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Purpose: To evaluate the performance of artificial neural networks (aNN) applied to

preoperative 18F-FDG PET/CT for predicting nodal involvement in non-small-cell lung

cancer (NSCLC) patients.

Methods: We retrospectively analyzed data from 540 clinically resectable NSCLC

patients (333 M; 67.4 ± 9 years) undergone preoperative 18F-FDG PET/CT and

pulmonary resection with hilo-mediastinal lymphadenectomy. A 3-layers NN model

was applied (dataset randomly splitted into 2/3 training and 1/3 testing). Using

histopathological reference standard, NN performance for nodal involvement (N0/N+

patient) was calculated by ROC analysis in terms of: area under the curve (AUC), accuracy

(ACC), sensitivity (SE), specificity (SP), positive and negative predictive values (PPV, NPV).

Diagnostic performance of PET visual analysis (N+ patient: at least one node with uptake

≥ mediastinal blood-pool) and of logistic regression (LR) was evaluated.

Results: Histology proved 108/540 (20%) nodal-metastatic patients. Among all

collected data, relevant features selected as input parameters were: patients’ age, tumor

parameters (size, PET visual and semiquantitative features, histotype, grading), PET

visual nodal result (patient-based, as N0/N+ and N0/N1/N2). Training and testing NN

performance (AUC = 0.849, 0.769): ACC = 80 and 77%; SE = 72 and 58%; SP

= 81 and 81%; PPV = 50 and 44%; NPV = 92 and 89%, respectively. Visual PET

performance: ACC = 82%, SE = 32%, SP = 94%; PPV = 57%, NPV = 85%. Training

and testing LR performance (AUC = 0.795, 0.763): ACC = 75 and 77%; SE = 68

and 55%; SP = 77 and 82%; PPV = 43 and 43%; NPV = 90 and 88%, respectively.
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Conclusions: aNN application to preoperative 18F-FDG PET/CT provides overall good

performance for predicting nodal involvement in NSCLC patients candidate to surgery,

especially for ruling out nodal metastases, being NPV the best diagnostic result; a high

NPV was also reached by PET qualitative assessment. Moreover, in such population

with low a priori nodal involvement probability, aNN better identify the relatively few and

unexpected nodal-metastatic patients than PET analysis, so supporting the additional

aNN use in case of PET-negative images.

Keywords: PET/CT, 18F-FDG, non-small-cell lung cancer, artificial neural network, nodal staging

INTRODUCTION

The evaluation of lymph nodal status is of paramount
importance for selecting the optimal therapeutic approach
in patients with non-small-cell lung cancer (NSCLC), with
N0 and N1 patients addressed to surgery (when clinically
feasible), and N3 ones to non-surgical approaches, while N2
patients still have more controversial therapeutic options
(1, 2). 18-Fluorine-Fluorodeoxyglucose Positron Emission
Tomography/Computed Tomography (18F-FDG PET/CT)
is widely used for nodal staging in NSCLC patients, being
recommended by the National Comprehensive Cancer
Network (NCCN) guidelines (1). 18F-FDG PET/CT shows
an overall good accuracy for nodal evaluation with sensitivity
and specificity values ranging from 72 to 90% and from
81 to 95%, respectively (1–6). More recently, machine
learning methods have been applied to 18F-FDG PET/CT
as an advanced and innovative analysis tool in NSCLC
patients for staging, treatment evaluation and prognostic
stratification (7–10).

Neural Networks (NN) represent an application of
machine learning based on an artificial reinterpretation
of the human brain structure, that relies on the use of
numerous layers of “neurons.” Each neuron is characterized
by a specific weight and importance in the context of
the whole network. Similarly, each layer receives data,
calculates scores and passes the output of the analysis to
the next layer in a self-learning process. This architecture
has been recently widely used in the context of biomedical
imaging research and radiation oncology, aiming to predict
clinical outcomes and enrich diagnostic information,
describing the interactions and complex simultaneous
relationships of variables belonging to different domains
(11–13). Growing, although still limited, literature evidence
has explored the application of NN to 18F-FDG PET/CT
for predicting nodal involvement in NSCLC patients,
but burdened by differences in clinical and procedural
aspects (14–17).

Aim of our study was to evaluate the performance
of artificial neural network (aNN) applied to
preoperative 18F-FDG PET/CT for predicting
pathological nodal involvement in clinically resectable
NSCLC patients.

MATERIALS AND METHODS

Study Population
We retrospectively reviewed medical records of all consecutive
patients referred to the PET/CT center of “Fondazione
Policlinico Universitario Agostino Gemelli IRCCS” in Rome
by a local Thoracic Surgery Unit between January 2007
and December 2017 for pulmonary lesions’ evaluation. We
included only patients with: (1) malignant pulmonary lesions
histologically proven as NSCLC; (2) judged resectable at pre-
operative Multidisciplinary Tumor Board evaluation (including
those with single N2 station at pre-operative invasive mediastinal
staging); (3) undergone lung resection and hilo-mediastinal
lymphadenectomy; (4) not addressed to induction chemotherapy
and/or radiotherapy. Exclusion criteria were: all patients not
fitting the inclusion criteria; with proven N2 multistation
or N3 at invasive mediastinal staging procedures. A set of
clinical, anatomic, metabolic and histopathological data were
retrospectively collected. Pathological TNM staging was defined
according to the 8th staging system edition (18, 19). This
retrospective study was approved by the local institution’s ethics
committee (Comitato Etico Lazio 1). For each patient, PET/CT
imaging was performed in the clinical routine with written
informed consent.

18F-FDG PET/CT Image Acquisition and
Interpretation
All PET/CT were acquired according to standard protocol
(6 h fasting-state, blood glucose levels <150 mg/dl; acquisition
time of 60 ± 10min post-injection of 185–370 MBq of 18F-
FDG, according to BMI), using an integrated 3D PET/CT
device (Gemini GXL by Philips Medical System, Cleveland,
Ohio or Biograph mCT by Siemens Healthineers, Chicago,
Illinois) with a low-dose unenhanced CT scan (120 kV, 50–
80mA) for anatomical localization and attenuation correction.
All PET images (reconstructed with iterative algorithms) were
evaluated by two independent nuclear medicine physicians (ST,
VS), blinded to the final pathological TNM staging, using a
dedicated fusion and display software (Syngo.via MM Oncology
software; Siemens Medical Solutions). For primary lung tumor
evaluation, a qualitative analysis was performed: PET was scored
as positive if 18F-FDG uptake was equal or higher than the
mediastinal blood-pool, as negative if lower. A semiquantitative
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TABLE 1 | Main clinical, anatomic, metabolic, and histopathological

characteristics of the study population (n = 540).

Characteristics N

Gender

Male 333 (61.7%)

Female 207 (38.3%)

Age (years)

Mean ± SD 67.4 ± 9

Tumor size (mm)

Mean ± SD 25.3 ± 14.3

Tumor location

Right lung 293 (54.2%)

Upper lobesa 348 (64.4%)

Centralb 146 (27%)

Tumor visual PET result

Positive 452 (83.7%)

Negative 88 (16.3%)

Tumor SUVmax

Mean ± SD 6.6 ± 5.6

Tumor SUVmean

Mean ± SD 4.2 ± 3.4

MTV (cm3)

Mean ± SD 7.6 ± 16.7

TLG

Mean ± SD 52.6 ± 182.1

Nodal visual PET result

Nodal status 479 N0 (88.7%), 61 N+ (11.3%)

Nodal staging 479 N0 (88.7%), 27 N1 (5%), 34 N2 (6.3%)

Histology

Adenocarcinoma 385 (71.3%)

Squamous cell carcinoma 89 (16.5%)

Others 66 (12.2%)

Grading

G1 73 (13.5%)

G1–G2, G2 26 (4.8%), 201 (37.2%)

G2–G3, G3 68 (12.6%), 167 (31%)

G4 5 (0.9%)

Pathological N result (pN)

N0 432 (80%)

N1 45 (8.3%)

N2 63 (11.7%)

SD, standard deviation; MTV, metabolic tumor volume; TLG, total lesion glycolysis.
aThe right middle lobe and lingula were included in the upper lobes location.
bThe lung lesion was defined as central if located in the inner one-third of the lung

parenchyma, and as peripheral if located in the outer two-thirds of lung parenchyma.

analysis was also performed: for lesions segmentation, a fixed
relative threshold method was adopted and a 3D volumetric
region of interest (VOI) was drawn semi-automatically over the
primary tumor on fused PET/CT images, with a fixed threshold
of 40% of the maximum standardized uptake value. Then, the
following tumor semiquantitative parameters were extracted,
applying the EQ·PET quantification technology (20): maximum
and mean standardized uptake values (SUVmax, SUVmean),

TABLE 2 | Comparison in collected features between training and testing groups.

Feature p-value

Agea 0.17

Gender (male/female) 0.31

Location T (right/left lung) 0.22

Location T (upper/lower lobe) 0.57

Site T (central/peripheral) 1.00

Histology T0 (neuroendocrine tumor)b 0.95

Histology T1 (adenocarcinoma)b 0.94

Histology T2 (squamous cell carcinoma)b 0.97

Histology T3 (adeno-squamous carcinoma)b 1.00

Histology T4 (pleomorphic carcinoma)b 0.84

Histology T5 (poorly differentiated carcinoma)b 0.35

Grading T0 (G1–G2)b 0.65

Grading T1 (G1)b 0.27

Grading T2 (G2)b 0.61

Grading T3 (G3)b 0.25

Size T (mm)a 0.52

PET result T (negative/positive) 0.25

T SUVmaxa 0.35

T SUVmeana 0.25

T TLGa 0.45

T MTVa 0.83

PET result N (negative/positive) 0.51

PET staging N0 (N0/not N0)b 0.51

PET staging N1 (N1/not N1)b 1.00

T, tumor; N, nodal.
aNumerical features were Z-standardized.
bCategorical features were binarized.

metabolic tumor volume (MTV, expressed in cm3) and total
lesion glycolysis (TLG, defined as the product of SUVmean and
MTV). The anatomical consistency of tumor delineation was
visually checked and volumetric region of interest was adjusted
manually, if needed. For nodal evaluation, a visual patient-based
PET nodal status was defined: any lymph node with 18F-FDG
uptake ≥ mediastinal blood-pool was classified as PET positive;
each patient with at least one positive lymph node was scored
as PET positive (PET N+), otherwise as negative (PET N0).
Moreover, for each patient a PET nodal staging (PET N0, N1, N2,
or N3) was defined, according to sites of PET positive nodes and
the 8th edition of TNM staging. Any disagreement was resolved
by consensus. Histological nodal status was used as reference
standard to verify PET results.

Neural Network Development
The collected clinical, anatomic, metabolic, and histopathological
features were used as input parameters of the model: patients’
age and gender, tumor size and location (as right/left lung,
upper/lower lobes, and central/peripheral), PET tumor visual
result and semiquantitative parameters, PET nodal status, PET
nodal staging, tumor histotype and grading. Categorical features
were binarized and numerical features were Z-standardized. The
dataset was randomly split into 2/3 training and 1/3 testing, being
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FIGURE 1 | Relevant features (highlighted in green) to the outcome of interest (pathological nodal involvement) selected with Boruta algorithm.

the sample size numerous enough to perform hold-out validation
instead of cross-validation. Relevant features to outcome of
interest (i.e., surgically-proven nodal status) were selected with
Boruta algorithm on the training set (21). A NN based model
was then realized with the selected features. Considering the
sample size, the events distribution and the number of selected
features, a 3-layers neural network (12, 6, and 2 activation
neurons, respectively) was trained on the training set with the
Boruta-selected features as input. Network training specifications
were as follows: the first two layers had activation function
ReLu, while the third layer (classification layer) had Softmax.
Categorical cross-entropy was the loss function and Adam was
the optimizer. The model was trained for 500 epochs with 150
batch size and 0.1 validation split. Classification performance
of the trained network in predicting nodal involvement was
evaluated on the testing set applying the Receiver Operating
Characteristic (ROC) analysis, using histological nodal status
as reference standard. Logistic regression (LR) model was also
trained on the training set after Akaike information criterion
(AIC)-based stepwise selection on the Boruta-selected features.

Statistical Analysis
Continuous variables were expressed as mean (with standard
deviation) or median (with range) and categorical data as a
percentage. Comparison between training and testing groups in
collected features were performed using Mann–Whitney/Chi-
square test for continuous and categorical data, respectively.
On ROC analysis, the NN diagnostic performance for nodal
involvement (on both training and testing sets) was calculated in
terms of Area Under the Curve (AUC) and classification matrix

at the Youden-index classification threshold were computed:
accuracy (ACC), sensitivity (SE), specificity (SP), positive
and negative predictive values (PPV and NPV). Diagnostic
performances for nodal involvement (N0/N+) of the visual PET
analysis and LR model (on both training and testing sets) were
also assessed. PPV and NPV were calculated assuming that
the individual pre-test probability of nodal metastatic disease
was equal to the prevalence of pathological nodal involvement
(pN+) found in our population. Results were reported with 95%
Confidence Intervals (CIs). Statistical significance was set at p
< 0.05. Statistical analyses were performed in R version 3.4 and
Python version 3.7.

RESULTS

Study Population
Finally, 540 consecutive clinically resectable NSCLC patients (333
males; mean age: 67.4 ± 9 years), who underwent pre-operative
18F-FDG PET/CT (44 ± 28 days before surgery) were selected.
Table 1 reports the main characteristics of the study population.
Among the 540 patients, 528 underwent lobectomy, nine bi-
lobectomy and three atypical pulmonary resection. A total of
1,620 nodal stations (from station 2 to 11) were histologically
evaluated (3 ± 1 stations per patient), with a total of 4,158
examined nodes (8 ± 5 nodes per patient); peribronchial nodes
found in the resected lobe were also pathologically assessed in
439 patients. Histopathological nodal involvement was found in
108/540 (20%) patients: 45/108 staged as pN1 and 63/108 as pN2.
Overall, in the total 540 patients, 80% resulted as pN0, 8.3% as
pN1 and 11.7% as pN2. According to pathologic staging, 383

Frontiers in Medicine | www.frontiersin.org 4 April 2021 | Volume 8 | Article 6645298

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Taralli et al. NSCLC Nodal-Staging: 18FDG-PET/CT and aNN

TABLE 3 | Diagnostic performance of neural network, logistic regression, and visual 18F-FDG PET/CT analysis for pathological nodal involvement.

Training set (n = 356) Test set (n = 184) All dataset (n = 540)

NN LR NN LR PET visual analysis

AUC (95%CI) 0.849 (0.751–0.838) 0.795 (0.700–0.800) 0.769 (0.699–0.827) 0.763 (0.669–0.820) n.a.

ACC (95%CI) 0.80 (0.75–0.84) 0.75 (0.70–0.80) 0.77 (0.70–0.83) 0.77 (0.70–0.83) 0.82 (0.78–0.85)

SE (95%CI) 0.72 (0.60–0.82) 0.68 (0.56–0.73) 0.58 (0.41–0.74) 0.55 (0.38–0.72) 0.32 (0.24–0.42)

SP (95%CI) 0.81 (0.76–0.86) 0.77 (0.72–0.82) 0.81 (0.74–0.87) 0.82 (0.75–0.88) 0.94 (0.91–0.96)

PPV (95%CI) 0.50 (0.40–0.60) 0.43 (0.34–0.53) 0.44 (0.30–0.59) 0.43 (0.29–0.59) 0.57 (0.45–0.69)

NPV (95%CI) 0.92 (0.88–0.95) 0.90 (0.86–0.94) 0.89 (0.82–0.93) 0.88 (0.81–0.93) 0.85 (0.81–0.88)

NN, neural network; LR, logistic regression; AUC, area under the curve; CI, confidence interval; ACC, accuracy; SE, sensitivity; SP, specificity; PPV, positive predictive value; NPV,

negative predictive value.

FIGURE 2 | Receiver Operating Characteristic (ROC) curve for prediction of nodal involvement according to NN analysis in the training set (A) and in the testing set (B).

patients were classified as stage I (28 IA1; 152 IA2; 78 IA3; 125
IB), 74 stage II (13 IIA; 61 IIB), 80 stage III (70 IIIA; 10 IIIB), and
3 stage IVA (for pleural localizations).

Neural Network Analysis
No features differences (p > 0.05) were observed between
training and testing sets (Table 2), that also showed the
same proportion of pN0 and pN+ patients. From the set of
collected features, Boruta algorithm selected 13 relevant as
input parameters (Figure 1): patients’ age, tumor size, PET
tumor parameters (visual result, SUVmax, SUVmean, TLG,
MTV), patient-based PET nodal status (as N0/N+) and PET
nodal staging (as N0/N1/N2), tumor histotype (adenocarcinoma,
squamous cell carcinoma) and grading (G3). The NN was then
trained with all Boruta-selected features as input variables. From
ROC analysis, NN diagnostic performance for nodal involvement
(N+/N0) for the training and testing sets were: AUC = 0.849

(95%CI: 0.751–0.838), ACC= 0.80 (95%CI: 0.75–0.84), SE= 0.72
(95%CI: 0.60–0.82), SP = 0.81 (95%CI: 0.76–0.86), PPV = 0.50
(95%CI: 0.40–0.60), NPV = 0.92 (95%CI: 0.88–0.95), and AUC
= 0.769 (95%CI: 0.699–0.827), ACC = 0.77 (95%CI: 0.70–0.83),
SE = 0.58 (95%CI: 0.41–0.74), SP = 0.81 (95%CI: 0.74–0.87);
PPV= 0.44 (95%CI: 0.30–0.59), NPV= 0.89 (95%CI: 0.82–0.93),
respectively (Table 3 and Figure 2).

18F-FDG PET/CT
On PET visual analysis, 479/540 patients were classified as N0:
406/479 with no pathological nodal involvement (pN0, PET true-
negatives), 73/479 with at least one metastatic node (pN+, PET
false-negatives). The remaining 61/540 patients were classified
as PET positive for nodal involvement: 35/61 histologically
confirmed (pN+, PET true-positives), 26/61 with no pathological
nodes (pN0, PET false-positives). Diagnostic performance of PET
visual analysis for nodal involvement (N0/N+) was: ACC =
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FIGURE 3 | 18F-FDG PET/CT maximum intensity projection (A), transaxial fused (B), and coregistered CT images (C) of a 57-year-old female with lung

adenocarcinoma of the right lower lobe (maximum axial diameter: 30mm), showing increased metabolic activity in the primary tumor lesion (SUVmax: 12.14;

SUVmean: 7.52; MTV: 3.32 cm3; TLG: 24.98) and a focus of increased tracer uptake in a subcarinal mediastinal lymph node (D,E). According to visual analysis, the

patient was classified as PET positive for nodal involvement (PET N+). Further histopathological examination revealed no pathological nodal involvement (pN0, PET

false-positive). Artificial NN correctly classified the patient as N0.

0.82 (95%CI: 0.78–0.85), SE = 0.32 (95%CI: 0.24–0.42), SP =

0.94 (95%CI: 0.91–0.96), PPV = 0.57 (95%CI: 0.45–0.69), NPV
= 0.85 (95%CI: 0.81–0.88) (Table 3). When considering PET
nodal staging, among the 479 PET negative patients, 406/479
(84.8%) were correctly staged resulting pN0, 73/479 (15.2%)
were upstaged resulting pN1 (30/73) or pN2 (43/73). Regarding
the 61 PET positive patients, 27 were classified as PET N1
and 34 as PET N2. Among PET N1 patients, 11/27 were
correctly staged resulting pN1, 8/27 were downstaged resulting
pN0 and 8/27 were upstaged resulting pN2. Among PET N2
patients, 12/34 were correctly staged resulting pN2, 22/34 were
downstaged resulting pN1 (4/22) or pN0 (18/22). PET/CT images
of illustrative cases are reported in Figures 3, 4.

The LR model with stepwise selection based on AIC criteria
gave the model in Table 4. Logistic regression diagnostic
performance for nodal involvement at training and testing group
were: AUC = 0.795 (95%CI: 0.700–0.800), ACC = 0.75 (95%CI:
0.70–0.80), SE = 0.68 (95%CI: 0.56–0.73), SP = 0.77 (95%CI:
0.72–0.82), PPV= 0.43 (95%CI: 0.34–0.53), NPV= 0.90 (95%CI:
0.86–0.94), and AUC= 0.763 (95%CI: 0.669–0.820), ACC= 0.77
(95%CI: 0.70–0.83), SE = 0.55 (95%CI: 0.39–0.72), SP = 0.82
(95%CI: 0.75–0.88), PPV= 0.43 (95%CI: 0.29–0.59), NPV= 0.88
(95%CI: 0.81–0.93), respectively (Table 3).

DISCUSSION

Aim of our study was to evaluate the diagnostic performance
of aNN to preoperative 18F-FDG PET/CT for predicting
pathological nodal involvement in clinically resectable NSCLC
patients. The main strength points of this study are: the largest
lung cancer population on which NN were applied for the same
aim; the use of the widest combination of clinical, anatomic,
metabolic, and histopathological features as input parameters;
the surgical lymphadenectomy as golden reference in all patients.

From our results, aNN provided overall good performance
for predicting pathological nodal involvement with a diagnostic
accuracy >75% at both training and testing sets; similar
diagnostic performance on both datasets suggests that overfitting
was successfully reduced, supporting the reliability of the results.
NN showed higher specificity and NPV than sensitivity and
PPV, providing the best diagnostic performance for ruling out
nodal metastases. In this context, it has to be considered that
the pre-test probability of nodal involvement (and in turn
the positive and negative predictive values) mainly depends
on the NSCLC clinical settings. Indeed, our population has
low a priori probability of nodal involvement since deemed
clinically resectable, as confirmed by the low prevalence of
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FIGURE 4 | 18F-FDG PET/CT maximum intensity projection (A), transaxial fused (B), and coregistered CT images (C) of a 64-year-old male with lung adenocarcinoma

of the left lower lobe (maximum axial diameter: 32mm), showing increased metabolic activity in the primary tumor lesion (A) (SUVmax: 8.95; SUVmean: 5.42; MTV:

6.34 cm3; TLG: 34.37), with no abnormal focus of increased tracer uptake in hilo-mediastinal lymph nodes (D,E). According to visual analysis, the patient was

classified as PET negative for nodal involvement (PET N0). Further histopathological examination revealed metastatic homolateral hilar nodes (pN+, PET

false-negative). Artificial NN correctly classified the patient as N+.

nodal-metastatic patients and the high NPV. On the other hand,
preoperatively identifying the relatively few and unexpected
nodal-metastatic patients assumes great relevance, since other
treatment strategies rather than the planned up-front surgery can
be considered. However, PET visual analysis provided a poor
sensitivity, with occult lymph nodal metastases mainly due to
small size of metastatic lymph nodes, nodal micro-metastases
(22) or metastatic hilar nodes masked by the intense activity
of close primary tumor (14, 23). Although suboptimal, the
sensitivity provided by aNN resulted relevantly higher than visual
analysis (72 vs. 32%, respectively), suggesting that aNN may
reduce the chance of 18F-FDG PET/CT false negative results.
From a practical point of view, this finding may support the
additional use of aNN to the PET/CT reporting activity in case of
visually negative images. This diagnostic advantage of aNN may
be attributed to the intrinsic properties of this machine learning
method, able to explore and recognize complex and generally
non-linear relationships among multiple variables, obviously
going beyond the PET visual assessment alone.

Analyzing the relevant features selected by Boruta
algorithm as input parameters, the metabolic features were
the most numerous (8/13) and the first ones in order of
importance: PET nodal staging (N0/N1/N2) in the first position,
followed by PET nodal status (N0/N+) and semiquantitative

TABLE 4 | Logistic regression model with stepwise selection based on AIC

criteria.

Variable Coefficient Standard

error

p-value

Intercept −2.071 1.480 0.1

Tumor histology (squamous cell carcinoma) −1.595 0.518 0.002

Tumor grading (G3) 1.121 0.309 0.0003

PET tumor result (positive) 2.318 1.032 0.02

PET nodal result (positive) 1.436 0.473 0.002

PET nodal staging (N1) 1.038 0.724 0.1

Patient age −0.029 0.017 0.08

parameters. We may suppose that PET nodal staging resulted
as the most relevant feature since it appears intrinsically
more linked to the target output (i.e., pathological nodal
status) than other variables, providing direct and complete
information on nodal assessment (even more detailed than
dichotomous PET nodal status). When considering the PET
semiquantitative tumor-related parameters, their relevance
seems to be expected, being widely reported in literature
as predictive factors of pathological nodal involvement in
NSCLC (24–31).
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Visual analysis of primary lesion resulted the last relevant
metabolic feature. This finding may be reasonably attributed to
its dichotomous nature (uptake ≥ or < mediastinal blood-pool
activity) compared to the continuous nature of semiquantitative
parameters (wide range of uptake levels), so providing less
detailed information on tumormetabolism. Among the anatomic
variables, tumor size resulted the only relevant feature: it was
already reported to be a predictive factor for nodal involvement
(26, 32) since reflecting the T-classificator in the TNM staging,
and the risk of lymph node involvement increases with the
increase of T stage. Lastly, among histological variables, the
relevance of G3 (grading-feature) appears in line with the
expectations: high grading, reflecting high tumor aggressiveness,
increases the risk of metastatic nodal involvement (33), as also
observed in our study, with a higher rate of nodal-metastatic
patients in G3 group than in well or moderately differentiated
groups (34.1 vs. 11.3%). Finally, regarding tumor histotype, more
nodal metastases in adenocarcinomas than in squamous cell
carcinomas were observed in our population (21.8 vs. 10.1%),
supposing that adenocarcinoma type would be more informative
for aNN regarding the risk of nodal involvement. Nevertheless,
adenocarcinoma resulted a relatively weaker input parameter
than the other one, in line with literature, as no concordant and
definitive results on the greater or lesser predictive role of one or
the other histotype have emerged (26, 27, 34, 35).

In our study, the LR results were only slightly lower compared
to NN. A neural network is more complex than LR since one
can think of it as a subset of a neural network classifier. LR
model can always be simulated using a NN with one hidden
node with the identity activation function and one output node
with zero bias and logistic sigmoid activation. This finding
can suggest that, when applying aNN to 18F-FDG PET for
predicting nodal metastases, the added value of modeling non-
linear interactions is not sufficient to substantially increase the
diagnostic performance, also given the strong association of input
variables (primarily PET-related) with the outcome.

Few studies in literature evaluated the application of aNN to
18F-FDG PET/CT in NSCLC for predicting nodal involvement,
with several differences in clinical and procedural aspects among
single studies and when compared to our work. In particular,
Vesselle et al. (14) and Toney et al. (15), investigating 133
NSCLC patients, reported a NN accuracy higher than accuracy
of PET expert reader (87.3 and 99.2% vs. 73.5 and 72.4%,
respectively). This result seems to outperform the performance
reported in our study. However, both authors reported an
increased PET accuracy and closer to NN performance (up
to 92.2%) when N status was dichotomized in N0+N1 vs.
N2+N3 disease. Moreover, it has to be considered that both
studies are not comparable to our work due to several
aspects (smaller population, inclusion of non-surgically treated
patients, heterogeneous reference standard, higher rate of nodal-
metastatic patients, fewer input parameters and without PET-
volumetric ones) and, mainly, to the criteria used for PET visual
nodal analysis, that likely affect the comparison between PET
and NN performance. Indeed, nodes have been interpreted as
benign or malignant according on the expert reader’s clinical
experience, taking into account also size, location, and activity
of primary tumor and size of the most metabolically active node.

On the contrary, we used a strictly metabolic, more standardized,
reproducible and objective criterion, interpreting nodes as
benign or malignant only based on the mediastinal blood-
pool activity. Anyway, the value of adding morphological nodal
information for PET interpretation appears negligible in our
population of clinically resectable patients, being almost all nodes
with short axis ≤ 10mm. Among other two studies focused on
the same topic (16, 17), only one compared NN with PET visual
performance, reporting similar accuracy, higher NN sensitivity
and lower NN specificity for predicting nodal involvement.
However, differences in population and/or methodological
aspects make both studies not directly comparable to our
paper. Finally, our study used the widest combination of
clinical, anatomic, metabolic and histopathological data as input
parameters, while only morpho-anatomic and/or metabolic
features were considered in all the four previous studies;
in addition, none of these studies reported LR model for
comparison with aNN performance.

We acknowledge some limitations of our study, mainly
represented by its retrospective nature. Moreover, a selection
bias has to be considered, since only NSCLC patients candidate
to surgical resection were included in our analysis, inherently
lowering the prevalence of lymph nodal involvement. This aspect
could have made our results generalizable only to similar cohorts
of NSCLC patients, also affecting the diagnostic performance,
especially in terms of PPV (due to the low rate of true positive
patients). On the other hand, selecting only patients with surgical
nodal evaluation allowed a reliable and robust verification of our
results. Finally, external data validation was not applied.

In conclusion, the application of aNN to preoperative
18F-FDG PET/CT, along with clinical, anatomic and
histopathological features, provides overall good performance
for predicting pathological nodal involvement in clinically
resectable NSCLC patients, especially for ruling out nodal
metastases. Compared to visual PET analysis, aNN seem able
to reduce the chance of PET false negative results; this finding
assumes particular relevance in a population of clinically
resectable NSCLC patients, with low a priori probability of
nodal involvement, when the identification of the relatively few
and unexpected nodal-metastatic patients may change their
planned treatment strategies and also impact on prognosis. From
a practical point of view, our observations may support the
additional use of aNN to the PET/CT reporting activity in case of
visually negative images. The application of aNN for categorizing
pathological nodal involvement in N1 vs. N2 disease is topic of
further ongoing analyses.
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Aims: This study aimed to analyze the performance of multi-atlas MRI-based parcellation

for 123I-FP-CIT SPECT (DAT-SPECT) in healthy volunteers. The proposed method was

compared with the SPECT-atlas-based and Bolt methods. 18F-FE-PE2I-PET (DAT-PET)

was used as a reference.

Methods: Thirty healthy subjects underwent DAT-SPECT, DAT-PET, and 3D-T1WI-MRI.

We calculated the striatum uptake ratio (SUR/SBR), caudate uptake ratio (CUR), and

putamen uptake ratio (PUR) for DAT-SPECT using the multi-atlas MRI-based method,

SPECT-atlas-based method, and Bolt method. In the multi-atlas MRI-based method,

the cerebellum, occipital cortex, and whole-brain were used as reference regions. The

correlation of age with DAT-SPECT activity and the correlations of SUR/SBR, CUR, and

PUR between DAT-SPECT and DAT-PET were calculated by each of the three methods.

Results: The correlation between age and SUR/SBR for DAT-SPECT based on the

multi-atlas MRI-based method was comparable to that based on the SPECT-atlas-based

method (r = −0.441 to −0.496 vs. −0.488). The highest correlation between

DAT-SPECT and DAT-PET was observed using the multi-atlas MRI-based method with

the occipital lobe defined as the reference region compared with the SPECT-atlas-based

and Bolt methods (SUR, CUR, and PUR: 0.687, 0.723, and 0.676 vs. 0.698, 0.660, and

0.616 vs. 0.655).

Conclusion: Multi-atlas MRI-based parcellation with the occipital lobe defined as the

reference region was at least comparable to the clinical methods.

Keywords: 123I-FP-CIT, 18F-FE-PE2I, positron emission tomography, semi-quantification, multi-atlas MRI based

parcellation, Bolt method, single photon emission computed tomography, dopamine transporter
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INTRODUCTION

123I-FP-CIT-SPECT (DAT-SPECT) is widely used for the
assessment of degenerative Parkinson’s syndromes, such
as Parkinson’s disease (PD), multiple system atrophy, and
progressive supranuclear palsy. The tracer accumulation in DAT-
SPECT reflects the availability of dopamine transporter (DAT)
and thus the functionality of the nigrostriatal dopaminergic
neurons (1–4). As a semi-quantitative method for DAT-SPECT,
the uptake ratios in the corpus striatum or in more detailed
regions, such as putamen and caudate nucleus, have been
used. These ratios can be obtained by dividing the uptake
in the target regions (e.g., corpus striatum) by those in the
reference areas (e.g., cerebellum, occipital cortex, or whole
brain). Several approaches have been attempted to provide
robust semi-quantification from DAT imaging. In clinical
settings, two types of methods, the Bolt method and the SPECT
atlas method, are widely used. The Bolt method can serve as a
robust, easy-to-use semi-quantification method (5). However,
some errors are inevitable in the case of abnormal brain shapes
(6). In addition, this approach does not segment the caudate and
putamen, resulting in no capability to evaluate the distribution
of nigrostriatal dopaminergic neuron changes in the striatum.
Compared with the Bolt method, the SPECT atlas method (e.g.,
DaTQUANT, GE Healthcare, Little Chalfont, UK) can segment
the caudate and putamen (7, 8). However, the segmentation
may not be accurate because single SPECT template is used.
The volume and shape of the striatum vary among subjects.
Generally, it is observed that significant volume reduction is
proportional to aging (9). One previous study demonstrated
that the effect of aging on dopamine receptor availability was
overestimated due to the volume reduction (10). To overcome
the disadvantages of the current methods described above,
Perlaki et al. evaluated the utility of segmentation by using
patient-specific T1WI (11). Their method is expected to be easily
implemented into clinical workflows because 3D-T1WI-MRI
is generally performed as a routine assessment for Parkinson’s
diseases and the scan time for it has decreased due to recently
developed acceleration techniques (e.g., parallel imaging and
compressed sensing). However, they did not compare MRI
segmentation to current clinical methods (the Bolt method
or SPECT-atlas-based method). In addition, in terms of MRI
segmentation, they only used single MRI atlas. One can expect
that the MRI segmentation using multi-atlas MRI can improve
the accuracy of segmentation (12).

The purpose of this study was to analyze the performance
of multi-atlas MRI-based parcellation for DAT-SPECT. The
proposed method was compared with the Bolt method and
SPECT-atlas-based method, both of which are currently used in
clinical settings.

18F-FE-PE2I ([18F]-(E)-N-(3-iodoprop-2-enyl)-2β-carbo
fluoroethoxy-3β-(4′-methyl-phenyl) nortropane) for PET
(DAT-PET) was used as a reference. 18F-FE-PE2I showed high
affinity and high selectivity for DAT, faster kinetics, more
favorable metbolism and low production of a radio metabolite
with intermediate lipophilicity (13–15). Several studies have
confirmed its high correlation to age even in small regions such

as caudate and putamen (r = −0.845 and −0.85, respectively)
and high discriminative power between PD and healthy controls
(16–19). Based on these previous reports, we expected that
18F-FE-PE2I was an excellent imaging tool for in vivo DAT
quantification in the entire nigrostriatal tract (17, 18, 20).

MATERIALS AND METHODS

Subjects
The study was approved by the institutional review board of our
institution. Thirty healthy volunteers (HVs) aged 31–79 years
(mean ± SD, 54.1 ± 14.5; six subjects per age group: 30s, 40s,
50s, 60s, and 70s) were enrolled. All studies were performed
between January 2016 and March 2017. None of the subjects
had a present or past history of psychiatric, neurological or
somatic disorders or of alcohol- or drug-related problems. All
subjects were non-smokers. After an explanation of the study,
written informed consent was obtained from all participants. All
participants underwent 123I-FP-CIT-SPECT (DAT-SPECT), 18F-
PE2I-PET (DAT-PET) and 3D-T1WI-MRI within 85 days (21.4
± 13.2 days).

SPECT Procedures
SPECT imaging was performed using a dual-head SPECT
gamma camera (Infinia, GE Healthcare, Milwaukee, WI, USA)
equipped with an extended low-energy general-purpose (ELEGP)
collimator (12mm full width at half maximum; FWHM). All
subjects had received an intravenous injection of 123I-FP-CIT
(167 MBq) (123I-Ioflupane, DaTScanTM, Nihon Mediphysics
Corporation, Nishinomiya, Japan) via the antecubital vein in
the supine position. Three hours after tracer injection, SPECT
data were acquired for 28.5min over a 360◦ range in 4◦-
angular steps (90 views) with 855 s/cycle using circularly rotating
gamma cameras. The radius of rotation was 14 cm. We used
a 3-dimensional ordered subset expectation maximization (3D-
OSEM) image reconstruction algorithm (iteration number, 6;
subsets, 10) with an eighth-order Butterworth filter with a cut off
of 0.55 cycles/cm. The final SPECT images were reconstructed
with Chang’s method (Chang’s attenuation correction) into 3.0-
mm isotropic voxels using a 128 × 128 matrix with 128 slices
parallel to the orbitomeatal line (21, 22). Scatter correction was
not used in this study.

PET Procedures
18F-FE-PE2I was synthesized from its precursor, tosylethyl-PE2I,
via a nucleophilic fluorination reaction in our cyclotron for
PET (HM18, Sumitomo Heavy Industries, Ltd, Tokyo) at the
Clinical Imaging Center for Healthcare, Nippon Medical School.
PET scans were carried out with an Eminence SET-3000GCT-
X scanner (Shimadzu Corp, Kyoto, Japan) to measure regional
brain radioactivity. No arterial blood sampling or metabolite
analysis was performed. This scanner provides 99 sections with
an axial field of view (FOV) of 256mm. The in-plane and axial
spatial resolutions were 3.45mm FWHM and 3.72mm FWHM,
respectively. A head fixation device was used during the scans.
A 10-min transmission scan using a 137Cs point source was
performed to correct for attenuation. A dynamic PET scan was
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FIGURE 1 | Workflow for studies with DAT-SPECT/PET and T1-MRI in PNEURO. In the workflow, subject-specific images (DAT-PET and DAT-SPECT) and MRI

images after parcellation with eight normal subjects are matched, and multi-atlas maps are generated.

FIGURE 2 | Representative case (53-year-old male). Axial and coronal fused

PET (left column) and fused SPECT (right column) are shown.

performed for 60min (20 s × 9, 1min × 5, 2min × 4, 4min ×

11) after intravenous bolus injection of 18F-FE-PE2I. The injected
radioactivity was 175.0 to 194.0 (185.5 ± 4.2) MBq. We used a
filtered back-projection (FBP) image reconstruction algorithm
with a second-order Gaussian filter with a cut off of 0.8mm.
Scatter correction was carried out with the hybrid dual-energy
window (HDE) method. Motion correction was not used in
this study.

MRI Procedures
A 1.5 T magnetic resonance (MR) scanner (Intera 1.5 T Achieva
Nova, Philips Medical Systems, Best, Netherlands) was used to

acquire a high-resolution 3D fast spoiled gradient echo T1WI
sequence (180 slices, 1mm thickness, TR = 9.3ms, TE = 4.6ms,
flip angle 10◦, field of view 25× 25 cm). The images were used as
a reference for drawing volumes of interest (VOIs) on SPECT or
PET images.

Image Analysis
One neuroradiologist (T.S.) confirmed that no brain
abnormalities were present in the subjects. DAT-SPECT
uptake was semi-quantified based on three methods: the multi
atlas-based method using MRI, single atlas-based method using
SPECT and Bolt method. In the first two methods, uptake ratios
were calculated for DAT-SPECT in the striatum, caudate, and
putamen. In the latter method, the specific-to-non-displaceable
binding ratio (SBR) was measured as a substitute for specific
uptake ratios. The uptake ratios were calculated for DAT-PET in
the striatum, caudate, and putamen in a standard manner based
on the multi atlas-based method using MRI (17). For subsequent
analyses, the quantified values for DAT-PET were defined as
the reference values. The details of the subsequent analyses are
described next.

DAT-SPECT Images Analysis
Multi-Atlas-Based Method Using MRI (PNEURO)
The PNEURO tool (version 4.0, PMOD Technologies Ltd.,
Zurich, Switzerland) was used for the entire process. The whole
processes described below can be performed semi-automatically,
without any user interaction. It took ∼10min to perform
the analysis for each case. First, rigid transformation between
DAT-SPECT and 3D-T1WI was performed. Then, automatic
segmentation was performed using subject-specific T1 images,
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TABLE 1 | The SUR/SBR, CUR, and PUR of DAT-SPECT and DAT-PET.

Radiopharmaceutical Analysis tool Reference area CSF-C SUR/SBR CUR PUR

Mean SD Mean SD Mean SD

DAT-SPECT PNEURO Cerebellum – 4.323 0.706 3.783 0.683 4.843 0.779

Occipital lobe – 3.768 0.540 3.298 0.540 4.220 0.577

Whole brain – 3.308 0.388 2.831 1.102 3.708 0.433

DaTQUANT Occipital lobe – 2.696 0.573 2.952 0.598 2.550 0.574

DaTView Whole brain – 7.151 1.683 – – – –

Whole brain + 6.259 1.487 – – – –

DAT-PET PNEURO Cerebellum – 3.391 0.454 2.888 0.499 3.868 0.436

SUR, striatum uptake ratio; SBR, specific binding ratio; CUR, caudate uptake ratio; PUR, putamen uptake ratio; CSF-C, cerebrospinal fluid correction.

Table 2A | Age correlation with DAT activity, measured with DAT-SPECT and DAT-PET.

Radiopharmaceutical Analysis tool Reference area CSF-C SUR/SBR CUR PUR

r p r p r p

DAT-SPECT PNEURO Cerebellum – −0.441 0.015 −0.539 0.002 −0.339 0.067

Occipital lobe – −0.496 0.005 −0.589 0.001 −0.390 0.033

Whole brain – −0.480 0.007 −0.608 <0.001 −0.331 0.074

DaTQUANT Occipital lobe – −0.488 0.006 −0.483 0.007 −0.481 0.007

DaTView Whole brain – −0.665 <0.001

Whole brain + −0.635 <0.001

DAT-PET PNEURO Cerebellum – −0.701 <0.001 −0.743 <0.001 −0.601 <0.001

SUR, striatum uptake ratio; SBR, specific binding ratio; CUR, caudate uptake ratio; PUR, putamen uptake ratio; CSF-C, cerebrospinal fluid correction.

creating VOIs for each of the striatum and caudate, putamen,
and an outline of the cerebellum, occipital cortex and whole
brain (excluding the striatum, ventricles and cerebellum) as a
reference in each individual participant. To set these VOIs, we
used the 1mm Hammers atlas-N30R83 maximum probability
atlas. The atlas map comprised gray matter as determined from
segmentation of the subjects’ T1 images into 30 bilateral cortical
areas (including the amygdala and hippocampus), five bilateral
deep nuclei (caudate, putamen, ventral striatum, thalamus,
and pallidum), the bilateral cerebellum and the brainstem.
This was accomplished in PNEURO using a pre-defined
database of eight normal T1 MRI scans, each of which was
manually segmented by neuroanatomically trained operators,
with the most comparable brain hemispheres to those in a
specific subject’s T1 images selected using anatomical landmarks
(anterior/posterior commissure, inter-hemispheric point, and
inter-caudate point) and a calculation of the average thickness of
the frontal horn of the left and right ventricles (12). The selected
knowledge-based hemispheres were then elastically matched to
subject hemispheres using a hierarchical approach [(1) global
affine transformation, (2) individual structure adjustment with
a free-form deformation algorithm] to create a set of structure
definitions that was combined with the gray and white matter
segmentation to produce a maximum probability atlas of base
structures (deep nuclei, gray matter, cerebellum), with the
gray matter (at probability>0.3) being further parcellated via
intersection with the specified cortical atlas (here, Hammers).

After parcellation, the VOIs were warped to SPECT images.
SPECT uptake values weremeasured usingMR-based anatomical
VOIs to limit the SPECT-active volume in a reproducible
manner. VOI-based analysis was then performed to extract
specific target uptakes in the striatum, caudate, and putamen. To
calculate uptake ratios, we chose the following three regions as
a reference region: the cerebellum, occipital cortex and whole
brain (excluding deep nuclei, the brainstem, the cerebellum
and ventricles). As a result, the uptake ratio of the striatum
(SUR), uptake ratio of the putamen (PUR) and uptake ratio of
the caudate (CUR) were calculated based on each of the three
reference regions. In addition, we also measured the volumes
of the striatum, caudate, and putamen; their volumes were
calculated by summing the right and left sides. Each semi-
quantitative uptake ratio was calculated using the following
formula: semi-quantitative uptake ratio = (mean counts in the
target VOI)/(mean counts in the reference VOI).

The workflow for studies with DAT-SPECT/PET and T1-MRI
in PNEURO is shown in the upper part of Figure 1.

Single Atlas-Based Method Using SPECT

(DaTQUANT)
DaTQUANT was used for the entire process (7). After SPECT
reconstruction, the transaxial slices were used as input for the
software. Non-rigid registration was applied to patient-specific
SPECT data to match predefined SPECT-atlas data. Predefined
template VOIs on the SPECT atlas were automatically positioned
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FIGURE 3 | Age correlation with DAT activity, measured with DAT-SPECT and DAT-PET in the multi-atlas MRI-based method. In each correlation figure, the vertical

axis indicates the semi-quantitative uptake for DAT-SPECT measured by the multi-atlas MRI-based method, and the horizontal axis indicates age. There are 3 × 3

correlation figure patterns in two different cases: where the target region is the striatum, caudate, or putamen and where the reference area is the cerebellum, occipital

lobe or whole brain.

TABLE 2B | Annual decline rate of DAT activity for Age, measured with DAT-SPECT and DAT-PET.

Radiopharmaceutical Analysis tool Reference area CSF-C SUR/SBR CUR PUR

DAT-SPECT PNEURO Cerebellum – −0.391 −0.491 −0.312

Occipital lobe – −0.386 −0.488 −0.306

Whole brain – −0.320 −0.432 −0.232

DaTQUANT Occipital lobe – −0.515 −0.494 −0.531

DaTView Whole brain – −0.680

Whole brain + −0.691

DAT-PET PNEURO Cerebellum – −0.479 −0.598 −0.372

SUR, striatum uptake ratio; SBR, specific binding ratio; CUR, caudate uptake ratio; PUR, putamen uptake ratio; CSF-C, cerebrospinal fluid correction.

in the target regions, including the striatum, caudate, and
putamen. The occipital cortex was also segmented as a reference
region. The program calculated the SUR, CUR, and PUR as the
ratio of each target region to the reference region.

DaTView (DAT-SPECT Analysis)
We used DaTView (Aze, Tokyo, Japan) for the entire process.
The procedure was the same as the method proposed by Tossici-
Bolt et al. (5). DaTView applies the whole brain, except a
region around the basal ganglia, as a reference region. SBR was
defined as

SBR = Cs/Cr,

where Cs is the count concentration in the striatum due to
specific binding only and Cr is the count concentration in the
reference region due to non-specific binding. SBR is calculated
from a sufficiently large VOI, including all counts associated
with striatal activity, to be independent from the size of the VOI
and from the resolution of the SPECT system. In order to avoid
extrastriatal heterogeneous tissue counts, an average striatum
volume of 11.2mL was applied. In addition, we also used the
cerebrospinal fluid correction (CSF-c) developed by Mizumura
and equipped in DaTView to calculate the SBR (23).

DAT-PET Images Analysis
We applied a simplified reference tissue model (14, 19, 24). To
obtain semi-quantitative measures of SUR, CUR, and PUR for
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TABLE 3 | Correlation between the SUR/SBR, CUR and PUR of DAT-SPECT and those of DAT-PET.

Analysis tool Reference area CSF-C SUR/SBR CUR PUR

r p r p r p

PNEURO Cerebellum – 0.648 <0.001 0.688 <0.001 0.639 <0.001

Occipital lobe – 0.687 <0.001 0.723 <0.001 0.676 <0.001

Whole brain – 0.642 <0.001 0.704 <0.001 0.621 <0.001

DaTQUANT Occipital lobe – 0.698 <0.001 0.660 <0.001 0.616 <0.001

DaTView Whole brain – 0.655 <0.001

Whole brain + 0.659 <0.001

UR, striatum uptake ratio; SBR, specific binding ratio; CUR, caudate uptake ratio; PUR, putamen uptake ratio; CSF-C, cerebrospinal fluid correction.

FIGURE 4 | Correlation between the SUR, CUR, and PUR of DAT-SPECT and those of DAT-PET in the multi-atlas MRI-based method. In each correlation figure, the

vertical axis indicates the semi-quantitative uptake for DAT-SPECT, and the horizontal axis indicates the semi-quantitative uptake for DAT-PET. There are 3 × 3

correlation figure patterns in two different cases: where the target region is the striatum, caudate, or putamen and where the reference area is the cerebellum, occipital

lobe or whole brain.

DAT-PET, static images were created by summing the dynamic
scans between 32 and 60min. The VOIs were created on these
summed images with PNEURO. As in the the method used for
the PNEURO DAT-SPECT analysis, after parcellation, the MRI
and PET data were matched. PET activity values were applied to
the MR-based anatomical VOIs to limit the PET-active volume
in a reproducible manner. We also calculated 3 sets of semi-
quantitative values with the cerebellum as a reference region
(14, 17). The workflow for studies with DAT-PET and T1-MRI
in PNEURO is shown in the lower part of Figure 1.

Statistical Analysis
To validate the accuracy of DAT-SPECT quantification, the three
types of correlations were statistically tested. First, the correlation
of age with DAT-SPECT activity in each of the three methods

was calculated with Pearson’s correlation coefficient. Second,
the correlation between DAT-SPECT and the reference, DAT-
PET, in each region (e.g., the striatum, caudate, and putamen)
was calculated with Pearson’s correlation coefficient. Third, the
correlation between region volume and age and that between
region volume and DAT-SPECT activity in each of the three
methods were calculated with Pearson’s correlation coefficient.
All statistical analyses were performed using IBM SPSS Statistics
(Version 25.0, IBM Corp, Armonk, NY, USA).

RESULTS

The PNEURO analysis after parcellation successfully matched
MRI and SPECT/PET data for each of the 30 cases. A
representative case (53-year-old male) is shown in Figure 2.
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TABLE 4A | Volume (mL) of striatum, caudate, and putamen.

