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Simulating the Transport and
Dispersal of Volcanic Ash Clouds With
Initial Conditions Created by a 3D
Plume Model
Zhixuan Cao1,2, Marcus Bursik3, Qingyuan Yang4,5 and Abani Patra*1,6

1Mechanical and Aerospace Engineering Department, SUNY Buffalo, Buffalo, NY, United States, 2Fluids Business Unit, ANSYS
Inc, Lebanon, NH, United States, 3Center for Geohazards Studies, SUNY Buffalo, Buffalo, NY, United States, 4Earth Observatory
of Singapore, Singapore, Singapore, 5The Asian School of the Environment, Nanyang Technological University, Singapore,
Singapore, 6Data Intensive Studies Center, Tufts University, Medford, MA, United States

Volcanic ash transport and dispersion (VATD) models simulate atmospheric transport of
ash from a volcanic source represented by parameterized concentration of ash with height.
Most VATD models represent the volcanic plume source as a simple line with a
parameterized ash emission rate as a function of height, constrained only by a total
mass eruption rate (MER) for a given total rise height. However, the actual vertical ash
distribution in volcanic plumes varies from case to case, having complex dependencies on
eruption source parameters, such as grain size, speed at the vent, vent size, buoyancy flux,
and atmospheric conditions. We present here for the first time the use of a three-
dimensional (3D) plume model based on conservation laws to represent the ash cloud
source without any prior assumption or simplification regarding plume geometry. By
eliminating assumed behavior associated with a parameterized plume geometry, the
predictive skill of VATD simulations is improved. We use our recently developed
volcanic plume model based on a 3D smoothed-particle hydrodynamic Lagrangian
method and couple the output to a standard Lagrangian VATD model. We apply the
coupled model to the Pinatubo eruption in 1991 to illustrate the effectiveness of the
approach. Our investigation reveals that initial particle distribution in the vertical direction,
including within the umbrella cloud, has more impact on the long-range transport of ash
clouds than does the horizontal distribution. Comparison with satellite data indicates that
the 3Dmodel-based distribution of ash particles through the depth of the volcanic umbrella
cloud, which is much lower than the observedmaximumplume height, produces improved
long-range VATD simulations. We thus show that initial conditions have a significant impact
on VATD, and it is possible to obtain a better estimate of initial conditions for VATD
simulations with deterministic, 3D forward modeling of the volcanic plume. Such modeling
may therefore provide a path to better forecasts lessening the need for user intervention, or
attempts to observe details of an eruption that are beyond the resolution of any potential
satellite or ground-based technique, or a posteriori creating a history of ash emission
height via inversion.

Keywords: volcano, 3D plume model, initial conditions, numerical simulation, SPH, Pinatubo, ash transport, ash
dispersal
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1 INTRODUCTION

Volcanic ash, the fine-grained fraction of tephra, can be widely
dispersed to synoptic and global scales and can lead to a
degradation of air quality and pose threats to aviation (Tupper
et al., 2007). Identification, tracking, and modeling the future
movement of volcanic ash help route and schedule flights to avoid
ash clouds. Numerical estimation of ash distribution using known
and forecast wind fields is necessary if we are to accurately predict
ash cloud propagation and spread. Numerous volcanic ash
transport and dispersion (VATD) forecast models have been
developed by both civil and military aviation, and meteorological
agencies, to provide forecasts of ash cloud motion (Witham et al.,
2007), such as Puff (Tanaka, 1991; Searcy et al., 1998), NAME
(Jones et al., 2007), HYSPLIT (Stein et al., 2015; Rolph et al.,
2017), and Ash3d (Schwaiger et al., 2012). New techniques have
been integrated into VATDs to satisfy increasing demands for
different types of output, model accuracy, and forecast reliability.
This contribution explores a forward modeling method for
creating initial conditions for VATD simulations, which
promises to reduce the need for inversion or user intervention
and improve forecasting.

Fero et al. (2009) and Stohl et al. (2011) showed that initial
source conditions have significant effects on the simulation of
volcanic ash transport. Constantinescu et al. (2021) proved that
an enhanced initial condition provides an overall better fit of the
tephra deposit generated from an ash cloud than do models
without a disk-like source, demonstrating the significant impact
of initial condition on ash dispersion. Besides location of the
eruption vent and timing of the release, traditional VATD
simulation requires key global descriptors of the volcanic
plume, especially plume height, grain size, eruption duration
and mass loading, or alternatively, a mass eruption rate
(MER). No matter how these global descriptors are obtained,
they are used to furnish the initial conditions for VATDs in the
form of a line-source term of a spatio-temporal distribution of
particle mass. It is a common practice to pick values for these
global descriptors using an empirical expression for the height-
MER relation. The values for the descriptors can also be found by
parameter calibration or inversion (e.g. Fero et al., 2008, 2009;
Stohl et al., 2011; Zidikheri et al., 2017). One-dimensional (1D)
plume models serve as an alternative option to provide these
values. For example, Bursik et al. (2012) used the 1Dmodel puffin
(Bursik, 2001) to generate estimates of mass eruption rate and
grain size. In some cases, an extra step is adopted to spread ash
particles from the line source horizontally, resulting in an initial
ash cloud in 3D space. The horizontal spreading depends on an
empirical expression as well. For example, the VATD model Puff
spreads particles from the line source uniformly in the horizontal
direction within a given radius. Considering the complexities of
volcanic eruptions, the actual ash distribution in the initial cloud
should vary from case to case and with time, making it difficult to
find one general expression that is suitable for all cases. It is useful
therefore to investigate alternative ways for creating initial ash
clouds without assumptions regarding plume geometry, or
numerical inversion. This provides the major motivation for
this study.

VATD models can be categorized into Lagrangian particle
tracking and Eulerian advection/diffusion types. Among several
available particle tracking models, such as, Hypact (Walko et al.,
1995), Puff (Searcy et al., 1998), CANERM (D’amours, 1998), and
HYSPLIT (Draxler and Hess, 1998) and advection/diffusion
models, such as Fall3D (Folch et al., 2009), and Ash3D
(Schwaiger et al., 2012), we adopt a particle tracking model,
Puff, as the primary VATD model. Puff can accept a 3D point
cloud description of the starting ash cloud as an initial condition,
which makes it technically easier to couple with a 3D Lagrangian
plume model. Puff initializes a discrete number of tracers that
represent a sample of the eruption cloud and calculates transport,
turbulent dispersion, and fallout for each representative tracer. A
cylinder extending vertically from the volcano summit to a
specified plume height is the standard approach to provide a
simple model of the geometry of a typical ash column. Puff
minimally requires horizontal wind field data. The “restart”
feature of Puff makes it feasible to accommodate the hand-off
between a plume simulation and the Puff simulation in terms of
time and length scales. We use the hybrid single-particle
Lagrangian integrated trajectory (HYSPLIT) model (Stein
et al., 2015; Rolph et al., 2017) to better understand simulation
results from Puff in this study.

Besides parameter calibration, 1D plume models have been
used to obtain global descriptors of volcanic plumes. 1D plume
models (e.g. Woods, 1988; Bursik, 2001; Mastin, 2007; de’Michieli
Vitturi et al., 2015; Folch et al., 2016; Pouget et al., 2016b) solve
the equations of motion in 1D using simplifying assumptions and
hence depend on the estimation of certain parameters, especially
those related to the entrainment of air, which is evaluated based
on two coefficients: a coefficient due to turbulence in the rising
buoyant jet and one due to the crosswind field. Different 1D
models adopt different entrainment coefficients based on a
specific formulation or calibration against well-documented
case studies. The feedback from plume to atmosphere is
usually ignored in 1D models. While these 1D models
generate well-matched results with 3D models for plumes that
are dominated by wind (often called weak plumes), much greater
variability is observed for strong plume scenarios (Bursik et al.,
2009; Costa et al., 2016). On the other hand, 3D numerical models
for volcanic plumes based on first principles and having few
parameterized coefficients (Oberhuber et al., 1998; Neri et al.,
2003; Suzuki et al., 2005; Cerminara et al., 2016a; Cao et al., 2018)
naturally create a 3D ash cloud, which could serve directly as an
initial state of the volcanic material for VATDs. However, there is
no VATD simulation using such 3D ash clouds as initial
conditions. In this study, we will carry out VATD simulations
using an initial state for the ash cloud based on 3D plume
simulations, generated with Plume-SPH (Cao et al., 2018,
2017). The implementation techniques described in this study
can be applied to any combination of VATD model and 3D
plume model even though our investigation is based on a specific
VATD model and plume model.

The 1991 eruption of Pinatubo volcano (Philippines) is used as
a case study. Pinatubo erupted between June 12 and 16, 1991,
after weeks of precursory activity. The climactic phase started on
June 15 at 0441 UTC and ended around 1341 UTC (Holasek et al.,
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1996a). The climactic phase generated voluminous pyroclastic
flows and sent Plinian and co-ignimbrite ash and gas columns to
great altitudes (Scott et al., 1996). The evolution of the Pinatubo
ash and SO2 clouds was tracked using visible (Holasek et al.,
1996a), ultraviolet (Total Ozone Mapping Spectrometer; TOMS)
(Guo et al., 2004a), and infrared sensors, including the advanced
very high-resolution radiometer (AVHRR) (Guo et al., 2004b).
There are sufficient observational data to estimate the eruption
conditions for the climactic phase of the eruption (Suzuki and
Koyaguchi, 2009). The availability of calibrated eruption
conditions and extensive observational data regarding ash
cloud transport make the Pinatubo eruption an ideal case study.

2 MATERIALS AND METHODS

2.1 Plume-SPH Model
Plume-SPH (Cao et al., 2018) is designed to describe an injection
of well-mixed solid and volcanic gas from a circular vent above a
flat surface into a stratified stationary atmosphere. The basic
assumptions of the model are as follows:

1) Molecular viscosity and heat conduction are neglected since
turbulent energy and momentum exchange are dominant;

2) Erupted material consisting of solid with different sizes and
the mixture of gases is assumed to be well-mixed and behaves
like a single-phase fluid (phase 2) which is valid for eruptions
with fine particles and ash;

3) Air, which is assumed to be a well-mixed mixture of different
gases, is assumed to be another phase (phase 1);

4) Assume thermodynamic equilibrium and dynamic
equilibrium between the two phases. As a result, both
phases share the common energy equation and momentum
equations;

5) All other microphysical processes (such as the phase changes
of H2O, aggregation, disaggregation, absorption of gas on the
surface of solids, solution of gas into a liquid) and chemical
processes are not considered in this model;

6) The effect of wind is also not currently considered in
this model.

Based on above assumptions, the governing equations of our
model are given as:

zρ

zt
+ ∇ · (ρv) � 0 (1)

zρξ

zt
+ ∇ · (ρξv) � 0 (2)

zρv
zt

+ ∇ · (ρvv + pI) � ρg (3)

zρE

zt
+ ∇ · [(ρE + p)v] � ρg · v (4)

where ρ is the density, v is the velocity, ξ is the mass fraction of
ejected material, g is the gravitational acceleration, I is a unit
tensor. E � e + K is the total energy which is a summation of
kinetic energy K and internal energy e. An additional equation is

required to close the system. In this model, the equation for
closing the system is the following equation of state (EOS).

p � cm − 1( )ρe (5)

where

cm � Rm/Cvm + 1 (6)

Rm � ξgRg + ξaRa (7)

Cvm � ξsCvs + ξgCvg + ξaCva (8)

ξa � 1 − ξ (9)

ξg � ξ · ξg0 (10)

ξs � ξ − ξg (11)

where Cv is the specific heat with constant volume, R is the gas
constant. ξ is the mass fraction of erupted material. The subscript
m represents the mixture of ejected material and air, s represents
solid portion in the ejected material, g represents gas portion in
the ejected material, a represents air, 0 represents physical
properties of erupted material. ξg0 is the mass fraction of
vapor in the erupted material.

Three different boundary conditions are applied in this
model. At the vent, temperature of erupted material T,
eruption velocity v, the mass fraction of vapor in erupted
material ξg0, and mass discharge rate _M are given. The
pressure of erupted material p is assumed to be the same
as ambient pressure for pressure-balanced eruption. The
radius of the vent is determined from ρ, _M and v. Nonslip
wall boundary condition is applied to the flat ground, where
we enforce the velocity to be zero. With further assumption
that the ground is adiabatic, internal energy flux, which
consists of heat flux and energy flux carried by mass flux,
vanishes on the wall boundary. Pressure outlet boundary
condition is applied to the surrounding atmosphere where
the pressure is given. Except for the pressure, boundary
values for density, velocity, and energy are determined by
numerical calculation from the conservation laws. The initial
condition for Plume-SPH is created based on the atmosphere
profile before the eruption.

The governing equations, EOS, boundary conditions, and
initial conditions establish a complete mathematical model.
The model posed over the computational domain is then
discretized using smoothed particle hydrodynamics (SPH)
method (Gingold and Monaghan, 1977) available in the tool
Plume-SPH (Cao et al., 2017, 2018) using two types of SPH
particles: 1) particles of phase 1 to represent ambient air and 2)
particles of phase 2 to represent erupted material. So before the
eruption, the computational domain is fully occupied by particles
of phase 1. During the eruption, particles of phase 2 are injected
into the computational domain. The discretized model is then
converted into a large computation task in the Plume-SPH tool
based on a parallel data management framework (Cao et al.,
2017).

The input parameters for Plume-SPH include the eruption
condition at vent, the material properties, and a profile of the
atmosphere. The eruption parameters, material properties, and
atmosphere for the “strong plume–no wind” case in the recent
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comparison study on eruptive column models (Costa et al., 2016)
are adopted. Eruption conditions and material properties are
listed in Table 1. Note that the density of erupted material at the
vent and radius of the vent can be computed from the given
parameters. The eruption pressure is assumed to be the same as
the atmospheric pressure at the vent; hence, it is not given in the
table. The vertical profiles of atmospheric properties were based
on the reanalysis data from European Centre for Medium-Range
Weather Forecasts (ECMWF) for the period corresponding to the
climactic phase of the Pinatubo eruption.

Running of Plume-SPH updates physical quantities, such as
temperature, velocity, and the position of SPH particles in each
time step. During Plume-SPH simulation, SPH particles of phase 2,
which represent the erupted material, are injected from the
eruption vent into the computation domain with an initial
injection velocity. As they move upwards, these particles will get
mixed with SPH particles of phase 1, which represent the air,
during the whole simulation. Their physics quantities get updated
as well. After the simulation, the computation domain will be filled
with SPH particles of both phase 1 and phase 2. Removing all SPH
particles of phase 1 from the computation domain, all of the
remaining SPH particles represent the erupted material, which
naturally forms a plume (see Figure 1).

2.2 Puff and Initial Ash Cloud
Puff (Tanaka, 1991; Searcy et al., 1998) is a dynamic pollutant
tracer model. The model is based on a 3D Lagrangian form of
the fluid mechanics, in which the material transport is
represented by the fluid motion, and diffusion is
parameterized by a stochastic process of random walk. Here,
the model is constructed by a sufficiently large number of
Lagrangian tracer particles with a random variables Ri(t) �
(x(t), y(t), z(t)), where i � 1 ∼ M, which represents position
vectors of particles from the origin of the ash source at the time
t.M is the total number of Lagrangian tracer particles, a sample
of all the ash particles.

Ri(t + Δt) � Ri(t) +W(t)Δt + Z(t)Δt + Si(t)Δt (12)

Here, W accounts for local wind advection, Z is generated by
Gaussian random numbers and accounts for turbulent
dispersion, and S is the terminal gravitational fallout velocity
or settling speed, which depends on a tracer’s size.

A collection of tracer particles can be used to start a Puff
simulation. The tracer particles have three basic properties: age,
size, and position. The age of each particle is the elapsed time
from when it was released. Ash particles in the initial ash cloud
have zero age. Initial ash size distribution is assumed to be log-
normal. According to a mean and standard deviation provided by
the user, Puff assigns size to each particle. Puff initializes the
position of each particle according to semiempirical expressions.
The height of each particle is determined according to the
specified distribution from the surface (1000 mbar � 0 m) to

TABLE 1 | List of eruption condition and material properties for plume simulation.

Parameters Units Plume

Vent Velocity m ·s−1 275
Vent Gas Mass Fraction – 0.05
Vent Temperature K 1053
Vent Height m 1500
Mass Discharge Rate kg ·s−1 1.5 × 109

Specific Heat of Gas at Constant Volume J ·kg−1 ·K−1 717
Specific Heat of Air at Constant Volume J ·kg−1 ·K−1 1340
Specific Heat of Solid J ·kg−1 ·K−1 1100
Specific Heat of Gas at Constant Pressure J ·kg−1 ·K−1 1000
Specific Heat of Air at Constant Pressure J ·kg−1 ·K−1 1810
Density of Air at Vent Height kg ·m−3 1.104
Pressure at Vent Height Pa 84,363.4

FIGURE 1 | Steps to create initial condition for Puff based on raw output
of Plume-SPH (Cao et al., 2018). First row: raw output of Plume-SPH. Blue
particles are phase 1 (ambient air), and red particles are phase 2 (erupted
material). Second row: plume after removing SPH particles of phase 1.
Picture at right is colored according to the mass fraction of erupted material.
Third row: volcanic plume above the “corner” region after cutting off the lower
portion. Fourth row: assign sizes to particles converting numerical
discretization points into tracers. Fifth row: switch coordinates in local
coordinate system into (longitude, latitude, height).
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the top of the plume height,Hmax, which is given by the user. Puff
also supports reading predefined initial ash clouds from a file,
containing the coordinates of all tracer particles.

Vertical particle distribution in Puff is usually based on the
Poisson distribution. For the Poisson distribution, the vertical
height of ash particles is given by Eq. 13:

H � Hmax − 0.5HwidthP +HwidthR (13)

where P is an integral value drawn from a Poisson distribution of
unit mean, R is a uniformly distributed random number between
0 and 1,Hmax is the maximum plume height,Hwidth represents an
approximate vertical range over which the ash will be distributed.
So for Poisson distribution, the user can specify two parameters,
Hmax and Hwidth. Another commonly used vertical ash
distribution in VATD simulation is Suzuki. For the Suzuki
plume shape (Suzuki, 1983), the ash mass vertical distribution
is assumed to follow the Eq. 14:

Q(z) � Qm
k2 1 − z/Hmax( )exp k z/Hmax − 1( )( )

Hmax[1 − (1 + k)exp(−k)] (14)

where Qm is the total mass of erupted material, k is the shape
factor, which is an adjustable constant that controls ash
distribution with height. A low value of k gives a roughly
uniform distribution of mass with elevation, while high values
of k concentrate mass near the plume top. So for Suzuki
distribution, besides the plume height Hmax, there is another
user-specified parameter, k.

Puff initializes the horizontal distribution of ash particles
according to semiempirical expression as well. Puff uses a
uniformly distributed random process to determine ash
particle locations in a circle centered on the volcano site. The
maximum radius (at plume top) at which a particle can be located
is given as “horizontal spread”. The horizontal displacement from
a vertical line above the volcano is a random value within a circle
of which the radius equals the “horizontal spread” multiplied by
the ratio of the particle height H to the maximum Hmax, see Eq.
15. So the resulting shape of the particle distribution within the
plume is an inverted cone in which particles are located directly
over the volcano at the lowest level and extend out further
horizontally with increasing plume height.

r(H) � rmaxH/HmaxR (15)

where r(H) is the radius of the horizontal circle, within which all
particles at the height of H are located. rmax is the horizontal
spread. H is the height, and R is an uniformly distributed random
number between 0 and 1.

In summary, particle distributions in the initial ash cloud are
controlled by several parameters, for example, Hmax, Hwidth, and
rmax if the user chooses to use semiempirical expressions, Eqs 13,
15. Users can optimize or calibrate these parameters to adjust the
initial condition for Puff so that the simulated results match
better with observations. Besides the initial ash cloud, other input
parameters for Puff are diffusivity in the vertical and horizontal
directions, start and end time of the eruption, and eruption
duration. When creating initial conditions from the output of
Plume-SPH, the total number of Lagrangian tracers is the count

of all SPH particles of phase 2 in the plume. The same total
number of Lagrangian tracers is used when creating the initial ash
cloud based on semiempirical expressions. All input parameters
for Puff are listed in Table 2.

2.3 Creation of Initial Ash Cloud From
Plume-SPH Output
In this study, we convert the output of Plume-SPH into an initial
ash cloud which serves as the initial condition for Puff. Themethod
proposed consists of generating the initial ash cloud directly from
Plume-SPH, foregoing assumptions and estimates, or inverse
modeling, regarding ash injection height and timing. The steps
to create an initial ash cloud based on the raw output of Plume-
SPH are shown in Figure 1. The initial ash cloud is created from
SPH particles of phase 2, which represents the erupted material in
the model. After reaching the maximum rise height and starting to
spread horizontally, particles of phase 2 form an initial umbrella
cloud (Figure 2). The 3D plume simulation is considered complete
once the umbrella cloud begins to form. Parcels that will be
transported by the ambient wind are those above the “corner”
region, where mean plume motion is horizontal rather than
vertical. With such consideration, we introduce an elevation
threshold, which is the lower elevation limit of the ash that will
be transported by the VATD. All SPH particles with elevation
lower than the threshold are excluded when creating the initial ash
cloud. The inflection point from vertical raising to horizontal
spreading happens around 15 km according to the averaged
vertical velocity [(d) in Figure 2] and horizontal velocity [(e) in
Figure 2]. Below this inflection point, particle trajectories are
primarily vertical in the stalk-like eruption column. Above this
level, particle trajectories are primarily horizontal, as they flow into
the umbrella cloud gravity current. So we choose 15 km to be the
elevation threshold in this study.

Considering that SPH particles are only discretization
points, each is assigned a grain size according to a given
total grain size distribution (TGSD) (Paladio-Melosantos

TABLE 2 | Parameters used in VATD simulation of the climactic phase of Pinatubo
eruption on June 15, 1991. The first six parameters are used by semiempirical
expression to create an initial ash cloud. When creating an initial condition based
on the Plume-SPH model, these parameters are extracted from output of Plume-
SPH model.

Parameters Unit Semiempirical Plume-SPH

Plume Height (Hmax) km 40 –

Horizontal Spread (rmax) km 103.808 –

Vertical Spread (Hwidth) km 6.662 –

Plume Shape – Poisson –

Total Ash Particles – 1,768,500 1,768,500
Elevation Threshold m – 15,000
Horizontal Diffusivity m2/s 10,000 10,000
Vertical Diffusivity m2/s 10 10
Grain Size Distribution – Gaussian Gaussian
Mean of Grain Size (Radius) mm 3.5 × 10−2 3.5 × 10−2
Standard Deviation of Grain Size – 1.0 1.0
Start Time UT 0441 0441
End Time UT 1341 1341
Simulation Duration hour 72 72
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et al., 1996), and a concentration according to the mass and
volumetric eruption rate. The Plume-SPH discretization
points are thus switched to Puff Lagrangian tracer particles
having grain sizes and concentrations. The coordinates of
these tracer particles, which are initially in the local Cartesian
coordinate system of Plume-SPH, are converted into Puff’s
global coordinate system, which is given in terms of
(longitude, latitude, height). Puff takes the initial ash cloud,
consisting of the collection of Lagrangian tracer particles with
grain size and concentration, and propagates from time t to
time t + Δt via solution to an advection/diffusion equation
(Eq. 12).

To summarize, there are four steps to create an initial ash
cloud from the raw output of Plume-SPH:

1) filter by SPH particle type to select SPH particles that
represent erupted material (phase 2);

2) filter by a mean velocity threshold to select the upper part
(above the “corner” region) dominated by horizontal
transport;

3) switch SPH discretization points to Lagrangian tracer
particles, by assigning grain size to each particle;

4) convert coordinates of the SPH Lagrangian tracers into the
VATDs geographic coordinate system.

The features of the volcanic plume and resulting initial ash
cloud used in the case study are shown in Figure 2. It is important
to point out that since both Plume-SPH and Puff are based on the
Lagrangian method, there is no extra step of conversion between
an Eulerian grid and Lagrangian particles.

2.4 Puff Restart
The plume and ash transport models are run at different time
scales and length scales. The spatial and temporal resolutions
of the plume simulations are much finer than those of the ash
transport model. It takes tens of minutes (600 s in this case)
for the Pinatubo plume to reach a steady height. However, the
eruption persisted for a few hours (9 h for the climactic phase
of Pinatubo eruption), and it may be necessary to track ash
transport for days following an eruption. At present, it is too

FIGURE 2 | Volcano plume from 3D plume model. All particles in the pictures are of phase 2 (particle of phase 1 has been removed) at 600s after eruption, at which
time, the plume has already reached the plume height and started spreading radially. (A) is the front view of the whole plume. (B) is the top view of the plume. (C) is the
front view of the initial ash cloud, which is essentially a portion of the whole plume whose elevation is higher than a given threshold (in this picture is 15 km). Particles are
colored according to mass fraction of erupted material. Red represents high mass fraction while blue represents low mass fraction. (D) is the average vertical
velocity of the plume. At elevations below 15 km, the average vertical velocity decreases. At elevations higher than 15 km, the averaged vertical velocity starts increasing.
(E) is the average horizontal velocity of the plume. The averaged horizontal velocity becomes obviously larger when elevation is higher than15 km. So the reflection point
is somewhere around 15 km.

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 7047976

Cao et al. VATD Based on the 3D Plume Model

9

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


computationally expensive to run 3D plume simulations for
several hours in real time. In order to handle the difference in
time scale, we mimic a continuing eruption with intermittent
pulses releasing ash particles. In particular, we restart Puff at
an interval of 600 s, i.e., the physical time of the plume
simulation to reach a steady height. At every Puff restart,
we integrate the output of the last Puff simulation and Plume-
SPH into a new ash cloud. This new ash cloud serves as a new
initial condition with which to restart a Puff simulation. A
sketch demonstrating the overall restart process is shown in
Figure 3. The total number of Lagrangian tracer particles used
in Puff thus equals the summed number of particles in all
releases. The total number of tracer particles is therefore no
longer a user-selected parameter. Fero et al. (2008) proposed
using more realistic time-dependent plume heights. We do
not adopt that strategy here for simplicity, although the idea
would be straightforward in execution, given time-dependent
eruption conditions.

3 RESULTS

The transport of volcanic ash resulting from the Pinatubo
eruption on June 15, 1991, is simulated using two different
initial conditions. The first type of initial condition is created
in a traditional way according to user-specified parameters (Hmax,
Hwidth, and rmax) and the semiempirical plume shape expressions
(Eqs 13, 15). We use the observed plume height (40 km) as Hmax

and take Hwidth � 6.662 km, rmax � 103.808 km, respectively,
based on a previous study (Fero et al., 2008). The second type of
initial condition is created by the new method proposed in this
study. To create initial conditions using the new method
described in this study, the plume rise is simulated first by
Plume-SPH. Then, the initial ash cloud is obtained by
processing the raw output of Plume-SPH following steps
described in Creation of Initial Ash Cloud From Plume-SPH
Output except for initial conditions, and the parameters that
control the VATD simulation are the same for both simulations.
Simulated ash transport results are compared against
observations.

The simulation results using different initial conditions
are compared with TOMS AI (Aerosol Index) and AVHRR
BTD (brightness temperature difference) ash cloud map
imagery (Figure 4). The Puff simulation results are post-
processed by the following steps to calculate the relative
concentration.

1) The 3D computational domain is discretized into a collection
of cells (latitude, longitude, elevation), and each cell is of size
0.2 degree × 0.2 degree × 1 km;

2) Find the cell that has the maximum number of particles
(tracer particles); say the maximum number of particles is
Nmax;

3) Exclude all cells that have fewer than five particles, and
4) Calculate the relative concentration of each cell by dividing

the number of particles in the cell by Nmax.

In contouring, we plot the relative concentration of the cell
that has the maximum number of particles at a given (latitude,
longitude). In addition to the relative concentration, we also plot
the contours of the maximum height of the ash cloud (Figure 5),
which is obtained by the following post-processing steps:

1) The 3D computational domain is discretized into a collection
of cells (latitude, longitude, elevation), and each cell is of size
0.2 degree × 0.2 degree × 1 km;

2) Exclude all cells that have fewer than five particles, and
3) The maximum height is the cell center height of the top cell

among all cells with the same (latitude, longitude).

We also calculated the Figure of Merit in Space (FMS)
according to the definition:

FMS � (area of intersection of Puff forecast footprint and satellite image extent)
(area of union)

The differences between simulated ash transport by the
“Semiempirical initial cloud + Puff” and “Plume-SPH + Puff”
conditions are significant. We first check the maximum relative
concentration in Figure 4. At 23 and 31 h after the beginning of

FIGURE 3 |Mimic successive eruption with intermittent pulsed releasing of ash particles. tI is the period of pulsing release. tI equals the physical time of 3D plume
simulation.
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the climactic phase, the simulated ash concentration based on the
initial conditions created from Plume-SPH is visibly closer to
observation than that based on the initial condition generated
from semiempirical expressions, especially in terms of the
location of the highest concentration region. This is confirmed
by the FMS, which is 0.249 (23 h) and 0.269 (31 h) for Plume-
SPH results, and 0.063 (23 h) and 0.065 (31 h) for semiempirical
initial clouds. Around 55 h after the beginning of the climactic
phase, the disparity between observation and simulation becomes
more obvious. Ash in the “Semiempirical initial cloud + Puff”
simulation is located far west of the observed, with a FMS value
equal to 0.058. The high concentration area of the “Plume-SPH +
Puff” simulation, even though closer to observation, has also
propagated further downwind than in the observation. The FMS
goes down to 0.085.

While most of our work is based on the Puff VATD, it is
useful to compare the maximum cloud height in Figure 5 with
the wind field indicated in the popular VATD, HYSPLIT’s
forward trajectory tracking (Figure 6). The comparison
reveals that the ash cloud is being transported in two
separate, main layers (directions) independently. From
Figure 6, we can see that the wind between elevations of 10
and 15 km blew from north-east to south-west, while winds of
higher elevation blew from east to west. This vertical wind shear
naturally separated the ash cloud into two layers. In the
“Semiempirical initial cloud + Puff” results, the lower
elevation layer is missing, which is the most important factor
causing differences between these two simulation results
(Figure 4). Even for the upper layer, the maximum cloud
height of the “Semiempirical initial cloud + Puff” simulation

FIGURE 4 | Comparison between “Semiempirical initial cloud + Puff” and “Plume-SPH + Puff”. Pictures to the left, (A), (C) and (E), are Puff simulation based on
initial condition created according to semiempirical plume shape expression. Pictures to the right, (B), (D) and (F), are Puff simulation based on initial conditions
generated by Plume-SPH. TOMS or AVHRR images of Pinatubo ash cloud are overlapped with the simulation results. Ash clouds at different hours after eruption are on
different rows. From top to bottom, the images correspond to around 23 h after eruption (UT 199106160341), 31 h after eruption (UT 199106161141), 55 h after
eruption (UT 199106171141). The observation data on the first row are TOMS AI (aerosol index) map. The observation data on the second and third row are AVHRR BTD
(brightness temperature difference) ash cloud map with atmospheric correction method applied (Guo et al., 2004b). The contours of simulation results are maximum
concentration at given (longitude, latitude). The colored dots are simulation results of relative concentrations whose values are between zero to one and have no unit, and
the solid contours are observed in Dobson Units.
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results is higher than that of the “Plume-SPH + Puff”
simulation. Such differences cannot be captured by metrics
based on footprint, such as FMS. At 55 h after the eruption,
the observed high concentration ash, which is at a relatively low
elevation (inferred from the wind direction at different
elevations in Figure 6 and the eruption location), is missing
in the “Plume-SPH + Puff” simulation results. This leads to the
large decrease of FMS values from 0.269 to 0.085. One
possibility is that these ash clouds are from eruptions after
the climactic phase. In our current simulation, we use the
eruption condition for the climactic phase generating plume
height for the climactic phase, but satellites see ash and SO2

from all eruption phases.
The only difference in initial conditions between these two

simulations is the distribution of ash parcels. The main difference
between simulation results from the “Plume-SPH + Puff” and the

“Semiempirical initial cloud + Puff” runs can thus be directly
attributed to the initial ash particle distribution, which we discuss
further in the following section.

3.1 Effect of Plume Height (Hmax)
In this section, we discuss the vertical distribution of ash particles
in the initial ash cloud. The majority of volcanic ash particles are
usually injected at an elevation lower than the plume height. For
instance, Holasek et al. (1996a,b) reported the maximum
Pinatubo volcanic plume, i.e., source height, as ∼ 39 km while
the distal volcanic cloud heights were estimated at ∼ 20–25 km.
Self et al. (1996) reported that the maximum plume height could
have been >35 km, but that cloud height was ∼23– 28 km after ∼
15–16 h. The neutral buoyancy height of the Pinatubo aerosol
cloud was estimated with different methods at ∼ 17–26 km (lidar)
by DeFoor et al. (1992), ∼ 20–23 km (balloon) by Deshler et al.

FIGURE 5 | Comparison between “Semiempirical initial cloud + Puff” and “Plume-SPH + Puff”. Pictures to the left, (A), (C) and (E), are Puff simulation based on
initial condition created according to semiempirical plume shape expression. Pictures to the right, (B), (D) and (F),are Puff simulation based on initial conditions generated
by Plume-SPH. TOMS AI (aerosol index) or AVHRR BTD (brightness temperature difference) images of Pinatubo ash cloud are overlapped with the simulation results.
Ash clouds at different hours after eruption are on different rows. From top to bottom, the images correspond to around 23 h after eruption (UT 199106160341),
31 h after eruption (UT 199106161141), 55 h after eruption (UT 199106171141). The observation data on the first row are TOMSAI (aerosol index) map. The observation
data on the second and third row are AVHRR BTD (brightness temperature difference) ash cloud map with atmospheric correction method applied (Guo et al., 2004b).
The colored dots are simulation, and the solid contours are observed in Dobson Units. The contours of simulation results are maximum height of ash cloud, whose unit is
m. The FMS value for each simulation is on each contour.
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(1992), ∼ 17–28 km (lidar) by Jäger (1992), and ∼ 17–25 km
(lidar) by Avdyushin et al. (1993). Based on a comparison
between simulated clouds with early infrared satellite imagery,
Fero et al. (2008) reported that the majority of ash was
transported between 16 and 18 km. These observations make
good physical sense, as particles are concentrated or centered
around the intrusion height of the umbrella cloud, not near the
plume top, because the plume top is due to momentum
overshoot. However, the empirical expressions for the height-
MER relation, which are commonly adopted to create initial
conditions for VATD simulations, tend to place the majority of
ash particles closer to the top if one uses observed plume height in
the empirical expressions.

Here, we investigate two commonly used plume shapes, the
Poisson (see Eq. 13) and Suzuki (see Eq. 14). Particle
distributions (in terms of mass percentage or particle number
percentage) in the vertical direction in the initial ash cloud are
shown in Figure 7. In that figure, the vertical particle distribution
based on Plume-SPH output is compared with the vertical
particle distribution based on semiempirical shape expressions.
Both Poisson and Suzuki distributions in Figure 7 take Hmax �
40 km, which is close to the reported observed plume height.
When adopting the Poisson distribution [(c) in Figure 7], the
majority of the particles are between 30 and ∼ 40 km. Obviously,
the Poisson function distributes the majority of ash at a higher
elevation than was observed (e.g. Fero et al., 2008). As for the

Suzuki distribution, (D) in Figure 7, the majority of ash particles
also occur in a range that is significantly higher than 25 km. Note
that in the plot (d), the Suzuki constant k is set to 4, which is
commonly used for Sub-Plinian and Plinian eruption columns
(Pfeiffer et al., 2005). As for initial ash clouds in Plume-SPH
simulations, most ash particles are distributed between ∼
17–28 km, which matches well with observations. The plume
height is also consistent with observation.

For the Poisson distributions, the ash particles cannot be lower
without changing the plume height. To distribute the majority of
ash particles at a lower elevation, the plume height must be
reduced to a value smaller than the observed plume height.
Adjusting parameters such as plume height in the empirical
expression is actually the traditional source term of calibration
method. A set of initial ash clouds using different plume heights
based on the Poisson distribution is shown in Figure 8. The
plume heights adopted in plume shape expressions are not
obtained from any plume model or observation of plume
height, but by a posteriori calibration to later-observed ash
cloud transport heights. For Suzuki distribution, adjusting the
Suzuki constant can adjust the distribution of ash particles in
vertical direction. As shown in Figure 7, when k is equal to 1 [see
(e)], the majority of ash particles are at a lower elevation than
observation.With k � 3 and k � 6 [figure (g) and (h)], themajority
of ash particles are at a higher elevation than observation. When k
is set to 2 [see (f)], we can see that the majority of ash particles are
roughly distributed in the range 17–28 km. But the shape does not
look like a typical plume, as particles are more uniformly
distributed in the vertical direction. In addition, the “best fit”
Suzuki constant is different from the typical value, which is 4
(Pfeiffer et al., 2005), for Sub-Plinian and Plinian eruptions,
meaning that we can not apply previous experiences into the
semiempirical expression for this eruption.

The ash clouds created by the Poisson distribution with
different plume heights are used as initial conditions in Puff
simulations, whose results are shown in Figure 9. Except for the
plume height, all other parameters for creating an initial ash
cloud are the same as those in Table 2. Of course, the range over
which the majority of ash particles are located is lower when
using lower plume heights. Figure 9 thus shows that the plume
height has a significant influence on the ash transport
simulation. The maximum heights of the simulated ash cloud
are completely different when using different Hmax values in the
Poisson expression. When the plume height is 10 km, the ash
lags behind that observed and its FMS is 0.055, which is very
close to FMS when Hmax is 40 km. For the cases that Hmax is 20
and 30 km, the FMS values are 0.121 and 0.142, respectively.
Taking 20 km as the plume height better represents the lower
elevation portion of the ash cloud while taking 30 km as the
plume height better represents the higher elevation portion of
the ash cloud.

Simulation results based on a calibrated plume height of 30 km
show a footprint similar to those of “Plume-SPH + Puff” although
smaller in terms of area. However, the initial ash cloud created by
a Poisson distribution with a plume height around 35 km
generates the best match with observation in terms of FMS
metric, with the FMS value reaching 0.227. That is to say, a

FIGURE 6 | Trajectories of particles starting from different heights
indicating the wind directions of different evaluations. The trajectories are
chosen to start at points that were on the perimeter of the umbrella cloud in x,
y, and z, and in its center, right before it became affected by the wind to
give an idea of the maximum possible spread of the trajectories from that initial
condition.
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plume height lower than the real plume height is required by the
Poisson plume shape to distribute ash particles at elevations
comparable to the “true” ash distribution. Even for the best-
matched results, the high concentration area does not match with
an observation well.

It is clear that the initial condition of vertical ash distribution
has a dominant effect on VATD simulation, so it is critical for the
forecast capability of VATD simulations to explore more accurate
and adaptive ways for establishing the initial ash distribution,
especially methods that do not rely on a posteriori parameter
calibration or inversion.

3.2 Effect of Vertical Spread (Hwidth)
In the previous section, we explored the effects of adjusting the
plume height to change the vertical ash distribution at the source.
In this section, we investigate the importance of another
parameter in the semiempirical Poisson expression (Eq. 13).
We vary the “vertical spread”, Hwidth, in the range ∼ 3–10 km.
A set of initial ash clouds with different vertical spreads are shown
in Figure 8. Except for vertical spread, all other parameters for
creating an initial ash cloud are the same as those in Table 2. The
vertical range within which the majority of ash particles are
located becomes narrower when a smaller value for the vertical
spread parameter is used. The ash clouds based on different

vertical spread parameters are then used as initial conditions in
Puff simulations.

The VATD results are shown in Figure 9. Adjusting the
vertical spread changes particle distribution in the vertical
direction, and thus, not surprisingly, affects the VATD
simulation results. None of the VATD simulations based on
initial ash clouds with vertical spreads equal to 3 km or 5 km yield
better results than do VATD simulations based on initial
conditions created by Plume-SPH (see Figure 9). But when we
take 10 km as the vertical spread, we get a FMS that is very close to
Plume-SPH, even though the shape of the ash cloud footprint and
the maximum height of the ash cloud are completely different.

The calibration tests on vertical spread, carried out here, are
certainly not exhaustive. One could do a more comprehensive
calibration throughout the multidimensional parameter space
(for Poisson distribution, the parameter space is two-
dimensional) and find better results. In addition, with a more
complicated semiempirical plume shape expression, one could
have more control over plume shape and might be able to get an
initial condition that yields a more accurate ash transport
forecast. However, more complicated and adaptable plume
shape expressions imply a higher-dimensional parameter
space, which requires more effort in calibration, even though
the degrees of freedom to adjust plume shape are still limited.

FIGURE 7 | First row, comparison of particle distribution of initial ash cloud in vertical direction. (A) is corresponding to the initial ash cloud obtained from Plume-
SPH output. (B) is (A) truncated by a elevation threshold of 15 km. (C) is for vertical ash distribution based on Poisson distribution (Eq. 13) with Hmax equals to 40 km.
Another parameter, Hwidth is 6662 m. (D) is corresponding to Suzuki distribution (Eq. 14) with Hmax equals to 40 km and k equals to 4 (Pfeiffer et al., 2005). The second
row, Suzuki distribution with Hmax equals to 40 km but different values for k. The x axis is the percentage of particle numbers for Plume-SPH and Poisson. For
Suzuki, the x axis is the mass percentage of erupted material.
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Creating initial conditions based on 3D plume simulations avoids
such parameter calibration.

3.3 Horizontal Ash Distribution
The differences between the semiempirical plume particle
distribution and actual (or simulated by the 3D plume model)
are not only in the vertical direction. The importance of the
horizontal distance of each initial ash particle from a line
extending upward from the volcano is investigated in this
section. Puff uses a uniformly distributed random process to
determine ash particle locations in a circle centered on the
volcano site as described in Puff and Initial Ash Cloud for the
output of Plume-SPH, and an effective (maximum) radius is
determined according to a given threshold of ash concentration,
following Cerminara et al. (2016b). A time-averaged, spatial
integration of the dynamic 3D flow field is conducted to
remove significant fluctuations in time and space. Figure 10
compares the radius of the initial ash clouds created by 3D plume
simulations with that assumed in the semiempirical plume shape
expression adopted in Puff. It is impossible for the simple,
assumed plume shapes to capture the complex and more
realistic shapes developed by Plume-SPH. Additional
parameterization may generate more reasonable shapes, but
these would continue to be ad hoc; none would likely have the

potential fidelity of the 3D simulation to reality, and adding a
temporally changing distribution would be difficult.

Comparison between cross-sectional views of the initial ash
clouds is shown in Figure 11. The cross-sectional view of
horizontal particle distribution using the semiempirical
method (last figure in Figure 11) is similar to a cross-sectional
view of a simulated 3D plume, in a general sense. However, for
simulated 3D plumes, the ash particle distribution in cross section
varies with height, which factor would become increasingly
important with increasing wind speed, where wind speed to be
included in the estimate of initial plume shape. It is difficult for
the semiempirical expressions to accommodate such a complex
distribution.

Despite the obvious difficulty of correctly estimating ash
distribution near the vent, or for short propagation times,
assigning different values for the horizontal spread has a
negligible effect on VATD simulation results at large time. We
investigated horizontal spread values between 50 and 1600 km to
create initial ash clouds; all of them generated similar results at
large propagation times (> 1 day). Figure 9 shows two different
simulation results based on initial ash clouds with horizontal
spread equal to 50 and 600 km, respectively. No visible differences
are apparent between them. The FMS values, 0.073 and 0.074,
respectively, are also very close. This implies that horizontal

FIGURE 8 | Initial particle distribution in vertical direction based on Poisson plume shape (Eq. 13). The first row varies plume heights. (A) to (D) are corresponding to
plume height of 10 km, 20 km, 30 km, 35 km. Another parameter, Hwidth is 6662 m for all four figures in the first row. The second row varies “vertical spread”, Hwidth. (E)
to (G) are corresponding to vertical spread of 3 km, 5 km, and 10 km. The plume height, Hmax, is set to 40 km for all three figures. The x axis is the percentage of particle
numbers. See Figure 7 for vertical ash distribution of Plume-SPH output.
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FIGURE 9 | Ash transport simulated by Puff using different initial ash clouds created according to the empirical expressions using different input parameters. All
images are corresponding to 55 h after eruption (UT 199106171141). More details are in the table.
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distribution has a less significant influence on VATD simulation
results than does vertical distribution for long distance or large
time. Perhaps, the most important ramification of this result is

that it means the time at which the “handshake” is made between
Plume-SPH and the VATD does not affect results significantly for
relatively large distances and times.

4 DISCUSSION

4.1 Sentitivity of Other Input Parameters
Besides the initial ash cloud, other parameters for Puff simulations
are horizontal diffusivity, vertical diffusivity, mean grain size, grain
size standard deviation, and total number of tracers. We present in
this subsection informal sensitivity studies on these parameters.
We also investigate the influence of eruption duration. The
sensitivity analyses will serve as the basis for identifying possible
sources of disparities between simulation and observation.

Fero et al. (2008) simulated the volcanic ash transport in the
Pinatubo eruption in 1991. He carried out systematic sensitivity
analysis with respect to input parameters of Puff and found that
all other parameters except for the plume height have negligible
effect on long-term ash transportation of Pinatubo. Inspired by
Fero et al. (2008), we carried out similar informal sensitivity
analysis with much fewer sample points in the parameter space
and got similar results. Among the parameters explored, the
eruption duration and beginning time show the most obvious
influence on simulated ash distribution although the effect is
still small. To show the differences in an intuitive way, (a) - (c)
in Figure 12 shows simulated ash distribution corresponding to
4.9 h duration, 9 h duration, and 11 h duration, respectively.
After 72 h, relative to the simulation starting time, these three cases

FIGURE 10 |Comparison between radius of initial ash clouds created by
3D plume model (Plume-SPH) and assumed initial ash cloud shape (Eq. 15) in
Puff. The plume shape expression used in Puff defines an inverted cone
whose actual shape changes when “horizontal spread” takes different
values. R � 25 km is corresponding to “horizontal spread” equals to 50 km.
R � 50 km is corresponding to “horizontal spread” equals to 100 km.

FIGURE 11 | Horizontal distribution of ash particles (tracers) on a cross section of initial ash cloud. Puff assumes a randomly uniform distribution of ash particles
within a circle, as shown by blue dots in (F). All other figures show the ash particle distribution of initial ash clouds created by Plume-SPH at different elevations.
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generate very similar results with tiny visible differences. Daniele
et al. (2009) did sensitivity analysis with respect to the input
parameters of Puff on different volcanoes and found that for
eruptive eruptions, the most dominant factors are the wind field
and plume height, while all other input parameters are relatively
less important. The significance of the wind field has been
confirmed by other researchers (e.g. Stefanescu et al., 2014).

We conducted several simulations with eruption duration
varying in the range of 5–11 h with slightly different starting

time of climactic phase. Table 3 lists all these simulations.
However, only slight visible differences are observed among the
simulated ash transport outputs. We can see that the eruption
duration has negligible effects on long-term ash transport.

The new methodology for generating initial ash clouds
introduces a new parameter: elevation threshold, which was
specified based on averaged vertical velocity and horizontal
velocity. We carry out a separate, informal sensitivity analysis
on this parameter by varying the elevation threshold from 1.5 km
(the height of the vent) to 25 km. The simulated ash distributions
show obvious differences, especially when the elevation threshold
is either very high or very low. However, varying the elevation
threshold in the range of 12–18 km generates relatively small
differences in ash transport simulation results. Figure 12 (d) and
(f) compare the simulated ash distributions corresponding to
elevation thresholds of 1.5 and 15 km. Compared with the ash
distribution for a threshold of 15 km, an extra-long tail appears
when using an elevation threshold of 1.5 km. The maximum
height of the tail is around 10 km. Adopting lower elevation

FIGURE 12 | Sensitivity of Puff simulation with respect to eruption durations and initial ash cloud cutoff heights (elevation threshold). For different eruption durations,
the starting and ending time for each case are in Table 3. The contours correspond to ash concentration at 72 h after eruption. Details are in the table.

TABLE 3 | The starting and ending time (UT) for simulating the climactic phase of
Pinatubo eruption on June 15, 1991. Observed plume height (Holasek et al.,
1996a) at different times is also listed in the table.

Eruption Duration 4.9 hours 9 hours 10 hours 11.1 hours

Start Time 0441 0441 0441 0334
Height at Start Time 37.5 km 37.5 km 37.5 km 24.5 km
End Time 0934 1341 1441 1441
Height at End Time 35 km 26.5 km 22.5 22.5 km
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thresholds adds more tracer particles at lower elevation. As the
winds at different elevations are different, the tracers at lower
elevations propagate in different directions. The HYSPLIT
forward trajectory tracking indicates that the wind between
elevations of 10 and 15 km blew from north-east to south-
west, while winds of higher elevation blew from east to west
(see Figure 6).

4.2 Other Sources of Disparities
The full range of research issues raised by numerical forecasting
of volcanic clouds is diverse. We focused on the effect of initial
conditions in this study. During the plume modeling, secondary
factors, such as microphysical processes, even though they play
lesser roles, likely need to be included to improve accuracy for a
particular eruption. Wind fields are not considered in the current
version of Plume-SPH, but for weak plumes, wind plays an
important enough role that it has to be considered in the
plume model. In addition, eruption conditions are subject to
change with time, even during the climactic phase of an eruption.
For example, ash just west of Pinatubo observed in satellite
images does not show up in “Plume-SPH + Puff” simulation
results. This disparity is likely due to the fact that Pinatubo
continued erupting (with smaller plume height) after the
climactic phase, while we only simulate the climactic phase. In
the future, time-dependent initial conditions for VATDs can be
created from 3D plume simulations based on time-dependent
eruption conditions. It is worth mentioning that the eruption
conditions at the vent are usually inferred from observable
information based on 1D plume models. Using a 3D plume
model will not reduce uncertainties from the eruption conditions.

Additional assumptions made during computations in each
VATD model or even measurements may also generate
additional disparity. Analysis of the results (see large decrease
in FMS shown in (f) in Figure 5) indicates that Puff
underestimates the fallout of ash particles, which together with
satellite pictures not capturing low-level ash clouds can explain
the FMS decrease.

One implicit assumption in the current method is that ash
transportation is dominated by wind advection (the passive
dispersion approximation). However, during the growth of the
volcanic umbrella, the dominant factors are various in different
regimes (Pouget et al., 2016a) depending on the characteristics
of a particular eruption. Webster et al. (2020) suggested that the
lateral spread by the intrusive gravity current dominates the
transport of the ash cloud in this stage. Studies by Mastin
(Mastin et al., 2014; Mastin and Van Eaton, 2020) also
showed that neglecting the umbrella cloud formation for
larger eruptions led to significantly different footprints for
the resulting VATD fallout maps. Their studies imply that
including mapped velocities of the plume as a perturbation
on the winds can better capture the radial spreading of an
umbrella. In the current method, the 3D plume model generated
initial ash cloud has a radius of around 25 km. For the Pinatubo
1991 eruption, the passive dispersion approximation can be
reasonably applied when radius is greater than 450 km and can
be fully valid only when the radius is greater than 1800 km
(Costa et al., 2013). So the umbrella stage during the ash

transportation is very likely oversimplified in the current
simulation. It is computationally too expensive for the
Plume-SPH model to continue simulation until the plume
radius reaches, at least, for example, 450 km. An additional
umbrella model, with a much coarser resolution and simplified
physics, in between the plume model and the VATD model
would presumably better model the whole ash transportation
process.

Besides the errors from assumptions in the model, errors are
also introduced from the reanalysis wind field data and the satellite
observations, which are retrievals, with their associated errors,
rather than the “truth”. In addition, metrics based on footprint
cannot account for the disparities at different heights and ash
concentrations. Comparing the simulation and observation purely
based on footprint-based metric sometimes is biased.

4.3 SUMMARY

Traditional VATD simulations use initial conditions created
according to a semiempirical plume shape expression. This study
presents, for the first time, VATD simulations using initial source
conditions created by a 3D plume model. A case study of the 1991
Pinatubo eruption demonstrates that a 3D plume model can create
more realistic initial ash cloud and ash parcel positions and
therefore improve the accuracy of ash transport forecasts.
Informal sensitivity analyses suggest that initial conditions, as
expressed in the disposition of initial ash parcel positions in the
vertical, have a more significant effect on a volcanic ash transport
forecast than most other parameters. Comparison of initial ash
parcel distributions among the 3D plume model, semiempirical
expressions, and observations suggests that a major subpopulation
of ash parcels should be placed at a much lower elevation than
plume height to obtain a better VATD forecast. Comparing the
effects of the plume height, vertical spread and horizontal spread
show that ash particle distribution in the vertical direction has the
strongest effect on VATD simulation results.

To summarize, we have presented a novel method for creating
a priori initial source conditions for VATD simulations. We have
shown that it might be possible to obtain initial positions of ash
parcels with deterministic forward modeling of the volcanic
plume, potentially obviating or lessening the need to attempt
to somehow observe initial positions, or a posteriori create a
history of release heights via inversion (Stohl et al., 2011).
Although the method now suffers from the high
computational cost associated with 3D forward modeling,
there is the possibility that in future it might not only help
overcome shortcomings of existing methods used to generate a
priori input parameters but also overcome the need to carry out
thousands of runs associated with inverse modeling. In addition,
computational cost will continue to diminish as computing speed
increases. As they are forward numerical models based on first
principles, 3D plume models need little if any parameterization,
and user intervention should not be required to improve forecast
power; no assumption about the initial position of ash parcels is
needed. Generation of the initial cloud of ash parcels directly by
3D simulation is potentially adaptable to a variety of volcanic and
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atmospheric scenarios. In contrast, semiempirical expressions
used to determine initial conditions require several parameters
to control ash particle distribution along with a vertical line
source or some simplified shape of the initial ash cloud, making it
difficult in some cases to generate initial conditions that closely
resemble a complex reality.

The plume-VATD coupling presented in this study is
LagrangianLagrangian coupling. When coupling plume models
and VATD models of different types, the interpolation will be
different. For example, to couple a Lagarian plume model with an
Eulerian VATD model, we must convert the particle distribution
in the output of the plume model into ash concentration of cells
(mesh grids). When coupling an Eulerian plume model to a
Lagrangian VATD model, the mass fraction of the erupted
material in the output of the 3D plume model should be
converted into an ash cloud represented by a group of
particles. The steps for coupling a 3D plume model with a
VATD model also depend on features of the software, such as
the inputs, the outputs, and file formats.
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Modelling Settling-Driven
Gravitational Instabilities at the Base
of Volcanic Clouds Using the Lattice
Boltzmann Method
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Field observations and laboratory experiments have shown that ash sedimentation can
be significantly affected by collective settling mechanisms that promote premature ash
deposition, with important implications for dispersal and associated impacts. Among these
mechanisms, settling-driven gravitational instabilities result from the formation of a
gravitationally-unstable particle boundary layer (PBL) that grows between volcanic ash
clouds and the underlying atmosphere. The PBL destabilises once it reaches a critical
thickness characterised by a dimensionless Grashof number, triggering the formation of
rapid, downward-moving ash fingers that remain poorly characterised. We simulate this
process by coupling a Lattice Boltzmann model, which solves the Navier-Stokes equations
for the fluid phase, with a Weighted Essentially Non Oscillatory (WENO) finite difference
scheme which solves the advection-diffusion-settling equation describing particle transport.
Since the physical problem is advection dominated, the use of the WENO scheme reduces
numerical diffusivity and ensures accurate tracking of the temporal evolution of the interface
between the layers.We have validated the newmodel by showing that the simulated early-time
growth rate of the instability is in very good agreement with that predicted by linear stability
analysis, whilst the modelled late-stage behaviour also successfully reproduces quantitative
results from published laboratory experiments. The results show that the model is capable of
reproducing both the growth of the unstable PBL and the non-linear dependence of the
fingers’ vertical velocity on both the initial particle concentration and the particle diameter. Our
validatedmodel is used to expand the parameter space explored experimentally and provides
key insights into field studies. Our simulations reveal that the critical Grashof number for the
instability is about ten times larger than expected by analogy with thermal convection.
Moreover, as in the experiments, we found that instabilities do not develop above a given
particle threshold. Finally, we quantify the evolution of the mass of particles deposited at the
base of the numerical domain and demonstrate that the accumulation rate increaseswith time,
while it is expected to be constant if particles settle individually. This suggests that real-time
measurements of sedimentation rate from volcanic clouds may be able to distinguish finger
sedimentation from individual particle settling.

Keywords: volcanic ash, ash sedimentation, tephra, weighted essentially non-oscillatory, finite-difference, high
performance computing
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INTRODUCTION

Explosive volcanic eruptions can inject large quantities of ash into
the atmosphere, generating multiple hazards at various spatial
and temporal scales (Blong, 2000; Bonadonna et al., 2021).
Subsequent volcanic ash dispersal and sedimentation can
strongly disrupt air traffic (Guffanti et al., 2008; Prata and
Rose, 2015), affect inhabited areas (Spence et al., 2005; Jenkins
et al., 2015), and impact ecosystems and public health
(Gudmundsson, 2011; Wilson et al., 2011). A good
understanding of ash dispersal is critical for effective
forecasting and management of the response to these hazards.
Modern volcanic ash transport and dispersal models have now
reached high levels of sophistication (Jones et al., 2007;
Bonadonna et al., 2012; Folch, 2012; Folch et al., 2020; Prata
et al., 2021) but do not include all of the physical processes
affecting ash transport, such as particle aggregation and settling-
driven gravitational instabilities (e.g., Durant, 2015). Various
studies have highlighted the need to take these processes into
account by revealing discrepancies between field measurements
and numerical models (Scollo et al., 2008), premature
sedimentation of fine ash leading to bimodal grainsize
distributions not only related to particle aggregation
(Bonadonna et al., 2011; Manzella et al., 2015; Watt et al.,
2015) and significant depletion of airborne fine ash close to
the source (Gouhier et al., 2019).

Alongside particle aggregation, settling-driven gravitational
instabilities contribute to the early deposition of fine ash with
similar outcomes (e.g., grainsize bimodality, premature
sedimentation of fine ash). These instabilities generate
downward-moving ash columns (fingers) which grow from the
base of the ash cloud (Figure 1) (Carazzo and Jellinek, 2012;
Manzella et al., 2015; Scollo et al., 2017). This phenomenon has
the potential to enhance the sedimentation rate of fine ash beyond
the terminal fall velocity of individual particles, reducing the
residence time of fine ash in the atmosphere. Thus, a rigorous
understanding of these processes is important in order to build a
comprehensive parametrisation that can be included in dispersal
models (Scollo et al., 2010; Bonadonna et al., 2012; Folch, 2012;
Durant, 2015).

Settling-driven gravitational instabilities should be fully
characterized as they also have the potential to impact other

ash-related processes. First, the high particle concentration and
the turbulence induced by fingers (i.e., the intrinsic turbulence
within fingers as well as the shear generated during the
downward motion) may enhance particle aggregation by
increasing the collision rate of particles (Costa et al., 2010;
Scollo et al., 2017). This process could happen regardless of
plume height and atmospheric conditions contrary to ice-
nucleation for example, which requires specific conditions
(Maters et al., 2020). Second, as settling-driven gravitational
instabilities trigger premature deposition of fine ash, this may
affect the residence time of other elements in the plume.
Indeed, fine ash is involved in some geochemical processes
such as the adsorption of volatiles (e.g., sulphur or halogens)
(Bagnato et al., 2013; Zhu et al., 2020). Considering that the
sedimentation rate of volatiles depends on the sedimentation
rate of fine ash, the possible premature deposition of volatiles
can be explained by the presence of both settling-driven
gravitational instabilities and particle aggregation. Finally,
fine ash has been shown to play an important role in the
volcanic cloud heating through radiative processes that may
affect the dynamics (Niemeier et al., 2009; Stenchikov et al.,
2021). Thus, in order to model the large-scale transport of
volcanic clouds, there is a need to estimate accurately the
amount of fine ash within the cloud, and, therefore, to
constrain all size-selective sedimentation processes such as
settling-driven gravitational instabilities.

Settling-driven gravitational instabilities occur at the
interface between an upper, buoyant particle suspension, e.g.,
a volcanic ash cloud, and a lower, denser fluid, e.g., the
underlying atmosphere (Hoyal et al., 1999; Burns and
Meiburg, 2012; Manzella et al., 2015; Davarpanah Jazi and
Wells, 2016). Whilst the initial density configuration is
stable, particle settling across the density interface creates a
narrow unstable region called the particle boundary layer (PBL)
(Carazzo and Jellinek, 2012). Once this attains a critical
thickness (Hoyal et al., 1999), a Rayleigh-Taylor-like
instability (Chandrasekhar, 1961; Sharp, 1984) can form on
the interface between the PBL and the lower layer, generating
finger-like structures which propagate downwards. A further
critical condition for instability is that the particle settling
velocity Vs must be smaller than the finger propagation
velocity Vf (Carazzo and Jellinek, 2012). Thus, the

FIGURE 1 | Gravitational instabilities observed at the base of a volcanic plume during (A) the 2011 Gamalama eruption (Indonesia) (Credit: AP) and (B) the 2010
eruption of Eyjafjallajökull (Iceland) (Manzella et al., 2015).
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occurrence of the instability enhances the sedimentation rate
(Manzella et al., 2015; Scollo et al., 2017). Alternatively, if Vs is
greater than the propagation velocity of fingers Vf, then
particles settle individually before a PBL can form and no
instability occurs.

