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Editorial on the Research Topic

Machine Learning and Mathematical Models for Single-Cell Data Analysis

Understanding how individual cells communicate with each other and respond to evolution and
perturbations is a central challenge of biology (Altschuler and Wu, 2010). Due to the heterogeneity
of cells, studying a bulk population of cells may confound the variability of cell-type compositions, single
cell analysis has the potential to enable a more systematic study of the inner workings of biological
systems, and allows us to uncover the underlying mechanisms for cellular functions and biological
processes such as cell differentiation and disease development. In the past decade, advances in single-cell
isolation and sequencing technologies have enabled the assay of DNA,mRNA, and protein abundances at
single-cell resolution, which promote the study of genomics, transcriptomics, proteomics and
metabolomics at the sinlge cell level. For example, single-cell genomic analysis can shed light to the
genomic variability of individual cells, while single-cell transcriptomic and proteomic analysis can help to
reveal the types and functional states of individual cells (Shapiro et al., 2013). However, processing single-
cell data of high dimensionality and scale is inherently difficult, especially considering the degree of noise,
sparsity, batch effects and heterogeneity in the data (Amodio et al., 2019). Thus, there is an urgent need for
developing computational models which can handle the size, dimensionality, and various characteristics
of single-cell data. In this Research Topic of Frontiers in Genetics on “Machine Learning and
Mathematical Models for Single-Cell Data Analysis,” we have collected eight manuscripts that used
machine learning algorithms or mathematical models to solve problems in single cell analysis.

Single-cell and whole tissue RNA sequencing technologies enable the Research Topic of detailed
information about biological processes at genomic and transcriptomic levels. Besides, existing
microscopy and cell-resolution imaging techniques allow the high-quality characterization of
morphology and physiology at the level of extended fragments of tissues and organs.
Bobrovskikh et al. summarized the potential of single-cell technologies together with advanced
imaging techniques for computational modelling in plants. They reviewed currently available single-
cell data analysis approaches, advanced imaging technologies in plant research with single-cell
resolution and cell-based modelling approaches. They shown how the combination of single-cell
data, morphometric data and cell-based models help to expand the understanding of tissue and
organ morphogenesis.

Tissues are constituted of heterogeneous cell types. Although single-cell RNA sequencing has
paved the way to a deeper understanding of organismal cellular composition, the high cost and
technical noise have prevented its wide application. As an alternative, computational deconvolution
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of bulk tissues can be a cost-effective solution (Jin and Liu, 2021).
Liu et al. proposed a deconvolution method, named DecOT, to
characterize the cell type composition from bulk tissue RNA-seq
data. DecOT uses the optimal transport distance as a loss and
applies an ensemble framework to integrate reference
information from scRNA-seq data of multiple individuals.
Experiment results on real data sets demonstrated that DecOT
outperformed other existing methods and was robust to the
choice of references.

The development of single-cell sequencing technologies
promotes the researches on developmental physiology and
disease (Potter, 2018), but the spatial information of individual
cells is lost due to the tissue dissociation processes in these
technologies. Highly multiplexed imaging technologies, such as
imaging mass cytometry (IMC), are powerful tools to exploit the
composition and interactions of cells in tumor
microenvironments at subcellular resolution. However, due to
the high resolution and large number of channels, how to process
and interpret IMC image data still remains challenging (Chang
et al., 2017). To improve the accuracy of single cell segmentation,
which is a critical step to process IMC image data, Xiao et al.
developed a deep neural network (DNN)-based cell segmentation
method, named Dice-XMBD. Dice-XMBD is marker agnostic
and can perform accurate cell segmentation of IMC images of
different channel configurations without modification.

Advances in single-cell RNA-sequencing (scRNA-seq)
technology provided an unprecedented opportunity for
researchers to study the identity and mechanisms of single
cells (Morris, 2019). Besides scRNA-seq data, spatial location
data can also provide important information on the cells’ micro-
environment and cell-cell interactions (Mayr et al., 2019), which
can contribute to cell type identification. Oh et al. proposed a
hybrid clustering approach, named single-cell Hybrid
Nonnegative Matrix Factorization (scHybridNMF), to perform
cell clustering by jointly processing cell location and gene
expression data. ScHybridNMF combines sparse nonnegative
matrix factorization (sparse NMF) with k-means clustering to
cluster high-dimensional gene expression and low-dimensional
location data. Experiment results on simulated and real data sets
demonstrate the effectiveness of scHybridNMF in detecting cell
clusters.

The communication between cells plays a vital role in the
development, physicology, and pathology of muticellular
organisms. Single-cell RNA-sequencing (scRNA-seq), which
measures the expression levels of a great number of genes
across various cell types at single-cell resolution, provides a
great opportunity to study the cell-cell communication
between interacting cells and the signaling response governed
by intracellular gene regulatory networks (GRNs) (Shao et al.,
2020). Identification the changes of intercellular signaling across
different conditions is crucial for understanding how distinct cell
states respond to evolution, perturbations, and diseases. Wang
et al. generalized their previously developed tool CellChat to
enable a flexible comparison analysis of cell-cell communication
networks across multiple conditions, which facilitated the
detection of signaling changes of cell-cell communication in
response to biological perturbations. By studying the signaling

changes across three mouse embryonic developmental stages,
four time points after mouse spinal cord injury, and patients with
different COVID-19 severities (i.e., control, moderate, and critical
cases), they verified the effectiveness of their proposed
approaches. To infer the changes of GRNs between two
different states, Liu et al. proposed a general differential
network inference framework, named weighted joint sparse
penalized D-trace model (WJSDM). WJSDM can directly infer
the differential network between two different states by
integrating multi-platform gene expression data and various
existing biological knowledge. By applying WJSDM to the
gene expression data of ovarian cancer and the scRNA-seq
data of circulating tumor cells of prostate cancer, and infer the
differential network associated with platinum resistance of
ovarian cancer and anti-androgen resistance of prostate
cancer, the authors found some important biological insights
about the mechanisms underlying platinum resistance of ovarian
cancer and anti-androgen resistance of prostate cancer.

Recent advances in experimental biology have generated huge
amounts of data. For example, Microwell-Seq, a single-cell RNA-
sequencing technology, has been used to analyze the
transcriptome of more than 400,000 mouse single cells,
covering all major mouse organs (Han et al., 2018). There is
an urgent need for next generation methods to deal with large,
heterogeneous and complex data sets Camacho et al. (2018). As a
promising data processing method, deep learning methods have
been employed in biological data processing (Eraslan et al., 2019).
However, the deep learning methods usually run as a “black box,”
which is hard to interpret. The capsule network (CapsNet) is a
newly developed deep learning model for digital recognition tasks
(Sabour et al., 2017). Wang et al. (2020) proposed a modified
CapsNet model, called single cell capsule network (scCapsNet),
which is a highly interpretable cell type classifier, with the
capability of revealing cell type associated genes by model
internal parameters. Based on CapsNet and scCapsNet, Wang
et al. proposed a deep learning classifier and data integrator,
named MultiCapsNet. The MultiCapsNet model could integrate
multiple input sources and standardize the inputs, then use the
standardized information for classification through capsule
network. The experiment results on three data sets with
different data type and application scenarios proved the
validity and interpretability of MultiCapsNet.

Cancer immunotherapy has shown to elicit substantial
response to many cancers and has led to significant increases
in quality of life for cancer patients. This is especially true of
checkpoint therapy, which causes tumor regression in previously
untreatable cancers. However, the potential mechanisms of
checkpoint therapy are still being investigated and there are as
of yet few prognostic markers for response (Bai et al., 2020).
Immune checkpoint therapies such as PD-1 blockade have vastly
improved the treatment of numerous cancers, including basal cell
carcinoma (BCC). However, patients afflicted with pancreatic
ductal carcinoma (PDAC), one of the deadliest malignancies,
overwhelmingly exhibit negative responses to checkpoint
therapy. Liu et al. sought to combine data analysis and
machine learning to differentiate the putative mechanisms of
BCC and PDAC non-response. By comparing two recent single-
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cell transcriptomic datasets of PDAC and BCC, the authors
identified some potential biomarkers and mechanisms related to
BCC and PDAC non-response. By utilizing machine learning
classification algorithms, they also discovered that PDAC displays
greater similarities to melanoma, which is highly immunogenic and
undergoes rapid metastasis, than to BCC (Dollinger et al., 2020).

In summary, this Research Topic covers various aspects of
machine learning models, including supervised and unsupervised
approaches and their applications for single-cell data analysis,
which paves the way for using machine learning and

mathematical models in service of various tasks towards single
cell analysis. We hope the readers from bioinformatics and the
domain specific researchers will be benefitted by reading articles
included in this Research Topic.
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Single-cell technology is a relatively new and promising way to obtain high-resolution

transcriptomic data mostly used for animals during the last decade. However,

several scientific groups developed and applied the protocols for some plant tissues.

Together with deeply-developed cell-resolution imaging techniques, this achievement

opens up new horizons for studying the complex mechanisms of plant tissue

architecture formation. While the opportunities for integrating data from transcriptomic

to morphogenetic levels in a unified system still present several difficulties, plant

tissues have some additional peculiarities. One of the plants’ features is that cell-to-cell

communication topology through plasmodesmata forms during tissue growth and

morphogenesis and results in mutual regulation of expression between neighboring

cells affecting internal processes and cell domain development. Undoubtedly, we must

take this fact into account when analyzing single-cell transcriptomic data. Cell-based

computational modeling approaches successfully used in plant morphogenesis studies

promise to be an efficient way to summarize such novel multiscale data. The inverse

problem’s solutions for these models computed on the real tissue templates can shed

light on the restoration of individual cells’ spatial localization in the initial plant organ—one

of the most ambiguous and challenging stages in single-cell transcriptomic data analysis.

This review summarizes new opportunities for advanced plant morphogenesis models,

which become possible thanks to single-cell transcriptome data. Besides, we show the

prospects of microscopy and cell-resolution imaging techniques to solve several spatial

problems in single-cell transcriptomic data analysis and enhance the hybrid modeling

framework opportunities.

Keywords: single-cell transcriptomics, cell-based computational models, plant morphogenesis, hybrid modeling

approach, modeling software, bioimaging, spatial gene expression maps, systems biology
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1. INTRODUCTION

Modern biology is going through the era of big data and
omics technologies. Single-cell sequencing (SCS) is one of
the breakthroughs and rapidly developing technologies. This
technology’s value is difficult to overestimate since it allows one
to describe with high accuracy the trajectories of cell development
and characterize individual cell types (Trapnell, 2015). A targeted
study of isolated cells is of particular importance in the
context of systems biology, as demonstrated on root hair cells
(Hossain et al., 2015). The main steps of SC analysis include
cellular dissociation, single-cell RNA sequencing (scRNA-seq),
dimensionality reduction, clustering, and reconstruction of
the developmental trajectories. McFaline-Figueroa et al. (2020)
provide currently available techniques for such kind of analysis.
However, such a data-driven approach provides only a partial
understanding of the developmental processes for different cell
types since it includes only the molecular level.

Thus, a combination of microscopy methods (Li et al., 2014)
and imaging techniques (Omari et al., 2020) could provide a
new level of understanding the developmental processes. In turn,
the combination of high-precision SCS approaches with high-
quality microscopic data can be integrated into mathematical
models describing morphogenesis. Therefore, we believe that
current methods for processing SC data should be coupled
with morphological data on a tissue level and computational
frameworks describing tissue development. Such a systemic-
biological cycle will allow researchers to find out the essential
spatiotemporal regulators of morphogenetic processes and
provide an in silico - in vivo verification of emerging hypotheses.

The relationship between growth characteristics of individual
cells and organogenesis was noted in the work of Hong
et al. (2018). In particular, it was shown that growth rate
and growth direction significantly affect organ developmental
processes, and, therefore, could determine the invariant organ
formations. Consequently, it is essential to study cells’ individual
characteristics to create a holistic picture of morphogenetic
processes at the tissue and organ levels. The main drivers of
morphogenesis are shown schematically below, in Figure 1. Stem
cells can divide, either symmetrically or with precise daughter-
cell size ratio, the so-called formative divisions, which are
fundamental determinants in the processes of morphogenesis
Smolarkiewicz and Dhonukshe (2013). Also, the emergence of
cellular patterns forming tissues significantly depends on the
anisotropic cell growth biomechanics, which occurs, in particular,
in tip-growing cells (Rounds and Bezanilla, 2013).

In addition to the mechanical factors influencing growth, it
is known that the formation of apical meristems (which are the
niches of undifferentiated stem cells) is complex and includes
molecular, hormonal and epigenetic levels of regulation (Ali

Abbreviations:A. thaliana,Arabidopsis thaliana L.; SC, single-cell; SCS, single-cell
sequencing; scRNA-seq, single-cell RNA sequencing; RNA-seq, RNA sequencing;
t-SNE, t-distributed Stochastic Neighbor Embedding; UMAP, Uniform Manifold
Approximation and Projection; LSM, Laser Scanning Microscopy; LS, Light-Sheet
Microscopy; SPM, Scanning Probe Microscopy; SIM, Structured Illumination
Microscopy; 3D-SEM, 3-Dimensional Scanning Electron Microscopy; ODE,
Ordinary Differential Equation; PDE, Partial Differential Equations.

et al., 2020). Moreover, the realization of the cell death program
is known to be a stimulating factor for hormone signaling in
developmental processes (Xuan et al., 2016), and a detailed
overview and classification of plant cell death can be found in
Locato and De Gara (2018).

The multilevel nature of morphogenetic processes increases
the need for systemic biological research that integrates
multilevel data. For example, a combination of advanced
microscopy, sequencing, and artificial intelligence allows us to
elaborate on the initial plant cell atlas (Rhee et al., 2019). We
also see great potential in complex studies and cell-based models
describing morphogenetic processes.

This review aims to show how the combination of SC data,
morphometric data, and cell-based models will expand our
understanding of tissue and organ morphogenesis. We discuss
the possibilities and prospects of such an integrative approach
for solving reverse problems, including SC data and tissue
imaging coupled with cell-based morphogenesis models. Finally,
we consider available tools for cell-based models and present our
cell-based modeling framework for morphogenetic processes.
This algorithm is iterative and includes six main steps: (i) model
formulation; (ii) design experiments to obtain microscopy and
scRNA-seq data; (iii) obtaining experimental data; (iv) data
analysis; (v) data integration into a hybrid (discrete-continuous)
mathematical model of morphogenesis; (vi) model validation
and verification.

2. EXISTING APPROACHES TO THE
ANALYSIS OF SINGLE-CELL DATA AND
THEIR POTENTIAL FOR CELL-BASED
MODELS

Characterizing the plant cell fate and ontogenesis using SC
technologies is a novel and promising approach for getting high-
resolution genomic data that reveals new facts about various cell
types. The first SC transcriptomic experiments have been carried
out for the model plant A. thaliana in 2019. For A. thaliana,
most of SC studies were conducted on root cells (Denyer et al.,
2019; Jean-Baptiste et al., 2019; Ryu et al., 2019; Shulse et al.,
2019; Turco et al., 2019; Zhang et al., 2019; Farmer et al., 2021).
Whereas, there are only two studies conducted on leaf tissues
(Kim et al., 2021; Lopez-Anido et al., 2021). Thus, for all the
main cell types of roots and leaves, the developmental trajectories
were revealed. Also, Zea mays, being a representative of C4-
photosynthetic cereals, is a promising object for SC experiments
due to the large size its cells, which allows to easily isolate
specific cells, for example, from the shoot apical meristem. To
date, there are studies based on the single-cell analysis for corn
tissues carried out on a shoot apex (Satterlee et al., 2020), phloem
(Bezrutczyk et al., 2021), and ears (Xu et al., 2021). The first and
so far only scRNA-seq on rice roots (Liu et al., 2021) revealed
significant differences in the characteristics of individual cell
types in comparison to the cell types of A. thaliana, which
indicates the presence of significant species-specific differences
at the cellular level. A brief summary of the currently existing
Sc-experiments is given in Table 1.
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FIGURE 1 | A general scheme for systems biological and modeling concepts of plant tissue morphogenesis including cell growth and division, and developmental

PCD (plant cell death). Arrows indicate the relationships between fundamental cell fate and intracellular processes. The cell fate processes are indicated in green; the

intracellular processes or properties are indicated in yellow. The blue box indicates the significant components of the cell-based modeling approach. References

correspond to theoretical articles briefly explained in the text.

TABLE 1 | Summary of scRNA-seq datasets obtained for plants.

Publication

date

References Drop-Seq

platform

Illumina

platform

Organism Plant

organ

Average

reads per

cell

Total

genes

detected

Expressed

genes per

cell

March 2019 Denyer et al., 2019 NanoDrop NextSeq A. thaliana Root 87.000 17.000 4.276

April 2019 Ryu et al., 2019 10X Genomics HiSeq 4000 A. thaliana Root 75.000 22.000 5.000

May 2019 Zhang et al., 2019 10X Genomics NovaSeq A. thaliana Root 40.000 23.161 1.875

May 2019 Shulse et al., 2019 Drop-seq

v. 3.1

HiSeq 2500,

HiSeq 4000,

NextSeq

A. thaliana Root >1,000 UMI 20.464 1.549

May 2019 Jean-Baptiste

et al., 2019

10X Genomics NextSeq

500

A. thaliana Root 19.000 22.000 2.445

July 2019 Turco et al., 2019 Drop-seq

v. 3.1

NextSeq A. thaliana Root NA 21.603 NA

April 2021 Lopez-Anido et al.,

2021

10X Genomics NextSeq500,

HiSeq4000

A. thaliana Leaf 70.000 NA 1.870

December

2020

Satterlee et al.,

2020

Droplet

microfluidics

NextSeq

500

Zea mays Shoot NA NA 2000

January 2021 Kim et al., 2021 10X Genomics HiSeq 2500 A. thaliana Leaf 96.000 27.000 3.300

January 2021 Farmer et al., 2021 10X Genomics HiSeq A. thaliana Root NA 25.000 4.700

January 2021 Bezrutczyk et al.,

2021

10X Genomics HiSeq Zea mays Phloem 5,000 NA NA

February 2021 Xu et al., 2021 10x Genomics NextSeq

500

Zea mays Ears 32.000 28.900 1800

March 2021 Liu et al., 2021 10x Genomics HiSeq 2000 Oryza

sativa

Roots NA NA 2600

There are several fundamental questions about the limitations
and capabilities of the SC method (Rich-Griffin et al., 2020):
How realistic is it to recreate a cell atlas using such data?

Can we apply the technology to cells of any type? How
to identify the main gene regulators and gene networks
of development?
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The problem of combining SC data from different plant
species is of particular interest since the successful application of
this approach can be used to create a unified developmental atlas.
However, it is necessary to consider the species-specific features
of tissue development and organization, which imposes certain
restrictions on the joint interpretation of the exact SC data.

There is an acute lack of SC data of leaf and shoot stem
cells except for A. thaliana. The small amount of existing SC
transcriptome data is partly due to the complexity and length
of the required experimentation and data analysis. In a recent
overview of SC methods for plants (Lähnemann et al., 2020;
Shaw et al., 2020), the authors highlight the major challenges
and drawbacks of single-cell approaches: (i) gene expressing bias
caused by the protoplasting procedure, (ii) unequal efficiency for
extraction of different types of cells, (iii) difficulties for the reverse
reconstruction of the cell atlas based on transcriptomic data,
(iv) lack of data. We also want to point out that there are fuzzy
boundaries between cell populations due to their connectivity
and the presence of transport processes between them. Therefore,
there are still several limitations to the biological interpretation of
the SC data.

Thus, the classification of cell types and reverse spatial
reconstruction are critical stages of SC transcriptome data
analysis. This task is rather complex and requires using the
original dimension of the expression data. SC data generally
represent a filtered and normalized array with dimension
M × N, where M is the number of cells with a sufficient
number of reads, N is the number of genes with a non-zero
expression. The first component that can facilitate this problem
is certain developmental trajectories caused by intracellular
factors that limit the space of developmental possibilities and
cause their partial determinism. Such factors have a different
nature: the concentration of substances and energy substrates
in the cell, the concentration of hormones and morphogens,
the mechanical characteristics of cells (e.g., turgor pressure,
tension, and thickness of the cell wall). Unfortunately, it is
currently impossible to estimate the effect of these factors
and their contribution to genes’ expression. However, their
presence makes it possible to identify the main differentiation
genes. In general, this fact allows to carry out the procedure
for reducing the dimensions of data. Depending on the data
set’s complexity, it is proposed to select from 1,000 to 5,000
highly variable genes for clustering and cell classification
(Luecken and Theis, 2019).

A variety of available methods and tips for single-cell
data dimensionality reduction and clustering are presented
in the work of Nguyen and Holmes (2019). In most cases,
researchers choose t-SNE and UMAP algorithms. The large
computational complexity of the t-SNE method on big datasets
was eliminated by adding fast Fourier transforms (Flt-SNE,
Linderman et al., 2019). Comparison of t-SNE and UMAP
methods revealed that UMAP outperforms even an optimized
t-SNE in the computation time; also, clustering by UMAP
is the most meaningful for distinguishing between cell types
(Becht et al., 2019). Before the widespread use of t-SNE
and UMAP, there was a probabilistic modeling method using
Bayesian mixture of factor analyzers (MFA) (Campbell and

Yau, 2017), based on the assumption that changes in gene
expression are a linear function of time, which allows performing
the Gibbs sampling procedure. This method’s stability is
inversely proportional to the number of genes with non-linear
transient behavior, and its threshold was estimated in 40% of
the total sample; if this threshold is exceeded, the authors
recommend using the Diffusion Pseudotime (DPT) method
(Haghverdi et al., 2016).

Also, machine learning demonstrates its consistency and
efficiency in the analysis of SC transcriptomic data. For example,
single-cell interpretation via multi-kernel learning algorithm
(SIMLR) can perform dimension reduction, clustering, and
visualization; this algorithm is characterized by enhanced
performance and better visualization and interpretability
compared to t-SNE, PCA, and zero-inflated factor analysis
(ZIFA) methods (Wang et al., 2017). There are additional
packages and algorithms for analyzing single-cell data,
from preprocessing to data visualization; for example, on
the Bioconductor platform (Amezquita et al., 2020), or the
Python-based scalable toolkit SCANPY (Wolf et al., 2018).

Modeling the dynamics of gene networks is a promising
approach for extracting biological facts from single-cell
transcriptomics. When reconstructing such networks, it is
possible to identify both transcriptional regulators and their
targets. For example, a high-performance TENET protocol is
based on the calculation of transfer entropy and can predict large-
scale gene regulatory cascades and relationships in single-cell
data (Kim et al., 2020). Also, there is SCENIC, a fast calculation
Python algorithm that reconstructs the regulons (Van de Sande
et al., 2020). Comparing the accuracy of calculations of gene
networks by different algorithms showed that successful methods
on artificial data sets are characterized by low accuracy on real
data (Pratapa et al., 2020). The authors have selected three
promising methods with high computational accuracy on real
data: partial information decomposition and context (PIDC)
(Chan et al., 2017), gene network inference with the ensemble
of trees (GENIE3) (Irrthum et al., 2010), and GRNBoost2
(Moerman et al., 2019).

Elaboration of specific algorithms for using SC transcriptomic
data to reconstruct developmental gene networks and identify
new regulators remains a challenging issue. Databases and
genetic interactions can serve as an additional source
for expanding genetic networks and their verification. For
example, STRING database (Szklarczyk et al., 2019) includes
information about protein-protein interactions and allows to
perform network reconstruction, visualization and functional
enrichment analysis. Cytoscape is a suitable environment
for further network visualization and addition of meta-
information (Shannon et al., 2003). The functionality of
this application has been significantly expanded due to
the many available plugins. For example, the GeneMANIA
plugin (Warde-Farley et al., 2010) allows to predict additional
network elements and new connections, whereas the plugin
yFiles (Wiese et al., 2004) provides additional tools for
network layout.

Another ambitious challenge is the integration of multi-
omics SC data. Ma et al. (2020) examines the capabilities
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FIGURE 2 | Relevant information from single-cell transcriptomics experiments for cell-based models. Three types of information are highlighted in orange blocks, their

integration into the cell-based model is shown in green, and double-headed arrows indicate each block’s comparison. The central yellow block indicates original

processed single-cell RNA sequencing (scRNA-seq) data.

of 10 SC integration tools and tests the functionality of the
four most relevant ones (Giotto, MOFA, LIGER, Seurat3). It
should be noted that the existing problems in the analysis
and interpretation of data give rise to the rapid development
of various methods and approaches to their processing. The
available collection of various methods and tools for analyzing
SC data is presented in this online repository. Also, pipelines and
statistical methods useful for analyzing SC data are presented in
the work by Petegrosso et al. (2020).

Although obtaining high-quality SC transcriptomic data for
plants is a routine, standardized procedure, cell extraction
processes, meaningful interpretation and verification of data
are essential and non-trivial stages for the development of
this technology. An important step in data validation and
interpretation is the construction of mathematical cell-based
models, which combines the data about concentration of
morphogens and expression of genetic regulators inside the
cells and “rules,” which determine intercellular communications,
cellular mechanics, transport processes as well as the transition
between cellular states. However, with current technology, we
cannot directly use the entire array of transcriptome data
to create mathematical models of morphogenesis due to the
large number of dimensions. Therefore, it is important when
comparing different cell types to identify the main genetic and
metabolic differences and take them into account in models.

There are a few methods, which can potentially allow
researchers to use scRNA-seq data for building the cell-based
models (see Figure 2):

1. Identifying crucial genes (main effect genes) and regulators
which explain a lot of variance/differences between cell types.

2. Searching for novel regulatory genes, which have a spatial
distribution of expression between cells of different types.

3. Reconstructing Boolean gene networks using transcriptomic
data.

4. Estimation of differences in integral characteristics (such as
biomass, wall thickness, concentration of metabolites).

For example, SC transcriptome data could provide some
indirect estimations of the cell wall’s mechanical properties.
The main mechanosensing genes are described in Du and
Jiao (2020): receptor-like kinase FERONIA (FER), Leucine-rich
repeat extensins (LRXs), DEFECTIVE KERNEL 1 (DEK1), and
their targets of cell wall integrity pathways. Therefore, assessing
these genes’ expression levels in different cell types can potentially
describe their mechanosensitivity and cell wall stiffness. Thus, SC
data allows the definition of cell types’ molecular characteristics,
identifies regulatory subnetworks, and assesses their dynamics.
These data can potentially be taken into account as parameters in
cell-oriented models.

3. MODERN IMAGING TECHNOLOGIES
FOR OBTAINING DATA ON PLANT TISSUES
WITH A SINGLE-CELL RESOLUTION

Spatial organization plays a significant role in each cell’s fate,
affects transport, the direction of division, apoptosis, and the
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FIGURE 3 | Types of microscopy techniques, their outputs, and meanings for describing morphogenetic processes in cell-based models. There are three blocks in

the scheme: (i) methods (blue box), (ii) corresponding outputs (yellow box), and (iii) model levels (orange box) from structural to organoid resolution. Abbreviations

used: LSM (Laser Scanning Microscopy), LS (Light-Sheet microscopy), SPM (Scanning probe microscopy), SIM (Structured Illumination Microscopy),

3D-SEM(3-Dimensional Scanning Electron Microscopy).

cells’ structural peculiarities. Therefore, this information is
the basis for a systemic integrative study of the processes
of morphogenesis.

The cells of vascular plants form a shared symplast through
the cell walls, which determine the fixed position of the cells in the
tissue (Vaahtera et al., 2019). In plants, cell migration is almost
absent, but in some cases, cells can shift their positions relative
to each other: part of the plant cell remains in its original place,
while other parts of the cell grow to the new locations, moving
significantly relative to other cells (Lev-Yadun, 2015).

There are various specialized approaches for phenotyping
(Figure 3): visible light, spectroscopy, infrared, fluorescence,
3D, and tomographic methods for getting plant images (Li
et al., 2014). The imaging techniques for plant quantification
are broadly used due to their inexpensive cost, simplicity of
operation, and maintenance (Omari et al., 2020).

Reconstruction of plant architecture in terms of shape, size,
and topology of cell connections (Figure 3) is an essential
component to reach an integrative systemic understanding of
aspects of the functioning of both individual cells and tissue
as a whole (Fricker, 2016; Zubairova et al., 2019; Kerstens
et al., 2020). A variety of optical tissue imaging techniques
(Figure 3) currently allow access to such cellular characteristics
(optical and fluorescent microscopy, laser scanning approaches,
and structured lighting microscopy). Since higher plants’
organs are multilayered and volumetric, imaging techniques
based on 3D analysis of a fluorescent signal, such as laser

scanning microscopy, are currently among the most widespread
visualization methods of cellular architecture. It allows to
reconstruct the architecture of tissue and organ fragments
consisting of thousands of cells (Zubairova et al., 2019) and to
analyze in vivo large time-series for reconstructing the dynamics
of development (Goh, 2019; Seerangan et al., 2020).

Together with modern image analysis methods, they provide
a reliable decomposition of cell layers and assessment of cell
morphological parameters (Legland et al., 2016; Erguvan et al.,
2019; Zubairova et al., 2019). The number of cells reconstructed
by ImageJ-plugins LSM-W2 (Zubairova et al., 2019), SurfCut
(Erguvan et al., 2019), as well as MorphoGraphX instruments
(Kerstens et al., 2020) is limited by the computer performance
and technical capabilities of the microscope. They allow working
on a local computer with arrays from thousands of cells, which
is of a comparable order to scRNA-seq methods. The most
comprehensive range of methods makes it possible to segment
cells, measure cell shape parameters, and reveal the topology of
cells’ connection with each other (Jackson et al., 2017).

