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Editorial on the Research Topic

Machine learning methods for human brain imaging

The use of artificial intelligence (AI) methods like machine learning (ML), including

deep learning, to make sense of brain imaging data has exploded over the past 10 years.

Some of the early work focused on classifying brain statesmeasuredwith functionalmagnetic

resonance imaging (Mitchell et al., 2004). Those studies were exciting and demonstrated

the potential power of ML to classify brain states in a way that reveals something about

human cognition. ML is used in multiple aspects of brain imaging including image

acquisition, reconstruction, analysis, and reporting (Aggarwal et al., 2023). For example,

there are numerous studies using ML to classify groups of patients to improve diagnosis

of neurodevelopmental disorders (e.g., autism, Parlett-Pelleriti et al., 2022), psychological

disorders (e.g., schizophrenia, Chilla et al., 2022; and depression, Bhadra and Kumar, 2022),

the progression of dementia (Mirzaei and Adeli, 2022) and tumors (Soomro et al., 2022),

among others. On the image analysis side, ML applications are numerous and include it

being used to improve denoising of image data (Gregory et al., 2021) and image segmentation

(Wang et al., 2020).

The Research Topic, “Machine learning methods for human brain imaging,” is a small

sampling of 11 research articles that demonstrate the use ofML inmultiple contexts and with

multiple imaging modalities. The Research Topic includes two manuscripts (Alchihabi et al.;

Fang et al.) that take different approaches to understanding cognitive networks—one using

multi-variate pattern dependencies between brain regions and another examining network

dynamics during the execution of a task. There are also three studies designed to use AI to

diagnose psychological disorders—one using MRI to diagnosis defiant disorders in children

(Menon and Krishnamurthy), one using EEG to classify brain states in schizophrenia

patients and healthy controls (Plechawska-Wójcik et al.) and another classifying patients

with obsessive-compulsive disorder and controls (Luo et al.). A third group of studies use

ML to address analytic issues including one developing an open access tool for whole brain

segmentation (Manjón et al.) and volumetric analysis of large datasets, one using fuzzy

neural networks to improve 2D to 3D image transformations (Tavoosi et al.), and registration

of multimodal 2D coronal section images of gene expressions in the mouse brain (Krepl

et al.).
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One goal of AI is to create systems that function like the

human brain (Hopgood, 2005). Current systems fall short

and two of the manuscripts in this Research Topic attempt

to address this issue (Matsui et al.; Zhang et al.). Deep

learning systems, for example do a great job of mimicking

human vision, to a point; their mapping from stimulus

input to perceptual output are different with respect to

adversarial images. Zhang et al. attempts to characterize the

differences in how AI systems and human brains process these

adversarial images by comparing artificial neural networks

and human brain activation, using what is learned to improve

AI performance.

The use of ML in human brain imaging is only expected

to increase. The power of deep learning methods makes them

attractive for analyzing the growing number of large, publicly

available datasets. However, it is important to slow down to evaluate

their efficacy as well as to evaluate their weaknesses. One such

weakness is addressed in the manuscript by Varotto et al.—how to

handle imbalanced datasets. Most large datasets do not have even

distributions of minority populations (e.g., racial, socioeconomic,

patient, etc.). This is only one such shortcoming that demonstrates

the need for careful evaluation.
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Supervised Learning With Perceptual
Similarity for Multimodal Gene
Expression Registration of a Mouse
Brain Atlas
Jan Krepl*†, Francesco Casalegno †, Emilie Delattre, Csaba Erö, Huanxiang Lu,

Daniel Keller, Dimitri Rodarie, Henry Markram and Felix Schürmann
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The acquisition of high quality maps of gene expression in the rodent brain is of

fundamental importance to the neuroscience community. The generation of such

datasets relies on registering individual gene expression images to a reference volume, a

task encumbered by the diversity of staining techniques employed, and by deformations

and artifacts in the soft tissue. Recently, deep learning models have garnered particular

interest as a viable alternative to traditional intensity-based algorithms for image

registration. In this work, we propose a supervised learning model for general multimodal

2D registration tasks, trained with a perceptual similarity loss on a dataset labeled by

a human expert and augmented by synthetic local deformations. We demonstrate the

results of our approach on the Allen Mouse Brain Atlas (AMBA), comprising whole brain

Nissl and gene expression stains. We show that our framework and design of the loss

function result in accurate and smooth predictions. Our model is able to generalize to

unseen gene expressions and coronal sections, outperforming traditional intensity-based

approaches in aligning complex brain structures.

Keywords: multimodal image registration, perceptual similarity, gene expression brain atlas, Allen mouse brain

atlas, non-rigid, machine learning, deep learning

1. INTRODUCTION

Mouse brain atlases are an essential tool used by neuroscientists to investigate relationships between
structural and functional properties of different brain regions. The Allen Institute for Brain Science
has produced a reference whole brain atlas, associated Nissl stains, and about 20,000 different gene
expression atlases obtained using high-throughput in situ hybridization (ISH) techniques (Lein
et al., 2007; Dong, 2008).

In order to utilize the information provided by the different markers, gene expressions must be
aligned to the reference Nissl atlas, so that all the data can be put into a common coordinate system.
To this end, the Allen Mouse Brain Atlas (AMBA) includes an alignment module, but this module
is limited to non-deformable transformations (Sunkin et al., 2012). For this reason, previous works
(Erö et al., 2018) have had to resort to a manual landmark-based non-rigid approach to correct
inaccuracies. However, this solution is not scalable to the whole genomic database.

We can describe our problem in terms of image registration, whereby the goal is to identify a
transformation that maps a moving image to a target reference image. Our task is made particularly
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challenging by the multimodality of gene expressions with
respect to reference Nissl stains and by several artifacts like air
bubbles and tears in the brain tissue samples.

In this work, we propose a supervised deep learning
framework that efficiently leverages labels provided by a trained
expert to accurately register multimodal 2D coronal section
images showing gene expression stains. Our approach offers
novel contributions in the following aspects:

1. Our model achieves high accuracy and generalizes to new
gene expressions and coronal sections. It therefore constitutes
a valuable tool for the integration of gene expression
brain atlases.

2. By training with a perceptual similarity loss, our model
learns to produce smooth deformations without the need any
parametric constraint or post-processing stage.

1.1. Related Work
There has been some research on registration of Allen Brain
datasets. Notably, Xiong et al. (2018) proposed a similarity metric
addressing such artifacts and used it to register slices to the
reference Nissl volume. Andonian et al. (2019) utilized groupwise
registration to create multiple templates that are in turn used for
pairwise registration of slices.

Among traditional image registration methods, intensity-
based schemes (Klein et al., 2009) such as Symmetric
Normalization (SyN) (Avants et al., 2008) represent the
most popular approach. They do not require ground truth and
rely on maximizing a similarity metric between the reference
and registered moving image. These methods usually provide
accurate and diffeomorphic predictions. However, they are
limited by runtime overhead due to their intrinsically iterative
nature, and also require a careful choice of hyperparameters. In
particular, in the case of multimodal images like ours, tuning
the pre-processing stages and the choice of the similarity metric
required several time consuming trial-and-error iterations. In
contrast, the model we propose can be easily deployed and used
as-is, without the need for any tuning.

To address the limitations of traditional intensity-based
approaches like SyN, several deep learning solutions have
been proposed. Many approaches, such as VoxelMorph (Dalca
et al., 2018; Balakrishnan et al., 2019), focused on unsupervised
registration of magnetic resonance volumes following a similar
approach to intensity-based models. Even though these methods
reduced the runtime of the registration process, they cannot yield
an improvement in accuracy over intensity-based methods, since
they seek to optimize the same loss function (Lee et al., 2019).
Furthermore, VoxelMorphmaximizes cross-correlation, which is
effective on unimodal data like magnetic resonance volumes, but
fails on our multimodal images.

Among supervised approaches, RegNet (Sokooti et al., 2017)
minimized mean absolute error with respect to a ground truth
displacement field without adding any penalty guaranteeing
smooth transformations. Moreover, this approach relied on
synthetic training data and is therefore necessarily limited to
unimodal problems and is therefore not applicable to our data.

Another popular supervised model is SVF-Net (Rohé et al.,
2017), which has the advantage of training the model on
ground truth transformations derived from region segmentation.
The framework is based on training a network to align the
boundaries of a pre-defined region of interest, which is not
suitable for our use case since the visible brain regions vary across
coronal sections.

Finally, while our proposed model learns to predict smooth
deformations solely through the usage perceptual loss, previous
methods relied either on: (i) parametric approaches like B-
splines (de Vos et al., 2017), which restrict the space of
possible deformations; (ii) introducing an explicit penalty term
in the loss function (Balakrishnan et al., 2019), which further
increases the number of hyperparameters; or (iii) integrating
a predicted velocity field (Dalca et al., 2018), which requires
post-processing steps.

The idea of training a model for image regression with
a perceptual loss that uses the features extracted by a pre-
trained network was first introduced in Johnson et al. (2016).
In that work, the authors tested the approach on style transfer
and super-resolution problems and showed that training with
this loss produced models that better predict complex features
such as texture and sharpness. The intuition behind this work
was confirmed by Zhang et al. (2018), which proved that, on
a variety of image datasets, the perceptual loss outperforms
classical metrics in terms of correlation with human judgement.
Perceptual loss has since then been successfully applied to
various image generation tasks. To name a few, Huang et al.
(2018) improved their results on higher resolutions when
working on image-to-image translation, while Li et al. (2020)
obtained artifact reduction and structure preservation on image
denoising tasks.

Compared to these previous works using perceptual similarity,
our approach also relies on the perceptual loss in order to
learn to predict outputs that preserve complex visual features of
the ground-truth, namely the smoothness of the displacements.
However, our approach introduces elements of novelty in that we
compute perceptual loss on the components of the displacement
vector field rather than on images, and moreover we apply this
approach to a new task such as multimodal image registration.

2. MATERIALS AND METHODS

Given a reference image Iref and a moving image Imov, image
registration is defined as the problem of finding a transformation
φ such that the registered image Ireg = Imov ◦ φ is as similar
as possible to the reference Iref. In the following, we assume that
our input consists of a pair of multimodal images Iref, Imov ∈

R
H×W×C (H=height, W=width, C=number of channels), and

that the output wewant to predict is a transformation represented
by an array φ ∈ R

H×W×2 such that for every pixel (x, y) in Iref,
φ(x, y) ∈ R

2 defines the corresponding position of that pixel
in Imov. Equivalently, one can predict the per-pixel displacement
u ∈ R

H×W×2 such that u(x, y) = φ(x, y)− (x, y).
The method we propose is based on supervised learning, so

we assume that we have access to training samples (Iref, Imov,φ)
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where the ground truth label φ is provided by a human expert.
These labeled samples are used to train a neural network model
as described in the remainder of this section.

All the relevant code can be found at https://github.com/
BlueBrain/atlas_alignment.

2.1. Network Architecture
Registration methods can be classified based on the family of
transformations considered for the predicted deformation φ̂. Our
model predicts pixel-wise displacements û, so that it is non-
parametric and allows for elastic transformations. This represents
a considerable advantage in terms of expressive power in contrast
to parametric models, such as affine or thin plate spline methods.

Specifically, the architecture of the neural network we propose
is shown in Figure 1. Our model consists of two modules,
predicting an affine (global) transformation φ̂global and an elastic
(local) deformation φ̂local, respectively. Our final prediction is the
composition of the two transformations φ̂ = φ̂global ◦ φ̂local.

Unlike many related works on medical image registration
(Sokooti et al., 2017; Yang et al., 2017; Balakrishnan et al.,
2018; Dalca et al., 2018), we do not assume that our inputs are
pre-centered and rescaled. Consequently, we employ a global
alignment module to simplify the registration of the local one.

The architecture of the global and local modules are inspired
by the Spatial Transformer Network (Jaderberg et al., 2015) and
VoxelMorph (Balakrishnan et al., 2018), respectively.

2.2. Loss Function
In the case of multimodal registration, measuring image
similarity between reference Iref and predicted registration
Îreg = Imov ◦ φ̂ without pre-processing may provide misleading
information due to the different appearance of these images.
Thanks to our supervised learning framework, we can instead
directly compare predictions û and Îreg with ground truths u and
Ireg, respectively.

We train our model using a loss function composed of three
terms

Ltot = LIE + LEPE + LLPIPS. (1)

The loss term LIE is an image error between the predicted
registered image Îreg = Imov ◦ φ and the ground truth Ireg.
As the two images have the same modality, pre-processing is
unnecessary, and we can simply take

LIE = ‖Ireg − Îreg‖
2
2. (2)

The second term LEPE is the squared average endpoint error,
which is commonly used as a metric for optical flow estimation
(Zhu et al., 2017). We define this loss as

LEPE =




H∑

x=1

W∑

y=1

‖u(x, y)− û(x, y)‖2

HWT




2

, (3)

where T is a normalizing constant representing the
average displacement size computed from training data
(in our case, T ≈ 20).

Note that LEPE is a pixel-wise loss which does not take into
account information from neighboring pixels. As a consequence,
our model often predicted non-smooth fields φ̂ with a significant
number of corrupted pixels, i.e., (x, y) where the Jacobian
J
φ̂
(x, y) ∈ R

2×2 has a non-positive determinant. In order to

teach the model to predict transformations with smooth texture
as the ground truth, we introduce in our total loss Ltot the
loss term LLPIPS defined as the Learned Perceptual Image Patch
Similarity Loss version 0.1 with VGG-lin configuration (see
Zhang et al., 2018 for details), which allows us to generate
deformations that are perceptually similar to ground truth labels,
including smoothness properties. To this end, we view the x and
y components of u as two images.

Unlike other traditional metrics, LLPIPS not only compares
pixel-wise differences but also extracts and compares feature
maps using a pre-trained VGG (Simonyan and Zisserman, 2014)
network and then computes differences between these deep
features. As explained in section 1.1, perceptual similarity is
known to be effective in a variety of tasks where complex image
features such as texture or sharpness have to be preserved in
the predictions. In our case, the two images we compare are
the ground truth and the predicted transformation, and the
qualitative feature traits we try to preserve by relying on LLPIPS
consist in the smoothness of the ground truth displacements.
Our results, presented and discussed in section 3.2, confirm the
validity of this idea.

Finally, inspired by Zhao et al. (2019), we train our model
to predict not only how to register Imov to Iref, but also Iref
to Imov. We therefore effectively use L′EPE = LEPE(u, û) +

LEPE(u
−1, û−1) and L′LPIPS = LLPIPS(u, û) + LLPIPS(u

−1, û−1).
Given the ground truth u, we compute u−1 numerically using
scattered data interpolation (SDI) (Crum et al., 2007).

To minimize the loss function Ltot we apply the RMSProp
(Root Mean Square Propagation) optimizer (Tieleman and
Hinton, 2012) which has a learning rate η = 10−3 and a
forgetting factor γ = 0.9. Additionally, the batch size is set to
4 due to GPU memory limitations.

2.3. Data Augmentation
To improve the generalization performance of our model, we
generate synthetic samples of the form (Iref, I

′
mov,φ

′) from each
training sample (Iref, Imov,φ).

A first class of augmentations generates I′mov from Imov by
applying random blurring, brightness perturbation, and other
image processing techniques. These augmentations help improve
the accuracy of predictions on images having different perceptual
appearance, and generalize to gene expressions not present in the
training set. Note that for these augmentations φ′ = φ.

Another class of augmentations consists of geometric
transformations, affecting both Imov and φ. These are particularly
relevant for our application, since our focus is on predicting
elastic deformations. First, control points are sampled on the
edges of a brain section, and random displacements are generated
for each of these points. Interpolating these displacement vectors
with radial basis functions yields a smooth transformation ψ
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FIGURE 1 | Architecture of the proposed model to register gene expressions Imov to Nissl stains Iref. Blue boxes represent trainable layers. Under all 3× 3

convolutional layers (3D boxes) and fully connected layers (2D boxes) we display the number of channels and dense units, respectively. Blue circles denote where

predicted transformations φ̂ are applied.

defined over the whole Imov. We obtain a synthetic sample by
considering I′mov = Imov ◦ ψ and φ′ = φ ◦ ψ−1.

2.4. Dataset and Evaluation Metrics
The reference Nissl stain volume of the AMBA comprises 528
coronal sections. Typically 8 markers per specimen were assayed,
yielding approximately 60 coronal sections per gene expression.
Our goal is to register the moving gene expression Imov to the
reference Nissl slice Iref.

In order to train and evaluate our model, we selected 277
section pairs from the Nissl atlas and 7 different gene atlases for
calbindin (CALB1), calretinin (CALB2), cholecystokinin (CCK),
neuropeptide Y (NPY), parvalbumin (PVALB), somatostatin
(SST), and vasointestinal peptide (VIP). Even though all the gene
expressions were pre-aligned using the affine registration module
provided by the Allen Brain API, significant misalignments were
still present. The original sections have various resolutions, so we
had to rescale the images in order to be able to run our model,
which assumes all moving and reference inputs to have the
same shape. We therefore downscaled all slices to a fixed 320 ×

456 pixels resolution, which corresponds to a 25 µm sampling
distance that is the same value of the slices thickness in the Nissl
atlas, in order to have a uniform resolution across the three axes.
Finally, all images were converted to grayscale.

We collected ground truth labels from a human expert
provided with a manual landmark-based non-rigid registration
tool that we designed to export the deformation field and
registered image. This annotation tool is named label-tool
and is part of our open-source Python package. On average

TABLE 1 | Average number of keypoint pairs used by the annotation expert (per

gene and coronal section group).

Gene 1–176 177–352 353–528

CALB1 19.1 36.3 40.8

CALB2 18.7 36.9 39.4

CCK 18.6 30.4 35.1

NPY 19.4 27.4 27.0

PVALB 17.9 24.4 37.3

SST 17.7 29.6 26.0

VIP 19.6 31.2 33.4

the expert used 27.7 keypoint pairs (with a standard deviation
of 10.7) to register a sample. However, the number required
keypoints significantly depends on the gene expression and on
the coronal section location, as shown in Table 1. This provides
a further argument in favor of our supervised learning approach,
which exports the whole deformation field provided by a human
expert and does not constrain the annotator to a fixed number
of control points, unlike the case of parameteric models such
as de Vos et al. (2017).

To measure the performance of our model, we considered
the hierarchical segmentation maps provided by the AMBA to
compute the average Dice score (Dice, 1945) (using weights
proportional to the number of pixels of each segmentation class)
at different levels, as shown in Figure 2. We performed this
comparison in the moving space by warping the ground truth
segmentation by φ−1 and φ̂−1 (both computed numerically).
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FIGURE 2 | Hierarchical segmentation of a Nissl stain (coronal section 250) used to compute Dice score to evaluate our model. Level 0 only distinguishes background

from foreground, while deeper levels define an increasing number of brain subregions.

TABLE 2 | Summary of results on an 80:20 train-test stratified data split (mean and standard deviation in percentage).

Model Dice-0 Dice-2 Dice-4 Dice-6 Dice-8 |J
φ̂
| ≤ 0

Ours 94.2 ± 4.0 84.4 ± 6.9 80.6 ± 7.9 68.0 ± 13.3 55.2 ± 11.9 0.11 ± 0.17

SyN 94.1 ± 4.2 83.9 ± 7.6 79.8 ± 8.8 66.1 ± 13.9 52.3 ± 12.5 0.01 ± 0.02

Affine 91.4 ± 5.9 79.9 ± 10.0 75.5 ± 11.0 61.2 ± 17.7 46.8 ± 15.8 0.00 ± 0.00

Bold values indicate the highest (= best) Dice score in the various experiments.

As a benchmark, we used an affine model and SyN as
implemented in the Advanced Normalization Tools (ANTs)
software package (Avants et al., 2011). We opted for mutual
information as a similarity metric to handle multimodality.

3. RESULTS

3.1. Quantitative Analysis
We evaluated the performance of our model on two different
experiments. In the first experiment, we applied an 80:20 train-
test split using a stratified partitioning scheme based on the
different genes and on the section locations on the anterior-
posterior axis.

As indicated inTable 2, ourmodel outperforms both the affine
model and SyNwith respect to Dice score. The improvement over
SyN is marginal for level 0, which corresponds to a background-
foreground segmentation as shown in Figure 2. However, our
model’s relative advantage increases as we consider more regions.
Indeed, aligning complex brain structures in multimodal images
is a harder task for intensity-based models. Table 2 shows
that our model tends to predict smooth transformations with
only 0.11% of corrupted pixels, mostly occurring at image
borders. This is particularly noteworthy since the smoothness
emerges naturally from training with the loss function defined
in section 2.2.

In the second experiment, we studied how our model
generalizes to new genes by training on slices of 6 genes and
evaluating performances on the remaining holdout gene. Results
in terms of Dice-8 score, where difference between models is
more visible, are reported in Table 3. Even in this more difficult
scenario, where slices of the holdout gene are never shown to the
model during the training phase, our network achieves higher
scores than SyN on all but one gene. The overall results of this
second experiment confirm that our model generalizes to new
genes and is therefore suitable for registering and leveraging
multimodal gene atlases.

Finally, running on an Intel Core i7-4770 CPU, registering a
sample takes either ∼ 3 s or ∼ 0.2 s using SyN or our model,
respectively. On an NVIDIA Tesla V100 GPU, the runtime of
our model is further reduced to ∼ 0.009 s (the ANTs package
does not provide GPU implementations of SyN). These results
demonstrate that our approach is also competitive in terms
of runtime.

3.2. Qualitative Analysis
A qualitative analysis of the predictions of our model is
shown in Figure 3. Our global module provides a first affine
transformation that rescales and centers the moving image. The
need and the efficacy of this module are particularly visible in
the case of samples (Figures 3B,C), where the global module
significantly rescales and shifts the input gene expression. The
local module then applies an elastic deformation that accurately
aligns the gene expression to the reference Nissl stain.

We already mentioned in section 1 that our registration
task is made particularly challenging by the presence of tears
and air bubbles in the gene expression stains. In Figure 4, we
demonstrate the stability of our approach by showing examples of
gene expression slices including these kinds of artifacts together
with the ground truth and predicted registrations.

As explained previously in section 2.2, the smoothness of
the predicted deformation field φ̂ can be entirely ascribed to
our choice of loss function. Figure 5 illustrates how results
vary depending on whether or not Ltot includes the perceptual
similarity term LLPIPS. Notice that, without this term, the model
produces a significant number of corrupted pixels.

Further insight with respect to these results is provided in
Figure 6, where we can observe some of the feature maps used
to compute LLPIPS. As previously described, these deep features
are the internal activations of a pre-trained VGG network. The
similar, smooth appearance of the ground truth u and predicted
transformation û obtained by training with LLPIPS is well-
captured by these activations, which look significantly different
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TABLE 3 | Summary of results on a gene-holdout split (Dice-8, mean, and standard deviation in percentage).

Model CALB1 CALB2 CCK NPY PVALB SST VIP

Ours 48.8 ± 9.5 55.3 ± 12.3 54.5 ± 13.0 44.4 ± 12.5 56.0 ± 13.6 60.3 ± 12.4 58.4 ± 13.3

SyN 46.9 ± 10.9 54.6 ± 12.9 50.7 ± 14.3 41.7 ± 15.4 58.5 ± 10.6 57.0 ± 12.5 55.6 ± 11.5

Affine 40.5 ± 15.8 51.5 ± 14.3 46.7 ± 12.0 36.6 ± 15.5 53.0 ± 12.1 54.3 ± 13.4 52.5 ± 14.3

Bold values indicate the highest (= best) Dice score in the various experiments.

FIGURE 3 | Predicted registrations on slices from the 7 different gene expression atlases used in our experiments (see section 2.4 for details). (A) PVALB gene,

section 236; (B) CALB1 gene, section 100; (C) NPY gene, section 52; (D) SST gene, section 328; (E) CALB2 gene, section 451; (F) VIP gene, section 129; (G) CCK

gene, section 190.

for the non-smooth predicted transformation û we obtained
when training without the LLPIPS term. These observations
help justify the importance of using the perceptual loss in our
framework to produce smooth results.

Interestingly, if we evaluate the predicted transformations
shown in Figure 6 using LEPE, the prediction obtained by training

with the perceptual loss (LEPE = 6.83) seems to be worse than the
one obtained without it (LEPE = 6.03). This strongly contrasts
with the fact that this latter looks smooth and qualitatively
similar to the ground truth, while the other prediction clearly
includes a large number of artifacts. However, if we evaluate
the same transformations using LLPIPS we reach the opposite
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FIGURE 4 | Gene expressions containing artifacts, and corresponding predicted registrations. (A) PVALB gene, section 160; (B) VIP gene, section 316.

FIGURE 5 | Influence of the loss function on the smoothness of the predicted deformation, for SST gene, section 352. If we use a loss without perceptual similarity,

∼ 3% of pixels are corrupted. By introducing the LLPIPS term, this is reduced to ∼ 0.1%.

FIGURE 6 | Activations of the pre-trained network used to compute LLPIPS on the y component of the transformation u for the coronal section 352 of SST gene (same

as in Figure 5). The deep features of the non-smooth predicted û obtained by training without LLPIPS significantly differ from those of smooth transformations

corresponding to the ground truth u and predicted û obtained by training with LLPIPS.

conclusions, as the prediction obtained by training with the
perceptual loss (LLPIPS = 0.30) appears to be better than the
one obtained without it (LLPIPS = 0.53). These results are

consistent with Zhang et al. (2018), where perceptual similarity is
shown to strongly correlate with human perception, unlike other
traditional metrics.
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4. DISCUSSION

In this paper, we presented a supervised deep learningmodel with
perceptual similarity for the 2D registration of gene expressions
to Nissl stains of the Allen Mouse Brain Atlas. The main novelty
of our method lies in its unique non-parametric approach which
allows the prediction of smooth deformations by exclusively
relying on a perceptual loss function. In contrast to this, previous
works had to resort to using parametric methods, extra penalty
terms with hyperparameters requiring careful tuning, or post-
processing steps.

By testing on two different experiments, we showed that
the proposed approach produces accurate predictions that
generalize well to unseen gene expressions and coronal sections.
This is particularly significant given the high variability of
shape and appearance across stains and sections, as shown in
Figure 3. We benchmarked our results against the state-of-the-
art method SyN, and our results showed that our model is
significantly faster and it also achieves higher accuracy in almost
all cases.

Our qualitative analysis shows that our model is able
to predict deformation fields that are very close to the
ground truth annotations provided by a human expert,
even in case of slices affected by artifacts such as air
bubbles and tears. Indeed, during the training phase,
our model is presented with samples including various
kinds of anomalies, and therefore learns how to predict
a deformation field in a correct way, as opposed to
intensity-based approaches.

Our framework has therefore proven capable of enabling the
neuroscience community to leverage large-scale complex brain-
derived datasets, with a significant scientific impact in terms of
acceleration and accuracy improvement.

We identify three drawbacks of the presented approach.
Firstly, it assumes that we have access to expert labels. Manual
registration with any annotation tool is a difficult task and the

resulting ground truth deformation might vary from one expert
to another. The second shortcoming is that a generalization of
our approach to 3D registration is not straightforward. This
is due to the fact that perceptual loss is computed on images
rather than volumes. Lastly, the training of our neural network
represents the most time consuming stage of the pipeline. This is
a common problem of many deep learning models and it should
not be completely overshadowed by fast inference.

The future research direction is to apply our approach to new
datasets. One specific example is to investigate sagittal sections.
In general, themost promising applications are in the registration
of multimodal datasets where using traditional approaches might
lead to inaccurate results.
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Despite the remarkable similarities between convolutional neural networks (CNN) and
the human brain, CNNs still fall behind humans in many visual tasks, indicating
that there still exist considerable differences between the two systems. Here, we
leverage adversarial noise (AN) and adversarial interference (AI) images to quantify
the consistency between neural representations and perceptual outcomes in the two
systems. Humans can successfully recognize AI images as the same categories as
their corresponding regular images but perceive AN images as meaningless noise.
In contrast, CNNs can recognize AN images similar as corresponding regular images
but classify AI images into wrong categories with surprisingly high confidence. We use
functional magnetic resonance imaging to measure brain activity evoked by regular and
adversarial images in the human brain, and compare it to the activity of artificial neurons
in a prototypical CNN—AlexNet. In the human brain, we find that the representational
similarity between regular and adversarial images largely echoes their perceptual
similarity in all early visual areas. In AlexNet, however, the neural representations of
adversarial images are inconsistent with network outputs in all intermediate processing
layers, providing no neural foundations for the similarities at the perceptual level.
Furthermore, we show that voxel-encoding models trained on regular images can
successfully generalize to the neural responses to AI images but not AN images.
These remarkable differences between the human brain and AlexNet in representation-
perception association suggest that future CNNs should emulate both behavior and the
internal neural presentations of the human brain.

Keywords: adversarial images, convolutional neural network, human visual cortex, functional magnetic
resonance imaging, representational similarity analysis, forward encoding model

INTRODUCTION

The recent success of convolutional neural networks (CNNs) in many computer vision tasks
inspire neuroscientists to consider them as a ubiquitous computational framework to understand
biological vision (Jozwik et al., 2016; Yamins and DiCarlo, 2016). Indeed, a bulk of recent studies
have demonstrated that visual features in CNNs can accurately predict many spatiotemporal
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characteristics of brain activity (Agrawal et al., 2014; Yamins et al.,
2014; Güçlü and van Gerven, 2015, 2017; Cichy et al., 2016;
Hong et al., 2016; Horikawa and Kamitani, 2017; Khaligh-Razavi
et al., 2017). These findings reinforce the view that modern CNNs
and the human brain share many key structural and functional
substrates (LeCun et al., 2015).

Despite the tremendous progress, current CNNs still fall
short in several visual tasks. These disadvantages suggest that
critical limitations still exist in modern CNNs (Grill-Spector and
Malach, 2004). One potent example is adversarially perturbed
images, a class of images that can successfully “fool” even the
most state-of-the-art CNNs (Szegedy et al., 2013; Nguyen et al.,
2015). Adversarial noise (AN) images (Figure 1B) look like
meaningless noise to humans but can be classified by CNNs
into familiar object categories with surprisingly high confidence
(Nguyen et al., 2015). Adversarial interference (AI) images
are generated by adding a small amount of special noise to
regular images (Figure 1C). The special noise looks minimal to
humans but severely impairs CNNs’ recognition performance
(Szegedy et al., 2013). Perception here can be operationally
defined as the output labels of a CNN and object categories
reported by humans. Therefore, adversarial images present
a compelling example of double-dissociation between CNNs
and the human brain, because artificially created images can
selectively alter perception in one system without significantly
impacting the other one.

It remains unclear the neural mechanisms underlying the
drastically different visual behavior between CNNs and the
human brain with respect to adversarial images. In particular,
why do the two systems receive similar stimulus inputs but
generate distinct perceptual outcomes? In the human brain,
it has been known that the neural representations in low-
level visual areas mostly reflect stimulus attributes whereas the
neural representations in high-level visual areas mostly reflect
perceptual outcomes (Grill-Spector and Malach, 2004; Wandell
et al., 2007). For example, the neural representational similarity
in human inferior temporal cortex is highly consistent with
perceived object semantic similarity (Kriegeskorte et al., 2008).
In other words, there exists a well-established representation-
perception association in the human brain.

This processing hierarchy is also a key feature of modern
CNNs. If the representational architecture in CNNs truly
resembles the human brain, we should expect similar neural
substrates supporting CNNs’ “perception.” For CNNs, AI images
and regular images are more similar at the pixel level but
yield different perceptual outcomes. By contrast, AN images and
regular images are more similar at the “perceptual” level. We
would expect that AI and regular images have more similar neural
representations in low-level layers while AN and regular images
have similar neural representations in high-level layers. In other
words, there must exist at least one high-level representational
layer that supports the same categorical perception of AN
and regular images, similar to the representation-perception
association in the human brain. However, as we will show later in
this paper, we find no representational pattern that supports RE-
AN perceptual similarity in all intermediate representation layers
except the output layer.

The majority of prior studies focused on revealing similarities
between CNNs and the human brain. In this paper, we instead
leverage adversarial images to examine the differences between
the two systems. We particularly emphasize that delineating
the differences here does not mean to object CNNs as a useful
computational framework for human vision. On the contrary,
we acknowledge the promising utilities of CNNs in modeling
biological vision but we believe it is more valuable to understand
differences rather than similarities such that we are in a better
position to eliminate these discrepancies and construct truly
brain-like machines. In this study, we use a well-established
CNN—AlexNet and investigate the activity of artificial neurons
toward adversarial images and their corresponding regular
images. We also use functional magnetic resonance imaging
(fMRI) to measure the cortical responses evoked by RE
and adversarial images in humans. Representational similarity
analysis (RSA) and forward encoding modeling allow us to
directly contrast representational geometries within and across
systems to understand the capacity and limit of both systems.

MATERIALS AND METHODS

Ethics Statement
All experimental protocols were approved by the Ethics
Committee of the Henan Provincial People’s Hospital. All
research was performed in accordance with relevant guidelines
and regulations. Informed written consent was obtained from
all participants.

Subjects
Three healthy volunteers (one female and two males, aged
22∼28 years) participated in the study. The subject S3 was
the author C.Z. The other two subjects were naïve to the
purpose of this study. All subjects were monolingual native-
Chinese speakers and right-handed. All subjects had a normal
or corrected-to-normal vision and considerable experience of
fMRI experiments.

Convolutional Neural Network
We chose AlexNet and implemented it using the Caffe deep
learning framework (Deng et al., 2009; Krizhevsky et al., 2012).
AlexNet consists of five convolutional layers and three fully-
connected layers (Figure 1D). The five convolutional layers each
have 96, 256, 384, 384, and 256 linear convolutional kernels.
The three fully-connected layers each have 4096, 4096, and
1000 artificial neurons. All convolutional layers perform linear
convolution and rectified linear unit (ReLU) gating. Spatial max
pooling is used only in layers 1, 2, and 5 to promote the
spatial invariance of sensory inputs. In layers 1 and 2, local
response normalization implements the inhibitory interactions
across channels in a convolutional layer. In other words, the
strong activity of a neuron in the normalization pool suppresses
the activities of other neurons. Lateral inhibition of neurons
is a well-established phenomenon in visual neuroscience and
has proven to be critical to many forms of visual processing
(Blakemore et al., 1970). The ReLU activation function and
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FIGURE 1 | (A–C) Example regular (RE, panel A), adversarial noise (AN, panel B) images and adversarial interference (AI, panel C) images. The five AN and five AI
images one-by-one correspond to the five RE images. The labels provided by AlexNet and humans are listed under the images. The AI images contain a small
amount of special image noise but overall look similar to the corresponding RE images. Humans can easily recognize the AI images as corresponding categories but
the AN images as noise. AlexNet can classify the AN images into corresponding categories with over 99% confidence, but recognize the AI images as wrong
categories. (D) The architecture of AlexNet. Details have been documented in Krizhevsky et al. (2012). Each layer uses some or all the following operations: linear
convolution, ReLU gating, spatial max-pooling, local response normalization, inner product, dropout and softmax.

dropout are used in fully-connected layers 6 and 7. Layer 8 uses
the softmax function to output the probabilities for 1000 target
categories. In our study, all images were resized to 227 × 227
pixels in all three RGB color channels.

Image Stimuli
Regular Images
Regular (RE) images (Figure 1A) in our study were sampled from
the ImageNet database (Deng et al., 2009). ImageNet is currently
the most advanced benchmark database on which almost
all state-of-the-art CNNs are trained for image classification.
We selected one image (width and height > 227 pixels and
aspect ratio > 2/3 and < 1.5) from each of 40 representative
object categories. AlexNet can classify all images into their
corresponding categories with probabilities greater than 0.99.

The 40 images can be evenly divided into 5 classes: dogs,
birds, cars, fruits, and aquatic animals (see Supplementary
Table 1 for details).

Adversarial Images
Adversarial images include adversarial noise (AN) (Figure 1B)
and adversarial interference (AI) images (Figure 1C). A pair of
AN and AI images were generated for each RE image. As such,
a total of 120 images (40 RE + 40 AN + 40 AI) were used in the
entire experiment.

The method to generate AN images has been documented in
Nguyen A et al. (Nguyen et al., 2015). We briefly summarize the
method here. We first used the averaged image of all images in
ImageNet as the initial AN image. Note that the category label
of the corresponding RE image was known, and AlexNet had
been fully trained. As such, we first fed the initial AN image to
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AlexNet and forwardly computed the probability for the correct
category. This probability was expected to be initially low. We
then used the backpropagation method to transduce error signals
from the top layer to image pixel space. Pixel values in the
initial AN image were then adjusted accordingly to enhance the
classification probability. This process of forwarding calculation
and backpropagation was iterated many times until the pixel
values of AN image converged.

We also included an additional regularization item to control
the overall intensity of the image. Formally, let Pc(I) be the
probability of class c (RE image label) given an image I. We would
like to find an L2-regularized image I∗, such that it maximizes the
following objective:

I∗ = arg max
I

Pc(I)− λ ||I-Imean||
2
2 , (1)

where, λ is the regularization parameter and Imean is the grand
average of all images in ImageNet. Finally, all the probabilities of
generated AN images used in our experiment being classified into
RE images were greater than 0.99. Note that the internal structure
(i.e., all connection weights) of AlexNet was fixed throughout
the entire training process, and we only adjusted pixel values in
input AN images.

The AI images were generated by adding noise to the RE
images. For an RE image (e.g., dog), a wrong class label (e.g.,
bird) was pre-selected (see Supplementary Table 1 for details).
We then added random noise (uniform distribution −5∼5) to
every pixel in the RE image. The resulted image was kept if
the probability of this image being classified into the wrong
class (i.e., bird) increased, and was discarded otherwise. This
procedure was repeated many times until the probability for
the wrong class exceeded 0.5 (i.e., wrong class label as the top1
label). We deliberately choose 0.5 because under this criteria the
resulted images were still visually comparable to the RE images.
A higher stopping criteria (e.g., 0.99) may overly load noises and
substantially reduce image visibility. We further used the similar
approach as AN images (change the Imean in Eq. 1 to IRE.) to
generate another set of AI images (with a probability of over
0.99 to be classified into the “wrong” class) and confirmed that
the results in AlexNet RSA analyses did not substantially change
under this regime (see Supplementary Figure 4). We adopted the
former not the latter approach in our fMRI experiment because
the differences between the AI and the RE images were so small
that the human eye can hardly see it in the experiment. This
is meaningless for an fMRI experiment as the AI and the RE
images look “exactly” the same, which is equivalent to present the
identical images twice.

Apparatus
All computer-controlled stimuli were programmed in Eprime
2.0 and presented using a Sinorad LCD projector (resolution
1920 × 1080 at 120 Hz; size 89 cm × 50 cm; viewing distance
168 cm). Stimuli were projected onto a rear-projection monitor
located over the head. Subjects viewed the monitor via a mirror
mounted on the head coil. Behavioral responses were recorded
by a button box.

fMRI Experiments
Main Experiment
Each subject underwent two scanning sessions in the main
experiment. In each session, half of all images (20 images x 3
RE/AN/AI = 60 images) were presented. Each session consisted
of five scanning runs, and each run contained 129 trials (2
trials per image and 9 blank trials). The image presentation
order was randomized within a run. In a trial, a blank lasted
2 s and was followed by an image (12◦ × 12◦) of 2 s. A 20 s
blank period was included to the beginning and the end of each
run to establish a good baseline and compensate for the initial
insatiability of the magnetic field. A fixation point (0.2◦ × 0.2◦)
was shown at center-of-gaze, and participants were instructed to
maintain steady fixation throughout a run. Participants pressed
buttons to perform an animal judgment task—whether an image
belongs to animals. The task aimed to engage subjects’ attention
onto the stimuli.

Retinotopic Mapping and Functional Localizer
Experiments
A retinotopic mapping experiment was also performed to
define early visual areas, as well as two functional localizer
experiments to define lateral occipital (LO) lobe and human
middle temporal lobe (hMT+).

The retinotopic experiment used standard phase-encoding
methods (Engel et al., 1994). Rotating wedges and expanding
rings were filled by textures of objects, faces, and words, and were
presented on top of achromatic pink-noise backgrounds (http:
//kendrickkay.net/analyzePRF/). Early visual areas (V1–V4) were
defined on the spherical cortical surfaces of individual subjects.

The two localizer experiments were used to create a more
precise LO mask (see region-of-interest definition section below).
Each localizer experiment contained two runs. In the LO localizer
experiment, each run consisted of 16 stimulus blocks and 5 blank
blocks. Each run began with a blank block, and a blank block
appeared after every 4 stimulus blocks. Each block lasted 16 s.
Intact images and their corresponding scrambled images were
alternately presented in a stimulus block. Each stimulus block
contained 40 images (i.e., 20 intact + 20 scramble images). Each
image (12◦ × 12◦) lasted 0.3 s and was followed by a 0.5 s blank.

In the hMT+ localizer experiment, each run contained 10
stimulus blocks, and each block lasted 32 s. In a block, a static dot
stimulus (24 s) and a moving-dot stimulus (8 s) were alternately
presented. All motion stimuli subtended a 12◦ × 12◦ square area
on a black background. An 8 s blank was added to the beginning
and the end of each run. Note that hMT+ here is only used to
remove motion-selective vertices from the LO mask (see Region-
Of-Interest definitions). We did not analyze motion signals in
hMT+ as all our images were static.

MRI Data Acquisition
All MRI data were collected using a 3.0-Tesla Siemens
MAGNETOM Prisma scanner and a 32-channel head coil
at the Department of Radiology at the People’s Hospital
of Henan Province.

An interleaved T2∗-weighted, single-shot, gradient-echo
echo-planar imaging (EPI) sequence was used to acquire
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functional data (60 slices, slice thickness 2 mm, slice gap 0 mm,
field of view 192 × 192 mm2, phase-encode direction anterior-
posterior, matrix size 96 × 96, TR/TE 2000/29 ms, flip angle 76◦,
nominal spatial resolution 2 × 2 × 2 mm3). Three B0 fieldmaps
were acquired to aid post-hoc correction for EPI spatial distortion
in each session (resolution 2 × 2 × 2 mm3, TE1 4.92 ms, TE2
7.38 ms, TA 2.2 min). In addition, high-resolution T1-weighted
anatomical images were also acquired using a 3D-MPRAGE
sequence (TR 2300 ms, TE 2.26 ms, TI 900 ms, flip angle 8◦, field
of view 256× 256 mm2, voxel size 1.× 1.× 1. mm3).

MRI Data Preprocessing
The pial and the white surfaces of subjects were constructed
from T1 volume using FreeSurfer software (http://surfer.nmr.
mgh.harvard.edu). An intermediate gray matter surface between
the pial and the white surfaces was also created for each subject.

Our approach for dealing with EPI distortion followed Kay
et al. (2019). Fieldmaps acquired in each session were phase-
unwrapped using the FSL utility prelude (version 2.0) with
flags -s -t 0. We then regularized the fieldmaps by performing
3D local linear regression using an Epanechnikov kernel with
radius 5 mm. We used values in the magnitude component
of the fieldmap as weights in the regression in order to
improve robustness of the field estimates. This regularization
procedure removes noise from the fieldmaps and imposes spatial
smoothness. Finally, we linearly interpolated the fieldmaps over
time, producing an estimate of the field strength for each
functional volume acquired.

For functional data, we discarded the data points of the first
18 s in the main experiment, the first 14 s in the LO localizer
experiment, and the first 6 s in the hMT+ localizer experiment.
This procedure ensures a 2 s blank was kept before the first task
block in all three experiments.

The functional data were initially volume-based pre-processed
by performing one temporal and one spatial resampling. The
temporal resampling realized slice time correction by executing
one cubic interpolation for each voxel’s time series. The spatial
resampling was performed for EPI distortion and head motion
correction. The regularized time-interpolated field maps were
used to correct EPI spatial distortion. Rigid-body motion
parameters were then estimated from the undistorted EPI
volumes with the SPM5 utility spm_realign (using the first EPI
volume as the reference). Finally, the spatial resampling was
achieved by one cubic interpolation on each slice-time-corrected
volume (the transformation for correcting distortion and the
transformation for correcting motion are concatenated such that
a single interpolation is performed).

We co-registered the average of the pre-processed functional
volumes obtained in a scan session to the T1 volume (rigid-
body transformation). In the estimation of the co-registration
alignment, we used a manually defined 3D ellipse to focus the cost
metric on brain regions that are unaffected by gross susceptibility
effects (e.g., near the ear canals). The final result of the co-
registration is a transformation that indicates how to map the EPI
data to the subject-native anatomy.

With the anatomical co-registration complete, the functional
data were re-analyzed using surface-based pre-processing. The

reason for this two-stage approach is that the volume-based pre-
processing is necessary to generate the high-quality undistorted
functional volume that is used to determine the registration
of the functional data to the anatomical data. It is only
after this registration is obtained that the surface-based pre-
processing can proceed.

In surface-based pre-processing, the exact same procedures
associated with volume-based pre-processing are performed,
except that the final spatial interpolation is performed at the
locations of the vertices of the intermediate gray matter surfaces.
Thus, the only difference between volume- and surface-based
pre-processing is that the data are prepared either on a regular 3D
grid (volume) or an irregular manifold of densely spaced vertices
(surface). The entire surface-based pre-processing ultimately
reduces to a single temporal resampling (to deal with slice
acquisition times) and a single spatial resampling (to deal with
EPI distortion, head motion, and registration to anatomy).
Performing just two simple pre-processing operations has the
benefit of avoiding unnecessary interpolation and maximally
preserving spatial resolution (Kang et al., 2007; Kay and Yeatman,
2017; Kay et al., 2019). After this pre-processing, time-series data
for each vertex of the cortical surfaces were ultimately produced.

General Linear Modeling
We estimated the vertex responses (i.e., beta estimates from
GLM modeling) of all stimulus trials in the main experiment
using the GLMdenoise method (Kay et al., 2013). All blank trials
were modeled as a single predictor. This analysis yielded beta
estimations of 241 conditions (120 images × 2 trials + 1 blank
trial). Notably, we treated two presentations of the same image as
two distinct predictors in order to calculate the consistency of the
response patterns across the two trials.

Region-of-Interest Definitions
Based on the retinotopic experiment, we calculated the
population receptive field (pRF) (http://kendrickkay.net/
analyzePRF) of each vertex and defined low-level visual areas
(V1–V4) based on the pRF maps. To define LO, we first
selected vertices that show significantly higher responses to
intact images than scrambled images (two-tails t-test, p < 0.05,
uncorrected). In addition, hMT+ was defined as the area that
shows significantly higher responses to moving than static dots
(two-tails t-test, P < 0.05, uncorrected). The intersection vertices
between LO and hMT+ were then removed from LO.

Vertex Selection
To further select task-related vertices in each ROI (Figure 2A),
we performed a searchlight analysis on flattened 2D cortical
surfaces (Chen et al., 2011). For each vertex, we defined a 2D
searchlight disk with 3 mm radius. The geodesic distance between
two vertices was approximated by the length of the shortest path
between them on the flattened surface. Given the vertices in the
disk, we calculated the representational dissimilarity matrices
(RDM) of all RE images for each of the two presentation trials.
The two RDMs were then compared (Spearman’s R) to show the
consistency of activity patterns across the two trials. Here rank-
correlation (e.g., Spearman’s R) is used as it was recommended

Frontiers in Neuroinformatics | www.frontiersin.org 5 August 2021 | Volume 15 | Article 67792520

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://kendrickkay.net/analyzePRF
http://kendrickkay.net/analyzePRF
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-677925 August 5, 2021 Time: 14:43 # 6

Zhang et al. Visual Processing of Adversarial Images

FIGURE 2 | (A) Regions of interest (ROIs) in a sample subject. Through retinotopic mapping and functional localizer experiments, we identified five ROIs—V1, V2,
V3, V4 and lateral occipital (LO) cortex—in both left (LH) and right (RH) hemispheres. (B) Calculation of RE-AN and RE-AI similarity. For each CNN layer or brain ROI,
three RDMs are calculated with respect to the three types of images. We then calculate the Spearman correlation between the AN and the RE RDMs, obtaining the
RE-AN similarity. Similarly, we can calculate the RE-AI similarity.

when comparing two RDMs (Kriegeskorte et al., 2008;
Nili et al., 2014).

The 200 vertices (100 vertices from each hemisphere) with the
highest correlation values were selected in each ROI for further
analysis (Figure 3). Note that vertex selection was only based on
the responses to the RE images and did not involve any response
data for the AN and the AI images. We also selected a total of 400
vertices in each area and we found our results held. The results
are shown in Supplementary Figure 2.

Representational Similarity Analysis
We applied RSA separately to the activity in the
CNN and the brain.

RSA on CNN Layers and Brain ROIs
For one CNN layer, we computed the representational
dissimilarity between every pair of the RE images, yielding
a 40 × 40 RDM (i.e., RDMRE) for the RE images. Similarly, we
obtained the other two RDMs each for the AN (i.e., RDMAN) and
the AI images (i.e., RDMAI). We then calculated the similarity
between the three RDMs as follows:

RRE−AN = corr(RDMRE,RDMAN), (2)

RRE−AI = corr(RDMRE,RDMAI), (3)

This calculation generated one RE-AN similarity value and one
RE-AI similarity value for that CNN layer (see Figure 2B). We
repeated the same analysis above on the human brain except that
we used the activity of vertices in a brain ROI.

In a given ROI or AlexNet layer, we first resampled 80%
voxels or artificial neurons without replacement (Supplementary
Figure 5). In each sample, we calculated RE, AI, and AN RDM,
and calculated the difference between RE-AI similarity and RE-
AN similarity, obtaining one difference value. This was done 1000

times, yielding 1000 different values as the baseline distribution
for RE-AI and RE-AN difference. This method is used for
examining the relative difference between the RE-AN and the
RE-AN similarities.

To construct the null hypotheses for the absolute RE-AN
and the RE-AI similarities, in each voxel or artificial neuron
sample, we further permuted the image labels with respect to
their corresponding activities for the RE images (Supplementary
Figure 6). In other words, an image label may be paired with
a wrong activity pattern. We then recalculated the RE-AN and
the RE-AI similarities. In this way, 1000 RE-AN and 1000 RE-AI
similarity values were generated. The two distributions consisting
of 1000 values were regarded as the null hypothesis distributions
of RE-AN or RE-AI, respectively.

In addition, the Mann-Kendall test was applied to assess the
monotonic upward or downward trend of the RE-AN similarities
over CNN layers. The Mann-Kendall test can be used in place
of a parametric linear regression analysis, which can be used
to test if the slope of the estimated linear regression line is
different from zero.

In order to verify the statistical effectiveness of the fMRI
experimental results of the three subjects, we used the G∗Power
tool (Faul et al., 2009) to re-analyze our experimental results. For
each ROI, we carried out a paired t-test (i.e., “means: difference
between two dependent means (matched pairs)” in G∗Power) on
the RE-AI similarities and the RE-AN similarities of the three
subjects. We calculated three RE-AI/RE-AN difference values
(i.e., the height difference between blue and red bars in Figure 3),
each for one subject. The effect size was determined from the
mean and SD of the difference values. We first set the type of
power analysis to “post hoc: compute achieved power – given
α, sample size, and effect size” to estimate the statistical power
given N = 3. The statistical power (1-β error probability, α error
probability was set to 0.05) was then calculated. We then set the
type of power analysis to “a priori: compute required sample
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FIGURE 3 | RE-AI and RE-AN similarities in the human brain. Three subplots
indicate the three human subjects. In all five brain ROIs, the RE-AI (red bars)
similarities are substantially higher than the RE-AN (blue bars) similarities. Error
bars are 95% confidence intervals of similarity values by bootstrapping
vertices in one brain ROI (see Methods). The black asterisks above bars
indicate that the similarity values are significantly different from null hypotheses
(permutation test, p < 0.05, see Methods).

size – given α, power, and effect size,” and calculated the estimated
minimum required sample size to achieve a statistical power of
0.8 with the current statistics.

Searchlight RSA
We also performed a surface-based searchlight analysis in order
to show the cortical topology of the RE-AN and the RE-AI
similarity values. For each vertex, the same 2D searchlight disk
was defined as above. We then repeated the same RSA on the
brain, producing two cortical maps with respect to the RE-AN
and RE-AI similarity values.

Forward Encoding Modeling
Here, forward encoding models assume that the activity of a
voxel in the brain can be modeled as the linear combination
of the activity of artificial neurons in CNNs. Thus, forward
encoding modeling can bridge the representations of the two
systems. Thus, forward encoding modeling can bridge the

representations of the two systems. This is also the typical
approach in existing related works (Güçlü and van Gerven, 2015;
Kell et al., 2018).