Striatum Caudate Putamen

Mean SD Mean SD Mean SD

20.941 2.873 8.691 1.449 12.250 1.582

Table 1 presents the results for the mean SUR/SBR, CUR
and PUR from the DAT-SPECT and DAT-PET analyses. The
correlation coefficients (r values) between age and SUR/SBR,
CUR and PUR for DAT-SPECT and DAT-PET are presented
in Table 2A; those between age and SUR, CUR and PUR for
DAT-SPECT and DAT-PET in the PNEURO analyses are shown
in Figure 3. Significant correlation between age and each semi-
quantitative value was observed, except for SPECT-PUR, in the
PNEURO analyses using the cerebellum or whole brain as the
reference region. The annual decline rate of DAT activity with
age was −0.232 to −0.691% depending on the measurement
method (Table 2B). The r values for SUR/SBR, CUR and PUR
between DAT-SPECT and DAT-PET are presented in Table 3;
those between DAT-SPECT and DAT-PET in the PNEURO
analyses are shown in Figure 4. All three types of SPECT
semi-quantified values showed significant correlation to the
values of PET (r = 0.616–0.723). In the PNEURO analyses,
there was a tendency toward higher correlation when using
the occipital lobe as the reference region than when using
other regions (i.e., the cerebellum or whole brain). Regarding
semi-quantification in the detailed regions (i.e., CUR or PUR),
PNEURO using the occipital lobe as the reference region showed
higher correlation than DaTQUANT (CUR 0.723 vs. 0.660, PUR
0.676 vs. 0.616). Table 4A shows the results for the mean volumes
of the striatum, caudate and putamen. The r values indicated
higher correlation of the volumes of the striatum, occipital lobe,
cerebellum and whole brain to age (r = −0.519 to −0.678;
Table 4B). The percentage volume decrease in these regions was
−0.393 to−0.483% (Table 4C). The r values between volume and
SUR/SBR, CUR and PUR are presented in Table 4D. The table
shows that only one value in the DaTQUANT analysis, PUR,
depended on volume, but only slightly (r = 0.383, p= 0.037).

DISCUSSION

In the current study, DAT-SPECT semi-quantification based
on multi-atlas MRI-based methods showed comparable to
higher correlation to age or DAT-PET values compared with
clinically available methods. In multi-atlas-based MRI analyses,
the occipital lobe can be used as a reference for more precise
semi-quantification than the cerebellum or whole brain. To our
knowledge, this is the first study to validate the performance
of semi-automatic multi-atlas MRI-based parcellation for DAT-
SPECT. Furthermore, in regard to the comparisons between
DAT-SPECT and DAT-PET, the current study recruited more
age-generalized healthy controls (i.e., a uniform distribution of
younger to older ages) than any of the previous studies.

TABLE 4B | Correlation between volume and age.

r p

Striatum −0.529 0.003

Caudate −0.367 0.046

Putamen −0.342 0.064

Occipital lobe −0.519 0.003

Cerebellum −0.678 <0.001

Whole brain −0.567 0.001

TABLE 4C | Annual decline rate (%) of volume for age.

Striatum −0.393

Caudate −0.343

Putamen −0.261

Occipital lobe −0.416

Cerebellum −0.483

Whole brain −0.425

Correlation Between Age and DAT-SPECT
Significant correlation was observed between age and all types
of semi-quantitative value for DAT-SPECT. The correlation
coefficients (r values) in this study showed a tendency to be
equal to those in previous studies. In this study, the r values
between age and SUR/SBR, CUR, and PUR for DAT-SPECT
were −0.441 to −0.665, −0483 to −0.608, and −0.331 to
−0.481, respectively. In previous studies, the r values between
age and SUR/SBR, CUR, and PUR for DAT-SPECT were
−0.449 to −0.632, −0.496 and −0.400, respectively (18, 19,
21, 25, 26). The r values between age and SBR based on the
Bolt method were relatively higher than those based on the
other methods (−0.635 to −0.665 vs. −0.441 to −0.496). It
is assumed that the SBR method overestimates the reduction
with age because it does not take the age-dependent decline in
striatal volume into account (21). We revealed that the striatal
volume declined annually (0.393% per year) despite the fact
that the Bolt method defines a fixed striatum volume (11.2mL)
(5). DaTQUANT is generally considered to also be vulnerable
to atrophy of the target regions. This method transforms
the subject’s specific target tracer accumulation into a SPECT
template. As a result, it could overestimate the decrease in DAT
activity in patients because the putamen volume in Parkinson’s
disease and multiple system atrophy has a tendency to decrease
(27, 28). Therefore, MRI-based VOI delineation is necessary for
in vivo DAT quantification.

Correlation Between DAT-PET and
DAT-SPECT
DAT-PET has been shown to be an excellent imaging tool
for in vivo DAT quantification in the entire nigrostriatal
tract (13, 14, 20). There are also some studies concerning
the performance of DAT-PET for in vivo DAT quantification
and comparisons of diagnostic value between normal subjects
and those with Parkinson’s disease/Parkinsonism (11, 17, 18).

Frontiers in Medicine | www.frontiersin.org 7 May 2021 | Volume 8 | Article 66223321

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Sohara et al. Multi-Atlas MRI-Based Segmentation for DAT-SPECT

TABLE 4D | Correlation between Volume and the SUR/SBR, CUR, and PUR of DAT-SPECT and DAT-PET.

Radiopharmaceutical Analysis tool Reference area CSF-C SUR/SBR CUR PUR

r p r p r p

DAT-SPECT PNUERO Cerebellum – −0.014 0.942 0.175 0.354 −0.128 0.501

Occipital lobe – −0.013 0.945 0.166 0.381 −0.136 0.475

Whole_brain – 0.021 0.913 0.130 0.494 −0.061 0.750

DaTQUANT Occipital lobe – −0.190 0.315 0.225 0.232 −0.383 0.037

DaTView Whole_brain – 0.081 0.672

Whole_brain + 0.108 0.569

DAT-PET PNEURO Cerebellum – 0.167 0.377 0.370 0.044 0.008 0.967

SUR indicates striatum uptake ratio; SBR, specific binding ratio; CUR, caudate uptake ratio; PUR, putamen uptake ratio; CSF-C, cerebrospinal fluid correction.

One of the expected merits of DAT-PET with higher spatial
resolution is the segmentation of tracer accumulation into
caudate and putamen regions. A detailed evaluation based on
this segementation enables differentiation of neurodegenerative
Parkinsonism (29, 30). However, in clinical practice, the use of
DAT-PET entails higher costs and higher radiation exposure.
It is necessary to enhance the utility of DAT-SPECT semi-
quantification by combining several methodological approaches,
such as accurate VOI delineation and the selection of appropriate
reference tissue.

Regarding SUR, the correlation coefficient between the semi-
quantitative values for DAT-SPECT and DAT-PET did not
significantly differ among the three methods. The multi-atlas
MRI-based method is at least comparable to clinical methods
for the semi-quantification of this region. Regarding CUR
and PUR, in particular, the method showed higher correlation
than the SPECT-atlas method (0.723 and 0.676 vs. 0.660 and
0.616). The multi-atlas MRI-based method is expected to be
utilized to detect subtle changes of DAT activity in the caudate
and putamen, which may impact the diagnosis of Parkinson’s
disease/syndrome. This expectation is also supported by previous
studies (17, 18).

Selection of the Reference Region in the
Multi-Atlas MRI-Based Method
In the current study, we sought to determine the appropriate
reference regions for accurate DAT-SPECT semi-quantification.
The occipital cortex proved to be the best region, with stronger
correlation to age and DAT-PET compared with the cerebellum
or whole brain. In a study with a similar concept to that
of the current study, Delva et al. investigated the location
of the optimal reference tissues for DAT imaging (17). They
recruited nine patients with early Parkinson’s disease and 34
healthy volunteers. All participants underwent DAT-PET with
simultaneous acquisition ofMRI, which was further used for VOI
delineation. The results showed that the occipital cortex may be
preferable as the reference region compared with the cerebellum,
which supports the results of the current study. Another of their
studies also supported the results of the current study (17). It
should be noted, however, that our result cannot be translated
directly into clinical scans. In our study, only HVs were recruited.

In cases with dementia (e.g., dementia with Lewy bodies and
Alzheimer’s disease), several brain morphological changes can be
present (31–34). Even when complicated morphological changes
occur, the multi-atlas MRI-based approach would be useful
thanks to its flexibility with respect to multiple outputs. The
pre-processing performed for accurate delineation of each brain
region enables mapping of the output of the multiple semi-
quantification results based on each reference region. In addition,
the degree of the atrophy (net volume) in each corresponding
target or reference region would be easily obtainable.

Limitations
The current study has some limitations. First, it is known
that 18F-FE-PE2I is a more selective ligand to DAT than 123I-
FP-CIT. There is concern regarding the difference between
the pharmacokinetics of 123I-FP-CIT and that of 18F-FE-
PE2I. However, previous studies supported high correlation
for both of these ligands (17, 18). Second, we applied one of
the standard co-registration methods, the mutual information
matching algorithm, provided by a single tool (PNEURO)
(35–37). Other co-registration algorithms, such as MRtrix and
ANTs, may improve or lead to different results (38–41). Further
investigations utilizing multiple pipelines should be conducted.
Third, the clinical impact of the multi-atlas MRI-based method
was not clarified, because we analyzed only normal volunteers
and did not assess any subjects with Parkinson’s disease or
Parkinsonism. We used the correlation to age and to DAT-PET
value as surrogate indices to validate the accuracy of the current
method, and this method has been widely accepted in this kind of
study (7, 8, 17–19, 21, 25, 26). Themulti-atlasMRI-basedmethod
is expected to be more useful in disease conditions because it
compensates for the difficulty in segmentation in patients with
morphological changes or decreased uptake, but further studies
should be conducted. Fourth, a PNEURO analysis takes relatively
more time (i.e.,∼10min), though the whole process is performed
semi-automatically. This issue will undoubtedly be resolved when
computer technology gets better. Fifth, the attenuation correction
in DAT-PETwas different from that in DAT-SPECT, whichmight
have impacted the correlation between the two tracers. This is
an inherent limitation of a comparison study between DAT-
PET and DAT-SPECT (17, 18). Sixth, we performed DAT-PET
quantification with a simplified reference tissue model without
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motion correction, partial volume correction or dynamic data
analysis (14, 19). We tried to maintain the uniformity of the
methodology between DAT-PET and DAT-SPECT analysis. The
accuracy of the DAT-PET data was partially validated in the
current study, as there was sufficient age correlation of DAT-PET
data (r = −0.601 to −0.743) compared with previous studies
(18, 19).

CONCLUSION

Multi-atlas MRI-based parcellation for DAT-SPECT semi-
quantification is at least comparable to the current clinical
methods in terms of the correlation to age and to DAT-PET
quantification. In this method, the occipital lobe is the best
region to use as the reference. The method is expected to provide
detailed and robust semi-quantification in the putamen and
caudate nucleus regardless of abnormal brain shape or atrophy
of brain tissue.
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Objectives: The main aim of this study was to evaluate the differences in

metabolic parameters of positron emission tomography with 2-deoxy-2-[fluorine-18]

fluoro-D-glucose integrated with computed tomography (18F-FDG PET/CT) measured

based on fixed percentage threshold of maximum standard uptake value (SUVmax)

and adaptive iterative algorithm (AT-AIA) in patients with cervical cancer. Metabolic

parameters in stage III patients subdivided into five groups according to FIGO and T

staging (IIIB-T3B, IIIC1-T2B, IIIC1-T3B, IIIC2-T2B, IIIC2-T3B) were compared.

Methods: In total, 142 patients with squamous cell cervical cancer subjected to
18F-FDG-PET/CT before treatment were retrospectively reviewed. SUVmax, mean

standard uptake value (SUVmean), maximum glucose homogenization (GNmax),

mean glucose homogenization (GNmean), metabolic tumor volume (MTV), total lesion

glycolysis (TLG), and glucose homogenization total lesion glycolysis (GNTLG) values

measured based on the above two measurement methods of all 142 patients (IIB-IVB)

and 102 patients in the above five groups were compared.

Results: MTV measured based on fixed percentage threshold of SUVmax was lower

than that based on AT-AIA (p < 0.05). MTV40%, MTV0.5, TLG0.5, GNTLG40%, and

GNTLG0.5 values were significantly different among the five groups (p < 0.05) while the

rest parameters were comparable (p > 0.05). All metabolic parameters of group IIIB-T3B

were comparable to those of the other four groups. MTV40%, MTV0.5, GNTLG40%, and

GNTLG0.5 in group IIIC1-T2B relative to IIIC1-T3B and those of group IIIC2-T2B relative to

group IIIC2-T3B were significantly different. All metabolic parameters of group IIIC1-T2B

relative to IIIC2-T2B and those of group IIIC1-T3B relative to group IIIC2-T3B were not

significantly different.
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Conclusion: Metabolic parameters obtained with the two measurement methods

showed a number of differences. Selection of appropriate methods for measurement of
18F-FDG-PET/CT metabolic parameters is important to facilitate advances in laboratory

research and clinical applications. When stage III patients had the same T stage, their

metabolic parameters of local tumor were not significantly different, regardless of the

presence or absence of lymph node metastasis, location of metastatic lymph nodes in

the pelvic cavity or para-abdominal aorta. These results support the utility of the revised

FIGO system for stage III cervical cancer, although our T-staging of stage III disease

is incomplete.

Keywords: cervical cancer, 18F-FDG-PET/CT metabolic parameters, revised FIGO staging system, fixed

percentage threshold of SUVmax, AT-AIA

INTRODUCTION

Globally, cervical cancer is one of the most common cancer
types in females, ranking fourth after breast, colorectal, and lung
cancer in terms of morbidity and mortality (1). Cervical cancer
has been relatively well-controlled for several decades in high-
income countries owing to efficient screening initiatives and
cancer treatment services but remains the most common cause
of cancer-related mortality in 42 countries, the majority of which
are low income and lower-middle income countries (LMIC) (2),
such as South Africa (SA), India, China, and Brazil.

Gynecologic cancers are staged according to the International
Federation of Gynecology and Obstetrics (FIGO) system (3).
Although a parallel TNM system has been described by
the American Joint Committee on Cancer, the FIGO system
continues to be predominantly used worldwide in clinical
practice and for cancer database reporting (4). In 2018, FIGO
revised the staging system for cervical cancer based on recent
developments in imaging and increased use ofminimally invasive
surgery, which has changed the paradigm for management of
this patient group. One of the modifications in the revised FIGO
system is that nodal status is incorporated into the criteria for
stage III disease. Consequently, cases of lymph node metastasis
are designated stage IIIC disease, specifically, stage IIIC1 for
pelvic lymph node metastasis only, and stage IIIC2 for para-
aortic lymph node metastasis (3).

Imaging plays a central role in the 2018 FIGO staging system
for uterine cervical cancer. 18F-FDG-PET/CT has significant
advantages in detecting lymph node metastases and distant
metastases (5). For cervical cancer, 18F-FDG-PET/CT metabolic
parameters of primary tumors and lymph nodes, such as
SUVmax,MTV, and TLG, have considerable value (6–14). Yilmaz
et al. (6) identified pretreatment primary tumor SUVmax, TLG,
pelvic lymph node SUVmax, and pretreatment para-aortic lymph
node SUVmax as significant prognostic factors for disease-free
survival (DFS) with different cut-off values. The group of Lima
showed that pretreatment MTV and TLG values and nodal
involvement were effective predictors of response to therapy in
a cohort with locally advanced squamous cell cervical cancer
(LACC) patients treated with computer-controlled radiation
therapy (CCRT). MTV was identified as the best predictor

of response (11). Xu et al. (14) reported a combination of
tumor TLG, Dmin [obtained by the diffusion-related coefficient
(D) map of MRI] and PET for lymph node diagnosis as a
powerful prognostic factor for cervical cancer. TLG showed
the best predictive performance in patients with PET-negative
lymph nodes.

The most commonly used metabolic parameter to quantify
18F-FDG uptake on PET is the SUVmax. The SUVmax was
widely accepted and routinely clinical used owing to the ease of
use and an excellent inter-observer reproducibility in association
with promising results for SUVmax as a prognostic factor (15,
16). However, the use of SUVmax has many disadvantages,
especially the variability caused by the high statistical noise
associated with a single voxel analysis (17). TLG was proposed
as an alternative quantitative metric in 1999, which take the SUV
and the tracer uptake of the entire lesion into account. TLG is
defined as the MTV multiplied with the SUVmean. The MTV
is determined as the total number of voxels within a volume
of interest (VOI) that have uptake above a predetermined SUV
threshold (18). Various automated methods are currently used to
segment regions of interest in PET/CT scans, such as fixed SUV
threshold (e.g., SUV2.5), fixed percentage threshold of SUVmax
(e.g., T42%), and gradient-based threshold (adaptive iterative
algorithm, AT-AIA) (19). At present, the fixed percentage of
the SUVmax threshold algorithm is commonly used, especially
for target delineation of cervical cancer, lung cancer, and head
and neck cancers (6, 11, 20–22). In 2006, Sebastian et al.
(23) published the iterative adaptive segmentation algorithm.
The adaptive iterative algorithm has an advantage over fixed
threshold methods in accurate delineation of the target volume
according to the individual metabolic activity. This method is
usually based on the SUVmax uptake within the volume and the
threshold defined according to the background uptake within the
adjacent normal tissue using a mathematical algorithm.

In view of the wide application of the 18F-FDG-PET/CT
metabolic parameters in cervical cancer and the MTV and TLG
are greatly affected by the different measurement methods, one of
the major objectives of the current investigation was to compare
the 18F-FDG-PET/CT metabolic parameters obtained using the
fixed percentage threshold of SUVmax and AT-AIA in patients
with LACC.
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According to the new revised FIGO staging system, Stage
IIIC disease is directly correlated with pelvic and para-
aortic metastatic lymph nodes regardless of the T stage.
We additionally focused on differences in 18F-FDG-PET/CT
metabolic parameters of local tumors with different T-stages in
patient groups of stage III cervical cancer.

PATIENTS AND METHODS

Patients
The clinical records of all patients referred to our center for
cervical cancer from May 2016 to July 2020 were analyzed. In
total, 142 patients with squamous cell cervical cancer confirmed
via biopsy were included.

All patients underwent routine clinical staging, including
physical and gynecological examinations, complete blood count,
biochemical tests, and radiological imaging of the pelvis and
abdomen with enhanced MRI or enhanced CT. Patients with
histologically confirmed cervical cancer (FIGO stage IIB–IVB)
underwent a 18F-FDG-PET/CT examination before treatment.

PET/CT Imaging
All patients were imaged using an integrated PET/CT system
(Discovery 710, GE Medical Systems, Waukesha, Wisconsin,
USA). Patients fasted for at least 6 h before intravenous
administration of 0.1–0.2 mCi/kg 18F-FDG. Blood glucose
concentrations were measured before the injection of
radiopharmaceuticals to ensure a threshold <11 mmol/L.
Patients were allowed to rest during distribution of the
radiotracer in a comfortable, quiet room, and hydrated
orally with 1,000ml water. Patients were instructed to empty
their bladder immediately before the scan. Combined image
acquisition began about 50–70min after 18F-FDG injection.
From the vertex to mid-thigh, CT was performed using the
following parameters: 140 kV, Auto mA (noise index, 28.5), 0.8 s
rotation time, and 3.75mm slice thickness. A PET scan was
performed with the same parameters. The emission scan time
was 2 min/bed position and the scanning range covered 6–7
bed positions. PET image datasets were reconstructed iteratively
using the ordered-subsets expectation maximization algorithm
with CT-based attenuation correction. The following parameters
were used: sharp IR algorithm with the VUE Point FX (fully 3D
iterative reconstruction), 192×192 matrix, 24 subset/2 iteration,
and 6.4 post-filter. Trans axial, sagittal, coronal, and fused
images were analyzed on an Advanced Workstation AW 4.6 (GE
Healthcare Bio-Sciences, NJ, USA).

PET/CT Image Analysis
Qualitative and quantitative (or semi-quantitative) image
analyses were conducted by an experienced nuclear medicine
physician with significant experience in 18F-FDG-PET/CT scan
analysis (average 150 reads/month individually). A VOI was
placed around the primary tumor in such a way that the entire
tumor activity was enclosed and regions of physiologically
increased activity avoided. VOI placement was performed
according to a previously published protocol (24). Within the
selected VOI, SUVmax, SUVmean, GNmax, GNmean, MTV,

TLG, and GNTLG [SUV is a measurement of the uptake in a
tumor normalized on the basis of a distribution volume. GN is
defined as SUV with plasma glucose correction. SUVmax and
GNmax are themaximum SUV andGN. SUVmean andGNmean
are the mean SUV and GN (15). The MTV is determined as
the total number of voxels within a volume of interest that
have uptake above a predetermined SUV threshold. TLG was
defined as the MTV multiplied with the SUVmean (18). GNTLG
was defined as the MTV multiplied with the GNmean.] were
measured based on fixed percentage threshold (40% SUVmax)
[All voxels with SUVs above or equal to 40% of the SUVmax
were delineated inside the selected VOI (6, 8).] and AT-AIA [The
VOI was segmented automatically using an iterative adaptive
algorithm to detect the threshold level that separated the target
volume from the background tissue by weighting the SUVmax
and the SUVmean within the target volume with a weighting
factor “w” (0 ≤ w ≤ 1)]. This weighting factor was automatically
set at 0.5 (19, 21, 22, 25).

Statistical Analysis
Comparisons between the two groups were performed with the
independent samples t-test or Mann-Whitney U-test depending
on the homogeneity of variance. Multi-group comparisons were
conducted with ANOVA. All hypotheses were two-tailed and P
< 0.05 considered statistically significant. Statistical Package for
Social Sciences (SPSS, version 22.0, IBM Corp, Armonk, NY,
USA) was applied for data analysis.

RESULTS

Clinical Features and PET Metabolic
Parameters of the Two Groups Measured
Using Different Methods
18F-FDG-PET/CT metabolic parameters obtained with the two
methods were compared in 142 patients with squamous cell
cervical cancer. The clinical characteristics of participants are
listed inTable 1. Mean age of patients was 53.39± 9.61 years. The
most common FIGO stage was IIIC1 (n = 53, 37.32%) followed
by IIIC2 (n = 32, 22.50%), IVB (n = 27, 19.01%), IIIB (n = 19,
13.38%), IIB (n= 9, 6.34%), IIIA (n= 1, 0.70%), and IVA (n= 1,
0.70%).

PET parameters of the two groups are listed in Table 2. We
observed no significant differences in SUVmean, GNmean, TLG,
and GNTLG values between the groups. MTV measured based
on fixed percentage threshold (40% SUVmax) was lower than that
based on AT-AIA (w= 0.5, Figure 1).

Patient Characteristics and PET
Parameters of IIIB-IIIC2 Groups
To establish whether metabolic 18F-FDG-PET/CT parameters of
local tumors at various T-stages differ among patients with stage
III cervical cancer, 102 patients from groups IIIB-IIIC2 were
analyzed. SUVmean, GNmean, MTV, TLG, GNTLG measured
based on fixed percentage threshold (40% SUVmax) and AT-AIA
(w = 0.5) were labeled SUVmean40%, GNmean40%, MTV40%,
TLG40%, GNTLG40%, and SUVmean0.5, GNmean0.5, MTV0.5,
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TABLE 1 | Clinical characteristics of patients with squamous cell cervical cancer.

IIB IIIA IIIB IIIC1 IIIC2 IVa IVb

Number, % 9 (6.34%) 1 (0.70%) 19 (13.38%) 53 (37.32%) 32 (22.54%) 1 (0.70%) 27 (19.01%)

Age (year) 55.89 ± 5.18 66 58.84 ± 11.49 51.77 ± 8.72 50.81 ± 10.11 49 54.67 ± 9.02

Stature (cm) 158.33 ± 7.04 152 157.95 ± 4.45 160.85 ± 5.18 159.38 ± 5.11 155 158.04 ± 5.41

Weight (kg) 60.56 ± 6.41 71 58.79 ± 8.44 60.11 ± 8.54 60.02 ± 9.31 49 59.06 ± 9.86

18F-FDG dose (mCi/kg) 0.16 ± 0.02 0.14 0.18 ± 0.04 0.17 ± 0.03 0.17 ± 0.04 0.22 0.17 ± 0.03

Blood glucose (mmol/L) 5.54 ± 1.34 5.70 5.81 ± 1.51 5.62 ± 1.10 5.57 ± 0.63 6.10 5.61 ± 0.71

TABLE 2 | PET parameters of groups measured using the two different methods.

Fixed percentage threshold AT-AIA P

SUVmean 9.32 ± 3.59 8.60 ± 3.21 0.074 (t = −1.79)

GNmean 9.31 ± 3.44 8.55 ± 3.14 0.051 (t = −1.96)

MTV (cm3) 28.64 (15.40–50.71) 35.84 (21.17–60.91) 0.019 (Z = −2.34)

TLG 276.40 (121.24–500.10) 315.15 (145.55–535.43) 0.22 (Z = −1.22)

GNTLG 277.91 (124.04–503.02) 319.27 (151.13–559.39) 0.24 (Z = −1.18)

SUVmax = 15.48 ± 5.86.

FIGURE 1 | FIGO stage was IIIB, purple VOI and yellow VOI were measured

based on the AT-AIA(w = 0.5) and fixed percentage threshold (40% SUVmax),

respectively. MTV0.5 = 32.16, MTV40% = 17.30.

TLG0.5, and GNTLG0.5, respectively. Patients were subdivided
into five groups according to FIGO system and T staging of
the TNM system: IIIB-T3B, IIIC1-T2B, IIIC1-T3B, IIIC2-T2B,
and IIIC2-T3B. Patient characteristics and PET parameters of
IIIB-IIIC2 groups are listed in Table 3.

We observed no significant differences in age, stature,
weight, 18F-FDG dose, blood glucose, SUVmax, SUVmean40%,
SUVmean0.5, GNmax, GNmean40%, GNmean0.5, and TLG40%

values among the groups, with (F, P) of (1.020, 0.401), (1.096,
0.363), (0.099, 0.983), (0.112, 0.978), (0.313, 0.869), (1.420,
0.233), (1.218, 0.308), (0.736, 0.570), (1.791, 0.137), (1.633,
0.172), (0.945, 0.441), and (2.395, 0.056), respectively. However,
MTV40%, MTV0.5, TLG0.5, GNTLG40%, and GNTLG0.5 were
significantly different among the five groups, with (F, P) of (2.516,
0.046), (3.286, 0.014), (2.839, 0.028), (2.740, 0.033), and (3.082,
0.020), respectively.

All metabolic parameters of group IIIB-T3B were comparable
to those of the other four groups. Metabolic parameters of group
IIIC1-T2B relative to IIIC2-T2B and those of IIIC1-T3B relative
to IIIC2-T3B were not significantly different. MTV40%, MTV0.5,
GNTLG40%, and GNTLG0.5 values of group IIIC1-T2B were
lower than those of IIIC1-T3Bwhile the TLG0.5 were comparable.
MTV40%, MTV0.5, TLG0.5, GNTLG40%, and GNTLG0.5 values
of group IIIC2-T2B were lower than those of group IIIC2-T3B.
All metabolic parameters of group IIIC1-T2B or IIIC2-T2B were
comparable to those of the group IIIB-T3B. MTV40% of group
IIIC1-T2B were lower than those of group IIIC2-T3B while the
other metabolic parameters were comparable. MTV40%, MTV0.5,
TLG0.5, GNTLG40%, and GNTLG0.5 values of group IIIC2-T2B
were lower than those of group IIIC1-T3B (Figure 2).

DISCUSSION

MTV measured based on fixed percentage threshold (40%
SUVmax) was lower than that based on the AT-AIA (w = 0.5).
Weina Xu et al. (25) compared the accuracy of MTV by the
iterative adaptive algorithm (MTViterative adaptive) with that
of the fixed percentage SUVmax threshold method using gross
tumor volume (GTV) as the gold standard and investigated the
correlation between them. Significant differences were observed
among the fixed percentage method and the optimal threshold
percentage was inversely correlated with SUVmax. MTViterative
adaptive is independent of SUVmax, more accurate, and
correlated with GTV in patients with early-stage cervical
cancer (stage Ia–IIb). They speculated that iterative adaptive
algorithm segmentation may be more suitable than the fixed
percentage threshold method to estimate the tumor volume
of cervical primary squamous cell carcinoma. The group of
Xiao-Yi Wang investigated the suitable segmentation method
in small, low uptake, and heterogeneous nodules of stage I
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TABLE 3 | Patient characteristics and PET parameters (mean ± SD) of groups IIIB-IIIC2.

IIIB-T3B IIIC1-T2B IIIC1-T3B IIIC2-T2B IIIC2-T3B P

Number, % 19 (18.63%) 26 (25.49%) 25 (24.51%) 15 (14.71%) 17 (16.67%)

Age (year) 56.58 ± 13.18 52.62 ± 9.88 52.08 ± 6.51 51.00 ± 12.85 50.65 ± 7.32 0.401 (F = 1.020)

Stature (cm) 158.63 ± 4.22 160.50 ± 5.60 161.48 ± 4.58 159.40 ± 5.11 159.35 ± 5.27 0.363 (F = 1.096)

Weight (kg) 60.53 ± 7.49 59.69 ± 7.23 60.20 ± 10.04 59.13 ± 10.85 60.79 ± 7.96 0.983 (F = 0.099)

18F-FDG dose (mCi/kg) 0.17 ± 0.04 0.17 ± 0.03 0.17 ± 0.04 0.16 ± 0.03 0.17 ± 0.04 0.978 (F = 0.112)

Blood glucose (mmol/L) 5.75 ± 1.53 5.51 ± 1.15 5.79 ± 1.06 5.51 ± 0.65 5.62 ± 0.63 0.869 (F = 0.313)

SUVmax 14.56 ± 5.89 16.57 ± 6.64 17.56 ± 7.51 13.29 ± 5.18 15.29 ± 4.34 0.233 (F = 1.420)

GNmax 14.48 ± 4.04 16.28 ± 6.41 17.76 ± 7.27 13.04 ± 4.60 15.33 ± 4.16 0.137 (F = 1.791)

SUVmean40% 8.70 ± 3.50 9.94 ± 4.15 10.53 ± 4.58 8.19 ± 3.46 9.09 ± 2.66 0.308 (F = 1.218)

SUVmean0.5 8.01 ± 3.20 9.13 ± 3.57 9.39 ± 4.03 7.94 ± 3.32 8.51 ± 2.49 0.570 (F = 0.736)

GNmean40% 8.64 ± 3.23 9.89 ± 3.87 10.65 ± 4.48 8.02 ± 3.06 9.11 ± 2.56 0.172 (F = 1.633)

GNmean0.5 7.80 ± 3.01 8.94 ± 3.39 9.51 ± 3.98 7.78 ± 2.92 8.37 ± 2.84 0.441 (F = 0.945)

MTV40%(cm3 ) 42.02 ± 37.29 30.56 ± 14.41bd 46.29 ± 28.50ac 27.09 ± 21.51bd 50.07 ± 32.21ac 0.046 (F = 2.516)

MTV0.5 (cm3 ) 47.64 ± 36.49 39.75 ± 19.23b 59.25 ± 36.78ac 29.08 ± 21.67bd 58.05 ± 31.85c 0.014 (F = 3.286)

TLG40% 359.67 ± 355.08 315.89 ± 200.96 448.19 ± 270.73 226.46 ± 174.11 474.71 ± 344.02 0.056 (F = 2.395)

TLG0.5 384.45 ± 353.89 368.74 ± 233.30 516.41 ± 311.47c 237.74 ± 185.41bd 519.57 ± 354.48c 0.028 (F = 2.839)

GNTLG40% 356.30 ± 243.14 309.05 ± 193.24b 466.29 ± 305.99ac 220.03 ± 164.41bd 475.66 ± 346.81c 0.033 (F = 2.740)

GNTLG0.5 380.26 ± 340.60 361.77 ± 225.32b 530.76 ± 346.67ac 231.08 ± 175.02bd 515.06 ± 358.32c 0.020 (F = 3.082)

asignificantly different from IIIC1-T2B.
bsignificantly different from IIIC1-T3B.
csignificantly different from IIIC2-T2B.
dsignificantly different from IIIC2-T3B.

no significant difference between group IIIB-T3B and other groups.

FIGURE 2 | The group of A, B, C, D, E were IIIB-T3B, IIIC1-T2B, IIIC1-T3B, IIIC2-T2B, IIIC2-T3B. The yellow arrows indicated the metastatic lymph nodes. When

stage III patients had the same T stage, their metabolic parameters of local tumor were not significantly different, regardless of the presence or absence of lymph node

metastasis, location of metastatic lymph nodes in the pelvic cavity or para-abdominal aorta.

lung adenocarcinoma and found that AT-AIA had the highest
accuracy in large, high uptake, and solid nodules (19). This
finding may be explained by phantom results showing that a
fixed threshold can substantially underestimate MTV for lesions

with high 18F-FDG uptake (26). Recent studies have reported
limitations of this threshold method in measurement of lesion
activity and volume. MTV and TLG values obtained based on a
fixed threshold using SUVmax (40%) can lead to underestimation
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of lesional uptake with high activity and overestimation of
lesions with SUVmax close to the background level (26). If the
radiotherapy regimen is based on the measurement range of
MTV with a fixed threshold using SUVmax, active tumor lesions
are likely to be overestimated or underestimated.

On the other hand, the TLG and GNTLG values in our study
were not significantly different between the two groups, the two
measurement methods had no effect on TLG and GNTLG, which
differs from the previous studies (26). This conclusion needs
further study.

MTV measurements using different methods have been
reported. Some studies have measured MTV in cervical cancer
based on fixed percentage threshold (40% SUVmax) (6, 11, 21),
while others have shown that MTV and TLG calculated using
a threshold of 55% SUVmax and 32% SUVmax from pre-
and per-treatment PET scans, respectively, could be effectively
used to predict patient outcomes after CCRT for LACC (27).
Burger and co-workers reported that PET volume metrics based
on fixed SUVmax threshold (42%) led to significant bias and
were not correlated with response to chemotherapy assessed
via histopathologic examination, while PET volume metrics
based on background-adapted measurements were correlated
with tumor regression in non-small cell lung carcinoma (22).
Other researchers used a fixed SUV threshold, most commonly
2.5 (27–30), with the obvious limitations of an arbitrary cutoff.
However, lesions with low activity may have been consequently
underestimated. In our study, MTV was also assessed with
the fixed SUV threshold of 2.5 but bladder and rectum were
incorporated into the VOI, which could potentially increase
the value. Therefore we only compared the differences in 18F-
FDG-PET/CT metabolic parameters measured based on fixed
percentage threshold of 40% SUVmax and AT-AIA (w = 0.5).
Metabolic parameters obtained using the two measurement
methods showed some variations.

Currently, validation of methods for tumor quantification
against publishedMTV and TLG is a challenge due to the lack of a
true gold standard. There are some differences in MTV and TLG
obtained by differentmeasurementmethods. Therefore, selection
of the right measurement method is crucial to facilitate advances
in research or clinical application.

According to the new revised FIGO staging system, Stage IIIC
disease is directly related to pelvic and para-aortic metastatic
lymph nodes regardless of the T stage. This new staging system
clearly reflects the importance of lymph node metastasis as
a major prognostic factor in cervical cancer. Matsuo and co-
workers reported that stage IIIC1 is independently associated
with improved cause-specific survival compared to stage IIIA or
stage IIIB disease (5-year survival rates of 46.0% for stage IIIA,
42.6% for stage IIIB, and 62.1% for stage IIIC1 disease). Survival
of patients with stage IIIC1 disease varied in a manner dependent
on T-stage (5-year cause-specific survival rates: 74.8% for T1
stage, 58.7% for T2 stage, and 39.3% for T3 stage), indicating
that local tumor factors in addition to nodal status are important
determinants of survival (31). Many studies showed MTV and
TLG of primary tumor were predictors of response to therapy
and prognosis (6, 9, 11, 27). In other studies, TLG of the primary
tumor has been used to construct a predictive model of lymph

node metastasis (14, 21). Their findings suggest that the internal
metabolism of the primary tumor may exert an effect on lymph
node metastasis.

Inspired by the above studies, we attempted to investigate the
differences of metabolic parameters of primary tumor in stage III,
considering the different T staging and lymph node metastasis.
Since there was only one patient in the stage IIIA in our study,
we included the patients in stage IIIB, IIIC1, and IIIC2 in our
study, and subdivided the patients into five groups according to
the new revised FIGO staging system and T staging of the TNM
system: IIIB-T3B, IIIC1-T2B, IIIC1-T3B, IIIC2-T2B, and IIIC2-
T3B. According to our results, when the stage III patients have
the same T stage, their metabolic parameters of local tumor were
not significantly different. The differences between them were
the presence or absence of lymph node metastasis, location of
metastatic lymph nodes in the pelvic cavity or para-abdominal
aorta. In stage IIIC1 or stage IIIC2, all patients with lymph node
metastasis, the lower the T stage, the lower theMTV40%, MTV0.5,
GNTLG40%, and GNTLG0.5 of the primary tumor. In the group
IIIC1-T2B or IIIC2-T2B with lymph node metastasis, although
T staging was lower than that in the group IIIB-T3B without
lymph node metastasis, the metabolic parameters of the local
tumor were comparable. Even using two different measurement
methods, we still got similar results. In other words, the difference
between the group IIIC and the other groups was only the lymph
node metastasis. Our study showed that the staging criteria for
stage IIIC disease (Stage IIIC disease is directly related to pelvic
and para-aortic metastatic lymph nodes regardless of the T stage)
seemed to be more reasonable.

To our knowledge, this is the first study to evaluate the
differences in the 18F-FDGPET/CT metabolic parameters of
primary tumors since the new staging system was revised.
Our study was retrospective, FIGO staging was performed by
clinicians according to imaging examinations while the invasive
range of the primary tumor and lymph node metastasis were
not confirmed by pathology, which could lead to inaccurate
staging. This aspect is particularly important because histologic
analysis generally shows higher sensitivity for detecting nodal
metastasis than radiologic studies (32). Therefore, we did
not test the correlation between metabolic parameters of the
primary tumors and lymph node metastasis due to lacking of
pathology as a gold standard. In addition, we had a shorter
follow-up period, so we did not perform outcome analysis.
The stage III was incomplete (Our study lacked samples for
IIIA-T3a, IIIC1-T1, IIIC1-T3a, IIIC2-T1 and IIIC2-T3a, etc.).
We only compared the differences between the above five
groups, further follow-up studies with larger sample numbers are
therefore warranted.

A number of limitations of this study should be acknowledged.
Firstly, as mentioned above, it is difficult to validate any
method of tumor quantification against the published MTV
and TLG due to the lack of a true gold standard. Secondly,
the retrospective nature of the analysis led to inconsistencies
in uptake time and the injected 18F-FDG dose varied over
time. Thirdly, Moreover, outcome analysis was not performed.
While we investigated differences in the 18F-FDG PET/CT
metabolic parameters of primary tumors among five groups
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with stage III disease (IIIB-T3B, IIIC1-T2B, IIIC1-T3B, IIIC2-
T2B, IIIC2-T3B), the patient population of stage IIIA was too
small and heterogeneous (in terms of stage and histology)
to allow meaningful assessment of potential correlation with
progression-free and overall survival. To address this issue,
follow-up studies on larger homogeneous patient cohorts
are planned.

CONCLUSION

In this study, we compared the 18F-FDG-PET/CT metabolic
parameters measured based on fixed percentage threshold of
SUVmax and AT-AIA in patients with LACC. Our data showed
that MTV measured based on fixed percentage threshold was
smaller than that based on AT-AIA. On the other hand, the
TLG and GNTLG were not significantly different between the
two groups, the two measurement methods had no effect on
TLG and GNTLG, which differs from the previous studies. MTV
assessment using various methods has been reported. Validation
of methods for tumor quantification against the established
MTV and TLG parameters is a significant challenge due to the
lack of a true gold standard, and selection of the appropriate
measurement method to obtain 18F-FDG-PET/CT metabolic
parameters is important.

Our results showed that when the stage III patients have
the same T stage, their metabolic parameters of local tumor
were not significantly different, regardless of the presence or
absence of lymph node metastasis, location of metastatic lymph
nodes in the pelvic cavity or para-abdominal aorta. In stage
IIIC1 or stage IIIC2, all patients with lymph node metastasis, the
lower the T stage, the lower the MTV40%, MTV0.5, GNTLG40%,
and GNTLG0.5 of the primary tumor. In the group IIIC1-
T2B or IIIC2-T2B with lymph node metastasis, although T
staging was lower than that in the group IIIB-T3B without
lymph node metastasis, the metabolic parameters of the local
tumor were comparable. Staging according to the revised FIGO
staging system, stage III patients with lymph node metastasis
did not have higher 18F-FDG uptake than those without lymph
node metastasis when they had the same T stage. Even if the

FIGO stage was the same in stage IIIC1 or IIIC2, there were
significant differences in some metabolic parameters if the T
stage is different. Although patients in the group IIIC1-T2B or
IIIC2-T2B with lymph node metastasis had lower T stage than
that in the group IIIB-T3B without lymph node metastasis, they
did not have lower 18F-FDG uptake. Even using two different
measurement methods, we still got similar results. In other
words, we speculated that the difference between the group IIIC
and the other groups was only the lymph node metastasis in
our study. The collective results imply that the revised FIGO
staging system for stage III cervical cancer (Stage IIIC disease
is directly related to pelvic and para-aortic metastatic lymph
nodes regardless of the T stage) is more reasonable to an extent.
Further research on larger patient cohorts is warranted to validate
this conclusion.
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Objective: In extra-pulmonary tuberculosis, therapeutic management is difficult in the

absence of reliable tool to affirm healing at the end of treatment. In this prospective

multicenter study, we evaluated [18F]FDG-PET for this purpose.

Methods: Forty-two patients out of 55 included patients could be analyzed. Additionally

to usual biological, histological and morphological explorations, [18F]FDG-PET was

performed at diagnosis (PET1), at the end of treatment (PET2), indeed 6 months later.

Then patients were followed until 12 months after end of prescribed treatment.

Results: PET1was positive in 97.6% of patients and discovered unknown injured sites in

52.7% of cases. PET2 was positive in 83.3% of uncured patients, and in 82.3% of cured

patients. The sum and mean value of SUVmax measured in PET/CT lesions decreased

between PET1 and PET2 in all patients. Mean value of SUVmax (MSUV) and sum value of

SUVmax on PET2 showed the highest AUC on ROC curves for the diagnosis of healing

at the end of prescribed treatment; MSUV 3.5 on PET2 had a sensitivity of 76.5% and a

specificity of 80.0% to affirm healing at the end of prescribed treatment.

Conclusions: [18F]FDG-PET/CT was useful at diagnosis, discovering unknown lesions

in 52.7% of cases. MSUV on PET2 was the best criteria to affirm healing at the end of

prescribed treatment.

Keywords: tuberculosis, bone, lymph nodes, [18F]FDG-PET, Positron emission tomography, antibiotherapy

monitoring
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INTRODUCTION

Tuberculosis remains a major public health problem worldwide
with more than 9 million cases per year in 2009 (137/100,000
inhabitants). Its endemic evolution associated with the explosion
of HIV in emerging countries, particularly in sub-Saharan
Africa, has increased the number of new annual cases of
the disease since 1990 from 6.6 to 9.4 million (1). Mortality
remains worrying with 1.7 million deaths worldwide, more
than half of them in Africa. The first region affected in
metropolitan France is the Ile de France with 36% of reported
cases, an incidence of 17.9/100,000 inhabitants. The two most
affected departments are Paris and the department of Seine-
Saint-Denis (respectively, 27.5 and 30.3/100,000 inhabitants).
At-risk groups with higher incidence are identified: people
from sub-Saharan Africa (159.1/100,000 inhabitants), homeless
people (223.1/100,000 inhabitants), elderly people (16.9/100,000
inhabitants for the over 75 years). The data of the declaration in
France concerning the anatomical localization of the tuberculosis
are rather restricted. Also in 2008, it was pulmonary tuberculosis
associated or not with another localization in 70.4% of the cases;
of the remaining 27.8, 51.4% (n = 824) were pleural or intra-
thoracic lymph nodes, 5.7% were tuberculous meningitis, and
7.7% were tuberculous miliaries (2).

The definitive diagnosis of tuberculosis can only be made
on the identification of the mycobacterium in culture with the
presence of one of the three species belonging to the tuberculosis
complex: Mycobacterium tuberculosis, M. africanum, and M.
bovis. In pulmonary tuberculosis, the diagnosis remains relatively
easy. In extra-pulmonary forms, on the other hand, cultures are
much more often negative. The few available French data show
that in extra-pulmonary tuberculosis sites for which a puncture
could be performed, the cultures are positive in, respectively,
38, 70, 25, and 42% of cases of lymph node, bone, pleural and
meningeal injury; whereas in more than 90% of cases they are
pulmonary forms (3).

In pulmonary tuberculosis, the negativation of BK tubages
after a 3 months treatment is a good indicator of healing. While
in pulmonary tuberculosis treatment and follow-up are well-
codified (WHO 1997, UICT 2000, ATS 2002) (4), they are less
clear in extra-pulmonary forms. Moreover, it is often impossible
to confirm by bacteriology the sterilization of the initial
sampling site when it has been informative. The management
of radiological abnormalities [Computed Tomography (CT),
Magnetic Resonance Imaging (MRI)] is not rigorously codified
and their persistence at the end of treatment is not systematically
synonymous with failure. Indeed, the evolution of imaging is
often delayed compared to that of the clinic and radiological
healing criteria are poorly defined. Thus, the recommendations
in terms of duration of treatment of extra-pulmonary forms
remain unclear: at least 6 months for lymph node tuberculosis,
between 6 and 9 months for bone/articular tuberculosis, between
9 and 12 months for a neuro-meningeal injury (5). The total
duration of treatment is left to the appreciation of the clinician,
who in the absence of certainty tends to prolong treatment
rather than shorten it. The consequences in terms of individual
health (duration of treatment, side effects) and public health

(mobilization in human and financial health resources) posed
by the uncertainties which concern the positive diagnosis or the
diagnosis of cure, as well as the duration of treatment, raise the
need for other assessment tools in the management of extra-
pulmonary tuberculosis.

During those last years, recommendations and uses of
[18F]Fluoro-desoxy-glucose Positron Emission Tomography
coupled with CT ([18F]FDG-PET/CT) have extended from
oncological indications to imaging inflammatory diseases.
Indeed activated inflammatory cells in infection foci as well
as live bacterias have increased glucose metabolism and show
increased [18F]FDG uptake on [18F]FDG-PET scans. [18F]FDG
accumulation in active tuberculosis foci has been widely reported,
as well as its decrease under antibiotic therapy (6, 7). [18F]FDG-
PET/CT has an excellent predictive negative value for non-active
lesions. But in extra-pulmonary tuberculosis, the few studies
available report cases of residual [18F]FDG uptake in cured
patients at the end of antibiotherapy. So the question whether
[18F]FDG-PET/CT is a reliable tool or not for healing assessment
is still unsolved (8, 9).

The aim of this study was to evaluate [18F]FDG-PET/CT
before and after anti-tuberculosis treatment, assuming that this
technique could provide useful data for therapeutic monitoring.

We described [18F]FDG-PET/CT evolution between initial
diagnosis, end of antibiotherapy indeed 6 months after the end of
therapy, and identified PET criteria to affirm or invalidate healing
at the end of the therapeutic course.

METHODS

This is a French multicenter prospective pilot study conducted
in the seven investigative centers, within the departments
of infectious and tropical diseases, internal medicine, and
rheumatology, registered in clinicaltrials.gov NCT01613196. The
study has been approved by the French ethics committee CPP Ile-
de-France 1 (and sponsored by Assistance Publique Hôpitaux de
Paris) and the subjects gave informed consent to the work.

Patients
The inclusion criteria were: Male or Female over 18, Patient
who has not been infected with HIV or has been infected
with HIV with a CD4 count > 200/mm3 for at least 3
months, Patient with certain or probable lymph node or bone
tuberculosis (certain: presence of bacillus acid-alcohol-resistant
in collected samples (ganglionic puncture, bone biopsy puncture,
but also other samples—in particular pulmonary—in case of
associated extra-lymph nodes or bone localizations; probable:
cluster of suggestive arguments among which epidemiological
context and/or general clinical signs and/or extra respiratory
and/or compatible biological and/or radiological abnormalities
and start of antituberculous treatment and absence of argument
for another etiology possible).

The patients whose tuberculosis was not confirmed on the
evolution were secondary excluded.

Exclusion criteria were: Relapse of tuberculosis (patient
having already been treated in the past), Suspicion of another
concomitant systemic infection (bacterial, fungal or parasitic),
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Severe immunodepression, Active or progressive neoplasia
(solid cancer and hematology), Extended corticotherapy
(corticosteroid therapy> 20 mg/day) for at least 3 months,
Chronic inflammatory diseases, Pregnant or lactating woman or
during periods of genital activity without contraception.

Treatment
The choice of treatment was made in accordance with the
recommendations of the Superior Council of Public Hygiene and
the High Authority of Health concerning the management of
tuberculosis (10). It consisted in an association of 3 or 4 anti-
tuberculosis agents for the first 2 months, followed by a dual
therapy for 4–7 months for lymph node locations and 10 months
for bone sites. Those are the expected theoretical durations of
treatment. In the case of resistance to anti-tuberculosis drug,
the treatment was adapted according to the antibiogram data,
according to the recommendations (5, 11) and according to the
opinion of the reference center of resistance to anti-tuberculosis
drugs in case of multi-resistance. The duration and the decision
to stop treatment was left to the discretion of the clinician.

[18F]FDG PET Imaging
[18F]FDG-PET/CT scans were performed on clinical PET/CT
devices in five nuclear medicine departments of Assistance-
Publique-Hopitaux de Paris. For each patient, initial, post-
treatment, and delayed PET-scan procedures were identical
(injected dose, PET/CT device).

Included patients underwent 2 or 3 successive [18F]FDG-
PET/CT examinations: PET1within 30 days after initial diagnosis
and 15 days after antibiotherapy’s initiation, PET2 within 15 days
after the end of prescribed treatment, PET3 6 months after the
end of treatment if PET2 was positive for tuberculosis.