Settling-driven gravitational instabilities have been widely
studied in laboratory experiments that simulate various natural
settings. Many experiments have considered an initial two-
layer system, where the particle suspension is initially separated
from the underlying denser layer by a removable horizontal
barrier (Hoyal et al., 1999; Harada et al., 2013; Manzella et al.,
2015; Davarpanah Jazi andWells, 2016; Scollo et al., 2017; Fries
et al., 2021) whilst other experiments have involved injection of
the suspension into a density-stratified fluid at its neutral
buoyancy level (Cardoso and Zarrebini, 2001; Carazzo and
Jellinek, 2012). Similar instabilities can also be studied by
allowing fine particles to sediment through the free surface
between water and air (Carey, 1997; Manville and Wilson,
2004). Additionally, dimensional analysis has been used to
predict that the downward propagation velocity of the
generated fingers is given by (Hoyal et al., 1999; Carazzo
and Jellinek, 2012)

Vf � ⎡⎢⎢⎣g⎛⎝
ρPBL − ρf

ρf
⎞⎠⎤⎥⎥⎦

2
5

[
πVsδ

2
PBL

4
]

1
5

, (1)

where ρPBL is the PBL bulk density, ρf the underlying fluid
density, g � 9.81m.s−2 the gravitational acceleration and δPBL the
PBL thickness, which by analogy with thermal convection
(Turner, 1973) is taken to be (Hoyal et al., 1999)

δPBL � (
Grc]2

g′ )

1
3

, (2)

where g′ � g(ρPBL − ρf)/ρf, ] the kinematic viscosity and Grc
a critical Grashof number which estimates the ratio of the
buoyancy to viscous forces on the fluid (see Supplementary
Table S1 for all acronyms and symbols used in this paper).
The reduced gravity g′ describes the change in the
gravitational acceleration due to buoyancy forces.
Continuing the analogy with thermal convection, it has
been proposed that Grc � 103 (Hoyal et al., 1999), although
recent experimental observations suggests Grc ≈ 104 may be
more accurate (Fries et al., 2021). Therefore, for known
particle and fluid properties, it is possible to predict
whether collective settling will occur and fingers
subsequently form using the condition Vf >Vs (Hoyal et al.,
1999). According to this relation, the limit between collective
and individual settling occurs when Vf � Vs. However, the
transition is likely to be smooth, with a transitionary regime
where both fluid-like and particle-like settling occur at the
same time, as suggested by Harada et al. (2013).

For the initial two-layer configuration, Hoyal et al. (1999)
also developed a series of analytical mass-balance models
predicting the average particle concentration in the lower
layer depending on whether the upper and lower layers were
convecting or not. In the case of a quiescent upper layer and a

convective lower layer (convection initiated by finger
propagation), the evolution of the mass of particles in the
lower layer M2 depends on the balance between the mass
flux of particles arriving from the upper layer _Min and the
mass flux of particle leaving by sedimentation _Mout

dM2

dt
� _Min − _Mout , (3)

where t is time. Assuming that M2(t) � Ah2C2(t), where
C2(t) is the average particle concentration in the lower
layer, Hoyal et al. (1999) solved this equation using
_Min � AVsC1(0), _Mout � AVsC2(t) and the initial condition
C2(0) � 0. Thus

C2(t) � C1(0)[1 − e−
Vs
h2

t], (4)

where C1(0) is the initial particle concentration in the upper
layer, h2 the lower layer thickness and A the horizontal cross
section of the tank.

Further studies of settling-driven gravitational instabilities
have taken theoretical approaches, such as using linear stability
analyses to predict the growth rate and characteristic
wavelengths of the instability at very early stages (Burns and
Meiburg, 2012; Yu et al., 2013; Alsinan et al., 2017). Moreover,
various numerical models simulating settling-driven
gravitational instability have also been developed (Jacobs
et al., 2013; Burns and Meiburg, 2014; Yamamoto et al.,
2015; Chou and Shao, 2016; Keck et al., 2021). Most
numerical approaches to this problem have used continuum-
phase models, where the coupling between particles and fluid
is strong enough to describe them as a single-phase (Burns
and Meiburg, 2014; Yu et al., 2014; Chou and Shao, 2016).
This Eulerian description is valid under the assumptions of
sufficiently small particles and a large enough number of
particles such that the drag and gravitational forces are in
equilibrium. The condition on the particle size can be
quantified through the Stokes number (Burgisser et al.,
2005; Roche and Carazzo, 2019), one possible definition of
which is

St � ρpD
2
pU

18μL
, (5)

where ρp is the particle density, Dp the particle diameter, μ the
dynamic viscosity and U and L characteristic velocity and length
scales of the flow. For St< 1, the particles and fluid can be
considered coupled and, providing there are enough particles,
the continuum approach is valid.

The Eulerian description can be extended tomultiple phases in
order to simulate their interaction (e.g., gas-liquid interaction)
using adaptive mesh refinements to resolve the phase interfaces
(Jacobs et al., 2013). However, for large particle diameters and
small particle volume fractions, collective behaviour no longer
occurs and the continuum-phase method cannot be applied. In
this case, there is a need to explicitly model particle motion,
taking the drag force into consideration (Yamamoto et al., 2015;
Chou and Shao, 2016).
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This paper presents an innovative method to implement a
continuum model by coupling the Lattice Boltzmann Method
(LBM) with a low-diffusivity finite difference (FD) scheme. This
model takes advantage of the LBM capabilities to simulate
complex flows through uniform grids and thus, the ease of
coupling with finite difference methods. This hybrid model
has been validated by comparing the results with those from
linear stability analysis and laboratory experiments (Fries et al.,
2021). The validated model then allows us to gain new insights
into the fundamental processes by exploring experimentally-
inaccessible regions of the parameter space. We first describe
the general framework and governing equations that describe
settling-driven gravitational instabilities, then the configuration
of the validatory experiments to which we apply the model. Next,
we propose a numerical strategy involving a hybrid model in
order to solve the system of equations. We then go on to present
the linear stability analysis before finally describing and
discussing the results of our simulations.

MATERIALS AND METHODS

Problem Formulation
The model consists of a three-way coupling between fluid
momentum, fluid density, and particle volume fraction, based
on the assumption that the particle suspension can be represented
by a continuum concentration field. Moreover, the particle drag
force is in equilibrium with the gravitational force such that the
forcing term in the fluid momentum equation is equivalent to a
buoyant force term (Boussinesq approximation), which depends
on the particle volume fraction ∅( �x, t) (Burns and Meiburg,
2014; Yu et al., 2014; Chou and Shao, 2016). ∅( �x, t) satisfies the
advection-diffusion-settling equation

z∅
zt

+ �∇ .[∅( �uf − Vsez
→)] � Dc∇ 2∅, (6)

where �uf( �x, t) is the fluid velocity, Dc the particle diffusion
coefficient, ez

→ the vertical unit vector and �x � (x, y, z) the
position coordinate. The particle settling velocity Vs can be
fixed or allowed to be a function of other parameters. Its
formulation will be set later according to the assumptions of
the flow configuration. The fluid is considered incompressible,
meaning �∇ . �uf � 0. Thus, Eq. 6 becomes

z∅
zt

+ ( �uf − Vsez
→). �∇ ∅ −∅ �∇ .(Vsez

→) � Dc∇ 2∅. (7)

The particle settling velocity depends on the ambient fluid density
ρ, which in turn depends on any transported density-altering
properties, such as temperature or the concentration of a chemical
species, e.g., the sugar in our validatory experiments (Fries et al., 2021).
We incorporate the effect of a single density-altering property on the
fluid density through a classical advection-diffusion equation

zρ(ρ0, S)

zt
+ �uf. �∇ ρ(ρ0, S) � D∇ 2ρ(ρ0, S), (8)

where ρ0 is a reference density of the carrier fluid, S the density-
altering quantity (temperature or concentration), and D the

associated diffusion coefficient. Additionally, under the
Boussinesq approximation, we assume that the density
depends linearly on S. The fluid momentum is modelled with
the incompressible Navier-Stokes momentum equation

z �uf

zt
+ ( �uf. �∇ ) �uf � − 1

ρ0
�∇ p + ]∇ 2 �uf + �F, (9)

where p is the pressure and �F the buoyant body force term. We
complete the system of equations by taking this force term to be a
function of ∅ and ρ

�F � [(
ρp − ρ0
ρ0

)∅ + (
ρ

ρ0
− 1)(1 −∅)] �g. (10)

The system of equations presented so far assumes that all
particles are of uniform size. In order to generalise to systems with
polydisperse particle size distributions, we consider N different
particle concentration fields∅i, where each one is associated with
a different size class and individually satisfies Eq. 7. Furthermore,
the body force term becomes

�F � [(
ρp − ρ0
ρ0

)∅tot + (
ρ

ρ0
− 1)(1 −∅tot)] �g, (11)

where

∅tot � ∑
N

i�1
∅i. (12)

Flow Configuration and Experiment
Description
Full details of the validatory laboratory experiments can be found
in Fries et al. (2021) but we summarise the essential details here.
The experiments are performed in a configuration identical to
that of Manzella et al. (2015) and Scollo et al. (2017) (Figure 2)
and consist of a water tank divided into two horizontal layers,
initially separated by a removable barrier. The upper layer is an
initially mixed particle suspension, which represents the ash
cloud, and the lower layer is a dense sugar solution, analogue
to the underlying atmosphere. The particles are spherical glass
beads with a median diameter of 41.5 ± 0.5 μm (measured using
laser diffraction with a Bettersizer S3 Plus) and a density ρp of
2519.24 ± 0.09 kg/m3 (measured using helium pycnometry
UltraPyc 1200e), and are sufficiently small to be well-coupled
with the fluid, whilst the initial particle concentration C1(0) of
the upper layer is varied from 1 to 10 g/l (see Table 1 for the
conversion to particle volume fraction ∅0). The lower layer
density is kept constant at ρf � 1008.4 kg/m3 (corresponding
to a sugar concentration of S0 � 35 g/l), always ensuring an
initially stable density configuration.

Before starting an experiment, the upper layer is manually and
carefully stirred using a brush. Then the barrier separating the two
layers is immediately removed, allowing particle settling through the
interface. A PBL subsequently forms and finger formation is
initiated. Experiments are illuminated from the side of the water
tank with a planar laser and recorded with a high-contrast camera.
We measure the vertical finger velocity by tracking the progression
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of the finger front with time. Additionally, Planar Laser Induced
Fluorescence (PLIF) (Koochesfahani, 1984; Crimaldi, 2008) and
particle imaging are used to quantify the spatial distribution of
the fluid phase density and particle concentration.

Application to Flow Configuration
We apply the general system of equations presented in Problem
Formulation section to the configuration of the validatory
experiments. The particles are spherical and sufficiently small

FIGURE 2 | Experimental setup used by (Fries et al., 2021) and the initial density profiles associated with the contributions from particles (blue dashed) and sugar
(red dotted), as well as the bulk density (black solid). The density of fresh water is given by ρ0.

TABLE 1 | List of simulations performed. All the simulations have been performed using an initial lower layer fluid density of 1008.4 kg/m3. zH, z∅ and zs are parameters used
in the linear stability analysis (LSA) in order to describe the different base states associated with the particle and sugar profiles inEqs 39, 40. The LSA has been performed
only for a constant particle size of 40 µm in order to study the effect of the particle volume fraction.

Initial particle
concentration (g/L)

Volume fraction Particle diameter
(µm)

zH =VsT (mm) zø (mm) zs (mm)

1 3.97 × 10−4 40 12.11 2.59 0.67
2 7.94 × 10−4 40 7.37 2.20 0.63

3 1.19 × 10−3 40 5.47 1.99 0.61
4 1.59 × 10−3 40 5.01 1.99 0.61

5 1.98 × 10−3 40 4.20 1.84 0.60
6 2.38 × 10−3 40 3.45 1.72 0.59
7 2.78 × 10−3 40 3.25 1.70 0.60

8 3.18 × 10−3 40 3.17 1.72 0.61
9 3.57 × 10−3 40 3.01 1.71 0.62
10 3.97 × 10−3 40 2.54 1.58 0.61

3 1.19 × 10−3 25 — — —

3 1.19 × 10−3 55 — — —

3 1.19 × 10−3 70 — — —

3 1.19 × 10−3 85 — — —

3 1.19 × 10−3 100 — — —

3 1.19 × 10−3 115 — — —

3 1.19 × 10−3 130 — — —

9 3.57 × 10−3 25 — — —

9 3.57 × 10−3 55 — — —

9 3.57 × 10−3 70 — — —

9 3.57 × 10−3 85 — — —

9 3.57 × 10−3 100 — — —

9 3.57 × 10−3 115 — — —

9 3.57 × 10−3 130 — — —

9 3.57 × 10−3 145 — — —

9 3.57 × 10−3 160 — — —
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that their terminal settling velocity in water is given by the Stokes
velocity (Stokes, 1851)

Vs �
D2

pg[ρp − ρ(S)]
18μ

, (13)

where S is the sugar concentration and ρ � ρ0(1 + αS), with α
the sugar solution expansion coefficient.

The diluted system ensures the Boussinesq assumption is valid
as the ratio Δρ/ρ0 is much less than 1 (about 6 × 10−3 for the
highest initial particle volume fraction).

We simulate the solid walls of the tank around our domain
with a no-slip boundary condition for the fluid velocity.
Neumann boundary conditions are employed for ∅ and ρ to
avoid any flux of particles or sugar across the walls. Thus we
impose

z∅
zx

� 0, (14)

and

zρ

zx
� 0, (15)

on the wall nodes. Furthermore, we define the following initial
states for ∅ and S:

∅( �x, t � 0) � {
0 , z<H0

∅0 , z>H0
, (16)

and

S( �x, t � 0) � {
S0, z<H0

0 , z>H0
, (17)

where ∅0 and S0 are the initial particle volume fraction in the
upper layer and initial sugar concentration in the lower layer,
respectively, and H0 � 0.25 m the initial height of the interface
(z � 0 corresponds to the base of the tank). We also add a small
perturbation to the particle volume fraction field in order to
initiate the instability. Finally, the system is initially stationary so
�uf( �x, t � 0) � 0.

Numerical Methods
The 3D numerical model is implemented using a hybrid strategy
where a LBM solves the fluid motion and is coupled with finite
difference schemes that solve the advection-diffusion equations
for ∅ and S.

Fluid Motion
The LBM is an efficient alternative to conventional
Computational Fluid Dynamics (CFD) methods that explicitly
solve the Navier-Stokes equations at each node of a discretised
domain (He and Luo, 1997; Succi et al., 2010). It is a well-
established approach for simulating complex flows, including
multiphase fluids (Leclaire et al., 2017) and thermal and buoyancy
effects (Parmigiani et al., 2009; Noriega et al., 2013). The LBM
originates from the kinetic theory of gases and provides a
description of gas dynamics at the mesoscopic scale. This scale
exists between the microscopic, which describes molecular

dynamics, and the macroscopic, which gives a continuum
description of the system with variables such as density and
velocity. Thereby, the mesoscopic scale considers a probability
distribution function of molecules described by the Lattice
Boltzmann equation. This model reduces the process to two
main steps: streaming (i.e., displacement of populations
between consecutive calculation nodes), and collision
(i.e., interaction of populations on a node). The Bhatnagar-
Gross-Krook (BGK) model (Bhatnagar et al., 1954) provides a
simple collision process based on a fundamental property given
by kinetic theory which describes gas motion as a perturbation
around the equilibrium state. Then, the LBM-BGK model solves
the equation

fi( �x + �ciδt, t + δt) − fi( �x, t) � −δt
τ

(fi( �x, t) − feq
i ), (18)

where the particle population fi is a discrete representation of the
probability distribution function, δt is the time step, feq

i (ρ, �uf )
the equilibrium distribution function, τ the relaxation time
associated with the flow viscosity and �ci the local particle
velocity. The LBM is applied to specific types of lattices that
describe how the populations move through the calculation nodes
(Kruger et al., 2017). These types of lattice are commonly
summarized in the form DrQm where r denotes the
dimension of the system and m the number of directions in
which populations can propagate. Figure 3 shows the scheme
D3Q19 used for our 3D simulations and the associated set of local
velocities.

The macroscopic fluid state is described through the usual
macroscopic variables such as density, velocity and kinematic
viscosity. These variables are related to the moments of the
populations fi through

ρ � ∑
i

fi, (19)

and

ρ �uf � ∑
i

fi �ci, (20)

whilst the kinematic viscosity controls the relaxation to
equilibrium through the relaxation time

τ � ]
c2s
+ δt

2
. (21)

The variable cs is commonly called the speed of sound and is
equal to (1/ �

3
√ )δx/δt where δx is the spatial step. However, the

classical LBM-BGK model described above does not take into
account any forcing term. One way to include forcing is to rewrite
Eq. 18 as

fi( �x + �ciδt, t + δt) − fi( �x, t) � −1
τ

(fi( �x, t) − feq
i ) + Fiδt,

(22)

where Fi is the forcing term, which can be expressed by a power
series in the local particle velocities, and the equilibrium
distribution is now given by feq

i � feq
i (ρ, �u*f ), where

ρ �u*f � ∑ifi �ci + b �Fδt. The determination of the coefficient b, as
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well as the power series expansion of Fi are described by Guo et al.
(2002). Finally, no-slip boundary conditions in the LBM, to
simulate walls for example, can be implemented using the
classical bounce-back boundary condition (Kruger et al., 2017)
where the populations arriving on a wall node during the
streaming step are simply reflected back to their previous nodes.

Transport of Particles and Other Density-Altering
Quantities
The particles and other density-altering quantities are described
by continuum fields that follow an advection-diffusion law
coupled with the fluid motion as simulated with the LBM. The
numerical solution of the advection equation is particularly
challenging for methods which, like ours, are Eulerian
(i.e., mesh-based). Indeed, such methods exhibit numerical
diffusion which may strongly reduce model accuracy and, in
some cases, even exceed the amplitude of the actual, physical
diffusion term. The lack of physical diffusion in our problem and
the presence of sharp interfaces restrict our ability to solve the
advection equations with the LBM. In fact, the advection-
diffusion equation can be solved by the LBM with a BGK
approach in analogous fashion to the fluid motion by
modifying the equilibrium distribution and the relaxation time
to depend on the diffusion coefficient D rather than ]

τ � D

c2s
+ δt

2
. (23)

However, a stability condition for a LBM-BGK algorithm is
τ/δt> 1/2. Thus, since the problem is convection dominated, the
low diffusion coefficient (D ≪ 1) drives the model towards the
stability limit, introducing strong numerical errors near sharp
concentration gradients (Hosseini et al., 2017). For this reason,
we solve the advection term using two finite-difference schemes
which are selected depending on the required accuracy: the
classical first-order upwind finite difference and the third-
order Weighted Essentially Non Oscillatory (WENO) finite
difference scheme (Liu et al., 1994; Jiang and Shu, 1996).

Coupling the LBMwith an upwind finite difference scheme allows
us to avoid the stability problem. First-order FD schemes however, still
suffer from the problem of numerical diffusion due to the truncation
error associated with terminating the Taylor expansion after the first
spatial derivative. The induced numerical errorNE for the convective
term in the advection-diffusion equation is given by

NE ∼ u
δx

2
z2∅
zx2

, (24)

where u is the transport velocity. NE acts like an additional
diffusion term because of the presence of the second-order

FIGURE 3 | Depiction of the D3Q19 lattice. The red arrows show the different possible directions of propagation. The associated local velocities are summarised in
the velocity set �ci .
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derivative. (A quantitative estimate of the numerical diffusion for
both 1st order and WENO procedure is available in section 1.3 of
the Supplementary Figure S2). The numerical diffusion
associated with the solution of S is negligible due to the low
fluid velocity and consequently the use of the first order FD
scheme does not significantly affect the accuracy. However, in the
solution of∅, which includes an additional velocity contribution
due to the settling, the truncation error associated with the first-
order scheme becomes non-negligible. Whilst decreasing δx
would reduce numerical diffusion, we would require an
unpractically small value in order to get a sufficiently accurate
solution. Additionally, simply increasing the order of the scheme
introduces dispersion (spurious oscillations) near regions of high
gradient, according to the Godunov theorem (Godunov, 1954,
1959). Therefore, we choose here to implement the low diffusive
WENO procedure for the solution of ∅, thus achieving a stable
and high-resolution scheme without dispersion.

Further information on how we discretise the convective term
in the advection-diffusion equation using the first order upwind
and the third orderWENO finite difference schemes is detailed in
Section 1 of the Supplementary Figure S1.

Numerical Implementation
Our model is implemented using Palabos (Parallel Lattice
Boltzmann Solver), a Computational Fluid Dynamics (CFD)
solver based on the Lattice Boltzmann Method and developed
by the Scientific Parallel Computing group of the Computer
Science Department, University of Geneva (Latt et al., 2020).
Palabos is designed to perform calculations on massively parallel
computers, thus allowing very small spatial resolutions for
accurate simulation of the finger dynamics.

Linear Stability Analysis
In order to validate our model, we compare the early-time
simulated behaviour against predictions from linear stability
analysis (LSA). LSA is applied to the onset of the physical
instability at the interface between layers of different particle
concentration. It involves defining a field equation-satisfying
base state for each of the unknown fields in a problem and
then applying an infinitesimally small perturbation to each of
these fields. The equations are then expanded to linear order
in the perturbation, with higher order terms assumed to
be negligible. By assigning the perturbation to have the
form of a complex waveform, the system of equations
reduces to an eigenvalue problem, which can be solved to
determine which wavelengths will grow or decay
(Chandrasekhar, 1961). In this section, we assume that the
system is invariant under translation in the x − y plane, thus
reducing the analysis to a 2D problem. We strongly follow the
procedure described by (Burns and Meiburg, 2012) in order to
solve our problem.

Nondimensionalisation
We nondimensionalise our system of equations by defining

lc � (
]2

g
)

1/3

, (25)

tc � (
]
g2

)
1/3

, (26)

and

pc � ρ0(]g)
2/3, (27)

where lc, tc and pc are characteristic quantities. We also define the
dimensionless parameters

Sp � αS0, (28)

∅p � ∅0, (29)

Fr � 1
tc

��
lc

g

√

, (30)

and

Sci � ]
Di

, (31)

noting that Fr is a Froude number and Sci are Schmidt numbers.
Furthermore, the stream function ψ is defined such that �uf �
(zψ/zz, −zψ/zx) and the vorticity as �ω � �∇ × �uf. Then, applying
the characteristic quantities to the vorticity formulation and Eqs
7–9, we obtain the dimensionless system (for the rest of the
analysis, all the symbols used represent dimensionless quantities):

ω � −∇2ψ. (32)

zω

zt
+ ( �uf. �∇)ω � ∇2ω + z∅

zy

∅p

Fr2
[SSp − (

ρp − ρ0
ρ0

)]

−zS
zy

Sp

Fr2
(1 −∅∅p), (33)

zS

zt
+ �uf. �∇ S � 1

Scs
∇ 2S, (34)

and

z∅
zt

+ ( �uf − Vsez
→). �∇ ∅ � 1

Scc
∇ 2∅. (35)

Note that here we have neglected the term −∅ �∇ .(Vsez
→) in Eq.

7 assuming the fluid density variation across the interface is
sufficiently small that it does not affect the particle settling
velocity.

Variable Expansion and Eigenvalue Problem
We linearise the system of equations by expanding each variable
in terms of a base state and a perturbation

φ(y, z, t) � �φ(z) + φ′(y, z, t), (36)

where φ(y, z, t) � ψ, ω, ∅, S}{ , �φ(z) � �ψ, �ω, �∅ , �S}{ the
associated base state and φ′(y, z, t) � ψ′,ω′,∅′, S′}{ the
perturbation. We choose the following base states

�ψ � 0, (37)

�ω � 0, (38)

�∅ (z, t) � 1
2

(1 + erf(
z

z∅(T))), (39)

and
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�S(z, t) � 1
2

(1 − erf(
z − Vst

zS(T) )), (40)

where z∅(T) and zS(T) are coefficients fitted in order to have
similar base states to the profiles observed in the simulations
prior to the onset of the instability which starts growing at
the time T. We choose these base states to represent the
initial conditions of the validatory experiments; Eqs 37, 38
ensure an initially-zero velocity field whilst the error
functions in Eqs 39, 40 ensure sigmoidal distributions for
�S and �∅ .

Solutions for the perturbation are assumed to have the form of
normal modes

φ′(y, z, t) � φ̂(z)exp(iky + σt), (41)

where φ̂(z) is the perturbation amplitude, k the wavenumber
and σ the instability growth rate. The linearised system of
equations is then formulated in matrix form so that the
problem is reduced to the eigenvalue problem K �x � σW �x
where

�x � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ̂(z)
ω̂(z)
Ŝ(z)
∅̂(z)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (42)

and, in a reference frame moving downward atVs, the matricesK
and W are given by

K �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M I 0 0

0 M − VsDz −ik Sp

Fr2
(1 − �∅∅p)I ik

∅p

Fr2
[�SSp − (

ρp − ρ0
ρ0

)]I

ik
d�S

dz
I 0

1
Scs

M − VsDz 0

ik
d �∅
dz

I 0 0
1
Scc

M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (43)

and

W � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (44)

where Dz � z/zz, M � −k2 +D2
z and I is the identity

operator.
The eigenvalues σ determine the stability of the system:

• If all the eigenvalues have negative real parts, the system
remains stable

• If at least one eigenvalue has a positive real part, the system
is unstable.

In order to solve the eigenvalue problem, the spatial
derivatives are discretised using the linear rational collocation
method with a grid transformation allowing a fine resolution
around narrow interfacial regions (Baltensperger and Berrut,
2001; Berrut and Mittelmann, 2004).

The key result of the LSA is the dispersion relation between σ
and k. Figure 4 presents the growth rate as a function of the

wavenumber, for different initial particle volume fractions. The
parameters for the different base states used to produce these
curves are summarised in Table 1. We use this result in
Comparison of Model Results With Predictions From Linear
Stability Analysis Section in order to compare the predictions
of the LSA with the results of our numerical model. Additionally,
a comparison with the 2D Fourier analysis of the interface is given
in Supplementary Figures S3–S5.

RESULTS

We validate our numerical model by comparing the results with
predictions from LSA and experimental observations. The LSA
predicts the growth rates of different perturbation wavenumbers
during the very early stage of the instability, which can be
compared with the spectrum of wavenumbers present in the
particle concentration interface in the numerical model.
Additionally, the experiments of Fries et al. (2021) employ
imaging techniques to measure quantities, such as the particle
concentration field and finger velocity, at times beyond the linear
regime. Finally, our results are compared with some results of
previous analyses on settling-driven gravitational instabilities
(Hoyal et al., 1999; Carazzo and Jellinek, 2012).

Comparison of Model Results With
Predictions From Linear Stability Analysis
In order to compare our 3D simulations with the 2D linear stability
analysis, we consider just the central plane of the simulation domain,
i.e., a slice in the (y, z) plane located at x � lx/2 (lx being the tank
depth) (Figure 2). We define the front of the particle field to be the
lowest position where ∅ � ∅0/2 and also define H(y) to be the
separation between z � 0 and this front. Our study has shown that
the front position is only weakly affected when using other possible
thresholds, i.e., ∅0/10 or ∅0/5 (relative change ∼3%). Figure 5A
shows an example of a space-time diagram showing the evolution of
H(y) through time. Furthermore, by calculating the Fourier
transform ~H(k, t) of H(y) at different times, we can identify
different dominant wavenumbers and their associated amplitudes
as shown in the space diagram of the power spectral density (PSD)
ΓH(k, t) � (1/(kSLS))| ~H(k, t)|2 (Figure 5B), where kS is the
sampling wavenumber and LS the number of samples. We extract
the dominantmode and its associated growth rate from ΓH(k, t) and
compare the results with the predicted growth rates from LSA. We
apply this analysis during a period when the amplitude | ~H(k, t)| of
any givenmode does not exceed 40% of its wavelength, thus ensuring
we are still in the linear regime (Lewis, 1950).

During the linear regime, we can assume that the growth of the
spectral amplitude can be described as (Völtz et al., 2001)

∣∣∣∣ ~H(k, t)∣∣∣∣ � ∣∣∣∣H̃i(k)
∣∣∣∣exp(σsim(k)t), (45)

with |H̃i(k)| the initial amplitude and σsim(k) the instability
growth rate as determined from the simulations. Thus, the PSD
can be expressed as
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ΓH(k, t) � ΓHi exp(2σsim(k)t), (46)

where ΓH i is the initial spectral density. At each time step, we
extract the PSD and the wavenumber ksim associated with the
dominant mode as shown in Figure 6. However, we observe that
the dominant mode remains at the same wavenumber during
instability growth except for three cases (∅0 � 1.59 × 10−3, 2.38 ×

10−3 and 3.97 × 10−3) where we observed that the dominant mode
changed its position in the spectral space. For these simulations
only, we have a set of several wavenumbers ksim,i, (i � 1, 2, 3)
associated with the dominant mode. With the computed PSD of
the dominant mode as a function of time ΓH(ksim, t), we apply
our exponential fitting (Eq. 46) to determine the growth rate σsim,i

(Figure 6B). For the simulations which resulted in several values

FIGURE 4 | Dispersion relation obtained from LSA for several initial particle volume fractions.

FIGURE 5 | (A) Space-time diagram of the particle front height H(y, t). (B) Evolution of the power spectral density of the particle interface over time. Initial particle
volume fraction: ∅0 � 3.97 × 10−4
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of ksim,i for the dominant mode, we measured the growth rates of
each mode σsim,i and found identical values, up to a precision of
5%. Additionally, for each simulation, we find the time T when

the instability starts growing easily identified as the time at which
the modal wavenumber becomes non-zero (e.g., in Figure 6A this
is at approximately 6 s). At this time, we extract the associated
vertical profiles of particle and sugar concentration which are
used to find the coefficients z∅(T) and zS(T) (Eqs 39, 40) and
thus determine the base states of �∅ (z, T) and �S(z, T) (Figure 7).
We then perform the LSA for each∅0, using the appropriate base
states, and obtain a dispersion relation σ � f(k). Using this
relation, we predict the different growth rates σ � σLSA,i
associated with k � ksim,i and we compare with σsim(ksim,i) as
measured in our simulations. Figure 8 shows the comparison
between σsim (black dots) and σLSA,i (red triangles), as predicted
from the LSA, for the dominant wave mode. The error bars
associated with the simulation data show the uncertainty on the
fitted results of σsim (given by the 95% confidence interval). For
the cases including a moving dominant mode, we plotted the
growth rates associated with the different measured

FIGURE 6 | (A) Example of dominant wavenumbers extracted from themaximumof the PSD. Initial particle volume fraction∅0 � 7.94 × 10−4. (B) Exponential fitting
to the temporal evolution of the PSD for the first maximum in (A), ksim,1 � 0.517 mm−1.

FIGURE 7 | Example of LSA base states extracted from the simulations
for∅0 � 3.97 × 10−4. Dots: profiles extracted from the simulations at T � 9.55s
(start of the instability growth). Dotted lines: Fit with Eqs 39, 40. i.e., base
states used for the LSA. Blue: particle volume fraction. Red: Sugar
concentration.

FIGURE 8 | Comparison of the instability growth rate measured in the
simulations (black circles) and that predicted by the linear stability analysis (red
triangles).
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wavenumbers. We see that the dependence of the largest value of
σLSA,i on the initial particle concentration is in good agreement
with the simulated growth rate.

Comparison With Experimental
Investigations
Figures 9A,B show a qualitative comparison between snapshots
taken from experiments (Fries et al., 2021) and simulations (slice
in the numerical domain). First, we note that our model is able to
qualitatively reproduce the shape and size of fingers, especially
their fronts where we observe the formation of lobes and eddies
due to the Kelvin-Helmholtz instability (Chou and Shao, 2016).
Second, we provide a quantitative validation of the non-linear
regime by comparing our model with experiments, through
measurements of the PBL thickness and the vertical finger
velocity as functions of the particle volume fraction and size.

Characterisation of the PBL and Effect of the Initial
Particle Volume Fraction on the Finger Velocity
The bulk density profile ρblk, derived from the contributions of
the particle concentration and sugar profiles, is given everywhere
by the relation

ρblk � ∅ρp + (1 −∅)ρf. (47)

Figure 10 shows the profiles of∅, ρf and ρblk in the numerical
simulations as well as in the experiments 8 s after the barrier
removal for the same initial conditions (∅0 � 3.18 × 10−3 ).
Despite some differences associated with limitations in
achieving idealised initial conditions in the experiments, as
well as the experimental data collection method, it can be seen
that, in both the model and the experiments, there is an increase
of the bulk density below the initial interface, owing to the particle
front moving downwards. This zone of excess density
corresponds to the unstable PBL from which instabilities
occur, generating fingers. To calculate the finger velocity using
the same method as in experiments, we extract slices from the 3D
numerical domain andmanually track the fronts of several fingers
(6–15 fingers) from when they become fully developed until just
before they become too diluted (the duration of this phase is
∼ 5 s). For each simulation with different volume fraction, we

then average the velocity of all tracked fingers and the uncertainty
is the standard deviation associated with each set of fingers used
for the measurements. Figure 11A shows the average finger
velocity Vf as a function of ∅0, for both experiments (Fries
et al., 2021) and simulations. Our simulation results are in good
agreement with the experimental measurements and highlight
that the increase of Vf with ∅0 is non-linear.

By analogy with thermal convection, it has previously been
assumed that Grc � 103 (Hoyal et al., 1999), but this is only an
order of magnitude estimate and its application to settling-driven
gravitational instabilities remains uncertain (Fries et al., 2021).
Figure 11A shows good agreement between the simulations and
Eq. 1 for a fitted Grc of 1.2 ± 0.4 × 104 (R2 � 0.92), which is an
order of magnitude higher than the value previously assumed
(Hoyal et al., 1999; Carazzo and Jellinek, 2012). This agrees
reasonably with the experiments, where the best fit is obtained
forGrc � 1.9 ± 0.7 × 104 (R2 � 0.75), but the experimental results
show more scatter. However, neither of these fits have completely
satisfactory values of R2. We therefore further investigate the
applicability of Eq. 1 by examining the dependence of Vf on∅0,
assuming a more general power law of the form Vf ∝∅q

0.
According to Eq. 1, q � 4/15 � 0.27. However, from the
experiments, we obtain q � 0.50 ± 0.16 (with R2 � 0.95) while
for our simulations q � 0.37 ± 0.08 (with R2 � 0.98). Here Grc, q
and their associated uncertainties have been calculated
accounting for the uncertainty on Vf with the SciPy (Python-
based ecosystem) procedure scipy. optimize.curve_fit.

Effect of Particle Size on the Finger Vertical Velocity
Since gravitational instabilities cause particles to sediment faster
than their settling velocity, it is of interest to explore the transition
from collective to individual settling, since this has implications
for which grain sizes may prematurely sediment from a volcanic
cloud (Scollo et al., 2017). Figure 11B shows the effect of particle
size on the finger velocity as measured from the model, for two
different initial volume fractions, in the experiments
configuration (i.e., in the tank filled with water). We clearly
observe two regimes:

• For particle sizes less than or equal to 115 µm (for
∅0 � 1.19 × 10−3) and 145 µm (for ∅0 � 3.57 × 10−3), we

FIGURE 9 | Settling-driven gravitational instabilities observed 19.5 s after the barrier removal (A) in the laboratory (Fries et al., 2021) and (B) in numerical
simulations. Particle size: 40 µm and initial volume fraction: ∅0 � 2.78 × 10−3.
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observe fingers, with the finger velocity increasing with
particle size.

• For greater particle sizes, no fingers are observed to form.

From our simulations, we constrain the transition between the
two regimes to occur at a critical particle diameter around 115 and
145 µm respectively for ∅0 � 1.19 × 10−3 and ∅0 � 3.57 × 10−3.
We also note that this size range corresponds to the particle size at
which the Stokes velocity exceeds the predicted finger velocity. This
result agrees with the experimental observations of Scollo et al.
(2017), who observed that no fingers form for particles with
diameter larger than ∼125 µm with an initial particle volume
fraction of ∅0 � 1.19 × 10−3. We also compare the dependence
ofVf on the particle diameter with that predicted by Eq. 1 and find
a best fit for Grc � 7.6 ± 3.6 × 103 (with R2 � 0.91) and Grc �
2.7 ± 0.8 × 104 (with R2 � 0.87) respectively for the two initial
volume fractions (Figure 11B). We observe again that the values
for the fitted Grc are greater than the one proposed by Hoyal et al.
(1999) by analogy with thermal convection, whilst they also
substantially differ from one another. We therefore also fit the
results to a power law Vf ∝Dpη

finding η � 0.38 ± 0.13
(R2 � 0.94) and η � 0.42 ± 0.10 (R2 � 0.88) respectively to the
two volume fractions which is in very good agreement with the
analytical formulation (Eq. 1) that suggests η � 0.4.

Particle Mass Flux, Particle Concentration in the
Lower Layer and Accumulation Rate
Given the excellent agreement between the proposed model and
both LSA analysis and analogue experiments described above, we
take advantage of having 3D data from the numerical simulations

in order to extract other parameters which are difficult to obtain
otherwise (Fries et al., 2021). Three interesting parameters are the
particle mass flux across a plane, the particle concentration in the
lower layer and the amount of particles accumulated at the
bottom of the tank, which can be related to the accumulation
rate. The latter is especially interesting as, when the model is
applied to volcanic clouds, it could eventually be compared with
field data (Bonadonna et al., 2011).

We calculate the mass flux across a horizontal plane (actually a
thin box of thickness δx) as shown in Figure 12A with

J � Δm
AΔt, (48)

where Δm is the mass crossing the yellow plane of area A in time
Δt, and is given by the mass difference in the volume below the
plane between t and t − Δt. The mass below at each time is
calculated by summing the mass of particles in each cell i of
volume ΔV, which is individually given by mi � ΔV∅iρp.
Figure 12B shows the temporal evolution of the particle mass
flux settling through the yellow plane (located at 0.15 m below the
barrier), for several initial particle volume fractions. The vertical
black dashed line indicates the theoretical time Ti when particles
would be expected to reach the plane if they were settling
individually at their Stokes velocity. For the different
simulations, we clearly observe that the moments when the flux
starts initially increasing (i.e., the arrival of the fastest finger) are
much earlier than Ti and this shows the extent to which the
collective settling enhances the premature sedimentation. After the
initial increase, the fluxes exhibit strong oscillations around a high
plateau. These oscillations are associated with the intermittent

FIGURE 10 |Density profile after 8 s for experiments (left) (Fries et al., 2021) and simulations (right) with∅0 � 3.18 × 10−3 and a particle size of 40 µm. For clarity, the
uncertainty on the experimental fluid density are not displayed on the figure and correspond to 0.8 kg m−3.

Frontiers in Earth Science | www.frontiersin.org October 2021 | Volume 9 | Article 71317513

Lemus et al. Modelling Gravitational Instabilities

34

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


nature of PBL detachment and the strong convection generated by
fingers in the lower layer. Indeed, we observe that as soon as fingers
reach the bottom of the tank, convection cells appear re-entraining
some particles upward. The results show the net downward flux of
particles and when particles are entrained upward, this
consequently decreases the flux value. Interestingly, the different
peaks show that we have some oscillatory convection and not
steady convection. Finally, the particle mass flux reaches a plateau

after some time which shows the end of convection and a transition
to individual settling. Throughout, the average mass flux, as well as
the amplitude of the oscillations increases with the initial volume
fraction.

Another way to highlight the enhancement of the
sedimentation rate by collective settling is to study the spatial
distribution of particles beneath the interface. Assuming a
quiescent upper layer and a convective lower layer, akin to our

FIGURE 11 | (A) Average finger speed (Vf) as a function of the initial volume fraction (∅0) for a particle diameter of 40 μm. Red and black dotted lines show the best
fits to the experiments (Fries et al., 2021) and simulations, respectively, using Eq. 1withGrc as the fit parameter. For the simulations, we findGrc � 1.2 ± 0.4 × 104 whilst
for the experiments Grc � 1.9 ± 0.7 × 104. (B) Average finger speed (Vf) as a function of the initial particle diameter (Dp), for two different particle volume fractions. The
green line is the Stokes velocity for individual particles. The black dotted lines show the best fits to the simulations using Eq. 1 with Grc as the fit parameter. For
∅0 � 1.19 × 10−3, the best fit gives Grc � 7.6 × 103 and no fingers are observed to form for particle sizes higher than 115 µm. For ∅0 � 3.57 × 10−3, the best fit gives
Grc � 2.7 × 104 and no fingers are observed to form for particle sizes higher than 145 µm. In the two plots, the blue dashed line shows Eq. 1 using Grc � 103 from the
analogy with thermal convection (Hoyal et al., 1999).

FIGURE 12 | (A) Horizontal planar surface (yellow slice) located 0.15 m below the barrier, across which the particle mass flux is computed in the simulation domain. (B)
Temporal evolution for the particle mass flux crossing the plane. Black dashed line: theoretical time for the particles to reach the plane at their individual Stokes velocity.
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simulations, Hoyal et al. (1999) derived Eq. 4 for the evolution of
the particle concentration in the lower layer. The derivation of
this formulation assumes that _Mout ≠ 0 since t � 0 but in fact,
_Mout � 0 for t< ta where ta is the time when the first particles
reach the bottom of the tank. Also, Eq. 4 only remains valid for
t< tlim, where tlim � h1/Vs, h1 being the height of the upper layer.
After this time, there are no longer any particles remaining in the
upper layer and _Min � 0. We therefore propose an extension for
the solution of the problem (see section 2.1 in Supplementary
Material) which becomes

C2(t) � Vs

h2
C1(0)t, for t< ta, (49)

C2(t) � C1(0)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣1 + (

Vs

h2
ta − 1)e

−Vs
h2

(t−ta)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, for ta ≤ t< tlim,

(50)

C2(t) � C1(0)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣1 + (
Vs

h2
ta − 1)e−

Vs
h2

(tlim−ta)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦(1 + h1
h2

− Vs

h2
t),

for t≥ tlim,
(51)

where h2 is the thickness of the lower layer. Equation 51 assumes
that the convection stops at tlim, which suggests a quiescent
settling in the lower layer after that time with a constant flux
_Mout � AVsC2(tlim).
An interesting result coming out of the previous analytical

study is the mass of particles accumulating at the bottom of the
tank and the associated accumulation rate. We can derive an
analytical prediction for the mass of particles mb accumulated at
the bottom of the tank for the different regimes highlighted
above. Thus, by integration of the flux (see Section 2.2 in
Supplementary Material) we have

mb � 0, for t< ta, (52)

mb � m0
Vs

h1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣t + (
h2
Vs

− ta)e
−Vs
h2

(t−ta) − h2
Vs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, for ta ≤ t< tlim,

(53)

mb � m0
Vs

h1

⎧⎪⎪⎨
⎪⎪⎩
tlim − h2

Vs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣1 + (
Vs

h2
ta − 1)e

−Vs
h2

(tlim−ta)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1 + h1
h2

− Vs

h2
t)

⎫⎪⎪⎬
⎪⎪⎭
, for t≥ tlim, (54)

where m0 is the initial mass of particles injected in the upper layer.
Finally, at the time tlim + h2/Vs, all the particles have settled through
the lower layer, thus mb � m0. Figure 13A shows the simulated
particle accumulation at the bottom of the tank through time, for
different particle sizes as well as the analytical prediction (Eqs
52–54). We compare as well with the analytical formulation of
the mass which assumes that the lower is still turbulently convective

even after the time tlim (Eq. S43 in Supplementary Material, dashed
lines in Figure 13A). In order to compare between this prediction
and the model results, ta is fitted in order to have the best agreement
between the numerical data and Eqs 52–54. The results show clearly
that the quiescent model of the lower layer for t≥ tlim agrees very
well with the simulations and suggest that the entirely convective
model underestimates the accumulation rate. Additionally, the fitted
parameter ta is coherent with the time for the first fingers to reach
the bottom of the tank in the simulations. Figure 13B shows the
instantaneous accumulation rate computed from the numerical data
for several initial volume fractions, as estimated by

1
A

dmb

dt
, (55)

We observe, for each initial particle volume fraction, an initial
increase of the accumulation rate with time which reflects the
enhancement of the sedimentation process due to convection.
Interestingly, the accumulation rate then reaches a plateau at
around t � tlim, indicating that the system switches to a steady
settling regime once all particles have left the upper layer. We
compare also with the analytical relations which again have very
good agreement with our simulations.

Finally, using the determined ta, we can also calculate the
concentration C2(t), as calculated with the analytical expressions
in Eqs 49–51. Figure 14 shows a comparison with the average
C2(t) as measured in simulations for a particle size of 40 μm and
three different initial upper layer concentrations, finding very
good agreement.

DISCUSSION

Model Caveats
Our numerical model has been validated by comparing various
outputs with results from linear stability analysis, lab experiments
(Fries et al., 2021) and theoretical predictions from previous
studies (Hoyal et al., 1999; Carazzo and Jellinek, 2012). Even
though these comparisons are good (Figures 9–14), the results
provided by the model inherits the caveats of the experiments.
Indeed, the static and confined configuration, as well as the fact
that we performed the simulations in water, mean that we cannot
fully extend the results to the volcanic case yet. Thus, further
investigations are necessary to better simulate the volcanic
environment (e.g., in air, with wind, etc.). Additionally, it is
necessary to consider the limits of validity of the different
assumptions. In our study, particles are small enough that
they have no inertia and thus the fluid-particle interaction
force is governed by the buoyant force term in the fluid
momentum equation. However, as soon as the particle size
increases, we need to consider some other dynamics. Indeed, a
rigid particle moving in a fluid produces locally a disturbance flow
which generates other contributions to the fluid-particle force
terms. The assumption that particles settle at their Stokes velocity
will then no longer be valid as the created local flow affects VS

(Maxey and Riley, 1983; Cartwright et al., 2010; Patočka et al.,
2020).
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Whilst the condition on the particle coupling is given by the
Stokes number (St< 1), there is also a condition on the particle
volume fraction to take in account. Harada et al. (2013) and
Yamamoto et al. (2015) derived a dimensionless number in order
to characterise the transition between fluid-like and particle-like
settling. Although this number is only valid for narrow channel
configurations, which are considerably different from ours, it
highlights the fact that the particle size, volume fraction and

characteristic length scale of the flow are critical parameters to
define the validity of the continuum assumption. Thus, the transition
from fluid-like to particle-like behaviour is achieved by decreasing
the volume fraction and characteristic length scale and increasing the
particle size. Near this transition, the use of a single-phase model,
such as that presented here, should be treated with caution and this
reveals the need for a comparison with future models which
explicitly account for the drag contribution of individual particles.
In multiphase models this contribution has been commonly
represented through a force term involving the ratio between the
phases differential velocities and the relaxation time (drag timescale)
(Laibe and Price, 2014; Chou and Shao, 2016).

Another related caveat concerns the numerical diffusion
underlying the use of an Eulerian approach to describe the
transport of particles. Compared to classical first order finite
difference methods, the use of the third order WENO procedure
has drastically reduced the numerical diffusion. It is also possible
to further reduce the induced numerical diffusion by increasing
the order of the WENO scheme (i.e. increase also the
computational cost). However, for problems purely related to
advection, where the presence of any diffusion is critical, another
strategy, such as two-phase models (using a Lagrangian approach
where individual particles are explicitly modelled), has to be
considered.

Vertical Finger Velocity
We have compared the simulated vertical velocity of fingers with
experimental observations (Fries et al., 2021) and a theoretical
prediction (Eq. 1) from (Hoyal et al., 1999; Carazzo and Jellinek,
2012) (Figure 11). This expression depends on a critical Grashof
number, which by analogy with thermal convection (Turner,
1973) has previously been assumed to be 103 (Hoyal et al., 1999).

FIGURE 13 | (A) Temporal evolution of the mass of particles accumulating at the bottom of the tank for several particle sizes. The dashed and dotted lines represent
the extended analytical model of (Hoyal et al., 1999). Particle volume fraction ∅0 � 1.19 × 10−3. (B) Accumulation rate calculated at the bottom of the tank for several
particle volume fractions and a particle size of 40 µm. The coloured dashed lines are the rate derived from the analytical model. The black dashed line is the theoretical
time at which all particles have settled across the interface.

FIGURE 14 | Evolution of the average particle volume fraction in the
lower layer for particle of size 40 µm. Black: C0 � 2 g/L (∅0 � 7.94 × 10−4),
Red: C0 � 4 g/L (1.59 × 10−3) and Blue: C0 � 6 g/L (2.38 × 10−3). Solid lines:
numerical model. Dashed lines: modified (Hoyal et al., 1999) model (Eqs
49–51).
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This value effectively corresponds to a dimensionless critical PBL
thickness at which point the PBL can detach and form fingers.
However, both the model results and experimental observations
summarised in Figure 11 suggest that Grc > 103 for our
configuration. Furthermore, as seen in Figure 11B, the curve
for Vf using Grc � 103 (blue dotted line) crosses the Stokes
velocity curve around 95 μm for instance with an initial particle
volume fraction of∅0 � 1.19 × 10−3, suggesting this value should
be the upper particle size limit for finger formation. However, in
agreement with experiments (Scollo et al., 2017; Fries et al., 2021),
we observe a larger threshold for the finger formation to be in the
size range [115 − 125] μm, for∅0 � 1.19 × 10−3, and in the range
[145 − 160] μm for ∅0 � 3.57 × 10−3, in this particular
configuration. We also showed that Eq. 1 poorly predicts the
observed dependence of the finger velocity on the initial particle
volume fraction. Indeed, our studies suggests an alternative power
law that better describes the dependence ofVf on∅0. Equation 1
has been derived by a scaling theory that involves δPBL as
characteristic length of the problem (Hoyal et al., 1999;
Carazzo and Jellinek, 2012) and the discrepancies highlighted
in this paper (Figure 11) may suggest that δPBL actually has a
slightly different dependence on the initial particle volume
fraction. Moreover, the use of the Grashof number as an
appropriate scaling for the PBL thickness remains uncertain.
On the one hand, our results suggest that if instability does
occur once a critical Grashof number is reached, the critical value
taken from the thermal convection analogy is not valid. On the
other hand, the Grashof number may simply not be the correct
dimensionless form of the PBL thickness, and different flow
configurations will produce different critical values. The fact
that both the experiments and simulations agree very well
shows that the “true” value for Grc, if it exists, is an order of
magnitude higher than in the thermal case. However, Figure 11B
shows that we find a ratio of ∼ 3.5 between the two fitted Grc
which is interestingly close to the ratio of three between the two
associated particle volume fractions. Whilst the variability of Grc
might come from the measurement itself (fitting of the numerical
and experimental data), this behaviour is coherent considering
the definition of Grc (ratio between buoyancy and viscous forces)
and the fact that the buoyancy force is a function of the particle
volume fraction. Obviously, this is only the case so long as the
particle concentration does not affect the bulk viscosity, which is
the case in our study. Therefore, we highlight here that the order
of magnitude found for Grc is valid for the flow configuration
presented in this study and also that there is a dependence on the
initial particle volume fraction. Further analyses with different
flow configurations (i.e., different buoyancy and viscous
conditions) are required to constrain the variability of Grc and
confirm that it may not be a rigorous scaling for the PBL
thickness. A study involving settling-driven gravitational
instabilities in air and in the presence of shear is currently
performed and will certainly provide some insights on the
dependence of Grc on the flow configuration.

The predicted dependence of the finger velocity on the particle
diameter by Eq. 1 shows a very good agreement with our
simulated results, as confirmed by a power-law fitting between
Vf and Dp. Thus, whilst we have demonstrated the need for a

better scaling of δPBL, Eq. 1 can still provide a good estimate for
the particle size threshold to form fingers. Consequently, if the
size threshold to form fingers is given when Eq. 1 equals the
Stokes velocity (Eq. 13) we can derive a formulation for the
threshold

Dp
p � ⎡⎢⎢⎣(18μ)

2∅δPBL

g(ρp − ρf)ρf

����

(
π

4
)

√
⎤⎥⎥⎦

1
4

. (56)

The main caveats for this formulation are that it strongly
depends on having a correct scaling for δPBL and obviously this
estimation is valid under the assumption that particles settle at
their Stokes velocity, which is reasonable for our study but might
be uncertain in nature where the ambient fluid is air and for non-
spherical particles.

Particle Concentration in the Lower Layer
and Mass Accumulation Rate
We have proposed a modified analytical formulation for the
particle concentration in the lower layer C2(t) and consequently
for the mass of particles accumulated at the bottom of the tank
mb(t). Despite some numerical artefacts that can be seen on
Figure 13B where the computed accumulation rate seems to be
non-zero before ta, there is very good agreement between the
simulations and the analytical model. The artefacts themselves
are due to fluctuating numerical errors that do not affect the final
results.

The analytical predictions for C2(t) and mb(t) are step-wise
functions depending on ta, the time it takes for the first particles
to reach the bottom. For t< ta, the analytical model predicts that
C2(t) increases linearly with time since the formulation assumes
that, during this period, particles are settling individually. In fact,
our numerical results show that convective settling does occur for
t< ta but, since this time period is short, the linear law seems to be
a satisfactory approximation for the early-time average lower
layer particle concentration. However, in order to compare our
simulated results with the analytical prediction, we fitted the
parameter ta in this study. Although we are able to obtain
excellent agreement between model and theory, it would be
better to develop a fully independent formulation. To achieve
this, it is necessary to also provide an analytical estimation for ta.
One possible approach would be to assume the decomposition
ta � ta′ + ta″ where ta′ is the time during which the PBL initially
grows beneath the interface at the individual particle settling
velocity, i.e., ta′ � δPBL/Vs, and ta″ is the time between the PBL
detachment and the first arrival of particles at the base of the
domain. If, during this stage, we assume that the particles are
advected at the finger velocity then ta″ � (h2 − δPBL)/Vf). We
therefore see that ta strongly depends on δPBL, which highlights
once again the need for a correct scaling of the PBL thickness, as
discussed in the previous section.

Another interesting result concerns the accumulation rate
of particles at the base of the domain in the presence of fingers.
Figure 13B shows the accumulation rate increases with time
for ta < t< tlim, in agreement with the analytical prediction
(i.e., combination of Eqs 53, 55 which provides an exponential
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increase of mb). Conversely, if the particles had settled
individually, the accumulation rate would be temporally
constant. However, there is no denying that the effect as a
function of position is also interesting in order to characterise
especially the consequences of the oscillatory convection on
the sedimentation rate. We computed an animated map
(Supplementary Material) showing the spatial distribution
of the sedimentation rate at the tank floor through time, for an
initial particle volume fraction of 1.98 × 10−3. As expected, the
convection in the lower layer initiated by fingers generates a
spatially inhomogeneous sedimentation rate which strongly
evolves in time. Furthermore, we also observe that the
temporal evolution stops a time around the theoretical time
when we expect all particle have left the upper layer (i.e., end of
convection). Generally, all these aspects show that temporally
resolved measurements of the accumulation rate of particles
from volcanic clouds may record temporal signatures of
sedimentation via settling-driven gravitational instabilities.
Whilst there is already a spatial deposit signature of
settling-driven gravitational instabilities (i.e. bimodal
grainsize distribution) (Bonadonna et al., 2011; Manzella
et al., 2015), this is not unique and can be generated by
other mechanisms such as particle aggregation (Brown
et al., 2012). Accumulation rate data from the field may
therefore provide a powerful tool for distinguishing the
efficiency of convective sedimentation beneath volcanic
clouds.

CONCLUSION

We have presented an innovative hybrid Lattice Boltzmann-
Finite Difference 3D model in order to simulate settling-
driven gravitational instabilities at the base of volcanic ash
clouds. Such instabilities occur when particles settle through a
density interface at the base of a suspension, leading to the
formation of an unstable particle boundary layer (Hoyal et al.,
1999; Carazzo and Jellinek, 2012; Manzella et al., 2015), and also
occur in other natural settings, such as river plumes (Davarpanah
Jazi and Wells, 2016). Our numerical model makes use of a low-
diffusive WENO procedure to solve the advection-diffusion-
settling equation for the particle volume fraction. The use of
such a routine allows us to minimise errors associated with
numerical diffusion and has the advantage of being applied to
simple uniform meshes, which makes the coupling with the LBM
easier. This innovative use of the WENO scheme, therefore,
represents an effective tool for the solving of advection-
dominated problems. Our implementation of the third order
WENO finite difference scheme will be integrated in a future
release of the open-source Palabos code. Our model has been
successfully validated by comparing the results with 1)
predictions from linear stability analysis where we show that
the model is able to simulate settling-driven gravitational
instabilities from the initial disturbance through the linearly-
unstable regime, 2) analogue experiments (Fries et al., 2021) and
3) theoretical models (Hoyal et al., 1999; Carazzo and Jellinek,
2012) in order to reproduce the non-linear regime which

describes the downward propagation of fingers. We also
confirmed the premature sedimentation process through
collective settling compared to individual settling.

Our model provides new insights into:

• The value of the critical Grashof number. From
measurements of the vertical finger speed, we have found
Grc ∼ 104 in our configuration. This value differs from the
one suggested by analogy with thermal convection
(Grc ∼ 103) (Hoyal et al., 1999). Our results suggest that
either the critical Grashof number for settling-driven
gravitational instabilities is greater than in the thermal
convection case or that the Grashof number may not be
the correct dimensionless form of the PBL thickness. In any
case, this highlights the need for further investigation of the
scaling of the PBL thickness δPBL.

• The presence of a particle size threshold for the finger
formation. Using our results, we have proposed an
analytical formulation for this threshold depending on
the density of particles, the viscosity of the medium and
also the bulk density difference between the two fluid layers.

• The signature of settling-driven gravitational instabilities
(i.e., accumulation rate). We show that the accumulation
rate of particles at the tank base initially increases with time
before reaching a plateau. This contrasts with the constant
accumulation rate associated with individual particle
settling. This suggests that accumulation rate data could
be used during tephra fallout to distinguish between
sedimentation through settling-driven gravitational
instabilities and individual-particle sedimentation.

We have also demonstrated how our numerical model can be
used to expand the initial conditions and configuration settings
that can be explored through experimental investigations. The
results presented so far in an aqueous media permitted model
validation but have also opened fundamental questions that will
be addressed in future works involving configurations more
similar to the natural system. Indeed, thanks to the strengths
of the LBM, the model can easily be applied to more complex
systems and provides a robust tool for the transition from the
laboratory studies to volcanic systems, as well as other
environmental flows.
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Fast High-Resolution S-PTHA Along
the Western Mediterranean Sea
Coastlines. Application to the Bay of
Cannes
Viviane Souty *† and Audrey Gailler

CEA, DAM, DIF, Bruyères-le-Châtel, France

Probabilistic Tsunami Hazard Assessment (PTHA) is a fundamental framework for
producing time-independent forecasts of tsunami hazards at the coast, taking into
account local to distant tsunamigenic earthquake sources. If high resolution
bathymetry and topography data at the shoreline are available, local tsunami
inundation models can be computed to identify the highest risk areas and derive
evidence-based evacuation plans to improve community safety. We propose a fast
high-resolution Seismic-PTHA approach to estimate the tsunami hazard at a coastal
level using the Bay of Cannes as test site. The S-PTHA process is firstly fastened by
performing seismic and tsunami hazards separately to allow for quick updates, either from
seismic rates by adding new earthquakes, or from tsunami hazard by adding new
scenarios of tsunamis. Furthermore, significant tsunamis are selected on the basis of
the extrapolation of a tsunami amplitude collected offshore from low-resolution simulations
to an a priori amplitude nearshore using Green’s law. This allows a saving in computation
time on high-resolution simulations of almost 85%. The S-PTHA performed in the Bay of
Cannes exhibits maximum expected tsunami waves that do not exceed 1m in a 2500-year
period, except in some particular places such as the Old Port of Cannes. However, the
probability to experience wave heights of 30 cm in this same period exceeds 50% along
the main beach of Cannes and these results need to be considered in risk mitigation plans
given the high touristic attraction of the area, especially in summer times.

Keywords: Bay of Cannes (France), earthquake tsunamis, amplification-law filter, high-resolution simulations,
probabilistic assessment

1 INTRODUCTION

The determination of the tsunami hazard is a key challenge worldwide, since the major tsunamigenic
earthquakes at Sumatra in December 2004 and Tohoku in March 2011. The Sumatra tsunami is
known as the deadliest one within living memory (death toll of 250,000–300,000; Okal, 2011). The
failure to warn is essentially due to a deficiency of communication and is partly responsible for the
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high number of causualities (Okal, 2011). The 2011 Tohoku
tsunami caused a great deal of attention, strengthened by the
Fukushima Nuclear Power Plant accident. The reactors were
stopped after the Mw9.0 earthquake, but the elevation of the
structures were too low in altitude to be preserved from tsunami
waves exceeding 10 m in height at the site location (IAEA, 2015,
p. 6, 12). Indeed, earthquakes up to Mw 8.0 were expected in this
region and studies were performed to prevent the risks from these
large earthquakes, but a mega-thrust earthquake was not
considered in the tsunami hazard (and risk) studies (Stein and
Okal, 2011, and reference within). These two events illustrate well
the interest of accurately determine the tsunami hazard order to
make better decisions based on reliable results of hazard studies.

