasminogen activator 1 (PAI-1), were

expressed at levels that were >5-fold higher than those in control

mice on days 3 and 14. Since IL-6 and PAI-1 were previously

demonstrated to promote and transmit the senescence of self and

neighboring cells (13, 37, 38), thesemolecules may have contributed

to the persistence and augmentation of senescent AEC2 during the

progression of BLM-ILD. We also examined inflammatory

mediators associated with the migration and activation of

monocytes/macrophages because they play pivotal roles in

fibrosing ILD (39). The expression levels of Ccl2, which

chemoattracts circulating monocytes, were 20- and 5-fold higher

on days 3 and 14, respectively, than in saline-instilled mice. The

expression of Tnfa, which activates macrophages, was slightly

increased throughout the disease. Fibroblast growth factor genes,

including Tgfb, Pdgfa, and Pdgfb, were also examined. High

expression levels of Tgfb were continuously observed throughout

BLM-ILD. On the other hand, significantly high expression levels of

Pdgfa were detected in the early phase, whereas those in the late

phase were similar to those in the control lung. We found no

significant increase in Pdgfb expression in the early phase and only a

slight increase in the late phase. Therefore, AEC2 in BLM-ILD lungs

expressed various SASP-related genes, including mediators to

promote and transmit senescence and to activate monocytes/

macrophages or fibroblasts with temporal differences in the

magnitude of each component, suggesting the contribution of

senescent AEC2 to the initiation and progression of BLM-ILD in

different context-dependent manners.
Cytokines and chemokines derived from
senescent AEC2 contribute to the
initiation of lung fibrosis in BLM-ILD

Activated macrophages play a critical role in the

development of lung fibrosis (39). Ly6C+ monocytes, which

are derived from the circulation and express CCR2, migrate to

inflamed tissue through the CCL2–CCR2 interaction (40, 41). As

shown in Figures 5A, C, Ly6C+ monocytes immediately

increased in the lungs by approximately threefold within 24 h

of the BLM instillation, whereas the frequency of Ly6C+

monocytes (CD45+CD11b+MHCII-Ly6C+) gradually decreased

after day 3. The dynamics of monocyte migration appeared to

correlate with the expression of Ccl2 by AEC2 (Figures 4C, 5C).

Furthermore, we found that interstitial macrophages

(CD45+CD11b+MHCII+CD64+) increased from day 3, which
Frontiers in Immunology 07
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was after monocyte migration (Figures 5B, D). Since Ly6C+

monocytes differentiate into activated interstitial macrophages

that express MHCII under proinflammatory cytokines,

including TNFa (42), TNFa produced by senescent AEC2

may have contributed to the increase in interstitial macrophages.

The expression of Acta2, encoding a-smooth muscle actin,

and Col1a1, encoding pro-a1 chains of type I collagen, was

increased as early as day 3, indicating that the activation of

fibroblasts and production of collagen had already been initiated

as early as day 3 (Figures 6A, B). Therefore, the production of

TGFb and PDGFa by senescent AEC2 in the early phase

(Figure 4C) may directly promote the activation of fibroblasts

and resultant collagen production from the early phase of

BLM-ILD.
Discussion

In this study, we examined the dynamics of the emergence of

senescent cells and the characteristics of SASP during the

progression of murine BLM-ILD to clarify how cellular

senescence and SASP are involved in the pathogenesis of

fibrosing ILD. We found that the p21WAF1/CIP1 protein was

induced in AEC2 as early as day 1 post-BLM instillation, and

that p21WAF1/CIP1-expressing AEC2 gradually increased and

persisted until the later fibrosis phase in BLM-ILD. Its mRNA

Cdkn1a was transiently and highly expressed in the early phase

and then decreased to a certain level that was maintained until

the later phase. This initial p21WAF1/CIP1-dependent senescence

in AEC2 was speculated to be attributed to BLM-induced DNA

damage through the activated p53-p21WAF1/CIP1 pathway, as

previously demonstrated (30). This is consistent with the

observation of g-H2AX expression in a subset of AEC2 in the

early phase. AEC2 also expressed another senescent marker,

p16INK4A, which was expressed as early as day 1 in a small

number of AEC2, and increases in p16INK4A+ AEC2 numbers

were slower and milder than those in p21WAF1/CIP1+ AEC2,

suggesting that p16INK4A-dependent senescence in AEC2 was

affected not only by the direct effects of BLM, but also by

alterations in the tissue microenvironment caused by

inflammatory cell infiltration and the resultant inflammation,

apoptosis, and senescence themselves. AEC2 sorted from BLM-

ILD lungs in the early phase expressed various inflammatory or

profibrotic genes associated with SASP, including Il6, Tnfa, Ccl2,

Serpin1, Tgfb, and Pdgfa. We speculated that these inflammatory

mediators contributed to the initiation and progression of the

disease: IL-6, PAI-1 encoded by Serpin1, and TGFb promoted

senescent cells and/or amplified senescence; CCL2 attracted

circulating Ly6C+ monocytes into the lungs; and infiltrated

Ly6C+ monocytes were activated by TNFa and differentiated

into MHCII-expressing interstitial macrophages. The activation

of fibroblasts, as shown by early increases in Acta2 and Col1a

immediately upon the BLM instillation, may reflect the
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production of TGFb and PDGFa by senescent AEC2 in the

early phase.