We first trained the forward encoding models only based on
the RE images data in the brain and the CNN. For the response
sequence y = {y1, . . . , yd}T of one vertex to the 40 RE images, it
is expressed as Eq. (4):

y = Xw, (4)

X is an m-by-(n+1) matrix, where m is the number of training
images (i.e., 40), and n is the number of units in one CNN
layer. The last column of X is a constant vector with all elements
equal to 1. w is an (n+1)-by−1 unknown weighting matrix
to solve. Because the number of training samples m was less
than the number of units n in all CNN layers, we imposed an
additional sparse constraint on the forward encoding models to
avoid overfitting:

min
w
||w||0 subject to y = Xw, (5)

Sparse coding has been widely suggested and used in both
neuroscience and computer vision (Vinje and Gallant, 2000; Cox
and Savoy, 2003). We used the regularized orthogonal matching
pursuit (ROMP) method to solve the sparse representation
problem. ROMP is a greedy method developed by Needell D and
R Vershynin (Needell and Vershynin, 2009) for sparse recovery.
Features for prediction can be automatically selected to avoid
overfitting. For the selected 200 vertices in each human ROI, we
established 8 forward encoding models corresponding to the 8
CNN layers. This approach yielded a total of 40 forward encoding
models (5 ROIs× 8 layers) for one subject.

Based on the train forward encoding models, we calculated
the Pearson correlation between the empirically measured
and model-predicted response patterns evoked by the
adversarial images. To test the prediction accuracy against
null hypotheses, we randomized the image labels and
performed permutation tests as described above. Specifically,
we resampled 80% vertices in a brain ROI 1000 times without
replacement and in each sample recalculated the mean response
prediction accuracy, resulting in a bootstrapped accuracy
distribution with 1000 mean response prediction accuracy
values (Supplementary Figure 7). The upper and lower
bounds of the 95% confidence intervals were derived from
the bootstrapped distribution. Similarly, we compared the
bootstrapped distributions of two types of adversarial images
to derive the statistical difference between the RE-AI and the
RE-AN similarity.

RESULTS

Dissociable Neural Representations of
Adversarial Images in AlexNet and the
Human Brain
Human Brain
For one brain ROI, we calculated the representational
dissimilarity matrix (i.e., 40 x 40 RDM) for each of the
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FIGURE 4 | Cortical topology of RE-AI and RE-AN similarities. The RE-AI similarities are overall higher than the RE-AN similarities across all early visual areas in the
human brain.

three image types. We then calculated the RE-AN similarity—the
correlation between the RDM of the RE images and that of the
AN images, and the RE-AI similarity between the RE images
and the AI images.

We made three major observations. First, the RE-AI
similarities were significantly higher than null hypotheses in
almost all ROIs in the three subjects (red bars in Figure 3,
permutation test, all p-values < 0.005, see Methods for the
deviation of null hypotheses). Conversely, this was not true
for the RE-AN similarities (blue bar in Figure 3, permutation
test, only four p-values < 0.05 in 3 subjects x 5 ROI = 15
tests). Third and more importantly, we found significantly
higher RE-AI similarities than the RE-AN similarities in all
ROIs (Figure 3, bootstrap test, all p-values < 0.0001). These
results suggest that the neural representations of the AI images,
compared with the AN images, are much more similar to that
of the corresponding RE images. Notably, this representational
structure is also consistent with the perceptual similarity of the
three types of images in humans. In other words, the neural
representations of all images in the human brain largely echo
their perceptual similarity.

In addition, the results of the statistical power analysis showed
that the final average power (1-β error probability, α error
probability was set to 0.05, N = 3) across five ROIs for the
paired t-test on RE-AI similarities and RE-AN similarities of
the three subjects equaled 0.818 (V1:0.911, V2: 0.998, V3:0.744,

V4:0.673, LO:0.764). And the average minimum required sample
size was 2.921 (V1:2.623, V2:2.131, V3:3.209, V4:3.514, LO:3.129,
the power was set to 0.8). In other words, the number of subjects
can meet the minimum statistical power.

We also performed a searchlight analysis to examine the
cortical topology of the neural representations. The searchlight
analysis used the same calculation as above (see Methods). We
replicated the results (see Figure 4) and found a distributed
pattern of higher RE-AI similarities in the early human visual
cortex. In addition, we expanded our searchlight analysis for
broader regions (see Supplementary Figure 3) and obtained the
qualitatively same main results.

AlexNet
We repeated our analyses above in AlexNet and again made
three observations. First, the RE-AI similarities were higher than
null hypotheses across all layers (Figure 5, permutation test, all
p-values < 0.001), and the RE-AI similarities declined from low
to high layers (Mann–Kendall test, p = 0.009). Second, the RE-
AN similarities were initially low (p-values > 0.05 in layers 1–2)
but then dramatically increased (Mann–Kendall test, p < 0.001)
and became higher than the null hypotheses from layer 3 (all
p-values < 0.05 in layers 3–8). Third and most importantly, we
found that the RE-AN similarities were not higher than the RE-
AI similarities in all intermediate layers (i.e., layers 1–7, bootstrap
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FIGURE 5 | RE-AN and RE-AI similarities across layers in AlexNet. the RE-AN
similarity increases and the RE-AI similarities decline along the processing
hierarchy. The RE-AN similarities are not higher than the RE-AI similarities in all
representational layers (i.e., layer 1–7). Error bars indicate 95% bootstrapped
confidence intervals (see Methods).

test, all p-values < 0.05, layer 7, p = 0.375) except the output layer
(i.e., layer 8, p < 0.05).

These results are surprising because it suggests that neural
representations of the AI images, compared with the AN images,
are more similar to the representations of the RE images.
However, the output labels of the AN images are similar to those
of the corresponding RE images in AlexNet. In other words, there
exists substantial inconsistency between the representational
similarity and perceptual similarity in AlexNet. We emphasize
that, assuming that in order for two images look similar, there
must be at least some neural populations somewhere in a
visual system that represents them similarly. But, astonishingly,
we found no perception-compatible neural representations in
any representational layer. Also, the transformation from layer
7 to the output layer is critical and eventually renders the
RE-AN similarity higher than the RE-AI similarity in the
output layer. This is idiosyncratic because AlexNet does not
implement effective neural codes of objects in representational
layers beforehand but the last transformation reverses the relative
RDM similarity of the three types of images. This is drastically
different from the human brain that forms correct neural codes
in all early visual areas.

Forward Encoding Modeling Bridges
Responses in AlexNet and Human Visual
Cortex
The RSA above mainly focuses on the comparisons across image
types within one visual system. We next used forward encoding
modeling to directly bridge neural representations across the two
systems. Forward encoding models assume that the activity of a
voxel in the brain can be modeled as the linear combination of
the activity of multiple artificial neurons in CNNs. Following this
approach, we trained a total of 40 (5 ROIs x 8 layers) forward
encoding models for one subject using regular images. We then
tested how well these trained forward encoding models can
generalize to the corresponding adversarial images. The rationale

is that, if the brain and AlexNet process images in a similar
fashion, the forward encoding models trained on the RE images
should transfer to the adversarial images, and vice versa if not.

We made two major findings here. First, almost all trained
encoding models successfully generalized to the AI images
(Figure 6, warm color bars, permutation test, p-values < 0.05
for 113 out of the 120 models for three subjects) but not to
the AN images (Figure 6, cold color bars, permutation test,
p-values > 0.05 for 111 out of the 120 models). Second, the
forward encoding models exhibited much stronger predictive
power on the AI images than the AN images (bootstrap test,
all p-values < 0.05, except the encoding model based on layer
8 for LO in subject 2, p = 0.11). These results suggest that
the functional correspondence between AlexNet and the human
brain only holds when processing RE and AI images but not AN
images. This result is also consonant with the RSA above and
demonstrates that both systems treat RE and AI images similarly,
but AN images very differently. But again, note that AlexNet
exhibits the opposite behavioral pattern of human vision.

DISCUSSION AND CONCLUSION

Given that current CNNs still fall short in many tasks, we
use adversarial images to probe the functional differences
between a prototypical CNN—AlexNet, and the human visual
system. We make three major findings. First, the representations
of AI images, compared with AN images, are more similar
to the representations of corresponding RE images. These
representational patterns in the brain are consistent with
human percepts (i.e., perceptual similarity). Second, we discover
a representation-perception disassociation in all intermediate
layers in AlexNet. Third, we use forward encoding modeling
to link neural activity in both systems. Results show that
the processing of RE and AI images are quite similar but
both are significantly different from AN images. Overall,
these observations demonstrate the capacity and limit of the
similarities between current CNNs and human vision.

Abnormal Neural Representations of
Adversarial Images in CNNs
To what extent neural representations reflect physical or
perceived properties of stimuli is a key question in modern vision
science. In the human brain, researchers have found that early
visual processing mainly processes low-level physical properties
of stimuli, and late visual processing mainly supports high-level
categorical perception (Grill-Spector and Malach, 2004). We ask
a similar question here—to what extent neural representations in
CNNs or the human brain reflect their conscious perception.

One might argue that the representation-perception
disassociation in AlexNet is trivial, given that we already know
that AlexNet exhibits opposite behavioral patterns compared
to human vision. But we believe thorough quantifications
of their neural representations in both systems are still of
great value. First, neural representations do not necessarily
follow our conscious perception, and numerous neuroscience
studies have shown disassociated neural activity and perception
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FIGURE 6 | Accuracy of forward encoding models trained on RE images and then tested on adversarial images. After the models are fully trained on the RE images,
we input the adversarial images as inputs to the models can predict corresponding brain responses. The y-axis indicates the Pearson correlation between the brain
responses predicted by the models and the real brain responses. The generalizability of forward encoding models indicates the processing similarity between the RE
and AN (cool colors) or AI (warm colors) images. Error bars indicate 95% bootstrapped confidence intervals (see Methods).

in both the primate or human brain in many cases, such
as visual illusion, binocular rivalry, visual masking (Serre,
2019). The question of representation-perception association
lies at the center of the neuroscience of consciousness and
should also be explicitly addressed in AI research. Second,
whether representation and perception are consistent or
not highly depends on processing hierarchy, which again
needs to be carefully quantified across visual areas in the
human brain and layers in CNNs. Here, we found no similar
representations of AN and regular images in any intermediate
layer in AlexNet even though they “look” similar. This is
analogous to the scenario that we cannot decode any similar
representational patterns of two images throughout a subject’s
brain, although the subject behaviorally reports the two
images are similar.

Adversarial Images as a Tool to Probe
Functional Differences Between the CNN
and Human Vision
In computer vision, adversarial images impose problems on
the real-life applications of artificial systems (i.e., adversarial
attack) (Yuan et al., 2017). Several theories have been proposed
to explain the phenomenon of adversarial images (Akhtar
and Mian, 2018). For example, one possible explanation is
that CNNs are forced to behave linearly in high dimensional
spaces, rendering them vulnerable to adversarial attacks
(Goodfellow et al., 2014b). Besides, flatness (Fawzi et al.,
2016) and large local curvature of the decision boundaries
(Moosavi-Dezfooli et al., 2017), as well as low flexibility of
the networks (Fawzi et al., 2018) are all possible reasons.
(Szegedy et al., 2013) has suggested that current CNNs
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are essentially complex nonlinear classifiers, and this
discriminative modeling approach does not consider generative
distributions of data. We will further address this issue in
the next section.

In this study, we focused on one particular utility of
adversarial images—to test the dissimilarities between
CNNs and the human brain. Note that although the effects
of adversarial images indicate the deficiencies of current
CNNs, we do not object to the approach to use CNNs as
a reference to understand the mechanisms of the brain.
Our study here fits the broad interests in comparing CNNs
and the human brain in various aspects. We differ from
other studies just because we focus on their differences.
We do acknowledge that it is quite valuable to demonstrate
functional similarities between the two systems. But we
believe that revealing their differences, as an alternative
approach, might further foster our understandings of
how to improve the design of CNNs. This is similar
to the logic of using ideal observer analysis in vision
science. Although we know human visual behavior is not
optimal in many situations, the comparison to an ideal
observer is still meaningful as it can reveal some critical
mechanisms of human visual processing. Also, we want to
emphasize that mimicking the human brain is not the only
way or even may not be the best way to improve CNN
performance. Here, we only suggest a potential route given
that current CNNs still fall short in many visual tasks as
compared to humans.

Some recent efforts have been devoted to addressing CNN-
human differences. For example, Rajalingham et al. (2018)
found that CNNs explain human (or non-human primate)
rapid object recognition behavior at the level of category
but not individual images. CNNs better explain the ventral
stream than the dorsal stream (Wen et al., 2017). To further
examine their differences, people have created some unnatural
stimuli/tasks, and our work on adversarial images follows this
line of research. The rationale is that, if CNNs are similar to
humans, they should exhibit the same capability in both ordinary
and unnatural circumstances. A few studies adopted some other
manipulations (Flesch et al., 2018; Rajalingham et al., 2018),
such as manipulation of image noise (Geirhos et al., 2018) and
distortion (Dodge and Karam, 2017).

Possible Caveats of CNNs in the
Processing of Adversarial Images
Why CNNs and human vision behave differently on adversarial
images, especially on AN images? We want to highlight three
reasons and discuss the potential route to circumvent them.

First, current CNNs are trained to match the classification
labels generated by humans. This approach is a discriminative
modeling approach that characterizes the probability of
p(class | image). Note that natural images only occupy
a low-dimensional manifold in the entire image space.
Under this framework, there must exist a set of artificial
images in the image space that fulfills a classifier but does
not belong to any distribution of real images. Humans

cannot recognize AN images because humans do not
merely rely on discriminative classifiers but instead
perform Bayesian inference and take into consideration
both likelihood p(image| class) and prior experience
p(class). One approach to overcome this is to build
generative deep models to learn latent distributions
of images, such as variational autoencoders (Kingma
and Welling, 2013) and generative adversarial networks
(Goodfellow et al., 2014a).

Another advantage of deep generative models is to
explicitly model the uncertainty in sensory processing
and decision. It has been well-established in cognitive
neuroscience that the human brain computes not only
form a categorical perceptual decision, but also a full
posterior distribution over all possible hidden causes given
a visual input (Knill and Pouget, 2004; Wandell et al., 2007;
Pouget et al., 2013). This posterior distribution is also
propagated to downstream decision units and influences
other aspects of behavior.

Third, more recurrent and feedback connections are needed.
Numerous studies have shown the critical role of top-down
processing in a wide range of visual tasks, including recognition
(Bar, 2003; Ullman et al., 2016), tracking (Cavanagh and
Alvarez, 2005), as well as other cognitive domains, such
as memory (Zanto et al., 2011), language comprehension
(Zekveld et al., 2006) and decision making (Fenske et al., 2006;
Rahnev, 2017). In our results, the responses in the human
visual cortex likely reflect the combination of feedforward
and feedback effects whereas the activity in most CNNs
only reflects feedforward inputs from earlier layers. A recent
study has shown that recurrence is necessary to predict
neural dynamics in the human brain using CNN features
(Engel et al., 1994).

CONCLUDING REMARKS

In the present study, we compared neural representations
of adversarial images in AlexNet and the human visual
system. Using RSA and forward encoding modeling,
we found that the neural representations of RE and AI
images are similar in both systems but AN images were
idiosyncratically processed in AlexNet. These findings open
a new avenue to help design CNN architectures to achieve
brain-like computation.
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Image interpolation is an essential process for image processing and computer graphics
in wide applications to medical imaging. For image interpolation used in medical
diagnosis, the two-dimensional (2D) to three-dimensional (3D) transformation can
significantly reduce human error, leading to better decisions. This research proposes
the type-2 fuzzy neural networks method which is a hybrid of the fuzzy logic and neural
networks as well as recurrent type-2 fuzzy neural networks (RT2FNNs) for advancing a
novel 2D to 3D strategy. The ability of the proposed methods in the approximation of
the function for image interpolation is investigated. The results report that both proposed
methods are reliable for medical diagnosis. However, the RT2FNN model outperforms
the type-2 fuzzy neural networks model. The average squares error for the recurrent
network and the typical network reported 0.016 and 0.025, respectively. On the other
hand, the number of fuzzy rules for the recurrent network and the typical network
reported 16 and 22, respectively.

Keywords: recurrent neural network, type-2 fuzzy system, image interpolation, 2D to 3D, brain MRI, artificial
intelligence, machine learning

INTRODUCTION

In medical imaging, a cross-sectional sequence of high-resolution organs or tissues is obtained
using CT, MRI, or other methods (Leng et al., 2013). However, the distance between neighboring
slices is usually much larger than the pixel size, which is attributed to the ability of imaging devices
or time/storage/dose constraints (Neuberta et al., 2012). The direct use of such data for three-
dimensional (3D) image reconstruction often results in inaccurate images due to the heterogeneous
dimensions of the images, the structure of discontinuous errors, sharp points, and other errors.
To obtain volumetric (3D) data with isotropic dimensions and to reconstruct the 3D structure, it
is essential to conduct several interpolations between the sections (Pan et al., 2012). In the other
words, as the conventional imaging devices are two-dimensional (2D), to have a 3D accurate image
for better diagnosis and treatment, a set of 2D images are often taken and combined (Ebied et al.,
2018). However, one of the major problems is the presence of blind or undefined dots in one or
more of the images. To address this issue a 2D interpolation operation is used (Hung et al., 2019).
Recently, several methods for 2D interpolation have been proposed. Some of which are discussed
as follows. In (Leng et al., 2013), while expressing the problem of various categories of image
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interpolation methods, multiple resolution methods have been
used to internalize medical images. In this method, first, a
few images are taken with different resolutions and then by
internalizing them, a small image is extracted but with minimal
information deletion. Classical mathematical techniques use a
set of basic functions to estimate the values between cuts. The
nearest neighbor, B-Spline linear, and cube functions are standard
types of these techniques. Such introspection approaches are
commonly used in modern medical imaging (Neuberta et al.,
2012). To improve the accuracy, different families of spline
functions have been accepted and used as introspection cores
(Pan et al., 2012). The interpolation operation itself leads to
an increase in image size, but in order to store images, they
must first be reduced in size so that they do not take up
much space (Ebied et al., 2018). In research, interpolation
methods are divided into two categories: scene-oriented and
goal-oriented. Scene-based techniques are effective and easy to
implement but can produce significant artifacts that relate pixels
that occupy the same matrix location in continuous images to
different anatomical structures. But in contrast to target-based
introspection techniques, the information in the image slices
is used to facilitate more accurate introspection (Hung et al.,
2019). The second category is much more common and has
received more attention because, for example, in an image of
the brain, a mass can be considered as a target and a 3D view
of the target can be obtained more accurately. In (Triwijoyo
and Adil, 2021), the Bicubic interpolation algorithm is used to
resize images and then by analyzing the three parameters of mean
square error, mean square root of error, and maximum signal-to-
sound ratio and analysis and They analyze the superiority of their
work over the Bilinear method and nearest neighbor algorithms
have shown. They also concluded that Bilinear and Nearest-
neighbors increase the level of computational complexity (Murad
et al., 2021). Presents a method based on efficient interpolated
compressed sensing to increase the speed and accuracy of MRI
devices. In (Iglesias et al., 2021), the deep convolutional neural
network (NN) is used to internalize medical images. In the
mentioned paper, the effect of variable contrasts and different
orientations is considered and acceptable results are obtained.
The disadvantages of the mentioned paper are time-consuming
and an average square error of more than 0.01.

Today, computational intelligence has permeated most
sciences (Tavoosi et al., 2011c, 2017a; Pour Asad et al., 2016,
2017). Artificial NNs have been extensively employed in the
medical sciences, especially in predictive discussion (Maihami
et al., 2016; Kazemi et al., 2017; Ayat, 2018; Armand et al.,
2019; Tabatabaei et al., 2019). However, not much has been
done in the field of interpolation of medical images using
computational intelligence methods (neural network, fuzzy
logic, etc.). In the following, some of the work done in this
field will be reviewed. In (Chao and Kim, 2019), the fuzzy
neural network of the radial base function has been used to
internalize medical images. Accordingly, two suspended images
are normally used to be inserted as the input of the fuzzy NN.
The final output data is obtained using a learned NN. In this
article, 6 entries and 3 membership functions are considered
for each. Therefore, the number of fuzzy rules is 36 = 243.

Meanwhile, the number of neurons in the third and fourth
layers is 4,374 and 729, respectively, which complicates the
network, and also the execution time of the program will
be very long. Naturally, such a structure will not be able
to run online. A comparative plan for the development of
core-based introspection methods that simultaneously improves
image resolution and maintains accurate local edges is presented
in Chen and Wang (2010).

Medical imaging researchers have been inspired by the
advancement of deep learning methods and computational
resources to combine deep learning in medical image analysis.
Some recent studies have shown that accurate algorithms are
successfully used to segment medical imaging and diagnose and
classify diseases. A deep learning method is presented in Havaei
et al. (2017), in which the network uses a circular layer instead
of a fully connected layer to accelerate the segmentation process.
A cascading structure is used, which compares the output of the
first network with the successful network input. The network
provided in Pereira et al. (2016) uses small cores to classify pixels
in the image. Using small cores, without worrying about over-
training (Sharifian et al., 2011), reduces the number of network
parameters and helps to create deeper networks (Tavoosi et al.,
2011a,b; Tavoosi et al., 2012). Increasing and normalizing its
intensity has been done in the preprocessing phase to facilitate
the training process. Using fuzzy theory with a genetically based
learning algorithm, first the distance corresponding to the new
edge is estimated based on local slope information, and then
this estimated distance is used in different introspection methods
instead of the main Euclidean distance. In addition, a genetic
algorithm-based learning method is provided to automatically
obtain important parameters of the fuzzy system. In short, for a
particular pixel being processed, we replace the six input pixels.
In turn, we can obtain basic data to produce an integrated
interpolation image. Subsequently, several upgrade cycles were
applied to train NN. Finally, we can get the desired output
through the updated neural network (Tavoosi et al., 2016a,b;
Tavoosi and Azami, 2019). In (Deepika et al., 2021), a fuzzy
neural network has been used to compress medical images and
read them quickly. The deep neural network has been used to
classify and quickly read medical images (Puttagunta and Ravi,
2021). In the mentioned paper, a convolutional neural network
(2D) has been used, which has a high speed, but unfortunately,
it does not have good accuracy and has some errors. Type-2
fuzzy logic (T2FL) is rarely used in image interpolation, and this
method is still in its infancy. For example, recently in Mohammed
and Hussain (2021) a combination of Mamdani T2FL with a
convolutional neural network has been used to identify images
of animals. Although the mentioned article has some drawbacks
such as not examining different angles, not examining blurry
images, not examining the background of the same color as the
animal, etc.,. However, because it is at the beginning of the path, it
is generally appropriate and acceptable. In this paper, we propose
a new method based on a RT2FNN. This structure consists of five
layers (Tavoosi et al., 2017b). In the following, the problem will
be explained first. Then we talk about the RT2FNN. In continue,
the evaluation of the proposed method is presented by simulation
and at the end, the conclusion is expressed.
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STATEMENT OF THE PROBLEM

According to the sequence of images (called the cut) {Ii}Ni=0
with the same size (w + 1) x (h + 1); where w and h
are two positive integers; Figure 1). The problem of image
embedding to determine the sequence of preserved properties
between intersections Ji,m, i = 0, ...,N1,m = 1, 2, ...,Mi so
that Mi

m=1
{
Jm,i

}
. Continuous transfer from Ii to Ii+1. Here

Mi is the number of cuts inserted between Ii and Ii+1. For
simplicity, assume that Mi for i = 0.1,..., N–1. The inputs
are discrete matrices. To facilitate calculations, the matrix
I =

[
Iij
]
(w+1)×(h+1)

with size (w+ 1)× (h+ 1) can be used
as I(u). With u = [u.v]T ∈ � =[0, 1]2. Here, I

( i
w , i

h
)
= Iij,

i = 0, 1, ...,w, j = 0, 1, ..., h and other values of the function
are calculated by two-line (bipolar) interpolation. We define the
set of points U = {uij =

[ i
w , i

h
]T
: i = 0, 1, ...,w, j = 0, 1, ..., h}

as the set of pixel points. The embedding techniques are
applied through the scene or object approches. For scene-based
interpolation, the internal image quality values are extracted from
the image quality values given in the same situations. Simple
scene-based methods are easy to calculate but may results in
remarkable artifacts (waste or noise). As you know, the images
obtained from the detection are very linear, blurry, and obscure.

Since the information of shape and structure are not used, then
the recording-based technique can be considered as an object-
based technique. Note, for example, that the two images Io(u) and
I1(u), the recording-based theme always consists of two steps;
first, using a recording method to draw an image with another
image, second, to create a deformation, a traditional attachment
is employed.

The basic idea of image capture is to find an X(u) conversion
that adapts one image to another. The similarity of the two
images is considered to be the sum of the differences in
square intensity (SSD), cross-correlation, and cross-sectional
information. Converting X(u) can be hard or non-hard. Hard
conversion is easier, and there are fewer parameters such as
transmission, rotation, and scalability. However, the non-hard
transfer is more flexible. X(u) transmission is usually represented

FIGURE 1 | The sequence of cross-sections to create a three-dimensional
image.

by a fragmentary-linear function. To smooth out the transfer,
some settings minimize the changes in the minor derivatives of
the transfer. Therefore, the functional energy for the model is
written as follows.

E (x)=S (I0 (x (u)) , I1 (u))+R (x) (1)

The first semester measures the similarity between I0(X(u)) and
I1(u), and the second semester represents the order of X(u). In
the similarity statement, I0 is deformed by X, while I1 is constant.
Here, the relation (1) that transforms only one image is called
the one-way model.

Note that the roles of I0 and I1 are symmetrical in the one-way
model. Suppose that the x0(u) map for the I0 deformation is made
in such a way that Io(x0(u)) ≈ I1(u). Furthermore, another map
x1(u) is constructed to meet the conditions I1(x1(u)) ≈ I0(u).
This process is called back recording. It should be noted that the
hole The loop in I1 cannot appear when I0 is converted to I1.
When I1 is converted to I0, the holes become smaller. Maps x0 and
x1 are displayed by the B_spline function and they are displayed
using grids. The network map x(u)(u = [u, t]T ∈ [0, 1]2) from a
vertical curve family x( i

20 , v)20
i=0; and a set of horizontal curves

x(u, i
20 )

20
j=0 is formed. If the record is backward, and the reverse

trend is facing to be forward, the equation x0 = x−1
1 must be or

estimate x−1
0 = x1 . However, we can see that forward recording

is not the opposite of posterior recording, and therefore the role
of I0 and I1 in the single-directional recording, the model is
different. J(01)

mid (u) is in the middle of the middle image, which
is inserted based on the front recording, and the image J(01)

mid (u)
is in the middle of the middle image obtained by the rear
recording. The derived images through the backward/forward
recording are a general way to prevent saturation. However, the
artificial effect (parasite) may still exist, as the images created by
the two recording approaches may be quite different from each
other. In the suggested method, the reshaping of both I0 and I1
are considered.

Methods and Design of Algorithms
There are three steps you can take to begin the process
of preparation for mediation. The suggested recording and
introspection approaches are described in this section.

According to the two images I0 and I1 with size (w+ 1)×
(h+ 1), we use them as continuous functions I0(u) and I1(u) and

u = [u, t]T ∈ �[0, 1]2 (2)

Introducing bipolar introspection. In the registration model, we
are going to find two maps:

xk = [xk, yk]T : �→ �, k = 0, 1 (3)

In which case the following is established:
(i) xk are C2 maps :
(ii)xk (0, v) = 0, xk (1, v) = 1, yk (u, 0)

= 0 and yk (u, 1) = 1;
(iii) for a given ∈ (0 < ε < 1) ,

det [xku, xkv] ≥∈ on �.
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where in,

E (x0, x1) =
∫
�

[I0 (x0 (u))− I1x1 (u))]2

1.0+ c[I0 (x0 (u))2
+ I1(x1 (u))2

]
du

+λ1
∑1

k=0
∫
�

[
‖ xku (u) ‖2

+ ‖ xkv(u)) ‖2]du
+λ2

∑1
k=0

∫
� ‖xku(u)× xkv(u) ‖2du

(4)

Equation (4) must be minimized. Here xku(u) and xkv(u)
express the first partial derivatives of xk(u) relative to the
variables u and v. The condition (iii) is said to be a regular
condition that guarantees x_k as an injection map. Set (V (�) =
X : �→ �; justifying conditions 1 to 3) Then ∀x ∈ V(�) is an
internal map one by one.

In this paper, the maps xk(u) (k = 0,1) are expressed as
two-variable cube elliptical functions with vector B-spline
of the size defined in ′�. The first term of the energy
function (4) refers to the similarity relationship used to
minimize the error between the two deformed images.
Regarding the inconvenience of registration appraoh, some
constraints are needed to make xk(u)(k = 0, 1) as much
as possible. The second and third relations are applied
to smooth the transformations xk(u)(k = 0, 1)We set
R1

∑1
k=0

∫
� [‖ xku (u) ‖2

+ ‖ xkv(u)) ‖2
]du two relationships

Call the first time and go toR2(x0, x1)
∑1

k=0
∫
� (‖xku×xkv ‖2)du

Let’s say that the parameters λ1 and λ2 are two specific
coefficients of regulatory expressions. The following is an
interpretation and analysis of the model:

The Relationship of Similarity
The two maps x0(u) and x1(u) are designed to reshape I0 and I1
in such a way that the reshaped images of Ik (xk (u))

(
k = 0, 1

)
are similar. Compared to one-dimensional recording, the use
of two maps in the same period overcomes the saturation
problem I0 and I1. Also, images I0(xu(u)) and I1(x1 (u))
match using only one map, because the free parameters
has doubled.

To measure the similarity between the two images I0
and I1, a simple metric and a cheap computation, the SSD
is
∫
� (I0 (u)− I1(u))2du. However, the endurance of non-

compliance for the area of difference between the intensity
of the squares of the low-intensity area is greater than
that of the more intense area. In practical applications,
low-intensity features are as important as high-intensity
features. In practical applications, low-intensity features
are as important as high-intensity features. Therefore, a
modified criterion

∫
� g(u)(I0 (u)− I1u))2du (SSD) is applied

to our model. The term g (u) = 1/[1.0+ c(I0(u)2
+ I1(u)2

] is
denoted by the denominator of at least 1 and c as a constant
positive number.

The Relationship of the First Order
Settings
For the desired mapping x(u),

∫ 1
0 ‖ xu(u, v0) ‖du is the length of

the arc curve C (u) := x(u, v0). Also
∫ 1

0 ‖ xv(u0, v) ‖dv and the
length of the arc curve is C (v) := x(uv, v). Therefore, the setting
of the first-order expression

∫
� ‖ xu (u)2

‖ + ‖ xv(u) ‖
2 du

intends to map the conversion of x according to the variables u
and v. The phrase “regulator” denotes a convex function based
on x, so we can get at least the predicate if and only if x is
the same mapping.

Phrase Regional Settings
In parametric form x : � −→ �, the surface element is written
by ‖ xu × xv ‖ du. For �=[0, 1]2, the area xε V(�) is equal to:
|�| =

∫
� ‖ xu × xv ‖du=1. Using the inequality Kushi_Shuartz:

1=
∫
� ‖ xu × xv ‖du ≤

(∫
� ‖ xu × xv ‖2du

1
2

)
.||

1
2 , The

equation is established if and only if ‖ xu × xv ‖≡ 1.
Thus, the relational constraints of the

∫
� ‖ xu × xv ‖2du

constraints the constraints so that the area element remains
constant. Since ‖ xu × xv ‖2

= ‖ xu ‖2
‖ xv ‖2

−< xu, xv >2,
the relationship of the regional settings can be∫
�

(
‖ xu ‖2

‖ xv ‖2
− < xu, xv >2) du also wrote.

Select the Parameters λ1 and λ2 in the
First-Order Settings
The choice of parameters λ1 and λ2 depends on the
deformation between the two specific images. The first-
order setting term R1 monitors the flexibility of xk(k = 0, 1)
conversions. Therefore, we have to consider λ1 as large if
the image has high strength, and vice versa, if we consider
λ1 to be small, there are many differences between I0
and I1. Relationship settings ||xku × xkv||=

∣∣det[xku, xkv]
∣∣

for k = 0, 1 Limits area elements (triple conditions).
Therefore, with a small λ2, the setting process may
have to be stopped because the three conditions are
not satisfactory. However, these images cannot match
well with a large λ2, because the elastic deformation is
stopped by the R2 regulator. The registration approach
is not very sensitive to regulatory parameters. In our
experiments, the parameters λ1 and λ2 are experimentally

FIGURE 2 | Flowchart of the proposed method.
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selected based on the given images. Figure 2 shows the
general flowchart of the work. In this figure, the left part
is related to the learning phase of the recurrent type-
2 neural network and the right part is related to the
interpolation phase using it.

The procedure according to Figure 2 is that first the existing
images are entered into the system one by one, processed

and the RT2FNN is trained. The condition for completing
the training is to achieve the minimum desired error. Then,
in the second phase, the blind spots or pixels that are not
available are trained, generated and the interpolation operation
is completed by the type 2 recursive neural network, and
finally, if all the pixels are identified, a 3D image printing
command is issued.

FIGURE 3 | The proposed recurrent type-2 fuzzy neural network structure.

FIGURE 4 | Type-2 Fuzzy neural network operation for categorizing and processing brain images.
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RECURRENT TYPE-2 FUZZY NEURAL
NETWORK MODEL

The structure of the proposed RT2FNN is shown in Figure 3.
Details of how the proposed network works and how to train

it are described in Tavoosi et al. (2017b). Based on a specific

FIGURE 5 | The results of recurrent type-2 fuzzy neural network for
two-dimensional interpolation.

FIGURE 6 | The results of a typical type-2 fuzzy neural network for
two-dimensional interpolation.

pixel of the recorded image, six pixels (3–3) are selected from
the two conditional images. Each pixel is represented by 3 fuzzy
subsets. Then, based on the condition formulation layer, a general
fuzzy rule is written by the combination of 6 fuzzy subsets. We
determine the rule. By random assignment, (6× 729) 4,374 some
conditions define all the relevant rules. The number of neurons
in the formulation layer is 4374 and number of rules is 729.
Finally, the output pixel is calculated. Sequentially, we can obtain
all the output data needed to embed an image by processing the
total recorded image.

INTERPOLATION USING RECURRENT
TYPE-2 FUZZY NEURAL NETWORK

A wide range of medical imaging techniques are used to
predict and diagnose clinical problems, but in most cases, the
images obtained are similar, with deep learning where the
network structure allows this, gives us solutions. Once specialized
knowledge is available in this field, then the manipulated features

FIGURE 7 | 3D image of the rear view angle.
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operate, and in general it can be said that this creates difficult
and complex assumptions, and these assumptions may be for
some. Do not use medical imaging. So despite the hand-made
features, it’s hard to tell the difference between healthy and
unhealthy images in some cases. A classifier such as a support
device (SVM) does not provide a final and comprehensive
solution. Features derived from methods such as the criterion
for converting immutable properties (SIFT) are independent
of the task or task assigned. Classifiers such as vector support
have been applied to this model, and no mechanism has been
improved to lose local features, which in the process of extracting
features and classifying those that are separated from each other,
does not exist. On the other hand, a RT2FNN learns these
properties through basic data. These features are guided data
and are learned to end the learning mechanism. The ability of
the fuzzy neural network to regenerate is that the error signal
obtained in lost functions is extracted and reused to improve
properties (fuzzy-type recursive fuzzy-type fuzzy network filters
in layers primary are taught). Therefore, RT2FNNs become a
better model. Another advantage is that in the early layers
of a RT2FNN, the edges surround the spots and in the local
structure, while the nerve cells in the upper layers focus more
on the part. Different people have human organs, some of
which can completely consider the human organs in the final

FIGURE 8 | 3D image from the right viewing angle.

layers. Figure 4 shows the processing of brain images using
a neural network.

Figure 4 shows the medical images for the classification
of medical images by accepting a 32 × 32 N class fragment
from the original 2D image. The network has loops, maximum
volume, and fully connected layers. Each annular layer produces
a linear design of different sizes, and the volume of the layers
reduces the size of the linear designs to be transferred to the
lower layers. Fully connected layers produce the prediction of
the intended class at the output. Several parameters require a
network, which depends on the number of layers, the number
of nerve cells in each layer, and the relationship between
these nerve cells.

The training phase of the network ensures that the maximum
possible efficiency is learned in which the best performance is
possible to solve the desired problem.

SIMULATION

In this section, the data for brain reconstruction images are first
extracted from the Allen Brain Atlas Database. The size of the
images can be from 256× 256 pixels to more than 4,000× 4,000
pixels. Our algorithm can work with any size. The larger the size,

FIGURE 9 | 3D image from the left viewing angle.
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the longer the processing time, but the higher the accuracy. In
this article, we have used 100 images of 768 × 578 (442 kB)
to create 3D images. The neural network has 5 intermediate
layers, each layer having 100 neurons. Then, these 2D images
were used to teach the RT2FNN and normal one. Figure 3
shows the results of RT2FNNs for 2D interpolation. Figure 5
shows the results of a typical type-2 fuzzy neural network for
2D interpolation. Note that a normal (typical) network does not
have feedback, i.e., it does not use past moment data. In fact,
one of the purposes of this article is to show the importance and
impact of the presence or absence of feedback in the structure of
the neural network.

The specifications of the computer users are as follows:
Windows 10 Home 64; 11th Gen Intel R© CoreTM i7 processor;
Intel R© Iris R© Xe Graphics; 8 GB memory; 256 GB Intel R© SSD
Storage; 16 GB Intel R©. The simulation was performed in
MATLAB software version 2019a.

Carefully in Figures 5, 6, it can be seen that the recurrent
network has performed better, especially in detail. In the
following, the ability of the recurrent network and the
normal network to reconstruct the 3D image of the brain

FIGURE 10 | 3D image from the front viewing angle.

TABLE 1 | Specifications of networks used.

Number of
fuzzy rules

Average
squares error

Training time

Recurrent
network

16 0.016 570 s

Typical network 22 0.025 510 s

Method of
Neuberta et al.
(2012)

– 0.15 4 s

is examined. The 3D image of the brain is depicted from
four angles. Figure 7, which is shown from a rearview
angle, the above figure is the results from the recurrent
network and the bottom figure is the results from the
normal network. Also shown in Figures 8–10 are 3D
images of the brain from the right, left, and front viewing
angles, respectively. In all images, the above figure is for
the recurrent network and the bottom figure is for the
typical network.

DISCUSSION

The main purpose of this paper is to show the importance of
feedback and the use of past moment data in the structure
of type-2 fuzzy neural networks. Of course, for the first
time, these networks have been used for interpolation in
medical images, and this is another innovation of this paper.
Naturally, the more accurate the 3D image, the easier it is
for doctors and relevant specialists to work with the least
error. Looking at Figures 5–10, it can be seen that the
accuracy of recurrent networks is objectively higher than
normal networks, and the reason for this is that recurrent
networks use the information of neighboring points in the
images. In Figures 8–10, as can be seen in blind spots or
deep spots (indent), the difference between a recurrent and a
normal network becomes more pronounced. This is especially
true in Figure 10, as this image has many dents and blind
spots. The reason for the superiority of the RT2FNN over
conventional is the simultaneous use of output and input
data to the network, while in the conventional network
only input information is used. In other words, the return
network has a dynamic structure, but the normal network
operates statically. The network specifications used are shown
in Table 1.

As can be seen in Table 1, the number of fuzzy rules of
the recurrent network is less than the typical network. The
average error squares in the return network are far less than
the typical type. But the training time of recurrent networks
is longer than the training time of the typical network, which
is due to the existence of feedback and its calculations. For
further comparison, we also used methods without the use of
computational intelligence (fuzzy logic, neural network, etc.). For
example, you can see the results of the method presented in
Neuberta et al. (2012) in the table. The average squares error
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is much higher than the intelligence-based methods, but the
processing time is surprisingly short. In general, time can be
sacrificed for accuracy, because a high-quality 3D image is more
needed by the medical community than the time it takes to create
and produce this image.

CONCLUSION

In this study, the problem of interpolation in medical
images using RT2FNNs was addressed. Image interpolation
is used for two main purposes. Firstly, to increase the
quality of images adding the number of pixels is studied.
Secondly, 3D images are produced. The recurrent type-2
fuzzy neural networks model outperforms the type-2 fuzzy
neural networks model. The average squares error for the
recurrent network and the typical network reported 0.016
and 0.025, respectively. On the other hand, the number
of fuzzy rules for the recurrent network and the typical
network reported 16 and 22, respectively. The recurrent type-
2 fuzzy neural network has internal feedback, and as it uses
output information it can therefore provide more accurate
interpolation with less error. It is worth mentioning that the
training time of the images for the recurrent type-2 fuzzy
neural networks model is longer. However, in the medical
sciences, model accuracy is more important. It is expected
that the methodology represented in this research would be
extended further in 3D printers, tumor surgeries, and so on.
For future studies using type-3 fuzzy logic and color images
will be considered.
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Both the Pearson correlation and partial correlation methods have been widely used

in the resting-state functional MRI (rs-fMRI) studies. However, they can only measure

linear relationship, although partial correlation excludes some indirect effects. Recent

distance correlation can discover both the linear and non-linear dependencies. Our goal

was to use themultivariate pattern analysis to compare the ability of such three correlation

methods to distinguish between the patients with obsessive-compulsive disorder (OCD)

and healthy control subjects (HCSs), so as to find optimal correlation method. The main

process includes four steps. First, the regions of interest are defined by automated

anatomical labeling (AAL). Second, functional connectivity (FC) matrices are constructed

by the three correlation methods. Third, the best discriminative features are selected by

support vector machine recursive feature elimination (SVM-RFE) with a stratified N-fold

cross-validation strategy. Finally, these discriminative features are used to train a classifier.

We had a total of 128 subjects out of which 61 subjects had OCD and 67 subjects

were normal. All the three correlation methods with SVM have achieved good results,

among which distance correlation is the best [accuracy= 93.01%, specificity= 89.71%,

sensitivity = 95.08%, and area under the receiver-operating characteristic curve (AUC)

= 0.94], followed by Pearson correlation and partial correlation is the last. The most

discriminative regions of the brain for distance correlation are right dorsolateral superior

frontal gyrus, orbital part of left superior frontal gyrus, orbital part of right middle frontal

gyrus, right anterior cingulate and paracingulate gyri, left the supplementary motor area,

and right precuneus, which are the promising biomarkers of OCD.

Keywords: obsessive-compulsive disorder, functional connectivity, distance correlation, classification, rs-fMRI

INTRODUCTION

Obsessive-compulsive disorder (OCD) is a mental disorder that causes repeated and unwanted
thoughts and/or obsessive feelings and compulsive actions and it can limit the ability of the patient
to take part in relationships, the workplace, and in society (Piacentini et al., 2003; Abramowitz
et al., 2009). Its prevalence is about 1–3% lifetime (Ruscio et al., 2010; Rapinesi et al., 2019). In
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clinical practice, no diagnostic biomarkers are available for OCD
and its diagnosis is always based on some symptom-oriented
criteria according to the International Classification of Diseases
(ICD; Stein et al., 2016) and the Diagnostic and Statistical
Manual of Mental Disorders (DSM; Battle, 2013). However, these
criteria may have several problems over the conditions of an
individual. For example, the patients with OCD often co-occur
with depression and anxiety or another psychiatric comorbidity,
which can contribute to misdiagnosis.

With the development of medical imaging, researchers can
explore the pathogenesis of OCD. Currently, the pathogenesis
of OCD has been confirmed to be caused by the cortico-striato-
thalamo-cortical (CSTC) circuit dysfunction, but emerging
evidence indicates that broader brain regions, such as the left
supplementary motor area (SMA) and right precuneus, are
involved in this disorder (Saxena et al., 1998; Rehn et al., 2018;
Thorsen et al., 2018; Hazari et al., 2019). These changes in the
brain are due to the diversity of tasks in the investigation of
OCD. Therefore, task-based functional MRI (task-fMRI) has
been studied for detecting the functional changes in the brain
in patients with OCD and their relatives (Menzies et al., 2008a).
However, task-fMRI studies can only focus on some specific
regions of the brain and may have missed important information
existing in regions of the brain not related to the task. Without
specific design in task-fMRI, resting-state functional MRI (rs-
fMRI) provides an effective and noninvasive approach to assess
the neural activation and functional connectivity (FC) of the
human brain without any hypothesis. It can also provide a
reliable measure of baseline brain activity and may complement
and extend findings from task-based studies (Biswal et al., 1995;
Hou et al., 2014; de Vries et al., 2019; Yang et al., 2019).

Recently, the multivariate pattern analysis based on a machine
learning (ML) algorithm has been introduced for neuroimaging
analysis of a variety of diseases such as autism, depression, and
schizophrenia (Sajda, 2006; Anderson et al., 2011; Zeng et al.,
2012; Liu et al., 2014, 2015a, 2017; Mueller et al., 2015; Rathore
et al., 2017; Lamothe et al., 2018; Zhou et al., 2018; Bu et al.,
2019; Rapinesi et al., 2019). It has the advantage of being able
to inference individual level over the univariate analysis used
at the group level (Orrù et al., 2012; Goodman et al., 2014). In
comparison to other traditional methods of analysis, its ability to
use inter-regional correlations, such as the Pearson correlation,
to detect subtle and spatially distributed effects (Menzies et al.,
2008b; Bruin et al., 2020; Zhan et al., 2021). Therefore, it seems
particularly well-suited for the neuroimaging analyses in OCD, as
abnormalities are typically distributed across the brain (Klöppel
et al., 2008; Arbabshirani et al., 2017).

In this study, we employed the multivariate pattern analysis
via the three correlation methods to distinguish the patients
with OCD from a healthy control subject (HCS). A general
flowchart of rs-fMRI based on the FC matrix for diagnosis is
shown in Figure 1. In this framework, there are four main steps:
(1) defining the region of interests (ROIs) from the rs-fMRI
images or by using the anatomically and functionally defined
reference atlases of the brain, (2) extracting rs-fMRI time series
based on the ROIs and calculating the FC matrices, (3) using

feature selection method to get the optimal features from the FC
matrices, and (4) training a classifier.

Currently, this study mainly focused on the second and
third parts. In the second part, with rs-fMRI time series data,
the FC matrix can be extracted for characterizing the network
structure of the brain. One way is to calculate the Pearson
correlation between rs-fMRI time series over the ROIs predefined
as automated anatomical labeling (AAL) with 116 structural
regions (Tzourio-Mazoyer et al., 2002). For example (Shenas
et al., 2013; Gruner et al., 2014; Sen et al., 2016; Takagi et al., 2017),
the authors use Pearson correlation as the network features. In
addition, the partial correlation was also used for measuring the
FC (Varoquaux et al., 2010; Smith et al., 2011; Dadi et al., 2019).
However, the Pearson correlation and partial correlation only
discover the linear dependency, although the partial correlation
excludes the indirect influence of the correlation structure. To
overcome this limitation, the distance correlation was proposed
to measure both linear and non-linear associations between the
two ROIs (Szekely et al., 2007; Yoo et al., 2019).

In the third part, because of high-dimensional features from
the FC matrix, we need a feature selection algorithm to reduce
the dimensionality. In literature, the recursive feature elimination
(RFE) algorithm is a very excellent feature selection technique
that has been widely used in many fields (Guyon et al., 2002;
Ding et al., 2015; Liu et al., 2015b; Lin et al., 2017; Wang et al.,
2019), but it needs a specific classifier. Currently, studies on the
diagnosis of OCDdisease are usually limited to a small data set, so
the researchers tend to use traditional ML methods to complete
the task. Among them, support vector machine (SVM) provides
excellent performance (Shenas et al., 2013; Gruner et al., 2014;
Sen et al., 2016; Takagi et al., 2017; Wang et al., 2019). Therefore,
we applied the SVM-RFE algorithm to filter the features.

In the fourth part, these selected features were entered
into the seven classifiers. According to the final classification
performance, we can explore the optimal FC method and
classifier and investigate the regions of the brain, which may
be potential biomarkers. Finally, our aims were 2-fold: one
is to investigate which correlation method achieves the best
discrimination betweenOCD andHCS and the other is to explore
some potential biomarkers according to the above results.

MATERIALS AND METHODS

Participants
This study was approved by the Ethics Committee of Shenzhen
Kangning Hospital and the written informed consent was
obtained from each participant. A total of 128 subjects were
enrolled from Shenzhen Kangning Hospital and Guangzhou
Brain Hospital, including 67 HCS and 61 patients with OCD,
aged from 13 to 63 years old. The demographic information
and clinical characteristics information are shown in Table 1.
The independent sample t-test was carried out on the age (p
= 0.45). For the Yale-Brown Obsessive Compulsive Scale (Y-
BOCS) total score, the Y-BOCS obsessions score, and the Y-BCOS
compulsions score (p < 0.001), we used the independent sample
Kruskal–Wallis test.
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FIGURE 1 | Classification of flow chart with four main steps: (1) defining the ROIs from the rs-fMRI images or by using anatomical templates that have been defined,

(2) extracting rs-fMRI time series based on the ROIs and calculating the FC matrices, (3) using feature selection method to define the optimal features from the FC

matrices, and (4) training a classifier. ROIs, region of interests; rs-fMRI, resting-state functional MRI; FC, functional connectivity.

TABLE 1 | Demographic and clinical characteristics of the participants.

Variable OCD HCS p-value

Demographic measure

Number 61 67 -

Sex M43, F18 M 48, F 19 -

Age average 27.7 ± 8.4 28.9 ± 8.5 p = 0.45

Clinical measures

YBOCS total score 26.8 ± 6.1 2.3 ± 3.4 p < 0.001

YBOCS obsessions score 14.6 ± 3.8 1.2 ± 1.7 p < 0.001

YBCOS compulsions score 12.2 ± 5.0 1.2 ± 2.1 p < 0.001

OCD, obsessive-compulsive disorder; HCS, healthy control subject; Y-BOCS, Yale-Brown Obsessive Compulsive Scale.

Imaging Data Acquisition
A 3.0-Tesla MR system (Philips Medical Systems, Best, the
Netherlands) equipped with an eight-channel phased-array head
coil was used for the data acquisition. Functional data were
collected by using gradient echo-planar imaging (EPI) sequences
[time repetition (TR) = 2,000ms, echo time (TE) = 60ms, flip
angle = 90◦, 33 slices, field of view (FOV) = 240 mm2 × 240
mm2, matrix = 64 × 64, slice thickness = 4mm, and voxel size
= 3.75 mm3 × 3.75 mm3 × 4 mm3]. For each participant, the
fMRI scanning lasted for 480 s and 240 volumes were obtained.
For spatial normalization and localization, a high-resolution
T1-weighted anatomical image was also acquired by using a
magnetization prepared gradient echo sequence (TR = 8ms, TE
= 3.7ms, flip angle = 7◦, FOV = 240 mm2 × 240 mm2, matrix
= 256× 256, slice thickness= 1mm, and voxel size= 0.94mm3

× 0.94 mm3 × 1 mm3). During the scanning, the participants
were instructed to relax with their eyes closed and stay awake
without moving.

Data Preprocessing
The data were preprocessed by using the Statistical Parametric
Mapping toolbox (SPM12, https://www.fil.ion.ucl.ac.uk/spm)
and the Data Processing Assistant for Resting-State fMRI
(DPARSF version 4.4, http://rfmri.org/dpabi; Shenas et al.,
2013, 2014). Image preprocessing consisted of: (1) removing
first the 10-time points; (2) slicing timing correction; (3)
realigning the time series of the images for each subject;
(4) T1-weighted individual structural images by coregistered
to the mean functional image; (5) the transformed structural
images by segmented into gray matter, white matter, and

cerebrospinal fluid; (6) based on these segmented images, using
diffeomorphic anatomical registration through exponentiated
lie algebra (DARTEL) (Ashburner, 2007) tool to estimate
the normalization parameters from individual native space
to the Montreal Neurological Institute (MNI) space (Xue
et al., 2020); (7) the functional imaging data normalized to
the MNI space by using these normalization parameters and
resampling at 3 mm3 × 3 mm3 × 3 mm3; (8) nuisance
covariate regression (head motion parameters, white matter
signal, and cerebrospinal fluid signal); (9) spatial smoothing with
a 4-mm full-width half-maximum isotropic Gaussian kernel;
(10) band-pass filtering (0.01–0.08Hz); and (11) micro-head-
motion correction according to framewise displacement (FD)
by replacing the rs-fMRI volume with FD > 0.5mm (nearest
neighbor interpolation).

Definition of ROIs and Calculation of the
FC Matrix
In this study, we employed an AAL atlas to define the ROIs. For
the calculation of the FC matrix, the Pearson correlation, partial
correlation, and distance correlation methods will be used in this
study. For each subject, the mean of time series over all voxels
in each region was extracted. The FC matrices were calculated
between these average time courses with the three correlation
methods implemented with Nilearn software (http://nilearn.
github.io/). Considering that the matrix was symmetric, we only
needed to take the lower triangle of the matrix. Finally, we
flattened the lower trig matrix to get a feature vector with a length
of (116 × 116 – 116)/2 = 6,670. In our following experiment,
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each feature was normalized by Fisher’s z-transformation (Fisher,
1915; Vergun et al., 2013; Kassraian-Fard et al., 2016).