Moreover, the above examples also highlight that the
management of the tsunami hazard must be done dealing with
two timescales. The warning timescale starts with a triggering
event in real time such as an earthquake. The historical timescale
studies past events to extrapolate to future events. For instance,
the operating procedure at warning time scale can be based on a
decision matrix, which defines the alert level (e.g., Schindelé et al.,
2015). The Deterministic Tsunami Hazard Assessment or the
Probabilistic Tsunami Hazard Assessment (PTHA), on the other
hand, are two approaches that are usually conducted, at historical
scale, for prevention purposes. The Deterministic Tsunami
Hazard Assessment appears as the most conservative approach
and is used in most of the forecasting tools in operational context.
The results obtained merely account for the effects of the worst
probable scenario on a few points of interest (POI, e.g.,
TANDEM, 2020) and do not consider smallest events that
could also be significant, especially since they are more
frequent. On the contrary, PTHA aggregates numerous
scenarios in order to account for a range of tsunami sources
as wide as possible (location, intensity, geometry, temporality).
The resulting products allow identifying the most affected areas
with recurrence possibilities. Then, PTHA provides key outcomes
for long-term coastal management (Behrens et al., 2021).
Furthermore, in the case of near-field triggering tsunamis that
would reach the closest coasts within a few minutes, the real-time
warning process is not always fast enough (e.g., Park et al., 2018)
even so efforts are made to improve the speed of real-time
forecast (e.g., Giles et al., 2021b; Selva et al., 2021). In this
particular case, the disaggregation allows to ascertain the most
dangerous tsunamigenic sources for a given area considering that
the catalogs of seismicity is quite complete. PTHA studies
performed using efficient numerical inundation simulations
also provide a key upstream complementary information for
site-specific hazard assessment (e.g., Gibbons et al., 2020) and
evacuation planning (Tonini et al., 2021).

Tsunamis of seismic origin that can spread throughout the
Western Mediterranean (WM) basin are not as large, nor as
destructive as tsunamis that can be triggered by megathrust
earthquakes originated along the subduction zone of the
Pacific Rim. The seismicity within the WM can be considered
as moderate, and quantifying the associated tsunami hazards
remains a key point for planning of integrated community-level
preparedness. Some historical earthquakes, indeed, have
generated tsunamis with wave heights exceeding 1 m

nearshore (Figure 1A). The Imperia earthquake (Mw 6.3–7.5,
Italy) of the February 23, 1887 is one of these tsunamigenic-
earthquakes and generated waves reaching heights between 1 and
2 m at Cannes and Antibes cities (France, e.g., Eva and
Rabinovich, 1997; Larroque et al., 2012). The Boumerdes-
Zemmouri tsunamigenic-earthquake (Mw 6.9, Algeria) in the
night of the May 21, 2003 induced a rapid draw-down (−1.5 m)
along the French Riviera coastlines (e.g., Sahal et al., 2009). This
draw-down was accompanied by strong currents and eddies in
several harbours, including the Old Port of Cannes. In both cases,
the tsunami fortunately did not occur when beaches and harbours
were crowed (e.g., summer day-time).

Since the 2010s, several PTHA studies aiming at constraining
the tsunami hazard along the European coastlines can be cited.
Most of them simulate tsunamis of seismic origin using a quite
coarse long-wave model to extract a Peak Offshore Tsunami
Amplitude (POTA), often located at a water depth between 50
and 100 m. Then, the Green’s law (Green, 1838) is used to
extrapolate the POTA close to the shore, usually around 1 m
(e.g., Selva et al., 2016; Grezio et al., 2020; Selva et al., 2021). The
extrapolated value expresses the Peak Coastal Tsunami
Amplitude (PCTA). Sørensen et al. (2012) quantify the
tsunami hazard due to earthquakes in the Mediterranean Sea
this way by building numerous synthetic catalogues based on
seismic rates in order to process the PTHA. Lorito et al. (2015)
perform a linear approximation of the tsunami propagation in
order to build a preliminary S-PTHA. They apply then a two-
stage filter to reduce the number of significant sources and then
perform non-linear tsunami propagation using the selected
sources. A recent regional project, the TSUMAPS-NEAM
updates tsunami hazard outcomes along the European
coastlines (e.g., Basili et al., 2018; Basili et al., 2021). The
POTAs are here extrapolated to PCTAs, using an
amplification factor that depends on the POI and the tsunami
period (Glimsdal et al., 2019).

These studies relying on S-PTHA use regional approaches,
meaning that POTAs are extracted from low resolution
simulations throughout the basin thereby reducing the
computational cost. The PCTAs are then obtained from
empirical amplification laws, that unfortunately results in
estimates of wave heights at the coast within a factor of 2 at
best (e.g., Gailler et al., 2018), partly because local effects are not
taken into account (i.e., resonance in harbours and bays) and
there is no distinction between direct and reflected waves. The
estimates obtained from the extrapolation of a POTA are
therefore a good approximation when used for warning scale
forecasting (e.g., Selva et al., 2021). Besides, with such approaches
based on amplification laws, the horizontal inundation and the
currents are missing. In order to overcome these gaps, recent
papers propose a high-resolution S-PTHA with a pre-selection of
significant scenarios to simulate inundations at specific coastal
sites efficiently (Volpe et al., 2019; Gibbons et al., 2020). Such
local S-PTHA compared to more conservative approaches
underlines the importance to perform local studies using the
proper level of data resolution, to best serve specific risk
mitigation actions, without neglecting the quantification of
epistemic uncertainties (Tonini et al., 2021).
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The aim of this study is to develop an efficient high-
resolution S-PTHA proof of concept with sensitivity study
to quantify the tsunami hazard associated with earthquakes,
based on the a priori knowledge provided by the active fault
database of the French tsunami warning center (CENALT).
The method will then be operable into any area providing the
data availability. The Bay of Cannes (France) is selected as a
test case, because this region can be threatened by tsunamis
and hosts many inhabitants and tourists. Moreover, Cannes is
not a targeted POI in the TSUMAPS-NEAM project despite
the historical events such as 1887 Imperia and 2003
Boumerdes earthquakes, whose tsunamis effects were
observed at Cannes (e.g., Sahal et al., 2009; Larroque et al.,
2012).

A classical S-PTHA scheme is used to design the method (e.g.,
Grezio et al., 2012; Sørensen et al., 2012; Grezio et al., 2017;
Glimsdal et al., 2019; Behrens et al., 2021). The annual probability
of the triggering-event is given to the induced tsunami. The
effects of the tsunami, i.e., the PCTA, are aggregated with those of
other tsunamis and weighted by the annual probability of the
triggering-event. The PCTAs are directly extracted from high-
resolution simulations (down to 10 m space step accuracy at the
coastal level) instead of being extrapolated from POTAs. A
selection of the significant tsunami is therefore necessary in
order to reduce the computational time.

In this paper, we first present the details of the method,
organized such that the seismic rates (Section 2.1) and the
tsunami hazard (Section 2.2) are treated independently to
perform a fast high-resolution S-PTHA. Especially, we propose
a selection of significant tsunamis for which the high-resolution
simulations are required (Section 2.2.2). Moreover, a sensitivity
study is performed on various epistemic and aleatory
uncertainties due to input data and methods, analysed all
along the process (Section 2.4). We then show the results of
the method applied to the Bay of Cannes (Section 3.2). Finally we
discuss the uncertainties and the sensitivity regarding the seismic

and tsunami hazards (Sections 4.2, 4.3) and summarize the main
outcomes in Section 5.

2 MATERIALS AND METHODS

2.1 Seismic Rates
2.1.1 Seismogenic Zones
The occurrence of earthquakes depends on the seismotectonic
context (e.g., the Sicily region triggers more earthquakes and
stronger earthquakes than the Ligurian region). In this study, the
WM basin is split into sub-regions depending on their seismic
regime in order to determine with higher accuracy the annual
rates of earthquakes. These zones are thus defined consistently
with the seismic rate and the faulting regime of each region. We
choose to follow the partition proposed by Sørensen et al. (2012),
where the WM basin is split into eight seismogenic zones
(Figure 1B) small enough to represent areas of homogeneous
activity (rates and faulting regime) and large enough to contain
sufficient earthquakes to characterize the activity (i.e., to build a
distribution law).

2.1.2 Earthquake Catalogues Used
Several earthquake catalogues are available, such as the USGS or
EMSC ones (European-Mediterranean Seismological Centre,
2020; U.S. Geological Survey, 2020). They are large databases
that concatenate earthquake records from several institutes
throughout the world and use various magnitude estimates
(moment magnitude, body wave magnitude, surface wave
magnitude, local magnitude. . .). These catalogues mostly cover
instrumental earthquakes (since ∼1960). Larger and less frequent
earthquakes might not have occurred during this instrumental
period, creating a temporal incompleteness.

Compiled catalogues such as FCAT-17 (France) and SHARE
(Europe) contain historical events directly giving the moment
magnitude (Grünthal and Wahlström, 2012; Giardini et al., 2013;

FIGURE 1 | (A)Historical tsunamigenic seismicity in theWM basin. Adapted from Figure 1 in Gailler et al. (2013). (B) Repartition of the earthquakes (MwP3)within
the WM basin (catalogue obtained from the synchronization of the datasets in Table 1, see also Supplementary Table S1). White circles show earthquakes located
more than 100 km inland (non-tsunamigenic locations) and earthquakes discarded from the analysis (e.g., within the Adriatic and Ionian Seas). Gray circles show
earthquakes located offshore or less than 100 km inland (tsunamigenic locations) that are not inside any seismogenic zone of Sørensen et al. (2012). Colored circles
show earthquakes located in the seismogenic zones (one color per zone). The size of the circles is proportional to the magnitude of the earthquake. z01: South Eastern
Spain; z02: Northern Morocco; z03: Northern Algeria; z04: Northern Tunisia; z05: Ligurian Coast; z06: Western Italy; z07: Sicily; z08: Calabria.
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Grünthal et al., 2013; Stucchi et al., 2013; Manchuel et al., 2018).
The FCAT-17 and SHARE catalogues are not sufficient either,
since the records stop in 2009 and 2006, respectively. The
occurrence of strong earthquakes during the remaining period
until now might also lead to temporal incompleteness. In this
study, additional earthquake datasets are also synchronized in
order to overcome this drawback and constrain the seismic rates
as best as possible (i.e., Table 1).

The completeness of the resultant catalogue (time, magnitude
and space) must still be carefully considered. For instance, the
moment magnitude is rarely estimated for the smallest
earthquakes. Also, the moment magnitude of historical
earthquakes is mostly derived from macro-seismicity by
experts and the date and time of the historical earthquakes
can be slightly inaccurate. The date-and-time accuracy,
fortunately, does not have a heavy influence on the results
because annual rates are needed at a long time scale (>100 y).

2.1.3 Magnitude Conversion
The moment magnitudes Mw associated with the earthquakes
catalogues depicted above are often derived from several
conversion laws, depending on the time, place and magnitude
range such as the one in Wason et al. (2012) which used General
Orthogonal Regression on data from 1976 to 2007 to convert
surface wave magnitude and body wave magnitude to Mw at
global scale; Lolli et al. (2014) which proposed Exponential
Regression Models to convert surface- and body-wave
magnitudes to Mw at global, regional and local scales between
1976 and 2011; Cara et al. (2017) which proposed conversion
relationships from local magnitude Ml,LDG recorded between
1962 and 2009 by the Laboratoire de Détection et de
Géophysique (LDG, CEA) to Mw. Nevertheless, the catalogues
also record non-Mw which not fit the time and magnitude
constraints to be converted using the above conversion laws.
We did not convert these events as they represent less than 5% of
additional earthquakes of Mw lower than 5.4 in 99% of cases,
after synchronization. We are therefore confident in the collected
Mw, the non-Mw records being part of the incompleteness of the
catalogue.

2.1.4 Synchronization of the Earthquake Catalogues
This study requires building a recent and complete earthquake
catalogue for the WM basin. Thus, earthquakes records were
downloaded from several databases up to the December 31, 2018
(Table 1) in order to synchronize them as best as possible. A
crude concatenation of the catalogs is first performed, keeping the
earthquakes that are located in the WM basin (6°W—17°E,
34°N—45°N) and recorded using the moment magnitude. At
this step of the process, the whole magnitude range is kept in
order to have truthful distributions.

The transition from a fragile stress regime (upper crust) to a
ductile regime (lower crust) enables the removal of deep
earthquakes, as they cannot activate a large enough vertical
motion of the water column. We assume this transition at
100 km, taking into account a potential error on the
earthquake depths provided by the catalogues. Thus,
earthquakes deeper than 100 km are considered as non-
tsunamigenic and are ignored. In addition, in accordance with
the WM basin decision matrix for tsunami warning, earthquakes
located farther than 100 km inland are also ignored (Schindelé
et al., 2015; Figure 1B).

Finally, earthquakes closer than 60 s in time and 10 km in
distance are considered as replicated records. They are mainly
due to duplicates between catalogues and are automatically
removed, followed by a manual selection refinement. The
automatic deletion of the duplicates might also remove some
aftershocks despite the fact we want to keep them. Indeed, the
strongest aftershocks can also trigger tsunamis and need to be
taken into account for the determination of the seismic rates. The
resultant catalogue records 5,015 earthquakes spreading from
1048 A.D. to 2018 (see also the supplementary materials). Among
them only 73 earthquakes have a Mw 6.0 or above.

2.1.5 Determination of the Seismic Rates
The earthquake magnitude and occurrence are constrained by the
tectonic settings. Furthermore, the aftershocks are strongly
correlated to their main-shock. The use of a time-dependent
approach would have been appropriate to determine the seismic
rates. However, the speed of execution being a key factor in this
study, the choice was made to handle all earthquakes as random
Poissonian processes.

Then, we assume that the cumulative distribution of the
earthquake magnitudes within a seismogenic zone follows a
Gutenberg-Richter law and can be expressed, for the
magnitude M, in terms of the annual rate λM, by

λM � λM0e
−β(M−M0), (1)

where λM0 is the annual rate of the magnitude of completenessM0

and β an adjustable parameter. The resultant distribution laws
mainly depend on the completeness of the dataset, but also on the
method chosen to determine the parameters β, λM0 and M0.

The establishment of seismic monitoring networks on one
hand, and the improvement of instruments and methods on
the other hand, make possible the detection of smaller
earthquakes, lowering the magnitude of completeness of the
more recent periods. The magnitude of completeness is then a

TABLE 1 | Earthquake catalogues of reference. Catalogues in bold record only
instrumental earthquakes.

Catalogue Numbera Date range Refb

CMT 182 1977–2017 [1]
EMEC (ext) 5,442 1005–2006 [2]
EMEC(online) 40,261 2005–2019 [3]
ISC 42,870 1904–2015 [4]
NOAA 97 1783–2018 [5]
SHARE 3,508 1000–2006 [6]
USGS 46,650 1905–2019 [7]
FCAT-17 25,214 463–2009 [8]

aNumber of seismic events (all Mw) within the WM basin (6°W to 17°E, 34°N to 45°N).
b[1] Dziewonski et al. (1981), Ekström et al. (2012); [2] Giardini et al. (2013); [3]
European-Mediterranean Seismological Centre (2020); [4] International Seismological
Centre (2020); [5] National Geophysical Data Center NOAA (2020); [6] Stucchi et al.
(2013), Grünthal and Wahlström (2012), Grünthal et al. (2013), Giardini et al. (2013); [7]
U.S., Geological Survey (2020); [8] Manchuel et al. (2018).
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key parameter because it sets up the magnitude for which we
are confident to count every earthquake that actually occurred.
The magnitude of completeness corresponds to an earthquake
detection threshold and depends on the period of observation
and the location. The magnitude of completeness of a period of
observation can be determined using 1) the Maximum
Curvature method (MAXC, Woessner and Wiemer, 2005),
2) the Goodness of Fit method (GFT, Wiemer and Wyss,
2000), 3) the b-value stability method (MBS, Woessner and
Wiemer, 2005; Cao and Gao, 2002), applied with the stability
criterion of Shi and Bolt (1982) and 4) the Stepp’s method
(Stepp, 1972). All these methods were performed for each
seismogenic zone and yield to similar or different results
depending on the selected datasets and the values used for
the Mw interval and the time interval (Section 3.1.1). This
reflects that uncertainties exist and must be taken into
account.

The method of Weichert (1980) is used to determine the
coefficient values of the annual rate expression (Eq. 1) and is
based on the maximum likelihood. This method includes seismic
rates determined for periods of time that depend on the
magnitude such that:

∑itiMi exp −βMi( )

∑jtj exp −βMj( )
� ∑iniMi

N
� �M, (2)

where ti is the period of completeness of the magnitude Mi (M ∈
[Mi − δ; Mi + δ]) with ni events and N the number of all events
(N � ∑ni). The β value is found by iterations. Weichert’s method
then allows to determine accurate seismic rates even if the
historical period is less documented than the instrumental period.

The time and magnitude steps in this study are fixed to 1 year
and 0.2, respectively. The method to determine the magnitude of
completeness is chosen for each seismogenic zone, such as the
annual rates from Weichert’s method fit the data at best
(Figure 2A). The distribution laws obtained varies depending
on the seismogenic zone (Figure 2B). The North Algerian zone
presents the highest annual rates, while the Ligurian coast have
the lowest rates. These various distributions reflect well the
necessity of processing by seismogenic zone.

2.2 Tsunami Hazard
2.2.1 Rupture Scenarios
The fault database of the French Tsunami Warning Center
(CENALT) is used to build a catalogue of ruptures at the scale
of the WM basin. The database consists in a unit source function
system which follows the major structural trends of the
seismogenic context of the WM basin (Gailler et al., 2013). To
be conservative, the top of all faults in the database reach the
seafloor. The length, width, slip and rigidity of each unit segment
are set constant (respectively 25 km, 20 km, 1 m, and 35 GPa. For
instance, the rupture of a unit source generates a Mw 6.76
earthquake.

One or several unit sources can be combined linearly to build a
rupture of any moment magnitudeMw, the lengths and widths of
the combined unit sources observing Wells and Coppersmith
(1994) laws (fixing L � 200 km for Mw � 8.0), and the slip being
scaled by a factor FS (Gailler et al., 2013). The unit sources
combination is controlled geometrically by the distance between
two units (18.5–37.5 km) and the azimuth difference between
them (≤40°). Combinations can be performed with various fault
types. The available maximal combination of unit sources within
a seismogenic zone gives the maximum magnitude in that zone.
More details on the CENALT fault database and the method of
construction of the rupture scenarios are available in Gailler et al.
(2013).

Following the WM decision matrix used in operational
context, an earthquake between Mw 5.5 and Mw 5.9 does not
lead to a warning tsunami message. In such cases, an information
message only is sent to the civil protection authorities Schindelé
et al. (2015). As this study is aimed at probabilistic purposes, we
opt to consider events of Mw from 5.5 to be conservative.

FIGURE 2 | Distribution law per seismogenic zone. (A) Comparison of
the law of distributions obtained using earthquakes that occured within the
Ligurian Coast seismogenic zone (z05), using a 0.2 magnitude step (dMw)
and a 1-year time step (dy). (B) Best law of distribution per seismogenic
zone (dMw � 0.2, dy �1 y). The markers show the method used to find the
magnitude of completeness. The colors show the seismogenic zones.

TABLE 2 | Number of unit sources and scenarii per seismogenic zone. The
number of significant tsunamis are given for the Bay of Cannes region (gr03,
Figure 3).

Zone Sources Scenarios Mwmax Significanta

z01 South Eastern Spain 403 3,940 8.0 930
z02 Northern Moroco 277 3,090 8.0 366
z03 Northern Algeria 259 2,288 7.9 587
z04 Northern Tunisia 165 1344 7.4 127
z05 Ligurian Coast 93 1577 7.4 939
z06 Western Italy 114 1899 7.4 460
z07 Sicily 45 423 7.8 0
z08 Calabria 101 942 7.8 13

aBay of Cannes region.
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The construction of the rupture scenarios is conducted only
one time independently of the ROI. From the 1457 unit sources of
the CENALT database located inside or closer than 30 km from
the seismogenic zones of Sørensen et al. (2012), 15,503 rupture
scenarios with Mw between 5.5 and 8.0 are obtained (Table 2).
Depending on the resultant combinations, the fault ruptures have
length from 25 to 200 km and width from 20 to 40 km. The slip,
which is scaled by the factor FS is then ranging from 0.01 to 4.5 m.

2.2.2 Tsunami Simulations
The objective of our method is to generate a S-PTHA down to the
coastal level. The ROI of the S-PTHA is then smaller than the
region of the likely sources of tsunamis (Figure 3). For instance,
we use a ten-metre resolution topo-bathymetry grid focused on
the Bay of Cannes (spreading over 14.8 × 9.8 km2), which was
built thanks to the Digital Elevation Models produced within the
Litto3d® program.

The high-resolution nested grids tsunami simulations are
performed with TAITOKO, the code developed at CEA which
solves the shallow water equations from rupture properties
(Heinrich et al., 2021, CEA). TAITOKO is there set to use a
Runge-Kutta scheme, with second order in time and first order
in space. The high-resolution simulations are performed using
4 nested grids from 2 min resolution at basin scale to 10 m
space step at the local scale (Figure 3). Running more than
15,000 scenarios this way is expensive in term of
computational time. So the choice is made to optimize each
simulation duration ts as best as possible, taking as reference
the Estimated Time Arrival (ETA) of the first wave (obtained

using the program TTT from Geoware (GEOWARE, 2007))
plus 30 min. This limitation using the ETA preserves digital
artefacts related to the propagation scheme which is robust for
earlier waves. More performance schemes exist, but they head
to a high increase of the computational time while speed is
demanded. This choice implies that maximum wave heights
information is only retrieved for the first waves. With the same
aim of saving calculation time, the number of high-resolution
runs to perform is also reduced by selecting scenarios able to
produced a minimum wave height threshold in the bay of
Cannes at least. To achieve this, the tsunami simulation for
each rupture scenario is first performed in the coarse grid
(basin scale, low-resolution) only, in order to collect a POTA
where the water depth is about 100 m. The POI offshore is
located 6.981031° E; 43.543846° N in the Bay of Cannes, with a
depth of 94 m (Yellow star, Figure 3). Second, the Green’s law
(Green, 1838) is used to extrapolate each POTA ηoffshore to a
wave height peak nearshore ηmax ,apriori at one-metre water
depth

ηmax ,apriori � ηoffshore ×
hoffshore
hnearshore

( )
1/4

� ηoffshore × h1/4offshore (hnearshore � 1),
(3)

where hoffshore and hnearshore are the water depths offshore and
nearshore, respectively. The peak nearshore is assimilated to an
priori PCTA ηmax ,apriori, derived from the coarse grid models.
Third, the rupture scenarios for which ηmax ,apriori exceeds a

FIGURE 3 | Nested grids for high resolution simulations of the tsunami down to the Bay of Cannes. (A) GR00 location (red). (B) Seismic ROI within GR00
boundaries. (C) PTHA ROI within GR03 boundaries (blue). GR00: 691 × 331 nodes, 1.8 Mb. GR01: 721 × 505 nodes, 2.8 Mb. GR02: 901 × 631 nodes, 4.4 Mb. GR03:
1731 × 1301 nodes, 18 Mb. The yellow star, in GR03, shows the location of POTA to estimate ηmax ,apriori in the Bay of Cannes.
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chosen threshold at the POI are selected as significant. Assuming
that a tsunami is significant if the a priori PCTAs exceed 5 cm, the
threshold applied in the Bay of Cannes is set from the Northern
Algerian and Ligurian zones at 1 cm. We assume that threshold is
consistent for every seismogenic zone because the Northern
Algerian and Ligurian zones are the most impacting areas.
Finally, the high-resolution simulations are performed for this
relevant selection.

Following the threshold chosen, 22.1% of the 15,503 tsunami
scenarios are significant for the Bay of Cannes, matching with
17.6% of the number of hours of tsunami propagation to simulate
(Table 2). About 75% of the computational time can
subsequently be saved thanks to this selection process of
significant tsunami scenarios (Supplementary Figure S1).

2.3 Probabilistic Tsunami Hazard
Assessment
2.3.1 Scenario Probability
Synchronized earthquakes are extrapolated to future events over a
period of observation by using a distribution law per seismogenic
zone (Figure 2B). The extrapolation of the earthquake catalogue
to a rupture catalogue spreading over a larger period of
observation is made exhaustive. This means that the rupture
catalogue is built such that all theNMw−scenarios rupture scenarios
that can generate a given magnitude are associated to each event
of this magnitude, happening during the period of observation
with the probability PMw � 1/NMw−scenarios. Then the annual
probability of a scenario of magnitude Mw is independent of
the ROI and given by

Pscenario � λMwPMw (4)

where λMw is the annual rate of a event of magnitude Mw. The
annual probability of a scenario is equal to the annual rate if the
annual rate is lower than 1. Otherwise, the annual probability
equals 1.

2.3.2 Aggregation
The tsunami hazard is obtained by the aggregation of the seismic
rates and the PCTAs. The annual probability of a scenario, as
given by Eq. 4, is applied to each PCTA of the scenario. The
annual probability Ps,h of exceedance of a PCTA, h, at a place s
along the coastline, is then estimated by the union of all
probabilities of scenarios that can produce a PCTA equal to or
greater than h at this place s:

Ps,h � P ∪
scenario S

S: PCTAs ≥ h{ }( ) (5)

and the probability Ps,h,T to exceed h in a period T at the place s is
then given by

Ps,h,T � 1 − 1 − Ps,h( )
T. (6)

2.4 Sensitivity Analyses
Sensitivity analyses were performed in order to determine which
parameters influence the most 1) the distribution law

determination and 2) which rupture parameters influence the
most the PCTAs. In both cases, the Morris’ algorithm (Morris,
1991; Campolongo et al., 2007) is chosen rather than the Sobol’s
one (Sobol, 2001). Some parameters sets do not allow
determining the parameters of the distribution law using the
available earthquakes records. Then, the features cannot be
distributed to fulfill the Sobol’s algorithm requirements. The
rupture parameters cannot satisfy the required distribution of
the Sobol’s feature either because they are constrained by the fault
system.

2.4.1 Seismic Rates
The features, that are tested, to perform the sensitivity analysis on
the distribution law are.

• the method to determine the magnitude of
completeness (Mc method),

• the magnitude interval dMw,
• the period interval dy,
• the error on the moment magnitude dm,
• the turning year ti between historical and instrumental
records

• the number of earthquakes Neq randomly chosen in the
earthquake catalogue (keeping at least 90% of the records).

The Neq parameter is set up to mimic the incompleteness we
can have in the catalogue. The effect of the random selection of
the earthquakes within the records is also tested. The sensitivity
analysis is performed on the parameters β, λ0 and M0 of the
distribution law (Eq. 1) and on the annual rate of given
magnitudes.

FIGURE 4 | Location of the POIs used for the deaggregation and the
sensitivity analyses. Yellow star: location of the POTA. Pink line: Boulevard du
Midi Louise Moreau at Cannes. White lines inland: city boundaries.
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2.4.2 PCTAs
The sensitivity on the PCTAs is analyzed by using the high-
resolution simulations. Then, the Morris’ sensitivity analysis
tested the features of the rupture scenarios such as their
location depending on the coastal POIs (distance and
azimuth), the geometry of the rupture (strike, dip, rake angle),
the size of the rupture (surface) and the slip of the rupture. The
depth of the rupture is not part of the sensitivity analysis as the
simulations consider faults reaching the sea floor.

3 RESULTS

The method described above is applied to obtain a high-
resolution ( ∼10 m) S-PTHA in the Bay of Cannes. Sixteen
representative POIs are selected along the shoreline (Figure 4)
to ease the analysis and the discussion about the deaggregation
(Figure 9) and the sensitivity analysis of the PCTA (Figure 6).

3.1 Sensitivity Analyses
3.1.1 Annual Rates
We performed a sensitivity analysis for the distribution law
within the North Algerian (z03) and Ligurian (z05)
seismogenic zones (Figure 5). The random selection of the
earthquakes itself has no effect on the results, only the
number of earthquakes to be selected influences the results.
The results of the analysis vary between the two seismogenic
zones, but they highlight several common conclusions. The
choice of the method to determine the magnitude of
completeness is the key parameter (Figures 5A,B), while other
parameters have minor effects on the distribution laws when
using MAXC and MBS methods (Figures 5C,D). Then, the

parameters to determine the distribution law can be set
constant and the best distribution can be found by only
testing the various methods to find the magnitude of
completeness. The results also support the non-linearity of the
distribution law.

3.1.2 PCTAs
The analysis is performed on the 16 POIs in Figure 4 to map the
coastal variability of the most sensitive features (Figure 6). The
three most sensitive parameters on PCTA results are the distance,
the strike and the azimuth considering rupture scenarios from all
seismogenic zones. The influence of these parameters however
varies depending on the place along the coastline. The distance is
the most sensitive parameter at each POI except at POIs 3 and 8

FIGURE 5 | Sensitivity on the distribution laws performed on the two most contributing seismogenic zones (z03 and z05). Contribution of the input features to λ6.2,
β, λ0 and to M0 of the distribution law in the (A) North Algerian (z03) and (B) Ligurian (z05) seismogenic zones. Mean distribution law per Mc method determined using
variable input features for the (C)North Algerian (z03) and (D) Ligurian (z05) seismogenic zones. The shadows show the 95% confidence interval of the mean distribution
law. Input data are superimposed as black circles.

FIGURE 6 | Sensitivity of the source parameters on the PCTAs. The pie
charts show the sensitivity of each source parameters. The larger is the
section, the more the feature is sensitive.
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(La Petite Fontaine beach in Théoule-sur-Mer and Old Port of
Cannes) where the strike becomes more sensitive. This is due to
the spread direction of the tsunami, essentially governed by the
strike of the rupture. These two POIs are also naturally better
protected, allowing a significant tsunami hazard for a few
preferential orientations of the main tsunami energy axis only.
The slip and the surface of the rupture, (i.e., the moment
magnitude) are the least sensitive parameters, because they are
strongly constrained to each other by empirical laws (Wells and
Coppersmith, 1994).

3.2 S-PTHA in the Bay of Cannes
The analysis focuses on the tsunami hazard in terms of the
maximum water elevation of the first waves at the coastline
(PCTA). The main outcomes of this study indicate that an
earthquake generating a tsunami with waves exceeding 1 m
locally along the coast in the Bay of Cannes can be expected
every 961 years (annual probability of 1.04 × 10–3, Figure 7).
However, the probability of occurrence of a tsunamigenic
earthquake with waves exceeding 1 m along 50% of the
coastline drops to 1.14 × 10–4, hence a 8766-year period.
These observations alone do not allow establishing a spatial
planning strategy with regard to tsunamis and therefore
require a closer look at the hazards.

Then, the above outcomes is analysed at small scale to account
for the geometry of the coastline. The hazard maps show the
maximum expected PCTAs in 50-, 500- and 2500-year periods
(Figures 8A–C), and provide an accurate overview of local PTHA
with systematically amplifying coastal POIs compared to the
rough regional PTHA estimates of Sørensen et al. (2012). The
PCTAs remain below 20 cm for periods shorter than 50 years,
and the distribution of the PCTAs provides homogeneous wave
heights all along the coastline (Figure 8A). The PCTAs then
increase with the period in a non-homogeneous manner (Figures
8A–C and focus in Figure 8I). Indeed, some places, such as the

Old Port of Cannes (POI 8), amplify the effects of the tsunami;
whereas some other places, such as La Petite Fontaine beach at
Théoule-sur-mer (POI 3), are protected from most of the
tsunamis effects.

The S-PTHA also provides information on the maximum
expected PCTA in a period of time. The probability to exceed a
PCTA in a given period is shown in Figures 8E–H. These
probability maps are complementary to deterministic hazard
maps generally built from the most impacting scenarios for a
given area. They highlight the greater occurrence of the hazard
linked to smaller waves (e.g., 50 cm, Figure 8F), from which we
cannot preclude potential damages. These probability maps show
that a wave height of 1 m has a low probability to be exceeded in a
period of 2,500 years (Figure 8G). The probability that a tsunami
wave exceeds 1 m in a 2500-year period along the Boulevard du
Midi Louise Moreau (pink line on Figure 4) is below 20%. The
Midi beach (East to POI 7) is the most exposed area along the
Boulevard and also the most crowed in the summer holidays. The
probability to exceed 1 m in a 2500-year period along the coast of
Vallauris is higher and can reach up to 50%. The most exposed
places face directly the basin (POIs 1–2, 15–16). The greatest
hazard is obtained for the Old Port of Cannes, probably due to
resonance effects which amplify the waves. Here, the probability
to exceed 1 m in a 2500-year period reaches 70% (POI 8).
Naturally, the probability to exceed a PCTA in a period
increases with decreasing PCTAs and increasing the periods.

The Maximum Considered Tsunami (MCT), as proposed by the
national standard of practice for engineers in the United States, has
2% probability of being exceeded in a 50-year period (corresponding
to a return time of 2500 years). The resultant hazard map can help
the work of decision for the prioritization of the prevention
(Figure 8D). For instance, in the Old Port of Cannes (POI 8),
tsunami waves greater than 1m can be expected every 50 years with
a probability of 2%, making this place a priority in terms of
preparedness. The preparedness along the Midi beach, crowded
in summer times, is not to be omitted either, because waves can
reach there 30 cm with 2% probability in 50 years.

The seismogenic zones that contribute the most to the tsunami
hazard within the Bay of Cannes are the North Algerian (z03) and
the Ligurian (z05) areas (Figure 9). Especially, earthquakes from
the Ligurian zone only are able to impact POIs 3 and 8. It is worth
noting that among the rupture scenarios selected as significant in
the Ligurian seismogenic zone (z05), some ruptures have a
moment magnitude below 6.0 (Supplementary Figure S2).
This study focuses on PCTAs because there is little flooding in
Cannes. However, 41 rupture scenarios generate an inundation
above 5 m of altitude, all belonging to the Ligurian seismogenic
zone (z05) and with a moment magnitude of 6.7 or above.

4 DISCUSSION

4.1 Resulting PTHA
The results of the sensitivity analysis on the PCTAs and the high
resolution S-PTHA confirm that the coastal geometry influences
the tsunami hazard in the Bay of Cannes, with POIs at local scale
that are more are less protected depending on the earthquake

FIGURE 7 | Annual probability that a PCTA is being exceeded along a
portion of the Bay of Cannes coast. Somewhere: at least at one place;
everywhere: at all places (i.e., at all shoreline nodes of the grid).
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sources. Furthermore, a recent study of the tsunami hazard in the
Bay of Cannes showed that the extended Green’s laws method
reproduce high resolution simulation with relative errors up to
25% (Giles et al., 2021a), and concluded that the extrapolation is
adequate to rapidly predict a PCTA estimate. This validates the
necessity of applying high-resolution PTHA rather than PTHA
using offshore extrapolations in order to capture the effects at
specific places (bay, harbours, beaches. . .).

4.2 Actual Tsunami-Earthquake Sources
and Seismogenic Zones Definition
The assumption of separated and tsunami-independent basins
has relevant implications, such as the effects on the definition of
the domain for seismic sources selection and numerical
simulations. Regarding the hazard within the WM, it was
highlighted that straits like Gibraltar act as a natural barrier
for tsunamis generated in the Atlantic, that attenuate strongly

while crossing this strait. In addition, the broad and relatively
shallow Sicily channel, despite being a less effective barrier,
prevents the free propagation of tsunamis between eastern and
western Mediterranean (Sørensen et al., 2012). However, the
Hellenic arc seismogenic zone should also be added as the
strongest earthquakes occurring there can generate a trans-
Mediterranean tsunami, i.e., tsunami crossing from the Eastern
to the Western Mediterranean basins (e.g., Gailler et al., 2016).
One should also note that the earthquake datasets used do not
contain any strong pre-historical earthquakes. It would be
difficult to integrate them to the study as the seismic rates
cannot be validated at geological scales.

Looking at a smaller scale, the seismogenic zones, which are
taken from Sørensen et al. (2012) should be updated in order to
integrate the earthquakes (for the seismic rates) and the faults (for
the rupture scenarios) up to 100 km inland and then join the
strategy implemented at the CENALT with the decision matrix of
the WM basin (Figure 1B; Schindelé et al., 2015). Additional

FIGURE 8 | Hazard ma+ps: maximum expected PCTAs in (A) a 50-year period, (B) a 500-year period, (C) a 2500-year period. (D)MaximumConsidered Tsunami
(MCT): The MCT has 2% probability of being exceeded in a 50-year period. This MCT is the reference of engineering in U.S.A. Probability maps: probability to exceed (E)
30 cm, (F) 50 cm, (G) 1 m, (H) 1.2 m in a 2500-year period. (I) Focus on themaximum expected PCTAs in 500-year period. The red dots remind the location of the POIs.
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zones should also be added for spatial completeness in Eastern
Spain, Southwestern France (Gulf of Lion area), the Balearic
Islands, the Corsica and Sardinia Islands and the Strait of Sicily.
The absence of records of earthquakes of Mw>5.5 in these areas
does not means it cannot occur. The determination of the seismic
law allows extrapolating the seismic rates within an area and the
fault combination, as described in Gailler et al. (2013), allows to
estimate the maximum moment magnitude that possibly can
occur within the same area. Then additional tsunami sources
might be available for PTHA processes in the WM basin.

4.3 Faults and Ruptures
The CENALT database of unit sources in some regions might
need further investigation to be completed, because the model of
the complex fault system of the WM basin may be incomplete,
especially far offshore, where active structures are still poorly
known (Supplementary Figure S2). We assume that the model is
quite complete for the North Algerian and Ligurian seismogenic
zones (z03 and z05). An advantage of our method is that we can
easily add new unit sources to the fault system and thus new
rupture scenarios. The simulation of tsunamis generated by new
ruptures has only to be performed once for a given ROI.

Some rupture scenarios, located outside of the seismogenic
zones (Supplementary Figure S2), were also selected as being
able to generate a significant tsunami in the Bay of Cannes. Their
highmagnitude lead to low annual rates, and then account for low
probability within the tsunami hazards. However, it would be
valuable to extend the seismogenic zones to better cover the
seismicity further inland.

One should also reminds that all the ruptures scenarios used to
process this S-PTHA follow a static and uniform-slip model,
reach the seafloor and have a constant shear modulus. Even
though introducing more complexity in the rupture dynamic
might not have much effects on the PTHA (e.g., An et al., 2018), it
would be interesting to test the impact of including heterogeneous
slip and rigidity models in the rupture sources dataset through a
stochastic approach (e.g., Davies and Griffin, 2019).

4.4 Tsunami Simulations
The tsunami simulation itself is a source of uncertainty. The
accuracy of the simulations depends on the choice of the models
used to generate and propagate the tsunami (e.g., transfer law
used for the tsunami generation that is induced by the rupture
motion; shallow water, Boussinesq for the propagation, etc.,
Heinrich et al., 2021).

The water level fluctuations, related to the atmospheric
condition or tides (high tide, low tide, tide coefficient), are
also not taken into account in the present study. The tides, in
spite of the fact that they are not significant in the WM basin,
could be implemented as a source of aleatory uncertainty (e.g.,
González et al., 2009).

The use of the threshold to select significant tsunamis and the
choice of the location of the POTA of reference also impact the
results of the S-PTHA. The use of complex amplification laws
(e.g., Gailler et al., 2018; Glimsdal et al., 2019) to select significant
tsunami can be useful when it’s suitably calibrating for the studied
ROI. However, it is not necessary if performing a calibration of
the threshold to be a significant tsunami when using a classic

FIGURE 9 | Contribution of the seismogenic zones to the tsunami hazard. The number at the upper right of each subplots is the POI reference (Figure 4).
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Green’s law. A comparison of the tsunami selection and final
outcomes using the classic Green’s law and the embedded Green’s
law for the area of Cannes (Giles et al., 2021a) can however be
performed.

The use of a different threshold for near-fiel and far-field
sources should also be explored (Volpe et al., 2019) in order to
improve the selection of the significant tsunamis. Indeed, the
energy of the near-field tsunami is less dissipated when arriving
within the ROI than the energy of the far-field tsunamis, leading
to inadequate height extrapolations.

5 CONCLUSION

The base of a modular procedure to perform high-resolution
S-PTHA at the coastal level is proposed. An effort is made to
save time on this computationally expensive approach by the
use of independent processes for the determination of the
seismic and tsunami hazards, by the selection of significant
tsunamis for a place using Green’s law, and by the use of an
exhaustive rupture catalogue. The low resolution simulations
performed first to select significant tsunamis can be re-used to
apply the same approach to other coastal ROIs in the WM and
save time too. The method is thought such that it is easy to add
new a priori knowledge such as additional earthquakes to
improve annual rates and new unit faults to build up new
ruptures.

This study provides, for the first time, high resolution
S-PTHA for the french metropolitan coastlines using the
CENALT fault database. Specially, the study supplies an
accurate overview of S-PTHA in the Bay of Cannes, both
in terms of spacial resolution and wave heights modeling
(i.e., based on high resolution tsunami simulations down to
10 m space step), compared to previous rough regional PTHA
estimates. Magnitudes 5.5 to 8.0 are covered with annual rates
determined from an improved earthquake catalogue
spreading from 463 A.D. to 2018. The results highlight that
the tsunami hazard in the Bay of Cannes remains low when
considering the available data and the limitations of our
approach. Indeed, we do not expect that a tsunami which
generates PCTAs exceeding 50 cm along more than 50% of the
coastlines to happen more than once every 3189 years. The
evaluation of the MCT also underlines the portions of the
coast where waves are systematically amplified the most and
where priority should be given to preparedness. In particular,
the Old Port of Cannes shows a MCT exceeding 1 m and
beaches can still have MCT locally exceeding 30 cm. The
disaggregation highlights that further analysis efforts, such
as a confidence analysis, could focus on the Ligurian and
North Algerian margins.

In the case of a risk-based study, consideration should be given
to extending simulation times to ensure the highest wave in the
PTHA. The extension of the simulation time must, however, be
reasonable in order not to introduce multiple resonances that can
artificially increase the maximum water height. The effects of a
tsunami are, also characterized by other parameters such as the
wave velocity, the run-up elevation, the inundation distance, the

minimum water elevation associated to sea withdrawals, etc. The
choice of the parameters of interest depends on why the S-PTHA
is needed for, though all these parameters could have been
extracted from high-resolution simulations at the same time.

The sensitivity analysis performed in this study shows that the
most sensitive parameter to determine the annual rates of a
magnitude is the Mc method. The distance, the azimuth and
the strike of the source rupture are the three most sensitive
parameters on the PCTAs, while the slip and the surface of the
rupture are the least sensitive because constrained empirically.

Some limitations could be overcome in future developments of
the proposed approach, for instance, by implementing stochastic
sources (with heterogeneous slip and rigidity), by considering
water level fluctuation either due to tides or atmospheric
conditions, or by perfecting the definition of the seismogenic
zones. The use of numerous catalogues of random ruptures
instead of a unique exhaustive catalogue should also be
considered to determine the confidence interval of the results
and therefore give truthful hazard models for tsunami risk
mitigation. The modular build of this approach allows to
easily implement these ideas in order to improve the relevance
of the high-resolution S-PTHA.
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Ensemble-Based Forecast of Volcanic
Clouds Using FALL3D-8.1
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Operational forecasting of volcanic ash and SO2 clouds is challenging due to the large
uncertainties that typically exist on the eruption source term and the mass removal
mechanisms occurring downwind. Current operational forecast systems build on
single-run deterministic scenarios that do not account for model input uncertainties
and their propagation in time during transport. An ensemble-based forecast strategy
has been implemented in the FALL3D-8.1 atmospheric dispersal model to configure,
execute, and post-process an arbitrary number of ensemble members in a parallel
workflow. In addition to intra-member model domain decomposition, a set of inter-
member communicators defines a higher level of code parallelism to enable future
incorporation of model data assimilation cycles. Two types of standard products are
automatically generated by the ensemble post-process task. On one hand,
deterministic forecast products result from some combination of the ensemble
members (e.g., ensemble mean, ensemble median, etc.) with an associated
quantification of forecast uncertainty given by the ensemble spread. On the other
hand, probabilistic products can also be built based on the percentage of members
that verify a certain threshold condition. The novel aspect of FALL3D-8.1 is the
automatisation of the ensemble-based workflow, including an eventual model
validation. To this purpose, novel categorical forecast diagnostic metrics, originally
defined in deterministic forecast contexts, are generalised here to probabilistic
forecasts in order to have a unique set of skill scores valid to both deterministic
and probabilistic forecast contexts. Ensemble-based deterministic and probabilistic
approaches are compared using different types of observation datasets (satellite cloud
detection and retrieval and deposit thickness observations) for the July 2018 Ambae
eruption in the Vanuatu archipelago and the April 2015 Calbuco eruption in Chile. Both
ensemble-based approaches outperform single-run simulations in all categorical
metrics but no clear conclusion can be extracted on which is the best option
between these two.

Keywords: ensemble forecast, volcanic clouds, FALL3D model, categorical metrics, Ambae eruption, Calbuco
eruption
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1 INTRODUCTION

Numerical modelling of volcanic plumes, including the
atmospheric dispersal of volcanic particles and aerosols and its
ultimate fallout on the ground, is challenging due to a number of
reasons that include, among others, the multiplicity of scales
involved, the complex underlying physical phenomena, the
characterisation of the emitted particles and aerosols, and the
quantification of the strength, vertical distribution, and evolution
in time of the source term (volcanic plume) and related
uncertainties (Folch, 2012). The latter two aspects are
particularly critical in operational forecast scenarios where, in
addition to larger source term uncertainties, requirements exist
also on the forecast time-to-solution that constrain the space-
time resolutions of operational model setups depending on the
computational resources available.

Ensemble-based modelling is well recognised as the proper
strategy to characterise uncertainties in model inputs, in model
physics and its parameterisations, and in the underlying model-
driving meteorological data. In the fields of meteorology and
atmospheric dispersal, the use of ensemble-based approaches to
improve predictions and quantify model-related uncertainties has
long been considered, first in the context of numerical weather
forecast (e.g., Mureau et al., 1993; Bauer et al., 2015), and
afterwards for toxic dispersal (e.g., Dabberdt and Miller, 2000;
Maurer et al., 2021), air quality (e.g., Galmarini et al., 2004;
Galmarini et al., 2010), or volcanic clouds (e.g., Bonadonna et al.,
2012; Madankan et al., 2014; Stefanescu et al., 2014) among
others. Ensemble-based approaches can give a deterministic
product based on some combination of the single ensemble
members (e.g., the ensemble mean) and, as opposed to single
deterministic runs, attach to it an objective quantification of the
forecast uncertainty. On the other hand, ensemble runs can also
furnish probabilistic products based on the fraction of ensemble
members that verify a certain (threshold) condition, e.g., the
probability of cloud being detected by satellite-based
instrumentation, the probability that the cloud mass
concentration compromises the safety of air navigation, the
probability of particle fallout or of aerosol concentration at
surface to exceed regulatory values for impacts on
infrastructures or on air quality, etc. Added to these,
ensembles can also be used as multiple trial simulations, e.g.,
in optimal source term inversions by calculating correlations
between the different members and observations (e.g., Zidikheri
et al., 2017; Zidikheri et al., 2018; Harvey et al., 2020) or to make
more robust in flight-planning decisions (Prata et al., 2019).
Finally, ensembles are also the backbone of most modern data
assimilation techniques, which require estimates of forecast
uncertainty to merge a priori forecasts with observations
during data assimilation cycles (e.g., Fu et al., 2015; Fu et al.,
2017; Osores et al., 2020; Pardini et al., 2020).

At a research level, forecasting of volcanic clouds using
ensemble-based approaches has been considered in several
models including, for example, ASH3D (Denlinger et al.,
2012a; Denlinger et al., 2012b), COSMO-ART (Vogel et al.,
2014), HYSPLIT (Dare et al., 2016; Zidikheri et al., 2018;
Pardini et al., 2020), NAME (Dacre and Harvey, 2018;

Beckett et al., 2020), FALL3D (Osores et al., 2020) or, more
recently, even tackling multi-model ensemble approaches (Plu
et al., 2021). Despite promising results, implementations at
operational level are still limited to a few cases, e.g. the
Dispersion Ensemble Prediction System (DEPS) of the
Australian Bureau of Meteorology (Dare et al., 2016). Such
a slow progress can be explained by the inertia of operational
frameworks to go beyond single-run scenarios, the limited
pool of validation studies supporting this approach, the
computational overhead of ensemble-based forecast
methodologies, the reluctance of some end-users to
incorporate probabilistic scenarios in their decision-making
operations, or even the difficulties to interpret and
communicate ensemble-based products. Here we present
FALL3D-8.1, the last version release of this atmospheric
transport model that includes the option of ensemble-based
simulations. Developments are being done in the frame of the
EU Center of Excellence for Exascale in Solid Earth (ChEESE)
and, more precisely, within the Pilot Demonstrator (PD)
number 12 (PD12) that considers an ensemble-based data
assimilation workflow combining the FALL3D dispersal
model with high-resolution latest-generation geostationary
satellite retrievals. The ultimate goal of this pilot is to have
a km-resolution short and long-range automated forecast
system with edge-to-end latencies compatible with early-
warning and crisis management requirements. We limit our
discussion here to the ensemble modelling module, leaving the
data assimilation component to another publication linked to
the upcoming v8.2 model release (Mingari et al., 2021). In this
scenario, the objectives of this manuscript are three-fold:

1. To introduce FALL3D-8.1, including the novel model tasks to
generate ensemble members from an unperturbed reference
member, merge and post-process the single-member
simulations, and validate model forecasts against satellite-
based and ground deposit observations (Section 2). The
ensemble generation in FALL3D-8.1 can consider
uncertainties in the emissions (i.e., the so-called Eruption
Source Parameters for volcanic species), particle properties,
and meteorological fields (wind velocity).

2. To define quantitative forecast-skill metrics applicable to both
ensemble-based deterministic and ensemble-based
probabilistic forecasts simultaneously. Note that, typically,
only ensemble-based deterministic outputs are compared
against observations, e.g., by means of categorical metrics.
However, the question on whether a probabilistic approach is
more (or less) skilled than a deterministic one is rarely tackled.
Generalised categorical metrics are proposed in Section 3 of
this paper in order to explicitly address this question.

3. To validate the ensemble-based deterministic and probabilistic
approaches using different types of observation datasets for
ash/SO2 clouds (satellite detection and satellite retrieval) and
ground deposits (scattered points and isopach contours). This
is done in two different contexts, the July 2018 Ambae
eruption for SO2 clouds, and the April 2015 Calbuco
eruption for ash clouds and tephra fallout (Section 4). In
both cases, computational capacity requirements are
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considered in the context of urgent (super)-computing,
including constraints in the forecast time-to-solution.

2 FALL3D-8.1

During its latest major version release (v8.0), the FALL3D
model (Costa et al., 2006; Folch et al., 2009) was rewritten and
refactored in order to incorporate dramatic improvements in
model physics, spectrum of applications, numerics, code
scalability, and overall code performance on large
supercomputers (for details see Folch et al., 2020; Prata
et al., 2021). This included also the parallelisation and
embedding of former pre-process auxiliary programmes to
run either as independent model tasks (specified by a call
argument) or concatenated in a single execution workflow. In
FALL3D-8.1, three new model tasks have been added to
automatically generate an ensemble of members (task
SetEns), post-process ensemble-based simulations (task
PosEns) and, finally, validate the model against different
types of observation datasets (task PosVal). Ensemble
members in FALL3D-8.1 run concurrently in parallel, with
a dedicated MPI communicator for the master ranks of each
ensemble member. However, because this code version does
not handle data assimilation cycles yet (something planned for
the next version release v8.2), the individual ensemble
members run actually as an embarrassingly parallel
workload (e.g., Herlihy et al., 2020), i.e., with no
dependency among parallel tasks.

2.1 Ensemble Generation Task
The task SetEns, which must be run first in the case of ensemble
runs, generates and sets the ensemble members from a unique
input file by perturbing a reference case (the so-called central or
reference member). This task also creates a structure of sub-
folders, one for each ensemble member, where successive model
tasks will be pointed to locate the necessary input and dump the
output files generated by the execution of each member. In case of
ensemble-based simulations, a new block in the FALL3D-8.1

input file allows to set which model input parameters will be
perturbed, its perturbation amplitude (given as a percentage of
the reference value or in absolute terms), and the perturbation
sampling strategy, which in FALL3D-8.1 can follow either a
constant or a Gaussian Probability Density Function (PDF).
Note that this block in the input file is simply ignored if the
ensemble option is not activated, ensuring backwards
compatibility with previous versions of the code. Table 1
shows which model input parameters can be perturbed and to
which category and related sub-category of species each
perturbation can be applied. Note that this manuscript
pertains to volcanic particles and aerosols but, nonetheless, the
ensemble-based approach is also possible for other types of
species available in FALL3D-8. x (for details on the species
category types see Table 3 in Folch et al., 2020).

The ensemble generation starts with an unperturbed central
member, which typically is set with the observed or “best-guess”
input values and that, by construction, coincides with the
“standard” single-run. For each parameter to be perturbed, the
ensemble spread is then generated by sampling on the
corresponding PDF around the unperturbed central value and
within a range (amplitude) that spans the parameter uncertainty.
For example, a perturbation of the source duration Sd by ± 1 h
samples using either a linear or a Gaussian (centred at Sd) PDF
within the interval [Sd − 1, Sd + 1]. For n ensemble members and
m parameters (dimensions) perturbations result on a
combination of n × m possible values that are then sub-
sampled to define the n ensemble members using a classical
Latin hypercube sampling algorithm (e.g., Husslage et al., 2006).
This strategy guarantees that the spread across each of the m
dimensions is maintained in the final member’s sub-sample. It is
clear that the a priori generation of an ensemble requires expert
judgement and involves some degree of subjectivity. The question
on how an ensemble can be optimally generated is complex and
falls beyond the scope of this manuscript. Nonetheless, a good
practice if forecast observations exist is to check (a posteriori) that
the ensemble-based forecast is statistically indistinguishable from
observations by looking at the shape of the ensemble rank
histogram.

TABLE 1 | List of model input parameters that can be perturbed in FALL3D-8.1 to generate ensemble runs. The related task and the species category affected are also
indicated (see Folch et al. (2020), for details).

Parameter Related task Specties category Comments

Fi-mean Φm SetTgsd Particles and radionuclides Mean of the Gaussian particle Grain Size Distribution (GSD)
Column height H SetSrc All species Maximum source term injection height (1)

Mass flow rate _M SetSrc All species Source term strength. Applies to configurations in which
_M is explicitly given and not derived from height H(1)

Source start SetSrc All species Source start time (1)

Source duration SetSrc All species Source duration time (1)

Top-hat thickness SetSrc All species Source thickness in the HAT source type option(1)

Suzuki A SetSrc Tephra and aerosols Parameter A in the SUZUKI source type option(1)

Suzuki λ SetSrc Tephra and aerosols Parameter λ in the SUZUKI source type option(1)

Aggregate size SetSrc Tephra Size of the aggregate bins
Aggregate density SetSrc Tephra Density of the aggregate bins
Wind speed FALL3D All species Horizontal wind components
Insertion height FALL3D Tephra and aerosols Cloud height if the model initial condition is given from data insertion
Insertion thickness FALL3D Tephra and aerosols Cloud thickness if the model initial condition is given from data insertion

(1) In case of time-dependent parameters the same perturbation is applied to all phases of the source term.
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2.2 Ensemble Postprocess Task
Once the model has run, the task PosEns merges all outputs
from individual ensemble members in a single netCDF file
containing ensemble-based deterministic and/or probabilistic
outputs for all variables of interest (e.g., concentration at
native model levels or at flight levels, cloud column mass,
ground deposit load, etc). Options for ensemble-based
deterministic outputs include the ensemble mean, the
ensemble median, and values of user-defined percentiles.
The standard deviation can be attached to any variable as a
measure of the uncertainty of the deterministic outputs. On
the other hand, ensemble-based probabilistic outputs can also
be built by counting, at each grid point and time step, the
fraction of ensemble members that verify a given condition,
typically the exeedance of some threshold. For example, a
probabilistic output for airborne volcanic ash can be defined
based on the 2 mg/m3 concentration threshold in case of
aviation-targeted products and counting, at each grid cell
and time step, the fraction of members that overcome
this value.

2.3 Model Validation Task
FALL3D-8.1 includes a third new task PosVal to validate both
single-run (compatible with previous code versions) and
ensemble-based deterministic and/or probabilistic outputs
against various types of gridded and scattered observation
datasets (see Table 2). Observation datasets include satellite-
based observations and quantitative retrievals (to validate
against cloud column mass), deposit isopach/isopleth maps,
and point-wise deposit observations (to validate against
deposit thickness or mass load). In all cases, this model
task reads the required files, interpolates model and
observations into the same grid and computes a series of
categorical and quantitative validation metrics that are
detailed in the following section. This model validation
task inherits the model domain decomposition structure
and, consequently, all metrics are first computed (in
parallel) over each spatial sub-domain and then gathered
and added to get global results over the whole
computational domain.

3 ENSEMBLE FORECAST DIAGNOSTIC
METRICS

This section defines the different types of metrics computed by
task PosVal, summarised in Table 3. These include: i) generalised
categorical metrics, ii) quantitative metrics for deterministic
forecasts and, iii) the ensemble rank histogram for ensemble-
based probabilistic scenarios.

3.1 Generalised Categorical Metrics
Categorical metrics (e.g., Jolliffe and Stephenson, 2012) apply
to variables that take a limited number of values or
“categories”. For example, in a deterministic forecast
context it is common to define dichotomic categories (yes/
no) for model and observations based on the occurrence (or
not) of a given condition. At each observation point, this
results on a 2 × 2 model-observations “contingency table”
(true positives, true negatives, false positives, false negatives),
from which a series of “geometric-based” or “contour-based”
categorical metrics can be constructed, e.g., the probability of
detection, the false alarm rate, etc. (Marti and Folch, 2018;
Pardini et al., 2020). In this section, several classical categorical
metrics widely used in deterministic forecast contexts are
generalised to probabilistic forecasts with the objective of
having a same set of forecast skill scores usable in both
contexts.

Consider an ensemble-based model realisation with n
ensemble members in a computational domain Ω. At each
point and time instant, the forecasts of the n ensemble
members can be ranked and the discrete probability of
occurrence of a certain condition or threshold can be
computed by simply counting how many ensemble members
verify the condition (note that this results on n + 1 categories or
probability bins). Let’s denote by Pm (x, t) the resulting discrete
probability function defined in the domainΩ, where the subscript
m stands for model and 0 ≤ Pm (x, t) ≤ 1. Clearly, Pm (x, t) � 0
implies that no ensemble member satisfies the condition at (x, t),
whereas Pm(x, t) � 1 implies that all members do. In general, Pm
(x, t) will be a function with finite support, that is, it will take non-
zero values only over a sub-domain Ωm(t) � {x ∈ Ω | Pm(x, t) > 0}

TABLE 2 | Four types of observation datasets that can be used for model validation by task PosVal. The satellite detection and the satellite retrieval observation types stand,
respectively, for detection (i.e. “yes/no” categorical observation) and quantitative column mass retrievals. The deposit contours observation type refers to isopach/
isopleth deposit contours (e.g. from shape files or griddedmaps). Finally, the deposit points stands for deposit thickness/load observations at scattered points. For each type
of forecast, deterministic (D) or probabilistic (P), the Table indicates which validation metrics apply to each combination of observation-forecast types. The different
generalised categorical and quantitative scores are defined in Section 3.

Observation
dataset

Satellite
Detection

Satellite Retrieval Deposit Contours Deposit Points

Observation
type

Categorical Quantitative Categorical Quantitative

Forecast
type

D P D P D P D P

Generalised categorical metrics ✓ ✓ ✓ ✓ ✓ ✓ — —

Brier Score (BS) — ✓ — ✓ — ✓ — ✓
Quantitative scores — — ✓ — — — ✓ —

Rank histogram — — - ✓ — — — ✓
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where at least one ensemble member satisfies the condition. Let’s
denote by δm(x, t) the step function defined from the support of
Pm(x, t), that is:

δm x, t( ) � 1 if x ∈ Ωm t( )
0 if x ∉ Ωm t( ){ (1)

Note that the definitions of Pm(x, t) and δm(x, t) are also
valid in a deterministic context. In fact, the deterministic
forecast scenario represents the limit in which Pm(x, t) can
take only two discrete values (0 or 1) and one simply has that
Ωm(t) � {x ∈ Ω | Pm(x, t) � 1} and Pm(x, t) � δm(x, t). From a
geometrical point of view, δm(x, t) can be interpreted as
the union of the n probability contours that define the
discrete probability function Pm (x, t). In the deterministic
limit, only one contour exists and, consequently, one has
Pm(x, t) � δm(x, t).