Several studies have suggested pathological roles for cellular

senescence in fibrosing ILD. However, most studies were performed
Frontiers in Immunology 08
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using in vitro or ex vivo experiments in the chronic phase offibrosis

in human IPF lung samples. Furthermore, only senescent cells and/

or SASP in the later phase of fibrosis were investigated in most in

vivo animal studies, including those involving the depletion of
B

C

A

FIGURE 4

SASP-acquired AEC2 express multiple inflammatory mediators in BLM-ILD lungs. A cell suspension was obtained from the lungs of mice 14 days
after the instillation of BLM and stained with fluorochrome-conjugated antibodies for a flow cytometric analysis. (A) After surface staining with
monoclonal antibodies (mAbs) for CD31, CD45, and EpCAM, intracellular staining with an anti-proSP-C polyclonal antibody and Alexa-Fluor
555-conjugated secondary antibody was performed. (B) Gating of the CD45-CD31-EpCAMhi cell population sorted as AEC2. (C) Relative
expression of the indicated SASP-related genes in sorted CD45-CD31-EpCAMhi cells from BLM-ILD lungs 3 and 14 days after the instillation of
BLM. n = 6 on day 3; n = 8 on day 14. Data are presented as the mean ± SEM. Statistics show p-values from the unpaired t-test. ns, not
significant. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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senescent cells using genetically mutated mice or senolytics (31).

Therefore, it is important to note that our study demonstrated that

p21WAF1/CIP1- and p16-dependent senescent cells were involved in

both the initiation and progression of chronic fibrosis by clarifying

the dynamics of the accumulation of senescent cells dependent on

both pathways.
Frontiers in Immunology 09
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The p21WAF1/CIP1 protein was expressed in a large number of

AEC2 as early as 1 day after the BLM instillation. DNA damage

by BLM activates the p53-p21WAF1/CIP1 pathway. If DNA is

normally repaired, the replication ability of cells is restored;

otherwise, cells undergo senescence or apoptosis (43). We found

a divergence in dynamics between the p21WAF1/CIP1 protein and
B

C

A

D

FIGURE 5

Monocyte migration and accumulated interstitial macrophages in the early phase in BLM-ILD. A lung cell suspension was obtained from mice
before and 3 and 14 days after the instillation of BLM and stained with fluorochrome-conjugated antibodies for CD45, CD11b, I-Ab CD24, and
CD64. (A, B) Representative cytograms showing Ly6C+ monocytes (Mo) (A) and interstitial macrophages (Mph) (B) on the indicated days. The
number indicates the percentage in CD45+ cells. (C, D) Frequencies of Ly6C+ monocytes (C) and interstitial macrophages (D) in CD45+ cells in
the lungs from pooled mice. n = 4 per day. Data are presented as the mean ± SEM. Statistics show p-values from a one-way ANOVA with
Dunnett’s multiple comparisons test as the post-hoc test comparing values on day 0. ns, not significant. **p < 0.01; ***p < 0.001; ****p <
0.0001.
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its gene expression: with higher levels in the early phase, its gene

expression decreased and was maintained at a certain level in the

later phase, whereas its protein expression, with lower levels in

the early phase, gradually increased as fibrosis progressed. After

the onset of DNA damage by BLM and the resultant induction of

p21WAF1/CIP1, DNA was repaired and p21WAF1/CIP1 expression

was suppressed in some AEC2. However, DNA damage was not

repaired and p21WAF1/CIP1 expression persisted in other AEC2,

leading to the induction of senescence. Moreover, the p21WAF1/

CIP1 protein was stabilized post-transcriptionally (44). We

speculated that the divergence of the accumulation of the

p21WAF1/CIP1 protein and the lower expression of Cdkn1a in

the late stage is attributed to the post-transcriptional regulation

of p21WAF1/CIP1.