Acquisitions
Patients were asked to fast at least during 8 h before the PET/CT
scan. Upon their arrival in nuclear medicine departments,
Capillary glycemia was measured before allowing (or not) the
PET scan: a glycemia ≤9 nmol/ml was mandatory. [18F]FDG
was injected intravenously at the dose of 3–5 MBq/Kg. Then the
patients were asked to keep lying and calm during 1 h until the
acquisition. The recording of the images was started 60min after
the injection and included CT acquisition followed by the PET
recording. CT recording, necessary for the attenuation correction
of PET images as well as the anatomical identification of lesions
detected by PET, was performed without contrast injection with
voltages around 100 kV and intensities of ∼140mA, in order
to obtain axial sections of adequate quality with a thickness
ranging from 3 to 5mm and a matrix 512 × 512. Static PET
acquisitions were performed in 3D mode and with a spatial
resolution of <5mm. They were started at the level of the root of
the thighs and included several consecutive recordings to cover
the pelvis, the abdomen, the thorax and the head. The PET
images were reconstructed using an iterative method (OSEM),
with parameters allowing to obtain a voxel size ≤ 4mm in the 3
dimensions of the space. PET images were analyzed using specific
softwares, allowing the display of merged images.

[18F]FDG-PET/CT Analysis
The [18F]FDG foci were visually detected according to the
criterion of a maximum activity clearly greater than that of the
surrounding tissue activity. Only hypermetabolic abnormalities
present on both uncorrected and attenuation corrected
images were considered significant. Quantitative analysis of
hypermetabolic abnormalities was performed using manually
drawn regions of interest. The maximum activity in the regions
of interest was determined [Maximal Standard Uptake Value
(SUV max) in g/ml]. The results of [18F]FDG-PET/CT at each
time were transmitted to the clinician only after he had made his
own diagnosis and had completed the results of his diagnosis in
the observation book. At the end of the study, centralized reading
of all anonymous PET/CT scans was done by four senior nuclear
medicine physicians unaware of any other data. The results were
recorded in the scorecard including both the number of detected
lesions and the highest SUVmax measured in each following
areas: cervical, axillary, mediastinal and abdominal lymph nodes
areas, axial bone, peripheral bone, lungs, abdominal organs,
brain, muscles, skin, and subcutaneous soft tissues. A consensus
was made in case of discrepancy between the lecturers.

For each PET scanner, SUVmax was recorded for each
anatomical regions where abnormal hot spot(s) was (were) seen.
Then two quantitative criteria were determined on all PET
scans: the sum of all recorded regional SUVmax (

∑
SUV), the

mean value of recorded regional SUVmax (MSUV). Additionally,
a lesion by lesion analysis was performed in the patients for
whom the information of healing or uncured disease at the end
of treatment could be obtained. For such analysis, the highest
SUVmax value measured on PET2 was considered.

Healing or Residual Disease Assessment
at the End of Prescribed Therapy
Patients were followed up to 12 months after the end of
treatment, i.e., 18–24 months after inclusion (duration of
treatment: 6, 9, or 12 months depending on the type of injury).
Each consultation (Cs1 at initial diagnosis, Cs2 at the end of
treatment, Cs3 6 months then Cs4 12 months after the end of
treatment) included an examination of the general condition and
the general and local signs of infection, weight evaluation, and
targeted assessments based on initial locations of tuberculosis.
Patients benefited from the usual biological, histological, and
morphological explorations at the time of diagnosis and during
therapeutic follow-up.

Patients were considered cured if they have been treated for
at least 80% of the prescribed time with BK-sensitive drugs,
presented no biological or clinical sign of tuberculosis at the
end of treatment and have not relapsed 1 year after the end
of treatment.

Statistical Analysis
Descriptive Analysis
Patient’s characteristics were described using frequency
and percentage for categorical variables, and mean and
standard deviation or median and inter-quartile range values
for continuous variables, depending of the normality of
their distribution.
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FIGURE 1 | Flowchart of the study. Cs, medical consultation; PET1, Pet performed at initial diagnosis; PET2, PET performed at the end of treatment; PET3, PET

performed 6 months after the end of treatment.

Primary Analysis∑
SUM and MSUV were compared between PET1 and PET2

using Wilcoxon signed rank tests.

Secondary Analyses
Thepercentages of variation of

∑
SUM ([

∑
SUM on PET2 –∑

SUV on PET1]/
∑

SUV on PET1) and MSUV were compared

between cured and uncured patients using Wilcoxon tests. Pre-
specified subgroup analyses were performed in patients with
lymph node lesions, and bone lesions. Comparisons also involved
Wilcoxon tests.

The evolutions of
∑

SUM and MSUV for each patient
were described with spaghetti plots. Thus, we analyzed these
using a linear mixed effect model. These models had two
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parameters, one for the baseline sum or mean of the SUVmax,
and one for the slope of evolution of sum or mean of
SUVmax, both with random effects. Parameters were estimated
using the REstricted Maximum Likehood (REML) algorithm
implemented in SAS 9.4. For each parameter we reported
the estimated mean and standard deviation (SD) of inter-
individual variability. The predictions of these models were
represented in the spaghetti plots. A first analysis was performed
among cured patients and followed by a second analysis among
uncured patients.

The ROC test curve analysis and the Youden Index were
performed for determining the optimal cut-off value for

∑
SUM

and MSUV at the end of treatment (PET2) to diagnose
the recovery.

A p-value of <0.05 was considered statistically significant.
All the analyses were performed using SAS V.9.4 (SAS

Institute Inc., Cary, North Carolina, USA).

RESULTS

Patients
Flow-Chart of the Study
The flow-chart of the study is presented in Figure 1.
Globally, 55 patients were enrolled in the study from May
2012 to August 2014. Thirteen of them were secondarily
excluded (HIV confirmed in one case, tuberculosis not
confirmed in two cases, prolonged corticotherapy >20
mg/day established in two cases, CRF unrecovered in one
case, PET unrecovered in four cases, absence of social
insurance in one case, one breastfeeding woman, and one
pregnant woman) so 42 of the 55 included patients could
be analyzed. Also, the assessment of healing or residual
disease at the end of therapy was not possible in 19 patients
either because they were lost to follow-up (no Cs4) or
because they did not undergo TEP2 or because they did
not undergo Cs2. Also only eight patients with positive PET2
underwent PET3.

The characteristics of analyzed patients are presented in
Table 1.

Healing or Residual Disease Status at the End of

Prescribed Therapy
Three of 23 patients (13.0%) had recurrence during the 12-
months follow-up after the end of treatment, related to bacterial
resistance. According to the criteria indicated in the methods
section, 17 patients were cured (including six patients who
underwent PET3) and six uncured at the end of treatment
(none of them underwent PET3). Lesion by lesion analysis in
healed and uncured patients revealed that 16 of 18 initial lymph
nodes lesions (88.8%), 10 of 12 initial bone lesions (83.3%),
5 of 6 initial lung lesions (83.3%) were cured at the end
of treatment.

[18F]FDG-PET/CT
Overall Study Population
PET1 performed at initial diagnosis was completed in 42 Patients.
PET2 performed at the end of therapy was completed in 35

TABLE 1 | Description of the study population.

Inclusion N = 42

Sex F: 14 (33.3%), M: 28 (66.7%)

Age 39.0 [31.0–49.0]

Type of tuberculosis Lymph nodes: 17 (40.5%)

Bone: 5 (11.9%)

Lymph nodes + Bone: 6 (14.3%)

Lymph nodes + Lung: 6 (14.3%)

Bone + Lung: 4 (9.5%)

Lymph nodes + Bone + Lung: 4

(9.5%)

Associated disease Diabetes Type II: 3 (7.1%)

Chronic inflammatory disease

(controlled): 2 (4.8%)

Cancer: 1 (2.4%)

Temperature 37.0 [36.8–37.2]

Body weight, kg 63.0 [55.0–80.0]

Symptoms Sweats: 13 (31.0%): Cough: 7

(16.7%); Pain related to tuberculosis:

23 (54.8%)

Biology Hb: 12.1 [11.1–13.7]; WBC: 7.1

[5.6–9.0]; Platelets: 309.0

[265.0–371.0]

ALAT: 25.0 [16.0–38.0]; ASAT: 26.0

[21.0–37.0]; PAL: 96.0 [73.0–126.0];

gGT: 64.0 [29.0–107.0]

Creatinin: 70.0 [61.0–83.0]

CRP: 19.0 [8.5–79.0]

Microbiology Lung: positive in 10/34 (29.4%)

patients

Lymph nodes: positive in 11/21

(52.4%) patients

Bone: positive in 11/14 (78.6%)

patients

Other: positive in 6/9 (66.7%) patients

Imaging data (other than PET) Thoracic radiography: abnormal in

9/31 (29.0%) patients

Thoracic CT: abnormal in 28/33

(84.8%) patients

Abdominal CT: abnormal in 13/27

(48.1%) patients

Bone MRI: abnormal in 19/19 (100%)

patients

Antibiotherapy Isoniazide: 100% of patients

Rifampicine: 97.6% of patients

Ethambutol: 95.2% of patients

Pyrazinamide: 95.2% of patients

Moxifloxacin: 2.4% of patients

Treatment duration (months) 9.0 [9.0–12.0]

Treatment observance > 80% 34/36 (94.4%) patients

Results are expressed as median [IQR] or n (%).

Patients. PET3 performed 6 months after the end of therapy
was completed in eight Patients. The results of PET1, PET2 and
PET3 in all included patients are recorded in Table 2. PET1
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TABLE 2 | Tuberculosis locations according to [18F]FDG-PET/CT data and values of PET/CT quantitative criteria
∑

SUV and MSUV at 3 time points.

PET 1

(n = 42)

PET2

(n = 35)

PET3

(n = 8)

Presence of [18F]FDG

abnormal Hot spots evocative

of TB lesions

41 (97.6%) 29 (82.8%) 7 (87.5%)

Lymph nodes Cervical 24 (58.5%) 10 (34.5%) 3 (42.9%)

Mediastinal 27 (65.9%) 10 (34.5%) 3 (42.9%)

Axillary 8 (19.5%) 4 (13.8%) 0 (0.0%)

Abdominal, pelvic 16 (39.0%) 4 (13.8%) 0 (0.0%)

Inguinal 3 (7.3%) 1 (3.4%) 0 (0.0%)

Bone Spine 14 (34.1%) 4 (13.8%) 0 (0.0%)

Bassin 6 (14.6%) 1 (3.4%) 0 (0.0%)

Sup 1 (2.4%) 0 (0.0%) 0 (0.0%)

Inf 3 (7.3%) 2 (6.9%) 0 (0.0%)

Other 5 (12.2%) 0 (0.0%) 1 (14.3%)

Lungs 11 (26.8%) 5 (17.2%) 1 (14.3%)

Liver 3 (7.3%) 0 (0.0%) 0 (0.0%)

Spleen 3 (7.3%) 0 (0.0%) 0 (0.0%)

GUT 3 (7.3%) 1 (3.4%) 0 (0.0%)

ENT 2 (4.9%) 0 (0.0%) 0 (0.0%)

Muscular 16 (39.0%) 6 (26.7%) 0 (0.0%)

Skin 4 (9.8%) 1 (3.4%) 0 (0.0%)

Abdominal abcess 1 (2.4%) 0 (0.0%) 1 (14.3%)

Other 4 (9.8%) 2 (6.9%) 3 (42.9%)
∑

SUV Mean (std) 39.0 (28.7%) 8.9 (8.2%) 4.7 (3.1%)

(Patients with abnormal PET) Median (IQR) 32.0 [21.1–47.8] 6.1 [3.1–12.5] 4.0 [2.3–8.0]

MSUV Mean (std) 7.0 (2.8) 3.3 (2.1) 2.8 (2.6)

(Patients with abnormal PET) Median (IQR) 6.6 [4.9–9.2] 3.1 [2.0–5.0] 2.1 [1.1–4.0]
∑

SUV Mean (std) 38.1 (29.0) 7.3 (8.1) 4.1 (3.3)

All patients Median (IQR) 31.5 [19.6–47.8] 5.4 [0–11.2] 3.8 [1.1–7.1]

MSUV Mean (std) 6.8 (2.9) 2.7 (2.3) 2.4 (2.6)

All patients Median (IQR) 6.5 [4.8–9.2] 2.7 [0.0–4.7] 1.6 [0.6–3.4]

PET1, [18F]FDG-PET/CT performed at initial diagnosis; PET2, [18F]FDG-PET/CT performed at the end of treatment; PET3, [18F]FDG-PET/CT performed 6 months after the end

of treatment.

was positive in 41 of 42 (97.6%) patients (ΣSUV: 32 [21.1–
47.8], MSUV: 6.6 [4.9–9.2]). As compared to data obtained on
chest and abdominal CT and MRI (such analysis was possible in
36 of 42 patients), PET1 retrieved unknown additional injured
site in 19/36 (52.7%) patients, which were cutaneous lesions in
4/19 (21.0%), liver lesions in 4/19 (21.0%), spleen lesion in 1/19
(5.2%), lung lesions in 2/19 (10.5%), mediastinal lymph nodes
in 2/19 (10.5%), and abdominal lymph nodes in 6/19 (31.6%)
of cases. Also, among 14 patients with known bone injury,
additional bone lesions were discovered on PET1 in three of
them (21.4%). Such findings induced a modification of therapy
duration in 2/42 (4.7%) patients. Type of medications was not
modified and additional CT or MRI examinations were not
performed in those two patients. PET2 was positive in 29/35
(82.8%) patients (ΣSUV: 6.1 [3.1–12.5], MSUV 3.1 [2.0–5.0]),
and retrieved unknown lymph nodes cervical lesions which were
not present at initial diagnosis in 2 of them (5.7%). Such findings
did not induce modification of patient management. PET3 was

positive in 7 of 8 (87.5%) patients (ΣSUV: 4.0 [2.3–8.0]; MSUV:
2.1 [1.1–4.0]. In the patients who underwent both TEP1 and
TEP2,

∑
SUV and MSUV values on TEP2 were significantly

lower than those calculated on TEP1: 5.4 [0.0–11.2] vs. 30.1
[18.9–43.6] and 2.8 [0.0–4.7] vs. 6.4 [4.7–8.9], respectively, p <

0.0001 for both criteria. In the patients who underwent both
TEP2 and TEP3,

∑
SUV andMSUV on PET2 and PET3 were: 8.0

[3.8–10.9] vs. 3.8 [1.2–7.2] (NS) and 2.8 [2.1–3.8] vs. 1.7 [0.6–3.5]
(NS), respectively.

Patients With Available Healed or Residual Disease

Assessment at the End of Initially Prescribed Therapy
The results of PET1 and PET2 in cured patients (n = 17) and
uncured (n = 6) patients at the end of therapy are recorded in
Figures 2, 3. PET1

∑
SUV and MSUV were higher in uncured

than in cured patients but the difference was not statistically
significant (p = 0.55 and 0.19, respectively). Five of six uncured
patients had abnormal PET2. Fourteen of 17 cured patients
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FIGURE 2 | Spaghetti plots of the 23 patients with final diagnosis at the end of treatment. Description of the evolution of the PET parameters with time for each

patient, for cured patients (black dotted line) at the end of treatment (red slope, mean prediction), and for uncured patients (black solid line) at the end of treatment

(blue slope, mean prediction). (A) Description of the evolution of ΣSUV for each patient. (B) Description of the evolution of MSUV for each patient.

(82.3%) showed persistent [18F]FDG uptake in at least one
lesion on PET2 (Figure 3). In cured bone lesions, persistent
[18F]FDG uptake on PET2 was observed in the presence of
bone lysis on CT, but not when bone CT was normal. 1

∑
SUV

and 1MSUV between PET1 and PET2 were higher but not
significantly different between cured and uncured patients:−92.9
[−100.0; −72.3] vs. −73.7 [−77.1; −66.8] (p = 0.26), and
−70.0 [−100.0; −30.8] vs. −54.3 [−64.9; −25.5] (p = 0.47).
Lymph node lesions demonstrated a decrease in MSUV (−87.5%
[−100.0%;−32.4%]) in cured patient, and conversely an increase
in MSUV in uncured patients (+16.3% [−59.7; +37.1]) between
TEP1 and TEP2 (p = 0.04). Such analysis could not be done
with bone lesions since all but 1 bone lesions were cured at the
time of TEP2. The variation slope of both criteria (1

∑
SUV and

1MSUV per month) was not different in cured and uncured
patients (Figure 2). On PET3 performed in six cured patients

1
∑

SUV and 1MSUV decreased as compared to PET2, but the
differences were not significant.

ROC curves were performed for all quantitative criteria.∑
SUV and MSUV on PET2 showed the highest AUC on ROC

curves for the diagnosis of healing or residual disease at the end
of treatment (0.73 [0.42–1.00] and 0.72 [0.42–1.00], respectively)
(Figure 4). MSUV under 3.5 had a sensitivity of 76.5% [56.3–
96.6%], and a specificity of 80.0% [44.9%; 100.0%] to affirm
healing at the end of treatment. The probability to be healed at
the end of treatment for a patient with MSUV < 3.5 on PET2
was 92.9%. The probability to have residual disease at the end of
treatment for a patient with MSUV≥ 3.5 on PET2 was 50%.

The lesion by lesion analysis of PET2 in healed and uncured
patients at the end treatment showed that when the highest
SUVmax value was considered with a threshold of 3.5, healing
could be correctly affirmed (SUVmax < 3.5) on PET2 for 11/16
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FIGURE 3 | Examples of [18F]FDG-PET/CT images in two patients cured at the end of treatment. (A) PET1 and PET2 images of a patient cured at the end of

treatment. All abnormalities seen on PET1 (lung lesions, mediastinal lymph nodes, bone lesions in dorsal and lumbar spine) completely disappeared on PET2. (B)

PET2 images of a patient cured at the end of antibiotherapy, showing residual FDG uptake in cured lesions [left lung, left hilar lymph node, and spine (T12, L1, and L5)].
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FIGURE 4 | ROC curves with best PET/CT criteria for the diagnosis of healing or residual disease at the end of treatment. (A) ΣSUV on PET2 (at the end of

prescribed treatment): AUC = 0.73 [0.42–1.00]), Youden index: 5.6, Sensitivity = 64.7 [42.0–87.4], Specificity = 80.0 [44.9–100.0], Positive Predictive Value of ΣSUV

< 5.6 for the diagnosis of healing = 91.7 [76.0–100.0], Negative Predictive Value of ΣSUV ≥ 5.6 for the diagnosis of healing= 40.0 [9.6–70.4]. (B) MSUV on PET2:

AUC = 0.72 [0.42–1.00]), Youden index: 3.5, Sensitivity = 76.5 [56.3–96.6], Specificity = 80.0 [44.9–100.0], Positive Predictive Value of MSUV < 3.5 for the diagnosis

of healing = 92.9 [79.4–100.0], Negative Predictive Value of MSUV ≥ 3.5 for the diagnosis of healing = 50.0 [15.3–84.6].

(68.7%) patients, 13/16 (81.2%) lymph node lesions, 8/10 (80.0%)
bone lesions, 5/5 (100%) lung lesions, and 3/5 (60%) muscular
lesions; and residual disease could be correctly detected (SUVmax

≥ 3.5) in 4/5 (80%) uncured patients. In uncured patients, all
initial lymph nodes (n = 4) and bone (n = 2) lesions showed
SUVmax > 3.5 on PET2, whereas all initial muscular lesions (n
= 5) showed SUVmax < 3.5 on PET2. This suggests that residual
disease was still present at the end of treatment in all initial lymph
nodes and bone lesions, whereas all muscular lesions had cured.
The probability for a patient to be healed when SUVmax was <

3.5 on PET2 was 11/13 (84.6%). The probability for a patient to
be uncured when SUVmax was ≥ 3.5 on PET2 was 4/10 (40%).

DISCUSSION

[18F]FDG-PET/CT at diagnosis was positive in 97.6% of the
patients and discovered unknown lesions in 52.7% of cases.∑

SUV and MSUV clearly decreased on PET2 at the end of
treatment in cured patients, but abnormal hot spots persisted
in 82.3% of them.

∑
SUV and MSUV did not decrease between

PET2 and PET3 in cured patients. MSUV under 3.5 on PET2 was
the best criteria to diagnose healing at the end of treatment.

The sensitivity of [18F]FDG-PET/CT at initial diagnosis in
our study is comparable to those previously reported (97–
100%) (8, 9, 12–14). Additional unknown injured sites were
discovered on PET1 in 52.7% of cases. Such parameter is highly
variable in the literature, from 10 to 69%, probably depending

on the study population (disseminated or local tuberculosis).
Discovered additional sites mainly concerned cutaneous lesions,
liver lesions and abdominal lymph nodes not detected on CT. As
compared to data of the literature (8, 9, 12–14), the percentage of
residual [18F]FDG uptake in lesions at the end of antibiotherapy
is higher in our study (82 vs. about 40–50% in most studies). This
may be explained by the characteristics of the study population:
only extra-pulmonary and mostly disseminated tuberculosis in
our study when other studies included both pulmonary and other
types of tuberculosis. The cured lesions which remained positive
on PET2 were lymph nodes, bone, lung, muscle lesions or
subcutaneous abcesses. In cured bone lesions residual [18F]FDG
uptake was observed in the presence of bone lysis on CT but
not when bone CT was normal. This is concordant with residual
[18F]FDG uptake being related to bone repair after sterilization.
The data observed in lung lesions are surprising and emphasize
the role of BK tubage to monitor therapy in pulmonary locations.

Despite the small number of patients analyzed during post-
treatment follow-up (n = 8, 6 cured at the end of therapy),
we could conclude that [18F]FDG-PET/CT does not normalize
6 months after the end of antibiotic therapy: in seven patients
TEP3 remained positive, with comparable MSUV as compared to
PET2. Many reasons may explain such data: long healing process
with [18F]FDG uptake by activated fibroblasts, latent tuberculosis
with the persistence of live but non replicating bacteria,
the persistence of dead bacteria or of products of bacterial
lysis inducing persistent immune-reactive inflammation. It is
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probable that a 6 months delay is too short and that a more
delayed [18F]FDG-PET/CT scan would have returned negative.
This is supported from previous data of our department in six
patients cured since 3 years who had all a negative [18F]FDG-
PET/CT scans. However, a longer delay than 6 months after
treatment to confirm healing is not applicable in the clinical
situation since most of the patients are difficult to follow. With
this regards, it is worth noting that only 23 of 42 patients
completed the entire study course, many of being absent to 1 or 2
of the 3 [18F]FDG-PET/CT appointments.

Six of the 23 patients who completed entire follow-up were
not cured at the end of initial antibiotic therapy. Non observance
of treatment can be incriminated in 1 of those. This confirms
a posteriori the need for a marker of healing at the end of
treatment. Also, lesion by lesion analysis in healed and uncured
patients revealed that 16 of 18 initial lymph nodes lesions
(88.8%), 10 of 12 initial bone lesions (83.3%), and 5 of 6 initial
lung lesions (83.3%) were cured at the end of treatment. This
suggests that the location (lymph nodes, bone, or lung) of initial
lesions is not related to the persistence of residual disease at the
end of treatment.

Despite this small number of uncured patient we could
identify SUVmax ≥ 3.5 on PET2 as a criteria to identify uncured
patients with good sensitivity (76.5%) and specificity (80.0%).
SUVmax on PET2 was also previously reported as a valuable
criteria for healing assessment by Sathekge et al. (15). However
these authors found a threshold value of 4.5 for SUVmax. This
emphasizes the need of other studies to confirm the value of this
criteria, and refine the value of the threshold to be considered.∑

SUV on PET2 also showed a high AUC on ROC curves for the
diagnosis of healing or residual disease at the end of treatment
(0.73 [0.42–1.00]) (Figure 4). This suggests that the extension of
initial disease plays a role in healing or not, the patients with
extensive disease being more at risk for residual disease at the
end of treatment. Other criteria which had to be further studied
are the

∑
SUV per month and the 1MSUV per month which

theoretically take into account the problems of non-observance,
but they were not different in cured and uncured patients
(Figure 2). It is worth noting that the variation of

∑
SUV and

MSUV between initial diagnosis and end of antibiotic therapy
did not appear as reliable criteria according to ROC curves. This
may be related to statistical reason related to the small number
of patients.

Also we found that
∑

SUV has no additional value as
compared toMSUV, despite it takes into account the extension of
the disease. This is probably due to the facts that only one active
lesion is enough for the patient to be uncured, and that there is
no relation between the number of lesions at initial diagnosis and
the number of uncured lesions at the end of therapy.

We did not use other PET criteria than SUVmax (sum and
mean) because other PET criteria such as MTV and TLG need
to determine the volume of each lesion: this was not feasible for
technical reasons in most patients who demonstrated multiple
(especially lymph node) lesions. Also SUVpeak was not available
in all analysis software at the time of the study so we could not
use it.

Overall this study, like others in this field, support present
interest for new radiotracers more specific for infection,
especially those specifically targeting live bacteria (8, 16).
Unfortunately until now no specific marker of mycobacterium
has been radiolabeled for in-vivo imaging. Authors suggest that
[18F]fluoro-choline may be of interest in this setting (12). It
showed lower uptake in BK lesions than [18F]FDG but was never
evaluated in therapeutic response assessment. Maybe the number
of falsely positive sites at the end of treatment would be lower
with [18F]fluoro-choline than with [18F]FDG.

Limitations of the Study
This study is hampered by the small effective of
patients who completed the entire protocol, affecting
the strength of statistical tests. This is probably due to
the social characteristics of most patients whose follow-
up was difficult (foreign origin with language barrier,
homeless patients).

Additionally the study was performed at five different
nuclear medicine centers, using three different PET/CT
tomographs. Unless each PET/CT tomograph was
calibrated according to manufacturers’ specifications,
harmonization of the data through a phantom study was
not performed. Therefore, despite being very promising,
the cut-off values identified on PET2 may be currently
only preliminary data, which need further validation in
the future.

Finally, the evaluation of other PET quantitative criteria, such
asMTV and TLG could not be performed at the time of the study,
which could be of interest in this setting.

CONCLUSION

[18F]FDG-PET/CT at diagnosis was positive in 97.6% of patients
with confirmed lymph node or bone tuberculosis, and discovered
unknown lesions in 53.7% of cases.

∑
SUV and MSUV clearly

decreased on PET2 at the end of treatment in cured patients, but
abnormal hot spots persisted in 82.3% of cases. SUVmax on PET2
was the best criteria to discriminate between healing and residual
disease at the end of treatment, with a threshold of 3.5 in our
study which needs further validation in the future.
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Despite the introduction of new radiotherapy techniques, such as intensity modulated

radiation therapy or stereotactic body radiation therapy, radiation induced lung injury

remains a significant treatment related adverse event of thoracic radiation therapy.

Functional lung avoidance radiation therapy is an emerging concept in the treatment of

lung disease to better preserve lung function and to reduce pulmonary toxicity. While

conventional ventilation/perfusion (V/Q) lung scintigraphy is limited by a relatively low

spatial and temporal resolution, the recent advent of 68Gallium V/Q lung PET/CT imaging

offers a potential to increase the accuracy of lung functional mapping and to better

tailor lung radiation therapy plans to the individual’s lung function. Lung PET/CT imaging

may also improve our understanding of radiation induced lung injury compared to the

current anatomical based dose–volume constraints. In this review, recent advances in

radiation therapy for the management of primary and secondary lung tumors and in

V/Q PET/CT imaging for the assessment of functional lung volumes are reviewed. The

new opportunities and challenges arising from the integration of V/Q PET/CT imaging in

radiation therapy planning are also discussed.

Keywords: radiation—adverse effects, PET perfusion map, radiation planning, lung cancer, stereotactic body

radiation therapy, intensity modulated radiation therapy, volumetric modulated arc therapy

INTRODUCTION

Radiation therapy has an increasing role in the treatment of both primary and secondary lung
cancer (1, 2). In recent years, there has been a technologic revolution in radiation therapy (RT)
with the introduction of new techniques, like intensity modulated radiation therapy (IMRT), image
guided radiation therapy (IGRT), and stereotactic body radiation therapy (SBRT), which have
improved the conformation with the target volumes.

However, radiation induced lung injury (RILI) remains a significant treatment related adverse
event of thoracic RT (3). Indeed, the incidence of grade ≥ 2 lung toxicities is about 15-20% (3).
Accordingly, a current major challenge of thoracic RT is to better preserve lung function and to
reduce pulmonary toxicity.

Radiotherapy for the management of pulmonary lesions is currently based on the so-called
anatomical planning. Lung volumes are delineated on CT images, and dose constraints are applied
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to these anatomical volumes, based on the simplistic assumption
that the lungs are functionally homogeneous. However, it is well-
established that the distribution of regional function into the
lungs is non-uniform, especially in patients with lung cancer who
frequently present with tobacco-related lung diseases and cancer
treatment induced pulmonary disease.

Functional lung avoidance RT is an emerging concept in the
treatment of lung disease.

The technique aim at personalizing RT treatment planning
to individual’s lung functional distribution, by prioritizing
delivery of higher dose in non-functional pulmonary regions
while sparing functional areas (4). In that purpose, establishing
a functional map of the regional ventilation and perfusion
in the lungs is required. Several groups have proposed to
use conventional lung ventilation/perfusion scintigraphy and
showed a potential interest of functional lung avoidance RT to
reduce the dose to the functional lung (4). However, the low
spatial and temporal resolution of conventional V/Q scintigraphy
has limited accurate mapping of lung functional volumes and
restrained its use in daily practice (5).

Ventilation/perfusion (V/Q) positron emission
tomography/computed tomography (PET/CT) is a novel imaging
modality for regional lung function assessment. As compared
with conventional V/Q scan, V/Q PET/CT is inherently a
vastly superior technology for image acquisition, with higher
sensitivity, higher spatial and temporal resolution, superior
quantitative capability, and a greater access to respiratory gated
acquisition (5, 6). As a consequence, V/Q PET imaging offers an
opportunity to improve the accuracy of lung functional mapping
and its use for thoracic radiation therapy planning.

The advent of both advanced radiotherapy techniques and
high resolution lung functional mapping is a real opportunity
to personalize lung radiation therapy plans to an individual’s
own lung function and to minimize lung toxicity. Lung PET/CT
imaging may also improve our understanding of radiation
induced lung injury compared to the current anatomical based
dose–volume constraints.

In this review, we will discuss recent developments in
radiation therapy for the management of primary and secondary
lung tumors, and in V/Q PET/CT imaging for the assessment
of functional lung volumes. We will also review the new
opportunities and challenges arising from the integration of V/Q
PET/CT imaging in radiation therapy planning.

CURRENT ROLES OF THORACIC
RADIATION THERAPY

NSCLC
Lung cancer is the leading cancer in terms of frequency and
mortality, with more than 1.6 million deaths per year (7). The
role of curative-intent RT is well-recognized in both early stage
(8) and locally advanced (9) non-small cell lung cancer (NSCLC).

In recent years, there have been efforts to diagnose lung
cancers at earlier and more curable stages using annual low-dose
computed tomography (CT) for at-risk populations (10). In the
United States, these screening efforts have resulted in up to 30%

of lung cancer cases being diagnosed at an early stage, i.e., stage I
or II (11). These early tumors are amenable to surgical treatment,
with local control rates of up to 96% and overall survival (OS)
rates of ∼50-60% at 3 years (12). Unfortunately, an important
limitation to surgical treatment of these patients is that many
have underlying pulmonary or cardiac comorbidities (13). In
current practice, RT is the preferred alternative for these patients
with early stage (preferably stage I disease with tumor size ≤

3 cm) NSCLC who are unfit or refuse radical surgery (13).
Approximately 30% of NSCLC patients are diagnosed with

locally advanced disease (stage III). This is a heterogeneous
group that includes a large number of clinical presentations,
often with a significant tumor burden (T3-T4 and N2-
N3). Their management requires consultation within a
multidisciplinary team. Radical chemoradiation, especially
concurrent chemoradiation, and maintenance immune
checkpoint-inhibitors (durvalumab) is the standard of care
of unresectable stage III NSCLC (14, 15).

Metastasis
Historically, patients diagnosed with distant metastases
secondary to solid tumors were considered incurable and the
gold standard of treatment was systemic chemotherapy. Hellman
and Weichselbaum suggested that a subset of patients with
limited metastatic disease might benefit from aggressive local
therapy (16, 17). These patients with a small number (five or
fewer) of low volume metastatic lesions were classified as having
oligometastatic disease. The management of oligometastatic
disease has become a frequent question (18) because increasing
evidence has shown that surgical resection or radiation therapy
can lead to better outcomes (2). One of the main sites where
radiotherapy is used in this setting is in the treatment of lung
metastases. Stereotactic body radiation therapy (SBRT) is an
excellent therapeutic modality, with control rates of >90%
reported in prospective and retrospective series (19–21).

MODERN RADIATION THERAPY

3D-CRT
The 1980s saw the advent of three-dimensional conformal
radiotherapy (3D-CRT) with the use of computed tomography
(CT) for treatment planning and the replacement of Cerrobend
blocking with multi-leaf collimators (MLC). These advances
have allowed for the automation of radiation field formation
and treatment planning that shapes the fields to the tumor
volume. For the past decade, 3D-CRT has been the standard of
care to treat unresectable local advanced lung cancer. In recent
years there has been an increasing use of intensity-modulated
radiation therapy (IMRT) (22). IMRT is a form of 3D-CRT
where treatment planning system (TPS) determines non-uniform
fluence to attain customized dose distribution, where dose is
sculpted to target the tumor while sparing proximal organs at
risk (OARs). IMRT is carried out by delivery of multiple beamlets
of non-uniform fluence. The calculation of fluence is done by
high performance computers using algorithms taking an iterative
approach, called inverse planning. The inverse planning starts
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with desired result and works backwards to achieve best possible
beam shape and fluence pattern.

IMRT itself has taken many forms including step-and-shoot
that delivers discrete intensity levels and sliding window IMRT
that delivers continuous intensity levels. Recently, there has
been a growing interest in the rotating gantry IMRT techniques,
tomotherapy and volumetric-modulated arc therapy (VMAT),
that deliver radiation withMLCs and gantry both in motion. This
type of radiation therapy allows the patient to be treated with the
full 360◦ beam angle as the radiation source rotates around the
patient during the irradiation. A higher modulation of the beam
fluence in the whole arc is obtained thanks to the continuous
movement of the leaf and the rotating gantry. The different IMRT
techniques are equivalent except for a reduction in treatment
time with VMAT (23–25).

However, to ensure full exploitation of this technique, it
is necessary to monitor changes in tumor and OAR volume
and/or position during treatment with image-guided radiation
therapy (IGRT), such as cone-beam CT (CBCT) (26). Indeed,
IGRT allows ensuring adequate target coverage while improving
treatment outcome (27–30).

Since a secondary analysis of RTOG 0617, a randomized phase
III trial comparing 60-74Gy with concurrent chemotherapy in
the treatment of inoperable stage III NSCLC in 544 patients,
IMRT has become the gold standard technique (31). Indeed,
IMRT was associated with similar survival and tumor control
outcomes with a significant decrease in grade ≥ 3 radiation-
induced lung fibrosis (RILF) compared with RTC3D (3.5% vs.
7.9) despite larger tumors and higher V5s (lung volume receiving
5Gy or more) but similar V20s andmean lung doses (MLD) (31).

SBRT
In the mid-1990s, stereotactic “body” radiotherapy (SBRT),
also called stereotactic ablative radiotherapy (SABR), was
first introduced by researchers at the Karolinska Institute in
Stockholm by applying the principles of cranial stereotactic
radiosurgery to extracranial tumor sites, particularly to the lung
(32). Then, this technique was developed by several centers in
the world (33–35). SBRT consists of delivering very high doses
per fraction in a small number of sessions (usually between
3 and 8 fractions over 1-2 weeks) corresponding to a so-
called hypofractionated scheme. Thus, radiation oncologists can
perform an even more precise and tumor conformal radiation
therapy with a rapid dose falloff in the lung parenchyma and
adjacent structures leading to a higher biological effective dose
(aiming at a BED10 of at least 100Gy) directed to the tumors and
to a more important destruction of the tumor cells (36–38).

A randomized trial comparing SBRT (54Gy in 3 fractions or
48Gy in 4 fractions) with conventional (66Gy in 33 fractions)
or moderate hypofractionation (50Gy in 20 fractions) was
conducted by the Trans-Tasmanian Radiation Oncology Group
(TROG), known as the CHISEL trial. A total of 101 participants
were included (2:1 with n = 66 SBRT and n = 35 conventional).
Results showed superior local control (hazard ratio = 0.32, 95%
CI 0.13-0.77, p = 0.0077) of the primary disease without an
increase in major toxicity (3).

Multiple randomized controlled trials have sought to compare
SBRT with surgery (lobar or sublobar resection) for stage I
NSCLC, either in an unselected population or in a high-
risk population (39–41). Unfortunately, all trials were stopped
prematurely due to low inclusion rates, despite multiple
adjustments of inclusion criteria to increase patient recruitment.
However, a survival analysis including two phase III trials (STARS
and ROSEL) by Chang et al. (39) demonstrated similar 3-year
recurrence-free survival with SBRT or resection (86 and 80%,
respectively, p = 0.54). OS was in favor of SBRT [95 vs. 79%,
hazard ratio = 0.14, 95% confidence interval (CI) 0.017-1.190, p
= 0.037]. However, these results should be interpreted with great
caution because of the presence of numerous biases, including
small patient numbers, unbalance cohorts in these two studies,
the risk of type I inference error, and the relatively short follow-
up. Based on these data, many international scientific societies
and networks now consider SBRT as the best treatment strategy
for medically inoperable patients with stage I NSCLC (40, 41).

In light of these results with lung SBRT in NSCLC, studies
concerning the possible benefit of SBRT in patients with
oligometastatic disease in the lung have been initiated (42–45).
Recently, results of ongoing trials using SBRT in oligometastatic
disease have been presented. They report improved overall
survival and progression-free survival compared to standard
therapy, confirming the benefit of local ablative therapy in limited
systemic disease (46, 47). Thus, it is very likely that the treatment
strategy and prognosis of these patients will change significantly.
Indeed, more of them will be future candidates eligible for
SBRT for lung metastases before and after multiple lines of
immunotherapy and/or targeted agents.

RADIATION INDUCED LUNG TOXICITIES

Radiation exposure of the lungs is common during a course
of therapeutic radiation for thoracic malignancies. Radiation-
induced lung injury (RILI) encompasses radiation-induced
pneumonitis (RIP), inflammation of the lung which may
manifest as a dose-limiting acute or subacute toxicity, and
radiation-induced lung fibrosis (RILF), a late effect of lung
exposure to radiation. The diagnosis of RIP and RILF is based on
clinical presentation andmay be supported by associated imaging
findings. Various grading scales are used (Tables 1, 2).

Despite the introduction of new radiotherapy techniques, RILI
remains a significant treatment related morbidity of thoracic
radiation therapy (3).

The occurrence of grade ≥ 2 RIP in the treatment of
lung cancer has gradually decreased from 30–35% with 3D-
radiotherapy (48) to 29–32% with IMRT (48). Grade ≥ 3 RIP
was seen in about 10-15% with IMRT (49). Grade ≥ 2 and grade
≥3 RILF were seen in about 29 and 15% of patients with IMRT,
respectively (50, 51).

Although quality of life after SBRT represents an important
issue in assessing the effective impact of this radiation modality
on patient management, it has been evaluated in few studies.
Indeed, the majority of patients receiving SBRT have poor lung
function at the time of diagnosis making them unfit for surgery,
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TABLE 1 | Overview about grading scales for radiation-induced pneumonitis.

Grading scale Grade 1 Grade 2 Grade 3 Grade 4 Grade 5

CTCAE v5.0 Asymptomatic; clinical or

diagnostic observations only;

intervention not indicated

Symptomatic; medical

intervention indicated; limiting

instrumental ADL

Severe symptoms; limiting

self-care ADL; oxygen

indicated

Life-threatening respiratory

compromise; urgent

intervention indicated (e.g.,

tracheotomy or intubation)

Death

RTOG Asymptomatic or mild

symptoms (dry cough); slight

radiographic appearances

Moderate symptomatic

pneumonitis (severe cough);

low grade fever; patchy

radiographic appearances

Severe symptomatic

pneumonitis; dense

radiographic changes

Severe respiratory

insufficiency/Continuous

O2/Assisted ventilation

Death

LENT-SOMA (EORTC) Asymptomatic or mild

symptoms; slight imaging

changes

Moderate symptoms;

moderate imaging changes

Severe symptoms; increased

density imaging changes

Severe symptoms requiring

continuous O2 or assisted

ventilation

Death

CTCAE v5.0, Common terminology criteria for adverse events, version 5.0; RTOG, Radiation Therapy Oncology Group; EORTC, European Organization for Research and Treatment of

Cancer; LENT-SOMA, Late effects in normal tissue-subjective objective management analysis.

TABLE 2 | Overview about grading scales for radiation-induced lung fibrosis.

Grading scale Grade 1 Grade 2 Grade 3 Grade 4 Grade 5

CTCAE v5.0 Radiologic pulmonary fibrosis

< 25% of lung volume

associated with hypoxia

Evidence of pulmonary

hypertension; radiographic

pulmonary fibrosis 25–50%

associated with hypoxia

Severe hypoxia; evidence of

right-sided heart failure;

radiographic pulmonary

fibrosis > 50–75%

Life-threatening consequences (e.g.,

hemodynamic/pulmonary

complications); intubation with

ventilatory support indicated;

radiographic pulmonary fibrosis >

75% with severe honeycombing

Death

RTOG Asymptomatic or mild

symptoms (dry cough); slight

radiographic appearances

Moderate symptomatic

fibrosis (severe cough); low

grade fever; patchy

radiographic appearances

Severe symptomatic fibrosis;

dense radiographic changes

Severe respiratory insufficiency/

Continuous O2/ Assisted ventilation

Death

LENT-SOMA

(EORTC)

Asymptomatic or mild

symptoms;

radiological abnormalities;

10–25% reduction of

respiration volume and/or

diffusion capacity

Moderate symptoms; patchy

dense abnormalities in

imaging;

> 25–50% reduction of

respiration volume and/or

diffusion capacity

Severe symptoms; dense

confluent radiographic

changes limited to

irradation field;

> 50–75% reduction of

respiration volume and/or

diffusion capacity

Severe symptoms requiring

continuous O2 or assisted ventilation;

dense fibrosis, severe scarring and

major retraction of normal lung;

> 75% reduction of respiration

volume and/or diffusion capacity

Death

CTCAE v5.0, Common terminology criteria for adverse events, version 5.0; RTOG, Radiation Therapy Oncology Group; EORTC, European Organization for Research and Treatment of

Cancer; LENT-SOMA, Late effects in normal tissue-subjective objective management analysis.

so it is crucial to know the effect of SBRT on lung function. The
occurrence of RIP grade≥ 2 and grade≥ 3 are about 17-20% and
6-7%, respectively. The incidences of grade ≥ 2 and grade ≥ 3
RILF are about 15-20% and 5-6% with SBRT, respectively (3).

Thus, the thorax remains a challenging anatomical site for
RT delivery, especially for patients with lung comorbidities,
and the reduction of pulmonary side effects (and spare lung
function) while achieving reasonable local control and sustaining
its curative potential is an ongoing challenge faced by radiation
oncologists and interdisciplinary treatment teams (3).

CONVENTIONAL (ANATOMICALLY BASED)
PLANNING

Currently, radiotherapy planning is anatomical for the treatment
of lung tumors. Indeed, only CT images are used to define
the lung volumes to which dose constraints are applied. To

minimize toxicity to the OARs, in particular to the “healthy
lung,” treatment planning system (TPS) are used to optimize the
beam arrangements in order to respect the planning constraints.
TPS allows to evaluate the dose delivered to each voxel in a
volume of interest. Among the multiple plan options provided by
TPS, the plan with the best therapeutic ratio (maximum tumor
control with the least possible complications for normal tissues)
is chosen. The dose-volume histogram (DVH) is used as a tool
for comparison between plans.

In IMRT, the most important modifiable risk factors for
RILF are the radiation dose and anatomical volume of lung
irradiated, with lung V20 (volume of lung receiving 20Gy or
more) and mean lung dose (MLD) being validated in early
studies. Consistency in lung volumes is important for reporting
purposes, with the preferred method being total lung volume
minus Gross Tumor Volume (GTV). In one of the most
comprehensive analyses, a multi-institutional individual patient
data meta-analysis investigated dosimetric predictors for RILF
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in patients treated with concurrent chemoradiation. This study
reported symptomatic RILF in 30% of treated patients, with
fatal RILF reported in 2% (52). The most important predictors
for RILF included V20, older age, and carboplatin/paclitaxel
chemotherapy. V20 as a continuous variable was also validated
in a subgroup analysis of RTOG 0617 (31). In this analysis,
treatment with IMRT was associated with a significantly lower
risk of RILF despite having a higher V5, which had been
associated with RILF in prior studies. Thus, the goal for radiation
treatment planning is to achieve the lowest V20 and MLD
possible, while V5 does not appear to be a critical variable.
Commonly cited metrics include a V20<35% andMLD<20Gy,
but lower doses are often achievable with modern treatment
planning strategies. Patients with interstitial lung disease (ILD)
should be treated with caution, as higher rates of symptomatic
and fatal pneumonitis have been reported in this patient
population (53).

In SBRT, there is few data about dose-effect relationship
between lung anatomical volumes irradiated and the risk or
the grade of toxicities. Saha et al. found that lower lobe tumor
location, larger tumor size, PTV, mean lung dose, V20, and V12.5
were significant predictors of symptomatic RILF (54). Tumor size
has been found to predict toxicity in previous studies (55–57).
The only clinical factor associated with symptomatic RIP found
was subclinical interstitial lung disease (45 vs. 1.6%) in the study
of Okubo et al. (58). A recent review of 97 studies evaluated
clinical and dosimetric predictors of RILI. Unfortunately, no
threshold level of “tolerance dose volume” was found. However,
the results seemed to show that the risk of symptomatic RILI
was relatively low (<10-15%) with an MLD of 8Gy and a V20
of 10-15% (59).

FUNCTIONAL LUNG AVOIDANCE
PLANNING

Current conventional anatomically-based planning simplistically
assumes that the lungs are functionally homogeneous. However,
it is well-known that the regional distribution of pulmonary
function is heterogeneous, especially in patients with lung
cancer, who frequently present with tobacco-related lung diseases
such as chronic obstructive pulmonary disease (COPD) or
emphysema, and treatment induced pulmonary disease from
surgery, radiotherapy, or systemic therapies. In order to decrease
pulmonary toxicities and preserve lung function, it has been
proposed to personalize radiation therapy treatment planning
to individual’s lung functional distribution, i.e., to limit as far
as possible the dose to the functional lung to the detriment of
regions with already impaired lung function (4). Recent advances
in radiotherapy techniques, with the use of inverse planning
and TPS optimization algorithms, has made possible to add a
constraint on a “functional lung” volume.

For that purpose, establishing a functional map of the
regional function in the lungs is required. In that respect, the
principle underlying Ventilation/Perfusion (V/Q) scintigraphy
is very attractive. Indeed, lung scintigraphy allows to assess
the regional distribution of ventilation and perfusion in the

lungs. Ventilation is imaged after inhalation of inert gases
or radiolabeled aerosols that reach terminal bronchioles and
alveoli in proportion to regional distribution of ventilation.
Perfusion is imaged after intravenous administration of macro-
aggregated albumin (MAA) particles, which are trapped in the
lung capillaries according to the regional blood flow.

Several studies showed that lung scintigraphy may provide
additional information to assist in identifying patients at greater
risk of radiation pneumonitis (60–62). Furthermore, studies
have demonstrated the potential for lung SPECT imaging to
be integrated into treatment planning to improve functional
dose metrics (4). Several studies reported a reduction of mean
functional volumes and mean lung dose when plans were
optimized to spare functional lung (4). However, functional
lung avoidance planning using SPECT imaging has not yet
been adopted in daily clinical practice. Indeed, no clinical
benefit has been clearly established so far (4). Furthermore,
there are a wide variety of thresholds used for lung functional
volumes delineation. This may be explained by the low spatial
and temporal resolution of conventional V/Q scintigraphy,
which prevents an accurate and reproducible mapping of lung
functional volumes.

V/Q PET/CT IMAGING: A NEW IMAGING
TOOL FOR FUNCTIONAL LUNG
AVOIDANCE PLANNING

V/Q PET/CT is a novel imaging modality for regional lung
function assessment. The same carrier molecules as conventional
V/Q scintigraphy are used, but they are labeled with 68Gallium,
a ß+ isotope, instead of 99mTc, allowing acquisition of images
with PET technology (5, 63, 64). Similar physiological processes
are therefore imaged using conventional V/Q scan or V/Q
PET/CT, but PET is a vastly superior technology for image
acquisition, with higher sensitivity, higher spatial and temporal
resolution, superior quantitative capability, and a greater access
to respiratory gated acquisition (5, 65). The test has already
shown promising results in a variety of pulmonary conditions,
such as pulmonary embolism diagnosis (63, 66) or pre-surgical
assessment of lung cancer patients (67). Similarly, V/Q PET
imaging offers an opportunity to improve the accuracy and utility
of lung functional mapping for thoracic radiotherapy.

Besides improving the accuracy of lung functional volume
delineation, pulmonary PET/CT imaging is also appealing for
several reasons (5, 68). The acquisition time is much lower
(5min) than with conventional V/Q scan. V/Q PET imaging
is a simple and non-invasive test, with no contraindication
or side-effects, especially related to the injection of contrast
media (allergy, renal dysfunction). No special procedure such
as fasting or diet is required. The effective radiation dose of
the scan is low, similar to the dose of conventional V/Q scan
(∼2-3 mSv for the PET acquisition), PET and CT respiratory-
gated acquisition can be readily performed, which may further
improve the accuracy of lung functional volumes delineation and
improve the co-registration with the CT used for radiotherapy
planning. In nuclear medicine facilities that routinely perform
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V/Q scans with Technegas, and equipped with a 68Ga generator,
performing V/Q PET/CT does not require additional resources.
68Ga is an extremely convenient radiotracer for clinical use. 68Ga
generators are increasingly available in nuclear medicine facilities
owing to growing use for prostate cancer and neuroendocrine
tumor imaging.

Le Roux et al. studied, in 30 lung cancer patients, the
correlation between 68Ga V/Q PET/CT functional volumes and
pulmonary function tests (PFTs) indices (69). The results showed
that a percentage of lung volume with normal ventilation and
perfusion >90% correctly identified impaired lung function
in 93% of patients. A high degree of correlation between all
functional lung volumes on V/Q PET/CT imaging and lung
function as assessed by PFTs was also demonstrated. These
results support the possible use of 68Ga V/Q PET/CT to predict
potential consequences and side effects of treatments that may
alter regional function, such as RT.