Similar arguments can be followed regarding observations.
In general, one could consider m different sources of
observations and apply the same condition (threshold) to
obtain a discrete probability function of observations Po(x,
t), define the subdomain Ωo(t) � {x ∈ Ω | Po(x, t) > 0} as the
subset of Ω where at least one observation verifies the
condition and, finally, define the resulting observations step
function δox, t) analogous to Eq. 1 but using Ωo(t). Following
with the analogy, this would result on a (n + 1) × (m + 1)
model-observations “contingency table” for the most general
case. In what follows, generalised categorical metrics will be
defined for an arbitrary number of members/observations and
grid projection. However, and for the sake of simplicity, only
cases in which observations come from a single source (m � 1)
will be considered here. As a result, it will be implicitly
assumed that Ωo(t) � {x ∈ Ω | Po(x, t) � 1} and Po(x, t) �
δo (x, t). The following generalised categorical metrics are
introduced:

3.1.1 Generalised Figure Merit of Space
The Generalised Figure Merit of Space (GFMS) is defined as:

GFMS t( ) � ∫ΩδoδmPoPmdΩ
∫Ω 1 − δo( )Pm + 1 − δm( )Po + δoδmPoPm[ ]dΩ (2)

which, for the single-observation case considered here (Po � δo)
and using that δ2o � δo, simplifies to:

GFMS t( ) � ∫ΩδoδmPmdΩ
∫Ω 1 − δo( )Pm + 1 − δm( )δo + δoδmPm[ ]dΩ (3)

Note that in the deterministic forecast limit (i.e., Pm � δm), the
GFMS reduces to:

GFMS t( ) � ∫ΩδoδmdΩ
∫Ω δm + δo − δmδo[ ]dΩ � Ωo ∩ Ωm

Ωm + Ωo −Ωo ∩ Ωm

� Ωo ∩ Ωm

Ωo ∪ Ωm
� FMS t( ) (4)

which is the classical definition of the Figure Merit of Space (FMS),
also known as the Jaccard coefficient (e.g., Levandowsky and
Winter 1971; Galmarini et al., 2010). From a geometric point of
view, the FMS is interpreted as the ratio between the intersection of
model-observations contours and its union. The GFMS introduced
here has the same interpretation but using a weight-average with
model/observations probability contours. The GFMS ranges from
0 (worst) to 1 (optimal). The continuous integrals over Ω in the
expressions above are in practice computed by projecting
observations into the model grid and summing the discrete
probability bins over all grid cells. For example, in the case of
Eq. 3, the discrete computation would be as:

GFMS t( ) � ∑jHjδojδmjPmj

∑jHj 1 − δoj( )Pmj +∑jHj 1 − δmj( )δoj +∑jHjδojδmjPmj

(5)

where Hj � m1jm2jm3jVj is the grid mapping factor of the j grid
cell, Vj is the cell volume, and mxj are the mapping factors
depending on the coordinate system (see Tables 8 and 9 in
Folch et al., 2020). Note that in the deterministic limit and for
the particular case of a regular Cartesian grid (i.e., all cells equal,
unit map factors) this further simplifies to:

FMS t( ) � ∑jδojδmj

∑j 1 − δoj( )δmj +∑j 1 − δmj( )δoj +∑jδojδmj

� TP
FP + FN + TP

(6)

and coincides with the number of True Positives (TP) divided by
the number of False Positives (PF) + False Negatives (FN) + True
Positives (TP), which is also the classical non-geometric
interpretation of the FMS (e.g., Pardini et al., 2020). However,
in general, the computation of the GFMS in non-regular

TABLE 3 | Summary of metrics. GMFS: Generalised Figure Merit of Space, GFAR: Generalised False Alarm Rate, GPPV: Generalised Positive Predictive Value, GPOD:
Generalised Probability of Detection, GCCM: Generalised Composite Categorical Metric, BS: Brier Score, NRMSE: Normalised Root Mean Square Error.

Metric Metrics type Metrics definition Optimal value Worst Value Comment

GFMS Categorical (3) or (5) 1 0 Gives FMS in the deterministic limit (4)
GFAR Categorical (8) or (10) 0 1 Gives FAR in the deterministic limit (9)
GPPV Categorical (13) or (14) 1 0 Gives PPV in the deterministic limit (15)
GPOD Categorical (18) or (20) 1 0 Gives POD in the deterministic limit (19)
GCCM Categorical (22) 1 0
BS Categorical (24) or (25) 0 1 Only for probabilistic forecasts
NRMSE Quantitative (27) 0 ∞ Only for deterministic forecasts
Histogram Rank Flat — Only for probabilistic forecasts
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coordinate systems (5) takes into account a cell-dependent weight
proportional to the cell volume (area) through the grid mapping
factors Hj.

3.1.2 Generalised False Alarm Rate
The Generalised False Alarm Rate (GFAR) is defined as:

GFAR t( ) � ∫Ω 1 − δo( )δmPmdΩ
∫Ω 1 − δo( )δmPm + δoδmPoPm[ ]dΩ (7)

which, for the case of single set of observations (Po � δo),
reduces to:

GFAR t( ) � ∫Ω 1 − δo( )δmPmdΩ
∫Ω 1 − δo( )δmPm + δoδmPm[ ]dΩ (8)

In the deterministic forecast limit (Pm � δm), the definition of
the GFAR further simplifies to:

GFAR t( ) � ∫Ω 1 − δo( )δmdΩ
∫ΩδmdΩ

� Ωm − Ωo ∩ Ωm

Ωm
� 1 − Ωo ∩ Ωm

Ωm

� FAR t( )
(9)

which is the classical definition of the False Alarm Rate (FAR)
(e.g., Kioutsioukis et al., 2016). In the geometric interpretation,
the GFAR can be viewed as the fraction ofΩm with false positives
but generalised to probabilistic contours, and it ranges from 0
(optimal) to 1 (worst). Again, the continuous integrals in Eq. 8
are computed in practice over the model grid as:

GFAR t( ) � ∑jHj 1 − δoj( )δmjPmj

∑jHj 1 − δoj( )δmjPmj +∑jHjδojδmjPmj

(10)

which, in the deterministic limit and for a regular grid (Hj � 1),
further simplifies to:

FAR t( ) � ∑j 1 − δoj( )δmj

∑j 1 − δoj( )δmj + ∑jδojδmj

� FP
FP + TP

(11)

and therefore coincides, in a non-geometric interpretation, with
the number of False Positives (FP) divided by the number of False
Positives (FP) + True Positives (TP).

3.1.3 Generalised Positive Predictive Value
The Generalised Positive Predictive Value (GPPV) is defined as
the complement of the GFAR:

GPPV t( ) � 1 − GFAR t( ) � ∫ΩδoδmPoPmdΩ
∫Ω 1 − δo( )δmPm + δoδmPoPm[ ]dΩ

(12)

Analogously, for the single-observation case (Po � δo):

GPPV t( ) � ∫ΩδoδmPmdΩ
∫Ω 1 − δo( )δmPm + δoδmPm[ ]dΩ (13)

or

GPPV t( ) � ∑jHjδojδmjPmj

∑jHj 1 − δoj( )δmjPmj +∑jHjδojδmjPmj

(14)

In the deterministic limit Eq. 13 yields to the classical Positive
Predictive Value (PPV), also known as the model precision
(Pardini et al., 2020):

GPPV t( ) � ∫ΩδoδmdΩ
∫ΩδmdΩ

� Ωo ∩ Ωm

Ωm
� PPV t( ) (15)

The GPPV ranges from 0 (worst) to 1 (optimal) and
geometrically can be interpreted as the fraction of Ωm with
true positives (model hits) but for probabilistic contours.
Again, in a regular Cartesian grid the discrete version of Eq.
15 coincides with the number of True Positives (TP) divided by
the number of False Positives (FP) + True Positives (TP):

PPV t( ) � ∑jδojδmj

∑j 1 − δoj( )δmj + ∑jδojδmj

� TP
FP + TP

(16)

3.1.4 Generalised Probability of Detection
The Generalised Probability of Detection (GPOD) is defined as:

GPOD t( ) � ∫ΩδoδmPoPmdΩ
∫Ω 1 − δm( )δoPo + δoδmPoPm[ ]dΩ (17)

which, for the single-observation case (Po � δo), reduces to:

GPOD t( ) � ∫ΩδoδmPmdΩ
∫Ω 1 − δm( )δo + δoδmPm[ ]dΩ (18)

As with the other metrics, in the deterministic limit (Pm � δm)
the GPOD simplifies to:

GPOD t( ) � ∫ΩδoδmdΩ
∫ΩδodΩ

� Ωo ∩ Ωm

Ωo
� POD t( ) (19)

and coincides with the Probability of Detection (POD), also
known as the model sensitivity (Pardini et al., 2020). The
GPOD ranges from 0 (worst) to 1 (optimal) and,
geometrically, is interpreted as the fraction of Ωo with true
positives. Again, in the discrete space (18) yields to:

GPOD t( ) � ∑jHjδojδmjPmj

∑jHj 1 − δmj( )δoj +∑jHjδojδmjPmj

(20)

that in a regular grid and deterministic limit coincides with the
number of True Positives (TP) divided by the number of False
Negatives (FN) + True Positives (TP):

POD t( ) � ∑jδojδmj

∑j 1 − δmj( )δoj + ∑jδojδmj

� TP
FN + TP

(21)

3.1.5 Generalised Composite Categorical Metric
It can be anticipated that some generalised categorical metrics can
vary oppositely when comparing single-run and ensemble-based
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simulations. For example, one may expect that a large ensemble
spread yields to a larger GPOD but, simultaneously, also to larger
GFAR. In order to see how different metrics counterbalance we
introduce the Generalised Composite Categorical Metric
(GCCM) as:

GCCM � GFMS + GPPV + GPOD
3

� GFMS + 1 − GFAR( ) + GPOD
3

(22)

where the factor 3 is introduced to normalise GCCM in the
range 0 (worst) to 1 (optimal). This multi-composite definition
is analogous to what is done for the SAL, defined as the sum of
Structure, Amplitude and Location (e.g., Marti and Folch,
2018).

3.1.6 Brier Score
The Brier Score (BS) is defined as:

BS � ∫Ωo
Pm − Po( )2dΩ
∫Ωo

dΩ
(23)

which, for the single-observation case, reduces to:

BS � ∫Ωo
Pm − δo( )2dΩ
∫Ωo

dΩ
(24)

Note that the above integrals are constrained to the subdomain
Ωo where observations exist. The Brier score is the averaged
squared error of a probabilistic forecast and ranges from 0
(optimal) to 1 (worst). In the discrete space, Eq. 24 is
computed as:

BS � ∑jHjδoj Pmj − 1( )
2

∑jHjδoj
(25)

which, in a regular Cartesian grid, reduces to the more standard
definition of the Brier score (Brier, 1950):

BS � 1
no

∑
no

j�1
Pmj − 1( )

2
(26)

where no is the total number of observation points.

3.2 Quantitative Scores
As a quantitative metric for deterministic forecasts we
consider the Normalised Root Mean Square Error
(NRMSE), defined as:

NRMSE �
������������
1
no
∑ Mi − Oi( )2

√

Omax − Omin
(27)

where Oi are the no observation values, Mi is the model value at
the ith observation point, andOmax andOmin are, respectively, the
maximum and minimum of the observations (at the considered
time step). Note that, as opposed to the previous categorical
metrics, this quantitative score is valid only for deterministic
forecasts (single-run or ensemble-based).

3.3 Ensemble Rank Metrics
The observations rank histogram or Talagrand diagram
(Talagrand et al., 1997) is commonly used a posteriori to
measure the consistency of an ensemble forecast and to
assess whether observations are statistically indistinguishable
from the ensemble members. The histogram can be used to
recalibrate ensemble forecasts and it is constructed as follows.
For each observation (grid point and time), the n ensemble
members are ranked from lowest to highest using the variable of
interest (column mass, deposit thickness, etc.) and the rank of
the observation with respect to the forecast is identified and
added to the corresponding bin (points with zero observation
values are not counted). Flat histograms indicate a consistent
forecast, with an observed probability distribution well
represented by the ensemble. Asymmetric histograms
indicate positive/negative forecast bias, as most observations
often rank below/above the extremes respectively. Finally,
dome-shaped/U-shaped histograms indicate over/under
forecast dispersion and reflect too large/small ensemble
spread respectively. Other common metrics to evaluate
ensembles, e.g., the spread-skill relationship (e.g., Scherrer
et al., 2004), are not considered at this stage but will be
incorporated in future code versions.

4 APPLICATION CASES

4.1 The July 2018 Ambae SO2 Cloud
In April and July 2018 the Ambae volcano (Vanuatu archipelago)
produced two paroxysm eruptions that injected large amounts of
SO2 reaching the tropopause (Moussallam et al., 2019). According
to Himawari-8 satellite observations, the July 26, 2018 phase
started before 12 UTC (23:00 LT) and lasted for about 4 h. Kloss
et al. (2020) estimated an atmospheric SO2 injection height of
either 18 or 14 km a.s.l. by co-locating ERA5 temperature profiles
and Brightness Temperature observations. To generate our SO2

validation dataset we apply the 3-band interpolation procedure
proposed by Prata et al. (2004) to measurements made by the
Advanced Himawari Imager (AHI) aboard Himawari-8. Details
of the method can be found in Appendix B of Prata et al. (2021).
To estimate the total mass we only considered pixels containing
more than 20 DU within a spatial domain from 160–200°E to
5–25°S. We also applied a Gaussian filter to generate smoothed
contours around the SO2 clouds to filter out pixels greater than 20
DU that were far from source (i.e., false detections). Our results
show that, during our satellite analysis period (from 26 July at 09:
00 UTC to 31 July at 09:00 UTC), maximum total mass of
323005E;86_90 kt was injected into the upper atmosphere,
where 86 and 90 kt are asymmetric errors around the best
estimate (323 kt). The first significant injection of SO2

occurred at around 10:00 UTC on 26 July and reached its
maximum (253 kt) at 23:00 UTC. A second eruption occurred
at around on 27 July at 01:00 UTC, and added a further 70 kt of
SO2. These SO2 mass estimates are in broad agreement with
independent TROPOMI SO2 standard product mass retrievals
(360 ± 40 kt), that assume a 15 km high SO2 layer with 1 km
thickness (Malinina et al., 2020).
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Based on the observations available during or shortly after the
eruption, a single-run FALL3D-8.1 simulation was configured
considering one SO2 (aerosol) bin and an emission starting on
26 July at 10:00 UTC (21:00 LT) lasting for 4 h, assuming a top-hat
plume vertical profile with the top at 16 km a.s.l. and a total emitted
mass of 290 kt (emission rate 2 × 104 kg/s). This reference run
represents a typical operational procedure during or shortly after
an eruption, whenmodel inputs are set with the uncertain available
information. From this “best-guess” central member, an ensemble
with 64members was defined by perturbing the eruption start time
(perturbation range of ±1 h), the eruption duration (±1 h), the
cloud injection height H (±2 km), the thickness T of the top-hat
emission profile (±2 km), the eruption rate (±30%), and the driving
ERA-5 wind field as shown in Table 4. For both single-run and
ensemble-based forecasts, the model grid resolution is 0.05o in the
horizontal and 250 m in the vertical, with the top of the
computational domain placed at 22 km a.s.l.

Model runs generate hourly outputs concurrent with the AHI
cloud mass retrievals over the forecast period. Figure 1 compares
AHI SO2 column mass retrievals with different deterministic
forecast outputs, namely the single-run, the ensemble mean,
and the ensemble median at one particular instant (July 28,
2018 at 00:00 UTC). The ensemble mean and median produce
a more diffused cloud, partly due to wind shear effects. Time series
of quantitative scores, e.g., using the NRMSE (Eq. 27), are
automatically generated by the FALL3D-8.1 model task PosVal.
Figure 2 shows time series of NRMSE for different deterministic
forecast options (single run, ensemble mean, and ensemble
median). As observed, this metric follows a similar trend in all
cases but the gain from the ensemble-based approaches is very
clear: the deterministic ensemble-based options reduce the forecast
NRMSE by a factor between two and three in most time instants.
For comparative purposes, Figure 2 also shows what happens if the
data insertion mechanism is used to initialise the model runs
instead of the source option. Data insertion consists of initialising a
model run with an effective virtual source inserted away from the
source, and FALL3D admits this initialisation option from column
load satellite retrievals (Prata et al., 2021). This represents a case

with better constrained input data (initial conditions) and, as
expected, the data insertion option yields lower values of the
NRMSE and shows little differences among the single-run and
ensemble-based approaches.

As discussed in Section 2.2, probabilistic outputs can be
generated from a given condition by counting the fraction of
ensemble members that exceed a threshold value. For example,
Figure 3 shows 20 Dobson Units (DU) contours of SO2 column
mass for deterministic and probabilistic forecasts, where the value
of 20 is assumed as representative of the SO2 detection threshold
in the AHI retrievals. These contours can be used for forecast
validation using generalized categorical metrics that allow, on one
side, to quantify the gain in the ensemble-based cases with respect
to the reference single-run and, on the other side, to compare
objectively the different ensemble-based approaches. To these
purposes, Figure 4 plots the time series of different generalised
categorical metrics, GFMS (Eq. 5), GPOD (Eq. 20), and GCCM
(Eq. 22) together with the BS (Eq. 25), the latter for the
probabilistic case only. As expected, the ensemble mean
outperforms the reference run in all the metrics, with
substantial gain in GFMS and GPOD, yielding to better
generalised composite metric GCCM. This is not true for the
ensemble median, which presents similar forecast skills than
those of the single run. On the other hand, the probabilistic
approach behaves similarly to the ensemble mean in terms of
GCCM because the larger false alarm rate is counterbalanced by a
higher probability of detection. No conclusion can be extracted
from this example on whether the probabilistic forecast option
outperforms the deterministic ensemble mean or not. Finally, the
observations rank histogram over the considered period (see
Figure 5A) shows an acceptably flat histogram (reflecting
good ensemble spread) although with a slight bias towards
members having larger SO2 mass. This skewing can be due to
errors in cloud location, errors in amplitude, or to a combination
of both. However, an inspection to the time series of AHI total
retrieved mass (Figure 5B) suggests that the ensemble spread in
cloud mass is adequate, indicating co-location as the reason for
skewing. In fact, we performed successive ensemble redefinition

TABLE 4 | Model setup for the July 26, 2018 single-run and ensemble-based (64 members) Ambae SO2 simulations.

Single-run (1 member) Ensemble-run (64 members)

Source term (plume) Start time 26 July 10:00 UCT perturbation range ±1 h
Duration 4 h perturbation range ±1 h
Plume height H 16 km a.s.l perturbation range ±2 km
Top-hat thickness T 1.5 km perturbation range ±1 km
SO2 emission rate _M

(1)
2 × 104 kg/s perturbation range ±30%

Source term (insertion) Insertion time 26 July 16:00 UCT same
Cloud height H 16 km a.s.l perturbation range ±1 km
Cloud thickness T 1.5 km perturbation range ±0.5 km

Model grid Horizontal resolution 0.05o same
Vertical resolution 250 m same
Domain top 22 km same
Grid size 600 × 400 × 84 cells same

Meteorology ERA5 (137 model levels) winds (2) perturbed by ± 20%

(1) For the reference member, the total SO2 emitted mass is 290 kt. For the other members it varies due to perturbations in _M and duration.
(2) Horizontal wind components are perturbed globally (same perturbation in all grid cells).
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runs (increasing mass in the reference run) and observed that the
ensemble histogram flattened but, at the same time, this did not
imply better values of the generalized metrics.

4.2 The April 2015 Calbuco Ash Cloud and
Deposit
The Calbuco volcano (Chile) reawakened in 2015 with two major
eruptive pulses on 22 April at 21:08 UTC and 23 April at about 04:
00 UTC respectively, followed by a third minor event on the
following day (e.g., Reckziegel et al., 2016). According to C-band
dual-polarisation radar observations, the maximum ash plume
heights exceeded 20 km above sea level in the surrounding area of
the Calbuco volcano (Vidal et al., 2017). Subsequent plume
modelling and field studies on the tephra fallout deposits

indicated that the sub-Plinian phases, with similar column
heights exceeding 15 km a.s.l. blanked the region with a total
erupted volume ranging between 0.28 and 0.58 km3 and a deposit
mass in the range 2–7 × 1011 kg depending on different
estimations (Romero et al., 2016; Van Eaton et al., 2016). On
the other hand, ash cloud mass estimations from Moderate
Resolution Imaging Spectroradiometer (MODIS) and Visible
Infrared Imaging Radiometer Suite (VIIRS) indicated 1–3 ×
109 kg of distal airborne material (e.g., Marzano et al., 2018),
suggesting < 1% of remaining fine ash in the distal cloud. The
comparison with field-based reconstructed particle grain size
distributions, entailing a much larger fraction of mass in the
fine tail (Reckziegel et al., 2016), point at the occurrence of
substantial fine ash aggregation, as corroborated also by in-situ
deposit observations. The Calbuco eruptions also entailed

FIGURE 1 | Comparison between: (A) Ambae AHI SO2 column mass retrievals, (B) single-run (unperturbed central member), (C) ensemble mean deterministic
forecast, (D) ensemble median deterministic forecast. All snapshots correspond to July 28, 2018 at 00:00 UTC. Contours in Dobson Units (DU). Red circle shows the
location of Ambae volcano.
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substantial co-located emissions of SO2 at 15 km a. v.l. in the
range of 300 kt for the two phases according to GOME-2 satellite
images (Pardini et al., 2017).

To show how ensemble ash simulations can be validated at
high temporal resolution with qualitative ash cloud observations,
we use satellite data collected from the SEVIRI instrument aboard
Meteosat-10. Following the ash detection method presented in
Appendix A of Prata et al. (2021), we generated binary (ash/no
ash) fields at 1 h time-steps from 22 April at 23:00 UTC to 26
April at 23:00 UTCwithin a domain from 0–75°W to 15–55°S.We
did not consider quantitative retrievals for this eruption as
Calbuco is located outside of the SEVIRI field of view, which
meant that many of the pixels detected as ash at the beginning of
the eruption were associated with high satellite zenith angles
(> 75°) where retrievals can be unreliable. On the other hand,
thickness measurements of fallout deposits from the 22–23 April
2015 eruption of Calbuco volcano were reported at 163 sites by Van
Eaton et al. (2016) within a radius of 500 km. Romero et al. (2016)
used thickness measurements to reconstruct the fallout deposit
distribution by hand-drawing the corresponding isopach maps. A
remarkable feature of the distal deposit is the presence of a secondary
thickness maximum in the region around Junín de los Andes and
Piedra del Aguila (Argentina, around 300 km downwind), indicating
the occurrence of a complex plume dynamics involved during the
eruption. Here, two independent deposit datasets are used to validate
the Calbuco simulations: i) the deposit contours (isopachs)
generated by Romero et al. (2016) for 0.1, 0.5, 1 and 2mm (Van
Eaton, personal communication) and, ii) the deposit point thickness
at 159 sites reported byVan Eaton et al. (2016). Note that ambiguous
data from 4 sites were removed from the original dataset.

For the Calbuco case, the ensemble reference run was
configured with 20 tephra bins ranging in size from Φ � − 2
(4 mm) to Φ � 7 (8 μm) and including one bin of aggregates. The
plume source term consists of 2 phases lasting 1.5 and 6 h
respectively, with a Suzuki vertical profile (A � 5, λ � 3)

reaching 16 km a.s.l. and a total emitted mass of 6 × 1011 kg.
The 64-member ensemble was built by perturbing the most
relevant source, granulometry and wind parameters as shown
in Table 5. As for the previous Ambae case, the model grid
resolution is 0.05o in the horizontal and 250 m in the vertical, with
the top of the computational domain placed at 20 km a.s.l. An
ensemble with 64members was defined by perturbing the starting
time of the phases (±1 h), its duration (±1 h), the plume height H
(±2 km), the dimensionless Suzuki parameters A (±3) and λ (±2),
the mean of the particle size distribution Φm (±1), and the size
(±100 μm) and density (±100 kg/m3) of the aggregates.

Figure 6 compares single-run and ensemble-based
deterministic runs at 159 deposit observation points that span
almost 4 orders of magnitude in tephra thickness. On a point-by-
point basis, the ensemble mean run reduces the differences with
observations in 107 out of 159 points (67%), whereas the single-
run reference still gives a closer fit in 52 points (33%). In contrast,
the ensemble median can only improve on 64 points (40%),
outperforming the reference run values only in the proximal
(Figure 6B). In terms of overall NRMSE, the ensemble mean
gives 0.11 as opposed to a 0.13 for the other two deterministic
options, i.e. a 16% of overall improvement (Table 6).

In addition to the deposit points, the deposit isopach contours
provide a second dataset for deposit validation based on
generalised categorical metrics (see Table 2). Figure 7 shows
the different deterministic forecast contours compared with the
0.1, 0.5, 1, and 2 mm isopachs reported by Romero et al. (2016),
characteristic of intermediate (few hundreds of km) to more
proximal (up to around 100 km) distances to source. On the other
hand, Figure 8 shows the probabilistic counterpart, with the
ensemble probability contours giving the probability to exceed
each corresponding isopach value. The resulting values for
generalised metrics and Brier score are reported in Table 7,
which includes also an additional more proximal contour of
4 mm (not shown in the previous Figures). For deterministic

FIGURE 2 | (A) Time series of Normalised Root Mean Square Error (NRMSE) for the Ambae single-run (black line), ensemble mean (red line), and ensemble median
(blue line). The vertical dashed line marks the instant of the snapshot shown in Figure 1. Symbols indicate the hourly AHI retrievals. (B) Same but with the source term
given by a data insertion mechanism. In this case, the ensemble is defined by perturbing only the height and thickness of the injected cloud as indicated in Table 4. Plots
on the same vertical scale.
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FIGURE 3 | Contours of 20 DU SO2 column mass for deterministic (left) and probabilistic (right) Ambae forecasts at three different instants; 26 July at 18:00UTC
(top), 27 July at 12:00 UTC (middle) and 28 July at 00:00UTC (bottom). In the probabilistic approach, contours give the probability (in%) to exceed 20 DU. The outer
red contour indicates the 1.56% (1/64) probability. The grey shaded area shows the corresponding 20 DU from AHI retrievals. Red circle shows the location of Ambae
volcano.
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FIGURE 4 | Time series of generalised categorical metrics for deterministic (single run and ensemble-based) and probabilistic Ambae forecasts using the 20 DU
SO2 column mass contours. Plots show GFMS (top left), GPOD (top right), GCCM (bottom left) and BS (bottom right). Symbols indicate the instants of the AHI
retrievals. The three vertical dashed lines mark the instants of the snapshots shown in Figure 3. Note that for the BS only the probabilistic option applies.

FIGURE 5 | (A)Observations rank histogram (Talagrand diagram) for the 64-member Ambae ensemble run. The horizontal dashed line at 1/64 � 1.56% indicates a
perfectly consistent forecast, with all its members being equally represented against observations. (B) time series of SO2 AHI retrieved cloud mass. The solid horizontal
line at 290 kt shows the reference run and the dashed lines indicate the ±30% ensemble spread in emission rate.

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 74184112

Folch et al. Ensemble-Based Volcanic Cloud Forecast

68

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


approaches, the ensemble mean clearly outperforms the reference
run and the ensemble median (with the only exception of GFAR)
across all distances. However, best overall results are obtained by
probabilistic forecasts, particularly forGFMS andGPOD. In terms of
the composite metric (GCCM), the ensemble mean is slightly better
in the distal and the probabilistic in the proximal but, again, it is not
clear which of these two options performs better.

Finally, the Calbuco ash cloud can also be validated with
satellite imagery. Given the limitations of the dataset (as

TABLE 5 | Model setup for the April 22, 2015 single-run and ensemble-based (64 members) Calbuco tephra simulations.

Single-run (1 member) Ensemble-run (64 members)

Source term Phase 1 start time 22 April 21:00 UCT perturbation range ±1 h
Phase 1 duration 1.5 h perturbation range ±1 h
Phase 2 start time 23 April 04:00 UCT perturbation range ±1 h
Phase 2 duration 6.0 h perturbation range ±1 h
column height H 16 km a.s.l. (both phases) perturbation range ±2 km
Suzuki parameter A 5 perturbation range ±3
Suzuki parameter λ 3 perturbation range ±2
eruption rate _M estimated from height (1) perturbed through H
erupted mass 6 × 1011kg (2 phases) perturbed through _M and duration

Granulometry Gaussian Φm Φm � 4 perturbation range ±1
Gaussian σΦ σΦ � 1.5 same
upper bin size Φ � − 2 (4 mm) same
lower bin size Φ � 7 (8 μm) same
bin interval 0.5Φ same

Aggregates size 300 μm perturbation range ±100 μm
density 400 kg/m3 perturbation range ±100 kg/m3

fraction 25% same

Model grid horizontal resolution 0.05o same
vertical resolution 250 m same
domain top 20 km same
Meteorological data ERA5 (137 model levels) winds (2) perturbed by ± 20%

(1) Parameterisation as in Degruyter and Bonadonna (2012).
(2) Horizontal wind components are perturbed globally (same perturbation in all grid cells).

FIGURE 6 | Validation of Calbuco runs in 159 deposit points. Deposit thicknesses are converted to deposit loads (kg/m2) assuming an averaged density of
1,000 kg/m3. Left: single-run (black points) versus ensemble mean (red points). Right: single-run (black points) versus ensemble median (blue points). For reference, the
three dashed lines show the perfect fit and the 10 model over and under-estimation bounds. The resulting global values of the NRMSE are reported in Table 6.

TABLE 6 | Validation of the April 22, 2015 Calbuco simulations with deposit

thickness at scattered deposit points. Percentagemeans the fraction of points

that reduce differences with observations with respect to the reference single-run.

Best values highlighted in green.

Metric Deterministic Deterministic Deterministic

single-run ensemble-mean ensemble-median

NRMSE 0.13 0.11 0.13
Percentage — 67% 40%

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 74184113

Folch et al. Ensemble-Based Volcanic Cloud Forecast

69

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


explained above) we do not consider ash retrievals as reliable and
use the SEVIRI ash detection option instead. Figures 9, 10 show,
respectively, snapshots of deterministic and probabilistic cloud
mass contours (0.1 g/m2 is assumed as a detection threshold) and
time series of generalised categorical metrics. Model to
observations miss-matches are more evident than for the
Ambae case, partly due to the aforementioned reasons.
However, similar conclusions can be extracted about the
improvements in the ensemble mean and probabilistic cases.

Again, the ensemble median (blue curves) worsens the single-run
forecast skills.

5 SUMMARY AND DISCUSSION

The last version release (v8.1) of FALL3D allows configuring,
running, post-processing and eventually validating ensemble-
based forecasts in a single embarrassingly parallel workflow.

FIGURE 7 | Validation of Calbuco deterministic forecasts using deposit isopach contours of 0.1, 0.5, 1, and 2 mm. Model results for single-run (black line),
ensemble mean (red line) and ensemble median (blue line). Grey-filled areas show the corresponding isopachs estimated by Romero et al. (2016) from
extrapolation of deposit point measurements. Red circle shows the location of Calbuco volcano. The resulting values of generalised categorical metrics are
reported in Table 7.

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 74184114

Folch et al. Ensemble-Based Volcanic Cloud Forecast

70

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


The ensemble runs, built from perturbing the most uncertain
input parameters of a reference ensemble member, can furnish an
array of deterministic forecasts with an associated uncertainty
and/or probabilistic products based on the occurrence (or not) of
certain exeedance or threshold conditions. Different types of
metrics can be considered in FALL3D-8.1 for model validation
(see Table 2), including novel categorical metrics resulting from
the generalisation to probabilistic scenarios of classic geometric-
based indicators (FMS, POD, FAR, etc). The skills of the

ensemble-based modelling approaches have been compared
against single-runs (and among them) using different types of
observations. On one hand, satellite retrievals of cloud mass have
been considered for validation of the July 2018 Ambae SO2 clouds
(Table 4). On the other, tephra deposit thickness observations at
159 locations and resulting deposit isopach contours have been
used, together with satellite ash cloud detection, i.e. yes/no ash
flagged pixels, for the April 2015 Calbuco eruption (Table 5). An
ensemble of 64 members with a model spatial resolution of 0.05o

FIGURE 8 | Validation of Calbuco probabilistic forecasts with deposit isopach contours. Color contours give the model probability (in %) for deposit thickness to
exceed 0.1, 0.5, 1, and 2 mm. Grey-filled areas show the corresponding isopachs estimated by Romero et al. (2016) from extrapolation of deposit point measurements.
The outer red contour indicates the 1.56% (1/64) probability. Red circle shows the location of Calbuco volcano. The resulting values of generalised categorical metrics
and Brier Score (BS) are reported in Table 7.
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was considered in both cases. Main findings from these two
applications can be summarised as follows:

• For ensemble-based deterministic forecasts, the ensemble
mean gives the overall best scores for all typologies of
datasets considered. However, the probabilistic approach
also gives very similar results in terms of generalised
categorical metrics. No conclusion can be extracted about
which is “the best” option among these two but, clearly, both
outperform the single-run reference run. Note that, in
general, a gain in the ensemble-based approaches can be
expected when some single-run inputs are uncertain.
However, a consistent outperform cannot be guaranteed
a priori as a well-chosen single-value run set with accurate
“true” values is expected to outperform the ensemble mean.

• For the Ambae case, ensemble-based deterministic approaches
improved the single-run time series of the quantitativeNRMSE
metric by a factor of 2-3 in most time instants (Figure 2). In
terms of categorical metrics based on the 20 DU column mass
contours, the ensemble-mean and the probabilistic approach
also outperform substantially the single-run forecasts
(Figure 4). This is not true for the ensemble median, which
worsens all metrics, and most notably the probability of
detection (GPOD).

• For the Calbuco case, the ensemble mean improves the
averaged NRMSE of the deposit points by a 16%, with

better skills in 67% of the single points (Figure 6 and
Table 6). Considering the validation with deposit
isopach contours from Romero et al. (2016) (Table 7),
the ensemble mean also outperforms the reference run
and the ensemble median (with the only exception of
GFAR) across all range of distances. However, best
overall results are obtained by probabilistic forecasts,
particularly for the GFMS. Finally, validation of the
Calbuco ash cloud with satellite detection data
(Figure 7) compared against 0.1 g/m2 column mass
model contours yields similar conclusions to the
Ambae case.

A relevant aspect in operational forecast contexts is to consider
the computational overhead of ensemble-based runs and, linked
to this, its feasibility in the context of urgent (super)-computing.
The simulations shown here were run at the Skylake-Irene
partition of the Joliot-Curie supercomputer using only 24
processors per ensemble member (i.e., 1536 processors for the
whole ensemble run in this particular machine). The total
computing times were of 460 s (7.6 min) and 2,650 s (44 min)
for the Ambae (1 bin, 48 h forecast window) and the Calbuco (20
bins, 72 h forecast window) cases respectively. In terms of time-
to-solution and due to the embarrassingly parallel workflow, the
ensemble runs only add a little penalty if computational capacity
is provided. In fact, this is actually a good example of capacity

TABLE 7 | Validation of the April 22, 2015 Calbuco simulations with deposit isopach contours from Romero et al (2016). Five deposit isopach values of 0.1, 0.5, 1, 2, and
4 mm are considered. Best values for each metric and contour are highlighted in green. The Brier Score (BS) applies only to the probabilistic approach.

Metric Contour
thickness

(mm)

Deterministic
single-run

Deterministic
ensemble-

mean

Deterministic
ensemble-
median

Probabilistic

GFMS 0.1 0.41 0.47 0.47 0.40
0.5 0.58 0.70 0.54 0.67
1 0.56 0.60 0.45 0.62
2 0.48 0.50 0.40 0.56
4 0.26 0.24 0.21 0.40

GFAR 0.1 0.49 0.49 0.38 0.59
0.5 0.18 0.07 0.02 0.30
1 0.23 0.18 0.12 0.35
2 0.34 0.36 0.33 0.43
4 0.57 0.64 0.60 0.58

GPOD 0.1 0.69 0.86 0.67 0.96
0.5 0.67 0.72 0.55 0.96
1 0.68 0.68 0.48 0.95
2 0.64 0.70 0.51 0.98
4 0.41 0.41 0.32 0.96

GCCM 0.1 0.53 0.61 0.58 0.59
0.5 0.69 0.78 0.69 0.77
1 0.67 0.70 0.60 0.74
2 0.59 0.61 0.52 0.70
4 0.36 0.33 0.31 0.59

BS 0.1 — — — 0.46
0.5 — — — 0.30
1 — — — 0.30
2 — — — 0.33
4 — — — 0.46
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computing, in which High Performance Computing (HPC) is
needed to solve problems with uncertain inputs (entailing
multiple model realisations) and constrains in computing
time. On the other hand, FALL3D has been proved to have
strong scalability (above 90% of parallel efficiency) up to

several thousands of processors. Given that each ensemble
member was run on only half computing node, times-to-
solution could easily be lowered by at least one order of
magnitude if enough computational capability is provided.
Finally, it is worth mentioning that further study is needed on

FIGURE 9 | Validation of Calbuco ash cloud with the satellite detection (SEVIRI ash flag) observation dataset. Model column mass contours of 0.1 g/m2 for
deterministic (left) and probabilistic (right) forecasts at three different instants; 23 April at 18:00UTC (top), 24 April at 06:00 UTC (middle) and 24 April at 18:00UTC
(bottom). In the probabilistic plots, the outer red contour indicates the 1.56% (1/64) probability. The shaded areas show the contours encompassing SEVIRI ash flagged
pixels. Red circle shows the location of Calbuco volcano.
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some aspects of the ensemble-based forecasts not explicitly
addressed in this paper. Future work needs to consider:

• Optimal a priori configuration of the ensemble, including
the number of members.

• Ensemble-based deterministic forecasts have been considered
only for ensemble mean, ensemble median, and other
percentiles. Future works will show how, in practice, it is
possible to determine the best linear estimator compatible
with the observational data. This optimal state should
outperform the deterministic forecast presented here, which
pertains to specific cases of linear combinations (single member
or ensemble mean) or showed a poor performance when
compared to linear estimators (ensemble median).

• Efforts to implement ensemble capabilities on FALL3D not
only allow the improvement of forecast quality and to
quantify model uncertainties, but also set the foundations
for the incorporation of data assimilation techniques in the
next release of FALL3D (v8.2). The use of ensemble Kalman
filter methods, such as the Local Ensemble Transform
Kalman filter (LETKF), will provide a further
improvements in the quality of volcanic aerosol forecasts.
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Spatio-Temporal Probabilistic Maps
for Volcanic Hazard Assessment
Renette Jones-Ivey1*, Abani Patra2 and Marcus Bursik3

1Institute for Computational and Data Sciences, University at Buffalo, Buffalo, NY, United States, 2Data Intensive Studies Center
(DISC), Tufts University, Medford, MA, United States, 3Center for Geohazards Studies, University at Buffalo, Buffalo, NY,
United States

Probabilistic hazard assessments for studying overland pyroclastic flows or atmospheric ash
clouds under short timelines of an evolving crisis, require using the best science available
unhampered by complicated and slow manual workflows. Although deterministic
mathematical models are available, in most cases, parameters and initial conditions for the
equations are usually only knownwithin a prescribed range of uncertainty. For the construction
of probabilistic hazard assessments, accurate outputs and propagation of the inherent input
uncertainty to quantities of interest are needed to estimate necessary probabilities based on
numerous runs of the underlying deterministic model. Characterizing the uncertainty in system
states due to parametric and input uncertainty, simultaneously, requires using ensemble
based methods to explore the full parameter and input spaces. Complex tasks, such as
running thousands of instances of a deterministic model with parameter and input uncertainty
require a High Performance Computing infrastructure and skilled personnel that may not be
readily available to the policymakers responsible for making informed riskmitigation decisions.
For efficiency, programming tasks required for executing ensemble simulations need to run in
parallel, leading to twin computational challenges of managing large amounts of data and
performing CPU intensive processing. The resulting flow of work requires complex sequences
of tasks, interactions, and exchanges of data, hence the automatic management of these
workflows are essential. Here we discuss a computer infrastructure, methodology and tools
which enable scientists and other members of the volcanology research community to
develop workflows for construction of probabilistic hazard maps using remotely accessed
computing through a web portal.

Keywords: uncertainty quantification, volcanology, hazard mapping, volcanic hazard assessment, Pegasus
Workflow Management System, ash cloud, pyroclastic flow

1 INTRODUCTION

Characterizing potential volcanic eruption hazard scenarios involves many factors. In many cases,
potential scenarios have been encapsulated in hazard maps for particular volcanoes, some of which
have been constructed using modern computational simulations of volcanic flows (Calder et al., 2015).
Suchmaps can suffer from their static nature, being difficult to adapt to changing eruption situations, or
unforeseen eruption scenarios. Use of computer simulations to construct the maps presents one
pathway to readily updating them. Although deterministic simulation tools are available for modeling
evolving or unforeseen volcanic hazard scenarios, including those that involve dangerous pyroclastic
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flows and ash clouds (Stein et al., 2015; Takarada, 2017), in most
cases, parameters and initial conditions for the governing
equations will be poorly constrained and must be treated as
random variables to be sampled (Dalbey, 2009). For the
construction of hazard maps based on the resulting ensembles
of deterministic computer runs, accurate outputs, obtained
through careful consideration of input and parameter ranges,
and propagation of the resulting uncertainty to output
quantities of interest, are needed to properly estimate
probabilities (Spiller et al., 2014; Bayarri et al., 2015). While
there exist several current efforts at making simulation tools
available online for use by volcanologists (Takarada et al., 2014;
Woodhouse et al., 2021), none support the complexity required by
the uncertainty quantification processes, thereby restricting access
to such analysis to specialists reducing their routine use in effective
hazard management.

Characterizing the output uncertainty due to parametric and
input boundary value uncertainty simultaneously involves using
ensemble based methods to fully explore the parameter and input
spaces. Complex tasks, such as running thousands of instances of a
deterministic model with parameter and input uncertainty, need to
be well-defined and repetitive to make them good candidates for
automation (Rohit et al., 2014).We have programmed aworkflow of
tasks, executing ensemble simulations of pyroclastic flows and ash
clouds to run in parallel and analyze the simulations outputs, leading
to twin computational challenges of managing large amounts of data
and performing CPU intensive processing. The resulting flow of
work requires complex sequences of tasks, interactions, and
exchanges of data, hence automatic management of the workflow
is essential to producing orderly, usable and timely output.

Here we discuss the computer workflow, which is based on a
well-established scientific infrastructure (McLennan and Kennell,
2010), as well as a methodology that enables scientists and other
members of the volcanology research community to construct
conditional probabilistic hazard assessments given potential
eruption scenarios at any volcano in the world. In exploring
potential hazardous volcanic flows with models and computer
simulations, we have designed the workflow to seek answers to
questions such as “What is the probability of flow depth reaching
a critical value at a particular location during a volcanic
eruption?” or “What is the probability of having an ash cloud
at a particular location within a specified height range following a
volcanic eruption?” Such questions need to be explored by
geoscientists and policy makers, often under short timelines
during an evolving crisis, making it essential that the answers
are available using the best science, but not requiring complicated
and slow manual processes. With the workflows introduced
herein, we facilitate timely answers to critical hazard analysis
questions using tools to provide online access to automated
workflows for volcanic hazard assessment.

2 MATERIALS AND METHODS

2.1 Hazard Map Workflow Architecture
Volcanic probabilistic hazard map workflow development
requires expertise and collaboration between diverse

volcanology research scientists and cyberinfrastructure experts.
Scientific HUBs provide the perfect platform for fostering this
collaboration. The VHub science HUB, provides an online
resource for modeling and analysis in volcanology research
and risk mitigation. To make volcanic hazard analysis easier
for the end researcher to access, VHub portal based access to
computational workflows for pyroclastic flows and ash clouds
transports have been developed. These workflows are based on
the Pegasus Workflow Management System (WMS) architecture
which is integrated into the HUBzero framework. A high level
overview of the underlying workflow architecture is shown in
Figure 1A. In this section, details of the workflow architecture are
described. In Section 2.2, two implementations of this workflow
architecture are presented.

2.1.1 Computer Infrastructure Platform
VHub is hosted at the San Diego Supercomputer Center and is
built on the HUBzero platform for Scientific Collaboration. An
advantage of using the HUBzero platform is that users can launch
software tools with a web browser without having to download,
compile, or install code on local systems (McLennan and Kennell,
2010).

The VHub portals are accessible to the volcanological and
meteorological community from anywhere in the world. The
portals provide user-friendly access to the advanced scientific
resources using a web browser. Using the portals, researchers and
operational scientists can execute models of hazards from
volcanic debris avalanches to atmospheric ash transport
without direct participation of an array of computational
scientists and computing professionals.

VHub’s architecture consists of a database server andwebserver;
an execution host that runs software containers for computational
tools; and middleware—software that coordinates the container
sessions with user sessions (Sperhac et al., 2021). HUBzero System
Administrators handle user accounts and interaction, including
registering and subsequently authenticating users, controlling
access to tools and other hosted resources.

2.1.2 Workflow Tools
Users interface with VHub by running computational tools.
When a user runs a computational tool on VHub, a virtual
container is started on the execution host. Each tool container
has been configured to support specific computational needs,
such as memory or disk space. Additional execution host servers
may be deployed to scale up either the number of users supported,
the resource footprint for tool sessions, or both. Finally, tools
needing additional resources or parallel execution can submit
jobs to a remote host’s compute cluster. VHub enables members
of the volcanology research community to deploy hazard map
workflow tools that a user can interact with. VHub tools are
maintained via a development lifecycle which guides users
through a framework for publishing their tools on VHub;
subversion control, testing, verification and review by domain
scientists and HUBzero System Administrators prior to
publication on the VHub website (Sperhac et al., 2021).

An important consideration for the development of a
hazard map workflow tool is to abstract the complexity of
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the workflow from users. A user friendly graphical user
interface (GUI) (Figure 1B) gives the user control over
each analysis, and hides the complexities of the workflow
implementation from the user, such as controlling the
bounds of uncertainty for each simulation run. The GUI
also provides the user with easy access to output of
workflows. Ultimately, the results could provide a path
forward for the routine construction of probabilistic, spatio-
temporal pyroclastic flow and ash cloud hazard maps.

2.1.3 Workflow Management
The Pegasus Workflow Management System (WMS) (Deelman
et al., 2015) provides the structured platform required for
implementing the workflows. The Pegasus WMS automates
and manages the execution of the jobs required to run the
workflows, including staging the jobs, distributing the work,
submitting the jobs to run on a remote host, as well as handling
data flow dependencies and overcoming job failures.
The integration of the Pegasus WMS into the HUBzero
framework has brought the power of automated workflows to
many more users (McLennan et al., 2015). The Pegasus WMS
consists of Pegasus and its workflow engine, the directed acyclic
graph manager (DAGMan) within HTCondor (Couvares
et al., 2007; Deelman et al., 2015). HTCondor is a workload
scheduling system for computational jobs. HTCondor provides
a job queuing mechanism and resource monitoring
capabilities. DAGMan is a meta-scheduler for HTCondor,
which is a service for executing multiple jobs with
dependencies among them; it manages dependencies between
jobs at a higher level than does the HTCondor scheduler
(University of Wisconsin–Madison Center for High
Throughput Computing, 2021). Pegasus uses DAGMan and
the rest of the HTCondor stack to execute the workflows
(Figure 1A).

Pegasus workflows are described in an abstract format via
abstract workflow (DAX) files which are directed acyclic graphs
in XML format. The abstract format means that the description
does not include data and software locations; these are looked up
at planning time, enabling portability of the workflows. A DAX
generating Application Programming Interface (API) is used to
create the DAX file for a workflow. For the workflows described
herein, a python script is invoked. The DAX file provides the
primary input to Pegasus and defines the jobs required for
executing the workflow, the job dependencies, and the input
and output files for each job. With the HUBzero submit tool, a
simple submit command verifies that the jobs pass HUBzero
security checks and dispatches the workflow to the Pegasus WMS
for execution (McLennan et al., 2015).

The Pegasus WMS is flexible and supports a wide variety of
execution environments (Deelman et al., 2015). For the Titan2D
Hazard Emulator and Bent-Hysplit Workflow tools, Pegasus jobs
are submitted to the University at Buffalo Center for
Computational Research’s (CCR’s) generally accessible
academic compute cluster, UB-HPC, via a UB-HPC regional
grid (Neeman et al., 2010). Pegasus takes the abstract description
and determines where to execute the jobs and where to access the
data. Pegasus augments the DAX with data movement directives
and compiles a directed acyclic graph (DAG). The resulting DAG
is then given to HTCondor’s DAGMan. DAGMan, as directed by
the DAG, orders the jobs according to their dependencies, and
submits the jobs ready for execution to the remote host, UB-HPC.
At the remote host, the SLURM (Simple Linux Utility for
Resource Management) Workload Manager provides the
framework for queuing jobs, allocating compute nodes, and
starting the execution of jobs. A challenge for executing the
Pegasus jobs on VHub is the limited home disk space each
user has. To overcome this challenge, Pegasus scratch
directories are located in CCR’s high performance global

FIGURE 1 | (A)Workflow using multiple hardware and system software units, and (B) graphical user interface of workflow for a hazard map based on Titan2D tool.
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scratch space which is accessible from all UB-HPC
compute nodes.

System level implementation details for Pegasus, including
setting up the mapping via the site and transformation catalogs
that Pegasus requires, are abstracted from workflow developers;
Steven Clark, HUBzero, and Steven Gallo, CCR, set up the
Pegasus WMS lower level interfaces for the workflows.

When a SLURM job execution completes, the final status of
the finished job is returned to Pegasus. If the final status indicates
a job failure, Pegasus will retry re-executing the job. For the
current VHub Pegasus implementation, Pegasus will retry to
execute a failed job no more than two times.

A working directory for either the Titan2D Hazard Map
Emulator or Bent-Hysplit Workflow tool is created in the
user’s VHub home folder’s data/sessions directory when the
tool is launched. Workflow input files generated by the GUI
are stored in this work directory. When a workflow execution is
started, input files required by the workflow and specified in the
DAX, are uploaded by Pegasus to the Pegasus scratch directory.
When a workflow’s execution is complete, output files generated
by the workflow and specified in the DAX, are downloaded by
Pegasus from the Pegasus scratch directory to the tool’s work

directory. In addition, Pegasus status and analysis information is
returned in a file called pegasus.analysis. If workflow errors
occurs, the pegasus.analysis file will contain details for the
errors. For the Bent-Hysplit Workflow tool, output files are
moved from the work directory to a dated run created when
the workflow’s execution is started.

2.2 Hazard Map Workflow Tools
Two tools were developed using the computer infrastructure and
methodology outlined in the previous section. Both tools are
currently published on the VHub website, these are the Titan2D
Hazard Map Emulator Workflow Tool for Volcanic Pyroclastic
Flow Transport Hazards and the Bent-Hysplit Workflow Tool for
Volcanic Ash Cloud Transport Hazards. In this section, details of
these workflow tools are described.

2.2.1 Volcanic Mass Flow Hazard Map
Titan2D (Patra et al., 2005) is a computer program for simulating
granular avalanches over digital elevation models of natural
terrain. The program is designed for simulating geological
mass flows such as pyroclastic flows, debris flows, debris
avalanches and landslides. Titan2D combines numerical

FIGURE 2 | Example mini-emulators. (A) Tessellation of the input parameter space showing micro-emulator support of mini-emulators. (B) Assembly of the
hierarchy of emulators to produce the macro-emulator (Dalbey, 2009).

TABLE 1 | Titan2D hazard map workflow parallelization strategy.

Step 1 Create required parameters for evaluating sample uncertainty using Latin Hypercube Sampling.
Step 2 Modify the Titan2D Input File for each sample. Run Titan2D in parallel for each sample.
Step 3 Down sample the flow depth (pile height) records output by Titan2D in parallel. Requires all output from the previous step for

each sample.
Step 4 Construct the macro-emulator and mini-emulators in parallel. Requires all output from the previous step.
Step 5 Setup for re-sampling the macro-emulator and create the initial probabilistic hazard map. Requires all output from the

previous step.
Step 6 Aggregate mini-emulators into a macro-emulator in parallel and re-sample the macro-emulator to create the conditional

probabilistic hazard map. Requires all output from the previous step.
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simulations of a flow with digital elevation data of natural terrain
supported through a Geographical Information System (GIS)
interface.

The Titan2D program is based upon a depth-averaged model
of an incompressible continuum, a “shallow-water” granular
flow. The conservation equations for mass and momentum are
solved with different rheological properties modeling the
interactions between the grains of the medium and one
another, an interstitial fluid or the basal surface. The resulting
hyperbolic system of equations is solved using a parallel, adaptive
mesh, Godunov scheme.

The shallow-water model conservation equations solved by
Titan2D are given by:

Ut + F U( )x + G U( )y � S U( ) (1)

where,U is a vector of conserved state variables, F is a vector of
mass and momentum fluxes in the x-direction, G is a vector of
mass and momentum fluxes in the y-direction, and, S is a vector
of driving and dissipative force terms.

The Titan2D tools solve Eq. 1 numerically for flow depth and a
depth-averaged velocity at every grid point in the mesh. To run
Titan2D, a digital elevationmap (DEM) of the region of interest is
read into the computer, together with flow-specific parameters
such as the material friction angles, initial volume, initial
direction and initial velocity.

For the construction of the Titan2D hazard map, the flow-
specific parameters and the DEM may be poorly characterized,
and should be viewed as uncertain (Stefanescu et al., 2012).

One way to quantify the uncertainty is to useMonte Carlo type
sampling, which requires multiple runs of the Titan2D simulator.
Each run of Titan2D takes 20 min or more on a single processor,
so Monte Carlo type sampling is considered too expensive.

To make the hazard map construction more accessible
(Dalbey, 2009), created estimates of expectation and associated
uncertainty, for given locations and sparse guiding data, using a
statistical surrogate model called the Bayes Linear Method
developed by Goldstein (Goldstein, 1995). Sets of flow-specific
and DEM parameters are generated using Latin Hypercube
Sampling and Titan2D simulations at these inputs are
performed. Latin Hypercube Sampling requires fewer design
points to fill a design space as compared to Monte Carlo. The
data is used to create a statistical surrogate Bayes linear emulator,
which attempts to fit a piecewise polynomial and an error model
through the available numerical data from the simulator. The
emulator s(x) may be written as:

s x( ) � βTx + ϵ , (2)

where sx is a quantity of interest (e.g., maximum flow depth
attained at a location, β are least square coefficients, x is the vector
of input variables and the error ϵ is modeled as Gaussian with 0
mean normal distribution with variance σ. (Dalbey, 2009)
carefully lays out a process for adapting the work of Goldstein
(Goldstein, 1995) to adjust the expectation and variance implicit
in the model above with data from the numerical simulator. The
emulator acts as a fast surrogate of the simulator. To surmount
the cost of emulator construction for full field simulations where
the correlation structures lead to the need for inverting very large
matrices, a localized approximation is used [in a process quite
similar to the well studied Gaussian Markov random fields (Rue
and Held, 2005)]. This is key to constructing a multi-level
Bayesian hierarchical emulator from an ensemble of training
simulations. The hierarchical nature allows the emulator
components to be constructed and evaluated concurrently
(Figure 2A). However, this leads to much greater complexity
in the workflow, and challenges in automation.

As implemented, the hierarchical emulator is an ensemble of
smaller emulators, each covering a portion of the uncertain input
space. Using Delaunay triangulation, tessellation of sample points
is performed to generate a set of triangles whose nodes are sample
sites in the input space. A mini-emulator centered about each
sample is constructed using only those samples in the
neighborhood of the central sample. The adjusted mean and
variance of the mini-emulators are calculated for arbitrary re-
sample points. The adjusted means and variances of the mini-

FIGURE 3 | Titan2D hazard map workflow tasks for pyroclastic flows
and other surficial mass flows. Pegasus monitors the completion of task
executions by determining when required output files are created by the tasks.
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emulators are combined in a weighted sum. The mini-emulators
are then aggregated into a macro-emulator (Figure 2B). The
macro-emulator is re-sampled to produce the conditional
probabilistic hazard map.

The steps required to implement the workflow and the
parallelization strategy are highlighted in Table 1.

The speed-up provided by the parallel workflow is n-fold over
the corresponding sequential processing. The actual speed-up is
dependent on machine considerations. For example, sharing
compute nodes with other programs may reduce the speed-up.
Usage and performance of UB-HPC cluster nodes resources are
monitored via UB CCR’s Open XDMoD tool (Sperhac et al.,
2020). When a workflow’s execution is complete, the XDMoD
user interface enables workflow developers to view important
information about a workflow’s task execution on a CCR
compute node such as the executable information and
summary statistics.

The VHub Titan2D Hazard Map Emulator Workflow Tool
extends capability provided by the VHub Titan2D Mass-Flow
Simulation Workflow Tool and produces ASCII formatted and
Portable Network Graphics files containing information on the
conditional probability of a Titan2D flow depth reaching a critical
height over a period of time following a volcanic eruption, given a
user defined eruption scenario. Titan2D and Matlab/Octave
scripts developed by Dalbey (2009), provide the base software
required to implement this tool. A GUI is displayed when the tool
is launched. The GUI provides the user interface for defining the
eruption scenario and for controlling and running a Titan2D
Hazard Map Emulator workflow. This tool was developed based
on the HUBzero Pegasus tutorial (pegtut) and presents a
HUBzero Rappture (Rapid application Infrastructure)
interface. Rappture is a toolkit within the HUBzero platform
that makes it easy to develop a graphical user interface for
scientific modeling tools (McLennan, 2009).

A python input file contains the parameters for running
Titan2D. An ensemble of Titan2D executions provide
sample data for this tool. Users enter the name of a python

input file for running Titan2D into the GUI’s Titan2D Input File
text box.

The Titan2D Hazard Map Emulator Workflow tool handles
uncertainty in input parameters given ranges for these parameters
specified via GUI text boxes. These are minimum volume
(minvol), maximum volume (maxvol), minimum bed friction
(BEDMIN), maximum bed friction (BEDMAX), starting center
coordinate in easting and northing (STARTUTMECEN,
STARTUTMNCEN), and starting mass radius
(STARTRADIUSMAX). Sets of flow-specific and DEM
parameters are generated using Latin Hypercube Sampling in
conjunction with the specified ranges these parameters. The
generated parameter sets are used to modify the user specified
python input file for each Titan2D ensemble execution.

The GUI processes the user input and determines the
executable jobs, job dependencies, and the input and output
files for each job required to implement the workflow tasks
displayed in Figure 3, calls Pegasus WMS API functions to
create a DAX file, and, submits the workflow to Pegasus for
execution (Figure 1A and Section 2.1.3).

2.2.2 Volcanic Ash Cloud Transport Hazard Map
Bent is a theoretical model of a volcanic eruption plume
developed by (Bursik, 2001; Pouget et al., 2016), based on
applying the equations of motion for a non-Boussinesq,
particle-laden source in a plume-centered coordinate system.
Bent outputs plume trajectories and rise heights, as well as
pyroclast loadings as a function of height, and provides input
for the Air Resources Laboratory volcanic ash transport and
dispersion model (VATD), HYSPLIT. The Bent and HYSPLIT
models require input data on volcanic source conditions as well as
the wind field; the NCEP/NCAR Reanalysis model is currently
the default in use for wind speed, although this can easily be
changed to a higher resolution model. As this is a non-federal
implementation of HYSPLIT, forecast wind fields cannot be
used1. HYSPLIT is used to propagate ash particles in the
windfield. The Bent-Hysplit workflow comprises a coupling of
the Bent, HYSPLIT and Reanalysis models.

Some of the source parameters for the Bent and HYSPLIT
models, specifically vent radius, vent source velocity, both of
which affect plume height, and mean and standard deviation of
ejecta grain size, which affect the distance carried, may be poorly
characterized, and should be viewed as uncertain (Madankan
et al., 2014).

The Bent-HYSPLIT workflow automates previous work for
uncertainty in predictions from a model of volcanic ash transport
in the atmosphere arising from uncertainty in both eruption
source parameters and the model wind field (Stefanescu et al.,
2014). Previous work used PUFF as the VATD model, and
Weather Research and Forecasting (WRF) as the wind
field model.

FIGURE 4 | Points needed to find 8th order moment in 2–4 dimensions
using different sampling techniques.

1Alternate versions of the tools with the unrestricted tool PUFF from Univ of
Alaska-Fairbanks may also be used with forecast versions of numerical weather
prediction models
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To implement the Bent-HYSPLIT-Reanalysis coupling, a
quantity of interest is considered, for example, ash
concentration at a specific location through time. Let the
quantity of interest be represented as a random variable, xk,
whose time evolution is given by HYSPLIT:

_x � f t, x,Θ,W( ) (3)

In Eq. 3, Θ � {θ1, θ2, . . .} represents uncertain initial
conditions or system parameters such as the vent radius,
eruption velocity, mean grain size and grain size variance, and
W is a given wind field from a numerical weather prediction

(NWP) model, such as reanalysis. Weighted samples from the
random variables in the eruption source parameter space are
drawn using the Conjugate Unscented Transform (CUT)
(Madankan et al., 2014) and can be used to effectively
estimate integral moments (means, variances) or even
construct a surrogate using the underlying basis functions that
define the polynomial approximation of the probability
distribution for the quantities of interest. The main idea of the
CUT approach is to select specific structures for symmetric
points, rather than taking a tensor product of 1-D points as in
the Gauss quadrature scheme. As a result, the quadrature points
still exactly integrate polynomials of total degree 2N − 1 in n-
dimensional uncertainty space, while the number of points is
much less than Nn where N represents the number of quadrature
points needed to solve a one-dimensional integral (according to
the Gaussian quadrature scheme).