Over the past few years, the possibility to study many entire
organs through complete reconstruction at the cellular level
became a significant breakthrough (Wolny et al., 2020). The
root tip of A. thaliana is the most abundant target for scRNA-
seq in plants. At the same time there are many reconstructions
and 3D atlases for it (Dolan et al., 1993; Bowman, 2012; Mai
et al., 2014) and even specialized software that allows displaying
the various cellular characteristics into cellular ensembles, for
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example, the iRoCS Toolbox (Schmidt et al., 2014). In vivo laser
scanning microscopy techniques coupled with mathematical
modeling allowed describing the processes of morphogenesis for
the arabidopsis root apical meristems (Mironova et al., 2012). The
dynamics of the development of A. thaliana lateral roots are also
available for visualization at the cellular level from the earliest
stages of their establishment (Goh, 2019). Using confocal and
multiphoton microscopy approaches, apexes and leaf primordia
can also be completely reconstructed (Kiss et al., 2017; Wolny
et al., 2020), as well as adult leaves (Wuyts et al., 2010) and sepals
(Tauriello et al., 2015).

3D reconstruction of A. thaliana ovule coupled with
transcriptome sequencing provides incredibly detailed data about
developmental processes of this organ (Vijayan et al., 2021),
which can serve as a set of reference points for further integration
of future single-cell data on this organ. Simultaneously, the
methods of visualization and analysis of images also allow
working with plants with larger organs, for example, with
Nicotiana tabacum roots (Pasternak et al., 2017).

Light-sheet imaging techniques allow to increase the scan
depth and improve the quality of the reconstruction. These
technologies, coupled with mathematical modeling, gave insights
into the geometrical organization of divisions during the
formation of the lateral root of A. thaliana (von Wangenheim
et al., 2016). In particular, the first division of the cell-founders
is always asymmetric and determines the formation of a layered
structure, while the pattern of further cell division forms thanks
to a regular change in the orientation of the division plane.
Also, the technique of optical cleaning of plant tissues allows for
getting deep 3D imaging and is compatible with fluorescence-
based microscopy (Warner et al., 2014). The measurements
of morphological characteristics of cells and their mutual
arrangement allowed researchers to form a structural model of
the studied organ and identify cell types (Kerstens et al., 2020).

The current opinion about coordination of growth processes
and divisions (Sablowski, 2016) stressed the role of individual cell
characteristics and intercellular interactions in these processes.
Optical microscopy is a valuable method for obtaining the
structural characteristics on the subcellular resolution. For
example, this approach allows studying the ultrastructural
features of the cell wall (Yarbrough et al., 2009), which enables
us to assess cellular biomechanics indirectly. The combination
of large-scale annotated image datasets and deep learning
approaches is a promising technique for annotating physical,
morphological, and tissue grading cellular properties (Fricker,
2016; Biswas and Barma, 2020).

The cell wall’s mechanical parameters deserve special attention
since they determine features of the growth process (Bidhendi
and Geitmann, 2016), and therefore is incredibly important
for modeling plant morphogenetic systems. In addition to
assessing the thickness of the cell wall (Krzesłowska et al.,
2019), modern approaches make it possible to evaluate its
composition and mechanical parameters. For example, probe
microscopy can assess the spatial composition of polysaccharide
filaments on the surface of living tissues (Zhang et al., 2016),
and Raman microscopy can produce data on the composition
and ultrastructure of the cell wall on sections of organs in the

usual (Zeise et al., 2018) and confocal modes (Gierlinger et al.,
2012). The ultrastructure of cell walls as well as tissues and organs
can be studied with a 3D electron microscope (Kremer et al.,
2015). All these methods make it possible to assess biomechanical
parameters within organs and serve as the basis to improve the
simulation modeling of growth processes.

Therefore, the next important step is integrating the structure
model with the cell parameters that mark the individual and
group characteristics of cells (Figure 3). Many characteristics
of the nucleus, organelles, and cell walls can be identified
at the scale of an entire organ using approaches of protein
immunolocalization, expression of reporter constructs that mark
certain cellular features, as well as using methods to increase the
resolution of microscopy (Figure 3).

The data on the frequency ofmitoses along the root (Pasternak
et al., 2017; Lavrekha et al., 2020) provides insight into the
dynamics of replenishment of cell files and the size zones, where
cell divisions occur. Also, cells in S-phase can be identified
by incorporating labeled nucleotide analogs (Pasternak et al.,
2017). The passage of the cell cycle phases is closely associated
with the cell fate specification (Roeder et al., 2012). The state
of chromatin in cells of various types can be identified using
immunolocalization (She et al., 2018) and shed light on cell
activity. Visualization of the cytoskeleton can be done both
by immunolocalization, staining with phalloidin, and, in vivo,
using reporter genetic constructs (Zhang et al., 2020). These
cells’ characteristics can be related to changes in gene groups’
expression in cells and are suitable for improving the integration
of the structural model with single-cell transcriptomic data.

The distribution of various proteins in plant organ cells
can also be determined (Sauer and Friml, 2010) and used
for integration into a model. Proteins can be transporters
that determine the fluxes of substances that deserve special
attention; for example, the auxin membrane transporter PIN1
has a significantly uneven distribution over root cells and a
polar arrangement on the cell surface (Omelyanchuk et al.,
2016). It has also been shown that RNA molecules capable
of being transported from tissue to tissue play an essential
role in the regulation of biological processes in a plant,
and their visualization within an organ is also possible
(Luo et al., 2018).

Also, plasmodesmata play a unique role in the processes
of intercellular symplastic transport and signaling in plant
tissues (for comprehensive review, see Heinlein and Epel,
2004). Plasmodesmata are intercellular channels characterized by
various states from open to closed (Crawford and Zambryski,
2001). Plasmodesmata behavior underlies the isolation of groups
of cells in the tissue, called symplastic domains (Pfluger and
Zambryski, 2001; Lucas and Lee, 2004; Yadav et al., 2014).
Stress factors affect the formation of plasmodesmata (Fitzgibbon
et al., 2013). The transport of mRNA and metabolites through
the plasmodesmata affects the concentration of substances and
gene expression levels inside particular cells (Lucas and Lee,
2004). Many non-cell-autonomous transcription factors and
small RNAs are known tomove through plasmodesmata between
cells and regulate their interaction during development (Kragler,
2013; Yadav et al., 2014; Sevilem et al., 2015).
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Transmission electron microscopy is the classical method for
studying the morphology of plasmodesmata. Combined with
light-based microscopy, it allows one to study the structure and
distribution of plasmodesmata between cells of specific cell types
(Nicolas et al., 2017). Also, the topology of plasmodesmata of
contacting cells at organ scale can be studied using confocal
and super-resolution microscopy (Fitzgibbon et al., 2010, 2013).
In this sense, microscopy allows us to assess the location and
topology of plasmodesmata and, therefore, identify the potential
of local transport of substances through these transport channels,
symplastic domains, and to assess the order of cell division. Thus,
the organization and localization of transport channels inside the
plant tissues are connected with the intracellular characteristics.

On the other hand, intracellular sensing processes contribute
to intercellular signaling. For instance, there are special sensory
plastids in epidermal and vascular parenchyma cells, which
can cause a global systemic stress response in a plant
(Beltrán et al., 2018).

The redox state of organelles is also an additional factor
associated with developmental processes, ROS signaling, and
antioxidant systemic plant cells (Bobrovskikh et al., 2020).
In particular, the CellROX fluorescent reagent visualizes the
oxidative potential of cells in a tissue (Kováčik and Babula, 2017).

Besides, mass spectrometry imaging and live single–cell mass
spectrometry practically corresponds to single-cell metabolomics
and makes it possible, for example, to mark the concentrations
of secondary metabolites on the whole adult organ (Yamamoto
et al., 2019). Such approaches can be combined with SC analysis
of the expression of these metabolites’ biosynthetic enzymes
and transporters. As a result, they provide a basis for modeling
the distributed regulation of these processes at the tissue level
(Figure 3). The most important polynucleotides, such as RNA,
can also be detected at the level of single molecules (Huang et al.,
2020), which allows direct integration into the structural model
of the organ.

Modern imaging techniques allow access to the structural
and physiological characteristics of cells in a whole organ
manner. It provides ample opportunities to create, enrich,
and verify structural models of plant organs and tissues. An
important aspect is that many assessments can be carried out
over time. Comparison of temporal dynamics in zones with
active morphogenetic events will make it possible to track
changes in cellular topology, and thus, to trace the nature of
division (symmetric and asymmetric) and growth (isotropic and
anisotropic), as well as to detect several mechanical features of the
developing tissue (for example, the relative stiffness of different
cell zones).

Thus, a large arsenal of available microscopic and imaging
techniques allows obtaining high-quality multilevel data
integrated into plant morphogenesis models. For example,
there is a computational morphodynamics approach that allows
formalizing quantitative data from morphometry measurements
into a set of rules (Formosa-Jordan et al., 2018):
1. To set ODE, which describes the growth rate of individual cells

using data from regulatory networks.
2. To set various rules for the geometry of division

(periclinal/tangential divisions with different angles)

according to mechanical constraints of intercellular vertex
interactions.

3. To use the first two steps to calculate effective growth and final
rate equation.

4. CELL-BASED MODELING APPROACHES
REPRODUCING PLANT TISSUE
MORPHOGENETIC PROCESSES

4.1. Existing Models and Modeling
Approaches
This section will discuss existingmathematical models describing
the tissue organization and/or properties of individual cell
types. While considering plant growth and developmental
processes, researchers often highlight a unique role for the
hormone auxin. For instance, in plant roots, auxin triggers
cascades of events during development and morphogenesis,
while other hormones (cytokinins, brassinosteroids, abscisic acid,
gibberellins, and others) interact with auxin (Saini et al., 2013).
Auxin is also an important regulator in developing shoot apical
meristems in combination with cytokinins, gibberellic acid, and
some transcriptional factors: WUSCHEL, ARR7/ARR15, ARF5
(Durbak et al., 2012). Mironova et al. (2012) demonstrated
the effectiveness of the reverse fountain and the reflected
flow mechanisms of PIN-associated transport in the root
apical meristem. Comparison of different complexity models
showed that a model that only describes auxin transport
processes is insufficient for the reproduction of realistic patterns
of morphogenesis, but adding an additional layer-specific
regulation or layer-driven growth could help solve this problem
(De Vos et al., 2014).

Simultaneously, the mechanical characteristics of tissues,
which are determined through a complex interplay of genetic
and physiological systems, are an essential component for
describing the processes of morphogenesis. The feedback
effects of mechanical interactions and stresses, which affect the
regulation of proliferation patterns, are highlighted in Nelson
et al. (2005). The experimental evidence of the mechanical stress
approach’s consistency for plant tissue development is shown
in the work of Uyttewaal et al. (2012). The transition from
the linear models of hormonal transport to hybrid multicellular
and multiscale models has excellent potential for predicting the
emergent properties of the system (Voß et al., 2014). The basis
for mechanical models of cell growth is the representation of
multicellular tissues in vertex-based graphs with the calculation
of the interaction forces between these elements. The equations
binding the growth of plant cells with the rate of water absorption
and the cell wall’s growth were first published in Lockhart’s
work for the case of constant turgor pressure (Lockhart, 1965).
In order to model growth in a more general case, Lockhart’s
equations were extended, taking into account the change in
turgor pressure as a result of reversible elastic deformation and
transpiration processes in the Ortega model (Ortega, 2010).
Within the framework of this approach, a linear leaf growth
model was proposed (Zubairova et al., 2016). In addition,
Newton’s First Law and Hooke’s Law can be used to describe
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TABLE 2 | The most popular tools for cell-based plant tissue morphogenesis modeling.

Name, reference, link Spatial scale Formalism Examples

Virtual cell (Moraru et al., 2008) 2D/3D Kinetics, diffusion, flow, membrane

transport, electrophysiology

Gajdanowicz et al., 2011; Onal

et al., 2020

OpenAlea (Pradal et al., 2008) 2D/3D Functional-structural plant models Muraro et al., 2014

CellModeller (Dupuy et al.,

2008)

2D Biphasic systems; viscous yielding of the

cell walls

Dupuy et al., 2010; Rudge et al.,

2012

VirtualLeaf (Merks et al., 2011) 2D Vertex dynamics model van Mourik et al., 2012; De Rybel

et al., 2014; De Vos et al., 2014

CompuCell3D (Swat et al.,

2012)

2D/3D Cellular Potts model Hester et al., 2011; Swat et al.,

2015

CellZilla (Shapiro et al., 2013) 2D Vertex dynamics model Nikolaev et al., 2013; Shapiro et al.,

2015

LBIBCell (Tanaka et al., 2015) 3D Lattice Boltzmann method for solving fluid

and signaling processes

Stopka et al., 2019

cell growth and expansion, as was done in the recent work by
Retta et al. (2020).

Unfortunately, most available auxin-related models are
focused only on the transport processes in the root tissue and
poorly explain the overall processes of growth and development
(Morales-Tapia and Cruz-Ramírez, 2016). However, several
models combine both a mechanical approach and auxin
transport processes. For example, there is a dynamic model
that describes molecular mechanisms in conjunction with
physical tension fields and auxin dynamics (Barrio et al., 2013).
This model reproduces emergent patterns of morphogenesis
from proliferative to transition and elongation zones. The
study combining experimental data on the organization
of the extracellular matrix and numerical simulations
demonstrated that auxin plays an essential role in altering
cells’ mechanical properties; this process involves the ABP1 and
KATANIN 1 proteins (Sassi et al., 2014). Also, the advanced
cell-based mathematical model describes the relationship
between the concentration of morphogens and the cellular
mechanistic properties in the developing apical shoot meristems
(Banwarth-Kuhn et al., 2019).

Thus, the models of plant tissue morphogenesis put
at the forefront three biological facts: (i) the dependence
on intercellular hormonal signaling, (ii) the importance of
the intracellular state and individual cellular characteristics,
(iii) the relevance of mechanical stresses in intercellular
interactions. Therefore, scRNA-seq technologies, microscopy,
imaging techniques, and a range of complementary approaches
to measuring cell mechanical properties (Banwarth-Kuhn et al.,
2019; Bidhendi and Geitmann, 2019) can provide a complete
picture of morphogenetic processes at the cellular level.

4.2. Available Software and Tools for
Cell-Based Modeling
In general, elaborating mathematical models of morphogenetic
processes could base on specialized software, which we discuss in
this section. Researchers may also develop and implement their
frameworks and algorithms using mathematical packages and
general-purpose programming languages (Python, Mathematica,

MATLAB). Three formalisms are most often used to build cell-
based models: vertex-based, center-based (also called spring-
based), and Cellular Potts models. Vertex-based models are often
used to simulate plant tissue and make it possible to conveniently
describe the dynamics of cell movements in cell ensembles
taking into account mechanical constraints (for example, during
morphogenesis). This formalism is implemented in the Cellzilla
(Shapiro et al., 2013), VirtualLeaf (Merks et al., 2011) packages.
In center-based models, cells are represented as dots with mass,
connected by mechanical elements (springs). Banwarth-Kuhn
et al. (2019) give an example of this formalism’s application
to the description of growth processes in the shoot apical
meristem. Cellular Potts models are often used to describe
the processes occurring in animal tissues and tumor formation
processes; this formalism is implemented in CompuCell3D
(Swat et al., 2012). It is also possible to use the Voronoi
tessellation formalism for modeling morphogenetic processes;
e.g., see Romero-Arias et al. (2017).

Below we discuss available software, while a
summary is presented in Table 2; for more details, see
Supplementary Table 1.

Virtual Cell (Cowan et al., 2012; vcell.org) is an environment
for modeling, analysis, and simulation of cellular processes, and
it includes tools for gene network and for the integration of
biological images. This package consists of distinct functional
modules: rule-based networks, ODE, PDE and kinematics,
stochastic simulations, parameter estimation and has the ability
to integrate it into hybrid models. Users can define the
model structure and the system automatically builds the code
and compiles it. A detailed overview of this tool is given
in Moraru et al. (2008). Also, there is a VCell extension
for compartmental and spatial rule-based modeling (Blinov
et al., 2017). The implemented models using VCell can have a
different scale, for example, the model of potassium transport
in plant vascular tissues (Gajdanowicz et al., 2011), and model
of the paracrine-juxtacrine loop for breast cancer cells and
macrophages (Onal et al., 2020).

VirtualLeaf package (code.google.com/archive/p/virtualleaf/,
Merks et al., 2011) using a vertex-based approach (Nagai and
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Honda, 2001); the algorithm includes vertex motions at each
step that minimize the Hamiltonian energy by the Monte
Carlo algorithm. For each cell, an unstressed area is specified,
corresponding to the cell’s state when the turgor pressure is
balanced with the external pressure. For each cell wall element,
the unstressed length is specified, corresponding to the length
of the cell wall segment in the absence of turgor pressure. The
balance between turgor pressure and the cell wall’s resistance
can be described in terms of the generalized potential energy
(Hamiltonian) calculated as the sum of all cells and cell wall
elements, which is then minimized by the algorithm. The
growth models of root were implemented using this framework
(De Vos et al., 2014).

Cellzilla uses a vertex dynamics model for describing
morphodynamics processes and takes into account
morphogenetic regulation (http://cellzilla.info/, Shapiro et al.,
2013). The cellular structure is represented by a list of three
elements: a list of vertex coordinates, a list of edges consisting
of pairs of vertex numbers, and a list of cells consisting of
lists of edge numbers belonging to a cell. The interaction
between morphogens and the transport flows in each cell
is described in terms of chemical kinetics using the arrow
notation of the Cellerator package (Shapiro et al., 2003).
This software automatically constructs and solves a system of
differential equations describing the dynamics of morphogens’
concentration in all tissue cells. Methods for constructing
models of plant cell growth in CellZilla are described by
Shapiro et al. (2013). Using this system, Nikolaev et al. (2013)
constructed a model for A. thaliana shoot apical meristem
structure maintenance.

CellModeller (haselofflab.github.io/CellModeller/; Dupuy
et al., 2010) is a software with modular structure for
2-dimensional simulations. It can reproduce the intracellular
dynamics of metabolites, intercellular transport processes, as
well as cell mechanics using physical laws. This software can be
used for modeling plant morphogenetic processes. For example,
a simple morphogenetic system for the Coleochaete alga has
been developed (Dupuy et al., 2010).

LBIBCell (Tanaka et al., 2015, https://tanakas.bitbucket.io/
lbibcell/) was developed specifically to simulate morphogenetic
processes in tissues. This tool uses the immersed-boundary
concept (which describes cells as viscous fluid with elastic walls),
coupled with the Lattice Boltzmann method. The model of
biased epithelial lung growth was implemented using this tool
(Stopka et al., 2019).

OpenAlea (Pradal et al., 2008) is an integrative platform that
combines various computational frameworks. This platform’s
main goal is the integration andmutual enrichment of experience
in different sections of plant process modeling. This system
is based on Python language and has a visual programming
interface. For example, the OpenAlea package VPlants (https://
team.inria.fr/virtualplants/) allows building models of tissue
morphogenesis. This package was used in modeling vascular
development in A. thaliana (Muraro et al., 2014).

CompuCell3D (Swat et al., 2012) is a C++ software for 3D
modeling, which includes both graphical user and command-
line interfaces. This system uses classical mechanics for

describing cellular behavior according to mechanical constraints.
Multicellular systems are described using the Cellular Potts
model. The input data include the grid’s size, number of
cells, cellular interactions, energy functions, and activator
concentrations. The protocol for using this program to study
cellular morphogenesis parameters is presented in Palm and
Merks (2015). Most of the models elaborated with this software
describe the development of animal tissues (Hester et al., 2011)
and the processes of tumorigenesis (Swat et al., 2015).

Thus, the available software and methods are pretty diverse,
and the choice of a particular tool depends on the specifics
of the task at hand. Among these tools, it is necessary to
highlight Cellzilla and VirtualLeaf as the most specific for
describing plant morphogenesis processes. On the other hand,
the development of new frameworks and algorithms, which
depend on researchers’ ability to program, is a promising
approach since it significantly expands the functionality and
removes several restrictions on applying one or another
formalism implemented in existing software.

4.3. Our Framework and Model Flowchart
In this section, we propose a general framework for modeling
plant morphogenetic processes based on various biological data.
This kind of model should include two main data sources:
scRNA-seq and tissue imaging data; besides, SC metabolomics
and cell wall stiffness studies can serve as additional data sources.
For plant organ growth modeling, the accurate description of
processes on the cellular level is essential since this level combines
molecular regulation with hormonal regulation, cell division, and
reproduction processes (De Vos et al., 2012).

Mathematically, events occurring in plant tissues and cells
can be classified into continuous and discrete ones. The first
ones include the processes of metabolism, growth, transport and
development of cells. Discrete events, on the other hand, include
processes such as birth (or emergence), division, death, and
change of cellular state. Individual cells’ metabolic characteristics
are influenced by their genotype and developmental stage, which
would be described by single-cell transcriptomics approaches.
The nature of the proposed framework is hybrid since it
combines different mathematical formalisms and modules:
(i) ODE/PDE equations for describing the dynamics of
substances and morphogens inside the cell and the processes
of intercellular transport, (ii) discrete events occurring during
the onset of threshold conditions (for example, cell division
when a specific cell area is reached, or cell differentiation at a
hormone concentration above the threshold), (iii) the biophysical
laws of mechanical interactions between cells (such as Ortega’s
approach Ortega, 2010 or Newton’s and Hooke’s laws Retta et al.,
2020). In this sense, scRNA-seq data helps measure individual
characteristics of cell populations (which characterize system
dynamics), while microscopy should help to define geometrical
patterns and “rules” (e.g., division geometry or dividing plane
orientation). These steps will help to create hybrid models with
tissue/cellular resolutions.

The usefulness of such a hybrid approach in describing
ecological systems was described in the work of Vincenot et al.
(2011). In particular, the combination of discrete and continuous
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FIGURE 4 | The proposed hybrid framework for cell-based models construction. The framework includes six functional blocks explained in the text. Individual blocks

are marked with corresponding colors; colored arrows indicate the transition between blocks. Blue and orange checkmarks indicate information related to single-cell

and imaging data, respectively.

phenomena is a natural property of multicellular systems, and
such hybrid frameworks allow researchers to make more realistic
simulations in silico. Van Liedekerke et al. (2015) described the
advantages and disadvantages for different types of agent-based
models of tissue mechanics and noted that hybrid models could
reproduce spatial resolution, physical aspects of interactions,
cell shapes diversity. Osborne et al. (2017) compared different
approaches to cell-based modeling using typical cases of the
described processes; the authors noted that the vertex-based
approach, in contrast to others, allows one to simulate boundary
conditions in proliferation processes effectively. This feature
allows us to consider this method as the most promising for
modeling the root apical meristems, which has more severe
mechanical restrictions for growth than leaf and shoot tissues.
For modeling leaf and shoot tissues, for example, it is possible
to use the Voronoi tessellation or overlapping spheres modeling
approach described in Osborne et al. (2017).

Thereby, we assume the use of such a hybrid approach
complementary to modern research due to its multilevel nature;
it combines SC transcriptomic and microscopy data into a cell-
based modeling framework. Below in the text and in Figure 4,
we outline the main stages of our framework that must be taken
into account.
1. The posed biological problem determines the structure of

the model. A modeler should define a biological system’s
properties, its elementary subsystems, and connections
between these elements, which are significant to reproduce
them in the model. Based on these decisions, it is necessary
to determine the main properties of the simulated object:
genotype, organ, tissue zone, stage of development. Since a
cell is a crucial element for describing the processes of plant
morphogenesis, the next step is to find out which cellular
structures will be reproduced in the model to determine the

formalism used to describe them and the equations for growth
and the rules of division. Then, it is necessary to decide
on the objects at the molecular level to be considered, in
particular the genetic systems of interest, to find out whether
it is required to consider transport processes for morphogens
(for example, hormones), and also to decide whether it is
necessary to take into account the biomechanics of cells for
the modeled system.

2. Designing experiments to obtain imaging (2.1) and scRNA-
seq (2.2) data based on the given aim. For imaging (2.1), it
is essential to choose a suitable plant portion and microscopy
technology and determine whether it is necessary to track
the dynamics of development of a given fragment of tissue
and for which interval of time. For scRNA-seq (2.2), it is
important to make sure that the process of isolation of
protoplasts and their analysis will not be limited due to the
structure of the tissue and/or organ of the plant, imperfections,
and shortcomings of the available methods, otherwise, this
technique will have to be worked out and improved to an
acceptable level.

3. Perform the experiments and produce data. (3.1) It is
necessary to prepare (for example, fix and stain) a target tissue
fragment, get images, process and analyze them (manually
or using plugins), and digitize the resulting patterns to
build a structural model of the tissue/organ and identify
morphogenetic rules for incorporation into a computational
model. (3.2) While obtaining and analyzing scRNA-seq data,
special care should be taken to ensure that the research aim
is as close as possible to the intended modeling goals. Care
should be taken to avoid contamination with cells of those
classes that are not needed and so that for most of the required
cells, it would be possible to analyze the molecular systems
required for the model. Besides, scRNA-seq-based approaches
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for the reconstruction of gene networks of the corresponding
processes have high potential.

4. Analyze experimental data. Experimental results at cell and
tissue level have to be analyzed in order to derive key
parameters to be used in the model formulation in terms of
cellular characteristics (4.1) and molecular processes (4.2) for
all the considered cell types.

5. Systematic assembly of the hypotheses, available data and
mathematical formalization into a single hybrid model, which
consists of the following blocks: (1) ODE / PDE equations for
describing the dynamics of substances andmorphogens inside
the cell and the processes of intercellular transport, (2) discrete
events occurring at the onset of threshold conditions (for
example, cell division when a specific cell area is reached,
or cell differentiation at a hormone concentration above
the threshold), (3) biomechanics interactions between cells
(4) agent-based rules describing patterns of divisions and
mechanical features of the tissue.

6. Validation and verification of models is based on their success
in reproducing the behavior of real biological phenomena
that can be evaluated experimentally. In this sense, it can be
useful to return to the stage of morphometry and compare the
dynamics of tissue development with simulations and study in
detail the molecular organization of the subsystems described
in the model.

In general, the proposed approach is universal for describing any
morphogenetic system; however, the pipeline described above
may differ in some steps for each specific case, while some of them
could be eliminated. In particular, plant tissue morphodynamics
is context-dependent due to mechanical interactions inside
cell ensembles and the transport of morphogens through
plasmodesmata, which is confirmed by numerous studies
(Crawford and Zambryski, 2001; Heinlein and Epel, 2004;
Lucas and Lee, 2004; Kragler, 2013; Yadav et al., 2014; Sevilem
et al., 2015; Luo et al., 2018). At the same time, models for
morphodynamics of animal tissues with strong neighborhood
structures could include analogous mechanisms modified to
consider cell adhesion processes. For example, this approach is
applicable to model the processes of animal epithelial or tumor
growth (Interian et al., 2017).

5. CONCLUSIONS AND FUTURE
CHALLENGES

Post-genomic technologies made it possible to obtain detailed
information about processes at genomic and transcriptomic
levels using SC and whole tissue RNA sequencing technologies.
Besides, the existing abundance of microscopy methods allows
high-quality characterization of morphology and physiology at
the level of extended fragments of tissues and organs. However,
microscopy approaches do not allow to perform quantitative
assessments of important intracellular characteristics, such as
concentrations of substances and metabolites. SC metabolomics
approaches for plants, which are beyond this review’s scope,
still remain overshadowed, although significant developments
have been made in mass spectrometry approaches for such
kind of analyses (de Souza et al., 2020). Gilmore et al. (2019)

discuss the latest advances in mass spectrometry imaging: matrix
laser desorption ionization (MALDI) and secondary ion mass
spectrometry (SIMS), which have a high potential for assessment
of metabolism at subcellular spatial resolution. The development
of these methods will allow metabolomics to achieve the same
spatial resolution level as SC transcriptomic. The review of
Bidhendi and Geitmann (2019) presents the main features and
possibilities of measuring the cell wall’s mechanical properties:
indentation technique, tensile test, acoustic microscopy, fracture
measurements, and microfluidics. The authors emphasize that
multiscale in silico mechanical modeling has excellent potential
for the field and could help obtain a unified understanding of
mechanical behavior across different scales.

To date, the methods and technologies necessary to obtain
various experimental data for plant morphogenesis models
have reached a balance and are mostly consistent with
each other in terms of power, productivity, and spatial
resolution. The community of mathematical biologists and
programmers faces crucial theoretical challenges and is creating
efficient computational frameworks capable of large-scale
numerical simulations involving cellular ensembles of several
thousands of cells. Such models will provide more accurate
resolution and realism in the description of morphogenetic
processes. Examples of optimization works are the algorithm
of Jeannin-Girardon et al. (2015), and graphics processing
units (GPU) accelerated framework for 3D cellular growth and
division models (Madhikar et al., 2018). Moreover, declarative
modeling perspectives concerning morphogenetic processes
are considered (Mjolsness, 2019), which potentially will help
formalize mathematical calculations at higher levels compared to
general-purpose programming languages.

The widespread development of SC technologies in the
future could serve as a driver for other areas of cellular and
developmental biology of plants (Libault et al., 2017). However,
we have an urgent need for data integration to successfully apply
the technology, in particular at tissue level with its organization’s
peculiarities as an emerging system. Besides, an increased
availability of SC data can stimulate the development of methods
and modeling concepts at cellular and tissue levels, which will
open the way for the binding of multi-omics characteristics for
individual cell types and the observed phenotype.

On the other hand, it is necessary to verify the emerging
issues related to the interpretation and analysis of SC data
using advanced microscopy and in silico biology. In this
sense, one of the most urgent problems of SC sequencing
is the reverse reconstruction of the spatial position of cells
based on corresponding transcriptome expression. Searching
for major regulatory genes that characterize certain cell lines
will be a critical step to solve this problem. Also, cell-based
models of morphogenesis could help interpret and integrate
SC and imaging data, making the reasoning more transparent
and establishing an understanding of essential parameters and
mechanisms for the described systems.

Summarizing all of the above, we have found the following key
features related to SC-technologies that need to be addressed:

1. Some limitations are still present in the phases of integration,
analysis, and interpretation of data.
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2. Only a limited set of plant species and organs is suitable
for obtaining transcriptome and structural data with
cellular resolution.