Feature Selection and Classification
In this study, to reduce the dimension of the data and find the
most discriminative subset of feature, we applied SVM-RFE with
a stratified N-fold cross-validation strategy for feature selection
(SVM-RFE-NCV). It is a sequential backward selection algorithm
based on the maximum margin principle of SVM under the N-
fold cross-validation. The process contains five steps: (1) training
the model with the samples, (2) sorting the scores of each feature,
(3) removing the features with the minimum scores, (4) training
the model again with the remaining features and repeating the
process, and (5) selecting the required features (Ding et al., 2015;
Wang et al., 2019). With the selected features, seven classifiers are
compared: SVMwith linear kernel, multilayer perceptron (MLP),
extreme gradient boosting (XGBoost), gradient boosting decision
tree (GBDT), graph convolution network (GCN), and sparse
L1 and non-sparse L2 regularization for the logistic regression
classifiers (LR-L1 and LR-L2; Friedman et al., 2001; Chen and
Guestrin, 2016; Kipf, 2017). The SVM-RFE-NCV process was
embedded in a classification framework with 10-fold cross-
validation (10-CV).

Performance Evaluation
The performance of the proposed classifiers is assessed by
using the four performance measures: specificity, sensitivity,
accuracy, and area under the receiver-operating characteristic
curve (AUC). To test whether these classification scores are
significant, we performed a permutation test: we first randomly
reassigned the subject labels and then performed the 10-CV
classification. This procedure was repeated by 1,000 times. The
p-value was then calculated by dividing the number of times that
showed a higher value than the derived from the non-permuted
model by the total number of permutations (Plitt et al., 2015).

RESULTS

In this study, some qualitative and quantitative comparison
results are provided. At first, we qualitatively compared the three
methods via the scatter plot and correlation visualization. Then,
the classification results of the OCD and HCS are evaluated
according to the pipelines composed of the three correlation
measures, the SVM-RFE-NCV, and the seven classifiers, to
select correlation measure and classifier to obtain the best
discrimination between the OCD and HCS. In addition, we
will use the SVM-RFE-NCV to find the regions of the brain
corresponding to the most discriminative features. The SVM-
RFE-NCV and classification algorithms are implemented by
using Scikit-learn (Pedregosa et al., 2012).

Scatter Plot and Correlation Visualization
To explore the differences among the Pearson, partial, and
distance correlations, we calculated the average functional
matrices of the patients and HCS, respectively. Since the distance
correlation coefficient ranges from 0 to 1 while the other
two range from−1 to 1, we used the unsigned versions of

the Pearson and partial correlation coefficients (for example,
taking the absolute value of them). The results are shown in
Figure 2 and we can see that both the distance and Pearson
correlations give similar structures of the functional matrix, while
the structure of partial correlation is greatly different from them.
To further reflect the similarities and differences among the
Pearson, distance and partial correlations, we draw their scatter
plots as shown in Figure 3. The values of three coefficients mainly
lie in the different intervals: (-0.1, 0.9) for the Pearson correlation
coefficients, (-0.1, 0.1) for the partial correlation coefficients, and
(0.1, 0.8) for the distance correlation coefficients.

Choice of FC Method
To find the optimal correlation method, we proceeded in two
steps. First, for each correlation method, we used the SVM-RFE-
NCV to find the best feature subset that gave the prediction.
Second, we compared the performance of each correlation
method on the best feature subset.

Best Feature Subset

For the SVM-RFE-NCV, the number of optimal features (NOFs)
varies with N. Table 2 summarizes the changes of accuracy
and NOF under the different N conditions. For the Pearson
correlation, partial correlation, and distance correlation, the
performance is the highest when N is equal to 5, 8, and 5,
respectively. Therefore, the best feature subset of the Pearson
correlation and distance correlation was obtained by the SVM-
RFE-5CV algorithm. The best feature subset of partial correlation
was achieved by the SVM-RFE-8CV algorithm.

Best Correlation Method

Three correlation methods produced a good performance in the
classification. Their ROC curves are shown in Figure 4, from
which we can see that they exhibit good performance, with
AUC values range from 0.87 to 0.94 (p < 0.01). The other
classification results of the three correlation methods for the
patients with OCD and HCS are summarized in Table 3. The
distance correlation and Pearson correlation are slightly lower
than partial correlation in sensitivity, but distance correlation
was the best in accuracy, specificity, and AUC followed by
the Pearson correlation and partial correlation. Therefore, in
the classification of the OCD and HCS, distance correlation
comprehensive performance is the best. Its accuracy, sensitivity,
and specificity are 93.01, 89.71, and 95.08% (p < 0.01),
respectively. The second is Pearson correlation (accuracy =

89.74%, sensitivity= 89.71%, and specificity= 86.62%, p< 0.01).
For partial correlation, accuracy is 84.87%, sensitivity is 96.21%,
and specificity is 75.90% (p < 0.01).

Results of Different Classifiers
Through the above analysis, the best discriminative features can
be obtained by using the distance correlation and the SVM-RFE-
5CV. As stated earlier, the seven classifiers including SVM with
linear kernel, MLP, XGBoost, GBDT, GCN, LR-L1, and LR-L2
classifiers were applied to identify these features separately. For
SVM, the penalty parameter was set to 1. For LR-L1 and LR-L2,
the penalty parameter was set to 0.01. For XGBoost, the learning
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FIGURE 2 | The FC matrices for HCS and the patients with OCD. The first row is for HCS and the second row is for the patients with OCD. (A) Pearson correlation,

(B) partial correlation, and (C) distance correlation. FC, functional connectivity; OCD, obsessive-compulsive disorder; HCS, healthy control subject.

FIGURE 3 | Scatter plots of association among the Pearson, partial, and distance correlations for average functional connectivity across the participants. The first row

is for HCS and the second row is for the patients with OCD. (A) Distance correlation vs. Pearson correlation, (B) distance correlation vs. partial correlation, and (C)

pearson correlation vs. partial correlation. OCD, obsessive-compulsive disorder; HCS, healthy control subject.
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TABLE 2 | Results of classification by the different number of the features.

Method N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

Pearson Correlation

Accuracy (%) 85.77 89.68 89.74 88.91 87.31 87.37 85.76 88.89

NOF 108 83 84 233 111 119 101 106

Partial Correlation

Accuracy (%) 80.13 77.82 80.06 79.29 80.71 84.87 81.60 80.83

NOF 896 829 1,489 1,150 971 2,488 1,467 1,531

Distance Correlation

Accuracy (%) 85.06 89.03 93.01 89.87 86.60 88.91 89.80 87.43

NOF 60 91 81 96 107 245 112 412

NOF, number of features.

FIGURE 4 | ROC curves assessing Pearson correlation, partial correlation, and distance correlation performance by using SVM. (A) Pearson correlation, (B) partial

correlation, and (C) distance correlation. ROC, receiver-operating characteristic; SVM, support vector machine.

TABLE 3 | The classification results of the three correlation methods.

Method Accuracy (%) Sensitivity (%) Specificity (%) AUC NOF

Pearson correlation 89.74 ± 7.28 89.71 ± 9.22 86.62 ±10.50 0.93 ± 0.09 84 ±46

Partial correlation 84.87 ± 7.09 96.21 ± 5.83 75.90 ± 17.33 0.87 ± 0.13 2488± 1393

Distance correlation 93.01 ± 5.40 89.71 ± 9.22 95.08 ± 7.70 0. 94 ± 0.06 81 ± 31

AUC, area under the receiver-operating characteristic curve; NOF, number of features.

rate was set to 0.01, the number of gradients boosted trees
(n_estimators) to 200, maximum depth of the tree (max_depth)
to 5, subsample ratio of the training instance (subsample) to
0.85, the minimum sum of instance weight needed in a child
to 2, subsample ratio of the columns when constructing each
tree to 0.7, and the other parameters to the default values.
For GBDT, the learning rate was set to 0.01, n_estimators to
600, max_depth to 3, subsample ratio to 0.7, the minimum
number of samples required to be at a leaf node to 10, the
minimum weighted fraction of the total of weights required
to be a leaf node to 0.1, and other parameters to the default
values. For the GCN and MLP, dropout was set to 0.1, weight
decay to 1× 10−3, learning rates to 0.02 and 0.05, number of
epochs to 1,000, number of layers to 2, and the numbers of
neurons per layer to 128 and 256. The results of classification

by 10-CV are given in Table 4. The optimal classification result
is achieved via SVM for accuracy, sensitivity, specificity, and
AUC with values as high as 93.01, 89.71, 95.08%, 0.94 (p <

0.01), respectively.

Potential Biomarkers From Connectivity
Patterns
To find the regions of the brain that strongly contributed
to the discrimination between the patients with OCD and
HCS, we selected the top 10 most discriminative features
according to the SVM-RFE-NCV method. Specific regions of
the brain were then located based on these features. The
spatial maps of the regions of the brain (Xia et al., 2013)
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TABLE 4 | Results of classification for the data of OCD.

Classifier Accuracy (%) Sensitivity (%) Specificity (%) AUC

SVM 93.01 ± 5.40 89.71 ± 9.22 95.08 ± 7.70 0.94 ± 0.06

LR-L1 89.81 ± 6.11 88.46 ± 10.23 91.47 ± 9.25 0.92 ± 0.07

LR-L2 90.58 ± 5.89 89.71 ± 9.22 91.29 ± 7.48 0.94 ± 0.06

GCN 91.41 ± 5.37 89.71 ± 9.22 92.72 ± 7.64 0.95 ± 0.06

MLP 90.64 ± 6.83 89.71 ± 9.22 91.29 ± 7.48 0.94 ± 0.06

XGBoost 85.77 ± 8.85 87.78 ± 11.19 84.84 ± 17.02 0.90 ± 0.12

GBDT 88.97 ± 7.23 86.71 ± 12.72 93.12 ± 9.49 0.94 ± 0.05

OCD, obsessive-compulsive disorder; SVM, support vector machine; LR-L1, sparse L1 for logistic regression; LR-L2, non-sparse L2 regularization for logistic regression; GCN,

graph convolution network; MLP, multilayer perceptron; XGBoost, extreme gradient boosting; GBDT, gradient boosting decision tree; AUC, area under the receiver-operating

characteristic curve.

FIGURE 5 | Brain connectivity patterns for the three correlation methods. (A) Pearson correlation, (B) partial correlation, and (C) distance correlation.

are shown in Figure 5 and the detailed information is listed
in Table 5.

For Pearson correlation, the most discriminative regions
included the right precentral gyrus, orbital part of left superior
frontal, orbital part of right middle frontal gyrus, right olfactory
cortex, the medial part of right superior frontal gyrus, left
calcarine fissure and surrounding cortex, left superior occipital
gyrus, left putamen, left globus pallidus, right middle temporal
gyrus, right middle temporal pole, right crus II of cerebellar
hemisphere, left lobule III of cerebellar hemisphere, right
lobule III of cerebellar hemisphere, left lobule X of cerebellar
hemisphere, lobule III of the vermis, lobule VIII of the vermis,
lobule IX of the vermis, and lobule X of the vermis.

For partial correlation, the most discriminative regions for
OCD were composed of the left globus pallidus, right thalamus,
left middle temporal gyrus, right middle temporal pole, left crus
II of cerebellar hemisphere, right crus II of cerebellar hemisphere,
right lobule III of cerebellar hemisphere, right lobule IV of
cerebellar hemisphere, right lobule V of cerebellar hemisphere,
left lobule VIII of cerebellar hemisphere, right lobule VIII of
cerebellar hemisphere, left lobule VIII of cerebellar hemisphere,

right lobule IX of cerebellar hemisphere, left lobule X of cerebellar
hemisphere, and right lobule X of the cerebellar hemisphere.

For distance correlation, the discriminative regions for OCD
primarily consisted of the right percental gyrus, right dorsolateral
superior frontal gyrus, orbital part of left superior frontal gyrus,
orbital part of right middle frontal gyrus, left SMA, right olfactory
cortex, the medial part of right superior frontal gyrus, right
anterior cingulate and paracingulate gyri, left calcarine fissure
and surrounding cortex, left superior occipital gyrus, left superior
parietal gyrus, right precuneus, right superior temporal pole,
right inferior temporal gyrus, left crus II of cerebellar hemisphere,
left lobule III of cerebellar hemisphere, and right lobule VIII of
the cerebellar hemisphere.

DISCUSSION

The goal of this study is to investigate the potential diagnostic
value of the different correlation methods in patients with OCD.
We systematically compare the FC matrix-based prediction
methods. Our results show that the distance correlation method
is optimally followed by the Pearson correlation and partial
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TABLE 5 | The most discriminative brain regions.

Number Pearson correlation Partial correlation Distance correlation

1 Right precentral gyrus Left globus pallidus Right percental gyrus

2 Orbital part of left superior frontal Right thalamus Right dorsolateral superior frontal gyrus

3 Orbital part of right middle frontal gyrus Left middle temporal gyrus Orbital part of left superior frontal gyrus

4 Right olfactory cortex Right middle temporal pole Orbital part of right middle frontal gyrus

5 Medial part of right superior frontal gyrus Left crus II of cerebellar hemisphere Left supplementary motor area

6 Left calcarine fissure and surrounding cortex Right crus II of cerebellar hemisphere Right olfactory cortex

7 Left superior occipitalgyrus Right Lobule III of cerebellar hemisphere Medial part of right superior frontal gyrus

8 Left putamen Right lobule IV, V of cerebellar hemisphere Right anterior cingulate and paracingulate gyri

9 Left globus pallidus Left lobule VIII of cerebellar hemisphere Left calcarine fissure and surrounding cortex

10 Right middle temporal gyrus Right lobule VIII of cerebellar hemisphere Left superior occipitalgyrus

11 Right middle temporal pole Right lobule VIII of cerebellar hemisphere Left superior parietal gyrus

12 Right crus II of cerebellar hemisphere Right lobule IX of cerebellar hemisphere Right precuneus

13 Left lobule III of cerebellar hemisphere Left lobule X of cerebellar hemisphere Right superior temporal pole

14 Right lobule III of cerebellar hemisphere Right lobule X of cerebellar hemisphere Right inferior temporal gyrus

15 Left lobule X of cerebellar hemisphere Lobule I, II of vermis Left crus II of cerebellar hemisphere

16 Lobule III of vermis Lobule III of vermis Left lobule III of cerebellar hemisphere

17 Lobule VIII of vermis Lobule IV, V of vermis Right lobule VIII of cerebellar hemisphere

18 Lobule IX of vermis Lobule X of vermis

19 Lobule X of vermis

correlation methods. Besides, a suitable classifier can effectively
improve classification performance and it is vital to choose a
suitable one. For this reason, we perform many experiments on
the multiple classifiers (e.g., LR-L1, SVM). By comparing the
different classification results, we found that SVM is the most
suitable one in terms of the quantitative results.

We explored the important nodes and connectivity patterns
in the network of the brain constructed by the three correlation
methods. In these networks, many abnormal areas of the brain
and connectivity mentioned in the previous studies about OCD
were found including areas in and out of the classical CSTC
circuit such as the precentral gyrus and SMA (Ku et al., 2020).
These results provide preliminary support for the use of the
three correlation methods, especially distance correlation, as
promising classification markers for patients with OCD.

Of the three FC methods, distance correlation showed the
greatest diagnostic accuracy for discriminating the patients with
OCD from HCS. It has been shown that distance correlation
directly reflects linear and non-linear correlation in the ROIs.
Therefore, the location of the regions of the brain based on
distance correlation also showed a considerable research value.
For example, the SMA is involved in the planning of the
movement. It has been found to involve the compulsion and
repetitive behavior of OCD (Gillan et al., 2016). This effect
could make the distance correlation method more sensitive
to detect dysfunctional neural activity than the other two FC
methods. In addition, we can find that the FC matrix based on
distance correlation calculation has some intergroup differences.
These intergroup differences for the FC matrix may underlie the
excellent classification achieved in the current study. Therefore,
these ML algorithms were able to identify the patients with OCD

and HCS through the FC matrix based on distance correlation
calculation. This also provides support for the FC matrix
composed of distance correlation calculation as a promising
classification marker for OCD.

Pearson correlation was a widely used correlation method,
which was generally used to measure the linear relationship
between the ROIs. Therefore, its classification performance was
lower than distance correlation. In addition, they showed the
similarities and differences in the regions of the brain of the
Pearson and distance correlation localization. These same regions
of the brain had the right precentral gyrus, orbital part of
the left superior frontal, and medial part of the right superior
frontal gyrus, etc. In this study, they played a critical role in
exploring the pathogenesis of OCD. The medial part of the
right superior frontal gyrus, corresponding to the left ventral
medial prefrontal cortex (vmPFC), has also been found in the
disrupted emotion and cognition induced by the symptoms
of OCD (Becker et al., 2014; Apergis-Schoute et al., 2017).
These different regions of the brain included left putamen, right
anterior cingulate, and paracingulate gyri, etc. Among them,
the regions of brain (e.g., globus pellidus, putamen.) located by
Pearson correlation have great research value (Hibar et al., 2018;
Calzà et al., 2019). However, due to the limitation of Pearson
correlationmeasuring linear dependency, some crucial regions of
the brain will be ignored. The brain regions located (e.g., anterior
cingulate and paracingulate gyri, SMA) by distance correlation
can complement and extend it (Ku et al., 2020).

Partial correlation shows good classification performance,
although it is lower than the Pearson and distance correlations.
It was generally used to exclude the indirect influence of the
correlation structure. In other words, it can measure the degree
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of linear correlation between two regions of the brain without
indirect influence from other regions of the brain. Therefore, we
can infer thatmore consideration should be given to the synergies
between the multiple regions of the brain in OCD. In addition,
we can see that they are mainly distributed in the cerebellum
in the regions of the brain defined by partial correlation. In
previous studies, the cerebellum also played an important role in
the exploration of the pathogenesis of OCD (Zhang et al., 2019).
Therefore, we believe that partial correlation has a high potential
to explore the influence of the cerebellum on OCD.

In this study, the discriminative regions of the brain are in
and out of the CSTC circuit. Previous studies have reported that
the orbitofrontal cortex (OFC) play crucial roles in processing
reward, negative effect, and, specifically, fear and anxiety in OCD
(Kringelbach and Rolls, 2004; Milad and Rauch, 2007). A recent
meta-analysis of the voxel-based morphometry (VBM) studies
showed decreased gray matter in the bilateral OFCs (de Wit
et al., 2014). In fMRI studies, the researchers revealed the white
matter abnormalities in OFC (Piras et al., 2013). Furthermore,
the anterior cingulate cortex (ACC), putamen, and thalamus have
been suggested to play important roles in the previous studies
of OCD (Yoo et al., 2007; Zhu et al., 2015; Fan et al., 2017;
Hazari et al., 2019). The OCD severity associations have been
reported with hypermetabolism in the ACC (Swedo et al., 1989).
In this study, consistent with these findings, the OFC, the ACC,
putamen, and thalamus displayed a high degree of discriminative
ability between the patients with OCD and HCS. These results
provide further support for dysfunction in the CSTC circuit in
patients with OCD.

In addition, some researchers found that OCD is related to
the sensorimotor network (i.e., precentral gyrus/SMA) (Cui et al.,
2020). Morein-Zamir et al. (2016) reported that the activation
from the regions of the brain within the sensorimotor network
in the inhibitory control processes may explain the essence
of inhibitory control deficits of OCD. Meanwhile, one recent
study indicated that OCD was associated with increased activity
in the SMA. With repetitive transcranial magnetic stimulation
(rTMS) treatment in SMA, the researcher can observe a reduction
in the Y-BOCS score at the 4th week. The reduction in
compulsion contributed to the reduction of the global Y-BOCS
(Lee et al., 2017). Therefore, these previous results further
support this study.

Finally, this study also showed that the cerebellum contributed
to distinguish between the patients with OCD and HCS. For
example, Miquel et al. (2019) suggested that inhibiting activity in
the cerebellar cortex would increase impulsive and compulsive
symptomatology. On the other hand, the stimulation of the
cerebellar cortex should improve behavioral inhibitory control.
Meanwhile, other previous studies reported the existence of
disconnectedness in the fronto-striato-limbic community and
connectedness between the cerebellar and visual areas in the
patients with OCD, which was also related to the clinical
symptomatology of OCD (Kashyap et al., 2021).

Despite the encouraging performance achieved, there are
still two major limitations in the current research. First, the
current study is only evaluated in a small database, which will
make the results difficult to generalize. Second, the proposed

method uses only single image modality data. Using a variety of
modalities can obtain comprehensive features and improve the
classification performance of the model. However, the subjects
with themultimodal image data in the database are limited. In the
future, we will explore the multimodal image data to discriminate
the patients with OCD from HCS.

CONCLUSION

To conclude, the current experimental results show that it
is promising to apply distance correlation for measuring the
FC between the ROIs of the brain with contrast to both
the traditional Pearson correlation and partial correlation.
Besides improving the discrimination performance between
the patients with OCD and HCS, the selected biomarkers via
the SVM-RFE-NCV strategy may provide the potential clinical
values for the patients with OCD.
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Aim: In neuroscience research, data are quite often characterized by an imbalanced

distribution between the majority and minority classes, an issue that can limit or even

worsen the prediction performance of machine learning methods. Different resampling

procedures have been developed to face this problem and a lot of work has been

done in comparing their effectiveness in different scenarios. Notably, the robustness of

such techniques has been tested among a wide variety of different datasets, without

considering the performance of each specific dataset. In this study, we compare

the performances of different resampling procedures for the imbalanced domain in

stereo-electroencephalography (SEEG) recordings of the patients with focal epilepsies

who underwent surgery.

Methods: We considered data obtained by network analysis of interictal SEEG recorded

from 10 patients with drug-resistant focal epilepsies, for a supervised classification

problem aimed at distinguishing between the epileptogenic and non-epileptogenic brain

regions in interictal conditions. We investigated the effectiveness of five oversampling and

five undersampling procedures, using 10 different machine learning classifiers. Moreover,

six specific ensemble methods for the imbalanced domain were also tested. To compare

the performances, Area under the ROC curve (AUC), F-measure, Geometric Mean, and

Balanced Accuracy were considered.

Results: Both the resampling procedures showed improved performances with respect

to the original dataset. The oversampling procedure was found to be more sensitive

to the type of classification method employed, with Adaptive Synthetic Sampling
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(ADASYN) exhibiting the best performances. All the undersampling approaches were

more robust than the oversampling among the different classifiers, with Random

Undersampling (RUS) exhibiting the best performance despite being the simplest and

most basic classification method.

Conclusions: The application of machine learning techniques that take into

consideration the balance of features by resampling is beneficial and leads to more

accurate localization of the epileptogenic zone from interictal periods. In addition, our

results highlight the importance of the type of classification method that must be used

together with the resampling to maximize the benefit to the outcome.

Keywords: imbalanced dataset classification, re-sampling techniques, oversampling and undersampling,

ensemble methods, network analysis, epilepsy surgery, stereo-EEG/intracranial recordings, epileptogenic zone

localization

INTRODUCTION

Epilepsy is a chronic neurological disease affecting 1% of the
worldwide population (Fiest et al., 2017). Approximately 30% of
the patients with focal epilepsies are resistant to the antiepileptic
drugs (AEDs), and they can be considered as candidate for
epilepsy surgery, with the aim of removing the epileptogenic zone
(EZ). The latter is defined as the minimum amount of cortex
that must be resected (inactivated or completely disconnected) to
produce seizure freedom (Lüders et al., 2006; Ryvlin et al., 2014).
However, the correct localization of the EZ to achieve seizure
freedom after surgery, is still an unsolved and open question, as
indicated by the high rate of failure of seizure control (30–40%)
after surgery (Spencer and Huh, 2008; Bulacio et al., 2012). The
advanced signal processing approaches, especially those based
on the connectivity analysis, have been largely applied to stereo-
electroencephalography (SEEG) from the patients with epilepsy
to better pinpoint the location of the EZ (Varotto et al., 2013;
Bartolomei et al., 2017; Adkinson et al., 2019; Narasimhan et al.,
2020).

The supervised machine learning methods are increasingly

applied in epilepsy research, representing useful tools to

integrate the complex and large-scale data deriving from

different electrophysiological or imaging techniques, such as

EEG, magnetoencephalography (MEG), functional-MRI (fMRI),
or positron emission tomography (PET) (refer to Abbasi and
Goldenholz, 2019 for a comprehensive review). Most of these
studies focused on the following aspects: diagnosis of epilepsy
(Kassahun et al., 2014; Azami et al., 2016; Soriano et al., 2017),
seizure prediction (Acharya et al., 2018; Kiral-Kornek et al.,
2018; Daoud and Bayoumi, 2019), lateralization of temporal lobe
epilepsy (Jin and Chung, 2017; Frank et al., 2018; Peter et al.,
2018), and post-surgical outcome prediction (Armañanzas et al.,
2013; Goldenholz et al., 2016; Gleichgerrcht et al., 2018). With
respect to the localization of the EZ and support to pre-surgical
planning, few works applied machine learning tools, showing the
promising usefulness of this approach, and the need for further
investigation and generalization (Dian et al., 2015; Elahian et al.,
2017; Khambhati et al., 2017; Roland et al., 2017). In this specific
framework, one central issue that should be taken into account,
and which could represent one of the main limitations, is that

the EZ represents a smaller region compared with the other non-
EZ areas explored. This leads to an uneven distribution of the
majority (non-EZ) and minority (EZ) classes, which can strongly
worsen or limit the classification performances. This situation is
known as the class imbalance problem and can be considered one
of the central topics inmachine learning research (He andGarcia,
2009; Ali et al., 2015; Fernández et al., 2018).

In the past decade, many different approaches have been
developed to cope with imbalanced classification, most of
them based on four different families: resampling techniques,
cost-sensitive learning, algorithm modification, and ensemble
methods (Mena and Gonzalez, 2006; Galar et al., 2012; Krawczyk
et al., 2014; Loyola-González et al., 2016).

Among these, the methods belonging to the data resampling
family have been proved useful as well as relatively simple
approaches to be applied in the medical context (Lee, 2014;
Loyola-González et al., 2016). In data resampling, the training
instances are modified to rebalance the class distribution through
oversampling of the minority class, or undersampling of the
majority one, before training the classifier. Oversampling could
have the limitation of overfitting the minority class, while
undersampling could eliminate potential useful information for
correct classification (Chawla, 2009).

Different studies dealt with the comparisons of performances
of most of the existing resampling techniques, most of which
were applied to a wide variety of datasets together, being mainly
aimed at assessing the robustness of results across different
dataset combinations (López et al., 2013). Nevertheless, when
applied to a single specific dataset, such comparison can lead to
different results (Xie et al., 2020), reflecting a lack of consensus
about the performances of such techniques and putting in
evidence the need for ad-hoc comparisons in each specific
clinical framework.

To the best of our knowledge, this is the first study focused
on the evaluation and comparison of these approaches in the
context of epilepsy, and in particular, in the framework of
the surgical planning based on analysis of electrophysiological
intracranial recordings.

In this study, we compared five oversampling and five
undersampling procedures and tested the resulting rebalanced
datasets with 10 different machine learning classifiers (such as
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both standard machines and classical ensemble approaches).
Moreover, six specific ensemble methods properly modified
for imbalanced domain and belonging to data variation-based
ensemble were tested and compared. In these algorithms, the
resampling phase is applied to each step of the ensemble classifier,
in such a way that each classifier is trained with a different
resampled dataset (Galar et al., 2012). For this reason, we
considered them as an extension of resampling methods, which
need to be compared with the oversampling and undersampling
techniques combined with the classical ensemble approaches.

The classification was based on the features obtained by
network analysis of interictal SEEG recorded from the 10 patients
who underwent epilepsy surgery and were seizure-free (SF) after
3 years of follow-up.

To compare the performances, area under the ROC curve
(AUC), balanced accuracy (BalACC), F-measure (Fm), and
geometric mean (Gmean) were used as metrics, since these are
usually considered suitable measures to deal with the imbalanced
datasets (Bekkar et al., 2013; López et al., 2013).

MATERIALS AND METHODS

We start this section by describing the steps of selection and
signal recording of the patients. The methodological pipeline is
then outlined: feature extraction, data resampling, classification,
and evaluation of the performance of the model (as shown in
Figure 1 for a schematic representation). Finally, we describe
the statistical analysis, which has been performed to evaluate the
consistency of our results.

Selection of Patients
The study involved SEEG signals recorded fromNp= 10 patients
(three women) with drug-resistant focal epilepsy at the Claudio
Munari Epilepsy Surgery Center of Niguarda Hospital (Milan,
Italy). The patients were selected from the 41 patients implanted
with SEEG electrodes over 24 months. Among them, 24 had
negative MRI and 10 of them were seizure-free after at least 3
years of follow-up and were finally considered for this study.
Table 1 presents the details of the main clinical features.

The mean age of the patients was 31.7 ± 7.3 years, and
the mean duration of epilepsy was 17.2 ± 7.8 years. They had
no obvious risk factor for epilepsy. The surgical outcome was
assessed after at least 3 years of follow-up after surgery (mean
follow-up period: 56 ± 13 months) and classified as class I
according to Engel’s classification (Engel, 1993).

SEEG Recordings
Stereo-electroencephalography signals were recorded using the
multi-lead platinum-iridium electrodes (Dixi, Besançon, France,
with 5–18 contacts of diameter 0.8mm; 1.5mm long; and
2mm apart), implanted under general anesthesia after stereo-
arteriography using a 3DMRI imported into a computer-assisted
neuronavigational module to localize the blood vessels and guide
electrode trajectory. The placement of intracerebral electrodes
was defined according to the data derived by non-invasive
anatomo-electroclinical procedures (Talairach and Bancaud,
1966; Cardinale et al., 2019).

The SEEG signals were recorded using a common reference
electrode (Nikon-Kohden system; 192-channels; sampling rate
1 kHz) under video and clinical control over 5–20 days and then
examined by the two expert neurologists to define the EZ and
plan the surgical approach and resection. EZ was defined by
considering ictal discharge recordings, responses associated with
the intracerebral electrical stimulations, and neurophysiological
mapping, and then integrated into the definition of the brain
area(s) to be surgically excised. Post-resection MRI was used
to identify the areas of the brain that were effectively removed.
The target value to assess the classification performances—SEEG
leads as belonging to EZ or non-EZ—was defined by considering
the intersection between the group of SEEG leads labeled as EZ
by the clinicians through the pre-surgical evaluation, and the
resected zone.

Feature Extraction
Stereo-electroencephalography signals were analyzed using
bipolar derivations, and those presenting non-physiological
artifacts were excluded from the analysis. The number of
analyzed SEEG leads differed for each patient being on average
NL = 73 ± 6. Furthermore, 3min of continuous interictal SEEG
signals, recorded during awake condition at least 1 h far from
any ictal event, were selected and divided into NE = 36, five
s length, non-overlapping epochs. After testing several lengths
and epochs partitions, 3min length was selected as the minimum
recording time to obtain a good EZ classification. The broad 1–
80Hz frequency band was used for the analysis. In addition, 36
time-varying connectivity matrices were estimated by applying a
bivariate non-linear method and the non-linear regression index
(h2) (Lopes da Silva et al., 1989; Wendling et al., 2010) (refer
to Supplementary Material). In this regard, a wide variety of
methods have been proposed to estimate the SEEG connectivity,
all of them being characterized by different advantages and
pitfalls strongly depending on the signal and the aim of the study
(Silfverhuth et al., 2012; Olejarczyk et al., 2017). Among them, a
non-linear regression analysis has been proved to be particularly
suitable to estimate the connectivity from the simulated coupled
neuronal population (Wendling et al., 2009), and has been largely
applied in the specific contest of intracranial EEG recordings and
EZ localization (Bartolomei et al., 2017).

From the adjacency matrices, the corresponding graphs were
built for each patient, after applying a threshold to select the
minimumnumber of connections that ensures a connected graph
for all the epochs.

After a preliminary analysis involving several graph theory-
based indices, nine of them, focusing on different complementary
network properties of centrality (Oldham et al., 2019), were
identified as the optimal one to classify EZ in the whole group of
patients, and used as features of the classifier: outdegree centrality
(Ce), indegree Ce, oustrength Ce, instrength Ce., betweenness Ce.,
outcloseness Ce., incloseness Ce., pagerank Ce., and eigenvector Ce.
(as shown in Supplementary Material for a detailed description
of the basic properties of these metrics).

The connectivity analysis was performed through a specific
custom-written toolbox developed in Matlab (R20a; MathWorks
Inc., Natick, MA, USA). Matlab graph toolbox and the Brain
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FIGURE 1 | A schematic representation of the methodological pipeline. (a) Stereo-electroencephalography (SEEG) epochs selection; (b) connectivity analysis and

graph-based indexes of centrality calculation; (c) feature selection and training and test set definition; (d) set of resampling methods and classifiers applied; and (e)

measures to assess the performance of the models.

connectivity toolbox (Rubinov and Sporns, 2010), were used for
graph analysis.

To provide the classifiers with a suitable number of trials,
we first grouped all the values of the features pertaining to the
different time epochs and obtained, for each patient p, a matrix
with NL,p × NE rows and 10 columns (i.e., nine features and
one target). EZ has been considered as the positive class, with 1

indicating the EZ class and 0 the non-EZ class. The imbalanced
ratio (IR)—the ratio between the number of trials pertaining to
positive and negative classes—for each patient, is indicated in
Table 2.

Since one of the main objectives of the proposed procedure
was to classify SEEG signals of every single patient independently
from the others, training and test set were defined by considering
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TABLE 1 | Main clinical features, epileptogenic zone (EZ) localization performed by the standard methods, and surgery outcomes for the patients enrolled in this study.

Id Gender Age Onset Sz/m Side Lobe Histology Follow-Up/M AEDs

1 M 27 19 10 R TFI crypto 68 Reduced

2 M 25 4 10 L TI crypto 48 Stopped

3 F 30 16 5 R T crypto 54 Reduced

4 F 27 17 10 R T crypto 46 Stopped

5 M 40 16 30 L F no 70 Reduced

6 M 39 20 1 R F crypto 42 Reduced

7 M 28 11 3 L F crypto 65 Ongoing

8 M 22 16 15 L TO crypto 34 Reduced

9 M 44 22 10 R TO FCD Ib 62 Reduced

10 F 35 4 5 R TPCF FCD Ia 71 Ongoing

AEDs, antepileptic drugs; crypto, cryptogenic; FCD, focal cortical dysplasia; F, female; FC, fronto-central; FCD, focal cortical dysplasia; Fr, Frontal; HS, hippocampal sclerosis; M, male;

Sz//m, seizures per month; Age, age at surgical intervention; Onset, age of epilepsy onset; PCI, parieto-centro-insular; T, Temporal; TFI, temporo-fronto-insular; TI, temporo insular; TC,

temporo-central; TO, temporo-occipital; TPCF, temporo-parieto-centro-frontal. AEDs column refers to variation of drug therapy with respect to pre-surgical condition.

TABLE 2 | Number of analyzed SEEG leads (Total SEEG leads), number of leads

belonging to the EZ (EZ leads), and Imbalanced ratio (IR) per patient.

Pt id Tot SEEG leads EZ leads IR

1 66 5 12.2

2 73 6 11.2

3 80 7 10.4

4 81 9 8.0

5 62 4 14.5

6 72 2 35.0

7 76 8 8.5

8 78 13 5.0

9 72 5 13.4

10 72 7 9.3

a proportion of 9:1, using features from nine patients for training
and features from one single patient for test. For further statistical
analysis, the same splitting was repeated for all the combinations
of patients, thus providing 10 different training-testing datasets.

Data Resampling
In all the patients, more electrode contacts were implanted in
the non-epileptogenic than epileptogenic regions. This fact is
reflected in a smaller number of EZ trials than the non-EZ trials,
giving rise to the problems with the statistics of the applied
classification methods (and hence, the subsequent learning by
machine learning models).

Among the existing resampling techniques to tackle
such class imbalance problems, we selected five methods of
oversampling and five methods of undersampling and compared
the performance of classifiers with respect to the original dataset.

The oversampling methods are based on the creation of a new
bigger dataset, obtained by replicating or creating new samples,
usually from the minority class:

- Adaptive Synthetic Sampling (ADASYN). ADASYN generates
data considering a weighted distribution for different minority

class examples, where more synthetic data are generated for
minority class examples that are harder to learn comparedwith
those easier to learn (He et al., 2008).

- Adjusting the direction of the synthetic minority class example
(ADOMS). ADOMS generates positive data instances from
other instances in the original dataset selecting k as the nearest
neighbors and using them to perform arithmetical operations
to generate the new instance by principal component analysis
(PCA) (Tang and Chen, 2008).

- Random oversampling (ROS). ROS generates minority class
instances randomly (Batista et al., 2004).

- Selective Pre-processing for Imbalanced Data (SPIDER).
SPIDER oversamples instances from the minority class that
are difficult to learn and, at the same time, filters the examples
from the majority class which are also difficult to learn
(Stefanowski and Wilk, 2008).

- Borderline-Synthetic Monitoring Oversampling Technique
(bSMOTE). The bSMOTE generates positive data
instances from other instances in the original dataset
selecting k as the nearest neighbors and using them to
perform the arithmetical operations to generate the new
instance (Han et al., 2005).

The undersampling methods are based on the reduction of
the original dataset by eliminating samples, usually form the
majority class:

- Condensed Nearest Neighbor + Tomek’s modification of
Condensed Nearest Neighbor (CNNTL). CNNTL applies the
CNNmethod and the Tomek Linksmethod in a chain to delete
the instances that lead us to misclassify new instances in the
imbalanced domains (Batista et al., 2004).

- Neighborhood Cleaning Rule (NCL). NCL finds a subset S of
the training set T applying the neighborhood cleaning rule of
examples (Laurikkala, 2001).

- One Side Selection (OSS). OSS finds a subset S of the training
set T applying the OSS of examples (Kubat andMatwin, 1997).

- Random Undersampling (RUS). RUS deletes the majority of
class data instances randomly (Batista et al., 2004).
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- Undersampling based on clustering (SBC). After dividing
all the training samples into some clusters, SBC selects a
suitable number of majority class samples from each cluster by
considering the ratio of the number of majority class samples
to the number of minority class samples in the cluster (Yen
and Lee, 2006).

For both oversampling and undersampling methods, the default
parameters were used. The corresponding parameters set can be
found in the method library of KEEL software (UGR Granada,
Spain) (Alcalá-Fdez et al., 2011).

Classification
To classify and compare the different resampled datasets, 10
different machine learning algorithms, belonging to the family
of supervised classification, and most used in the contest of
neurophysiological signal processing, were applied as follows:

1. Decision tree (DT): coarse tree, whose maximum number
of branch points is set to 4. The method adopts the
Gini’s diversity index as the split criterion and envisages a
pruning procedure.

2. Discriminant analysis (DA): creates non-linear boundaries
between the classes (quadratic discriminant analysis).

3. Logistic regression (LR).
4. Naïve Bayes (NB): the method supports continuous attributes

by assuming a Gaussian distribution (Gaussian Naïve Bayes).
5. Support vector machine (SVM): characterized by coarse

distinctions between the classes, with kernel scale set to 4
√
P,

where P is the number of predictors (Coarse Gaussian SVM).
6. KNN (K-nearest neighbors): where we set the number of

neighbors to 100 (Coarse distinctions between classes) and
used the Euclidean distance metric (coarse KNN).

7. Boosted Ensemble (EnsBO): ensemble classifier which uses
the meta-algorithm AdaBoost (Freund and Schapire, 1999).

8. Bagged Ensemble (EnsBA), Random forest Bag, with DT
learners. This implementation uses Breiman’s “random forest”
algorithm (Breiman, 2001).

9. Discriminant Analysis Ensemble (EnsDA): combines different
feature subsets to improve the classification performance
(subspace ensemble), and uses Discriminant learners.

10. KNN ensemble (EnsKNN): Subspace ensemble with Nearest
Neighbor learners.

During the training phase, the validation step was performed
through a 5-fold cross-validation approach. For all the considered
methods, default parameters were used. The corresponding
parameters set can be found in the Matlab classification learner
toolbox specification.

Ensemble Methods for Imbalanced Domain
Since the main objective of the study was to compare the effect of
different resampling techniques on the classifier performances,
in the previous section we described both the standard and
classical ensemble classifiers, with the resampling procedure
applied before the classification.

However, in the past years, ensemble-based classifiers have
been considered a suitable approach in the imbalanced domain,

leading to the implementation of specific modification of
the ensemble algorithm, in which the data rebalancing pre-
processing is integrated into the ensemble algorithm and done
before the learning stage of each classifier of the ensemble
(Chawla et al., 2003; Seiffert et al., 2010). For this reason,
we also tested six of these approaches, three belonging to
boosting (methods 1–2–3) and three to bagging (methods 4–5–
6) approach:

1. DATABoost: it combines the AdaBoost algorithm with a data
generation strategy. It first identifies hard examples (seeds)
and then carries out a rebalance process, always for both the
classes (Guo and Viktor, 2004).

2. RUSBoost: multi-class AdaBoost with RUS in each iteration
(Seiffert et al., 2010).

3. SMOTEBoost: multiclass AdaBoost with SMOTE in each
operation (Chawla et al., 2003).

4. OVERBag: bagging with oversampling of the minority class
(Wang and Yao, 2009).

5. SMOTEBag: bagging where SMOTE quantity of each bag
varies (Wang and Yao, 2009).

6. UnderBag: bagging with undersampling of the majority class
(Barandela et al., 2003b).

Performances Metrics
In common practice, accuracy is the most used measure to
assess classifier performance. However, since it does not allow to
distinguish between the number of correctly classified instances
of the two different classes, it can lead to an erroneous conclusion
when applied in the context of imbalanced datasets.

To assess and compare the performances of the classifiers, we
used the following four metrics, which have been proven to be
suitable for the imbalanced domain (Bekkar et al., 2013; López
et al., 2013; Fernández et al., 2018):

AUC =
1+ TPr + FPr

2

Fm =
(1+ β2)(PPV · TPr)

β2 · PPV + TPr)

GMean =

√
TP

TP + FN
·

TN

FP + TN

BalACC =
TPr + TNr

2

Where TPr is the true positive rate (or sensitivity), TNr is the
true negative rate (or specificity), and PPV is the positive predicted
value, respectively, defined as:

TPr =
TP

TP + FN

TNr =
TN

TN + FP

PPV =
TP

TP + FP
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FIGURE 2 | Comparison of classifier performances (mean and SD values), among the different oversampling procedures, in terms of indices Area under the ROC

curve (AUC) (A), F-measure (Fm) (B) Geometric Mean (Gmean) (C), and Balanced Accuracy (BalACC) (D). X-axis: classifiers applied; Y-axis: resampling techniques.

For ease of understanding, the colormap spans from minimum to maximum values of each specific index. As shown in Table 2 and Supplementary Tables 2–5 for

statistical comparisons among these values.

Note that TP, TN, FP, and FN stay for true positives, true
negatives, false positives, and false negatives, respectively. For Fm
we used β = 1, to assign equal importance to both TP and PPV.

All the analyses were performed using the KEEL software
(Alcalá-Fdez et al., 2011) and the Matlab classification
learner toolbox.

Statistical Analysis
To compare the different resampling techniques, Friedman’s test
was applied to the four performances metrics AUC, Fm, Gmean,
and BalACC (Friedman, 1937). When a significant difference
among the group was found, Shaffer’s post-hoc test was applied
for multiple comparisons (Shaffer, 1986). The alpha level for

statistical significance was set at 0.05, and the final adjusted
p-values are used for the results. All the statistical comparisons
were performed using SPSS (IBM Corp. Version 26.0. Armonk,
NY, USA) and KEEL software.

Data are available from the corresponding authors
upon request.

RESULTS

Oversampling
The average predicted performances in terms of AUC, Fm,
Gmean, and BalACC are shown in Figure 2. For all 10
classifiers, the statistical results of the Friedman’s Test and related
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TABLE 3 | Friedman’s and post-hoc Shaffer’s test for the oversampling techniques applied to the four performance measures: Area under the ROC Curve (AUC),

F-measure (Fm), Geometric Mean (Gmean), and Balanced Accuracy (BalACC).

Oversampling DT DA LR NB SVM KNN EnsBO EnsBA EnsDA EnsKNN

Original vs. ADASYN AUC – – – –

Fm – – – –

Gmean – – – – – – – – –

BalACC – – – – – – – – – –

Original vs. ADOMS AUC – + –

Fm – – –

Gmean – – – – – –

BalACC – – – – – – –

Original vs. ROS AUC – –

Fm – – – – – – –

Gmean – – – – – – –

BalACC – – – – – – – –

Original vs. SPIDER AUC –

Fm – – – – – – –

Gmean –

BalACC – –

Original vs. bSMOTE AUC – –

Fm – – – – – –

Gmean – – – – – – – – –

BalACC – – – – – – – –

ADASYN vs. ADOMS AUC +

Fm

Gmean + +

BalACC + +

ADASYN vs. ROS AUC

Fm +

Gmean + +

BalACC + +

ADASYN vs. SPIDER AUC

Fm

Gmean + + +

BalACC + + +

ADASYN vs. bSMOTE AUC

Fm

Gmean

BalACC

ADOMS vs. ROS AUC – – +

Fm –

Gmean – +

BalACC – +

ADOMS vs. SPIDER AUC – –

Fm –

Gmean + + +

BalACC + + – +

ADOMS vs. bSMOTE AUC

Fm

Gmean –

BalACC –

(Continued)
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TABLE 3 | Continued

Oversampling DT DA LR NB SVM KNN EnsBO EnsBA EnsDA EnsKNN

ROS vs. SPIDER AUC

Fm

Gmean + +

BalACC + +

ROS vs. bSMOTE AUC –

Fm

Gmean – –

BalACC –

SPIDER vs. bSMOTE AUC

Fm

Gmean

BalACC

The 10 columns refer to the 10 classifiers models. The comparisons showing significant results are indicated with a “–” sign when the first algorithm (of the two compared in each row)

was lower or with a “+” sign when it was higher than the second one. The rows without significant differences are not reported. Complete results with the p-values can be found in

Supplementary Tables 3–6.

Shaffer’s post-hoc comparisons for AUC (a), Fm (b), Gmean
(c), and BalACC (d) are shown in Table 3. Shaffer’s post-hoc
comparisons have been indicated only when Friedman’s test
resulted significantly. The sign “–” (respectively, “+”) indicates
that the first algorithm has a lower (higher) value than the
second one.

• The area under the ROC curve: Friedman’s test revealed

significant differences among the pre-processing techniques

only in five of the classifiers tested (DT, SVM, Ens_BO,

Ens_BA, and Ens_KNN). For the two standard classifiers (DT

and SVM), the post-hoc comparisons revealed differences only

with respect to the original datasets, while no differences were

present among the five oversampling techniques. Interestingly,

for three of the four classical ensemble classifiers, none

of the resampling techniques performed better than the
original dataset. On the contrary, the ADOMS approach
showed significantly lower AUC values than the other
methods in both boosted and bagged ensemble classifiers.
In the KNN ensemble, both original and ROS datasets
reported the lowest performances (as shown in Table 3 and
Supplementary Table 2).

• F-measure: the significant differences have been revealed in 8
out of the 10 classifiers (DT, LR, SVM, KNN, EnsBO, EnsBA,
EnsDA, and EnsKNN). The post-hoc comparisons showed the
lower performance of the original dataset with respect to all
resampling procedures in the six standard classifiers. In the
ensemble both original and ADOMS had significantly lower
Fm values than the other algorithm ms (as shown in Table 3

and Supplementary Table 3).
• Geometric Mean: this metric exhibited more differences

among the considered resampling approaches. All the
classifiers except LR showed significant differences among the
rebalancing approaches. In the standard classifiers and the
EnsDA, the algorithmADASYN, ADOMS, ROS, and bSMOTE
performed better than both the original and SPIDER dataset.

As for Fm, in Boosted and Bagged and KNN Ensemble
ADOMS algorithm reported the lowest performance (as
shown in Table 3 and Supplementary Table 4).

• Balanced Accuracy: significant differences among the different
resampling algorithms emerged for all the 10 classifiers.
According to Shaffer’s post-hoc analysis, ADASYN, ADOMS,
ROS, and bSMOTE reported better performances than the
original and SPIDER datasets in the standard classifiers. In
the EnsBO and EnsBA, no differences were found between
the original and ADOMS data set, which performed worse
than the other resampling procedures. In the EnsDA classifier,
the resampling algorithms ADASYN, ADOMS, ROS, and
bSMOTE showed higher BalACC than the original and
SPIDER dataset. In EnsKNN classifier, showed similar results
than EnsDA, except for ROS, which reported BalACC
comparable with original and SPIDER (as shown in Table 3

and Supplementary Table 5).

Undersampling
The average predicted performances of undersampling
procedures in terms of AUC, Fm, Gmean, and BalACC are
shown in Figure 3. For all the 10 classifiers, the statistical
results of the Friedman’s Test and related Shaffer’s post-hoc
comparisons for AUC (a), Fm (b), Gmean, (c), and BalACC
(d) are shown in Table 4, respectively. Shaffer’s post-hoc
comparisons have been indicated only when Friedman’s Test
resulted significantly; The sign “–” (respectively “+”) indicates
that the first algorithm has a lower (higher) value than the
second one.

• The area under the ROC curve: significant differences among
the pre-processing techniques are found in five of the
classifiers tested (DT, SVM, KNN, EnsBA, and EnsKNN). In
the DT classifier, all undersampling algorithms performed
equally and better than the original one; in SVM, RUS,
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FIGURE 3 | Comparison of classifier performances (mean and SD), among the different undersampling procedures, in terms of indices AUC (A), Fm (B), Gmean (C),

and BalACC (D). X-axis: classifiers applied; Y-axis: resampling techniques. For ease of understanding, the colormap spans from minimum to maximum values of each

specific index. As shown in Table 3 and Supplementary Tables 6–9 for statistical comparisons among these values.

and CNNTL performed better than the others, and in KNN
only RUS showed improved AUC performances with respect
to the original and all the other resampling techniques. In
EnsBA and EnsKNN, significantly improved performances
were achieved by NCL, RUS, and SBC (as shown in Table 4

and Supplementary Table 6).
• F-measure: Friedman’s test revealed significant differences in 9

out of the 10 classifiers (all except NB). For standard classifiers,
post-hoc comparisons showed the lower performance of the
original dataset with respect to all resampling procedures
except for SBC in DT classifier, NCL in SVM and KNN, and
NCL, OSS, and SBC in LR classifier. As well as in standard
classifiers, also in all the ensembles, the best performances were

achieved by RUS, followed by the CNNTL algorithm (as shown
in Table 4 and Supplementary Table 7).

• Geometric Mean showed significant differences among the
considered approaches for all the classifiers, proving to be
more suited than AUC and Fm in capturing the differences
among the resampling approaches. RUS, SBC, and CNNTL
showed the highest performances, with significantly higher
Gmean than the original dataset in all the classifiers except NB.
Moreover, RUS indicated significantly higher performances
than NCL and OSS (Table 4 and Supplementary Table 8).

• Balanced Accuracy showed very similar patterns with respect
to Gmean, denoting differences for all the classifiers.
According to Shaffer’s post-hoc analysis, CNNTL, RUS,
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and SBC perform significantly better than the original
dataset and the NCL and OSS resampling approaches,
being RUS the best algorithms (as shown in Table 4

and Supplementary Table 9).

Ensemble Methods for Imbalanced Domain
To compare the ensemble methods, we considered the two
indices Gmean and BalACC since they have been shown to better
capture the differences among the algorithms, as reported in the
previous section.

Figure 4 shows the average ranking value for each of the
proposed ensemble approaches, for both Gmean and BalACC.
Corresponding results according to post-hoc Shaffer’s test,
comparing the seven approaches (original dataset and six
ensembles) can be found inTable 5. According to Friedman’s test,
both the measures indicated significant differences among these
techniques (Gmean: p < 0.00001; BalACC: p < 0.00001). A post-
hoc analysis pointed out that DATABoost and SMOTEBag did not
improve the performances with respect to the original dataset,
and that SMOTEBoost, OVERBag showed higher BalACC than
the original data but no differences in terms of Gmean. On the
contrary, RUSBoost and UNDERBag showed significantly better
performances than all the other algorithms, being UNDERBag
the best one (Table 5).

Since in the previous section we used classical ensemble
classifiers combined with a rebalancing pre-processing step,
we also compared the one with better performances (EnsDA,
after ADASYN and RUS resampling) with the best algorithm
of the modified ensemble family UNDERBag. Interestingly,
EnsDA, with both ADASYN and RUS pre-processing,
showed significantly higher Gmean and BalACC than the
UNDER_Ba approach (p < 0.00519 for ADASYN+Ens_DA vs.
UNDERBag, and p< 0.00104 for RUS+Ens_DA vs. UNDERBag,
for both Gmean and BalACC). Figure 5 represents the
comparison among these three methods, expressed in terms of
ranking values.