Figure 4, adapted from (Madankan et al., 2014), displays a
comparison for the number of points needed to find the 8th order
moment in four dimensions using Clenshaw-Curtis points [94

(6561)], Gauss-Legendre points [54 (625)], and CUT points (161
CUT points). The CUT points are very efficient relative to other
quadrature driven sampling schemes and are used in our workflow
here. Using the CUTpoints, the outputmoments are approximated
as a weighted sum of the output of simulation runs at these
carefully selected values of uncertain parameters.

The conditional probability of having ash at a specific height is
then given by:

P h( ) � ∫

Ω

P h|W( )p W( )dW ≈
1

NW
∑
NW

i�1
P h|Wi( ) (4)

where, wi are the weights associated with the wind field ensemble,
while wq are those obtained from using the CUT or generalized
polynomial chaos (gPC) expansion (Marcus et al., 2012).

The expected value of ash at a given height is then:

E h[ ] � ∫ hP h( )dh
� ∫ h θ,W( ) ∫P h|W( )p W( )dW( )dh

� ∫∫ h θ,W( )P h|W( )p W( )dWdh

� ∑
NW

i�1
wi ∑

NCUT

q�1
wqh θq,Wi( )

(5)

Sets of uncertain input values generated using polynomial chaos
quadrature (PCQ), CUT sampling and Bent simulations of the
inputs are performed. Control files are created using the

TABLE 2 | Bent hysplit workflow parallelization strategy.

Step 1 Create the PCQ/CUT sample points.
Step 2 Modify the puffin input file for each sample. Run puffin in parallel for each sample.
Step 3 Run Hysplit in parallel for each sample. Requires all output from the previous step for each sample.
Step 4 Convert SRM file output by Hysplit to NetCDF in parallel. Requires all output from the previous step.
Step 5 Run UQ analysis for each time in parallel. Requires all output from the previous step.
Step 6 Create the conditional probabilistic hazard map. Requires all output from the previous step.

FIGURE 5 | Bent-Hysplit workflow tasks for ash clouds. Pegasus
monitors the completion of task executions by determining when required
output files are created by the tasks.
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Bent output, which are used as input to HYSPLIT; and HYSPLIT
simulations are performed. The resulting HYSPLIT ensemble
is used to construct a surrogate model, which in turn is
sampled to create a conditional probabilistic hazard map.
Ensemble methods that explore full parameter space are crucial

to obtaining good probabilistic estimates and insights into
the potential for hazardous flow. The steps required to
implement the workflow are shown in Table 2. The ability
to parallelize these steps are exploited in the workflow construction.

The VHub Bent-Hysplit Workflow Tool extends capabilities of
the VHub puffin tool and produces a netCDF formatted file
containing information on the conditional probability of ash
concentrations at specific heights, times and locations following a
volcanic eruption, given a user defined eruption scenario. A GUI is
displayed when the tool is launched. The GUI provides the user
interface for defining the eruption scenario, for controlling and
running a Bent-Hysplit workflow, and, for streamlining access to
other websites for obtaining information required by the workflow.

Bent requires column formatted radiosonde files containing
atmospheric parameters for the currently selected volcano

FIGURE 6 | Map showing mapped pyroclastic flow deposits for Azufral Volcano (Williams, 2015). Outline is known extent of each named deposit.

FIGURE 7 | Titan2D simulation of a flow at Azufral Volcano showing
spread of flow widely in unchannelized areas, and confinement to valleys in
channelized areas. Volume used similar to that of Espino and Cortadera flows
in Figure 6, producing similar runout distance or extent.

TABLE 3 | Titan2D eruption source parameters for Azufral volcano, Colombia.

Titan2D parameter Value

Pile UTM Zone 18 North
Pile X Coordinate UTM E 196,672.7
Pile Y Coordinate UTM N 120,213.0
Pile Height (m) 1,389.5
Pile Major Radius (m) 1,389.5
Pile Minor Radius (m) 1,389.5
Pile Rotation Angle 0.0
Pile Flow Speed 0.0
Pile Flow Direction 0.0
Bed Friction Angle 15
Internal Friction Angle 20
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eruption date and time. TheGUI provides the ability to automatically
download weather balloon radiosonde files obtained in HTML
format from the University of Wyoming Weather Web webpage.
The software searches a master location identifier database to

determine World Meteorological Organization (WMO) stations
closest to the volcano, and then an attempt is made to retrieve a
radiosonde file from the closest WMO station for the selected

TABLE 4 | Eruption PHM Scenarios for Azufral volcano, Colombia.

PHM scenario Min bed friction Max bed friction Min vol m3 Max vol m3

1 12 35 104 106

2 8 4 106 108

3 7 10 108 1010

FIGURE 8 | Titan2D emulator based probability of exceeding 0.2 m
flows in Scenario 1.

FIGURE 9 | Titan2D emulator based probability of exceeding 0.2 m
flows in Scenario 2. Note similarity of probability of noticeable flow extent to
mapped extent of Carrizo and Calera flows.

FIGURE 10 | Titan2D emulator based probability of exceeding 0.2 m
flows in Scenario 3. Note similarity of probability of noticeable flow extent to
mapped extent of Cortadera and Espino flows.

FIGURE 11 | Titan2D estimate of non-confidence in emulator based
probability assessment for Scenario 2, using the ratio of standard deviation
and probability. Lower SD/P is better, showing that near vent, confidence in
model output is higher.
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eruption date and time. HYSPLIT requires NOAA Air Resources
Laboratory (ARL)NCEP/NCARReanalysis meteorological data files.
The GUI provides the ability to automatically download ARL
files from the NCEP/NCAR Reanalysis website “NCEP/NCAR
Reanalysis” for the selected eruption date. The GUI also provides
the ability to view volcano conditions from the Volcanic Cloud
Monitoring—NOAA/CIMSS webpage for the selected volcano.

The Bent-Hysplit Workflow tool handles uncertainty in column
(eruption plume) rise height through the Vent Radius and Vent
Velocity configuration parameters, which together control mass
eruption rate (MER), and uncertainty in the grain size, fine-grain
fraction and potential ash accretion through the Grain Mean and
Grain Standard Deviation configuration parameters. Polynomial
Chaos Quadrature (PCQ) sample points, generated using the
Conjugate Unscented Transform method, are used in conjunction
with ranges for these parameters specified on the GUI’s Run Control
tab to create sets of Bent input values for the parameters. Running
Bent with a particular set of input values for these parameters is
considered a sample run of Bent. Bent output from each member of
the sample run is used in conjunction with other configuration
parameters specified on the Run Control tab to create CONTROL
and SETUP.CFG files for HYSPLIT; running HYSPLIT with these
CONTROL and SETUP. CFG files is considered a sample run of
HYSPLIT. HYSPLIT output from all HYSPLIT sample runmembers

is used as input to the tool’s uncertainty quantification analysis
software. The output of the tool’s uncertainty quantification
analysis software is a NetCDF formatted file, probmap.nc,
containing probabilities of ash concentrations greater than specific
levels at specific times and locations. In all, 161 sample runs of Bent
and HYSPLIT are performed at CUT points, requiring an ensemble
of Bent, HYSPLIT and uncertainty quantification analysis tasks,
which are encapsulated and executed as a workflow.

The GUI processes the user input and determines the executable
jobs, job dependencies, and the input and output files for each job
required to implement the workflow tasks displayed in Figure 5, calls
Pegasus WMS API functions to create a DAX file, and, submits the
workflow to Pegasus for execution (Figure 1A and Section 2.1.3).

From previous work, the Bent model has been improved to use
either radiosonde or different types of NWP data directly to get
atmospheric parameters. An inverse model was added to update
source parameter estimates; simulation of collapse behavior and
low fountain development was formalized; modules for water
were added; double-precision and adaptive step size were added;
and umbrella cloud flow and pyroclast fallout completed.

3 RESULTS

3.1 Volcanic Pyroclastic Flow Transport
Hazard Map
Azufral, Colombia, is a stratovolcano (1.09°N, 77.72°W/UTM Zone
18N, 197272 UTM°E, 120615 UTM°N) with a summit elevation of
4,050m. Mapped pyroclastic flow deposits for the Azufral volcano
are shown in Figure 6. These polygons were determined by thorough
mapping by the Servicio Geologico Colombiano. If we assume the
eruption units were erupted as single events, and the pyroclastic
surges and flows are separated into different density currents,
the eruption units can be modeled using Titan2D (Williams, 2015).

Results for running one simulation of a likely flow using
Titan2D are displayed in Figure 7. A circular sampling area

FIGURE 12 | CALIOP cross-section through Kelut volcanic cloud from data acquired on 14 February 2014. Top of plume imaged near center; note top of umbrella
spreading region at height above 18 km, and compactness of cloud. Lower bright areas near edges are nonvolcanic water-vapor clouds. (Global Volcanism Program,
2014).

TABLE 5 | Eruption source parameters for a hypothetical eruption of Kelut
volcano.

Parameter Value range

Vent radius (m) 65.0–150.0
Vent velocity (m/s) 45.0–124.0
Grain mean (φ � −log2 mm) 3.5–7.0
Grain standard deviation (φ � −log2 mm) 0.5–3.0
Eruption temperature (K) 1,200
Erupted water mass fraction (%) 0.017
Eruption duration (hours) 1.0
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from which the X and Y coordinate points for source vent centers
was chosen. This area encompasses that inside the crater of
Azufral. The simulation parameters for running Titan2D are
displayed in Table 3. As indicated in Table 3, we assume that the
origin of flow is near the crater.

For Azufral volcano, the initial volume, bed (also known as basal)
friction angle and DEM are poorly characterized and Titan2D
Hazard Map Workflow software was used to produce
conditional probabilistic hazard maps (PHMs). Three separate
PHM eruption scenarios were created based on binned volume
and apparent basal friction angles for the PDCs derived in Bursik
et al. (2005), and Williams (2015). The ranges for the volume and
bed friction angle are shown in Table 4. A uniform distribution is
used tomodel the variability of the volume and bed friction angle, as
each value in the range of values for these are equally likely to occur.

Results for the three scenarios are shown in Figures 8–10. The
spatially varying hazard criterion that we chose was whether or
not the flow depth exceeds 0.2 m during a particular event. The
workflow was run with 32 simulated samples of Titan2D.

Results for Scenario 1 show that due to high bed friction angle
values and low volumes, hazards are limited to the area near the
crater. Results for Scenario 2 show that flow becomes more probable
towards the southern half of the volcanic complex, and potential for
flow remains confined to valleys to the west and north. Results for
Scenario 3 show that the highest probabilities occur close to the
summit of Azufral volcano, on the southern flanks of the volcano and
in the bottom of valleys to the west and north.

For the Espino and Cortadera units shown in Figure 6 following
(Williams et al., 2017), the magnitude of the eruptions are
reasonably within the volume sampling boundary conditions of

FIGURE 13 | (A–F) Conditional probability of ash at height c. 17 km for 6 h following the Kelut volcano eruption February 13, 2014. Plots were created with a low
resolution grid. Higher resolution grids may be used via the tool’s Select Meteo Data File input option.
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Scenario 3 (Figure 10). The PDC conditions are highly probable as
the Scenario 3 PHM encompasses likely scenarios given a positive
correlation with the deposits of Espino and Cortadera.

The standard deviation divided by the probability of hazard, is a
measure of the non-confidence in the statistics due to insufficient
re-sampling. This measure is displayed for Scenario 2 (Figure 11).
The measure cannot be used to directly evaluate the quality of the
emulator, although it is possible to obtain a measure of this with
some minor modifications and re-evaluations of the re-sample
inputs (Dalbey, 2009).

3.2 Volcanic Ash Cloud Transport
Hazard Map
Kelut (or Kelud), Indonesia, is a stratovolcano (7.93°S, 112.308°E/
UTM Zone 49S, 644 177 UTM E, 9123 214 UTMN) with a
summit of 1,731 (m) located in the province of East Java. On
February 13, 2014, the Indonesian National Board for Disaster
Management (Badan Nasional Penanggulangan Bencana-BNPB)
reported that a major eruption occurred at Kelut (Global
Volcanism Program, 2014). The plume reached a maximum
height of 26 km and an umbrella cloud spreading height of
around 16–17 km (Figure 12) (Bear-Crozier et al., 2020).

We have conducted tests with the Kelut eruption to create a
conditional probabilistic hazard map for this event. The
potential vent radius, velocity of ejection from the vent, grain
mean size and standard deviation are poorly characterized.
The ranges for these parameters as well as other eruption source
parameters are listed in Table 5. A uniform distribution is used to
model the variability of the vent radius, initial velocity, grain mean
and standard deviation, as each value in the range of values for these
are as equally likely to occur. Figure 13 displays results of analyzing
the netCDF formatted probability of ash at height greater and
17,000m for the 6 h following the eruption on 13 February 2014.
The plots were created using the (external) McIDAS software
package, from the netCDF file returned by the workflow. The

natural color RGB image of the eruption cloud, Figure 14, shows
that ash driftedWSWafter 2 h. Figure 13 shows that an ash cloud at
height near 17 km would have the same WSW drift in movement.

For this exercise, the workflow downloaded the windfield data
from the NOAA Air Resources Laboratory (ARL) Gridded
Meteorological Archives. The tool also provides the capability
for the user to use a windfield data file stored in the user’s home
directory on VHub.

4 CONCLUSION

Workflow hazard map development is generally complex and very
inefficient and prone to errors when performed manually. The
software modules that are required to run in parallel on multiple
processors makes hazard map development inaccessible to many
people. The process of downloading and verifying required field
data is handled using a simple GUI interface.

This paper presents a computing infrastructure and
methodology which enables scientists and other members of
the volcanology research community to automate and use
complex workflows for construction of probabilistic hazard
maps. The work addresses a major scientific challenge; making
sophisticated, probabilistic computational hazard map
development accessible to a range of potential users. The steps
towards usability through use of a web-interface to parameterize
and initialize computations is a valuable contribution to the
volcanology research community.

Two geologic flow-transport modelling systems applicable to
volcanic eruptions, the computational models, the ways of using
these models, and the use of Pegasus as aWMS for controlling the
execution of these models are presented. The results of two
realistic case studies as a means of preliminary evaluation are
denoted in the Section 3 and support the viability of this
computer infrastructure and methodology for the construction
of probabilistic hazard maps.
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with probabilistic estimate of workflow. (EUMESTAT, 2021).
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In seismically active regions with variable dominant focal mechanisms, there is
considerable tsunami inundation height uncertainty. Basic earthquake source
parameters such as dip, strike, and rake affect significantly the tsunamigenic potential
and the tsunami directivity. Tsunami inundation is also sensitive to other properties such as
bottom friction. Despite their importance, sensitivity to these basic parameters is
surprisingly sparsely studied in literature. We perform suites of systematic parameter
searches to investigate the sensitivity of inundation at the towns of Catania and Siracusa on
Sicily to changes both in the earthquake source parameters and the Manning friction. The
inundation is modelled using the Tsunami-HySEA shallow water code on a system of
nested topo-bathymetric grids with a finest spatial resolution of 10m. This GPU-based
model, with significant HPC resources, allows us to perform large numbers of high-
resolution tsunami simulations. We analyze the variability of different hydrodynamic
parameters due to large earthquakes with uniform slip at different locations, focal
depth, and different source parameters. We consider sources both near the coastline,
in which significant near-shore co-seismic deformation occurs, and offshore, where near-
shore co-seismic deformation is negligible. For distant offshore earthquake sources, we
see systematic and intuitive changes in the inundation with changes in strike, dip, rake, and
depth. For near-shore sources, the dependency is far more complicated and co-
determined by both the source mechanisms and the coastal morphology. The
sensitivity studies provide directions on how to resolve the source discretization to
optimize the number of sources in Probabilistic Tsunami Hazard Analysis, and they
demonstrate a need for a far finer discretization of local sources than for more distant
sources. For a small number of earthquake sources, we study systematically the
inundation as a function of the Manning coefficient. The sensitivity of the inundation to
this parameter varies greatly for different earthquake sources and topo-bathymetry at the
coastline of interest. The friction greatly affects the velocities and momentum flux and to a
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lesser but still significant extent the inundation distance from the coastline. An
understanding of all these dependencies is needed to better quantify the hazard when
source complexity increases.

Keywords: tsunami, inundation, HPC, earthquakes, numerical simulations

INTRODUCTION

Earthquake tsunamis pose a significant hazard to coastal
communities, and account for approximately 80% of tsunami
events globally (e.g. NCEI, 2021). A strong component of the
global earthquake tsunami hazard is the one induced by large
subduction zone events (e.g. Løvholt et al., 2012a; Løvholt et al.,
2014; Davies et al., 2018) where sources are aligned along well
known tectonic interfaces along the Pacific Ring of Fire and
Sunda Trench in the Indian Ocean. On the other hand, in regions
where the tectonic setting is more complex, the dominant
tsunamigenic structures are less well known, and the
tsunamigenesis and hazard is consequently subject to much
larger uncertainty. Examples of such complex areas include for
instance eastern Indonesia and the Philippines (Løvholt et al.,
2012b; Horspool et al., 2014), the Caribbean (Parsons and Geist,
2008; Harbitz et al., 2012), and the Mediterranean Sea (Lorito
et al., 2008; Selva et al., 2016; Basili et al., 2021; Lorito et al., 2021;
Selva et al., 2021). This large source uncertainty poses a challenge
for modelling the hazard, with accurate and efficient numerical
modelling required for simulating tsunami generation,
propagation, and inundation. Estimating the tsunami hazard
that a given coastal region is exposed to requires an
understanding of the likelihood and variability of virtually all
possible seismic sources, the generation and propagation of the
tsunami, and the coastal inundation, necessitating Probabilistic
Tsunami Hazard Analysis (PTHA). A comprehensive review is
provided by Grezio et al. (2017). We hence need to understand
better the basic relationship between fault parameters and
tsunamigenic strength to more efficiently sample the source
variability and in turn correctly determine the hazard.

While there is increasing understanding that spatially variable
slip on ruptures can be critical in determining the tsunami impact
(Geist, 2002; McCloskey et al., 2007; Davies et al., 2015; Li et al.,
2016; Murphy et al., 2016; Davies, 2019; Scala et al., 2020), it still
remains essential to understand the source sensitivity from the
simpler constant slip models on tsunami inundation (see also An
et al., 2018). In addition to the heterogeneity of the slip, also the
fault geometry may affect the tsunami modeling, as shown
recently by a sensitivity analysis for subduction earthquakes in
the same region of this study by Tonini et al. (2020). However, as
stressed above, for many tsunamigenic earthquake scenarios, we
may not have a goodmodel of the fault geometry. Moreover, large
earthquakes with complex rupture geometries are typically
modelled as slip on multiple fault segments with simpler
geometry. It is important to understand well the variability
due to simpler uniform-slip models in its own right, also as a
basis for more complex slip realizations. The model typically
applied is that of Okada (1985) which computes analytically
through a complex set of equations the seabed surface

deformation resulting from a uniform dislocation (slip)
occurring along a rectangular fault plane embedded into a
homogeneous linear elastic half-space. In this approach the
earthquake source, in addition to the position, is
parameterised through its size (length and width of the
rectangle), its orientation (strike and dip angles), and two
kinematic rupture parameters (the slip and its direction in the
fault plane, the rake angle). Several sensitivity studies using
Okada’s source formulation have been performed. Geist (1998)
reviews the basic tsunamigenic principles due to co-seismic slip.
Gica et al. (2007) and Burbidge et al. (2015) perform systematic
parameter sweeps to determine the sensitivity of the maximum
offshore wave-height at a given location to the characteristics of
the earthquake source as specified by the Okada parameters.
Løvholt et al. (2012c) investigated sensitivity to slip distribution
for different dip angles and depth for variable slip. However, none
of the above studies performed a broad sensitivity analysis with
focus on inundation; this is partly expected as this requires large
computational resources.

Recent advances in efficient GPU (Graphical Processing
Unit) shallow water-type tsunami models, combined with
advances in High Performance Computing facilities, have
now made it feasible to perform very large numbers of
tsunami simulations with inundation modelled at high spatial
resolution (down to a few meters). If further source down-
sampling is still necessary due to limited computational
resources, there are several techniques for limiting the
number of simulations calculated (Lorito et al., 2015; Volpe
et al., 2019; Williamson et al., 2020). Gibbons et al. (2020)
performed a comprehensive PTHA for the town of Catania on
the Eastern coast of Sicily comprising over 32,000 tsunami
simulations for different earthquake sources in the
Mediterranean Sea. The calculations were performed using
the GPU-based Tsunami-HySEA code (de la Asunción et al.,
2013; Macías et al., 2016, 2017). Each simulation in that study
took approximately 30 min on an NVIDIA V-100 GPU,
modelling the tsunami wave from source to inundation on a
numerical Digital Elevation Model (DEM) with 10 m lateral
resolution. However, a rather rough discretization of source
parameters has been applied to reduce the computational effort,
inherited from regional studies from which scenarios have been
selected (see Selva et al., 2016; Basili et al., 2021). For such local
studies, a finer discretization of earthquake sources, both
spatially and with regards to source mechanism, can instead
help improving the accuracy of the hazard analysis. To this end,
a systematic sensitivity study on its impact of hazard is still
required, to define efficient strategies for source description.

The accuracy of tsunami hazard estimates depends also upon
the accuracy of the tsunami numerical models themselves for a
fixed set of source parameters. Their accuracy will depend in turn
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both upon the fidelity of the DEM (e.g. Griffin et al., 2015) and on
how well the resistance that surface friction, vegetation, and
infrastructure provides is represented (e.g. Kaiser et al., 2011).
In the numerical model used to perform the calculations
described here, the combined friction effects are often
described with the Manning equation where the bottom

friction is proportional to the velocity squared through the
Manning coefficient n. The significance of the choice of n for
run-up and inundation was demonstrated by Gayer et al. (2010)
who applied both spatially varying and uniform friction to
tsunami simulations for Bali, Sumatra, and Java. Bricker et al.
(2015) argue that values of n typically applied in tsunami

FIGURE 1 |Maps at different scales for the earthquake sources and tsunami inundation. (A) shows the fault centers for all earthquake scenarios considered. Points
A, B, C, and D are all at latitude 37.15o, with longitudes 14.70o, 15.25o, 16.50o, and 17.50o respectively. Yellow asterisks mark the locations of epicenters for scenarios
where we examine the effect of the Manning friction coefficient. White circles are locations for which we conduct a fine scan of strike and dip parameters. The white
squaremarks the epicenter of sources where we search the strike, dip, and depth parameter. Panels (B–D) show higher resolutionmaps of the regions surrounding
the towns of Catania and Siracusa, where the tsunami inundation is to be evaluated. The black circle labelled S in panel (B) is the location 37.5368oN, 15.1333oE for
which the sea height time-series are displayed later.
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simulations are too low, in particular for urban and highly
vegetated areas. Here, for a limited number of earthquake
scenarios, we systematically vary this parameter while keeping
the earthquake source definition constant to estimate the influence
of n on inundation extent and other properties of the flow. The
intention is also to provide insight into the degree to which typical
inundation estimates (e.g. those used in Gibbons et al., 2020) were
determined by the choice of this parameter.

Here, we study inundation for the stretches of coastline
surrounding the towns of Catania and Siracusa in Eastern
Sicily, each represented numerically in the simulations with a
system of nested grids. Based on Gibbons et al. (2020), we select a
subset of the relevant parameters for which we investigate the
sensitivity of model parameters on the inundation. Figure 1A
displays the topo-bathymetric model of the region of the
Mediterranean Sea in which the numerical tsunami
simulations are performed. With the four earthquake locations
in Figure 1, we can study earthquakes both offshore and with
significant crustal deformation at the coast of interest. In section
Numerical Simulations of Earthquake Generated Tsunamis off the
Coast of Sicily we provide more comprehensive details about the
sequences of simulations performed. In section Sensitivity of
Inundation to the Manning Friction we discuss the sequence
of calculations performed to investigate the sensitivity of
inundation to the Manning friction coefficient and in section
Sensitivity of Inundation to Earthquake Source Parameters we
discuss the sequences of calculations performed to explore the
sensitivity to earthquake source parameters. In section
Conclusion and Discussion we draw conclusions.

NUMERICAL SIMULATIONS OF
EARTHQUAKE GENERATED TSUNAMIS
OFF THE COAST OF SICILY
In this paper, we have carried out sensitivity tests by performing
1,516 separate tsunami simulations to understand how coastal
inundation at high spatial resolution varies as a function of
several key parameters. For these simulations, we employ the
shallow water model Tsunami-HySEA (de la Asunción et al.,
2013; Macías et al., 2016, 2017). The shallow water model
assumes that the wave length is much longer than the water
depth and hence neglects higher order characteristics such as
frequency dispersion that is important for some types of tsunamis
(e.g. Glimsdal et al., 2013; Løvholt et al., 2013). Manning friction
terms, which assume that the bottom friction is proportional to
the Manning number n and the squared current velocity, are
added to the to the momentum terms in the shallow water
equation system. Instantaneous earthquake deformations
assuming planar uniform slip using the Okada (1985) model
are provided as initial conditions to the simulations. Tsunami-
HySEA solves the non-linear shallow water equations through a
Finite Volume scheme by means of Riemann solvers, with shock-
capturing properties that ensure that wave-breaking is
incorporated and with wetting and drying processes necessary
for capturing inundation. Further details of the specific Tsunami-
HySEA implementation of friction are provided in de la Asunción

et al. (2013). Finally, we note that Tsunami-HySEA includes a
telescopic grid functionality that allow the modeller to couple
coarsely resolved wave propagation over an ocean scale with
high-resolution inundation simulations in a local domain. The
simulations are performed with a system of four telescopic nested
grids. The coarsest grid has the spatial extent displayed in
Figure 1A and a spatial resolution of 640 m. The others have
progressively finer resolutions of 160, 40, and 10 m. The
inundation is modelled for the regions surrounding the towns
of Catania and Siracusa on the East coast of Sicily (see also Tonini
et al., 2021).

All tsunamis simulated are generated by hypothetical
earthquakes whose epicenters are located at the positions A, B,
C, and D in Figure 1A. These earthquake epicenters are based on
a subset of the earthquake sources considered in the probabilistic
earthquake model of the TSUMAPS-NEAM (NEAMTHM18)
Tsunami Hazard Model (Basili et al., 2021). The NEAMTHM18
model consists of a discretization of tsunamigenic earthquake
scenarios covering the entire NEAM (North East Atlantic and
Mediterranean) region with different magnitudes, depths, fault
orientations, and slip distributions. Here, we identified two
crustal earthquake scenarios from the NEAMTHM18 model
which had resulted in the greatest inundation in the bay of
Catania in the tsunami simulations from Gibbons et al.
(2020). Both were associated with hypothetical Mw 8.0
earthquakes with fault ruptures of length 183.5 km and width
38.1 km, and with slip of 7.5 m. Both had epicenters on the coast
(point B in Figure 1), or inland (close to point A in Figure 1), and
both earthquakes had resulted in significant crustal deformation
both onshore and offshore. The coseismic deformations resulting
from these two earthquakes are displayed in Figure 2 (panels A
and C). These scenarios are in the low-probability and high-
consequence end of the source discretization.

Figure 1B displays the locations of the numerical grids with
the highest spatial resolution (10 m) and Figures 1C,D detail the
high-resolution topo-bathymetry with a colour scale chosen to
emphasize spatial differences in elevation in the zero to 20-m
range of greatest relevance for tsunami inundation and
consequence for human life and infrastructure. Regions with
elevation over sea-level in the range 0–5 m are coloured green,
regions with elevation in the range 5–10 m are coloured brown,
and regions with elevation exceeding 10 m coloured red with the
colour fading as rising topography takes land and infrastructure
above the tsunami threat. Details of the Digital Elevation Model
(DEM) are provided in Gibbons et al. (2020) and the sources are
listed in the Data Availability Statement. The DEM does not
include buildings but, even at a 10-m resolution, some choices
have been made regarding built infrastructure with, for example,
raised road constructions visible in Figure 1. In the DEM and
Tsunami-HySEA inundation modelling, these provide a barrier
to the incoming water.

The first part of the analysis in the present study is dedicated to
exploring systematically how the inundation varies with the
choice of the Manning friction parameter. To this end, we
perform a suite of tsunami simulations considering four
different earthquake sources and 19 values of n (76 scenarios
in total). A constant value of the Manning n value for the entire
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domain is assumed for simplicity. Such an approach is common
practice in tsunami simulations even though this does not resolve
spatially dependent friction properties of the Earth’s surface. We
justify it here on the grounds that we want to examine inundation
over varying topography as a function of this parameter. A
spatially varying n here would represent a vast number of
parametric choices and would complicate interpretation.
Results from our uniform n parameter searches will hopefully
provide guidance in experiment design for studies with spatially
varying n. The second part of the study explores the dependency
of the tsunami inundation on the variability of fault orientation
(i.e. strike and dip angles), the slip direction (i.e. the rake angle),
and the depth of the source; in that case we analyse a suite of 1,440
tsunami simulations. Figure 2 shows the sea floor deformation
resulting from six different specifications of earthquake
parameters selected from the total set of combinations. We

adopt for each scenario a uniform slip value along the fault
plane and all simulations were run for a total of 4 h following the
earthquake.

SENSITIVITY OF INUNDATION TO THE
MANNING FRICTION

Testing the sensitivity of the inundation to the Manning
friction was performed for four hypothetical earthquake
scenarios, M1, M2, M3, and M4. Two of them, labelled
M1 and M2, are almost identical to scenarios from the
NEAMTHM18 model, changed only in the exact
coordinates of the earthquake fault centers. Scenarios M3
and M4 have the same Okada parameters as scenarios M1
and M2 respectively, except for the epicenters that are moved

FIGURE 2 | Sea floor deformation using the Tsunami-HySEA code with Okada sources with strike, dip, rake, and depth parameters as indicated. All sources have
length 183.5 km, width 38.1 km, and slip 7.5 m. Red and blue indicate a raising and a sinking of the ocean floor respectively. The Depth quoted here is the depth of the
fault plane centroid. The sea floor displacements in panels (A,C) correspond to scenarios based on definitions in the NEAMTHM18model (subsequently labelled M1 and
M2 respectively). The remaining panels (B,D–F) show non-NEAMTHM18 scenario definitions considered in this study.
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significantly offshore to point D to model the sensitivity of a
more distal earthquake. These scenarios were selected since
the corresponding models from NEAMTHM18 had
demonstrated inundation at significant distances inland
from the shoreline, such that changes in the degree of
inundation due to changes in the friction would be easy to
visualize. Out of the subset of scenarios simulated in Gibbons
et al. (2020) which generated high inundation, the selection

for the friction study here is otherwise quite arbitrary. The
seafloor displacements for all four scenarios are displayed in
Figure 3 together with the areas of inundations at Catania
and Siracusa resulting from the generated tsunamis.

Inundation scenarios are obtained for Catania and Siracusa for
each of the four earthquakes considered and each of the 19 values
of n, covering the range from 0.005 to 0.095 in increments of
0.005. The value n � 0.03 (which is widely used in operational

FIGURE 3 |Cumulative inundation area plots for Catania and Siracusa for the scenarios M1, M2, M3, and M4. For a given value of h, the curve indicates the area of
land that was dry prior to the event which has experienced a maximum flow depth exceeding h m. The 19 curves in each panel cover values of the Manning friction, n,
between 0.05 and 0.95 in intervals of 0.005. The curves for n � 0.03 are highlighted and coloured black to mark that this was the value used for all calculations in Gibbons
et al. (2020).
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tsunami modelling) is highlighted in Figure 3 as this was the
value applied uniformly to all calculations in Gibbons et al.
(2020). In all cases, a constant value of n for the entire
domain is assumed for simplicity. The Tsunami-HySEA code
calculates the tsunami propagation on the bathymetry and

topography as deformed by the earthquake and records, for
each grid location, the highest water level (relative to the
undisturbed sea surface) attained over the entire simulation.
The flow depth for a given location is obtained in post-
processing by subtracting the deformed topography from this

FIGURE 4 | Inundation regions for Catania given earthquake scenario M1 for flow depth as indicated for different values of the Manning friction, n. We note that n
applies both in onshore and offshore regions and that high n in very shallow offshore water may dissipate some energy in the tsunami before it reaches the shore. Panels
(A–F) show respectively the maximum extent of inundation for a flow depth of 0, 1, 1.0, 2.0, 3.0, 5.0, and 10.0 m.
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value. The flow-depth is therefore sensitive to the onshore co-
seismic displacement which varies from scenario to scenario, in
addition to the water displacement offshore. We consider only
areas that were above sea-level prior to the earthquake. Figure 3
displays, for a given height, h, the area of land (in square
kilometers) for which the maximum flow depth exceeds h. We
note that both the horizontal and vertical scales vary from panel
to panel in Figure 3. Each set of panels corresponds to a different
earthquake scenario, and the curves for that scenario are reported
for all the 19 n coefficient values. We compare directly only the
shapes of the curves for the different values of n. All scales were
chosen to optimize the resolution of the relationships between the
different curves, even though this is at the expense of direct
comparison between curves in different panels.

The space between the curves in the y-direction gives a
measure of the sensitivity of inundation to the n parameter. If
the lines are very close together, it means that the inundated area
is not highly sensitive to the parameter for the given flow depth. If
the lines are far apart, it means that the modelled inundation
varies greatly for different values of the friction. The ratio between
the value of a curve for a given h and the value of the same curve at
h � 0 indicates the proportion of the inundated land experiencing
the indicated flow depth or higher. That the curves diminish
towards zero indicates that relatively small regions experience the
maximum flow depths calculated for each scenario. For smaller
flow depths, the lines diverge. Simulations with very low values of
n model inundation that covers far wider regions than
simulations with much higher values.

The results are evaluated for both Catania and Siracusa. We
see, in Figure 1, three fundamental differences between the
regions exposed to inundation at Catania and Siracusa. First,
that there is far less low-lying land at Siracusa than at Catania.
Second, that the Bay of Catania has almost 20 km of exposed
coastline compared with an inlet less than 2 km wide at Siracusa.
Thirdly, much of the Bay of Catania has several km of relatively
shallow water (less than 100 m deep) separating the coast from
the deep sea. At Siracusa, a large shallow bay is partially protected
by a large sea wall and the sea floor falls to great depth within a far
shorter distance than at Catania.

For the Bay of Catania, the inundation area vs n curves are
similar for scenarios M1 and M2. While the epicenters and angle
of strike for the two cases differ somewhat, both result in
comparable co-seismic subsidence in the region where the
inundation is measured. The curves for offshore earthquake
scenarios M3 and M4 also display somewhat similar shapes,
but the inundation is several times greater for scenario M4 than
for scenario M3. Scenarios M3 andM4 differ in the choice of both
the strike and dip angles. The strike angle for scenario M4 (157o)
makes the rupture more parallel to the coastline than is the case
for scenario M3 (strike � 67o), and the angle of dip for case M4
(50o) is greater than for case M3 (30o). Both these factors may
contribute to the higher inundation for scenario M4. Scenarios
M1 (strike � 67o) and M2 (strike � 157o) differ similarly in
orientation to scenarios M3 and M4. However, being far closer to
shore and with significant co-seismic displacement within the
coastal zone, the tsunami generation relative to the shore is more
complicated than for the more distant sources. There are many

factors affecting the inundation area metrics for scenarios M1 and
M2 and the similarity in the inundated extents may be quite
coincidental.

For Siracusa, the two scenarios M2 andM4 (both with strike �
157o) result in significantly greater inundation than either
scenarios M1 or M3 (both with strike � 67o). That the
inundation for scenario M4 significantly exceeds the
inundation for scenario M3 at Siracusa is, as for Catania,
likely the result of the strike angle being more aligned with
the coastline, resulting in an unfavourable directivity of the
tsunami. The corresponding difference between scenarios M1
and M2 is likely exacerbated by the significant co-seismic
subsidence at Siracusa for scenario M2 which does not happen
in scenario M1 (see uppermost panel of Figure 3).

Figure 4 illustrates what the inundation curves mean in terms
of the spatial pattern of the inundation for scenarioM1 at Catania
(as shown in the top left panel of Figure 3). We focus on the pre-
earthquake topography between zero and 10 m with a greyscale
indication of elevation. A sequence of coloured lines marks the
maximum extent of inundation for each of the specified levels of
flow depth as a function of the Manning friction. The
Southernmost part of the Bay of Catania is low-lying land
bounded by a steep rise in topography. Panel A shows that
the inundation of the low-lying region is stopped only by
topography for all but the highest (and least physical) values
of n. In the Northern part of the bay, the topography rises
somewhat more gradually. The extent of the inundation
increases steadily further inland for lower values of n. In this
northern part, the extent of inundation with the high friction
parameter of n � 0.09 is approximately 50% of the extent of
inundation with the respective low value of n � 0.01 with
intermediate (and more realistic) values resulting in
inundation extents between these extremes. Greater flow
depths (panels B through F) are increasingly restricted to the
near-shore region. In the more sloping northern part of the bay,
the limit of inland reach approaches the coast steadily for each
increase in flow depth considered. In the far flatter southern part
of the bay, the area of inundation is less sensitive to n. For flow
depths of 0–2 m (panels A–C, only the very highest values of n
prevent almost total inundation of the low-lying region. For a
flow depth of 5 m (panel E), only at the lowest values of n is there
inundation significantly inland. As expected from the inundation
curves in Figure 3, a flow depth of 10 m is recorded only close to
the shoreline to the north of the harbour wall (panel F).

Figure 5 displays the maximum momentum flux attained as a
function of location for each of the scenarios and for three chosen
values of n: 0.01, 0.03, and 0.05. This measure of the tsunami
impact changes more significantly with n than the spatial extent
of the inundation. The wave period of the incident wave is in the
order of 10 min; this gives rise to a positive wave forcing on the
coastline that lasts for several minutes. This will feed the inland
wave over a long time before the wave can retreat. In the lower
lying regions, the inundation will continue until stopped by an
ultimate topographic barrier. The flow depth, and consequently
the momentum flux, will decrease more with distance from the
sea for higher values of n. For areas with gently increasing
topography, the reduction in flow depth with distance
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resulting from the higher n will lead to a corresponding reduction
in the inundation distance.

Figure 6 displays corresponding patterns of maximum
momentum flux but for the region surrounding Siracusa.
Whereas the inundation in the Bay of Catania is very similar
for scenarios M1 and M2 (Figures 5A,B), the inundation at
Siracusa for scenario M1 (Figure 6A) is significantly lower than
that for scenario M2 (Figure 6B). This is easy to understand in
relation to the fault specifications (Figure 3). Both scenarios have
significant downward displacement along the Catania coastline
but only scenario M2 results in ground displacement directly at
Siracusa. Even though the inundation for scenario M1 is
significantly less at Siracusa, there are clear differences in both
the extent of inundation and in the maximum momentum flux
for the different values of n. In all cases, the inundation is greatest

for the town of Siracusa (at the northern end of the bay) although
inundation penetrates several km inland along the lowest-lying
ground both for scenarios M2 and M4.

SENSITIVITY OF INUNDATION TO
EARTHQUAKE SOURCE PARAMETERS

We perform four different sweeps of parameters, with one being
described in each of the following four sections. The first of these
sweeps considers sensitivity to the angle of rake. The second and
third sweeps scan jointly the parameters strike and dip,
considering separately the far offshore and the near-shore
earthquake sources. The fourth and final sweep investigates
the dependency on strike, dip, and depth.

FIGURE 5 | Maximum momentum flux recorded as a function of position in the Bay of Catania for earthquake scenarios M1, M2, M3, and M4 in panels (A–D)
respectively. Each panel shows the results of the simulations with Manning friction values 0.01, 0.03, and 0.05 as indicated.
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Sensitivity to the Angle of Rake
The angle of rake gives the relative direction in which the hanging
wall moves over the foot wall. A rake angle of zero or 180° is a
strike-slip fault, in which there is no vertical slip. A rake angle of
+90o is a reverse thrusting fault, where the hanging wall moves
upwards relative to the foot wall. A rake angle of 270° or −90° is a
normal fault in which the hanging wall moves downwards relative
to the foot wall. All other angles of rake indicate some form of
oblique faulting. The eastern coast of Sicily is approximately
North-South aligned such that a tsunami generated by an
earthquake to the East of Sicily will likely have greatest impact
if the rupture has a North-South strike angle. We also anticipate
that an dip angle of around 45–50°, accompanied by dip-slip

faulting (rake around 90° or −90°), will likely have the greatest
effect (Kajiura, 1980; Geist, 1998). We ran 48 simulations, with
strike angles of both 0° and 180° and the full range of rake angles
in increments of 15o. The epicenter for all the earthquake sources
selected was set to the point labelled D in Figure 1; this ensured
that no co-seismic displacement occurred on or close to land at
the coastline of interest.

In addition to the inundation maps, we also save time-series of
tsunami surface elevations at several offshore points of interest
from the numerical tsunami simulations. Figure 7 displays these
time-series for each of the 48 simulations, evaluated at a single
location offshore Catania: synthetic marigrams. Figure 7B is for
strike � 0o, where the fault dips to the East and away from Sicily,

FIGURE 6 | Maximum momentum flux recorded as a function of position around Siracusa for earthquake scenarios M1, M2, M3, and M4 in panels (A–D)
respectively. Each panel shows the results of the simulations with Manning friction values 0.01, 0.03, and 0.05 as indicated.
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FIGURE 7 | Varying the angle of rake. (A,B)Offshore surface elevation time-series generated by the Tsunami-HySEA code for the location 37.5368oN, 15.1333oE,
offshore of the Bay of Catania on Sicily as a function of minutes after the earthquake origin time. All channels are displayed to the same vertical scale with the red scale bar
indicating a vertical displacement of 4 m (C,D) Area of land inundated with a flow depth exceeding the value indicated by the colour for the tsunamis generated by the
earthquakes in the scenarios as indicated. The areas measured for Catania are within the region displayed in Figure 1C and the areas measured for Siracusa are
within the region displayed in Figure 1D. The curves are displayed for the following values of the height, h: 0.01, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 4.0 m.
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and panel (B) is for strike � 180o, where the fault dips to the West
and towards Sicily. As expected, the greatest amplitudes are
observed for the pure reverse faulting (rake � 90o) and the
pure normal faulting (rake � −90o) whereas the strike-slip
faulting results in very small wave-heights. As is quite well
established, the oblique faulting scenarios result in very similar
waveforms to the purely reverse and normal faulting scenarios,
just at lower amplitudes, as the faulting style controls the
proportion between horizontal and vertical coseismic sea floor
displacement; dip-slip faulting provokes a larger amount of the
more tsunamigenic vertical displacement.

The choice between strike 0o and strike 180o has a second
order effect on the amplitudes, affecting the shape of the waves
more than their amplitude. For the strike � 0o simulations (fault
dipping away from Sicily: Figure 7A), reverse faulting (rake > 0o)
results in a small initial drop in the offshore sea elevation, around
15 min after the earthquake, followed by a rapid increase, for
which the global maximum is achieved about 20 min after the

origin time. For the normal faulting earthquakes (rake < 0o) the
opposite occurs; a small increase is followed by a significant
decrease with maximum inundation happening some 20 min
after the initial wave arrival. For the strike � 180o simulations
(fault dipping towards Sicily: Figure 7B), with reverse faulting,
the maximum sea elevation still happens on the first upward wave
but with a somewhat slower rise. For the normal faulting sources,
the offshore elevation is somewhat lower than both the reverse
faulting sources and the normal faulting sources for the strike �
0o case.

Figures 7C,D shows the dependence of the inundation
features to the faulting parameters. We choose several discrete
target flow depth values, h, and for each we plot, as a function of
the rake angle, a curve of the area of land inundated with
maximum flow depth greater than h. This is done separately
for Catania and Siracusa, and for strike � 0o and strike � 180o, as
indicated. For both Catania and Siracusa, and both strike � 0o and
strike � 180o, there is an approximate order of magnitude scaling

FIGURE 8 | Area of tsunami inundation in km2 for Catania (A,C) and Siracusa (B,D) for earthquake scenarios with fault centers at point D (significantly offshore).
Panels (A,B) display inundation for rake � 90o (reverse faulting) and panels (C,D) for rake � −90o (normal faulting). The colour scales differ for the two locations, reflecting
the areas subject to inundation, but are identical for the normal and reverse sources at both locations.
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factor between the inundated area given a normal or reverse
thrust fault movement (rake � 90o or -90o) and the inundated
area given a purely strike-slip fault. For Catania, the reverse
thrusting faults generate a 20–25% greater inundation than the
corresponding normal faults, which reflects the ratio between the
positive and negative offshore amplitudes (Figures 7A,B). For
Siracusa, there is less of a difference. As expected there is a quite
simple relation between the rake angle and the area of inundation,
supporting the assumption that we can limit our parameter
searches in PTHA earthquake scenarios to the cases 180o, 90o,
0o, and −90o (as with e.g. Selva et al., 2016; Basili et al., 2021) and
estimate from calibration curves what the inundation would be
for oblique faulting. We appreciate that there may be situations in
more complicated topo-bathymetry where the angle of rake and

severity of inundation could have a more complicated
relationship.

Sensitivity to the Fault Strike and Dip (Far
Offshore Case)
For the second sweep of earthquake parameters, we stay at the
further offshore source location (Figure 1D) and vary the angles
of strike and dip while assuming rake angles of +90o or −90o. We
cover the full range of strike angles in intervals of 10o and
consider dip angles in the range 10o–70o, also in intervals of
10o. Figure 8 displays the inundated area in the Bay of Catania
(panels A and C) and at Siracusa (panels B and D) as a function of
strike and dip using intensity of colour in a wheel; the sources

FIGURE 9 | Inundation maps for Catania and Siracusa for the relatively distant offshore earthquakes as indicated together with surface elevation time-series as
simulated at the location 37.5368oN, 15.1333oE. Panels (A,B) display inundation maps and time-series for rake � 90o, panels (C,D) for rake � −90o. The time-series are
all for the dip � 50o scenarios. Vertical surface elevation scales and colour scales are identical for all panels.
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with shallow dip angles (dip � 10o) are displayed in the outer ring
and sources with increasingly steep dip angles displayed
progressively closer to the center. The upper panels (A and B)
are for reverse thrust faulting earthquakes and the lower panels (C
and D) are for normal earthquake sources.

Strike and dip seem to influence the inundation area almost
independently, with the peaks induced by the dip at
intermediate angles that modulate the trend imposed by the
strike angle. The strongest dependence is with the strike angle
with by far the greatest inundation for sources with strike
angles in an approximately North-South direction. The
strike angles resulting in the most significant inundation
differ slightly for the two coastal stretches, matching almost
perfectly the corresponding coastline orientations at the two
locations (see Figure 1B). A strike angle differing from this
direction by 30° or more results in a significant decrease in the
inundation area.

The dip angle dependence is weaker than the strike angle
dependence. Maximum inundation typically occurs for a dip
angle around 45o degrees although there are exceptions. The
steeper dip angle sources result in greater inundation for some
strike angles (at Siracusa in particular) and only for the shallowest
dip angles (e.g. 10o) is the inundation extent significantly lower
than for the steeper angles. There is significant symmetry between
the inundation areas resulting from the reverse fault earthquakes
(Figures 8A,B) and the corresponding normal counterparts
(Figures 8C,D). Inundation varies relatively smoothly with
both strike and dip and it appears that the chosen
discretization is sufficiently fine that no qualitatively different
inundation patterns have been omitted. Each of the rose
diagrams in Figure 8 contains the results from 252
calculations such that, with this sampling density, 504
scenarios are required to cover the strike, dip, and rake
parameters alone for a single location, depth, dimensions,

FIGURE 10 | Area of tsunami inundation in km2 for Catania and Siracusa for the earthquake scenarios with fault centers at point B (near-shore). Panels (A,B) display
inundation for rake � 90o, panels (C,D) for rake � −90o. The colour scales differ for the two locations, reflecting the areas subject to inundation, but are identical for the
normal and reverse sources at both locations.
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and slip specifications. In a PTHA, where many fault centers,
magnitudes, and slip specifications need to be covered, we
would ideally like to reduce the sampling density for these
angles. Given the relatively small range of the strike angles
resulting in the greatest inundation, it seems necessary to have
30-degree intervals or finer for the angle of strike for resolving
this parameter space in hazard analysis. The smaller sensitivity
to the dip angle would suggest that the sampling interval in dip

could be reduced without fear of introducing significant bias in
inundation quantification.

Figures 9A,C show maximum flow depth maps at both
Catania and Siracusa for four of the scenarios displayed in
Figure 8 resulting in the greatest inundation areas. All
scenarios have a dip angle of 40o and we consider strike � 0o

and 180o for both normal and reverse earthquake mechanisms.
The patterns of maximum inundation are relatively consistent for

FIGURE 11 | Inundation maps for Catania and Siracusa for the relatively distant offshore earthquakes as indicated together with surface elevation time-series as
simulated at the location 37.5368oN, 15.1333oE. Panels (A,B) display inundation maps and wave height for rake � 90o, panels (C,D) for rake � −90o. The time-series are
all for the dip � 50o scenarios. Vertical surface elevation scales and colour scales are identical for all panels.
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all scenarios with no qualitative differences observed. Panels B
and D shows synthetic marigrams at the same offshore point as
displayed in Figure 7 for each of the calculations with dip � 50o.
Whereas the wave arrival time was almost identical for all the
traces in Figure 7, with a fixed strike angle and varying rake, there
is an almost sinusoidally varying arrival time for the traces in
Figure 9. The East-West striking sources result in weaker
inundation but an earlier arriving wave, as part of the seafloor

displacement occurs closer to the sensor. The maximum surface
elevations achieved for strike � 0o and strike � 180o are similar
although there are subtle differences in the shape of the
waveform. The gradual change in the shape of the wavelet
with the 10o increment in the strike angle is again a good
indication that the applied parameter sampling density is
sufficient for a qualitative understanding of the behaviour over
the full range of strike angles. We note that these single-point

FIGURE 12 | Area of inundation in the bay of Catania as a function of strike, dip, and depth for tsunamis with the earthquake sources with rake � 90o. Panels (A–F)
indicate respectively inundation resulting from earthquakes with depths 0, 1, 5, 10, 15, and 20 km.
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offshore time-series do not provide any information about the
directionality of the wave. The offshore wave amplitudes are
lower for the East-West striking sources than for the North-South
striking sources and the oblique directivity of the incoming wave
will likely reduce the inundation further.

The simulated offshore marigrams in Figures 9B,D indicate
the most significant differences between the normal and reverse

faulting sources. For the reverse mechanisms (Figure 9B), the
maximum surface elevation is attained on the first peak; the
corresponding times in the traces for the normal mechanism
earthquakes (Figure 9D) has a negative peak with similar
amplitude. Along the wavetrain, there is considerable
symmetry between each trace for the reverse thrusting
earthquake in Figure 9B and the negative of the

FIGURE 13 | Area of inundation in the bay of Siracusa as a function of strike, dip, and depth for tsunamis with the earthquake sources with rake � 90o. Note that the
colour scales in Figures 12, 13 are different with lower areas of inundation for the smaller bay at Siracusa. Panels (A–F) indicate respectively inundation resulting from
earthquakes with depths 0, 1, 5, 10, 15, and 20 km.
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corresponding trace for the corresponding normal source in
Figure 9D. As we observed for the normal faulting sources in
Figure 7, the first major peak in amplitude is downwards and the
maximum upward offshore wave-height arrives some
20 min later.

Sensitivity to the Fault Strike and Dip
(Near-Shore Case)
We repeat an identical set of calculations to those in the previous
section, with the significant difference that all sources here have
an epicenter at the point B: the one closest to the shore of interest.
Figure 10 displays the exact analogies of the quantities displayed
in the panels of Figure 8 but for the near-shore earthquakes.
Almost every symmetrical feature in Figure 8 is replaced by an
asymmetric (or antisymmetric) feature in Figure 10. For the
significantly offshore earthquake sources (Figure 8), there is a
relatively simple relationship between the inundation area and
the strike angle, for a given dip angle, and similarly between the
inundation area and the dip, for a given strike angle. (The
functions of strike have maxima near 0o and 180o and minima
near 90o and 270o; the functions of dip have maxima close to 45o.)
For the close-to-shore earthquakes, there are also trends
indicating significant dependencies of inundation on the
specific combination of strike and dip.

The patterns of inundation area for the distal reverse
faulting sources (Figures 8A,B) are almost identical to the

corresponding patterns for the distal normal faulting sources
(Figures 8C,D). All panels of Figure 10 show complicated
patterns of dependence upon the strike and dip angles with
non-linear dependencies on the two different parameters. The
inundation rose plots for the near-shore reverse faulting
sources (Figures 10A,B) are almost inverse images of the
corresponding plots for the near-shore normal faulting
sources (Figures 10C,D). The relationship between the land
orientation and the source orientation varies greatly from case
to case for the near-shore earthquakes, with the exact spatial
form of the uplift or subsidence depending strongly on both
angles of strike and slip. From the present analysis, we cannot
determine the causative reason for this parametric control on
the inundated area, but we note the following aspects that can
provide a substantial influence: First, the rake angle controls
the displaced volume of water and the depth of generation, this
provides two different proxies for the tsunamigenic strength.
The displaced volume and distribution of the initial wave
naturally influences this strength and the depth influences
the relative contribution of shoaling. Second, the source
orientation influences the relative orientation towards the
shoreline, influencing the wave directivity. Third, as the
angle of rake determines either upward or downward
displacement, the complementary nature of panels (A, B)
and (C, D) in Figure 10 indicate that the co-seismic
displacement on land can influence the spatial extent of the
tsunami inundation for these sources. These trends are

FIGURE 14 |Offshore time-series of tsunami surface elevation as a function of dip angle and depth for tsunamis from earthquake sources with rake � 90oand strike
� 0o. The scenario with the top of the fault at 1 km depth is displayed in red and was included first and foremost as a check that there was no fundamental or qualitative
difference between having the top of the fault plane at zero or close to zero. Panels (A–D) show the results using dip angles of 10°, 30°, 50°, and 70° respectively.

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 75761818

Gibbons et al. The Sensitivity of Tsunami Impact

107

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


difficult to predict and to be generalized. Therefore, for a
PTHA, a rather fine discretization of the parameters seems
to be required for near-field sources.

Figure 11 shows corresponding inundation areas for
Catania and Siracusa for four selected earthquake
scenarios. All these sources have strike angle 20o but differ
in dip and rake angles and show very different inundation
patterns on both stretches of coastline. Figure 11A shows
inundation maps for two reverse thrusting earthquakes with
dip angles 10o and 70o. The shallow dip reverse fault
earthquake results in moderate inundation at both Catania
and Siracusa whereas the steep dip earthquake results in
severe inundation at Catania and exceptionally little at
Siracusa. The maps in Figure 11A provide an
interpretation of the relative colour scales in Figures
10A,B. For the normal fault earthquakes with the same dip
angles (Figure 11C), the situation is the exact reverse. There
is severe inundation at Catania for the shallow dip source and
less for the steep dip source. The opposite is also seen at
Siracusa; there is far greater inundation for the steep dip
earthquake than for the shallow dip source.

The surface elevation time-series (Figures 11B,D) are also
distinctly different from the corresponding traces in Figure 9. For
the offshore sources (Figure 9), there is a delay of between 10 and
20 min between the time of the earthquake and the water wave
reaching the sensor; the exact time of arrival varies near-
sinusoidally with the angle of strike. For the near-shore
sources (Figure 11), the displacement of water at the location
of the sensor is immediate or almost immediate after the
earthquake.

Sensitivity to the Earthquake Depth
Our final parameter sweep explores the sensitivity of the
inundation to the depth of the earthquake, in addition to the
angles of strike and dip. The fault centers of all earthquakes are
located at point C in Figure 1. As it is primarily depth we are
focusing on, we present a coarser discretization of the angles of
strike and dip. The earthquakes are located such that little or no
co-seismic displacement is to be expected at the coast. However,
the distance between the extremes of the fault plane and the coast
becomes relatively small for values of the strike close to 90 or 270°.
Figure 12 displays the inundation rose plots for the bay of
Catania for the reverse thrusting scenarios at six different
depths. The depth displayed is that of the top of the fault,
such that one adds half the product of the fault width and the
sine of the angle of dip to get the depth of the fault center.

Figures 12A–C, for the shallowest events, all display quite
similar rose plots. The inundation is strongest for the strike � 0o

and strike � 180o scenarios, although the inundation for the 45o

and 225o scenarios is more significant than for the more distant
earthquakes displayed in Figure 10. The dependence upon the
dip angle is quite strong with significant inundation for dip � 50o

and very little inundation for dip � 10o. However, this
dependency is significantly influenced by the depth of the
source; the deeper the source, the weaker the dip-dependence
becomes. Indeed, Figures 12D–F show the dip and strike
dependence for progressively deeper earthquakes and, while
the strike-dependence remains quite constant, the variability
with the angle of dip diminishes. For the deepest earthquakes
(panel F), the dependence is almost purely a function of
strike alone.

FIGURE 15 |Maximum flow-depth in meters recorded for simulations with strike � 0o, rake � 90o, and dip � 70o with depth 0 km (panels (A,C)) and depth 20 km
(panels (B,D)).
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This is interpreted as an effect of the deeper earthquakes
providing more smoothing of the initial seabed displacement,
which reduces the tsunami variability. Figure 13 shows the
inundation area at Siracusa for the same set of scenarios
displayed in Figure 12 for Catania. The severity of tsunami
inundation varies with strike angle somewhat differently for
the two locations. However, the first order observations are
consistent; the inundation is most significant for North-South
striking earthquake sources and the dependence upon the angle
of dip diminishes with greater depth. For PTHA, the trend is quite
smooth. Thus, the consideration of different depth is very
important, but a rough discretization may be sufficient to
cover the natural variability of tsunami inundation.

Figure 14 displays offshore surface elevation time-series with
the panels (A), (B), (C), and (D) showing the time-series as a
function of depths for the angles of dip for the panels as indicated.
For the sources closest to the surface, the surface elevation is very
sensitive to the angle of dip with the uppermost traces in panels
(A), (B), (C), and (D) increasing in amplitude. The lowest
amplitude wave-heights for the dip � 10o case is consistent
with the minimum area of inundation displayed in Figures
12A, 13A. Like with the inundation areas in Figures 12, 13,
the surface elevation time-series displayed in Figure 14 become
more and more similar for the different angles of dip as the depth
decreases.

The maximum flow depths recorded in the simulations for
which the time-series are displayed in Figure 14D (uppermost
and lowermost traces) are mapped out in Figure 15. The
shallow source results in a higher amplitude wavetrain with
shorter period waves than the deeper source. The inundation
maps for the Bay of Catania (Figures 15A,B) for the two
scenarios are very similar, the greatest differences being
observed to the North where the near-shore water is
deepest. The difference in the maximum flow depth for
Siracusa is much greater with far higher flow depths
recorded for the shallow source than the deep source.

CONCLUSION AND DISCUSSION

We have performed multiple numerical simulations modelling
earthquake-generated tsunamis in the Mediterranean Sea, where
the inundation at the towns of Catania and Siracusa on the island of
Sicily is estimated on 10m by 10m resolution grids. The non-linear
shallow water Tsunami-HySEA model was used with a system of
nested grids, with a scale of four increase in cell dimensions for each
level. All earthquake sources were modelled using uniform slip on a
single rectangular fault segment, modelling large earthquakes
centered at four different locations. We performed parameter
sweeps studying how the inundation at Catania and Siracusa
varied with the Manning friction, n, and different combinations
of the geometrical Okada fault parameters. We have performed
both an analysis of the dependence of the inundation characteristic
to the input parameter variation (seismic parameters) and to the
model parameterization (Manning coefficient), but we also briefly
discussed the sensitivity to the adopted discretization, that is to say
how densely the allowed parameter ranges are sampled. Just as

Burbidge et al. (2015) demonstrated that offshore tsunami height is
a complex function of earthquake parameters, we demonstrate
significant differences in the intensity and extent of onshore
inundation both as a function of source and friction parameters.

We confirm that the Manning friction, n, is a significant
parameter in determining the extent of inundation in
numerical tsunami simulations. The sensitivity of the
inundation to the choice of this parameter is dependent upon
the amplitude of the incoming wave and on the topography of the
coastal region. In our study of the inundation of the Bay of
Catania in Sicily, we showed that the sensitivity of the inundation
area to the Manning coefficient is likely greatest when the
topography increases gently. While increasing n reduces the
geographical extent of the inundation, the reduction in the
momentum flux is likely far larger. This metric may have
greater significance as a hazard indicator than the tsunami
flow depth. When PTHA is focused on quantifying inundation
area, the results of our test show that there is a significant
dependency of the results on the selected Manning coefficient.
This means that more attention should be devoted in future local
PTHA analyses to constraining the arising epistemic uncertainty,
which may significantly impact the overall results.