3. There is a need for a more precise reconstruction of scRNA
plant atlases.

The task of elaborating and analyzing in silico models of
morphogenesis, due to the complexity of the studied systems
and computational limitations, are non-trivial. Thus, cell-based
models, which use a hybrid formalism, could effectively combine
our knowledge on different levels and help tackle the complexity
of the system. However, the current problem of the large
number of dimensions of the initial SC data should be solved
by applying preprocessing and filtering algorithms, as well
as for the reconstruction of related gene networks. Thereby,
model formulation and numerical experiments in silico could
be applied using only the essential part of the initial high-
dimensional SC data. Such reduction should aim to contain
data on gene expression changes and metabolites concentrations,
which determine the different cellular states.
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Highly multiplexed imaging technology is a powerful tool to facilitate understanding

the composition and interactions of cells in tumor microenvironments at subcellular

resolution, which is crucial for both basic research and clinical applications. Imagingmass

cytometry (IMC), a multiplex imaging method recently introduced, can measure up to

100 markers simultaneously in one tissue section by using a high-resolution laser with a

mass cytometer. However, due to its high resolution and large number of channels, how

to process and interpret the image data from IMC remains a key challenge to its further

applications. Accurate and reliable single cell segmentation is the first and a critical step to

process IMC image data. Unfortunately, existing segmentation pipelines either produce

inaccurate cell segmentation results or require manual annotation, which is very time

consuming. Here, we developed Dice-XMBD1, a Deep learnIng-based Cell sEgmentation

algorithm for tissue multiplexed imaging data. In comparison with other state-of-the-art

cell segmentation methods currently used for IMC images, Dice-XMBD generates more

accurate single cell masks efficiently on IMC images produced with different nuclear,

membrane, and cytoplasm markers. All codes and datasets are available at https://

github.com/xmuyulab/Dice-XMBD.

Keywords: imaging mass cytometry, multiplexed imaging, single cell segmentation, U-net, knowledge distillation,

digital pathology

1. INTRODUCTION

Analysis of the heterogeneity of cells is critical to discover the complexity and factuality
of life system. Recently, single-cell sequencing technologies have been increasingly used in
the research of developmental physiology and disease (Stubbington et al., 2017; Papalexi and
Satija, 2018; Potter, 2018; Lähnemann et al., 2020), but the spatial context of individual
cells in the tissue is lost due to tissue dissociation in these technologies. On the other
hand, traditional immunohistochemistry (IHC) and immunofluorescence (IF) preserve spatial
context but the number of biomarkers is limited. The development of multiplex IHC/IF
(mIHC/mIF) technologies has enabled the simultaneous detection of multiple biomarkers
and preserves spatial information, such as cyclic IHC/IF and metal-based multiplex imaging
technologies (Zrazhevskiy and Gao, 2013; Angelo et al., 2014; Giesen et al., 2014; Tan et al.,
2020). Imaging mass cytometry (IMC) (Giesen et al., 2014; Chang et al., 2017), one of

1XMBD: Xiamen Big Data, a biomedical open software initiative in the National Institute for Data Science in Health and
Medicine, Xiamen University, China.
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metal-based mIHC technologies, uses a high-resolution laser
with a mass cytometer and makes the measurement of 100
markers possible.

IMC has been utilized in studies of cancer and autoimmune
disorders (Giesen et al., 2014; Damond et al., 2019; Ramaglia
et al., 2019; Wang et al., 2019; Böttcher et al., 2020). Due to
its high resolution and large number of concurrent marker
channels available, IMC has been proven to be highly effective in
identifying the complex cell phenotypes and interactions coupled
with spatial locations. Thus, it has become a powerful tool to
study tumor microenvironments and discover the underlying
disease-relevant mechanisms (Brähler et al., 2018; Ali et al.,
2020; Aoki et al., 2020; de Vries et al., 2020; Dey et al., 2020;
Jackson et al., 2020; Zhang et al., 2020; Schwabenland et al.,
2021). Apart from using IMC techniques alone, several other
technologies, such as RNA detection in situ and 3D imaging, have
been combined with IMC to expand its applicability and utility
(Schulz et al., 2018; Bouzekri et al., 2019; Catena et al., 2020; Flint
et al., 2020).

The IMC data analysis pipeline typically starts with single
cell segmentation followed by tissue/cell type identification
(Carpenter et al., 2006; Sommer et al., 2011; Liu et al., 2019). As
the first step of an IMC data processing pipeline, the accuracy of
single cell segmentation plays a significant role in determining
the quality and the reliability of the biological results from an
IMC study. Existing IMC cell segmentation methods include
both unsupervised and supervised algorithms. Unsupervised cell
segmentation, such as the watershed algorithm implemented in
CellProfiler (Carpenter et al., 2006), does not require user inputs
for model training. However, the segmentation results are not
precise in particular when cells are packed closely or they are
in complicated shapes. To achieve better segmentation results,
supervised methods use a set of images annotated with pixel-
level cell masks to train a segmentation classifier. However, the
manual annotation task is very time consuming and expensive
as well since it is normally done by pathologists or experienced
staff with necessary knowledge in cell annotation. Particularly,
for multiplexing cellular imaging methods such as IMC, their
channel configurations including the total number of markers
and markers selection are typically study dependent. Therefore,
manual annotationmay need to be performed repeatedly for each
study to adapt the segmentation model to different IMC channel
configurations, which can be impractical.

To overcome this limitation, a hybrid workflow combining
unsupervised and supervised learning methods for cell
segmentation was proposed (Ali et al., 2020). This hybrid
workflow uses Ilastik (Sommer et al., 2011), an interactive
image processing tool, to generate a probability map based
on multiple rounds of user inputs and adjustments. In each
round, a user only needs to perform a limited number of
annotations on regions where the probability map generated
based on previous annotations is not satisfactory. CellProfiler
is then used to perform the single cell segmentation based on
the probability map once the result from Ilastik is acceptable.
This hybrid workflow significantly reduces manual annotation
workload and has gained popularity in many recent IMC studies
(Damond et al., 2019; Böttcher et al., 2020; de Vries et al., 2020;
Jackson et al., 2020; Schwabenland et al., 2021). However, the

annotation process still needs to be performed by experienced
staff repeatedly for each IMC study, which is very inconvenient.
In addition, the reproducibility of the experimental results
obtained from this approach can be an issue due to the per-study,
interactive training process used in creating the single cell masks.
Hence, a more efficient, fully automated single cell segmentation
method for IMC data without compromising the segmentation
accuracy is necessary for IMC to gain broader applications in
biomedical studies.

Convolutional neural networks (CNNs) have been
successfully used for natural image segmentation and recently
applied in biomedical image applications (Shen et al., 2017;
Zhang et al., 2018; Andrade et al., 2019; Vicar et al., 2019). CNN-
based U-Net was developed for pixel-wise cell segmentation
of mammalian cells (Ronneberger et al., 2015). It has been
demonstrated that the U-Net architecture and its variants such
as Unet++ (Zhou et al., 2018), 3D Unet (Çiçek et al., 2016),
and V-Net (Milletari et al., 2016) can obtain high segmentation
accuracy. Motivated by the good performance of U-Nets in cell
segmentation (Van Valen et al., 2016; Hollandi et al., 2020; Salem
et al., 2020), we developed Dice-XMBD, a deep neural network
(DNN)-based cell segmentation method for multichannel IMC
images. Dice-XMBD is marker agnostic and can perform cell
segmentation for IMC images of different channel configurations
without modification. To achieve this goal, Dice-XMBD first
merges multiple-channel IMC images into two channels, namely,
a nuclear channel containing proteins originated from cell
nucleus, and a cell channel containing proteins originated
from cytoplasm and cell membrane. Channels of proteins
with ambiguous locations are ignored by Dice-XMBD for
segmentation as they contribute little to the segmentation
results. Furthermore, to mitigate the annotation workload,
we adopted the knowledge distillation learning framework
(Hinton et al., 2015) in training Dice-XMBD, where the training
labels were generated using Ilastik with interactive manual
annotations as a teacher model. We used four IMC datasets of
different channel configurations to evaluate the performance of
Dice-XMBD and the results show that it can generate highly
accurate cell segmentation results that are comparable to those
from manual annotation for IMC images from both the same
and different datasets to the training dataset, validating its
applicability for generic IMC image segmentation tasks.

2. MATERIALS AND METHODS

2.1. Overview of the Pipeline
In Dice-XMBD, we used a U-Net-based pixel classificationmodel
to classify individual pixels of an IMC image to their cellular
origins, namely, nuclei, cytoplasm/membrane, or background.
The classification model outputs pixel-level probability values for
each class, which were then input to CellProfiler (version 3.1.0)
to produce the final cell segmentation masks (Figure 1).

The ground truth cell segmentation of IMC images is
in general not available. To obtain the training labels, we
generated pixel probability maps using an iterative manual
annotation process with Ilastik on the training IMC dataset.
Furthermore, the same iterative manual annotation process was
performed on the testing IMC datasets to produce the ground
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FIGURE 1 | Dice-XMBD workflow. Imaging mass cytometry (IMC) images are combined into 2-channel images containing nuclear and membrane/cytoplasm proteins

expression information. In stage 1, the pixel probability maps of the input 2-channel images are predicted using a semi-supervised learning model based on U-Net

architecture. The training data were generated from Ilastik by an iterative interactive annotation process. In stage 2, the cell segmentation masks are generated from

the pixel probability maps using the propagation method in CellProfiler.

truth pixel probability maps, which were used by CellProfiler
to produce the ground truth cell segmentation masks for
performance evaluation.

Note that to obtain a generic pixel classifier that can be
used across IMC datasets of different channel configurations,
channels of different proteins were combined based on their
cellular origins into two channels, namely, nuclear and cell
(membrane/cytoplasmic) channels. Channels of proteins without
specific cellular locations were ignored by Dice-XMBD. The pixel
classification model was trained using the combined two-channel
images as input. Likewise, the same preprocessing was used at
the prediction stage to produce the two-channel (nuclear/cell)
images as input to the pixel classification model. Of note,
although the prediction may be performed on images with
different markers, the channels were always combined based on
their origins so that pixel classification was performed based
on the two channels of putative protein locations rather than
channels of individual proteins.

2.2. Training and Evaluation Datasets
We used four IMC image datasets in this study. BRCA1 and
BRCA2 (Ali et al., 2020) contain 548 and 746 images from
patients with breast cancer with 36 and 33 markers, respectively.
T1D1 (Damond et al., 2019) and T1D2 (Wang et al., 2019)

contain 839 and 754 images from patients with type I diabetes
with 34 markers. Dice-XMBD was trained on a subset of BRCA1
dataset (n = 348) with 200 held-out images reserved for
validation and testing. To test the generalization ability of Dice-
XMBD, we also tested the trained model on the other three
independent IMC datasets (BRCA2, T1D1, and T1D2).

2.3. Generating Ground Truth Cell Masks
The ground truth pixel probability maps and the cell masks used
for model training and evaluation were generated using Ilastik
and CellProfiler. We used the smallest brush size (1 pixel) in
annotating the image to avoid annotating a group of neighboring
pixels of different classes. To mitigate the manual workload, the
annotation was performed in an interactive manner, where the
random forest prediction model of Ilastik was updated regularly
during annotation to produce an uncertainty map indicating
the confidence level of the classification results produced by
the prediction model. The annotation was then guided by the
uncertainty map to focus on the regions with high uncertainty
iteratively, until the overall uncertainty values were low except for
regions of which the boundaries were visually indistinguishable.

The initial annotation was performed on a randomly selected
subset of the dataset. After the initial annotation, we loaded
all the images from the dataset into Ilastik to calculate their

Frontiers in Genetics | www.frontiersin.org 3 September 2021 | Volume 12 | Article 72122926

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Xiao et al. Dice-XMBD: IMC Cell Segmentation

uncertainty maps, and then selected those with the highest
average uncertainty values for further annotation. This process
was iterated until the uncertainty values of all images converged,
that is, the average uncertainty value over all images did not
decrease significantly for three consecutive iterations.

In the end, we annotated 49 images in BRCA1 to train
the model in Ilastik. We then imported all the images of the
BRCA1 dataset into Ilastik for batch processing and export
their corresponding pixel classification probability maps for
training Dice-XMBD. The probability maps were further input
to CellProfiler to produce the ground truth cell segmentation.
In CellProfiler, we used the “IdentifyPrimaryObjects” module to
segment the cell nuclei and used the “IdentifySecondaryObjects”
to segment the cell membranes using the propagation method.
The output masks from CellProfiler are regarded as ground truth
cell segmentation of the dataset for performance evaluation.

We also generated the ground truth cell masks of the other
three datasets by the same iterative procedure separately for
testing the generalization ability of Dice-XMBD. During the
process, 72 images in BRCA2, 39 images in T1D1, and 67 images
in T1D2 were manually annotated.

2.4. Training the U-Net Cell Segmentation
Model
2.4.1. Image Preprocessing
Themultiplexed IMC images were first merged into two channels
by averaging the per-pixel values from the selected membrane
and nuclear channels. After merging channels, the input IMC
images were then preprocessed by hot pixel removal, dynamic
range conversion, normalization, and image cropping/padding
into fix-sized patches. First, we applied a 5 × 5 low-pass filter
on the image to remove hot pixels. If the difference between an
image pixel value and the corresponding filtered value was larger
than a preset threshold (50 in our experiments), the pixel would
be regarded as a hot pixel and its value would be replaced by
the filtered value. As the dynamic range of pixels values differs
among IMC images of different batches and different channels,
we further min-max normalized all images to [0,255] to remove
such batch effect as:

x
′

ij =
xij − Xmin

Xmax − Xmin
∗ 255, (1)

where xij denotes the pixel value in one channel, and Xmax and
Xmin denote the maximum and minimum values in the channel.
Of note, as the pixel values in IMC images have a high dynamic
range, transforming the pixel values from its dynamic range to
[0, 255] would suffer from detail suppression by one or few
extremely large values. Therefore, we thresholded the image pixel
values at 99.7% percentile for each image before normalization.

Finally, we merged all the nuclear channels into one
consolidated nuclear channel, and membrane/cytoplasmic
channels into one cell channel, by averaging on all channel
images with pre-selected sets of protein markers, respectively.
We converted the merged two-channel images into patches of
512 × 512 pixels. Image boundary patches that are smaller than
the target patch size are padded to target size. For the padded

pixels, we set the pixel values of both channels to 0 and the pixel
type as background.

2.4.2. Data Augmentation
Data augmentation is an effective strategy to reduce overfitting
and enhance the robustness of the trained models, especially
when training data are insufficient.We applied the following data
augmentation methods on the input images before feeding to our
U-Net-based pixel classification network.

First, photometric transformations including contrast
stretching and intensity adjustments were used. For contrast
stretching, we changed the level of contrast bymultiplication with
a factor randomly drawn from the range of [0.5, 1.5]. Similarly,
for intensity adjustments we changed the level of intensities by
multiplication with a factor randomly drawn from the range of
[0.5, 1.5]. Geometric transformations including image flipping
and rotation were used. For flipping, we implemented random
horizontal or vertical flipping. For rotation, the rotating angle
is randomly distributed in the range of [−180, 180]. Note that
geometric transformations were applied to pairs of input and
output images of the network.We also injected randomGaussian
noise to the two input channels of the input images. Examples of
data augmentation are shown in Supplementary Figures 1, 2.

2.4.3. Constructing a Pixel Classification Model
The U-Net pixel classification network is an end-to-end fully
convolutional network and contains two paths. The contracting
path (or the encoder) uses a typical CNN architecture. Each
block in the contracting path consists of two successive 3 × 3
convolution layers followed by a Rectified Linear Unit (ReLU)
activation and a 2 × 2 max-pooling layer. This block is repeated
four times. In the symmetric expansive path (or the decoder),
at each stage the feature map is upsampled using 2 × 2 up-
convolution. To enable precise localization, the feature map from
the corresponding layer in the contracting path is cropped and
concatenated onto the upsampled feature map, followed by two
successive 3 × 3 convolutions and ReLU activation. At the final
stage, an additional 1 × 1 convolution is applied to reduce the
feature map to the required number of output channels. Three
output channels are used in our case for nuclei, membrane,
and background, respectively. As we output the probability map,
the values are converted into the range of [0, 1] using the
Sigmoid function.

2.4.4. Loss Function
We take the binary cross-entropy (BCE) as the loss function,
which is defined as:

loss(y, ŷ) = −

1

N

∑
N
i=0(yi ∗ log(ŷi)+ (1− yi) ∗ log(1− ŷi)), (2)

where N represents the total number of pixels in an image, yi
denotes the ground truth pixel probability, and ŷi denotes the
predicted pixel probability. The cross-entropy loss compares the
predicted probabilities with the ground truth values. The loss is
minimized during the training process.
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2.5. Model Evaluation
In a binary cell mask, “1” represents cell boundary and “0”
denotes cell interior or exterior. For every pixel in an image, true
positive (TP) and true negative (TN) mean that the predicted
pixel classification is the same as its label in the labeled (i.e., the
ground truth) mask, while false positive (FP) and false negative
(FN) mean that a pixel is misclassified. To evaluate pixel-level
accuracy, we calculated the number of TP pixels and FP pixels
based on the predicted and labeled binary masks.

We further evaluated model performance at the cell level.
We calculated the intersection over union (IOU) on cells from
predicted and labeled cell masks to determine if they are the same
cell, and then counted the TP and FP cells. First, we filtered out
all cells with IOU below 0.1 from the predicted cells. These cells
are identified as FPs. The other cells from the predicted cell mask
could be either TP or FP. If a predicted cell only overlaps with one
true cell (i.e., a cell from the labeled cell mask), we assume that
the cell is segmented accurately (TP). If a true cell cannot find a
predicted cell, the “missing” cell is denoted as FN.Whenmultiple
predicted cells are assigned to the same true cell, we consider this
as a split error. If multiple true cells are matched to the same
predicted cell, we consider those predicted cells as merge errors.
For simplicity, split errors and merge errors are counted as FPs.
Four standard indices are measured as follows:

Recall =
TP

TP + FN
, (3)

Precision =

TP

TP + FP
, (4)

F1score =

2 ∗ Precision ∗ Recall

Precision+ Recall
, (5)

Jaccard =

TP

TP + FP + FN
. (6)

To investigate the effect of different segmentation methods
on downstream analysis, an unsupervised clustering method
(Phenograph Levine et al., 2015, Python package, v1.5.7) was
applied to the high-dimensional single cell expression data
processed from each different method under comparison, and
the labeled ground truth cell mask, separately. Prior to clustering,
single cell protein expressions were quantified by the mean pixel
values, and then these values were censored at 99th percentile
and transformed with arcsinh function. Scaled high-dimensional
single cells were clustered into several groups based on selected
markers as from the original publication of each individual
dataset. Based on the expressions of cell-specific markers, the cell
types of the clusters were identified among T cells (CD3), CD4
T cell (CD4), CD8 T cell (CD8a), B cell (CD20), macrophage
(CD68), endothelial cell (CD31), and so on. By comparing the cell
annotation from different segmentation methods (predicted cell
mask) and the labeled cell mask, the cell annotation accuracy was
calculated as nsame/Ntotal. Here, nsame is the number of correctly
predicted cells, which are cells that correctly overlapped with
the corresponding cells in the labeled mask (i.e., TP cells), and
annotated to the same cell types,Ntotal is the total number of cells
from the predicted mask.

3. RESULTS

3.1. Dice-XMBD Enables Automatic Cell
Segmentation
We trained our U-Net cell segmentation model using the BRCA1
dataset with 348 images as the training set and 100 images as
the validation set. A complete held out test set with 100 images
was used to test model performance within one dataset. We
further applied the trained model directly on the other three
IMC image datasets to evaluate the cross-dataset performance of
the model. For performance evaluation, we computed standard
indices (Recall, Precision, F1-score, and Jaccard index) for both
pixel-level and cell-level accuracies (see section 2).

We compared Dice-XMBD with a generic whole-cell
segmentation method across six imaging platforms, Mesmer
(Greenwald et al., 2021), which used a deep learning-based
algorithm trained on a large, annotated image dataset to segment
single cells and nuclei separately. A trained Mesmer model was
tested with combined nuclear and cell channels, which is the
same as the input to Dice-XMBD. Meanwhile, we compared
with three commonly used segmentation methods implemented
in CellProfiler with default parameters: distance, watershed,
and propagation. These methods first locate nuclei as primary
objects, and then the membrane proteins are added together
into an image as input to recognize cells. The distance method
does not use any membrane proteins information and simply
defines cell membrane by expanding several pixels around
nuclei. The watershed method computes intensity gradients on
the Sobel transformed image to identify boundaries between
cells (Vincent and Soille, 1991), while the propagation method
defines cell boundaries by combining the distance of the nearest
primary object and the intensity gradients of cell membrane
image (Jones et al., 2005). Hereafter, we refer to these three
CellProfile-based methods as CP_distance, CP_watershed, and
CP_propagation, respectively.

Results show that Dice-XMBD outperformed all other
benchmarked methods with highest accuracy on pixel level
(F1 score = 0.92, Jaccard index = 0.85) (Figure 2A). We also
observed that CP_distance obtained the highest recall (Recall =
0.95) but lowest precision (Precision= 0.66), which means that it
can identify almost every pixel correctly in the labeled mask but
only 66% of predicted pixels were accurate.

In terms of cell-level performance, we first counted cells per
image from predicted and labeled cell masks. The prediction
result from Dice-XMBD showed highest correlation with the
ground truth (Pearson correlation = 0.998) among all methods
tested. Mesmer (Pearson correlation = 0.955) and CellProfiler
(Pearson correlation= 0.981) also achieved high correlation with
the ground truth. However, Mesmer tended to predict less cells
while CellProfiler was more likely to over-split cells, as shown in
Figures 2B,C. Moreover, Figure 2C shows that Dice-XMBD had
the best prediction performance (F1-score = 0.867) considering
precision (Precision = 0.856, percent of cells that were correctly
predicted) and recall (Recall= 0.880, percent of true cells that are
predicted) than Mesmer (F1-score= 0.557) and CellProfiler (F1-
score = 0.567, 0.563, and 0.561 for CP_distance, CP_watershed,
and CP_propagation, respectively). We further checked the IOU
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FIGURE 2 | Dice-XMBD enables automatic single cell segmentation. (A) Pixel prediction performance comparison of Dice-XMBD, Mesmer, and CellProfiler

(CP_distance, CP_watershed, CP_propagation). All data in bar plots are presented as mean ±SD. (B) Pearson correlations between the number of predicted cells

and labeled cells per image. Note that the number of cells predicted from three CellProfiler methods are the same (here denoted as CellProfiler). (C) Cell prediction

performance comparison. %Oversplit and %Merge denote the percentage of oversplits and merge errors in predictions. (D) Density plots showing the distribution of

mean IOU values of matched cells per image. Note that the plots for CP_watershed and CP_propagation overlapped. (E) An example of labeled and predicted single

cell masks from benchmarked methods. The title of each subfigure shows the method and the mean IOU value of all matched cell pairs in the predicted mask with

regard to the labeled cell mask. Match value represents the IOU value for one-to-one cell pairs identified in the labeled and predicted cell masks. Note that computed

IOU values are in the range of [0,1]. To better visualize FP cells, we use –0.4 and –0.8 to represent merged cells (multiple true cells matched to one predicted cell) and

split cells (multiple predicted cells matched to one true cell), and –1 to represent all other FP cells in the predicted mask.
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distribution of all one-to-one cell pairs (predicted and true cells),
Figure 2D demonstrates that most matched cell pairs predicted
from Dice-XMBD were highly overlapping (mean = 0.815,
median= 0.821), followed byMesmer where most matched pairs
are only half area of overlap (mean = 0.579, median = 0.595).
An example of BRCA1 shown in Figure 2E demonstrates that
Dice-XMBD prediction was far superior to other benchmarked
methods since it contained most cells with high matched values.

3.2. Dice-XMBD Enables Generic IMC
Image Segmentation
The key idea of this study was to generate an IMC-specific
single cell segmentation model across different datasets with
multiple proteins. We selected three independent IMC datasets
generated from different labs to test the generalization ability of
Dice-XMBD. Apart from the benchmarked methods mentioned
above, we also included the Ilastik model trained from BRCA1
annotations in our comparison. Figure 3A shows that Dice-
XMBD outperformed all the other methods, followed by Ilastik.
Moreover, the performance of cells prediction from Dice-XMBD
was the best and the most stable for all three datasets, while
Ilastik and Mesmer tended to under-predict cells. CellProfiler
predicted less cells in BRCA2 and over-predicted cells in two T1D
datasets, as shown in Figures 3B,C. Furthermore, Dice-XMBD
predictions contained most of the cells with IOU value higher
than 0.8 (Figure 3D and Supplementary Figure 3).

3.3. Dice-XMBD Enables Accurate
Downstream Biological Analysis
To investigate the influence of segmentation accuracy on
downstream analysis, we clustered single cells resulting from
different segmentation methods separately using Phenograph
and compared the clustering results. Taking the result from single
cells obtained fromDice-XMBD segmentation on BRCA1 dataset
as an example, these cells can be clustered into 26 distinct clusters
[Figure 4A, t-distributed stochastic neighbor embedding (t-SNE)
visualization in Figure 4B]. Based on the scaled mean expression
for each cluster, we were able to annotate Cluster 3 as T cells,
Cluster 18 as B cells, Cluster 16 asmacrophage, and the remaining
clusters to other cell types whichmay include tumor cells, stromal
cells, or endothelial cells (Figure 4C). We performed the same
clustering and annotation process on single cells obtained from
other segmentation methods and the ground truth segmentation
on all three datasets separately as well. For two T1D datasets
[T1D1 (Damond et al., 2019) and T1D2 (Wang et al., 2019)], CD4
T cells, CD8 T cells, and CD31+ endothelial cells were identified
based on their selected markers.

We compared the concordance of cell fractions based on
annotations from different segmentation methods (prediction)
versus those from ground truth segmentation (ground truth)
(Figure 4D and Supplementary Figures 4A–7A). On BRCA1
dataset, Dice-XMBD performed better compared with all other
segmentation methods on overall results and results of certain
cell types (Figure 4D). Significantly, two CellProfiler-based
methods (CP_watershed, R2 = 0.85 and CP_propagation,
R2 = 0.85) showed inferior performance in reproducing cell

fraction results in macrophage while Dice-XMBD still achieved
an R2 = 0.99 in this cell types. CP_distance delivered reasonable
performance in macrophage, but was still inferior to Dice-XMBD
on T cell. Similar results can be observed on other datasets
as well. For example, for the T1D1 dataset, CD4 T cells were
poorly predicted by Ilastik (R2

= 0.043) and CP_distance
(R2 = 0.055) (Supplementary Figure 6A). For the T1D2 dataset,
endothelial cells were poorly predicted by Ilastik (R2

= 0.58) and
macrophage cells were poorly predicted byMesmer (R2 = 0.033).
On the other hand, Dice-XMBD delivered highly consistent
prediction results across all cell types in all datasets except for T
cell in BRCA2 dataset, where all methods did not perform well.

In addition to cell fraction, we also evaluated the annotation
accuracy of individual cells for each method (Figure 4E and
Supplementary Figures 4B–7B), which is important for spatially
related analysis of single cell data such as neighborhood analysis.
Dice-XMBD achieved the highest cell annotation accuracies
among all segmentation methods on overall results (Figure 4E),
and performed as well as or better than other methods on all
individual cell types in all datasets (Supplementary Figures 4B–
7B).

3.4. Generalization Ability of Dice-XMBD
To investigate the impact of the training data on the
segmentation performance of Dice-XMBD, we trained Dice-
XMBD using different training datasets, and evaluated the
performance of the resulting models on other IMC datasets used
in this study. Results show that segmentation performance in
terms of pixel-level accuracy were in fact very similar among
these models (Supplementary Tables 1–4). We further asked if
the performance of Dice-XMBD could be improved by training
onmultiple datasets. Interestingly, the model did not consistently
perform better when more than one datasets were combined
as the training set (Supplementary Tables 1–4). All together,
these results suggest that by using location specific channels,
Dice-XMBD were highly robust to different training datasets,
and a Dice-XMBD model trained on one dataset can be well
generalized to segmentation tasks on other IMC datasets.

Of note, in our approach, the channels of same locations
were simply averaged without applying any weighting scheme
to produce the location specific channels. We tried to min-
max-normalize the selected channels before averaging so that
all selected channels contributed equally to the combined
channels. However, the pixel-level accuracy dropped on all
datasets, albeit at different levels of degradation on different
datasets (Supplementary Tables 1–4). As different channels may
contain different levels of information to the final segmentation
results, combining them with equal weights may not be the
optimal approach. However, how to find the optimal weighting
combination of different channels remains an open question that
deserves further exploration.

4. DISCUSSION

Highly multiplexed single cell imaging technologies such as
IMC are becoming increasingly important tools for both basic
biomedical and clinical research. These tools can unveil complex
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FIGURE 3 | Dice-XMBD enables generic imaging mass cytometry (IMC) image segmentation. Left: BCRA2, middle: T1D1, right: T1D2. (A) Pixel prediction

performance comparison of Dice-XMBD, Ilastik, Mesmer, and CellProfiler (CP_distance, CP_watershed, CP_propagation). All data in bar plots are presented as mean

±SD. (B) Pearson correlations between the number of predicted cells and labeled cells per image. Note that the number of cells predicted from three CellProfiler

methods are the same (here denoted as CellProfiler). (C) Heatmaps of cells prediction performance of six benchmarked methods. %Oversplit and %Merge denote the

percentage of oversplits and merge errors in predictions. (D) Density plots showing the distribution of mean IOU values of matched cells per image. Note that the plots

for CP_watershed and CP_propagation overlapped for BRCA2 and T1D1.

single-cell phenotypes and their spatial context at unprecedented
details, providing a solid base for further exploration in
cancer, diabetes, and other complex diseases. Nevertheless, cell
segmentation has become a major bottleneck in analyzing
multiplexed images. Conventional approaches rely on intensities
of protein markers to identify different cellular structures such as
nuclei, cytoplasm, and membrane. Unfortunately, the intensity
values of these markers are strongly cell type-specific and may
vary from cells to cells. In addition, the staining also shows
variability across images or datasets. As a result, the accuracy
and robustness of the segmentation results are far from optimal.