Sensitivity and Specificity
To clarify the effective use of the proposed approach to
EZ identification, we reported sensitivity and specificity for
the different techniques tested in the study. Since ensemble
approaches showed significantly lower performances than

resampling in terms of performances metrics (as indicated in

the previous paragraph), only the sensitivity and specificity of

the latter were further analyzed. Figure 6 shows the boxplots

indicating the values of sensitivity (full-color boxes) and

specificity (horizontal lines boxes) for the original dataset

compared with the five oversampling (Figure 6A) and the five

undersampling approaches (Figure 6B). Each box represents the
variability among the 10 classification models. All sensitivity

and specificity values are reported in Table 6. Such results
confirmed the main evidence obtained by the other performance
metrics: (i) original data were not able to provide a good
classification, since all the models tended to classify the whole
set of leads as non-EZ (sensitivity ≈ 0; specificity ≈ 1),
confirming the biased classification toward the majority non-
EZ class; (ii) oversampling improved classification performances,

especially in terms of sensitivity. The Adasyn method provided
the highest combination of both values (sensitivity and specificity
>0.7) and the lowest variability of performances among the
classification models. The ADOMS method showed average
performances comparable with ADASYN, but much more
variability with respect to the model choice. The SPIDER
method was the least effective approach to improve the
performances; (iii) Some undersampling approaches improved
the classification performances, but with a strong variability
among the different methods. NCL and OSS show results
comparable to the original dataset. The RUS method provided
the highest values of both sensitivity and specificity, comparable
with the ADASYN approach. Interestingly, the SBC showed the
highest sensibility values (≈0.9), even if associated with a less
balanced specificity.

Figure 7 shows the visualization of the surgical 3D scene for a
representative patient (pt2), such as an indication of the resected
zone (blue area), true EZ and non-EZ leads, and the EZ and
non-EZ classification provided by the RUS+ EnsDA method.

DISCUSSION

Machine learning approaches are being increasingly applied to
the field of epilepsy, and specifically in the different datasets
from neurophysiological recordings (Abbasi and Goldenholz,
2019). In this context, it is quite common to cope with
the imbalanced datasets characterized by uneven distribution
between majority and minority classes, which can lead to worse
classification performances.

This is the case of the EZ localization in the pre-surgical
planning to achieve seizure freedom after surgical resection of
the EZ. One assessed clinical practice is the exploration through
intracranial EEG recordings (SEEG) (Cardinale et al., 2019)
combined with the visual analysis and advanced signal processing
methods able to extract quantitative indexes to support the
correct EZ localization (Bartolomei et al., 2017).

Intentionally, to sample a wide region of the epileptic brain,
the explored brain regions are much wider than the true EZ,
thus resulting in an imbalanced class distribution between EZ
and non-EZ contacts, with the EZ being the most important class
to be correctly identified to reduce or remove seizures, being
the minority class. This led the classifier to be biased toward the
majority (non-EZ) class.

Starting from the evidence that network analysis of interictal
SEEG recordings could be very useful in support of the EZ
localization (Varotto et al., 2012; Vlachos et al., 2017; Lagarde
et al., 2018), in this study we demonstrated that the combination
of supervised machine learning with appropriate data resampling
approach can strongly improve its potential. For this reason,
the idea of applying resampling techniques in the field of EZ
localization should be taken into consideration.

At present, no study investigated the effect of imbalance
domains on the performance of EZ localization methodologies.
The previous studies demonstrated that the application of
rebalancing techniques could strongly improve the classification
of EEG signals for epilepsy diagnosis (Haldar et al., 2019; Kaur
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TABLE 4 | Friedman’s and post-hoc Shaffer’s test for the undersampling techniques applied to the four performance measures: AUC, Fm, Gmean, and BalACC.

Undersampling DT DA LR NB SVM KNN EnsBO EnsBA EnsDA EnsKNN

Original vs. CNNTL AUC – –

Fm – – – – – – –

Gmean – – – – – – – – –

BalACC – – – – – – – – –

Original vs. NCL AUC –

Fm – – – –

Gmean

BalACC

Original vs. OSS AUC –

Fm – – – –

Gmean

BalACC

Original vs. RUS AUC – – – –

Fm – – – – – – – –

Gmean – – – – – – – – –

BalACC – – – – – – – – –

Original vs. SBC AUC – –

Fm – – –

Gmean – – – – – – – –

BalACC – – – – – – – –

CNNTL vs. NCL AUC + – –

Fm + + –

Gmean + + + + +

BalACC + + +

CNNTL vs. OSS AUC

Fm

Gmean + + + + +

BalACC + + + + + +

CNNTL vs. RUS AUC – –

Fm

Gmean

BalACC

CNNTL vs. SBC AUC – –

Fm +

Gmean

BalACC

NCL vs. OSS AUC + +

Fm

Gmean

BalACC

NCL vs. RUS AUC –

Fm – – –

Gmean – – – – – – – –

BalACC – – – – – – – –

NCL vs. SBC AUC

Fm

Gmean

BalACC –

(Continued)
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TABLE 4 | Continued

Undersampling DT DA LR NB SVM KNN EnsBO EnsBA EnsDA EnsKNN

OSS vs. RUS AUC – –

Fm

Gmean – – – – – – – – –

BalACC – – – – – – – – –

OSS vs. SBC AUC – –

Fm

Gmean

BalACC

RUS vs. SBC AUC

Fm +

Gmean

BalACC

The 10 columns refer to the 10 classifiers models. The comparisons showing significant results are indicated with a “–” sign when the first algorithm (of the two compared in each row)

was lower or with a “+” sign when it was higher than the second one. The rows without significant differences are not reported. Complete results with the p-values can be found in

Supplementary Tables 3–6.

FIGURE 4 | Comparison of performances among the original dataset (blue bars) and six modified ensemble approaches for the imbalanced domain, in terms of the

ranking (y-axis) of Gmean and BalACC. Lower-ranking values indicate better performances. As shown in Table 4, for the results of statistical comparisons.

et al., 2020) and automatic seizure detection (Cosgun et al.,
2019; Romaissa et al., 2019; Masum et al., 2020). However,
in most of them, the well-known and assessed resampling
techniques belonging to the SMOTE family were applied,
and systematic comparison with other possible approaches
was missing.

In this study, we compared five oversampling and five
undersampling procedures and tested the resulting rebalanced
datasets with 10 different machine learning classifiers. Moreover,
we also tested six specific ensemble methods properly modified

for imbalanced domain and belonging to data variation-
based ensemble.

Our study focuses on identifying the best resampling and
classification approach to support the classification of brain
regions as EZ or non-EZ, using the indexes derived from
connectivity and graph-theory analysis of interictal SEEG
recording as features. The selection of the nine graph-theory-
based indexes used as input features of the classifiers was
based on the preliminary analysis we performed, showing that
the combination of these indexes was the most appropriate
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TABLE 5 | Shaffer’s test for the ensemble approaches for the imbalance domain.

Ensemble AUC Fm Gmean BalACC

Original vs. DATABoost – 0.000 – 0.014 1.895 1.285

Original vs. RUSBoost 2.344 0.789 – 0.000 – 0.000

Original vs. SMOTEBoost 0.165 0.423 0.297 – 0.034

Original vs. OVERBag 0.555 1.285 0.106 – 0.005

Original vs. SMOTEBag – 0.040 – 0.006 1.895 0.143

Original vs. UNDERBag 2.344 – 0.000 – 0.000 – 0.000

DATABoost vs. RUSBoost + 0.000 0.789 – 0.000 – 0.001

DATABoost vs. SMOTEBoost 0.555 1.285 0.251 0.491

DATABoost vs. OVERBag 0.218 0.372 0.078 0.199

DATABoost vs. SMOTEBag 1.499 1.814 1.895 1.285

DATABoost vs. UNDERBag + 0.000 0.298 – 0.000 – 0.000

RUSBoost vs. SMOTEBoost 0.165 1.814 0.297 0.205

RUSBoost vs. OVERBag 0.555 1.814 0.549 0.549

RUSBoost vs. SMOTEBag + 0.040 0.701 + 0.005 + 0.049

RUSBoost vs. UNDERBag 2.344 – 0.002 1.895 1.406

SMOTEBoost vs. OVERBag 2.344 1.516 1.895 1.406

SMOTEBoost vs. SMOTEBag 2.344 1.031 0.974 1.406

SMOTEBoost vs. UNDERBag – 0.024 – 0.006 0.056 – 0.034

OVERBag vs. SMOTEBag 1.663 0.298 0.491 1.285

OVERBag vs. UNDERBag 0.091 – 0.000 0.143 0.143

SMOTEBag vs. UNDERBag – 0.003 0.423 – 0.000 – 0.005

Red color indicates the p-values with significant differences according to Shaffer’s post-hoc (p < 0.05); the sign “–” (respectively “+”) indicates that the first algorithm has a lower (higher)

value than the second one.

to achieve the best EZ classification. In the contest of EZ
localization, despite the early application of several other signal
processing approaches for feature extraction, such as working in
the frequency domain or by non-linear analysis, network analysis
started only recently to be employed based on the evidence that
focal epilepsy is a network disease. However, most of these recent
network studies normally focus only on the connectivity analysis
that is rarely combined with the pre-processing approaches,
due to the huge amount of data to be processed. For
this reason, in this study, we mainly focused on presenting
pre-processing, in combination with a few of such feature
extraction and connectivity measures in the literature, to provide
evidence of and support for a proper pre-processing method in
this context.

Regarding oversampling, all five approaches reported
improved performances with respect to the original dataset.
The differences among the five oversampling approaches varied
according to the considered classifiers.

Adaptive Synthetic Sampling resulted to be the most robust
approach among the classifiers. ADOMS was the less robust and
most sensitive to the choice of classifier, being comparable or
even slightly better than ADASYN in LR, SVM, KNN, EnsDA,
and EnsKNN, while as bad as the original dataset in DA, EnsBO,
and EnsBA. SPIDER was the least effective, with performances
significantly worse than the other approaches and comparable
with the original dataset for some classifiers, especially the
classical ensemble family.

Regarding undersampling, all the approaches appeared to be
less influenced by the classifier choice than the oversampling.

Two of the proposed methods, NCL and OSS, did not improve
the classification performances with respect to the original data.
The other approaches were significantly better than original data,
with RUS, the simplest of the proposed methods, being the
best one.

Interestingly RUS showed higher, even not significant,
performances than the best oversampling approach, ADASYN.

The resampling technique is not the only family to cope with
the imbalanced domain. A wide number of approaches exist
to deal with this problem, which can be mainly categorized
as data-level or algorithmic-level approaches (López et al.,
2013). Rebalancing belongs to the data-level approaches, in
which data are pre-processed before the classification (Lee,
2014). On the contrary, in the algorithmic-level ones, the
classification algorithm is modified to deal with the imbalanced
nature (Barandela et al., 2003a). The cost-sensitive approaches
combine both the data and algorithmic levels, by assigning
different misclassification costs for the two classes andmodify the
classification algorithm to minimize the higher misclassification
cost (Domingos, 1999; Zhou and Liu, 2006; Sun et al., 2007).

The main limitation of cost-sensitive approaches is the need
of defining the correct misclassification costs for the two classes,
which may not be so clear in many clinical problems, as in
our case.

In this paper, we focused on the rebalancing techniques since
they can be quite easily implemented, and are independent of
the underlying classifiers, which can be an advantage in problems
where the selection of the most appropriate classifier is not clear
(Batista et al., 2004; Batuwita and Palade, 2010).
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FIGURE 5 | A final comparison of performances among the best approach for each of the resampling families considered: (1) Oversampling: ADASYN + EnsDA

[Adaptive Synthetic Sampling (ADASYN) combined with “classical” ensemble approach EnsembleDA; orange bars]; (2) Undersampling: RUS + EnsDA [Random

Undersampling (RUS) combined with “classical” ensemble approach EnsembleDA—blue bars]; (3) Specific ensemble learner for imbalanced domain: UNDERBagging

(violet bars). Y-axis represents ranking values, for both the Gmean and BalACC. The lower-ranking values indicate better performances. *indicates significant

differences according to Shaffer’s post-hoc analysis.

In addition, several modifications of ensemble methods for
the imbalanced domain have been proposed (Rokach, 2010),
both working at data-level approach, through the data pre-
processing before each step of the ensemble classification
(Breiman, 1996; Freund and Schapire, 1997; Kuncheva, 2014),
or with algorithmic-level cost-sensitive modification (Sun et al.,
2007).

As part of the data-level approaches, we considered and
tested, in this study, six different data-level ensemble algorithms.
As reported in a previous study (Galar et al., 2012), we
found that the simplest algorithms, UNDERBag and RUSBoost
emerged as the best ensemble methods, while offering lower
computation costs.

Interestingly, when compared these results with those
obtained by a standard single-step resampling approach
combined with a classical ensemble algorithm, we found
significantly higher performances in the latter family, in
particular for the combination (ADASYN + EnsDA and RUS
+ EnsDA).

This highlights again that the simplest algorithms guarantee
high performances, and that their very low computational
complexity can be a strong advantage toward routine
clinical applications.

It is important to notice that the performances of the
different resampling techniques are strongly influenced by the
choice of the classifier. This highlights that the selection of the
resampling approach for a specific dataset should always take into
consideration the choice of the classifier.

Regarding the measure to assess and compare the
performances, in this study we applied four measures considered
most appropriate to deal with imbalanced classification: AUC,
Fm, Gmean, and BalACC (Bekkar et al., 2013). Several studies
already highlighted that the choice of the proper evaluation
measures for model assessment is one of the most complex
issues faced in the imbalanced data learning context and how
the application of more standard measures, such as accuracy,
could lead to erroneous interpretations and biased classification
(Weiss, 2004).
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FIGURE 6 | Boxplot representing the values of sensitivity (full-color bars) and specificity (horizontal lines bars) for the original dataset and the five oversampling (A) and

undersampling approaches (B). Each box represents the variability among the 10 classification models. The middle line indicates the median value; upper and lower

limits of the box indicate the first and third quartile; external points indicate outliers; x indicates the mean values. The corresponding values can be found in Table 6.
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FIGURE 7 | Visualization of the surgical 3D scene for a representative patient (pt2). The Blue area indicates the final resected zone. Red and green dot points indicate

leads classified as epileptogenic zone (EZ) A, anterior; L, left; P, posterior; R, right.
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TABLE 6 | The Sensitivity (Sens) and Specificity (Spec) values for oversampling and undersampling techniques.

Oversampling

Orig Adasyn Adoms ROS Spider2 bSmote

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

DT 0.00 1.00 0.75 0.63 0.78 0.54 0.63 0.76 0.49 0.83 0.59 0.75

DA 0.30 0.90 0.64 0.74 0.49 0.81 0.56 0.79 0.47 0.83 0.58 0.78

LR 0.08 0.98 0.73 0.71 0.72 0.74 0.68 0.74 0.40 0.89 0.61 0.79

NB 0.49 0.81 0.68 0.68 0.67 0.69 0.67 0.69 0.64 0.71 0.62 0.73

SVM 0.00 1.00 0.73 0.68 0.75 0.70 0.69 0.72 0.35 0.91 0.60 0.80

KNN 0.00 1.00 0.68 0.67 0.68 0.70 0.63 0.71 0.40 0.87 0.59 0.75

EnsBO 0.06 0.99 0.85 0.50 0.99 0.08 0.67 0.72 0.48 0.85 0.83 0.47

EnsBA 0.10 0.97 0.55 0.68 0.99 0.04 0.08 0.98 0.12 0.96 0.78 0.41

EnsDA 0.09 0.98 0.73 0.71 0.70 0.73 0.69 0.74 0.38 0.90 0.61 0.78

EnsKNN 0.03 0.99 0.48 0.77 0.35 0.85 0.03 0.99 0.07 0.98 0.26 0.90

Mean 0.12 0.96 0.68 0.68 0.71 0.59 0.53 0.78 0.38 0.87 0.61 0.72

St. Dev 0.16 0.06 0.11 0.07 0.20 0.29 0.26 0.11 0.17 0.08 0.15 0.15

Undersampling

Orig CNNTL NCL OSS RUS SBC

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

DT 0.00 1.00 0.61 0.74 0.35 0.87 0.28 0.91 0.71 0.71 0.92 0.39

DA 0.30 0.90 0.51 0.83 0.42 0.86 0.30 0.91 0.60 0.78 0.78 0.59

LR 0.08 0.98 0.63 0.75 0.26 0.91 0.28 0.92 0.71 0.74 0.91 0.45

NB 0.49 0.81 0.61 0.74 0.58 0.76 0.48 0.83 0.67 0.69 0.81 0.54

SVM 0.00 1.00 0.69 0.72 0.12 0.96 0.19 0.96 0.75 0.70 0.92 0.41

KNN 0.00 1.00 0.67 0.74 0.17 0.95 0.19 0.95 0.74 0.70 0.93 0.39

EnsBO 0.06 0.99 0.64 0.75 0.29 0.91 0.26 0.93 0.73 0.70 0.92 0.41

EnsBA 0.10 0.97 0.53 0.74 0.36 0.90 0.31 0.88 0.74 0.73 0.90 0.43

EnsDA 0.09 0.98 0.66 0.74 0.29 0.91 0.22 0.94 0.71 0.74 0.90 0.45

EnsKNN 0.03 0.99 0.60 0.62 0.25 0.93 0.31 0.83 0.74 0.68 0.89 0.40

Mean 0.12 0.96 0.62 0.74 0.31 0.90 0.28 0.91 0.71 0.72 0.89 0.45

St. Dev 0.16 0.06 0.06 0.05 0.13 0.06 0.08 0.05 0.05 0.03 0.05 0.07

Single values for each of the 10 classifier models, as well as mean and standard deviation (St.Dev.) are indicated.

These four measures provided complementary results and
to properly evaluate the performances of different approaches,
it is important to take into account the combination of them,
especially considering which aspect is more important in the
specific problem we are facing. Particularly, in this case, we
noticed that AUC and Fm did not completely capture differences
in the model performances. On the other side, as already
described in another paper (Luque et al., 2019), Gmean and
BalACC appear to be good performance metrics when the
main focus is to maximize sensitivity, without losing too
much specificity.
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Supplementary Figure 1 | A subset of stereo-electroencephalography (SEEG)

traces recorded from pt2, and corresponding adjacency matrices for the first 3 of

the 36 epochs analyzed.

Supplementary Table 1 | Description of the set of graph-theory based centrality

measures used in this study.

Supplementary Table 2 | Friedman and post-hoc Shaffer test for the

oversampling techniques with AUC measure. Shaffer post-hoc comparisons have

been indicated only when Friedman test resulted significant (p-values in the first

line). Red color indicates p-values with significant differences according to shaffer

post-hoc (p < 0.05); “–” (respectively “+”) indicates that the first algorithm has

lower (higher) value than the second one.

Supplementary Table 3 | Friedman and post-hoc Shaffer test for the

oversampling techniques with Fm measure. Shaffer post-hoc comparisons have

been indicated only when Friedman test resulted significant (p-values in the first

line). Red color indicates p-values with significant differences according to shaffer

post-hoc (p < 0.05); “–” (respectively “+”) indicates that the first algorithm has

lower (higher) value than the second one.

Supplementary Table 4 | Friedman and post-hoc Shaffer test for the

oversampling techniques with Gmean measure. Shaffer post-hoc comparisons

have been indicated only when Friedman test resulted significant (p-values in the

first line). Red color indicates p-values with significant differences according to

shaffer post-hoc (p < 0.05); “–” (respectively “+”) indicates that the first algorithm

has lower (higher) value than the second one.

Supplementary Table 5 | Friedman and post-hoc Shaffer test for the

oversampling techniques with BalACC measure. Shaffer post-hoc comparisons

have been indicated only when Friedman test resulted significant (p-values in the

first line). Red color indicates p-values with significant differences according to

shaffer post-hoc (p < 0.05); “–” (respectively “+”) indicates that the first algorithm

has lower (higher) value than the second one.

Supplementary Table 6 | Friedman and post-hoc Shaffer test for the

oversampling techniques with AUC measure. Shaffer post-hoc comparisons have

been indicated only when Friedman test resulted significant (p-values in the first

line). Red color indicates p-values with significant differences according to shaffer

post-hoc (p < 0.05); “–” (respectively “+”) indicates that the first algorithm has

lower (higher) value than the second one.

Supplementary Table 7 | Friedman and post-hoc Shaffer test for the

undersampling techniques with Fm measure. Shaffer post-hoc comparisons have

been indicated only when Friedman test resulted significant (p-values in the first

line). Red color indicates p-values with significant differences according to shaffer

post-hoc (p < 0.05); “–” (respectively “+”) indicates that the first algorithm has

lower (higher) value than the second one.

Supplementary Table 8 | Friedman and post-hoc Shaffer test for the

underampling techniques with Gmean measure. Shaffer post-hoc comparisons

have been indicated only when Friedman test resulted significant (p-values in the

first line). Red color indicates p-values with significant differences according to

shaffer post-hoc (p < 0.05); “–” (respectively “+”) indicates that the first algorithm

has lower (higher) value than the second one.

Supplementary Table 9 | Friedman and post-hoc Shaffer test for the

undersampling techniques with BalACC measure. Shaffer post-hoc comparisons

have been indicated only when Friedman test resulted significant (p-values in the

first line). Red color indicates p-values with significant differences according to

shaffer post-hoc (p < 0.05); “–” (respectively “+”) indicates that the first algorithm

has lower (higher) value than the second one.
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Oppositional defiant disorder and conduct disorder, collectively referred to as disruptive

behavior disorders (DBDs), are prevalent psychiatric disorders in children. Early diagnosis

of DBDs is crucial because they can increase the risks of other mental health and

substance use disorders without appropriate psychosocial interventions and treatment.

However, diagnosing DBDs is challenging as they are often comorbid with other

disorders, such as attention-deficit/hyperactivity disorder, anxiety, and depression. In

this study, a multimodal ensemble three-dimensional convolutional neural network (3D

CNN) deep learning model was used to classify children with DBDs and typically

developing children. The study participants included 419 females and 681 males, aged

108–131 months who were enrolled in the Adolescent Brain Cognitive Development

Study. Children were grouped based on the presence of DBDs (n = 550) and typically

developing (n = 550); assessments were based on the scores from the Child Behavior

Checklist and on the Schedule for Affective Disorders and Schizophrenia for School-age

Children-Present and Lifetime version for DSM-5. The diffusion, structural, and resting-

state functional magnetic resonance imaging (rs-fMRI) data were used as input data to

the 3D CNN. The model achieved 72% accuracy in classifying children with DBDs with

70% sensitivity, 72% specificity, and an F1-score of 70. In addition, the discriminative

power of the classifier was investigated by identifying the cortical and subcortical regions

primarily involved in the prediction of DBDs using a gradient-weighted class activation

mappingmethod. The classification results were compared with those obtained using the

three neuroimaging modalities individually, and a connectome-based graph CNN and a

multi-scale recurrent neural network using only the rs-fMRI data.

Keywords: deep learning, disruptive behavior disorders, multimodal ensemble learning, neuroimaging, 3D CNN

1. INTRODUCTION

Magnetic resonance imaging (MRI) is a powerful noninvasive neuroimaging tool that can reveal
anatomical features and neuronal activities inside a brain. MRI data is widely used to study
cognitive development, pathologies, and psychiatric disorders. Diffusion MRI (dMRI) can reveal
information about the microstructures, fiber connections, and anatomical connectivities within the
brain, and the static anatomical images acquired using structural MRI (sMRI) provide information
about the gross anatomical structures in the brain. Dynamic activities inside the brain are measured
using functional MRI (fMRI), which is used to identify brain activities in the absence of a task
(resting-state fMRI; rs-fMRI) or during a task (task fMRI; tfMRI).
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Disruptive behavior disorders (DBDs) include oppositional
defiant disorder (ODD; a pattern of angry/irritable mood,
argumentative/defiant behavior, or vindictiveness lasting at least
6 months) and conduct disorder (CD; behavior in which the
basic rights of others or major age-appropriate societal norms
or rules are violated; American Psychiatric Association, 2013).
They are prevalent in children and the most common reasons
for referring children to mental health services (Hawes et al.,
2020). ODD is estimated to occur in 2–16% of youth, depending
on the population being studied and the method for diagnosis,
and CD, which is more prevalent among younger males, rates
range from 6 to 9% (SAMHSA, 2011). DBDs are associated
with increased risk for other mental health and substance use
disorders (Nock et al., 2006), and are predictors of poor mental
health conditions (Scarmeas et al., 2007). These disorders can
cause substantial economic losses for society in terms of service
utilization (Rivenbark et al., 2018). Therefore, early diagnosis of
DBDs is crucial to lower the risk for subsequent disorders with
appropriate psychosocial interventions and treatment. However,
DBDs are challenging to diagnose as they are often comorbid
with other disorders, such as attention-deficit/hyperactivity
disorder, anxiety, and depression (Allen et al., 2020).

Machine learning concepts are now receiving increased
attention for analysis and prediction in neuroimaging
applications. Traditional machine learning techniques require
hand-engineered feature selection, which are time-consuming
and prone to bias due to manual feature selection. Deep learning
is a recent development in machine learning that overcomes the
issues associated with hand-engineering and requisite domain
expertise for feature selection. Deep learning is a representation
learning in which raw data are fed into a learning algorithm
that decomposes it into multiple levels of complex nonlinear
representative patterns of the input data (LeCun et al., 2015).
The burgeoning wide applications of deep learning models
can be attributed to the implementation of a convolutional
neural network (CNN) because it cut the second-best error
rate for image classification by nearly half at the ImageNet
Large-Scale Visual Recognition Challenge in 2012 (Krizhevsky
et al., 2012). With the advent of parallel computing and graphics
processing units, deep representation learning was successfully
implemented in numerous areas, such as image processing and
analysis tasks, natural language processing, speech recognition,
and data synthesis and analysis (LeCun et al., 2015). A large
number of medical image analyses now focus on applying deep
learning methods to extract features from raw data for further
analysis and interpretation (Lundervold and Lundervold, 2019).

CNNs inspired by visual neuroscience are one of the widely
used deep learning architectures. A typical CNN includes a
convolutional layer, pooling layer, and fully connected layer. The
convolutional layer consists of filters/kernels of fixed size that
strides with a partial overlap through the input and generates
feature maps that are locally weighted sum of input features.
Each filter in a convolutional layer looks for the same pattern
in different parts of the input, and outputs a unique feature
map. The convolution filter thus looks for highly correlated local
motifs that can occur at any location in the input (LeCun et al.,
2015). The feature maps in the convolution layer are then passed

through nonlinear activation functions, such as the rectified
linear unit (ReLu) (O’Shea and Hoydis, 2017). The output from
one or more convolution layers is then pooled in a pooling layer
that merges similar features. Pooling filters output the average
or maximum value inside the filter grid and impart translational
invariance, for inputs withminor shifts and distortions in rows or
columns, to the activation map. Typically, several convolutional
and pooling layers are stacked in a CNN, and they are followed
by a fully connected layer. The fully connected layer usually
connects to an output layer, which could be a softmax function
for classification tasks or a linear or support vector machine for
regression tasks. CNNs learn in a hierarchical fashion from low-
level features, such as edges (similar to primary visual cortex),
to high-level features, such as shapes (identical to the secondary
visual cortex), in deep layers similar to the hierarchical structure
in a human visual cortex (Hubel and Wiesel, 1962). Brainnet
CNN (Kawahara et al., 2017) is an earlier developed connectome-
based graph CNN which is composed of edge-to-edge, edge-
to-node, and node-to-graph convolutional filters that leverage
the topological locality of brain networks as opposed to local
spatial filtering.

CNNs are often considered “black boxes” that perform
classifications without explanations on what a model learned or
which part of an input was responsible for the classification. One
primary goal of machine learning in neuroimaging is to reveal
neuromarkers that are indicative of brain health, and diseases
and disorders (Khosla et al., 2019). To address these issues,
visualization techniques can be utilized to discover discriminative
features learned by a CNN model. Class activation mapping
(CAM) is a technique to obtain visual explanations of the input
regions that a CNN emphasized in its classification (Zhou et al.,
2016; Selvaraju et al., 2017) by calculating the derivative of the
CNN classification function estimated via back-propagation with
respect to the input data. Gradient CAM (Grad-CAM) and Grad-
CAM++ are two improved versions of CAMs because they can
be applied to a wide variety of networks without global average
pooling and retraining, and they reveal the discriminative regions
in any CNN architecture (Selvaraju et al., 2017; Chattopadhyay
et al., 2018). The three CAM techniques were compared in one
study on classifying multiple sclerosis types, and it was shown
that Grad-CAM outperformed CAM and Grad-CAM++ (Zhang
et al., 2021).

A multi-scale recurrent neural network (MsRNN) is another
deep learning-based framework that can directly work on
the dynamic spatiotemporal fluctuations in the brain activity
measured using rs-fMRI time courses for identifying brain
disorders (Yan et al., 2019). While the CNN models, deep in
space, can be used as an “encoder” for obtaining correlations
between brain regions, recurrent neural network (RNN) models,
deep in time, can be utilized in sequence classification (Yan et al.,
2019). A simple RNN consists of input, hidden and output layers,
and it processes the input sequentially with respect to time.
The distinguishing feature of RNNs is that the output from a
layer is used as input for the layer itself, thereby forming a
feedback loop. This allows the RNN to have a history of the
sequence elements that can be used to predict the upcoming
sequence elements.
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Several studies in machine learning showed that the
performance of the learning algorithm can be improved using
ensemble learning, which is an algorithm-independent machine
learning strategy (Opelt et al., 2004; Khosla et al., 2019).
Moreover, brain abnormalities are heterogeneous and cause
alterations in functional connectivity and structural changes
(McLaughlin et al., 2019). Studies have found abnormal
brain activities in children with DBDs using dMRI (Hummer
et al., 2015), sMRI (Wallace et al., 2014; Hummer et al.,
2015; Waller et al., 2020), tfMRI (Rubia et al., 2009; Hawes
et al., 2020), and rs-fMRI (Lu et al., 2015; Werhahn et al.,
2020). Therefore, there is significant motivation to take
advantage of complementary information on various aspects of
neuropathology. This study addresses a knowledge gap in the
availability of multimodal tools for studying brain abnormalities
using different neuroimaging modalities.

In this study, a 3D CNN ensemble deep learning model
framework with multimodal neuroimaging data was exploited to
identify children with DBDs. The dMRI, sMRI, and rs-fMRI data
from a subsample of children enrolled in the Adolescent Brain
Cognitive Development (ABCD) Study (Casey et al., 2018) were
used as the input data. Furthermore, the brain regions involved
in classifying children with DBDs were identified utilizing Grad-
CAM that illustrated the discrimination power of the classifier
and the ability to identify neuroimaging phenotypes for DBDs.
To assess improvements offered by the ensemble learning, the
results were compared with those obtained using the three
neuroimaging modalities individually; they were also compared
with those obtained using two other readily available deep-
learning frameworks, Brainnet CNN and an MsRNN, model
with rs-fMRI data. We hypothesized that the classification
performance of the ensemble deep learning model will be
significantly better than the single modality models.

2. MATERIALS AND METHODS

2.1. Dataset
Data used in this study came from the ABCD Study that recruited
11,878 children (48% female; 52% male) between 108 and 120
months of age across 21 sites in the United States. A detailed
description of the recruitment, demographics, physical health,
and mental assessment and imaging protocols for the study can
be found elsewhere (Barch et al., 2018; Casey et al., 2018; Garavan
et al., 2018). The baseline ABCD Study data used in this study
were from the annual 2.0.1 data release and can be downloaded
from the National Institute of Mental Health (NIMH) Data
Archive1. The data is available to qualified researchers at no
cost after their NIMH Data Archive Data Use Certification has
been approved. Children with DBDs were identified using the
Child Behavior Checklist (CBCL) and the Schedule for Affective
Disorders and Schizophrenia for School-Age Children-Present
and Lifetime version for DSM-5 (K-SADS-PL) (Hawes et al.,
2020). Specifically, the criterion included children who: (i) scored
at or above the borderline clinical range (i.e., T-scores ≥67)
on either the CBCL DSM-oriented conduct problems subscale

1https://dx.doi.org/10.15154/1504041

or oppositional defiant problems subscale; or (ii) received a
K-SADS-PL conduct disorder or oppositional defiant disorder
diagnosis. Based on this criterion, there were 1,100 children
with minimally preprocessed data with all three neuroimaging
modalities, i.e., dMRI, sMRI, and rs-fMRI.

2.2. Preprocessing of ABCD Study
Minimally Preprocessed Data
DTI data were preprocessed using FSL (FMRIB’s Software
Library2) scripts, which were used to perform nonlinear
registration and projection onto an alignment-invariant tract
representation of fractional anisotropy (FA) and mean diffusivity
(MD). First, diffusion tensor models were fit at each voxel by
using FMRIB’s Diffusion Toolbox (FDT, part of FSL). Second,
brain extraction was performed using the brain extraction tool
(BET) (Smith, 2002). Third, nonlinear registration was done,
thereby aligning all FA and MD images to a FMRIB58_FA
standard-space image, which has a 1 × 1 × 1 mm resolution, as
the target. Finally, all images were resampled back to the 2×2×2
mm FSL default MNI152 standard-space template resolution.
Figure S1 shows an example DTI image.

The sMRI T1-weighted images were preprocessed mainly
using the FSL software. First, extraction of the brain tissue from
the skull was performed by using BET. Second, registration to
standard space images was carried out using FLIRT (Jenkinson
and Smith, 2001; Jenkinson et al., 2002). Third, registration
from high-resolution structural to the FSL default MNI152
standard space was then further refined using FNIRT nonlinear
registration (Andersson et al., 2007a,b). Finally, the FMRIB’s
Automated Segmentation Tool (FAST) (Zhang, 2001) was used to
segment the brain 3D-image into three different tissue types: (i)
gray matter; (ii) white matter; and (iii) cerebrospinal fluid (CSF).
Figure S2 shows an example sMRI image.

The rs-fMRI data preprocessing was carried out using
FEAT (FMRI Expert Analysis Tool) Version 6.00, a part of
FSL. Registration to high-resolution structural and the FSL
default MNI152 standard space images was carried out using
FLIRT. Registration from high-resolution structural to standard-
space was further refined using FNIRT nonlinear registration.
Additionally, the following pre-statistics processing was applied:
(i) motion correction using MCFLIRT (Jenkinson et al., 2002);
(ii) non-brain removal using BET; (iii) spatial smoothing using
a Gaussian kernel of FWHM 8.0 mm; (iv) grand-mean intensity
normalization of the entire 4D dataset by a single multiplicative
factor, which was done by default in all the fMRI software
packages to ensure each image scan had roughly the same mean;
and (v) high-pass temporal filtering (Gaussian-weighted least-
squares straight-line fitting, with sigma = 50.0 s). The Pearson
seed-based correlation values were calculated for four regions
of interest, namely posterior and anterior cingulate cortex (PCC
and ACC), medial prefrontal cortex (mPFC) and ventral caudate,
which are known to be affected in children with DBDs (Alegria
et al., 2016). Figure S3 shows an example rs-fMRI image for the
ACC.

2www.fmrib.ox.ac.uk/fsl
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TABLE 1 | Demographic and clinical characteristics of the study pool.

Characteristic
DBDs TD p-value

Mean SD % Mean SD %

Demographics

Age (months) 118.3 7.7 118.7 7.4 0.38

Sex (male) 61.6 62.2 0.85

Race

African American 16.2 14.0

Caucasian 54.0 53.8
0.44

Hispanic 16.2 19.5

Other 13.6 12.7

Clinical

CBCL CP subscale 63.6 8.13 50 0 <0.001

CBCL ODD subscale 63.9 7.44 50 0 <0.001

KSADS-PL CD diagnosis 29.6 0 <0.001

KSADS-PL ODD diagnosis 73.3 0 <0.001

FIGURE 1 | Schematic of the 3D CNN model. The number of input data channels is not shown because it varies depending on the input modality.

Children were removed from the study pool following
preprocessing due to high motion (framewise displacement >

0.25 mm), misalignment, and registration failures. As a result,
the complete preprocessed data were available for 550 children
and a matching number of children in age and sex without
DBDs (typically developing, TD) were selected from the ABCD
Study data as the control group. Table 1 shows the demographic
and clinical characteristics of the final study pool. Descriptive
statistics show that the groups were equivalent on demographic
variables and significantly different on clinical scores.

2.3. Ensemble Learning
Three multichannel 3D CNNs whose inputs were dMRI, sMRI,
and rs-fMRI, respectively, were trained in this study to classify
children with DBDs and TD children. The goal for the 3D
CNNs was to learn the mapping between input (features related
to the microstructural integrity and gross anatomical structure
of the brain, and resting-state functional patterns) and label
(TD children and children with DBDs), so that the 3D CNNs
can predict DBDs in previously unseen children. As shown in
Figure 1, each 3D CNN model had two convolution blocks each
consisting of a 3D convolutional layer (kernel size 3, stride 1),

a ReLU activation layer, and a max-pooling layer (kernel size
2, stride 2). The number of feature channels were 4 and 8 for
the convolution layers, respectively. The last layer was a fully
connected layer with 64 neurons to combine the feature vectors,
and a dropout layer was used to reduce model overfitting. The
output was a softmax classification layer. The input channels for
the three 3D CNNmodels were as follows: (i) dMRI model—two
channels for FA andMD values; (ii) sMRImodel—three channels
for gray matter, white matter, and CSF; and (iii) rs-fMRI model—
four channels for Pearson correlation of seed regions ACC, PCC,
mPFC, and ventral caudate. The three models were combined
in an ensemble learning strategy that gave equal weight during
maximum voting of the softmax output for classifying children
with DBDs and TD children.

The 3D CNN models were trained with mini-batch sizes
of 32 with early stopping conditioned on validation accuracy.
The binary cross-entropy was used as the loss function and
the neural network weights were optimized using the Adam
optimizer. The learning rate and gradient decay were set to 0.001
and 0.9, respectively. The squared gradient decay, epsilon, and
maximum epochs were set to 0.9, 0.001, and 50, respectively. No
attempt was made to optimize the aforementioned parameters.
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FIGURE 2 | Schematic of Brainnet CNN and MsRNN architecture. (Top) Brainnet CNN; the edge to edge (E2E) layer uses a crosshair convolution filter, and the edge

to node (E2N) layer uses a 1D convolution row filter. (Bottom) MsRNN; three varied convolutions are first performed in the input layer, the output is then

concatenated, and finally maximum pooled before being fed into the gated recurrent units (GRUs).

FIGURE 3 | Typical receiver operating characteristic curves for different models.

To ensure that all 3D CNN models relied on information from
the same voxels, the FSL default MNI152 standard-space mask
was applied to the voxel-level data before feeding into the 3D
CNN model (Khosla et al., 2019). This step removed voxels that
may have emerged outside the standard brain template because
the preprocessing transformationmatrix does not create the exact
brain boundary.

2.4. Brainnet CNN
As shown in Figure 2, input to the Brainnet CNN was
a functional connectivity matrix obtained using timeseries
extracted from 70 resting-state networks, which were identified
using publicly available 70-component independent component
analysis maps (Smith et al., 2009). The blood oxygenation level-
dependent (BOLD) timeseries were extracted from the 70 brain
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TABLE 2 | Classification performance in percentage.

Method Modality
Accuracy Sensitivity Specificity F1-score

Mean (SD) p-value Cohen’s d Mean (SD) Mean (SD) Mean (SD)

3D CNN Ensemble 72 (4.5) Proposed model 70 (17.0) 72 (15.6) 70 (9.0)

dMRI 64 (2.6) <0.001 2.20 60 (16.0) 67 (14.3) 61 (9.7)

3D CNN sMRI 66 (2.2) <0.001 1.85 64 (11.2) 65 (13.2) 64 (6.4)

rs-fMRI 66 (3.0) 0.002 1.57 62 (15.4) 69 (16.4) 64 (7.2)

BrainnetCNN rs-fMRI 62 (2.9) <0.001 2.67 60 (7.3) 64 (4.3) 61 (4.5)

MsRNN rs-fMRI 62 (2.5) <0.001 2.79 56 (7.7) 68 (8.0) 59 (4.4)

areas by averaging the BOLD signal over all voxels belonging to
each brain area. The timeseries were detrended and demeaned,
and the data were bandpass filtered in the range of 0.01–0.15 Hz
to improve identification of the resting-state fluctuations (Menon
and Krishnamurthy, 2019a). The functional connectivity matrix
was obtained using Pearson correlation with normalization to
z-scores using the Fisher transformation.

The Brainnet CNN model was implemented in Python by
modifying publicly available scripts (Kawahara et al., 2017). The
Brainnet CNN model had an edge-to-edge (E2E) layer with four
filters, followed by a edge-to-node (E2N) layer with four filters,
and finally a dense layer with two neurons. A leaky ReLU non-
linearity with alpha equal to 0.33 was applied to the output
of each layer except the last layer, which was a softmax layer.
Dropout regularization with a rate of 0.8 was used for the edge-
to-node layer and cross-entropy loss was used to optimize the
classification model. The models were trained for 1,000 iterations
using stochastic gradient descent with a momentum equal to 0.9.
The learning rate was set to 0.001 and a decay of 0.0005 was used
for the classificationmodel. No attempt wasmade to optimize the
aforementioned parameters.

2.5. Multi-Scale Recurrent Neural Network
Figure 2 shows a schematic of the MsRNN used in this study.
The timeseries extracted from 70 resting-state networks that were
input into the Brainnet CNN were also used as the input to an
MsRNN. The dynamic correlation connectivity values of 2,415
edges were calculated with a window length of 85 TR and step
size of 5 TR (Menon and Krishnamurthy, 2019a). The MsRNN
utilized three different scales of 32 1D convolutional filters (2
TR, 4 TR, and 8 TR, TR = 0.8 s), one concatenation layer, one
max-pooling layer of kernel size 3, a two-layer stacked gated
recurrent unit GRU with 32 filters which were densely connected
in a feed-forward manner, and an averaged layer that integrated
the whole sequence followed by a dense layer of 32 neurons
before the softmax classification layer. Dropout layers were used
before and after the dense neurons with 50 and 20% dropout,
respectively, and L1 and L2 regularization of 0.01 was used to
avoid overfitting the data. The MsRNN was trained in Python
following Yan et al. (2019) with a mini-batch size of 32, and
included early stopping conditioned on validation accuracy and
a learning rate of 0.001. The binary cross-entropy was used as
the loss function, and the neural network weights were optimized

using the Adam optimizer. No attempt was made to optimize the
aforementioned parameters.

3. RESULTS

3.1. Experiments
To test the efficacy of the multimodal data ensemble, a
ten-fold cross-validation (CV) strategy with maximum voting
was investigated. The Grad-CAM method was applied to the
predicted output, and the results for all the children with
DBDs and TD children were averaged to delineate the global
trends of the important regions involved in the classification. To
benchmark the performance of the ensemble learning approach,
the results were compared to those obtained from: (i) the three
3D CNN models used in the ensemble learning considered
individually; (ii) Brainnet CNN; and (iii) MsRNNmodel.

3.2. Classification Performance
Figure 3 shows typical receiver operating characteristic curves
and Table 2 shows the performance of the different methods
for classifying children with DBDs and TD controls. With
10-fold cross-validation, the multimodal ensemble model with
maximum voting resulted in an average prediction accuracy to
72%. The average prediction accuracies for dMRI, sMRI, and
rs-fMRI single modalities were 64, 66, and 66%, respectively,
compared to 62% with the Brainnet CNN and MsRNN. Table 2
also shows the multimodal ensemble model to have higher
sensitivity, specificity, and F1-score compared to the other
models considered.

Statistical results from two-sample t-tests were used to
compare the accuracy of the classification performance of the
different models. The higher accuracy of the proposed ensemble
model compared to all the other models was significant (highest
p-value was 0.002) with a very large to huge effect size calculated
as Cohen’s d (Sawilowsky, 2009). Overall, as hypothesized, the
classification performance was significantly higher using the
ensemble learning model because it utilized complementary
information from the three different modalities. The results
also indicated the superiority of voxel-based 3D CNN models
compared to network-level models, such as Brainnet CNN
and MsRNN.
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FIGURE 4 | Axial views of voxels primarily contributing to children classification in dMRI image. Green, common to DBD and TD groups; red, DBD group; blue, TD

group. The right side of each image corresponds with the right side of the brain.

FIGURE 5 | Axial views of voxels primarily contributing to children classification in sMRI image. Green, common to DBD and TD groups; red, DBD group; blue, TD

group. The right side of each image corresponds with the right side of the brain.

3.3. Visualization
To visualize the brain regions that primarily contributed to
children classification, Grad-CAM obtained for children with
DBDs and TD children were thresholded at 99 percentile to first

identify voxels with high gradient values. The brain regions that
primarily contributed toward classification were then identified
using the JHU ICBM-DTI-81 white-matter atlas for dMRI image
and the AAL atlas for sMRI and rs-fMRI images. Figures 4–6
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FIGURE 6 | Axial views of voxels primarily contributing to children classification in rs-fMRI image. Green, common to DBD and TD groups; red, DBD group; blue, TD

group. The right side of each image corresponds with the right side of the brain.

show axial views of voxels that primarily contributed to the
classification of children with DBDs and TD children in dMRI,
sMRI, and rs-fMRI images, respectively. Table 3 lists the top five
brain regions in the dMRI images and top ten in the sMRI and
rs-fMRI images of children with DBDs and TD children. Some of
the regions were common to both groups and are listed in green.
On the other hand, regions that were unique to children with
DBDs and TD children are listed in red and blue, respectively.
These unique regions are of interest because their contributions
outweigh the gradient contributions of common regions, hence
are highly class discriminative. Further, these unique regions are
evidence of abnormalities in children with DBDs because the
primarily contributing regions are all different from those in the
TD children.

3.4. 3D CNN Training Information
Time for training the 3D CNN model was similar for
the three modalities. It typically took around 150 min per
fold on Dell Precision 7,910 and 7,920 Tower workstations
with Intel Xeon processors, 128 GB RAM and 1 GB GPU.
Figures S4, S5 show a typical training graph and Precision-Recall
curves, respectively.

4. DISCUSSION

This was the first neuroimaging study to consider the
classification of children with DBDs. This is a challenging
problem because DBDs are often comorbid with other disorders,
such as attention-deficit/hyperactivity disorder, anxiety, and
depression. The multimodal ensemble learning approach for

diagnosing DBDs with voxel-based 3D CNN is a novel
approach and the accuracy of the ensemble model increased
by 6–10% compared to other models. The maximum voting
in the ensemble learning method simulates how clinicians
typically make decisions. Given that brain abnormalities
are heterogeneous, it is naturally advantageous to utilize
information from multimodalities. The maximum voting is
the simplest and easiest ensemble method that can be
applied to 3D CNN models. The maximum voting strategy
also ensures that the results are not biased toward any
single modality, but will take into account all available
information. 3D CNN models, unlike traditional machine
learning methods, such as artificial neural networks or support
vector machines are well suited to include the spatial relations
in the 3D neuroimaging data, which are known to affect
brain functioning. Furthermore, traditional machine learning
methods will overfit the data and reduce the validation
classification accuracy with high-dimensional 3D neuroimaging
training data.

Grad-CAM reveals the discriminant regions in the brain that
contributed to the classification of children with DBDs. As shown
in Table 3, most of these regions corroborate with results from
past studies on abnormal development in children with DBDs.
To mention a few, alterations in the white matter integrity of
the left inferior fronto-occipital fasciculus were suggested as a
potential biomarker of conduct disorder (Graziano et al., 2021).
Similarly, superior longitudinal fasciculus areas were shown to
have differences in diffusion measurements that suggested poor
maturation of structural connections (Hummer et al., 2015) in
children with DBDs. Morphological aberrance of frontoparietal
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TABLE 3 | Brain regions primarily contributing to children classification.

dMRI sMRI rs-fMRI

Superior longitudinal fasciculus L Middle frontal gyrus L Medial superior frontal gyrus L

Superior longitudinal fasciculus L - temporal

part

Superior frontal gyrus L Superior frontal gyrus, dorsolateral L

Inferior longitudinal fasciculus L Angular gyrus L Rectus gyrus L (Zhang et al., 2017; Cao et al., 2018)

Superior longitudinal fasciculus R

(Haney-Caron et al., 2014; Hummer et al.,

2015; Lindner et al., 2016; Sarkar et al., 2016;

Puzzo et al., 2018)

Precentral gyrus L Rectus gyrus R

Superior longitudinal fasciculus R - temporal

part

Superior frontal gyrus R Middle frontal gyrus L (Lu et al., 2015; Zhang et al.,

2015; Cao et al., 2018)

Inferior fronto-occipital fasciculus L

(Haney-Caron et al., 2014; Lindner et al., 2016;

Graziano et al., 2021)

Middle frontal gyrus R (Huebner et al., 2008;

Fairchild et al., 2015)

Medial orbital superior frontal gyrus L

Forceps major (Lindner et al., 2016) Postcentral gyrus L (Hyatt et al., 2012) Medial superior frontal gyrus R (Zhang et al., 2017;

Cao et al., 2018)

Middle temporal gyrus L (Huebner et al., 2008;

Fairchild et al., 2011)

Inferior temporal gyrus L (Zhang et al., 2015; Cao

et al., 2018; Werhahn et al., 2020)

Inferior parietal lobule L (Wallace et al., 2014) Temporal pole superior temporal gyrus L (Cao et al.,

2018)

Middle occipital gyrus R (Huebner et al., 2008) Inferior parietal lobule L (Zhang et al., 2015)

Inferior frontal gyrus, triangular part L (Huebner

et al., 2008; Fairchild et al., 2011; Hyatt et al., 2012)

Postcentral gyrus R (Lu et al., 2015; Cao et al.,

2018, 2019; Lu F. et al., 2020; Werhahn et al., 2020)

Inferior frontal gyrus, opercular part L (Huebner

et al., 2008; Fairchild et al., 2011; Hyatt et al., 2012)

Supramarginal gyrus R (Zhang et al., 2015, 2017)

Inferior frontal gyrus, opercular part R (Hyatt et al.,

2012; Fairchild et al., 2013)

Precentral gyrus R (Lu F. et al., 2020; Werhahn

et al., 2020)

Precentral gyrus R (Hyatt et al., 2012; Fairchild

et al., 2013; Jiang et al., 2015)

Middle temporal gyrus R (Lu et al., 2015; Zhang

et al., 2015; Wu et al., 2017)

Hippocampus R (Waller et al., 2020) Middle frontal gyrus R (Zhang et al., 2015; Cao

et al., 2019)

Inferior frontal gyrus, opercular part R (Zhang et al.,

2015; Cao et al., 2018, 2019)

Inferior frontal gyrus, triangular part R (Zhang et al.,

2015; Cao et al., 2018, 2019)

Superior frontal gyrus R (Zhang et al., 2017; Cao

et al., 2018)

Past studies corroborating with results obtained are shown in parentheses. Green, common to DBD and TD groups; red, DBD group; blue, TD group; L, left hemisphere; R, right

hemisphere.

and temporal gyrus areas can lead to disruptive behavior
(Huebner et al., 2008; Hyatt et al., 2012; Fairchild et al., 2015)
and most of these regions were found to be class discriminative
in this study. Functional connectivity alterations have been
reported for children with DBDs, and class discriminative
regions found using grad-CAM were consistent with many
of the reported regions (Lu et al., 2015; Werhahn et al.,
2020). Functional connectivity values for higher-order cognitive
functional regions such as the middle frontal gyrus and superior
frontal gyrus were also found to be class discriminative (Lu et al.,
2015).

The 72% average accuracy obtained using the ensemble
learning approach is good. Because there are no other studies
on classifying children with DBDs to benchmark against,
some representative neuroimaging studies using deep learning
were reviewed to qualify the multimodal ensemble model

performance. El Gazzar et al. (2019) trained a 1D-CNN on a
publicly available autism dataset with nearly 2000 participants to
classify rs-fMRI images with an accuracy of ∼65%. The accuracy
improved to 66% with a 3D CNN (Thomas et al., 2020). Lu H.
et al. (2020) obtained an accuracy of 61% by applying multi-
kernel fuzzy clustering based on an auto-encoder to classify
participants with autism spectrum disorder (ASD) using the
Autism Brain Imaging Data Exchange (ABIDE) database (nearly
1,050 participants). Using an ensemble approach on ABIDE
data, a classification accuracy of 72.3% was obtained by Khosla
et al. (2019). Similar to DBDs, classification of ASD using
machine learningmethods is also considered challenging because
it varies from person-to-person in severity and combination of
symptoms. Other studies with a classification accuracy >70% are
typically in cases where the sample size is <200 (see Vieira et al.,
2017; Zhang et al., 2020 for an overview). The sample size is an
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important parameter to consider because a negative relationship
between accuracy and sample size has been noted (Pulini et al.,
2019).

5. LIMITATIONS AND FUTURE
DIRECTIONS

The robustness of the training models could not be determined
by using a leave-site-out cross-validation scheme for the ABCD
Study data that was collected from 21 sites with optimized and
harmonized measures and procedures (Casey et al., 2018). A k-
fold cross-validation was used instead because the number of
children from each site in the study pool was imbalanced. The
number of children with DBDs varied among the different sites,
from a low of 3 to a maximum of 113.