The mechanisms by which senescent AEC2 persisted and

increased after the initial stimulus with BLM are unclear. We

observed high expression levels of the canonical SASP factors IL-

6 and PAI-1 in AEC2 both in the early and late phases of BLM-

ILD. Since IL-6 has been reported to promote senescence

through the activation of NF-kB in an autocrine manner (16),

the BLM-induced senescence of AEC2 may persist by self-

produced IL-6. Another canonical SASP factor, PAI-1, was

shown to activate the p52-p21WAF1/CIP1 pathway and promote

the senescence of AEC2 in both autocrine and paracrine

manners (37, 38). TGFb, which was detected in AEC2 from

the early phase and throughout the progression of BLM-ILD in

this study, has also been reported to induce the senescence of

neighboring cells in a paracrine manner (16). Therefore, the

persistent expression of IL-6, PAI-1, and TGFb may amplify

senescence across lung tissue by reinforcing senescence,
Frontiers in Immunology 10
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inducing senescence in other cells, and contributing to the

accumulation of p21WAF1/CIP1-dependent and p16INK4A-

dependent senescent cells from the early phase throughout

BLM-ILD. Therefore, inhibitors of senescent cells and SASP-

related mediators have potential as a treatment for ILD.

The present study has several limitations. Although 85% of

sorted EpCAMhi cells expressed proSP-C indicating AEC2,

SASP-related mediators expressed in EpCAMhi cells may be

influenced by those produced by contaminated type 1 AEC. In

addition, apoptotic cells produce proinflammatory cytokines,

such as IL-1b and TNFa, which overlap with SASP-related

cytokines. Therefore, the extent to which apoptotic AEC2

contributed to the expression of some mediators produced by

senescent AEC2 in the early phase remains unclear. However,

since apoptotic cells do not produce IL-6 (45, 46), most of this

cytokine was considered to be derived from senescent AEC2.

Another point is that we found differences in the magnitude and

components of SASP between the early and late phases of BLM-

ILD by examining several genes of SASP-related mediators

expressed in AEC2. However, it is important to perform

comprehensive analyses of SASP-related mediators expressed

in senescent AEC2, such as a single-cell analysis, to understand

their roles in diseases and to identify therapeutic targets. Loss-of-

function experiments, such as the depletion of p21WAF1/CIP1-

dependent senescent AEC2 or the inhibition of SASP-related

mediators, are required to demonstrate that the accumulation of

interstitial macrophages and the initiation of fibrosis at early

time points are dependent on the senescence of AEC2.

In summary, we demonstrated that p21WAF1/CIP1-dependent

and p16INK4A-dependent senescent cells emerged from the
BA

FIGURE 6

Activated fibroblasts produce collagen from the early phase in BLM-ILD. Lungs were obtained before and 3, 7, 10, and 14 days after the BLM
instillation and subjected to qRT-PCR. The expression of Col1a1 (A) and Acta2 (B) in the lungs on the indicated days. n = 4 per day. Data are
presented as the mean ± SEM. Statistics show p-values from a one-way ANOVA with Dunnett’s multiple comparisons test as the post-hoc test
comparing values on day 0. ns, not significant. *p < 0.05; **p < 0.01; ***p < 0.001.
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initiation phase with different dynamics and persisted during the

fibrosis phase in murine BLM-ILD. We also showed that SASP-

related genes derived from AEC2 were expressed at different

magnitudes in the early phase and later fibrosis phase. These

results may contribute to a better understanding of the

mechanisms involved in cellular senescence as well as useful

information for the development of senescent cell- or SASP

mediator-targeted therapy.
Materials and methods

Mice

Male C57BL/6J mice aged 5–6 weeks were purchased from

CLEA Japan Inc. (Tokyo, Japan) and maintained at the animal

facility of Toho University. Mice were randomly assigned by a

third party and housed in plastic cages (n = 3–4 mice per cage)

with ad libitum water and food under controlled temperature

and humidity with a 12-h light/dark cycle. They were housed for

2 to 3 weeks to acclimate them to the environment after

shipping. All experimental procedures were conducted in the

SPF animal laboratory of Toho University. Animal experiments

were performed according to the animal experiment guidelines

approved by Toho University Animal Experiment User

Committee (Approval numbers: 19-41-432, 20-42-432 and 21-

43-432).
BLM-ILD

Male C57BL/6J mice aged 8–10 weeks were intratracheally

instilled with 80 ml of saline containing 3.2 mg/kg body weight of

bleomycin sulfate (Nippon Kayaku Co., Ltd., UK) to induce

BLM-ILD or 80 ml of saline alone as the control. Mice were

anesthetized with an intraperitoneal injection of 0.75 mg/kg of

medetomidine (Nippon Zenyaku Kogyo, Fukushima, Japan), 4.0

mg/kg of midazolam (Sandoz, Tokyo, Japan), and 5.0 mg/kg of

vetorphale (Meiji Seika Pharma, Tokyo, Japan) before the

procedure, and medetomidine was antagonized by a peritoneal

injection of 0.75 mg/kg of atipamezole (Nippon Zenyaku Kogyo,

Fukushima, Japan) after the procedure. The lungs were dissected

under the anesthesia described above before or on day 1, 3, 7, 10,

or 14 after the administration of BLM.
Histological procedure

Lung tissue was fixed with 4% paraformaldehyde and

embedded in paraffin. Sections with a thickness of 3 mm were

used for HE, MT, and immunohistochemical staining. In the

immunohistochemical analysis, sections were deparaffinized and

antigen retrieval was performed in antigen retrieval buffer pH 9
Frontiers in Immunology 11
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(Nichirei Biochemicals Inc., Tokyo, Japan) using a pressure