On the other hand, high-order visual features including spatial
distribution of markers, textures, and gradients are relevant to
visually identify subcellular structures by human. However, these
features are not considered in conventional methods to improve
the cell segmentation results.

The DNN-based image segmentation approaches provide an
opportunity to leverage high-order visual features at cellular level
for better segmentation results. Unfortunately, they require a
significant amount of annotation data that are in general difficult
to acquire. In addition, the highly variable channel configurations
of multiplexed images impose another important obstacle to
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FIGURE 4 | Dice-XMBD enables accurate downstream biological analysis. (A) Heatmap showing median values of normalized markers expression in each

Phenograph cluster. (B) tSNE map representing high-dimensional single cells colored by Phenograph clusters (left) and cell types (right). (C) tSNE map representing

single cells colored by cell-type-specific markers expression (CD68 for macrophage, CD45 and CD3 for T cells, CD45 and CD20 for B cells). Single cells on (A–C)

were from BRCA1 dataset and segmented by Dice-XMBD. (D) Scatter plots of cell fraction obtained from ground truth (x-axis) and five segmentation methods (y-axis),

colored by different cell types identified from BRCA1 dataset. (E) Cell annotation accuracy from Dice-XMBD and other benchmarked methods in four datasets.

Pairwise comparisons of Dice-XMBD and other methods: *P < 0.05; ****P < 0.0001; n.s., not significant (Student’s t-test).

the usability of these methods as most of them lack the ability
to adapt to different channel configurations after models are
trained. In this study, we develop Dice-XMBD, a generic solution
for IMC image segmentation based on U-Net. Dice-XMBD
overcomes the limitation of training data scarcity and achieves
human-level accuracy by distilling expert knowledge from Ilastik

with manual input of human as a teacher model. Moreover,
by consolidating multiple channels of different proteins into
two cellular structure-aware channels, Dice-XMBD provides an
effective off-the-shelf solution for cell segmentation tasks across
different studies without retraining that can lead to significant
delay in analysis. Importantly, our evaluation results further
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demonstrate Dice-XMBD’s good generalization ability to predict
single cells for different IMC image datasets with minimum
impact to downstream analysis, suggesting its values as an generic
tool for hassle-free large-scale IMC data analysis. Finally, to
facilitate the analysis of large amount of IMC data currently
being generated around the world, wemadeDice-XMBDpublicly
available as an open-source software on GitHub (https://github.
com/xmuyulab/Dice-XMBD).

DATA AVAILABILITY STATEMENT

All datasets used for this study can be found at
GitHub (https://github.com/xmuyulab/Dice-XMBD). These
datasets are downloaded from: BRCA1 (https://idr.
openmicroscopy.org/search/?query=Name:idr0076ali-metabric/
experimentA), BRCA2 (https://zenodo.org/record/3518284#.
YLnmlS8RquU), T1D1 (https://data.mendeley.com/datasets/
cydmwsfztj/1), T1D2 (part1: https://data.mendeley.com/
datasets/9b262xmtm9/1, part2: https://data.mendeley.com/
datasets/xbxnfg2zfs/1), respectively.

AUTHOR CONTRIBUTIONS

WY, LW, RY, and JH discussed the ideas and supervised
the study. YQ and YJ implemented and conducted
experiments in deep network cell segmentation. XX
performed the model evaluation and biological analysis
on segmentation results. XX, WY, and RY wrote the
manuscript. All authors discussed and commented on
the manuscript.

FUNDING

This study was funded by National Natural Science Foundation
of China (grant no. 81788101 to JH).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.721229/full#supplementary-material

REFERENCES

Ali, H. R., Jackson, H. W., Zanotelli, V. R. T., Danenberg, E., Fischer, J.
R., Bardwell, H., et al. (2020). Imaging mass cytometry and multiplatform
genomics define the phenogenomic landscape of breast cancer. Nat. Cancer 1,
163–175. doi: 10.1038/s43018-020-0026-6

Andrade, A. R., Vogado, L. H., de, M. S., Veras, R., Silva, R. R., Araujo, F.
H., et al. (2019). Recent computational methods for white blood cell nuclei
segmentation: a comparative study. Comput. Methods Programs Biomed. 173,
1–14. doi: 10.1016/j.cmpb.2019.03.001

Angelo, M., Bendall, S. C., Finck, R., Hale, M. B., Hitzman, C., Borowsky, A. D.,
et al. (2014). Multiplexed ion beam imaging of human breast tumors.Nat. Med.
20, 436–442. doi: 10.1038/nm.3488

Aoki, T., Chong, L. C., Takata, K., Milne, K., Hav, M., Colombo, A., et al. (2020).
Single-cell transcriptome analysis reveals disease-defining t-cell subsets in the
tumor microenvironment of classic hodgkin lymphoma. Cancer Discov. 10,
406–421. doi: 10.1158/2159-8290.CD-19-0680

Böttcher, C., van der Poel, M., Fernández-Zapata, C., Schlickeiser, S., Leman,
J. K., Hsiao, C.-C., et al. (2020). Single-cell mass cytometry reveals
complex myeloid cell composition in active lesions of progressive multiple
sclerosis. Acta Neuropathol. Commun. 8, 1–18. doi: 10.1186/s40478-020-
01010-8

Bouzekri, A., Esch, A., and Ornatsky, O. (2019). Multidimensional profiling of
drug-treated cells by imaging mass cytometry. FEBS Open Bio. 9, 1652–1669.
doi: 10.1002/2211-5463.12692

Brähler, S., Zinselmeyer, B. H., Raju, S., Nitschke, M., Suleiman, H., Saunders, B.
T., et al. (2018). Opposing roles of dendritic cell subsets in experimental GN. J.
Am. Soc. Nephrol. 29, 138–154. doi: 10.1681/ASN.2017030270

Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I.
H., Friman, O., et al. (2006). Cellprofiler: image analysis software
for identifying and quantifying cell phenotypes. Genome Biol. 7:R100.
doi: 10.1186/gb-2006-7-10-r100

Catena, R., Oezcan, A., Kuett, L., Pluess, A., Schraml, P., Moch, H.,
et al. (2020). Highly multiplexed molecular and cellular mapping of
breast cancer tissue in three dimensions using mass tomography. bioRxiv.
doi: 10.1101/2020.05.24.113571

Chang, Q., Ornatsky, O. I., Siddiqui, I., Loboda, A., Baranov, V. I., and
Hedley, D. W. (2017). Imaging mass cytometry. Cytometry A 91, 160–169.
doi: 10.1002/cyto.a.23053

Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ronneberger, O. (2016).
“3D U-Net: learning dense volumetric segmentation from sparse annotation,”

in International Conference on Medical Image Computing and Computer-

Assisted Intervention (Cham: Springer), 424–432.
Damond, N., Engler, S., Zanotelli, V. R., Schapiro, D., Wasserfall, C.

H., Kusmartseva, I., et al. (2019). A map of human type 1 diabetes
progression by imaging mass cytometry. Cell Metab. 29, 755–768.
doi: 10.1016/j.cmet.2018.11.014

de Vries, N. L., Mahfouz, A., Koning, F., and de Miranda, N. F. (2020).
Unraveling the complexity of the cancer microenvironment with
multidimensional genomic and cytometric technologies. Front. Oncol.
10:1254. doi: 10.3389/fonc.2020.01254

Dey, P., Li, J., Zhang, J., Chaurasiya, S., Strom, A., Wang, H.,
et al. (2020). Oncogenic kras-driven metabolic reprogramming
in pancreatic cancer cells utilizes cytokines from the tumor
microenvironment. Cancer Discov. 10, 608–625. doi: 10.1158/2159-8290.CD-1
9-0297

Flint, L. E., Hamm, G., Ready, J. D., Ling, S., Duckett, C. J., Cross, N. A., et al.
(2020). Characterization of an aggregated three-dimensional cell culture model
by multimodal mass spectrometry imaging. Anal. Chem. 92, 12538–12547.
doi: 10.1021/acs.analchem.0c02389

Giesen, C., Wang, H. A., Schapiro, D., Zivanovic, N., Jacobs, A., Hattendorf,
B., et al. (2014). Highly multiplexed imaging of tumor tissues with
subcellular resolution by mass cytometry. Nat. Methods 11, 417–422.
doi: 10.1038/nmeth.2869

Greenwald, N. F., Miller, G., Moen, E., Kong, A., Kagel, A., Fullaway, C. C.,
et al. (2021). Whole-cell segmentation of tissue images with human-level
performance using large-scale data annotation and deep learning. bioRxiv.
doi: 10.1101/2021.03.01.431313

Hinton, G., Vinyals, O., and Dean, J. (2015). “Distilling the knowledge in a
neural network,” inNIPS Deep Learning and Representation LearningWorkshop

Montreal.
Hollandi, R., Szkalisity, A., Toth, T., Tasnadi, E., Molnar, C., Mathe, B.,

et al. (2020). nucleAIzer: a parameter-free deep learning framework for
nucleus segmentation using image style transfer. Cell Syst. 10, 453.e6–458.e6.
doi: 10.1016/j.cels.2020.04.003

Jackson, H. W., Fischer, J. R., Zanotelli, V. R., Ali, H. R., Mechera,
R., Soysal, S. D., et al. (2020). The single-cell pathology landscape
of breast cancer. Nature 578, 615–620. doi: 10.1038/s41586-019-1
876-x

Jones, T. R., Carpenter, A., and Golland, P. (2005). “Voronoi-based segmentation
of cells on image manifolds,” in International Workshop on Computer Vision for

Biomedical Image Applications (Berlin; Heidelberg: Springer), 535–543.

Frontiers in Genetics | www.frontiersin.org 10 September 2021 | Volume 12 | Article 72122933

https://github.com/xmuyulab/Dice-XMBD
https://github.com/xmuyulab/Dice-XMBD
https://github.com/xmuyulab/Dice-XMBD
https://idr.openmicroscopy.org/search/?query=Name:idr0076ali-metabric/experimentA
https://idr.openmicroscopy.org/search/?query=Name:idr0076ali-metabric/experimentA
https://idr.openmicroscopy.org/search/?query=Name:idr0076ali-metabric/experimentA
https://zenodo.org/record/3518284#.YLnmlS8RquU
https://zenodo.org/record/3518284#.YLnmlS8RquU
https://data.mendeley.com/datasets/cydmwsfztj/1
https://data.mendeley.com/datasets/cydmwsfztj/1
https://data.mendeley.com/datasets/9b262xmtm9/1
https://data.mendeley.com/datasets/9b262xmtm9/1
https://data.mendeley.com/datasets/xbxnfg2zfs/1
https://data.mendeley.com/datasets/xbxnfg2zfs/1
https://www.frontiersin.org/articles/10.3389/fgene.2021.721229/full#supplementary-material
https://doi.org/10.1038/s43018-020-0026-6
https://doi.org/10.1016/j.cmpb.2019.03.001
https://doi.org/10.1038/nm.3488
https://doi.org/10.1158/2159-8290.CD-19-0680
https://doi.org/10.1186/s40478-020-01010-8
https://doi.org/10.1002/2211-5463.12692
https://doi.org/10.1681/ASN.2017030270
https://doi.org/10.1186/gb-2006-7-10-r100
https://doi.org/10.1101/2020.05.24.113571
https://doi.org/10.1002/cyto.a.23053
https://doi.org/10.1016/j.cmet.2018.11.014
https://doi.org/10.3389/fonc.2020.01254
https://doi.org/10.1158/2159-8290.CD-19-0297
https://doi.org/10.1021/acs.analchem.0c02389
https://doi.org/10.1038/nmeth.2869
https://doi.org/10.1101/2021.03.01.431313
https://doi.org/10.1016/j.cels.2020.04.003
https://doi.org/10.1038/s41586-019-1876-x
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Xiao et al. Dice-XMBD: IMC Cell Segmentation

Lähnemann, D., Köster, J., Szczurek, E., McCarthy, D. J., Hicks, S. C., Robinson,
M. D., et al. (2020). Eleven grand challenges in single-cell data science. Genome

Biol. 21, 1–35. doi: 10.1186/s13059-020-1926-6
Levine, J. H., Simonds, E. F., Bendall, S. C., Davis, K. L., El-ad, D. A.,

Tadmor, M. D., et al. (2015). Data-driven phenotypic dissection of AML
reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197.
doi: 10.1016/j.cell.2015.05.047

Liu, X., Song, W., Wong, B. Y., Zhang, T., Yu, S., and Lin, G. N.
(2019). A comparison framework and guideline of clustering methods for
mass cytometry data. Genome Biol. 20, 1–18. doi: 10.1186/s13059-019-19
17-7

Milletari, F., Navab, N., and Ahmadi, S.-A. (2016). “V-net: fully convolutional
neural networks for volumetric medical image segmentation,” in 2016 Fourth

International Conference on 3D Vision (3DV) (Stanford, CA: IEEE), 565–571.
Papalexi, E., and Satija, R. (2018). Single-cell RNA sequencing to explore immune

cell heterogeneity. Nat. Rev. Immunol. 18: 35. doi: 10.1038/nri.2017.76
Potter, S. S. (2018). Single-cell RNA sequencing for the study of

development, physiology and disease. Nat. Rev. Nephrol. 14, 479–492.
doi: 10.1038/s41581-018-0021-7

Ramaglia, V., Sheikh-Mohamed, S., Legg, K., Park, C., Rojas, O. L., Zandee, S.,
et al. (2019). Multiplexed imaging of immune cells in staged multiple sclerosis
lesions by mass cytometry. Elife 8:e48051. doi: 10.7554/eLife.48051.028

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-net: convolutional networks
for biomedical image segmentation,” in International Conference on Medical

Image Computing and Computer-Assisted Intervention (Springer, Munich),
234–241.

Salem, D., Li, Y., Xi, P., Cuperlovic-Culf, M., Phenix, H., and Kaern, M. (2020).
Yeastnet: deep learning enabled accurate segmentation of budding yeast cells
in bright-field microscopy. bioRxiv. doi: 10.1101/2020.11.30.402917

Schulz, D., Zanotelli, V. R. T., Fischer, J. R., Schapiro, D., Engler, S., Lun, X.-K.,
et al. (2018). Simultaneous multiplexed imaging of mrna and proteins with
subcellular resolution in breast cancer tissue samples by mass cytometry. Cell
Syst. 6, 25–36. doi: 10.1016/j.cels.2017.12.001

Schwabenland, M., Salié, H., Tanevski, J., Killmer, S., Lago, M. S.,
Schlaak, A. E., et al. (2021). Deep spatial profiling of human COVID-
19 brains reveals neuroinflammation with distinct microanatomical
microglia-T-cell interactions. Immunity 54, 1594.e11–1610.e11.
doi: 10.1016/j.immuni.2021.06.002

Shen, D., Wu, G., and Suk, H.-I. (2017). Deep learning in
medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248.
doi: 10.1146/annurev-bioeng-071516-044442

Sommer, C., Straehle, C., Köthe, U., and Hamprecht, F. A. (2011). “Ilastik:
interactive learning and segmentation toolkit,” in 2011 IEEE International

Symposium on Biomedical Imaging: From Nano to Macro (Chicago, IL: IEEE),
230–233.

Stubbington, M. J., Rozenblatt-Rosen, O., Regev, A., and Teichmann, S. A. (2017).
Single-cell transcriptomics to explore the immune system in health and disease.
Science 358, 58–63. doi: 10.1126/science.aan6828

Tan, W. C. C., Nerurkar, S. N., Cai, H. Y., Ng, H. H. M., Wu, D., Wee, Y. T. F., et al.
(2020). Overview of multiplex immunohistochemistry/immunofluorescence
techniques in the era of cancer immunotherapy. Cancer Commun. 40, 135–153.
doi: 10.1002/cac2.12023

Van Valen, D. A., Kudo, T., Lane, K. M., Macklin, D. N., Quach,
N. T., DeFelice, M. M., et al. (2016). Deep learning automates
the quantitative analysis of individual cells in live-cell imaging
experiments. PLoS Comput. Biol. 12:e1005177. doi: 10.1371/journal.pcbi.10
05177

Vicar, T., Balvan, J., Jaros, J., Jug, F., Kolar, R., Masarik, M., et al.
(2019). Cell segmentation methods for label-free contrast microscopy:
review and comprehensive comparison. BMC Bioinformatics 20:360.
doi: 10.1186/s12859-019-2880-8

Vincent, L., and Soille, P. (1991). Watersheds in digital spaces: an efficient
algorithm based on immersion simulations. IEEE Comput. Arch. Lett. 13,
583–598. doi: 10.1109/34.87344

Wang, Y. J., Traum, D., Schug, J., Gao, L., Liu, C., Atkinson, M. A., et al. (2019).
Multiplexed in situ imaging mass cytometry analysis of the human endocrine
pancreas and immune system in type 1 diabetes. Cell Metab. 29, 769–783.
doi: 10.1016/j.cmet.2019.01.003

Zhang, M., Li, X., Xu, M., and Li, Q. (2018). “RBC semantic segmentation for
sickle cell disease based on deformable U-Net,” in International Conference

on Medical Image Computing and Computer-Assisted Intervention (Cham:
Springer), 695–702.

Zhang, Y., Gao, Y., Qiao, L., Wang, W., and Chen, D. (2020). Inflammatory
response cells during acute respiratory distress syndrome in patients with
coronavirus disease 2019 (COVID-19). Ann. Intern. Med. 173, 402–404.
doi: 10.7326/L20-0227

Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., and Liang, J. (2018). “Unet++: a
nested u-net architecture for medical image segmentation,” in Deep Learning in

Medical Image Analysis and Multimodal Learning for Clinical Decision Support

(Cham: Springer), 3–11.
Zrazhevskiy, P., and Gao, X. (2013). Quantum dot imaging platform for

single-cell molecular profiling. Nat. Commun. 4, 1–12. doi: 10.1038/ncomm
s2635

Conflict of Interest: RY and WY are shareholders of Aginome Scientific.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Xiao, Qiao, Jiao, Fu, Yang, Wang, Yu and Han. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Genetics | www.frontiersin.org 11 September 2021 | Volume 12 | Article 72122934

https://doi.org/10.1186/s13059-020-1926-6
https://doi.org/10.1016/j.cell.2015.05.047
https://doi.org/10.1186/s13059-019-1917-7
https://doi.org/10.1038/nri.2017.76
https://doi.org/10.1038/s41581-018-0021-7
https://doi.org/10.7554/eLife.48051.028
https://doi.org/10.1101/2020.11.30.402917
https://doi.org/10.1016/j.cels.2017.12.001
https://doi.org/10.1016/j.immuni.2021.06.002
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1126/science.aan6828
https://doi.org/10.1002/cac2.12023
https://doi.org/10.1371/journal.pcbi.1005177
https://doi.org/10.1186/s12859-019-2880-8
https://doi.org/10.1109/34.87344
https://doi.org/10.1016/j.cmet.2019.01.003
https://doi.org/10.7326/L20-0227
https://doi.org/10.1038/ncomms2635
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Hybrid Clustering of Single-Cell Gene
Expression and Spatial Information via
Integrated NMF and K-Means
Sooyoun Oh, Haesun Park* and Xiuwei Zhang*

School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, United States

Advances in single cell transcriptomics have allowed us to study the identity of single cells.
This has led to the discovery of new cell types and high resolution tissue maps of them.
Technologies that measure multiple modalities of such data add more detail, but they also
complicate data integration.We offer an integrated analysis of the spatial location and gene
expression profiles of cells to determine their identity. We propose scHybridNMF (single-
cell Hybrid Nonnegative Matrix Factorization), which performs cell type identification by
combining sparse nonnegative matrix factorization (sparse NMF) with k-means clustering
to cluster high-dimensional gene expression and low-dimensional location data. We show
that, under multiple scenarios, including the cases where there is a small number of genes
profiled and the location data is noisy, scHybridNMF outperforms sparse NMF, k-means,
and an existingmethod that uses a hiddenMarkov random field to encode cell location and
gene expression data for cell type identification.

Keywords: single cell transcriptomics, spatial locations, cell identity, non-negative matrix factorization, data
integration

1 INTRODUCTION

Advances in single cell RNA-Sequencing (scRNA-Seq) technology provided an unprecedented
opportunity for researchers to study the identity and mechanisms of single cells (Morris, 2019).
While scRNA-Seq data is a major type of data used to study single cells, it cannot fully determine
the identity of a cell (McKinley et al., 2020). As such, it is important to consider other modalities
such as chromatin accessibility (Cusanovich et al., 2015), protein abundance (Peterson et al.,
2017), or spatial locations (Ståhl et al., 2016; Wang et al., 2018) of single cells. In particular,
spatial location data can provide important information on the cells’ micro-environment and
cell-cell interactions (Mayr et al., 2019). In certain tissues like the brain, cells at nearby locations
tend to have the same type—daughter cells tend to keep the same type and location as their
mother.

Technologies that jointly profile the location and gene expression of cells are often forced to
measure a small set of genes (Zhu et al., 2018). Since clustering cells using smaller gene expression
profiles can be inaccurate, incorporating the cell location data can improve its accuracy. However,
reconciling single cell gene expression and location data for cell type identification is challenging
because different data types can have differing scales, distributions, and types of noise (Efremova and
Teichmann, 2020).

Computational methods that integrate multimodal data are crucial for learning a
comprehensive picture of inter- and intra-cell processes (Efremova and Teichmann, 2020;
Stuart and Satija, 2019). Promising nonnegative matrix factorization (NMF) models have been
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developed for cell type identification for multiple types or
modalities of data (Shao and Höfer, 2017; Duren et al., 2018;
Kotliar et al., 2019; Welch et al., 2019; Jin et al., 2020). However,
none of these methods incorporate cell locations. On the other
hand, Zhu et al. (2018) developed a HMRF (Hidden Markov
Random Field) model and showed that the spatial location of
cells can contribute to cell type identification.

We introduce a matrix low-rank approximation scheme,
scHybridNMF (single-cell Hybrid NMF), to perform cell
clustering by jointly processing cell location and gene
expression data. We use a matrix low-rank approximation
scheme because of the ease of preserving data characteristics
through constraints and optimization terms. We combine sparse
NMF with k-means clustering to cluster high-dimensional gene
expression data and low-dimensional location data in an
integrative way. We compare the performances of
scHybridNMF against sparse NMF, k-means clustering, and
HMRF on simulated and two real datasets, STARmap (Wang
et al., 2018) and seqFISH+ (Eng et al., 2019), which both profile
the mouse brain cortex.

2 MATERIALS AND METHODS

Matrix low-rank approximations approximate matrices as
products of lower-rank matrices. Many biological clustering
frameworks are designed as matrix low-rank approximation
schemes because they can easily incorporate prior biological
knowledge and data constraints. We formulated scHybridNMF
as a combination of multiple low-rank approximations. This
formulation guided the gene expression-based cell clustering
with cell location information. We chose sparse NMF and
k-means clustering because they could be formulated as matrix
low-rank approximations, and incorporating these methods was
intuitive.

2.1 Review of Sparse Nonnegative Matrix
Factorization and K-Means Clustering
K-means clustering is an unsupervised learning algorithm that
clusters data points by comparing pairwise distances. This metric
naturally pairs with location-based data because it determines the
similarity between points by how physically close they are. Eq. 1
shows the matrix formulation for a Euclidean distance-based
k-means objective for clustering L ∈ R2×n, which represents
location data.

min
HL∈{0,1}k×n
HT

L1k�1n

L −WLHL‖ ‖2F, (1)

where 1k and 1n are k- and n-length vectors of ones. The columns
of WL ∈ R2×k contain k cluster centroids, and the columns of
HL ∈ Rk×n contain each point’s cluster membership. If a point i
belongs to a cluster j, HL (j, i) � 1 and HL (l, i) � 0 for l ≠ j. The
constraints preserve the hard-clustering requirement of k-means,
as each data point can only belong to one cluster. This is
equivalent to having one 1 per column of HL. Additionally,

k-means does not require any pre-processing, such as building
a location-based neighborhood graph, on location data. Pre-
processing location data may remove many of their underlying
characteristics.

NMF is a dimension reduction algorithm that is well-suited for
high-dimensional data. Given a nonnegative input matrix
A ∈ Rm×n+ , NMF computes two nonnegative factors, HA and
WA of a specified reduced dimension size k, where k is
generally much smaller than m and n. The columns of
WA ∈ Rm×k+ contain k cluster representatives, and the columns
of HA ∈ R k×n

+ contain cluster membership information.
Sparse NMF constrains the sparsity in each column of HA

(Kim and Park, 2007). It converts the soft clustering of NMF into
more of a hard clustering—a data point will have fewer nonzero
entries in the cluster membership matrix and be represented by
fewer cluster representatives. Sparse NMFmay be interpreted as a
hard clustering method if we assign each data point to the cluster
of the maximal element in its column of HA. For example, if the
largest element in the first column ofHA is in the second entry, we
can interpret the first data point as belonging to the second
cluster.

Eq. 2 contains the formulation for sparse NMF. The first term
is the objective term for standard NMF, which minimizes the
difference between A and WAHA. The low-rank factors from
NMF are not inherently unique, so we normalize the columns of
the computed WA and scale the rows of HA accordingly. The
second term limits the size of the elements in WA, and the final
term promotes the sparsity in each column of HA.

min
{WA,HA}≥ 0

A −WAHA‖ ‖2F + β‖WA‖2F + c∑n
i�1

‖HA(: , i)‖21. (2)

2.2 Multimodal Objective
LetA ∈ Rm×n

+ denote the normalized gene expression matrix and
L ∈ R2×n denote the two-dimensional cell location coordinates,
where m is the number of genes and n is the number of cells. To
get the normalized gene expression matrix, we first scaled the
rows of the raw count matrix, ~A, by its library size, then set
A � log2( ~A + 1). We computed WA and HA from sparse NMF
on the gene expression data and WL and HL from k-means
clustering on the location data. We used the same k in both
methods, which allowed for a direct comparison between the
two data types. We assumed that k is already known for each
dataset. Eq. 3 is the objective function for the multimodal
clustering:

min
{WA,HA}≥ 0

g(WA,HA) � min
{WA,HA}≥ 0

A −WAHA‖ ‖2F
+ α HA −HA+ĤL

���� ����2F. (3)

In Eq. 3, ◦ represents the element-wise product between two
matrices, and the second term forms the consensus between the
clustering results from sparse NMF and k-means clustering. ĤL

was obtained by converting HL into a matrix of confidence scores
that considered how close each cell was to the edge of its location-
based cluster. We found the index of two closest cluster centroids
to each cell i, then assigned values to entries in ĤL (Eq. 4). All
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other entries of ĤL remained zero. As such, we comparedHAwith
ĤL, and not with HL directly.

ĤL(j, i) �
WL(: , j) − L(: , i)���� ����2∑2

j′�1 WL(: , j′) − L(: , i)���� ����2, if j is one of the top 2 cluster indices for cell i.

0, j for all other clusters.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(4)

Instead of forcing HA and ĤL to be similar overall, the second
term in Eq. 3 forced HA and ĤL to be similar in terms of their
cluster memberships. In other words, the second term of Eq. 3
aimed to match the location of the largest element in each column
of HA and the location of the two nonzero elements in the
corresponding column of ĤL.

The main focus of this work was to use cell location
information to aid the gene expression-based clustering of
cells. Because we specifically adapted gene clusters to
incorporate location cluster information, our design sought to
align the cluster membership matrices while still considering the
accuracy of the gene expression clustering. We did not include a
sparsity term for HA, the final cluster membership matrix,
because imposing the sparsity terms may eliminate nuance in
the integration of both clustering schemes, and thus result in a
loss of information that could better serve to cluster the cells.

2.3 Proposed Algorithm
scHybridNMF optimized Eq. 3 to combine the clusters of sparse
NMF on A and k-means on L. To get the initial HA for the
consolidated algorithm, we ran sparse NMF on A. We then
computed k-means clustering on L. We computed initial
centroids by taking the means of each cell’s locations within
the gene expression-based clusters.

scHybridNMF used block coordinate descent for computing
HA and WA. These two terms were computed via an alternating
nonnegative least squares (ANLS) formulation.

HA −HA+ĤL

���� ����2F � HA+1k×n −HA+ĤL

���� ����2F � HA+C‖ ‖2F, (5)

where C � 1k×n − ĤL and 1k×n is a k × n matrix of ones. We
represented the element-wise product in a block-ANLS
formulation by computing it column-by-column. Column i of
HA is updated as follows:

HA(: , i)← arg min
HA(: ,i)≥ 0

WA��
α

√
pdiag(C(: , i))( )HA(: , i) − A(: , i)

0k
( )

��������
��������
2

F

,

(6)

where i ∈ {1, . . . , k}, 1k is a k-length vector of ones, and 0k is a k-
length vector of zeros. Each column in HA was element-wise
multiplied to each column in C in Eq. 5, which can be represented
as a left-multiplication of the column of HA by a matrix whose
diagonal entries are the corresponding column of C.

For WA, we used the following update rule:

WA ← arg min
WA ≥ 0

A −WAHA‖ ‖2F. (7)

The overall scheme is described in Algorithm 1. There exist
many stopping criteria that can be used.We used two: a maximum

number of iterations and a normalized KKT condition residual
check, as used in SymNMF (Kuang et al., 2015).

Algorithm 1. scHybridNMF: an algorithm to minimize Eq. 3

2.4 Parameters
In line 1 of Algorithm 1, we computed sparse NMF on the data
matrixA through Eq. 2. This formulation involved β and c, which
controlled the size of the entries of WA and the sparsity of HA,
respectively. To ensure that the last two terms were proportionate
to the first term in the formulation, we formulated β and c to have
a denominator of ‖A‖2F, which is the maximum value the first
term can take. We also formulated the parameters based on the
dimensions of WA and HA. We set the numerator of β to be m,
which is the number of rows ofWA, and we set the numerator of c
to be n, which is the number of columns of HA. The final
formulations were β � m

‖A‖2F and c � n
‖A‖2F.