For PTHA, we need a meaningful discretization of all potential
earthquake tsunami sources. To make a PTHA computationally
feasible, and calculable in a time-frame of interest, we want the
minimum number of scenario definitions possible, while
adequately covering the expected aleatory variability and related
parameter space, and eventually different parameterizations or
ranges stemming from the description of the epistemic uncertainty.
In this study, we have considered only uniform slip on faults of a single
dimension and only a single value of the slip. In addition, we have
greatly restricted the number of earthquake locations. These
limitations have allowed us to cover the angles of strike, dip, and
rake using a fine discretization. Knowing how finely the source
parameter space needs to be discretized is not possible, or is highly
subjective, without a comprehensive sensitivity study. Or, seen the
other way around, the risk is to adopt a too fine discretization to avoid
undersampling. We wish for a discretization of each parameter such
that no scenarios with significantly different tsunami impact are
missed. In other words, the tsunami impact for a scenario with a
given value of one parameter can be reasonably well predicted from
the tsunami impact resulting from scenarios with neighbouring values
of that parameter. Our goal is that the behaviour at arbitrarily specified
points in our parameter space can be well interpolated from the
behaviour at the points in our discretization.

We see examples of relatively smoothly varying behaviour as a
function of the angle of rake (Figure 7) and the angles of strike
and dip (Figure 8) for significantly offshore earthquakes. The
continuity of the inundation metrics and the shapes of the
offshore time-series with changes in these parameters give us
confidence that the number of simulations performed can be
limited to relatively few points in this parameter space for a given
fault size and epicenter. In practice, this means for offshore
earthquakes that we can probably consider only rake � 90o

and rake � −90o, angles of strike in 30-degree increments, and
3 or 4 different values of the dip angle. For scenarios similar to
those studied here, the tsunami impact from earthquakes with
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intermediate parameters can likely be well estimated using a
relatively sparse set of scenarios. When the earthquake sources
are far closer to the shore where inundation occurs, a far finer
discretization of the hazard may be needed. The spatial
distribution and intensity of the inundation is also greatly
influenced by the co-seismic deformation (c.f. Volpe et al.,
2019). We found that the impact of far offshore earthquakes
was very similar for normal and reverse faulting, despite
significant differences in the wave height time-series and
implied consequences for the time before maximum
inundation (Figure 9). For near-shore earthquakes, the impact
metrics for normal faulting (rake � −90o) are almost an inverse of
the impact metrics for reverse faulting (rake � 90o).

Finally, in a more limited sweep of strike and dip angles for
offshore earthquakes, we demonstrate that the dependency upon
the angle of dip decreases for deeper sources. For earthquakes
close to the sea floor, shorter period waves are generated and there
are significant changes in the tsunami intensity as we change both
angles of strike and dip. For deeper earthquakes, only the longer
period waves are excited and the tsunami intensity becomes less
affected by the angle of dip. The strike angle is still significant for
deeper earthquakes.

Despite the large number of simulations performed in this
study, only a tiny fraction of parameter space has been covered. It is
first noted that only two small stretches of coast have been studied,
with a relatively simple relation between orientation of the coast to
the locations of the prescribed earthquakes. Stretches of coastline
with other geometries will likely experience tsunami impact which
varies with source parameters in different ways. Some of the
asymmetries displayed in this study are likely related to specific
characteristics of the topo-bathymetry combined with the source
orientations. These complications will increase as more
complicated source geometries and more realistic models of
heterogeneous slip are employed. Serra et al. (2021), for
example, recently studied the sensitivity of tsunami height along
the Iberian coast as a function of complex fault geometry and
variable slip and find significant variability in the tsunami impact
for different realizations. Such offshore studies illustrate how the
relationship between slip distribution and bathymetric features
influences near-shore wave height for extensive coastal stretches.
However, the inundation problem represents an enormous
increase in the computational cost and yet remains essential for
assessing long term local tsunami hazard.

There may be several strategies for predicting onshore tsunami
impact from offshore models. Davies et al. (2021) apply efficient
Monte-Carlo sampling to estimate onshore PTHA from offshore.
Liu et al. (2021) apply different Machine Learning (ML)
techniques to predict tsunami amplitude at forecast points
based upon short-term time-series at more offshore
observation points; it is conceivable that an extension of such
ideas will allow realistic inundation forecasts with high spatial
resolution based upon offshore models and ML with a sufficient
set of training data. For both ideas, simulated high-resolution
inundation as a function of finely resolved parameter spaces will
provide good validation of model forecasts. As PTHA with high-
resolution inundation simulations becomes increasingly feasible
for vast numbers of tsunamigenic scenarios, we seek a tsunami

hazard quantification that is converged with respect to the
granularity of the source discretization and modelling
parameters. This work is a step in that direction.
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High-Performance Computing of 3D
Magma Dynamics, and Comparison
With 2D Simulation Results
Deepak Garg* and Paolo Papale

Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa, Italy

The dynamics of magma is often studied through 2D numerical simulations because 3D
simulations are usually complex and computationally expensive. However, magmatic
systems and physical processes are 3D and approximating them in 2D requires an
evaluation of the information which is lost under different conditions. This work presents a
physical and numerical model for 3Dmagma convection dynamics. Themodel is applied to
study the dynamics of magma convection and mixing between andesitic and dacitic
magmas. The 3D simulation results are compared with corresponding 2D simulations. We
also provide details on the numerical scheme and its parallel implementation in C++ for
high-performance computing. The performance of the numerical code is evaluated
through strong scaling exercises involving up to > 12,000 cores.

Keywords: magma dynamics, 3D numerical simulations, Rayleigh-Taylor instability, incompressible-compressible
multicomponent flow, VMS finite element method, strong-scaling, 3D-2D comparison

1 INTRODUCTION

Understanding magma transport in the crust is one of the major challenges in modern volcanology.
Current models depict magmatic systems as an interconnected network of compositionally
heterogeneous magmas, involving multiple chambers and dikes that extend from shallow to
deep levels in the crust (Gudmundsson, 1995; Gudmundsson, 2011; Blundy and Annen, 2016).

Magma chambers are the main engines of active volcanoes and serve as a storage region for
magma ascent and its chemical evolution (DePaolo, 1981; Bachmann and Bergantz, 2003). The
pressure in the chamber may vary largely over time due to a variety of processes, including fractional
crystallization, volatile exsolution and magma recharge, potentially leading towards an eruption
(Sparks and Huppert, 1984; Folch and Marti, 1998; Gudmundsson, 2012; Edmonds and Wallace,
2017; Papale et al., 2017; Cassidy et al., 2018). Therefore, studying magma dynamics in a chamber is
of utmost importance and has become a mainstream theme over the recent years (Bergantz, 2000;
Couch et al., 2001; Gutiérrez and Miguel, 2010; Karlstrom et al., 2010; Bergantz et al., 2015; Garg
et al., 2019) as the ongoing flow dynamics and associated surface signals can depict the current state
of the volcano and its possible evolutions (Gottsmann et al., 2011; Longo et al., 2012a; Bagagli et al.,
2017; Sparks and Cashman, 2017; Carrara, 2019; Lieto et al., 2020).

Typically, buoyancy instabilities develop when a low-density, volatile-rich, primitive, hot
magma ascends in the crust and interacts with previously stored, more chemically evolved,
partially degassed and denser magma in shallow chambers (Semenov and Polyansky, 2017;
Garg et al., 2019). There are multiple pieces of evidence of eruptions shortly preceded by
interaction of compositionally different magmas at shallow depths (Tomiya et al., 2013; Sides
et al., 2014; Perugini et al., 2015; Sundermeyer et al., 2020). The degree of magma mixing,
which spans a continuum from mechanical mingling to complete chemical homogenisation,
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depends upon the magma properties, the driving forces, and
the time available for mixing (Garg et al., 2019).

Recently a number of authors [e.g., (Sparks and Cashman,
2017), and references therein] have been hypothesizing that
although usually not seen among the erupted volcanic
products, a crystal-rich mush may constitute a large dominant
portion of the magmatic plumbing system, with dominantly
liquid magma possibly being an ephemeral occurrence driven
by melt segregation and contributing to characterize the unrest
and eruption states of the volcano. Clear evidence from active
magmatic systems is not available yet, as volcanic plumbing
systems continue to be hidden from direct observation. A few
accidental encounters with buried shallow magma bodies during
geothermal drilling do not appear to support the presence of
important layers of mushy magma across the rock-magma
transition (Eichelberger, 2020). More is needed before we get
to a clear, robust picture of active magmatic systems, justifying
substantial efforts to overcome the current limitations in directly
observing, measuring and sampling underground magma
(https://www.kmt.is). Here we focus on either dominantly
liquid reservoirs, or on the dominantly liquid core region of
mushy magma reservoirs, over time scales that are typical of
individual magma convection events, likely much less than the
time scales associated with the existence of ephemeral liquid-
dominated magmatic bodies.

Over the years significant efforts have been invested to study
several aspects of the magma physics relevant to understand
the volcano dynamics and anticipate their evolution. The
physics of magma mixing has been studied through
numerical simulations and experiments with both synthetic
and natural compositions (Campbell and Turner, 1986;
Huppert et al., 1986; Jellinek and Kerr, 1999; Michioka and
Sumita, 2005; Sato and Sato, 2009; De Campos et al., 2011;
Laumonier et al., 2014; Morgavi et al., 2015; Perugini et al.,
2015; Bergantz et al., 2015; Schleicher et al., 2016; Garg et al.,
2019). Usually, numerical simulations are simplified by
referring to a 2D geometrical configuration, because 3D
dynamics can be very complex and are extremely expensive
in terms of required computational resources. Even 2D magma
mixing simulations need extremely refined meshes to capture
the flow features down to the dm (or lower) scales that are
sometimes required, e.g., at the intersection between feeding
dykes and chambers (Longo et al., 2012a; Papale et al., 2017).
Solving such problems in 3D on a single computer is practically
impossible. Nowadays the simulations are usually run over
clusters of cores providing high speed data processing
capability. In high performance computing (HPC) paradigm,
many processors work simultaneously to produce exceptional
computational power and to significantly reduce the total
computational time (Dowd and Charles, 2010; Flanagan
et al., 2020). High performance is achieved through parallel
computing in which large computational domains are
subdivided into smaller, interconnected ones, which can be
solved at the same time (Gottlieb, 1989; Asanovic et al., 2006).

So far the numerical simulations performed for magmamixing
in the literature are in 2D (Bergantz, 2000; Longo et al., 2012a;
Papale et al., 2017; Garg et al., 2019). However, strictly speaking,

2D calculations apply only to flows that are inherently two-
dimensional, and can be extended to real 3D systems only
under restricted conditions whereby any change in physical
quantities over the third dimension can be neglected. Real
magmatic systems are commonly such that 2D simplifications
can only be introduced with some arbitrariness, typically with
the objective of extracting zero-order approximations of
more complex 3D processes and dynamics. In most cases,
however, the loss of information due to 2D simplification is
unknown.

The purpose of this work is that of 1) presenting a physical
and numerical model for transient 3D magma dynamics,
including its parallel implementation and scaling performance,
2) applying the model to 3D magma chamber convection
dynamics in an initially stratified, gravitationally unstable
magma chamber, and 3) comparing the 3D simulation results
with the 2D case.

2 MAGMA FLOW MODEL

Natural magmas are composed of crystals, melt oxides and
volatiles, with the latter that can be dissolved in the liquid
phase or exsolved in a gas phase with proportions depending
on local pressure (p), temperature (T), and composition (Y). Flow
conditions span wide ranges from essentially incompressible to
largely compressible, including supersonic flow during eruptions.
In magmas where the volatiles are largely dissolved, and theMach
number is ≪ 1, the flow remains weakly compressible. In this
work we are specifically interested in modelling the flow
dynamics inside magma chambers where two compositionally
different magmas interact with each other. The model that we
present is however general, and can be applied to transonic flow
as well.

We model compressible/incompressible flow of multi-
component magma with GALES (Longo et al., 2012b; Garg
et al., 2018a; Garg et al., 2018b; Garg et al., 2021). The
numerical scheme and parallel implementation in GALES are
described in Appendixes A, B. GALES has been validated on a
number of 2D/3D benchmarks for multi-component
compressible/incompressible flows (Longo et al., 2012b),
single-component compressible/incompressible flows (Garg
et al., 2018a), free surface flows (Garg et al., 2018b) and fluid-
structure interaction (Garg et al., 2021). Additional validation
tests for compressible and incompressible flows with 3D
geometries are reported in the Supplementary Material.

The properties of each magma component in GALES are
computed from local conditions including composition in
terms of ten major oxides plus the two major volatile species
H2O and CO2. The mixture is assumed to be in chemical,
mechanical and thermodynamic equilibrium. The flow is
governed by the following equations:

zρ

zt
+  · ρv( ) � 0 (1)

z ρv( )

zt
+  · ρv ⊗ v( ) �  · σ + ρb, (2)
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z ρE( )

zt
+  · ρEv( ) �  · σv − q − h′J( )′( ) + ρ b · v( ), (3)

zρYk

zt
+  · ρvYk( ) � − · Jk k � 1, 2, . . . , n (4)

Equations 1–3 represent mass, momentum and energy
conservation of the mixture, while Eq. 4 is mass conservation
of the kth component in the n-component mixture. The
equations are same as in (Garg et al., 2019) with a three-
dimensional extension of vector and tensor quantities. In the
above equations, Yk is the mass fraction of the kth component,
with ∑kYk � 1. This implies that for given n components, only
n − 1 components are independent and require each one
expression of Eq. 4. For an n-component mixture, the
density (ρ) is given by:

1
ρ
� Y1

ρ1
+ Y2

ρ2
+/ + Yn

ρn
(5)

where ρk is the density of the kth component which depends on
local p-T and composition; v is the velocity; b is body force vector
per unit mass; E � cvT + |v|2/2 is total specific energy, with cv
being the specific heat capacity at constant volume; T is
temperature; h is the vector of specific enthalpies for the
components.

The mass diffusion flux is modelled with Fick’s law as

Jk � −ρDYk (6)

where D is the mass diffusion coefficient matrix. Viscous flux is
modelled as

σ � μ v + v( )′( ) − 2
3
μ  · v( )I − pI

� τ − pI
(7)

where p is pressure, μ is the viscosity of the mixture and τ is the
viscous stress tensor. The heat flux is modelled by Fourier’s law:

q � −κT (8)

where κ is thermal conductivity.
Equations 1–4 are written in the conservative form and

describe fully compressible flow. The incompressible flow
equations are merely a simplification of the above equations
by referring to a constant density. We remark that although in
magma reservoirs the Mach number is usually very low, the
density of the magmatic mixture varies, mostly as a response to
phase changes of volatile components. Therefore, considering
the flow as fully incompressible would miss many important
flow features of gas-bearing magmas.

In magma reservoirs, and over the time scale of individual
convection events analysed here, phase separation is of
minimum importance. In our previous works (Longo et al.,
2012a; Papale et al., 2017; Garg et al., 2019) we have estimated
that flow Stokes number St � t0v0/l0, where t0 is the relaxation
time of the crystal, v0 is the flow velocity and l0 is the diameter
of the crystal, remains very low, of order 10–4 for crystals up
to cm size. The same is true for gas bubbles. Based on the
typical gas volume fractions obtained in our previous works
and assumed bubble number density as low as 1014 m−3

(Cashman, 2000), the value of St remains less than 10–4. The
low value of St indicates that mechanical phase separation is
negligible, and the relative velocity terms describing phase
separation can be safely ignored.

The physical properties of magma are modelled as a function
of local pressure, temperature and composition in the space-
time domain, as they evolve during magma convection and
mixing. Throughout this paper the word “mixing” refers to the
scale of our analysis, whereby the smallest elements in the
computational domain have linear dimension of order 1 m.
At such a scale many orders of magnitude larger than the
scale of molecules, and for the employed computational
times of order a few hours, chemical mixing is unresolved
and likely to be poorly effective. Therefore, we refer only to
mechanical mixing whereby both magma types are present
within individual computational elements, with no reference
to physical processes occurring at the molecular scale.

As components for use in Eq. 4 above, we refer here to the
magma types involved in convection and mixing (e.g.,
“andesite”, “rhyolite”, etc.), each expressed in terms of oxides
including volatile species. Accordingly, each component is
modeled as a mixture of 1) silicate melt including the
dissolved volatiles and 2) exsolved volatiles. Non-reactive
crystals can be added and their effects in modifying the
mechanical and thermal properties of magma can be
accounted for (for simplicity, however, we have neglected
crystals in the computations illustrated below). The density
of the volatile free silicate melt is modelled according to
(Lange, 1994) and the effects on the density by dissolved
H2O is computed by the model of (Burnham et al., 1969).
For the gas phase, we use the ideal gas equation as the
equation of state. For each magma, the phase distribution of
volatiles is computed by multi-component (H2O + CO2) gas-
melt equilibriummodelling (Papale et al., 2006). The viscosity of
each magma component is modelled as a function of oxide
composition, dissolved H2O and temperature (non-Arrhenian)
as described in (Giordano et al., 2008), with the effect of non-
deformable gas bubbles accounted for by the model of (Ishii and
Zuber, 1979) and strain-rate dependent non-Newtonian
rheology due to the presence of crystals and of deforming
bubbles (Caricchi et al., 2007; Pal, 2003). The viscosity of the
two-component mixture is modelled as μ � ∑kxkμk, where xk
and μk are, respectively, the mole fraction and the viscosity of
the kth mixture component (again, in our case, “andesite”,
“rhyolite”, etc.). The specific heat capacity at constant
pressure for the melt is computed as cp � ∑jxjcpj, where cpj
and xj are, respectively, the specific heat capacity at constant
pressure and mole fraction for the jth oxide subcomponent
[Table 1 in (Garg et al., 2019)]. The specific heat capacity at
constant volume, cv is computed as cv � cp − α2T/(βρ), where α
and β are isobaric expansion coefficient and isothermal
compressibility coefficient, respectively. In this work we use a
constant thermal conductivity, κ � 1.2Wm−1K−1 (Garg et al.,
2019).

The numerical scheme and the stabilization terms employed
for the solution of the set of Eqs 1–4 above, are reported in the
Appendix.
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3 APPLICATIONS TO MAGMA MIXING
DYNAMICS

As discussed above, magmatic systems often consist of multiple
heterogeneous magmas stored in a network of interconnected
sills and dykes. Magma mixing is understood as one of many
possible mechanisms for triggering an eruption (Sparks et al.,

1977). Petrology and geochemistry analysis indicates that
multiple intrusions of mafic to intermediate magma in more
chemically evolved magmas stored at shallow depths may
produce hybrid melts with zoned crystals. Sometimes the
ejecta contain abundant inter-mingled hybrid magmas,
suggesting efficient stirring and mingling in the reservoir as a
result of replenishment and convection dynamics (Turner and

TABLE 1 | Composition of magmas and list of simulations. For consistency with the corresponding 2D cases in (Garg et al., 2019), we keep the same simulations
numbering here.

SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O

Andesite 58.70 0.88 17.24 3.31 4.09 0.14 3.37 6.88 3.53 1.64

Dacite 65.98 0.59 16.15 2.47 2.33 0.09 1.81 4.38 3.85 2.20

Simulation Andesite Dacite Viscosity Simulated time

H2O wt% CO2 wt% H2O wt% CO2 wt% (103 Pa s) (h)

1 4 2 4 0.1 6.2–32.0 1.25

3 4 2 4 0.1 62.9–320.8 2.0

FIGURE 1 | Simulations setup and profiles of pressure and density along chamber axis (x � 0, z � 0).
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Campbell, 1986; Petrelli et al., 2011; Longo et al., 2012a; Garg
et al., 2019).

Arc volcanoes are known for their dominantly explosive
character. Their erupted products span the so-called andesitic
magmatic suite, ranging from basaltic andesite to rhyolite. The
occurrence of repeated pre-eruptive mixing events involving
andesitic and dacitic melts is often recognized in the
discharged magmas [e.g., (Tamura et al., 2003; Shane et al.,
2008; Conway et al., 2020)].

Here we employ the 3D physical model described above to
study the physics of mixing between andesite and dacite magmas.
We use these magmas because arc-volcanism emits mainly the
andesitic suite of magmas. The objective is to study magma
dynamics for this suite of magmas through numerical
simulations and extract some geologically meaningful
information. We remark that the model and numerical
scheme employed here is applicable on any suite of magmas.
In particular we model the convection dynamics emerging from a
gravitationally unstable stratification of andesite and dacite
magmas in a shallow reservoir. We refer to a set up that
represents a 3D extension of the one employed in previous
work (Garg et al., 2019), allowing us to also compare between
2D and 3D dynamics.

3.1 Simulation Setup
The computational domain represents a prolate ellipsoid with
longer axis in the x direction (Figure 1). The centre of the
ellipsoid is placed at 4.1 km depth. The lengths of the semi-
axes in x, y, and z directions are 400, 100 and 100 m respectively.
With respect to the 2D setup in (Garg et al., 2019), the third
dimension added here (z-axis) is short enough to cause significant
deviation from 2D conditions (approximated when the neglected
dimension is much longer than the considered ones).We perform
two simulations which correspond to run cases #1 and #3 in
(Garg et al., 2019). For consistency with the corresponding 2D
cases in (Garg et al., 2019), we keep the same numbering
throughout in this work (Table 1). In the simulations,
andesite at a temperature of 927°C is placed at the bottom of
the domain, while the upper part is filled with dacite at a
temperature of 876°C. A horizontal interface, separating the
two magmas, is set at 4,150 m depth (Figure 1). The chemical
composition of the two magmas and their volatile contents are
reported in Table 1. The two cases differ for only magma
viscosity, with case #1 corresponding to locally defined, space-
time dependent viscosity computed as described above, and case
#3 equal to case #1 with the viscosity arbitrarily multiplied by a
factor 10 everywhere in space and time. The effects of varying the
amount of volatile contents in the 2D setup were studied in (Garg
et al., 2019). While such a viscosity increase may approximate the
effect of non-reactive crystals, which affect viscosity much more
than other properties including density, the aim here is mostly
that of evaluating the 3D dynamics and comparing with the 2D
case, over a range of viscosities thus of dynamic time scales; as
well as that of evaluating the 3D code performance in terms of
computational time and scalability. The initial pressure
distribution is computed by considering the lithostatic load at
the chamber roof (average rock density � 2,500 kg/m3) and a

horizontally uniform magmastatic profile. The bottom panel of
Figure 1 (red lines) displays the initial pressure and density
profiles along the chamber axis. No-slip adiabatic conditions are
employed at the chamber walls. The numerical scheme presented
in theAppendix A is employed with 2.6 million linear tetrahedral
elements. The side length of the computational elements ranges
1–4 m. The numerical integrals are computed with four Gauss
quadrature points. The unstructured tetrahedral mesh results in
uneven interface providing the initial perturbations that
destabilize the interface between the two magma types. The
simulations are run on an HP cluster system at INGV Pisa,
composed of 432 Intel Xeon 2.3 GHz cores distributed over six
nodes connected through a low latency 100 Gbps Infiniband
network. Scaling tests reported below and involving up to
thousands cores for a much shorter computational time are
run instead on the supercomputing facilities at the Barcelona
Supercomputing Center.

4 RESULTS

We present the results of the numerical simulations by first
analysing the 3D convection dynamics, then comparing with
the 2D case in (Garg et al., 2019).

4.1 3D Dynamics
The 3D dynamics are illustrated here mostly through comparison
between the two simulation cases 1 and 3 in Table 1, with the
latter being identical to the former, except for the computed
viscosity which is everywhere in space and time arbitrarily
multiplied by a factor 10. We anticipate that as for the 2D
case (Garg et al., 2019), the more viscous situation
corresponds to slower convection dynamics, lower number of
buoyant plumes of andesite-rich magma rising through the
dacite, and finally lower mixing efficiency. Figure 2 illustrates
well such differences. The figure shows the evolution of the
isosurface corresponding to a mass fraction of andesite equal
to 0.5 (which at time zero corresponds to the interface between
the two magma types) for cases 1 and 3. The differences are
striking: after 100 s case 1 shows a highly dynamic state with a
complex structure made of several inter-digitized rising plumes
interacting with each other and occupying the entire chamber;
while at the same time, only minor perturbations appear on the
interface initially separating the two dacitic and andesitic
magmas. At a later time when the dynamics are well
developed also for case 3, this case displays a much simpler
overall structure with many less plumes, each one on average
much bigger than for case 1. The 0.5 mass fraction isosurface for
the more viscous case 3 is conserved within the chamber over a
much longer time, and it is still visible after more than 2 h from
start of the simulation. On the contrary, the same isosurface is
completely lost in case 1 after only 5 min, as a consequence of
much faster and more intense magma mixing for this lower
viscosity case.

Figure 3 highlights the differences in plume structure for
the two cases, through a planar view of the interface at an early
stage of its destabilization. The higher the viscosity (case 3),
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the lower the number density (and the larger the average size)
of the rising plumes formed as a consequence of Rayleigh-
Taylor Instabilities. Figure 4 shows instead the distribution of
velocity in the uprising plumes, at the two times (90 and 250 s,
respectively) at which the maximum velocity is attained for the

two cases 1 and 3. That maximum velocity corresponds to
8.2 m/s in case 1, while it is only 3.5 m/s for the more viscous
case 3.

FIGURE 2 | Temporal evolution of isosurfaces of mass fraction Y � 0.5.

FIGURE 3 | Plume structure looking at the interface from the top. The
interface is depicted by isosurfaces of mass fraction Y � 0.5.

FIGURE 4 | Velocity distribution of uprising plumes when the maximum
value is reached.
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Figure 5 illustrates the evolution of mixing throughout the
computational domain. Case 1 corresponds to viscosity
computed by model described in (Giordano et al., 2008) and
case 3 is with tenfold increase in viscosity than case 1. Initially, for
both cases 1 and 3 the computational nodes host either pure
dacite or pure andesite. In both cases the less viscous, less
abundant andesitic end-member quickly vanishes as a pure
component (at the scale of the resolution of the present
simulations, which is of order 1 m), whereas nearly pure dacite
continues to be largely present in the system at the latest
simulation times. Faster and more efficient mixing for case 1
is clearly visible as an earlier decrease of the maximum length of
the compositional bars (that is, faster decrease of the number of
nodes hosting pure dacite) as well as narrower compositional
interval span inside the chamber at latest simulation times, when
efficient convection is terminated in both cases (further illustrated
below). For the more viscous case 3 the andesite can be seen to
constitute at most about 50% of individual computational nodes,
whereas for case 1 the maximum proportion of andesite in
individual computational nodes at process end is only about 30%.

In both cases 1 and 3 by the latest times, the system is
decompressed throughout by 6 and 2 bars, respectively, and

the density evolves from an initial step profile to a smooth
one (Figure 1). For both simulation cases 1 and 3, pressure
and temperature distributions along z � 0 and x � 0 planes is
provided in the Supplementary Material. We also display the
profiles of scaled temperature and composition along the
chamber axis in the Supplementary Material.

4.2 Comparison Between 3D and 2D
Simulation Results
As it is explained above, the present 3D simulation cases
correspond to previous 2D simulations in (Garg et al., 2019),
so to confidently explore the effects of 3D vs. 2D simulation setup.
In particular, the numerical code and the physical and numerical
setup in the 2D and 3D cases are the same, except for the specific
aspects defining 2D vs. 3D simulated dynamics. The average
length of computational elements across the initial compositional
interface is of order 1 m in both cases, and the number of
elements in the 2D cases and along domain-centered 2D slides
in the 3D cases are of order 105 in both cases.

One of the major results from the simulation of 2D magma
convection dynamics was the achievement of a stable dynamic

FIGURE 5 | Distribution of composition across mesh nodes. Simulation case 1 was run up to 4,350 s. Therefore, at 7,430 s, only #3 is displayed.
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state characterized by separate convective regions effectively
impeding further mechanical mixing (Garg et al., 2019).
Figure 6 shows that such a major result is confirmed by 3D

numerical simulations: dynamically stable, largely closed
circulation patterns separating regions with different
composition emerge, explaining the long-term maintenance of
the heterogeneities at advanced times in Figure 5. In fact, the
circulation patterns in Figure 6 give rise to a stable, dynamic
layering inside the magma chamber (Figure 7). The details of the
circulation patterns are not easy to compare, as those patterns are
intimately three-dimensional for the 3D simulations, therefore,
comparing a slice cut with the 2D case, e.g. as in Figures 8, 9
below, would not make any sense. Here we stress the overall first
order agreement between the 2D and 3D simulation cases with
respect to the major conclusion that magma chamber overturning
and associated convection and mixing dynamics lead to the
achievement of a stable dynamic state preserving
compositional heterogeneities over the long term. We discuss
in (Garg et al., 2019) some major consequences for the
interpretation of compositional heterogeneities in magmas
erupted during individual eruptions.

A more direct comparison between the simulated 2D and 3D
dynamics is displayed in Figures 8, 9 for the simulation cases 1
and 3, respectively. For the 2D case each panel in the figures
represents the entire computational domain, with the third
neglected dimension (perpendicular to the sheet) assumed
much longer than the two simulated ones so as to satisfy the
2D approximation. On the contrary, for the 3D case each panel
reports a vertical slice cut across the center of the 3D
computational domain, with the third dimension, simulated
but not visible from the slice cut, being equal in size to the
vertical dimension (Figure 1).

At first sight, the 3D and 2D dynamics in Figures 8, 9 appear
quite similar, especially in light of the different evolutions
characterizing the less and more viscous cases, respectively,
one and 3. That may appear surprising, considering the small
length of the third chamber dimension in the present 3D
simulations. However, such qualitative similarities are
consistent with previous findings, e.g., (Young et al., 2001;
Cabot, 2006) (although those authors investigate high-Re

FIGURE 6 | Streamline structure with composition colorbar.

FIGURE 7 | Temporal evolution of isosurfaces ofmass fraction of andesite.
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incompressible flows), and as for those cases, we show here that
the differences are also relevant.

The comparison shows that the interface destabilization time
in the two 3D and 2D cases is very similar [while it is significantly
influenced, as any other aspect of the overall dynamics, bymagma
viscosity. The role of viscosity—and of volatile contents—is

however described in (Garg et al., 2019), and it is only
marginally considered here]. However, the 3D geometry of the
interface appears to result in more complex perturbation
structure comprising a broad range of scales, compared to the
geometrically much simpler 2D perturbations. At later times such
a richer 3D structure is visible as a much less symmetric geometry

FIGURE 8 | Comparison between 2D simulation and a vertical slice at z � 0 from the 3D simulation #1.

FIGURE 9 | Comparison between 2D simulation and a vertical slice at z � 0 from the 3D simulation #3.
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of the rising plumes, and more widespread plume size range. The
plumes in the 3D cases also appear to rise faster, and are more
mixed than for the 2D cases. That is well evident at time 100 s for
case 1 (Figure 8) or time 200 s for case 2 (Figure 9): the 2D
plumes maintain a much larger proportion of nearly pure
andesite (dark red), which is instead much less represented
(Figure 9), or practically absent (Figure 8), in the 3D cases at
the same time. At the latest simulation times corresponding to
achievement of a stable dynamic stratification as discussed above,
the more viscous case in Figure 9 shows that andesite-rich
(70–80 wt%) magma concentrates close to magma chamber
top in the 2D case, whereas only < 60 wt% andesitic magma
occupies the same chamber region in the 3D case.

The faster, more efficient mixing dynamics found for the 3D
case are best highlighted in Figure 10. Here, to establish a
measure of mixing, we refer to progressive reduction of the
overall compositional heterogeneity inside the chamber. As a
quantitative measure of such heterogeneity we compute the

standard deviation (σ) of the mass fraction of andesite in the
overall computational domain. For any time we first determine
the mean value of the composition in the entire domain, then use
that value to compute (σ), which measures the extent of
dispersion of the composition around its mean value. The
larger the value of (σ), the lower the extent of mixing:

σ �

�����������������

1
N

∑
N

i�1
xi,and − �xand( )

2

√√

(9)

where N is the total number of nodes in the computational
domain, x is mass fraction, and the horizontal bar indicates
the mean value over the entire computational domain.

The computed evolutions of σ in Figure 10 for the 2D and 3D
simulations evidence the different stages of the overturning
process (Garg et al., 2019), starting in all cases with a low
slope section corresponding to the initial phase 1 of

FIGURE 10 | Panel (A): Evolution of overall compositional heterogeneities. σ is overall compositional standard deviation and σ0 is the same quantity at time zero.
Panel (B): Zoom view of first 600 s.
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development of the Rayleigh-Taylor instability, followed by a
high slope section corresponding to highly efficient mixing
during the convective phase of plume rise and vortex
formation (phase 2), and terminating with an essentially flat
section (phase 3) when the final stable dynamic state described
above, preventing significant further mixing, is achieved. Faster
development of the Rayleigh-Taylor instability and transition to
phase 2 (efficient plume rise) is highlighted in the zoom view of
Figure 10B. Similarly, faster overall dynamics and more efficient
mixing for the 3D case translate in earlier achievement of the flat
section corresponding to phase 3. Note that for the high-viscosity
case 3, the 2D simulation never attains a completely flat section,
indicating that some mixing continues to be effective up to the
last simulated time > 2 h. That suggests that constraining the
magma circulation patterns over a 2D plane (or better, assuming
zero gradient of any flow variable including velocity along the
neglected dimension as it is implicit in 2D simulations) may cause
the flow streamlines to distort to an extent sufficient to break the
closed circulation patterns in Figure 6, resulting in further mixing
not seen at such late times from the 3D simulations. Finally, and
mostly relevant, the final extent of homogenization (that is, the
overall change in σ) is significantly larger for the 3D simulation
cases, reflecting enhanced convection and mixing efficiency with
respect to the 2D case. The difference is important, amounting to
18% of the total σ change computed from the 2D simulation for
case 1, and as large as 55% of that change for case 3. Therefore,
not only mixing and homogenization in the magma chamber are
significantly enhanced when considering the flow dynamics in a

more realistic 3D environment; also, the extent of such
enhancement depends substantially on the specific conditions.
While the less viscous case 1 leads to more homogenization, the
extent of change when moving from 2D to 3D turns out to be
larger for the more viscous case 3. In other words, it seems
plausible, based on our first 3D simulations and comparison with
the corresponding 2D cases, to suggest that the errors and
approximations introduced by neglecting more realistic 3D
dynamics may vary substantially depending on the conditions
considered, andmay increase in relevance with increasing magma
viscosity.

5 CODE PERFORMANCE

As we mention above, the 3D simulation results presented above
make use of 2.6 million tethrahedral elements in order to resolve
the 3D Rayleigh-Taylor flow structure determined by the
adopted initial unstable configuration. Figure 11 shows a
zoom view of one isosurface distribution from Figure 2. In
particular, superposition of the computational mesh illustrates
well the resolution level achieved, and the kind of details that are
resolved.

To check the parallel performance of GALES, we conduct a
strong scaling test which is widely used to check the ability of a
software to deliver results in less time when the amount of
resources is increased. The parallel performance is quantified
by comparing the actual speedup with the ideal speedup for a

FIGURE 11 | Zoom view of the computational mesh and isosurfaces Y � 0.5 at t � 100 s for case #1.
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given set of processors. The actual speedup and the ideal speedup
are defined as

Actual speedup � tr
tN

r<N (10)

Ideal speedup � N

r
(11)

where tr and tN are the computational times taken by r processors
and N processors, respectively. Parallel efficiency is computed as
the ratio of the actual speedup and the ideal speedup for a given
number of processors:

Efficiency � tr
tN
.
r

N
(12)

An ideal scalable software should result in a linear speedup.
However, this is hardly achieved in real situations. For a given

TABLE 2 | Mesh models for strong scaling test.

Test #Nodes #Elements #dofs r N

1 175001 1004750 1050006 96 96–1,536
2 1951658 11782329 11709948 192 192–6,144
3 7802061 47581941 46812366 384 384–12,288

FIGURE 12 | Strong scaling results for test cases in Table 2.
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mesh the parallel efficiency decreases as we increase the number
of processors, mostly as a consequence of increased time spent in
communication among processors. The scaling tests are
performed on the Marenostrum supercomputer at the
Barcelona Supercomputing Centre (BSC) (https://www.bsc.es/
marenostrum/marenostrum/technical-information) within the
project GALES-3D (2010PA5625) in the frame of a PRACE
preparatory access A (https://prace-ri.eu/).

The scaling tests were run on three different meshes with
progressively increasing size. The mesh models are listed in
Table 2. The simulations use the same setup as described in
Section 3.1. The adopted numerical methods and the
parallelization strategy employed are illustrated in detail in
Appendixes A,B. Here we only recall the monolithic
approach to solve the linearized system of equations
describing the space-time system dynamics, which is effective
in reducing data transfer in parallel computing implementations
(Dowd and Charles, 2010).

Figure 12 shows the strong scaling results for each test case.
The left panels in the figure display the time taken by the assembly
procedure, the linear solver and the total time. We report here the
average time taken for a non-linear iteration over 10 time steps
(the observed standard deviation being 2 × 10–2 s). The right
panels in the figure plot the speedup and the efficiency as a
function of number of cores.

Overall, the scaling behavior of GALES is quite satisfactory in the
explored range of computational elements and cores (a parallel
efficiency of 0.6 or greater is taken here as satisfactory). The left
panels in Figure 12 show that most of the computational time is
spent in the assembly of the linearized system of equations. The
solution time is only a fraction of the assembly time, increasing in
relevance with increasing number of cores thus (right panels) with
decreasing parallel efficiency. The total computational time decays
nearly linearly (in the log scale of the figures) with increasing number
of cores, and the parallel efficiency (right panels) is seen to decrease
below satisfactory only for the largest number of cores employed for
each different mesh size.

Parallel performance primarily depends on load balancing and
inter-processor communication. Our linear solvers are
distributed and use peer-to-peer communication to solve the
system. Table 3 displays the partition statistics for test case 3 in
Table 2, and illustrates well the reasons and conditions under
which the parallel efficiency becomes less than satisfactory.
Specifically, we display the average number of elements on a

processor and the average percentage of inter-processor
boundary nodes, computed from the load balanced partitions
generated by the Metis software (see the Appendix B for further
details). Load balance when increasing the computational
resources reduces the overall execution time. However, by
increasing the number of processors the percentage of
boundary nodes lying at inter-processor boundaries also
increases, implying that the processors need to communicate
more data. This translates into increased communication
time and works towards decreased parallel efficiency. In other
words, for any specific problem there is an optimal
balance between decreasing load per core and increasing core
inter-communication when increasing the overall computational
resources. The results in Figure 12 show that for GALES, and in
the range of the strong scaling exercise described here, a one order
of magnitude decrease in total computational time is allowed
before such a balancing condition is achieved.

6 DISCUSSION AND CONCLUSION

In this paper we present a 3D parallel code for computing
compressible to incompressible multi-component magma
dynamics, compare numerical simulations of 3D vs. 2D
dynamics for a simple test case represented by the
development of Rayleigh-Taylor instability in a stratified,
idealized magma chamber, and illustrate code performance by
analyzing the results of a strong scaling test involving up to nearly
50 million computational elements and up to > 12,000
computational cores. The computational speedup is close to
ideal and above satisfactory levels as long as the element/core
ratio is sufficiently large so as to limit boundary nodes to less than
half total nodes. The demonstrated parallel efficiency is such as to
guarantee efficient use of HPC resources in 3D applications to
more realistic magmatic configurations including geometrically
complex multiple chamber, dike and conduit systems, likely
requiring a number of computational elements exceeding the
maximum employed here. Recent extension of GALES to include
fluid-structure interaction and coupling with solid elasto-
dynamics (Garg et al., 2021) further extends the accessible
computational domains requiring exploration of the potential
towards exascale computing (e.g., as in the ChEESE European
Center of Excellence, www.cheese-coe.eu).

The numerical simulations performed here, designed to
compare with previous 2D simulations, illustrate the 3D
dynamics of magma chamber overturning due to
gravitationally unstable initial conditions and development and
evolution of Rayleigh-Taylor instability. The numerical results
illustrate to a high resolution level the 3D dynamics of
development and growth of the instability, the formation and
reciprocal interaction of buoyant plumes of magma, the
complexities of the associated vorticity patterns and associated
magma mixing, and the evolution towards a stable dynamic state
preserving compositional heterogeneities and resulting in a
dynamic layering of the magma chamber.

Remarkably, the much simpler 2D simulation approach is
found to reproduce the more realistic 3D dynamics on a zero/

TABLE 3 | Partitioning statistics for test case 3 in Table 2. The second column
reports the average number of elements per core. The third column reports
the average percentage of nodes lying on inter-processor boundaries.

#Cores #Elements Boundary nodes
(in percentage)

Scaling
efficiency

384 123911 19 1.0
768 61,955 23 1.0
1,536 30,977 30 0.91
3,072 15,488 35 0.80
6,144 7,744 42 0.63
12,288 3,872 50 0.53
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first-order level, showing similar overall dynamics occurring over
comparable time scales, and similar overall effects due to increased
magma viscosity. On a more quantitative level, the 3D dynamics
show however important differences, and in particular they
produce faster plumes leading to more efficient magma mixing
than for the corresponding 2D approximation. These results are in
general consistent with those from the engineering literature
(Young et al., 2001; Cabot, 2006) where similar overall
qualitative consistency but important quantitative differences
between 2D and 3D simulations are evidenced, although for
high Re incompressible flows. In particular, our results suggest
that the extent of approximation introduced by the 2D
simplification may depend on the specific conditions, and may
be smaller for low viscosity conditions. That could be relevant in
light of the substantial computational efforts required by the
solution of 3D dynamics, and we deserve to evaluate it further,
e.g., for more complex geometrical systems over a range of
magmatic compositions.
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APPENDIX A NUMERICAL METHOD

The system of Eqs (1–4) can be written and solved in a fully
coupled monolithic manner as a single transport system (Hauke
and Hughes, 1998; Longo et al., 2012b; Garg et al., 2018a):

U ,t + Fa
i,i − Fd

i,i − S � 0 (13)

where the vectors are given by

U �
ρ
ρv
ρE
ρYk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ Fa
i �

ρvi
ρviv + δip
ρviE + vip
ρviYk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fd
i �

0
τi

τijvj − qi −∑
k

hkiJki

Jki

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
S �

0
ρb
ρbivi
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (14)

In the above equations the following notions are used: δi �
δei and τi � τei, where ei is the unit vector in the ith direction
and δ � [δij] is the Kronecker delta. The sub-indexes i and j
stand for spatial coordinates, i.e. i, j�1,2,3; while k stands for
the mixture component. For spatial coordinates the Einstein
summation convention of repeated indexes is used
throughout.

Equation (13) can be rewritten for any independent set of
variables X (Shakib et al., 1991; Hauke and Hughes, 1994) as

A0X ,t + AiX ,i − K ijX ,j( )
,i
− S � 0, (15)

where A0 � U,X, Ai � Fa
i,X is the ith Euler Jacobian matrix and K �

[Kij] is the diffusivity matrix with K ijX,j � Fd
i .

The monolithic approach used in this work has several
advantages over segregated approaches in terms of simplicity
of the formulation, robustness of the solution approach, and
smaller data transfer when doing parallel programming. In the
present study, the vector X has been chosen as the set of pressure
primitive variables, i.e. X � [p, v, T, Yk], which allows modelling of
both compressible and incompressible flows by a unified
formulation (Hauke and Hughes, 1994; Hauke and Hughes,
1998; Longo et al., 2012b; Xu et al., 2017; Garg et al., 2018a;
Garg et al., 2018b; Garg et al., 2021).

The boundary value problem can be expressed as below.
Consider an open spatial domain Ω with boundary Γ, such
that Γ � ΓG ∪ ΓH and ΓG ∩ ΓH � ϕ, where ΓG and ΓH are the
Dirichlet and Neumann parts of the boundary, respectively. The
strong form of the problem consists of finding the solution vector
X : Ω → Rneq , where neq is the number of equations of the
system, such that for the given essential boundary conditions
XG and the natural boundary conditions XH, the following
equations are satisfied:

R X( ) � LX − S � 0 in Ω
X � XG on ΓG

Fa
i − Fd

i( )ni � XH on ΓH
(16)

whereR(X) is the residual of the equations andL represents the
transient-advective-diffusive operator such that

LX � A0X ,t + AiX ,i − K ijX ,j( )
,i

� U ,t + Fa
,i − Fd

,i

(17)

The weak form of the above equations can be expressed as:
given a trial function space T � {X | X ∈ (H1)neq , X �
XG on ΓG} and weighting function space Γ �
{W | W ∈ (H1)neq , W � 0 on ΓG} find X ∈ T such
that ∀ W ∈ Γ

W , R X( )( )Ω � ∫

Ω

W ·R X( ) � 0 (18)

which by substituting the definition ofR(X), integrating by parts
and applying the boundary conditions, can be written as

W , U X( ),t − S( )Ω + W ,i, F
d
i − Fa

i( )Ω + W , XH( )ΓH � 0 (19)

A.1 Variational Multiscale Formulation
We consider the transport operator L in Eq. 17 as quasi-linear
and solve Eq. 13 by variational multiscale method (VMS)
(Hughes, 1995; Hughes et al., 1998; Bazilevs et al., 2007). The
VMS method has been successfully used for compressible flows
(Franco and Rafael Saavedra, 2006; Rispoli et al., 2015) and
turbulent flows (Bazilevs et al., 2007) without employing any
ad hoc terms such as eddy viscosities. In the VMS method the
solution vector X is decomposed into the resolved (coarse, grid-
scale) finite element solution �X and unresolved (fine, sub-grid)
error X9,

X � �X + X′ (20)

Similarly W is decomposed as

W � �W +W′ (21)

The VMS method consists of substituting the above splitting
into the weak form and solving the following two subproblems for
coarse-scale and fine-scale:

�W , R X( )( )Ω � 0 (22)

W′, R X( )( )Ω � 0 (23)

The essence of VMS method is to solve for the coarse scale
solution numerically and compute the fine scale part either
analytically or approximate it through an algebraic expression.
With this aim, using adjoint duality, Eq. 22 can be written as

�W , R �X( )( )Ω + L* �W , X′( )Ω � 0 (24)

where

L* �W � −A0
�W ,t − Ai

�W ,i − K ij
�W ,j( )

,i
(25)

Assuming X9 � 0 on element boundaries, Eq. 23 can be
expressed as:

W′, U X′( ),t − S′( )Ω + W′,i, Fd′
i − Fa′

i( )Ω � W′,R �X( )( ) (26)

The solution of the above equation can be represented as a
function f of �X and R( �X):
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X′ � f �X,R �X( )( ) (27)

To obtain a simple, basic and computationally efficient
method, the VMS formulation relies on approximating X9
with the product of element-wise algebraic stabilisation
operator P and the coarse scale residual, R( �X) (Bazilevs et al.,
2007),

X′ � −P R �X( ) (28)

Complete VMS formulation along with the discontinuity
capturing operator (see below) (Tezduyar and Senga, 2006)
can be expressed as:

∫

Ω

Wh · A0
�Xh
,t − S( ) +Wh

,i · Fd
i

�Xh
( ) − Fa

i
�Xh

( )( dΩ + ∫

ΓH

Wh ·Hh dΓ

+∑
nel

e�1
∫

Ωe

A0W
h
,t + AiW

h
,i + K ijW

h
,j( )

,i
( )P ·R �Xh

( ) dΩ

+∑
nel

e�1
∫

Ωe

]dcWh
,i · A0

�Xh
,i dΩ � 0 (29)

A.2 Stabilization Operator
In the present work we follow the same design for the Pmatrix as
it was developed in (Hauke, 2001) and extended to multi-
component conditions in (Longo et al., 2012b). We first
design PU for the conservation variables and then transform it
into the pressure-primitive-variable formulation (PX) using the
following expression

P � PX � X ,UPU (30)

PU is given as:

PU � diag Pc, Pm, Pm, Pm, PE, PYk( ) (31)

where the diagonal entries are given by

Pc � min
Δt
2
,

he

2 |v| + c( ) +
he

2|v|( ) (32)

Pm � min
Δt
2
,

he

2 |v| + c( ) +
he

2|v|,
ρ he( )2
12μ

( ) (33)

PE � min
Δt
2
,

he

2 |v| + c( ) +
he

2|v|,
ρcv he( )2
12κ

( ) (34)

PYk
� min

Δt
2
,

he

2 |v| + c( ) +
he

2|v|,
he( )2
12dk

( ) (35)

where Δt is the time step, he is the element size along the
streamline direction, c is the local sound speed and dk is the
mass diffusion coefficient of kth component.

To handle incompressibility the entry of the first row of the P
matrix is modified as

Pc � P−1
c + ρPm* g · g( )( )

−1
( )

−1
(36)

where Pc and Pm are the diagonal entries of P matrix
corresponding to the continuity and the momentum
equations, and

g � gi{ }, gi � ∑
3

j�1

zξj
zxi

and g · g � ∑
3

i�1
gigi (37)

A.3 Discontinuity Capturing Operator
The discontinuity capturing operator is implemented as in
(Tezduyar and Senga, 2006). The parameter ]dc is defined as

]dc � ‖U−1
refZ‖ ∑

3

i�1
‖U−1

refU ,i‖2⎛⎝ ⎞⎠

β
2−1

‖U−1
refU‖1−β hdc

2
( )

β

(38)

where Uref is a diagonal scaling matrix constructed from the
reference values of the components of U and Z � U,t + AiU,i. The
parameter β determines the sharpness of the discontinuity and is
set as β � 1 for smoother solution and β � 2 to retain sharp
discontinuity. hdc is defined as

hdc � 2 ∑
nen

i�1

ρ

‖ρ‖ · Na

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
⎛⎝ ⎞⎠

−1

(39)

A.4 Numerical Discretization and Solver
The weight functions (Wh), the solution variables (Xh), and their
time derivatives (Xh

,t) are expanded in terms of piece-wise linear
basis functions. The integrals in Eq. 29 are then evaluated using
Gauss quadrature resulting in a system of non-linear ordinary
differential equations:

R X, _X( ) � 0 (40)

where R is the residual vector, X is the vector of unknowns and _X
is its time derivative. To solve Eq. 40 a predictor-corrector
method is used (Shakib et al., 1991). The temporal
discretization is done by implicit Euler method. Given the
solution at time instance n, the algorithm is written as:

Predictor:

X i( )
n+1 � Xn (41)

Corrector:
Construct Jacobian matrix:

M i( )
n+1 �

zR i( )
n+1

zX i( )
n+1

(42)

Solve for ΔX:

M i( )
n+1 ΔX i( ) � −R i( )

n+1 (43)

Update the solution:

X i+1( )
n+1 � X i( )

n+1 + ΔX i( ) (44)

Within a time step, the iteration loop ends if either the maximum
prespecified corrector passes are reached or one of the following
convergence criteria is met:

‖R i( )‖< 10−5 or
‖R i( )‖
‖R 0( )‖< 10

−8 (45)
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The linear system of Eq. 43 is solved with the GMRES method
from the Belos package of Trilinos (Bavier et al., 2012; The Belos
Project Team, 2021). GMRES is a Krylov subspace-based iterative
method that minimizes the residual of the linear system and is
best known for its robustness and efficiency in solving large and
sparse systems of equations. The GMRES solver requires to
specify an initial guess of the solution, the subspaces number,
restarts, iterations and the tolerance for the relative residual. For
all numerical tests in this study we set these numbers as subspaces
� 200, restarts� 5, iterations� 300 and residual tolerance � 10–6. The
GMRES method often requires a good preconditioner which could
effectively lower the condition number of the matrix and achieve
convergence with reasonable computational effort. We use the
incomplete lower-upper factorization (ILU) preconditioned version
of the GMRES method. The preconditioner is generated from the
ifpack package of Trilinos.

A.5 Time Step Control
As described in the previous subsection, we use an implicit
method which does not bring about any stability requirement
on time step. Nevertheless, a control on time step is needed. In
fact an arbitrarily large time step results in ill-conditioned linear
system of equations which is computationally expensive to solve.
Whereas, a very small time step takes too many time iterations to
reach to the predefined final time and hence needs a long time to
finish the simulation. An implicit method combined with a
suitable time adaptive method reduces the total compute time.
In this work we control the time step through a prespecified value
of the Courant number (Cr): before each time iteration, the time
step (Δt) is computed as (Shakib et al., 1991):

Δt � Cr

2
h2 max 2μ

ρ ,
κ
ρcv
, dk( ) +

�������������
‖v‖2+2c2+c

�����
4‖v‖2+c2

√√

h

(46)

Since the numerical method is implicit, Cr is not constrained
to be smaller than 1. However, we fix Cr � 1 in this study and
adapt the time step accordingly.

APPENDIX B PARALLEL
IMPLEMENTATION

GALES is written in object-oriented C++ and is parallelized
using OpenMpi for parallel computing. In the framework of
the FEM, computations are carried out at the element level
which is well suited for parallelization as the computational
load can be well balanced by distributing almost equally
weighted elements on different processors (Vollaire et al.,
1998). Typically, an FEM solver spends most of its time in
the following two steps:

1. Element level computations and assembly of the linear
system of equations

2. Solution of the linear system of equations

Both steps can be performed in parallel. In GALES, prior to the
simulation, the computational mesh is partitioned into multiple
parts. Each part is assigned to a processor (process) that carries

out all of the numerical operations corresponding to that part of
the mesh. We use the element based domain partition strategy, in
which each element is assigned to a unique processor, but nodes
can belong to multiple processors if they belong to the element
lying on the boundary between different subdomains. For mesh
partitioning we use METIS, which uses the multilevel heuristic
graph partitioning approach and assigns a balanced number of
elements to processors (Karypis and Kumar, 1999). That is crucial
for load-balancing and performance. For the element level
computations, we construct vectors and matrices from the
boost library which has a rich variety of optimized functions
for vector and matrix arithmetics and is very convenient in the
frame of FEM.

The distribution of degrees of freedom (DOFs) across the
processors is taken care of by suitable mappings. In GALES we
construct maps with the Epetra_Map class (The Epetra Project
Team, 2021) of the Trilinos library (The Trilinos Project Team,
2021). The maps encapsulate the details of distributing data
over MPI processors. We create two different distributed maps
that we call shared map and non-shared map. The shared map
is based on the element distribution. We use it to initialize the
vector of DOFs and to carry the solution forward in transient
problems. The non-shared map is based on the uniquely
assigned mesh nodes. Before creating the map each node
lying on inter-processor boundaries is assigned uniquely to
an owner processor. This is to ensure that the aggregate of
DOFs over owner PIDs is equal to the total DOFs of the
computational mesh and is independent of the mesh parts. The
maps themselves are distributed and do not store all data on a
single processor to ensure memory scalability.

The global sparse tangent matrix, solution vector and the
right-hand side vectors of the linear system of Eq. (43) are
constructed as distributed objects whose entries lie across
multiple processors. To define them, we use the FE_CrsMatrix
and FE_Vector classes of the Epetra package. The classes
automatically handle the details about the data layout, the
storage format, and the number of the ghost nodes and their
corresponding location. The data entries in FE_CrsMatrix are
stored in a compressed row format. The element level data can be
added to the global linear system through three functions,
InsertGlobalValues, ReplaceGlobalValues and
SumIntoGlobalValues. The objects of the classes are created by
passing the DOFs distribution described by the non-shared map.
The assembly procedure is completed by calling the
GlobalAssemble function, which gathers any shared data into
the non-overlapping partitioning defined by the non-shared
map. GlobalAssemble is a collective method that reorganizes the
data to be classified as off-processor, on-processor and on inter-
processor boundaries. Accordingly, the communication
patterns are established to transfer the data from a non-
owner processor to the owner as specified by the non-shared
map. The reorganized data structure is further used for the
matrix-vector product in the linear solver. Finally, the linear
solver is solved with parallel GMRES solver implemented in the
Belos package which is proved to be scalable up to several
hundred thousands of processors (The Belos Project Team,
2021).
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Performance Assessment of the Cloud
for Prototypical Instant Computing
Approaches in Geoscientific Hazard
Simulations
Jörn Behrens1*, Arne Schulz2 and Konrad Simon1

1Department of Mathematics/CEN, Universität Hamburg, Hamburg, Germany, 2Axtrion GmbH & Co. KG, Bremen, Germany

Computing forecasts of hazards, such as tsunamis, requires fast reaction times and high
precision, which in turn demands for large computing facilities that are needed only in rare
occasions. Cloud computing environments allow to configure largely scalable on-demand
computing environments. In this study, we tested two of the major cloud computing
environments for parallel scalability for relevant prototypical applications. These
applications solve stationary and non-stationary partial differential equations by means
of finite differences and finite elements. These test cases demonstrate the capacity of cloud
computing environments to provide scalable computing power for typical tasks in
geophysical applications. As a proof-of-concept example of an instant computing
application for geohazards, we propose a workflow and prototypical implementation
for tsunami forecasting in the cloud. We demonstrate that minimal on-site computing
resources are necessary for such a forecasting environment. We conclude by outlining the
additional steps necessary to implement an operational tsunami forecasting cloud service,
considering availability and cost.

Keywords: cloud computing, natural hazard, instant computing, tsunami, parallel performance

1 INTRODUCTION

Tsunami forecasting and hazard assessment procedures require modeling as one integral part. As an
example, the accreditation of tsunami service providers in the North-East Atlantic, Mediterranean,
and Connected Seas region requires model-based forecasting of tsunami hazard information
(NEAMTWS, 2016).

In operational tsunami forecasting, either pre-computed scenario based hazard assessment or online
simulation based approaches are common [see e.g., Behrens et al. (2010), Løvholt et al. (2019)]. Another
approach—so far not operationally implemented—is statistical emulation, in which a relatively small
number of true offline scenarios is used to populate a statistical interpolation (emulation) function for
deriving forecasts including uncertainty values for real events (Sarri et al., 2012).

An optimal workflow for tsunami forecasting—both in near and in far field hazard
forecasting—would consist of a reliable source determination followed by an integrated tsunami
propagation and inundation simulation with an instant visualization and dissemination of results
(Wei et al., 2013). This case would require large and scalable computing resources in case of an event
for the simulation part involved in the workflow. Depending on budget and facilities, this
requirement could pose unacceptable restrictions or would impose inefficient use of limited
resources (since the computing resources would mostly idle, waiting for the event).
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Since very flexible and large scalability is available in cloud
computing environments, a straight forward strategy is to utilize
the cloud for an instant computing framework for tsunami
forecasting. An accepted definition for cloud computing reads
(Mell and Grance, 2011):

Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal
management effort or service provider interaction.

It is this minimal management effort and flexibility that lead
scientists to explore possibilities and evaluate performance of
cloud computing environments for scientific computing
applications early on [e.g., Foster et al. (2009); Zhang et al.
(2010); Fox (2011)].

Utilizing cloud computing environments for tsunami hazard
assessment not only enables great scalability in an early warning
setting, but allows for deployment of modeling capabilities to
users who do not have direct access to corresponding facilities. In
fact other groups have started to provide tsunami forecasting
services via web services, even calling their service “cloud.” For
example, the TRIDEC cloud is an online service providing
simulation capabilities for tsunami forecasting (Hammitzsch,
2021). Implementing a similar workflow as the approach
documented here and funded from the EU FP7 project
ASTARTE, the IH-TsuSy tsunami simulation system obtains
earthquake parameters from USGS, computes a tsunami wave
propagation, based on corresponding sources and provides
graphical information about the maximum wave height and
arrival times (IH Cantabria, 2016). However, both services are
strictly speaking no cloud computing efforts, since the computing
devices are located at the hosting institute’s premises. A server,
available to the public and capable of instantly computing
tsunami scenarios, however manually triggered, is the TAT
server, maintained by the Joint Research Center of the
European Commission in Ispra (European Commission, 2022
Security andMigration Directorate—JRC Ispra Site). The services
are provided by web interfaces and as such could be considered as
a so-called platform as a service (PaaS) model. These services are
not configurable and call for provider interaction to be used.

Other possible cloud computing utilization for geoscientific
applications are possible and will be further discussed in the next
section. This report aims at assessing performance and feasibility
of cloud computing in particular for tsunami hazard modeling.
The service accessed in the cloud is a so-called infrastructure as a
service (IaaS) model. We document a preliminary assessment of
computational performance for scientific computing on two of
the major cloud computing platforms, i.e., the Amazon Web
Services (AWS) andMicrosoft Azure. Additionally, a prototypical
implementation of an early warningmodeling framework, using a
Python script for controlling the workflow and utilizing Amazon
Web Services (AWS) cloud computing facilities is described. The
prototype demonstrates the ease of use and cost effectiveness of
such cloud computing environments for online tsunami

forecasting simulations. We stress, however, that the
demonstrator is by far not fit for operational services, since
more optimization of the tsunami model, more fine-tuning of
the required data, quality control, and testing would be necessary,
which is outside of the scope of this study.