This study investigated the superiority of ensemble learning
for classifying brain disorders. The sample size used here was
relatively large compared to published works in the field, but
it was probably not large enough to take full advantage of
CNN models. The models used in this research employed a
small number of filters with a shallow architecture, and this
decreased the deep learning “black box” depth and not fully
fit the training data; and it reduced the computational burden,
which is advantageous. A wide range of choices were available
to increase the depth of the CNN architecture and optimize
the training parameters. Hyperparameter optimization of the
CNN architecture and training parameters were not performed
because the focus here was to investigate the superiority of
multimodal ensemble learning with simple models. Tuning
the hyperparameters using a grid or random search method,
for example, is computationally intense. A number of different
optimization algorithms have been proposed (Yu and Zhu, 2020);
developing an efficient scheme to optimize the hyperparameters
is a topic for future investigation.

For the Brainnet CNN and MsRNN, there are unexplored
options for selecting an atlas. In this study, a commonly used
functional atlas was considered with few filters similar to the
multimodal CNN. Correlation does not account for higher-
order interactions because it is a first-order transformation (El
Gazzar et al., 2019); therefore, different voxel measurements
for rs-fMRI, such as entropy (Menon and Krishnamurthy,
2019b) and other connectivity measures can be investigated.
The dynamic nature of the functional connectivity was not
analyzed due to the increased computational requirements. Also,
no comparison was performed with linear models because a
voxel-wise analysis of linear models would suffer from the issues
of high dimensionality.

Two strategies that may deserve attention are transfer learning
and data augmentation (Vieira et al., 2017; Zhang et al., 2020).
Transfer learning involves applying features learned from one
dataset to tune another similar dataset. Gong et al. (2021)
successfully applied transfer learning strategy exploiting big data
from UK Biobank (Miller et al., 2016) in the Predictive Analysis
Challenge 2019 dataset, achieving first place. Data augmentation
is a strategy used in computer vision applications to enlarge

the sample size by applying transformations to the data. Data
augmentation methods are only now being addressed for medical
imaging classification tasks, but further studies are needed for
investigating disorders using 3D brain images with voxel-level
data (Zhang et al., 2020).

6. CONCLUSION

The recent availability of public neuroimaging data, such as
the ABCD Study, UK Biobank (Miller et al., 2016), and
Child Mind Institute-Healthy Brain Network (Alexander et al.,
2017), help researchers to develop novel machine learning
techniques for studying brain diseases and disorders. The
ensemble method with multiple modalities is ideally suited to
model heterogeneity that is typical with brain abnormalities.
3D CNN together with visualization using grad-CAM is a
promising way to identify neuroimaging phenotypes for the
diagnosis of DBDs. Future studies are needed to investigate the
use of other neuroimaging modalities to better understand the
pathophysiology of brain disorders.
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Complex problem solving is a high level cognitive task of the human brain, which has

been studied over the last decade. Tower of London (TOL) is a game that has been

widely used to study complex problem solving. In this paper, we aim to explore the

underlying cognitive network structure among anatomical regions of complex problem

solving and its subtasks, namely planning and execution. A new computational model

for estimating a brain network at each time instant of fMRI recordings is proposed. The

suggested method models the brain network as an Artificial Neural Network, where the

weights correspond to the relationships among the brain anatomic regions. The first

step of the model is preprocessing that manages to decrease the spatial redundancy

while increasing the temporal resolution of the fMRI recordings. Then, dynamic brain

networks are estimated using the preprocessed fMRI signal to train the Artificial Neural

Network. The properties of the estimated brain networks are studied in order to identify

regions of interest, such as hubs and subgroups of densely connected brain regions. The

representation power of the suggested brain network is shown by decoding the planning

and execution subtasks of complex problem solving. Our findings are consistent with the

previous results of experimental psychology. Furthermore, it is observed that there are

more hubs during the planning phase compared to the execution phase, and the clusters

are more strongly connected during planning compared to execution.

Keywords: fMRI, machine learning, brain networks, tower of London (TOL), complex problem solving

1. INTRODUCTION

Complex problem solving is a very crucial ability of the human brain, which covers a large number
of high-level cognitive processes, including strategy formation, coordination, sequencing of mental
functions, and holding information online. These complex high-level cognitive processes make the
inner workings of problem solving a challenging task.

The standard method for neuro-analysis of complex problem solving in the literature is to study
the fMRI data recorded while the subjects play the Tower of London (TOL) game, designed by
Shallice (1982). TOL game consists of three bins having different capacities with colored balls placed
in the bins; the aim is to rearrange the balls from their initial state to a predetermined goal state
while moving one ball at a time and taking into consideration the limited capacity of each bin (as
shown in Figure 1).

TOL game has been primarily employed to study the effect of various properties of complex
problem solving performance in healthy subjects. The predictive power of working memory,
inhibition, and fluid intelligence on TOL performance has been investigated with consideration
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FIGURE 1 | Example tower of London (TOL) puzzle.

of factors such as age, gender, exercise, etc. (Unterrainer et al.,
2004, 2005; Zook et al., 2004, 2006; Boghi et al., 2006; Albert and
Steinberg, 2011; Chang et al., 2011; Desco et al., 2011; Kaller et al.,
2012). Additionally, TOL has been used to investigate the effect
of various clinical disorders on functions associated with the
prefrontal cortex such as planning. For example, the task has been
utilized in neuroimaging studies to identify executive dysfunction
by examining differential cognitive activation patterns in people
suffering from neurological disorders like epilepsy, seizures,
depression, Parkinson’s and schizophrenia (Goethals et al., 2005;
Rasser et al., 2005; Rektorova et al., 2008; MacAllister et al., 2012).

The classic work of Newell and Simon (Newell et al.,
1957; Simon and Newell, 1971) hypothesized three distinct
phases of complex problem solving: construction of problem
representation, elaboration to search for operators to solve the
problem, and execution to implement the solution. Despite
being a well respected theory, there is little to no evidence
from cognitive neuroimaging that supports this hypothesis
directly. Consequently, refinements of the theory, such as
online planning in which elaboration and execution phases
are interspersed, and mechanisms such as schema development
that may suggest qualitative differences between good and
poor problem-solvers, are understood even less. The primary
reason for this state of affairs is that cognitive neuroimaging
in general and fMRI analysis, in particular, tends to ignore
the temporal aspect of how brain activation and network
connectivity evolve during complex cognitive tasks. Further,
much of the existing methods have tended to test theoretical
cognitive models by searching for brain data that fit those
models, rather than using the brain data themselves to inform us
about cognition.

Numerous studies have proposed various computational
models in order to build brain networks from fMRI
measurements, both during cognitive tasks or during resting
state. These studies represent a shift in the literature toward
brain decoding algorithms that are based on the connectivity
patterns in the brain motivated by the findings that these
patterns provide more information about cognitive tasks than
the isolated behavior of individual groups of voxels or anatomical

regions (Lindquist, 2008; Ekman et al., 2012; Shirer et al., 2012;
Richiardi et al., 2013; Onal et al., 2017). Some of these studies
focused on the pairwise relationships between voxels or brain
regions. For example, Pearson correlation has been used in
order to construct undirected functional connectivity graphs at
different frequency resolutions in Richiardi et al. (2011). Also,
pairwise correlations and mutual information have been used
in order to build functional brain networks in various studies
aiming to investigate the network differences between patients
with Schizophrenia or Alzheimer’s disease and healthy subjects
(Lynall et al., 2010; Menon, 2011; Kurmukov et al., 2017). Others
used partial correlation along with constrained linear regression
to generate brain networks in Lee et al. (2011).

In our previous studies, we take advantage of the locality
property of the brain by constructing local mesh networks
around each brain region. Then, we represent the entire brain
network as an ensemble of local meshes. In these studies,
we estimated the Blood-Oxygenation Level Dependent (BOLD)
response of each brain region as a linear combination of
the responses of its "closest" neighboring regions. Then, we
solved the systems of linear equations using various regression
techniques. Our team applied Levinson-Durbin recursion in
order to estimate the edge weights of each local star mesh, where
the nodes are the neighboring regions of the seed brain region
(Fırat et al., 2013; Alchihabi et al., 2018). We also used ridge
regression to estimate edge weights while constructing the local
mesh networks across windows of time series of fMRI recordings
(Onal et al., 2015, 2017).

In this study, we present a novel approach for estimating
dynamic brain networks, which represent the relationship among
the brain anatomic regions at each time instant of the fMRI
recordings. The approach models the relationship among the
anatomical brain regions as an Artificial Neural Network (ANN),
where the edge weights correspond to the arc weights of the
brain network. The idea of modeling the brain network as an
ANN is first introduced in our lab (Kivilcim et al., 2018), where
the model can be constructed to estimate both directed and
undirected brain graphs. In this study, we further extend this
idea to estimate dynamic brain networks. We also explore the
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validity and representation power of the suggested brain network
by analyzing its statistical properties using themethods suggested
in Bassett and Bullmore (2006), Power et al. (2010), Rubinov and
Sporns (2010), and Park and Friston (2013).

Several network measures, such as measures of centrality,
which identify potential hubs and measures of functional
segregation, which detect densely interconnected clusters of
nodes, provide means to analyze both individual components of
brain network and the brain network as a whole. As a result,
these network measures reveal and characterize various aspects
of inter-dynamics of brain regions enabling us to analyze and
compare different brain network snapshots. The properties of
the dynamic brain networks are studied in order to identify the
active anatomical regions during both planning and execution
phases of complex problem solving. Potential hubs and clusters of
densely connected brain regions are identified for both subtasks.
Furthermore, the distinctions and similarities between planning
and execution networks are highlighted. The results identify
both active and inactive hub regions as well as clusters of
densely connected anatomical regions during complex problem-
solving. In addition, results show that there are more potential
hubs during the planning phase compared to the execution
phase. Also, the clusters of densely interconnected regions are
significantly more strongly connected during planning compared
to execution. Finally, we studied the decoding power of the
suggested brain networkmodel by using simplemachine learning
methods to classify two phases of complex problem solving,
namely, planning and execution.

2. TOL EXPERIMENT PROCEDURE

In this section, we introduce the details of the experiment as well
as data collection and preprocessing methods.

2.1. Participants and Stimuli
18 college students aged between 19 and 38 participated in the
experiment after signing informed, written consent documents
approved by the Indiana University Institutional Review Board.
The subjects solved a computerized version of TOL problem; two
configurations were presented at the beginning of each puzzle:
the initial state and the goal state. The subjects were asked to
transform the initial state into the goal state using the minimum
number of moves. However, the subjects were not informed of
the minimum number of moves needed to solve a given puzzle
nor of the existence of multiple solution paths.

2.2. Procedure
Each subject underwent a practice session before entering the
scanning session to acquaint subjects with the TOL problem. The
subjects were given the following instructions: "You will be asked
to solve a series of puzzles. The goal of the puzzle is to make the
’start’ or ’current’ state match the ’goal’ state (They were shown
an example). Try to solve the problems in the minimum number
of moves by planning ahead. Work as quickly and accurately as
possible, but accuracy is more important than speed."

The scanning session consisted of 4 runs, each run included
18 timed puzzles, with a 5-s planning only time slot during

which subjects were not allowed to move the balls. However, they
were allowed to continue planning after the 5 s planning only
time slot if they chose to do so. Following every puzzle, there
was a 12-s rest period where subjects focused on a plus sign in
the center of the screen. Each run was also followed by a 28-s
fixation period.

The planning task is defined from the start of the puzzle
until the subject’s first move. The execution task is defined from
the subject’s first move until the end of the puzzle. During
the experiments, both planning and execution times change
across the subjects, runs and puzzles. The average planning time
instances per puzzle is 5.91 and the average time instances for
execution per puzzle is 5.63 over all puzzles and subjects. The
average total planning time instances per run is 106.35 and the
average total execution time instances per run is 101.28 over
all subjects. Figure 2 shows the total number of planning and
execution instances for each run of all subjects. Each mark on the
horizontal axis refers to a given run of a specific subject. As it can
be observed from Figure 2, the data is quite balanced between
the planning and execution phases (average of 101 planning and
106 execution across the subjects per each run). For this reason,
we did not augment the classes or eliminate some samples in the
dataset for balancing the classes. The details of the dataset are
summarized in Table 1.

2.3. fMRI Data Acquisition and Preliminary
Analysis
The fMRI images were collected using a 3 T Siemens TRIO
scanner with an 8-channel radio frequency coil located in the
Imaging Research Facility at Indiana University. The images were
acquired in 18 5 mm thick oblique axial slices using the following
set of parameters: TR = 1,000 ms, TE = 25 ms, flip angle = 60◦,
voxel size= 3.125 mm×3.125 mm×5 mm with a 1 mm gap.

The statistical parametric mapping toolbox was used
to perform the preliminary data analysis that included:
image correction for slice acquisition timing, resampling,
spatial smoothing, motion correction and normalization to
the Montreal Neurological Institute (MNI) EPI template.
Further details concerning the procedure and data acquisition
can be found in Newman et al. (2009) as we use the same
data/participants in this study. It is also worth noting that we
perform our analysis on all recorded puzzles, not only correctly
solved ones, given that the aim of this study is to investigate the
planning and execution networks in general. In future work,
we aim to study the differences in the planning and execution
networks between good problem-solvers and bad problem-
solvers; in that case, we will make the distinction between
correctly solved puzzles and unsolved puzzles. Furthermore, the
entirety of our analysis is performed on the raw fMRI recordings;
no first-level modeling or regressors are applied; rather, we use
the recorded time series as our raw BOLD response.

In order to investigate the inter-subject variability, we estimate
the mean values and variance of BOLD activation of each brain
anatomic region across all subjects. Figure 3 clearly shows the
relatively low variations of the BOLD activation around the mean
values of brain anatomic regions across 18 subjects.
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FIGURE 2 | The number of planning and execution instances for each run of all subjects. Horizontal axis indicates the subject ID for each run (there are total of 18

subject x4 runs = 72 runs), whereas the vertical axis shows the number of time instances for planning (blue) and execution (orange) per run.

TABLE 1 | Summary of TOL dataset.

# of Subjects 18

# of Runs/subject 4

# of Puzzles/run 18

Avg. Planning instances/puzzle 5.91

Avg. Execution instances/puzzle 5.63

Avg. Planning instances/run 106.35

Avg. Execution instances/run 101.28

Total planning instances for 18 x 4 runs 7,657

Total execution instances for 18 x 4 runs 7,292

Note that the planning instances (7657) and execution instances (7292) are quite

balanced.

3. MODELING DYNAMIC BRAIN NETWORK
AS AN ARTIFICIAL NEURAL NETWORK

Can we model the relationship among the anatomic regions as
an Artificial Neural Network? If so, what is the validity and
representation power of this network to analyze cognitive tasks
such as complex problem solving? In this section, we suggest a
computational model to represent the complex problem solving
task as a dynamic brain network. In the next section, we shall
explore the validity of this network and try to analyze the complex
problem solving task of the human brain.

3.1. Preprocessing of the fMRI Recordings
In order to be able to estimate a dynamic brain network among
the anatomic regions, we need to process the raw fMRI data for

• representation of anatomic regions,
• interpolation in time,
• injecting additive noise,

as explained below.

3.1.1. Representation of Anatomic Regions
Each anatomic region is represented by a time series using voxel
selection and averaging methods. Voxel selection reduces the

dimension of fMRI data (185,000 voxels per brain volume) and
eliminates the irrelevant voxels that do not contribute to the
underlying cognitive process. ANOVA method is used to choose
the most discriminative voxels and to discard the remaining ones
(Cox and Savoy, 2003; Pereira et al., 2009; Afrasiyabi et al., 2016).
The f -value score of each voxel vi is calculated from Equation (1):

f _scorei =
MSB(vi, ylabel)

MSW(vi, ylabel)
, (1)

where ylabel is the label indicating the subtask (Planning or
Execution).MSB(vi, ylabel) is the mean square value between raw
measured BOLD response of voxel i and the label vector ylabel,
which is calculated by Equation (2):

MSB(vi, ylabel) =
SSB(vi, ylabel)

dfbetween
, (2)

SSB(vi, ylabel) is the sum of squares between ylabel and vi, dfbetween
is the number of groups minus one. MSW(vi, ylabel) is the mean
square value within voxel i and the label vector ylabel and it is
calculated by Equation (3):

MSW(vi, ylabel) =
SSW(vi, ylabel)

dfwithin
, (3)

where SSW(vi, ylabel) is the sum of squares within group and
dfwithin is the degree of freedom within (total number of elements
in vi and ylabel minus the number of groups).

We order the voxels according to their f -value scores. Then,
the distribution of f -value scores of all voxels is plotted in order
to determine the number of voxels to retain. Voxel selection is
applied to the voxels of all brain regions except the ones located
in the cerebellum, which we exclude during network extraction.

Each anatomic region is represented by averaging the BOLD
response of the selected voxels, which resides in that region
defined by automated anatomical labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002) as shown in Equation (4):

rj =

∑
i∈ζ [j] vi

|ζ [j]|
(4)
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FIGURE 3 | Estimated mean values and variations of BOLD activation of each brain anatomic region, over 18 subjects. Horizontal axis shows the index of anatomic

regions, whereas the vertical axis shows the mean values (blue bars) and variances (black bars) of measured BOLD activation.

where rj is the representative BOLD response of region j, vi is
the raw measured BOLD response of voxel i and ζ [j] is the set
of selected voxels located in region j. The representative BOLD
responses,rj, enables us to investigate the role and contribution of
each region to the planning and execution phases of the problem
solving task.

3.1.2. Interpolation
It is well-known that despite its high spatial resolution, fMRI
signal has very low temporal resolution compared to EEG
signal. In this study, we interpolate the fMRI signal in order
to compensate for this drawback and study the effect of
interpolation for estimating the brain networks and on decoding
the planning and execution phases of TOL game.

In the TOL study, subjects solved a puzzle in at most 15 s
and the sampling rate, TR, is 1,000 ms. Interpolation is used
to increase the temporal resolution by estimating z extra brain
volumes between each two consecutive measured brain volumes.
As a result, the total number of available brain volumes for each
puzzle becomes n + z ∗ (n − 1), where n is the number of
measured brain volumes of a given puzzle. We use the cubic
spline interpolation function rather than linear interpolation
methods in order to prevent edge effects and smoothing out
the spikes between the measured brain volumes (McKinley and
Levine, 1998).

In order to analyze the effect of time interpolation and to
estimate an acceptable number of inserted brain volumes z, we
compare the Fourier Transform of the fMRI signal computed
before and after interpolation so that the frequency content of the
signal is not distorted by interpolation. The original single-sided
amplitude of the signal and the one obtained after interpolation
are compared in order to ensure that interpolation is preserving
the smooth peaks of the data in the frequency domain (Cochran
et al., 1967; Frigo and Johnson, 1998).

3.1.3. Injecting Gaussian Noise
When modeling a deterministic signal by a probabilistic method,
adding noise to the signal decreases the estimation error in most
of the practical applications. The final phase of preprocessing
is adding Gaussian noise to the interpolated time series of the
BOLD response in each anatomical region. For this purpose,

instead of just injecting white noise, a rather informed noise,
colorful Gaussian noise, is added. In order to reflect the
corresponding brain region’s properties, for each sample, the
additive noise sample is generated from a Gaussian distribution
havingmean and variance of that anatomical region. These newly
generated samples not only act like a natural regularizer to
improve the generalization performance of brain decoding but
also help making the Artificial Neural Network more stable when
estimating the edge weights of the brain networks (Matsuoka,
1992; Reed et al., 1992).

Given a representative time series from a particular brain
region, i represents the index of an anatomical region. The
new samples are generated with vector addition of noise while
preserving the signal-to-noise ratio (SNR) as in r̃j = rj+τj, where
τj is a noise vector sampled from N(αnoise µ(rj), βnoise σ 2(rj)),
αnoise and βnoise are the scaling factors which are set empirically,
to optimize the decoding performance.

3.2. Building Dynamic Brain Networks With
Artificial Neural Networks
The above preprocessingmethods yield a relatively high temporal
resolution and smooth time series for each anatomic region
compared to the row fMRI recordings.

In this section, we use the output of the preseprocessing
step to estimate the relationship among the time series of
anatomic regions at each time instance to generate a dynamic
brain network, where the arc weights vary with respect to
time instances.

3.2.1. Partitioning the Time Series Into Fixed Size

Internals and Defining the Brain Network for Each

Window
As the first step, we partition each time series, which represents an
anatomical region, into fixed-size windows. Each window,win(t),
is centered at the measured brain volume at time instance, t. The
size of each window is Win_Size = z + 1 brain volumes, where
z is the number of interpolated brain volumes in each window.
Equation (5) shows the time instances included in each window.
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win(t) =

[
t −

⌊ z
2

⌋
, . . . , t, . . . , t +

⌈ z
2

⌉ ]
(5)

We define a dynamic brain network, N(t) = (V ,W(t)), for
each time window win(t), where V is the set of nodes of the
graph corresponding to the brain anatomical regions andW(t) =
{wt,j,i|∀i, j ∈ V} is the directed weighted edges between the nodes
of the graph within time window win(t). The nodes of the graph
represent the AAL-defined brain regions (Tzourio-Mazoyer et al.,
2002), except for the regions located in the cerebellum. The
nodes are then pruned using voxel selection, as some anatomical
regions contribute no voxels at all and get deleted from the set of
nodes of the graph V .

Note that our aim is to label the BOLD responses measured
at each brain volume as it belongs to one of the two phases of
complex problem solving, namely, planning and execution. For
this purpose, we represent each brain volume measured at a time
instant t by a network, which shows the relationship among the
anatomical regions. This dynamic network representation will
allow us to investigate the network properties of planning and
execution subtasks.

Note also that the nodes, V , of the network are fixed to the
active anatomic regions, and our goal is only to estimate the
weights of the edges, W(t), of the brain network, N(t), for each
time instance, t For this purpose we adopt the method suggested
by our team in Kivilcim et al. (2018).

3.2.2. Forming Local Meshes
It is well-known that the human brain operates with two
contradicting principles, namely locality and centrality. Our
suggested network model incorporates these two principals by
defining a set of spatially local meshes then ensembling the local
meshes to form the brain network. This representation not only
avoids to define fully connected brain networks by omitting the
connectivity among irrelevant brain regions but also reduces the
computational complexity.

In order to define local meshes, for each window win(t), we
define the functional neighborhood matrix, �t , for each time
instant t. The entries of �t are binary, either 1 or 0, indicating
if there is a connection between two regions or not. The size of
the matrix isM×M, whereM is the number of brain anatomical
regions. The functional neighborhood matrix contains no self-
connections, thus, �t(i, i) = 0∀i ∈ [1,M]. Recall that the brain
regions are pruned by voxel selection. Thus, the regions which
do not contain any voxels have no in/out connections, and the
corresponding entries in �t are all zero.

The connectivity of each region to the rest of the regions is
determined by using Pearson correlation, as follows: first, for
every region i, we measure the Pearson correlation between its
BOLD response ri,t and the BOLD responses of all the other
remaining regions as shown below:

cor(ri,t , rj,t) =
cov(ri,t , rj,t)

σ (ri,t)σ (rj,t)
, (6)

where ri,t is the BOLD response of region i across time window
win(t), cov(ri,t , rj,t) is the covariance between the corresponding
BOLD responses of regions i and j. σ is the standard deviation
of the BOLD response of a given region. Thus, the higher the
Pearson correlation between two regions the closer they are to
each other in the functional neighborhood system.

Then, we select p of the regions with the highest correlation
scores with region i. Thus, a local mesh for each anatomic
region i is formed by obtaining the neighborhood set ηp[i], which
contains the p closest brain regions to region i. The degree of
neighborhood, p, is determined empirically as will be explained in
the next section. Finally, we define the �t(i, j) as the connectivity
between the regions i and j, using the constructed neighborhood
sets as follows:

�t(i, j) =

{
1, if j ∈ ηp[i]

0, otherwise.
(7)

Note that each anatomical region is connected to its p closest
functional neighbors. This approach forms a star mesh around
each anatomical region.

The ensemble of all of the local meshes creates a brain network
at each time instance. Note, also, that Pearson correlation values
are not used as the weights between two regions. They are just
used to identify the nodes of each local mesh formed around
an anatomical region. The estimated brain network becomes
sparser as p gets smaller. When p is set to the number of
anatomic regions,M, the network becomes fully connected. This
approach of defining the connectivity matrix makes the network
representation sparse for small p-values and constructs a network
that is connected in functionally closest regions, satisfying the
locality property of the human brain.

3.2.3. Estimating the Edge Weights of the Brain

Network
After having determined the edges of the brain graph using the
functional neighborhood matrix �t , all that is left is to estimate
the weights of these edges at each local mesh. At this point,
we could use the Pearson correlation values as edge weights
between two anatomic regions. However, Pearson values are
restricted to measure the connectivity among the pairs only. A
better approach is to consider the multiple relationships among
an anatomic region and all of its neighbors in the local mesh.
In order to estimate the edge weights in a mesh all at once,
we represent the time series of each region i (ri,t) as a linear
combination of its closest p-functional neighbors as shown in
Equation (8):

r̂i,t =
∑

j∈ηp[i]

wt,j,irj,t + ǫi,t . (8)

In Equation (8), r̂i,t is the representative time series of of region i
within the time window win(t), wt,j,i is the estimated edge weight
between node (region) i and node j at time instance t. ηp[i] is the
p-closest functional neighbors of region i.
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Ertugrul et al. (2016) showed that representing the time
series of an anatomic region as a linear combination of its
closest neighbors provides better performance compared to using
pairwise Pearson correlation in brain decoding. They estimated
the arc-weights for each mesh formed around region i for each
time window win(t) by minimizing the mean-squared error loss
function using Ridge regression. In this approach, the mean-
squared error loss function is minimized with respect to wt,j,i,
for each mesh, independent of the other meshes, where the
expectation is taken over the time-instances, in window win(t)
as shown in Equation (9).

E[(ǫi,t)
2] = E[(r̂i,t −

∑

j∈ηp[i]

wt,j,irj,t)
2]+ λ||wt,j,i||

2, (9)

where λ is the L2 regularization parameter whose value is
optimized using cross-validation. L2 regularization is used
in order to improve the generalization of the constructed
mesh networks. Note that the estimated arc-weights, wt,j,i 6=

wt,i,j. Therefore, the ensemble of meshes yields a directed
brain network.

In this study, we define an Artificial Neural Network to
estimate the values of mesh arc-weights for all anatomical regions
jointly in each time window, as proposed in Kivilcim et al.
(2018). In this method, we estimate the mesh arc-weights matrix
W(t) = {wt,j,i|j, i ∈ V} using a feed-forward neural network.
The architecture of this network consists of an input layer and
an output layer, both containingM nodes corresponding to each
anatomic region. The edges of the feed-forward neural network
are constructed using the neighborhood matrix �t . There is an
edge between node i of the output layer and node j from the input
layer, if �t(i, j) = 1.

The loss function of the suggested Artificial Neural Network
is given in Equation (10), where W is the weight matrix of the
entire neural network that corresponds to directed edge weights
of the brain graph andWi is the row of matrixW corresponding
to region i:

Loss(Outputi) = E[(ǫi,t)
2]+ λWT

i Wi

= E[(ri,t −
∑

j∈ηp[i]

wt,j,irj,t)
2]+ λWT

i Wi. (10)

We train the aforementioned Artificial Neural Network in order
to obtain the weights of the brain network at each time instance
t that minimize the loss function by applying a gradient descent
optimization method as shown in Equation (11),

w
(κ)
t,j,i = w

(κ−1)
t,j,i − αlearning

∂E[(ǫi,t)
2]

∂wt,j,i
, (11)

where w
(κ)
t,j,i is the weight of the edge from node j to node i at

epoch (iteration) κ , αlearning is the learning rate. The number of

epochs and learning rate used to train the network are optimized
empirically using cross-validation.

Finally, the weights of the above artificial neural network,
computed for each win(t), correspond to the edge weights of
the dynamic brain network, N(t) = (V ,W(t)), at each time
instant t. Thus, we refer to the brain networks using their window
indices in order to obtain a set of dynamic brain networks T =

{N(1),N(2), . . .N(tot_win)}, where N(t) is the brain network
for time window win(t) and tot_win is the total number of
time windows.

3.3. Network Metrics for Analyzing Brain
Networks
In this section, we introduce some measures which we will use to
investigate the network properties of each phase of the complex
problem solving task, namely, planning and execution, using the
estimated dynamic brain functional networks. The connectivity
patterns of anatomical regions are analyzed by the set of
network measures given below. Two separate sets of measures
are used, namely, measures of centrality and segregation. Since
our estimated brain networks are directed, we distinguish the
incoming and outgoing edges in the network while defining
the measures.

Recall that the suggested brain network N(t) = (V ,W(t))
consists of a set of nodes, V , each of which corresponding to one
of the M anatomical regions. W(t) is the dynamic edge weight
matrix with the entries, wi,j, representing the weight of the edge
from node i to node j. For the sake of simplicity, we omit the
time dependency parameter t, since we compute the network
properties at each time instant.

3.3.1. Measures of Centrality
Measures of centrality aim to identify brain regions that play a
central role in the flow of information in the brain network or
nodes that can be identified as hubs. It is commonly measured
using node degree, node strength and node betweenness
centrality, which are defined below.

3.3.1.1. Node Degree
The degree of a node is the total number of its edges as shown in
Equation (12), where degreei is the degree of node i, V is the set
of all nodes in the graph and ai,j is the edge between node i and
node j.

degreei =
∑

j∈V

ai,j, (12)

where ai,j takes value 0 if (wi,j == 0) and takes value 1 otherwise.
In the case of a directed graph, we distinguish two different

metrics: node in-degree degreeini and node out-degree degreeouti
metrics which are shown in Equations (13) and (14), respectively,
where aj,i = 1, if there is a directed edge from node j to node i.

degreeini =
∑

j∈V

aj,i (13)
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degreeouti =
∑

j∈V

ai,j (14)

Node degree is a measure of centrality of the given nodes, where
it aims to quantify the hub brain regions interacting with a large
number of brain regions. Thus, a node with high degree indicates
its central role in the network.

3.3.1.2. Node Strength
Node strength is the sum of the weights of edges connected to
a given node (Equation 15), where wi,j is the weight of the edge
between node i and node j.

strengthi =
∑

j∈V

wi,j (15)

Similar to node degree, node strength, also, distinguishes two
metrics in the case of directed graphs, namely, node in-strength
strengthini and out-strength strengthouti shown in Equations (16)
and (17), respectively, where wj,i is the weight of the edge from
node j to node i.

strengthini =
∑

j∈V

wj,i (16)

strengthouti =
∑

j∈V

wi,j. (17)

Node strength is a node centrality measure that is similar to node
degree, which is used in the case of weighted graphs. Nodes with
large strength values are tightly connected to other nodes in the
network forming hub nodes.

3.3.1.3. Node Betweenness Centrality
Betweenness centrality of node i is the fraction of the shortest
paths in the network that pass through node i as shown in
Equation (18)

betweennessi =
1

(M − 1)(M − 2)

∑

j,k∈V

ρi
j,k

ρj,k
, (18)

where ρj,k is the number of shortest paths between nodes j and

k, ρi
j,k

is the number of shortest paths between nodes j and k that

pass through node i, nodes i, j and k are distinct nodes.
Before measuring the betweenness centrality of a node, we

need to change our perspective from connection weight matrix
to connection length matrix since betweenness centrality is
a distance-based metric. In connection weights matrix, larger
weights imply higher correlation and shorter distance while it

is the opposite in the case of length matrix. Connection length
matrix is obtained by inverting the weights of the connection
weight matrix. Then, the algorithm suggested in Brandes (2001)
is employed in order to calculate the node betweenness centrality
for each anatomical region.

Nodes with high betweenness centrality are expected to
participate in many of the shortest paths of the networks. Thus,
taking a crucial role in the information flow of the network.

3.3.2. Measures of Segregation
Measures of segregation aim to quantify the existence of
subgroups within brain networks, where the nodes are densely
interconnected. These subgroups are commonly referred to
as clusters or modules. The existence of such clusters in
functional brain networks is a sign of interdependence among
the nodes forming the cluster. Measures of segregation
include clustering coefficient, transitivity and local efficiency.
While global efficiency is a measure of functional integration
representing how easy it is for information to flow in the network.

3.3.2.1. Clustering Coefficient
The clustering coefficient of a node i is the fraction of triangles
around node i which is calculated by Equation (19) as proposed
in Fagiolo (2007). It is defined as the fraction of the neighbors of
node i that are also neighbors of each other.

Ci =
χi

[(douti + dini )(d
out
i + dini − 1)− 2

∑
j∈V ai,jaj,i]

. (19)

where dini is the in-degree of node i and douti is the out-degree
of node i. χi is the weighted geometric mean of triangles around
node i that is calculated by Equation (20). Recall that aj,i = 1,
if there is a directed edge from node j to node i and aj,i =

0, otherwise.

χi =
1

2

∑

j,h∈V

(wi,jwi,hwj,h)
1/3. (20)

The clustering coefficient of a node is the fraction of triangles
around the node. It is defined as the fraction of the neighbors
of the node that are also the neighbors of each other.

3.3.2.2. Transitivity
Transitivity of a node is similar to its clustering coefficient.
However, transitivity is normalized over all nodes, while cluster
coefficient for each node is normalized independently, which
makes clustering coefficient biased toward nodes with low degree.
Transitivity can be expressed as the ratio of triangles to triplets
in the network. It is calculated by Equation (21), as suggested in
Fagiolo (2007):

Ti =
χi∑

j∈V [(d
out
j + dinj )(d

out
j + dinj − 1)− 2

∑
h∈V aj,hah,j]

(21)
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FIGURE 4 | Ordered f-scores of voxels for all subjects.

where dinj is the in-degree of node j and doutj is the out-degree

of node j. χi is the weighted geometric mean of triangles around
node i that is calculated by Equation (20). Note that ah,jaj,h = 1,
if there exits an edge in both directions.

3.3.2.3. Global and Local Efficiency
The global efficiency of a brain network is a measure of its
functional integration. It measures the degree of communication
among the anatomical regions. Thus, it is closely related to the
small-world property of a network. Formally speaking, global
efficiency is defined as the average of the inverse shortest path
lengths between all pairs of nodes in the brain network. Equation
(22) shows how to calculate the global efficiency of a brain
network, where ̺w

i,j is the weighted shortest path length between

two distinct nodes i and j (Rubinov and Sporns, 2010).

Eglobal =
1

M

∑

i∈V

∑
j∈V (̺

w
i,j)

−1

M − 1
(22)

On the other hand, the local efficiency of a network is defined
as the global efficiency calculated over the neighborhood of a
single node. The local efficiency is, thus, a measure of segregation
rather than functional integration as it is closely related to
clustering coefficient. While global efficiency is calculated for the
entire network, local efficiency is calculated for each node in the
network (Rubinov and Sporns, 2010).

4. EXPERIMENTS AND RESULTS

In this section, we explore the validity of the suggested
dynamic brain network model and study the network properties
of complex problem solving task on TOL dataset. First, we
analyze the effect of the preprocessing step on the brain
decoding performance of planning and execution phases of
complex problem solving. Then, we investigate the validity
of the dynamic functional brain network model proposed
in this study. Finally, we analyze the network properties of
the constructed functional brain networks for planning and
execution subtasks.

4.1. Voxel Selection
First, we discarded all of the voxels located in the cerebellum
anatomical regions. Then, we calculated the f -score for each
one of the remaining voxels and order the obtained f -scores
of the voxels. Following that, we plotted the ordered f -scores
of the voxels in order to determine the appropriate number
of voxels to retain. Figure 4 shows the ordered f -scores of the
voxels averaged across all subjects. It can be observed from
this figure that a relatively small number of voxels is crucial
for discriminating the subtasks of problem solving while the
remaining voxels do not have significant information concerning
the subtasks of problem solving. Based on the f -score distribution
shown in Figure 4, we kept the 10,000 voxels with the highest
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FIGURE 5 | Distribution of selected voxels across anatomical regions, measured by number of selected voxels (top) and percentage of selected voxels (bottom) from

each anatomical region. A large value in both figures is an indication of relatively high activity in a particular anatomic region. (A) Average number of voxels selected

from each anatomical region across all subjects. (B) Average percentage of voxels selected from each anatomical region across all subjects.

f -scores observing the elbow point, whereas we discarded the
remaining ones.

After selecting 10,000 voxels with the highest f -scores of
each run, we calculated the number of selected voxels contained
in each one of the 90 anatomical regions. We also calculated
the percentage of selected voxels to the total number of voxels
located in each anatomical region. These values of selected voxels
can be considered as measures of participation of an anatomic
region into the complex problem solving task. The Figure 5A

shows the average number of voxels contributed by each region
across all subjects with its corresponding standard deviation,
Figure 5B shows the average percentage of voxels contributed
by each region across all subjects with its corresponding
standard deviation.

It is clear from these figures that a large number of regions
contribute little to no voxels, such as the amygdala, caudate,
heschl gyrus, hippocampus, pallidum, putamen, temporal pole,
superior temporal cortex, thalamus and parahippocampus. A
small number of regions contribute a significantly large number
of voxels (over 300 voxels each) during complex problem solving,
such as occipital, precentral, precuneus and parietal regions.

Furthermore, Figure 5B ensures that there is no bias against
tiny anatomical regions with small number of voxels by
normalizing the number of voxels selected from each region
by its total number of voxels. Figure 5B clearly shows that in
the left prefrontal and inferior occipital regions a significant
percentage of voxels are active during complex problem solving.
Both figures also show high standard deviations across subjects,
which indicates high inter-subject variability.

4.2. Interpolation
After selecting the most discriminative voxels and averaging
their BOLD responses with respect to their corresponding brain
anatomical regions, we employed temporal interpolation to each
representative time series to increase the temporal resolution of
the TOL dataset. As a result, the total number of obtained brain
volumes is equal to n + z ∗ (n − 1) where n is the number of
measured brain volumes of a given puzzle and z is the number of
estimated brain volumes plugged between each pair of measured
brain volumes. The optimal value of z is equal to 8, which is
determined empirically using cross-validation to maximize the
brain decoding performance. Figure 6 shows the interpolated
BOLD response of a randomly selected anatomical region from
the given subjects, where the blue dots represent the measured
BOLD response of the region and the orange dashes are the
interpolated values. It is clear from Figure 6 that the interpolated
points using cubic spline function do not introduce sharp
edges, nor do they smooth out the spikes between measured
brain volumes.

Furthermore, Figure 7 shows the single-sided amplitude
spectrum of a randomly selected anatomical region from a given
subject before interpolation, after interpolation and finally, after
adding Gaussian noise. The figure clearly demonstrates that both
interpolation and injecting Gaussian noise preserve the envelope
of the signal in the frequency domain.

4.3. Gaussian Noise
In order to control the signal-to-noise ratio (SNR), we used cross-
validation to choose the optimal pair of values for αnoise and
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FIGURE 6 | Interpolated BOLD response of a randomly selected anatomic region.

βnoise, the ratios of mean and standard deviation of the added
noise, respectively. As a result, the optimal values obtained are
αnoise = 0.025 and βnoise = 0.075 from the following set of values
αnoise,βnoise ∈ [0.025, 0.05, 0.075, 0.1].

4.4. Brain Decoding With Preprocessed
fMRI Data
We use brain decoding in order to investigate the validity
of our proposed preprocessing steps on the TOL dataset. We
aim to distinguish the two phases of complex problem solving,
namely: planning and execution. At first, we used ANOVA to
select the 10,000 voxels with the highest f -scores. Then we
averaged the selected voxels into their corresponding anatomical
regions defined by Tzourio-Mazoyer et al. (2002). Following that,
we employed temporal interpolation to increase the temporal
resolution of each puzzle by estimating z = 8 brain volumes
between each pair of measured brain volumes. Finally, we added
Gaussian noise in order to regularize the BOLD responses of
each region to improve the generalization performance of the
classifiers. We used k-fold Cross validation for each subject in all
of the experiments introduced in this section, with k = 8. After
we obtained the results, we averaged them across the different
folds, then we calculated the average and standard deviation
across all subjects. We used both supervised and unsupervised
brain decoding methods. A linear support-vector machine
(SVM) (Fan et al., 2008) was used for supervised brain decoding
while k-means clustering was used for unsupervised brain
decoding. The input to the decoders is formed by concatenating
the values of representative time series computed per each time
instant, across the anatomic regions. Considering the fact that
there is a total of 90 anatomic regions, the dimension of the input
vectors is 90. If there are no selected voxels in an anatomic region

after the voxel selection process, the corresponding entry of the
input vector becomes 0.

Table 2 shows the effect of our preprocessing pipeline on
the brain decoding of complex problem solving subtasks. The
first row shows the performances of brain decoding on the raw
dataset without any preprocessing, simply averaging all of the
voxels into their corresponding anatomical regions. While the
second row shows the results of applying voxel selection then
averaging the selected voxels into their anatomical regions. The
third row shows the results of brain decoding after applying
temporal interpolation, while the forth row shows the results after
injecting the data with Gaussian noise.

From the results of the preprocessing experiments, it is
observed that voxel selection improves the brain decoding
performance for both supervised and unsupervised methods
from 60 to 74% and from 63 to 85%, respectively. This can
be attributed to the fact that voxel selection retains only the
most discriminative voxels and trashes the remaining non
informative ones. In addition, voxel selection manages to sparsify
the representation of the data since some brain regions contribute
no voxels at all; thus have no contribution to brain decoding.

The table also shows that temporal interpolation further
improves the supervised brain decoding performance from 74 to
81%; this significant increase is due to increasing the number of
brain volumes, thus, increasing the number of training samples
for the SVM classifier. However, temporal interpolation slightly
reduces the performance of unsupervised methods from 85 to
84%. This result can be partially attributed to the fact that the
additional brain volumes smooth the mixture distribution, thus
reducing the distinction between the two phases of problem
solving, planning and execution. This is due to the method used
to label the estimated brain volumes, where each estimated brain
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FIGURE 7 | Single-Sided amplitude spectrum of a time series of an randomly selected anatomic region.

volume is given the labels of its closest neighboring measured
brain volume.

Finally, the addition of Gaussian noise slightly boosts the
performance of both supervised and unsupervised methods from
81 to 82% and from 84 to 85%, respectively. The table also shows
high standard deviation across subjects, which is consistent with
voxel selection plots, revealing high inter-subject variability.

4.5. Brain Decoding With Dynamic Brain
Networks
In this section, we compare our model for building dynamic
functional brain networks with some of the popular network
methods proposed in the literature in terms of their brain
decoding performance. Brain decoding performance can
be considered as a measure of validity of the proposed
brain networks. High decoding performance indicates that
the constructed brain network has a good representation
power of the underlying cognitive subtasks, namely planning
and execution.

For this purpose, we built the dynamic brain networks, as
explained in the previous sections, after having successfully

TABLE 2 | Decodinge performances of preprocessing pipeline after each step.

Preprocessing SVM k-Means

Raw data 0.60 ± 0.11 0.63 ± 0.09

Voxel selection 0.74 ± 0.12 0.85 ± 0.06

Interpolation 0.81 ± 0.08 0.84 ± 0.06

Noise addition 0.82 ± 0.08 0.85 ± 0.06

Bold is used to indicate the best values obtained across a given column (i.e. the highest

accuracy obtained).

applied the preprocessing pipeline. It is important to remark that
each time instance has either a planning label or an execution
label. While constructing the brain networks, we define a feature
vector for each time instance by using the interpolated time
instances (4 extra instances at each side of a measured instance).
Thus, for each measured time sample, we form 4+4+1= 9
brain volumes to estimate the brain network weights. These
weights represent a network among 90 anatomic regions for each
measured time instance.
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TABLE 3 | Braine decoding performances of proposed dynamic brain network

model compared to the state of the art models, namely, pearson correlation and

ridge regression.

Input to algorithm SVM k-Means

Preprocessed fMRI Data 0.82 ± 0.08 0.85 ± 0.06

Pearson correlation 0.58 ± 0.05 0.57 ± 0.04

Ridge regression 0.56 ± 0.05 0.55 ± 0.02

Dynamic brain networks 0.82 ± 0.10 0.87 ± 0.06

Bold is used to indicate the best values obtained across a given column (i.e. the highest

accuracy obtained).

The optimal values for learning rate αlearning and the number
of epochs were chosen empirically using cross-validation,
obtaining the following values, respectively 1 ∗ 10−8 and 10. As
for p, the number of neighbors used to represent each anatomical
region; we chose p equal to the total number of regions, which
is 90. In this way, a fully-connected brain network is obtained
at each time window. However, the total number of nodes is
less than 90, given that some regions have flat BOLD responses;
therefore, they were pruned along with all their edges from the
brain network.

We also constructed brain networks using Pearson correlation
and ridge regression as proposed in Richiardi et al. (2011),
Onal et al. (2015), Ertugrul et al. (2016), and Onal et al.
(2017), respectively, in order to compare the performance of our
methods with other works in the literature. In the case of Pearson
correlation, the functional brain networks were constructed using
Pearson correlation scores between each pair of brain regions
(Richiardi et al., 2011; Ertugrul et al., 2016). As for the case of
ridge regression, the mesh arc-weight descriptors were estimated
using ridge regression in order to represent each region as a linear
combination of its neighbors (Onal et al., 2015, 2017).

Since our goal is to represent the fMRI data by an
informative dynamic network structure, we used generic
classification/clustering methods with relatively small learning
capacity in order to highlight the representative power of the
constructed brain networks. For this reason, we used simple
classifiers/clustering methods, such as SVM and K-means. It
would be possible to improve the brain decoding performances
by using methods with higher learning capacity, such as
Multi-Layer Perceptrons. In this case, the dynamic network
representation of the Artificial Neural Networks is expected to
obtain much better performances compared to the ones reported
in the paper. However, the reported performances are sufficient
to show that the decoding performance of the dynamic network,
which is 90 x 90= 8,100 edges of the brain network, is compatible
with the fMRI data, although it is much more compact and more
informative than the raw data (185,000 voxels per brain volume).

Themain advantage of representing the fMRI data by dynamic
brain networks is that they are neuroscientifically interpretable
and much more comprehensive compared to the voxel based
representations. The constructed dynamic brain networks allow
us to investigate a large variety of network properties in order
to identify regions of interest, such as hubs and subgroups
of densely connected brain regions with the aim of deriving

neuro-scientifically valid insights into the planning and execution
phases of the complex problem solving task.

Table 3 shows the brain decoding results of the
aforementioned brain network construction methods compared
against the results of multi-voxel pattern analysis (MVPA),
which feeds the preprocessed BOLD response representing a
time instant of all brain regions into a classifier. The first row
shows the brain decoding results of preprocessed fMRI data,
where there is no network representation at all. This data is
obtained by applying voxel selection, interpolation then noise
addition to the raw fMRI data. The first row of Table 3 is the
same as the last row of Table 2.

The second and third rows show the brain decoding
performances of the networks extracted using Pearson
correlation and Ridge regression methods, respectively. The
Pearson Correlation data is generated using the preprocessed
fMRI data, where Pearson correlation is used to generate the
brain networks. The weights of the edges in the constructed
brain networks are the Pearson correlation scores between the
preprocessed BOLD responses of the corresponding anatomic
regions (as shown in Equation 6). The Ridge Regression data
is generated using the preprocessed fMRI data, where Ridge
Regression is used to estimate the weights of the edges in the
constructed brain networks. The weights of the edges in the
constructed brain networks are estimated using Ridge regression
by minimizing the cost function of Equation (9).

The last row shows the brain decoding performances of our
proposed Dynamic Brain Network model.

The edge weights of the Dynamic Brain Network is computed
by training an Artificial Neural Network with the preprocessed
fMRI data. The nodes in the dynamic brain networks represent
the brain anatomic region. The edge links of the brain networks
are determined by using Equation (7). The edge weights are
estimated using Artificial Neural Network as shown in Equations
(10) and (11).

The inputs to SVM and K-Means in the case of Pearson
Correlation, Ridge Regression and Artificial Neural Networks are
the estimated weights of the brain networks. A feature vector of
edge weights, with 90 x 90 = 8,100 dimension, is defined at each
recorded time instance of fMRI data, as a single training/testing
sample. Each feature vector has its corresponding class label, as
Planning or Execution.

Table 3 clearly shows that both Pearson correlation and Ridge
regression fail to construct valid brain networks that are good
representatives of the underlying cognitive tasks. However, our
model managed to get brain decoding results similar or slightly
better than those obtained from MVPA both in the cases of
supervised and unsupervised methods. This can be attributed to
the challenging nature of the TOL dataset; Pearson correlation
does not manage to capture the interdependencies between
the anatomical regions over short time windows. While ridge
regression fails to correctly estimate the mesh arc-weights as
it estimates the arc-weights for each region independently of
the other ones. Our proposed model, with a relatively small
number of epochs, manages to obtain mesh arc-weight values
that capture the activation patterns of anatomical regions and
their relationships.
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It is important to note that, it is possible to obtain higher
brain decoding accuracy using voxel-level MVPA rather than
anatomic-region-level MVPA, and by normalizing the BOLD
response of individual voxels to having 0 mean and 1 standard
deviation. However, we do not employ either of them in our
analysis for the following reasons. Firstly, any analysis at the
voxel-level comes with a very high computational cost, especially
when attempting to build functional brain networks. Also, the
analysis at voxel level does not allow us to perform the study
roles and contributions of brain anatomic region level to the
complex problem solving task, which is the main goal of this
paper. Secondly, normalizing the BOLD responses of individual
voxels prevents us from constructing informative, functional
brain networks as this normalization distorts the information
of relative activation patterns between the voxels and the brain
anatomic region, which is essential in the process of building
functional brain networks.

5. BRAIN NETWORK PROPERTIES

In this section, we aim to analyze the network properties of
the constructed functional brain networks. We investigate the
network properties for each anatomical brain region during both
planning and execution subtasks in order to understand which
regions are most active and which regions work together during
each one of the two subtasks of complex problem solving.

Given that the constructed brain functional networks are both
weighted, directed, fully-connected and contain both negative
and positive weights, we preprocessed the networks before
measuring their network properties. Firstly, we got rid of all
the negative weights by shifting all the mesh arc-weights values
by a positive quantity equal to the absolute value of the largest
negative arc-weight. We then normalized the mesh arc-weights
to ensure that all of the weights are within the range of [0, 1].
Finally, we measured the network properties on the pruned brain
graph, where the brain regions (nodes) contributing no voxels
(have a flat BOLD response) and all of their corresponding arc-
weights (edges) were deleted from the brain graph. Thus, the
networks contained less than 90 regions with their corresponding
edges. We used the brain connectivity toolbox to calculate the
investigated network properties (Rubinov and Sporns, 2010).

In order tomeasure for centrality, the number of neighbors for
each anatomical region (P) was chosen to be equal to 89, which
is equal to the total number of neighbors for any given node as
the total number of brain anatomical regions defined by the AAL
atlas (Tzourio-Mazoyer et al., 2002) after deleting the regions
residing in the cerebellum equals 90. In addition, since we pruned
the nodes that correspond to regions from which no voxels were
selected, our constructed brain networks were weighted directed
fully-connected networks. Therefore, the in-degree, out-degree
and total degree of all nodes in the graph were equal to the total
number of anatomical regions retained after voxel selection.

Therefore, we used node strength and node betweenness
centrality to identify nodes with high centrality, which are
potential hubs in the brain networks controlling the flow of
information in the network. In our proposed model, the node
in-strength of node i is the sum of the mesh arc-weight values,

which is estimated using our proposed neural network method
in order to minimize the reconstruction error of the BOLD
response of anatomical region i using its neighbors. Thus, node
in-strength is not used as part of our network properties analyses;
we rather used node out-strength to measure the centrality of all
anatomicalregions.

As for measures of segregation, quantifying the existence
of subgroups within brain networks is based on densely
interconnected nodes. These subgroups are commonly referred
to as clusters or modules. The existence of such clusters in
functional brain networks is a sign of interdependence among
the nodes forming the cluster. Therefore, clustering coefficient,
transitivity and local efficiency were measured in order to
identify potential clusters with dense interconnections in the
brain networks.

5.1. Planning and Execution Brain
Networks
In this section, we discuss the network properties of the
planning and execution networks. For each aforementioned
network metric, we ranked the brain regions in descending order
according to their score on that network measure for all subjects
across all runs. Then, we retained the 10 anatomical regions with
the highest scores. Following that, we measured the frequency
of occurrence of each brain region among the top 10 regions
across all runs in order to identify the shared regions and patterns
across all subjects for both planning and execution subtasks. The
results of the analysis are shown in tables:Table 4 shows the brain
regions that have high scores for the reported network properties
during planning subtask, and Table 5 shows the brain regions
that have high scores during execution subtask. There are a
number of processes taking place during planning and execution.
Plan generation involves a series of recursive events including
1) problem encoding; 2) decision-making in order to decide
which ball to move and where to move it; 3) mental imagery to
imagine the ball moving, and 4) working memory to maintain
the intermediate steps as well as the move number. During plan
execution, there is 1) retrieval of the steps from memory; 2)
confirming the correct steps are being performed, and 3) the
motor execution of those steps. As the results demonstrate, the
networks for planning and execution are overlapping. These
results are similar to the activation results reported in Newman
et al. (2009) in that the regions that were found to be active during
the task are also regions that are most prominently found with
the highest network measures. These regions include the right
and left middle frontal gyrus, anterior cingulate cortex, precentral
cortex, and superior parietal cortex.