Although V/Q PET/CT is a very attractive test tool
for functional lung avoidance planning, only few studies
has been published on the topic so far. A first study
simulated a 4D PET/CT perfusion-based radiotherapy plan
in a cohort of NSCLC patients (70). These patients were
planned to receive curative 3D-CRT at a dose of 60Gy in
30 fractions. In this study, the definition of “perfused” or
“well-perfused” lung on 68Ga-MAA PET/CT was based on an
automated contour encompassing any 68Ga-MAA uptake or a
maximum standardized uptake value (SUVmax) cutoff of 30%,
respectively. To exclude any areas of clumping or other artifacts,
automated contours were manually corrected. This PET/CT-
guided planning improved the functional parameters V30, V40,
V50, and V60 (all p-values< 0.05), and the mean functional dose
to the lung was improved by a median value of 0.86Gy (p< 0.01)
for well-perfused lungs.

The same team evaluated the value of ventilation in addition
to perfusion for functional lung volume sparing in IMRT.
Perfusion-guided IMRT planning alone was able to decrease
the functional lung dose while maintaining a consistent plan
quality (71).

In the same population, changes in perfusion, ventilation,
and CT lung density were assessed (72). The authors used
deformable registration to register the functional images with
RT planning (73). Then, they averaged the isodose volumes in
10Gy bins intervals. Finally, the relative SUV loss was analyzed
for ventilation and perfusion for each dose bin. They showed
an almost perfectly linear negative dose-response relationship
for perfusion (r2 = 0.99, P < 0.01) with a strongly negative
correlation for ventilation (r2 = 0.95, P < 0.01). In some
patients, peritumoral reperfusion/reventilation occurred. These
results suggest that the effects of postradiotherapy may be
closely correlated with impairments in perfusion, more so than
ventilation. Thus, it would be necessary to preserve primarily
the function of perfused lungs. In 68Ga V/Q PET/CT planning
optimization, the aim would be to increase the weight of the
radiation beams through the non-perfused lung regions and
avoid the perfused lung regions without compromising the plan
in terms of satisfying the established criteria for tumor coverage
and preservation of other normal tissue (e.g., Figure 1).

PERSPECTIVE AND FUTURE
CHALLENGES

For several years, radiotherapy in lung cancer has seen major
technological advances, with the advent of motion management
control (4D-CT, respiratory gating), image guidance, intensity
modulated volumetric techniques or SBRT, which have led to
an improvement in efficacy and tolerance. Nevertheless, further
improvements in radiation therapy planning to spare lung
function would be of interest for several reasons.

First, most of patients referred for thoracic radiation
therapy have poor pulmonary function or have been heavily
pretreated. Limiting the risk of high grade/fatal radiation
pneumonitis remains therefore a major challenge. Second,
multiple subsequent treatments are likely to be necessary for both
primary NSCLC (second tumors) and lung metastases (oligo-
progression). In these patients, toxicity should be kept as low
as possible from the first treatment to preserve the possibility
of re-irradiation, especially in SBRT. Third, patients with larger
tumors or tumors close to critical structures would probably
benefit the most from high-precision SBRT (74, 75), given the
absence of other options and the higher risk of toxicity with
current technology.

Moreover, V/Q PET/CT could be useful to better assess the
relationship between radiation dose and lung toxicity. Indeed,
in previous studies, the normal lung volume definitions for
dose-volume histogram calculation are highly variable (76, 77).
Usually, lung volume was defined as the bilateral lung excluding
the planning target volume (Lung-PTV) (78–80) or excluding
the gross tumor volume (Lung-GTV) (81–83). However, in
RTOG 0617, lung volume was defined as the bilateral lung
volume excluding the CTV (Lung-CTV). Currently, both RTOG
and ESTRO-ACROP guidelines recommend using Lung-GTV
delineation instead of Lung-PTV to standardize lung volume
definition among different institutions (84, 85). However, there
is only limited clinical evidence on which normal lung definition
is better for symptomatic RILF prediction. The definition
of a functional lung volume may be of interest to better
predict toxicity.

Before implementation of functional lung avoidance planning
using lung PET/CT imaging, a number of issues need to be
resolved. Firstly, the definition of functional lung volumes was
not consistent throughout publications. There is no consensus
on the definition of the optimal functional region of the
lung. The majority of current planning systems require the
definition of a functional threshold, but continuum-based
planning is possible (14, 32). Another possibility could be to
define multiple levels of functional lung regions that do not
overlap, with the most important dosimetric goals assigned
to the most functional regions. Secondly, the dose constraints
to the functional lung must be clarified. In the two studies
that evaluated PET-guided functional lung avoidance planning,
the functional lung dose constraints used were the same as
those for anatomy-based planning. Most importantly, there is
currently no publication that demonstrated the clinical benefit
of functional lung imaging over anatomical lung imaging for
radiotherapy planning. Indeed, no randomized interventional
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FIGURE 1 | Comparison between conventional (anatomically based) planning (A) and functional lung avoidance planning guided by 68Ga Q PET/CT (B) in a patient

treated for a lung tumor by stereotactic body radiation therapy. Both planning show optimal coverage (red isodose line) of the tumor but the functional planning shows

a decrease of the dose (20Gy isodose in green and 16Gy isodose in yellow) to the functional lung (in red the most functional areas and in blue the least functional

areas). We can also see that on the corresponding anatomical images we cannot see any difference between the functional and non-functional areas.

study has evaluated this question. Thus, it is necessary to test
this hypothesis in a phase 3 randomized trial with appropriate
statistical power to demonstrate a possible decrease in RILI using
functional lung imaging.

Finally, there are currently different options for lung
ventilation and perfusion imaging (SPECT, MR, ventilation
CT and PET/CT) for the implementation of image-guided
functional planning.

The availability and cost of the gas, the expertise required
for gas imaging, including access to specialized equipment, and
the need for image registration to the planning CT have been
perceived as limitations to the clinical implementation of MR
hyperpolarized gas imaging techniques in radiotherapy (86–88).

4D CT based methods have also shown promising results to
estimate regional ventilation lung function (89, 90). However,
high quality CT imaging is a key requirement given the potential
for artifacts (90, 91). Furthermore, data in the literature seem
to favor the use of perfusion data rather than ventilation for
functional optimization of dose delivery to the lung. Indeed,
perfusion defects are more frequent than ventilation defects, and
both are more frequent than CT changes (92).

Thus, 68Ga Q PET/CT seems to be the imaging technique
that can provide interesting functional data to guide radiotherapy
with a fast and cost-effective imaging.

Two ongoing prospective trials should provide important
data to support the initiation of such large scale randomized
controlled trials.

Bucknell et al. are investigating a prospective dose escalation
study with PET-guided radiotherapy planning that aims to
show the value of PET-guided radiotherapy for IMRT stage III
NSCLC (93). The HI-FIVE trial is a single arm interventional
trial integrating 68Ga V/Q PET/CT respiratory-gated (four-
dimensional) into radiation treatment planning to identify highly
functioning lung volumes and avoidance of these using VMAT
planning (NCT03569072). The aim is to evaluate the possibility
for moderate dose escalation to the primary tumor only, while
respecting conventional normal tissue toxicity constraints. For
each patient, his radiation plan will be tailored to the location
of his tumor and his lung functional mapping. Feasibility of this
study is defined as meeting all dosimetric criteria for ≥15 of 20
patients. Thus, the purpose of this study is to provide valuable
information on the feasibility of a larger-scale randomized trial
and not to show a possible reduction in pulmonary toxicity or
improvement in tumor control.

Our group has recently launched the PEGASUS trial, a single
arm monocenter study in patients treated with SBRT for primary
or secondary lung lesions (NCT04942275). Initially, patients will
receive standard, “anatomical” planning, blinded to the results of
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the 68Ga Q PET/CT. In a second phase, patients will benefit from
functional planning guided by 68Ga Q PET/CT. Each patient will
be his own control. The doses to the functional lung will be
calculated and compared for the two treatment planning. The
primary aim is to estimate the percentage of patients for whom
the dose to the functional lung can be reduced while respecting
the standard constraints. Patients will have a clinical follow-
up at 1 month and then every 3 months for 1 year. They will
also undergo PFTs and repeated 68Ga Q PET/CT at 3 months
and 1 year to assess the impact of SBRT on global and regional
lung function.

CONCLUSION

Technological advances in radiation modalities have
revolutionized the treatment of primary and secondary

lung tumors. The advent of lung PET/CT imaging opens new
perspectives for functional lung avoidance planning, in order
to improve the therapeutic index, the technique may allow to
decrease the dose to the functional lung and to reduce pulmonary
toxicity, which may increase the possibility of dose escalation
and re-irradiation. Results from ongoing clinical trials should
help to guide future research and further push the boundaries of
radiation therapy for years to come.
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Objectives: This study aimed to investigate the physiological distribution characteristics

of 68Ga-DOTA-FAPI-04 in the ovary, and assess the feasibility of early diagnosis of primary

ovarian disease with 68Ga-DOTA-FAPI-04 PET/CT.

Methods: We retrospectively analyzed the data of patients who received 18F-FDG

and 68Ga-DOTA-FAPI-04 PET/CT scanning in the Nuclear Medicine Department of

our hospital within 3 days from September 2020 to January 2021. We selected the

data in which ovaries showed abnormal FDG activity. Patients with abnormal ovarian

FDG uptake with focus confirmed by pathological biopsy or clinical follow-up as

pathological changes were excluded. The uptake of tracers (18F-FDG and 68Ga-FAPI)

was semi-quantitatively analyzed.

Results: This study included 14 patients (average age was 38.6). Physiological ovarian

uptake was mostly unilateral, and there was no significant difference in SUVmax between

the left and right sides (FDGt = 0.272, FAPIt = 0.592). The ovary SUVmax of FDG (4.89

± 1.84) was statistically significantly higher than that of FAPI (1.53 ± 0.37). The Le/Li

ratio on FDG is 3.38 ± 1.81, TBR is 5.81 ± 1.98, while the Le/Li ratio on FAPI is 3.57 ±

1.26, TBR is 0.94 ± 0.19.

Conclusion: Our research shows that ovarian functional or pathological changes can be

manifested as FDG avid, while 68Ga-DOTA-FAPI-04 has no physiological accumulation

in the ovary and is not affected by the menstrual cycle. Therefore, 68Ga-DOTA-FAPI-04

has unique advantages in the diagnosis of ovarian diseases, and can identify them early

and accurately.

Keywords: 18F-FDG, 68Ga-DOTA-FAPI-04, PET/CT, ovary, physiological metabolism

INTRODUCTION

2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG), known as “the century molecule,” is currently
the most widely used oncological tracer. 18F-FDG positron emission tomography/computed
tomography (PET/CT) is a valuable molecular imaging method widely used in the clinical
diagnosis, staging and efficacy monitoring of various diseases. However, due to the pathological
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characteristics of glucose metabolism, 18F-FDG is highly
distributed in normal organs including the brain, heart, and
liver (1–3). Many physiological variations and pitfalls of whole-
body 18F-FDG PET/CT imaging have been reported (4–6). In the
pelvic region, activity retention within the urinary tract and 18F-
FDG uptake in the normal intestine over very short segments
are common sources of false-positives (7). At the same, 18F-FDG
PET/CT lacks specificity in differentiating inflammation (8–10).

The menstrual cycle complicates the imaging of the female
reproductive system. Gynecologic malignancies, including
cervical, endometrial, vulvar, and ovarian carcinoma show
18F-FDG activity (11–13). 18F-FDG uptake in follicular ovarian
cysts or hemorrhagic luteal cysts has previously been reported
(13–15)]. In recent years, there have been reports of focal
18F-FDG uptake in the ovaries and uterus associated with
the menstrual cycle in premenopausal women (14, 16–18),
which may result in false positives on 18F-FDG PET imaging
or malignancy being overlooked for physical uptake. This
may be a challenge to nuclear medicine physicians. In order
to identify if ovarian 18F-FDG uptake is physiological or
pathological, the traditional method requires 18F-FDG PET/CT
in different menstrual periods, which is not conducive to
early clinical diagnosis. This has led to the development of
more tracers.

Quinoline-based ligands targeting cancer-associated
fibroblasts are promising radiopharmaceuticals in multiple
tumors. Fibroblast activation protein (FAP) is a type II
transmembrane glycoprotein expressed in dimer form on
the surface of the tumor-associated cell matrix (CAFs)
(19, 20). Evidence indicates that FAP is highly expressed
in a variety of tumors, especially colorectal, ovarian,
pancreatic, and hepatocellular carcinomas characterized
by a strong desmoplastic reaction (21). CAFs with high
FAP expression are associated with an adverse prognosis
by promoting invasion, angiogenesis, micro-environmental
immune suppression, and metastasis (22). 68Ga-DOTA-
FAPI-04 showed the most favorable PET imaging properties,
including low nanomolar affinity to FAP, near-complete
internalization of FAP-bound radioactivity, and rapid blood
clearance (23). This is a promising diagnostic and therapeutic
target because of its low uptake in normal tissues and high
target/non-target ratio.

To our knowledge, there have been no systematic
investigations of ovarian FAPI metabolism. Herein, we
present the results of a retrospective study of FAPI ovarian
uptake patterns, which could help identify physiological and
pathological changes for disease staging and formulate optimal
treatment strategies.

MATERIALS AND METHODS

This is a retrospective analysis of a sub-cohort of patients from
a previously acquired prospective database. Data were screened
from the study previously registered at the clinical trial center
and approved by the Clinical Research Ethics Committee of
our Hospital. The study was conducted in accordance with the

1964 declaration of Helsinki and its subsequent amendments
or similar ethical standards. In all cases, PET/CT scans were
performed according to clinical needs or other protocols
approved by our institutional review committee.

Patients
We retrospectively analyzed the images of patients who
simultaneously underwent 18F-FDG and 68Ga-DOTA-FAPI-04
PET/CT examination in the Department of Nuclear Medicine in
our institution between September of 2020 and January of 2021.
We selected the patients whose ovary demonstrated 18F-FDG
uptake and reviewed their medical records and imaging findings.
We then clarified any vague information to determine the reason
for the increased FDG uptake. Pathological or imaging follow-up
was the final determinant. The inclusion criteria were as follows:
(1) female patients over 18 years old; (2) The inspection interval
between FDG and FAPI is <3 days; (3) ovarian abnormal uptake
on 18F-FDG; and (4) ovarian lesions were excluded by imaging
and clinical follow-up or pathological results. The exclusion
criteria were as follows: (1) history of ovarian tumors or related
diseases and (2) patients without menstrual records or who failed
to follow up. The first day of the menstrual cycle was recorded
and all menstrual cycles were converted to a standardized 28 days
for comparison.

PET/CT Imaging
18F-FDG was manufactured per the standard method using the
coincidence 18F-FDG synthesis module [FDG-N, PET (Beijing)
Science and Technology, Beijing, China]. We purchased the
precursor FAPI-04 from MedChemExpress LLC (Shanghai,
China) with a purity of 98%. Radiolabeling of DOTA-FAPI-04
was performed by adding 1mL sodium acetate (0.25M) and 4mL
68Ga-solution (370 MBq) to a reactor with a 25µg precursor
FAPI-04. The final pH was ∼4.0. The reaction was heated at
95◦C for 10min and the product was purified using a Sep-pak18C
column. The final product was diluted with saline and sterilized
by passing through a 0.22µmMillipore filter. The radiochemical
purity was over 98% for 18F-FDG and 68Ga-DOTA-FAPI-04.

All patients were required to fast for at least 6 h before
the 18F-FDG PET/CT examination. Serum glucose values were
normal before the injection. No special preparation was required
before 68Ga-DOTA-FAPI-04 PET/CT imaging (such as fasting
or normal blood glucose levels). The dosage of intravenously
injected 18F-FDG and 68Ga-DOTA-FAPI-04 was calculated based
on the patient’s weight (5.55 MBq [0.15mCi]/kg for FDG; 1.85
MBq [0.05mCi]/kg for FAPI).

Acquisition of 18F-FDG and 68Ga-DOTA-FAPI-04 imaging
was started∼60min after intravenous injection. The whole-body
inspection scope was from the base of the skull to the base of the
thigh. CT scan parameters included a tube voltage of 120 kV, a
current of 120mA, and a slice thickness of 3mm. A PET scan
in 3D acquisition mode was immediately performed after the CT
scan and 5–6 beds were used depending on body length (90 s/bed
for FDG and 3 min/bed for FAPI).
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Imaging Review
The Advantage Workstation was used to reviewed PET, CT,
and fused PET/CT images. 18F-FDG and 68Ga-DOTA-FAPI-
04 PET/CT scans were interpreted by two experienced board-
certified nuclear medicine physicians. To prevent any bias, the
research was reviewed in groups by study type: all 18F-FDG
PET/CT images were reviewed by TangW. andWangQ. as group
1, and all 68Ga-DOTA-FAPI-04 PET/CT images were reviewed by
Yang S. and Liu L. as group 2. Reviews were performed without
other imaging data.

For a semi-quantitative analysis, regions of interest were
manually drawn on transaxial images around the metabolic
lesions of the uterine adnexa. Themaximum standardized uptake
value (SUVmax) was automatically calculated by the Advanced
Workstation. The SUVmax of adjacent pelvicmuscle was selected

as the activity background, and the SUVmax of the ovary
was divided by this muscle SUVmax to calculate target-to-
background ratio (TBR). The mean standardized uptake value
(SUVmean) of a round sphere with a diameter of 2 cm was
selected from the liver to calculate Le/Li ratio (Le = ovary Li
= Liver).

Statistical Analysis
Statistical software package SPSS (IBM SPSS Statistics, Version
22) was used for data analysis and description. Descriptive
statistics such as absolute and relative frequencies for discrete
parameters and mean and standard deviation for continuous
parameters were computed. Pearson correlation coefficient was

TABLE 1 | The demographic and clinical characteristics of patients.

Patient no. Age (years)/Gender Height (cm) Weight (kg) Primary diagnosis Treatment

1 19/female 152 38 Lymphoma Radiotherapy and chemotherapy

2 27/female 155 56 Thyroid Ca Surgery

3 29/female 162 55 Unknown fever Conservative treatment

4 30/female 159 58 Trichoblastoma Surgery

5 33/female 163 64 Lung Ca Surgery

6 38/female 157 54 Thyroid Ca Surgery

7 39/female 152 52 Stomach Ca Surgery

8 42/female 162 61 Lung Ca Surgery

9 45/female 158 60 Breast Ca Surgery and chemotherapy

10 45/female 164 74 Lymphoma Chemotherapy

11 46/female 156 72 Cervical Ca Radiotherapy and chemotherapy

12 48/female 155 48 Breast Ca Chemotherapy and Interventional therapy

13 48/female 165 78 Lung Ca Surgery

14 52/female 158 69 Thyroid Ca Surgery

TABLE 2 | Summary of 18F-FDG and 68Ga-DOTA-FAPI-04 PET/CT images.

Patient no. Lesion size (mm2) FDG FAPI

Menstrual

cycle (days)

SUVmax of

ovary

Le/Li

ratio

TBR Menstrual

cycle (days)

SUVmax of

ovary

Le/Li

ratio

TBR

1 10.2 × 8.9 −14 4.1 4.6 8.2 −12 1.2 3.0 0.8

2 9.5 × 13.1 −17 3.9 3.3 5.6 −14 1.2 2.4 0.8

3 10.3 × 9.6 −12 4.6 3.5 6.6 −11 1.4 3.5 0.8

4 13.0 × 12.0 −11 8.5 8.5 9.4 −10 2.1 4.2 1.2

5 8.9 × 7.2 −13 3.6 2.6 6.0 −11 1.8 3.6 1.1

6 11.4 × 9.6 −8 3.3 2.5 4.1 −7 1.6 2.7 0.8

7 21.1 × 19.0 −11 8.2 5.5 9.1 −10 1.9 3.2 0.9

8 12.2 × 10.3 −12 4.6 2.4 4.6 −11 1.3 2.6 0.7

9 10.3 × 11.0 −16 4.6 2.2 4.2 −14 1.1 3.7 0.9

10 19.5 × 20.2 −15 2.7 1.5 3.0 −13 1.0 2.5 0.7

11 7.9 × 7.6 −10 5.4 2.6 5.4 −9 1.7 5.7 1.2

12 11.8 × 9.3 −14 2.8 1.8 3.5 −13 1.2 2.4 1.1

13 10.0 × 15.2 −11 5.2 3.5 5.8 −9 1.9 3.8 1

14 20.0 × 12.8 −13 7.0 2.9 5.8 −12 2.0 6.7 1.2
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used to describe the relationship between FDG-dose/FAPI-
dose and total SUV. Results with a P-value <5% were
statistically significant.

RESULTS

A total of 78 female patients underwent 18F-FDG and 68Ga-
DOTA-FAPI-04 PET/CT examination within 3 days. Ovarian
uptake was observed on 18F-FDG PET/CT images in 29 patients,

15 of whom were confirmed by pathology (n = 11) or follow-
up (n = 4). This retrospective analysis included 14 patients with
a mean age of 38.6 (range, 19–52 years). They were mainly in
secretory phase (11/14 for FDG, 12/14 for FAPI) and proliferative
phase (3/14 for FDG, 2/14 for FAPI). The demographic and
clinical characteristics of the subjects are summarized in Table 1.

The FDG and FAPI PET/CT images showed that there were
significant differences in the ovarian uptake between the two
groups, most being unilateral. There was no significant difference

FIGURE 1 | A 48-year-old woman with newly diagnosed lung cancer underwent a PET/CT scan for tumor staging. 18F-FDG PET/CT (A) images revealed increased

FDG uptake in the left lung (curved arrow, SUVmax9.1). Abnormal activity was also observed in the endometrium and left adnexal area (dotted arrow, SUVmax 5.2).
68Ga-DOTA-FAPI-04 PET/CT (B) showed increased FAPI uptake in the left lung lesion (curved arrow, SUVmax10.6) and uterus. No other abnormal lesions were

observed.

FIGURE 2 | PET/CT was performed for restaging in a 52-year-old woman who underwent thyroidectomy for thyroid cancer 1 year prior. 18F-FDG PET/CT (A) images

showed increased FDG uptake in the thyroidectomy area (curved arrow, SUVmax7.4) and left adnexal region (dotted arrow, SUVmax7.0). 68Ga-DOTA-FAPI-04

PET/CT (B) images demonstrated increased uptake of imaging agents in the thyroid area (curved arrow, SUVmax8.9), but no abnormal uptake was observed in the

left adnexal region.
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in SUV between the left and right ovary (t = 0.272 for FDG,
and t = 0.592 for FAPI). For the FDG group, the ovary
SUVmax (4.89 ± 1.84) was statistically significantly higher than
that of liver (1.57 ± 0.44) and pelvic muscle (0.86 ± 0.19)
(P < 0.05). The average Le/Li ratio and TBR were 3.38 ±

1.81, and 5.81 ± 1.98, respectively. Physiological FDG uptake
is associated with the menstrual cycle and occurs mainly in
late hyperplasia and early secretion (Table 2). There was no
significant difference between the two phases (t = 1.26, p =

0.23). Focal endometrial FDG uptake was observed in 4 patients
(median SUVmax4.5, Figure 1). For the FAPI group, the average
SUV of ovary, liver and muscle were 1.53 ± 0.37, 0.45 ± 0.10,
and 1.64 ± 0.29, respectively. The difference between ovary
and liver was statistically significant (t = 11.108, p < 0.05),
while the difference between ovary and muscle was not (t =

−1.33, p = 0.21). The average Le/Li ratio and TBR were 3.57
± 1.26, and 0.94 ± 0.19, respectively. The uterus of the 14
subjects showed intense FAPI activity (average SUVmax 12.7,
Figure 2). In addition, abnormal FAPI uptake in the broad
ligament of the uterus was observed in a patient, which was
manifested as a stripe of increased FAPI-avid (SUVmax 3.9).
The TBR of the two groups was statistically different (t =

9.42, p < 0.05), while Le/Li ratio was not (Table 3). This is
because normal liver has a high FDG uptake and a low FAPI

uptake (one of the advantages of FAPI in displaying lesions,
Figure 3).

DISCUSSION

Both pathological and functional ovarian lesions can show
abnormal FDG uptake. Physiologically, FDG accumulates in the
female reproductive system, with a high SUV, making it difficult
to obtain a clear image with high tumor-background contrast
and increasing the diagnostic difficulty. In 2002, Chander et
al. confirmed the physiological uptake of the endometrium and
ovary in a serial PET/CT follow-up of a patient, and suggested
that this performance varies with the menstrual cycle (17, 24, 25).
Glucose phosphorylation is an important rate-limiting step in the
estrogenic stimulation of uterine glycolysis (14). Hughes assessed
endometrial enzymes activity in 252 patients with normal
menstrual histories and found that, in normal endometrial
tissue, glycogen synthetase activity synthesizes glycogen from
glucose in increasing amounts until the midcycle (26). Glycogen
phosphorylase then-breaks down glucose during the regressive
stage of endometrial activity, causing decreased glycogen levels
at the end of the cycle. Increased metabolic demands and
inflammatory responses before and after ovulation may lead

TABLE 3 | Comparison of indicators between FDG and FAPI.

Ovary SUVmax Liver SUVmax Muscle SUVmax Le/Li ratio TBR

FDG 4.89 ± 1.84 1.57 ± 0.44 0.86 ± 0.19 3.38 ± 1.81 5.81 ± 1.98

FAPI 1.53 ± 0.37 0.45 ± 0.10 1.64 ± 0.29 3.57 ± 1.26 0.94 ± 0.19

t 7.97 −8.30 8.39 −0.34 9.42

P-value <0.05 <0.05 <0.05 0.74 <0.05

FIGURE 3 | Comparison of FDG and FAPI uptake.
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to increased ovarian FDG uptake. However, not all women
with active menstruation experience increased FDG uptake for
reasons that remain unclear. This physiological FDG uptake
mainly occurs during the late follicular to early luteal phase of
the menstrual cycle and is usually round or elliptical, mostly
unilateral, and with a SUVmax >3 (25). Subsequent research
has evaluated the characteristics of physiological FDG uptake in
the ovaries, including other imaging methods and the differential
diagnostic value of delayed imaging (17, 24, 25).

Cook et al. warn that a high uptake in the periphery of
a benign cyst, such as a follicular ovarian cyst, may mimic a
necrotic lymph node (15). Therefore, it is crucial to differentiate
between physiological and pathological uptake. Measurement
of the serum levels of menstrual cycles or ovarian hormones
may help diagnose false positives but does not rule out
pathological metabolism. The traditional method to distinguish
the physiological and pathological uptake of the ovary requires
repeated FDG examination in different physiological cycles,
which may delay diagnosis.

SUVmax is the most commonly used index for evaluating
metabolism on PET/CT, but differences in nuclides, patients,
and equipment may cause certain differences. Therefore, using
the target/non-target ratio is obviously more comparable. TBR
can better perform semi-quantitative analysis of the uptake of
different patients and imaging agents. Research has demonstrated
that TBR has independent prognostic abilities for many
lesions (27).

This retrospective analysis sought to evaluate the benefit
and impact of 68Ga-FAPI-PET/CT in a small cohort of
patients harboring suspicious ovarian lesions. We retrospectively
analyzed the PET/CT images of 14 patients with suspected FDG
false-positive ovaries. In contrast to 18F-FDG, 68Ga-DOTA-FAPI-
04 has no physiological accumulation in the ovaries and is not
affected by the physiological cycle, resulting in higher image
contrast and better lesion delineation in the adnexal area of
the uterus (Figure 3). 68Ga-DOTA-FAPI-04 positron emission
tomography produces accurate and comprehensive imaging that
can help determine the best treatment strategy. It may improves
tumor staging, relapse monitoring, and necessary therapeutic
interventions. Tumor lesions exceeding 1–2mm in size require
a supporting stroma (28). As the stroma volume can be larger
than the tumor volume, stroma-targeted PET imaging may
be more sensitive than glycolysis PET imaging for detecting
small lesions with sufficient FAP-expressing stroma (22, 28).
In 2019, Clemens et al. quantified the tumor-uptake in FAPI-
PET/CT of various primary and metastatic tumors and found
that ovarian cancer showed a moderate uptake of FAPI (SUVmax
6-12) (29).

Limitations
This study has some limitations. First, the sample size was
small and the patients varied greatly by primary disease
(heterogeneity). Patient demographic characteristics may not
reflect the general population. Second, this was a retrospective
study. Some lesions might have been mistaken as physiological
ingestion due to no obvious symptoms during follow-up.
Currently, there is no literature evaluating FAPI’s role in the
ovaries. Therefore, prospective studies involving more patients
are warranted to further explore ovarian FAPI uptake patterns.

CONCLUSIONS

Both malignant and functional ovarian lesions can exhibit
abnormal FDG uptake. 68Ga-DOTA-FAPI-04 has no
physiological uptake and is not affected by the physiological
cycle. It has a unique advantage in the diagnosis of ovarian
diseases and can accurately differentiate physiological and
pathological ovarian lesions in the early stage.
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In the past years, the gamma-ray detector designs based on the monolithic crystals

have demonstrated to be excellent candidates for the design of high-performance

PET systems. The monolithic crystals allow to achieve the intrinsic detector resolutions

well below state-of-the-art; to increase packing fraction thus, increasing the system

sensitivity; and to improve lesion detectability at the edges of the scanner field of view

(FOV) because of their intrinsic depth of interaction (DOI) capabilities. The bottleneck

to translate to the clinical PET systems based on a large number of monolithic

detectors is eventually the requirement of mechanically complex and time-consuming

calibration processes. To mitigate this drawback, several methods have been already

proposed, such as using non-physically collimated radioactive sources or implementing

the neuronal networks (NN) algorithms trained with simulated data. In this work, we

aimed to simplify and fasten a calibration process of the monolithic based systems. The

Normal procedure consists of individually acquiring a 11× 11 22Na source array for all the

detectors composing the PET system and obtaining the calibration map for each module

using a method based on the Voronoi diagrams. Two reducing time methodologies are

presented: (i) TEST1, where the calibration map of one detector is estimated and shared

among all others, and (ii) TEST2, where the calibration map is slightly modified for each

module as a function of their detector uniformity map. The experimental data from a

dedicated prostate PET system was used to compare the standard calibration procedure

with both the proposed methods. A greater similarity was exhibited between the TEST2

methodology and the Normal procedure; obtaining spatial resolution variances within

0.1mm error bars and count rate deviations as small as 0.2%. Moreover, the negligible

reconstructed image differences (13% deviation at most in the contrast-to-noise ratio)

and almost identical contrast values were reported. Therefore, this proposed method

allows us to calibrate the PET systems based on the monolithic crystals reducing the

calibration time by approximately 80% compared with the Normal procedure.

Keywords: positron emission tomography, monolithic crystals, calibration, total-body PET, whole-body PET
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INTRODUCTION

In the PET detectors, two main types of scintillator crystals
are usually employed namely, pixelated and monolithic. The
advantages and disadvantages of each one are extensively
described elsewhere (1). They offer intrinsic resolutions that are
well below the state-of-the-art and an improvement of the system
sensitivity, as they do not contain zero detection zones, unlike the
pixelated crystals. But the most significant feature of monolithic
crystals is their inherent access to the light distribution (LD)
profile of the scintillation events which allows to retrieve, in
addition to the planar impact coordinates (x,y), accurate photon
depth of interaction (DOI) information, unlike the pixelated
crystals that require additional components to provide 3D
positioning information (2, 3). The DOI information permits to
correct for the parallax errors, which strongly affect the systems
with small apertures (i.e., small animal and organ dedicated
scanners), but also at the edges of the field of view (FOV) in
the human size scanners. Both width and position of the source
profile improve when applying theDOI correction independently
of the system diameter (4, 5). Recently, the monolithic crystals
are employed in the PET scanners achieving high sensitivity
and spatial resolution (6–8). Moreover, regarding cost, analyzing
the different providers for scintillator crystals and studying the
price differences between the several pixel arrays and monolithic
crystals with similar volumes, it can be concluded that they are
cheaper than the traditional pixelated scintillators for the pixel
sizes smaller than 1.5mm × 1.5mm, as the ones used in the
pre-clinical PET imaging.

To accurately determine the energy and 3D impact position
in the monolithic-based PET detectors, the calibration processes
accounting for the possible non-uniformities or edge effects
are required (9). The non-uniformities arise from different
gains in the photosensors or readout channels, and eventually
by the crystal light yields abnormalities. The edge effects
result from the scintillation light truncation toward the crystal
edges, reducing the accuracy of the photon impact coordinates
determination and energy discrimination. For the pixelated-
based detectors, the flood maps are easily and quickly found,
since one source can be placed at the center of the PET scanner
providing information of all the pixel elements. However, for
the monolithic-based detectors, the calibration processes are
typically based on scanning a collimated small size source across
the entire monolithic surface while recording the measured
and mechanical/known source positions (1). This procedure
must be applied for each detector module of the PET scanner,
which results in the time-consuming calibrations and requires
using entangled hardware set-ups (9). For one single detector,
the measurement for obtaining reference data might last about
30min even when using the high activity sources.

Multiple methods have been proposed to ease the calibration
processes in the monolithic assemblies; such as using reference
data corresponding to a line of irradiation points instead of
singular points (10 −13), utilizing an array of collimated sources
(10), or using non-physically collimated sources (11, 12). An
alternative approach, not requiring the calibration for each
detector block of the PET system, is to carry out an accurate

simulation of the detector responses either for Neural Networks
(NN) training (13, 14) or for the generation of look-up-tables
(LUTs) to be applied using the maximum likelihood expectation
maximization methods (MLEM) (15).

In this work, we propose an approach to apply the detector
calibration process based on the Voronoi diagrams (10) in
the PET scanners based on a large number of monolithic
detectors. The proposed methodology significantly reduces the
calibration times while accounts and corrects for the possible
differences among each individual detector module. Shortly, the
method suggests using the combined accurate calibration of few
detectors, to be applied after some tuning provided by uniform
radiation, to all the other detectors. In the following, we describe
this rather simple methodology, but never studied before in
detail, and its experimental validation employing data from a
prostate dedicated clinical PET scanner (16).

MATERIALS AND METHODS

Materials
Data were experimentally acquired using a clinical PET
specifically designed for prostate imaging. The scanner is
composed of a single ring with 24 detectors (16), each one
comprising a LYSO:Ce (Lu1.8Y2SiO5:Ce) monolithic crystal of 50
× 50 × 15mm with the lateral surfaces black painted (absorbent
paint) and the entrance face, such as a retro-reflector layer
(10, 17), as shown in the images of the system in Figure 1. Each
scintillation crystal is coupled to a photosensor array of 12 × 12
silicon photomultipliers (SiPMs) with 3 × 3mm active area and
4.2mmpitch (52% active are coverage) bymeans of optical grease
(BC-630, Saint Gobain, France). The readout scheme provides
the row and column SiPM signals, thus allowing to determine
the 3D photon impact coordinates within the crystal (4, 18). The
detector output signals are fed into a data acquisition (DAQ)
system based on the 12-bit analog-to-digital converters (ADCs)
with 1 GB ethernet connection, and the summed signal of either
all SiPM rows or columns, was fed into a trigger board that allows
coincidences within a 5 ns coincidence window. Further details
about the system can be found in the reference (16).

The planar impact coordinates (x, y) were calculated using the
rows and column SiPM signals by applying a modified version
of the center of gravity algorithm (COG) in which the row and
column values are risen to the power of 2 to improve the system
linearity (19). The DOI value was estimated as E/Imaxwhere E is
the energy calculated as the sum of the rows or columns, and Imax

is the maximum value of the row or column, respectively (12).

Calibration Process
Instead of sequentially moving individual radioactive sources
across the crystal surface, which requires long calibration times,
we used an array of 11 × 11 22Na radioactive sources (4.6mm
pitch and 1mm in diameter, total activity ∼10 µCi) placed
at the known positions. A 30mm thick tungsten collimator,
with drilled holes of 1.2mm in diameter, was accurately
aligned with the sources and placed at each crystal entrance.
The acquired reference data were later post-processed using a
software collimation method (defined as a trade-off between
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FIGURE 1 | The sketch (left) and photograph (right) of the prostate dedicated PET system used during the calibration tests.

the statistics and spatial resolution) that rejects the lines of
response (LORs) with angles larger than 1.2 degrees measured
from the detector normal (2). These two-steps, acquisition and
collimation, resulted in the accurate floodmaps composed by 121
measured positions as those shown in Figure 2 (left).

The calculated 3D photon impact position and energy were
calibrated using a method based on the Voronoi diagrams. The
flood map of the 11 × 11 22Na sources (as shown in Figure 2) is
used to generate a Voronoi diagram, thus permitting the partition
of the crystal surface into 121 Voronoi cells and the extraction
of five Voronoi factors for each cell (10). The VoronoiFactorX
and VoronoiFactorY were calculated as the deviation of the
measured source position to the mechanical position and the
VoronoiFactorE was determined as the deviation of the energy
photopeak value in the channels to the value corresponding
to the central Voronoi cell. Finally, we determined the lower
and upper limits (a and b parameters) and sigma (σint) of
the E/Imax histogram for each Voronoi region using the DOI
analytical expression extracted from the reference (14) (as shown
in Figure 2). Two Voronoi factors were calculated corresponding
to the limits a-σint and b+σint and then, considered to be equal to
0 and 15mm (crystal thickness) to calibrate the measured E/Imax

into millimeters. As shown in the reference (10) for more detail
of the process. These Voronoi factors were used to obtain five
LUTs: two corresponding to the planar XY coordinates {LUTX,
LUTY}, two to the DOI {LUTDOI1, LUTDOI2}, and another
one corresponding to the energy {LUTEnergy}. These LUTs are
finally used to calibrate every impact. Data from the subjects or
phantoms are off-line calibrated applying the calculated LUTs in
an event-by-event process that includes a correction to the true
LOR (parallax error compensation).

We have tested three different calibration methods, a
conventional one detector-by-detector calibration, and two
proposed modifications to shorten the calibration times:

(i) Normal, the 24 detectors of the PET scanner were
individually calibrated as described above. This means, that
a set of 5 individuals {LUTX,Y,DOI1,DOI2,Energy} is generated
from the flood map of each detector module. This calibration
is considered as the ground-truth for comparison purposes.
Figure 2 shows the flood map of the 11 × 11 22Na sources,
the energy and DOI histograms for one detector module of the

prostate dedicated PET before (top panels) and after (bottom
panels) calibration. Acquisition using the described array and
activity might last about 2–3 h per detector, thus 48–72 h for
the whole systemwithout stop (at least 6 working days). Notice
that the higher activities and the use of non-encapsulated
sources, such as 18F could accelerate these processes but
potentially increase the radiation associated risk.

(ii) TEST1, the calibration set of only one random detector is
carried out and, therefore only its {LUTX,Y,DOI1,DOI2,Energy}
are generated and shared among the other detectors without
further corrections. With this approach, a total process
calibration time of ∼ 3 h for the entire scanner was
required. We have evaluated this method for two random
detectors: T1 and T1B, corresponding to the detectors M2 and
M6, respectively.

(iii) TEST2, three random detectors of the PET scanner were
individually calibrated and, to avoid an outlier detector
performance, an averaged reference calibration map was
obtained using the mean values of the calibration positions
of the three detectors (as shown in Figure 3 left). Thereafter,
the calibration maps for each other detector were determined
applying a shift map to such reference calibration map.
The shift map was generated for each detector using their
uniformity maps (as shown in Figure 3) acquired placing a
relatively large uniform activity phantom at the center of
the scanner FOV. Event accumulation can be observed at
the edges of the uniform map due to the truncation of the
LD closer to the edge of the monolithic crystal. The x and
y coordinates for these regions were plotted, as shown in
Figure 2, and a linear fit was used to estimate the slope
following that event accumulation. The intersection of the
lines allowed us to calculate the coordinates of the four
corners. Then, four shift factors with respect to the reference
ones were calculated and a natural neighbor interpolation
methodology considering the four corners was applied to
obtain the shift map for the entire surface. The shift map
for each module was applied to the reference calibration
map to obtain the new calibration map corresponding to
each detector. Finally, the calibration maps were used to
determine the Voronoi factors according to the reference (20).
The Voronoi factors corresponding to the DOI and energy,
were calculated using the uniformity measurements. A total
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FIGURE 2 | From left to right, the image flood maps of the 11 × 11 22Na collimated sources before (top) and after (bottom) calibration using the Normal method,

energy spectra, and depth of interaction (DOI) distribution for the whole detector.

FIGURE 3 | From left to right, a reference calibration map obtained as the average of the calibration positions of three random detectors, example of a detector

uniform map for one detector used to obtain the calibration map in TEST2, surface partition obtained from the four corners calculated as the intersection of the lines

following the event accumulation and calibration positions obtained for one detector in the Normal calibration and after applying the TEST2.

calibration time of ∼ 10 h was consumed as: the uniformity
acquisition (∼1 h) plus the three detectors calibration maps
(6–9 h). For this case, three sets of three different detectors
were used defining: T2, T2B, and T2BB, in particular detectors
[M1, M9, and M21], [M5, M18, and M24], and [M7, M15, and
M20] were used, respectively.

Evaluation of the Calibration Processes
The calibration accuracy of the proposed methods was evaluated
by comparing the LUTs for TEST1 and TEST2 with the ground
truth provided by the Normal case for each detector module
of the prostate PET system. Thus, the correlation factors (CF)
corresponding to X, Y, DOI1, DOI2, and energy, respectively,

were determined for each detector module as:

CFiX,Y,DOI1,DOI2,Energy

=
(VoronoiFactor valueiX,Y,DOI1,DOI2,Energy)TEST

(VoronoiFactor valueiX,Y,DOI1,DOI2,Energy)Normal

(1)

where, i goes from 1 to 121 (each Voronoi diagram contains
121 values because 11 × 11 sources array was used for
the calibration). Notice that, the range of values for the
VoronoiFactorX and VoronoiFactorY is [−1, 1] in arb. units; for
the VoronoiFactorE it is [0, ∼10000] in channels and for the
VoronoiFactorDOI1,DOI2, it is [1, 8] in arb. units (as shown in
Figure 2 top). The mean of the 121 CFi values was calculated,
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FIGURE 4 | The mean correlation factor (CFi) values obtained from the VoronoiFactorX, VoronoiFactorY, VoronoiFactorE, VoronoiFactorDOI1, and VoronoiFactorDOI2 for

all the detectors and calibration positions, and for all the proposed calibration cases.

obtaining five CF values corresponding to X, Y, DOI1, DOI2,
and energy for each detector module. Finally, the mean of

the CFX,Y ,DOI1,DOI2,Energy values of all detector modules were
calculated and considered as a good estimator of the validity of
the two proposed approaches.

In addition, the three calibration methods were compared
using the reconstructed images from the following datasets:

(i) Data of a small size 22Na source (0.25mm in diameter and∼

22 µCi activity) scanned across the radial axis of the scanner.
The spatial resolution was estimated as the full width at half of
the maximum (FWHM) of the source profiles.

(ii) Data acquired during the evaluation of the noise equivalent
count rate (NECR) of the system. This dataset was used to
provide hints about the count rates capabilities of the system as
a function of the calibration method. Sub-optimal calibration
of the detectors might lead to a decrease in the count rates.

(iii) Data acquired using a custom designed image quality (IQ)
phantommade out of Polymethyl methacrylate (PMMA) with
an outer diameter of 135 and 103mm height. The IQ phantom
contains six capillaries with diameters of 20, 15, 12, 9, 6,
and 4.5mm and 60mm height each placed inside a warm
background. A capillaries-to-background concentration ratio
of 38 was used.

The reconstruction of the acquired data was performed using
the Customizable and Advanced Software for Tomographic

Reconstruction (CASToR) platform (21) and the ordered subset
expectation maximization (OSEM) algorithm, with voxels sizes
of 1× 1× 1mm and virtual detector pixels of 1× 1mm. During
the reconstruction process, three iterations and two subsets were
used when the small size sources were imaged, whereas eight
iterations and two subsets were employed for the image quality
phantom. Additionally, both the attenuation and normalization
corrections were applied. For the attenuation correction, the
transmission information of a previous CT acquisition was used.
The normalization was applied using data of an annulus filled
with fluorodeoxyglucose (FDG) [as shown in reference (11)] and
processed using the three different calibration approaches.

We have quantitatively evaluated the reconstructed IQ
phantom calculating the contrast-to-noise ratio (CNR) and the
contrast for all cases as:

CNR =
Mean hot spot VOI − BackGround level

Background standard deviation
(2)

Contrast (%) = 100×
Mean hot spot VOI − Background level

Mean hot spot

(3)

where VOI stands for the Volume of Interest selected. Then, 12
VOIs were drawn distributed along the uniform warm area of the
phantom to obtain the background level and SD. To calculate the
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FIGURE 5 | Reconstructed full width at half of the maximum (FWHM) (three components: radial, tangential, and axial) of the 1mm in diameter source at off-radial

positions 1, 6, and 12 cm.

mean hot spot values, six VOIs were defined fitting each capillary
dimension but with a centered height of 25 mm.

RESULTS

Detector Accuracy
Figure 4 shows the mean values for the CFi parameters namely
X and Y positions, energy, and DOI limits. The mean values are
calculated for all 24 detector and for all 121 calibration positions
within each detector block. The error bars are calculated as the
SD of all these 24 × 121 values. The T2, T2B, and T2BB cases
are typically close to 1, meaning that they reflect well the ground
truth. However, the T1 and T1B cases are in general further
from 1.

Reconstructed Images
Figure 5 depicts the FWHM values (radial, tangential, and axial)
of the reconstructed images of the 22Na source versus the off-
radial position. For the case closer to the center of the FOV
(1 cm), all the cases exhibit very similar values. However, worse
FWHM values are observed for the T1 and T1B cases at radial

positions far from the center, especially at the edges (12 cm)
resulting in an elliptical shape of the sources.

Figure 6 depicts the count rate capabilities of the system for
each calibration method. In general, there is a better agreement
for the TEST2 approaches with respect to the Normal case.
Some deviations are observed for the NECR curves regarding the
TEST1 cases (also for the True and Scatter/random ones but not
shown here) at high activities.We have calculated the ratios of the
NECR for the Normal case with respect to all others. The average
ratio for the T2, T2B, and T2BB cases is as small as 0.2, 0.1, and
0.1%, respectively, with SDs of about 1% only. However, we found
the ratios of 7 and 2% for the T1 and T1B, respectively.

Figure 7 shows the reconstructed IQ phantom after applying
the described calibration processes for all the cases. Qualitatively,
the images and profiles are very similar. Slightly less uniform
background is observed for the TEST1 cases, as it can also
be appreciated in the shown slice and projection at the
bottom panels.

We observe the CNR values that are in general poor, most
likely due to low acquisition times (Figure 8). Comparing the
results obtained between Normal and the other methods, the
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FIGURE 6 | (Left) The noise equivalent count rate (NECR) curves for all the evaluated cases. (Right) Ratio of the NECR values for Normal with respect to all others.

Notice there is a break between 0.5 and 0.6 mCi to expand the axis for lower values.

CNR for T1 and T1B are, on average, 28.5% lower. However, the
TEST2 cases exhibit similar values for the 4.5- and 6-mm rods,
and better for the larger capillaries. An average improvement
for all rods and tests of 8.4% is observed. We hypothesize that
the improvement of CNR for the TEST2 cases might be due to
an improvement in the background uniformity caused by the
averaging of three detector blocks.

DISCUSSION

In this work, we have studied the possibility to reduce the
calibration time for monolithic-based PET systems. Different
works are proposed to obtain reference dataset using the line
sources and slit collimators or uncollimated sources without
detector performance degradation, avoiding irradiating the
crystal at a large number of known entry points across the entire
surface, and thus, reducing the time calibration (6–11, 20, 22–
24). Moreover, the use of simulated data for NN training or
for LUT generation for ML position estimation (12, 13) allows
for calibration time reduction. However, most of these methods
demand higher computational requirements to be efficient.

In our approach, the calibration data are acquired using an
array of collimated sources, instead of sequentially scanning

individual radioactive sources across the crystal surface, which
reduce the calibration times somewhat; however, in the Normal
procedure each detector needs to be independently calibrated,
which still leads to high time-consuming. Therefore, we have
proposed two new calibration routines named TEST1 and TEST2
that reduce the calibration time from standard calibration of all
24 detectors of our prostate PET system (∼72 h) to just 10 h in the
case of TEST2 and 3 h in the case of TEST1 (as shown in Table 1).
Notice that the times were estimated considering the activity
of a source that can be typically found in the instrumentation
laboratories and, therefore, higher activity sources would linearly
improve the process. Using the high radioactivity sources and
two screw bar and step motors would allow to create a robotic
instrument to speed up the calibration acquisition and to prevent
the radiation hazard at the same time. However, for the PET
systems already installed in the research laboratories or clinical
sites, introducing such a hardware setup is sometimes difficult.

An important implication of this reduction is that allow

one to perform the calibration in one single working journey

without the requirement of stopping, thus avoiding the additional

complications. The uniform flood maps are obtained routinely

during the PET calibration processes when for instance the

normalization is performed. By reducing the calibration time
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FIGURE 7 | Top panels, reconstructed images of the image quality (IQ) phantom. Only 15% of the low color scale was used. Bottom panels, profiles along the

smallest marked rods in the Normal case.

without impacting the PET system performance, on the one
hand, we are also minimizing the technical personnel exposure
to radiation and, on the other hand, reducing the calibration cost
associated to the supply of radioactive sources. An FDG dose
used for calibration (370 MBq) costs approximately 275 e at
our institution and lasts only for 1 day. Moreover, the proposed

methodology simplifies the associated hardware, even if a low
percentage of detectors are to be normally calibrated, such as in
the TEST2 (3/24 detectors), in comparison with calibrating all of
them individually.

Our findings when comparing the results of the TEST1
tests with the Normal case, showed some underperformance, as
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FIGURE 8 | The contrast-to-noise ratio (CNR) (Top) and the contrast (Bottom) curves for the different Normal, TEST1, and TEST2 cases acquired using the prostate

dedicated PET system.

TABLE 1 | Estimation of calibration time processes for the different methods.

Steps/Tasks Maximum calibration time

Acquisitions Computational time

11 × 11 22Na sources array.