2 MOTIVATION

As described in the introduction (Section 1), one of the main
motivations for an instant computing framework using cloud
instances is to perform online tsunami forecast simulations
efficiently and reliably in the event of a tsunamogenic
earthquake. This section intends to motivate the use of such
facilities in some more detail and strives to assess the strengths
and weaknesses of the approach.

One of the first motivations for using the cloud for tsunami
modeling in case of early warning use cases was the cost effectiveness
of cloud computing. In fact, an hour of CPU time on a reasonably
sized cloud device costs approximately 2.00 USD. This includes
investment, energy, cooling, maintenance and administration, as
well as utility costs and needs to be spent only if used. Some
additional costs are to be allocated for storage and network traffic,
however this is very difficult to assess, since it depends very much on
the actual situation and usage. Therefore, we will compare very coarse
estimates in the following. We are aware of the preliminary character
of this assessment, but think it is nevertheless useful as a guiding
example.

Let us compare a cloud computing approach to on-premise
computing for a usual deprecation period (for computing
hardware) of 3 years and let us assume a (relatively high) number
of processed tsunami events of 50 per year (or roughly 1 per week). In
the cloud, every event needs computing time, so we assume approx.
ten aggregated CPU hours of computing time per event. An
appropriate medium size general purpose Amazon EC2 instance
of 32 vCPUs (virtual CPUs), 128 GB of RAM and approx. 1,000 GB
SSD intermediate storage costs (e.g., m5.8xlarge1) approx. 2.00 USD
per hour or 20.00 USD per event, totaling to 3,000.00 USD over the
period of 3 years. The same applies to an Azure D32 v3 instance2,
comprising also 32 CPUs, 128 GB of RAM, and 800 GB of local
storage. We might need to add some cost for implementation and
testing, but since this can be done on smaller instances, the cost
should not exceed approx. 1,000.00 USD. Furthermore, we assume
approx. 50.00 USD per month for storage and data transfer,
amounting to a total of 1,800.00 USD over the period of 3 years.

For the on-premise cost comparison we assume a reasonable
server of 64 GB main memory, similar number of cores as for the
cloud instances (e.g., 4 nodes of 8 cores each), and an appropriate
hard drive installation totaling an investment of approximately
10,000.00 USD. Furthermore, such device consumes approx. one
kilo Watt of electrical power per hour and we assume the cost for

1According to https://aws.amazon.com/de/ec2/pricing/on-demand/, last accessed
2022-01-21.
2According to https://azure.microsoft.com/de-de/pricing/calculator/, last accessed
2022-01-21.
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energy with 20 cents per kWh. Furthermore, we need to provide
cooling, which we have assumed of the same order as the energy
costs. Maintenance can be achieved by assuming one 10th of a full
time equivalent of a technician, costing approx. 7,500 USD per year.
We neglect utility costs and costs for repairs for now. A summary of
these estimations can be found in Table 1. All in all, the cost for on-
premise computing can be estimated with 42,900.00 USD versus
costs for on-demand cloud computing of 5,800.00 USD. We repeat
at this point that these numbers are very preliminary and may vary
substantially with location, since labor costs as well as energy costs
are quite different in different parts of the world.

An important argument for keeping computing facilities on-
premise is the availability. In order to have a redundant
computing environment that is fail-save in case of emergency,
two computing devices would be necessary and in principle, these
should be maintained at different locations. With cloud
computing devices, the location can be everywhere. The above
mentioned Amazon EC2 instance is available in more than 20
locations worldwide on all continents (except Antarctica). The
service level agreement of the Amazon EC2 guarantees 99.95%
availability for one of the locations. When assuming (as stated in
the agreement) a month of 30 days, the system may fail for up to
21 min. However, in this case yet another of the locations could be
reached. It is hard to achieve such low failure rate with an on-
premise service, in particular in less developed areas.

Of course, a communication network needs to be in place. But
again, it can readily be argued that in times of abundant
redundant mobile communication networks, establishing a
communication to a cloud server might be more reliable than
an on-premise solution. Even in case of failed local
communication, ad-hoc peer-to-peer networks of mobile
devices are ready to be established (ASTARTE Project, 2017b).

One particular advantage of a cloud computing solution is its
accessibility from everywhere. Even in remote areas, where
maintaining compute infrastructures may not be feasible, a
communication (e.g., via satellite link) to a cloud computing
device could be established and would allow for scalable modern
computing capabilities. Additionally, the cloud instance can be
accessed from mobile devices.

Since the cloud infrastructure is easily scalable, it is possible to run
several computations in parallel. A common practice in numerical
weather forecasting—namely ensemble forecasts—could be
established in tsunami modeling for capturing the uncertainty and
quantifying it by varying the source parameters (Selva et al., 2021).

Access to the cloud infrastructure works with web interfaces and
secure shell access. Web interfaces are used to start, control, and stop

the cloud instance, which in our demonstration cases are always stored
as virtual Linux machines. While the cloud instance is not running,
storage of these several tens of gigabyte large files generates costs of the
order of a few dollars per month. The virtual machine is pre-
configured with compiled versions of the simulation code,
repositories for bathymetry and topography data, post-processing
tools, and possibly visualization pipelines. In the presented
prototype, the sources are computed from moment tensor
solutions available by web service from the GEOFON web page
(GEOFON, 2021). Bathymetry and topography data are prepared
and stored in the virtual machine, but could potentially also be
retrieved on demand. In our case, visualization is performed on a
local personal computer, but it would also be possible to configure a
second cloud instance especially dedicated for high-performance
visualization such that the results can readily be obtained by
mobile devices such as smart phones or public projection screens.

Looking beyond hazard computing, cloud computing enables
researchers and institutions without funding for large investments
access to large scale computing facilities. Since cloud computing
instances can be tailored and scaled to the requirements during
development and production phases on demand, cost efficiency
can be achieved and large computations are accessible with low
budgets. Even in research environments, where larger budgets are
generally available, it may be difficult to allocate investments into large
computing infrastructures. In that case cloud computing costs can be
accounted to research projectmaterial expenses and do not necessitate
any investments.

Another important advantage goes beyond the application of
tsunami hazard assessment. The cost efficient availability of cloud
computing infrastructure would allow countries without locally
available large-scale computing resources to run local hazard
assessments in case of, e.g., potentially severe weather events
where devastating effects of such events have greater human
impact than in industrial countries with advanced computing and
warning infrastructure that run their own weather services.

Last but not least, large on-premise computing hardware has a
significant disadvantage in countries, where energy costs are high, such
as in central Europe or in very warm countries. An enormous amount
of energy is required for cooling. Cloud computing hardware can be
placed anywhere. As an example, in Iceland cloud computing facilities
can be run and cooled using geothermal energy only. Thus the impact
of running cloud computing hardware on the environment can be
minimized in contrast to on-premise solutions.

3 PERFORMANCE ASSESSMENT

In order to assess the feasibility of large scale geoscientific
computing in cloud infrastructures, we perform benchmark
tests representing numerical operations typically occurring in
applications such as tsunami simulations, shown in the next
section, as well as other geoscientific applications with high
computational demands. We employ different sets of
benchmarks in different cloud computing environments. Our
tests were performed on the AWS cloud, employing a Fortran
program for solving an elliptic partial differential equation by
classical iteration, parallelized alternatively with OpenMP or

TABLE 1 | Cost comparison of cloud and on-premise computing.

Cloud (AWS/Azure) On-premise

Investment — 10,000.00 USD
Energy — 5,200.00 USD
Cooling — 5,200.00 USD
Maintenance — 22,500.00 USD
Preparation/testing cost 1,000.00 USD —

Storage/data transfer 1,800.00 USD —

Event computing cost 3,000.00 USD —

Total 5,800.00 USD 42,900.00 USD
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MPI. These tests were performed in a comparison with an on-
premise computer in the context of the ASTARTE project
(ASTARTE Project, 2017a) and documented in an internal
report. They are reported here for reference and for a better
comparison and understanding.

The second set of benchmarks is performed using a mixed
OpenMP-MPI parallelized C/C++ implementation of advection-
diffusion type partial differential equations. These types of
equations are typical for all kinds of geoscientific phenomena
and are often used as a first representation for the development of
numerical algorithms in this application field. Tsunamis can be
represented by a non-linear generalization of such equation type.
This benchmark will be tested on a number of differently sized
instances of the Azure cloud computing platform.

3.1 Description of Elliptic PDE
Benchmark—AWS Cloud
The elliptic partial differential equation solved in this benchmark
represents a simple Poisson equation in two spatial dimensions:

−Δu � f in Ω � 0, 1[ ]2 ⊂ R2,
u � g on Γ � δΩ.

We use f (x, y) = 2 (x + y − x2 − y2) and g ≡ 0. u(x, y) ∈ R is an
unknown potential. The domain Ω is discretized by a uniform
equidistant grid (xi, yj) = (iΔx, jΔx), with Δx � 1

n, i, j = 0: n, of (n +
1) × (n + 1) grid points, and δΩ is the boundary ofΩ. Discretizing

this equation by a finite difference operator and solving by an
iterative Gauß-Seidel procedure results in an inner loop operation
of the form

u k+1[ ] i, j( ) � 1
4
(u k+1[ ] i − 1, j( ) + u k[ ] i + 1, j( ) + u k+1[ ] i, j − 1( )

+u k[ ] i, j + 1( ) + Δx2f i, j( )), (1)
where u (i, j) = u (xi, yj), and k represents the iteration count. The
discrete form requires an access pattern to the nearest neighbors.
When ordering the grid points in a white-black checkerboard
pattern, the white and the black points can be processed in
parallel and only one barrier synchronization is necessary
within each iteration. The access pattern is visualized in
Figure 1. The unknowns are distributed to processors in equal
sized areas with full columns. Each processor has read access to
one column to the left and right of its own domain, so that after
each iteration these rows need to be communicated among
neighbors, when local memory message passing (MPI) is
employed. Computation of white nodes and black nodes is
completely independent and could also be distributed in a
different way. Within each iteration a synchronization is
necessary, when switching from black to white nodes. A five
point stencil is marked for the access pattern in Equation 1.

3.2 Description of Elliptic PDE
Benchmark—Azure Cloud
The same model as in Section 3.1 is tested in Microsoft’s Azure
cloud environment with a modified right hand side:

f x, y( ) � 1 if y< 1
2
+ 1
4
sin 4πx( ),

−1 otherwise.

⎧⎪⎨
⎪⎩

(2)

It is a modified version of an example within the Deal.II
library (“step 40”). We solve the model using a computationally
more demanding adaptive finite element method (FEM) in
2D on a distributed mesh with parallel linear algebra. The
solver is implemented using the Deal.II library (Arndt et al.,
2020).

Essentially, this is the same test case that has been conducted
in Bangerth et al. (2012) on an on-site high-performance cluster
to show the scalability of certain functionality within Deal.II
whereas we exploit this well tested high-performance computing
software to show the suitability of scalable cloud environments.
Note that the right-hand side constitutes a discontinuous forcing.
This causes the solution to display large gradients at the
discontinuity and hence the mesh is expected to be refined
there allowing us to test the performance in a sequence of
refinement cycles that constitute different problem sizes. The
test is conducted on two cluster settings:

3.2.1 Small Setup
This setup consists of a small sized master node that does not
participate in the actual computation but serves as a load balancer
running a SLURM scheduler (Yoo et al., 2003). This master node
distributes the MPI-parallel computation across ten compute

FIGURE 1 | Access pattern and domain decomposition of the red-black
relaxation method used in the algorithm for performance testing in Section
3.1. Underlying colors indicate the distribution to processors, only interior
nodes are processed. The access stencil is indicated by arrows. Green
lines indicate the region, where read access to neighboring nodes is
necessary.
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nodes each equipped with an Intel® Xeon® Platinum 8272CL,
2.1 GHz, with 2 cores and 8 GB of RAM. This is also the setup for
the master node. The nodes are connected in a fast and modern
Infiniband network which facilitates a high communication
throughput. A shared SSD data storage of 256 GB was
mounted on each of the compute nodes.

3.2.2 Large Setup
The same load balancer as in the small setup is reused with ten
compute nodes each equipped with an Intel® Xeon® Platinum
8168, 3.4 GHz, with 32 CPU cores (16 physical and 16 virtual)
and 64 GB of fast main memory.

3.3 Description of Bouyancy-Boussinesq
PDE Benchmark
This test case is the basis for the large scale framework ASPECT
(Bangerth et al., 2015) that serves the purpose of the simulation of
convection processes inside the earth mantle. As in Section 3.2
we run it with essentially the same parameter configuration as in
Bangerth et al. (2012) but yet, again, to demonstrate the feasibility
of well tested high performace software for cloud computations.
The model is essentially a temperature feedback driven
incompressible Stokes model with an advection-diffusion
equation for the temperature variable. The model equations
are given by

−∇ · 2ηϵ u( )( ) + ∇p � ρ T, Tref, ρref( )ger,

ϵ u( ) � 1
2

∇u + ∇uT( ),

∇ · u � 0,

ztT + u · ∇T � ∇ μ∇T( ) + f.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(3)

Here, u is the velocity, T the temperature, p the pressure, ρ a
density, μ is a thermal conductivity of the medium, ϵ ist the
symmetric gradient (strain), g the gravitational constant, er the

outward normal vector, Tref and ρref reference temperature and
density, respectively. The implementation uses H1-conformal
linear finite elements for velocity and temperature and L2-
conformal (discontinuous) elements for the pressure and is
again a modified version of an example of the Deal.II library
(“step 32”).

3.4 AWS Benchmark Results
While the elliptic test problem does not cover all different
computational aspects of a tsunami simulation—in particular
not with the discontinuous Galerkin approach, used in the
prototypical implementation in Section 4—it is suited to give
a good first impression of the computational capabilities of cloud
instances in real life application scenarios. In order to assess the
expected performance of a cloud instance in comparison with an
on-premise compute server tests with up to 8 processors are
conducted. It turns out that the test program does not scale very
well, but it is not the purpose of this test to see optimal parallel
performance but to be able to compare cloud vs. on-premise
computing devices. Parallelization is implemented by the
Message Passing Interface (MPI) parallel programming model,
and no specific action is taken to optimize parallel efficiency. Note
that these tests were performed some time ago and are included in
this report for reference.

The tests are performed with the following configurations. The
on-premise computer is a 2 node 2.67 GHz Xeon X5650 server
with 12 cores, which is used with up to 16 processes
(hyperthreading). It is equipped with 32 GB of main memory.
The AWS EC2 cloud instances are of type c3.8xlarge, which is a
Xeon E5-2680 based architecture with 32 virtual processors,
60 GB of main memory, and 10 GBit high speed networking.
The performance results are shown in Figure 2. It can be seen
from the figure that the local on-premise computation is a factor
of 2 slower due to different processor generations, but the parallel
scaling shows approximately the same behavior for the cloud as
well as for the on-premise servers.

FIGURE 2 | (A) Compute time comparison for parallel execution of benchmark program in Section 3.1 on an on-premise computer in comparison with AWS EC2
cloud instances. (B) The speedup (strong scaling) of the corresponding benchmark tests.
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As a preliminary conclusion, it can be stated that the same
kind of performance can be expected from an on-premise server
as well as from a cloud instance. Performance-wise there is no
specific advantage using an on-premise computer. In particular
looking at the cost comparison of the previous chapter 2, the
cloud instance can be regarded as the advantageous architecture.

3.5 Azure Benchmark Results
3.5.1 Elliptic PDE Benchmark
We perform weak and strong scaling tests, i.e., we take timings
with fixed allocated hardware and gradually increase the problem
size (weak scaling) as well as timing tests, where we fix the
problem size and gradually allocate more compute resources
(strong scaling). Both scaling tests are performed on the small
and the large setup as described in Section 3.2. Although both our
small and large setup are rather small compared to the cluster
setup used in Bangerth et al. (2012), allowing only qualitative

comparisons, similar (linear) scaling effects for differently sized
problems are clearly visible for weak and strong scaling, see
Figure 3. The scaling tests show timings of the main building
blocks of adaptive FEMs which are essentially the setup of the
mesh and the distribution of the degrees of freedom (dof setup),
the assembly of the (sparse) system (assembly), the conjugate
gradient solver preconditioned with algebraic multigrid (solver), a
posteriori error estimation and adaptive coarsening and
refinement of the mesh including rebalancing the mesh
(coarsen/refine), and the data output (output). Figure 4
additionally shows the partitioning of the adaptive mesh
among 20 MPI processes.
Remark. We pass on timing the output in the weak scaling tests
Figures 3A,C in our parallel setting since its overhead becomes
very dominant for problem sizes with a number of degrees of
freedom at a magnitude 108 and higher and simply does not fit
nicely in the plot of (Figure 3C). Also, Figures 3B,D do not show

FIGURE 3 | (A) Weak scaling in the small setup for the test case in Section 3.2 computed on 20 distributed CPUs with up to 17 million degrees of freedom. (B)
Strong scaling for selected parts of the algorithm for the small setupwith 4.2 million degrees of freedom on up to 16 distributed cores. (C)Weak scaling in the large setup
for the test case in Section 3.2 computed on 320 distributed CPUs with up to 270 million degrees of freedom. (D) Strong scaling for the large setup with 67 million
degrees of freedom on up to 320 distributed cores. Both weak scaling plots do not show timings for the data output since its overhead becomes dominant at
around 108 Dofs. Both strong scaling plots do not time coarsening and refinement since the runs are not adaptive.
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timings of refinement and coarsening, because it was disabled for
the strong scaling setup since we used a fixed number of degrees
of freedom and only increased the number of processors.

3.5.2 Bouyancy-Boussinesq PDE Benchmark
This is an example of a massively parallel implementation since
idle cores on each node will also be used for local shared memory
parallelism. Thus for a substantial test of strong scalability taking
full control over local threading and carefully choosing the
balance of participating compute nodes versus the number of
local cores on each node and the accessibility of memory banks is
necessary. We pass on this and only show weak scaling results on
160 CPU cores on all ten machines. Note that the remaining
virtual cores are used for threading the assembly of the system
matrices and right-hand sides. Also note that we do not scale to
the same large number of DoFs as in the test of Section 3.2 since
the problem is numerically much more challenging. Figure 5
shows a snapshot of the Bouyancy-Boussinesq problem applied to
mantle convection applications. Figure 6 shows the weak scaling
effects on 160 cores in the large setup for 100 time steps and
increasing problem sizes due to adaptive mesh refinement. Note
that coarsening and refinement includes re-balancing the mesh,
and that the solvers scale slightly better than linearly since the
solution at the preceding time step is used as an initial guess. The
overall solution times for each iteration show slightly better
scaling than linear, most likely because we are not in the
asymptotic regime.

Overall, these scaling examples demonstrate the capacity of
cloud facilities for typical numerical computation primitives.
Scaling as well as absolute performance indicators are similar

to on-premise computing facilities, at least for reasonably sized
computers. The software environments of cloud instances are
very similar to on-premise computing facilities, since the cloud
instances can be configured analogously, providing Linux
operating systems with the usual libraries and compilers, and
even specialized libraries can be installed into the virtual
machines running in the cloud environments.

4 EXAMPLE WORKFLOW FOR TSUNAMI
HAZARD COMPUTING

A prototypical workflow for an instant computing scenario in
tsunami early warning could be given by the following sequence:

1. Trigger: Earthquake detected through network of
seismometers and suitable processing, information available
via web service [e.g., GEOFON (2021)]

2. Gather Boundary Data: Bathymetry/topography data
(possibly pre-) processed from online resources for the
computational domain of interest.

3. Derive Initial Data: Obtain rupture parameters (Okada
parameters) from earthquake parameters, e.g., through
scaling laws (Mansinha and Smylie, 1971; Okada, 1985;
Kanamori and Brodsky, 2004).

4. Simulation: Run tsunami forecasting simulation with initial
conditions (Okada) and boundary data from previous
two steps.

5. Deploy/visualize results: Visualize simulation results, and
deploy additional products through web services from data,
which were generated and stored in files during the simulation.

This workflow is given in Figure 7 as a flow diagram.
In order to implement a prototypical realization of this

workflow, several pre-fabricated tools were available and have

FIGURE 4 |Distributedmesh (20 CPUs on 10 nodes, small setup) for the
test case in Section 3.2. Each color indicates a different processor owning a
part of the mesh.

FIGURE 5 | Snapshot of the solution of the Boussinesq test case of
Section 3.3. A crossection of the earth’s mantle is shown with the adaptively
refined mesh. Arrows indicate the flow direction and speed. Color also
indicates flow speed.
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FIGURE 6 | Weak scaling on 160 CPU cores with local threading on ten nodes for the test in Section 3.3 (large setup).

FIGURE 7 | Prototypical workflow for tsunami forecasting.
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been used. As a first step, however, a well configured AWS EC2
virtual machine instance needs to be generated. Since the EC2
instances are scalable, the configuration concerns in particular the
connectivity of the cloud machine. In our case access to the
machine is established via secure shell (SSH) on port 22, and the
(secure) HTTP/HTTPS protocols via ports 80 and 443
respectively. Corresponding keys need to be generated and
stored appropriately.

The workflow is implemented by a 250 line Python script. In
order to be able to achieve this brevity, several pre-fabricated
libraries are used. The Boto library (AmazonWeb Services, 2021)
helps to start and configure the EC2 instance out of the python
run-time environment. To simplify the interaction with the EC2
instance via SSH the Paramico library (Forcier, 2021) is used.

The general architecture of the implementation is shown in
Figure 8. The Python controller script can run either on a very
small/weak cloud instance or on any computer on-premise. It
uses hardly any resources and will just listen to incoming mail
from the triggering earthquake alert service. When the workflow
is triggered by an earthquake alert message, the controller starts

the EC2 instance, which is stored as a pre-fabricated and
configured virtual machine. This consists of a current Debian
Linux operating system, a repository of bathymetry/topography
data for the region of interest (in our case the western
Mediterranean), a compiled simulation program
(StormFlash2d, see below) with all necessary libraries, and
post-processing tools. Once the EC2 instance is running, it
provides an HTTP-interface for clients, including mobile
devices, to retrieve simulation results.

In this prototypical implementation the trigger for activating
the workflow is an email sent by the GEOFON server (GEOFON,
2021) in case of an earthquake. The alerting email contains
information on the earthquake’s epicenter location, time,
source parameters, and a unique event identifier. For
reasonably significant earthquakes moment tensor parameters
are automatically computed and can be accessed via web
interfaces. The python controller parses relevant values from
the text file containing the moment tensor parameters and derives
the corresponding input to be used in the Okada model for
tsunami sources (Okada, 1985). The empirical formulas are taken
from Pranowo (2010) and are based on Kanamori and Brodsky
(2004); Mansinha and Smylie (1971) and others.

Once the Okada parameters are derived, the corresponding
source serves as initial condition for starting the simulation.
Other boundary conditions (bathymetry/topography) are
obtained from previously prepared and stored data. The
propagation and inundation is computed by the simulation
software StormFlash2D, an adaptive discontinuous Galerkin
non-linear shallow water model (Vater et al., 2015, 2019). The
output of StormFlash2D—wave height and velocity on adaptively
refined triangular meshes—is stored in NetCDF files (Unidata,
2021), following the UGRID conventions (Jagers, 2018). These
files are then further processed and visualized, utilizing the
pyugrid Python library (Barker et al., 2021). Post-processing
can then be applied to the stored files, in order to derive
forecasting products, such as arrival time maps, mareograms, etc.

In this prototypical implementation that serves mainly the
purpose of demonstrating feasibility, we use parameters similar to

FIGURE 8 | Architecture of the prototypical cloud based tsunami
forecasting system.

FIGURE 9 | Three snapshots of an animation result from the prototypical cloud based tsunami simulation. x- and y-axis represent degrees East longitude and North
latitude, colors/contour lines indicate wave amplitude in meters. This is a scenario with a synthetic source of an earthquake tsunami originating in the North Algerian
subduction zone. The images cover a map area reaching from approximately Valencia/Spain in the West to Monaco in the East and from a little South of Algier/Algeria in
the South to Montpellier/France in the North.
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the 2003 Zemmouri-Bourmedes tsunami event at the coast of
Algeria in the Mediterranean (Alasset et al., 2006). The example
email triggering the workflow contains the earthquake magnitude
(MW 6.8) and location data (epicenter 36.83 N, 3.65 E, and depth
8 km). Further local tensor data are assumed to be strike 54°, dip
50° and rake 90°. Applying the above mentioned empirical scaling
laws to the earthquake magnitude, we set a slip of little less than
1 m, a length of the Okada plate of 30.2 km and a width of
15.1 km. A single plate is assumed.

The only product delivered to a potential user in this feasibility
study is a short animation of waves propagating over the ocean area
of interest (see Figure 9). This sequence is computed using standard
gebco bathymetry GEBCO (2014), which is interpolated linearly to
the triangular mesh. Themesh for this computation was not adapted,
but used in a uniformly refined version with 16 refinement levels,
corresponding to a grid of approx. 260,000 grid cells or to a resolution
of approx. 1,300m. Note that in the visualization, there are some
numerical artifacts (secondary waves) caused by a somewhat sloppy
implementation of the interpolation of the Okada initial conditions
(computed on a rectangular mesh) to the triangular computational
mesh of StormFlash2d.

The above steps, i.e., listening to incoming email, parsing data into
files controlling the execution of the tsunami model, and collecting
output data, are performed by a small Python script on a local laptop
or desktop computer. Starting the EC2 AWS instance takes less than
30 s. Run time for this serial computation on one node of the AWS
instance takes approx. 100 s, the time for output being less than 1% of
the total computing time.

While this proves the feasibility of implementing suchworkflow in
IaaS type cloud services, it is by no means useful for real world
operations. The adaptive tsunami simulation—while potentially
efficient and accurate—is not applied to local resolutions of 10 s
ofmeters for usefully precise forecast information. If this was the aim,
additional resources and performance optimizations would be
necessary. Additionally, a more diverse and more quality
controlled post-processing pipeline would be necessary. Usually,
wave arrival time maps, wave height maps, possibly inundation
maps, and even flow speed assessments would be of practical interest.

5 SUMMARY AND CONCLUSION

In this study we assess the feasibility of on-demand cloud computing
for tsunami hazard assessment as well as other demanding
geophysical applications. On the one hand, we test the capacity of
cloud computing environments to provide scalable high-performance
computing capabilities. A number of advantages of such cloud-based
computing facilities motivate us to further investigate their usability
for more practical applications. Therefore, we propose a simple
workflow that can be implemented in a cloud environment. While
we are aware that there exist similar workflows in tsunami hazard
assessment, they are all based on remotely accessible, but local on-
premise computing environments.

A simplified prototypical workflow, utilizing cloud instances is
implemented and demonstrates the overall feasibility of our
approach. More work needs to be invested to empower this
approach for operational use:

• Some manual work is required to obtain quality controlled
bathymetry/topography data.

• A permanent control process needs to be instantiated in
order to listen to relevant trigger data (such as earthquake
portals) and compute robust and useful sources from
earthquake parameters. The prototypical application is
much too simple for operational purposes.

• More relevant output formats and better visualization needs
to be implemented to interact with the instant computing
workflow.

• The simulation software StormFlash2D needs thorough
parallelization and optimization to be used in an
operational environment.

• It would be desirable to also include other operational
models for assessing the uncertainty in the forecast,
related to the modeling technique.

• Instantiating several on-demand computations with a
variation in the earthquake parameters within the data
uncertainty, would create an ensemble of forecasts,
allowing for probabilistic forecasts such as those
proposed by Selva et al. (2021).

By conducting the scalability tests with selected benchmarks
we could show that cloud computing environments are capable of
providing the required performance for many geoscientific
applications at reasonable costs. Therefore further exploration
and development of standardized interfaces for managing and
controlling the cloud computing infrastructure is worthwhile.
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Emerging high-performance computing systems, combined with increasingly detailed 3-D
Earth models and physically consistent numerical wave propagation solvers, are opening
up new opportunities for urgent seismic computing. This may help, for instance, to guide
emergency response teams in the wake of large earthquakes. A key component of urgent
seismic computing is the early availability of source mechanism estimates, well before
conventional and time-consuming moment tensor inversions are carried out and
published. Here, we introduce a methodology that rapidly estimates focal mechanisms
(FM) for moderate and large earthquakes (Mw > 4.0) by means of statistical and clustering
algorithms. The fundamental rationale behind the method is that events of a certain size
tend to be similar to other events of similar size in similar locations. In this work, two
different strategies are used to provide different FM solutions: the first is based only in
spatial considerations including statistical analysis, and the other one is based on a data
clustering algorithm. We exemplify our methodology with six different subsets of the open-
access Global Centroid Moment Tensor (GCMT) catalog. Specifically, our study datasets
include events from Japan, New Zealand, California, Mexico, Iceland, and Italy, which
represent six seismically active regions, with a large FM variability. Our results show a
70–85% agreement between our fast FM estimates and inversion results, depending on
the particular tectonic region, dataset size, and magnitude threshold. In addition, our FM
estimation strategies only spend few seconds for processing, since they are totally
independent of seismic record retrieval and inversion. Albeit not meant to be a
substitute for CMT inversions, our methodologies can bridge the time gap between
earthquake detection and FM inversion.

Keywords: focal mechanism, fast-response, urgent computing, GCMT catalog, DBSCAN clustering, source
parameters

1 INTRODUCTION

Fast earthquake magnitude and focal mechanism (FM) estimates are key information for rapid
emergency response applications, including urgent post-event seismic simulations. Few hours after
the occurrence of a large-magnitude earthquake, these simulations aim tomap ground shaking in the
affected region to show areas of high intensity motion, which may host potential structural damages.
An FM solution describes the fault-plane orientation and directions of principal stresses in the area
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where the earthquake occurred (Udias and Buforn 2017; Maeda
1992). The FM is given by three angles, two of them, the strike ϕ
and dip δ angles, geometrically define the fault plane, and the
third angle, the rake λ measures the direction of fault slip. Thus,
an FM is used for the mathematical description of seismic sources
in terms of the moment tensor (MT) equivalent body forces. The
most general approach to determine an FM solution is by
computing the centroid moment tensor (CMT). For moderate-
to-large magnitude earthquakes, CMTs are usually obtained from
waveform or spectral data inversions (Dziewonski et al., 1981;
Dziewonski and Woodhouse 1983). Although, approaches to
estimate earthquake location and magnitude are consolidated
and extremely fast, automatic solutions for FM estimates are not
always provided by the seismological agencies, or are only
available at later times after waveform inversions have been
completed (Tarantino et al., 2019). However, it is worth
noting that significant efforts have been made towards almost
real-time determination of FM (or CMT) by using different
methods and algorithms. For example, Lin et al. (2019) and
Melgar et al. (2012) exploit GPS networks, while other works use
source inversion algorithms based on modelling of the W-phase,
a very long-period phase (100–1,000 s) arriving at the same time
as the P-wave (see, e.g., Duputel et al., 2012). Another approach
relies on the azimuthal distribution of early P-wave peaks in
displacement, velocity and acceleration traces (Tarantino et al.,
2019). Moreover, several packages have been developed for
automatic MT determination, such as Scisola (open-source
software developed by Triantafyllis et al., 2016) or Gisola
(Triantafyllis et al., 2021). Scisola is an open source Python
based software for automatic MT calculation that combines
two platforms, ISOLA (Sokos and Zahradnik 2008) and
SeisComP3 (Weber et al., 2007). Gisola is an evolved version
of Scisola that applies enhanced algorithms for waveform data
filtering. However, the response times of most aforementioned
techniques are constrained by the retrieval times of their input
data, i.e., seismic records of the recent earthquakes (Melgar et al.,
2012; Scognamiglio et al., 2010, and ref. there in). Therefore, the
development of alternative approaches for fast FM estimations,
independent of seismic records, may serve as temporary
replacement until inversions have finished. This work explores
statistical approaches, with the assistance of clustering
algorithms, to estimate FM solutions for a new earthquake
based on the similarity of ϕ, δ and λ with respect to past
events. The historical databases are gathered by the open-
access Global Centroid Moment Tensor (GCMT) catalog
(GCMT, Ekström et al., 2012). As input data, our
methodologies only require the hypocentral location and
magnitude of the new earthquake. This information is
promptly provided by different seismological agencies with a
latency of few seconds after earthquake occurrence. Once
triggered, our methodologies can provide FM estimates within
seconds, thereby enabling real-time affectation analyses before
FM inversions become available. Our results can be potentially
used to add directivity information into fast shaking assessment
estimates, shortly after the earthquake is recorded, because it is
precise for large events which have damaging potential. The
method, however, is not universal, because it behaves worse if

smaller magnitude events are used. Hence it is no substitute for
CMT inversion, but a provider of fast estimates.It is important to
acknowledge that the methodology results not in one single best-
fitting result, but in a collection of results among which is a good-
fitting result. For shaking assessment (see, e.g., Wald et al., 1999,
Wald et al., 2008) this is not a strong limitation, as few scenarios
can be computed using all CMT estimates and the best fit can be
assessed a posteriori. Last but not least, the methodology has a
potential for probabilistic seismic hazard (PSHA, see e.g. Baker
2008; Mulargia et al., 2017) studies, especially those taking into
account CMT information in their attenuation relationships or
seismic modelling components. When populating hypothetical
future earthquakes, in the so-called earthquake rupture forecast,
CMTs could be estimated using our method, thus not necessarily
restricting such earthquakes to mapped faults and their
prescribed tectonic regimes. In fact, using catalog information
(i.e. our CMT estimate) to make assessments about a hypothetical
scenario is at the very core of PSHA. Nevertheless a seismic
scenario computed using our CMT estimates would lack any kind
of probabilistic component: it would be a deterministic scenario
with associated uncertainties inherent to the CMT estimation
methodology. The proposed methodology for FM estimation
exploits information on hypocenters and magnitudes of
catalogued neighboring events. Specifically, we employ
conventional statistical analysis and the automatic DBSCAN
clustering algorithm (Ester et al., 1996). To measure distance
between two FM solutions, we use the Minimum Rotated Angle
(MRA) metrics Kagan (2007) that quantify similarities between
two double-couple (DC) sources in absolute angle degrees. It is
worth noting that non-DC components, typically associated with
volcanic activity and fluid-related earthquakes, are not the focus
of our work because they do not typically produce large-
magnitude, i.e. highly damaging, events (Stierle 2015; Wang
et al., 2018). We assess the accuracy of the methodology
through statistical comparisons of our FM results with
published GCMT inversion solutions. For validation, we select
six seismically active regions with large variability of the rupture
mechanisms for the selected historical earthquakes used as
estimation basis. These regions are Japan, New Zealand,
California, Mexico, Iceland, and Italy.

2 BACKGROUND

2.1 Global CentroidMoment Tensor Catalog
and Input Datasets
We obtained the datasets used in this work from the GCMT
catalog (Dziewonski et al., 1981; Ekström et al., 2012), available
through the Searchable Product Depository (SPUD) of the
Incorporated Research Institutions for Seismology (IRIS)
(Trabant et al., 2012). Global Centroid-Moment-Tensors from
the GCMT project at Lamont-Doherty Earth Observatory are
available through SPUD within minutes after their publication.
Initial quick-CMT solutions are shown and are later updated to
GCMT solutions when updates arrive. At present, the GCMT
catalog contains more than 40,000 earthquakes. From the queried
catalog we use the Event information which includes the
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TABLE 1 | Filters applied to the GCMT database to extract six regional datasets. We list the total amount of events in each dataset. Databases have been queried from IRIS
“https://ds.iris.edu/spud/momenttensor”

Subset Latitude (°) Longitude (°) Depth (km) Event count Magnitude (Mw) Date

New Zealand [-46.02, -34.42] [166.1, 178.71] [0, 518] 273 [4.8, 7.8] [1965, 2018]
Japan [30.03, 46.3] [128.84, 147.1] [0, 588] 2652 [4.6, 9.1] [1967, 2019]
California [29.72, 44.77] [-129.76, -110.36] [0, 30] 460 [4.4, 7.3] [2010, 2019]
México [10, 33] [-120, -90] [0, 251.1] 1705 [4.5, 8.2] [1967, 2020]
Iceland [63.06, 66.94] [-24.43, -16.58] [0, 33] 124 [4.6, 6.5] [1976, 2018]
Italy [34.95, 47.94] [5.18, 21.0] [0, 502] 692 [3.9, 6.9] [1976, 2015]

FIGURE 1 | GCMT datasets used in this study (see Table 1), the epcientral locations, and the FM solutions are shown.

Frontiers in Earth Science | www.frontiersin.org April 2022 | Volume 10 | Article 7438603

Monterrubio-Velasco et al. Fast Estimation of Focal Mechanisms

145

https://ds.iris.edu/spud/momenttensor
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


hypocenter location, earthquake magnitude, Date-Time UCT,
faulting geometry, and the FM solution of moderate to large
events with magnitude M ≥ 4.5. Is worth to highlight that in this
work we only use the hypocenter location of the Event
information to give the coherence of the first information
registered after an earthquake occurs.

In this study, we consider six data subsets associated with six
study regions: New Zealand, Japan, California, Mexico, Iceland,
and Italy. Each subset is defined by the ranges of hypocentral
locations, magnitudes and event times (Table 1). Figure 1
shows each regions and FM solutions, represented as beach
balls. The beach ball sizes are proportional to the event
magnitude.

2.2 Minimum Rotated Angle Metric to
Measure Similarity Between Two Focal
Mechanisms
In this work, we assess the accuracy of our FM solutions by means
of the MRA metric, proposed by Kagan (2007). This metric
measures the distance between two double-couple (DC)
solutions in absolute angular terms, and it enables a
comparison between two DC solutions obtained by different
methods, as well as variations of earthquake FMs in space and
time. Moreover, the MRA has been used widely, thereby allowing
us to compare methodologies of different authors.

MRA requires computing the matrix eigenvectors t, p and b,
which belong to R3 and represent the three orthogonal axes
describing the radiation of P-waves from a DC point source
(Frohlich 1996; Aki and Richards 2002). To compute the MRA,
we consider the eigenvector components in terms of the strike ϕ,
dip δ, and rake λ angles,

t1 � −sin ϕ sin δ + cos ϕ cos λ + sin ϕ cos δ sin λ( )/
�
2

√
t2 � cos ϕ sin δ + sin ϕ cos λ − cosϕ cos δ sin λ( )/

�
2

√
t3 � −cos δ − sin δ sin λ( )/ �

2
√

p1 � −sin ϕ sin δ − cos ϕ cos λ − sin ϕ cos δ sin λ( )/
�
2

√
p2 � cos ϕ sin δ − sin ϕ cos λ + cosϕ cos δ sin λ( )/

�
2

√
p3 � −cos δ + sin δ sin λ( )/ �

2
√

b1 � cos ϕ sin λ − sinϕ cos δ cos λ
b2 � sinϕ sin λ + cos ϕ cos δ cos λ
b3 � sin δ cos λ

(1)

The MRA Φ, as defined in Kagan (2007), is given by

Φ � arccos
1
2

|t′ · t″| + |p′ · p″| + |b′ · b″| − 1( )[ ] (2)

Where t’, p’ and b’, are the eigenvectors associated to one FM
solution, while a second FM solution has t”, p” and b” as
eigenvectors.

Following the formulation in Kagan (2007), Eq. 2 yields the
correct value of the rotation angle for Φ < 90°. However, if Eq. 2
results inΦ > 90° then a more general equation should be applied
to computeΦ. ForΦ > 90° to obtain the minimum rotation angle
Φ Eq. 3 is applied, in those cases the smallest absolute value dot
product should be negative, and the other products should be
positive (further details see Kagan (2007).)

Φ � arccos
1
2

t′ · t″ + p′ · p″ + b′ · b″ − 1( )[ ] (3)

Figure 2 depicts some examples of different MRA values
computed from the shown FM solutions.

Different research results conclude that an acceptable
agreement between two FM solutions is given by angle
differences of the order of a few tens of degrees, while a
strong variance corresponds to an angle difference greater
than 50° (or 60°) (Vannucci et al., 2004; Triantafyllis 2014;
Triantafyllis et al., 2016). Triantafyllis et al. (2013) found an
average error between manual and the automatic FM solutions
computed using Scisola of Φ ≈ 37°. Moreover, based on heuristic
analyses from our statistical results, in this work we assume a
similarity threshold Φth < 30°. Therefore, we suggest that two FM
solutions with Φ > Φth are not comparable.

2.3 DBSCAN Clustering Algorithm
Class identification in spatial databases can be accomplished
through the exploitation of clustering algorithms. Cluster
analysis is developed under the assumption that spatial data
has an implicit structure that can be uncovered by clustering
algorithms. The clusters must comply with two characteristics:
internal cohesion, also known as homogeneity, and external
isolation, also known as separation. Thus, clustering
techniques seek to summarize meaningfully different pattern

FIGURE 2 | Example of the MRA metric comparing two FM solutions.
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FIGURE 3 | Kaverina’s diagrams for selected six regions: (A) New ZealandM ≥ 4.8, (B) JapanM ≥ 5.5, (C)CaliforniaM ≥ 4.4, (D) IcelandM ≥ 4.6, (E) ItalyM ≥ 4.6,
and (F) Mexico M ≥ 5.5.

FIGURE 4 | Example of the selectionprocessof the optimaldth parameter. Redmarkers show thepercentageof eventswith at least one neighbor inside the sphere (Ω1). Bluemarks
indicate the percentage of events with at least one FM solution with Φ < 30°. Ellipse indicates the optimum dth considered in the study as the inflection point in both curves.
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profiles by identifying segments of points in which observations
within the same cluster exhibit high degrees of similarity
(homogeneity) while differing in some respects from
observations in other clusters (separation). In this work, a
density-based method, namely Density-based Spatial Clustering

of Applications with Noise (DBSCAN) Ester et al. (1996) is used to
identify geological or structural profiles, which are depicted by the
clusters uncovered by the algorithm. DBSCAN relies on two
parameters: a distance threshold ϵ, which indicates the
maximum distance between two observations, and the
minimum number of observations n to form a cluster. The first
step is to describe each observation, i.e., an earthquake with a focal
mechanism, using a multi-dimensional real-valued vector
representation described by the hypocentral location, strike, dip
and rake. The set of observations is fed to the DBSCAN algorithm
to uncover the intrinsic geological or structural profiles. In order to
obtain the optimal number of profiles (i.e. clusters), the distance
threshold and the minimum number of samples, both of which
parameters have an effect on the number of clusters. The distance
threshold ϵ is estimated using the strategy based on knee/elbow
methodology (Satopaa et al., 2011). And the minimum number of
samples n are set equal to two

3 STATISTICAL AND CLUSTERING
METHODOLOGY FOR FAST ESTIMATING
FOCAL MECHANISMS
In the following subsection we provide a general description of
the proposed method. Subsequently, we present its application to
several regions of interest.

TABLE 2 | Results of the methodology proposed in this work: dth is the
neighborhood radius size in kilometers; Mth the minimum magnitude
considered in the study; Number of events the total number of earthquakes with a
magnitude larger or equal than Mth; Ω1 and Ω3 are the number of events with at
least one or three neighbors inside the sphere of radius dth respectively; and
Φ(30,Ω1 ) and Φ(30,Ω3 ) depicts the percentage of events with at least one
solution with a Φ < 30 computed from the Statistical method or DBSCAN
algorithm respectively.

Region dth
[km]

Mth Number
of

events

Nearest
Neighbors

DBCAN

Ω1 Φ(30, 1) Ω3 Φ(30, 3)

New Zealand 80 4.8 273 220 73% 154 82%
Japan 80 5.0 2263 2085 77% 1771

79%
Japan 110 5.5 937 816 80% 621 81%
Japan 150 6.0 331 261 85% 196 88%
California 80 5.0 363 328 83% 301 79%
Mexico 60 5.0 1,426 1,302 86% 938 86%
México 80 5.5 588 542 87% 361 89%
Mexico 130 6.0 203 178 83% 101 89%
Italy 80 4.8 114 66 85% 38 92%
Iceland 70 4.6 124 122 77% 113 83%

FIGURE 5 |Histogram distribution ofΦ values obtained by the comparison between each new event and its nearest neighbors (k1, k2, k3, k4, kmedian). The values
represented in the plot are the minimum Φ obtained in the nearest neighbor comparison.
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3.1 Methodology at a Glance
The proposed methodology to estimate an FM solution is based
on spatial properties. Thus, once the hypocentral location of the
new event with an unknown FM solution is available, we select a
spherical neighborhood centered at its hypocentral location.
Previous events inside this neighborhood will then be used to
suggest different FM solutions. In this work we propose two
different methods for this:

(a) The first method is based on spatial assumptions and uses the
hypocentral Euclidean distance Δ as a metric to quantify the
distance between the new event and each of its neighbors. To

measure it, we apply the Haversine formula that determines
the great circle distance between two points (Sinnott 1984),

d � 2R arcsin

������������������������������������

sin2 ψ2 − ψ1( )

2
+ cos ψ1( )cos ψ2( )sin2 λ2 − λ1( )

2

√

⎛⎝ ⎞⎠

(4)
Where R is the radius of the Earth, and ψ1, ψ2, and λ1, λ2 are the

latitude and longitude coordinates of two points, respectively.
Once d is computed, the Euclidean distance from the new event to

FIGURE 6 | Statistical metrics results in the New Zealand region. Each subplot depicts theΦ computed for each new-event vs. the four nearest neighbors k1 (A), k2
(B), k3 (C), k4 (D), and k-Median (E). The minimum values between these five statistical solutions are depicted in subplot (F) where the horizontal line indicates the
threshold Φ < 30°. (G) shows the ordered values of the other subplots in same colors except the dark-violet that corresponds to the minimum value in subplot (F).
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each neighbor is given by Δ � ������
d2 + z2

√
, where z is the difference

in depth. Therefore, we select the four nearest neighbors
(hereafter denoted as k1, k2, k3, k4) from the closest to the
farthest, respectively. Here, we assume that these four nearest
earthquakes could have occurred under similar geological and
tectonic conditions or under similar faulting type. Therefore, this
method gives four FM solutions coming from the solutions of the
four closest neighbors. The number four is an empirically
motivated choice, found to produce useful results in the
statistical analyses presented later. Additionally, we compute a
median FM solution from all neighbors in the sphere. This
median value is computed using the three angles ϕi, δi, and λi,
where i is related to each the i-neighbors. This fifth FM solution,
named k − median could be related with a “typical” faulting type
in that region. To apply this method we consider a minimum of
one neighbor (n = 1) inside the sphere.

(b) The second method is based on the DBSCAN clustering
algorithm. To apply this algorithm, we select four
features, the distance from each neighbor to the
hypocenter of the new event, and also the three angles
of the FM of each neighbor. Once the algorithm
automatically detects the clusters, we compute the
position of each centroid, as well as the FM solution
from the median of ϕx, δx, and λx from the events that
belong to each x cluster. The number of solutions
depends on the number of clusters detected in the
DBSCAN algorithm. It is worth noting that a
minimum number of neighbors to apply the cluster
algorithm should be assumed. Hence, in this
application we take a minimum of three neighbors
(n = 3). The clusters automatically detected could

reflect information about different regional tectonic
features.

3.2 Methodology Application
To apply the methods described in the previous subsection we
follow a step-by-step process

The first step is the compilation of suitable datasets. For
this, we access moment tensor information of each selected
region, summarized in Table 1, through the IRIS-SPUD
website 1 (Trabant et al., 2012). We perform an
exploratory study to visualise the statistical FM
distribution using Kaverina diagrams (Kaverina et al.,
1996) which classify events according to their double-
couple (DC) rupture type. Figure 3 shows the Kaverina
diagrams for each study region using the visualizing tool
developed in (Álvarez-Gómez 2019). Clearly dominant
rupture types are observed in some regions, for example,
strike-slip events in California, or normal faulting in Iceland.
Other regions, such as New Zealand, Mexico and Japan,
depict a larger variety of rupture types. The main purpose
of visualizing historical datasets in Kaverina diagrams is to
know the rupture-type at each region. This information is
useful for the interpretation of results in the following
section.

In the second step, we perform a statistical analyses using the
two methods described in the previous subsection. This statistical
evaluation aims to test the proposed methodology using each
earthquake in the dataset as an independent observation,
considering them as a hypothetical new event with unknown
FM. Moreover, the statistical analysis allows us to quantify the
accuracy of the proposed methodology by means of the MRA
computed between the proposed and the original solution. In this
work, we choose an MRA threshold value of Φth = 30°

(Triantafyllis 2014; Kagan 2007), below which two FM
solutions are deemed sufficiently similar, suggesting that the
proposed one may indeed be used as a first guess for the new
earthquake with unknown FM solution. This value is motivated
by earlier studies on the similarity between FM solutions
(Triantafyllis et al., 2013, Triantafyllis et al., 2016; Altunel and
Pinar 2021), and by the observation that differences between FM
solutions for an earthquake provided by different agencies are
typically below Φ = 30°. From this point of view both methods
described in the previous subsection can be considered supervised

TABLE 3 | Earthquakes analyzed using the statistical methodology proposed in
this work (see. section 4).

Region Mw Date Hypocentral Location dth

(lon,lat,depth) [km]

New Zealand 5.0 30/11/2 018 4:17 166.12, -45.57, 31.5 km 80
Japan 5.2 1/6/2 011 3:14 143.84, 39.79, 14.4 km 80
California 5.3 28/10/2 019 11:01 -125.9, 41.91, 15.0 km 80
Iceland 4.8 29/5/2 009 21:33 -22.52, 63.82, 12.7 km 70
Italy 5.2 20/5/2 012 13:18 11.49, 44.81, 12 km 80
Mexico 7.4 23/6/2 020 15:29 -96.06, 16.04, 20 km 60

FIGURE 7 | Statistical results of the DBSCAN algorithm. The percentage
considers the subset Ω3 where the median FM from at least one predicted
cluster has Φ < 30°.
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techniques, because the FM solution for the new-event is
already known.

As previously mentioned, each method requires a minimum
number of neighbors around the new event. At least three
neighbors, n = 3, for the DBSCAN algorithm, and one neighbor,
n = 1, for the hypocentral Euclidean distance. In the following, we will
denote by Ωn the number of events in the dataset that fulfill the
requirement of having a minimum of n neighbors.

In the third, step we optimize the neighborhood size. Trying to
find an optimal size, we modify the radius dth of the spherical
neighborhood. To find the optimum dth, we repeat the previous
step, increasing the neighborhood radius after testing all the
events in the dataset. We start with a radius of 20 km, and
increase up to 200 km in 10 km steps. An optimum dth value
must satisfy two conditions:

(1) a large number of events in the dataset with at least one
neighbor inside the sphere, that is, a large Ω1,

(2) and a large percentage of events with at least one neighbor
with Φ < 30°.

In Figure 4, we exemplify this search for an optimal dth. Blue
bars indicate the percentage of events with at least one solution
with Φ < 30°. The red triangles depict the percentage of events in
the dataset considered in the analysis, i.e., events with at least one
neighbor inside the sphere (Ω1). For all regions, as the
neighborhood size increases, the percentage of spheres with at
least one neighbor increases until an inflection point, beyond
which it remains constant. We consider this inflection point as
the threshold size dth. This indicates that, although the
neighborhood size increases (and thus the number neighbors),
the similarities between FM solutions are not further improved.
Therefore, the optimal radius of the sphere maximizes both
percentages at the same time, as indicated by the orange
ellipse in Figure 4.

To study how the minimum magnitude Mth in a dataset
modifies the threshold radius dth, we repeat the same analysis
considering different Mth values. However, this analysis is
possible only for large catalogs, such as for the Japan and
Mexico datasets. Table 2 depicts the selected dth values for
each region.

FIGURE 8 | (A) Nearest neighbor solutions for a particular example in New Zealand (see Table 3). The map shows the location and focal mechanism of the test
event (light-blue) and its neighbors. From closer to farther solutions, k1 (red beachball), k2 (green), k3 (dark-blue), k4 (black), and k −median (magenta). The MRA values
Φ, listed to the right, measure the differences between each neighbor and the test event solution. (B)DBSCAN results for the same earthquake of Figure 8A in light-blue.
The magenta diamond indicates its epicentral location. The beach balls with the same color belong to the same cluster defined by the DBSCAN algorithm. The
centroids of each cluster are shown in diamond markers of the corresponding color. Those centroids are computed as the mean value of the latitude, longitude and
depth from each event in the cluster. At the right side the median FM solutions computed in each cluster are shown. The MRA value Φ relative to the test-event is also
indicated.
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4 STATISTICAL AND CLUSTERING
RESULTS

In the first part of this section we present the results of the two
methods applied to the selected regions. This will be followed in
the second part by specific examples for selected earthquakes in
each region.

Table 2 shows the main results of the statistical analysis for
each region. It is worth noting that for a similar Mth the radius
dth is similar to with few tens of kilometers for different regions.
Also, as Mth increases, the radius dth becomes larger. The
statistical results indicate that around 70–85% of the tested
events have an FM solution similar to those computed in the
GCMT catalog (Φ < 30). This percentage range is accomplished
for both, the clustering algorithm and the spatial metrics.
Moreover in the regions with similar rupture types, such as
California, Mexico, Japan or Iceland (Figure 3), this
percentage increases. On the other hand, this similarity
decreases in regions where the faulting types are more diverse,
including New Zealand and Italy. In the datasets with few events
such Italy, performance of both methods is lower because the
neighborhood tends to have scarce data, thereby preventing
improvements of the statistics.

Figures 5A–F shows the MRA histograms for each region,
obtained with the statistical metrics (Ωth,1). We observe that the

MRA distribution is clearly skewed towards low MRA values,
mostly reaching Φ < 30.

In Figure 6, a detailed plot shows the behavior of Φ(30, 1)

considering the nearest neighbors and the median statistical
solution for New Zealand. Figure 6G shows the ordered Ω
values obtained in the (a-f) subplots. In dark-violet the
minimum value between k1, k2, k3, k4 and k − median is
depicted, from there is easy to observe how the FM solutions
is improved.

In general, the nearest neighbor, k1, is the most likely to
provide a similar FM solution. This is expected because
nearby earthquakes are likely to rupture the same fault or
under similar tectonic regimens. However, we also observe
that the median FM solution produce MRA of Φ < 30°. In
those cases, most neighbors have similar rupture types than
the new-event. Moreover, in some cases, also another
neighbors (k2, k3, k4), show a smaller Φ than k1. This
could be related to hypocenter location uncertainties.

Statistical results of the DBSCAN algorithm are shown in
Figure 7 for each region. The percentages shown in this figure
consider that at least one FM solution computed using the
median values in each cluster has Φ < 30°, for events with at
least three neighbors (Ω3). The median FM solutions are
computed by using the events belonging to each automatically
detected cluster. We observe that the DBSCAN algorithm

FIGURE 9 | Same as Figure 8 for an Mw = 5.2 Japanese earthquake (see Table 3).
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computes similar percentages to the nearest neighbors statistics
for those events that fulfill the number of neighbors Ω3.

4.1 Examples of the Methodology for
Selected Regions
In this section, we apply the method presented above to specific
earthquakes in different regions. From the databases we
randomly choose one test event with at least three neighbors
inside the sphere of size dth. The selected earthquakes are listed in
table 3.

New Zealand Figure 8A shows the spatial epicentral locations
and focal mechanisms of the test event, it neighbors inside the
sphere, and the median event. and their focal mechanism in
magenta color is plotted. The closest neighbor is shown in red. In
this example, we obtain MRA values of Φ < 30° for the three
nearest events k1, k2 and k3, and for themedian event k −median.

The DBSCAN clustering results are presented in Figure 8B.
The different colors indicate the clusters detected in the DBSCAN
algorithm and the diamonds mark their respective cluster-
centroid locations. In this particular example, the smallest
cluster has the more similar FM solution to the test event.

Japan The dataset of the Japan region is the largest in our
analysis. We also choose randomly an earthquake with more than
three neighbors inside a sphere of radius dth = 80 km size. Our
threshold magnitude in this example is 5.0.

The hypocentral locations and focal mechanisms of the test
event and its four nearest neighbors are displayed in Figure 9. In
this example, the similarity is high for all neighbors. This is also

FIGURE 11 | Same as Figure 8 for an Mw = 4.8 Icelandic earthquake
(see Table 3).

FIGURE 10 | Same as Figure 8 for an Mw = 5.3 Californian earthquake (see Table 3).
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reflected in the clustering algorithm which detects three clusters.
Is worth to note that the clustering algorithm joins in the yellow
cluster different event solutions. Let us keep in mind that the
objective of cluster analysis is to generalize the solution model,
thus, some individual events may be misclassified, which does not
diminish the contribution of the solution. The generalization
seeks to have good classification of spatial events in the general
population of events, and low error rates do not mean perfect
classification. However, it is important to note that the rest of the
clusters in Figure 9 share many similarities between their
elements reflecting a good clustering selection by the
DBSCAN. The most similar median FM solution is for the
larger cluster. These results could indicate similar geological
patterns in that region, producing events with similar FM
solutions.

California The California region shows a predominant
strike-slip rupture style, as seen in Figure 3. The results of

our method, displayed in Figure 10, reveal a similarity close
to Φ < 30°. In this example, the k-median is the event with the
lowest MRA. The cluster analysis gives three groups, with the
largest cluster being the one with the closest centroid and the
smallest median MRA.

Iceland In this example, the nearest neighbors metric offers a
better solution for the closest neighbor k1 (see Figure 11). The
clustering results also provide a good solution for the cluster with
the closest centroid to the test event, thus indicating short-range
similar tectonics over distances of few kilometers).

Italy The Italian region shows a predominantly normal and
reverse rupture type distribution (Figure 3). However, this
database has only 118 earthquakes, and so we consider all
events provided in the GCMT catalog. In the example shown
in Figure 12, we observe a large similarity between the selected
earthquake and its neighbors, with the lowest MRA for the
nearest neighbor k1. The results from the clustering algorithm

FIGURE 12 | Same as Figure 8 for an Mw = 5.2 Italian earthquake (see Table 3).
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also provide a similar solution for the larger cluster with the
closest centroid.

Mexico The Mexican region has one of the largest datasets.
The statistical results provide one event with Φ < 30°. In this
particular example, we observe that the k − median neighbor gives
the largest similarity (Figure 13). Moreover, the median FM of the
largest cluster provides the most similar solution to the test event.

5 DISCUSSION AND CONCLUSION

In this work we propose an inversion-free approach to the fast
estimation of FM solutions, primarily intended to serve as input
for urgent seismic simulations or similar problems with
computation deadlines. Within this context, the rapid
estimation of source parameters is highly relevant. Moreover,
the predictive power of historical datasets represents an
opportunity that is worth being exploited. In particular, in this

work we develop a methodology for the estimation of FM
solutions that is based purely on past earthquakes. After
statistically validating the experiments, we find some
important advantages of this statistical estimation tool.

Firstly, the method is extremely fast, with time to solution at <
10 s. In terms of accuracy, comparing our results to those
provided in Triantafyllis (2014) by the Scisola software, we
observe similar statistics in the Kagan diagrams (Figure 5).
We have used a threshold Φ ≤ 30° for MRA which is similar
to the differences between various FM inversion results and
published by different agencies. For example, in Scognamiglio
et al. (2010), the authors estimated the FM solution for the 2009/
04/06 Mw = 6.1 L’Aquila earthquake as [θ = 139, δ = 48, λ = −87]
for nodal plane 1, and [θ = 314, δ = 42, λ = −94] for nodal plane 2.
In contrast, the FM solution for the same earthquake given in the
GCMT catalog was [θ = 120, δ = 54, λ = −113] for nodal plane 1,
and [θ = 336, δ = 42, λ = −62] for nodal plane 2. In this case the
MRA is Φ ≈ 21° for both nodal planes. The threshold of Φ ≤ 30°

FIGURE 13 | Same as Figure 8 for an Mw = 7.4 Mexican earthquake (see Table 3).
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was also used in Triantafyllis (2014), where the authors mention
that an acceptable agreement between FM solutions corresponds
to MRA values of few tens of degrees. Nevertheless, we remark
that the lowest MRA between the test event and the neighbors is
not always provided by the closest event (k1). In fact, we observe
that other neighbors, including the median event, may provide a
better solution in terms of MRA.

Among the advantages of our method, it relies on catalog
information about past events. This is in contrast to more
traditional methods based on waveform analysis, hence our
method is significantly faster. Among its disadvantages, with
respect to classical CMT inversion, we can only estimate CMT
from large events, which are more likely to behave similarly to
other similar events in the catalog. For smaller events our
approach loses precision. Moreover, non-DC components are
ignored in our study, which is not very relevant for large
earthquakes but definitely relevant for smaller-event catalogs.
In addition, we acknowledge that the method relies in similarity
among large earthquakes recorded in a particular region. If events
are few or too dissimilar, our method would fail. Nevertheless, the
predictive capacity of our method can be analyzed a priori for
such a region and thus we can establish the method’s suitability
for the region beforehand.

As a conclusion, our method can provide with suitable CMT
estimates, with statistically relevant accuracy, shortly after a large
event is recorded. This enables the possibility or urgent
computing of seismic hazard by means of physical simulations
where directivity may be a significant component. We have tested
ourmethod in several regional contexts and analyzed its accuracy.
The precision that can be attained depends strongly on the
statistical distribution of large events in our study region’s
catalog but produces a starting point for analysis prior to the
latter determination of the CMT by means of inversion, which
supersedes our result.