Previous work has suggested that the regions found in the
current study to show high network measures are directly
related to the sub-tasks associated with TOL performance. For
example, both the left and right prefrontal cortex have been
found to be involved in the TOL task, with the two regions
performing distinguishable functions. The right prefrontal cortex
is involved in constructing the plan for solving the TOL problem
while the left prefrontal cortex is involved in supervising the
execution of that plan (Newman et al., 2003, 2009). The anterior
cingulate has been linked to error detection and is particularly
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TABLE 4 | Planning: Anatomical regions with the highest network measures across subjects, regions are painted if they overlap with execution.

Transitivity Local efficiency Clustering Coefficient Betweenness Out-strength

Angular Calcarine Calcarine Cueneus R Cueneus R

Calcarine Cuneus Cuneus Frontal Sup L Frontal Sup L

Cingulum Ant Frontal Mid R Frontal Mid R Fusiform R Fusiform R

Cingulum Mid Frontal Sup Frontal Sup Paracentral Lobule L Paracentral Lobule L

Cuneus Fusiform Fusiform Parietal Sup R Supp Motor Area R

Frontal Inf Oper L Occipital Inf R Occipital Inf R Precuneus L Temporal Inf R

Precentral Parietal Sup R Supp Motor Area R Temporal Mid R

Supp Motor Area R Precentral Temporal Inf R

Temporal Inf R Supp Motor Area R Temporal Mid R

Temporal Inf R

TABLE 5 | Execution: Anatomical regions with the highest network measures across subjects, regions are painted if they overlap with planning.

Transitivity Local efficiency Clustering coefficient Betweenness Out-strength

Angular Calcarine Calcarine Cueneus R Cueneus R

Calcarine Cuneus Cuneus Frontal Sup L Frontal Sup L

Cingulum Ant Frontal Mid R Frontal Mid R Fusiform R Fusiform R

Cingulum Mid Frontal Sup Frontal Sup Paracentral Lobule L Paracentral Lobule L

Cuneus Fusiform Fusiform Parietal Sup R Supp Motor Area R

Frontal Inf Oper L Occipital Inf R Occipital Inf R Precuneus L Temporal Inf R

Precentral Parietal Sup R Supp Motor Area R Temporal Mid R

Supp Motor Area R Precentral Temporal Inf R

Temporal Inf R Supp Motor Area R Temporal Mid R

Temporal Inf R

involved in the TOL when the number of moves is higher,

or the problem difficulty is manipulated. The right superior

parietal cortex and precentral cortex have been linked to visuo-

spatial attention necessary for planning (Newman et al., 2003),

and the left parietal cortex has been linked to visuo-spatial

working memory processing (Newman et al., 2003). The overlap

between the regions with the highest networkmeasures and those
that have been linked to the task is an important feature and
is not due to the voxel selection process. Many regions that
passed threshold were not in the top ranked list of network
measures. For example, the basal ganglia, including the caudate
has been found in previous studies to be involved in TOL
performance (Dagher et al., 1999; Rowe et al., 2001; Beauchamp
et al., 2003; Van den Heuvel et al., 2003; Newman et al., 2009);
however, the region appears to not be an important network hub.
Figures 8A,B visualize the reported brain regions in Tables 4,
5, respectively, using Brain Net Viewer (Xia et al., 2013). In
Figures 8A,B, the color of the node (brain region) implies the
following: red indicates that the region has high transitivity,
clustering coefficient or local efficiency. Green indicates that the
node has high node centrality measured by node out-strength
and node betweenness. As for blue, it shows the nodes that
have high node centrality and is part of a subgroup of densely
interconnected regions.

5.2. Differences Between Planning and
Execution Networks
In this section, we explore the network differences between
planning and execution by calculating the difference between
the network property scores for planning and execution for each
run. To achieve that, we took the difference between the network
property scores for brain anatomical regions during planning
and the network property scores for brain anatomical regions
during execution for each run. Then, we counted the frequency
of times a given anatomical region is more active during planning
than execution and vice-versa in order to identify consistent
patterns of the disagreements between planning brain networks
and execution brain networks across all subjects. Results showed,
generally, that the network measures were higher for planning
than execution. This, too, mirrors the findings from Newman
et al. (2009) in which planning resulted in greater activation
than execution.

Node out-strength is a measure of how connected the node
is to other nodes in the network. Figures 9A,B visualize the
brain regions with higher node out-strength during planning
and during execution, respectively. Planning showed greater
out-strength than execution in the following regions: occipital
regions (calcarine, cuneus), parietal regions (bilateral superior
parietal cortex and precunues), the right superior frontal cortex,
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FIGURE 8 | Regions with the highest network measures for planning brain network (A) and execution brain network (B).
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FIGURE 9 | Anatomical regions with higher node out-strength during planning (Top) and during execution (Bottom). (A) Anatomical regions with higher node

out-strength during planning. (B) Anatomical regions with higher node out-strength during execution.
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FIGURE 10 | Anatomical regions with higher node betweenness during planning (Top) and during execution (Bottom). (A) Anatomical regions with higher node

betweenness during planning. (B) Anatomical regions with higher node betweenness during exection.
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FIGURE 11 | Anatomical regions with higher local efficiency and clustering coefficient (Top) and higher transitivity (Bottom) during planning. (A) Anatomical regions

with higher local efficiency and clustering coefficient during planning. (B) Anatomical regions with higher transitivity during planning.
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and inferior occipito-temporal regions (fusiform and lingual
gyri). The left angular gyrus and bilateral medial superior
frontal cortex showed greater out-strength for execution.
As for node betweenness, Figures 10A,B visualize the brain
regions with higher betweenness during planning and during
execution, respectively. The following brain regions had higher
node betweenness during planning than execution: occipital
regions (calcarine, cuneus, right middle, right superior);
inferior occipito-temporal (fusiform, lingual); parietal (bilateral
superior parietal, left postcentral, precuneus). Bilateral medial
superior frontal had higher node betweenness during execution
than planning.

These results suggest that there is greater information flow
during planning than execution. This matches our expectations.
Planning is more computationally demanding than execution.
Again, during planning, participants must explore the problem
space, which requires generating and manipulating a mental
representation of the problem. The regions that show greater
information flow during planning are all regions involved in
that generation and manipulation, particularly parietal, occipital
and inferior occipito-temporal. On the other hand, execution
requires recall of the plan generated and stored and therefore,
greater information flow from frontal regions related to memory
retrieval is observed.

Clustering coefficient, local efficiency and transitivity are
measures of segregation that aim to identify sub-networks.
Figure 11A visualizes the brain regions with higher local
efficiency and higher clustering coefficient during planning phase
compared to execution phase. While Figure 11B visualizes the
brain regions with higher transitivity during planning than
during execution phase. Each of these measures was larger
for planning than execution, with no regions showing larger
measures for execution.

The regions that showed a higher clustering coefficient in
planning included: the cuneus, left middle occipital cortex,
and right precuneus. Local efficiency was higher in a similar
set of regions (the cuneus, left middle occipital cortex,
and right precuneus). The clustering coefficient and local
efficiency identified a visual-spatial sub-network that is more
strongly connected during planning. Transitivity identified an
overlapping but more extensive set of regions that included:
bilateral angular gyrus, calcarine sulcus, cuneus, bilateral middle
frontal cortex, bilaterial superior frontal cortex, bilateral fusiform
and lingual gyri, bilateral occipital cortex, bilatral superior
parietal cortex, postcentral and precentral cortex, precuneus,
supplementary motor area, right supramarginal gyrus, and right
inferior and middle temporal cortex.

5.3. Global Efficiency
Since global efficiency is measured over the entire brain network,
not for a given node in the network, we measured the global
efficiency for all planning and execution networks within all runs
across subjects. Then, global efficiency of planning is compared
against that of execution. Results show that the majority of
runs had higher global efficiency scores during planning than
execution; 43 out of 72 runs had higher global efficiency
during planning than execution. Furthermore, Table 6 shows

TABLE 6 | Global efficiency.

Run number Planning Execution

1 15 3

2 9 9

3 10 8

4 9 9

the number of runs where global efficiency was higher during
planning and during execution across all subjects for all 4 runs of
each subject. The first column shows the number of subjects that
had a higher global efficiency score during planning than during
execution. The second column shows the number of subjects
that had a higher global efficiency score during execution than
during planning.

Although there was no significant difference in global
efficiency between planning and execution, from the table, it is
clear that the majority of subjects had a higher global efficiency
for planning for the first runs. Some subjects switched from
having higher global efficiency during planning to having higher
global efficiency during execution. A potential explanation for
this change across runs is switching from pre-planning to online
planning or planning intermixed with execution. Although there
is a dedicated planning phase in the current study, that does
not mean that planning is not taking place during execution. In
fact, it has been debated as to whether efficient pre-planning is
possible in the TOL or whether TOL performance is controlled
by online planning (Kafer and Hunter, 1997; Phillips, 1999,
2001; Unterrainer et al., 2004). According to Phillips (1999,
2001), pre-planning the entire sequence is not natural, but that
people instead plan the beginning sequence of moves and then
intersperse planning and execution. If this is the case, then it may
be expected that some participants will switch to online planning.
This intermixing of planning and execution is also likely to
impact the performance of the machine learning algorithms to
detect planning and execution phases.

The relationship between global efficiency and behavioral
performance was examined. Global efficiency was found to be
positively correlated with the mean number of extra moves
(a measure of error) during problem-solving (for execution
r = 0.73, p = 0.0006). Previous studies have shown a
relationship between global efficiency and task performance
(Stanley et al., 2015).

This suggests that the variance in global efficiency is indicative
of individual differences in neural processing and further suggests
that the changes in global efficiency across runs are also likely
indicative of changes in neural processing related to changing
strategy. Further research using a larger sample is necessary to
explore this hypothesis.

6. CONCLUSION

In this paper, we propose a new computational method to
estimate dynamic functional brain networks from the fMRI
signal recorded during a complex problem solving task. Our
model recognizes the two phases of complex problem solving
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with more than 80% accuracy, indicating the representation
power of the suggested dynamic brain network model. We study
the properties of the constructed brain networks during planning
and execution phases in order to identify essential anatomic
regions in the brain networks related to problem solving. We
investigate the potential hubs and densely connected clusters.
Furthermore, we compare the network structure of the estimated
dynamic brain networks for planning and execution tasks.

There are some limitations to the study. Although the
primary aim of this study was to demonstrate the feasibility
of the methods, the sample size is somewhat small, making
the interpretation of the results difficult. Second, a goal of this
method is to identify brain states that are interspersed with each
other. In the current study, planning was expected to occur
both prior to execution as well as during execution; therefore,
planning states are interspersed within the execution phase. The
temporal sampling rate of the fMRI data may be a limiting factor.
Alternatively, the sluggish and blurred underlying hemodynamic
response may be the factor preventing the ability to detect brain
states. We plan to explore this factor in future work.
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In this study, we focused on the verification of suitable aggregation operators
enabling accurate differentiation of selected neurophysiological features extracted from
resting-state electroencephalographic recordings of patients who were diagnosed
with schizophrenia (SZ) or healthy controls (HC). We built the Choquet integral-
based operators using traditional classification results as an input to the procedure
of establishing the fuzzy measure densities. The dataset applied in the study was a
collection of variables characterizing the organization of the neural networks computed
using the minimum spanning tree (MST) algorithms obtained from signal-spaced
functional connectivity indicators and calculated separately for predefined frequency
bands using classical linear Granger causality (GC) measure. In the series of numerical
experiments, we reported the results of classification obtained using numerous
generalizations of the Choquet integral and other aggregation functions, which were
tested to find the most appropriate ones. The obtained results demonstrate that the
classification accuracy can be increased by 1.81% using the extended versions of
the Choquet integral called in the literature, namely, generalized Choquet integral or
pre-aggregation operators.

Keywords: schizophrenia, extended Choquet integral, classifiers, aggregation, Sugeno fuzzy measure

INTRODUCTION

Mental illnesses are usually long-lasting conditions associated with great psychological suffering,
the substantially limited possibility of independent functioning, and social development. Among
them, schizophrenia (SZ) is one of the most severe forms of mental health disorder with the
complex and multidimensional clinical picture. The onset of SZ occurs most often in adolescence
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or early adulthood commonly has a slow and hidden course
consisting of gradual augmenting of the so-called negative
syndromes, i.e., loss of interests, affective blunting, reduced
initiative, and social isolation, and more or less delayed phase
of active psychotic exacerbation characterized by the presence of
delusions, i.e., incorrect judgments of reality and the behavior
of other people, as well as hallucinations, i.e., incorrect sensory
impressions, most often in the auditory form (Rosen et al., 1984;
Heilbronner et al., 2016). In addition to the negative and positive
symptoms, there are also various cognitive disorders including
disturbances in the course of thinking and deficits in specific
cognitive domains, such as attention, memory, cognitive speed,
language, and communication, and difficulties with adapting
to new circumstances and problem-solving (Szöke et al., 2008;
Krukow et al., 2017; Green et al., 2019). It should be noted
that long-term pharmacological treatment of the disease is
the main form of therapeutic intervention focused mainly on
psychotic syndromes. However, even when modern methods of
treatment are applied, distortions of cognitive processes improve
to a much lesser extent, often causing lifelong constraints
in achieving full independence (Keefe, 2019). Personal, social,
and economic burdens associated with severe mental illness
prompt researchers to search for new therapies and also to
develop accurate methods of differential diagnosis, which should
be ultimately based on objective, biological markers (Pantelis
et al., 2009). The development of new neuroimaging techniques
enables researchers to identify neural circuits that underline
the human brain integration system. Various neuropsychiatric
conditions are correlated with changes in brain communication
patterns and pointed as potentially useful biomarkers for clinical
applications (Sporns et al., 2005). In accordance with the results
of earlier studies focused on brain synchronization, SZ is
seen unequivocally as a disconnectivity disorder characterized
by abnormal functional and structural connectivity of the
brain (Friston and Frith, 1995). Application of diffusion tensor
imaging (DTI) methods, such as magnetic resonance imaging
(MRI) technique, into SZ research, showed disconnection and
multiple microstructural aberrances of brain white matter fibers
(Zalesky et al., 2011; Klauser et al., 2017). Studies based on
electroencephalography (EEG) and functional MRI (fMRI) also
revealed abnormalities in the functional connectivity of the
brain, which were also correlated with the clinical picture of
the SZ (Skudlarski et al., 2010; Uhlhaas, 2013; Krukow et al.,
2018). Nevertheless, to understand the systemic level of the
brain organization and to explain neurophysiological processes
such as disconnectivity syndrome in the SZ, researchers started
to analyze the brain as a complex network (van den Heuvel
and Sporns, 2013). The neural network is understood as a
system of spatial (anatomical) and temporal (synchronous firing
of neuronal assemblies) dimensions, involving different brain
regions interconnected with each other (Zalesky et al., 2010).
However, to analyze the state of the functional and structural
connections from the viewpoint of the entire brain, an infinite
number of potential anatomical and functional interactions
between a given set of neural regions makes such an analysis
a challenge almost impossible to obtain. Therefore, a graph
theorem has been introduced to solve this problem and to test the

complex whole-brain networks in their global dimension (Van
Den Heuvel and Fornito, 2014). Previous studies investigating
the neural brain networks in SZ showed significantly changed
network organization as indicated by graph-analytical measures
of global, short communication paths (Yan et al., 2015), local
organization (Alexander-Bloch et al., 2010), and small-worldness
(balance between local segregation and global integration) (Shim
et al., 2014). Aberrant functional networks in the SZ were also
linked with cognitive impairments (Sheffield et al., 2015; Krukow
et al., 2020) and the duration of the illness (Jonak et al., 2019).

Previous studies considered the problem of automated
classification of altered brain activity in SZ based on the EEG
or fMRI data. Among traditional classifiers, methods such as
support vector machine (SVM; Shim et al., 2016; Liu et al.,
2017; Huang et al., 2018), adaptive boosting (Sabeti et al., 2011),
kernel discriminant analysis (KDA; Zhu et al., 2018), or nearest
neighbor algorithm (Parvinnia et al., 2014) are used. Some of
these studies (Sabeti et al., 2011; Parvinnia et al., 2014) applied
time-frequency features obtained from single EEG channels,
which is a limited capacity approach as it does not consider
interactions between channels understood as a network. Other
authors applied a convolutional neural network (Phang et al.,
2019) and deep neural networks (DNNs; Plis et al., 2014; Guo
et al., 2017). In addition, manifold learning for aggregation was
considered in works by Shen et al. (2010); Anderson and Cohen
(2013), and Gallos et al. (2021a,b). The idea of applying fuzzy
classification into SZ-based data is a relatively new concept,
as there are only a few papers on this subject (Sabeti et al.,
2007; Silvana et al., 2018). One of the answers to the problems
related to the application of single classifiers in the processes of
automated disease diagnosis may be using various aggregation
models. Aggregation can be carried out at the stage of data
analysis in the form of information fusion and the stage of
analysis of classification results. Despite some shortcomings such
as extending the duration of the diagnosis process or the need
to implement additional algorithms, the undoubted advantage of
this approach is the increase in the effectiveness of classification,
which, combined with the field of application critical to
human health, is of key importance. Common examples of
aggregation operators are voting, maximum, minimum, and
median functions. The methods based on triangular norms
(Klement et al., 2000) or ordered weighted averaging operators
(OWA; Yager and Kacprzyk, 2012) are somewhat more complex.
Various general approaches to the aggregation of classifiers were
already presented (e.g., in publications of Alsina et al., 2006;
Beliakov et al., 2007; Grabisch et al., 2009; Calvo et al., 2012;
Gągolewski, 2015; Dolecki et al., 2016; Baczyński et al., 2017).
Recently, one of the dominant techniques is using the Choquet
integral or its generalizations or extensions (Kwak and Pedrycz,
2004, 2005; Karczmarek et al., 2014, 2017a,b, 2018, 2019b;
Anderson et al., 2018; Rutkowska et al., 2020). In particular,
recent studies on the so-called pre-aggregation functions offer
hope for the development of this approach (Lucca et al., 2015,
2016, 2017; Bustince et al., 2016; Dimuro et al., 2017; Dias et al.,
2018). They are particularly used in computer image analysis
and its subdiscipline of facial recognition (Karczmarek, 2018;
Karczmarek et al., 2019a). Detailed theoretical and practical
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analyses of the approach based on pre-aggregation functions, i.e.,
slightly weakening the classical aggregation (Beliakov et al., 2007)
conditions, are still ongoing. Nevertheless, the weakening of these
conditions does not have a negative impact on the classification
results, which is confirmed by the experimental outcomes from
the above-mentioned studies. A survey of the generalizations of
Choquet integral can be found in Dimuro et al. (2020).

The problem undertaken in this study was related to the
effective automatic distinction between patients diagnosed with
SZ and healthy subjects based on EEG-based features of neuronal
network organization. The main goal of this study was to
find the appropriate operator aggregating the neurophysiological
outcomes and categorizing them as patients diagnosed with SZ
or healthy controls (HC), i.e., increasing the effectiveness of
the classification. For this purpose, various generalizations of
the Choquet integral were tested and a set of over a thousand
aggregating functions not related to the Choquet integral was
verified. In the section on numerical experiments, we indicate
the classes of functions and their detailed parameters that work
best in terms of the identification of SZ. The dataset applied
in this study included data gathered from 40 subjects, i.e.,
20 schizophrenic patients and 20 HCs. The Granger causality
(GC; Granger, 1969) concept had been applied to particular
EEG bands to achieve functional brain connectivity measures.
The collected measurements were analyzed using a minimum
spanning tree (MST; Stam et al., 2014). The global MST
parameters obtained in the analysis were chosen as features
in the classified dataset. Applying the MST algorithms enabled
grasping the backbone structure of the brain network with
only the strongest connections included (González et al., 2016;
Van Dellen et al., 2016). Using MST ensured that the link
between nodes was not based on an arbitrarily set connectivity
strength threshold, which allowed avoiding the bias in network
density computations (Tewarie et al., 2015). In general, the
MST parameters were chosen because this method lacks some
theoretical and mathematical problems incorporated to more
typical network organization indicators based on the small-
worldness approach and, above all, because the authors wanted
to refer to the concept of SZ as a disconnection disease in
which pathology of neuronal integration is not isolated only to
selected regions or type of synchronizations but has a global
dimension. The MST enables the characterization of the global,
whole-brain network.

MATERIALS AND METHODS

Participants
Twenty patients, who met the DSM-5 (Structured Clinical
Interview for DSM-5) criteria for SZ, were involved from
the Department of Psychiatry, Psychotherapy and Early
Intervention, Medical University of Lublin. Additionally, the
other criteria were as follows: age over 18 years; minimum
10 years of regular education; not more than 5 psychiatric
hospitalizations associated with exacerbation of psychosis; no
markers of structural brain abnormalities visualized on MRI,
indicative of surviving craniocerebral trauma or neurovascular

episodes; and lack of serious somatic diseases needing intense
pharmacotherapy that would impact the EEG recordings.
During testing, all patients were on stable doses of atypical
antipsychotics. Using anticholinergic agents, benzodiazepines,
and mood stabilizers up to 3 months before the assessment
was an exclusionary factor for all participants. The patients
participated in the study during the last week of psychiatric
hospitalization, after obtaining a significant clinical and
functional improvement, being fully able to give consent and
undergo EEG examination. The control group consisted of
HC, demographically matched to the clinical group, who were
chosen from the local community. Additionally, HC had no
history of psychiatric diagnoses, per the Structured Clinical
Interview for DSM-5, brain disease, or neurological injury as
well as no family history of psychosis. All patients consented
to the study in accordance with the protocol approved by the
Bioethical Commission of the Medical University of Lublin.
The Commission also validated the methods used in the study.
Demographical and clinical data are presented in Table 1. The
groups did not differ significantly in terms of age (SZ = 34.41,
SD = 8.41; HC = 31.63, SD = 6.42), number of the years of
education (SZ = 12.43, SD = 2.94; HC = 14.87, SD = 1.68), and
gender (SZ = 50% of men; HC = 50% of men). In the SZ group,
the duration of illness lasted for about 12 years.

Data Acquisition
Using a 21-scalp position, electro-cap electroencephalograph
(Electro-Cap International Inc., OH, United States) and Ag/AgCl
disk electrodes, in 10 min of resting-state, EEG data were
recorded for each participant. Electrodes were distributed
according to the 10–20 International system (Fp1, Fp2, F3, F4,
C3, C4, P3, P4, O1, O2, A1, A2, F7, F8, T3, T4, T5, T6, Fz, Pz,
and, Cz). Subjects were seated with eyes closed and restricted
head movement. The electrode impedances were kept below 5 k,
and the data were filtered from 0.5 to 70 Hz (with active notch
filter set at 50 Hz) when the sampling rate was 512 Hz. The data
were exported into ASCII format after recording. Post-processing
procedures were carried out in the EEGLAB program, which
is a MATLAB toolbox. First, the signal was filtered using the
bandpass filter at 0.5–45 Hz (second-order Butterworth filter).
Second, the reference was changed offline into the averaged.
Next, from the processed signal, 25 epochs lasting for 8 s (4,096
samples) without artifacts were extracted for each patient by a
clinical neurophysiologist. Last, EEG signals were divided into six

TABLE 1 | Demographic and clinical data of research groups.

SZ
(n = 20)
M (SD)

HC
(n = 20)
M (SD)

z value or χ2 p

Age (years) 32.41 (8.41) 31.63 (6.42) 0.16 0.91

Education (years) 12.43 (2.94) 14.87 (1.68) −1.12 0.45

Sex (% male) 50 50 0 1

Duration of illness (years) 12.1 (9.43)

Number of hospitalizations 2.25 (2.65)

Risperidone equivalents 4.66 (1.76)

Frontiers in Neuroinformatics | www.frontiersin.org 3 December 2021 | Volume 15 | Article 744355110

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-744355 December 8, 2021 Time: 12:58 # 4

Plechawska-Wójcik et al. Recognition of EEG-Related Features in Schizophrenia

frequency bands using finite impulse response filters: the delta
(0.5–4 Hz), theta (4–8 Hz), low alpha (8–10 Hz), high alpha
(10–12 Hz), beta (13–30 Hz), and gamma (30–45 Hz).

Data Processing
Several steps were involved in the data processing procedure.
Feature extraction was associated with the calculation of
functional brain connectivity (FC) measures separately for
particular electrodes and each EEG frequency band. The FC
was calculated to indicate the statistical dependence between
the spatially distributed neurophysiological time series such
as EEG signals stemming from separate units of a nervous
system (Cheng et al., 2015). There were several metrics used in
assessing FC strength, such as classical measures (e.g., Pearson’s
correlation coefficient, cross-correlation function, or coherence),
phase synchronization indexes (e.g., phase lag index or phase-
locking value), and GC measures. We chose the classical linear
GC. The idea of GC (Granger, 1969) was based on the assumption
that having two simultaneously determined signals (X and Y),
the signal X could be better explained using information from
the signal Y than using only information from the signal X.
In such a situation, signal Y could be specified as “causal” to
signal X. The GC measure is widely applied as a statistical tool
to detect the influence of particular system components (Nolte
et al., 2010). For the GC calculation, we used the Matlab MVGC
toolkit (Sackler Centre for Consciousness Science, University
of Sussex, Brighton, United Kingdom; Barnett and Seth, 2014),
which was based on advanced VAR (vector autoregressive)
model theory. To optimize auto-covariance delays, the Akaike
information criterion was used to estimate the optimal model
order. MVGC algorithms were used to convert EEG signals into
auto-covariance data. The observed auto-covariance sequences
were then subjected to paired spectral GC. In the case study, the
calculated GC measures were used in the next feature extraction
procedure step consisting of deriving MST. The MST was built
based on Kruskal’s algorithm. First, the weight of all edges
was sorted, and then the stronger edges were connected, i.e.,
those with the highest connectivity values, eliminating those
that form loops. These stages were repeated as many times as
necessary until the final tree had 19 nodes and 18 edges, which
corresponded to the total number of electrodes used in our
EEG recording. The MST metrics were generated separately for
each frequency band.

Global MST parameters were used as the features for the
classification procedure, which included the following:

• maximal degree, a maximal degree in the MST tree,
• maximal BC, maximal betweenness centrality in the MST

tree,
• leaf fraction (Lf), the ratio between leaf vertex number

(further denoted as L) and the total vertex number,
• diameter (d), the longest distance between any two vertices

in the MST tree,
• hierarchy (Th), the measure describing the optimality of the

tree topology.

After the feature extraction procedure, the classification was
done using classical classifiers.

A General Processing Scheme
The classification procedure was performed to assign
observations into one of two classes: schizophrenic patient
and HC. Several classical classification methods were used: cubic
SVM, linear SVM, decision tree, logistic regression, multilayer
perceptron (MLP), random forest, and k-nearest neighbors
(kNN). Data were split into training and testing datasets based
on the 80:20 ratio.

The results of this classification process, in the form of
the probabilities of belonging to considered classes, were taken
as the inputs to the aggregation functions. The next step of
the analysis procedure was to generate fuzzy measure density
values to apply aggregation operators. The aggregation operators
allow combining the predictions of multiple classifiers to further
improve the results. The fuzzy measures can be interpreted as the
degree of trust (weights or level of importance) to predictions of
the individual classifier.

In general, there are several methods of fuzzy measure
generation, such as expert assumption, optimization, and the
heuristic one. In our study, the cross validation-based heuristic
one was applied. N-fold cross-validation was run on the training
set to obtain a density measure for a classifier.

It is a well-known fact that the results of different
classifications can be aggregated. This situation can be easily
illustrated by the example of various sports competitions held
in the form of a Grand Prix cycle, where the points are added
together to determine the final winner. EEG signal-based features
can be similarly aggregated. In general, the results obtained using
different kinds of classifiers can be added, averaged, or, generally
speaking, transformed with the help of different kinds of
aggregation operators. Typical operators are median, minimum,
and maximum functions, etc. The general scheme of classification
using aggregation methods is presented in Figure 1. It is worth
noting that the values that are input to the aggregation operator
can change the distances between the training and testing
representation of an EEG signal in the case of k-nearest neighbor-
based classifiers, likelihoods of belonging to a class in the case
of neural network-like methods, etc. Here, it is worth stressing
that the weights presented in this diagram can be obtained from
experts but also based on the quality of classification of individual
classifiers (e.g., their accuracy measures).

Aggregation of Classifiers Using the
Choquet Integral and Its Extensions
One of the best known and most efficient classifiers is the
Choquet integral. Hence, let us recall the main properties of
the fuzzy measure, Choquet integral, and its generalizations. Let
us denote a set as X. Then P(X) = 2X is a family of all its
subsets. 2X is a σ-algebra; i.e., the empty set belongs to it, the
complement of a set belonging to σ-algebra belongs to it, and the
sum of countable many sets from the σ-algebra also belongs to
it. Generally speaking, in the context of classification tasks, the
elements of the set X are the individual classifiers (methods, parts
of the images under consideration, etc.). In the context of this
specific study, they are particular classifiers, see the experimental
section for details of the methods. These classifiers are denoted
as x1, xn, n 1. Now, one can define (Sugeno, 1974) a fuzzy
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FIGURE 1 | A general classification scheme based on an aggregation process.

measure as a set function g : P(X)→ R satisfying the following
conditions:

g (∅) = 0 and g (X) = 1 (1)

g (U) ≤ g (W) , U ⊂W, U,W ∈ P(X) (2)

lim
n→∞

g (Un) = g
(

lim
(n→∞)

Un

)
(3)

Here, {Un}, n = 1, 2, . . . means increasing set sequence. Recall
that Sugeno λ-fuzzy measure realizes the above conditions and

g (U ∪W) = g (U) + g (W) + λg (U) g (W) (4)

with λ >− 1. Here, U and W are not overlapping. In addition, we
have

g (U i + 1) = g (U i) + gi + 1 + λg (U i) (5)

for Ui = {x1, ..., xi}, Ui + 1 = {x1, ..., xi + 1}. The following
notation is used commonly: gi = g({xi}), i = 1, . . ., n. Now, let
us introduce a function h(x) and let the series h(xi), i = 1, . . ., n,
be ordered non-increasingly and let h(xn+1) = 0. In the context
of this study, the function h(·) represents a value of classifier
describing the probability of belonging to a specific class. Next,
the Ui set is, in fact, only an abstract object. The real importance
has the value of g (Ui) appearing in (5) which can be easily found
recursively starting from the values of gi. The value gi represents a
significance (or importance) of a particular classifier xi. Its value
can be commonly defined twofold: (1) based on the opinions of
experts and (2) based on initial tests. In this study, we applied
the second method. Finally, n is a number of classifiers. The last

parameter to be found is λ, which can be obtained from the
following equation:

1 + λ =

n∏
i = 1

(
1 + λgi

)
, gi = g ({xi}) (6)

see Sugeno (1974).
For such assumptions, the Choquet integral is defined as

C =
n∑

i = 1

(
h (xi)−h (xi + 1) g (U i)

)
(7)

From this function, many generalizations and extensions can
be delivered as follows:

CM =

n∑
i = 1

M
(
h (xi)−h (xi + 1) , g (U i)

)
(8)

and for any t-norm M (·,·), see Lucca et al. (2014),

CFM = min

( n∑
i = 1

M
(
h (xi)−h (xi + 1) , g (U i)

)
, 1

)
(9)

(Lucca et al., 2014, 2015),

CCM =

n∑
i = 1

(
M
(
h (xi) , g (Mi)

)
−M

(
h (xi + 1) , g (U i)

))
(10)

see (Lucca et al., 2017), CMin (Lucca et al., 2015), where the role
of the function M is played by the minimum, or CO [see (Lucca
et al., 2016)] with a so-called overlap function under the integral
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sign. Newer functions were proposed in Karczmarek (2018) and
Karczmarek et al. (2019a). They are

CMC =

n∑
i = 1

(
M
(
h
(
xi
)
, g
(
U i
))
−M

(
h
(
xi + 1

)
, g
(
U i
))

+ M
(
h
(
xi
)
−M

(
xi + 1

)
, g
(
U i
)))

(11)

CMMin

=

n∑
i = 1

M
(
min

(
h (xi) , g (U i)

)
−min

(
h (xi + 1) , g (U i)

)
, g (U i)

)
(12)

CMMin2

=

n∑
i = 1

M
(
min

(
h (xi) , g (U i)

)
, min

(
h (xi + 1) , g (U i)

))
(13)

CMinM

=

n∑
i = 1

min
(
M
((
h (xi) , g (U i)

))
,M

(
h (xi + 1) , g (U i)

))
(14)

and the integrals inspired by some numerical analysis formulae
such as

CD1 =

n∑
i = 1

M
(
h (xi−1)−h (xi + 1) , g (U i)

)
(15)

CD2 =

n∑
i = 1

M
(
h (xi−1) + h (xi + 1)−h (xi) , g (U i)

)
(16)

and

CD3 =

n∑
i = 1

M
(
h (xi−1) + h (xi + 1)

h (xi)
, g (U i)

)
(17)

It is worth noting that M(·,·) can be any triangular norm
which, as an intersection or conjunction operator in many
application areas, is a counterpart to a classic product operator
appearing in the original Choquet integral.

RESULTS

Individual Classifiers
In this study, we described particular classifiers that were
considered in the series of numerical experiments and
determined their accuracy. We applied the following classical
machine learning models: SVM with linear and cubic kernels,
logistic regression, kNN, decision tree, random forest, and MLP.
The classical machine learning models were used due to a low
number of observations available for training and testing. In
order to obtain the fuzzy density that is necessary for aggregation,
the following approach can be adapted. According to the holdout
validation procedure, the data were split into training and
validation subsets, where 20% of the dataset was used for
validation. The fuzzy density was calculated as a mean accuracy
measure obtained in the process of a fivefold cross-validation
run using the training data. The resulting classification quality
of separate models was tested on the validation subset after
fitting the models on the complete training set. The classification
accuracy values obtained with separate classifiers are presented
in Figure 2.

Aggregation of Classifiers
The experimental results of the aggregation scheme used for
the classifiers discussed in the previous section, namely decision
tree, k-nearest neighbor, quadratic SVM, cubic SVM, linear SVM,
logistic regression, random forest, and MLP, are discussed. The
accuracies of the individual classifiers obtained in the initial
series of experiments are the input to establish the fuzzy measure
densities gi. The values of the function h are the results of
the classification of testing elements being the probabilities of
belonging to the two classes, namely, healthy and SZ patients.
The validation procedure described in the previous section was
repeated 200 times. After each run, a value of fuzzy density and 8
probability vectors (20% out of 40 observations) were obtained
per classification model. The details of aggregation algorithm
implementation required a single estimation of classification
accuracy per model and aggregation method. Hence, all 1,600
(200 × 8) classification results were analyzed. It is worth noting
that the models were fitted and the fuzzy densities were obtained
independently in every separate run of the experiment. In the
series of experiments, we have evaluated 25 classes (families) of
popular and commonly considered in the literature triangular
norms (Alsina et al., 2006, page 72). The monograph can be
treated as a compendium of the t-norms to be applied in more
advanced aggregation operators. In this particular approach, the
t-norms serve as the integer functions M with parameters −10,
−9.9, . . ., 0, . . ., 9.9, 10, but only if the parameter is in the
range allowed for the t-norm. Such a choice of the parameter
range seems to be optimal and emphasizes the most important
properties of each of the t-norm classes. The maximal accuracy
was obtained for the classifier CD2 for triangular norm from the
family no. 8, namely

M
(
x, y

)
=

max
(
α2xy− (1−x)

(
1−y

)
, 0
)

α2−(α−1)2 (1−x)
(
1−y

) ,α > 0 (18)
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FIGURE 2 | Average of accuracies of separate classifiers.

FIGURE 3 | The accuracies were obtained with the function (18) and aggregation operator CD2.
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TABLE 2 | Triangular norms and their parameters for the results.

Aggregation function Number of t-norm family α

CM 12 0.2

CFM 12 0.2

CD2 2 0.5

CD2 8 0.1, 0.2

CD2 11 2.1, 2.4

CD2 13 1.2, 1.3

CD2 14 2.1, 2.4

CD2 25 4.4, 5, 5.1

Average 8 0.1

In this case, the best option to choose is α = 0.1. The plot
illustrating the recognition rate for the combination of CD2 and
the function (18) is given in Figure 3. It is obvious that satisfying
accuracy can be obtained only for relatively small values of the
parameter α.

It is important to understand the process of calculation
of the value of the aggregation function. Let us consider,
for example, the process of CD2 finding. Here, the individual
classifiers xi, i = 1, ..., n = 5 (five classifiers are discussed in
this experiment) should be analyzed, and for their significance
measures (simply, weights) gi = g ({xi}), see Figure 2. Next,
the parameter λ appearing in (6) is calculated. Based on
the value of λ, the values of g (Ui) appearing in Eq. (5)
are found recursively. Next, using the values of h (xi−1),
which are the likelihoods of belongings of a given probe to
a specific class, the final sum (16) can be obtained, taking
into account that M (·, ·) is any t-norm, in particular a
function given by (19).

Very good results were obtained also for the aggregation
functions CM and very similar CFM . Maximal yielded values were

TABLE 3 | The best choices of t-norms for various generalizations of the
Choquet integral.

Aggregation function Number of t-norm family

CM 12

CFM 12

CCM 11, 14

CMC 11, 14

CMMin 4, 12

CMMin2 4, 12

CD1 4, 13

CD2 8

CD3 4

98.81% for the function number 12 serving as integer function
and α = 0.2. The formula of the t-norm is as follows:

M
(
x, y

)
= max

(
1−
(
(1−x)α +

(
1−y

)α) 1
α , 0

)
α > 0 (19)

Table 2 supplements the above discussion by showing for
which triangular norms and their parameters the classification
rate exceeding 98.81% was reached.

It is worth stressing that the best average result among the
operators CM , CFM , CCM , CMC, CMMin, CMMin2, CD1, CD2, and
CD3 was also obtained for the triangular norm no. 8 given by
the formula (18) and its parameter α = 0.1. The plot presenting
the values of the combination of all the aggregation functions
with this t-norm and parameter is presented in Figure 4. It is
obvious that the function (18) works well with almost all of the
aggregation operators except CCM and CD3.

As a supplement to the results, it is worth noting that Table 3
presents the information for which the best results of the t-norms

FIGURE 4 | Averages of accuracies achieved with top aggregation functions.
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were obtained by aggregation operators. It can help match
t-norms and generalizations of the Choquet integral by experts
conducting similar research. For instance, function no. 4, see
Alsina et al. (2006), works well when it is combined with a few
Choquet integral-based operators.

Finally, what should be emphasized, we have conducted the
same tests for over 1,000 functions that are not Choquet-like
integrals. The functions that were used in this competition were
selected based on the studies by Alsina et al. (2006), Beliakov
et al. (2007); Grabisch et al. (2009), and Calvo et al. (2012). The
best results were obtained for the ordinary weighted averaging
operator at the level of 98.81%.

OWA (x1, ..., xn) =
n∑

j = 1

ωjyj (20)

where yj is the j-th largest of the xi, and the weights are ω1 = 1,
ω2 = 1 – 1

n , . . ., ωn = 1
n with or without normalization to their

sum. Despite it being a very good result, it is obvious that it is
hard to find the function giving the results more satisfying than
Choquet integral-based operators. Moreover, to find the proper
form of OWA, similar to the Choquet integral case, a proper
heuristic can be used.

CONCLUSION AND FUTURE WORK

In this study, we have indicated the most appropriate operator
aggregating the results of binary classification of patients to
efficiently distinguish individuals with SZ and healthy subjects
using a set of neural network organization features extracted from
EEG-based functional connectivity measures. A series of both
types of functions, generalizations of the Choquet integral and
other aggregating functions, have been verified to determine the
classes of functions and their parameters, which are the most
effective in the classification of SZ. As an input to the main
analysis, the results of classification were performed with classical
methods such as decision tree, k-nearest neighbor, quadratic
SVM, cubic SVM, linear SVM, logistic regression, random forest,
and MLP were applied. The original results obtained in the
study of classical methods classification reached 97% for logistic
regression. Although the initially obtained results were high, we
decided to verify if there is the possibility to reach even higher
results using the fuzzy-based classifier.

The results prove that applying various classification models
in combination with aggregation functions enable further
improvement of classification results. This approach allows us
to take advantage of the additional knowledge cumulated in the
parameters of the trained models.

Detailed results show that several aggregation functions
enabled to give promising results [presented in the study as
Eqs (9–13) and (15, 16)], which increase the classification result
by more than 1%. Among numerous functions evaluated and
implemented in the thorough comparison, the best accuracy was
reached for the aggregating integral CD2 with triangular norm
appearing under the integral sign given by the formula (19).

Very good results (classification accuracy higher than 98.8%)
were reached also for aggregation functions CM and CFM. It
is worth noting that the obtained results occurred to be better
than the original accuracy reached with classical methods by
1.81%. Although the obtained improvement is not very high
(less than 2%), the overall increase in classification accuracy
from 97% (for the best classical classifier) to as high as almost
99% (for the properly selected pre-aggregation operators) is
relevant. Nevertheless, we have not done double cross-validation
analysis, so this limitation can influence classification accuracy,
hence the classification rate could be slightly overestimated.
Results show the usefulness of this method especially if the
role of aggregation function is an extended version of the
Choquet integral. In contrast, the application of aggregation
functions could give a relatively better improvement in case
of weaker initial individual classification results. In future,
we have planned to extend the analysis to consider more
phases and stages of SZ. Moreover, we are interested in the
application of other classes of aggregation operators and the
determination of their weights (significance in the process
of aggregation) based on the opinions of medical experts.
More theoretically, it is still an interesting as well as difficult
task to find the optimal parameters of the integral operators
only based on their results according to various classification
tasks with no relation to the accuracies or expert opinions.
Finally, an application of aggregation techniques in other
medical pattern recognition or classification problems will be
worth analyzing.
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Deep neural networks (DNNs) can accurately decode task-related information from brain

activations. However, because of the non-linearity of DNNs, it is generally difficult to

explain how and why they assign certain behavioral tasks to given brain activations,

either correctly or incorrectly. One of the promising approaches for explaining such

a black-box system is counterfactual explanation. In this framework, the behavior

of a black-box system is explained by comparing real data and realistic synthetic

data that are specifically generated such that the black-box system outputs an

unreal outcome. The explanation of the system’s decision can be explained by

directly comparing the real and synthetic data. Recently, by taking advantage of

advances in DNN-based image-to-image translation, several studies successfully applied

counterfactual explanation to image domains. In principle, the same approach could

be used in functional magnetic resonance imaging (fMRI) data. Because fMRI datasets

often contain multiple classes (e.g., multiple behavioral tasks), the image-to-image

transformation applicable to counterfactual explanation needs to learn mapping

among multiple classes simultaneously. Recently, a new generative neural network

(StarGAN) that enables image-to-image transformation among multiple classes has

been developed. By adapting StarGAN with some modifications, here, we introduce

a novel generative DNN (counterfactual activation generator, CAG) that can provide

counterfactual explanations for DNN-based classifiers of brain activations. Importantly,

CAG can simultaneously handle image transformation among all the seven classes

in a publicly available fMRI dataset. Thus, CAG could provide a counterfactual

explanation of DNN-based multiclass classifiers of brain activations. Furthermore,

iterative applications of CAGwere able to enhance and extract subtle spatial brain activity

patterns that affected the classifier’s decisions. Together, these results demonstrate

that the counterfactual explanation based on image-to-image transformation would be

a promising approach to understand and extend the current application of DNNs in

fMRI analyses.
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INTRODUCTION

Recent studies demonstrated promising results of the deep neural
network (DNN) (LeCun et al., 2015) for decoding cognitive or
behavioral information from brain activity images as observed
with functional magnetic resonance imaging (fMRI) (Wang et al.,
2020; Tsumura et al., 2021). However, despite these promising
results, further applications of DNN to fMRI data could be
limited due to its poor interpretability. Because of its highly non-
linear and complex processing, it is often difficult to interpret
what features of a given input led to the DNN’s decision (Dong
et al., 2019). For example, in the case of brain activity decoding,
even though the DNN can accurately assign brain activations
to a particular task, it is difficult to pinpoint which patterns of
brain activations were important for the DNN’s decisions. Such
interpretability would be even more important when the DNN’s
decoding is incorrect. Gradient-based visualization methods,
such as Grad-CAM (Selvaraju et al., 2020), are frequently
used to highlight image regions potentially relevant for the

FIGURE 1 | Applications of counterfactual explanation in fMRI. The example illustrates an application of counterfactual explanation to a misclassification by a DNN

classifier. (A) In this example, a DNN classifier incorrectly assigned EMOTION to a map of brain activation obtained in a MOTOR task. Because of the black-box nature

of the DNN classifier, it is difficult to explain why the misclassification occurred. (B) A generative neural network for counterfactual brain activation (CAG) minimally

transforms the real brain activation in (A) so that the DNN classifier now assigns MOTOR to the morphed activation (counterfactual activation). (C) Counterfactual

explanation of misclassification in (A) can be obtained by taking the difference between the real activation and the counterfactual activation. In this example, the real

brain activation would have been classified (correctly) as MOTOR if red (blue) brain regions in the counterfactual explanation had been more (less) active.

DNN’s decision [see Tsumura et al. (2021) for an application
in neuroimaging]. However, several limitations of the gradient-
based methods, such as high numbers of false positives (Eitel and
Ritter, 2019), have been reported. Thus, alongside improving the
gradient-based methods (Chattopadhay et al., 2018), it would be
beneficial to explore alternative approaches for interpreting the
inner workings of DNNs (Adadi and Berrada, 2018).

Counterfactual explanation is one of the major approaches
for explaining DNN’s inner working (Goyal et al., 2019; Wang
and Vasconcelos, 2020). To explain how the decision on a given
data was made, counterfactual explanation uses artificial data
(“counterfactuals”) that are generated from the real data but
targeted to an unreal outcome (decision). By comparing the
DNN’s decision on the real data and the counterfactual, one
can deduce explanations of the decisions made by the DNN.
For example, we consider a case in which a brain activity
classifier incorrectly assigns a gambling task to a brain activation
produced in a motor task (Figure 1A). We consider a minimal
transformation of the original brain activation to a counterfactual

Frontiers in Neuroinformatics | www.frontiersin.org 2 March 2022 | Volume 15 | Article 802938120

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Matsui et al. Counterfactual Explanation for fMRI

activation that is classified (correctly) as a motor task activation
by the DNN classifier (Figure 1B). By directly comparing the
original brain activation and the counterfactual activation, one
can explain the classifier’s decision by making a statement such as
“This brain activation map would have been correctly classified
to the gambling task if brain areas X and Y had been activated.”
(Figure 1C). As in this example, counterfactual explanation can
provide intuitive explanations of a black-box decision system
without opening the black-box, which is a critical aspect of
the technique.

Although the generation of counterfactuals for high-
dimensional data such as natural images and medical images
had been difficult, recent advancement in DNN-based image
generation has made counterfactual explanation applicable
to these domains. For natural images, several studies have
successfully used counterfactual explanation to explain the
behavior of DNN-based image classifiers (Chang et al., 2019;
Liu et al., 2019; Singla et al., 2020; Zhao, 2020). In medical
image analyses, counterfactual explanation has also been applied
to DNN-based classifiers of X-ray and structural MR images
(Mertes et al., 2020; Pawlowski et al., 2020). However, to the
best of our knowledge, counterfactual explanation has not
been utilized for DNN-based classifiers of fMRI data. The
lack of application to fMRI data may be due to the fact that
commonly used fMRI dataset [such as data distributed by
the Human Connectome Project (Van Essen et al., 2013)]
usually contains data for multiple tasks. Because of this
characteristic of fMRI dataset, unlike commonly used image
generator that performs image-to-image transformation only
between two classes, a generator of counterfactual brain
activations needs to be able to transform the inputs to more than
three classes.

Recently, the StarGAN (Choi et al., 2018) has enabled
image-to-image transfer among multiple classes, thus opening
the possibility to extend the application of counterfactual
explanation to the multiclass fMRI dataset. In this study, based
on the StarGAN model, we developed a generative neural
network named counterfactual activation generator (CAG),
which provides counterfactual explanations for a DNN-based
classifier of brain activations observed with fMRI. This study
aims to provide a proof of principle that counterfactual
explanation can be applied to fMRI data and the DNN-based
classifiers of brain activations. We demonstrated several
applications of CAG. First, CAG could provide counterfactual
explanations of correct classifications of the brain activations
by DNN-based classifiers. Specifically, the counterfactual
explanation highlighted the patterns of brain activations
that were critical for the DNN classifier to assign the brain
activations to particular tasks. Similarly, CAG could provide
counterfactual explanations of incorrect classifications by
DNN-based classifiers. Moreover, iterative application of CAG
accentuated and extracted subtle image patterns in brain
activations that could strongly affect the classifier’s decisions.
These results suggest that the image transfer-based methods,
such as CAG, would be a powerful approach for interpreting and
extending DNN-based fMRI analyses.

MATERIALS AND METHODS

Datasets
Training data were single-subject second-level z-maps obtained
during the performance of seven behavioral tasks from the S1200
release of the Human Connectome Project (N = 992; HCP;
http://www.humanconnectomeproject.org/) (Barch et al., 2013;
Van Essen et al., 2013; Glasser et al., 2016). From each participant,
statistical z-maps were obtained for activation contrasts for
the emotional processing task (face vs. shape), the gambling
task (reward vs. loss), the language processing task (story vs.
math), the motor task (average of all motions), the relational
processing task (relational processing vs. matching), the social
cognition task (mental vs. random), and the N-back working
memory task (2-back vs. 0-back). For brevity, the seven tasks
are denoted as follows: (1) EMOTION, (2) GAMBLING, (3)
LANGUAGE, (4) MOTOR, (5) RELATIONAL, (6) SOCIAL, and
(7) WORKING MEMORY (WM). We used gray-scaled flat 2D
cortical maps (Glasser et al., 2016) provided from HCP for
dimensional compatibility of images between VGG16-ImageNet
and activation maps. The flattened maps were created using
the Connectome Workbench (https://www.humanconnectome.
org/software/connectome-workbench/) following a procedure
described in (Tsumura et al., 2021) (Figure 2A).

DNN Classifier of Brain Activations
The DNN classifier of brain activations used in this study
was adapted from our previous study (Tsumura et al.,
2021) (Figure 2B). Briefly, the DNN classifier was based
on VGG16 (Simonyan and Zisserman, 2015), with five
convolution layers for extracting image features and two
fully connected layers for classification of the seven tasks.
Initial parameters of convolution layers were set to parameters
pretrained with concrete object images provided from ImageNet
(Simonyan and Zisserman, 2015) (http://www.image-net.org/).
The VGG16/ImageNet model is capable of classifying concrete
object images into 1,000 item categories. Importantly, it
has been demonstrated that the pretrained model can learn
novel image sets more efficiently than the non-trained model
by tuning convolution and fully connected layers and fully
connected layers only (Pan and Yang, 2010). Thus, the current
analysis retrained the pretrained VGG16-ImageNet model
to classify brain activation maps. To enable processing by
generative neural networks described below, activation maps
were spatially downsampled from 570 by 1,320 pixels to 50
by 140 pixels. Data were split into training data (N = 4,730)
and validation data (N = 518) (note that some participants
in the dataset did not complete all seven tasks). Training was
conducted using the training data with ten-fold crossvalidation.
Hyperparameters for the training were as follows: batch size,
10; epoch, 50; learning rate, 0.0001; optimizer, stochastic
gradient descent (SGD); loss function, categorical crossentropy.
Pixels outside of the brain were set to zero. Model training
and testing were implemented using Keras (https://keras.io/)
under a Tensorflow backend (https://www.tensorflow.org/). Five
instances of the DNN classifier were trained for replication. All
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FIGURE 2 | DNN classifier for brain activity decoding. (A) Following the standard procedure developed by HCP (Glasser et al., 2016), neocortex in the two

hemispheres was mapped to two cortical sheets. Each neocortical activity image was mapped to the two sheets, which was then input to the DNN classifier (for

details, see Tsumura et al., 2021). (B) Model architecture of the DNN classifier. The input was a picture containing two sheets of cortical activations. The picture was

downsampled for later processing by the generative neural network. The DNN classifier was a deep convolutional network similar to the one described in our previous

study (Tsumura et al., 2021). The output of the DNN classifier was one-hot vectors representing seven behavioral tasks in the HCP dataset. (C) Training history of the

transfer learning. Test accuracy (blue) and validation accuracy (magenta) are shown for five replicates. Note that the chance level is 14.3% (1/7). (D) Profile of the

classifier’s decision (confusion matrix) in the validation set.

parameters, including the training data, were the same for all
the replicates.