The parameter α in the hybrid clustering scheme was
designed to control the degree to which the consensus
clustering was influenced by the location-based clusters. The
maximum number of iterations to run the main BCD was set
to be 500 so it is not triggered as much as the other stopping
criterion. The tolerance level, tol, of the normalized KKT residual
check had a default value of 0.01. The relationship between α and
tol is interesting. A smaller α, which prioritizes gene expression-
based clusters, required a larger tol, as scHybridNMF’s clusters did
not converge otherwise. Likewise, a larger α, which prioritizes cell
location-based clusters, required a smaller tol to ensure that
scHybridNMF did not return the same clusters as k-means.
For α and tol, we recommend using values between 0 and 1.

2.5 Convergence of Algorithm
We used a block coordinate descent (BCD) framework to
optimize Eq. 3. BCD solves subgroups of problems for a set of
variables of interest, which iteratively minimizes the total
objective function. We used the minimization version of the
two-block BCD method, which assigned H(j)

A and W(j)
A values

that minimized Eq. 3 one-at-a-time.
An important theorem regarding BCD states that if a continuously

differentiable function over a set of closed convex sets is minimized by
BCD, every limit point obtained from uniquely minimizing the
subproblems in BCD is a stationary point (Bertsekas et al., 1997).
This theorem has the additional property that the uniqueness of the
minimum is not necessary for a two-block BCD nonlinear
minimization scheme (Grippo and Sciandrone, 2000). This was
used to show the convergence of a two-block formulation for
solving regular NMF via ANLS (Kim et al., 2014).
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Given the constrained nonlinear minimization objective in Eq.
3, we rewrote the block coordinate descent as two ANLS
formulations, which follow from Eq. 6 and Eq. 7:

HA(: , i)(j) ← arg min
HA(: ,i) ≥ 0

W(j−1)
A��

α
√

pdiag(C(: , i))( )HA(: , i) − A(: , i)
0k

( )
��������

��������
2

F

,

(8)

W(j)
A ← arg min

WA ≥ 0
H(j)

A( )TWT
A − AT

������
������2F. (9)

Eqs. 8 and 9 were executed iteratively to solve for HA andWA.
We considered Eq. 8 to be one block calculation for the entireHA

matrix because the calculation of a column of H(j)
A does not

involve any other column. Eqs. 8 and 9 constituted a valid
minimization scheme equivalent to minimizing Eq. 3. As such,

FIGURE 1 | (A) An example of noise in location data. The data had σ � 0.3 and 20% noise. In each plot, there are six point colors that correspond to true cluster
labels. Left: strong spatial patterns; right: weak spatial patterns. Note that certain cell types are not contiguous in the right plot. (B–E) Performance vs sigma plots for
location data with strong spatial patterns. Each plot shares the same legend as plot (C). (B) No sampling, 20% noise. (C) No sampling, 30% noise. (D) 50% sampling,
20% noise. (E) 50% sampling, 30% noise.
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the theorem by Bertsekas is applicable to this two-block BCD
scheme for solving scHybridNMF (Bertsekas et al., 1997; Kim
et al., 2014):

THEOREM 1 Every limit point {W(j)
A ,H(j)

A } calculated
iteratively via Eqs. 8–9 is a stationary point of Eq. 3.

3 RESULTS

We tested the performance of scHybridNMF against simulated
and real data. For real data, we experimented on the STARmap
and seqFISH+ datasets, both of which catalogue the mouse brain
cortex (Eng et al., 2019). For STARmap, we compared against
sparse NMF and k-means clustering to show an improvement of
our hybrid scheme over each method. For the simulated data and
seqFISH+, we also compared against HMRF (Zhu et al., 2018), a
method that also performs consensus cell clustering on gene
expression and cell location data. HMRF models cell locations as
nodes on a graph, where cells are connected if they are neighbors
in location. It clusters cells by searching for coherent gene
expression patterns within neighboring cells.

We implemented the code in MATLAB 2019b. For sparse
NMF, we used MATLAB code presented by Kim and Park (Kim
and Park, 2008). All experiments were executed on a computer
with 2.4 GHz 8-Core Intel Core i9 and 32 GB 2400 MHz
DDR4 RAM.

3.1 Simulated Data
We used SymSim to simulate single cell gene expression data,
where each cell has one of six cell types (Zhang et al., 2019). Each
dataset has 1,600 cells and 600 genes. We developed two types of
cell location datasets, where one has strong and the other has
weak spatial patterns. For each case, we generated location data
with 20 and 30% noise by randomly choosing 20 and 30% of the
cells and assigning them to locations outside of their original cell
type cluster. Adding noise to the locations made the data more
realistic. Figure 1A shows an example of location data with
20% noise.

SymSim has a parameter σ that adjusts the within-cluster
heterogeneity of gene expression. When σ increased, the gene
expression-based clusters were less separable, and gene expression-
based clustering algorithms were less reliable. We used σ � (0.3, 0.4,
0.5, 0.6). For each sigma, 10 gene expression-cell location datasetswere
generated. For each location matrix, we generated 10 noisy location
datasets per noise level.

Many current technologies, especially image-based
technologies that pairwise measure the gene expression and
spatial locations of single cells, cannot also sequence many
genes (Zhu et al., 2018; McKinley et al., 2020). To mimic the
limitations of current technology, we additionally created gene-
sampled data by randomly sampling 50%, or 300, of the genes
from each of the original gene expression datasets.

We compared the quality of clusters determined by gene
expression clustering, cell location clustering, and hybrid
clustering. The methods we used for gene expression
clustering were sparse NMF and PCA plus k-means clustering,
which provided a baseline for the performance of sparse NMF.

For example, a poor performance from PCA plus k-means
clustering justified similarly poor performance of sparse NMF.
For location-based clustering, we used k-means clustering. To
cluster both data types, we used scHybridNMF and HMRF.
HMRF uses a parameter, called beta, which accounts for
smoothness. We determined the performance of HMRF as the
average performance across 5 values, (0, 20, 40, 60, 80), for beta.

We calculated the adjusted Rand index (ARI) between the
calculated and ground truth clusters for each clustering method
across each experiment. ARI quantifies how similar two
clustering schemes are. If a clustering is very similar to the
ground truth clustering, the ARI should be close to 1. We
used the sparse NMF and k-means clustering that were used
in the steps of Algorithm 1 to calculate their respective ARI
values.

3.1.1 Location Data With Strong Spatial Patterns
The location data with strong spatial patterns had significant
spatial gaps between clusters (Figure 1A, left plot), and k-means
clustering did well separating clusters. For these cases, location
clustering played a major role in the multimodal clustering
scheme. For σ � (0.3, 0.4, 0.5, 0.6), we used α � (50, 55, 60,
60) and tol � (0.02, 0.02, 0.02, 0.04). We used the same parameters
for data with and without gene sampling. We plotted the average
ARIs as a function of σ in Figures 1B–E. Figures 1B,C show the
ARIs for data with no gene sampling, and Figures 1D,E show the
ARIs for data with 50% gene sampling.

The plots showed a clear improvement of scHybridNMF over
every other method. scHybridNMF followed the same performance
trend as gene expression-based clustering across each σ. In contrast,
HMRF’s performance over every σ value was constant. This was
highly similar to the performance of location-based clustering, which
was often outperformed by gene expression clustering.

3.1.2 Location Data With Weak Spatial Patterns
In this location data, the boundaries between clusters were hard
to determine (Figure 1A, right plot). As such, k-means clustering
experiencedmore difficulty, and gene expression information was
more useful in the multimodal clustering scheme. For σ � (0.3,
0.4, 0.5, 0.6), we used α � (0.015, 0.02, 0.025, 0.04) and tol � (0.2,
0.2, 0.2, 0.2). We used the same parameters for data with and
without gene sampling.We plotted the average ARIs as a function
of σ in Figures 2A–D. Figure 2A,B show the ARIs for data with
no gene sampling, and Figures 2C,D show the ARIs for data with
50% gene sampling.

scHybridNMF and HMRF had the same performance trends
as they did in Figures 1B–E. However, neither the gene
expression nor the cell location data accurately represented the
underlying data well—the ARIs and qualities of the gene
expression- and location-based clusterings for larger σ were
very low. Because scHybridNMF drew information from these
clusters, it was difficult to gain significantly better information
than what was found individually.

scHybridNMF still maintained higher levels of performance in
most cases. When σ increased, the clusters were less separable
with gene expression data, and the performance of sparse NMF
decreased. This caused the decrease of the performance of
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scHybridNMF. Although it did not perform very well with small
σ, the performance of HMRF was not affected much by the
increase of σ, and it started to decrease only when σ > 0.5. This
was likely due to the fact that the neighborhood graph approach
used in HMRF is good at learning from location data. However, as
evidenced by the performance patterns of HMRF across different
σ values, HMRF is not able to make full use of high-quality gene
expression data.

3.1.3 Timings
We presented two separate dot plots of algorithm completion
time vs ARI for each data matrix pair with no gene sampling
(Figures 2E,F). An ideal algorithm would have most points in
the top-left of the plot; these points correspond to high ARIs
with smaller completion times. To show overall trends, we
consolidated the noise levels for each plot. For HMRF, we
timed from creating the graphical representation to the end

FIGURE 2 | (A–D) Performance vs sigma plots for location data with weak spatial patterns. Each plot shares the same legend as plot (B). (A) No sampling, 20%
noise. (B) No sampling, 30% noise. (C) 50% sampling, 20% noise. (D) 50% sampling, 30% noise. (E,F) Time vs performance dot plots of scHybridNMF and HMRF on
gene expression data with no gene sampling and location data with strong and weak spatial patterns. (E) Strong spatial patterns. (F) Weak spatial patterns.
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for each parameter choice, then averaged the times. For
scHybridNMF, we timed from computing sparse NMF to
the end. Both algorithm timings matched the values used to
compute the ARI values in Figures 1B–E and Figures 2A–D.
Figure 2E shows the time and performance data of each point
represented in Figures 1B,C, and Figure 2F shows the time
and performance data of each point represented in
Figures 2A,B.

These experiments showed that scHybridNMF performed
well with varying levels of gene sampling and location noise.
The fact that scHybridNMF consistently outperformed sparse
NMF and k-means indicates that it is likely to be successful on
real data.

3.2 STARmap Dataset
Wang et al developed STARmap, which profiled both “thin” and
“thick” cross-sections in the mouse brain cortex (Wang et al.,

2018). We used the “thin” dataset, which profiled from layer 1 of
the cortex to some of the hippocampus. This dataset has 1,549
cells and 1,020 genes. The cell types noted by Wang et al. (2018)
had distinct patterns in their gene expression, cell location, or a
combination of both. For example, excitatory neurons may have
subtypes specific to certain cortex layers (Tasic et al., 2016). These
can be identified by their presence in one or two layers of the
cortex, but they are harder to differentiate using only gene
expression.

We compared scHybridNMF against sparse NMF and
k-means clustering to show that it recovered underlying
information that could not be recovered using only one
modality of data. We used k � 18, which is the same k used
by Wang et al. (2018). The final clusters we profiled for k-means
and sparse NMF were the clusters used as input to scHybridNMF.
For scHybridNMF, we set α � 0.015 and tol � 0.1. This was
because the location data was not very separable.

FIGURE 3 | scHybridNMF, sparse NMF and k-means clustering on STARmap data. The layers are labelled byWang et al. (2018). (A,C,E) Visualizing cells in spacial
location with cell cluster labels from respectively scHybridNMF, sparse NMF and k-means. (B,D,F) cells shown in t-SNE plots of gene expression colored with cluster
labels from respectively scHybridNMF, sparse NMF and k-means.
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To better compare our clustering results against the
underlying cell types, we assigned cell type labels to clusters.
We used Scran, a program that detects differentially-expressed
(DE) genes given clusters, to find the top 20 such genes per cluster
(Lun et al., 2016). We then assigned cell type labels by measuring
the overlap of DE genes and marker genes for known cell types in
the STARmap data (Wang et al., 2018). The final cluster labels are
shown in Supplementary Table S1.

We visualized the clustering results in Figure 3. We first split
the different possible cluster colors by the different cell types
found, with a particular effort given towards making the
excitatory neuron subtype colors distinct. We then
consolidated clusters that shared the same cluster label, then
assigned them different shades of the color that defined the
shared cell type label.

We found that none of the clusters found by k-means clustering
matched any known cell types (Figure 3E,F). Using a location-based
clustering method only finds clusters based on the location density
pattern and the intrinsic characteristics of the clustering method.
Therefore, with this STARmap dataset, k-means clustering found
similarly-sized and shaped structures that separated the locations
evenly. scHybridNMF, on the other hand, found clusters with the
striped structures of the layers of the cortex while also recovering cell
types that were less spatially conserved (Figure 3A,B).

We performed comprehensive comparison between the results of
sparse NMF and scHybridNMF. As a preliminary measure, we
computed the ARI between the clusters determined by Wang et al.
(2018), noted as ground truth clusters, and the clusters from
scHybridNMF and sparse NMF. (Wang et al., 2018). provided
labels for 1,389 cells, and we further removed from consideration
the cells that Wang et al. (2018) excluded from clustering. This left a
total of 1,207 cells for ARI calculation.We found that theARI between
the ground truth and sparse NMF’s clusters to be 0.255, and the ARI
between the ground truth and scHybridNMF’s clusters to be 0.21.
Sparse NMF’s marginally higher ARI and better-clustered tSNE
visualization of gene expression data (Figure 3D) can be explained
by the fact that the cluster annotations by Wang et al. (2018) were
determined through just the gene expression matrix. However, the
spatial distribution of the clusters determined by scHybridNMF better
fit the shape of the layer-specific regions in the ground truth labels
than the clusters determined by sparse NMF (Figures 3A–D). As
such, we further examined both the spatial and gene expression
components of the cell type annotations.

Most of the clusters recovered by sparseNMFwere similar to those
found by scHybridNMF, but scHybridNMFwas able to recovermajor
cell types that sparse NMFwas not able to (Figures 3A–D). These cell
types were separable by gene expression, but were more clearly
separated by locations. scHybridNMF was able to recover distinct
L2/3, L4, and L6a excitatory neurons, while sparse NMF was not.

3.2.1 scHybridNMF Separates Different Types of
Excitatory Neurons
Excitatory neurons have layer-based subtypes (Tasic et al., 2016).
These subtypes differ in their locations and gene expression profiles,
and each have their ownmarker genes (Tasic et al., 2016;Wang et al.,
2018). Here, we show that scHybridNMF better isolated three
subtypes of excitatory neurons, L2/3, L4 and L6a, than sparse NMF.

In Figure 4A,B, we highlighted the clusters relevant to L2/3, L4
and L6a excitatory neurons while keeping other clusters in grey. We
observed two separate clusters with scHybridNMF in the upper
layers of the brain cortex that corresponded to L2/3 and L4 excitatory
neurons (blue and pink clusters in Figure 4A, Supplementary Table
S1). In contrast, sparse NMF was not able to detect two clear clusters
for L2/3 and L4 excitatory neurons. In fact, there were no cluster
found by sparseNMF that could bemapped to L4 excitatory neurons
(Supplementary Table S1). Additionally, the clusters that were
annotated as L6a excitatory neurons in each method had very
different location distributions (Figure 4A,B). Compared to
sparse NMF, the cell types annotated by the scHybridNMF
clustering were more in line with the layer structure.

We then investigated whether the expression of marker genes
supported the clustering by scHybridNMF.We examined Lamp5,
Nrsn1, and Rprm, which are noted by (Wang et al., 2018) to be
marker genes for L2/3, L4, and L6a excitatory neurons. First, we
showed that the expression level of these genes exhibited the
spatial pattern of the corresponding layer (Supplementary
Figure S1). Then, we compared the differential expression of
these genes across scHybridNMF and sparse NMF clusters,
shown in box plots in Figures 4C–E.

We used normalized, log-transformed gene expressions to
create box plots of the genes across each cluster. Clusters 15
and 6 of scHybridNMF, which were annotated as L2/3 and L4
excitatory neurons, distinctly exhibited higher expressions of
Lamp5 and Nrsn1. This differentiation supported the location-
based separation of the two excitatory neuron subtypes. On the
other hand, for sparse NMF, clusters 2 and 15 had a highly
differential level of expression of Lamp5 in Figure 4C. However,
the clusters that exhibited high levels of Nrsn1 were also clusters 2
and 15, which were labeled as L2/3 excitatory neurons during the
annotation procedure (Figure 4D). The third sparse NMF cluster
annotated as L2/3 excitatory neurons, cluster 10, did not exhibit
differential expression of these genes (Figure 4C,D).

We additionally observed that scHybridNMF was better able to
recover L6a excitatory neurons than sparse NMF. L6a excitatory
neurons highly expressed Rprm, were located in the deeper parts of
the cortex, and were arranged in a layer-like structure
(Supplementary Figure S1). Cluster 5 from both scHybridNMF
and sparse NMF corresponded to L6a excitatory neurons
(Supplementary Table S1). Cluster 5 of scHybridNMF showed a
more distinct expression of Rprm compared to cluster 5 of sparse
NMF (Figure 4E). Its spatial pattern, in Figure 4A, also more closely
matched the spatial pattern of the cells that highly exhibited Rprm.

It is worth noting that the cell type annotations obtained in
Supplementary Table S1were based onmultiple marker genes per
cell type. For example, we additionally found that Nrep and Zmat4,
noted by (Wang et al., 2018) to be marker genes for L4 excitatory
neurons, exhibited the same differential expression for cluster 6 of
scHybridNMF. Overall, we showed that scHybridNMF found
excitatory neuron subtypes better than sparseNMF in terms of
both cell locations and marker gene expression levels.

3.3 seqFISH+ Dataset
Eng et al. (2019) profiled the mouse brain cortex and sub-
ventricular zone (SVZ) across 7 fields of view (FOV) using the
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seqFISH+ technique. Five of the FOV were taken from the visual
cortex, and 2 from the SVZ. We analyzed 523 cells in the 5 visual
cortex FOVs, which encompassed cells from L1 to L6. The gene

expression levels of 10,000 genes and locations were profiled for
each cell. We computed the means and standard deviations of
each gene’s expression levels across each cell, and we kept the

FIGURE 4 | (A–B)Dotplotsof clusters thatbestmatchL2/3, L4, andL6aexcitatory neurons.All other clusters are ingrey. (A)Cluster 5 (L6a,orange), 6 (L4,green), and15 (L2/3,blue)
fromscHybridNMF. (B)Clusters 5 (L6a, orange), 15 (L2/3, black), and2 (L2/3, black) fromsparseNMF. (C–E)Boxplots of the expressionsof Lamp5,Nrsn1, andRprmacross eachcluster.
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FIGURE 5 | The clustering results of scHybridNMF and HMRF on seqFISH+ data. (A,C) Cells visualized in spatial locations with clustering labels from respectively
scHybridNMF and HMRF. (B,D)Cells visualized in t-SNE plots of gene expression with clustering labels from respectively scHybridNMF and HMRF. The cluster labels are
shown in the middle. The layers are labelled by Dries et al. (2021). (E,F) Box plots of the expressions of Nrsn1 and Plcxd2 in cells in exc L4 clusters vs all other cells.
p-values were calculated with a two-sample t-test that tested if the population mean of exc L4 clusters were larger than that of the rest of the cells.
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genes with means greater than 0.7 and correlations of variation
greater than 1.2. This left 1,047 genes. We then added all of the
marker genes from Tasic et al. (2016) that were not already in the
set of 1,047 genes, which resulted in a total of 1,198 genes.

We set the number of clusters, k, to be 19. The labels for the
original seqFISH+ dataset were derived from the 49
transcriptomic cell types identified by Tasic et al. (2016). By
grouping together cell types in the minor 49, we found 20 cell
types. We then explored different numbers of clusters around 20,
and found that k � 19 gave the most intriguing results. For
scHybridNMF, we set α � 45 and used a tolerance of 0.05. For the
HMRF algorithm, we used a beta value of 10, which was the beta
value that gave clusters that were the most consistent with the
underlying anatomical structure of the visual cortex.

We used Scran to find the top 20 DE genes per cluster (Lun
et al., 2016). We then cross-referenced these with marker genes
found by Tasic et al. (2016) and Eng et al. (2019) to map the
clusters to tentative cell types. However, certain cell types from
Eng et al. (2019) did not match the actual cell locations within the
brain cortex. For example, cells annotated as layer 2 excitatory
neurons seemed to reside in deeper cortex layers. As such, we
considered the location-specific cell type information provided by
Tasic et al. (2016) with a higher degree of confidence, and did not
compute the ARI with the labels provided by Eng et al. (2019).

The final cluster labels are shown in Supplementary Table S2.
We visualized the cluster results of scHybridNMF and HMRF on
the cell location and gene expression spaces (Figures 5A–D). We
again split the different possible cluster colors by the different
labels, with a particular effort given towards making the
excitatory neuron subtype colors distinct. We then
consolidated clusters that shared the same cluster label, then
assigned them different shades of the color that defined the
shared cell type label.

As a preliminary reference, we calculated the Silhouette values
of the clusterings found by scHybridNMF and HMRF for gene
expression values. However, both methods had very similar
performances across every cluster found, even clusters that
were left unmapped. As such, we conducted a gene ontology
(GO) term analysis for the DE genes found by Scran.

3.3.1 scHybridNMF Detects L4 Excitatory Neurons
Layer-specific excitatory neurons form contiguous, column-like
structures, and they also have unique gene expression profiles
(Tasic et al., 2016). The Giotto authors labelled distinct physical
layers, numbered 1, 2/3, 4, 5, and 6, in the seqFISH+ dataset
(Dries et al., 2021). We found that there were excitatory neuron
subtypes that generally corresponded to each of layers 2/3 to 6. In
particular, we found that scHybridNMF was able to recover a
cluster (cluster 12 in Supplementary Table S2) that better
corresponded to L4 excitatory neurons than HMRF’s cluster
(cluster 16 in Supplementary Table S2).

To further investigate this, we looked into the expressions of
marker genes, especially Nrsn1 and Plcxd2. Nrsn1 was noted by
Eng et al. (2019) to be amarker gene for excitatory neurons, and is
visibly highly expressed in layer 4 of the cortex. Plcxd2 is shown
by (Wang et al., 2018) to be a marker gene for neuronal cells,
especially L4 and L5 excitatory neurons, but we show that in the

seqFISH+ dataset, this is uniquely highly expressed in layer 4. All
other marker genes are shown in Supplementary Figures S2,S3.

First, we saw that the cells that highly expressed these genes
were grouped together in a layer-like shape (Supplementary
Figures S2A,B), confirming the marker genes’ spatial patterns.
We then visualized the different marker gene expressions with
box plots, comparing the expressions within L4 excitatory neuron
clusters of scHybridNMF and HMRF against the rest of the cells
(Figures 5E,F). We found that, with a threshold of p < 0.01,
cluster 12 of scHybridNMF exhibited a significantly higher
expression of Nrsn1 and Plcxd2 than the rest of the cells
(Figures 5E,F). In contrast, HMRF failed to reject the null
hypothesis, with p-values of 0.21 and 0.02.

3.3.2 Layer 6b Excitatory Neurons
The deepest layers of the mouse brain cortex are L5 and L6, where
L6 can further be split into L6a and L6b. L6b exhibits both a
distinct location and gene expression profile from L6a, which
tends to be closer to L5. Using scHybridNMF, we found that the
seqFISH+ dataset showed clear location- and gene expression-
based evidence for a distinct L6b excitatory neuron cell type. Tasic
et al. (2016) give marker genes for L6a and 6b excitatory neurons,
which are Rprm and Ctgf, respectively. In the seqFISH+ dataset,
these exhibited strong spatial coherency, where we observed a
clear boundary between cells that highly express Rprm vs Ctgf
(Supplementary Figure S4), which clearly divided the two types
of L6 excitatory neurons.

scHybridNMFwas able to recover L6b excitatory neurons better
than HMRF. To measure the differential gene expression across
each cluster found by HMRF and scHybridNMF, we measured the
expression of Ctgf and Cplx3, marker genes cited by Tasic et al.
(2016), in Figures 6A,B. Because both genes were markers for L6b
excitatory neurons, high-quality clusters are expected to exhibit a
strongly distinct level of expression for these genes. We used the
normalized, log-transformed gene expressions to create box plots
of the expression statistics across each cluster. The side-by-side
analysis of the two algorithms showed that the L6b cluster found by
scHybridNMF exhibits a more distinct pattern of gene expression
than the L6b cluster found by HMRF.

The region of cells highly expressing Ctgf in Supplementary
Figure S4 was small and sliver-like, and it bordered the rightmost
side of layer 6. We found that the spatial location of the L6b
cluster from scHybridNMF seemed to align more closely to this
shape than the cluster from HMRF (Supplementary Figure S5).
The cluster from HMRF included cells that were part of L6a.

3.3.3 scHybridNMF Refines Marker Gene Lists
Reducing False Positives of Layer 5 Excitatory Neuron
Markers
The marker gene lists noted by Tasic et al. (2016) and by Dries
et al. (2021) provided a basis for cell type annotations and
interpretations of results in subsequent research. However, the
markers obtained in Tasic et al. (2016) were based on scRNA-seq
data only, and some of the location-specificmarker genes may not
actually demonstrate the expected location pattern. Indeed, from
the DE analysis based on the clusters obtained by scHybridNMF,
we found there were certain marker genes noted by Tasic et al.
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(2016) that did not exist in the DE results. We focused on the
marker genes for L5 excitatory neurons and further investigated
the spatial pattern of these genes.

Tasic et al. (2016) catalogued 3 separate excitatory neuron types
corresponding to L5. They were L5, L5a, and L5b excitatory neurons,
where L5a and L5b distinguish the shallower and deeper regions of L5,
respectively. The L5 excitatory neuron type referenced the entirety of
layer 5. Of the 10,000 genesmeasured in seqFISH+, we found 17 were
labeled as marker genes for only L5, L5a, or L5b excitatory neurons in
Tasic et al. (2016). However, none of these genes exhibited any
particular spatial pattern associated with L5. Examples of the
spatial patterns are given in Figures 6C,D and Supplementary
Figure S6.

Potential New Marker Gene for L6a Excitatory Neurons
Cluster 1 of scHybridNMF was annotated as L6a excitatory
neurons both by gene expression and cell locations

(Supplementary Table S2). Rprm is a marker gene from
Tasic et al. (2016), and it exhibited a strong, spatially-
conserved pattern in the seqFISH+ data (Figure 6F. We
found another gene, Islr2, as a potential marker gene for
L6a excitatory neurons. This is because it was differentially-
expressed in cluster 1 [through Scran (Lun et al., 2016)],
exhibited strong spatial cohesiveness, and was involved in
neuron function and development (Abudureyimu et al.,
2018) (Figure 6E). It was also found to be spatially
concentrated in L5/6 by Giotto (Dries et al., 2021).

4 CONCLUSION AND DISCUSSION

Wepresented a hybrid clustering approach that can better identify cell
types by incorporating sparse NMF and k-means clustering, which
work well on high-dimensional gene expression and low-dimensional

FIGURE 6 | (A,B)Box plots of the expressions of Ctgf and Cplx3 across each cell, grouped by cluster. (C,D)Dot plots of the expressions of Cpne2 and Ptgfr across
each cell. These genes are marker genes of L5a and L5b excitatory neurons (Tasic et al., 2016). (C) Cpne2 (L5a marker). (D) Ptgfr (L5b marker). (E,F) Dot plots of the
expressions of Islr2 and Rprm across each cell. We propose Islr2, a DE gene recovered through Scran on scHybridNMF clusters, as a marker gene for L6 excitatory
neurons. We show the expression of Rprm as a baseline. (E) Islr2 (scHybridNMF). (F) Rprm (L6a, Tasic, et al).
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location data. We demonstrated the robustness of scHybridNMF
through experiments on both simulated and real data.

We showed that the hybrid framework was particularly useful
when the performance of sparse NMF was affected by a low
number of genes profiled or high within-cluster heterogeneity.
scHybridNMF also outperformed k-means clustering under
realistic scenarios. Through combining two classical methods
for clustering, sparse NMF and k-means, scHybridNMF made
better use of both data than either of the standalone methods as
well as an existing method HMRF.

We also observed that scHybridNMF found biologically-
meaningful clusters within real data. We analyzed the
biological relevance of the clusters using cluster-specific DE
genes that were found using cell cluster membership
information. However, similar metagene analysis can be done
using WA, the cluster representative matrix. This matrix, which
contains the final gene expression representatives of each
cluster, was built using cell location and gene expression
information. As such, WA is constructed in such a way that
incorporates both sources of information, and analyzing the
differential expression of genes across different cluster
representatives is intuitive. Each row of WA corresponds to
each gene, and the more variation of values there is in a row, the
more likely the corresponding gene is biologically meaningful
for cell type identification.

scHybridNMF is inherently flexible, owing to its matrix low-
rank approximation formulation. As such, it can be extended via
additional matrix terms and constraints to include more types of
data or to perform biclustering. For example, we can include
potential gene-gene interaction data to perform co-clustering of
both cells and genes. The inferred gene clusters can be further
used to study regulatory mechanisms in the cells and reconstruct
gene regulatory networks.

DATA AVAILABILITY STATEMENT

scHybridNMF is available at github.com/soobleck/
scHybridNMF. The simulated data and processed real data
used in this study are also in the same GitHub repository.
Further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

HP and XZ conceived the study. All authors developed the
methods. SO implemented the methods and drafted the
manuscript. All authors edited and approved the manuscript.

FUNDING

This work was supported in part by NSF DBI-2019771. Any
opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of NSF.