(∼10 µCi in total)

Uniformity Shift map LUT generation

Normal 24 detectors × (2–3 h/detector)

≈ 72 h

1 h – 24 detectors × (1 min/detector) ≈

20min

72.3 h

TEST1 2–3 h 1 h – 1min 3 h

TEST2 3 detectors × (2–3 h/detector) ≈

9 h

1 h 24 detectors ×

(24 sec/detector)

≈ 10min

24 detectors × (1 min/detector) ≈

20min

10.5 h

expected. Using one-detector calibration induces some errors
due to many factors in the other 23 blocks, such as non-
uniformities in the light collection, wrong coupling alignments
of the photosensor and crystal, to name but a few. We observed
that the reconstructed 1mm sources show a worst performance
for T1 and T1B when they are far from the center FOV.
Regarding the CNR, with the three different sets of detectors

chosen for the TEST2 cases, always a comparable performance
to the Normal one case is found. Moreover, and somehow still
to be understood, the CNR values outperformed those exhibited
the Normal calibration. The TEST1 cases are about 28% worst
on average.

The TEST2 methodology might be the key to exploit the
use of large PET scanners based on the monolithic crystals
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because it has demonstrated the capabilities to significantly
reduce the calibration times without system degradation,
enabling to calibrate a system with very low computational
cost and in a reasonable time-period in a clinical domain.
For a system, such as the MINDView PET insert with 60
detectors blocks of 50 × 50 × 20mm monolithic LYSO
crystals (13), we struggled with a 10 days calibration process
using the high activities of FDG sources, when calibrating 2–3
detectors simultaneously.

Obviously, the proposed methods require the detectors of
each system to behave relatively similar, which is the case of
commercially available PET scanners, since they go through
the quality assessment tests during the manufacturing process.
In our case, the assembly of all 24 detectors building the
PET system was carried out following the same procedure,
the readout electronics components have very small tolerances,
and all the crystals and SiPM arrays are provided by the
same manufacturer.

CONCLUSION

We have proposed two new methodologies to reduce the
calibration times for the monolithic-based PET systems
and validated them using data acquired in a dedicated
system for prostate imaging built of 24 monolithic crystals
with 15mm thickness each. The TEST2 method, based on
calibrating few detector blocks and then, making some
fine tuning using the uniform calibration maps (routinely
obtained when the corrections based on uniform radiation
are applied), has shown the possibility of simplifying
and accelerating the calibration process without system
performance degradation and without high computational
cost. Therefore, this proposed method allows to solve one of
the obstacles to translate to the clinics large monolithic-based
PET scanners.
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Purpose: To test a short 2-[18F]Fluoro-2-deoxy-D-glucose (2-[18F]FDG) PET dynamic

acquisition protocol to calculate Ki using regional Patlak graphical analysis in patients

with non-small-cell lung cancer (NSCLC).

Methods: 24 patients with NSCLC who underwent standard dynamic 2-[18F]FDG

acquisitions (60min) were randomly divided into two groups. In group 1 (n = 10), a

population-based image-derived input function (pIDIF) was built using amonoexponential

trend (10–60min), and a leave-one-out cross-validation (LOOCV) method was performed

to validate the pIDIF model. In group 2 (n = 14), Ki was obtained by standard regional

Patlak plot analysis using IDIF (0–60min) and tissue response (10–60min) curves from

the volume of interests (VOIs) placed on descending thoracic aorta and tumor tissue,

respectively. Moreover, with our method, the Patlak analysis was performed to obtain Ki,s

using IDIFFitted curve obtained from PET counts (0–10min) followed by monoexponential

coefficients of pIDIF (10–60min) and tissue response curve obtained from PET counts at

10min and between 40 and 60min, simulating two short dynamic acquisitions. Both IDIF

and IDIFFitted curves were modeled to assume the value of 2-[18F]FDG plasma activity

measured in the venous blood sampling performed at 45min in each patient. Spearman’s

rank correlation, coefficient of determination, and Passing–Bablok regression were used

for the comparison between Ki and Ki,s. Finally, Ki,s was obtained with our method in a

separate group of patients (group 3, n = 8) that perform two short dynamic acquisitions.

Results: Population-based image-derived input function (10–60min) was

modeled with a monoexponential curve with the following fitted parameters

obtained in group 1: a = 9.684, b = 16.410, and c = 0.068 min−1.
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The LOOCV error was 0.4%. In patients of group 2, the mean values of Ki and Ki,s were

0.0442 ± 0.0302 and 0.33 ± 0.0298, respectively (R2 = 0.9970). The Passing–Bablok

regression for comparison between Ki and Ki,s showed a slope of 0.992 (95% CI:

0.94–1.06) and intercept value of −0.0003 (95% CI: −0.0033–0.0011).

Conclusions: Despite several practical limitations, like the need to position the patient

twice and to perform two CT scans, our method contemplates two short 2-[18F]FDG

dynamic acquisitions, a population-based input function model, and a late venous blood

sample to obtain robust and personalized input function and tissue response curves and

to provide reliable regional Ki estimation.

Keywords: PET dynamic acquisition, Patlak graphical analysis, non-small-cell lung cancer, influx rate constant,

2-[18F]Fluoro-2-deoxy-D-glucose

INTRODUCTION

The 2-[18F]Fluoro-2-deoxy-D-glucose (2-[18F]FDG) Positron
Emission Tomography/Computed Tomography (PET/CT) is a
well-established imaging modality for staging, restaging, and
monitoring treatment response in patients with malignancy
(1–3). Absolute quantification of 2-[18F]FDG concentration,
related to the local metabolic rate of glucose consumption
measured with full kinetic analysis of time-activity curves,
has proven to better characterize the tumor cell behavior and
to correlate with histopathological data and prognosis (4–6).
Nevertheless, some key points of full kinetic analysis, mainly
the long dynamic acquisition and arterial blood sampling,
limit the use of such an approach in a clinical setting. For
these reasons, less-invasive approaches, including measurements
of semiquantitative parameters such as the most common
standard uptake value (SUV), are extensively used routinely (7–
9). However, it has shown that the accuracy of SUV depends
on several factors, including the standardization of technical
parameters (e.g., acquisition protocol, glucose blood level, scan
time window, recovery coefficient, partial volume effect, region-
of-interest definition, and different PET scanners), which can
affect the reliability of uptake values (10–13).

The Patlak graphical analysis is a valid alternative to full

kinetic analysis for radioligands with irreversible kinetics as
2-[18F] FDG since the activity of the phosphatases is considered

negligible (14). The Patlak analysis provides the value of the

influx rate constant Ki [min−1] related to the metabolic rate of
glucose in tissue. The Ki parameter is calculated from the slope of

a straight line that correlates the integral radioligand activity in

the blood pool with radioligand activity in the tissue (15). For this

purpose, a long PET dynamic acquisition lasting at least 60 min
is considered mandatory to calculate the time-activity curves

of 2-[18F]FDG in the blood (input function) and tissue (tissue
response). Several efforts have been made to simplify the input

function estimation with less- or non-invasive methods, such as

the arterialized venous blood sampling (16), the image-derived
input function (IDIF) estimation (17–20), the population input
function modeling (21–24), the image segmentation methods
(25, 26), and to overcome difficulties related to the long-lasting
dynamic acquisition (27–30).

To reduce the dynamic 2-[18F]FDG PET acquisition time (28–
30), the aim of this study was to test a short dynamic protocol
to obtain the input function and the tissue response curves to
calculate Ki using the Patlak analysis and to compare it with Ki

obtained using the standard long dynamic acquisition protocol
in patients with non-small cell lung cancer (NSCLC).

MATERIALS AND METHODS

Patients
24 patients (15 male patients, mean age 69 ± 11 years) with
histologically proven NSCLC, referred for staging to PET/CT
center of Fondazione Policlinico Universitario A. Gemelli
IRCCS in Rome by the local Thoracic Surgery Unit of San
Camillo Forlanini Hospital, were enrolled. All patients (n = 24)
underwent standard long (0–60min) dynamic PET acquisition
over the thorax followed by a total body scan. Patients were
randomly divided into two groups: group 1 (n = 10; six male
patients, mean age 70 ± 12 years) was used to extrapolate
and validate the population-based image-derived input function
(pIDIF); group 2 (n = 14; nine male patients, mean age 69 ±

10 years) was used to compare Ki obtained with our method
(simulating two short dynamic acquisition and using the pIDIF
validated in group 1) with Ki obtained using the standard long
dynamic acquisition. Finally, a separate third group of patients
(n = 8; seven male patients, mean age 71 ± 11 years) with
histologically proven NSCLC were enrolled to test the feasibility
of our method in clinical practice. All patients (n= 8) underwent
two separate short dynamic PET acquisitions over the thorax
followed by a total body scan. The local institution’s ethics
committee (Comitato Etico Lazio 1) approved this retrospective
study, waiving written informed consent for participation.

2-[18F]FDG PET/CT: Acquisition and
Reconstruction Parameters
All patients were fasted for at least 6 h and in normoglycemic
(glucose level < 150 mg/dl) conditions before PET acquisition.
PET/CT studies were performed using a full-ring CT and PET-
integrated tomograph (3D BiographmCT, Siemens Healthineers,
Chicago, Illinois). Patients were placed in a supine position with
the thorax in the field of view and the arms placed over the head.
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The acquisition protocol started with a CT scout including the
thoracic aorta and lungs. A low-dose CT was performed (90mA,
120 kV) for the attenuation correction of emission data and
morphological information with a field of view of 21 cm. The
transaxial CT matrix size was 512× 512 (1× 1× 3 mm).

Standard Long Dynamic Acquisition
Patients of groups 1 and 2 were intravenously injected with
134–507 MBq of 2-[18F]FDG, using an infusion pump (model
RADInject; Tema Sinergie, Faenza, RA, Italy); 10ml of 2-
[18F]FDG was administered at a rate of 4.32 ml/s followed
by a 10-ml saline flush. After 2-[18F]FDG injection, a thorax
dynamic list-mode acquisition lasting 60min was started with
the following framing: 24 frames of 5 s each, 12 frames of 15 s
each, and 11 frames of 5min each. A venous blood sampling
was performed at 45min post-injection. Dynamic PET data were
corrected for random events, dead time, and attenuation. PET
data were reconstructed with the ordered subset expectation
maximization (OSEM) algorithm, including time-of-flight and
UltraHD recovery with 21 subsets and two iterations. The
transaxial PET matrix size was 256 × 256 (3.18m × 3.18 ×

3 mm).

Two Short Dynamic Acquisitions
Patients of group 3 were intravenously injected with 205–320
MBq of 2-[18F]FDG using the same infusion pump and protocol
of groups 1 and 2. After 2-[18F]FDG injection, early thorax
dynamic list-mode acquisition lasting 10min was started with
the following framing: 24 frames of 5 s each, 12 frames of 15 s
each, and one frame of 5min each; late thorax dynamic list-
mode acquisition lasting 20min was started at 40min post-
injection with the following framing: four frames of 5min
each. Two low-dose CTs were performed for each acquisition
to assess an accurate attenuation correction of the two PET
images. Patients left the examination PET/CT room in the period
between early and late PET/CT examinations. A venous blood
sampling was performed at 45-min post-injection. The same
algorithm and reconstruction parameters of the standard long
dynamic acquisition were used.

Input Function
In each patient of group 1 (n = 10), the standard input
function was obtained drawing a volume of interest (VOI) on
the descending thoracic aorta during the summed first nine
frames of dynamic acquisition (45 s) and superimposing it on all
subsequent frames of dynamic acquisition (0–60min) (31). For
each patient, the venous blood sampling performed at 45min
after injection was centrifuged for 5min (Rotofix 32A; Hettich
Italia S.r.l., Milano, Italy) to separate the plasma from the
cellular components. The 2-[18F]FDG activity in 1 ml of plasma
was measured in a gamma counter (Wallac Wizard 1480−3′′;
PerkinElmer, Waltham, Massachusetts) cross-calibrated with the
tomograph. The IDIF curve was modeled to assume the value of
2-[18F]FDG activity measured in the plasma (32); in particular,
a scale factor equal to the ratio between the plasma activity
measured in 1ml of plasma, and the activity measured in the
IDIF at 45min was used to impose the IDIF activity value at
45min equal to the plasma activitymeasured in the blood sample,

considering the plasma activity as the gold standard value and
avoiding any problem regarding spillover effect or partial volume
effect in the VOI signal.

To extrapolate and validate the input function used in our
method, it was reconstructed taking into account only data from
0 to 10min of the standard long dynamic acquisition, simulating
an early short dynamic acquisition (pIDIF). In particular, for each
patient of group 1 (n = 10), the early phase of the input function
was built taking into account the first 10min of the patient’s
input function curve of the standard long dynamic acquisition.
The remaining part was reconstructed with a monoexponential
function (23, 33) since all input function curves obtained from
standard dynamic protocol showed a trend that can be well
represented by a monoexponential function (1):

Cp (t) = a+ b · e(−c·t) (1)

where a, b, and c coefficient values were obtained as mean values
of monoexponential fit of each 10 IDIF, measured from 10 to
60min in patients of group 1.

Then, a specific patient input function was built imposing the
pIDIF 2-[18F]FDG activity value at 45min equal to the plasma
activity in each patient measured at 45min from the venous
sample (IDIFFitted).

Lastly, the LOOCV method was performed to validate the
method of pIDIF reconstruction.

Ki Estimation Using the Standard Dynamic
Protocol
The Ki parameter was estimated using the following formula (2):

Ki =
CT(T)

∫ T
0 Cp(t) · dt

− VD ·
Cp(T)

∫ T
0 Cp(t) · dt

(2)

where Ki, is the influx rate constant, CT(t) is the mean value for
the radioligand concentration in tissue during the time (tissue
response), T is the time of dynamic acquisition, VD is the
distribution volume, Cp(t) is the radioligand concentration in
plasma during the time (i.e., the IDIF), and the integral symbol
represents the area under the curve of the IDIF. Since both
CT and Cp are obtained from the VOI in tumor tissue and in
descending thoracic aorta, respectively, the proposed analysis
is based on regional and not voxel-based Patlak parametric
imaging method.

For each patient of group 2 (n= 14), Ki was estimated with the
Patlak analysis using the IDIF (0–60min) and the tissue response
(10–60min) curves. The IDIF was obtained as described in the
previous paragraph. The tissue response curve was obtained by
drawing VOI on the tumor in the last frame of the dynamic
acquisition and superimposing it on all previous frames (10–
60min). VOIs for the input function and tissue response were
automatically placed over three consecutive slices to include the
five hottest pixels within the VOI (34, 35).

Ki Estimation Simulating the Short
Dynamic Protocol (Ki,s)
For each patient of group 2 (n = 14), Ki was estimated using
data from 0 to10min and from 40 to 60min of the long standard
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acquisition to obtain the IDIFFitted and the tissue response curves
simulating two short dynamic acquisitions.

In particular, for each patient, the early phase of the input
function was built taking into account the first 10 min of the
patient’s input function curve of the standard dynamic protocol.
The remaining part was reconstructed with the previous reported
monoexponential function (1) using the a, b, and c coefficients
of pIDIF obtained and validated in patients of group 1, then
modeled to assume at 45min the value of 2-[18F]FDG activity
in the plasma measured at 45min from the venous sample
(IDIFFitted), as previously described.

For each patient, the tissue response curve was reconstructed
taking into account data measured at 10 min and those measured
between 40 and 60min of the patient’s tissue response curve of
the standard protocol.

Finally, the influx rate constant (Ki,s) was estimated with the
Patlak analysis according to the well-known formula (2) using the
IDIFFitted and the tissue response curves as described.

Ki Estimation Using the Short Dynamic
Protocol (Ki,s)
For each patient of group 3 (n = 8), K i was estimated using two
short dynamic acquisitions performed to obtain the IDIFFitted
and the tissue response curves.

In particular, the IDIFFitted was built drawing a VOI on the
descending thoracic aorta during the summed first nine frames
of early dynamic acquisition (45 s) and superimposing it on all
subsequent frames of the early dynamic acquisition (0–10min);
the remaining part (10–60min) was reconstructed using the a,
b, and c coefficients values of pIDIF obtained and validated in
patients of group 1, then modeled to assume at 45 min the value
of 2-[18F]FDG activity in the plasma measured at 45min from
the venous sample (IDIFFitted), as previously described.

The tissue response curve was obtained drawing a VOI on
the tumor in the last frame of the late dynamic acquisition and
superimposing it on all previous frames (40–60min); another
VOI was drawn on the tumor in the last frame of the early
dynamic examinations (10min). VOIs for input function and
tissue response were automatically placed over three consecutive
slices to include the five hottest pixels within the VOI (34, 35).
Being a VOI-based analysis method and therefore limited to
specific regions (not voxel-wise), the co-registration between
early and late PET images was not necessary.

Finally, the influx rate constant (Ki,s) was estimated using the
Patlak analysis according to the well-known formula (2) using the
IDIFFitted and the tissue response curves as described.

Standardized Uptake Value
Standard uptake value was calculated as following formula (3):

SUV =
CT(T)

A0/bw
(3)

where CT(T) is the value of radioligand concentration at T equal
to 55-min post-injection measured using a VOI drawn on tumor
tissue (tissue response) in the last frame, A0 is the injected
activity, and bw is the bodyweight of the patient (36).

FIGURE 1 | IDIF curve (dashed line) and IDIFFitted curve (yellow square boxes),

both modeled to pass through the 2-[18F]FDG activity in plasma measured in

the venous blood sample at 45min post-injection (red square box), in patient

#4. 2-[18F]FDG, 2-[18F]Fluoro-2-deoxy-D-glucose; IDIF, image-derived input

function.

Statistical Analysis
R (analytical software) was used for calculations. The mean
square percentage error (MSEP) between standard IDIF (0–
60min) and IDIFfitted was calculated, and LOOCVerror was
computed to perform the leave-one-out cross-validation. The
concordance between Ki and Ki,s was evaluated using the
Passing–Bablok regression. The Spearman’s rank correlation
coefficient (ρ) and coefficient of determination (R2) were used
to assess the correlation between Ki estimated using standard
dynamic protocol and Ki,s estimated with short dynamic
protocol, and between Ki,s and SUV.

RESULTS

In 24 patients with NSCLC who performed the standard long
dynamic protocol (groups 1 and 2), the input function curves
showed a monoexponential trend from 10min after 2-[18F]FDG
injection up to the end of acquisition (60min), as reported in a
representative patient (Figure 1).

The mean values of a, b, and c coefficients obtained from
monoexponential fittings of 10 input function curves (group 1)
were 9.684, 16.410, and 0.068 min−1, respectively.

Figure 1 shows IDIF obtained with standard long dynamic
protocol and IDIFFitted obtained with short dynamic protocol
and reconstructed with monoexponential fit in a representative
patient (#4): both curves were imposed to pass through the
measured 2-[18F]FDG activity in plasma at 45min.

The LOOCVerror between standard IDIF (0–60min) and
IDIFfitted was 0.4%.

Table 1 reports demographic data and PET parameters values
(Ki, Ki,s, SUV) for all patients of group 2 (n= 14).

The mean values (±SD) of Ki obtained with standard
long dynamic protocol and Ki,s obtained simulating the short
dynamic protocol for patients of group 2 (n = 14) were 0.0442
min−1 (±0.0302) and 0.0433 min−1 (±0.0298), respectively. The
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TABLE 1 | Demographic data and PET parameters values in patients of group 2 (n = 14).

Patients Age Sex Ki R2 (Ki) Ki,s R2 (Ki,s) SUV

2 75 M 0.0314 0.9838 0.0291 0.9748 7.69

4 74 M 0.0381 0.9900 0.0377 0.9873 11.28

6 73 M 0.0385 0.9475 0.0361 0.9808 7.86

9 77 M 0.0468 0.9820 0.0485 0.9833 14.32

11 73 F 0.0403 0.9983 0.0418 0.9965 10.29

13 70 M 0.0383 0.9572 0.0349 0.9545 8.75

15 74 F 0.0222 0.9342 0.0222 0.9364 9.10

18 72 F 0.0165 0.9812 0.0166 0.9839 5.88

21 81 M 0.0310 0.9640 0.0290 0.9593 5.97

24 40 F 0.0303 0.9952 0.0313 0.9953 5.83

25 74 M 0.0764 0.9813 0.0733 0.9859 15.20

26 61 M 0.0656 0.9906 0.0654 0.9951 11.60

27 64 M 0.1306 0.9941 0.1287 0.9936 25.92

31 58 F 0.0123 0.9782 0.0117 0.9877 4.46

Ki , influx rate constant obtained with the Patlak graphical analysis using the standard long dynamic protocol; R2 (Ki ), Patlak plot linear regression coefficient for Ki ; Ki,s, influx rate

constant obtained with the Patlak graphical analysis using the short dynamic protocol; R2 (Ki,s ), Patlak plot linear regression coefficient for Ki,s; SUV, standardized uptake value.

FIGURE 2 | Passing–Bablok regression for comparison of Ki and Ki,s, for all

patients in group 2 (n = 14).

correlation coefficient and coefficient of determination between
the two parameters were ρ= 0.974 and R2 = 0.9970, respectively.

Figure 2 reports for all patients of group 2 (n = 14) the
Passing–Bablok regression for the comparison between Ki and
Ki,s: the comparison between the two methods showed a slope
value of 0.992 (95% CI: 0.94–1.06) and intercept value of−0.0003
(95% CI:−0.0033 to 0.0011).

Table 2 reports demographic data and PET parameters values
(Ki,s, SUV) for all patients in group 3 (n= 8).

In patients of group 2 (n = 14, standard long dynamic
acquisition) and those of group 3 (n = 8, two short dynamic
acquisitions), the overall mean value (±SD) of SUV of the
primary tumor was 11.57 (±5.37). The correlation coefficient and
coefficient of determination between SUV and Ki,s values were
ρ = 0.923; R2 = 0.8746 (n = 22), respectively, as reported in
Figure 3.

TABLE 2 | Demographic data and PET parameters values in patients of group 3

(n = 8).

Patients Age Sex Ki,s R2 (Ki,s) SUV

1 64 M 0.0646 0.9985 11.56

2 80 M 0.1018 0.9915 19.64

3 76 M 0.0374 0.9920 9.26

4 73 M 0.1188 0.9954 19.89

5 84 M 0.0614 0.9939 12.61

6 71 F 0.0697 0.9902 15.35

7 72 M 0.0485 0.9446 7.15

8 47 M 0.0971 0.9183 14.96

Ki,s, influx rate constant obtained with the Patlak graphical analysis using the short

dynamic protocol; R2(Ki,s ), Patlak plot linear regression coefficient for Ki,s; SUV,

standardized uptake value.

Figure 4 shows 2-[18F]FDG uptake at 2min (Figure 4A),
30min (Figure 4B), and 60min (Figure 4C) in the thoracic aorta
and primary tumor after tracer injection in a representative
patient (#4).

DISCUSSION

The Patlak graphical analysis has been used in dynamic PET to
estimate the influx rate constant (Ki) of tracers with irreversible
uptake including 2-[18F]FDG (14, 15, 37). Among several
quantificationmethods, the Patlak analysis is a reliable and robust
approach providing an accurate measure of Ki that is less affected
by technical parameters and by tissue heterogeneity (38, 39).

Nevertheless, the kinetics of 2-[18F]FDG requires a long
dynamic PET acquisition lasting at least 60 min with consequent
discomfort for the patient, limiting its use in clinical routine (40).
To overcome such limitations, in this study a shorter dynamic
acquisition protocol has been proposed to estimate Ki by Patlak
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analysis in patients with NSCLC. The input function and the
tissue response curves were reconstructed taking into account
data (0–10min and 40–60min) from standard long dynamic
acquisition, simulating two short dynamic PET acquisitions.

Regarding input function, it is well known that its accurate
determination is a key point for kinetic modeling. The Patlak
analysis requires the knowledge of the full course of input
function time–activity curve, from the tracer injection to the end
of dynamic acquisition of 60min (41). In our method, the first
part of each input function curve was built using data obtained
from injection up to 10min of the standard long dynamic
acquisition, simulating a short early dynamic acquisition. The
remaining part was reconstructed with monoexponential fitting
using the mean value of a, b, and c coefficients obtained from
standard input function values of a separate group of patients.
Indeed, we observed that all curves of the standard long dynamic
acquisition showed a monoexponential trend from the 10-min
post-injection to the end. Finally, each input function curve
so obtained was modeled to assume the value of 2-[18F]FDG

FIGURE 3 | Scatter plot, linear regression, and R2 value for the comparison

between Ki,s and standard uptake value (SUV) for all patients in groups 2 and

3 (n = 22).

activity measured in the venous blood sample at 45min post-
injection. Indeed, at late times, an equilibrium between 2-
[18F]FDG concentration in arterial and venous blood is reached
(35, 42). Moreover, the radioligand activity measured in blood
better represents the “real” 2-[18F]FDG concentration compared
to that measured using only VOI. The reliability of this method
is supported by the very low LOOCVerror value between standard
IDIF and IDIFfitted. Therefore, a short dynamic acquisition plus
a late venous blood sample can be sufficient to construct a
robust input function that can be considered “personalized”
since it uses data that are, largely, patients own data (counts
in first 10min of dynamic acquisition and counts in a venous
blood sample) plus reconstructed data (monoexponential fitting).
Therefore, we underline that the input function curve has to
be as accurate as possible taking also into account the physio-
and pathological characteristics of each patient representing the
“true” tracer bioavailability. Regarding the tissue response, it was
built using data obtained from 40 to 60min of the standard long
dynamic acquisition, simulating a late-short dynamic acquisition,
plus counts of the last frame (10min) of the simulated early-
short dynamic acquisition, useful to well estimate the slope of
Patlak plot.

Finally, the reliability of Ki,s values calculated using the input
function and tissue response curves obtained with the short
protocol is supported by the high correlation with Ki obtained
with the standard long dynamic acquisition. This finding suggests
the feasibility of the short protocol in clinical practice, requiring
only two short dynamic PET acquisitions (0–10min and 40–
60min) instead of the longer standard one (60min), plus a
late venous blood sampling. In addition, such a method that
contemplates two dynamic acquisitions (one including a large
vessel for input function; the other including the neoplastic lesion
for tissue response) can be applied to evaluate the influx rate
constant (and other quantitative parameters) of neoplastic lesion
located in everybody site. Recently, Wu et al. (43) investigated
the feasibility of generating Ki for 2-[

18F]FDG PET from dual-
time-point imaging data (5min per scan) by using a population-
based input function. Differently from our study, they did not
extrapolate Ki from a linear regression but the angular coefficient

FIGURE 4 | PET/CT images at 2min (A), 30min (B), and 60min (C) after 2-[18F]FDG injection for a representative patient (#4) showing the blood pool in the early

phase and the increasing uptake in the lesion during the time. 2-[18F]FDG, 2-[18F]Fluoro-2-deoxy-D-glucose.

Frontiers in Medicine | www.frontiersin.org 6 November 2021 | Volume 8 | Article 72538778

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Indovina et al. Short Dynamic Acquisitions and Ki

of a straight line passing through two points. Moreover, the
scaling factor for the population-based curve was determined on
the summation of the input function values at the middle time
points of the early and the late scans.

Regarding semiquantitative PET parameters, SUV showed
a good (even if not excellent) correlation with Ki,s obtained
both in patients in whom the two short dynamic acquisitions
were simulated and in patients in whom two short dynamic
acquisitions were performed. This result confirms that
semiquantitative parameters, even if less accurate, well represent
the glucose metabolism only if all technical and procedural
aspects in patient preparation and scan acquisition are strictly
respected. Indeed, especially when several PET/CT examinations
are repeated over time for the evaluation of response to
oncological treatment (44–46), the difficulty in strictly respecting
all technical aspects can make the semiquantitative parameters
unreliable. Moreover, it is important to remind that the
accuracy of semiquantitative parameters may be affected by
non-controlled aspects such as the oncological therapies that
can modify the tracer bioavailability (especially the news
antiangiogenic drugs), the cancer cells biological characteristics
(tracer uptake), and other unknown biologic and patients
factors (47, 48). Furthermore, we have to take into account that
semiquantitative parameters, such as SUV, perform relatively
poorly when the tumor-to-background ratio is low as in liver
lesions, in small and less 2-[18F]FDG avid tumors (49) or
post-treatment evaluation when the uptake in tumors may
be suppressed after therapy (19). Therefore, the use of kinetic
parameters seems preferable to semiquantitative ones, not only
for therapy monitoring (50–52) but also for evaluating glucose
metabolism of tumor regions with relatively high background
activity (19). Moreover, it was recently showed that oncologic
whole-body (WB) Patlak Ki imaging may improve lesion
detectability reducing false-positive rates when complementing
SUV (53). This potential improvement in specificity may
support the use of kinetic parameters in other clinical settings,
such as for differential diagnosis between pulmonary tumors
and inflammatory lesions, and between progression and
pseudoprogression during immunotherapy.

Regarding practical aspects of our method, to come in and out
of the PET scanner twice to perform two separate acquisitions
did not determine a discomfort for patients of group 3 who
performed the short dynamic protocol. Indeed, the short lasting
of PET acquisitions (compared to the long standard one) seems
preferable for patients who have to maintain the correct position
with the arms over the head on the scanner for a shorter time.
In addition, the method does not require a rigid repositioning of
the patient on the PET scanner, since a co-registration of early
and late dynamic images was not needed. However, this could
be a limitation if a voxel-wise Patlak analysis method would be
explored; in that case, a similar approach may not be feasible due
to the need for co-registration between early and late dynamic
PET frames. Finally, this procedure that requires two separate
short acquisitions, between which the patient leaves the scanner
free for other patients PET acquisition, may result in several
practical limitations, increasing the complexity in the scheduling
of the daily clinical workflow, the time involvement of the staff

in repositioning the patient on the scanner table, and the risk of
propagating delay or cancellations of one exam on the following
ones. Moreover, we have to take into account that the need for
two low-dose CT scans for accurate attenuation correction of the
two dynamic PET acquisitions introduces additional radiation
exposure for the patient and increases the time involvement for
patients and staff, reducing the time between the early and late
acquisitions in which the scanner is available for another exam.
However, this proposed method cannot replace the standard-
of-care WB PET acquisitions, but it can allow quantifying Ki

in few selected cases (maximum three per day for clinical or
research aims), even in PET centers that do not have advanced
technologies, scheduling them at the beginning of the end of the
daily workflow, reducing the impact on daily clinical activities
as much as possible. However, we have to take into account that
there are currently commercially available products that provide
fully automated WB parametric PET images. Their diffusion in
the next future will allow acquiring dynamic WB PET studies
with the arms in the down position, improving the comfort of
patients and limiting the possibility of motion-induced artifacts
in the PET images, with minimal control and time involvement
requirements for the staff.

Beyond the practical aspects, the main limitations of this
study are the relatively small sample size, the absence of arterial
blood samples as the reference standard (being invasive and not
feasible in clinical practice) to validate the input function time–
activity curve, and the application of the short protocol only in
patients with NSCLC. Moreover, the application of a single-scale
factor to impose the IDIF activity value at 45 min equal to the
plasma activitymeasured in the blood sample could be a potential
limitation due to the different partial volume effects during time
scan; in the early phase, the activity in the vessel is very high
causing spill-out of activity outside the vessel wall boundaries
and lead to a possible underestimation of the IDIF peak. On the
contrary, in the late phase, the activity inside the vessel is expected
to be very small, whereas the activity from the surrounding tissue
is relatively larger, thus causing a possible overestimation of the
IDIF value. In addition, the use of two short dynamic acquisitions
could not be adequate to apply the generalized Patlak methods
developed and employed in Ki quantification when considering
a mild degree of reversibility of 2-[18F]FDG kinetics, since these
methods require multiple measurements at both early and late
time points (23, 54–56). Nevertheless, the robustness of the
performance of our method in the Ki evaluation using two short
acquisitions (compared to the standard one) supports its use,
aware that with the simplicity of our method, a good estimate
of the value of the constant influx rate was obtained. Finally,
the use of 4D reconstruction algorithms (30, 57–59), recently
available in some PET scanners, but not applied in our PET scans,
would mitigate statistical noise levels, improving image quality
and Ki estimation.

CONCLUSION

In conclusion, our proposed method may provide a reliable
quantification of regional estimates of influx rate constant for
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tissues not expressing 2-[18F]FDG uptake reversibility. Two short
dynamic PET acquisitions obtained at an early and late time point
post-injection plus a population-based input function model
scaled according to a late venous blood sample may be enough
to obtain a robust and personalized temporal integral of the
input function, which is necessary to estimate the net influx rate
constant by regional Patlak analysis. This short dynamic protocol
of two scan sessions at 0–10min and 40–60min post-injection
may have some potential advantages when compared with the
standard dynamic WB long 60-min acquisition protocols; it can
reduce the total time spent inside the scanner for each patient,
but not its total exam time involvement. The scan time reduction
could therefore mitigate their discomfort for some patients if
exiting and entering the scanner twice per exam is not an issue;
however, this reduction in acquisition time comes at the cost of
additional radiation exposure for the patient with a second low-
dose WB CT scan. Despite several practical limitations, such as
the increase in CT radiation dose from the need for a second
low-doseWBCT exam, the complexity of scheduling daily exams
with interleaved sessions between different patients and the risk
of propagating time delays and other problems from one exam
session to the exams of other patients in the same day, the
proposed dynamic PET/CT scan protocol can theoretically allow
performing more dynamic PET acquisitions daily; furthermore,
similarly to other WB dynamic PET scan protocols, it allows to
obtain regional estimates of highly quantitative parameters in
tumor regions located in distant organs scanned at different bed
positions. Moreover, data analysis is not more time-consuming
and does not require additional expertise compared to other
dynamic WB PET/CT protocols. From the clinical point of
view, the use of dynamic WB PET acquisitions assumes more

significance in oncological patients in whom the quantification
is more relevant than semiquantification, especially in treatment
monitoring and prognostic assessment. Our proposed method,
along with other recent dynamic WB PET/CT studies (28, 29,
43, 58), aims to facilitate the clinical adoption of dynamic PET
and regional parametric analysis by shortening the total PET scan
times often required in these protocols.
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Purpose: A meta-analysis was conducted to investigate the value of the volume

parameters based on somatostatin receptor (SSTR)-positron emission tomography (PET)

in predicting the prognosis in patients with neuroendocrine tumors (NETs).

Material: PUBMED, EMBASE, Cochrane library, and Web of Knowledge were searched

from January 1990 to May 2021 for studies evaluating prognostic value of volume-based

parameters of SSTR PET/CT in NETs. The terms used were “volume,” “positron

emission tomography,” “neuroendocrine tumors,” and “somatostatin receptor.” Pooled

hazard ratio (HR) values were calculated to assess the correlations between volumetric

parameters, including total tumor volume (TTV) and total-lesion SSTR expression

(TL-SSTR), with progression-free survival (PFS) and overall survival (OS). Heterogeneity

and subgroup analysis were performed. Funnel plots, Begg’s and Egger’s test were used

to assess possible underlying publication bias.

Results: Eight eligible studies involving 593 patients were included in the meta-analysis.

In TTV, the pooled HRs of its prognostic value of PFS and OS were 2.24 (95% CI:

1.73–2.89; P < 0.00001) and 3.54 (95% CI, 1.77–7.09; P = 0.0004), respectively. In

TL-SSTR, the pooled HR of the predictive value was 1.61 (95% CI, 0.48–5.44, P = 0.44)

for PFS.

Conclusion: High TTV was associated with a worse prognosis for PFS and OS in with

patients NETs. The TTV of SSTR PET is a potential objective prognosis predictor.

Keywords: positron emission tomography/CT, neuroendocrine tumors, somatostatin receptors, prognosis, tumor

volume

Advanced in Knowledge

The volume parameters based on SSTR PET can provide additional value for the prognosis of
neuroendocrine tumors.

INTRODUCTION

Neuroendocrine tumors (NETs) are a group of highly heterogeneous neoplasm originating from
neuroendocrine cells and it can occur in different organs. The emergence of diagnostic technologies

83

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.771912
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.771912&domain=pdf&date_stamp=2021-11-26
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:hushuo2018@163.com
https://doi.org/10.3389/fmed.2021.771912
https://www.frontiersin.org/articles/10.3389/fmed.2021.771912/full


Hou et al. Prognostic Analysis Based on SSTR-PET

increases early-stage NETs and the detection rate of metastases,
raising its incidence and prevalence (1). However, in patients
with the same tumor stage and grade, the outcome of disease and
survival of NET patients vary greatly (2, 3). Therefore, identifying
the prognostic markers is crucial for the management of patients
with NETs. Some studies showed that morphological imaging is
of limited value in predicting the survival, disease progression,
and treatment effects of NETs (4, 5). Several widely-studied
diagnostic biomarkers, especially chromogranin A (CgA), has
been widely studied. Its plasma level is affected by many factors
including the use of proton pump inhibitors (6, 7), but its
prognostic utility is still controversial (8, 9).

Somatostatin receptors (SSTRs) are expressed in most
NET cells, particularly type 2, and is an ideal target for
imaging and therapy method (10). SSTR-mediated imaging is
considered to be more accurate than SSTR immunostaining in
determining individual prognosis (11). SSTR PET imaging is
considered a better imaging method than SSTR scintigraphy
using 111In-octreotide due to its higher spatial resolution,
higher image quality, and higher lesion detection rate (12).
68Ga-DOTA-peptides can be used to reflect the expression of
SSTR, especially in well-differentiated NETs (WD-NETs). High
maximum standardized uptake value (SUVmax) is associated with
a lower grade, better progression-free survival (PFS), and higher
responsiveness to peptide receptor radionuclide therapy (PRRT)
(13, 14). A meta-analysis by Lee and Kim (15) showed that the
SUVmax of 68Ga-SSA is an important prognostic parameter for
NETs patients. Low SUVmax is associated with the high risk of
disease progression and mortality.

However, SUVmax reflects the value of a single voxel but
does not represent the entire tumor. The volume parameters
derived from PET in predicting the prognoses and monitoring
the treatment can directly estimate systemic tumor burden, such
as metabolic tumor volume (MTV) and total disease glycolysis
(TLG), based on 2-deoxy-2-(18F) fluoro-D-glucose (18F-FDG)
(16–19). However, well-differentiated NETs (WD-NETs) do not
usually show high 18F-FDG uptake (20). SSTR-based PET/CT
may be suitable for predicting the prognosis of WD-NETs
patients. However, there are conflicting results regarding the
prognostic value of volumetric parameters based on SSTR-PET
in NETs (21, 22).

Therefore, we performed this meta-analysis to analyze the
predictive value of volumetric parameters based on SSTR-PET for
survival outcome in patients with NETs.

MATERIALS AND METHODS

The preferred reporting items for systematic reviews and meta-
analyses (PRISMA statement) guidelines were used to perform
this meta-analysis (23).

Data Search and Study Selection
We performed a systematic search of PUBMED (to May 2021),
EMBASE (to May 2021), Web of Science (to May 2021), and
Cochrane (to May 2021) for English publications. The terms
were as follows: (“neuroendocrine tumors” or “neuroendocrine
tumor” or “tumor neuroendocrine” or “tumors neuroendocrine”

or “neuroendocrine”) and (“PET”) or (“positron emission
tomography”) and (“somatostatin receptor” or “SSTR”) and
(“volume” or “volume-based parameters” or “tumor burden” or
“tumor volume” or “volumetrical parameter”) and (“prognos∗”
or “predict∗” or “Survival” or “outcome” or “PFS” or “OS” or
“progress free survival” or “overall survival”). All searches were
limited to human studies.

The inclusion criteria were studies using SSTR-based PET as
an imaging tool, including volumetric parameters [total tumor
volume (TTV) or total-lesion SSTR expression (TL-SSTR)] for
whole body lesions and reported survival data. Reviews, abstracts,
case reports, and editorial materials were excluded. Two authors
independently searched and screened the eligible articles. A
consensus resolved any discrepancies.

Data Extraction and Quality Assessment
Data were extracted from the enrolled studies independently by
two reviewers and the following information was recorded: first
author, publication year, country, patient number, tumor grade,
tumor site, radiotracer used, treatment after PET/CT scans,
reported survival, PET volumetric parameters, and cut-off values
of volumetric parameters.

Two reviewers independently used the quality in prognostic
studies (QUIPS) tool to evaluate the quality of the included
studies (24). The tool assesses the risk of bias in six domains
including study participation, study attrition, measurement of
prognostic factors, measurement of outcome, study confounding,
and statistical analysis and reporting. Consensus was reached
through discussion.

Statistical Analysis
The primary outcome was PFS, including disease-free survival,
recurrence-free survival, and event-free survival as the main
outcome, and also the time interval from the date of starting
therapy to the date of recurrence or metastasis. The secondary
endpoint was overall survival (OS), defined as the time interval
from the start of therapy to death from any cause. The
effect of TTV or TL-SSTR on PFS and OS was measured
by the effect size of the hazard ratio (HR). PFS or OS data
were extracted using methods suggested in previous research
(25). Univariate HR and 95% confidence intervals (CI) were
extracted for each study, if provided by the author. If not,
we used the Engauge Digitizer (http://markummitchell.github.
io/engauge-digitizer/) to determine the survival rate according
to the Kaplan–Meier curve to reconstruct HR estimate and its
variance, assuming that patients were censored at a constant
rate during the follow-up. Heterogeneity between studies was
assessed by χ

2 test and I2 statistics described by Higgins et al.
(26). When I2 ≤ 50% and Cochran Q was P ≥ 0.1, a fixed
effects model was used; when I2 > 50% or Cochran Q is P
< 0.1, the random effect model was used. Subgroup analyses
were performed according to the tumor grade and type of
radiotracer. Further, funnel plots Begg’s and Egger’s test were
performed to assess for any publication bias (27). Meanwhile,
we performed the sensitivity analysis for prognosis by omitting
each study to assess the influence of an individual study on
the whole meta-analysis. P-values < 0.05 were considered
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FIGURE 1 | Flow chart.

statistically significant. Data from each study were analyzed using
Review Manager (RevMan, Version 5.3; The Nordic Cochrane
Centre, Copenhagen, Denmark) and Stata Version 15.0 (College
Station, TX).

RESULTS

Study Characteristics
A flow chart of the data search and selection is presented in
Figure 1. A total of eight studies involving 593 patients were
included in our meta-analysis. Five studies (21, 22, 28–30) were
retrospective and three studies (31–33) were a prospective design.
According to the WHO grade, three researches (22, 29, 30)
included well-differentiated NETs (grade 1 and/or 2). Three

studies had heterogeneous populations containing all grades
(21, 31, 33) and the remaining two studies did not clearly state
the grade of the enrolled patients (28, 32). All the eight studies
included pancreas origin NETs and seven studies enrolled gastric
intestinal (GI) tract origin NETs, including the stomach or/and
midgut or/and rectum (21, 22, 28, 29, 31–33). Seven studies had
other site origin NETs such as the lung, extrahepatic biliary tract,
adrenal, and cancer of unknown primary origin (21, 22, 28, 29,
31–33).

The characteristics of the included study are shown in
Table 1. From them, four studies used 68Ga-DOTATATE (22,
29, 31, 32), three studies used 68Ga-DOTATOC (21, 28, 30),
and one study (33) used 64Cu-DOTATATE for PET imaging.
The parameters included TTV in eight studies and TL-SSTR

Frontiers in Medicine | www.frontiersin.org 3 November 2021 | Volume 8 | Article 77191285

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Hou et al. Prognostic Analysis Based on SSTR-PET

TABLE 1 | Characteristics of the included study.

No. Study Year Country Study

design

Patient

No.

Tumor

Grade

Tumor site Radio-

tracer

Treatment After

68Ga-SSTR PET

End Point Studied PET

Parameters

Tumor

delineation

Cut off

value

1 Tirosh

et al.

2018 USA prospective 184 I–III Pancreas GI

tract

CUP

Lung

68Ga-

DOTATATE

medical, PRRT,

LDT, Surgery

PFS and

Disease-

specific

mortality

Total TV Adaptive

threshold by

visual

inspection

7.0ml 35.8

ml

2 Toriihara

et al.

2019 USA retrospective 92 I–II Pancreas GI

tract CUP

68Ga-

DOTATATE

Surgery,

somatostatin

analog, LDT,

Radiation, PRRT

PFS Total TV and

TL-SSTR

50% of

SUVmax

11.29 ml

3 Ohlendorf

et al.

2019 Germany retrospective 33 I–II Pancreas GI

tract CUP

68Ga-

DOTATATE

PRRT PFS Total TV and

TL-SSTR

40% of

SUVmax

140.8ml

4,852 ml

4 Ohnona

et al.

2019 France retrospective 50 I–II Pancreas 68Ga-

DOTATOC

surgery,

somatostatin

analog,

chemotherapy,

targeted therapy,

PRRT, local

therapy of a single

metastatic site.

PFS Total TV 41% of

SUVmax

13.8 ml

5 Kim

et al.

2020 Republic of

Korea

retrospective 64 I–III Pancreas GI

tract CUP

68Ga-

DOTATOC

somatostatin

analog

PFS Total TV and

TL-SSTR

1.5*liver

SUVmean +

2*standard

deviation

58.9ml

778.5

6 Pauwels

et al.

2020 Belgium retrospective 57 (–) GI tract

Pancreas

CUP Other

68Ga-

DOTATOC

PRRT PFS and OS Total TV and

TL-SSTR

Adaptive

threshold by

visual

inspection

578 ml

7 Carlsen

et al.

2021 Denmark prospective 116 I–III GI tract

Pancreas

Extrahepatic

biliary tract

Lung CUP

64Cu-

DOTATATE

Surgery LDT,

external radiation.

Interferon,

somatostatin

analog,

chemotherapy

and/or PRRT.

PFS and OS Total TV 1.5*liver

SUVmean +

2*standard

deviation

54.9 ml

8 Ortega

et al.

2021 Canada prospective 96 (–) GI Pancreas

CUP Lung

Adrenal

68Ga-

DOTATATE

PRRT PFS Total TV SUVmax of

liver/spleen

(-)

CUP indicates cancer of unknown primary; PRRT, peptide receptor- radionuclide therapy; LDT, liver-directed treatment; OS, overall survival; PFS, progress free survival; TTV, total tumor

volume; TL-SSTR, total-lesion somatostatin receptors expression; SUVmax , maximum standardized uptake value.

in two studies (21, 29). Seven studies (21, 22, 29–33) analyzed
the prognostic value of TTV regarding PFS, and three studies
further evaluated the relationship between TTV and OS (or
disease-specific mortality) (28, 31, 33). Four studies reported
the relationship between PFS and TL-SSTR (21, 22, 28, 29).
Six threshold methods were applied for the measurement of
TTV and TL-SSTR of whole-body lesions (Table 1). Cutoff
value of TTV ranged from 7 to 578ml, and the cutoff
value of TL-SSTR in PET in two studies were 778.5 and
4,852ml, respectively.

Quality Assessment
According to the QUIPS tool quality assessment results, four
studies (22, 30, 31, 33) had a moderate risk selection bias
because they did not report whether the study population was
consecutively selected, and two studies (21, 30) had high selection
bias due to the relatively small number of cases enrolled in

the group. All included studies showed a low risk of attrition
bias. Regarding the measurement of prognostic factors, four
studies (21, 29–31) showed a higher risk of bias due to the
dependence on the cutoff value of the data, while two studies
showed a moderate risk of bias because it was not mentioned
whether blinded-manner was used in the measurement. For
outcome measurement, seven studies (21, 22, 28–32) showed
a moderate risk of bias because it was not clear whether
the outcome measurement was performed without prognostic
factors or the method used for the outcome measurement
was unclear.

Regarding confounding bias, two studies (29, 31) showed
high risk due to the lack of multivariate analysis. One study
(28) showed moderate risk because grade was not considered.
In terms of statistical analysis, two studies (22, 32) showed
a higher risk of bias because the study included all variables
that might be affected by multicollinearity into the multiple
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regression. In general, the results of the QUIPS tool indicated
that the overall quality of the included studies was moderate
(Supplementary Table 1).

Prognostic Value of TTV and TL-SSTR on
PFS and OS
The effect of TTV on PFS was analyzed using seven studies.
However, in one study (32), the study was omitted because

TABLE 2 | Summary of the meta-analysis results.

Parameter Study no. End point HR 95%CI P Model

TTV 6 PFS 2.24 1.73–2.89 <0.00001* Fixed

TTV 3 OS 3.54 1.77–7.09 0.0004* Random

TL-SSTR 3 PFS 1.61 0.48, 5.44 0.44 Random

TTV, total tumor volume; TL-SSTR, total-lesion somatostatin receptors expression; HR,

hazard ratio; CI: confidence intervals.

*Statistically significant (P < 0.05).

HR could not be combined using continuous variables,
while the other six studies were combined because all HR
used binary variables. The combined HRs of 2.24 (95%
CI: 1.73–2.89) was given a I2 of 0% using a fixed-model,
showing a correlation between TTV and PFS (P < 0.00001)
(Table 2; Figure 2). Also, we conducted sensitivity analysis
(Supplementary Figure 1) to further estimate the impact on the
combined HRs.

The effect of TTV on OS was analyzed using three studies.
The combined HR was 3.54 with statistical significance (95% CI,
1.77–7.09; P = 0.0004). Heterogeneity was moderate (χ2 = 4.12,
P = 0.13; I2 = 52%). The combined HRs were found to be stable,
suggesting no individual study significantly affected the results
(Supplementary Figure 1).

The effect of TL-SSTR on PFS was analyzed using three
studies (21, 22, 29). A random-effects model was used and the
pooled HR was 1.61 (95% CI, 0.48–5.44, P = 0.05; I2 = 66%,
Figure 2; Table 2) with significant heterogeneity. The results
showed no statistically significant correlations with PFS and
TL-SSTR (P = 0.44).

FIGURE 2 | Forest plot results of the PFS (A) and OS (B) based on the total tumor volume and PFS based on the total tumor expressing SSTR (C).
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TABLE 3 | Results of subgroup analysis in PFS based on TTV.

End point Factor Study no. Heterogeneity test (I2, P) HR 95%CI of HR P-value Model

PFS Well-differentiated NETs (G1, 2) 3 0%, 0.51 2.31 1.40-3.82 0.001* Fixed

All grades of NETs (G1–3) 3 0%, 0.85 2.21 1.64-2.98 <0.00001* Fixed

PFS 68Ga-DOTATATE 3 0%, 0.51 2.34 1.53-3.58 <0.0001* Fixed

68Ga-DOTATOC 2 0%, 0.86 2.61 1.20-5.66 0.02* Fixed

64Cu-DOTATATE 1 NA NA NA NA NA

NA, Not applicable.