Counterfactual Activation Generator (CAG)
We adopted the architecture of StarGAN (Choi et al., 2018),
consisting of discriminator and generator, with a modification
to add a new loss term for the DNN classifier (Figure 3A;

see also Supplementary Figure 1 for an illustration of our
overall approach). Except for this addition of the new loss term
(CAG loss), other parameters were the same as in the original
StarGAN model. Briefly, the goal was to train a single generator
that learns mapping among multiple classes (in this case, the
seven HCP tasks). We regarded this generator as CAG. To
achieve this, we trained CAG to transform a brain activation
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FIGURE 3 | Counterfactual activation generator (CAG). (A) Generator and discriminator architectures, see Methods for details. Networks were modified from

StarGAN. Generator, once trained, served as CAG. Generator takes a combination of an image of brain activation and a one-hot label indicating the target class as an

input. Generator outputs a counterfactual brain activation that is a minimal transform of the input brain activation toward the target class. Discriminator takes an

activation map output by generator and outputs a one-hot label. Discriminator was cotrained with generator, as in StarGAN. (B) Time courses of the generator loss.

Different colors indicate different replicates (n = 5). (C) Representative counterfactual activations generated by CAG. All counterfactual activations were generated

from the source activation. See Supplementary Figure 3 for transformation to all categories. (D) Confusion matrix showing the classifier’s decision profile on

counterfactual activations.

Frontiers in Neuroinformatics | www.frontiersin.org 5 March 2022 | Volume 15 | Article 802938123

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Matsui et al. Counterfactual Explanation for fMRI

x with class-label y (source class) to a perturbation toward yc

(target class), such that CAG
(
x , yc

)
→ xc. An auxiliary

discriminator was introduced to allow a single discriminator to
control multiple classes. Thus, the discriminator produced the
probability distributions over both the source and the target
classes, D : x → {Dsrc (x) , Dcls (x)}.

The loss terms were described as follows. Wasserstein loss
(Lwass) and gradient penalty loss (Lgp) were included to make the
generated brain activations indistinguishable from the real brain
activations. Lwass between the real and counterfactual activations
and Lgp were defined as follows:

Lwass = Ex [Dsrc (x)]− Ex,c [Dsrc (CAG (x, c))]

Lgp = Ex̂

[(
‖ ∇x̂ Dsrc

(
x̂
)
‖2 − 1

)2]

where x̂ was sampled uniformly along a straight line between a
pair of a real and a generated activation.

Domain classification loss was included to ensure that the
transformed activation was properly classified as the target
class. We considered two types of objectives. The first one is a
domain classification loss of real activations used to optimize
discriminator (Lr

cls
= Ex,c

′ [− log Dsrc

(
c′|x

)
]). The second one

is a domain classification loss of fake activations used to optimize

CAG (L
f

cls
= Ex,c[− log Dsrc

(
c|CAG(x, c)

)
]). This loss term

forced CAG to generate activations that could be classified as the
target classes.

Reconstruction loss (Lrec) was defined using the cycle
consistency loss (Kim et al., 2017; Zhu et al., 2017) as follows,

Lrec = Ex,c,c
′

[(
‖ x− CAG(CAG (x, c) , c′)‖1

)]

where CAG tried to reconstruct the original activation from the
transformed activation.

Additionally, we included a loss term for the DNN classifier
(Lcnn) to force the mappings learned by CAG to be aligned
with the classifier’s decisions. This loss term was calculated using
categorical crossentropy over the fake activations.

The total losses for discriminator (LD) and the CAG loss (LG)
were defined using the loss terms as follows:

LD = L
r
wass + L

f
wass + λgpLgp + λclsL

r
cls

LG = Lwass + λclsL
f

cls
+ λrecLrec + λcnnLcnn

whereLr
wass andL

f
wass stand forWasserstein loss for real and fake

activations, respectively. We used the same hyperparameters and
procedures used in the original StarGAN model, except for λcnn
which was newly introduced in CAG. Instance normalization
was used for the generator, but no normalization was used
for the discriminator. The generator network consisted of
three convolutional layers for downsampling, followed by two
convolutional layers (replacing two residual blocks in the
original StarGAN model), which was intern followed by four
convolutional layers for up sampling.We used λgp = 10, λcls = 1,
λrec = 10, and λcnn = 1 for all experiments. All models were
trained using Adam (Kingma and Ba, 2014), with β1 = 0.5 and

β2 = 0.999. Training was done using the training data with ten-
fold crossvalidation for 10,000 epochs. Batch size and learning
rate were set to 16 and 0.0001, respectively, in all experiments.
The code for CAG is available upon reasonable request to the
corresponding author.

Counterfactual Explanation of Correctly
and Incorrectly Classified Images
Counterfactual explanation of correctly classified images was
performed on the correctly classified brain activations (N =

478 out of 518 that were not used in the classifier training).
Each counterfactual explanation was set to explain “Why this
activation was correctly classified as class (task) A instead of class
B?” To do this, the original brain activation was transformed by
CAG toward class B. Counterfactual explanation was obtained
by pixel-by-pixel subtraction of the original activation from the
counterfactual activation. As for counterfactual explanation of
correct classifications, counterfactual activations were obtained
by transforming the correctly classified activations to one of the
randomly chosen incorrect classes.

To quantitatively evaluate the effectiveness of counterfactual
explanations, we conducted two analyses. In the first analysis,
we perturbed image transformation by CAG at various levels
and examined its effect on the classifier’s decisions. For the
perturbation, pixels in each counterfactual explanation whose
values were below a chosen percentile threshold (α) were set
to zero (CEα). Then, the perturbed counterfactual explanation
was added back to the original activation (Activationoriginal)
as follows:

Activationnew = Activationoriginal + CEα

The resulting activation (Activationnew) was normalized to have
minimum and maximum values of zero and one, respectively,
and then input to the DNN classifier. The percentile threshold
(α) took values ranging from 0 to 100% with a 20% step. Note
that Activationnew is equal to the counterfactual activation and
Activationoriginal when α equals to 0 and 100%, respectively.
In the second analysis, each counterfactual explanation was
compared with a “control explanation,” which was calculated
as the difference between the true class’s average activations
and the target class used for the transformation (1Ave).
The control explanation was added to the original activation
(Activationoriginal) as follows,

Activationnew = Activationoriginal +1Ave× κ

The resulting activation (Activationnew) was normalized to have
minimum and maximum values of zero and one, respectively,
and then input to the DNN classifier. The parameter for mixing
(κ) took values ranging from 0 to 5 at with a 0.1 step and was
adjusted individually for each control explanation to maximize
the total number of cases classified to the target class used
for transformation.

Counterfactual explanation of incorrectly classified images
was performed similarly on each incorrectly classified brain
activation (N = 40). Each counterfactual explanation was set
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to explain “Why this activation was incorrectly classified as
class (task) B instead of class A?” To do this, the original
brain activation was transformed by CAG toward the true class
A. Counterfactual explanation was obtained by pixel-by-pixel
subtraction of the original activation from the counterfactual
activation. The two quantitative analyses for the counterfactual
explanation of correct classifications were similarly applied to the
counterfactual explanation of incorrect classifications. In these
analyses, the target class for the image transformation by CAG
was set to the correct classes (instead of randomly chosen classes
in the case of correct classification).

Counterfactual Exaggeration and Feature
Extraction
Counterfactual exaggeration (Singla et al., 2020) was performed
by iteratively transforming a real brain activation toward one
class.We performed up to eight iterations. Feature extraction was
done by subtracting the third iteration from the eighth iteration.
To quantitatively evaluate the extracted feature, the feature
was added to each activation in the validation set (N = 518),
and then, the summed image was input to the DNN classifier.
For 12 extracted features from randomly chosen activations,
the percent of activations assigned to the added feature’s class
were calculated.

RESULTS

DNN Classifier Decoded Task Information
From Brain Activity With High Accuracy
We first trained a DNN classifier that was used as the
target for counterfactual explanation. Brain activations were
converted to flattened maps, which were then input to the
DNN classifier (Figure 2A). The DNN classifier was based
on VGG16 pretrained on the ImageNet dataset (Tsumura
et al., 2021) (Figure 2B). The pretrained DNN classifier was
trained to classify brain activation maps using transfer learning
(Pan and Yang, 2010). After 50 epochs of training, the
DNN classifier reached ∼92% of classification accuracy for
the held-out validation data. Similar results were obtained
for a total of five replicates, suggesting high reproducibility
(Figure 2C). Figure 2D shows the confusion matrix showing
the classifier’s decision profile (see also Supplementary Table 1

for exact values). Similar confusion matrices were obtained for
all the replicates (data not shown). These results suggest that
DNN classifiers could accurately decode task information from
individual brain activations.

CAG Generated Counterfactual Activations
Were Realistic and Fooled the Classifiers
We next trained a generative neural network (CAG) for
counterfactual explanations of the DNN classifier’s decisions.
For this, we adopted, with modifications, the architecture
of StarGAN (Choi et al., 2018) that can perform image-to-
image transformation among multiple classes. Two DNNs,
generator (CAG) and discriminator, were simultaneously
trained (Figure 3A; Supplementary Figure 1). By including
the classification loss by the DNN classifier, CAG was trained
to simultaneously fool both the discriminator and the DNN
classifier (Supplementary Figure 1; see Methods for details).
Throughout the training, the generator loss, which is a good
indicator of the quality of the generated image (Arjovsky et al.,
2017), consistently decreased toward zero and plateaued around
10,000 epochs of training (data for five replicates are shown in
Figure 3B; see also Supplementary Figure 2 for time courses of
all the loss terms). After the training, CAG could transform a real
brain activation into a counterfactual brain activation that was
visually indistinguishable from the real activations (Figure 3C;
Supplementary Figure 3). The training of the CAG was also
designed such that the CAG transformed an input activation
map to any of the seven classes and fool the DNN classifier. Thus,
the trained DNN assigned the targeted class to the counterfactual
activations at almost 100% accuracy (Figure 3D; Table 1).
These results suggest that CAG fulfilled the goal of generating
counterfactual brain activations that were not only visually
realistic but also fooled the DNN classifier.

Counterfactual Explanation of
Misclassification by DNN Classifiers
Using CAG, we first conducted counterfactual explanation of the
classifier’s correct decisions. Specifically, we tried to visualize the
pattern of brain activation that led the classifier to assign the
correct class but not another (incorrect) class (Figure 4A). In the
first example, brain activations correctly classified as MOTOR
by the DNN classifier were examined (Figure 4B). We asked
why these activations were not classified as EMOTION. To see
this, a counterfactual activation was created by transforming each
original activation toward EMOTION using CAG (Figure 4C).
Then, the counterfactual explanation was obtained by taking
the difference between the original and the counterfactual
activations (Figure 4D). The positive and negative regions in the
counterfactual explanation were the regions that had positive
and negative influence, respectively, on the classifier’s decision
of assigning EMOTION but not MOTION to the counterfactual
activation. In other words, the DNN classifier would have

TABLE 1 | Decision profile of DNN classifier on counterfactual activations.

CLASS EMOTION GAMBLING LANGUAGE MOTOR RELATIONAL SOCIAL WM

Ncorrect (%) 518

(100%)

518

(100%)

518

(100%)

512

(98.8%)

518

(100%)

518

(100%)

518

(100%)

Each image in the validation set (N = 518) was morphed toward one of the seven classes and then input to the DNN classifier.
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classified the original activation as EMOTION if the positive
regions in the counterfactual explanation had been more active
(and the opposite for the negative regions).

To quantitatively evaluate the counterfactual explanation,
we compared it against a difference between the population-
averaged activations of EMOTION and MOTOR (average of
74 and 75 activations, respectively) (Figure 4E). Whereas the
difference of average maps highlighted a small portion of
brain areas in the occipital cortex, counterfactual explanation
additionally found lateral temporal areas to be relevant. Because
lateral temporal areas are known to be activated by emotional
and facial processing (White et al., 2014; Glasser et al., 2016), it
is reasonable to find these areas highlighted in the counterfactual
explanation. The reason that only the occipital cortex was
highlighted in the difference in average maps is most likely
due to very high activation in this area in the average map of
EMOTION compared to the average map of MOTOR. These
differences between the counterfactual explanation and the
explanation by the difference of averages can be understood as the
difference between univariate and multivariate analyses (Jimura
and Poldrack, 2012). The average map that is derived from the
univariate analysis (pixel-based GLM) is affected by the choice
of particular control conditions, and thus, the explanation by the
difference of the averages would be affected by difference in the
control conditions. In contrast, the counterfactual explanation
can robustly detect relevant activations using spatial patterns
of multiple pixels. Consistent with this idea, the counterfactual
explanation, but not the difference of average maps, successfully
highlighted the orbitofrontal areas implicated for emotional
processing (Figure 4D) (Goodkind et al., 2012; Rolls et al., 2020).

The second example shows counterfactual explanation
of why WM activations were not classified as LANGUAGE
(Supplementary Figure 4). In this case, unlike the previous
example, the difference of averages of WM and LANGUAGE
highlighted large portions of the brain (red regions in
Supplementary Figure 4; average of 75 and 73 maps,
respectively, for WM and LANGUAGE). With such large
and distributed areas being highlighted, it is difficult to pinpoint
particular areas without arbitrary thresholding. In contrast, the
counterfactual explanation highlighted distributed but much
more localized brain areas (Supplementary Figure 4C). It is
evident from the counterfactual explanation that activations in
frontal and temporal brain areas would have been necessary to
shift the DNN classifier’s decision fromWM to LANGUAGE.

Out of 478 correctly classified validation data, 476
counterfactual activations were classified as the targeted
class. To test the robustness of the result against image
corruption, we isolated the image components added by CAG
(i.e., the difference between the counterfactual activation and
the raw activation). Then, we perturbed the image components
at different levels of percentile thresholds (α in Table 2. see
methods) that were in turn added back to the raw activation.
The effect of thresholding did not change the classification
results when the bottom 20% of the image components were
perturbed. The classification results were still above 25%,
even when the bottom 60% of the image components were
perturbed. The classification results were markedly degraded

when the bottom 80% of the image components were perturbed.
Thus, these results suggest that image modifications imposed
by CAG were robust to perturbation in a large margin. To
further assess the effectiveness of counterfactual explanation, we
compared the classifier’s response to counterfactual activations
and control maps obtained by adding the original activation
and the difference of average activations (“Control” in Table 2).
Only four of the control maps were classified as the targeted
class. Together, these results demonstrated that counterfactual
explanations provided interpretable activation patterns that
could not only explain the classifier’s decisions but also robustly
manipulate the classifier’s decisions.

Note that the aim of the discussion here is not to infer
cognitive tasks associated with the brain activation, a type of
discussion considered as reverse inference (Poldrack, 2006).
In this case, the cognitive tasks (i.e., classes) associated with
the brain activations were entirely determined by the DNN
classifier. The purpose of the discussion here is to interpret the
counterfactual explanation in relation to existing knowledges
about the brain activity. In the future, this type of discussion may
be automated using applications such as Neurosynth (Yarkoni
et al., 2011).

Counterfactual Explanation of
Misclassification by DNN Classifiers
An important feature of counterfactual explanation is its ability
to provide explanations to single cases of misclassification.
We next demonstrated this in misclassifications by the DNN
classifier (Figure 5A). For each case of misclassifications, the
misclassified activation map was transformed toward the correct
class by CAG. Then, the difference between the counterfactual
activation and the real (misclassified) activation was calculated
for the counterfactual explanation. In the first example,
a brain activation in the EMOTION task was incorrectly
classified as SOCIAL (Figure 5B). A counterfactual activation
was obtained by transforming the real activation toward
the correct class (EMOTION) (Figure 5C). Interestingly, the
counterfactual explanation suggested that activations in the
occipital regions were critically lacking for the DNN classifier
to classify the original activation as EMOTION (Figure 5D).
Because the occipital area is considered to process low-level
visual information (Yamins et al., 2014), this occipital activation
likely indicates bias in the dataset that used visual stimulus in
the EMOTION task (Barch et al., 2013) rather than a brain
activation related to emotional processing. Thus, counterfactual
explanation revealed that this misclassification was likely due to
the bias in the dataset, which was unintentionally learned by the
DNN classifier.

As for a control analysis that can be compared with
the counterfactual explanation, we calculated the difference
between the misclassified (real) activation and the average
activation of EMOTION (Figure 5E). Despite the similar global
trend with the counterfactual explanation, the difference with
the average showed a noisy pattern whose local peaks were
difficult to find. Importantly, a peak in the occipital area
was difficult to discern in the difference with the average. In
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FIGURE 4 | Counterfactual explanation of correct classification. (A) Schematics of the question asked in this analysis. In this example, the DNN classifier correctly

assigned a “MOTOR” label to a real brain activation in the MOTOR task. Here, we want to interrogate this correct decision. Specifically, we ask a question “why did the

classifier assign MOTOR instead of EMOTION?” (B–E) Examples of counterfactual explanation. (B) A population average map of real brain activation in the MOTOR

task. (C) A population average map of counterfactual activation obtained by transforming the map in (A) to EMOTION. Transformation was conducted for each

activation map and then averaged across the population. (D) Pixel-by-pixel subtraction of maps in (B) and (A) that serves as counterfactual explanation. This map

explains why the map was classified as MOTOR but not EMOTION. (E) Simple difference between the average of real activations in the EMOTION and MOTOR tasks.

the second example, we examined an activation in WM that
was misclassified as GAMBLING (Supplementary Figure 5A).
A counterfactual activation was obtained by transforming the
real activation toward WM (Supplementary Figure 5B). As
in the first example, the counterfactual explanation showed
a pattern of brain activation with multiple identifiable peaks
(Supplementary Figure 5C). In contrast, the difference with
the average provided a noisier pattern whose local peaks
were difficult to identify (Supplementary Figure 5D). These

results demonstrated that counterfactual explanation can provide
interpretable patterns of brain activations related to individual
cases of misclassifications by the DNN classifier.

Next, we quantitatively assessed the counterfactual
explanation of misclassifications. The DNN classifier assigned
the correct classes to all the counterfactual activations that are
equivalent to additions of the real (misclassified) activations and
the counterfactual explanations (40 of 40misclassified activations
in the validation set). To assess the robustness of the results to
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image perturbation, we conducted the same analysis that we
used for the correct classification. In the case of misclassification,
the DNN classifier assigned the correct classes in 80% of cases,
even when the bottom 80% of the image components modified
by CAG were perturbed (Table 3). This result suggests that only
a small modification to the misclassified activation was necessary
to shift the classifier’s decision to the correct class.

As for the control analysis, for each misclassified activation,
we calculated the control activation that is the sum of
the misclassified activation and the difference of averages
of the true class and the incorrectly assigned class. In
contrast to counterfactual activations, only two of the control
activations were classified as the true classes (Table 3). These
results suggest that counterfactual explanation, but not the
addition of the difference of average activations, captured the
image transformation needed to correct the decisions of the
DNN classifier.

Counterfactual Exaggeration Revealed
Subtle Image Features Important for the
Classifications by DNN
In addition to counterfactual explanations of correct and
incorrect classifications, the deep image generator can perform
“counterfactual exaggeration” to enhance and detect subtle
image features exploited by DNNs (Singla et al., 2020). In
counterfactual exaggeration, an image is iteratively transformed
by the generator toward one class. This iterative image
transformation enhances subtle image features exploited by
DNNs. In a previous work, exaggerated images were used
to discover a novel symptom of diabetic macular edema
(Narayanaswamy et al., 2020). Inspired by these previous works,
we next used CAG in counterfactual exaggeration to detect
subtle features of brain activations exploited by the DNN

classifier (Figure 6A). Interestingly, in some cases, iterative
application of CAG revealed a texture-like feature in the
image (Figures 6B–D). Such a texture-like feature was difficult
to discern in the original activation (Figure 6B) but became
evident as the counterfactual exaggeration was repeatedly applied
(Figures 6C,D). The texture-like feature could be extracted by
taking the difference in counterfactual activations with different
numbers of iterations (Figure 6E).

Although the texture-like pattern did not appear in the same
way as a real brain activation, it could nevertheless influence the
classifier decisions. In fact, it has been suggested that DNNs are
biased toward using textures for image classification (Geirhos
et al., 2018). To quantitatively examine this point, we added
the extracted features to randomly chosen real activations and
then examined the resulting activations by the DNN classifier.
Figure 6F and Supplementary Figure 6 show examples of the
extracted features and the real activations before and after the
addition of the features. Note that differences between the
appearance of activations before and after the addition of the
features were subtle because the amplitudes of the extracted
features were relatively small. Nevertheless, the addition of the
extracted features caused the DNN classifier to (mis-)assign the

activations the classes to which the exaggerations were targeted

(Figure 6G). Misclassification to the targeted class occurred in
55.0 ± 26.1% of cases (mean ± standard deviation; N=12
extracted features; p < 0.001, sign rank test; see Methods for

details). These results suggest that counterfactual exaggeration

assisted by CAG was able to enhance and discover subtle image
features that are exploited by the DNN classifier. The texture-
like features likely represent image features relevant to adversarial
vulnerability of the DNN classifier (Geirhos et al., 2018). Being
able to detect and protect against such attacks is critical for future
reliable applications of DNN-based brain decoders.

TABLE 2 | Decision of DNN classifier on counterfactual activations obtained from correctly classified brain activations.

Correct

cases

Counterfactual activations Control

α = 0 α = 20 α = 40 α = 60 α = 80 α = 100

Ncorrect

(%)

476

(99.6%)

470

(98.0%)

327

(68.4%)

125

(26.2%)

9

(1.9%)

0

(0.0%)

4

(0.8%)

Counterfactual activations were obtained from images correctly classified by the DNN classifier (N= 478). Each image was transformed to one of a number of randomly chosen incorrect

classes. All counterfactual activations were classified as the targeted class by the DNN classifier (middle column). As for the control analysis, the difference of the average maps for

targeted vs. original classes was added to each image. None of the control images were classified as the targeted class (right column).

TABLE 3 | Decision of the DNN classifier on counterfactual activations obtained from misclassified brain activations.

Incorrect

cases

Counterfactual activations Control

α = 0 α = 20 α = 40 α = 60 α = 80 α = 100

Ncorrect

(%)

40

(100%)

40

(100%)

39

(97.5%)

38

(95.0%)

24

(60.0%)

0

(0.0%)

2

(0.5%)

Counterfactual activations were obtained from images originally misclassified by the DNN classifier (N = 40). All of the counterfactual activations were correctly classified by the DNN

classifier after transformation by CAG (middle column). As for the control analysis, the difference of the average maps for incorrect and correct classes was added to each misclassified

image. None of the control images were classified as the targeted class (right column).
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FIGURE 5 | Counterfactual explanation of incorrect classification. (A) Schematics of the question asked in this analysis. In this example, the DNN classifier incorrectly

assigned a “SOCIAL” label to a real brain activation in the EMOTION task. Here, we want to interrogate this incorrect decision. Specifically, we ask a question “why did

the classifier (incorrectly) assign EMOTION instead of SOCIAL?” (B–E) Example of counterfactual explanation. (B) A single brain activation map for EMOTION that was

incorrectly classified as SOCIAL by the DNN classifier. (C) A map of counterfactual activation obtained by transforming the map in (A) to SOCIAL. (D) Pixel-by-pixel

subtraction of maps in (B) and (A) that serves as counterfactual explanation. This map explains why the map was incorrectly classified as SOCIAL but not EMOTION.

(E) Simple difference between the average of real activations in the EMOTION and the single activation map for SOCIAL shown in (A).

DISCUSSION

In this study, we provided a proof-of-principle of application

of counterfactual explanations from a generative model to
understand the decisions of a DNN trained to decode task

information from brain activation data. In the field of computer
vision, such explanation is often conducted with saliency maps

that highlight regions in the input that were important for
the decisions of the DNN (Selvaraju et al., 2020). A recent
neuroimaging study also used saliency maps to interpret
decisions made by DNNs (Tsumura et al., 2021). A limitation

of this approach is that the regions highlighted in saliency maps
are not necessarily causally related to the decisions of the DNN
(Eitel and Ritter, 2019). Hence, user of saliency maps needs
to perform an additional interpretation of why the highlighted
areas are important for the DNN’s decisions (Mertes et al.,
2020). In contrast to saliency maps, counterfactual explanation
explains why the actual decision was made instead of another
one. By creating a slightly modified version of the input that
leads another decision by the DNN, counterfactual explanation
provides a different kind of explanatory information which helps
to interpret saliency maps. Thus, future neuroimaging studies
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FIGURE 6 | Counterfactual exaggeration of brain activation. (A) Schematic of counterfactual exaggeration. A brain activation (MOTOR task in this example) was

iteratively transformed toward MOTOR by CAG. This iterative transformation accentuates (exaggerates) image features that biases the classifier decision toward

MOTOR. (B–D) Example of counterfactual exaggeration. A brain activation in the EMOTION task (B) was iteratively transformed toward EMOTION eight times.

(Continued)
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FIGURE 6 | Images after third (C) and eighth (D) transformations are shown. (E) Subtle image feature enhanced by counterfactual exaggeration was isolated by

taking the difference of exaggerated images. In this example, differences between exaggerated images in (C) and (D) were calculated. The resulting difference image

showed a texture-like pattern. (F) Example of texture-like feature extracted by counterfactual exaggeration (top). Bottom panel shows the texture-like patterns added

to randomly chosen raw brain activations (middle). See also Supplementary Figure 6 for another example. (G) Decisions of the DNN classifier to brain activations

with texture-like patterns added. Each dot represents one example texture (N = 12. Methods for details). Bar graph shows the mean and the standard deviation. The

classifier was significantly biased toward the class of texture-like patterns (*, p < 0.001, Wilcoxon’s sign rank test). Chance level was one of seven.

and also brain machine interface studies using DNNs [e.g.,
Willett et al. (2021)] can combine counterfactual explanation
with saliency maps to better interpret how the patterns of brain
activations are causally related to DNN decisions.

There are several limitations in this study. The training and
testing of the DNN classifier and CAG were performed using
only the HCP dataset. As more and more neuroimaging datasets
become available to the public, researchers are starting to develop
DNN classifiers trained onmultiple datasets. Though it is beyond
the scope of this study, explaining the DNN classifiers trained on
multiple datasets would be an important future research topic.
Another limitation is that this study used spatial downsampling
to enable efficient learning by CAG. This was partly due to
limitations in both the computational power and the dataset
size. The limitation in the dataset size may be alleviated using
techniques for data augmentation (Shorten and Khoshgoftaar,
2019).

It should also be emphasized that the aim of CAG is
not to improve the accuracy of the DNN classifier but
to provide visual explanations for the classifier’s decisions.
Because CAG can simultaneously take into account information
from the entire brain, counterfactual explanation is different
from conventional analyses of local activation patterns such
as GLM and search light-based multivariate pattern analyses
(Kriegeskorte et al., 2006; Jimura and Poldrack, 2012; Chikazoe
et al., 2014). This characteristic of CAG is most pronounced
in counterfactual exaggerations, where it discovered global
texture-like patterns that could effectively bias the classifier’s
decisions. At present, these patterns are unlikely to reflect
biologically important activity patterns. Further development
of CAG and related techniques would enable the discovery
of global activity patterns with biological significance beyond
conventional analyses.

Conclusions
In this study, we developed CAG, a generative neural network
for counterfactual brain activation that can be used to explain
individual decision behaviors of DNN-based classifiers. A single
CAG could handle multiple classes at the same time and
learn mapping between all the pairs of classes. CAG could
provide visually intuitive counterfactual explanations for a
classifier’s correct and incorrect decisions. These counterfactual
explanations were quantitatively more effective in explaining the
classifier’s decision than the controls and were robust against
image perturbations. Finally, beyond explaining the decision
behaviors, CAG could extract subtle image features in the
brain activation that were invisible to the eyes but that were

exploited by the DNN classifiers. Together, these results suggest
that counterfactual explanation with CAG provides a novel
approach to examine and extend current neuroimaging studies
using DNNs.
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Automatic and reliable quantitative tools for MR brain image analysis are a very valuable

resource for both clinical and research environments. In the past few years, this field

has experienced many advances with successful techniques based on label fusion and

more recently deep learning. However, few of them have been specifically designed

to provide a dense anatomical labeling at the multiscale level and to deal with brain

anatomical alterations such as white matter lesions (WML). In this work, we present a

fully automatic pipeline (vol2Brain) for whole brain segmentation and analysis, which

densely labels (N > 100) the brain while being robust to the presence of WML. This

new pipeline is an evolution of our previous volBrain pipeline that extends significantly

the number of regions that can be analyzed. Our proposed method is based on a

fast and multiscale multi-atlas label fusion technology with systematic error correction

able to provide accurate volumetric information in a few minutes. We have deployed

our new pipeline within our platform volBrain (www.volbrain.upv.es), which has been

already demonstrated to be an efficient and effective way to share our technology with

the users worldwide.

Keywords: segmentation, brain, analysis, MRI, cloud

INTRODUCTION

Quantitative brain image analysis based on MRI has become more and more popular over the last
decade due to its high potential to better understand subtle changes in the normal and pathological
human brain. The exponential increase in the current neuroimaging data availability and the
complexity of the methods to analyze them make the development of novel approaches necessary
to address challenges related to the new “Big Data” paradigm (Van Horn and Toga, 2014). Thus,
automatic, robust, and reliable methods for automatic brain analysis will have a major role in the
near future, most of them being powered by cost-effective cloud-based platforms.

Specifically, MRI brain structure volume estimation is being increasingly used to better
understand the normal brain evolution (Coupé et al., 2017) or the progression ofmany neurological
pathologies such as multiple sclerosis (MS, Commowick et al., 2018) or Alzheimer’s disease (Coupé
et al., 2019).

The quantitative estimation of the different brain structure volumes requires automatic, robust,
and reliable segmentation of such structures. As manual delineation of the full brain is unfeasible

134

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.862805
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.862805&domain=pdf&date_stamp=2022-05-24
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jmanjon@fis.upv.es
https://doi.org/10.3389/fninf.2022.862805
https://www.frontiersin.org/articles/10.3389/fninf.2022.862805/full
http://www.volbrain.upv.es


Manjón et al. vol2Brain

for routine brain analysis (this task is too tedious, time-
consuming, and prone to reproducibility errors), many
segmentation methods have been proposed over the years. Some
of them were initially focused at the tissue level such as the
famous Statistical Parametric mapping (SPM) (Ashburner and
Friston, 2005). However, this level of detail may be insufficient to
detect subtle changes in specific brain structures at early stages of
the disease.

For example, hippocampus and lateral ventricle volumes
can be used as early biomarkers of Alzheimer’s disease.
At this scale, also, cortical and subcortical gray matter
(sGM) structures are of special interest for the neuroimaging
community. Classic neuroimaging tools such as the well-
known FSL package (Jenkinson et al., 2012) or Freesurfer
(Fischl et al., 2002) have been widely used over the last 2
decades. More recently, multi-atlas label fusion segmentation
techniques have been extensively applied, thanks to their ability
to combine multiple atlas information minimizing mislabeling
due to inaccurate registrations (Coupé et al., 2011; Wang
and Yushkevich, 2013; Manjón et al., 2014; Romero et al.,
2015).

However, segmentation of the whole brain into a large
number of structures is still a very challenging problem
even for modern multi-atlas based methods (Wang and
Yushkevich, 2013; Cardoso et al., 2015; Ledig et al., 2015).
The problems encountered are (1) the need of a large
set of densely manually labeled brain scans and (2) the
large amount of computational time needed to combine
all those labeled scans to produce the final segmentation.
Fortunately, a fast framework based on collaborative patch-
matching was recently proposed (Giraud et al., 2016) to
reduce the computational time required by multi-atlas patch-
based methods.

More recently, deep leaning methods have also been
proposed for brain structure segmentation. Those methods
are mainly patch-based (Wachinger et al., 2018) or 2D (slice-
based) (Roy et al., 2019) due to current GPU memory
limitations. The current state-of-the-art whole brain deep
learning methods are based on ensembles of local neural
networks such as the SLANT method (Huo et al., 2019),
or more recently the Assemblynet method (Coupé et al.,
2020).

The aim of this study is to present a new software pipeline
for whole brain analysis that we have called vol2Brain. It is
based on an optimized multi-atlas label fusion scheme that has a
reduced execution time, thanks to the use of our fast collaborative
patch-matching approach, which has been specifically designed
to deal with both normal appearing and lesioned brains (a
feature that most of preceding methods ignored). This pipeline
automatically provides volumetric brain information at different
scales in a very simple manner through a web-based service
not requiring any installation or technical requirements in a
similar manner as previously done by our volBrain platform
that since 2015 has processed more than 360,000 brains
online worldwide. In the following sections, the new pipeline
will be described, and some evidences of its quality will
be presented.

MATERIALS AND METHODS

Dataset Description
In our proposed method, we used an improved version
of the full Neuromorphometrics dataset (http://www.
neuromorphometrics.com), which consists of 114 manually
segmented brain MR volumes corresponding to subjects with
ages covering almost the full lifespan (from 5 to 96 years).
Dense neuroanatomical manual labeling of MRI brain scans was
performed at Neuromorphometrics, Inc., following the methods
described in the study by Caviness et al. (1999).

The original MRI scans were obtained from the following
sources: (1) the Open Access Series of Imaging Studies
(OASIS) project website (http://www.oasis-brains.org/) (N =

30), (2) the Child and Adolescent NeuroDevelopment Initiative
(CANDI) Neuroimaging Access Point (http://www.nitrc.org/
projects/candi_share) (N = 13), (3) the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) project website (http://adni.
loni.usc.edu/data-samples/access-data/) (N = 30), (4) the
McConnell Brain Imaging Center (http://www.bic.mni.mcgill.ca/
ServicesAtlases/Colin27Highres/) (N = 1), and (5) the 20Repeats
dataset (http://www.oasis-brains.org/) (N = 40).

Before manual labeling, all the images were preprocessed with
an automated bias field inhomogeneity correction (Arnold et al.,
2001) and geometrically normalized using three anatomical
landmarks [anterior commissure (AC), posterior commissure
(PC), and mid-sagittal point]. The scans were reoriented and
resliced so that anatomical labeling could be done in coronal
planes that follow the AC-PC axis. The manual outlining was
performed using an in-house software called the NVM and the
exact specification of each region of interest is defined in (1)
Neuromorphometrics’ General Segmentation Protocol (http://
neuromorphometrics.com/Seg/) and (2) the BrainCOLOR
Cortical Parcellation Protocol (http://Neuromorphometrics.
com/ParcellationProtocol_2010-04-05.PDF). It has to be noted
that the exact protocols used to label the scans evolved over time.
Because of this, not all anatomical regions were labeled in every
group (label number range: max= 142, min= 136).

Dataset Correction
Right after downloading the Neuromorphometrics dataset,
we performed a rigorous quality control of the dataset. We
discovered that this dataset presented several issues that had to
be corrected before using it.

Image Resolution, Orientation, and Size
After checking each individual file, we found that they had
different acquisition orientations (coronal, sagittal, and axial).
They also have different resolutions (1 × 1 × 1, 0.95 × 0.93 ×

1.2, 1.26× 1.24× 12, etc.) and different volume sizes (256× 256
× 307, 256 × 256 × 299, 256 × 256 × 160, etc.). To standardize
them, we registered all image and corresponding label files to
the MNI152 space using ANTS software, which resulted in a
homogeneous dataset with axial orientation, 1 × 1 × 1 mm3

voxel resolution, and a volume size of 181 × 217 × 181 voxels.
We also checked the image quality and we removed 14 cases from
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the original dataset that presented strong image artifacts and
severe blurring effects. This resulted in a final dataset of 100 cases.

Inconsistent and Different Number of Labels
The selected 100 files from the previous step had 129 common
labels from a total of 142 labels. After analyzing these 13
inconsistent labels, we decided to treat each of them in a specific
manner according to the detected issue. Label file description
assigns label numbers from 1 to 207. However, we found that
labels 228, 229, 230, and 231 were present in some files. After
checking them, we realized that labels 228 and 229 on the left
corresponded to a right basal foreground (labels 75 and 76) and
so we renumbered them. Labels 230 and 231 just represented few
pixels in three of the cases and therefore were removed. Labels
63 and 64 (right and left vessel) were not present in all the cases
(not always visible) and we decided to renumber them as a part of
the putamen (labels 57 and 58), as they were located inside. We
removed label 69 (optic chiasm) because it was not present in all
the cases and its delineation was very inconsistent. Labels 71, 72,
and 73 (cerebellar vermal lobules I-V, VI-VII, and VIII-X) were
present in 74 of the 100 cases, and we decided to re-segment the
inconsistent cases so that all the cases have these labels (details
are given in the following section). Label 78 (corpus callosum)
was only present in 25 cases, and we decided to relabel it as
right and left white matter (WM, labels 44 and 45). Label 15 (5th
ventricle) was very tiny and only present in a few cases (13); thus,
it was relabeled as lateral ventricles (labels 51 and 52). Finally,
we decided to add two new labels that we found important, i.e.,
external cerebrospinal fluid (CSF) (labeled as 1) and left and right
WM lesions (labels 53 and 54). Details on how these labels were
added are provided in the following section. After all the cleanup,
the final dataset had a consistent number of 135 labels (refer
to Appendix).

Labeling Errors
Once the dataset had a homogeneous number of labels, we
inspected them to check their quality. After inspecting the dataset
visually, we found that the boundaries of all the structures in
sagittal and axial planes were very irregular. This is probably due
to the fact that the original manual delineation was performed
in the coronal plane. However, one of the main problems we
found was the fact that cortical gray matter (cGM) was severely
overestimated, and correspondingly, the CSF and WM were
underestimated. This fact has been already highlighted by other
researchers (Huo et al., 2017) who pointed out this problem in
the context of cortical thickness estimation. The same problem
arises in the cerebellum, although it is a bit less pronounced.
To solve this problem (Huo et al., 2017), an automatic fusion of
the original GM/WM maps was used, and partial volume maps
were generated by the TOADS method (Bazin and Pham, 2008)
to correct the cortical labels. In this study, we have followed a
different approach based on the original manual segmentation
and the intensity information.

First, we combined all the 135 labels into seven different
classes (CSF, cGM, cerebral white matter (cWM), sGM, cerebellar
gray matter (ceGM), cerebellar white matter (ceWM), and
brain stem (BS)]. External CSF was not labeled in the

Neuromorphometrics dataset, so we added it using volBrain
(Manjón and Coupé, 2016) (we copied CSF label to those pixels
that had label 0 in the original label file). Then, the median
value of cGM and cWM was estimated and used to generate the
partial volume maps using a linear mixing model (Manjón et al.,
2008). Voxels in the cGM and cWM interface were relabeled
according to their partial volume content (e.g., a cGM voxel with
a cWM partial volume coefficient bigger than its corresponding
cGM partial volume coefficient was relabeled as cWM). The
same process was repeated for the CSF/cGM interface, the
ceGM/ceWM interface, and the ceGM/CSF interface. To ensure
the regularity of the new label maps, each partial volumemap was
regularized using a non-local means filter (Coupé et al., 2018).
Finally, each case was visually revised and small labeling errors
were manually corrected using the ITK-SNAP software. Most of
the corrections were related with cGM in the upper part of the
brain, and misclassifications of WM lesions were termed as cGM
and CSF-related corrections. Figure 1 shows an example of the
cGM/cWM tissue maps before and after the correction.

After the tissue correction, the original structure labels
were automatically relabeled to match the new tissue maps.
Specifically, those voxels that kept the same tissue type before
and after the correction kept their original labels and those
that changed were automatically labeled according to the most
likely label considering their position and intensity. Results were
visually reviewed to assess its correctness and manually corrected
when necessary. Finally, we realized that sGM structures showed
important segmentation errors and we decided to re-segment
them using volBrain automatic segmentation followed bymanual
correction when needed. Figure 2 shows an example of the final
relabeling result.

LesionBrain Dataset
One of the main goals of the proposed pipeline was to make
it robust to the presence of WM lesions that normally are
misclassified as gray matter (GM) in pathological brains. To this
end, we included not only healthy cases but also subjects with
WM lesions in our library. Specifically, 32 of the 100 cases of
the previously described Neuromorphometrics dataset had WM
visible lesions with a lesion load ranging frommoderate to severe.
We are aware that WM lesions can appear anywhere in the brain,
but it is also known that they have a priori probability to be
located in the periventricular areas among others (Coupé et al.,
2018).

We found though that the number of cases with lesions on
the dataset was not enough to capture the diversity of WM
lesion distribution, so we decided to expand the dataset using a
manually labeled MS dataset. We previously used this dataset to
develop a MS segmentation method (Coupé et al., 2018).

This dataset is composed of 43 patients with MS who
underwent 3T 3D-T1w MPRAGE and 3D-Fluid-Attenuated
Inversion Recovery (FLAIR) MRI. We used only the T1 images,
as this is the input modality of our proposed pipeline. To further
increase the size of the dataset, we included the left-right flipped
version of the images and labels resulting in an extended dataset
of 86 cases.
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FIGURE 1 | Example of cGM tissue correction. From right to left: Reference T1 image, original cGM map, corrected cGM map, and map of changes (white means

inclusion and black means removal of pf voxels). In the bottom row, a close up is shown to better highlight the differences.

FIGURE 2 | Top row shows the original labeling and bottom row shows the corrected labeling. Note that the external CSF label has been added to the labeling

protocol.

Vol2Brain Pipeline Description
The vol2Brain pipeline is a set of image processing
tasks dedicated to improve the quality of the input data
and to set them into a specific geometric and intensity

space, to segment the different structures and to generate
useful volumetric information (refer to Figure 3 for a
general overview). The vol2Brain pipeline is based on the
following steps:
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FIGURE 3 | vol2Brain pipeline scheme. In the first row, the preprocessing for any new subject is presented. In the second row, the results of the ICC extraction,

structure, and tissue segmentations jointly with the cortical thickness estimation are presented. Finally, in the third row, the volumetric information is extracted and

presented.

1. Preprocessing
2. Multiscale labeling and cortical thickness estimation
3. Report and csv generation

Preprocessing
We have used the same preprocessing steps as those described
in the volBrain pipeline (Manjón and Coupé, 2016), as it
has been demonstrated to be very robust (based in our
experience processing more than 360,000 subjects worldwide).
This preprocessing consists of the following steps. To improve
the image quality, first, the raw image is denoised using
the Spatially Adaptive Non-Local Means (SANLM) filter

(Manjón et al., 2010) and inhomogeneity is corrected using the
N4 method (Tustison et al., 2010). The resulting image is then
affinely registered to the Montreal Neurological Institute (MNI)
space using the ANTS software (Avants et al., 2008). The image in
the MNI space has a size of 181 × 217 × 181 voxels with 1 mm3

voxel resolution. Then, we used an inhomogeneity correction
based on SPM8 (Ashburner and Friston, 2005) toolbox, as this
model-based method has proven to be quite robust once the data
are located at the MNI space. Finally, we normalized the images
as per intensity by applying a piecewise linear tissue mapping
based on the TMS method (Manjón et al., 2008) as described in
the study by Manjón and Coupé (2016). It is worth to note that
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the library images were also normalized as per intensity using
the described approach so that both library and the case to be
segmented share a common geometrical and intensity space.

Multiscale Labeling and Cortical Thickness

Estimation
After the preprocessing, the images are ready to be segmented
and measured. This segmentation is performed in several stages.

ICC Extraction
The first step in the segmentation process is the intracranial
cavity extraction (ICC). This is obtained using the NICE method
(Manjón et al., 2014). NICE method is based on a multi-scale
non-local label fusion scheme. Details of the NICE method can
be found in the study byManjón et al. (2014). To further improve
the quality of the original NICE method, we have increased the
size of the original volBrain template library from 100 to 300 cases
using the 100 cases of the vol2Brain library and their left-right
mirrored version.

Full Brain Structure Segmentation
The dense segmentation of the full brain is based on a multiscale
version of the non-local patch-based label fusion technique
(Coupé et al., 2011) wherein patches of the subject to be
segmented are compared with patches of the training library to
look for similar patterns within a predefined search volume to
assign the proper label v as can be seen in the following equation:

v (xi) =

∑N
s=1

∑
j∈Vi

w(xi, xs,j)ys,j
∑N

s = 1

∑
j∈Vi

w(xi, xs,j)
(1)

where Vi corresponds to the search volume, N is the number of
subjects in the templates library, ys,j is the label of the voxel xs,j at
the position j in the library subject s, and w(xi, xs,j) is the patch
similarity defined as:

w
(
xi, xs,j

)
= exp

−Di,j,s

h2 (2)

Di,j,s =
∥∥P (xi) − P(xs,j)

∥∥2
2

(3)

where P(xi) is the patch centered at xi, P(xs,j) is the patch centered
at xj in the templates, and ||.||2 is the normalized L2 norm
(normalized by the number of elements) calculated from the
distance between each pair of voxels from both patches P(xi) and
P(xs,j). h is a normalization parameter that is estimated from the
minimum of all patch distances within the search volume.

However, exhaustive patch comparison process is very time-
consuming (even in reduced neighborhoods, i.e., when the search
volume V is small). To reduce the computational burden of
this process, we have used a multiscale adaptation of the OPAL
method (Giraud et al., 2016) previously proposed in the study
by Romero et al. (2017), which takes benefit from the concept
of Approximate Nearest Neighbor Fields (ANNF). To further
speed up the process, we processed only those voxels that were
segmented as ICC by the NICE method.

In patch-based segmentation, the patch size is a key parameter
that is strongly related to the structure to be segmented and

image resolution. It can be seen in the literature that multi-
scale approaches improve segmentation results (Manjón et al.,
2014). In the OPAL method (Giraud et al., 2016), independent
and simultaneous multi-scale and multi-feature artificial neural
networks (ANN) fields were computed. Thus, we have followed
a multi-scale approach in which several different ANNs are
computed for different patch sizes resulting in different label
probability maps that have to be combined. In this study, two
patch sizes are used, and an adaptive weighting scheme is
proposed to fuse these maps (Equation 3).

p(l) = α p1 (l) + (1 − α)p2(l) (4)

where p1(l) is the probability map of patch-size 3× 3× 3 volxels
for label l, p2(l) is the probability map of patch-size 5 × 5 × 5
voxels for label l, p(l) is the final probability map for label l, and α

ǫ [0,1] is the probability mixing coefficient.

Systematic Error Correction
Any segmentation method is subject to both random and
systematic errors. The first error type can be typically minimized
by using bootstrapped estimations. Fortunately, the non-local
label fusion technique estimates the voxel label averaging the
votes of many patches, which naturally reduces the random
classification error. Unfortunately, systematic errors cannot be
reduced using this strategy, as they are not random. However,
due to its nature, this systematic bias can be learned, and later,
this knowledge can be used to correct the segmentation output
(Wang and Yushkevich, 2013).

In the study by Romero et al. (2017), we proposed an error
corrector method based on a patch-based ensemble of neural
networks (PEC for Patch-based Ensemble Corrector) to increase
the segmentation accuracy by reducing the systematic errors.
Specifically, a shallow neural network ensemble is trained with
image patches of sizes 3 × 3 × 3 voxels (fully sampled) and
7 × 7 × 7 voxels (subsampled by skipping two voxels at each
dimension) from the T1w images, the automatic segmentations,
a distance map value, and their x, y, and z coordinates at MNI152
space. The distance map we used is calculated for the whole
structure as the distance in voxels to the structure contour. This
results in a vector of 112 features that are mapped to a patch
of manual segmentations of size 3 × 3 × 3 voxels. We used a
multilayer perceptron with two hidden layers of size 83 and 55
neurons resulting in a network with a topology of 112× 83× 55
× 27 neurons. An ensemble of 10 neural networks was trained
using a boosting strategy. Each new network was trained with
a different subset of data, which was selected by giving a higher
probability of selection to those samples that weremisclassified in
the previous ensemble. More details can be found in the original
study (Romero et al., 2017).

Multiscale Label Generation
Once the full brain segmentation is performed, different scale
versions were computed by combining several labels to generate
more generic ones and allowing a multiscale brain analysis. The
135 labels were combined to create a tissue-type segmentation
map, including eight different tissues [CSF, cGM, cWM, sGM,
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ceGM, ceWM, BS, and white matter lesions (WML)]. The cGM
and cWM maps will be later used to compute the cortical
thickness. Also, cerebrum lobe maps were created by combining
cortical GM structures. These maps will be used later to compute
the lobe-specific volumes and thickness.

Cortical Thickness Estimation
To estimate the cGM thickness, we have used the DiReCT
method. DiReCT was introduced in the study by Das et al. (2009)
and was made available in ANTs under the program named
KellyKapowski. This method is based on the use of a dense non-
linear registration to estimate the distance between the inner and
the outer parts of the cGM. Cortical thickness per cortical label
and per lobe were estimated from the thickness map and the
corresponding segmentation maps (Tustison et al., 2014).

Report Generation
The output produced by the vol2Brain pipeline consists in
a pdf and csv files. These files summarize the volumes and
asymmetry ratios estimated from the images. If the user provides
sex and age of the submitted subject, population-based normal
volumes and asymmetry bounds for all structures are added for
reference purposes. These normality bounds were automatically
estimated from the IXI dataset (https://brain-development.
org/ixi-dataset/), which contains almost 600 normal subjects
covering most of the adult lifespan. We are aware that one of
the most important sources of variability is the use of different
scanners to build the normative values (although the use of our
preprocessing reduces this variability). In the near future, we
will extend the dataset to have a larger and more representative
sample of the population as we already did for the volBrain
pipeline (Coupé et al., 2017).

Furthermore, the user can access to its user area through
volBrain website to download the resulting nifti files containing
the segmentations at different scales (both in native and MNI
space). An example of the volumetric report produced by
vol2Brain is shown in Appendix.

EXPERIMENTS AND RESULTS

In this section, some experimental results are shown to
highlight the accuracy and reproducibility of the proposed
pipeline. A leave-two-out procedure was performed for the
100 subjects of the library (i.e., excluding the case to be
segmented and its mirrored version). In the dataset, there
are 19 cases that were scanned and labeled twice for the
purpose of reproducibility estimation. In this case, a leave-
four-out procedure was applied to avoid any problem (i.e.,
excluding the case to be segmented and its mirrored version
of the two acquisitions of the same subject). To measure
the segmentation quality, the dice index (Zijdenbos et al.,
1994) was computed by comparing the manual segmentations
with the segmentations obtained with our method. A visual
example of the automatic segmentation results is shown in
Figure 4.

Results
Since presenting dice results of the 135 labels would be
impractical, we have decided to show the average results for
cortical and non-cortical labels as done in previous studies (Wang
and Yushkevich, 2013). In Table 1, the results of the proposed
method are shown with and without the corrective learning step
(PEC) to show the impact that this postprocessing has in the final
results (it improved the results in all the cases).

To further explore the results, we separated them by dataset,
as it is well-known that results within the same dataset are
normally better than across the datasets. This allows to explore
the generalization capabilities of the proposed method. Results
are summarized in Table 2. As can be seen, results of the OASIS
dataset were the best among the datasets. This makes perfect
sense, as precisely, this dataset is the largest. CANDI dataset
showed the worst results. This dataset had the worst image
quality, which somehow explains these results.

One of the objectives of the proposed method was to be able to
deal with images with white mater lesions. This is fundamental,
as if we do not take into account those regions, they are normally
misclassified as a cGM or sGM (which also affects the cortical
thickness estimation) (Dadar et al., 2021). The results of WM
lesion segmentation are summarized in Table 3 (left and right
lesions were considered together). We separated the results by
lesion volume, as it is well-known that small lesions are more
difficult to segment than the big ones (Manjón et al., 2018).

Once the full brain is segmented into 135 labels, those
labels are grouped together to provide information at different
anatomical scales. Specifically, eight different tissue labels are
generated. Dice results are summarized in Table 4.

Method Reproducibility
A very important feature for a measurement method is its
reproducibility. To measure the reproducibility of the proposed
method, we used a subset of our library. Specifically, we used 19
cases of the OASIS subset that were scanned and labeled twice.
In this case, we have two sources of variability, which are related
to the inter-image changes and manual labeling differences. To
measure the reproducibility, we computed the dice coefficient
between the two different segmentations (of each case and its
repetition). This was done for both the manual segmentation
(that we used as a reference) and the automatic one. Results are
summarized in Table 5. As can be seen, the proposed method
showed a slightly superior reproducibility than manual labeling.

Method Comparison
It is difficult to compare the proposed method with similar state-
of-the-art methods such as Freesurfer, as the labeling protocol
is slightly different. For this reason, we have used as a freely
available and well-known method called Joint Label Fusion as a
reference (Wang and Yushkevich, 2013). This method is a state-
of-the-art multi-atlas segmentation approach. To make it fully
comparable, we used the corrected cases of our library as the
atlas library. We summarized the results of the comparison in
Table 6. We compared our proposed method with two versions
of the JLF approach, one using an affine registered library (linear)
and another using a non-linear registered library. It is worth to
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FIGURE 4 | Example results of vol2Brain. T1 image, ICC mask, brain tissues, lobes, and structures.
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TABLE 1 | Proposed method dice results.

Method All labels Cortical labels Non-cortical labels

Our method 0.8190 ± 0.0300 0.7912 ± 0.0397 0.8929 ± 0.0173

Our method + PEC 0.8262 ± 0.0257 0.7996 ± 0.0347 0.8969 ± 0.0157

The mean dice is evaluated on all the considered labels (135 without background). *Best

results highligthed in bold.

TABLE 2 | Proposed method overall dice results for the full dataset and for each

of the subsets.