ACKNOWLEDGMENTS

We thank our colleagues for their editorial comments.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.763263/
full#supplementary-material

REFERENCES

Abudureyimu, S., Asai, N., Enomoto, A., Weng, L., Kobayashi, H., Wang, X., et al.
(2018). Essential Role of Linx/islr2 in the Development of the Forebrain Anterior
Commissure. Scientific Rep. 8, 7292. doi:10.1038/s41598-018-24064-0

Bertsekas, D. P. (1997). Nonlinear Programming. J. Oper. Res. Soc. 48, 334.
doi:10.1057/palgrave.jors.2600425

Cusanovich, D. A., Daza, R., Adey, A., Pliner, H. A., Christiansen, L., Gunderson,
K. L., et al. (2015). Multiplex Single-Cell Profiling of Chromatin Accessibility by
Combinatorial Cellular Indexing. Science 348, 910–914. doi:10.1126/
science.aab1601

Dries, R., Zhu, Q., Eng, C.-H. L., Li, H., Liu, K., Fu, Y., et al. (2021). Giotto: a
Toolbox for Integrative Analysis and Visualization of Spatial Expression Data.
Genome Biol. 22, 78. doi:10.1186/s13059-021-02286-2

Duren, Z., Chen, X., Zamanighomi, M., Zeng, W., Satpathy, A. T., Chang, H. Y.,
et al. (2018). Integrative Analysis of Single-Cell Genomics Data by Coupled
Nonnegative Matrix Factorizations. Proc. Natl. Acad. Sci. USA 115, 7723–7728.
doi:10.1073/pnas.1805681115

Efremova, M., and Teichmann, S. A. (2020). Computational Methods for Single-Cell
Omics across Modalities. Nat. Methods 17, 14–17. doi:10.1038/s41592-019-0692-4

Eng, C.-H. L., Lawson, M., Zhu, Q., Dries, R., Koulena, N., Takei, Y., et al. (2019).
Transcriptome-scale Super-resolved Imaging in Tissues by RNA seqFISH+.
Nature 568, 235–239. doi:10.1038/s41586-019-1049-y

Grippo, L., and Sciandrone, M. (2000). On the Convergence of the Block Nonlinear
Gauss-Seidel Method under Convex Constraints. Operations Res. Lett. 26,
127–136. doi:10.1016/s0167-6377(99)00074-7

Jin, S., Zhang, L., and Nie, Q. (2020). scAI: an Unsupervised Approach for the
Integrative Analysis of Parallel Single-Cell Transcriptomic and Epigenomic
Profiles. Genome Biol. 21, 25. doi:10.1186/s13059-020-1932-8

Kim, H., and Park, H. (2007). Sparse Non-negative Matrix Factorizations via
Alternating Non-negativity-constrained Least Squares for Microarray Data
Analysis. Bioinformatics 23, 1495–1502. doi:10.1093/bioinformatics/btm134

Kim, J., He, Y., and Park, H. (2014). Algorithms for Nonnegative Matrix and
Tensor Factorizations: a Unified View Based on Block Coordinate Descent
Framework. J. Glob. Optim 58, 285–319. doi:10.1007/s10898-013-0035-4

Kim, J., and Park, H. (2008). “Toward Faster Nonnegative Matrix Factorization: A
New Algorithm and Comparisons,” in Proc. 8th IEEE ICDM 2008 (ICDM’08)
(IEEE), 353–362. doi:10.1109/icdm.2008.149

Kotliar, D., Veres, A., Nagy, M. A., Tabrizi, S., Hodis, E., Melton, D. A., et al. (2019).
Identifying Gene Expression Programs of Cell-type Identity and Cellular
Activity with Single-Cell RNA-Seq. Elife 8, e43803. doi:10.7554/eLife.43803

Kuang, D., Yun, S., and Park, H. (2015). SymNMF: Nonnegative Low-Rank
Approximation of a Similarity Matrix for Graph Clustering. J. Glob. Optim
62, 545–574. doi:10.1007/s10898-014-0247-2

Lun, A., McCarthy, D., and Marioni, J. (2016). A Step-by-step Workflow for Low-
Level Analysis of Single-Cell Rna-Seq Data with Bioconductor. F1000Res 5,
2122. doi:10.12688/f1000research.9501.2

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 76326313

Oh et al. Single Cell Hybrid Clustering

47

https://www.frontiersin.org/articles/10.3389/fgene.2021.763263/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.763263/full#supplementary-material
https://doi.org/10.1038/s41598-018-24064-0
https://doi.org/10.1057/palgrave.jors.2600425
https://doi.org/10.1126/science.aab1601
https://doi.org/10.1126/science.aab1601
https://doi.org/10.1186/s13059-021-02286-2
https://doi.org/10.1073/pnas.1805681115
https://doi.org/10.1038/s41592-019-0692-4
https://doi.org/10.1038/s41586-019-1049-y
https://doi.org/10.1016/s0167-6377(99)00074-7
https://doi.org/10.1186/s13059-020-1932-8
https://doi.org/10.1093/bioinformatics/btm134
https://doi.org/10.1007/s10898-013-0035-4
https://doi.org/10.1109/icdm.2008.149
https://doi.org/10.7554/eLife.43803
https://doi.org/10.1007/s10898-014-0247-2
https://doi.org/10.12688/f1000research.9501.2
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mayr, U., Serra, D., and Liberali, P. (2019). Exploring Single Cells in Space and
Time during Tissue Development, Homeostasis and Regeneration.
Development 146, dev176727. doi:10.1242/dev.176727

McKinley, K. L., Castillo-Azofeifa, D., and Klein, O. D. (2020). Tools and Concepts
for Interrogating and Defining Cellular Identity. Cell Stem Cell 26, 632–656.
doi:10.1016/j.stem.2020.03.015

Morris, S. A. (2019). The Evolving Concept of Cell Identity in the Single Cell Era.
Development 146, dev169748. doi:10.1242/dev.169748

Peterson, V. M., Zhang, K. X., Kumar, N., Wong, J., Li, L., Wilson, D. C., et al.
(2017). Multiplexed Quantification of Proteins and Transcripts in Single Cells.
Nat. Biotechnol. 35, 936–939. doi:10.1038/nbt.3973

Shao, C., and Höfer, T. (2017). Robust Classification of Single-Cell Transcriptome
Data by Nonnegative Matrix Factorization. Bioinformatics 33, 235–242.
doi:10.1093/bioinformatics/btw607

Ståhl, P. L., Salmén, F., Vickovic, S., Lundmark, A., Navarro, J. F., Magnusson, J.,
et al. (2016). Visualization and Analysis of Gene Expression in Tissue
Sections by Spatial Transcriptomics. Science 353, 78–82. doi:10.1126/
science.aaf2403

Stuart, T., and Satija, R. (2019). Integrative Single-Cell Analysis. Nat. Rev. Genet.
20, 257–272. doi:10.1038/s41576-019-0093-7

Tasic, B., Menon, V., Nguyen, T. N., Kim, T. K., Jarsky, T., Yao, Z., et al. (2016).
Adult Mouse Cortical Cell Taxonomy Revealed by Single Cell Transcriptomics.
Nat. Neurosci. 19, 335–346. doi:10.1038/nn.4216

Wang, X., Allen, W. E., Wright, M. A., Sylwestrak, E. L., Samusik, N.,
Vesuna, S., et al. (2018). Three-dimensional Intact-Tissue Sequencing of
Single-Cell Transcriptional States. Science 361. doi:10.1126/
science.aat5691

Welch, J. D., Kozareva, V., Ferreira, A., Vanderburg, C., Martin, C., and Macosko, E. Z.
(2019). Single-Cell Multi-Omic Integration Compares and Contrasts Features of Brain
Cell Identity. Cell 177, 1873–1887. doi:10.1016/j.cell.2019.05.006

Zhang, X., Xu, C., and Yosef, N. (2019). Simulating Multiple Faceted Variability in
Single Cell RNA Sequencing. Nat. Commun. 10, 2611. doi:10.1038/s41467-019-
10500-w

Zhu, Q., Shah, S., Dries, R., Cai, L., and Yuan, G.-C. (2018). Identification of
Spatially Associated Subpopulations by Combining scRNAseq and Sequential
Fluorescence In Situ Hybridization Data. Nat. Biotechnol. 36, 1183–1190.
doi:10.1038/nbt.4260

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Oh, Park and Zhang. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 76326314

Oh et al. Single Cell Hybrid Clustering

48

https://doi.org/10.1242/dev.176727
https://doi.org/10.1016/j.stem.2020.03.015
https://doi.org/10.1242/dev.169748
https://doi.org/10.1038/nbt.3973
https://doi.org/10.1093/bioinformatics/btw607
https://doi.org/10.1126/science.aaf2403
https://doi.org/10.1126/science.aaf2403
https://doi.org/10.1038/s41576-019-0093-7
https://doi.org/10.1038/nn.4216
https://doi.org/10.1126/science.aat5691
https://doi.org/10.1126/science.aat5691
https://doi.org/10.1016/j.cell.2019.05.006
https://doi.org/10.1038/s41467-019-10500-w
https://doi.org/10.1038/s41467-019-10500-w
https://doi.org/10.1038/nbt.4260
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Inferring Differential Networks by
Integrating Gene Expression Data
With Additional Knowledge
Chen Liu1, Dehan Cai2, WuCha Zeng1 and Yun Huang3*

1Department of Chemotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China, 2Department of Electrical
Engineering, City University of Hong Kong, Hong Kong, China, 3Department of Geriatric Medicine, The First Affiliated Hospital of
Fujian Medical University, Fuzhou, China

Evidences increasingly indicate the involvement of gene network rewiring in disease
development and cell differentiation. With the accumulation of high-throughput gene
expression data, it is now possible to infer the changes of gene networks between
two different states or cell types via computational approaches. However, the distribution
diversity of multi-platform gene expression data and the sparseness and high noise rate of
single-cell RNA sequencing (scRNA-seq) data raise new challenges for existing differential
network estimation methods. Furthermore, most existing methods are purely rely on gene
expression data, and ignore the additional information provided by various existing
biological knowledge. In this study, to address these challenges, we propose a general
framework, named weighted joint sparse penalized D-trace model (WJSDM), to infer
differential gene networks by integrating multi-platform gene expression data and multiple
prior biological knowledge. Firstly, a non-paranormal graphical model is employed to tackle
gene expression data with missing values. Then we propose a weighted group bridge
penalty to integrate multi-platform gene expression data and various existing biological
knowledge. Experiment results on synthetic data demonstrate the effectiveness of our
method in inferring differential networks. We apply our method to the gene expression data
of ovarian cancer and the scRNA-seq data of circulating tumor cells of prostate cancer,
and infer the differential network associated with platinum resistance of ovarian cancer and
anti-androgen resistance of prostate cancer. By analyzing the estimated differential
networks, we find some important biological insights about the mechanisms underlying
platinum resistance of ovarian cancer and anti-androgen resistance of prostate cancer.

Keywords: single-cell RNA sequencing, differential network analysis, prior information, graphical model, gene
regulatory network

1 INTRODUCTION

Biological systems often involve the complex regulatory relationships between genes, which could
change substantially in different states or developmental stages. Inferring the changes of gene
regulatory networks between two different states or cell types is important for revealing the
regulatory mechanisms relevant to disease development and cell differentiation (Tian et al.,
2016; Zhang et al., 2017). With the accumulation of state-specific gene expression data, a great
number of computational approaches have been proposed for estimating gene regulatory networks
as well as their difference between two distinct states from gene expression data (Danaher et al., 2014;
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Ha et al., 2015; Lichtblau et al., 2016; Tian et al., 2016; Zhang et al.,
2016; Ou-Yang et al., 2017; Uppal et al., 2018).

Due to the ability in capturing the conditional dependencies
among genes, Gaussian graphical models have been widely used
to infer gene regulatory networks (Danaher et al., 2014; Zhang
et al., 2016; Yuan et al., 2017; Ou-Yang et al., 2019). Existing
Gaussian graphical model-based differential network
estimation methods can be roughly divided into two
categories, i.e., indirect estimation models (Danaher et al.,
2014; Zhang et al., 2016) and direct estimation models (Tian
et al., 2016; Yuan et al., 2017). Indirect estimation models first
estimate each state-specific network separately and then infer
the differential network by calculating the difference between
two state-specific networks (Danaher et al., 2014). Whereas
direct estimation models directly estimate the difference
between two state-specific networks without the need to
estimate individual state-specific networks (Tian et al., 2016).
As the number of parameters that needs to be estimated in
direct estimation models is half of that in indirect estimation
models, direct estimation models usually achieve better
performance than indirect estimation models in differential
network estimation, especially in the case of small sample
size (Yuan et al., 2017).

Although the above models have been successfully used to
infer differential networks (Danaher et al., 2014; Tian et al., 2016;
Yuan et al., 2017), they are mainly designed for bulk tissue gene
expression data collected from a single data platform. Recently,
with the development of high-throughput experimental
technologies, we are able to collect bulk gene expression data
of same samples from multiple data platforms. As the gene
expression data collected from different data platforms may
provide some shared and specific information about the
regulatory relationships between genes, integrating multi-
platform gene expression data could help to improve the
accuracy of differential network estimation (Zhang et al., 2016,
2017). Moreover, the advance of single-cell RNA sequencing
(scRNA-seq) techniques offers a great opportunity for
inferring the regulatory relationships between genes at single
cell resolution. The accumulation of scRNA-seq data paves the
way to infer cell-type-specific gene networks, which could help to
explore the heterogeneity between different cell types (Pratapa
et al., 2020). However, due to technical limitations of existing
scRNA-seq technologies, a truly expressed gene may not be
identified in some cells, which leads to excess of false zeros in
scRNA-seq data (i.e., dropout events) (Stegle et al., 2015). Existing
differential network estimation models usually assume that the
observed data are complete, and rarely consider missing value
problem. To handle the distribution diversity of multi-platform
gene expression data and the sparseness of single-cell RNA
sequencing (scRNA-seq) data, Ou-Yang et al. (2021) proposed
an indirect differential network estimation model, which can
integrate the gene expression data collected from multiple data
platforms and tackle the missing value problem. Moreover, their
model can take into account the changes in gene expression levels
when inferring differential networks.

The above models only use gene expression data to infer
differential networks. However, since the number of samples are

usually much smaller than the number of genes, and scRNA-seq
data are much sparser and noisier than bulk RNA-seq data, it is
difficult to infer differential networks accurately only based on
gene expression data. Besides gene expression data, existing
knowledge of genes and knowledge of the regulatory
relationships among genes may also help to improve the
accuracy of differential network estimation (Xu et al., 2018).
For example, we can collect some literature-curated gene
regulatory interactions from public database (Han et al.,
2015). As the changes of regulatory relationships between
two different states is more likely to occur between genes
that are known to have regulatory interactions, considering
prior gene regulatory interactions may help to improve the
accuracy of differential network estimation. Moreover,
researchers have found that genes within same pathways
usually interact with each other to carry out their biological
functions, and genes belong to different pathways seldom
interact with each other (Wu et al., 2019). Thus, taking into
account pathway information may also facilitate the inference of
differential networks.

In this study, to address the above problems and provide a
differential network estimation method that can generally work
well on different types of data, we propose a novel method
named Weighted Joint Sparse penalized D-trace Model
(WJSDM). Our model can directly estimate the differential
networks between two different states by integrating multi-
platform gene expression data with additional biological
knowledge. Similar to (Ou-Yang et al., 2021), based on non-
paranormal graphical model and revised Kendall’s tau
correlation, our model can tackle non-Gaussian data with
missing values, which make it able to deal with multi-
platform gene expression and scRNA-seq data. By using
D-trace loss function, our model can estimate the differential
network directly, which reduce the number of parameters that
need to be estimated. To integrate various prior biological
knowledge and take into account changes in gene expression
levels, we propose a weighted group bridge penalty. Our model
can be solved by using an accelerated proximal gradient method.
Simulation studies are first conducted to evaluate the
performance of our model. According to the experiment
results, our model can always achieve better performance
than other state-of-the-art differential network estimation
models, which demonstrate the effectiveness of our model in
integrating prior information and handling gene expression
data with missing values. Extensive experiments on two real
data sets also demonstrate the advantages of our model in
inferring differential networks and revealing the underlying
mechanisms of disease developments. The source code of our
proposed model is available at https://github.com/Yunhuang85/
WJSDM.

2 METHODS

In this section, we will first review the non-paranormal
distribution and D-trace loss. Then we will introduce our
weighted joint sparse penalized D-trace model.
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2.1 Non-paranormal Distribution
Let X � (X1, X2, . . . , Xp) denote a p-dimensional random vector
which follows a multivariate normal distribution X ∼ N(0, Σ),
where Σ ∈ Rp×p is the covariance matrix. For multivariate
normal distributions, Xi is independent of Xj given the other
variables if and only if the corresponding entry in the inverse
covariance matrix (precision matrix) Θ � Σ−1 is equal to zero,
i.e., Θij � 0. Thus, the conditional dependence relationships
among p random variables in X can be obtained by identifying
the nonzero elements in Θ. However, the normal distribution
assumption is too restrictive in practice. To relax the normal
distribution assumption, non-paranormal distribution is
proposed. X � (X1, X2, . . . , Xp) is said to follow a non-
paranormal distribution X ∼ NPN(f, Σ) if there exists a set
of monotone and differentiable functions {fj}pj�1 such that
f(X) � (f1(X1), . . ., fp(Xp)) ∼ N(0, Σ). It has been proven that
Θ � Σ−1 encodes the conditional dependence relationships
among X. That is, Xi is independent of Xj given the other
variables if and only if Θij � 0.

2.2 D-Trace Loss
Given the gene expression data X(c){ }c�1,2 of two different states.
Each data set X(c) ∈ Rnc×p includes nc samples and p common
genes. Suppose the nc samples within each data set are from the
same non-paranormal distribution NPN(f(c), Σ(c)), where
Σ(c) ∈ Rp×p is the covariance matrix. The conditional
dependence relationships between these p genes can be
inferred from the precision matrix Θ(c) � (Σ(c))−1. Thus, the
difference between two state-specific networks can be
presented as Δ � Θ(2) − Θ(1). To estimate the differential
network Δ efficiently, we can utilize the following D-trace loss
function (Yuan et al., 2017), which could directly estimate the
difference between two precision matrices without separate
estimation of each precision matrix:

arg min
Δ�ΔT

LD Δ;Σ(1),Σ(2)( ) � 1
4

〈Σ(1)Δ,ΔΣ(2)〉 + 〈Σ(2)Δ,ΔΣ(1)〉( )
− 〈Δ,Σ(1) − Σ(2)〉.

(1)

where (A, B) � tr(ABT). In practice, we need to use the sample
covariance matrices Σ̂(c)

and minimize LD(Δ; Σ̂(1)
, Σ̂(2)) with

respect to Δ to calculate the estimator of Δ. For non-paranormal
distribution, the sample non-paranormal covariance matrix can
be computed via rank-based correlation estimator, e.g.,
Kendall’s tau correlation, without estimating the univariate
transformation functions f (c).

2.3 Notations and Problem Statement
Assuming that there are two different groups of samples. As
the gene expression data of same samples can be collected
from multiple data platforms, suppose we can observe the
expression levels of p common genes for these two groups
of samples from K different data platforms, and the cth
group contains nc samples, c � 1, 2. Let X(kc) ∈ Rnc×p

denote the gene expression matrix of the cth group
collected from kth platform, where nc and p denote the

number of samples and the number of common genes,
respectively. Suppose the nc samples are from the same
non-paranormal distribution NPN(f (kc), Σ(kc)), where
Σ(kc) ∈ Rp×p is the covariance matrix. Let {Θ(kc)}c�1,2k�1,...,K
denote the precision matrices for two groups of samples
collected from K platforms, where Θ(kc) � (Σ(kc))−1. For
samples collected from the kth platform, the difference
between two state-specific networks can be presented as
Δ(k) � Θ(k2) − Θ(k1). Our goal is to estimate K differential
networks {Δ(k)}k�1,...,K jointly. For the sake of convenience, we

denote {X(kc)}c�1,2k�1,...,K, {Σ(kc)}c�1,2k�1,...,K, {Θ(kc)}c�1,2k�1,...,K and

{Δ(k)}k�1,...,K as {X(kc)}, {Σ(kc)}, {Θ(kc)} and {Δ(k)}, respectively.

2.4 Weighted Joint Sparse Penalized
D-Trace Model
The above D-trace loss is designed to infer the differential
network between two different groups of samples from a
single data platform, and cannot utilize the common
information provided by gene expression data collected from
multiple data platforms. Thus, in this study, we extend D-trace
loss and develop a weighted joint sparse D-trace model
(WJSDM), which can draw support from gene expression data
collected frommultiple data platforms to estimate the differential
network between two different states.

According to the above D-trace loss, the loss function LKD of K
data platforms can be given by:

LKD Δ(k){ }( ) � 1
4
∑K
k�1

〈Σ̂(k1)Δ(k),Δ(k)Σ̂(k2)〉 + 〈Σ̂(k2)Δ(k),Δ(k)Σ̂(k1)〉( )
−∑K

k�1
〈Δ(k), Σ̂(k1) − Σ̂(k2)〉( ). (2)

where Σ̂(kc)
is the sample non-paranormal covariance matrix

for cth group and kth data platform, k � 1, . . . , K and c � 1, 2. As
gene expression data may include some missing values, similar to
(Wang et al., 2014; Ou-Yang et al., 2021), we adopt a rank-
based correlation, i.e., revised Kendall’s tau correlation, to

estimate Σ̂(kc)
. In particular, let n(kc)ij � ∑

1≤l≤nkc
d(kc)li d(kc)lj denote

the number of samples in the cth group and kth platform that
have nonzero expression values for ith and jth genes
simultaneously, where d(kc)lj � 1 if X(kc)

lj ≠ 0 and d(kc)lj � 0 if
X(kc)

lj � 0. The revised Kendall’s tau correlation between ith
and jth genes are defined as follows:

τ̂(kc)ij � 1

n(kc)ij n(kc)ij − 1( ) ∑
l≠l′

d(kc)
li d(kc)

l′i
d(kc)
lj d(kc)

l′j

sign X(kc)
li −X(kc)

l′ i( ) X(kc)
lj −X(kc)

l′j( )( ) (3)

As Kendall’s tau correlation are invariant under strictly
monotone marginal transformations (Liu et al., 2012), Σ(kc)

ij

can be estimated by the following definition of Σ̂(kc)
ij

Σ̂(kc)
ij � sin

π

2
τ̂(kc)ij( ), if i≠ j,

1, if i � j.

⎧⎪⎨⎪⎩ (4)
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In this study, each sample non-paranormal covariance matrix
Σ̂(kc)
ij is computed according to the revised Kendall’s tau

correlation and transformation function defined in Eqs 3, 4.
To ensure Σ̂(kc)

is positive semidefinite, following Zhang et al.
(2021) and Higham (1988), we compute the nearest

positive semidefinite matrix S(kc) of Σ̂(kc)
and use it to

replace Σ̂(kc)
.

Note that the differential networks inferred from gene
expression data collected from different data platforms may
share certain network structures, and the differential networks
between two different states may be sparse. Furthermore,
differentially expressed genes usually tend to change their
regulatory relationships with other genes. Thus, to jointly
estimate multiple differential networks and consider the
changes in expression levels of individual genes when inferring
differential networks, similar to (Ou-Yang et al., 2021), we
introduce the following group bridge penalty function:

P Δ(k){ }( ) � ∑
i,j

����������
∑K
k�1

τ(k)ij |Δ(k)
ij |

√√
. (5)

where τ(k)ij � 1 − (1 − r(k)i )(1 − r(k)j ) can assign different weights
to different pairs of genes, and r(k)i ∈ [0, 1] denotes the parameter
which measures the differential expression level of ith gene,
inferred from the kth experimental platform. In this study,
following Ou-Yang et al. (2021), the p-value of Wilcoxon
rank-sum test is used to calculate r(k)i , which can reflect the
differential expression level of ith gene. With this penalty
function, the differential networks {Δ(k)} inferred from K
different data platforms may have similar patterns of sparsity
and have some shared and specific edges.

Besides gene expression data, there are usually some prior
biological knowledge that can help to improve the accuracy of
differential network estimation, such as pathway information and
prior gene interactions. To incorporate these prior information
when inferring differential networks, we extend the above group
bridge penalty function to the following weighted group bridge
penalty function:

P Δ(k){ }( ) � ∑
i,j

Wij

����������
∑K
k�1

τ(k)ij |Δ(k)
ij |

√√
. (6)

Here,W � [Wij] is the weight matrix defined by prior knowledge.
In this study, the prior information we used includes pathway
information and gene interactions that have been verified from
other biological studies. Let G ∈ {0,1}p×p and F ∈ {0,1}p×p denote
the prior gene interaction and co-pathway indication matrices,
respectively, where Gij � 1 if the ith and jth genes are known to
have regulatory relationship andGij � 0 otherwise, Fij � 1 if the ith
and jth genes belong to at least one common pathway and Fij � 0
otherwise. To assign different weights to different pairs of genes,
we define Wij as follows:

Wij �
wg, if Gij � 1,
1, if Gij � 0 and Fij � 1,
wf, if Gij � 0 and Fij � 0.

⎧⎪⎨⎪⎩ (7)

where wg and wf are two predefined weight parameters. In
reality, the differential edges are more likely to take place
between gene pairs that are known to have interactions, and
the differential edges are less likely to occur between genes
that belong to different pathways. Thus, to assign
small penalties to gene pairs that are known to have
interactions and large penalties to gene pairs that belong
to different pathways, the value of wg should be less than 1
and the value of wf should be larger than 1. Following
previous studies (Xu et al., 2018), in this study, we fix wg � 0.3
and wf � 10.

By combining (2) and (6), the objective function of our
Weighted Joint Sparse penalized D-trace Model (WJSDM) is
given by:

Δ̂(k){ } � arg min
Δ(k)� Δ(k)( )T{ } LKD Δ(k){ }( ) + λ∑

i,j

Wij

����������
∑K
k�1

τ(k)ij |Δ(k)
ij |

√√
.

(8)

where λ is a non-negative tuning parameter to control the
sparsity levels of the estimated differential networks. We use
an iterative approach based on local linear approximation
(Zou and Li, 2008) and the accelerated proximal gradient
method (Parikh and Boyd, 2014; Xu et al., 2018) to solve
problem (Eq. 8).

According to (Yuan et al., 2017), the gradient of the
D-trace loss function with respect to Δ takes the following
form:

▽LD(Δ) � 1
2

Σ̂(1)ΔΣ̂(2) + Σ̂(2)ΔΣ̂(1)( ) − Σ̂(1) − Σ̂(2)( ). (9)

Following the proximal gradient method (Parikh and
Boyd, 2014), LKD can be approximated by the following
function:

~LKD Δ(k){ }; Δ̂(k)( )(t){ }, lk{ }( ) � ∑K
k�1

LD Δ̂(k)( )(t)( )[
+ tr ▽LD Δ̂(k)( )(t)( )Δ(k) − Δ̂(k)( )(t)( )( )+ 1

2lk
‖Δ(k) − Δ̂(k)( )(t)‖2F].

(10)

where (Δ̂(k))(t) is the estimation of Δ(k) at tth iteration, lk > 0 and
‖A‖2F � ∑p

i,j�1 Aij. We rewrite the ~LKD function as:

~LKD Δ(k){ }; Δ̂(k)( )(t){ }, lk{ }( ) � ∑K
k�1

1
2lk

‖Δ(k)[
− Δ̂(k)( )(t) − lk▽LD Δ̂(k)( )(t)( )( )‖2F + φ Δ̂(k)( )(t)( )]. (11)

where φ((Δ̂(k))(t)) is a function of (Δ̂(k))(t).
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Algorithm 1. Complete Algorithm for WJSDM (8)

According to local linear approximation (Parikh and Boyd,
2014), Eq. 6 can be approximated as:

P Δ(k){ }( ) ≈ λ∑K
k�1

∑
i,j

ϕijWij|Δ(k)
ij |. (12)

where ϕij �
τ(k)ij

2

������������∑K

k�1 τ
(k)
ij |(Δ̂(k)

ij )(t) |
√ . Therefore, at (t + 1)-th iteration,

problem (Eq. 8) can be decomposed into the following K
individual optimization problems:

Δ̂(k)( )(t+1)
� arg min

Δ(k)� Δ(k)( )T
1
2
‖Δ(k)

− Δ̂(k)( )(t)
− lk▽LD Δ̂(k)( )(t)( )( )‖2F

+ λlk ∑
i,j

ϕijWij|Δ(k)
ij |. (13)

The solution of our WJSDM is summarized in Algorithm 1. The
computational complexity of each iteration in Algorithm 1 is
O(Kp3 + Kp2), where K is the number of data platforms and p is
the number of genes.

2.5 Parameter Selection
There is a tuning parameter λ in WJSDM, which affects the
sparsity level of the estimated differential networks. In this study,
following previous studies (Zhang et al., 2016), we use a stability
approach, named StARS method (Liu et al., 2010; Meinshausen
and Bühlmann, 2010), to determine the value of λ. The detailed
procedure of our parameter selection method is summarized in
Algorithm 2.

Algorithm 2. Tuning Parameter Selection for WJSDM

3 RESULTS

In this section, we first perform simulation studies to assess the
performance of our proposed WJSDM. Then we apply our model
on real data sets.

3.1 Simulation Studies
To demonstrate the effectiveness of our WJSDM in inferring
differential networks, we compare WJSDM with five state-of-the-
art differential network estimation models, i.e., FGL (Danaher
et al., 2014), TDJGL (Zhang et al., 2016), WDNE (Ou-Yang et al.,
2021), GGL (Danaher et al., 2014) and D-trace (Yuan et al., 2017).