In future works we will study the impact of CMT accuracy in
ground motion values and intensity measures such as peak
ground accelerations resulting from simulations. Similarly we
will analyze means to improve the method’s predictive
capabilities by narrowing the choice of final CMT candidates.

5.1 Permission to Reuse and Copyright
Figures, tables, and images will be published under a Creative
Commons CC-BY licence and permission must be obtained
for use of copyrighted material from other sources (including
re-published/adapted/modified/partial figures and images
from the internet). It is the responsibility of the authors to
acquire the licenses, to follow any citation instructions
requested by third-party rights holders, and cover any
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For active volcanoes, knowledge about probabilities of eruption and impacted

areas becomes valuable information for decision-makers to develop short- and

long-term emergency plans, for which probabilistic volcanic hazard

assessment (PVHA) is needed. High-resolution or spatially extended PVHA

requires extreme-scale high-performance computing systems. Within the

framework of ChEESE (Center of Excellence for Exascale in Solid Earth;

www.cheese-coe.eu), an effort was made to generate exascale-suitable

codes and workflows to collect and process in some hours the large

amount of data that a quality PVHA requires. To this end, we created an

optimized HPC-based workflow coined PVHA_HPC-WF to develop PVHA

for a volcano. This tool uses the Bayesian event tree methodology to

calculate eruption probabilities, vent-opening location(s), and eruptive

source parameters (ESPs) based on volcano history, monitoring system data,

and meteorological conditions. Then, the tool interacts with the chosen hazard

model, performing a simulation for each ESP set or volcanic scenario (VS).

Finally, the resulting information is processed by proof-of-concept-subjected

high-performance data analytics (HPDA) scripts, producing the hazard maps

which describe the probability over time of exceeding critical thresholds at each

location in the investigated geographical domain. Although PVHA_HPC-WF can

be adapted to other hazards, we focus here on tephra (i.e., lapilli and ash)

transport and deposition. As an application, we performed PVHA for Campi

Flegrei (CF), Italy, an active volcano located in one of themost densely inhabited

areas in Europe and under busy air traffic routes. CF is currently in unrest,

classified as being in an attention level by the Italian Civil Protection. We

consider an approximate 2,000 × 2,000 × 40 km computational domain

with 2 km grid resolution in the horizontal and 40 vertical levels, centered in
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CF. To explore the natural variability and uncertainty of the eruptive conditions,

we consider a large number of VSs allowing us to include those of low

probability but high impact, and simulations of tephra dispersal are

performed for each of them using the FALL3D model. Results show the

potential of HPC to timely execute a vast range of simulations of complex

numerical models in large high-resolution computational domains and analyze

great volumes of data to obtain quality hazard maps.

KEYWORDS

HPC, probabilistic volcanic hazard assessment, ash dispersal, exascale computing,
Bayesian event tree, performance optimization and productivity, workflow manager,
Campi Flegrei

1 Introduction

Volcanic eruptions can cause a wide variety of hazardous

phenomena, with impacts ranging from proximal to global scales.

For instance, during explosive eruptions (Newhall and Hoblitt,

2002; Jenkins et al., 2014), volcanoes can inject large volumes of

fragmented pyroclasts (tephra), which disperse into the

atmosphere under the effects of turbulence and prevailing

winds, and deposit up to thousands of km from the volcano

(Martin and Nemeth, 2007). Pyroclasts can range in size from

several cm to a few µm. Depending upon their size, they can

persist in the atmosphere for a few seconds or for several days

and can represent a serious threat when an eruption occurs near

inhabited areas or to air traffic routes in very distal regions. The

finest fraction of tephra (i.e., PM10, with a diameter smaller than

10 µm) can be inhaled by humans and animals, and the fraction

with a diameter smaller than 4 µm (called respirable) can be

breathed into the alveolar region of the lung and has the greatest

toxic potential (Horwell and Baxter, 2006). Exposure to high

concentrations of fine tephra can have serious implications for

human health and represents a serious hazard to consider in the

presence of explosive volcanoes (Damby et al., 2013). Eventually,

tephra fallout may affect a variety of infrastructures that are

essential for our daily lives all over the world. Examples are the

road network, where a few-mm thick tephra deposit can create

dangerous driving conditions (Blake et al., 2017); power plants

and powerline transmissions (Wilson et al., 2012); transportation

systems in general (Guffanti et al., 2010); contamination of water

reservoirs and vegetation (Ágústsdóttir, 2015);

telecommunication networks (Wilson et al., 2012). The

adverse effect of volcanic ash (i.e., tephra smaller than 2 mm

in size) on aircraft gas turbine engines is well known (Prata and

Tupper, 2009; Chen and Zhao, 2015) and recently described

more quantitatively (Clarkson et al., 2016). Fine ash can travel for

thousands of km, extending the potential impact of explosive

eruptions beyond borders and continents.

The quantification of tephra hazard is particularly relevant

for volcanoes located close to large urban centers and/or to air

traffic routes; the Neapolitan area in Southern Italy is one of

those. Field-based hazard maps obtained from the study of the

deposits of past eruptions and the eruptive history of specific

volcanoes represent important information to assess volcanic

hazards (Lirer et al., 2001; Alberico et al., 2002; Orsi et al., 2004).

However, since volcanic processes are complex, that is, governed

by many degrees of freedom (the number of independent

parameters that define their state), their outcome is

intrinsically unpredictable in terms of temporal occurrence

and eruption parameters. For this reason, a probabilistic

approach, that is able to integrate the uncertainty due to

intrinsic stochasticity (aleatory uncertainty) and due to our

limited knowledge of chemical-physical processes and system

conditions (epistemic uncertainty), is more suitable than a

deterministic approach, where randomness or uncertainty are

not considered (Budnitz et al., 1997; Bonadonna et al., 2005;

Macedonio et al., 2008; Marti et al., 2008; Neri et al., 2008; Folch

et al., 2009; Marzocchi et al., 2010; Biasse et al., 2014; Marzocchi

and Jordan, 2014; Barsotti et al., 2018; Selva et al., 2018;

Marzocchi et al., 2021). PVHA is indeed the main tool for

hazard and risk mitigation plans, as well as the main input to

quantitative risk assessment (Spence et al., 2004; Zuccaro, 2008;

Jenkins et al., 2014). Depending on the application, PVHA may

be performed in the long-term by forecasting the hazard over

long time windows (e.g., 50 years) as well as in the short-term by

forecasting the hazard over shorter time windows (e.g., few

hours). Long-term PVHA is the primary tool for long-term

mitigation actions like evacuation plans or regulatory aspects

of buildings (Marzocchi et al., 2008, 2010), while short-term

PVHA (Selva et al., 2014) is more suitable for actions such as

evacuation or air traffic management (for example, airport

closure and rerouting).

PVHA can be defined as the quantification of the potential

impact of a volcanic hazardous phenomenon generated by any

possible volcanic eruption, evaluated at specific geographical

points around the volcano, and quantified by the exceedance

probability of a selected set of thresholds (e.g., tephra load at the

ground or ash concentration at flight levels in case of tephra

hazard) in a given time window (hours/days for short-term

analyses or years/tens-of-years for long-term analyses). This

information allows estimation of, for instance, the probability

that the tephra deposit accumulated during an eruption exceeds
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the critical condition that causes building collapse/failure, the

probability that the ash cloud concentration exceeds the critical

values for flight safety and with what persistence, or the

probability that airports or important assets will be affected by

the presence of ash (Sulpizio et al., 2012).

The performance of PVHA with physics-based fully resolved

numerical models (e.g., FALL3D) is computationally expensive,

as it ideally involves thousands to millions of simulation runs

exploring the full natural variability of the source (eruption

magnitude, intensity, vent position, etc.) and of the

propagation conditions (wind distribution), also considering

the epistemic uncertainty (alternative databases, alternative

models, etc.). This problem has typically been solved by

restricting the exploration of natural variability (e.g., with

representative scenarios) or simplifying the modeling strategy

(e.g., with analytical models or with restricted target grids),

potentially introducing unwanted biases in the hazard

estimates (Bonadonna et al., 2005; Sandri et al., 2016; Selva

et al., 2018).

Advances at the computational level, particularly in high-

performance computing (HPC) and high-performance data

analytics (HPDA), already permit PVHA in a reasonable time

(hours), with a sufficient level of detail to help civil protection

officials and society for reliable risk ranking and assessment.

Several works have been carried out in this direction. For

instance, Folch and Sulpizio (2010) performed a long-term

probabilistic assessment of volcanic ash hazard for

Somma–Vesuvius (Italy) using a specific range of eruption

parameters, and Titos et al. (2022) developed a long-term

hazard assessment of ash dispersion at relevant flight levels

for Jan Mayen (Norway) exploring a large set of possible

combinations of eruptive parameters.

Herein, we present the probabilistic volcanic hazard

assessment workflow (PVHA_HPC-WF) developed within the

ChEESE project (www.cheese-coe.eu), an optimized numerical

tool for developing short-term to long-term PVHA for a specific

volcano. We then apply it to the Campi Flegrei caldera (CFc),

Italy, considering a wide number of VSs for demonstrating the

feasibility and potential usefulness of PVHA_HPC-WF to

produce robust and unbiased tephra PVHA for end users

such as civil protection agencies, aviation stakeholders, and

other scientific institutions. To this end, first, the probabilistic

methodology on which this study is based is outlined in Section 2.

Section 3, then describes PVHA_HPC-WF in which this

methodology is accommodated and illustrates how the

workflow manager system light (WMS-light) and the

performance optimization and productivity (POP) process

have helped to make optimized codes and workflows. The test

cases at Campi Flegrei are discussed in Section 4. Finally, the

results are discussed, and some conclusions are drawn in Section

5. Although we also briefly explore the volcanological

background, this work focuses on the probabilistic and

computational methodology.

2 Probabilistic volcanic hazard
analysis

The chain of processes leading to a volcanic eruption is

complex (Marzocchi et al., 2004, 2008), implying that there are

substantial and non-negligible uncertainties, stemming both

from the intrinsic natural variability of such processes (so-

called aleatory variability) and from the limitations of our

models and observations (epistemic uncertainty). Probabilistic

volcanic hazard analysis defines a set of variables, called intensity

measures X, that describe the intensity of a given hazardous

phenomenon h and quantifies the so-called hazard curves θ,

which report the probability that X exceeds the interest intensity

values (thresholds) x at a specific target point �a = (latitude,

longitude, altitude) at least once in a period of time ΔT:

θ h, �a,ΔT( ) x( ) � P h, �a,ΔT( ) X≥x( ).

Statistically, this exceedance probability curve is a survivor

function, describing the natural variability of the phenomenon at

the site, that is, the aleatory uncertainty.

With the total probability theorem, hazard curves can be

evaluated considering the contribution of a set of volcanic

scenarios, that is,

θ h, �a,ΔT( ) x( ) � P ΔT, E( )∫
Ω

P vs|E( ) · P h, �a,ΔT( ) X≥x|vs( )dvs

≈ P ΔT, E( ) · ∑
N

i

P VSi|E( ) · P h, �a,ΔT( ) X≥x|VSi( )[ ]

,

(1)
where P (ΔT, E) represents the probability of the occurrence of a

general event eruption E during the period of time ΔT, and Ω

represents the infinite set of possible source (vs) (e.g., magnitude and

location) combinations that can be approximated with a finite set of

N specific volcanic scenarios. The factor P(h, �a,ΔT)(X≥x|VSi)
evaluates the potential impact at the site �a of each VS based on

the model and thus is often called the propagation factor (in the

insurance industry, this is normally known as the footprint generator

because each realization of the model (propagator) generates a so-

called footprint). As explained in the next section, the dependence of

this factor on ΔT is related to the fact that the evaluation of this

probability may change for smaller/larger ΔT (days vs. years). The

other factors instead deal with the variability of the source, and they

are thus collectively called source factors.

This representation is possible only if such scenarios

represent a set of mutually exclusive and collectively

exhaustive representations of the general event E, that is,

∑
N

i

P VSi|E( ) � 1,

which is approximately achieved by using as many randomly

selected volcanic configurations as possible within the known

ranges for each volcano. This formulation assumes that the
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probability of observing more than one eruption in ΔT is

negligible and, under this condition, it holds for both long-

and short-term PVHA.

The hazard curves are often computed conditional on the

event E, in which case only the summation in Eq. 1 is evaluated,

neglecting the temporal component P (ΔT, E). The obtained

conditional volcanic hazard (cVH) curves have direct application

to planning short-term risk mitigation actions during a volcanic

crisis, such as the definition of evacuation areas.

In all cases, hazard curves are usually quantified on a set of

points within the geographic area under study, and hazard/

probability maps are produced to show the exceeded

thresholds/probability distribution by cutting at a probability/

critical-intensity value.

The evaluation of Eq. 1 involves studying the statistics

(aleatory uncertainty) of the source (i.e., eruption scenarios)

and the propagation of the hazard from the source to the

target point (e.g., tephra dispersion). Multiple alternative

models can be formulated, leading to alternative

quantifications of θ(h, �a,ΔT)(x). This uncertainty, named

epistemic, is typically modeled by quantifying the variability

of the hazard curves under a reasonable range of scientifically

acceptable scientific models (Budnitz et al., 1997; Marzocchi and

Jordan, 2014; Marzocchi et al., 2021).

2.1 Short-term and long-termprobabilistic
volcanic hazard assessment

PVHA can be focused on different scales for ΔT depending on

the time horizon in which significant variations are expected in the

activity of the volcano under study and on the type of potentially

risk-reducing actions.We focus here on two different time scales: the

short-term (ST) PVHA and the long-term (LT) PVHA. ST PVHA

refers to a time window ranging from hours to weeks and is useful

for crisis management during volcanic unrest (Sandri et al., 2012;

Selva et al., 2014). LT PVHA considers years to decades and is

interesting, for example, in the case of a quiescent volcano for land-

use planning (Marti et al., 2008; Neri et al., 2008; Selva et al., 2010;

Titos et al., 2022). The methods adopted in ST/LT PVHA are

inherently linked to different sources of information used to issue an

eruption forecast or to model the hazard (Marzocchi et al., 2008).

For LT assessments, PVHA mostly relies on the historical and/or

geological records of the volcano under study (or from analog

volcanoes) and on expert opinion (e.g., Aspinall, 2006), as well as

on the statistics for propagation conditions of the hazard we are

assessing. For ST assessment, PVHA considers the actual and

updated information coming from the monitoring system and

other short-term forecast systems (e.g., weather).

Also, the information used to constrain propagation conditions

may change for ST and LT PVHA. In the case of tephra hazard, ST

and LT PVHAs rely on different information for the wind data: for

the former, the present wind forecast is used to run the tephra

dispersion model; for the latter, the climatology of wind over tens of

years is used instead. This impacts the quantification of p(h,a,ΔT)(X ≥
x|V Si)) in Eq. 1, which in fact explicitly depends onΔT. Actually, the
difference between ST and LT is the potential variability of the wind

to be accounted for in the ΔT. In the ST (few days), the possible

meteorological scenarios (propagators) are strictly connected to

wind forecasts, and only a rather small set of wind scenarios

have practically non-zero probability, resulting in a smaller N. As

ΔT increases, their variability necessarily increases because we move

from forecast to seasonal climatology and finally to annual averages,

and N should increase accordingly.

2.2 Probabilistic volcanic hazard
assessment through Bayesian event tree
analysis

The Bayesian event tree (BET) method can be used to calculate

the long- and short-term probabilities of any volcanic phenomena

TABLE 1 Parameters of Gaussian functions used for Nodes 1 to 4 for the application of the PVHA_HPC-WF in Campi Flegrei.

Node Parameter Value Source

1—unrest Prior probability 0.5 Selva et al. (2012a)
Lambda 1
Past data suc./tot 7.4/306

2—magmatic Prior probability 0.5 Selva et al. (2012a)
Lambda 1
Past data suc./tot 0/0

3—eruption Prior probability 0.33 Selva et al. (2012a)
Lambda 1
Past data suc./tot 0/3.7

4—vents Number of vents 40 Selva et al. (2012b)
Lambda 2
Prior probabilities See Supplementary Material
Past data suc./tot See Supplementary Material
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(Eq. 1) by applying a Bayesian inference procedure (Newhall and

Hoblitt, 2002; Marzocchi et al., 2004, 2008; Lindsay et al., 2010; Selva

et al., 2010, 2014). Using a structured event tree, each volcanic event

is represented by an individual branch which splits up into a set of

possible subsequent events whose probabilities and uncertainties are

estimated from prior information available from the volcanological

information obtained from the history of a volcano, empirical and

theoretical models, and monitoring observations.

Figure 1A shows a graphical representation of the BET used in

this work (Selva et al., 2014). This event tree describes the possible

evolution of an eruption in eight steps (nodes). Node 1 indicates the

probability of unrest or not unrest within the time interval ΔT, Node
2 gives the probability that, in the case of unrest, it is due tomagma or

to other causes, and Node 3 provides the probability that, in the case

of unrest due to magma, the magma will trigger an eruption or not.

The final eruption probability, representing the eruptive forecasting

(EF), will then be calculated by a combination of Nodes 1, 2, and 3.

Nodes 4 and 5 handle the VSs, dealing with variability in potential

vent positions and size, respectively. Node 6 expresses the probability

of generating or not generating a specific hazardous phenomenon h,

Node 7 expresses the probability to reach or not to reach a site �a by

the hazardous phenomenon, and Node 8 provides the probability of

FIGURE 1
(A)Graphical representation of the Bayesian event treemethodology (BET) used in this work [image from Selva et al. (2014)]. (B) Flow diagram of
the PVHA_HPC-WF.
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exceeding a critical threshold x in the target site in the event of an

eruption with a givenVS. Nodes 6–8 deal with the impact of eachVS,

that is, collectively evaluate the propagation factor of Eq. 1, whose

probability values are calculated by BET by analyzing the results of

the propagation model (in our case, FALL3D) (Selva et al., 2010).

The event tree factorizes Eq. 1 into a set of conditional

probabilities θi, with i from 1 to 8. The probability at each

node is evaluated with a Bayesian method, quantifying the

epistemic uncertainty as a distribution for θi, hereinafter

indicated as [θi]. In this way, Eq. 1 can be expressed as

TABLE 2 PDFs and value ranges of the main eruptive parameters for CFc. Bounds on mass eruption rate (MER) values are a consequence of the
sampling procedure for total erupted volume (TEV) and duration of the fallout phase described in this work. For the total grain size distribution
(TGSD), we selected three different kinds of particles: juveniles, lithics, and crystals. To describe juvenile particle, we used a bi-Gaussian (in Φ)
distribution where both μ and σwere sampled from the distribution detail and whose degree of mixing is given by the TGSD probabilities of juveniles.
Lithics and crystals were described using a Gaussian distribution.

Parameter Eruption size PDF type and ranges

TEV (kga) Low Uniform on [1010;1011]

Medium Uniform on [1011;1012]

High Uniform on [1012;1013]

Duration of fallout (hours) Low Uniform on [3.48; 27.36]

Medium Uniform on [1.95; 3.48]

High Uniform on [1.92; 1.95]

MER (kg/s) Low Uniform on [1.5*106;1.2*108]

Medium Uniform on [1.2*108;2.1*109]

High Uniform on [2.1*109;2.2*1010]

TGSD juveniles (Φ units) All types Beta on [2.7; 4] for μ1

Beta on [4.9; 5.4] for μ2

Beta on [0.9; 1.5] for σ1

Beta on [3.5; 5.5] for σ2

TGSD probabilities of juveniles (%) Low Beta on [0.3; 0.5]

Medium Beta on [0.2; 0.4]

High Beta on [0; 0.3]

TGSD lithics (Φ units) All types Beta on [-2; -0.5] for μ

Beta on [1.4; 1.7] for σ

TGSD crystals (Φ units) All types Beta on [0.1; 0.6] for μ

Beta on [0.7; 1.2] for σ

Initial density of juveniles ρ0 All types Beta on [500; 1,000]

Maximum juvenile density (kg/m3) All types 2,500

Density of juveniles (%) Low Beta on [1; 1.5] for α

Beta on [0.3; 0.6] for r

Medium Beta on [1.5; 2] for α

Beta on [0.4; 0.7] for r

High Beta on [2; 4.5] for α

Beta on [0.5; 1] for r

Density of tephra particles (kg/m3) All types Lithics: 2,500

Crystals: 2,800

Particle proportion (kg/m3) All types Dirichlet on [2.01; 0.66; 0.33]

Tephra mass fraction (%) All types 25

Density of particle aggregates (kg/m3) All types Accretionary lapilli: [1,000; 2,000]

Other aggregates: [100; 600]

Diameter of particle aggregates (Φ units) All types Accretionary lapilli: 2,000

Other aggregates: 200

Particle proportion aggregates (%) Low Uniform on [10; 30]

Medium Uniform on [30; 60]

High Uniform on [60; 90]

Particle proportion lapilli (%) All types Uniform on [0; 20]
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θ h, �a,ΔT( ) X> x( )[ ] � θEruption123[ ] ·∑
j∈J

∑
k∈K

θj4[ ] · θk5[ ] · θh6[ ] · θh,
�a

7[ ] θh,
�a,X>x

8[ ][ ], (2)

where

θEruption ΔT( )
123[ ] � θUnrest1[ ] · θMagma|Unrest

2[ ] · θEruption|Magmatic unrest
3[ ]

is the probability that an eruption occurs in the time window

ΔT, and X is the random variable that describes the intensity

measure associated with the hazard h at the point �a. J is the set of

potential vent-opening locations, and K is the set of possible VSs

for each vent location in J.

A critical role in the definition of PVHA hazard curves

through Eqs. 1 and 2 is played by the definition of volcanic

scenarios (VSs). A VS is defined as an eruption of a given size in a

given vent location. At Nodes 4 and 5, often a generic definition

of VS is applied, defining a set of VS classes, each class often

modeled with representative scenarios. However, Sandri et al.

(2016) demonstrated the importance of modeling the intra-class

variability (i.e., eruptive size difference within a class). To this

end, it is important to create a consistent stratified sampling of

the VSs in order to represent the entire variability of the eruptive

source parameters (ESPs). To this end, a four-step procedure

may be proposed. First, the possible eruptive size classes may be

defined, for example, based on the volcanic explosivity index

(VEI) (Newhall and Self, 1982) or preferably on eruption

magnitude and intensity (Mason et al., 2004; Pyle, 2015). Each

eruptive size class will be characterized by a series of ESPs such as

the total erupted mass (TEM), the column height, and the

duration of tephra fallout phases, as well as any known

parameters that may influence the modeling of the volcanic

hazard. The parameters used for the modeling of tephra

dispersal by means of FALL3D in Campi Flegrei are listed in

Table 2. Such size classes and ESPs will be in turn fully described

by probability density functions (PDFs) fixed on the basis of the

knowledge of the volcano. Next, within an eruptive size class, a

value should be sampled from each ESP’s PDF, characterizing

this set as the ESPs of the VS. Then, the vent location has to be

estimated from historical or monitoring data. Finally, the

propagation conditions (e.g., wind distribution) have to be

associated with the VS. For example, for an ST tephra PVHA,

the sampled scenarios would be associated with the forecast

meteorological conditions, while for an LT tephra PVHA, each

scenario would have different weather conditions chosen

randomly from the meteorological data of a period of time.

3 Probabilistic volcanic hazard
assessment HPC workflow

To accommodate the methodology described in the previous

section, we built the software package PVHA_HPC-WF

(Probabilistic Volcanic Hazard Assessment HPC Workflow)

based on the prototype tool BET@OV (Perfetti et al., 2021).

BET@OV was created by researchers at Istituto Nazionale di

Geofisica e Vulcanologia (INGV, Italy) to compute eruption

forecasting and probabilistic tephra fallout hazard assessment

at CFc by combining the Bayesian event tree method and the

FALL3D tephra dispersal model (Costa et al., 2006; Folch et al.,

2009). In particular, BET@OV was designed to compute 1) the

probability of eruption at CFc ([θEruption(ΔT)1,2,3 ]) with ΔT = 1, 2, 3

days, 2) the conditional vent-opening probability map ([θ4]), and

3) the probability [θ(h, �a,ΔT))] by using three fixed VSs in terms of

eruptive sizes, that is, low, medium, and high explosive according

to Orsi et al. (2009). To achieve new goals, we increased the

BET@OV modeling capabilities so that it can generate PVHA,

overcoming current computational limitations in terms of time/

space domain size, resolution, and the number of representative

VSs. In particular, to simulate tephra fallout and ash

concentration at flight levels, PVHA_HPC-WF interacts with

the model FALL3D-8.0 (Folch et al., 2020; Prata et al., 2021).

3.1 Workflow architecture

PVHA_HPC-WF is made up of a set of Python modules (see

Figure 1B) in charge of calculating each of the BET nodes

described earlier in Subsection 2.2 as well as performing the

post-processing and visualization of results. The workflow tasks

are managed by the ChEESE workflow management system

WMS-light, and to consolidate the data and keep history, the

PostgreSQL LISTEN exchange is used. The next section describes

how the workflow is managed by WMS-light and how the

optimization has been carried out. A description of each of

the Pythonmodules can be found in the Supplementary Material.

3.2 Workflow implementation

The PVHA_HPC-WF is a classic workflow-based

application, in which the data-interconnected components are

executed in a synchronized order according to the application

logic, as depicted in Figure 1B. Running such applications on IT

infrastructures, including diverse HPC systems with their

distributed computing and storage components or their

respective different resource access and application execution

strategies, is a challenging task. In practice, running application

workflows on the on-demand parallel and distributed

infrastructures often impose the following issues:

• Automation of distributed control flow. The workflow

components that are running on different parts of the

physically distributed infrastructure resources have to

employ sophisticated synchronization strategies in order to

be able to track the progress of the interdependency of tasks.

• Heterogeneous deployment configurations. Depending on

the infrastructure availability and the application’s non-
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functional requirements, it might be necessary for

application components to be executed on different

infrastructure sites, which can change from one

deployment (execution) to the next one. In such cases,

the application will have to deal with different access

policies (e.g., certificate-based authorization instead of

the user’s login and password), job execution strategies

(different job managers like PBS/Torque or SLURM),

organization of the storage, and many other site-specific

settings that have zero or little relevance to the application

itself.

• Distributed data access. The application components are

interchained not only by the control but also by the data

flow. The data dependencies can be implemented in several

different ways, depending on the concrete (and, generally,

deployment-specific) properties of the infrastructure

FIGURE 2
(A) Architecture of WMS-light workflow management system. (B) WMS-light specifications: i) workflow and ii) monitoring information.
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resources that are hosting the components, such as with the

classic FTP and SCP, but also with the throughput-

optimized grid protocols such as GridFTP.

• Dynamic scaling of components. Depending on the

availability of the infrastructure resources, the

application components might need to scale up or down

to saturate the maximal capacity of the assigned hardware

in order to increase the performance and/or optimize non-

functional properties. As the available resource size might

be unknown at the time of the application workflow

submission, the scaling has to be performed dynamically

at the runtime of the application instance.

In order to address the abovementioned issues during the

development and execution of the application workflow, the

PVHA_HPC-WF application employs a workflow

management system WMS-light, which was developed in the

context of the ChEESE project (see a basic introduction in

Cheptsov and Beljaev, 2020). WMS-light is a lightweight

middleware that supports developers of the application

workflows that are to be run in distributed, parallel, and

heterogeneous computing environments and have dynamic

deployment properties. The WMS-light support generally

includes the synchronized execution of components on

distributed hosts (serial, parallel, HPC), the realization of data

dependencies, and the tracking of execution properties (across

several applications and/or their instances) and requires minimal

to zero changes in the original application components’ code due

to a non-intrusive programming model of WMS-light. Non-

intrusiveness is a key property of WMS-light and applies not

only to the applications but also to the infrastructure. Unlike the

majority of well-established workflow managers, WMS-light

requires only a minimal set of software that has to be

installed in the user’s space and does not require any special

administrative privileges. WMS-light is designed in a modular

and highly transparent way (see Figure 2A). The core of WMS-

light is constituted by a set of Java components and service bash

scripts, which makes it portable to almost any architecture, from

a small edge-server to the largest HPC system. All data related to

the execution of instances (runs) of the application workflows are

stored in the intelligent data layer and made available to the users

and system middleware components by means of a rich-

functional RESTful web service interface. All specifications,

including the workflow definition (see Figure 2Bi), are made

in the flexible JSON format.WMS-light allows live-tracking of the

workflow execution status for each of the submitted instances

(Figure 2Bii).

3.3 Workflow performance optimization

Within the framework of the EU Performance Optimization

and Productivity Center of Excellence in HPC (POP CoE),

critical parts of the PVHA workflow were analyzed because of

their initial poor performance. More specifically, the analysis of

volcanic hazard probabilities from FALL3D capability

simulations became a concerning bottleneck due to long

capability workflow execution times (note that this

optimization does not concern single FALL3D model

instances, but the capability workflow resulting from the

aggregation of many independent instances). Thus, we applied

the POP’s profiling and optimization cycle. First, we identified

through a performance assessment what was causing such bad

workflow performance. Second, we addressed with a proof-of-

concept (PoC) each individual problem.

3.3.1 Workflow performance assessment
With a performance assessment, we discovered that the part

of the code that was slowing down the workflow was the analysis

of the many instances of FALL3D, and we figured out what

factors were responsible. Using Extrae (Center, 2022), we traced

the application in various strong scalability tests up to

1,024 ranks MPI (Message Passing Interface). Then, with

Paraver (Pillet et al., 1995), we analyzed the traces and

generated a set of metrics giving us insights into the

application’s efficiency. For example, Figure 3A displays a

Paraver trace showing qualitatively what regions of the

program are being run in one execution with 48 MPI ranks.

In Figure 3B, we can see the quantitative results of one strong

scalability test. Thanks to these POP performance metrics (POP,

2022) we could identify that PVHA_HPC-WF suffered mainly

from two problems. First, it suffered from load-balancing

problems. For instance, with 192 MPI ranks (four compute

nodes in this setup), the load balance is already below 80%.

Second, it presented a low serial performance as indicated by the

average IPC (instructions per cycle). With 4 MPI ranks, the

average IPC is 0.98, which is already low since a good IPC would

be 2–3 for an application. However, from here, it only gets worse

until an average IPC of 0.36 with 1,024 MPI ranks.

Given the previous analysis, we identified why the workflow

performed badly and the reasons for load imbalance and poor

CPU (central processing unit) utilization. Indeed, we realized

that the different processor performances between ranks and one

non-parallel region were causing load balance problems.

Regarding low IPC, we attributed it to poorly optimized

Python code. In addition to all that, we also saw that MPI

usage could be improved.

3.3.2 Proof-of-concept
Once we discovered what could be improved, we started

working on optimizations in a proof-of-concept. On one hand,

we addressed load balance issues by equally mapping data to

every processor, keeping NUMA (non-uniform memory access)

awareness in mind and parallelizing a region of serial code. On

the other hand, we improved the poor workflow serial

performance by optimizing the main nested loops of the
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Python code. The outcome of these optimizations improved the

workflow’s time-to-solution by 588 times.

We first optimized the serial computation loops. After some

experiments, we found that the best performance was achieved

using Numpy vectorization. Thanks to Numpy we replaced all

Python for-loops with calls to Numpy vector operations, which

yielded a maximum speedup of 775 times in the execution of that

part of the code compared to the original workflow version.

Listings 1 and 2 show an example of a change made to the code,

which is to replace matrix multiplication in plain Python with

matrix multiplication using Numpy vectorization. We also fixed

a memory access pattern that was not exploiting the spatial

locality of cache memory well.

Listing 1. Matrix multiply in plain Python.

product = np.zeros ((n, m), dtype = ‘int’)

for i in range (n):

for j in range (m):

for z in range (k):

product [i, j] += matrix1 [i, z] * matrix2 [z, j]

Listing 2. Matrix multiply using Numpy vectorization.

import numpy as np

product = np.matmul (matrix1, matrix2)

After the first optimization, all processors had the same

amount of data to compute and the same memory access

latency, so one balancing problem was already gone. The

second problem was a sequential workflow region that took 2/

3 of the execution time. Therefore, we parallelized this part with

MPI, which reduced the total execution time by 2.3 times.

Figure 4A shows the result of this parallelization. In the

window at the bottom, the master rank is doing useful

computation (in blue) for the last 2/3 of the window, while all

the other processors are idle (in black) waiting. In the window at

the top, the master rank is spending 2.3 times less execution time

running sequential code. It seems that there is still room for

improvement, as the application presents large serial parts.

However, those parts belong mostly to the I/O operations of

pre and post processing.

The final results of this PoC are displayed in Figure 4B,

where we compare the base version versus our PoC version

running with different number of ranks. Thanks to our

FIGURE 3
(A) PVHA_HPC-WF Paraver trace. The x-axis shows the program’s execution time in microseconds, while the y-axis displays each one of the
48 parallel MPI ranks. Colors indicate what part of the application is being run at a time. (B) POP metrics table of a PVHA_HPC-WF strong scalability
test. Colored values are in percentage.
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changes; we were able to reduce the application’s runtime by

up to 588 times on average. Usage of Numpy vectorization was

the main source of this large improvement and after that the

parallelization with MPI of the sequential region.

4 Test case: Tephra probabilistic
volcanic hazard assessment for
Campi Flegrei

The metropolitan area of Naples (more than three million

inhabitants, www.cittametropolitana.na.it) is under the threat

of three active and well-studied volcanoes: Somma-Vesuvius,

Campi Flegrei, and Ischia. The PVHA of these volcanoes is

based on several multidisciplinary studies (Costa et al., 2009;

Selva et al., 2010; Sandri et al., 2016; Macedonio and Costa,

2018; Selva et al., 2018, 2021). In this study, we focused on the

Campi Flegrei volcanic system, although the presented

methodology can be applied to other volcanoes as well. The

Campi Flegrei caldera (CFc) resulted from at least two major

collapses from the Campanian Ignimbrite (Ort et al., 2003)

and the Neapolitan Yellow Tuff (Deino et al., 2004) eruptions,

37,000 and 12,000 years BP, respectively. More recent

volcanism was concentrated in epochs of intense activity

(i.e., eruptions occurred at time intervals of a few tens of

years), alternating with periods of quiescence (Costa et al.,

FIGURE 4
(A) Paraver traces showing useful duration (computation) of two executions with 48MPI ranks. Bothwindows have the same duration. The trace
at the bottom is the application with the expensive sequential region. The trace at the top is the same application but with that region parallelized.
Ignore the color gradient, only notice that the execution at the bottom takes 44s to finish, while the execution at the top takes a bit less than half of
the time. Black means threads are not running the program. (B) PVHA_HPC-WF execution time comparison between the original code (in red
color) and the proof-of-concept version (in blue color) for the FL050 case.

Frontiers in Earth Science frontiersin.org11

Montesinos et al. 10.3389/feart.2022.941789

168

https://www.cittametropolitana.na.it/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.941789


2022). Subsection 4.2 provides information on eruption

probabilities, styles, intensity, and vent locations in CF. CFc is

located in one of themost densely populated areas in Europe, so an

eruption would have a tremendous impact, not only on air traffic

but also on people and infrastructure. INGV is the reference

scientific institution for the Italian government in the field of

volcanic monitoring and hazards and operates in close synergy

with the Italian Civil Protection authorities at the national and

local levels. The surveillance system of Osservatorio Vesuviano of

INGV continuously monitors, among others, volcano seismicity,

ground deformations, and gas emissions and performs tephra

dispersion simulations driven by this information and the ARPA-

SIM meteorological data for forecasting plume evolution in the

Campania region. A short-term PVHA is currently run twice daily

for tephra fallout and is based on three representative scenarios

over a 250 km × 200 km geographic area at 1 km grid spacing due

to the high computational cost of simulating the eruptive

variability on local servers (Perfetti et al., 2021).

Herein, we improve the assessment of the tephra hazard

associated with an eruption at Campi Flegrei in order to better

answer important questions such as

1. In the short term, what are the probabilities of eruption and

vent-opening locations?

2. In the short and long term, what is the probability, both

absolute and conditional on the occurrence of an eruption,

that the cumulative tephra deposit will exceed critical

thresholds known to cause issues, such as building

collapse/failure or traffic disruption after a certain number

of hours from the eruption onset?

3. In the short and long term, what is the probability, both

absolute and conditional on the occurrence of an eruption,

that the ash cloud concentration will exceed critical conditions

and hazardous temporal persistence known for safe flights

within a certain number of hours since the beginning of the

eruption, and which levels (FLs) are likely to be most

predominantly affected?

4. In the short and long term, what is the expected time for ash

concentration to reach a critical value at a specific

geographical point and flight level?

The PVHA_HPC-WF presented here allows us to answer these

questions by conducting a hazard assessment related not only to

tephra ground load but also to ash concentration at various FLs over

a surveillance area large enough to track the evolution of ash clouds,

and considering a large number of VSs, thus reducing the uncertainty

in the eruptive parameters and meteorological conditions.

In this application case, we generated both LT and ST tephra

PVHA for Campi Flegrei. For an LT assessment, we have

considered 1,500 VSs for each of the three explosive eruption

sizes at Campi Flegrei, that is, low (L), medium (M), high (H)

size, and meteorological conditions during 20 years of reanalysis

from Copernicus Climate Change Service ERA5. As examples of

ST, we developed the PVHA for December 5, 6, and 7, 2019,

when seismic activity was more energetic than usual with a

magnitude 3.1 intracaldera earthquake: in the present

example, we consider 180 VSs for each explosive eruption size

and day and the monitoring data from the Osservatorio

Vesuviano surveillance system recorder on those days. All the

studies were carried out in a regional-scale domain of 2,000 km ×

2,000 km at a 2 km horizontal resolution, approximately, and a

vertical resolution ranging from 0.5 to 1 km, considering eight

flight levels from FL050 to FL400, 5,000 ft (1.5 km) to 40,000 ft

(12.2 km) altitude, approximately. The simulations for each of

the 6,120 VSs (1,500 VSs × 3 sizes +180 VSs × 3 sizes × 3 days)

have been carried out by running the FALL3D-8.0 model on the

French Joliot-Curie supercomputer, while the eruptive forecast

(EF) has been calculated on the CENERI server of the

Osservatorio Vesuviano of INGV, and the workflow manager

system has been launched in the ADA cluster at INGV-Bologna.

An introduction to the monitoring system is given in the next

Subsection 4.1. Subsection 4.2 describes the configuration of the

model adopted for this test case and the parameters used to calculate

each of the BET nodes, and a detailed explanation of the VS

generation process is shown in Subsection 4.3. In Subsection 4.4,

it is specified how the meteorological data have been obtained.

Subsection 4.5 is dedicated to the specification of the computational

resources and performance of the PVHA_HPC-WF. Finally, the

presentation of results and a sample of the graphs and maps

obtained are shown in Subsection 4.6.

4.1 Monitoring system

Monitoring data, necessary for ST assessment, are provided

by the Osservatorio Vesuviano’s surveillance system (Bianco

et al., 2022). Seismic data are collected from the seismological

database SERENADE (SEismic Restful ENAbled DatabasE),

which was developed to manage multiple locations for each

event in order to unify the data source for automatic,

preliminary, and revised locations (Peluso, 2014). The

PostgreSQL database server is the internal engine of

SERENADE and allows requests to be made using standard

HTTP commands. On the other hand, from the network of

permanent GPS stations operating in the CFc, we obtained the

deformation data for these studies (De Martino et al., 2021).

Other data, such as anomalies in gas fluxes or compositions, can

also be accounted for as user-specified parameters.

4.2 Model setup

Here, we describe the parameters at each of the BET nodes

and the computational domains used for this test case.

The BET_EF settings used to calculate Nodes 1, 2, and 3 rely on

the work of Selva et al. (2012a) and are reported in the first three
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rows of Table 1 and in Figure 5A regarding the probability of unrest,

magmatic unrest, and eruption, respectively. For the LT, a Poisson

distribution over time has been assumed, and the results of which are

compatible with the works of Sandri et al. (2018) and Bevilacqua

et al. (2017).

The considered eruptive area for Node 4, based on the

geodynamical structures and the position of past eruptive vents

within the CF caldera (Selva et al., 2012b), consists of 40 potential

vent-opening locations distributed equidistantly in a geographical

area encompassed between 40.775°N and 40.875°N latitude and

14.05°E to 14.225°E longitude, whose locations and prior (LT)

probabilities are indicated in Table 1 and displayed in Figure 5B.

Short-term maps are built by integrating the position of observed

anomalies, such as seismic activity and deformation, as inMarzocchi

et al. (2008). Although part of the CFc is under the sea, since the

most likely opening vent areas are in shallow waters and the effects

are generally negligible at relatively large distances (Selva et al.,

2018), we do not consider the effects of the sea on the formation of

eruptive columns. The reader whowants to go deeper into the effects

over sea water on the eruptions at CFc, including tsunamis, can

consult, for example, Tonini et al. (2015), Selva et al. (2018), Paris

et al. (2019), and Grezio et al. (2020).

Based on the eruptive record of Campi Flegrei (Orsi et al.,

2009), we consider four eruption sizes: an effusive (E) size and

three explosive ones, which are the low (L) (e.g., Averno 2), the

medium (M) (e.g., Astroni 6), and the high (H) (e.g., Agnano-

Monte Spina) sizes. The probabilities of occurrence for each size

are defined in Table 1 and graphically represented in Figure 5C

(Sandri et al., 2016). Then, as we already mentioned earlier, for

each explosive size, we build 1,500 VSs for LT assessment,

180 VSs for ST, and for 5, 6, and 7 December 2019, totaling

6,120 VSs. In Subsection 4.3, we provide the details on the

creation of the volcanic scenarios.

Regarding Node 6, we study tephra fallout hazard at ground and

ash concentration hazard at eight flight levels (FL050–FL400) during

the 24 and 48 h after the eruption by running FALL3D-8.0 for each

VS in a computational domain spanning from 31°N to 50°N latitude

and from 3°E to 28°E longitude at 0.025° resolution (2 km,

approximately). Due to the flat topography of the CFc (that does

not affect significantly the pattern of ash dispersal), to the proximity

of the volcanic vents with respect to the size of the simulation grid,

and to the resolution of themeteorological data, we do not repeat the

tephra dispersion simulations for each of the vent locations but

instead translate the output of simulations to each of the 40 vent

positions (Selva et al., 2010).

For Node 7, we examined the target area from 34°N to 50°N

latitude and 3°E to 28°E longitude (Figure 5D) at 0.025° resolution

and the eight flight levels from FL050 to FL400. The reason this

target area is slightly smaller than the FALL3D area is to have the

same number of simulation outputs in each target area cell after

translating the simulations over the 40 vent locations.

With respect to Node 8, we examine 23 critical thresholds, from

0.01 to 16.0 kPa, for the ground load hazard (Wilson et al., 2012) and

the thresholds of 0.2, 2, and 4 mg/m3 for the airborne ash

concentration, as well as the temporal persistence of 1, 3, 6, 12,

18, and 24 h.

These input parameters are collected in a configuration file

called BET.CFG, which is the input file to the PVHA_HPC-WF (see

Supplementary Material).

4.3 Generation of volcanic scenarios

As explained in previous sections, we adopt a probabilistic

approach that merges the results of a large number of

numerical simulations, each of them corresponding to a

potential VS, to fully explore the natural variability

associated with volcanic phenomena and to take into

account the impact of low-probability but high-

consequence events. The probabilistic approach adopted

follows Sandri et al. (2016) based on the definition of three

broad eruptive size classes (low-, medium-, and high-

explosive, respectively): L, M, and H. Each eruptive

explosive size is fully described by a set of ESPs sampled

from PDFs previously defined. The PDF shape and parameters

are defined on the basis of previously published articles in

agreement with field observations (Sandri et al., 2016; Mele

et al., 2020) and compiled in Table 2. The methodology

followed to generate a potential eruptive scenario is

reported in the Supplementary Material.

4.4 Meteorological data

To fully explore the natural variability of weather

conditions, each VS was randomly assigned weather

conditions corresponding to a time period between

1 January 1999 and 1 January 2019 for the tephra dispersal

simulations for the long-term assessment. For the short-term

assessment, the meteorological data corresponding to each of

the days 5, 6, and 7 December 2019 have been used. All these

data have been obtained from the Copernicus Climate Change

Service ERA5 reanalysis with a temporal resolution of 3 h at a

spatial resolution of 0.25°. Details for downloading and

handling these data are attached in the Supplementary

Material.

4.5 Computational resources and
performance

The PVHA_HPC-WF has been distributed into three

clusters:

• ADA. HPC-MASTER-Computing Cluster, 140 cores ×

node, INGV Section of Bologna;
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• CENERI. Debian GNU/Linux, Osservatorio Vesuviano in

INGV Section of Naples;

• IRENE-SKYLAKE. Bi-processor with 24 cores per node,

TGCC, France.

The workflow management system was installed and

launched on ADA which interacted with CENERI, IRENE,

and with itself. The BET_EF and BET_FETCH modules, in

charge of interrogating the monitoring database and

calculating the probabilities of eruption, were serially executed

on the CENERI server, lasting less than 1 min. Also, the

BET_PRE_VH was run in series on ADA, generating the set

of VSs in a few seconds for the LT and the ST. The module

BET_TEPHRA, responsible for executing the simulations of

volcanic tephra transport and deposition via FALL3D-8.0 for

each of the 6,120 VSs generated, was executed in parallel on

IRENE using an average of 16 nodes and 3 h, approximately, of

elapsed time for each simulation. The analysis of the FALL3D

simulations, through the BET_POST_TEPHRA module, has

been carried out in parallel in IRENE using 1 node and less

than 20 min, approximately, for each set of simulations

corresponding to each of the three eruptive sizes. Also in

IRENE, the module BET_VH was executed utilizing 12 nodes

and 15 min, approximately, for each desired combination of

altitude level/persistency/period of time. In total,

approximately 11·106 h of CPU time was used in Irene for the

FIGURE 5
CF model setup. (A) reports the probability of unrest (Node 1), magmatic unrest (Node 2), and eruption (Node 3) and the combination of the
three nodes. (B) is the Campi Flegrei eruptive area where the 40 vent-opening locations considered in this study and their respective prior
probabilities are indicated. (C) shows the probability density function for the size of the eruption at Campi Flegrei and the number of scenarios
considered for each of them. (D) indicates the geographical area studied in this work (upper image) and the resolution and coordinates of the
computational domain (lower table). (E) specifies the thresholds set for each hazard.
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LT, and 125·104 for each of the ST days. Finally, the final hazard

curves and figures were generated serially in ADA by

BET_POST_VH, requiring approximately 8 min. All this

information is compiled in Table 3.

4.6 Results

A large portfolio of results from the workflow can be

extracted and mapped. Herein, we show some of the results

that may answer the questions posed in the second

paragraph of Section 4, following the numbering of those

questions.

For LT analysis, the workflow can provide:

1. probability maps with uncertainty showing the 50-year

forecast absolute probability and the probability conditional

on the occurrence of an eruption exceeding the previously

defined critical tephra fallout thresholds after 24 and 48 h

from the beginning of an eruption,

2. probability maps with uncertainty showing the 50-year

forecast absolute probability and the probability conditional

on the occurrence of an eruption exceeding the critical ash

concentration thresholds of 0.2, 2, and 4 mg/m3 for at least 1,

3, 6, 12, 18, and 24 of the hours after 24 and 48 h from the

beginning of an eruption at eight flight levels from FL050 to

FL400,

3. maps of the time required to exceed the ash concentration

thresholds corresponding to each explosive eruption size.

TABLE 3 Computational performance for PVHA at Campi Flegrei. Herein, we use the abbreviation PERS for temporal persistence and TP for period of
time.

LT Number of
runs

Cluster CPUs per
run

Nodes per
run

Average elapsed
time per
run

BET_EF 1 CENERI Serial - < 1 min

BET_POST_EF 1 CENERI Serial - < 1 min

BET_WEATHER 20 ADA Serial - 90 min

BET_PRE_VH 1 IRENE

BET_TEPHRA 4,500 IRENE 768 16 3 h

BET_POST_TEPHRA

Exceedance probability 6 (3 sizes × 2 TPs) IRENE 48 1 20 min

Arrival time 3 (3 sizes) IRENE 48 1 15 min

BET_VH (1 × GROUND, 1 × FL × PERS) × TP IRENE 576 12 15 min

BET_POST_VH

Exceedance probability 1 × GROUND × TP ADA Serial - 8 min

Exceedance probability 1 × FL × PERS × TP ADA Serial - 5 min

Arrival time 1 × FL × size × TP ADA Serial - 2 min

ST Number of runs Cluster CPUs per run Nodes per run Average elapsed time per run

BET_FETCH 1 CENERI Serial - < 1 min

BET_EF 1 CENERI Serial - < 1 min

BET_POST_EF 1 CENERI Serial - < 1 min

BET_WEATHER 1 × day ADA Serial - 30 min

BET_PRE_VH 1 IRENE

BET_TEPHRA 1,620 IRENE 768 16 3 h

BET_POST_TEPHRA

Exceedance probability 6 (3 sizes × 2 TPs) IRENE 48 1 10 min

Arrival time 3 (3 sizes) IRENE 48 1 15 min

BET_VH (1 × GROUND, 1 × FLxPERS) × TP IRENE 576 12 15 min

BET_POST_VH

Exceedance probability 1 × GROUND × TP ADA Serial - 8 min

Exceedance probability 1 × FL × PERS × TP ADA Serial - 5 min

Arrival time 1 × FL × size × TP ADA Serial - 2 min
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For ST analysis corresponding to each of December 5, 6, and

7, 2019, the workflow can provide:

1. eruption probabilities and vent-opening location maps,

2. probability maps with uncertainty showing the absolute

probability and the probability conditional on the

occurrence of an eruption exceeding the critical tephra

fallout thresholds after 24 and 48 h from the beginning of

an eruption,

3. probability maps with uncertainty showing the absolute

probability and the probability conditional on the

occurrence of an eruption exceeding the previously defined

critical ash concentration thresholds for at least 1, 3, 6, 12, 18,

and 24 of the hours after 24 and 48 h from the beginning of an

eruption at eight flight levels from FL050 to FL400, and

4. maps showing the time required to exceed the ash concentration

thresholds corresponding to each explosive eruption size.

We show here only a small sample of the large number of

maps generated. Other maps can be found in the Supplementary

Material, including those corresponding to each of the seasons of

the year.

4.6.1 Long-term analysis
As an example of probability maps, Figure 6 presents the

50-year forecast absolute probability that the ash

concentration at FL050, FL150, FL250, and FL350 exceeds

the critical concentration of 2 mg/m3 with persistency of 1, 6,

12, 18, and 24 h in the 48 h following an eruption onset. We

can observe that the probability for the next 50 years of

exceeding 2 mg/m3 for at least 1 of the 48 h observed is

greater than 1% at all flight levels. FL050, especially

interesting because it is the aircraft takeoff and landing

flight level, would be the most affected where the critical

threshold could be exceeded for at least 24 out of the 48 h

FIGURE 6
Probability maps showing the long-term mean absolute probability that the 50-year forecast ash will exceed a concentration of 2 mg/m3 with
persistence of 1, 6, 12, 18, and 24 h (left to right columns) during a period of time of 48 h in FL050, FL150, FL250, and FL350 (bottom to top columns).
We can see that the probability for the next 50 years of exceeding 2 mg/m3 for at least 1 of the 48 h observed is greater than 1% at all flight levels.
FL050 would be the most affected where the critical threshold could be exceeded for at least 24 out of the 48 h studied. We can also observe
that the spread pattern is toward the east and slightly south.
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studied. As a sample of intensity hazard maps, Figure 7 shows

the tephra ground load and the ash concentration at

FL050 within 48 h from eruption onset, both the mean

values and those corresponding to the 2.5 and

97.5 percentiles, relative to the 5% probability conditional

on an eruption event. We can see that in the case of an

eruption, a large part of the Campania region would be

affected by tephra load above 1 kg/m2 with a probability

greater than 5%, even exceeding thresholds above 300 kg/

m2 in the areas closest to the volcano. Also, an eruption

would affect air traffic in extensive areas with exceedingly

high ash concentrations above 4 mg/m3. Both Figures 6 and 7

FIGURE 7
Long-term hazard maps relative to the 5% probability threshold conditional on an eruption event provide a graphical representation of
epistemic uncertainty for tephra fallout (left column) and ash concentration at FL050 (right column). For each hazard intensity value (color bar label),
the maps show the areas where that value will be exceeded with a probability greater than 0.05 in the event of an eruption within 48 h from eruption
onset. We can see that in the case of an eruption, a large part of the Campania regionwould be affected for tephra loadwith a probability greater
than 5%. Also, an eruption would affect air traffic with an exceedingly high ash concentration above 4 mg/m3 throughout a large area with a spread
pattern to the east and slightly south.
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show the trend of the ash to spread to the east and slightly to

the south, following the most common wind patterns in that

area. As for the arrival time maps, Figure 8 shows, for each

eruption size, the expected time to reach the critical ash

concentration threshold of 2 mg/m3 at FL050 with a

probability of 5% in the event of an eruption and, for some

of the airports around Campi Flegrei, arrival time values

versus their probability values. Most airports would be

affected in less than 48 h in case of an explosive eruption

with a probability of 5%. We can observe that the arrival time

to exceed the critical threshold of ash concentration in the

different airports is less the greater the size of the eruption.

Examples for other flight levels and persistence can be found

in the Supplementary Material.

FIGURE 8
Long-term arrival timemaps. Left column shows, from top to bottom, the expected time in which the ash concentration at FL050will reach the
critical threshold of 2 mg/m3 with a probability of 5% in the event of a low-, medium-, and high-sized eruption at Campi Flegrei, respectively. The
right column shows the probabilities to reach 2 mg/m3 at FL050 above some of the surrounding airports in each of the hours following the eruption.
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4.6.2 Short-term analysis for days 5, 6, and
7 December 2019

Figure 9 is a compilation of the eruption forecasting (EF)

for 5, 6, and 7 December 2019. As we have explained

previously, EF is independent of the hazard we are

modeling, and it is based mainly on the information from

the monitoring system. Regarding the location of the

eruption, Figure 9A presents the temporal evolution of the

mean conditional probability of the eruption occurring at

each of the 40 potential vent locations. Figure 9B shows the

FIGURE 9
ST eruptive forecasting (EF) for December 5, 6, and 7, 2019. (A) is the temporal evolution during the 3 days of the vent-opening probability map,
conditional to eruption occurrence. (B) shows the temporal evolution of the CDF of unrest, magmatic unrest, andmagmatic eruption. (C) displays the
temporal evolution of the mean values of the probability density function of unrest (blue circles), magmatic unrest (pink circles), and eruption (red
circles) in the 3 days of application, where the occurrence of a magnitude 3.1 earthquake is marked by the red arrow.
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temporal evolution of the mean and the 16, 50, and

84 percentiles of the conditional probability density

function (CDF) of unrest, magmatic unrest, and magmatic

eruption (those percentiles are equal to two standard

deviations (2σ), that is, 68% confidence interval).

Figure 9C, left panel, displays the temporal evolution of

the mean values of the probability density function of

unrest, magmatic unrest, and eruption in the 3 days of

application, where the occurrence of a magnitude

3.1 earthquake is marked by the red arrow on the left

FIGURE 10
Maps showing the short-term mean absolute probability for December 5, 6, and 7, 2019. The last row shows the probability of exceeding the
1 kg/m2 tephra load, while rows from 1 to 3 show the probability of exceeding the 2 mg/m3 ash concentration at FL300, FL150, and FL050,
respectively, with the persistence of 1 h.
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panel. The right panel shows the time trend in the probability

of unrest, magmatic unrest, and eruption in the previous

days, where shaded areas indicate the 10th–90th percentile

confidence band. As a sample of ST probability maps,

Figure 10 presents the mean absolute probability for each

of the days of exceeding the tephra load of 1 kg/m2 at the

ground and that of exceeding an ash concentration of 2 mg/

m3 at FL050, FL150, and FL300, respectively, for at least

1 hour in the 48 h following the eruption onset. The most

affected flight level would have been FL050, closely followed

FIGURE 11
Short-term hazard maps relative to the 5% probability threshold conditional on an eruption event providing in the first four rows the tephra
concentration at FL050 with persistence 1, 12, and 24, respectively. The last row shows the ground load. For each hazard intensity value (color bar
label), the maps show the areas where that value will be exceeded with a probability greater than 5% in the event of an eruption within 48 h of the
observed time.
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by FL150, while at FL300, this critical threshold would have

not been exceeded. Figure 11 shows ST hazard maps with

tephra load and ash concentration at FL050 with a probability

of 5%. Note, for example, that the day 6 eruption could have

produced a tephra load beyond the Albanian coast. The

arrival time of exceeding the threshold of 1 kg/m2 and

2 mg/m3 at the ground and at FL050, respectively, with a

probability of 5% in the case of a medium-size eruption, is

displayed in Figure 12. In all the images, the wind field

pointed predominantly to the north on day 5, to the east

on day 6, and to the southeast on day 7, which illustrated the

influence of meteorological variability and the need to

develop a daily evaluation of the tephra hazard in a wide

geographical area.

5 Conclusion

This study highlights the feasibility and usefulness of HPC-

integrated PVHA. In particular, we have shown that HPC

integrated into PVHA can provide quantitative hazard results

capable of answering some of the questions that decision-makers

have to face in case of volcanic unrest possibly evolving toward an

eruption (short-term) or in planning land use or air traffic

development (long-term) over a large-scale and high-

resolution domain.

We have implemented the Probabilistic Volcanic Hazard

Assessment HPC Workflow (PVHA_HPC-WF) to calculate

the short-term (ST) and the long-term (LT) probabilistic

volcanic hazard assessment (PVHA) for a specific volcano

based on the Bayesian event tree (BET) methodology and

starting from the existing prototype tool BET@OV. We

have subjected the code to a performance and productivity

audit and have optimized it following a proof-of-concept

process, thanks to which the execution time of some of the

most critical parts of the workflow has been reduced by up to

588 times. Through the workflowmanager system light (WMS-

light), we have given the PVHA_HPC-WF the ability to

interact with different machines to distribute tasks and

exchange data.

We have tested the LT PVHA_HPC-WF by performing a

long-term tephra hazard assessment of the Campi Flegrei

(CF) volcanic caldera, Italy, on the ground and at eight flight

levels in a geographic area of approximately 2,000 km ×

FIGURE 12
Short-term arrival time maps for medium (M) size for December 5, 6, and 7, 2019. The bottom and top rows show the expected time for tephra
ground load and for ash concentration at FL050 to reach the critical thresholds of 1 kg/m2 and 2 mg/m3, respectively, with a probability of 5% in the
event of a medium-sized eruption at Campi Flegrei.
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2,000 km. To this end, we have used the FALL3D-8.0 model to

perform ash dispersion simulations at a horizontal resolution

of 0.025° (approximately 2 km) for 4,500 different volcanic

scenarios (VS), also including those of low probability but

high impact, and considering 20 years of meteorological data

from ERA5. The workflow tasks have been distributed into

three clusters, the ADA, HPC-MASTER Super Computing

Cluster in the INGV Section of Bologna (Italy), the CENERI,

Cluster at the Osservatorio Vesuviano in the INGV Section of

Naples (Italy), and the IRENE-SKYLAKE, in the Computing

Center TGCC (France), using approximately 576 h of CPU

time in ADA, some minutes in CENERI, and 11·106 h of CPU

time in IRENE, demonstrating that the entire process could

be carried out in a real time within 4.5 h if resources are

available to execute the independent tasks simultaneously.

We have also tested the ST PVHA_HPC-WF by performing the

short-term tephra hazard assessment of CF for December 5, 6, and 7,

2019, with the same model configuration used for LT but using, for

each of the days, 540 VS and its corresponding meteorological data

also from ERA5. For this, we have used approximately, for each date,

576 h of CPU time inADA, someminutes inCENERI, and 125·104 h
of CPU time in IRENE, showing that a daily process considering

540 VSs could run in 4.25 h if resources are available. We note that

this time could be improved for real-time crisis management if

specific location targets are provided (e.g., a specific FL).
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Glossary

BET Bayesian event tree

CDF conditional probability density function

CF Campi Flegrei

CFc Campi Flegrei caldera

ChEESE Center of Excellence for Exascale in Solid Earth

CPU central processing unit

E effusive

EF eruptive forecasting

ESP eruptive source parameter

ESPs eruptive source parameters

FL flight level

H high

HPC high-performance computing

HPDA high-performance data analytics

INGV Istituto Nazionale di Geofisica e Vulcanologia

IPC instructions per cycle

L low

LT long term

M medium

MER mass eruption rate

MPI Message Passing Interface

NUMA non-uniform memory access

PDF probability density function

PoC proof of concept

POP performance optimization and productivity

POP CoE EU Performance Optimization and Productivity

Center of Excellence in HPC

PVHA probabilistic volcanic hazard assessment

PVHA_HPC-WF Probabilistic Volcanic Hazard Assessment

Workflow

SERENADE SEismic Restful ENAbled DatabasE

ST short term

TEM total erupted mass

TEV total erupted volume

TGSD total grain size distribution

VEI volcanic explosivity index

VS volcanic scenario

WMS-light workflow manager system light.
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