All

(N = 100)

OASIS

(N = 68)

CANDI

(N = 6)

ADNI

(N = 25)

COLIN

(N = 1)

0.8262 ± 0.0257 0.8353 ± 0.0233 0.7831± 0.0326 0.8111 ± 0.0142 0.8353

TABLE 3 | Proposed method lesion dice results.

Method Small (N = 76) Medium (N = 21) Big (N = 3) Avg (N = 100)

Lesion 0.5767 ± 0.1486 0.8281 ± 0.0500 0.8467 ± 0.0524 0.6440 ± 0.1589

*Small (<4ml), Medium (4–18ml), Big (>18 ml).

TABLE 4 | Proposed method dice results for each brain tissue.

CSF cGM cWM sGM

0.9006 ± 0.0307 0.9543 ± 0.0144 0.9669 ± 0.0131 0.9518 ± 0.0114

ceGM ceWM BS Lesion

0.9644 ± 0.0172 0.9448 ± 0.0363 0.9693 ± 0.0137 0.6440 ± 0.1589

TABLE 5 | Proposed method dice results.

Method All labels Cortical labels Non-cortical labels

vol2Brain 0.8405 ± 0.0181 0.8234 ± 0.0206 0.8856 ± 0.0158

Manual 0.8368 ± 0.0171 0.8198 ± 0.0200 0.8818 ± 0.0163

The mean dice is evaluated on all the considered labels (135 without background).

TABLE 6 | Proposed method dice results compared with the results of two

versions of JLF method.

Method All labels Cortical labels Non-cortical labels

vol2Brain 0.8262 ± 0.0257 0.7996 ± 0.0347 0.8969 ± 0.0157

JLF (linear) 0.7369 ± 0.0292 0.7016 ± 0.0337 0.8305 ± 0.0241

JLF (non-linear) 0.7591 ± 0.0252 0.7327 ± 0.0288 0.8291 ± 0.0228

note the proposed method uses only a linearly registered library
(i.e., no non-linear registration was used). As can be noticed, the
proposed method was far superior to both versions.

Computational Time
The proposed method takes around 20min on average to
complete the whole pipeline (including cortical thickness
estimation and report generation). JLF method takes around

only 2 h for structure segmentations without cortical thickness
estimation (excluding the preprocessing, which includes several
hours of non-linear registration depending on the number of
atlases used). Freesurfer normally takes around 6 h to perform
the complete analysis (which also includes surface extraction).

DISCUSSION

We have presented a new pipeline for full brain segmentation
(vol2Brain) that is able to segment the brain into 135 different
regions in a very efficient and accurate manner. The proposed
method also integrates these 135 regions to provide measures
at different anatomical scales, including brain tissues and
lobes. It also provides cortical thickness measurements per
cortical structure and lobe displayed into an automatic report
summarizing the results (refer to Appendix).

To create vol2Brain pipeline, we had to create a template
library that integrates all the anatomical information needed to
perform the labeling process. This was a long and laborious work,
as the original library obtained from Neuromorphometrics did
not meet the required quality and we had to invest a significant
amount of time to make it ready to use. To create this library, we
homogenized the image resolution, orientation, and size of the
images, removed and relabeled inconsistent labels, and corrected
systematic labeling errors. Besides, we extended the labeling
protocol by adding external CSF and WM lesions. As a result, we
generated a highly consistent and high-quality library that not
only allowed to develop the current proposed pipeline but will
also be a valuable resource for future developments.

The proposed method is based on patch-based multi-atlas
label fusion technology. Specifically, we have used an optimized
version of non-local label fusion called OPAL that efficiently finds
patch matches needed to label each voxel in the brain by reducing
the required time to label the full brain from hours to minutes.
To further improve the results, we have used a patch-based error
corrector, which has been previously used in other segmentation
problems such as hippocampus subfield labeling (Romero et al.,
2017) or cerebellum lobules (Carass et al., 2018).

Wemeasured the results of the proposed pipeline using a LOO
methodology and achieved an average dice value of 0.8262. This
result was obtained from four different sub-datasets ranking from
0.7831 to 0.8353 showing a good generalization of the proposed
method. This result was quite close to the manual intraobserver
accuracy that was estimated as 0.8363 using a reduced dataset.
We also compared the proposed method with a related currently
available state-of-the-art method for full brain labeling. We
demonstrated that vol2Brain was not only far superior to the
linear (0.8262 vs. 0.7369) and nonlinear (0.8262 vs. 0.7591)
versions of JLF method but also more efficient with a temporal
cost of minutes compared with hours.

The proposed vol2Brain pipeline is already available through
our volBrain platform (https://volbrain.upv.es). As compared to
the rest of the volBrain platform pipelines, this pipeline receives
an anonymized and compressed nifti file (a T1-weighted image
in the case of vol2Brain) through the website and reports the
results 20min later by sending an email to the user. The user
can also download the segmentation nifti files through the user
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area of volBrain platform (an example of the pdf report is shown
in Appendix).

We hope that the accuracy and efficiency of the proposed
method and the ease of use through the volBrain platform will
boost the anatomical analysis of the normal and pathological
brain (especially on those cases with WM lesions).

CONCLUSION

In this study, we present a novel pipeline to densely segment
the brain and to provide measurements of different features at
different anatomical scales in an accurate and efficient manner.
The proposed pipeline has been compared with a state-of-
the-art-related method showing competitive results in terms of
accuracy and computational time. Finally, we hope that the
online accessibility of the proposed pipeline will facilitate the
access of any user around the world to the proposed pipeline
making their MRI data analysis simpler and more efficient.
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Cognitive tasks engage multiple brain regions. Studying how these regions interact is

key to understand the neural bases of cognition. Standard approaches to model the

interactions between brain regions rely on univariate statistical dependence. However,

newly developed methods can capture multivariate dependence. Multivariate pattern

dependence (MVPD) is a powerful and flexible approach that trains and tests multivariate

models of the interactions between brain regions using independent data. In this article,

we introduce PyMVPD: an open source toolbox for multivariate pattern dependence.

The toolbox includes linear regression models and artificial neural network models

of the interactions between regions. It is designed to be easily customizable. We

demonstrate example applications of PyMVPD using well-studied seed regions such

as the fusiform face area (FFA) and the parahippocampal place area (PPA). Next,

we compare the performance of different model architectures. Overall, artificial neural

networks outperform linear regression. Importantly, the best performing architecture

is region-dependent: MVPD subdivides cortex in distinct, contiguous regions whose

interaction with FFA and PPA is best captured by different models.

Keywords: multivariate pattern dependence, connectivity, fMRI, deep networks, toolbox

1. INTRODUCTION

Cognitive processes recruit multiple brain regions. Understanding which of these regions interact,
and what computations are performed by their interactions, remains a fundamental question
in cognitive neuroscience. In an effort to answer this question, a large literature has used
measures of the statistical dependence between functional responses in different brain regions. The
most widespread approach adopted in this literature—“functional connectivity”—computes the
correlation between the timecourses of responses in different brain regions, and has been applied
to both resting state fMRI and task-based fMRI (Horwitz et al., 1992; Friston, 1994; Greicius et al.,
2003; Schaefer et al., 2018). Other approaches, such as Granger Causality (Granger, 1969; Goebel
et al., 2003) and Dynamic Causal Modeling (Friston et al., 2003), have been developed to investigate
the directionality of interactions.

In a separate literature, researchers studying the content of neural representations have
developed techniques that leverage the multivariate structure of activity patterns (multivariate
pattern analysis—MVPA) to decode information from fMRI data (Norman et al., 2006), and to
study the similarity between the responses to different stimuli (Kriegeskorte et al., 2008). The
success of MVPA has inspired the development of multivariate approaches to study the statistical
dependence between brain regions (Anzellotti and Coutanche, 2018; Basti et al., 2020).
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One approach, “Informational Connectivity,” computes the
trial-by-trial decoding accuracy for a given categorization in
multiple regions, and correlates the decoding accuracy achieved
with data from one region with the accuracy achieved with
the other region across trials (Coutanche and Thompson-Schill,
2013). Another approach uses multivariate distance correlation
to capture the statistical dependence between regions (Geerligs
et al., 2016)—thanks to this strategy, it can also be applied to
resting state studies, in which different conditions that can be
categorized are not available.

Among multivariate approaches to study the interactions
between brain regions, multivariate pattern dependence (MVPD,
Anzellotti et al., 2017a; Li et al., 2019) is unique in that it
trains and tests models of the interactions between brain regions
using independent subsets of data, evaluating out-of-sample
generalization. Like multivariate distance correlation, MVPD can
be applied to both task data and resting state data. Additionally,
MVPD can flexibly use a variety of models of dependence,
with the potential to incorporate regularization, and to capture
linear, as well as non-linear, interactions between brain regions.
Of course, the use of holdout data for model evaluation has
been previously adopted for applications outside the field of
connectivity—indeed, it is also used in MVPA (Haxby et al.,
2001; Haynes and Rees, 2006), and it has an even longer history
in machine learning (see for instance Lachenbruch and Mickey,
1968). Similarly, the use of multivariate methods is also present
in MVPA, and has a longer history in Science (Pearson, 1903).

Given the complex nature of the MVPD, a dedicated toolbox
can provide researchers with a more accessible entry point to
adopt this method. Several toolboxes have been developed for
MVPA (Hanke et al., 2009; Hebart et al., 2015; Oosterhof et al.,
2016; Treder, 2020), these toolboxes played an important role
for the diffusion of MVPA analyses (as evidenced by the many
times they have been cited). Here, we introduce a freely available
open-source toolbox for MVPD, developed in Python: PyMVPD.
The toolbox offers a set of functions for performing MVPD
analyses, organized around a simple workflow. It also includes
example Python scripts for several MVPD models, including
linear regression models that were used in previous MVPD
publications (Anzellotti et al., 2017a; Li et al., 2019), and new
models based on artificial neural networks. The models are
accompanied by algorithms that can be used to evaluate their
performance. PyMVPD scripts have been designed so that they
can be easily customized, enabling users to expand the toolbox to
address their needs.

The full PyMVPD toolbox (including the artificial neural
network models) requires a working installation of PyTorch. The
use of CUDA and general purpose graphics processing units
(GPGPUs) is recommended. For users who might not need
artificial neural networks, we also make available a lite version
of the toolbox, that does not require PyTorch. Both versions of
PyMVPD can be installed with PyPI.

In the remainder of the article, a brief technical introduction
to MVPD is followed by a description of PyMVPD
implementation and the analysis workflow (Figure 1). Next,
the algorithms are validated by analyzing a publicly available
dataset—the StudyForrest dataset (Sengupta et al., 2016).

Finally, the performance of different types of models is assessed,
comparing the predictive accuracy of linear regression and
artificial neural networks.

2. METHODS

2.1. MVPD
Multivariate pattern dependence (MVPD) is a novel technique
that analyzes the statistical dependence between brain regions
in terms of the multivariate relationship between their patterns
of response. Compared with traditional methods used for
connectivity analysis, MVPD has two main advantages
(Anzellotti et al., 2017a). First, MVPD preserves the fine-
grained information that can be lost by spatially averaging
in mean-based univariate connectivity. By doing so, MVPD
improves sensitivity as compared to univariate methods such
as standard functional connectivity (Anzellotti et al., 2017a).
This choice is motivated by the success of multivariate analysis
methods developed outside the field of connectivity (MVPA,
Haxby et al., 2001; Haynes and Rees, 2006; Norman et al., 2006).
Second, MVPD is trained and tested with independent subsets
of data. As a consequence, it is resilient to overfitting: in MVPD
it is not sufficient for a model of the interactions between two
regions to provide a good fit for a set of data, the model also
has to generate accurate predictions for a separate set of data
that was not used to tune the model’s parameters (the “testing”
data). This is a key feature of MVPD: it guarantees a more
stringent test of the interactions between brain regions. Note that
however this procedure does not remove the need for denoising
methods: some sources of noise can produce shared effects across
multiple regions. A previous study investigated the effectiveness
of different denoising techniques for MVPD (Li et al., 2019);
among the techniques tested, CompCor (Behzadi et al., 2007)
was the most effective, therefore we used CompCor for denoising
in this study.

Due to the use of separate sets of data for training and
testing, MVPD benefits from fMRI datasets that include multiple
experimental runs within each participant. This way, there is
a sufficient amount of data to train the models, even after
holding some out for testing. The amount of training data within
a participant affects the model’s ability to generate accurate
predictions for the testing data. For this reason, datasets that
include a very short amount of data within each participant (e.g.,
a 5-min resting state scan) are not well-suited for this type of
analysis—in this respect, MVPD is similar to multivariate pattern
analysis (MVPA).

The number of participants needed for MVPD analysis might
vary depending on the brain regions that are being investigated.
In previous studies, numbers of participants similar to the
ones used for MVPA have produced robust results (Anzellotti
et al., 2017a; Li et al., 2019). Based on these considerations,
in the present work we used the StudyForrest dataset (Hanke
et al., 2016), a publicly available dataset that has been used in
several MVPA studies. As compared to large datasets used in
functional connectivity (such as the Human Connectome Project
dataset, Smith et al., 2013), the number of participants in the
StudyForrest dataset is relatively small (14 subjects for analysis),
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FIGURE 1 | PyMVPD workflow. Analyzing data with the PyMVPD toolbox consists of three steps: (1) analysis specification; (2) data loading; and (3) analysis execution.

In step 1, users are required to specify the functional data, masks for both the predictor and the target region, as well as the type of MVPD model to perform the

following analyses. These details can be specified by editing the Python script run_MVPD.py. Next, users can proceed with step 2, which loads neuroimaging data

and converts it to a suitable format. Finally, step 3 runs the MVPD model and generates the analysis results, which are saved in a user-specified directory.

but StudyForrest includes over 2 h of data for each individual
participant, making it ideal for MVPD.

The logic of MVPD is as follows. Suppose that we want to
calculate the statistical dependence between two brain regions.
MVPD will learn a function that, given the response pattern in
one region (the “predictor” region), generates a prediction of
the response pattern in the other (the “target” region). Let us
consider an fMRI scan with m experimental runs. We denote
the multivariate timecourses in the predictor region by X1, ...,Xm.
Each matrix Xi is of size nX × Ti, where nX is the number of
voxels in the predictor region, and Ti is the number of timepoints
in the experimental run i. Analogously, Y1, ...,Ym denote the
multivariate timecourses in the target region, where each matrix
Yi is of size nY × Ti, and nY is the number of voxels in the
target region.

As a first step, the data is split into a training subset and
a test subset. It is important that the training and test subsets
are independent. Since fMRI timeseries are characterized by
temporal autocorrelation, it is best to not use timepoints from
one run for training and adjacent timepoints from the same
run for testing. A common approach is to use leave-one-run-out
cross-validation: this is the approach implemented by default in
the PyMVPD toolbox. For each choice of an experimental run i,
data in the remaining runs is concatenated as the training set

Di = {(X1,Y1), ..., (Xi−1,Yi−1), (Xi+1,Yi+1), ..., (Xm,Ym)},

while data Di = {(Xi,Yi)} in the left-out run i is used as the
test set.
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For convenience, we will denote with Xtrain and Ytrain the
concatenated training data in the predictor region and in the
target region, respectively. The training data is used to learn a
function f such that

Ytrain = f (Xtrain)+ Etrain,

where Etrain is the error term. In the current implementation,
the response pattern in the target region at a given time is
predicted from the response pattern in the predictor region at the
same time. However, models that integrate the responses in the
predictor region across multiple timepoints are a straightforward
extension. Once the function f has been estimated, we use it to
generate predictions of the responses in the target region Ŷtest

given the responses in the predictor region during the test run:

Ŷtest = f (Xtest).

Finally, the accuracy of the prediction is computed. In the
PyMVPD toolbox, we provide a measure of predictive accuracy
by calculating the voxelwise proportion of variance explained.
For each voxel j in the target region, variance explained is
calculated as:

varExpl(j) = 1−
var[Ytest(j)− Ŷtest(j)]

var[Ytest(j)]
,

where Ŷ are the predicted voxelwise timecourses. The values
varExpl(j) are then averaged across voxels in the target region and
across cross-validation runs to obtain a single measure varExpl.
In addition, the PyMVPD toolbox is designed to allow for
customized measures of accuracy (more details will be provided
in the following sections).

2.2. The PyMVPD Toolbox
PyMVPD is a Python-based toolbox that implements the
MVPD analysis pipeline. This software package is freely
available at https://github.com/sccnlab/PyMVPD.git. Artificial
neural network models are built using PyTorch—for users who
are only interested in linear regression models, or who would like
to avoid the complexities of a PyTorch installation, we have also
provided a lite version (PyMVPD_LITE) at https://github.com/
sccnlab/PyMVPD_LITE.git, for which PyTorch is not required.
PyMVPD is based on a simple workflow that consists of
three steps: analysis specification, data loading, and analysis
execution, with the latter step including the following sub-steps:
dimensionality reduction (if requested), model estimation, and
model evaluation. Models are trained and tested using k-fold
cross validation (where k is a parameter specified by the user).

2.2.1. Preliminaries
Prior to MVPD analysis, the fMRI data at hand should
have already undergone standard preprocessing steps, such
as registration, normalization and denoising. Denoising is an
essential component of preprocessing: measures of statistical

dependence are susceptible to noise (Ciric et al., 2017). The
preprocessed fMRI data should be in NIfTI file format. Next, the
user should create brain masks of the predictor region (“ROI 1”)
and the target region (“ROI 2”), also in NIfTI file format.

2.2.2. Step 1—Analysis Specification
During analysis specification, the user enters all necessary
information to perform the analysis into the script
“run_MVPD.py”. Information is organized into two variables:
“inputinfo”, and “params”. The variable “inputinfo” contains
the paths to the input data as well as the locations to which the
results will be saved (the complete list of required values can
be found here https://github.com/sccnlab/PyMVPD#required-
input-information). The variable “params” contains all details
about the analysis, including the type of cross-validation (e.g.,
leave-k-run-out), the type of dimensionality reduction chosen
(if any), the number of dimensions selected, the type of model
of statistical dependence, and other hyperparameters of the
model (for example, the amount of regularization for regularized
regression models, or the neural network architecture for
neural network models). We include an overview of the key
options available in the Section 2.2.4. A complete description
of all parameters would not fit within the limits of this article,
therefore it is reported at this page: https://github.com/sccnlab/
PyMVPD#list-of-model-parameters (along with the default
values for each parameter). Since all parameters for the analysis
are specified by the user in step 1, before the analysis is launched,
and all results and logs are automatically saved to a user-specified
folder, PyMVPD jobs can be launched on computer clusters as
batch jobs, without the need to use interactive jobs.

2.2.3. Step 2—Data Loading
The second step of PyMVPD is the loading and processing of
input data. Before running the chosenMVPDmodel, values from
the functional data are extracted using masks specified in step
1, and transformed into numpy arrays in preparation for the
following analyses. To accomplish this step, the user can execute
the line of code data_loading.load_data(inputinfo).

2.2.4. Step 3—Analysis Execution
Once the analysis details have been specified and the data
is loaded, the third step executes the analysis, estimating the
statistical dependence between brain regions and reporting the
accuracy of predictions in independent data. To perform step
3, users can call the function model_exec.MVPD_exec(inputinfo,
params), which will estimate the MVPD model, compute the
model’s performance, and save the results to the folder specified
in step 1.

It is important to note that during the implementation
of PyMVPD, users only need to interface with the analysis
specification script in the first analysis step (e.g., run_MVPD.py).
Then, the following two analysis steps will run automatically and
the users are not required to interface with any of them. This
default setting makes it easier to run the toolbox on computer
clusters.

Logging information is saved as a text file named by
“TIMESTAMP_log.txt” under the directory where users specify
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to save results in the first analysis step. The log file contains
information about input data that have been used for the analysis,
MVPD model parameters, and the version of the toolbox.

To ensure the toolbox is installed properly and to verify
it works, we have included tests for users to run before
performing formal analyses. Users can find the test script
“run_MVPD_test.py” under the exp/ folder. The test script
attempts to replicate on the user’s machine the analyses in our
manuscript that used FFA as seed using data from subject sub-01,
and calculates for each of the five example models the correlation
between the variance explained values we obtained and the values
obtained with the user’s installation across the whole brain. If
the correlation values are below 0.95 for any of the model types,
the test script returns a warning notifying the user that the
results they obtained do not match the benchmarks, specifying
which of the models produced results that differed from our
reference results. The results of the tests are saved in the folder
exp/testresults/, so that the tests can be executed as a batch script
on a computer cluster.

Since executing all analyses can take a substantial amount
of time, in addition to the “run_MVPD_test.py” script we have
included scripts to test individual models. This way, users can
test just the type of model they are interested in using. These tests
for individual models are also included in the exp/ folder, with
the names “run_MVPD_PCA_LR.py”, “run_MVPD_L2_LR.py”,
“run_MVPD_NN_1layer.py”, “run_MVPD_NN_5layer.py”, and
“run_MVPD_NN_5layer_dense.py”. In future extensions of the
toolbox, we plan to introduce more finer-grained tests for
individual functions.

Below, we provide an overview of the available options
for the different stages of analysis execution (dimensionality
reduction, model estimation, model evaluation). Users can select
what options to use for their analysis by editing the file
“run_MVPD.py” (as noted in the Section 2.2.4).

2.2.4.1. Dimensionality Reduction
The PyMVPD toolbox offers the option to perform
dimensionality reduction on the input data before estimating
models of statistical dependence. Dimensionality reduction
can be desirable because reducing the dimensionality of
the input data leads to a corresponding reduction in the
number of parameters of the models, mitigating the risk
of overfitting. Two dimensionality reduction approaches
are included in the toolbox: principal component analysis
(PCA), implemented with sklearn.decomposition.PCA, and
independent component analysis (ICA), implemented with
sklearn.decomposition.FastICA. In the current implementation
of the toolbox, the number of dimensions needs to be entered
manually by the user (the default value is 3), but the toolbox
is designed to accommodate custom dimensionality reduction
functions, offering the possibility to include a nested cross-
validation approach for the selection of the number of
dimensions (this option may be implemented as a core part of
the toolbox in future releases). In particular, for applications in
which the choice of the number of dimensions has meaningful
theoretical implications, we recommend implementing a custom
PCA function that uses Minka’s MLE algorithm to select the

number of dimensions based on the data. For some model types,
dimensionality reduction might not offer additional benefits.
In particular, when using artificial neural network models,
the neural networks can themselves perform dimensionality
reduction as needed—the desired amount of dimensionality
reduction can be regulated by choosing the appropriate size of
the hidden layer (or layers). Hidden layers with a smaller number
of hidden nodes correspond to greater data compression.

2.2.4.2. Model Estimation
2.2.4.2.1. Linear Regression Models Linear regression attempts to
model the relationship between a dependent variable and one
or more explanatory variables by fitting a linear function to
observed data. Specifically, we view the multivariate timecourses
in the predictor region X as the explanatory variable and the
multivariate timecourses in the target region Y as the dependent
variable. The MVPD mapping f can be modeled with multiple
linear regression

Ytrain = BtrainXtrain + Etrain,

where Btrain is the vector of parameters and Etrain is the error
vector.

A large number of parameters as compared to a relatively
small dataset can lead regression models to overfit the data.
That is, the model learns a function that corresponds too
closely to the particular training set and therefore fails to
fit unseen data, resulting in poor predictive accuracy during
testing. To mitigate this issue, we provide the option to choose
either Lasso or Ridge regularization, setting “params.reg_type” to
either “Lasso” or “Ridge”. The strength of regularization can be
either set manually using the parameter “params.reg_strength”
(the default value is 0.001), or automatically thanks to the
use of nested cross-validation (Golub et al., 1979). When
choosing to set the regularization parameter manually, it is of
fundamental importance to decide the value of the parameter
a-priori. Performing the analysis with multiple choices of the
regularization parameter and selecting the one that yields the
best results is a form of circular analysis, and will lead to false
positive inflation. To perform automatic selection, we offer the
option to use Ridge regularization determining the regularization
parameter with a nested cross-validation loop. This can be
achieved setting “params.reg_type” to “RidgeCV”. By default, the
optimal regularization value is chosen among 0.001, 0.01, and 0.1,
users can specify a different set of regularization values to test by
setting the parameter “params.reg_strength_list”. However, it is
important to note that automatic selection of the regularization
parameter may lead to longer computation times for the analyses.

2.2.4.2.2. Neural Network Models In addition to linear regression
models, we introduce an extension of MVPD in which the
statistical dependence between brain regions can be modeled
using artificial neural networks. In this approach, themultivariate
patterns of response in the predictor region are used as the
input of a neural network trained to generate the patterns of
response in the target region. In PyMVPD, all neural network
models are trained using stochastic gradient descent (SGD) on
a mean square error (MSE) loss by default. Batch normalization
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is applied to the inputs of each layer. Additionally, users should
set the following hyperparameters for the chosen neural network:
number of hidden units in each layer, number of layers, learning
rate, weight decay, momentum, mini-batch size, and number
of epochs for training. We provide standard fully-connected
feedforward neural network architectures (“NN_standard”) and
fully-connected feedforward neural network architectures with
dense connections (“NN_dense”, Huang et al., 2017) for
users to choose. Both architectures only consist of linear
connections between layers without introducing non-linear
activation functions. Users are welcome to build their own neural
network models with customized functions.

Note that functional MRI data has temporal dependencies.
That is, the amount of response in a voxel in a volume
acquired at a given timepoint is not entirely independent
of the amount of response in that voxel in the previous
timepoint. This non-independence can potentially affect models
of the interactions between brain regions, including standard
functional connectivity as well as MVPD. In order to mitigate
the effect of non-independence, the neural network models in
PyMVPD adopt a strategy borrowed from deep Q-learning.
In deep Q-learning there is a similar problem: the actions
taken by a reinforcement learning agent, the resulting states of
the environment, and the rewards are non-independent across
adjacent timepoints. To mitigate this problem, actions and the
resulting states are logged to a “replay memory”; the policy
network is then trained on a batch sampled randomly from the
replay memory, so that the actions, states and rewards in each
batch are more independent (see Fan et al., 2020). PyMVPD
neural network models use the same strategy: each training
batch contains datapoints collected at a randomly sampled set
of timepoints. As a consequence, the set of datapoints within
a batch are more independent than if they had been sampled
consecutively.

2.2.4.2.3. Searchlight Analysis Previous MVPD studies included
searchlight-based analyses (Anzellotti et al., 2017a). The results
of searchlight analyses can be contingent on the use of a sphere
as the searchlight shape, and on the choice of a particular radius.
To avoid this, we recommend usingmulti-output models instead:
users interested in mapping the statistical dependence between
one region and the rest of the brain can use a whole-brain mask
as the target region (as we have done in the present work).

2.2.4.3. Model Evaluation
To measure the predictive accuracy of the MVPD model after
execution, we included code to calculate variance explained
following two different approaches. In one approach, the variance
explained values are left unthresholded, and thus can range
between−∞ and 1. This can be helpful to identify cases in which
there is a clear mismatch between the target and the prediction.
However, since negative values of variance explained are difficult
to interpret in terms of their neuroscientific implications, and
since very negative outliers in individual participants can conceal
voxels with positive variance explained in most participants, we
additionally implemented a function to set negative variance

explained to zero, indicating that the model failed to predict the
responses in a given voxel for a given participant.

Notably, even when setting negative values of the variance
explained to zero, the variance explained approach is more
stringent than computing Pearson correlation between the model
predictions and the observations. For example, in the presence of
predictions thatmatch the observations in terms of their patterns,
but show a large difference in the means, Pearson correlation
would be very high, while variance explained would be zero.

Statistical significance can be computed by performing a
permutation test on the unthresholded variance explained values.
Alternatively, phase resampling of the responses in the target
of prediction could be used to construct the null distribution
(see Liu and Molenaar, 2016). In addition, comparisons between
the predictive accuracy of different predictor regions or different
types of models can be done using non-parametric statistical
tests on the differences between their proportions of variance
explained (thresholded or unthresholded). This was the approach
we adopted in the experimental application of PyMVPD in this
article.

We assessed the statistical significance across participants
with statistical non-parametric mapping (Nichols and Holmes,
2002) using the SnPM13 software, using FWE-correction at the
voxel level to control for multiple comparisons (http://warwick.
ac.uk/snpm). More specifically, to identify significant differences
between two models, we first computed the average variance
explained across cross-validation iterations for each voxel and
for each model, and then we computed differences between
these averages for the two models, obtaining one difference
map for each participant. Finally, these difference maps were
entered in SnPM13 following the steps described in this
tutorial: https://warwick.ac.uk/fac/sci/statistics/staff/academic-
research/nichols/software/snpm/man/exnew, and significance
was computed selecting the option “MultiSub: One Sample t-test
on diffs/contrasts”. When computing statistical significance, it is
important to consider the spatial autocorrelation of fMRI data:
the measurements from nearby voxels tend to be correlated.
Some types of correction for multiple comparisons (e.g., cluster
correction) can be susceptible to spatial autocorrelation, when
using such methods, underestimating the spatial autocorrelation
may lead to excessively liberal statistical thresholds. When there
is not complete confidence that spatial autocorrelation can be
correctly estimated, we recommend using thresholds corrected
at the voxel level.

Importantly, if negative values of variance explained are
set to zero, the use of standard statistical tests (such as t-
tests) to establish significance can lead to exceedingly liberal
thresholds. Recent work has investigated in depth this problem
in the context of classification accuracy (Allefeld et al.,
2016; Hirose, 2021), introducing new statistics that can be
used to address this issue. Future work may lead to the
development of approaches to implement FWE correction
for these statistics, making it possible to apply them to
whole-brain analyses controlling for multiple comparisons.
In the meantime, we recommend either using raw variance
explained values (without setting negative values to zero), or
performing statistical tests on subtractions between the variance
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explained values obtained with different model types or different
brain regions.

2.3. Application to Experimental fMRI Data
2.3.1. Data Acquisition and Preprocessing
As a demonstration of the use of PyMVPD, we analyzed fMRI
data of 15 participants (age range 21–39 years, mean 29.4
years, 6 females) watching a movie, from the publicly available
StudyForrest dataset (http://studyforrest.org). Functional data
were collected on a whole-body 3 Tesla Philips Achieva dStream
MRI scanner equipped with a 32 channel head coil. The BOLD
fMRI responses at the resolution of 3×3×3 mm were acquired
using a T2∗-weighted echo-planar imaging sequence. Complete
details can be found in Hanke et al. (2016).

The dataset includes a movie stimulus session, collected
while participants watched the 2-h audio-visual movie “Forrest
Gump”. The movie was cut into eight segments, and each
segment lasted approximately 15 min. All eight segments
were presented to participants in chronological order in eight
separate functional runs. Additionally, the dataset includes an
independent functional localizer that can be used to identify
category-selective regions (Sengupta et al., 2016). During the
category localizer session, participants viewed 24 unique gray-
scale images from each of six stimulus categories: human faces,
human bodies without heads, small artifacts, houses, outdoor
scenes, and phase scrambled images. Each participant was
presented with four block-design runs and a one-back matching
task.

All fMRI data was preprocessed using fMRIPrep (https://
fmriprep.readthedocs.io/en/latest/index.html). Anatomical
images were skull-stripped with ANTs (http://stnava.github.
io/ANTs/), and segmented into gray matter, white matter, and
cerebrospinal fluid using FSL FAST. Functional images were
corrected for head movement with FSL MCFLIRT (https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT), and were subsequently
coregistered to their anatomical scan with FSL FLIRT. Data
of one participant was excluded because it could not pass the
fMRIPrep processing pipeline. For the remaining 14 participants,
we removed noise from the data with CompCor (Behzadi et al.,
2007) using 5 principal components extracted from the union
of cerebrospinal fluid and white matter. Regions of no interest
for the cerebrospinal fluid and white matter were defined
individually for each participant.

2.3.2. ROI Definition
In each individual participant, seed regions of interest (ROIs)
in the fusiform face areas (FFA) as well as the parahippocampal
place areas (PPA) were defined using the first block-design run
from the functional localizer. We performed whole-brain first
level analyses on each participant’s functional data by applying a
standard general linear model with FSL FEAT (Woolrich et al.,
2001). Next, we identified the peak voxels with the highest t-
values for the contrast between the preferred category and other
categories (i.e., FFA contrast: faces> bodies, artifacts, scenes, and
scrambled images; PPA contrast: scenes > faces, bodies, artifacts,
and scrambled images). We generated spheres of 9 mm radius
centered in the peaks. Finally, the voxels within spheres from the

left and right hemispheres were combined, and the 80 voxels with
the highest t-values were selected (this is a common choice in
neuroimaging studies, see Skerry and Saxe, 2014; Kliemann et al.,
2018).

We additionally created a group-average gray matter mask
using the gray matter probability maps generated during
preprocessing, with a total of 53,539 voxels, that was used as the
target of prediction.

2.3.3. PyMVPD Analysis
Using the PyMVPD toolbox, we estimated the multivariate
pattern dependence between each ROI (FFA/PPA) and the gray
matter using five example MVPD models: L2_LR, PCA_LR,
NN_1layer, NN_5layer, and NN_5layer_dense. L2_LR is a
linear regression model with Ridge (L2) regularization. The
regularization strength was set to be 0.001. PCA_LR is a linear
regression model that applies dimensionality reduction on input
data with PCA using three principal components. NN_1layer
andNN_5layer are fully-connected feedforward neural networks
derived from the “NN_standard” architecture with one hidden
layer and five hidden layers, respectively. Under the “NN_dense”
architecture, NN_5layer_dense is a fully-connected feedforward
neural network with dense connections and five hidden layers.
For all the neural network models, we set the number of hidden
units in each hidden layer to be 100. Each network was trained
with a batch size of 32, a learning rate of 0.001, and a momentum
of 0.9 with no weight decay.

For both FFA and PPA, we took the 80 voxels in the seed
ROI as the predictor region, and the 53,539 voxels in the gray
matter as the target region. For each MVPD model, 7 of the 8
movie runs were used for training, and the remaining run was
used for testing. This leave-one-run-out procedure was repeated
8 times by leaving aside each possible choice of the left-out run.
We then calculated the variance explained for each voxel in the
target region with all five MVPD models in the left-out data.

The proportion of variance explained for each seed region
and model was computed for each voxel in gray matter, negative
values of variance explained were set to 0. Next, we compared
the overall predictive accuracy in each pair of MVPD models.
For each participant, the proportion of variance explained by
each model was averaged across all voxels in the gray matter,
and across all cross-validation folds. The difference between the
average variance explained by the two models was computed
for each participant, and the significance was assessed with a
one-tailed t-test across participants—p-values were Bonferroni
corrected for all 20 comparisons (since one-tailed tests were used,
comparisons in both directions were counted in the correction).

In addition to testing the models’ overall predictive accuracy,
we sought to compare their accuracy at the level of individual
voxels. First, we performed a voxelwise comparison of neural
network models vs. linear regression models. To do this,
for each voxel, we calculated the average variance explained
across neural network (NN) models, and we subtracted the
average variance explained across linear regression (LR) models.
We computed statistical significance across participants with
statistical non-parametric mapping using the SnPM13 software,
obtaining pseudo-t statistics for each voxel. Then, we identified
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voxels where neural network models significantly outperformed
linear regression models, at a familywise error (FWE) corrected
threshold of p < 0.05 (voxelwise FWE-correction was used).
Next, we performed finer-grained analyses, focusing on the better
performing NN models. In particular, we tested all pairwise
comparisons between individual NN models. As in the previous
analysis, significance was computed using SnPM13, using a
voxelwise FWE-corrected threshold of p < 0.05. We used
Bonferroni correction to control for the number of multiple
comparisons.

Even in regions where different models are not significantly
different, qualitative differences might reveal large-scale patterns
that could help users in the selection of a particular model.
Given this consideration, we aimed to provide a qualitative
evaluation of the relative performance of different models across
the brain. To this end, for each voxel in the gray matter,
we first selected the model yielding the highest proportion of
variance explained in that voxel (averaged across participants)
and specified that model as the best model for that voxel.
Then, we obtained a conservative measure of the extent to
which the model outperformed the other models by calculating
the lowest t-value among all comparisons between the best
model and all other models. As these results are qualitative
in nature, they are shown in the Supplementary Material

(Supplementary Figure 6).

3. RESULTS

In line with previous studies using MVPD (Anzellotti et al.,
2017a), our implementation of PyMVPD identified the expected
patterns of statistical dependence between FFA and PPA and
other brain regions (see Figure 2A for a visualization of the seed
regions in one representative participant). Across multiple model
types, when using FFA as seed, regions showing high variance
explained included other face-selective regions, and when using
PPA as seed, regions showing high variance explained included
other scene selective regions (Supplementary Figures 1–5, peak
coordinates for face-selective regions and scene-selective regions
were determined with Neurosynth, https://www.neurosynth.
org/). In subsequent analyses, we focused on comparing the
performance of different models, first in terms of their overall
accuracy (averaged across the entire brain), and then at the level
of individual voxels.

3.1. Comparing the Average Performance
of Different Models
To compare the overall predictive accuracy across different
MVPD models, the proportion of variance explained for each
model was averaged across the whole brain. Then, we performed
pairwise comparisons among all five example models. For each
pair of models, we subtracted the variance explained varExpl of
one model from that of another one. This procedure yielded a
difference value for each participant, and we conducted a one-
sample one-tailed t-test on the difference values across all 14
participants using SnPM. All p-values were Bonferroni corrected

for 20 multiple comparisons. Results are shown in Figure 2B as
difference matrices for FFA and PPA, respectively.

Overall, models based on artificial neural networks
outperformed standard linear regression models. Linear
regression based on principal component analysis (PCA_LR)
showed the worst predictive accuracy while NN_5layer_dense

proved to be the best predicting model. More precisely, using
FFA as seed region, L2_LR showed a significantly higher
average variance explained than PCA_LR [t(13) = 6.05, p =
0.0004 corrected]. Both NN_1layer and NN_5layer significantly
outperformed PCA_LR in terms of average variance explained
[NN_1layer: t(13) = 6.27, p = 0.00028 corrected; NN_5layer:
t(13) = 6.46, p = 0.00022 corrected]. NN_5layer_dense revealed
a significantly higher average variance explained than L2_LR

[t(13) = 7.72, p < 0.0002 corrected] and PCA_LR [t(13) = 6.37,
p = 0.00024 corrected]. Using PPA as seed region, all the other
models showed significantly better predictive performance than
PCA_LR [L2_LR: t(13) = 6.55, p < 0.0002 corrected; NN_1layer:
t(13) = 5.79, p = 0.00062 corrected; NN_5layer: t(13) = 5.49, p =
0.00104 corrected; NN_5layer_dense: t(13) = 6.68, p < 0.0002
corrected]. In addition, NN_5layer_dense also significantly
outperformed L2_LR, NN_1layer and NN_5layer [L2_LR:
t(13) = 6.30, p = 0.00028 corrected; NN_1layer: t(13) = 3.45,
p = 0.04308 corrected; NN_5layer: t(13) = 3.73, p = 0.02522
corrected]. The rest of the pairwise comparisons did not show
significant differences across participants (p > 0.05 corrected).

3.2. Comparing the Performance of
Different Models at the Level of Individual
Voxels
To further understand the relative accuracy of different models
in different brain regions, we tested the relative performance
of neural network models (NN) to the performance of linear
regression (LR) models. In particular, we averaged the variance
explained for each voxel across the three NNmodels (NN_1layer,
NN_5layer,NN_5layer_dense), and the two LR models (L2_LR,
PCA_LR), respectively. Given the higher predictive accuracy of
NN models over LR models when averaged across the whole
brain (Figure 2B), we also expected NN models to outperform
LR models in several brain regions. We tested this hypothesis by
calculating the difference in predictive accuracy between average
NN and LR models for each voxel in each participant, and
then computed the statistical significance across participants. As
expected, the resulting SnPM t-map shown in Figure 3 revealed
a large portion of the gray matter that was better predicted by
the average NN models rather than the average LR models using
FFA or PPA as seed region. NN models did not achieve higher
predictive accuracy in the seed regions—this is to be expected,
since a very simple model such as the identity function would
be sufficient in these regions. By contrast, responses in the other
category-selective regions (i.e., face-selective regions: OFA, STS,
ATL; scene-selective regions: RSC, TOS) were better predicted by
the average NN models over the average LR models when using
the seed region of the matching category (Figure 3).

Next, we investigated in more detail the relative voxel-
wise predictive accuracy among the three NN models. To do
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FIGURE 2 | (A) Seed regions. Example seed regions for one representative participant. The fusiform face areas (FFA) are shown in red, and the parahippocampal

place areas (PPA) are shown in blue. Individual ROIs per participant were defined based on first-level t-maps, identifying 9 mm spheres centered on the peaks for the

preferred category, and selecting the top 80 voxels with highest t-values within the spheres. (B) Comparison between different MVPD models. For each seed predictor

region (left: FFA; right: PPA), we plotted the difference matrix of t-values across the five example MVPD models. As a measure of overall predictive accuracy, the

average proportion of variance explained varExpl was computed across the whole brain for each model per participant. For each pair of models, we subtracted the

varExpl of one model from another one, obtaining the pairwise difference values. Finally, we conducted a one-tailed t-test on the difference values across all 14

participants. The corresponding t-values were entered into the difference matrix, indicating the extent to which one model outperformed another one in terms of the

overall predictive accuracy using the seed region as the predictor. Stars above t-values indicate the statistical significance (***p < 0.001; **p < 0.01; *p < 0.05;

Bonferroni-corrected).

this, we calculated the difference values of variance explained
between each pair of NN models (6 pairs in total). Statistical
significance was computed using SnPM and all p-values
were Bonferroni corrected for 6 multiple comparisons. Due
to controlling for multiple comparisons both across voxels
(with a FWE-corrected voxelwise threshold determined
with SnPM) and across multiple model comparisons (thus
further dividing the threshold by 6), this analysis is very
stringent. Nonetheless, the analysis did reveal some loci
of significant differences between the models (Figure 4).
Using FFA as seed region, the insula was significantly better
predicted by NN_5layer over NN_5layer_dense (Figure 4A),
and a region in left parietal cortex was significantly better
predicted by NN_5layer over NN_1layer (Figure 4B).
Using PPA as seed region, a region in the cerebellum
showed significant higher predictive accuracy by NN_1layer

than NN_5layer, by NN_5layer_dense than NN_1layer,

and by NN_5layer_dense than NN_5layer. Additional,
smaller loci showing significant differences are reported in

Supplementary Table 1 (FFA) and Supplementary Table 2

(PPA).

Finally, since qualitative differences that do not pass

significance might still be helpful for users interested in choosing
a model, we generated a map that visualizes the best performing

model for each voxel, and the extent to which the best

model outperforms the other models (Supplementary Figure 6).
Specifically, we assigned different colors to each model (L2_LR:

green; PCA_LR: blue; NN_1layer: red; NN_5layer: yellow;
NN_5layer_dense: purple). The color of each voxel was set to the
color of the model that performed best at predicting that voxel’s
responses, and the color’s saturation was set proportionally to the

lowest t-value from all pairwise comparisons between models. In
other words, more saturated colors appear in voxels for which the
difference between the best model and the runner-up model is
greater. Together, the voxelwise analyses revealed that there isn’t
a single best model for all voxels, instead, different voxels are best
predicted by different models.

4. DISCUSSION

In this article, we have introduced PyMVPD, a Python-based
toolbox for multivariate pattern dependence (MVPD). MVPD
is a novel technique that investigates the statistical relationship
between the responses in different brain regions in terms of
their multivariate patterns of response (Anzellotti et al., 2017a).
Previous studies have shown that this approach brings higher
sensitivity in detecting statistical dependence than standard
functional connectivity (Anzellotti et al., 2017a,b). However,
given the complex nature of the analysis, the implementation
of MVPD can be an obstacle to its wider application. PyMVPD
enables researchers to perform complex MVPD analyses with
a few lines of easily readable Python code, therefore, it
makes MVPD more accessible to a broader community of
researchers.

PyMVPD provides users with a flexible analysis framework
to study the multivariate statistical dependence between brain
regions. Users can choose whether or not to use dimensionality
reduction, and if dimensionality reduction is selected, PyMVPD
offers a choice between principal component analysis (PCA) and
independent component analysis (ICA). Furthermore, PyMVPD
permits the use of a variety of models to study the multivariate
statistical dependence between brain regions. In addition to
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FIGURE 3 | Comparison between neural network (NN) models and linear regression (LR) models. Statistical t-maps computed across subjects from the voxelwise

difference between the average variance explained predicted by three NN models (NN_1layer, NN_5layer, NN_5layer_dense), and the average variance explained

predicted by two LR models (L2_LR, PCA_LR) with FFA (top) and PPA (bottom) as predictor ROIs, respectively. The SnPM threshold corrected at p < 0.05 FWE is

3.78 using FFA as predictor and is 3.65 using PPA as predictor.

FIGURE 4 | Comparison between MVPD neural network (NN) models. Statistical t-maps computed across subjects from the pairwise difference between the variance

explained predicted by three neural network models (NN_1layer, NN_5layer, NN_5layer_dense) with FFA (A) and PPA (B) as predictor ROIs, respectively. The

SnPM p-values were Bonferroni corrected for all 6 comparisons. We showed interesting brain regions that were better predicted by one NN model than the other NN

model at p < 0.05 FWE after Bonferroni correction. The full NN model comparison results can be found in Supplementary Table 1 (FFA) and

Supplementary Table 2 (PPA).
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the standard linear regression models that have proven to be
effective in the previous literature (Anzellotti et al., 2017a),
we make artificial neural networks available for connectivity
research through an integration with PyTorch. The artificial
neural network version of MVPD implemented in PyTorch is
introduced for the first time in this article. We demonstrate
that the neural network implementations of MVPD outperform
the previously published version based on PCA in most brain
regions. Example code is provided for three neural network
architectures. In addition, users can choose other architectures
with different numbers of hidden units and of layers by changing
the parameter settings. For applications that require models
beyond the family of options already available in PyMVPD, the
toolbox is designed so that it is straightforward to program
custom architectures and to integrate themwith the other scripts.

In the experimental applications described in this work, we
tested PyMVPD using the StudyForrest dataset, with the FFA and
PPA as seed regions. The results revealed interactions between
these seed regions and the rest of the brain during movie-
watching, following a pattern that is consistent with the previous
literature. Category-selective peaks identified with Neurosynth
fell within the MVPD maps for the corresponding category.
Overall, artificial neural networks outperformed linear regression
models in terms of the predictive accuracy for statistical
dependence. Importantly, this is not a trivial consequence of
the fact that the artificial neural networks are more complex. In
fact, MVPD trains and tests models with independent subsets of
the data, and models with more parameters do not necessarily
perform better at out-of-sample generalization.

Interestingly, no single model outperformed all others
in every voxel. In particular, the NN_5layer outperformed
other models at predicting responses in the insula and
parietal regions using the FFA seed as predictor. By contrast,
NN_5layer_dense outperformed other models at predicting
cerebellar responses given PPA inputs. A qualitative analysis
revealed large, contiguous cortical regions in which one model
type outperformed the others (Supplementary Figure 6). Taken
together, these results indicate that the statistical dependence
between different sets of regions might be best characterized by
different models. Why would this be the case? It is expected that
the interactions between different sets of brain regions implement
different kinds of computations. For example, the computations
implemented by the interaction between the fusiform face
area (FFA) and the occipital face area (OFA)—hypothesized
to be upstream of FFA in a hierarchy of visual processing—
are likely to be different from the computations implemented
by the interaction between the FFA and frontal cortex regions
involved in attention. We hypothesize that such differences in
the underlying computations could lead to differences in terms
of which neural network architectures yield the best models of
between-region interactions.

The present results have broader implications for the study of
statistical dependence between brain regions: in the literature on
brain connectivity, the focus has been largely placed on whether
or not two brain regions interact. However, a key direction for
future research consists in investigating not only whether two
regions interact, but also how they interact. The observation

that the statistical dependence between the seed regions and
different voxels were best captured by different models suggests
that PyMVPD could be used to make progress in this direction.

To pursue goals such as this, PyMVPD is designed to
be easily customized and extended. In addition to the five
example models (i.e., L2_LR, PCA_LR, NN_1layer, NN_5layer,
NN_5layer_dense) implemented in this article, PyMVPD allows
users to build their ownMVPDmodels with customized function
components as well as evaluation metrics, making this toolbox an
ideal environment to compare the predictive accuracy of different
types of models to study the interactions between brain regions.

Installing the full version of PyMVPD requires a working
installation of PyTorch, installed compatibly with the version of
the CUDA drivers of the GPUs. For users who prefer to avoid
this step and do not need to use the neural networks, we make
available the LITE version of PyMVPD, that includes only the
linear regression models, and does not require PyTorch. The
LITE version can be also installed using the Python Package
Index (with “pip”).

The toolbox offers a variety of different models that can
be used to characterize the interactions between brain regions.
The selection of a model among the available options can be
based on multiple considerations. First, in this study, we found
that artificial neural network models were more accurate than
the PCA-based linear regression and the L2 linear regression
overall. For this reason, when analyzing a comparable amount
of data, and when maximum accuracy is needed, we recommend
using artificial neural networks. However, models using artificial
neural networks require a working Pytorch installation, and the
additional accuracy they offer might not be needed for some use
cases. In addition, it is essential to note that there is a trade-off
between model complexity and model fit: more complex models
may not perform well when the amount of data is limited. For
this reason, when a smaller number of volumes is available for
training, we recommend using the L2 linear regression (Ridge
Regression) model, as it offers the additional flexibility of setting
the regularization parameter appropriately for the amount of
data available. We also note that the optimal model choice may
depend not only on the amount of available data, but also on
the amount of noise in the data. For this reason, in cases where
maximizing the accuracy is essential, we recommend using data
from a small subset of participants to test and compare multiple
different model choices. The best performing model can then
be used to analyze data from the left-out participants. To avoid
circularity in the analyses, it is essential to ensure that the data
used to select the optimal model are not later reused to estimate
the variance explained by that model.

Together with both versions of PyMVPD, we provide
step-by-step tutorials on how to calculate MVPD using the
toolbox (https://github.com/sccnlab/PyMVPD/blob/main/
exp/PyMVPD_Tutorial.ipynb, https://github.com/sccnlab/
PyMVPD_LITE/blob/main/exp/PyMVPD_LITE_Tutorial.
ipynb). The tutorials are written with Jupyter Notebook, and
include sample data as well as the option to plot one’s results side
by side with the results we computed. This will make it easier
for users to check that the toolbox was installed correctly and to
confirm that the results match with those we obtained.
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Despite the several options available in PyMVPD, the
toolbox still has several limitations. For example, functions
to automatically select the optimal number of dimensions
from the data when using dimensionality reduction have not
yet been implemented. In addition, while PyMVPD offers a
variety of neural network architectures, including standard
feedforward neural networks and DenseNets, other architectures
(such as ResNets) are not available, and would require users
to develop their own custom code, which can be integrated
with the rest of the toolbox. Importantly, we note that the
scope of the toolbox is restricted to multivariate analyses
of statistical dependence based on MVPD, and as such it
does not include other multivariate measure of statistical
dependence, univariate measures of statistical dependence
such as functional connectivity, nor other multivariate
analyses such as decoding or representational similarity
analysis. For such analyses, there are several other existing
toolboxes that can be used. In particular, users interested in
univariate analyses of connectivity may use the Conn toolbox
(Whitfield-Gabrieli and Nieto-Castanon, 2012) or GraphVar
(Kruschwitz et al., 2015), and users interested in multivoxel
pattern analysis (MVPA), including multivariate decoding
and representational similarity analysis, may use the PyMVPA
toolbox (Hanke et al., 2009), the CoSMoMVPA toolbox
(Oosterhof et al., 2016), or “the decoding toolbox” (tdt, Hebart
et al., 2015).

A common criticism of methods based on artificial neural
networks is that they operate as a black box: it can be
difficult to interpret how the neural networks work in
terms of cognitively relevant dimensions. Fortunately, an
increasing number of techniques are being developed to
improve the interpretability of artificial neural networks (Zhang
and Zhu, 2018; Li et al., 2021). While additional work will
be needed to integrate these techniques with MVPD, the
current MVPD framework based on artificial neural networks
already offers the benefit of more sensitive detection of
statistical dependence as compared to regularized regression,
and the opportunity to compare the performance of different
model architectures.

The present study focused on the FFA and PPA as
seed regions because they have been studied in depth in
previous literature. Future studies can extend our results,
investigating the application of PyMVPD to other seed
regions. The current implementation of PyMVPD is based
on simultaneous prediction: responses in the target region at
a given time are predicted from responses in the predictor
region at the same time. However, other researchers could
take advantage of the customization options to use the
responses in multiple timepoints in the predictor region to
predict the responses in the target region at each timepoint.
Finally, the models of statistical dependence implemented by
PyMVPD are deterministic. Multivariate probabilistic models
that capture the distribution of uncertainty in predictions are

in principle possible, but would require large amounts of data
for training.

Although PyMVPD was specifically developed for fMRI
analysis, the generic design of the framework makes it widely
applicable to other data acquisition modalities (i.e., EEG, MEG)
across a variety of domains of brain imaging research. We hope
that this toolbox removes some of the barriers to the adoption
of MVPD, and facilitates the diffusion of multivariate analyses of
the interactions between brain regions.
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