3.1.1 Data Generation
In this simulation study, we consider two groups of samples and
their observations on p common genes collected from K � 3 data
platforms, and generate six scale-free networks for the two groups
of samples and three data platforms. Here, we set p � 100 and
generate n1 � n2 � n ∈ {50, 100, 200} observations for each data
platform. Each network includes three pathways with 0.4p genes
per pathway, and there are 0.2p genes shared by the second and
third pathway. For each pathway, we choose 10% edges as
differential edges. To model the heterogeneity between
different data platforms, we choose 10% of differential edges
to be platform-specific. Since differentially expressed genes tend
to change their regulatory relationships with other genes, we
select 30% genes as differentially expressed genes and the edges
connected to differentially expressed genes are more likely to be
differential edges. There are no differential edges between genes
belong to different pathways. To make a fair comparison with
Gaussian graphical model-based methods, the gene expression
levels of each cell are simulated by using a multivariate normal
distribution. To generate the prior gene interaction networkG, we
select a prior rate δ of nonzero elements from the above six scale-
free networks randomly and connect the corresponding genes in
G. Note that gene expression data may include missing values. In
this study, the expression values of a gene may be lost randomly,
and the missing rate is set to τ ∈ {0.6, 0.8}.
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3.1.2 Simulation Results
Let Δ̂(k)

(for indirect estimation methods: Δ̂(k) � Θ̂(k1) − Θ̂(k2)
)

denote the estimated differential network between two states for
the kth platform, and Δ(k) denote the real differential network for
the kth platform.We use the following twometrics to evaluate the
performance of various algorithms:

TPR �
∑K

k�1∑i<jI Δ̂(k)
ij ≠ 0 and Δ(k)

ij ≠ 0( )
∑K

k�1∑i<jI Δ(k)
ij ≠ 0( ) ,

FPR �
∑K

k�1∑i<jI Δ̂(k)
ij ≠ 0 and Δ(k)

ij � 0( )
∑K

k�1∑i<jI Δ(k)
ij � 0( ) .

where TPR denotes true positive rate, FPR denotes false positive
rate, and I(·) is an indicator function.

As all methods have some hyper-parameters that need to be
predefined, we generate a series of solutions for each model with
different values of hyper-parameters, and assess their
performances. In particular, for FGL, GGL, TDJGL and
WDNE, there are two parameters λ1 and λ2. While for D-trace
and ourWJSDM, there is one parameter λ. To ease interpretation,
following Danaher et al. (2014), the tuning parameters for GGL
are reparameterized as ω1 � λ1 + 1�

2
√ λ2 and

ω2 � 1�
2

√ λ2/(λ1 + 1�
2

√ λ2). The experiment results of all methods
are averaged over 10 random generations of synthetic data.
Figures 1–3 show the performance of various methods on
synthetic data. The columns of each figure show the results of
various methods with different values of prior rate δ, and the rows

of this figure show the results with different values of missing rate
τ. In this figure, each plot shows the TPR − FPR curves of various
methods. Within each plot, different colored lines present the
performances of different methods and different points in each
line indicate the results with respect to different values of hyper-
parameters. The colored lines for D-trace and WJSDM indicate
their results as the values of λ varied. The colored lines for FGL,
GGL, TDJGL and WDNE are obtained by fixing the value of λ2
(or ω2 for GGL) and varying the values of λ1 (or ω1 for GGL). For
λ1 and ω1, we choose 15 values ranging from 0.01 to 10 (for
WDNE, the value of λ1 is ranging from 0.01 to 100).

We can find from these figures that our WJSDM outperforms
other compared methods in all cases. GGL can estimate multiple
networks that share common network structures, but it cannot
identify the differences between different networks. FGL and
D-trace can infer the changes between different networks, but
they cannot integrate the data collected from different data
platforms. TDJGL is an extension of FGL, which can integrate
multi-platform gene expression data. WDNE is an extension of
TDJGL, which can handle gene expression data with missing
values and take into account changes in gene expression levels. All
of the above methods cannot make use of the prior information
provided by additional knowledge when inferring differential
networks. WDNE is a indirect differential network estimation
model, which need to estimate the state-specific networks in
advance. Thus, when the sample size is small, it cannot estimate
differential network accurately. As shown in Figure 3, when the
sample size is large, WDNE can achieve good performance and
outperform other compared methods in most cases. The superior

FIGURE 1 | Performance of WJSDM, D-trace, GGL, FGL, TDJGL and WDNE with p � 100, K � 3, n � 50 and missing rate (A) τ � 0.6, (B) τ � 0.8. Within each plot,
each line presents the performance of a method with the value of λ (for WJSDM and D-trace), λ1 (for FGL, TDJGL andWDNE) or ω1 (for GGL) varying for a fixed value of λ2
(for FGL, TDJGL and WDNE) or ω2 (for GGL). Each curve is obtained by averaging the performance of a method over ten random generations of data.
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FIGURE 2 | Performance of WJSDM, D-trace, GGL, FGL, TDJGL andWDNEwith p � 100, K � 3, n � 100 and missing rate (A) τ � 0.6, (B) τ � 0.8. Within each plot,
each line presents the performance of a method with the value of λ (for WJSDM and D-trace), λ1 (for FGL, TDJGL andWDNE) or ω1 (for GGL) varying for a fixed value of λ2
(for FGL, TDJGL and WDNE) or ω2 (for GGL). Each curve is obtained by averaging the performance of a method over ten random generations of data.

FIGURE 3 | Performance of WJSDM, D-trace, GGL, FGL, TDJGL andWDNEwith p � 100, K � 3, n � 200 and missing rate (A) τ � 0.6, (B) τ � 0.8. Within each plot,
each line presents the performance of a method with the value of λ (for WJSDM and D-trace), λ1 (for FGL, TDJGL andWDNE) or ω1 (for GGL) varying for a fixed value of λ2
(for FGL, TDJGL and WDNE) or ω2 (for GGL). Each curve is obtained by averaging the performance of a method over ten random generations of data.
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performance of WJSDM over WDNE demonstrates the benefit of
inferring differential network directly and integrating multiple
additional knowledge.

3.2 Real Data Analysis
3.2.1 Ovarian Cancer Analysis
Platinum agents, represented by cisplatin, are the most active
cytotoxic drugs in ovarian cancer (Tapia and Diaz-Padilla, 2013).
Women with platinum-resistant ovarian cancer continue to have
poor survival rates, and effective treatment of platinum resistance
still remains the largest unmet need in ovarian cancer (van Zyl
et al., 2018). To explore the underlying mechanisms of platinum
resistance, we utilize WJSDM to infer the changes of gene
regulatory networks between platinum-sensitive and platinum-
resistant ovarian tumors. In particular, we collect three gene
expression datasets from TCGA database (Network, 2011), which
measure gene expression levels from three platforms, i.e., Agilent
244K Custom Gene Expression G450, Affymetrix HT Human
Genome U133 Array Plate Set and Affymetrix Human Exon 1.0
ST Array. The expression levels of 8,417 genes for 512 samples are
available for all these three platforms. Among the 512 samples, 97
samples are platinum-resistant and 243 samples are platinum-
sensitive. Following Zhang et al. (2017), we focus our analysis on
seven critical pathways involved in platinum resistance,
i.e., apoptosis, cell cycle, ErbB signaling pathway, mismatch
repair, nucleotide excision repair, p53 signaling pathway and
platinum drug resistance (Kanehisa and Goto, 2000). There are
315 genes in our datasets that belong to these seven pathways. The
prior gene interaction network is downloaded from the TRRUST
database (Han et al., 2015). There are 361 prior interactions
among the 315 genes.

According to the parameter selection strategy (i.e., StARS)
introduced above, the tuning parameter λ of our WJSDM is set
to λ � 2.5. The estimated differential network between platinum-
resistant and platinum-sensitive tumors, which describes the
changes of gene regulatory relationships associated with
platinum resistance, is shown in Figure 4. Since we are not
able to obtain the true differential network between platinum-
resistant and platinum-sensitive tumors, it is hard to measure
the accuracy of the estimated differential networks. In fact, a
common challenge in evaluating the performance of differential
network estimation on real data sets is the lack of reference data.
Hub genes in the differential network have more differential
edges, which means they may play more important roles in
driving the resistance of platinum. Thus, in this study, following
previous studies (Zhang et al., 2016, 2017; Ou-Yang et al., 2019),
we investigate the functions of the hub genes in our estimated
differential network. In particular, the top 10 genes with the
highest degree in our estimated differential network are
considered as hubs (Table 1). To verify whether our
identified hub genes are related to platinum resistance in
ovarian cancer, similar to (Zhang et al., 2017), we draw
support from six public datasets. In particular, we collect 161
cisplatin resistance-related genes and 758 drug resistance-
related genes from the database of Genomic Elements
Associated with drug Resistance (GEAR) (Wang et al., 2017),
548 experimentally verified ovarian cancer-related genes from

the ovarian cancer gene database (OCGene) (Liu et al., 2015),
116 anti-cancer drug targets from the cancer drug resistance
database (CancerDR) (Kumar et al., 2013), 572 cancer genes
from the Cancer Gene Census database (Futreal et al., 2004) and
3,545 regulator genes from (Grechkin et al., 2016). Among the
identified 10 hub genes, five of them are cisplatin resistance-
related genes, eight of them are drug resistance-related genes, six
of them are ovarian cancer-related genes, five of them are anti-
cancer drug targets, four of them are cancer genes and nine of
them are regulator genes.

Note that the above six public datasets are still far from
complete. Thus, we also draw support from literature search
to explore whether our identified hub genes are related to
cisplatin resistance in ovarian cancer. Among these genes,
BBC3 has been reported to be associated with cisplatin
resistance in ovarian cancer (Zhang et al., 2012; Grozav et al.,
2015), and has been proposed as a chemosensitizer in platinum
compounds-based ovarian cancer therapy (Yuan et al., 2011).
PARP1 have been shown to involved in cisplatin resistance in
ovarian cancer, and could be treated as a potential sensitizer in
cisplatin chemotherapy (Liu et al., 2018). TP73 has been found to
be associated with clinical responsiveness to platinum-based
chemotherapy in advanced non-small cell lung cancer
(NSCLC) (Yuan et al., 2006). Researches have found that
TP73 could be a genetic marker for ovarian response (Bakay
et al., 2021). Thus, it is interesting to study the association
between TP73 and platinum resistance in ovarian cancer.

We can also find from Table 1 that our identified hub genes
include both differentially (in this study, genes whose p-values are
less than 0.05 are treated as differentially expressed genes) and
non-differentially expressed genes. For example, MAPK8,
CCND1, TP53, CDKN1A and BCL2 are related to cisplatin
resistance in ovarian cancers. None of these five genes showed
differential expression between platinum-resistant and platinum-
sensitive tumors. Thus, our model can identify functional
important genes that cannot be found by differential
expression analysis, which demonstrate the superiority of our
model over differential expression analysis.

3.2.2 Prostate Cancer Analysis
Enzalutamide is a second-generation anti-androgen medication
which has been used in the treatment of prostate cancer (Scher
et al., 2012). However, the mechanisms underlying the resistance
of enzalutamide remain vague. We then apply WJSDM to the
scRNA-seq data of circulating tumor cells of prostate cancer, and
investigate the changes of gene regulatory relationships that
associated with enzalutamide-resistant. In particular, we collect
a scRNA-seq data set of prostate circulating tumor cells from
GEO database with accession number: GSE67980 (Miyamoto
et al., 2015). There are 77 samples isolated from 13 patients,
where 41 samples are enzalutamide-naive and 36 samples are
enzalutamide-resistant (Chiu et al., 2018). Among 21,696 genes,
7,508 genes have no sequencing reads in all the 77 samples. We
focus our analysis on three critical pathways download from the
Kyoto Encyclopedia of Genes and Genomes database (Kanehisa
and Goto, 2000), i.e., Notch signaling pathway, Wnt signaling
pathway and PI3K-AKT signaling pathway. By removing genes
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with no sequencing reads, there are 234 genes in the scRNA-seq
data that belong to these three pathways. The prior gene
interaction network is downloaded from the TRRUST
database (Han et al., 2015). There are 178 prior interactions
among the 234 genes.

According to the parameter selection strategy (i.e., StARS)
introduced above, the tuning parameter λ of our WJSDM is
set to λ � 0.7197. The estimated differential network
between enzalutamide-resistant and enzalutamide-naive
samples, which describes the changes of gene regulatory
relationships associated with enzalutamide resistance, is
shown in Figure 5. Hub genes in the differential network
have more differential edges, which means they may play more
important roles in driving the resistance of enzalutamide.
Thus, we investigate the functions of the hub genes in our
estimated differential network. In particular, the top 10 genes

with the highest degree in our estimated differential network
are considered as hubs (as shown in Table 2). We can find
from Table 2 that all of these 10 hub genes are related to
prostate cancer and five of them are associated with
enzalutamide-resistant.

Among these genes, MYC has been reported to be implicated
in the development of enzalutamide resistance and the increase of
MYC expression is correlated with shorter progression free
survival in patients undergoing enzalutamide treatment
(Handle et al., 2019; Furlan et al., 2021). However, this gene
does not show differential expression between enzalutamide-
resistant and enzalutamide-naive samples. Thus, it cannot be
found by differential expression analysis. RAC1, which has been
demonstrated to be upregulated in enzalutamide-resistant
prostate cancer cells, plays a crucial role in enzalutamide
resistance and could be a potential target for the treatment of

FIGURE 4 | The differential network between platinum-resistant and platinum-sensitive tumors identified by WJSDM. Here, yellow nodes denote the top-10 hub
genes in the differential network.

TABLE 1 | Top-10 hub genes in the estimated differential gene network between platinum-resistant and platinum-sensitive tumors.

Rank Gene Degree p-value CR DR OCG ADT CG RG

1 BBC3 9|38|35 0.023|0.016|0.024 √
2 MAPK8 9|21|23 0.306|0.853|0.495 √ √ √ √ √
3 PIK3CD 7|23|21 0.005|0.006|0.001 √
4 PARP1 7|19|20 0.058|0.028|0.003 √ √ √ √
5 CCND1 8|10|21 0.125|0.462|0.071 √ √ √ √ √
6 TP53 4|16|16 0.702|0.681|0.957 √ √ √ √ √
7 CDKN1A 4|10|21 0.519|0.557|0.146 √ √ √ √
8 TP73 9|11|15 0.073|0.854|0.270 √ √
9 BCL2 5|13|16 0.592|0.493|0.167 √ √ √ √ √ √
10 NTRK1 11|16|4 0.011|0.098|0.945 √ √ √ √

If a gene is a cisplatin resistance-related gene (CR), drug resistance-related gene (DR), ovarian cancer gene (OCG), anti-cancer drug target (ADT), cancer gene (CG) or regulator gene (RG),
there is an √ in the corresponding entry. a|b|c§ represents the degree and p-values (computed by Wilcoxon rank-sum test) of genes in the differential networks inferred from three
platforms, respectively.
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castration-resistant prostate cancer (Chen et al., 2020).
Knockdown of TSC1 and TSC2 have been shown to promote
the proliferation of prostate cancer cells Lin et al. (2015). LPAR5
has been reported to be involved with immune response
inhibition and cancer progression Geraldo et al. (2021).
Researches have found that GRB2 is associated with shorter
survival of patients with aggressive prostate cancer (Iwata et al.,
2021). The activation of the IL-6R/JAK/STAT3 pathway has

been found to be involved with the development of
hormonerefractory prostate cancer (Tam et al., 2007). The
combined inhibition of IL6R and HMGB1 has been reported
to be a new treatment for enzalutamide resistance in patients
with advanced prostate cancer (Wang et al., 2018).

The above results demonstrate the effectiveness of our
WJSDM in inferring the difference between the gene networks
of different disease states, and provide important insights about
the underlying regulatory mechanisms of the platinum resistance
in ovarian cancer and the enzalutamide resistance in prostate
cancer.

4 CONCLUSION

Increasing evidences indicate the changes of gene
regulatory relationships between different cell states or
developmental stages, which motivate the development
of computational models to infer differential networks.
In this paper, based on gene expression data and
additional biological knowledge, we propose a novel
differential network estimation method named weighted
joint sparse penalized D-trace model (WJSDM), to infer the
changes of gene regulatory networks between two different
states. By employing D-trace loss function and using a
revised Kendall’s tau correlation, our method can
directly infer the differential network between two
different states from gene expression data with missing

FIGURE 5 | The differential network between enzalutamide-resistant and enzalutamide-naive samples identified byWJSDM. Here, yellow nodes denote the top-10
hub genes in the differential network.

TABLE 2 | Top-10 hub genes in the estimated differential gene network between
enzalutamide-resistant and enzalutamide-naive samples.

Rank Gene Degree p-value PCa ER

1 MYC 35 0.15 ○ ○
2 RAC1 18 5.60e-5 ○ ○
3 CDK4 10 7.84e-4 ○ ○
4 TSC2 9 0.005 ○ ○
5 IL2RB 8 0.005 ○
6 LPAR5 8 0.027 ○
7 GNB2 7 0.010 ○
8 GNG12 7 0.024 ○
9 IL6R 7 0.031 ○ ○
10 TSC1 7 0.010 ○

If the gene is associated with prostate cancer (PCa) or enzalutamide-resistant (ER)
according to literature search (Wu et al., 2006; Tam et al., 2007; Lin et al., 2015;
Wang et al., 2018; Handle et al., 2019; Chen et al., 2020; Kase et al., 2020;
Balijepalli et al., 2021; Dickson et al., 2021; Furlan et al., 2021), a ○ is placed in the
corresponding entry. The p-value of each gene is computed by Wilcoxon rank-
sum test.
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values. Furthermore, to integrate the gene expression data
collected from different data platforms and utilize the
information provided by various prior biological
knowledge, we propose a weighted group bridge penalty
function, which enable our model to draw support from
multiple related data sets. Experiment results on synthetic
data sets show that compared with other state-of-the-art
differential network estimation methods, our method can
infer differential networks more accurately. We also apply
our method to the gene expression data of ovarian tumors
and circulating tumor cells of prostate cancer, and estimate
the differential network associated with platinum
resistance of ovarian cancer and anti-androgen resistance
of prostate cancer. By analyzing our estimated differential
networks, we find some important biological insights about
the mechanisms underlying platinum resistance of ovarian
cancer and anti-androgen resistance of prostate cancer.

With the development of single-cell sequencing techniques, an
increasing number of single-cell multi-omics data are becoming
available. How to efficiently integrate single-cell multi-omics data
is an interesting future work. We will try to extend our model to
handle this problem.
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Identification of Intercellular Signaling
Changes Across Conditions and Their
Influence on Intracellular Signaling
Response From Multiple Single-Cell
Datasets
Mengqian Hao1,2, Xiufen Zou1,2 and Suoqin Jin1,2*

1School of Mathematics and Statistics, Wuhan University, Wuhan, China, 2Hubei Key Laboratory of Computational Science,
Wuhan University, Wuhan, China

Identification of intercellular signaling changes across multiple single-cell RNA-sequencing
(scRNA-seq) datasets as well as how intercellular communications affect intracellular
transcription factors (TFs) to regulate target genes is crucial in understanding how distinct
cell states respond to evolution, perturbations, and diseases. Here, we first generalized our
previously developed tool CellChat, enabling flexible comparison analysis of cell–cell
communication networks across any number of scRNA-seq datasets from interrelated
biological conditions. This greatly facilitates the ready detection of signaling changes of
cell–cell communication in response to any biological perturbations. We then investigated
how intercellular communications affect intracellular signaling response by inferring a
multiscale signaling network which bridges the intercellular communications at the
population level and the cell state–specific intracellular signaling network at the
molecular level. The latter is constructed by integrating receptor-TF interactions
collected from public databases and TF-target gene regulations inferred from a
network-regularized regression model. By applying our approaches to three scRNA-
seq datasets from skin development, spinal cord injury, and COVID-19, we demonstrated
the capability of our approaches in identifying the predominant signaling changes across
conditions and the critical signaling mechanisms regulating target gene expression.
Together, our work will facilitate the identification of both intercellular and intracellular
dysregulated signaling mechanisms responsible for biological perturbations in diverse
tissues.

Keywords: scRNA-seq data, intercellular communication, intracellular signaling, multiscale signaling network,
dysregulated signaling, comparison analysis

INTRODUCTION

Cell–cell communication means that one cell sends a message to another cell through a medium
to initiate cellular response of the target cell. The communication between cells plays a vital role
in the development, physicology, and pathology of muticellular organisms. In this process, cells
can communicate with and respond to neighboring or distant cells through ligand-receptor
interactions by utilizing biochemical molecules, such as cytokines and growth factors.
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Single-cell RNA-sequencing (scRNA-seq), which measures
expression levels of a large number of genes across many
cell types at a single-cell resolution, provides a great
opportunity to study the cell–cell communication between
interacting cells and the signaling response governed by
intracellular gene regulatory networks (GRNs) (Almet,
et al., 2021; Shao, et al., 2020). Moreover, identification of
signaling changes across conditions is important for
understanding how distinct cell states respond to evolution,
perturbations, and diseases (Armingol, et al., 2021).

Although a number of computational methods have been
recently developed to infer cell–cell communication by
integrating scRNA-seq data with a prior ligand–receptor
interaction database, most of these methods only focus on
the intercellular communications in one biological condition
(Almet, et al., 2021; Armingol, et al., 2021), lacking the
capability of identifying signaling changes across
conditions. We have recently developed a computational
tool CellChat (Jin, et al., 2021) to identify dysregulated
interactions by comparing cell–cell communication
networks across conditions. However, CellChat focuses
primarily on the comparison analysis between two datasets
from two interrelated biological conditions. Other methods,
including iTalk (Wang, et al., 2019) and Connectome
(Raredon, et al., 2021), have also been developed recently
to perform comparison analysis. With the increasing number
of scNRA-seq datasets collected from multiple conditions,
time points, and disease states, easy-to-use tools that can
seamlessly identify signaling changes across any biological
conditions from multiple scRNA-seq datasets are highly
needed.

Understanding how cell–cell communication affects the gene
expression of target cells via transcription factors (TFs) is crucial
to understand how target cells respond to extracellular signals
and eventually the functional role of cell–cell communication.
However, there are only rudimentary efforts to link cell–cell
communication to downstream response via GRNs (Browaeys,
et al., 2020; Cheng, et al., 2021; Hu, et al., 2020; Sha, et al., 2020),
such as NicheNet, scMLnet, and CytoTalk. NicheNet and
scMLnet build GRNs by directly curating the interactions
among ligands, receptors, TFs, and target genes from public
databases, while CytoTalk infers GRN by calculating the
mutual information between all pairs of genes without
discriminating TFs from target genes. Constructing a
multiscale signaling network, which links data-driven
intercellular communications with intracellular TF-target
regulations, still remains challenging, preventing the better
understanding of cell type–specific response to cell–cell
communication.

To address these limitations, we first generalized our
previously developed R package CellChat to enable the
comparison analysis of any number of datasets from multiple
conditions, allowing ready identification of signaling changes
across conditions. In addition, we infer a multiscale signaling
network which integrates the ligand–receptor interactions
inferred from CellChat, the receptor-TF interactions from
public databases, and the TF- gene regulations from a

mathematical optimization model taking into account the
prior network information from public databases. Of note, we
build cell type–specific networks from the integrated network by
identifying enriched TFs and target genes based on the
differential expression analysis. Therefore, our multiscale
framework provides a clear understanding of how the
upstream of the signaling pathway in cell–cell communication
regulates the downstream target genes in a sequential way. We
apply our approaches to three scRNA-seq datasets from mouse
skin embryonic development, mouse spinal cord injury, and
human COVID-19 infection. Applications not only
demonstrate the capability of our methods but also provide
novel insights into signaling mechanisms driving phenotype
transitions.

RESULTS

Overview of Identifying Intercellular
Signaling Changes Across Conditions and
Their Link to Intracellular Signaling
Response From Multiple scRNA-Seq
Datasets
We first generalized our previously developed tool CellChat
together with the R package, providing a more coherent and
easy-to-use way to perform comparison analysis of cell–cell
communication across conditions from any number of
scRNA-seq datasets. Cellchat requires users to provide a
scRNA-seq dataset (gene expression data across cells) with
cell type labels as the input (Figure 1A). After receiving the
input information, CellChat infers statistically and
biologically significant cell–cell communication networks
for each dataset. Compared to the original CellChat that
was limited to the comparison analysis of only two
datasets, the updated CellChat generalizes many existing
functions, which enables systematical comparison analysis
of intercellular communications across any number of
scRNA-seq datasets. Of note, cell type compositions in
different datasets do not need to be exactly the same.
Moreover, by introducing a merged CellChat object from a
list of CellChat objects, the updated CellChat allows the
comparison analysis of cell–cell communication networks
across all input datasets in a coherent and flexible fashion.
Specifically, CellChat can identify the changes of the
dominant sender and receiver in cell groups by comparing
any two datasets using network centrality metrics such as out-
degree and in-degree. CellChat can also identify the
predominantly altered signaling pathways and
ligand–receptor pairs by comparing the inferred
communication probabilities and projecting the inferred
cell–cell communication networks onto a shared low-
dimensional space for any number of datasets. CellChat
displays the results of comparative analysis of multiple
datasets in a variety of intuitive visualization methods,
such as scatter plots, heatmaps, bar plots, and bubble plots
(Figure 1A).
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FIGURE 1 | Overview of identifying intercellular signaling changes across conditions and inferring the multiscale signaling network from multiple scRNA-seq
datasets. (A) The generalized CellChat identifies intercellular signaling changes across conditions from multiple scRNA-seq datasets. CellChat requires the users to
provide multiple datasets with cell type labels as input, where the cell types of different data sets may not be exactly the same. CellChat identifies biologically significant
signaling pathways for each dataset separately and then performs comparative analysis across multiple datasets in a systematic and quantitative manner. CellChat
identifies signaling changes across multiple datasets in terms of cell types and signaling pathways or ligand receptor pairs. Different plots are provided to allow ready
comparison analysis. (B) Multiscale signaling network is inferred to link intercellular communication to intracellular signaling, which integrates the ligand–receptor
interactions, receptor-TFs interactions, and TFs-target gene interactions.
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FIGURE 2 | Comparison analysis predicts WNT signaling as a predominant signaling change during mouse embryonic skin development. (A) The comparison of
the total number of interactions among different cell populations between E14.5, E16.5, and E18.5. Edge width is proportional to the number of interactions, which
assess how many ligand–receptor pairs contributing to the communication between two interacting cell populations. (B) Heatmap showing the differential number of
interactions between E14.5, E16.5, and E18.5. In the color bar, red (or blue) represents increased (or decreased) signaling in the second dataset compared to the
first one. (C) Identifying the specific signaling changes of IFE-B.1 and IFE-B.2 from E14.5 to E18.5. (D) The inferredWNT signaling pathway network andWnt4 - (Fzd10 +
Lrp5) signaling network at E18.5. (E) Projection and classification of signaling networks from E14.5, E16.5, and E18.5 onto a two-dimensional space based on the
network similarity. Different shapes represent signaling networks from different developmental stages. (F)Computing the pathway distance of the signaling network from
E14.5, E16.5, and E18.5 based on their Euclidean distance in the shared two-dimensional space.
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We then build a multiscale signaling network by
integrating the cell–cell communication between
interacting cells (i.e., intercellular communication) with the
downstream signaling inside target cells (i.e., intracellular
signaling). The intercellular communication is given by
CellChat while the intracellular signaling is inferred by
constructing a gene–gene network linking receptors, TFs,
and target genes. Specifically, the construction of a
multiscale signaling network includes five steps. Step 1, the
intercellular communication mediated by ligand–receptor
interactions is obtained by CellChat. Step 2, the receptor-
TF subnetwork is collected from a comprehensive database
OmniPath (Türei, et al., 2016; Türei et al., 2021). Step 3, the
TF-target gene subnetwork is inferred by integrating the TF
activity data, the gene expression data, and the prior network
information from the OmniPath database via a network-
regularized regression model (MATERIALS AND
METHODS). The TF activity is estimated based on their
target gene expression in the scRNA-seq data using the
widely used method DoRothEA (Garcia-Alonso, et al.,
2019). Step 4, the multiscale signaling network is
constructed by integrating the intercellular communication
network, the receptor-TF network, and TF-target gene
network, which links intercellular communications with
intracellular signaling response. Step 5, the cell
type–specific multiscale signaling network is finally
constructed by only retaining the cell type–enriched TFs
and target genes based on differential expression analysis
(Figure 1B).

Together, our new approaches will advance our understanding
of signaling mechanisms by identifying signaling changes that
potentially drive phenotype transitions and by constructing
multiscale signaling networks that imply how intercellular
communications affect intracellular TFs to regulate target gene
expression.

Comparison Analysis Predicts WNT
Signaling as a Predominant Signaling
Change During Mouse Embryonic Skin
Development
To demonstrate the capability of our approaches in capturing
predominant signaling changes across multiple time points, we
first applied our generalized CellChat to our previously published
mouse skin scRNA-seq datasets, which described epidermal
development at three embryonic stages: E14.5, E16.5, and
E18.5 (newborn) (Lin, et al., 2020). Unsupervised clustering
identified five interfollicular epidermis (IFE) cell states: two
basal cell states (IFE-B.1 and IFE-B.2), two transition cell
states (IFE-T.1 and IFE-T.2), differentiated cells (IFE-D), and
terminally differentiated cells (IFE-TD) (Lin, et al., 2020)
(Supplementary Figure S1A).

To study how the cell–cell communication changes across
different stages during mouse embryonic development, we first
compared the number of inferred interactions among different
cell populations among E14.5, E16.5, and E18.5 (Figures
2A,B). We observed slightly decreased cell–cell

communication at E16.5 compared to E14.5, but
significantly dynamic changes at E18.5 compared to both
E14.5 and E16.5, suggesting dramatic signaling changes
from E16.5 to E18.5 at the later embryonic stages. In
particular, both outgoing and incoming signaling associated
with IFE-B.1 and IFE-B.2 was predominantly increased at
E18.5 compared to both E14.5 and E16.5. Surprisingly, our
results showed that IFE-T.2 does not have any communication
with any cell populations, which is likely due to the very few
number of cells in IFET.2 at E18.5 (Figure 2A and
Supplementary Figure S1A).