PFS, progression-free survival; TTV, total tumor volume.

*Statistically significant (P < 0.05).

FIGURE 3 | The funnel plot of publication bias estimates the results of PFS (A) and OS (B) based on TTV, and PFS based on TL-SSTR (C) in the meta-analysis.

Egger’s test and Begg’s test were used for statistical analysis, where the P < 0.05 was considered as significant. PFS, Progress free survival; OS, overall survival; TTV,

total tumor volume; TL-SSTR, total-lesion somatostatin receptors expression.

Subgroup Analysis
Subgroup analysis was performed to the tumor grade and type
of radiotracer. Since the research on PFS based on TL-SSTR
and the research on OS by TTV are relatively small, we only
performed subgroup analysis on PFS based on TTV (Table 3).
Among studies of TTV on PFS, no obvious heterogeneity was
found between the studies on well-differentiated NETs (G1/2)
(HR: 2.31, 95%CI: 1.40–3.82; P= 0.001) and studies on all grades
of NETs (HR: 2.21, 95%CI: 1.64–2.98; P < 0.00001) (I2 = 0%, P
= 0.88). Also there is no statistical difference between different
imaging agents for predicting PFS (I2 = 0%, P = 0.88).

Publication Bias
Begg’s and Egger’s tests were used to assess publication bias.
The funnel plot and P-value estimation indicated no publication
bias for TTV on PFS and OS, as well as for TL-SSTR on PFS
(Figure 3).

DISCUSSION

To our knowledge, this is the first systematic review and
meta-analysis to evaluate the prognostic value of volume-based
parameters of SSTR PET/CT in NETs. The volumetric parameter
based on SSTR PET is useful in predicting PFS. Subgroup
analysis reveals that tumor grade and radiotracers may not affect
the prognosis.

18F-FDG is the most common PET imaging agent, which
can non-invasively assess tumor glucose metabolism and

proliferation (34, 35). 18F-FDG PET can be used not only for
diagnosis and staging, but also for assessing the proliferative
activity and malignancy of tumors. Studies have shown that
18F-FDG may also reflect the prognosis of many tumors,
including NET (36–38). A meta-analysis based on 18F-FDG
PET/CT showed that MTV as a volumetric parameter of 18F-
FDG PET may be an independent prognostic factor for survival
(39). However, none of the studies we included had 18F-FDG
PET volume parameters for predictive evaluation of prognosis.
Although it is not clear whether volumetric parameters based
on SSTR PET have better prognostic value than volumetric
parameters based on FDG (MTV and TLG) in this study,
tumor volume and total tumor expressing SSTR based on SSTR-
PET as prognostic biomarkers of NETs have unique advantages
compared with MTV or TLG. On the one hand, SSTR2 was an
independent prognostic marker in NETs (11), and tumor volume
based on SSTR was also correlated with PFS and OS (40). On
the other hand, these SSTR-based volume parameters can better
reflect the SSTR situation in entire tumors. In the future, we
expect to directly compare the ability of 18F-FDG and SSTR PET
parameters to predict prognosis through prospective studies.

In this review, higher TTV based on SSTR-PET showed
shorter PFS and OS. Although the study of Ortega et al. (32)
did not include the meta-analysis, the study still suggests that
higher TTV is associated with a worse prognosis. Of six studies
(21, 22, 28, 30, 32, 33) in which multivariate analysis for PFS
was performed, four out of (22, 30, 32, 33) six were prognostic
markers for PFS. Two out of (30, 32) three studies showed
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that the TTV were prognostic markers for OS. However, TL-
SSTR was not significantly related to the prognosis in our study.
Only Ohlendorf et al. (29) showed TL-SSTR was associated with
PFS. The author believed that the difference may come from
the different methods of tumor burden measurement and the
samples of enrolled patients.

Heterogeneity was detected in this meta-analysis. In pooled
data, significant heterogeneity was found for TTV based on
SSTR-PET in predicting PFS. After excluding the study of Ortega
et al. (32), the results of the overall estimated values aggregated
by PFS reduced heterogeneity (I2, from 87 to 0%) with a HR of
2.24 (95% CI: 1.73–2.89). This may be due to the different tumor
volume threshold, which should be discussed in a prospective
study. Further analysis found that tumor grade revealed that the
TTV of SSTR-PET could predict PFS and OS of all grades of
NETs. Since the NET grade depends on the biopsy site, and the
heterogeneity of NETs is high, the volume parameter may be
more conducive to predicting the prognosis, but it still needs
further research to confirm. Additionally, we also performed
subgroup analysis of radiotracer types. Subgroup analysis found
that the use of single 68Ga-DOTANOC and 68Ga-DOTATATE
showed prognostic value. As we all know, 68Ga-DOTANOC,
which binds specifically to sst2, sst3, and sst5 (41), has ten-times
lower sst2 affinity than the sst2-selective tracer

68Ga-DOTATATE
(42). A study has shown that 68Ga-DOTANOC performed
better in detecting liver metastasis and had a higher tumor-
to-background ratio in liver lesions due to the broader SSTR-
binding profile (43). However, another study showed that 68Ga-
DOTATATE detected more liver lesions, mainly due to a higher
lesion uptake (44). Therefore, whether different radiotracers have
a significant impact on the prognosis of tumor burden remains to
be further studied.

To the best of our knowledge, this is the first meta-analysis
to evaluate the prognostic value of volumetric parameters in
the SSTR-PET in NETs. However, due to limited literature, it is
difficult to directly compare the HRs between SUVmax and the
volume parameter. In our study, volumetric parameters based on
SSTR-PET were independent prognostic markers in three studies
(29–31) of eight. SUVwas found to be an independent prognostic
marker in only one study (28) of eight.

This study has several limitations. Firstly, there were only
three studies involving OS, and few studies involving TL-
SSTR. Secondly, there were significant differences in study

design, image analysis, cutoff value, sample sizes, and patient
selection among the studies included in the current meta-

analysis, leading to publication bias. Thirdly, due to the
limited studies we enrolled, we cannot evaluate the best cut-
off value of tumor burden parameters for prognostic prediction
under the same primary site, treatment, and course of disease.
We look forward to further research in future large-sample
prospective studies.

CONCLUSION

The TTV of SSTR-PET is a significant prognostic parameter in
NETs patients. The high TTV is associated with an increased
risk of disease progression and mortality, whether it is a well-
differentiated NET group or a NET group of all grades. In
the future, the TTV of SSTR-PET could be used as a potential
predictor of prognosis in patients with NETs.
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Objective: To investigate single-photon emission computed tomography/computed

tomography (SPECT/CT) for assessing inflammation in the extraocular muscles (EOMs)

and predicting the therapeutic efficacy of periocular glucocorticoid therapy (PGT) for

Grave’s ophthalmopathy (GO).

Materials and Methods: A total of 412 eyes from 206 patients with GO referred

for 99mTc-DTPA orbital SPECT/CT were enrolled. Fourteen age- and gender-matched

healthy controls (28 eyes) were included. The thickness and uptake ratio (UR) of four

EOMs were derived from SPECT/CT. Eighty-six eyes from patients with GO patients

received PGT. Changes in SPECT/CT parameters were evaluated between the pre- and

post-treatment.

Results: 195 eyes and 217 eyes were classified as active and inactive stages by clinical

activity score (CAS). Values of the thickness and UR of each EOM, Tmax, and Umax

were all significantly higher in the active GO than in the inactive GO and controls (p <

0.01). Among the 86 eyes (48 GO patients) included in the efficacy analysis, 56 eyes

and 30 eyes were classified as responders and non-responders. Values of thicknesses

and UR of each EOM, the maximum thickness (Tmax), and the maximum UR (Umax)

all dropped following PGT in the responders (p < 0.01). Logistic regression analysis

identified the Umax as an independent predictor for the responders (p < 0.01). Moreover,

the Umax demonstrated incremental predictive value over clinical characters and CAS, as

evidenced by the improved area under the curve (0.85 vs. 0.78) and global chi-square

(34.12 vs. 18.1).

Conclusion: 99mTc-DTPA SPECT/CT has the potential to assess inflammatory activity

by detecting the involvement of EOMs in GO. Pre-treatment UR provides independent

and incremental values for the prediction of PGT treatment response.

Keywords: Grave’s ophthalmopathy, extraocular muscles, single-photon emission computed

tomography/computed tomography, glucocorticoid, treatment response
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INTRODUCTION

Grave’s orbitopathy (GO) is the most common extrathyroidal
manifestation of Grave’s disease and one of the most prevalent
orbital disorders in adults (1–3). Signs and symptoms include
eyelid retraction, proptosis, motility restriction, exposure
keratopathy, and even vision loss, associated with a significant
decrease in the quality of life of patients. As an autoimmune
disease, GO follows a two-stage process, with an active
inflammatory stage followed by an inactive fibrotic stage (2, 3).
Anti-inflammatory treatment is usually considered effective
during the active stage, but it has little value during the inactive
stage (1, 4). Therefore, an accurate and objective assessment of
inflammatory activity is essential to determine the appropriate
treatment for GO.

The clinical activity score (CAS), based on inflammatory signs
and symptoms, has been widely used for GO evaluation and
as a criterion and guideline for therapeutic management (1).
However, the acute inflammatory involvement of EOM or orbital
fat may fail to be adequately assessed, especially when diplopia or
motility impairment is not present (5–8). Moreover, diplopia and
strabismus can be induced by either inflammation in the active
stage or fatty degeneration and fibrosis in the inactive stage. MRI
is another useful modality for GO imaging by the nature of its
superior soft tissue contrast and no ionizing radiation. Especially,
T2-weighted images can assist in staging and deciding treatment.
However, the overall accuracy is still limited (9). Thus, a more
precise assessment of EOM inflammatory activity is needed.

Currently, 99mtechnetium (99mTc)-labeled diethylene
triamine pentaacetic acid (DTPA) orbital single-photon emission
computed tomography/computed tomography (SPECT/CT) or
SPECT has proven to be a valuable method for the detection of
inflammation in GO (5, 10). Theoretically, DTPA is uniformly
distributed throughout the extracellular space, binds to
polypeptides in the extracellular fluid, and does not cross the
blood-tissue barrier. The amount of 99mTc-DTPA accumulation
in the soft tissue of orbital cavity (mainly in the EOMs) is directly
proportionate to the activity of the inflammation with associated
hyperpermeability and breakdown of blood-tissue barrier (5, 11).
This may explain the high uptake of 99mTc-DTPA in GO due
to inflammation. Moreover, it provides not only visual but also
semi-quantitative information about the activity of the disease.
Although DTPA SPECT/CT imaging in patients with GO has
been validated in some cases (10, 11), a systematic evaluation of
the DTPA uptake of EOMs has not been validated. The aim of
our study was to examine the SPECT/CT parameters of EOMs
for assessing the inflammatory activity of GO, and to evaluate
the role in predicting the efficacy of treatment.

MATERIALS AND METHODS

Study Population and Clinical Assessment
This study was approved by the Ethics Committee of Xiangya
Hospital (No. 202101021). All the patients provided written
informed consent for the imaging procedures as well as for
participation in anonymized analyses. Data from 302 patients
with GO who underwent orbital 99mTc-DTPA SPECT/CT were

retrospectively collected in a single center from November 2016
to May 2017. All the patients with GO were diagnosed based
on Bartley’s criteria (1). Ninety-six patients with orbital tumors,
other orbital inflammatory lesions, sinusitis, and history of
systemic GC or radiation therapy were excluded. Finally, the
remaining 206 patients with GO (412 eyes) were enrolled in
this study.

All the patients underwent a full ophthalmological
examination. The inflammatory activity of the eyes was
assessed using the seven-point modified formulation of
the CAS (1). Fourteen healthy subjects (28 eyes) without
ophthalmological disorders and systemic immune diseases
served as the control group.

Among the patients with GO, we selected those who received
periocular corticosteroid therapy (PGT) for efficacy analysis.
Inclusion criteria included CAS≥ 2 and elevated uptake of EOMs
by SPECT/CT. Patients with corticosteroid contraindication and
pregnant or lactating women were excluded in this study. A total
of 86 eyes received a periocular injection of 20mg triamcinolone
acetonide (40 mg/ml) (Jida Corporation, Kunming, China)
weekly for 7 consecutive weeks. The selection of injection
was based mainly on the CAS score or lesion of high uptake
on SPECT/CT images. If SPECT/CT had high DTPA uptake
only in the superior rectus, the injection was applied at the
superomedial quadrants; if high uptake was present only in the
inferior rectus, the injection was applied at the inferolateral
quadrants. When SPECT/CT uptake was high in several recti,
the injection was applied alternately at the inferolateral and
superomedial quadrants. All the patients were evaluated by the
same experienced ophthalmologist and had a final examination
3 to 6 months after the treatment. Response was assessed and
defined by at least one of the following criteria: (1) the CAS
dropped by at least 2 points and CAS < 3; (2) no residual uptake
of EOMs was observed on the follow-up SPECT/CT images.
Patients who did not fulfill the above criteria were classified as
“non-responders.”

Orbital 99mTc-DTPA SPECT/CT Acquisition
All the subjects were scanned with a hybriddouble head
SPECT/CT scanner (Precedence 16, SPECT/CT; Philips,
Netherlands) using a low-energy and high-resolution collimator.
After 20min of intravenous administration of 555 MBq 99mTc-
DTPA (Chinese Atomic Energy Institute, Beijing, China),
an orbital CT scan (140 kV, 100mA, 1 slice thickness) for
attenuation correction was obtained with the patient’s head
positioned parallel to the Frankfurt plane. Then, SPECT images
were acquired with 64 projections in step-and-shoot mode over
360 degrees (5.6 degrees per step), and matrix size was 64 × 64.
The energy window was open by ±10% centered at 141 keV.
Subsequently, the CT and SPECT images were loaded into an
EBW workstation (Philips, Netherlands) for further analysis.

SPECT/CT Imaging Measurement
Manual rigid registration of SPECT and CT images was carried
out on the EBW workstation. Two experienced nuclear medicine
specialists (MZ and CZJ) who were blinded to the SPECT/CT
results evaluated the orbital SPECT/CT images together. The
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FIGURE 1 | Schematic diagram for the measurement of orbital single-photon emission computed tomography/computed tomography (SPECT/CT) semi-quantitative

parameters of extraocular muscles (EOMs). (A–C) The medial rectus (MR) and lateral rectus (LR) were measured on the axial images, and the vertical diameters of the

superior rectus (SR) and inferior rectus (IR) were measured on the sagittal images. In addition, (D,E) the EOM uptake values were determined by manually placing a

round region of interest (ROI) within the consensus highest uptake portion of each EOM on the CT attenuation-corrected SPECT images. (F) The background uptake

value was similarly determined through the analogous placement of an ROI on the occipital lobe.

thickness and DTPA uptake of EOMs were evaluated by the two
readers. Horizontal diameters of the medial rectus (MR) and
lateral rectus (LR), and the vertical diameters of the superior
rectus (SR) and inferior rectus (IR) were measured on the series
of images. In addition, the DTPA uptake was determined by
manually placing a round region of interest (ROI) with the
consensus highest uptake of each EOM on the CT attenuation-
corrected SPECT images. The background uptake value was
similarly determined through analogous placement of an ROI
on the occipital lobe based on our previous studies (12). The
methods for SPECT/CT parameter measurement are illustrated
in Figure 1. For the same patient, the value of uptake ratio (UR)
was calculated as the ratio of the maximum EOM uptake value to
the maximum background uptake value. Furthermore, we chose
the highest value of thickness and UR among the four EOMs as
the maximum thickness (Tmax) and the maximum UR (Umax).

Statistical Analysis
Continuous values were expressed as mean ± SD. The
comparison among groups of continuous variables was
performed by Student’s t-test, Mann–Whitney U test, and
one-way ANOVA depending on the nature of data. Categorical
variables were presented as numbers and percentages and
analyzed by Fisher’s exact test. The univariate binary logistic
regression analysis was applied to estimate potential predictors
for the response of PGT. The multivariable binary logistic
regression was performed to analyze the independent predictors,
and variables with p < 0.05 in the univariate analysis were
included. Moreover, the efficacy of treatment was evaluated by
comparing the receiver operator characteristic (ROC) curve of
binary logistic regression from different models. χ2 Statistic by a

likelihood ratio test was performed to calculate the incremental
value of UR. Intra- and inter-observer agreements of parameters
were assessed by the respective intraclass correlation coefficients
(ICCs) from 20 randomly selected sets of images. Statistical
analysis was performed using the IBM SPSS 25.0 software (IBM
Corp., Armonk, NY, United States). P < 0.05 was considered
statistically significant.

RESULTS

Comparison of EOM Parameters
According to the CAS, all the eyes were classified into the active
GO (CAS ≥ 3/7, 104 patients, n= 195) and inactive GO (CAS <

3/7, 115 patients, n = 217) groups. The average age of active GO
was 46 ± 12 years, which was higher than that of the inactive
GO and control groups (p < 0.01 and p < 0.05 respectively).
There was a significant difference in gender and smoking history
between active GO and inactive GO (p < 0.01 and p < 0.05
respectively). Active GO patients showed significant increased
thicknesses and UR of each EOM and Umax than those in both
the inactive GO patients and the controls (all p < 0.01). The
thickness values for the MR, SR, IR, Tmax, UR of each EOM, and
Umax in inactive GO were higher than those in the control group
(p < 0.05). No significant difference in thickness value for the LR
was found between the inactive and control subjects. The clinical
characteristic and SPECT/CT parameters are summarized in
Table 1.

Outcomes and Effectiveness of PGT
Of the 86 eyes treated with PGT, 56 eyes (65.1%) exhibited
response. At baseline, the responders had greater thickness of the
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TABLE 1 | Extraocular muscles (EOM) measurements among the three groups.

Characteristics Active group Inactive group Control p-value

(195 eyes) (217 eyes) (28 eyes)

Female, n (%) 95 (48.7)## 153 (70.5)* 16 (57.1) 0.000

Age (years) 46 ± 12*## 39 ± 12 41 ± 12 0.112

Smokers, n (%) 68 (34.9)# 56 (25.8) 12 (42.9) 0.171

CAS, points 3.6 ± 0.9## 1.4 ± 0.7 / 0.000

Thickness, mm

LR 4.2 ± 1.2**## 3.5 ± 1.0 2.8 ± 0.6 0.000

MR 5.6 ± 2.0**## 4.3 ± 1.5* 3.2 ± 0.5 0.000

SR 4.9 ± 2.0**## 3.7 ± 1.5* 2.7 ± 0.7 0.000

IR 6.1 ± 2.0**## 4.6 ± 1.7* 3.3 ± 0.6 0.000

Tmax 6.9 ± 2.0**## 5.2 ± 1.7** 3.6 ± 0.5 0.000

UR, no unit

LR 8.56 ± 1.99**## 7.32 ± 1.85* 6.82 ± 1.19 0.108

MR 11.63 ± 2.38**## 9.16 ± 1.96* 8.15 ± 1.34 0.001

SR 9.22 ± 3.18**## 7.29 ± 2.18* 6.08 ± 1.34 0.000

IR 11.06 ± 2.49**## 8.91 ± 2.05** 7.73 ± 1.24 0.001

Umax 12.31 ± 2.27**## 9.76 ± 2.03** 8.39 ± 1.20 0.002

CAS, clinical activity score; LR, lateral rectus; MR, medial rectus; SR, super rectus; IR,

inferior rectus; Tmax , maximum thickness among the four EOMs; Umax , maximum uptake

ratio among the four EOMs.

Compare with the control group, *P <0.05, **P <0.01; compare with the inactive group,
#P <0.05, ##P <0.01.

LR and SR and higher UR of the LR, MR, IR and Umax than the
non-responders (p < 0.05); whereas, sex, smoking status, serum
TRAb, CAS, CAS staging, thickness of the MR and IR, Tmax, and
UR of SR were similar between the two groups (all p > 0.05)
(Table 2).

Subgroup analyses were performed between pre-treatment
and post-treatment (Figure 2). The thickness and UR of each
EOM, Tmax, and Umax were reduced accordingly in the
responders (all p < 0.01). In the non-responders, the thickness
of the LR and SR decreased after PGT (p < 0.01, p < 0.05), but
the UR of each EOM and Umax remained unchanged following
PGT (all p > 0.05).

Variables for Predicting the Response to
PGT
Univariate and multivariate logistic regression analyses were
further performed to identify the predictive factors of response
following PGT, such as age, gender, smoking habit, TRAb, CAS,
Tmax, and Umax. In the univariate analysis, age (OR 0.96, 95%
CI 0.92–1.00, p = 0.03) and Umax (OR 1.57, 95% CI 1.71–2.11,
p = 0.002) were significantly associated with the responders.
In the multivariate analysis, age (OR 0.91; 95% CI 0.86–0.96;
p = 0.001) and Umax (OR 2.08, 95% CI 1.41–3.06, p < 0.001)
remained the independent predictors of the responders. The
results are shown in Table 3.

In the ROC analysis of predictive models (Figure 3), model 1,
incorporating clinical characters, alone showed the lowest area
under the curve (AUC) (sensitivity 0.64, specificity 0.66, AUC
0.67). The AUC of model 2 combining clinical characters and

TABLE 2 | Baseline EOM measurements.

Characteristics Responders Non-responders p-value

(56 eyes) (30 eyes)

Female, n (%) 32 (57.1) 15 (50.0) 0.526

Age (years) 41 ± 12 47 ± 11 0.026

Smokers, n (%) 17 (30.4) 8 (26.7) 0.719

TRAb (IU/L) 14.51 ± 13.63 15.02 ± 11.24 0.871

CAS, points 3.1 ± 0.9 2.8± 1.0 0.240

CAS≥3, n (%) 40 (71.4%) 15 (50.0%) 0.061

Thickness, mm

LR 3.8 ± 1.0 4.3 ± 1.0 0.027

MR 5.6 ± 2.3 5.1 ± 1.8 0.306

SR 4.3 ± 1.5 5.2 ± 1.8 0.026

IR 6.1 ± 1.8 6.3 ± 2.8 0.742

Tmax 6.7 ± 2.0 7.0 ± 2.5 0.539

Uptake ratio, no unit

LR 8.31 ± 1.53 7.58 ± 1.42 0.035

MR 11.34 ± 2.08 9.65 ± 2.19 0.001

SR 9.02 ± 2.34 8.63 ± 2.30 0.465

IR 10.82 ± 1.88 8.92 ± 2.37 0.000

Umax 11.93 ± 1.74 10.46 ± 2.07 0.001

TRAb, thyroid-stimulating hormone (TSH) receptor antibodies; CAS, clinical activity score;

LR, lateral rectus; MR, medial rectus; SR, super rectus; IR, inferior rectus; Tmax , maximum

thickness among the four EOMs; Umax , maximum uptake ratio among the four EOMs.

CAS ≥ 3 (sensitivity 0.75, specificity 0.70, AUC 0.78), model
3 combining clinical characters and Umax (sensitivity 0.82,
specificity 0.73, AUC 0.82), and model 4 combining clinical
characters, CAS ≥ 3, and Umax (sensitivity 0.89, specificity 0.73,
AUC 0.85) increased sequentially. Furthermore, likelihood ratio
tests indicated that both CAS≥ 3 and Umax provided a significant
incremental predictive value for PGT response (Figure 4). The
addition of CAS ≥ 3 and Umax increased the global chi-square as
compared to the clinical characters (6.60 vs. 18.1, 6.60 vs. 29.34,
p < 0.001, respectively). The model 4 further yield the greater
global chi-square when compared to the model 1, 2, and 3 (p <

0.001, p < 0.001, and p < 0.05, respectively).

Reproducibility
The intra-observer reproducibility of measuring thickness and
UR of EOMswere excellent, as reflected by high ICCs (0.985, 95%
CI 0.981–0.989, p < 0.001;0.981, 95% CI 0.977–0.985, p < 0.001,
respectively). Furthermore, the reproducibility of inter-observer
was 0.971 (95% CI 0.965–0.981, p < 0.001) for thickness and
0.968 (95% CI 0.958–0.973, p < 0.001) for UR.

DISCUSSION

The notable results of this study were as follows: (1)we found
significantly higher uptake and thickening of EOM evaluated
by orbital SPECT/CT in patients with active GO than in
patients with inactive GO. These parameters appeared useful for
the differentiation disease activity between inactive and active
GO; (2) the UR of EOMs as determined from SPECT/CT at
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FIGURE 2 | Comparisons of orbital SPECT/CT parameters before and after treatment. EOM, extraocular muscle; LR, lateral rectus; MR, medial rectus; SR, super

rectus; IR, inferior rectus; Tmax, maximum thickness among the four EOMs; Umax, maximum uptake ratio among the four EOMs.*p < 0.05, **p < 0.01, compared with

the pre-treatment group.

TABLE 3 | Univariate and multivariate logistic regression analyses in predicting

response to therapy.

Variables Univariate analysis Multivariate analysis

OR 95%CI P-valve OR 95%CI P-valve

Age (years) 0.96 0.92–1.00 0.030 0.91 0.86–0.96 0.001

Female (%) 1.33 0.55–3.25 0.526

Smoking (%) 1.20 0.45–3.23 0.720

TRAb (IU/L) 0.99 0.95–1.02 0.439

CAS ≥ 3(%) 0.40 0.16–1.01 0.051

Tmax, mm 0.94 0.77–1.15 0.535

Umax, no unit 1.57 1.17–2.11 0.002 2.08 1.41–3.06 <0.001

TRAb, thyroid-stimulating hormone (TSH) receptor antibodies; CAS, clinical activity score;

Tmax , maximum thickness among the four EOMs; Umax , maximum uptake ratio among the

four EOMs.

baseline provided the independent and incremental values for the
prediction of response following PGT.

To date, the CAS is the most commonly used clinical scale
to determine the indication and duration of anti-inflammatory
treatment. However, it presents some limitations that reflect
ocular surface inflammation and has certain subjectivity. Orbital
CT can provide information on exophthalmos and fat andmuscle
enlargement, which can be useful for diagnosis. The current study
showed that the thickness of four EOMs in the active GO group

were greater than those in the inactive GO group and control
group, consistent with previous studies (13, 14). Additionally, we
found that abdominal enlargement of the EOMs, especially the
inferior and medial rectus muscles, was most common in GO.
Although the thickness of the EOMs could reflect the stage of GO,
the involvement of each EOM can occur in different phases, and
it may be difficult to identify which EOM is in the inflammatory
phase by clinical assessment alone. Therefore, it is challenging to
evaluate the inflammatory activity from CT measurement.

Orbital 99mTc-DTPA SPECT has been used to evaluate
autoimmune inflammation of the retro-bulbar area in patients
with GO for many years (5, 11). However, only the retro-orbital
area of a SPECT image could be analyzed for the assessment of
inflammation, without allowing for a more precise indication
of which EOM is involved. In addition, physiological uptake
in adjacent nasal sinuses can sometimes lead to falsely positive
accumulation in the retro-orbital cavity. Thus, our study aimed
to evaluate the EOMs of GO using a hybrid SPECT/CT method.
SPECT/CT depiction of EOM inflammation may help clinicians
to accurately evaluate the inflammatory staging of GO (10, 13).
Our findings showed that the UR of EOM, especially the medial
and inferior rectus muscles, in the active GO group was higher
than that in the inactive GO group and the control group,
suggesting that the UR has a potential for the evaluation of
inflammatory infiltration within EOMs.

The European Group of Grave’s Orbitopathy (EUGOGO)
recommended systemic GC treatment for patients with
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FIGURE 3 | Receiver operating characteristic curves of identified models for

predicting response to periocular glucocorticoid therapy (PGT). AUC, area

under the curve; model 1, clinical characteristics; model 2, clinical

characteristics + clinical activity score (CAS) ≥ 3; model 3, clinical

characteristics + Umax; model 4, clinical characteristics + CAS ≥ 3+ Umax.

moderate-to-severe GO as the first-line therapy (1, 15–18).
However, medications can cause many side effects. Previous
studies have found that periocular injections of GC were
safe and effective in mild-to-moderate GO without causing
serious complications (10). In clinical practice, the classification
of clinical outcomes following GC therapy in GO has not
been consistent: some patients with mild GO had significant
improvements with local steroid therapy (5, 10), but a portion
of patients with moderate-to-severe GO did not respond to
systemic steroids (9, 19). This heterogeneity could be attributed
to the presence of fibrosis and residual inflammation not
detectable by current imaging modalities. Thus, it is essential to
accurately evaluate the degree of inflammation and select the
appropriate time for treatment.

In this study, we evaluated the predictive value of DTPA
SPECT/CT for the efficacy of PGT in GO. Our results showed
that the UR and thickness of EOMs all significantly dropped after
treatment in the responders. However, in the non-responders,
the UR of EOMs remained unchanged after treatment, even
if the thickness of the superior and lateral rectus muscles
decreased after the treatment. Additionally, it appeared that the
UR of EOMs provided independent and incremental information
for the prediction of response following PGT. These findings
suggested that GO was likely to improve significantly with PGT
in patients with high inflammatory burden at baseline.

What is also interesting is that this study suggests that
initial CAS may not predict improvement following PGT. This
can be explained by the fact that only patients with mild GO
and elevated DTPA uptake, in spite of having low CAS (2–3

FIGURE 4 | Incremental value of Umax for the prediction of responder to PGT.

Model 1, clinical characteristic; model 2, clinical characteristics + CAS ≥ 3;

model 3, clinical characteristics + Umax; model 4, characteristics + CAS ≥ 3 +

Umax.

points), were included for analysis. This was because based on
our previous study (10), patients with GO and CAS below 3
points might also benefit from PGT as long as the SPECT/CT
showed DTPA activity in the eyes. Moreover, another reason
is that CAS is judged on the basis of eye signs and symptoms
in anterior segment, while SPECT/CT reflects activity in the
posterior orbital segment, the major site of inflammation deposit.
Thus, we speculated that patients with high uptake ratio of EOMs
would, thus, be recommended to receive PGT, which would be
superior to the conventional CAS score methods.

This study has several limitations. First, no uniform consensus
regarding the definition of treatment response exists, and various
factors (such as the CAS) complicate the objective evaluation of
inflammatory activity. Second, partial volume effect remains one
of the major degrading factors that hamper quantitative accuracy
in SPECT imaging, particularly for small structures. Further
studies using PET/CT will be needed to validate this finding, as
PET/CT has a higher spatial resolution than SPECT/CT. Third,
our study concerned only the predictability of DTPA SPECT/CT
for the efficacy of periocular steroid treatment in patients with
GO, and evaluation of the efficacy of systemic steroid treatment
in patients with GO, thus, needs to be further investigated.

CONCLUSION

Orbital 99mTc-DTPA SPECT/CT provided a reliable and feasible
technique for assessing the inflammatory activity of EOMs in
patients with GO. The UR of EOMs could be used as an objective
index for evaluating the therapeutic efficacy in patients with GO.
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Peripheral arterial disease (PAD) is an atherosclerotic disorder of non-coronary arteries

that is associated with vascular stenosis and/or occlusion. PAD affecting the lower

extremities is characterized by a variety of health-related consequences, including

lifestyle-limiting intermittent claudication, ulceration of the limbs and/or feet, increased

risk for lower extremity amputation, and increased mortality. The diagnosis of lower

extremity PAD is typically established by using non-invasive tests such as the

ankle-brachial index, toe-brachial index, duplex ultrasound, and/or angiography imaging

studies. While these common diagnostic tools provide hemodynamic and anatomical

vascular assessments, the potential for non-invasive physiological assessment of

the lower extremities has more recently emerged through the use of magnetic

resonance- and nuclear medicine-based approaches, which can provide insight into

the functional consequences of PAD-related limb ischemia. This perspectives article

specifically highlights and discusses the emerging applications of clinical nuclear

medicine techniques for molecular imaging investigations in the setting of lower

extremity PAD.

Keywords: peripheral arterial disease (PAD), positron emission tomography (PET), single photon emission

computed tomography (SPECT), computed tomography, molecular imaging

INTRODUCTION

Peripheral arterial disease (PAD) is an atherosclerotic disease affecting non-coronary arteries
that is associated with vascular stenosis and/or occlusion. Lower extremity PAD is defined as an
atherosclerotic obstruction affecting arterial inflow at any vascular site from the aortoiliac segments
to the pedal arteries. This atherosclerotic condition negatively impacts lower extremity functional
capacity and quality of life by reducing blood flow, perfusion, and oxygen delivery to skeletal muscle
of the calves and feet, as well as through resulting in reductions in calf muscle area and increases
in fatty infiltration of muscle and muscle fibrosis (1). Furthermore, PAD of the lower extremities
is associated with increased morbidity and mortality, with PAD now representing the third leading
cause of atherosclerotic morbidity, ranking only behind coronary artery disease and stroke (2).
More than 12 million Americans (3) and >230 million people worldwide (2) are estimated to
have PAD; however, PAD continues to be largely underdiagnosed and undertreated (4) due to a
lack of screening in the general population (5). Therefore, accurate, non-invasive tools are critical
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for screening, diagnosing, and monitoring PAD patients to
improve risk stratification, facilitate treatment options, and better
quantify responses to treatment.

Standard non-invasive clinical tools such as the ankle-brachial
index (ABI), toe-brachial index (TBI) are common for screening
patients with suspected PAD and for evaluating patients during
clinic visits; however, ABI and TBI are arterial hemodynamic
measures that can be misleading in the setting of medial
calcification and incompressible vessels, which often occurs in
the setting of diabetes mellitus (DM). Duplex ultrasound can
also be utilized to detect the presence of arterial obstruction, but
it also is limited in its application by only offering assessment
of arterial patency and flow. Computed tomography (CT) and
magnetic resonance (MR) angiographic approaches exist for
assessing patients with PAD, however, these methods also only
evaluate arterial patency. Catheter-based angiography continues
to be the gold standard for diagnosing PAD, but requires arterial
catheterization, only evaluates arterial patency, and is only
recommended for patients who are undergoing endovascular
revascularization procedures (6).

Compared with other more established clinical PAD
imaging tools that primarily measure vascular anatomy and
hemodynamics, the nuclear imaging modalities of single
photon emission computed tomography (SPECT) and positron
emission tomography (PET) may offer unique insight into PAD
pathophysiology and play an important role in the non-invasive
evaluation of both lower extremity arteries and skeletal muscle
in the setting of PAD. Historically, nuclear imaging of lower
extremity skeletal muscle perfusion first emerged in the 1940s
(7, 8), with very little incremental change or application of
nuclear imaging in the setting of PAD until several decades
later following the clinical integration of scintigraphy imaging
(9, 10). However, the last decade has seen an emergence of
new applications and methods for using nuclear imaging
modalities to quantify lower extremity pathophysiology in
PAD. While novel MR- (11–15) and ultrasound-based (16, 17)
imaging approaches have also emerged in recent years that offer
physiological evaluation of lower extremity skeletal muscle,
these techniques are beyond the scope of this article. This
perspectives article will discuss current advances and emerging
applications of clinical nuclear imaging modalities in recent
years in the setting of lower extremity PAD, with particular focus
on perfusion imaging and molecular imaging of atherosclerosis
and vascular inflammation.

IMAGING OF LOWER EXTREMITY
SKELETAL MUSCLE PERFUSION

Impairment of lower extremity skeletal muscle perfusion is
a hallmark of PAD and a primary contributor to functional
decrements that are common for many patients with PAD.
Severe perfusion abnormalities can lead to the onset of critical
limb ischemia (CLI), the severe manifestation of PAD, which
is characterized by a high risk for non-healing wounds, lower
extremity amputation, and death (3). While perfusion deficits
are a known contributor to symptom severity and morbidity

and mortality in PAD, an ongoing clinical challenge is the lack
of a validated vascular test for detecting and monitoring these
common perfusion abnormalities. Indeed, this challenge was
recently highlighted in a scientific statement by the American
Heart Association (3). The establishment of an accurate non-
invasive approach for quantifying regional lower extremity
muscle perfusion in both the calves and the feet could greatly
facilitate diagnosis of PAD and CLI, clinical decisionmaking, and
monitoring of responses to treatments directed at wound healing
and limb salvage.

Recently published nuclear imaging studies in the last
3 years focused on evaluating lower extremity perfusion
in PAD patients have demonstrated the utility of hybrid
SPECT/CT imaging for non-invasively detecting abnormalities
in microvascular perfusion within the feet of diabetic patients
with CLI. Specifically, SPECT/CT imaging with technetium-
99m (99mTc)-tetrofosmin, a standard myocardial perfusion
radionuclide that is retained based on mitochondrial membrane
potential and tissue viability (18), has been shown to allow for
evaluation of relative perfusion defects within specific vascular
territories, or angiosomes, of the feet (19). Additionally, this
approach has revealed utility for detecting resting differences
in regional foot perfusion between CLI patients and healthy
control subjects (19), assessing tissue viability that corresponds
with the subsequent level of amputation (20), and quantifying
regional improvements in relative perfusion within the foot
that occurs in response to endovascular revascularization (21,
22). Most recently and importantly, perfusion imaging of
the feet using SPECT/CT imaging has also demonstrated
prognostic value for predicting risk for lower extremity
amputation in patients with CLI who underwent endovascular
revascularization for limb salvage, where patients who were high
perfusion responders to revascularization experienced greater
limb salvage success compared to those who were categorized
as low perfusion responders (Figure 1) (22). Along with three-
dimensional SPECT perfusion imaging showing promising
results for evaluating resting perfusion and the response
to revascularization in patients with CLI, two-dimensional
scintigraphy imaging studies have also been used in recent years
to evaluate the response to angiogenesis-promoting cell therapies
in the setting of CLI, where resting uptake of 99mTc-tetrofosmin
significantly increased 4 weeks after transplantation of bone
marrow mononuclear cells in the calves and feet (23).

Beyond the application of nuclear imaging of perfusion in
the setting of CLI, other research teams have also demonstrated
that SPECT-derived measures of resting calf muscle perfusion
may possess prognostic value for predicting risk for major
cardiovascular adverse events in the PAD patient population (24).
Additionally, 99mTc-tetrofosmin SPECT/CT perfusion imaging
of the calves has recently been shown to significantly correlate
with both exercise capacity and cardiovascular fitness in non-
PAD clinical populations, thus suggesting that nuclear imaging
of calf muscle perfusion could serve as a non-invasive correlate
for investigating lower extremity physiological adaptations to
exercise training programs in the setting of PAD (25). The
latter study may be of particular relevance for the PAD
community considering the 2017 approval for national coverage
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FIGURE 1 | SPECT/CT imaging of the perfusion response to lower extremity revascularization in patients with CLTI. Non-invasive imaging identified differential

perfusion responses to peripheral balloon angioplasty in (A) a patient with a low perfusion response who underwent amputation within one month, and (B) a patient

who had a high relative perfusion response and remained amputation-free for one year after intervention. Adapted from Chou et al. (22). For a complete description of

perfusion imaging methodology, please refer to Chou et al. (22).

of supervised exercise therapy for symptomatic PAD by the
Centers for Medicare and Medicaid Services (26). Furthermore,
this study highlighted the feasibility and practicality of additional
perfusion imaging of the lower extremities in patients already
undergoing clinically-indicated myocardial perfusion imaging,
where quantitative assessment of calf muscle perfusion reserve
was achieved without the need for additional radionuclide
injections, additional stress testing, or additional time in clinic
(25). Thus, patients could undergo simultaneous screening of
lower extremity perfusion at the time of cardiac imaging, which
could potentially allow for early identification of perfusion
abnormalities in asymptomatic/undiagnosed PAD patients.

While several noteworthy developments have been made in
the past decade using SPECT- and scintigraphy-based perfusion
imaging methods for the PAD patient population, interestingly,
similar advancements have not been made with regard to
PET perfusion imaging of lower extremity muscle perfusion in
PAD aside from a small number of studies published in past
decades that used oxygen-15 (15O)-water to assess calf muscle
perfusion (27–29). 15O-water, which is a freely diffusible and
metabolically inert radionuclide that represents the gold standard
for quantitative perfusion (30), has specifically demonstrated its
potential for providing absolute measures of lower extremity
muscle perfusion (i.e., ml/min/g) (27), which has not been

previously shown using other PET radioisotopes or SPECT
imaging techniques. Thus, the opportunities for growth and
application of PET-based perfusion methodologies is apparent
and could ultimately enable enhanced quantitative evaluation of
skeletal muscle perfusion in the setting of PAD.

MOLECULAR IMAGING OF PERIPHERAL
ARTERY INFLAMMATION AND
ATHEROSCLEROSIS

PET imaging of arterial inflammation and atherosclerosis has
also garnered attention in the cardiology community in the past
decade, with a large majority of published studies focusing on
the application of fluorine-18 (18F)-fluorodeoxyglucose (FDG)
and 18F-sodium fluoride (NaF) for molecular imaging of
inflammation and atherosclerotic disease progression in the
carotid arteries, coronary arteries, and aorta (31). 18F-FDG in
particular continues to be one of the most widely used PET-
based approaches for assessing arterial inflammation due to it
being a glucose analog that possesses an affinity for metabolically
active macrophages that are present in inflamed atherosclerotic
plaques (32–34). Despite the overwhelming existing body of
literature focused on PET imaging of various arterial networks, to
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date, PET imaging of inflammation and atherosclerosis remains
relatively understudied in the setting of lower extremity PAD.
In non-PAD patient populations, 18F-FDG PET/CT imaging has
been found to be useful for evaluating vascular inflammation
in the lower extremities, and these PET-derived measures
significantly correlate with measures of peripheral vascular
stiffness (35). Additionally, serial 18F-FDG PET/CT has shown
utility for non-invasively detecting statin-induced reductions
in inflammation within the femoral arteries of patients with
dyslipidemia (36). However, only a limited number of recent
studies have specifically evaluated the utility of 18F-FDG PET
as a tool for quantifying arterial inflammation in patients
with PAD. One recent study by Jiang et al. (37) applied
serial 18F-FDG PET/CT imaging in PAD patients before and
after sonodynamic therapy to the femoropopliteal artery, which
demonstrated that PET/CT imaging could detect and quantify
therapeutic reductions in arterial inflammation in the setting
of PAD. Another recent study focused on evaluating the utility
of a combined 18F-FDG PET and MR imaging approach for
simultaneous assessment of both plaque morphology and arterial
inflammation in a small sample size of PAD patients, but did
not find any significant correlations between 18F-FDG arterial
uptake and histological measures of arterial inflammation (38).
Thus, ongoing work focused on targeted imaging of arterial
inflammation in the setting of PAD is warranted to fully elucidate
the potential role of PET imaging as a non-invasive biomarker of
PAD-induced inflammation.

In addition to 18F-FDG, 18F-NaF has more recently emerged
as a radionuclide of interest for studying the active process of
atherosclerosis. Historically, 18F-NaF was originally approved in
the 1960s and used for targeted imaging of bone remodeling
due to its high affinity for hydroxyapatite, the mineral form
of calcium apatite (39). However, in the last 10–15 years, a
large body of cardiovascular literature has emerged that has
explored the utility of 18F-NaF as a tool for quantifying the
active process of vascular microcalcification (31). As with 18F-
FDG, 18F-NaF has only recently been applied and investigated
in the setting of lower extremity PAD. Initial studies using 18F-
NaF in PAD patients approximately 10 years ago demonstrated
the feasibility of using this radionuclide for PET imaging of
the lower extremities (40) and revealed that femoral artery
uptake of 18F-NaF was strongly associated with cardiovascular
risk factors and high-risk profiles for cardiovascular events (41).
Following an ∼7 year period of time passing without a single
study published in this field, an increasing number of studies
have emerged in the last 2 years using 18F-NaF to evaluate
peripheral atherosclerosis in patients with PAD. These studies
have demonstrated that arterial uptake of 18F-NaF is significantly
higher in non-lower extremity arteries of PAD patients compared
to non-PAD patients (42) and that femoral artery 18F-NaF uptake
is significantly associated with various modifiable cardiovascular
risk factors (i.e., cholesterol, triglycerides, HbA1c) (43), thus
suggesting that 18F-NaF PET/CT imaging could be used in the
future for non-invasively monitoring the response to treatments
focused on cholesterol reduction and/or glucose management.
Pictured in Figure 2 is a representative example of 18F-NaF
PET/CT imaging in a patient with DM and CLI, which

FIGURE 2 | 18F-NaF PET/CT imaging of active microcalcification in PAD. (A)

Axial, (B) coronal, and (C) sagittal fused 18F-NaF PET/CT images acquired in a

63-year old female patient with CLTI and type 2 diabetes mellitus

demonstrates the active process of microcalcification in above- and

below-the-knee arteries. Non-contrast CT images were acquired for

attenuation correction of PET data, followed by static PET imaging of the lower

extremities 75min after intravenous administration of 18F-NaF (296 MBq). SUV,

standardized uptake value.

demonstrates the ability of 18F-NaF to detect active disease
progression in the lower extremities.

Other additional applications of 18F-NaF in the setting
of PAD over the past 2 years have demonstrated the
feasibility of using 18F-NaF PET/CT imaging to evaluate
active microcalcification of occlusive lower extremity aneurysms
(44), quantify the inflammatory response to lower extremity
balloon angioplasty and predict risk for vascular restenosis after
peripheral interventions (45), and evaluate the role of arterial
inflammation in promoting systemic vascular calcification (46).
Thus, the applications for 18F-NaF PET/CT are rapidly evolving,
with numerous future research directions on the horizon for
molecular imaging of atherosclerosis in patients with PAD.

DISCUSSION

Nuclear and molecular imaging of PAD is an emerging field that
provides numerous opportunities for physiological investigation
into this traditionally underdiagnosed and undertreated disease.
Recent studies have demonstrated that SPECT/CT perfusion
imaging may enable the screening, diagnosis, and monitoring
of responses to treatment (21, 22, 25), while PET/CT imaging
may provide novel opportunities for molecular imaging of
atherosclerosis and vascular inflammation (47), which to
date, have remained relatively understudied in the setting
of lower extremity PAD. Additionally, these hybrid nuclear
imaging approaches that utilize CT can offer simultaneous
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evaluation of calcium burden in the lower extremities that
is not possible with conventional vascular imaging techniques
(20). While nuclear imaging approaches in the setting of
PAD remain exploratory in nature, these imaging techniques
could potentially assist with screening for and diagnosis
of regional perfusion abnormalities related to PAD and
severity of PAD, which could subsequently assist clinicians by
guiding targeted revascularization procedures or evaluating the
response to revascularization. Additionally, PET/CT imaging
of arterial inflammation and active atherosclerosis may assist
clinicians by detecting regions of active disease, thereby guiding
endovascular therapy or monitoring of problematic lesions.
Currently, hemodynamic tools such as ABI, TBI, and Doppler
ultrasound are a mainstay of screening for PAD due to their
relative efficiency and cost-effectiveness; however, perfusion
imaging with nuclear techniques has proven to provide further
physiological information beyond traditional hemodynamic
assessment by detecting the specific anatomical region of
underlying tissue ischemia, thus potentially setting the stage
for their use during PAD diagnosis and treatment planning.
Collectively, nuclear imaging techniques advance the non-
invasive evaluation of PAD beyond traditional means by offering
quantitative regional analysis of vascular and muscle physiology,
whereas traditional non-invasive vascular diagnostic tools have
primarily focused on hemodynamic (e.g., ABI, TBI, ultrasound)
or structural (e.g., angiography) assessments of the lower
extremities. It’s important to note that while SPECT/CT and
PET/CT imaging have demonstrated potential in PAD, the recent
emergence of PET/MR imaging may also provide additional
opportunities for partnering high-sensitivity molecular (PET)
and high-resolution structural (MR) imaging in the setting of
lower extremity PAD (38, 48).

Given the multifactorial nature of PAD-related complications,
ongoing advancements in nuclear medicine and molecular
imaging should facilitate development of novel imaging
strategies that are capable of targeting the underlying
pathophysiology associated with lower extremity PAD and
enable serial monitoring of physiological responses to medical
treatment. Specifically, advancements with cadmium zinc
telluride (CZT) SPECT systems and whole-body PET cameras
may offer new approaches for quantifying absolute perfusion of
lower extremity skeletal muscle beyond what has been previously
accomplished with conventional 15O-water PET imaging.
Expanded application of 18F-FDG and 18F-NaF to the lower
extremities, along with other developing radionuclides meant
for atherosclerosis and thrombosis targeted imaging, could
also allow for novel opportunities to investigate mechanisms

associated with PAD disease progression and non-invasively
detect occlusive peripheral thrombi (49–53). Additionally,
the use of multi-tracer imaging of different physiological
processes in the lower extremities could theoretically be achieved
with SPECT imaging of radionuclides that possess distinctly
different gamma ray energy photopeaks, or with PET imaging
by staggering injection times of short half-life radionuclides;
however, the advantages and disadvantages associated with
increased radiation exposure for patients receiving multiple
radionuclide injections in a single imaging session would
need to be carefully considered. Beyond the various clinical
investigations focused on nuclear imaging of PAD, a large
number of pre-clinical studies have been published in recent
years that also highlight ongoing developments in the field of
molecular imaging that could possess translational potential for
PAD patients. These studies have utilized large and small animal
models of atherosclerosis and hindlimb ischemia to validate
novel SPECT- and PET-based approaches directed at perfusion
(54) and angiogenesis targeted imaging (55–57), which continue
to be the primary areas of pre-clinical PAD research. Overall,
molecular imaging of lower extremity PAD remains a developing
and exciting field of research that should provide novel insight
into PAD pathophysiology and eventually expand the repertoire
of non-invasive tests available to vascular medicine specialists.
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Said A. Atway 3 and Mitchel R. Stacy 1,2*
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Charcot neuropathic osteoarthropathy (CN) is a serious and potentially limb-threatening

complication for patients with diabetes mellitus and peripheral arterial disease. In

recent decades, nuclear medicine-based approaches have been used for non-invasive

detection of CN; however, to date, a positron emission tomography (PET) radionuclide

specifically focused on targeted imaging of active bone remodeling has not been

explored or validated for patients with CN. The radionuclide 18F-sodium fluoride (NaF)

has historically been used as a bone imaging probe due to its high sensitivity for targeting

hydroxyapatite and bone turnover, but has not been applied in the context of CN.