cooker. After the inactivation of endogenous peroxidase activity

with 3% H2O2 for 5 min and subsequent blocking for 30 min,

sections were stained with primary antibodies. Information on

primary antibodies and horseradish peroxidase-conjugated

secondary antibodies are listed with incubation times and

dilutions in Supplementary Table 2. Histological images of HE or

MT staining and immunohistochemical analyses were captured

using a BX-63 microscope (Olympus, Tokyo, Japan).

Immunofluorescence images were captured using a Nikon

ECLIPSE Ti2 Microscope (Nikon, Tokyo, Japan) with the Andor

DragonFly Spinning Disk Confocal System (Oxford Instruments,

Abington, UK).
Quantitative histological analysis

An image of the total left lobe area with MT and

immunohistochemical staining was divided into grid areas of

240 × 360 µm and 120 × 180 mm, respectively. Pulmonary

fibrosis was scored in 20 randomly selected grid areas (240 ×

360 µm) by the Ashcroft scale (47) using MT-stained slides, and

the average score of each section was calculated. Regarding the

quantification of collagen, the MT-stained area and total area of

20 randomly selected grid areas (120 × 180 mm) were measured

by ImageJ (NIH, USA) and the average of the percentage of MT

areas in the total area was calculated. To quantify p21WAF1/CIP1+

AEC2 cells in immunofluorescent images, cells were counted in

20 randomly selected areas (300 × 300 µm).
Flow cytometric analysis and sorting

Lungs were cut into fine pieces (1 mm3) in RPMI1640

containing 2.5 mg/ml collagenase (FUJIFILM Wako Pure

Chemical Corporation, Osaka, Japan), 1 mg/ml of dispase II

(Roche, Basel Switzerland), and 0.02 mg/ml of DNase I

(Millipore, Barrington, USA). The cell suspension was

incubated at 37°C for 21 min with pipetting every 7 min and

passed through a 70-µm cell strainer. After washing, red blood

cells were lysed and Fc receptors were blocked. Cells were

stained with fluorescence-conjugated monoclonal antibodies

for surface molecules shown in Supplementary Table 3

and incubated on ice for 15 min. After washing, cells were

ready for the flow cytometric analysis of surface molecules.

Regarding staining with prosurfactant protein C (proSP-C),

cells were further fixed and permeabilized with eBioscience

Intracellular Fixation/Permeabilization buffer (Thermo Fisher

Scientific, Waltham, USA), and then stained with anti-proSP-C

polyclonal Ab (pAb) (Abcam, Cambridge, UK) followed by

staining with Alexa Fluor 555-conjugated anti-rabbit pAb

(Abcam). The flow cytometric analysis was performed using

BD LSRFortessa TM (BD Biosciences, San Jose, USA), and
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data analyses were conducted using FlowJo software ver. 10.7.1

(BD Biosciences). BD FACS Aria™ III (BD Biosciences) was

used for flow cytometric sorting.
Quantitative RT-PCR

Dissected lungs were soaked in RNA Protect Tissue Reagent

(QIAGEN, Hilden, Germany) at 4°C for a few days and

subsequently stored at −80°C until the extraction of RNA.

Frozen lung tissue immersed in RNA extraction buffer RA1

from NucleoSpin RNA (TAKARA) was homogenized using

TissueLyser LT (QIAGEN) and total RNA was extracted

following the manufacturer’s protocol. Sorted cells were lysed

after adding Trizol LS (Thermo Fisher Scientific) and total RNA

was extracted according to the manufacturer’s protocol. Total

RNA was reverse-transcribed using the PrimeScript™ RT

reagent Kit with the gDNA Eraser (TAKARA) following the

manufacturer’s protocol. qRT-PCR was performed on

QuantStudio 3 (Thermo Fisher Scientific) using TB

Green® Premix Ex Taq™ II (TAKARA) and values were

normalized to the expression of 18S ribosomal RNA. Primer

sequences are listed in Supplementary Table 4.
Statistical analysis

Statistical analyses were performed using Prism ver. 7.0

software (GraphPad Software, San Diego, USA). A one-way

ANOVA was used for multiple-group comparisons. Dunnett’s

multiple comparison test was employed as a post-hoc test. An

unpaired t-test was used for two-group comparisons. p-values

less than 0.05 were considered to be significant. All data were

expressed as the mean ± standard error of the mean (SEM).
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