Therefore, the present study focused on novel application of 18F-NaF PET/computed

tomography (CT) imaging to three clinical cases of CN to evaluate active bone remodeling

at various time courses of CN. PET/CT imaging in all 3 cases demonstrated focal uptake

of 18F-NaF in the bones of the feet afflicted with CN, with bone retention of 18F-NaF

persisting for up to 5 years following surgical reconstruction of the foot in two cases. On

a group level, 18F-NaF bone uptake in the CN foot was significantly higher compared

to the healthy, non-CN foot (p = 0.039). 18F-NaF PET/CT imaging may provide a

non-invasive tool for monitoring active bone remodeling in the setting of CN, thereby

offering novel opportunities for tracking disease progression and improving treatment

and surgical intervention.

Keywords: sodium fluoride, positron emission tomography, charcot, computed tomography, bone remodeling

INTRODUCTION

Charcot neuropathic osteoarthropathy (CN) is a condition that can impair quality of life and
increase risk of limb loss in patients with diabetes mellitus (DM) and peripheral arterial disease
(PAD) (1, 2). CN is characterized by local inflammation in the early phase of the condition, followed
by degeneration of the bone architecture and ulceration of soft tissues in the foot and ankle in the
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later phases (3). If left untreated, CN can result in major
disruption of normal skeletal structure that can cause significant
loss of function and increased morbidity (4). Current treatment
for early phases of CN consists of offloading the affected
foot using a total contact cast (5), while common surgical
interventions for later stages of CN include exostectomy,
application of fixators, and minor or major amputations. The
overall rate of amputation in patients with CN and diabetes
is 3.3–11 per 1,000 patients, with 70–84% of these patients
having a preceding ulceration (6). Patients with CN and diabetes
undergoing amputation also have a high mortality rate that is
∼70% in the first 5 years after amputation (7).

Imaging techniques such as radiography and magnetic
resonance imaging (MRI) are often used to evaluate CN.
However, x-ray imaging possesses low sensitivity and specificity
for diagnosing the early stages of CN (8) while MRI can poorly
differentiate between CN and osteomyelitis, which often exist
concurrently (9). The nuclear imaging-based approaches of
scintigraphy and single photon emission computed tomography
(SPECT) are commonly used to detect the early stages
of inflammation that precede bone morphology changes
related to CN and ultimately assist with early diagnosis of
CN. One traditional scintigraphy/SPECT radionuclide used
for diagnosing CN is technetium-99m (99mTc)-methylene
diphosphonate (MDP), a bone targeted radionuclide which
possesses excellent sensitivity for diagnosing CN and can assist
with differentiating between osteomyelitis and CN (10). Another
scintigraphy- and SPECT-based approach that has been used for
imaging of CN includes the use of 99mTc-MDP bone imaging
with indium-111 (111In)-labeled white blood cells (WBC) or
99mTc-WBC (11–13), which has been shown to be useful for
distinguishing between soft tissue vs. bone infection in patients
with CN. While these imaging methods have proven useful, the
current gold standard for differentiating between foot infection
vs. CN remains dual-isotope scintigraphy/SPECT imaging with
99mTc-sulfur colloid and 111In-WBC, which possesses the best
accuracy for detecting CN (14–16).

Along with scintigraphy and SPECT imaging methods, PET
imaging with fluorine-18 (18F)-fluorodeoxyglucose (FDG) has
emerged in recent years for evaluating the inflammatory origins
of CN (17). Multimodality imaging studies have demonstrated
superior accuracy of 18F-FDG PET vs. MRI in the diagnosis of
CN lesions (17, 18) and higher specificity of PET/CT than MRI
for diagnosing osteomyelitis in patients with chronic CN (19).
Additionally, 18F-FDG PET/CT imaging has shown potential for
monitoring of serial changes in inflammation in patients with
CN (20).

While SPECT- and PET-based imaging approaches have
shown promise for evaluating CN, a PET imaging method that
specifically targets active bone remodeling in the setting of
CN has not been investigated, which would offer considerable
advantages over current SPECT methods by providing improved
image spatial resolution and quantification. 18F-sodium fluoride
(NaF) has historically been used since the 1960s as a radionuclide
for targeting bone remodeling due to its high affinity for
hydroxyapatite, the mineral form of calcium apatite (21). 18F-
NaF has also been used for other indications, such as low

back pain (22), brown tumors in hyperparathyroidism (23),
and bone metastases (24). However, to date, 18F-NaF has not
been studied in the context of CN. Additionally, while several
imaging approaches have been used to identify early onset
CN (stage 0) (25), targeted bone imaging in patients with CN
following surgical intervention remains understudied. Therefore,
the purpose of this study was to evaluate the utility of 18F-
NaF PET/CT imaging as a tool for non-invasively characterizing
active bone remodeling in a series of patients with CN who
were at various time points following surgical reconstruction of
the foot.

METHODS

Three patients with CN, type 2 diabetes mellitus (DM), and
peripheral arterial disease (PAD) were prospectively enrolled into
an ongoing study evaluating the prognostic value of nuclear
imaging techniques in patients with PAD (https://clinicaltrials.
gov, NCT03622359) (26). As an additional component of this
study, PET/CT imaging was performed 75min after intravenous
injection of 18F-NaF (375.6 ± 10.9 MBq) to evaluate active
remodeling of the bones in the feet. All patients underwent
PET imaging using a commercially available scanner (Discovery
PET/CT 690, GE Healthcare). A low-dose CT scan of the feet
was also acquired to guide manual image segmentation of the
bones in the feet and ankles, and for PET image attenuation
correction. All PET data was converted to standardized uptake
values (SUVs) following correction for injected dose, patient
body weight, attenuation, and radionuclide decay.

Semiautomated segmentation of the bones of the ankle
and foot from CT images for each limb was performed
using commercially available image analysis software (PMOD
Technologies LLC, Zürich, Switzerland). First, a volume of
interest (VOI) was drawn around the foot. Second, within the
foot VOI, any tissues with Hounsfield units (HUs) equal to or
>100 HU were classified as bone, based on our own experience
evaluating common HU values for bones of the feet in our
clinical sample. Following segmentation of bones using this
approach, the segmentation was further evaluated for accuracy
and manually corrected on a slice-by-slice basis, as needed.

For PET image analysis, the average target-to-background
ratio (TBRavg) of each foot was calculated using the SUVs
acquired for each leg, with the average SUV across all bones of the
feet representing the target value while a small (5 mm3) piece of
the cortical bone of the tibia represented the background value. A
paired t-test was used to compare the TBR between the diseased
foot and the healthy foot. A p < 0.05 was considered statistically
significant. All statistical analysis was performed using Prism v9
for macOS (GraphPad Software, San Diego, CA, USA).

RESULTS

Patient 1 initially presented with a chronic left foot wound deep
to the level of bone. MRI was consistent with osteomyelitis of
the navicular bone as well as the medial and middle cuneiform
bones. The patient also had a history of CN due to type 2
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FIGURE 1 | Multimodality imaging evaluation of a 65-year old male patient with a history of Charcot foot, type 2 DM, and PAD. X-rays acquired at (A) the time of

external fixation and (B) 5 years after surgery reveal the architecture of the foot. (C) Maximum intensity projection (MIP) images and (D) axial, sagittal, and coronal
18F-NaF PET/CT images of the foot 5 years after surgery demonstrate focal increased uptake of 18F-NaF in the bones of the foot, indicating ongoing physiological

remodeling of the afflicted foot 5 years after surgical reconstruction.

DM. Conservative treatment options were exhausted, and the
patient underwent surgical intervention. External fixation was
applied to the medial foot, which consisted of a Biomet Mini-
Rail and four half pins across the mid-tarsal joint (Figure 1A)
that were then removed 2 months later. Five years after surgery,
radiography demonstrated stable bone structures (Figure 1B).
PET/CT images were also acquired 5 years after surgery and
revealed focal uptake of 18F-NaF within the bones of the foot
with CN, which suggested ongoing bone remodeling 5 years
post-surgical reconstruction (Figures 1C,D).

Patient 2 originally presented with a Charcot deformity of the
right foot with chronic ulceration to the medial aspect of the
foot. Following successful wound healing, the patient elected to
have surgical intervention to reconstruct the foot and excise the
prominent navicular bone (Figure 2A). After complete removal
of the navicular bone, a medial column BioMet Advanced
Locking Plate System plate was fixated across the talo-medial
cuneiform joint and across the first tarsometatarsal joints using
a total of three non-locking and four locking screws. Five years
after surgery, x-rays demonstrated stable bone architecture with
partial fusion at the midfoot architecture (Figure 2B). However,
PET/CT images also acquired 5 years post-surgery revealed
increased focal uptake of 18F-NaF in the bones of the right
foot, thus indicating an ongoing process of bone remodeling
(Figures 2C,D).

Patient 3 presented with a chronic wound on the plantar
aspect of the right third digit as well as semi-rigid hammertoe
contractures of digits 2 and 3 of the right foot, with the third
digit ultimately undergoing amputation. The patient also had a
history of Charcot joint of the right ankle and had intramedullary
fixation applied to stabilize the ankle. X-rays acquired 9 months
after surgical fixation showed stable bone structures without

FIGURE 2 | Imaging assessment of a 49-year old female patient with a history

of right foot Charcot deformity. X-rays were acquired at (A) the time of

navicular bone removal and (B) 5 years after surgical reconstruction of the

foot. (C) MIP and (D) PET/CT images acquired 5 years after surgery revealed

heterogeneous boney uptake of 18F-NaF and suggested potential for ongoing

remodeling of the foot.

progression of the CN deformity (Figure 3A). PET/CT imaging
at 9 months after surgical intervention revealed increased focal
uptake of 18F-NaF at the level of the right ankle (Figures 3B,C),
suggesting ongoing bone remodeling at the level of prior surgery.

Segmentation of the bones of the ankle and feet was
achieved using our semiautomated CT image analysis approach
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FIGURE 3 | Imaging evaluation of 40-year old male patient with history of Charcot joint of the right ankle. (A) X-rays acquired 9 months after surgical reconstruction

revealed stable bone architecture. (B) MIP and (C) PET/CT images acquired 9 months after surgery demonstrated focal uptake of 18F-NaF in the region of the

surgically reconstructed ankle impacted by CN, suggesting ongoing remodeling of the bones of the ankle.

FIGURE 4 | CT image-guided segmentation of the bones of the foot and quantitative 18F-NaF PET/CT image analysis. (A) Semiautomated segmentation of the bones

of the foot and ankle (bone VOI outlined in red). (B) Quantitative analysis of PET/CT imaging demonstrated significantly higher bone uptake of 18F-NaF in the CN foot

compared to the healthy non-CN foot. N = three patients. Values represent means ± SD.

(Figure 4A). Quantitative PET/CT image analysis demonstrated
significantly higher 18F-NaF uptake (i.e., TBR) in the foot afflicted
by CN compared to the healthy foot (CN foot: 1.64 ± 0.30 vs.
healthy foot: 1.12± 0.35; p= 0.039) (Figure 4B).

DISCUSSION

The series of cases in the present study represent the first
clinical application of 18F-NaF PET/CT imaging for assessing
active bone remodeling in patients with CN. PET/CT imaging
demonstrated increased retention of 18F-NaF in the lower
extremity bones impacted by CN as early as 9 months and
as late as 5 years following surgical reconstruction of the
foot/ankle, thus suggesting that CN is a persistent condition
characterized by active bone turnover that may not be fully
suppressed for years after surgical intervention. Additionally,
these initial cases reveal the potential of 18F-NaF PET/CT
imaging for non-invasively detecting the active process of CN.
By comparison, standard of care x-rays of the feet/ankles could
not identify the continued neuroarthropathic process following
surgical reconstruction.

Prior studies using nuclear medicine imaging approaches
have primarily focused on assessing the inflammatory origins

of CN or differentiating between soft tissue infection vs.
osteomyelitis in the feet of patients with CN (25). In recent
years, PET/CT imaging with 18F-FDG has emerged as a
quantitative imaging approach for non-invasively evaluating
the inflammatory origins of CN; however, 18F-FDG does not
provide insight into the active process of bone remodeling.
While 99mTc-MDP does provide insight into active remodeling
of bone, 18F-NaF has significantly more bone absorption than
MDP. Additionally, PET imaging is more quantitative in nature
and possesses higher spatial resolution than scintigraphy or
SPECT, thereby offering potential advantages over conventional
approaches for the evaluation of bone remodeling in patients
with CN. Furthermore, due to its well-established use as
a bone perfusion imaging radionuclide (21), future studies
performing dynamic PET imaging at the time of 18F-NaF
administration may provide additional functional assessment
of the feet in patients with CN. The present investigation is
the first imaging study to evaluate active bone remodeling in
patients with CN using a quantitative PET/CT imaging method.
This proof-of-concept report reveals that 18F-NaF PET/CT
imaging may serve as a non-invasive biomarker for monitoring
ongoing bone remodeling for months or years following surgical
reconstruction of the foot in patients with CN. Additional work
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is needed to understand the potential role of 18F-NaF PET/CT
imaging in the diagnosis and treatment planning for patients
with CN.
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Background: This study aimed to explore the radiomic features from PET images to

detect active cardiac sarcoidosis (CS).

Methods: Forty sarcoid patients and twenty-nine controls were scanned using FDG

PET-CMR. Five feature classes were compared between the groups. From the PET

images alone, two different segmentations were drawn. For segmentation A, a region

of interest (ROI) was manually delineated for the patients’ myocardium hot regions with

standardized uptake value (SUV) higher than 2.5 and the controls’ normal myocardium

region. A second ROI was drawn in the entire left ventricular myocardium for both study

groups, segmentation B. The conventional metrics and radiomic features were then

extracted for each ROI. Mann-Whitney U-test and a logistic regression classifier were

used to compare the individual features of the study groups.

Results: For segmentation A, the SUVmin had the highest area under the curve

(AUC) and greatest accuracy among the conventional metrics. However, for both

segmentations, the AUC and accuracy of the TBRmax were relatively high, >0.85.

Twenty-two (from segmentation A) and thirty-five (from segmentation B) of 75 radiomic

features fulfilled the criteria: P-value < 0.00061 (after Bonferroni correction), AUC >0.5,

and accuracy >0.7. Principal Component Analysis (PCA) was conducted, with five

components leading to cumulative variance higher than 90%. Ten machine learning

classifiers were then tested and trained. Most of them had AUCs and accuracies ≥0.8.

For segmentation A, the AUCs and accuracies of all classifiers are >0.9, but k-neighbors

and neural network classifiers were the highest (=1). For segmentation B, there are four

classifiers with AUCs and accuracies ≥0.8. However, the gaussian process classifier

indicated the highest AUC and accuracy (0.9 and 0.8, respectively).

Conclusions: Radiomic analysis of the specific PET data was not proven to be

necessary for the detection of CS. However, building an automated procedure will help to
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accelerate the analysis and potentially lead to more reproducible findings across different

scanners and imaging centers and consequently improve standardization procedures

that are important for clinical trials and development of more robust diagnostic protocols.

Keywords: cardiac sarcoidosis, PET-MRI, imaging, radiomics, machine learning

INTRODUCTION

Sarcoidosis is a multisystem, granulomatous inflammatory
disease of unknown etiology, characterized by the presence
of non-caseating granulomas in the involved organs (1, 2).
Sarcoidosis primarily affects the lungs. The development of this
disease in the pulmonary system has been identified in more
than 90% of reported cases (3, 4). However, it can affect the
extrapulmonary organs as well, including the heart (5). Clinically,
cardiac involvement is uncommon, manifesting in only ∼5% of
sarcoid patients, but it can occur without apparent symptoms,
i.e., a “clinically silent” disease, which is reflected in the high rate
of cardiac involvement in autopsy studies. At least 25% of patients
with sarcoidosis are diagnosed with cardiac involvement (6–8).

The challenging in diagnosing cardiac sarcoidosis (CS) is due
to the probability of involving any organ, leads to variability
in clinical presentation (9). In addition, a lack of reliable
biomarkers or diagnostic tests poses a challenge to diagnosing
cardiac sarcoidosis. Furthermore, the role of advanced imaging
modalities such as Cardiovascular Magnetic Resonance Imaging
(CMR) with Late Gadolinium Enhancement (LGE) and [18F]
Fluorodeoxyglucose Positron Emission Tomography [[18F] FDG
PET] have been demonstrated in the literature to improve the
identification and treatment of patients with CS. Currently, these
imaging tools are critical for early diagnosis, disease prediction
and progression, and therapeutic response monitoring.

To increase the diagnostic performance of [18F] FDG
PET, it is important to suppress the use of glucose by
normal cardiomyocytes as this improves its specificity. Several
approaches have been proposed, including following a ketogenic
diet (high fats and low carbohydrates), prolonged fasting,
intravenous heparin, and usually, a combination of these
methods (10). However, strategies to improve diagnostic
performance do not help in up to 25% of patients, which can
result in false-positive findings (11) due to failure to suppress
the physiological uptake of the myocardium. A semi-quantitative
analysis can be used to diagnose CS. A common tool, a maximum
standardized uptake value (SUVmax), can identify the highest
uptake value within the region of interest (ROI). This can
differentiate positive (CS+) and negative (CS−) results; however,
in the presence of high physiological uptake, this metric fails
to detect sarcoidosis within this region (12). In addition, the
maximum target-to-background ratio (TBRmax) is more robust
than SUVmax due to the effective normalization for blood
uptake (12, 13), which makes it more reliable for comparing

Abbreviations: CS, cardiac sarcoidosis; SUV, standardized uptake value;

[18F]FDG PET, [18F]-fluorodeoxyglucose positron emission tomography; CMR,

cardiovascular magnetic resonance imaging; AUC, area under the curve; PCA,

principal component analysis.

data across patients and institutions. Radiomic features, which
rely on the spatial correlations of image values or derived
image-based metrics, have the potential to elucidate features
robust to background physiological uptake. The purpose of
this study is to explore radiomic features from PET images to
identify potential candidate radiomic metrics. Specifically, this
study will characterize radiomic features that separate active CS
from controls.

MATERIALS AND METHODS

Ethical Approval
This study was conducted with the approval of the Institutional
Review Board at Mount Sinai (GCO # 01-1032), and all subjects
gave written informed consent.

Subject Selection
Subjects with clinical suspicion of CS based on demonstrated
clinical manifestations of extracardiac lesions and/or disease were
recruited at Mount Sinai Hospital in New York, to undertake a
PET-CMR examination. All subjects were treatment-naïve and
had to avoid carbohydrate diet for 24 h before the scan and
fast during the last 12 h. The preparation for imaging followed
the recent recommendations by Ishida et al. (14). After the
acquisition, the results were assessed by an expert cardiologist for
indications of CS and had no indications of failed suppression
of FDG uptake. Subjects were divided into patients and controls
based on their results. Subjects with patchy FDG uptake were
designated as CS+ and were assigned to the patient group
for this study (15), and those without either FDG or CMR
findings were designated as control subjects for this study.
Control population had normal cardiac appearance and regular
echocardiography. Forty patients and twenty-nine controls
met these criteria for this study. Exclusion criteria include
insulin-dependent diabetes mellitus, pretest blood glucose >200
mmol/dl, menopausal phobia, pregnancy/lactation, the presence
of a cardiac pacemaker or automatic implantable cardioverter-
defibrillator, and renal dysfunction.

Imaging Protocol
The simultaneous CMR with LGE and [18F] FDG PET on
an integrated PET-CMR system (BiographTM mMR, Siemens
Healthcare, Erlangen, Germany) was used in this study.
Five MBq/kg of [18F] FDG was injected into the patients
intravenously, who then waited for 10min. Thoracic PET
acquisition (one-bed position centered on the heart) took about
90min but for this study only a late time window (last 60min)
was selected. PET images were reconstructed using the iterative
ordinary Poisson ordered subset expectation maximization (OP-
OSEM) with three iterations and 21 subsets on a 344 × 344 ×
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FIGURE 1 | Area under the curve (AUC) and accuracy with stratified 5-fold cross-validation of the conventional metrics of (A) segmentation A and (B) segmentation

B. SUV, standardized uptake value; TBRmax, maximum target-to-background ratio.

129 image matrix and an isotropic voxel size of 2mm, followed
by an isotropic 4mm Gaussian post-filtering. The data obtained
with PET were not respiratory-gated or ECG-gated and were
not corrected for any potential motion artifacts. A 3D breath-
hold Dixon-basedMR image was used for attenuation correction.
Simultaneously with PET imaging, CMR was performed with
electrocardiograph triggered; the scan included short-axis T2
mapping and cine images. Approximately 15min after 0.2
mmol/kg gadolinium injection, inversion-recovery fast gradient-
echo LGE sequences were acquired.

Segmentations
3D slicer software (Version 4.11.2; https://www.slicer.org) was
used for the segmentation (16, 17). Segmentations were
performed by study personnel according to methods used in a
previous study (12).

Segmentation A
From the PET images (with use of CMR for anatomical
localization, and aiding in focal lesion identification when
possible) of the patient group, an ROI was manually drawn in
the hot region of the myocardium with an SUV higher than 2.5,
which is a cut-off value previously used to differentiate between
benign (normal in cases of CS) and malignant (abnormal in cases
of CS) lesions (18, 19). For patients with more than one focal
lesion, the largest and most active was selected. Due to the focal
nature of the disease, applying a threshold helped ensure that the
extracted features are only from voxels with abnormal uptakes.
For the control group, an ROI was drawnmanually in the normal
myocardium. Once the SUVmax and SUVmean (in the blood pool
of the right atrium) were extracted, the TBRmax was calculated

using the following equation:

TBRmax=
SUVmax

(
target

)

SUVmean

(
background

)

Thirty-five subjects out of forty who had a TBRmax within the
range of 1 to 3 and patchy uptake were labeled as patients. The
remaining five subjects who had TBRmax > 3 were excluded as
failed suppression could not be completely discounted in these
cases (12) even though the FDGwas patchy and initially included
in the study cohort and subsequently in the study cohort for
segmentation B.

Segmentation B
As the approach A took into account both intensity and
pattern, it was useful to investigate a different approach that
was independent of these. From the PET images, an ROI was
drawn in the entire left ventricular myocardium for forty patients
and twenty-nine controls regardless of the TBRmax findings and
SUV thresholds to compare the reliability of features among
segmentation approaches. Radiomic features and conventional
metrics were then extracted.

Feature Extraction
PyRadiomics (Version 3.0.1) was used to extract five feature
classes (75 features in total) from the PET image ROIs of
the patients and controls (20) in addition to the conventional
metrics (7 metrics). PyRadiomics adheres to the image
biomarker standardization initiative (IBSI’s feature definitions).
A bin width of 0.05 was applied. All other parameters were
left as default. Harmonization was not required for these
datasets as they originated from a single scanner. A list of
all radiomic features and conventional metrics is shown in
Supplementary Material 1.

Frontiers in Medicine | www.frontiersin.org 3 February 2022 | Volume 9 | Article 840261114

https://www.slicer.org
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Mushari et al. Radiomic Analysis of Cardiac Sarcoidosis

TABLE 1 | Conventional metrics and five best performing radiomic features for the different segmentations based on P-values.

Segmentation A Segmentation B

Feature P-value AUC Feature P-value AUC

Conventional SUV 10 percentile 1 × 10−11 0.99 SUV 10 percentile 6 × 10−7 0.85

SUV 90 percentile 1 × 10−10 0.96 SUV 90 percentile 3 × 10−8 0.90

SUV maximum 3 × 10−10 0.95 SUV maximum 8 × 10−9 0.90

SUV mean 1 × 10−10 0.97 SUV mean 6 × 10−8 0.88

SUV median 1 × 10−10 0.97 SUV median 2 × 10−7 0.88

SUV minimum 6 × 10−13 1.00 SUV minimum 9 × 10−3 0.71

TBRmax 1 × 10−10 0.96 TBRmax 3 × 10−11 0.96

Radiomics GLDM_small dependence

low gray level emphasis

3 × 10−13 1.00 GLSZM_low gray level zone

emphasis

5 × 10−8 0.85

GLCM_inverse difference

normalized

1 × 10−11 1.00 GLDM_dependence

non-uniformity

1 × 10−7 0.87

GLSZM_small area low gray

level emphasis

1 × 10−11 0.99 NGTDM_complexity 1 × 10−7 0.85

GLSZM_large area high

gray level emphasis

3 × 10−11 1.00 GLSZM_high gray level

zone emphasis

1 × 10−7 0.85

GLCM_maximal correlation

coefficient

5 × 10−11 0.98 GLSZM_small area high

gray level emphasis

1 × 10−7 0.85

SUV, Standardized Uptake Value; TBRmax , maximum Target-to-Background Ratio; GLDM, Gray Level Dependence Matrix; GLCM, Gray Level Co-occurrence Matrix; GLSZM, Gray

Level Size Zone Matrix; NGTDM, Neighboring Gray Tone Difference Matrix.

FIGURE 2 | Area under the curve (AUC) and accuracy with stratified 5-fold cross-validation of the five best-performing radiomic features of (A) segmentation A and

(B) segmentation B based on AUC values. GLSZM, Gray Level Size Zone Matrix; LAHGLE, Large Area High Gray Level Emphasis; GLCM, Gray Level Co-occurrence

Matrix; MCC, Maximal Correlation Coefficient; GLCM C, Correlation; GLDM, Gray Level Dependence Matrix; LDHGLE, Large Dependence High Gray Level Emphasis;

DV, Dependence Variance; DNU, Dependence Non-Uniformity; GLRLM, Gray Level Run Length Matrix; RLNU, Run Length Non-Uniformity; HGLZE, High Gray Level

Zone Emphasis; NGTDM, Neighboring Gray Tone Difference Matrix; NGTDM C, Complexity; SAHGLE, Small Area High Gray Level Emphasis.

Statistical Analysis
Statistical analyses were undertaken using Scikit-learn software
(Version 0.23.2) (21). Mann–Whitney U-test was used to
compare the radiomic features of the study groups. The P-
value was adjusted using a Bonferroni correction approach

for multiple tests [P-value (0.05) divided by the number of
features (82)] and the corrected P-value of < 0.00061 was
considered to be statistically significant. Logistic regression
classifiers were then trained with individual features. Stratified
5-fold cross-validation was used to determine the mean area
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FIGURE 3 | Areas under the curve (AUC) and accuracies of machine learning classifiers for (A) Segmentation A and (B) Segmentation B. rf, Random Forest; lgr,

Logistic Regression; svm, Support Vector Machine; dt, Decision Tree; gpc, Gaussian Process Classifier; sgd, Stochastic Gradient Descent; perc, Perceptron

Classifier; pasagr, Passive Aggressive Classifier; nnet, Neural Network Classifier; kneigh, K-neighbors Classifier.

under the curve (AUC), mean accuracy, and 95% confidence
intervals (CIs). Features with a P-value < 0.00061, AUC
>0.5, and accuracy >0.7 were retained. In addition, principal
component analysis (PCA) was used to identify highly correlated
features and reduce feature redundancy. PCA reduces a
large number of features into a small number of principal
components (PCs). Components that explained 90% of the
cumulative variance were retained. Lastly, to find the best
machine learning (ML) algorithm, PCs were used as an
input to test and train the following ten classifiers: Random
Forest, Logistic Regression, Support Vector Machine, Decision
Tree, Gaussian Process Classifier, Stochastic Gradient Descent,
Perceptron Classifier, Passive Aggressive Classifier, Neural
Network Classifier and K-neighbors Classifier with stratified 5-
fold cross-validation.

RESULTS

Conventional Metrics Diagnostic Utility
The results are relatively different by applying the Mann–
Whitney U-tests on the conventional metrics of the different
study groups for each segmentation separately. Predictably,
for segmentation A, the SUVmin had the highest AUC
and greatest accuracy due to specifying SUV >2.5 as the
minimum value for the patient group, while for segmentation
B, the highest performance was for TBRmax (see Figure 1).
However, for both segmentations, the AUC and accuracy
of the TBRmax were relatively high and had similar results
regardless of the segmentation approach (AUC 0.96;
accuracy 0.88–0.89 for segmentation A & B, respectively).
This slight difference in TBRmax results between both
segmentations came from the difference in the number of
participants in the patient group who met the criteria for
each segmentation.

Individual Radiomic Features Diagnostic
Utility
From the Mann–Whitney U-tests, for segmentation A: 40
of the 75 radiomic features and for segmentation B: 61 of
the 75 showed statistically significant differences between
patients and controls, with a P-value < 0.00061. The five best
radiomic features based on P-values for both segmentations
are shown in Table 1. After applying a logistic regression
classifier, only 22 radiomic features for segmentation A
and 35 radiomic features for segmentation B fulfilled the
following criteria: P-value < 0.00061, AUC >0.5, and
accuracy >0.7. The AUC and accuracy (95% CI for each
criterion) with stratified 5-fold cross-validation of the five
best-performing radiomic features based on the AUC value
are shown in Figure 2. All values of radiomic features and
conventional metrics for both segmentations are provided in
Supplementary Material 2.

Principal Component Analysis and
Machine Learning
As the SUV-related metrics tend to overperform, and to
study the performance of non-first order features, the
SUV-related metrics were excluded from the PCA. By
applying PCA, five PCs were retained to explain 90% of
the information. These PCs were used to test and train the
ML classifiers. Most of them had AUCs and accuracies ≥0.8.
For segmentation A, all classifiers showed high performance
in terms of AUC (95% CI 0.88–1.00) and accuracy (95%
CI 0.87–1.00), with values >0.9. A k-neighbors and neural
network classifiers showed the highest AUC and greatest
accuracy, with values equal to 1.00, as shown in Figure 3.
For segmentation B, there are four classifiers with AUCs and
accuracies ≥0.8, Figure 3. However, the gaussian process
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FIGURE 4 | The machine learning classifiers with high performance in (A,B) Segmentation A and (C) Segmentation B.

classifier indicated the highest AUC and accuracy (0.9 and
0.8, respectively). The ROC curves of the k-neighbors,
neural network, and gaussian process classifiers are shown
in Figure 4. The actual values of Figures 2, 3 are provided in
Supplementary Material 3.

DISCUSSION

This study aimed to explore the diagnostic utility of radiomic
features compared to conventional metrics to distinguish
between study groups and find the best performanceML classifier
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to create an automated model. From segmentation A, some
conventional metrics like SUVmin showed high performance
individually. These results were predictable as they are affected
by the distribution of voxel intensities within the ROI, one
of the criteria for including the patients at the first place. In
addition, these features cannot be relied upon because they are
greatly affected by the success of glucose suppression in normal
cardiomyocytes. TBRmax was the most reliable metric over other
conventional metrics among both segmentations. Although the
TBRmax is sensitive to noise and it is not necessarily easy to
harmonize across different scanners and imaging centers, types of
data, and parameters, this is not the case in this study as datasets
originated from a single scanner and institution. Therefore,
when comparing TBRmax with those of the five-best performance
radiomic features, the superiority of TBRmax over the rest of the
features can be clearly seen. This outcome supports any previous
studies that utilized TBRmax.

From segmentation A, by comparing the diagnostic utility
of individual radiomic features, GLSZM-Large Area High
Gray Level Emphasis radiomic feature showed the best
performance in terms of AUC and accuracy. This feature
measures the proportion in the image of the joint distribution
of larger size zones with higher gray level values. This
means there is a difference in gray level zones between
patients and controls. However, it cannot be reliable due
to the criteria of this segmentation approach that is based
on SUV threshold and TBRmax. On the other hand, from
segmentation B, the best performing radiomic feature was
GLDM_Dependence Non-Uniformity with AUC (0.87) and
accuracy (0.83). This feature measures the heterogeneity in the
ROIs. The values of this feature are higher in sarcoid patients
than controls which illustrates more heterogeneous regions
in the group of patients. In addition, many other features
measure heterogeneity with high AUCs and accuracies. These
features look at the spatial relationships rather than voxels
values themselves. However, these features had large error bars,
unlike the TBRmax which had very small bars regardless of the
segmentation approach.

Several studies of different diseases advocated the importance
of radiomic analysis to predict outcomes (22, 23). However, the
findings across these studies are not replicated; instead, they
are conflicted. Technical issues may illustrate this difference in
results among studies, such as ROI size, scanner resolution,
reconstruction, and segmentation algorithms, or any other
unrevealed factors. High scanner resolution and large number
of voxels can affect some radiomic features by increasing their
values (24). In terms of segmentation algorithms, numerous
studies indicated that using different segmentation methods gave
close results in survival analyses (23, 25). In addition, Cheng
et al. (23) argued that no significant difference exists between
radiomic features when using different segmentation methods,
unlike SUVmax and SUVmean. They reported, in addition, that
the effect of utilizing different attenuation correction methods
on radiomic features was not significant. At the same time
Yip et al. (26) had contrasting results, as some of the features
were affected by the attenuation correction method. However,
in this study, there was a clear difference between radiomic

features when using different segmentation approaches. This
may be due to the different sizes of ROIs and the voxel
intensities included in each segmentation. Applying the approach
of segmentation A, it can provide a good differentiation
between study groups based on the conventional metrics such as
SUVmin and TBRmax. However, this approach can be influenced
by observer experience, especially for cases with very small
hotspots. Conversely, segmentation B approach is more robust
and efficient.

This study is subject to some limitations. First, the sample
size is relatively small, and more extensive studies are needed
to confirm these results. This is of great significance to
prevent overfitting and type I errors. Applying a Bonferroni
correction and dimensionality reduction techniques resulted
in reducing the effect of this issue. In addition, the lack
of an automated segmentation, a segmentation reference to
compare with, unavailability of an independent clinical gold
standard to validate the performance of the model that was
trained on initial input data are other limitations for this
study. In addition, the selection of only one focal lesion
per patient in segmentation A was considered a limitation
of this approach. Furthermore, the models proposed in this
study should be validated in normal controls showing non-
specific physiological uptake. This study showed uncertainty
results of radiomic features and expanding the study to test
the reproducibility of the results is required. New knowledge
gained from this study is that using radiomic analysis does not
provide any additional information related to disease activity in
these patients. However, building an automated model regardless
of the strategies used for glucose suppression and/or observer
experience may prove helpful in further studies. Furthermore,
in this study, the MRI acquisitions were not utilized, except
for providing anatomical information. In this study the main
goal was the radiomic features on PET; the designated tool
for CS.

CONCLUSION

Radiomic analysis of PET data may not be a useful approach
to detect CS. Several radiomic features that were not
related to first-order tracer uptake showed high AUC and
accuracy with P-value < 0.00061. However, by measuring
AUCs and accuracies, large error bars can weaken the
results. TBRmax showed its superiority over all other
conventional and radiomic features in both segmentation
approaches. This methodology needs to be validated
further in normal control subjects showing non-specific
physiological uptake.
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Purpose: To investigate the reproducibility of tracer uptake measurements, including

volumemetrics, such as metabolic tumor volume (MTV) and tumor lesion glycolysis (TLG)

obtained by TOF-PET-CT and TOF-PET-MR.

Materials and Methods: Eighty consecutive patients with different oncologic

diagnoses underwent TOF-PET-CT (Discovery 690; GE Healthcare) and TOF-PET-MR

(SIGNA PET-MR; GE Healthcare) on the same day with single dose−18F-FDG injection.

The scan order, PET-CT following or followed by PET-MR, was randomly assigned. A

spherical volume of interest (VOI) of 30mm was placed on the liver in accordance with

the PERCIST criteria. For liver, the maximum and mean standard uptake value for body

weight (SUV) and lean body mass (SUL) were obtained. For tumor delineation, VOI with

a threshold of 40 and 50% of SUVmax was used (VOI40 and VOI50). The SUVmax,

SUVmean, SUVpeak, MTV and TLGwere calculated. Themeasurements were compared

between the two scanners.

Results: In total, 80 tumor lesions from 35 patients were evaluated. There was no

statistical difference observed in liver regions, whereas in tumor lesions, SUVmax, SUV

mean, and SUVpeak of PET-MR were significantly underestimated (p < 0.001) in both

VOI40 and VOI50. Among volume metrics, there was no statistical difference observed

except TLG on VOI50 (p = 0.03). Correlation between PET-CT and PET-MR of each

metrics were calculated. There was a moderate correlation of the liver SUV and SUL

metrics (r = 0.63–0.78). In tumor lesions, SUVmax and SUVmean had a stronger

correlation with underestimation in PET-MR on VOI 40 (SUVmax and SUVmean; r = 0.92

and 0.91 with slope = 0.71 and 0.72, respectively). In the evaluation of MTV and TLG,

the stronger correlations were observed both on VOI40 (MTV and TLG; r = 0.75 and

0.92) and VOI50 (MTV and TLG; r = 0.88 and 0.95) between PET-CT and PET-MR.
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Conclusion: PET metrics on TOF-PET-MR showed a good correlation with that of

TOF-PET-CT. SUVmax and SUVpeak of tumor lesions were underestimated by 16% on

PET-MRI. MTV with % threshold can be regarded as identical volumetric markers for both

TOF-PET-CT and TOF-PET-MR.

Keywords: PET/MR, PET/CT, reproducibility, metabolic tumor volume, FDG-F production 18, TOF (time-of-flight),

SUV

INTRODUCTION

18F-fluorodeoxyglucose (FDG) positron emission tomography
(PET) is used routinely in the diagnosis, staging, restaging, and
treatment monitoring of various cancers (1). The maximum
standardized uptake value (SUVmax) remains the main uptake
measurement parameters of tumors, owing to its simplicity
and high reproducibility. In order to achieve a more detailed
assessment of tumor characteristics, recent studies have focused
on demonstrating the prognostic value of positron emission
tomography (PET)-based volumetric parameters, such as
metabolic tumor volume (MTV) and total lesion glycolysis
(TLG) (2–6). MTV is defined as the sum of the volume of voxels,
and TLG is the product of the MTV and SUVmean. These
indicators can be used for prognostication as they reflect the
activity of glucose metabolism in the entire tumor compared to
SUVmax which only reflects a single voxel value.

Following the success of the positron emission tomography
and computed tomography (PET-CT) system, integrated PET
and magnetic resonance (PET-MR) systems have been clinically
introduced and the number of these scanners is gradually
increasing worldwide (7–10). In clinical or research settings,
several PET machines were used for identical clinical and
research purposes. In such a situation, reproducibility among
scanners remains an issue to be solved (11, 12). Especially on
PET-MR, the error derived from the attenuation correction
based on MRI (MRAC) impairs its reproducibility (13–23).
Several studies have been conducted to assess the impact of
this impairment. In these studies, the metrics of max, mean,
or peak SUVs were mainly evaluated (24–26); however, the
studies on the correlations of MTV and TLG between PET-
CT and PET-MR are still very limited (27–31). Specifically,
in the case of time-of-flight (TOF)-PET-MR instruments,
no study has evaluated the volumetric parameters. In these
machines, the effect of the MRAC error is reduced by
TOF-reconstruction (32–34).

In this study, we aimed to determine the TOF-PET-
CT and TOF-PET-MR reproducibility of FDG PET-SUV
measurements, including volumetric metrics obtained by PET-
CT and PET-MR examinations performed on the same day in
oncologic patients.

MATERIALS AND METHODS

Ethical Statement
Patients were enrolled in this retrospective study as part of a
larger prospective study (NCT02316431). All patients provided
written informed consent prior to their inclusion in the study.

Study Subjects
Eighty consecutive patients with different oncologic disease
underwent 18F-FDG PET-CT and 18F-FDG PET-MR. All
examinations were performed on the same day with a single
injection of FDG. The inclusion criteria called for patients with
visible tumors both on PET-CT and PET-MR. The scan interval
between both examinations was <70min. A sufficient tracer
activity was maintained to generate PET images on PET-MR
equivalent to a 70% dose of PET-CT (35).

Image Acquisition
PET-CT acquisition followed a standard protocol for clinical
oncologic imaging on a TOF-PET-CT scanner (Discovery 690;
GE Healthcare, Waukesha, Wisconsin, USA) (12). The whole-
body PET data were acquired in 3D TOF mode with a scan
duration of 2min per bed position, an axial FOV of 153mm, and
23% overlap of bed positions—resulting in a total PET acquisition
time of 16–20min. Standard CT was acquired for diagnostic
purposes and CT attenuation correction (CTAC).

For the PET-MR imaging examination, we used a
simultaneous TOF-PET-MR system, which comprised a
3.0-T whole-body MR imaging system and SiPM PET detectors
(SIGNA PET-MR; GE Healthcare, Waukesha, Wisconsin, USA).
Whole-body list-mode PET data were acquired in 3D TOF mode
with a scan duration of 2–4min per bed position. The scan time
per bed position depended on the imaging protocol selected
according to clinical indication. An axial FOV of 250mm and
a 24% overlap of bed positions were used, resulting in a total
PET acquisition time of 12–24min. During PET-MR imaging,
a 3D liver acquisition with volume acquisition (LAVA Flex)
T1-weighted pulse sequence (repetition time—∼4ms; echo
time−2.23ms; flip angle−5◦; section thickness−5.2mm with
2.6mmoverlap; 120 sections; pixel size−1.95× 1.95mm2, partial
Fourier−70.3%; and acquisition time−18 s per bed position) was
acquired for MRAC (33, 36). Additionally, different anatomic
MR pulse sequences were also used for diagnostic imaging.

Imaging Reconstruction
The reconstruction parameters of PET images on PET-CT and
PET-MR were selected to be as similar as possible. The detailed
parameters were described elsewhere (35). In PET-CT, a fully
3D OSEM iterative reconstruction, including PSF compensation
with three iterations and 18 subsets and a 256 × 256 image grid
(2.73 × 2.73 × 3.27-mm voxels), was used. In PET-MR imaging,
OSEM, including PSF compensation with three iterations and
16 subsets, and a 256 × 256 image grid (2.34 × 2.34 × 2.78-
mm voxels), was used for reconstruction of the PET images.
In both systems, transaxial post-reconstruction Gaussian filter
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4mm, axial filter 1:4:1, normalization, random, scatter, dead-
time and decay correction were applied. The parameters of PET-
CT had been fixed as clinical scan. The minor difference of
parameters between both scanners were due to the restriction by
the vendor. We could not choose the parameter freely but one
out of several options. Both PET image datasets were generated
by TOF calculation. CTAC was used to generate PET on PET-
CT and MRAC for PET on PET-MR. To compensate for the
difference in sensitivity between the two scanners derived from
SiPM detectors on PET-MR, we retrospectively un-listed the list
mode PET data on PET-MR and generated 70% simulated-dose
PET-MR images comparable to PET-CT (35).

Imaging Analysis
We extracted normal liver regions and oncologic lesions for
further evaluation. As normal liver regions, the liver mean
SUV (SUVmean) normalized to lean body mass (SULmean) was
measured. These values have been proposed as a quality control
measure for FDG PET-CT in solid tumors (PERCIST) 2.0 (12). A
VOI with a diameter of 3 cm was manually drawn on the right
lobe of the liver to analyze the concordance between PET-CT
and PET-MR.

As target lesions, a maximum of three tumors were
extracted per each of the four body parts (head and neck,
chest, upper abdomen, and pelvis) by two independent board-
certified radiologists (T.S and B.F). Tumors larger than 25mL
were excluded to maintain stability in the statistical analysis.
We also excluded target lesions that could not reliably be
delineated from physiological uptake (such as the heart, kidney,
and bladder).

The volume-of-interest (VOI) was defined by manually
drawing polygonal VOIs to enclose the entire tumor with
sufficient margins on every slice where the target tumor was
seen. Physiological uptake was carefully avoided. In this study,
we used the fixed 40 and 50% to SUVmax threshold method
(VOI40 and VOI50, respectively), which is a procedure for
defining the area of the tumor as a region with a higher
SUV than a certain percentage of the SUVmax within the
tumor (12).

We used PMOD (version 4.0; PMOD Inc., Zurich,
Switzerland) for VOI segmentation and calculation of SUVmax,
SUVpeak, SUVmean, MTV, and TLG. VOIs below 1mL were
excluded for the static of peak (37).

Statistical Analysis
We performed the Kolmogorov–Smirnov test for the continuous
variables. The values of liver SUV and SUL were normally
distributed and listed as mean ± standard deviation. The values
of tumor SUVwere not normally distributed and listed as median
and interquartile range (IQR). To clarify the difference in PET
metrics between the two scanners, we performed a paired t-
test for normally distributed variables andWilcoxon signed-rank
test for not normally distributed variables, respectively. In order
to prove the correlation between the two scanners, Pearson’s
test was performed for these metrics as well. To visualize the
deviation of the difference, Bland–Altman plots with limits of
agreement were generated (38). Statistical significance was set

TABLE 1 | Demographic and clinical data.

Age in years, mean ± SD (range) 63.1 ± 10.7 (40–84)

Body height in meters, mean ± SD (range) 1.7 ± 0.1 (1.49–1.9)

Body weight in kilograms, mean ± SD (range) 71.7 ± 15.2 (44–110)

BMI, mean ± SD (range) 24.5 ± 4.1 (17.4–32.7)

Injected dose in MBq/kg, mean ± SD (range) 3.20 ± 0.30 (2.84–4.07)

Gender (n)

Male 22

Female 13

Clinical indication (n)

Head and neck cancer 9

Lung cancer 8

Pancreatic cancer 3

Breast cancer 2

Esophageal cancer 2

Rectal cancer 2

Cancer of unknown primary 2

Malignant lymphoma 2

Colon cancer 2

Intrahepatic cholangiocarcinoma 1

Multiple myeloma 1

Malignant melanoma 1

PET-MR images acquired after injection in

minutes, mean ± SD (range)

75 ± 12 (46–104)

PET-CT images acquired after injection in

minutes, mean ± SD (range)

63 ± 26 (37–144)

Scan interval (PET-MR minus PET-CT) (min),

mean ± SD (range)

−12 ± 32 (−54–68)

at p < 0.05. Statistical analyses were performed using SPSS
Statistics, version 19.0.0 (IBM, Armonk, NY, USA).

RESULTS

A total of 35 patients with 80 tumor lesions were included.
The detailed information is given in Table 1. The mean and
standard deviation of each metric on both PET-CT and PET-
MR is given in Table 2. There was no statistical difference
observed in the liver regions, whereas the tumor SUVmax,
and SUVpeak of PET-MR were significantly underestimated
(p < 0.001). Among volume metrics consisting of MTV and
TLG, there was no statistical difference observed except for the
TLG of VOI50 (p = 0.03). The correlation analysis between
PET-CT and PET-MR is given in Table 3. The correlation
of the liver SUVs and SULs was moderate (r = 0.63–0.78)
(Figures 1A–D). In tumor lesions, SUVmax, SUVmean, and
SUVpeak were strongly correlated with an underestimation on
PET-MR (r = 0.92, 0.91, and 0.95, respectively; slope = 0.71,
0.72, and 0.79, respectively) (Figures 2A–D). For MTV and
TLG, high correlations were observed with slightly better results
on VOI50 compared to VOI40 (0.88 and 0.95 vs. 0.75 and
0.92, respectively) (Figures 3A–D). The results of the Bland-
Altman analysis are presented in Table 4. Mean differences of
all measurements were negative except MTV in VOI40 and
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TABLE 2 | Details of SUV measurements in liver and tumor lesions.

PET-CT

mean ± SD

PET-MR

mean ± SD

P

(paired t-test)

Liver SUVmax 3.63 ± 0.70 3.48 ± 0.84 0.17

SUVmean 2.21 ± 0.35 2.13 ± 0.47 0.14

SULmax 2.74 ± 0.44 2.64 ± 0.61 0.22

SULmean 1.67 ± 0.20 1.61 ± 0.30 0.16

PET-CT

median ± IQR

PET-MR

median ± IQR

(Wilcoxon

signed-rank test)

Tumor lesion VOI40 SUVmax 9.54 (6.32–14.09) 8.23 (5.62–12.18) <0.001

SUVpeak 6.11 (3.80–9.24) 4.98 (3.44–7.92) <0.001

SUVmean 5.92 (4.09–8.57) 5.07 (3.52–7.31) <0.001

MTV 2.30 (0.78–6.15) 2.34 (0.92–5.97) 0.850

TLG 15.35

(4.07–31.38)

12.42

(4.07–38.60)

0.002

SUVmean 6.57 (4.94–9.38) 5.60 (4.04–8.13) <0.001

VOI50 MTV 1.42 (0.45–2.87) 1.50 (0.59–3.43) 0.694

TLG 9.54 (2.80–21.75) 8.10 (2.67–23.02) 0.002

TABLE 3 | The result of linear regression analysis where x-axis is PET/MR measurements and y-axis is PET/CT measurements.

Slope Intercept r

Liver SUVmax 0.83 0.45 0.69

SUVmean 1.05 −0.19 0.78

SULmax 0.89 0.21 0.63

SULmean 0.99 −0.04 0.64

Tumor lesion VOI40 SUV max 0.71 1.48 0.92

SUVpeak 0.80 0.35 0.94

SUVmean 0.72 0.87 0.91

MTV 0.92 0.68 0.75

TLG 0.85 1.24 0.92

VOI50 SUVmean 0.71 0.95 0.93

MTV 0.90 0.35 0.88

TLG 0.84 0.98 0.95

VOI50 (Figures 1E–H, 2E–H, 3E–H). The representative cases
are shown in Figures 4, 5.

DISCUSSION

This study demonstrated that SUV measurements correlate well
between PET-MR and PET-CT. SUVmax and SUVmean of the
reference area, liver regions, were not under- or overestimated
on PET-MR. However, the SUVmax, SUVpeak, and SUVmean of
tumor lesions were underestimated by∼16%. Fortunately, MTV
was maintained between both scanners.

There are notable strengths to the current study. First,
we evaluated the reproducibility of volume metrics between
PET-CT and PET-MR, which was evaluated only by the
sole previous study where non-TOF-PET-MR machines
were used (27). TOF-reconstruction clearly compensates

for the error from the MRAC (32, 33). For this reason,
their results cannot be transferred to a TOF-PET-MR
machine, but separate analysis is required. Second, the
scan order, PET-MR following or followed by PET-
CT, was randomly in our study. Delayed uptake is a
critical issue when comparing the reproducibility (39).
Third, we generated PET images on PET-MR equivalent
to a 70% dose of PET-CT. The higher sensitivity of
SiPM detectors or novel reconstruction techniques can
influence PET metrics (40, 41). For a fair comparison
regardless of detector sensitivity, we developed the current
study design.

Although the extent of the difference was within the limit of
repeatability (i.e., 25%) (42), a significant underestimation
of several parameters was observed on PET-MR. The
underestimation of SUVmax, mean, and peak is expected
to be derived from two factors. One is that incomplete

Frontiers in Medicine | www.frontiersin.org 4 March 2022 | Volume 9 | Article 796085124

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Tanaka et al. TOF-PET-MR and TOF-PET-CT Comparison

FIGURE 1 | Scatter diagram with regression line and Bland-Altman plots of PET-CT and PET-MR for SUVmax and SUVmean corrected to body weight (A,B,E,F) and

lean body mass (C,D,G,H).

FIGURE 2 | Scatter diagram with regression line and Bland-Altman plots of PET-CT and PET-MR for SUVmax (A,E), SUVpeak (B,F), and SUVmean (C,G) of VOI40

and SUVmean of VOI50 (D,H).

FIGURE 3 | Scatter diagram with regression line and Bland-Altman plots of PET-CT and PET-MR for MTV and TLG of VOI40 (A,B,E,F) and VOI50 (C,D,G,H).

MRAC based on 4-compartment models which consist of air,
lung, fat, and soft tissue. Neglecting bone tissues causes an
underestimation of SUV uptake more than 10% (13, 43). The

incorrect estimation of bone tissue AC correction factors affect
mostly PET signal quantification or other regions proximity
to bone and this effect becomes negligible for regions at a
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TABLE 4 | The result of Bland-Altman analysis of SUV measurements between PET/CT and PET/MR.

Mean difference

(PET-MR – PET-CT)

Limits of agreement

Lower Upper

Liver SUVmax −0.15 ± 0.62 −1.37 1.06

SUVmean −0.08 ± 029 −0.65 0.50

SULmax −0.10 ± 048 −1.03 0.83

SULmean −0.06 ± 023 −0.51 0.40

Tumor lesion VOI40 SUVmax −1.71 ± 2.83 −7.22 3.80

SUVpeak −1.25 ± 1.76 −4.69 2.19

SUVmean −1.06 ± 1.87 −4.71 2.59

MTV 0.35 ± 3.55 −6.57 7.27

TLG −2.94 ± 13.75 −29.76 23.88

VOI50 SUVmean −1.26 ± 1.92 −5.00 2.48

MTV 0.11 ± 1.25 −2.33 2.55

TLG −1.86 ± 7.70 −16.88 13.15

FIGURE 4 | Example 1: 40-year-old female with liver metastasis of breast cancer. Each PET-CT (A) and PET-MR (B) was acquired 72 and 115min after injection. The

tumor is delineated based on fixed 40% threshold to SUVmax.

larger distance from bone tissues. This might explain why
the SUV metrics of the liver were not statistically different
between the two scanners. Around the liver, there is no
solid bone except for the thin rib bone, which results in
maintaining the accuracy of attenuation correction. It may
cause secondary critical problems in the calculation of the
tumor/liver ratio or tumor delineation from the uptake of the
liver. To improve upon the insufficiency of MRAC, model-based
bone imposition (44), bone estimation using ZTE/UTE MRI
(45, 46), and deep-learning methods (45) have been proposed.
In addition, dual-tracer approach where one of the tracers is
that of interest and the other may be 18F Sodium Fluoride,
NaF, from which the bone can be segmented (20). However,
other than the model-based methods, an implementation
into clinical scans has yet to occur. Another factor is that
the reconstruction parameters were set to be as similar as

possible, but were not identical for both scanners. The reason
is that scanner software restricted users tune parameters freely
(e.g., voxel resolution).

Compared to the previous MTV-reproducibility research by
Groshar et al. (27), the bias of MTV in the current study
was smaller (3.0 vs. 27.3%); this may be because we had a
smaller scan interval (−12 ± 32min in the current study vs.
53 ± 17min in the previous study). In contrast, the 95%
limits of agreement had a larger range (−96.5 and 102.5
vs. −41.7 to 96.2%). This might be owing to our inclusion
criteria. Whereas the previous study included extremely large
tumors (> 150mL), we chose to exclude tumors larger than
25mL to maintain statistical stability. Four previous studies
evaluated the reproducibility between TOF-PET-CT and TOF-
PET-MR using the same commercial scanner, GE SIGNA-PET-
MR; however, none of these studies performed a truly “fair”
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FIGURE 5 | Example 2: 54-year-old female with spine metastasis of melanoma. Each PET-CT (A) and PET-MR (B) was acquired 73 and 48min after injection. The

tumor is delineated based on fixed 40% threshold to SUVmax.

comparison between the two scanners in terms of a fixed scan
order (i.e., PET-CT following or followed by PET-MR) with a
long scan interval (e.g., more than 80min) (25, 47–49). Our
study represents the first report using a random sequence of
PET-CT and PET-MR acquisition, with a comparably short
scan interval.

Based on our results, the SUVmax or SUVpeak metrics
should be carefully considered when both PET-CT and PET-
MR machines are used in follow-up or multi-center studies (50).
Unlike SUVmax, SUVmean, or SUVpeak, there was no statistical
difference in MTV between the two scanners. One can speculate
that the tumor volume was determined by the ratio of maximum
uptake and the SUV on the edge of the delineation. Therefore, if
the tumor is uniformly underestimated byMRAC, theMTV does
not change.

Our study has a few limitations. First, we used the 70%dose
un-list PET-MR, hence evaluated data may differ from clinical
data. However, the purpose of this study was to perform a
fair comparison of PET-CT and PET-MR, regardless of detector
sensitivity or advanced reconstruction techniques. Second, both
the scan time and scan interval of PET-CT and PET-MR were
not uniform. For example, some PET-CT scanned after 144min,
which was quite over from recommended protocol for PET-
CT (50–70min according to PERCIST) (51). In the delayed
acquisition, the SUV-increase in tumor and SUV-decrease in
benign lesion were expected, as FDG accumulation of tumor has
unique characteristic, Warburg Effect, which is different from the
characteristic of physiological uptake (52–56). Onemust consider
this limitation when interpreting the current result of each liver
and tumor, respectively. This limitation represents an inherent
problem for a reproducibility study because repeated injection
of tracer is ethically hard to justify. The same-day repeatability
ruled out additional sources of quantitative error deriving from

patient habitus or the progression/regression of tumors between
the two scans. Third, there might be some room to adjust
the parameter of PET-MR to PET-CT, although we chose both
parameters as same as possible. For further implementation of
the current result into clinical research such as multi-center
study, the phantom-validation applying multiple reconstruction
parameters would be required. In such a case, to achieve
harmonization, an automatic and secondary reconstruction of
the PET-MR images which match PET-CT images would be
practical (50).

CONCLUSION

PET metrics from TOF-PET-MR had good correlation to
those from TOF-PET-CT. SUVmax and SUVpeak of tumor
lesions were underestimated by 16% on PET-MR. Careful
consideration should be paid to the difference of the extent
of underestimation between reference tissue (liver) and
target tissue (tumor) when semi-quantitative parameters
are measured. MTV with a % threshold can be utilized
as the identical volumetric markers both on TOF-PET-CT
and TOF-PET-MR.
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Qingyao Liu 1,2, Fan Hu 1,2 and Xiaoli Lan 1,2*

1Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,

Wuhan, China, 2Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong

University of Science and Technology, Wuhan, China, 3Department of Radiography and Radiotherapy, Faculty of Allied Health

Sciences, General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka

Objective: To explore the impact of the time-of-flight (TOF) reconstruction on brain PET

with short-lived 11C-labeled tracers in PET magnetic resonance (PET/MR) brain images

among suspected patients with Alzheimer’s and Parkinson’s disease (AD/PD).

Methods: Patients who underwent 11C-2-ß-carbomethoxy-3-b-(4-fluorophenyl)

tropane (11C-CFT) and 2-(4-N-[11C] methylaminophenyl)-6-hydroxybenzothiazole

(11C-PiB) PET/MRI were retrospectively included in the study. Each PET LIST mode data

were reconstructed with and without the TOF reconstruction algorithm. Standard uptake

values (SUVs) of Caudate Nucleus (CN), Putamen (PU), and Whole-brain (WB) were

measured. TOF and non-TOF SUVs were assessed by using paired t-test. Standard

formulas were applied to measure contrast, signal-to-noise ratio (SNR), and percentage

relative average difference of SUVs (%RAD-SUVs).

Results: Total 75 patients were included with the median age (years) and body mass

index (BMI-kg/m2) of 60.2 ± 10.9 years and 23.9 ± 3.7 kg/m2 in 11C-CFT (n = 41) and

62.2 ± 6.8 years and 24.7 ± 2.9 kg/m2 in 11C-PiB (n = 34), respectively. Higher average

SUVs and positive %RAD-SUVs were observed in CN and PU in TOF compared with

non-TOF reconstructions for the two 11C-labeled radiotracers. Differences of SUVmean

were significant (p < 0.05) in CN and PU for both 11C-labeled radiotracers. SUVmax was

enhanced significantly in CN and PU for 11C-CFT and CN for 11C-PiB, but not in PU.

Significant contrast enhancement was observed in PU for both 11C-labeled radiotracers,

whereas SNR gain was significant in PU, only for 11C-PiB in TOF reconstruction.

Conclusion: Time-of-flight leads to a better signal vs. noise trade-off than non-TOF

in 11C-labeled tracers between CN and PU, improving the SUVs, contrast, and SNR,

which were valuable for reducing injected radiation dose. Improved timing resolution
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aided the rapid decay rate of short-lived 11C-labeled tracers, and it shortened the scan

time, increasing the patient comfort, and reducing the motion artifact among patients

with AD/PD. However, one should adopt the combined TOF algorithm with caution for

the quantitative analysis because it has different effects on the SUVmax, contrast, and

SNR of different brain regions.

Keywords: time-of-flight, PET/MRI, quantification, SUV, reconstruction, 11C-labeled tracers

INTRODUCTION

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the
most common neurodegenerative diseases in the elderly. AD is
caused due to abnormal build-up of amyloid and tau proteins
in and around the neurons which disrupt the function of the
neurons by triggering the neuronal damage or eventually dead
cells, particularly in the cortex and hippocampus, whereas PD
affects predominantly dopaminergic neurons in a specific area in
the brain called substantia nigra (1, 2). In the diagnosis of AD/PD
or differentiation of mild cognitive impairment (MCI) and AD
from normal aging, it is essential to investigate the variations of
metabolic activity and characteristic patterns of radiotracers with
PET in key brain regions (3–7).

In recent years, the hybrid PET/MRI was developed

successfully and has entered clinical practice. The hybrid
PET/MRI, like two high-end technologies, can simultaneously

obtain images of PET andMRI, which provide excellent anatomic
information and functional MRI parameters with the metabolic

and molecular information as a one-stop-shop. Therefore, the

hybrid PET/MRI has always been used for neurodegenerative
diseases, especially showing great potential for differential
diagnosis of early AD/PD with some specific PET tracer (8–
10). Among a tracer targeted dopamine transporters (DATs)
level for early diagnosis of PD is 11C labeled cocaine derivative,
i.e., 11C-2-ß-carbomethoxy-3-b-(4-fluorophenyl) tropane (11C-
CFT) (8). In the patients with PD, the DATs level will change,
and the PET images with 11C-CFT will show the asymmetrical
reduction in the caudate nucleus (CN) or putamen (PU). The
Pittsburgh compound B, i.e., 2-(4-N-[11C] methylaminophenyl)-
6-hydroxybenzothiazole (11C-PiB) is a benzothiazole derivative
of thioflavin T that is used to image beta-amyloid deposits in AD
(9), and the corresponding PET images with 11C-PiB will show
the diffuse uptake in the brain. However, the synthesis and quality
control of 11C-CFT and 11C-PiB are complicated processes
which are followed by high-performance liquid chromatography
(HPLC) purification (9, 10). As well, 11C radioisotope tends to
decay fast within a half-life (T1/2) of 20.38min. In theory T1/2
= 0.693/λ where λ is the decaying constant and radioactivity
(A) at a “t” time measured by A = A0e

λt where A0is the
radioactivity at time zero (t= 0). Accordingly, shorten T1/2 tends
to decrease the A at a given time elapsed. Hence, improvising
the PET image acquisition and reconstruction became more
important for brain PET with short-lived radiotracers. Uptake
time of said 11C-labeled tracers is ∼40–60min as mentioned
in Table 1, where after consecutive 2T1/2 to 3T1/2 it remains
A0/4 to A0/8 of original radioactivity within the body. Thus, it is

found challenging to image under a low count field with existing
conventional PET scanners (11).

Clinical PET image quality has drastically improved by
utilizing several advanced reconstruction techniques, i.e., time-
of-flight (TOF) reconstruction technology (12). The TOF
system measures and records the time difference of two
coincident photons and improves the activity localization by
more accurately identifying an annihilation event along a line of
response (LOR) (13). Thus, TOF effects on the gain in signal-
to-noise ratio (SNR) (14) further, TOF results in a faster and
more uniform convergence with three-dimensional (3D) iterative
reconstruction (15).

In the past decade, it was proved that larger patients (BMI ≥
25.0 kg/m2) are benefitted from the TOF technique (16). Since,
TOF reconstruction acts as a weight equalizer, gaining consistent
image quality among patients, regardless of weight and size (17).
Improved small lesion detection is reported among several TOF
PET/MRI studies (18–22). Further improved TOF contributes
in the reduction of injected radiation dose to the patient, so as
lowering the radiation dose to the medical and general public
(23). Budinger et al. elaborated that the TOF sensitivity gain
equal to D/1x (D is the object diameter and 1x =(C∗

1t/2)
where C is the speed of the light and 1t is the full-width at half-
maximum (FWHM) of the timing resolution of the scanner (24).
Accordingly, it is proven that TOF gain is inversely proportionate
with the time resolution of the PET detector system. The time
resolution was significantly improved by the invention of newer
embedded semiconductor detectors (e.g., SiPM) for PET by
featuring TOF in PET/MR systems (15, 25, 26). Since scan time is
reduced while keeping the same image quality (11). Subsequently,
TOF vs. brain PET clinical studies were conducted in recent years
(27, 28). Yet, to our knowledge, few studies have been conducted
to assess the TOF reconstruction techniques for brain PET with
short-lived 11C-labeled tracers (29).

This study explored the effects of the TOF reconstruction
technique on brain PET quantification with short-lived 11C-CFT
and 11C-PiB in hybrid PET/MR brain imaging among suspected
patients with AD/PD. Since 11C-PiB showed a diffuse uptake
throughout the whole-brain, the quantification evaluation for
PET with TOF reconstruction was carried for the whole brain.
The 11C-CFT uptake was mainly focused on CN and PU regions.
Hence, we evaluated the effect of TOF reconstruction on CN
and PU volume of interests (VOIs) for 11C-CFT brain PET, and
the effects on CN and PU VOIs for 11C-PiB brain PET were
also further evaluated for comparing with the results from 11C-
CFT to investigate whether the effects of TOF technique were
related with different tracer. The key purpose of this study was
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TABLE 1 | Basic information of the patient.

Patient Information 11C-CFT 11C-PiB

Patients included (n) 41 34

Age (y) 60.2 ± 10.9 62.2 ± 6.8

BMI (kg/m2 ) 23.9 ± 3.7 24.7 ± 2.9

Injected Dose/Weight (MBq/kg) 3.9 ± 1.4 4.3 ± 1.1

Mean uptake time (min) 54.4 ± 15.9 43.8 ± 19.5

to determine if quantification differences are present in TOF
compared with the non-TOF technique among short-lived 11C-
labeled radiopharmaceuticals in PET/MRI brain imaging.

METHODS

Ethical Statement
This retrospective experimental study of exploring the effects of
the TOF reconstruction technique on brain PET quantification
with 11C-CFT and 11C-PiB in hybrid PET/MR brain imaging
among suspected patients with AD/PD performed at our
institute, which has been approved by the Institutional Review
Board of Union Hospital, Tongji Medical College, Huazhong
University of Science and Technology. The need for written
informed consent was waived.

Subjects
Patients’ studies of suspected AD/PD referred for 11C-CFT and
11C-PiB PET/MRI (n = 75) were retrieved by an independent
data analyst prior to automated standard uptake value (SUV)
analysis by using the PNEUROmodule of PMOD 3.906 software.
The corresponding detailed information for the subjects is shown
in Table 1.

PET/MRI
All acquisitions of patients were performed on a SIGNA TOF-
PET/MRI (GEHealthcare,Waukesha,WI, USA) with subsequent
specifications: 130 cm × 60 cm × 60 cm bore dimension, 3.0
Tesla superconductive magnet, gradient coils: 44 mT/m peak
amplitude, and 200 T/m/s peak slew rate, Detector type: SiPM,
TOF (timing resolution for fast TOF performance < 400 ps),
Cryogen Type: Liquid Helium. The mean injected radiation dose
(MBq/kg) and uptake time (minutes) for the two radiotracers
are mentioned in Table 1. All patients were asked to void before
scanning began. Prior to PET/MRI, patients were given an
instruction sheet and an informed consent form to fill and
to be submitted. Claustrophobic patients, patients with metal
implants, and uncooperative patients were excluded from the
investigations. The PET/MR 8-channel brain coil with a mirror
was placed on the table on top of the adaptor. Patients were
instructed verbally to keep the body aligned 90 degrees to the
midsagittal plane in the supine position, hands alongside the
trunk, and stay still 10 and 20min for 11C-CFT and 11C-PiB,
respectively. MRI was performed with T1-weighted imaging (3D
gradient-echo sequence, flip angle = 12 degrees, time of echo
[TE]/time of repetition [TR]= 2.6/6.9ms, bandwidth= 50KHz,

field of view (FOV)= 24 cm× 24 cm,matrix= 384×384) during
the 11C-CFT and 11C-PiB PET scanning.

PET Reconstruction
The PET images were reconstructed by using the ordered
subsets expectation maximum (OSEM) algorithm with the TOF
technique and non-TOF technique, respectively. The other
parameters were same as followed: FOV= 30 cm× 30 cm,matrix
= 192 × 192, filter cutoff = 3.0mm, subsets = 28, iterations
= 3. Gaussian post-reconstruction filtering with a 3.0mm full
width of half maximum (FWHM) was used to improve the image
SNR. In all cases, the PET attenuation correction was atlas-
based MRI attenuation correction, combined with Dixon water-
fat separationmethods (30). The additional corrections to scatter,
random events, and dead-time were applied accordingly.

Image Analysis Semi-Quantitative Analysis
Reconstructed images were transferred from the scanner
workstation to a data analysis PMOD workstation (PMOD
version 3.906 Software, Zurich, Switzerland) for biomedical
image quantification in different VOIs in the brain. PMOD-
PNEURO Brain VOIs based on the maximum probability atlas
(Hammers-N30R83) (31) was used in segmenting brain regions.
Figure 1 gives an analysis example. T1 weighted images were
employed for outlining anatomical structures. The selected VOIs
of the brain for this study are the CN and PU. Statistics associated
with standard uptake value, such as maximum SUV (SUVmax),
mean SUV (SUVmean), and SD SUV (SUVSD), of each above
VOIs with Cerebellar cortex (CC) were calculated in all the
11C-CFT and 11C-PiB brain images.

For the evaluation of image quality among segmented VOIs
between reconstruction methods, two metrics were used on each
VOI, that is, SNR and contrast. SNR of the segmented VOI was
calculated as the difference between the VOI and background
compared with the background noise shown in Equation 1.

SNRVOI =
Signal− Background

σB
(1)

Where the signal is defined as the SUVmean value in the
segmented VOI, the background is defined as the SUVmean value
of the cerebellum cortex VOI and the σB (noise) in this formula
is defined as the SUVSD value of the background VOI. The
use of cerebellum cortex VOI as the background is due to its
homogeneous uptake patterns relative to other VOIs in the brain
(17, 32–34).

In this work, contrast is defined as a ratio of signal
to background.

ContrastVOI =
Signal

Background
(2)

Further, to calculate the percentage difference, the TOF values
were expressed as a percentage difference from non-TOF values
(Equation 3), according to the previous literature (35).

%RAD(SUVx) =
(SUVx TOF − SUVx nonTOF)

∗ 100%

SUVx nonTOF
(3)
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FIGURE 1 | Segmentation of caudate nuclei (CN) and putamen (PU) by using N30R83 atlas in PMOD; (A) shows the outlining of CN in sagittal, axial, and coronal

planes; (B) shows the outlining of PU in sagittal, axial, and coronal planes.

Statistical Analysis
The IBM SPSS version 23.0 software was used to compare
the TOF vs. non-TOF measurements. The comparisons among
the SUVs of different brain regions of TOF vs. non-TOF
reconstruction methods, TOF-contrast vs. non-TOF-contrast,
and TOF-SNR vs. non-TOF-SNR were analyzed using the paired
t-test. Before the t-test, the data had been tested and the
distribution was normality and variance was homogeneous. The
value of p < 0.05 was considered statistically significant. Box-
plots were generated to display the distribution of data.

RESULTS

SUVmax and SUVmean
Overall higher average SUVmax and SUVmean values were
observed among CN, PU regions, and whole brain in TOF
compared with non-TOF reconstructions in 11C-CFT, and 11C-
PiB brain images (Figures 2A,B, 3A,B). A statistically significant
difference (p ≈ 0.000) was seen only in the CN region
for SUVmax in TOF (1.293 ± 0.39) compared with non-
TOF (1.192 ± 0.34) reconstruction in 11C-PiB, the similar
impact was observed for whole-brain p ≈ 0.003 (1.966 ±

0.47, 1.869 ± 0.51). Statistically significant differences (p <

0.05) among both CN: p ≈ 0.000 (8.339 ± 2.31, 7.533 ±

2.16) and PU: p ≈ 0.004 (8.341 ± 2.28, 7.742 ± 2.13)
regions for SUVmax in 11C-CFT were observed. Statistically
significant differences (p < 0.05) were seen for all the
VOIs segmented for SUVmean in TOF compared with non-
TOF reconstruction for both 11C-PiB and 11C-CFT (Table 2).
Though few potential outliers were found for TOF and non-
TOF reconstruction in both CN and PU regions for 11C-PiB
(Figure 2B).

SNR and Contrast
The SNR gain was measured in TOF and non-TOF by Equation
1. Overall all the VOIs with whole-brain showed higher SNR
gain in TOF compared with non-TOF reconstruction in 11C-
PiB (Figure 2D), significant SNR enhancement was observed in
PU (p ≈ 0.034; 1.782 ± 1.08, 1.630 ± 0.99) and whole-brain
(p ≈ 0.018; 1.129 ± 0.73, 1.028 ± 0.71); however, a significant
difference in the result for the CN region is found. Similarly, for
11C-CFT, CN and PU, both regions showed higher SNR gain in
TOF compared with non-TOF reconstruction (Figure 3D), yet
significant improvement was not found in results as shown in
Table 3.

Image contrast of all brain VOIs was measured in TOF
and non-TOF by Equation 2. CN and PU regions and whole-
brain showed average higher contrast in TOF compared
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FIGURE 2 | Distribution of the standard uptake values (SUVs) and quantitative parameters with reconstruction methods per each brain regions of 11C-PiB brain PET;

(A) shows the distribution of individual subject’s SUVmax values per segmented brain VOIs; (B) shows the distribution of individual subject’s SUVmean values per

segmented brain VOIs; (C) shows the distribution of individual subject’s SNR values per segmented brain VOIs; (D) shows the distribution of individual subject’s

Contrast values per segmented brain VOIs; WB, Whole brain; CN, Caudate Nuclei; PU, Putamen.
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FIGURE 3 | Distribution of the SUVs and quantitative parameters with reconstruction methods per each brain regions of 11C-PFT brain PET; (A) shows the

distribution of individual subject’s SUVmax values per segmented brain volume of interests (VOIs); (B) shows the distribution of individual subject’s SUVmean values

per segmented brain VOIs; (C) shows the distribution of individual subject’s signal-to-noise ratio (SNR) values per segmented brain VOIs; (D) shows the distribution of

individual subject’s contrast values per segmented brain VOIs; WB, whole brain; CN, caudate Nuclei; PU, putamen.
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TABLE 2 | The lists of maximum standard uptake value (SUVmax) and mean standard uptake value (SUVmean) for 11C-PiB and 11C-CFT with the time-of-flight (TOF) and

non-TOF reconstruction, respectively.

Type of radiotracer Brain regions Mean ± SD

SUVmax SUVmean

TOF Non-TOF %RAD p-value TOF Non-TOF %RAD p-value

11C-PiB WB 1.966 ± 0.47 1.869 ± 0.51 5.165 0.003 0.862 ± 0.24 0.822 ± 0.23 4.797 5E-06

CN 1.293 ± 0.39 1.192 ± 0.34 8.513 0.000 0.730 ± 0.26 0.707 ± 0.23 3.334 3E-02

PU 1.409 ± 0.39 1.366 ± 0.40 3.135 0.110 0.975 ± 0.32 0.925 ± 0.29 5.328 2E-04

11C-CFT CN 8.339 ± 2.31 7.533 ± 2.16 10.702 0.000 3.613 ± 1.47 3.346 ± 1.29 7.981 2E-04

PU 8.341 ± 2.28 7.742 ± 2.13 7.733 0.004 4.686 ± 1.60 4.301 ± 1.43 8.968 2E-05

The mean ± SD represented the mean value and SD. WB, whole-brain; CN, caudate nuclei; PU, putamen; %RAD, percentage relative average difference. p < 0.05: difference is

significant at the level of 0.05. The bold values are the significant ones.

TABLE 3 | The quantitative parameters, such as the contrast and SNR were listed for the evaluation of image quality with TOF and non-TOF reconstruction, respectively.

Type of radiotracer Brain regions Mean ± SD

Contrast SNR

TOF non-TOF %RAD p-value TOF non-TOF %RAD p-value

11C-PiB WB 1.311 ± 0.22 1.281 ± 0.20 2.347 0.002 1.129 ± 0.73 1.028 ± 0.71 9.901 0.018

CN 1.103 ± 0.27 1.097 ± 0.23 0.507 0.690 0.382 ± 1.09 0.344 ± 0.95 10.936 0.525

PU 1.469±0.30 1.430±0.27 2.693 0.007 1.782±1.08 1.630±0.99 9.326 0.034

11C-CFT CN 1.964 ± 0.81 1.907 ± 0.73 2.997 0.138 3.496 ± 2.83 3.327 ± 2.57 5.069 0.174

PU 2.527 ± 0.82 2.440 ± 0.75 3.571 0.018 5.767 ± 3.29 5.541 ± 3.08 4.068 0.076

The mean ± SD represented the mean value and SD. WB: whole-brain; CN: caudate nuclei; PU: putamen; %RAD: percentage relative average difference. p < 0.05: Difference is

significant at the level of 0.05. The bold values are the significant ones.

with non-TOF for 11C-PiB (Figure 2C). Nevertheless,
significant contrast (p < 0.05) improvement was observed
only in PU (p ≈ 0.007; 1.469 ± 0.30, 1.430 ± 0.27) region.
However, the whole-brain showed a similar impact (p
≈ 0.002; 1.311 ± 0.22, 1.281 ± 0.20) with significantly
improved contrast in TOF reconstruction. In 11C-CFT,
CN and PU showed higher contrast in TOF compared
with non-TOF (Figure 3C), still significant contrast (p <

0.05) enhancement was observed only for PU region (p ≈

0.018; 2.527 ± 0.82, 2.440 ± 0.75) in TOF compared with
non-TOF reconstruction.

Percentage of Relative Average Difference
of SUVmax, SUVmean, and Quantitative
Parameters—(% RAD)
The percentage of relative average difference (%RAD) of SUVmax

and SUVmean among segmented brain VOIs for both 11C-PiB
and 11C-CFT was measured in TOF compared with non-TOF
by Equation 3. The %RAD-SUVmax and SUVmean difference for
all segmented brain VOIs were positive, and %TOF SUV gain of
11C-CFT and 11C-PiB are illustrated in Table 2. The %RAD of
SNR and contrast was positive for CN and PU regions for both
11C-CFT and 11C-PiB (Table 3).

DISCUSSION

In the study, we evaluated the magnitude of quantitative

difference produced by TOF reconstructions on CN and PU
VOIs for short-lived 11C-CFT brain PET and further compared

with the same VOIs with 11C-PiB for any correlation of TOF
effect with a different short-lived tracer. Apparently, varying

uptake properties of different VOIs caused a considerable impact

on the TOF effect; however, the TOF effect has a consistent
association with SUVmean rather than SUVmax values in both
VOIs between 11C-CFT and 11C-PiB. Significantly enhanced
SUVmean among segmented VOIs of both radiotracers confirmed
that TOF facilitates short-lived radiotracers over non-TOF
reconstruction. Moreover, the whole-brain, which is investigated
due to its diffuse 11C-PiB uptake qualities, spotted significantly
enhanced SUVmax, SUVmean, contrast, and SNR. It is observed
that quantitative differences of image quality parameters vary
among CN and PU with their uptake characteristics relative to
the selected reference region. To the best of our knowledge,
it is the first time that different tracers of short-lived 11C
for brain quantitation imaging were performed with TOF and
non-TOF PET/MRI. Overall, the experiment revealed that TOF
reconstructions significantly affect SUVs compared with non-
TOF and further improved the image contrast and SNR for a
considerable extent, which proposed the TOF technique with
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FIGURE 4 | Comparison of time-of-flight (TOF) vs. non-TOF 11C-PiB PET images; (A) TOF reconstructed PET image (axial plane); (B) non-TOF reconstructed PET

image (axial plane); (C) fusion image of TOF PET and MRI; (D) fusion image of non-TOF PET and MRI; red arrows: shows the signal enhancement difference in TOF

and non-TOF PET images in 11C-PiB PET images.

higher time resolution (lesser than 400 ps) that contributes in
achieving the optimal performance reconstruction of brain PET
images with short-lived 11C-labeled tracers (Figure 4). Thus, it is
recommended to consider the quantitative difference caused by
TOF PET/MR modalities while diagnosing AD/PD.

The quantitative effect (SUVs) has benefitted in modern TOF
PET for diagnosing neurodegenerative diseases by improving
the spatial resolution and SNR (14). Further, Surti S et al.
proved that the TOF reconstruction improves small lesion uptake

measurement accuracy and precision by reducing normalized
uptake values’ (NUV) variability (22, 36). So as, the precision
and accuracy of SUV are improved by TOF reconstruction.
Oldan, J.D. et al. stated that SUV measurements of 18F-NaF
PET/CT fluctuate within the brain like soft tissue regions
between TOF and non-TOF reconstructions due to their lower
uptake characteristics (35). Experimenting, the point spread
function (PSF) and TOF algorithms on brain regions, Shao, X.
et al., evidenced different effects on the SUVs among different

Frontiers in Medicine | www.frontiersin.org 8 March 2022 | Volume 9 | Article 823292137

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Wimalarathne et al. TOF for Short-Lived 11C Tracer

FIGURE 5 | The 11C-CFT PET images demonstrating enhanced CN and PU with TOF and non-TOF reconstruction. First column demonstrating the enhanced CN

and PU in TOF reconstruction; second column demonstrating the fused 11C-CFT with T1W MRI in TOF reconstruction; third column demonstrating the enhanced CN

and PU in non-TOF reconstruction; fourth column demonstrating the fused 11C-CFT with T1W MRI in non-TOF reconstruction (axial, sagittal, and coronal planes are

provided for comparisons).

brain regions for 18F-FDG (27). Since consistent significant
enhancement of SUVmean among segmented brain VOIs in TOF
reconstruction for short-lived 11C-labeled tracers were seen, it

is evidenced that TOF PET systems can be used as sensitivity
amplifiers for short half-life radiopharmaceuticals, such as 11C-
labeled tracers with low count rate after an adequate uptake
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FIGURE 6 | The 11C-CFT PET images demonstrating enhanced CN and PU with TOF and non-TOF reconstruction in original and processed images.

time. Injected radiation dose can be optimized by considering
enhanced SUVs while maintaining the same image quality. So the
patient radiation dose, as well as occupational and general public
exposure to ionizing radiation, can be minimized (23). Motion
artifacts are often complained while scanning patients with
AD/PD for longer time, however, improved timing resolution
considerably reduce the scan time which comfort patients with
less time inside the PET/MR gantry.

Caudate nuclei showed significant enhancement in SUVmax

and SUVmean for TOF reconstruction in 11C-CFT though a
significant difference was not found in the results of the SNR
and contrast. Similarly, 11C-PiB showed identical results for
both the VOIs. These results were caused due to a relatively
improved signal in the reference region, which is the cerebellum
cortex, compared with the CN region in TOF reconstruction.
PU region with 11C-PiB showed significant enhancement in
contrast, SNR and SUVmean for TOF compared with non-TOF
reconstruction, which is consistent with previous literature using
18F tracers for small lesion enhancement (16, 18, 19). However,
PU did not show significant improvement in SUVmax in TOF
reconstructed images compared with non-TOF, which probably
was due to diffuse low uptake properties of 11C-PiB tracer within
the PU. A similar effect was observed in SUVmax, SUVmean, and
contrast for 11C-CFT due to its higher uptake characteristics

within the PU, (Figures 5, 6) still SNR did not find significant
development. The cause would be the incomparable noise
produced in the background region, which is the cerebellum
cortex (15), was relatively higher in TOF compared with non-
TOF images due to 11C-CFT uptake properties. In Figure 2,

the box-plot illustrated overall whole-brain enhanced SUVmean,
SUVmax, and quantitative parameters with TOF reconstruction
in 11C-PiB.

Our study has several limitations. The number of cases are
still limited due to the time limitation for data collection of
11C-CFT and 11C-PiB scans of suspected patients with AD/PD,
which were archived in the Picture Archive and Communication
System (PACS). A larger sample would possibly be needed to
generalize these findings to a considerable population (e.g., a
wider range of patient BMI and a wider range of age). Then,
for outlining most of the cortical structures in the brain VOIs,
PET-based Maximum Probability Atlas (MPA) was used to avoid
slowness or interruption of the segmentation process of the
PNEURO module in PMOD 3.9 software. Though T1 MR based
parcellation is preferred over VOI outlining in deep nuclei region
by the PMOD team, thus the quality of the VOI definition
in the areas mentioned above is reduced. For the effective use
of PNEURO with high-resolution data, a high-end workstation
(e.g., 8 core, 16GB, or more RAM) is required.

Frontiers in Medicine | www.frontiersin.org 10 March 2022 | Volume 9 | Article 823292139

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Wimalarathne et al. TOF for Short-Lived 11C Tracer

CONCLUSION

Time-of-flight reconstruction improves SUVs and image quality
parameters, which is an advantage of the TOF PET/MRI system
with short-lived 11C-labeled tracers for offering higher sensitivity.
The improved temporal resolution supports the rapid decay rate
of short-lived 11C-labeled tracers and shortens scan time while
increasing the patient comfort and reducing the motion artifacts
in patients with AD/PD. However, the combined TOF algorithm
should be used with caution for quantitative analysis because it
has different effects on SUVmax, contrast, and SNR of different
brain regions.
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FDG-PET/MR is a hybrid imaging modality used for the staging and restaging of

advanced head & neck cancer (HNC) patients. Their treatment typically involves

radiation therapy, which requires previous dental focus assessment. The aim of

this study was to analyze if staging FDG-PET/MR is a valuable tool for oral focus

assessment. For this purpose, FDG-PET/MR findings, such as metabolic activity of

periapical radiolucencies and marginal periodontitis, were retrospectively compared

with conventional standardized dental focus assessment, including dental radiographs

and clinical assessment of 124 teeth in seven patients. Increased FDG uptake of

periapical lesions was found in one out of 23 lesions. Increased FDG uptake of the

marginal periodontium was recorded in one out of 34 lesions. In summary, standardized

dental focus assessment by panoramic radiography and periapical radiographs may be

enriched by information from FDG-PET/MR, showing active inflammation in dental foci.

However, many dental foci have no correlate in FDG-PET/MR. The treatment decision

for oral foci may benefit from the visualized presence or absence of metabolic activity

on FDG-PET/MR.

Keywords: head and neck cancer, radiation therapy, dental focus, positron emission tomography–magnetic

resonance imaging, periapical radiography, panoramic radiography

INTRODUCTION

Positron emission tomography/magnetic resonance (PET/MR) imaging using the radiotracer
18F-fluorodeoxyglucose (FDG-PET/MR) is a hybrid imaging modality, which is mainly used in
oncological patients for staging and restaging purposes (1). However, it may also be used for
imaging inflammation and infection (2).

Head & neck cancer (HNC) is the seventh most common cancer worldwide, with half a million
new diagnoses per year (3, 4). In Switzerland, more than 1,000 new HNC cases are diagnosed each
year, reverting to a lifetime HNC risk of 0.7% in women and 1.6% in men (5).

In advanced HNC, treatment typically involves radiation therapy with or without surgery and
chemotherapy (4, 6, 7). This treatment harbors several short-term and long-term complications
owing to tissue damage from ionizing radiation. Oral infection or inflammation is a known risk
factor for such radiation-induced oral damages (8). Hence, it is highly recommended that patients
undergo oral health screening, including clinical and radiological examination, to detect potential
foci requiring treatment before the commencement of radiation therapy (4, 9, 10).
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Panoramic radiography (OPT) serves as a standard
radiological assessment for hard tissue pathologies. Its advantages
are comparably low radiation exposure, widespread availability,
and good image quality. OPT is mostly supplemented by
periapical radiographs in selected cases, such as root canal
treated teeth. After incidental findings, three-dimensional
imaging such as cone beam computed tomography (CBCT)
or MR can also be performed during the initial examination
(11). Further, a thorough oral examination is performed. After
dental focus assessment, any acute or potential inflammatory
condition diagnosed, such as marginal and apical periodontitis,
will be treated (12). The patient remains in dental care during
and after radiotherapy or chemotherapy (10, 13). While dental
focus assessment is not a reimbursed indication for FDG-PET
imaging in Switzerland, dental foci are sometimes discovered
incidentally on staging / restaging examinations of head and
neck cancer patients.

At our institution, every HNC patient requiring radiation
therapy undergoes either whole-body positron emission
tomography/computed tomography (PET/CT) or PET/MR
using the radiotracer 18F-fluorodeoxyglucose (FDG).

The aim of our study was to find out whether FDG-PET/MR
offers added value in dental focus assessment. To the best of our
knowledge, this is the first study analyzing the added value of
FDG-PET/MR in dental focus assessment.

MATERIALS AND METHODS

Patient Selection
HNC patients who underwent FDG-PET/MR for staging and
standardized dental focus assessment prior to radiation therapy
at the University Hospital of Zurich between December 2016
andDecember 2018 were included into this study. FDG-PET/MR
was conducted at the Department of Nuclear Medicine at the
University Hospital Zürich, Switzerland. Dental focus assessment
was performed at the Clinic of Cranio-Maxillofacial and Oral
Surgery at the Center of Dental Medicine, University of Zurich.
This study was approved by the local ethics committee of Zürich
(Nr. 2017-01378).

Only patients with signed consent for the use of their
medical data for research were included. Other inclusion
criteria were scheduled radiotherapy with or without surgery
and/or chemotherapy, and the availability of a FDG-PET/MR
exam including a diagnostic head and neck MR protocol,
as well as availability of panoramic radiography (OPT) and
periapical X-rays. Only patients with a maximum time interval
of 3 months between these exams, without any surgical or
therapeutic intervention in between, were included. Patients with
blurred radiographic images were excluded. Image angulations
were ignored.

Image Acquisition
PET/MR image acquisition was carried out as described
previously in detail (14).

A BMI-adapted body weight-dependent FDG dosage protocol
was used (15). A Dixon-type MR pulse sequence was used
for attenuation correction (16, 17). In brief, the MR protocol

consisted of the following MR pulse sequences: Axial 2-point
Dixon-type sequence and coronal T2-weighted sequence with fat
suppression for the whole-body; axial respiration-triggered T2-
weighted sequence for the lung and upper abdomen; regionalized
head and neck axial and coronal T2-weighted sequence with fat
suppression, axial T1-weighted sequence without gadolinium-
based contrast and without fat suppression, axial, coronal and
sagittal T1-weighted sequences with gadolinium-based contrast
and with fat suppression.

Every dental focus assessment included a recording of
radiographic findings. Panoramic radiography (OPT), periapical
radiographs of every root canal-treated tooth and bite wings
for caries evaluation were taken and archived in the PACS
(Synedra, Apollon Innsbruck, Austria). OPTs were generated
in a standardized position, using Cranex 3D (Soredex, KaVo,
Biberach, Germany). Periapical radiographs were generated
using Heliodent DS (Dentsply-Sirona, Bensheim, Germany).
The intraoral X-ray was operated at 60 kV and 7mA.
Parallel technique was used, with a focus-patient distance of
approximately 21 cm.

Image Analysis
The analysis of the X-rays, generated during the standardized
dental focus assessment, was conducted by board-certified
dentists (LS, DS) under the supervision of an oral surgeon
(BGH). In case of disagreement, a consensus decision was
reached by discussing the case in detail (LS DS, BGH and
BS). All dental X-rays were analyzed in DICOM format
using Synedra Viewer (Synedra, Apollon Innsbruck, Austria)
under standardized conditions on a diagnostic monitor (NEC,
MDview 243). FDG-PET/MR images were analyzed using a
dedicated review workstation (AW 4.6, GE Healthcare) (MH).
All imagingmodalities (FDG-PET/MR, OPT, dental X-rays) were
analyzed separately.

Analyzed Radiological Parameters
For radiological evaluation, the focus was set on two main
parameters: periapical lesions and marginal bone level. These
predefined parameters were assessed on the X-rays acquired
during the standardized dental focus assessment (OPT, periapical
radiographs and bite wings) and on FDG–PET/MR (except
marginal bone level). On FDG-PET/MR, increased metabolic
activity related to dental lesions was recorded as presence
(expressed as SUVmax) or absence. Finally, all teeth were
examined for root canal fillings.

Periapical Lesions
For the classification of the periapical lesions, the periapical index
(PAI) described byOrstavik et al. (18) was used. This index ranges
from 1 (healthy) to 5 (severe, exacerbating apical periodontitis).
In addition, the size of periapical lesions was recorded (smaller or
larger than 5mm in diameter).

Marginal Periodontium
For the classification of the marginal bone level, the marginal
periodontitis index (MPI) described by Kito et al. was applied
(19). This index distinguishes 4 sections (1–4) and estimates the
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FIGURE 1 | 73-year-old man with right-sided hypopharynx carcinoma cT3 cN2b cM0. Panoramic (A) and dental radiography (B) shows a periapical lesion with

marginal bone loss in region 23 (arrow; PAI score 4, MPI score: 4). (C) FDG-PET/MR shows a metabolically active osteolysis at tooth 23 with a SUVmax of 6.8 (arrow).

TABLE 1 | Periapical lesions (PL) in dental X-rays and FDG-PET/MR.

PAI Score PL in dental radiographs

(n = 23)

PL in PET/MR

(n = 19)

PL with increased

SUVmax (n = 1)

PL in dental radiographs

>5mm (n = 2)

PL in dental radiographs

<5mm (n = 18)

Percussion

sensitivity

1 0 0 0 0 0 2

2 1 0 0 0 0 0

3 6 3 0 0 4 1

4 16 16 1 2 14 0

physiological bone level compared to the actual bone level. Bone
loss of less than one-third was classified as “1”, one-third up to
half as “2”, half up to two-thirds as “3”, and more than two thirds
as “4”. A marginal bone lesion was defined as MPI score ≥2.

Clinical Outcome Parameter
Percussion Sensitivity
In addition to radiological data, the clinical parameter percussion
sensitivity was extracted from the standardized patients’ charts
used at our institution. All teeth with periapical lesions were
analyzed for their percussion sensitivity. Findings were noted as
either 1 (sensitivity present) or 0 (sensitivity absent).

Statistics
Total number of patients, demographic data and the outcome
measurements were recorded using Microsoft Excel. A
descriptive analysis was performed for all analyzed parameters
(PAI Score, PL, percussion sensitivity, MPI Score, MP, SUVmax).
Tables were produced for data representation.

RESULTS

During the study period of 24 months, a total of 13 patients with
diagnosed HNC underwent FDG-PET/MR for staging and dental
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FIGURE 2 | 66-year-old man with right-sided oral cavity squamous cell carcinoma cT1 cN2b cMx. Panoramic (A) and dental radiography (B) shows a periapical

lesion of tooth 44 of less than 5mm (arrow; PAI score 4, MPI score 1). (C) FDG-PET/MR shows no increased metabolic activity of this lesion (arrow).

TABLE 2 | Marginal periodontium (MP) in dental X-rays and FDG-PET/MR.

MPI score MP (n = 124) MP in dental

radiographs (n = 54)

MP with increased

SUV max (n = 1)

1 90 20 0

2 16 16 0

3 12 12 0

4 6 6 1

focus assessment. Six of these patients were excluded because the
required time interval of 3 months or less between FDG-PET/MR
and dental focus assessment was not met. Thus, the final study
population consisted of a total of seven patients (one woman and
six men). The median age was 72 (23–82 years). The median time
difference between the FDG-PET/MR scan and the dental focus
assessment was 3 weeks (2–11 weeks). A total of 124 teeth were
analyzed for dento-alveolar parameters.

Periapical Lesions
Of the 124 analyzed teeth, 23 (18.5%) showed periapical lesions
(PAI ≥ 2) on dental radiographs (OPT/periapical X-rays). The

PAI score ranged from 1 to 4, with a mean of 1.49 ± 1.06. Two
periapical lesions were larger than 5mm. On FDG-PET/MR, 19
of the 23 (82.6%) periapical lesions were detected. PET/MR did
not detect any additional periapical lesions. Clinical data revealed
a total of three percussion sensitive teeth. Increased FDG uptake
of periapical lesions was recorded in one out of 19 lesions with
an SUVmax of 6.8. This lesion showed a large marginal and
apical bone resorption with a PAI score of 4 (Figure 1). This
tooth showed no percussion sensitivity (Table 1). The other 18
teeth with apical lesions did not show increased FDG uptake, as
illustrated in Figure 2 and Table 1.

Marginal Periodontium
90 out of 124 Teeth (72.6%) showed an MPI score of 1
(marginal bone loss of less than one third compared to the
physiological bone level) in dental radiographs. All marginal
lesions (definition: MPI score ≥ 2) were visualized on dental
radiographs. For these 34marginal lesions, increased FDGuptake
on FDG-PET/MR was seen in only one tooth (SUVmax 6.8)
(Table 2). Images of this patient with increased FDG uptake of
a periapical lesion and its marginal periodontium are shown in
Figure 1.
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DISCUSSION

The aim of our study was to investigate the added value of
FDG-PET/MR in oral focus assessment of HNC patients. Dental
radiographs, showing periapical and/or marginal periodontal
lesions were compared to FDG-PET/MR. We analyzed whether
metabolic activity on FDG-PET/MR correlates with findings on
radiographs and clinical percussion data.

A total of 124 teeth in seven patients were examined for
dento-alveolar parameters. Only one apical/marginal periodontal
lesion showed increased FDG uptake with an SUVmax of 6.8.
In contrast, another patient with a huge periapical lesion at
tooth 44 (>5mm, PAI = 4) who further had no marginal
bone loss (MPI = 1) showed no FDG uptake on FDG-
PET/MR (Figure 2). While 23 apical lesions were detected
on dental radiographs, FDG-PET/MR detected only 19 of
these (82.6%).

Numerous studies have investigated the detection of apical
lesions. Imaging modalities used include dental radiographs,
ultrasound, and dental MR (20–22). A recent systematic
review showed that ultrasound can distinguish periapical lesions
better compared with dental radiographs, although dental
radiographs still represent the gold standard (20). There is
also a deep learning algorithm that surpasses experienced
oral surgeons in the detection of periapical lesions in dental
radiographs (22). However, the interpretation of the degree of
inflammation of periapical lesions remains unclear. In dental
radiographs, it could not be distinguished between apical
granulomas and radicular cysts after evaluation of correlating
histopathologic examinations (23). However, a recent study
proofed that this differentiation is possible with MR (21).
Nevertheless, interpretation of apical lesion clinical activity
remains a challenge (24). In our study, most of the apical
lesions as well as the marginal periodontal lesions did not show
signal uptake.

Metabolic activity of potential oral foci cannot be
determined on dental radiographs. Presence of metabolic
activity, however, will contribute to a treatment decision.
Active, presumably acute foci should be treated immediately,
while inactive, presumably chronic foci may be treated
in the later course under specific circumstances (12, 25).
Another point in decision making, certainly is dynamic over
time. For instance, radiotherapy or immunosuppression
may transform a chronic, inactive lesion into an
acute lesion.

In our study, no association between signs of inflammation
on dental radiographs, clinical percussion data and increased

FDG uptake on FDG PET/MR was found. Today, few

studies have investigated the correlation of FDG PET/CT

and oral foci. A retrospective study by Dijkstra et al.

investigated endocarditis patients who underwent FDG-PET/CT.
In their study, also no correlation between oral cavity
PET findings and inflammation/infection was found (26).
Nevertheless, the authors recommend further investigation
to determine whether FDG-PET/CT imaging may proof

useful for diagnosing inflammation and infection in the oral
cavity (26). In our study, positive percussion sensitivity was
not associated with increased metabolic activity on FDG-
PET/MR.

Another study by Kito et al. demonstrated a correlation
between FDG uptake and inflammatory extent of apical and
periodontal lesions in 44 patients (19). Yamahiro et al. detected
FDG uptake in different acute periodontal foci, whereas in
chronic infection no increased FDG uptake was found. The
authors concluded that FDG-PET/CT may serve as a valid tool
to detect acute oral infections in high-risk patients (27).

In HNC imaging, FDG-PET/MR is a promising modality
as it simultaneously provides morphological, functional, and
molecular information (2, 7, 28, 29). In this respect, it may be
expected that further studies will investigate the added value of
FDG-PET/MR also in oral focus examinations in the future.

The main limitation of our study is its comparably small
sample size, limiting the generalization of the results. Another
limitation is the time interval between FDG-PET/MR and
standardized focus assessment, which was up to 3 months,
possibly resulting in changes of lesions during this time. Further
prospective studies including follow-up data are desired to gain
more information on the added value of FDG-PET/MR in
dental diagnostics.

CONCLUSION

While FDG-PET/MR detected a certain percentage of periapical
lesions, no association was found between FDG uptake and the
degree of inflammation of apical lesions and marginal bone loss.
Future studies with larger cohorts should determine if FDG-
PET/MR results shall be considered by dentists carrying out oral
focus assessment of HNC patients.
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