Moreover, to identify the signaling pathways contributing to
the dramatic signaling changes of IFE-B.1 and IFE-B.2, we
calculated the differential outgoing and incoming interaction
strength of each signaling pathway between E14.5 and E18.5.
For both IFE-B.1 and IFE-B.2, we observed WNT signaling as
the most predominantly increased signaling at E18.5 compared
to E14.5, as reflected by the largest differential outgoing and
incoming interaction strength compared to other signaling
pathways (Figure 2C), which was in agreement with the
previous finding. In addition to WNT signaling, we also
observed other increased signaling changes for both outgoing
and incoming signaling including BMP, MIF, GALECTIN, and
IL1, and decreased signaling including MK and PTN
(Figure 2C). Attractively, our previous study experimentally
showed that WNT-secreting stem cells play a central role in IFE
self-renewal during homeostasis, which can inhibit the
expansion of epidermal stem cells and the appearance of
abnormal stem cell states (Lin, et al., 2020), in particular
Wnt4 signaling. Indeed, we calculated the contribution of
each ligand–receptor pair to the WNT signaling pathway and
observed that Wnt4 - (Fzd10 + Lrp5) makes a relatively large
contribution (Supplementary Figure S1B). By examining the
gene expression levels of the ligandWnt4 and its receptor Fzd10
and coreceptor Lrp5, IFE-B.1 and IFE-B.2 exhibited relatively
high expression (Supplementary Figure S1C). Consistent with
these observations, the inferred cell–cell communication
networks of the WNT signaling pathway and the
ligand–receptor pair Wnt4 - (Fzd10 + Lrp5) showed that
IFE-B.1 and IFE-B.2 are the dominant signaling sources and
targets at E18.5. In addition, IFE-T.1 and IFE-TD emerge as the
signaling source and target, respectively, helping drive the
complexity of WNT signaling.

We next investigated how the cell–cell communication
architecture changes by projecting the inferred cell–cell
communication networks from the three development
stages onto a shared two-dimensional space based on
whether they have similar signaling sources and targets
(MATERIALS AND METHODS). This analysis classified
all significant signaling pathways into four groups.
Interestingly, the shared signaling pathways from two
development stages were classified into different groups,
such as WNT, BMP, and IGF (Figures 2E,F), suggesting
that these pathways changed their cell–cell communication
architecture during embryonic development.

Together, comparison analyses of the inferred cell–cell
communication networks across the three embryonic
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FIGURE 3 |Comparisonanalysis revealsmyeloid cell–mediatedsignalingmechanismsandpinpoints the key timepoint of signalingchanges in response tomousespinal cord injury. (A)
Comparison of the total number of interactions of the inferred cell–cell communication networks from uninjured, 1, 3, and 7dpi. (B)Heatmaps of the differential number of interactions between
uninjuredand1dpi aswell asuninjuredand7dpi, showing theoutgoingand incomingsignalingchangeof eachcell group in agreater detail (The topcoloredbarplot represents thesumofeach
column of values displayed in the heatmap (incoming signaling). The right colored bar plot represents the sumof each row of values (outgoing signaling). (C)Scatter plots comparing the
outgoing and incoming interaction strength in the 2Dspace amonguninjured, 1dpi, and7dpi. (D) Identifying signaling changes associatedwithmacrophagesby comparing uninjuredwith 1, 3,
and 7dpi, respectively. (E) Identification of dysfunctional signaling by comparing the communication probabilities mediated by ligand–receptor pairs from macrophages to astrocytes and
fibroblasts. (F) Circle plots displaying the inferred network of the OSM signaling pathway at uninjured, 1, 3, and 7dpi. Edge width is proportional to the inferred communication probabilities.
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development stages suggest the dramatic signaling changes at the
later stages and revealed WNT signaling as a predominant
signaling change during mouse embryonic skin development.

Comparison Analysis Reveals Myeloid
Cells-Mediated Signaling Mechanisms and
Pinpoints the Key Time Point of Signaling
Changes in Response toMouse Spinal Cord
Injury
Next, we demonstrate how our generalized CellChat can be
applied in studying temporal changes of intercellular
communications over four time points using a recently
published mouse spinal cord injury sc-RNAseq dataset
(Milich, et al., 2021). This dataset describes the wound healing
process that occurs after spinal cord injury over four time points,
including the uninjured and injured spinal cord at 1, 3, and 7 days
postinjury (dpi). 66,176 cells were classified into 15 distinct cell
groups: microglia, astrocytes, monocytes, macrophages,
neutrophils, div-myeloid cells, dendritic cells, lymphocytes,
oligodendrocytes (OLs), OPCs, neurons, fibroblasts, pericytes,
ependymal cells, and endothelial cells.

We first compared the total number of interactions (i.e., the
number of ligand–receptor pairs contributing to
communication between any two interacting cell groups)
that were inferred by CellChat over spinal cord injury. We
found that the number of cell–cell communication was
significantly increased at 1dpi after spinal cord injury, but
afterwards decreased to its basal level by 7dpi (Figure 3A),
suggesting that 1dpi was a critical time point where cell–cell
communication between different cell types was significantly
enhanced. To find out the interaction between which cell
groups was significantly changed, we computed the
differential number of interactions for both outgoing and
incoming signaling of pairwise cell groups between any
pair of two time points. We observed that the number of
interactions between cell groups at 1dpi was mostly increased
compared to the uninjured, while cell–cell communication at
3dpi and 7dpi exhibited a dynamic change with both increased
and decreased interactions (Figure 3B). Interestingly, both
outgoing signaling and incoming signaling of fibroblasts and
astrocytes were consistently enhanced at 1dpi, 3dpi, and 7dpi
compared to the uninjured, consistent with the known
important role of fibroblasts in tissue repair (Plikus, et al.,
2021) (Figure 3B and Supplementary Figure S2A).

In addition, we studied how the major signaling sources
and targets changed after injury. Compared to the uninjured
tissue, we found that both the outgoing and incoming
interaction strength of several myeloid cell populations,
including the macrophage, monocyte, neutrophil,
microglia, and dendritic cells, were significantly increased
at 1dpi, and the outgoing and incoming interaction
strength of fibroblasts was increased at 3dpi and then,
further enhanced at 7dpi (Figure 3C and Supplementary
Figure S2B). These results agreed well with the previous
findings: 1) At 1dpi, peripheral myeloid cells, mainly
neutrophils and monocytes, migrate to the injury site and

then enhance the innate immune response initiated by the
microglia (Milich, et al., 2019); 2) Fibrosis is initiated at 3dpi
and the number of fibroblasts reaches its peak at 7dpi (Zhu,
et al., 2015). These two findings suggest the potential role of
myeloid cells in initiating fibrosis after spinal cord injury.

To identify myeloid cell–mediated mechanisms of fibrosis,
we examined signaling changes associated with macrophages
by comparing its outgoing and incoming interaction strength
of each signaling pathway at 1, 3, and 7dpi with the uninjured
tissue. SPP1 signaling consistently exhibited the
predominantly increased outgoing and incoming
interaction strength at 1, 3, and 7dpi compared to the
uninjured (Figure 3D), suggesting the important role of
SPP1 signaling after spinal cord injury. This is consistent
with the known neuroprotective roles of SPP1 and the worse
histopathology and behavioral recovery in SPP1-knockout
mice after spinal cord injury (Milich, et al., 2021). In
addition, CCL signaling was also clearly increased at 1dpi
compared to the uninjured (Figure 3D), which agreed with
the innate immune response initiated by myeloid cells at 1dpi
(Milich, et al., 2019). Furthermore, comparing the
communication probabilities mediated by ligand–receptor
pairs from macrophages to fibroblasts and astrocytes, we
identified ligand-receptor pairs that were only enriched at
1, 3, and 7dpi, including SPP1 signaling such as Spp1 - (Itgav +
Itgb5) and Spp1 - (Itga5+Itgb1) and OSM signaling such as
Osm - (Osmr + Il6st) (Figure 3E and Supplementary Figure
S2C). Consistent with our prediction, the previous study
showed that OSM is a common mechanism by which
fibroblasts and astrocytes are preferentially activated by
monocyte/macrophage subtypes after spinal cord injury
(Milich, et al., 2021). By examining the inferred cell–cell
communication network at each time point, we found that
OSM signaling was strongly activated with more signaling
sources and a stronger interaction strength at 1dpi
(Figure 3F). Compared to the uninjured tissue, other
myeloid cells, including the monocyte, dendritic cells, and
dividing myeloid cells (div-myeloid), emerged as new
signaling sources, helping enhance the cell–cell
communication driven by the macrophage. Notably,
fibroblasts and astrocyte cells emerged as new signaling
targets after injury, suggesting the myeloid cell–mediated
signaling mechanisms of fibrosis. Taken together, our
systematical comparison analysis pinpoints 1dpi as the key
time point of signaling changes in response to spinal cord
injury and reveals myeloid cell–mediated signaling
mechanisms of fibrosis after mouse spinal cord injury.

Comparison Analysis Identifies Crucial
Signaling Changes Responsible for Disease
Severity Related to COVID-19
Due to the ongoing pandemic caused by the new coronavirus
(SARS-CoV-2), it is of great significance to investigate the
level of cell-to-cell communication in patients with different
severity of diseases related to COVID-19. We used scRNA-seq
data from 19 patients with COVID-19 and five SARS-CoV-2-
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FIGURE 4 | Comparison analysis of cell–cell communication identifies major signaling changes in patients with COVID-19 across control, moderate, and critical
cases. (A) Comparison of the number of interactions among different cell populations. (B) Differential number of interactions in the cell–cell communication network
between control, moderate, and critical in greater details. (C) Signaling changes of the major cell groups that send or receive signals. Positive values in the differential
outgoing (or incoming) interaction strength suggest the increased likelihood being sender (or receiver) in the second dataset compared to the first dataset. (D) The
comparison of the signaling pathway based on the relative information flow between pairwise datasets. (E) Identifying altered ligand–receptor pairs fromCTL to secretory
and ciliated cells by comparing their communication probabilities between control, moderate, and critical.
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negative donors with no signs of the disease. This dataset
includes five control cases, eight moderate cases, and eleven
critical cases. In the control, moderate, and critical samples,
each contains 2,982, 82,814, and 49,804 cells. We performed
downsampling of the moderate and critical samples by
randomly taking 20,000 cells from each sample without
losing any cell population. This dataset comprises 20 cell
populations, including ciliated-diff cells (differentiating
ciliated), secretory-diff cells (differentiating secretory),
ciliated cells, FOXN4+ cells, squamous cells, secretory cells,
cytotoxic T lymphocytes (CTL), natural killer T cells (NKT), B
lymphocytes (BC), plasmacytoid dendritic cells (pDC),
monocyte-derived macrophages (moMa), basal cells,
proliferating NKT cells (NKT-p), IFNG-responsive cells
(IFNRep), regulatory T cell (Treg), neutrophils (Neu),
monocyte-derived dendritic cells (moDC), nonresident
macrophages (nrMa), resident macrophages (rMa), and
ionocytes.

After applying our generalized CellChat to the control,
moderate, and critical samples separately, we calculated the
total numbers of inferred interactions and observed an
increased trend as the severity of the disease increases, with
the highest interaction number of interactions detected in
critical samples (Figure 4A). In more detail, we computed the
differential number of interactions for both outgoing and
incoming signaling of pairwise cell groups between
different severities. Overall, the number of interactions was
largely increased in moderate and critical samples compared
to control, but exhibited dynamic changes when comparing
moderate and critical (Figure 4B). Compared to control, the
number of outgoing and incoming interactions of FOXN4,
ciliated, and secretory cells in moderate and critical cases is
higher. Compared to moderate cases, the outgoing signaling
of FOXN4, ciliated, and some immune cells such as nrMa,
moMa, Neu, CTL, NKT, and NKT-P was predominantly
increased in critical cases (Figure 4B). Next, we examined
the major source and target changes in different stages of
COVID-19 by computing the differential outgoing and
incoming differential interaction strength associated with
each cell type (Figure 4C). Interestingly, compared to
control, all cell types exhibited increased signaling in either
outgoing or incoming signaling. In particular, FOXN4, CTL,
moMa, pDC, and Treg in moderate and critical
predominantly increased their outgoing and incoming
interaction strength. CTL-, nrMa-, moMa-, Neu-, and
NKT-associated signaling were further enhanced in critical
compared to moderate.

We further focused on the specific signaling changes of two
epithelial cell types: secretory and ciliated. Compared to
control, certain chemokine and cytokine signaling pathways
in moderate and critical were increased in their interaction
strength (Supplementary Figure S3A). For the secretory-
related signaling, CXCL, IFN-II, and IL1 increased either
outgoing or incoming signaling; for the ciliated-related
signaling, CCL, IFN-II, and IL2 increased either outgoing or
incoming signaling. In addition, we compared the information
flow (i.e., the sum of communication probabilities among all

pairs of cell populations in the inferred network) for each
signaling pathway between control, moderate, and critical
samples (Figure 4D). We found that, compared to control,
about half of the signaling pathways were highly enriched in
moderate and critical (green and blue colors in left and middle
panels in Figure 4D). These included many inflammatory
signaling pathways such as IFN- II, CCL, CXCL, IL1, and
IL2, suggesting that moderate and critical COVID-19
strongly trigger a series of inflammatory responses.
Interestingly, compared to moderate, certain inflammatory
response–related signaling were diminished in critical, such
as OSM, IL10, TWEAK, CXCL, and LIGHT, while other
inflammatory response–related signaling were enhanced in
critical, such as IL2, IL16, CCL, LIFR, and CD40, suggesting
that different inflammatory signaling likely play distinct roles
in moderate vs. critical COVID-19.

Given the predominant signaling change of the immune
cell CTL and epithelial cell secretory and ciliated, we
investigate important ligand–receptor pairs sending from
CTL cells to secretory and ciliated cells in moderate and
critical. Compared to control, we observed that IFNG-
(IFNGR1+IFNGR2) signaling was increased in both
moderate and critical and TGFb-related signaling such as
TGFB1-(ACVR1B + TGFBR2) was increased in critical
compared to moderate (Figure 4E), suggesting the
important role of IFN-II signaling in the interplay between
immune cells and epithelial cells. Taken together, our
comparison analysis revealed crucial signaling changes
related to immune and epithelial cells and highlighted the
ligand IFNG and its receptors IFNGR1 and IFNGR2 as critical
enhanced signaling from CTL to secretory and ciliated cells,
which might be responsible for disease severity related to
COVID-19.

Multiscale Signaling Network Elaborates
the Signaling Mechanisms of How SARS-
CoV-2 Receptor ACE2 is Activated in
Epithelial Lung Cells of Severe COVID-19
The binding of virus to the host receptor ACE2 greatly facilitates
the infection of the mucosa of the upper respiratory by SARS-
CoV-2. Therefore, the understanding of how ACE2 is activated in
epithelial lung cells in patients with COVID-19 is crucial for
therapeutic intervention of viral infection. To understand the role
of cell–cell communication in activating ACE2 expression in the
target cell, we constructed a multiscale signaling network by
integrating the intercellular communications with the
intracellular downstream signaling response (MATERIALS
AND METHODS).

Our comparison analysis of cell–cell communication
among control, moderate, and critical pinpoints the strong
activation of cell–cell communication from the immune CTL
cells to the epithelial secretory and ciliated cells mediated by
IFN-II signaling in the moderate and critical compared to
control (Figure 4E). By examining the inferred cell–cell
communication network of the IFN-II signaling pathway
(Figure 5A), we found that, compared to control, IFN-II
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signaling is strongly activated in moderate with a stronger
interaction strength and more signaling targets. CTL is the
dominant signaling source and FOXN4, ciliated, and ionocyte

cells emerge as new signaling targets in moderate and critical
(Figure 5A). Interestingly, the cell–cell communication
strength is slightly diminished in critical compared to

FIGURE 5 |Multiscale signaling network of CTL-to- secretory and CTL-to-ciliated reveals how intercellular communication activates the ACE2 expression via TFs in
COVID-19. (A) Circle plots depicting the inferred IFN-II cell–cell communication networks between different cell groups in control, moderate, and critical. (B) Expression
of IFN-II signaling–related genes such as IFNG, IFNGR1, and IFNGR2 in control, moderate, and critical COVID-19. (C) The inferred multiscale signaling network of CTL-
to- secretory in critical COVID-19. (D) The inferred multiscale signaling network of CTL-to- ciliated in critical COVID-19.
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moderate, possibly due to the relatively lower expression of the
IFNG’s receptors IFNGR1 and IFNGR2 in critical compared to
moderate (Figure 5B).

Furthermore, we applied our computational framework of
multiscale signaling network construction to study how CTL
activates the ACE2 expression in the secretory and ciliated
cells through the cell–cell communication. Therefore, we
integrated the cell–cell communication network of CTL-to-
secretory and CTL-to-ciliated with the downstream signaling
network in secretory and ciliated cells, respectively. The
downstream signaling network was constructed by
integrating the receptor-TFs and TFs-target gene
interactions (MATERIALS AND METHODS). Finally, we
constructed two multiscale signaling networks for CTL-to-
secretory and CTL-to-ciliated, respectively (Figures 5C,D).
For the inferred multiscale signaling network of CTL-to-
secretory, we observed many interferon, cytokines, and
growth factors–related upstream ligands, such as IFNG,
IFNB1, IFNE, IL6, IL10, IL2, IL17, OSM, IL4, IL7, VEGFA,
EREG, TGFA, and EGF, as well as their corresponding
receptors activated in secretory cells, such as IFNGR1,
IFNGR2, IL6ST, IL2RG, KDR, and EGFR. Interestingly, our
results showed that these ligand–receptor pairs activated three
TFs, including STAT1 as the major activator and E2F1 and
TP53 as the minor activators, and ACE2 can be activated by
these three TFs. These results suggested that STAT1 was the
major regulator to activate ACE2 in secretory cells, which is
consistent with the previous finding (Chua, et al., 2020) and
the known important role of the JAK-STAT signaling pathway
during viral infection. Surprisingly, the inferred multiscale
signaling network of CTL-to-ciliated showed that WNT
signaling was highly activated in ciliated cells, which
triggers the activation of three TFs including NFATC2,
HNF1A, and NANOG and further activates the
downstream target gene ACE2 expression (Figure 5D).
Interestingly, previous studies showed that HNF1A is a
master regulator of ACE2, and overexpression of HNF1A
and ACE2 indicates greater risk of death or cardiovascular
disease events (Narula, et al., 2020). In addition, NFATC2 is
the predominant NFAT family members in the peripheral
immune system and may be as a potential marker related to
lung damage (Maremanda, et al., 2020). These results suggest
the potential role of these TFs in regulating ACE2 expression
in ciliated cells and might be considered as new therapeutic
targets. Taken together, our multiscale signaling framework
helps to elaborate the signaling mechanisms of how the SARS-
CoV-2 receptor ACE2 is activated by TFs in epithelial lung
cells of severe COVID-19.

Comparison CellChat With Other Cell-Cell
Communication Tools
The characteristics of CellChat and its comparison with
other tools, including iTalk, Connecctome, and NicheNet,
are summarized in Supplementary Figure S4A. Briefly,

compared to these three tools, the updated CellChat is
the only easy-to-use tool that can seamlessly identify
signaling changes across any number of scRNA-seq
datasets. NicheNet does not perform comparison analysis
across distinct datasets. These three tools do not consider
the multisubunit structure of ligand–receptor complexes and
membrane-bound stimulatory and inhibitory cofactors,
which are necessary for certain ligand–receptor binding.
Moreover, iTalk and Connectome do not infer the
intracellular signaling network.

Since our previous study has already performed
comparison analysis with iTalk (Jin et al., 2021) and
NicheNet does not explicitly infer the cell–cell
communication network, here we only compare CellChat
with Connectome in their ability of identifying signaling
changes across conditions. We aimed to identify signaling
changes responsible for disease severity related to COVID-19.
We found that CellChat produced upregulated and
downregulated signaling genes that were more differentially
expressed compared to Connectome, as reflected by a higher
avg [log2(FC)] and −log10 (p_val_adj) of genes in the
predicted ligand-receptor pairs (Supplementary Figure
S4B). This result suggests that CellChat inferred more
significant ligand–receptor interactions that were changed
across conditions. By examining the list of inferred
signaling pathways, interestingly, Connectome did not
produce the IFN-II signaling while CellChat did. This
signaling pathway has been shown to be strongly activated
in moderate and critical compared to control during COVID
infection (Chua et al. 2020). This result indicates CellChat’s
ability in predicting dysfunctional signaling pathways across
conditions.

MATERIALS AND METHODS

CellChat requires gene expression data of cells as the user inputs
and models the probability of cell–cell communication by
integrating gene expression with prior knowledge of the
interactions between signaling ligands, receptors, and their
cofactors. Upon inferring the intercellular communication
network, CellChat provides functionality for further data
exploration, analysis, and visualization (Jin, et al., 2021).
Compared to the original CellChat, here we made two
important additions. First, the updated CellChat enables
systematical comparison analysis of intercellular communication
between interacting cells across any number of scRNA-seq datasets
rather than limiting to two datasets. In this way, significant
signaling changes across multiple conditions or time points can
be presented in an intuitive way. Second, the updated CellChat is
able to infer the multiscale signaling network linking intercellular
communication with intracellular downstream signaling, which
helps to better understand how the upstream of the signaling
pathway in intercellular communication affects intracellular TFs to
regulate the target gene expression.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 75115811

Hao et al. Dysregulated Intercellular and Intracellular Signaling

71

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Comparison Analysis of Intercellular
Communication Between Interacting Cells
Across Multiple Datasets
We generalized some functions and analysis in our previously
developed R package CellChat, which can then be used for
comparative analysis across multiple datasets. Here, we briefly
described several key functionalities in the updated CellChat R
package.

Identification of Important Signaling Sources and
Targets in the Intercellular Communication Networks
We identified the dominant signaling sources and targets by
defining the outgoing and incoming interaction strength as the
out-degree and in-degree centrality metrics in the weighted
cellular communication network, where the edge weights are
assigned by the communication probabilities computed from
CellChat (Jin, et al., 2021). The in-degree refers to the sum of
the communication probabilities of incoming signaling to a cell
group, while the out-degree is computed as the sum of
communication probabilities of the outgoing signaling from a
cell group. In this way, we can study the detailed changes in the
outgoing and incoming signaling across all significant pathways.

Identification of Altered Signaling Pathways by
Comparing the Information Flow of Each Signaling
Pathway
The information flow for each signaling pathway is defined by the
sum of communication probabilities among all pairs of cell
groups in the inferred network (that is, the total weights in
the network). We can compare the total information flow in
the cell–cell communication network of each signaling pathway
across different datasets under different conditions, leading to the
identification of changes in important signaling pathways.

Identification of Signaling Networks With Architecture
Difference Across Multiple Datasets Based on Their
Network Similarity
CellChat quantifies the similarity of multiple cellular
communication networks using structural similarity and
functional similarity and performs joint manifold learning and
classification of the inferred communication networks based on
the computed similarity to identify signaling networks with a
certain difference. Here, we focus on the functional similarity,
which is calculated by using Jaccard similarity on the basis of the
overlap of the major targets and sources in communications
defined by:

S � E(G) ∩ E(G′)
E(G) ∪ E(G′) − E(G) ∩ E(G∧′), (1)

where G and G′ are two signaling networks, and E(G) is the set
of communications in signaling network G. The higher the
functional similarity, the more similar the major senders and
receivers are, which means that the two signaling pathways or two
ligand–receptor pairs exhibit more similarity. Therefore, two cell-
cell communication networks showing less functional similarity

suggest that they change their signaling sources and targets across
different datasets, implying the difference in network
architecture.

Inference of Multiscale Signaling Network
by Integrating Intercellular Communication
with Intracellular Signaling Network
The construction of a multiscale signaling network includes the
following five steps.

Step 1: Construction of the ligand–receptor subnetwork.
A very important way of information transmission between

cells is the interaction between ligands and receptors on the cell
surface. The ligand–receptor subnetwork is obtained by applying
CellChat to the scRNA-seq data, which infers the biologically
significant cell–cell communication network mediated by
ligand–receptor interactions based on the database CellChatDB
of ligand-receptor pairs in human and mice (Jin, et al., 2021).

Step 2: Construction of the receptor-TF subnetwork.
From the public databases, we get the receptor-TF prior

network from the OmniPath database (Türei, et al., 2016;
Türei et al., 2021), “kinaseextra” and “pathwayextra” using
OmnipathR package (https://github.com/saezlab/OmnipathR).

Step 3: Construction of the TF-target gene subnetwork.
We focused on the cell type–specific signaling network and

thus first identified enriched genes and TFs in each cell group.
The nonparametric Wilcoxon rank sum test in Seurat v.3
(FindAllMarkers function) was used to perform differential
gene expression analysis (min.pct � 0.25, logfc. threshold �
0.25). Genes were considered as enriched genes with an
adjusted p-value < 0.05. To better model the relationship
between TFs and their target genes, we estimated TF activity
based on the target’s mRNA expression level from scRNA-seq
data using DoRothEA (Garcia-Alonso, et al., 2019) since TF
activity is difficult to measure directly and it may be possible
to infer changes in the TF activity level from changes in the
expression levels of the TF’s target genes. We then identified the
enriched TFs in certain cell groups using the differential
expression analysis based on the computed TF activity data.

To better infer the TF-target gene regulatory network, we
integrated TF-target gene interactions from public databases with
scRNA-seq data. We selected TF-target gene interactions with
high confidence levels A, B, and C from the OmniPath database.
Then, the inference of the TF-target gene regulatory network can
be formulated as the following mathematical optimization
problem

min
X

1
2
‖A −XB‖2F +

1
2
λ1 ‖X+N‖2F + λ2 ∑m

i�1
‖Xi,:‖1, (2)

where X is the TF-target regulatory network we need to infer.
A is the target gene expression matrix (rows are target genes
and columns are cells. B is the TF activity matrix (rows are TFs
and columns are cells). N is the prior TF-target network from
the public database (rows are target genes and columns are
TFs). The value of each element Nij is 0 or 1, where 0 means
that there is no priori connecting edge between TFj and

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 75115812

Hao et al. Dysregulated Intercellular and Intracellular Signaling

72

https://github.com/saezlab/OmnipathR
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Target genei, and 1 indicates that there is a prior connecting
edge. + represents dot product. The last term constrains the
sum of the absolute value of all link’s weight coefficients,
which can reduce the complexity of the model and make the
network sparse, leading to more biologically explanatory
results. Here, we choose the two regularization parameters
λ1 and λ2 as 50 and 10, respectively.

We used the ADMM algorithm to efficiently solve this
optimization problem. We rewrite the optimization problem as:

min
X,Z

1
2
‖A −XB‖2F +

1
2
λ1 ‖Z+N‖2F + λ2 ∑ ‖

m

i�1
Zi,.‖1. (3)

Subject to X − Z � 0
The augmented Lagrangian with penalty parameter t > 0 is:

Lt(X,Z,Y) � 1
2
‖A −XB‖2F +

1
2
λ1 ‖Z+N‖2F + λ2 ∑m

i�1

‖Zi,.‖1 + tYT(X − Z) + t

2
. (4)

We then solved this optimization problem by following the
update rules and stop criterion.

Update rules:
1) Update X:

Xk � argmin
X

Lt(X, Zk−1,Yk−1) (5)

2) Update Z:

Zk � argmin
Z

Lt(Xk, Z,Yk−1) (6)

3) Update Y:

Yk � Yk−1 + t(Xk − Zk ) (7)

Stop criterion:
dual residual: Sk � −t(Zk − Zk−1)
primal residual: Rk � Xk − Zk

iteration stops when both ||Rk||F and ||Sk||F values become
smaller than ϵpri and ϵdual, respectively,

||Rk||F< ϵpri,
||Sk||F< ϵdual,

where

ϵpri � �
n

√
ϵabs + ϵrel max{||Xk||F, ||−Zk||F},

ϵdual � ��
m

√
ϵabs + ϵrel||Yk||F.

After obtaining the solution X, we determined the weight of the
network by considering another proportionality-based association
measure “propr” (Quinn, et al., 2017), which was shown to perform
very well in inferring gene networks across multiple scRNA-seq
datasets and technologies (Skinnider, et al., 2019). We then defined
the weights in the TF-target gene network as

Xnew � ω ·Xmodel + (1 − ω) ·Xpropr. (8)

Here, we took the value of ω as 0.7. The weighted average is an
ensemble strategy that has been widely used in many other

studies. We also performed comparison analysis of networks
inferred using weighted averageXnew and usingXmodel. By using a
prior network from public databases as a reference, we computed
true positive rate (TPR), false positive rate (FPR), and the area
under the ROC curve (AUC) and showed that the network
inferred with the weighted average produces better results than
Xmodel (Supplementary Figure S5B).

Step 4: Integration of intercellular communication network
with intracellular signaling network.

We subset the receptor-TF network by only retaining
receptors in the intercellular communication network and TFs
in the TF-target gene network. Once we constructed the
intercellular communication network mediated by
ligand–receptor interactions, the receptor-TF network, and TF-
target gene network, we integrated them together to obtain a
multiscale signaling network, linking the intercellular
communication network with intracellular signaling network.

Step 5: Inference of cell type–specific multiscale signaling
network.

Finally, we build the cell type–specific multiscale signaling
network based on whether the TFs and target genes were enriched
in certain cell types based on the differential expression analysis.
Of note, we construct the downstream intracellular signaling
network for each dataset separately. To visualize the inferred
network, we only retained the top 25 edges based on the inferred
edge weights.

Robustness Analysis of Regularization
Parameters
Ourmodel is not sensitive to the regularization parameters within
certain ranges. To demonstrate this point, we conducted
robustness analysis and varied the regularization parameter
values within a certain range to explore the robustness of our
model. Specifically, we varied the regularization parameters λ1
from 30 to 70 with an increment of 10 and λ2 from 5 to 15 with an
increment of 5, respectively. We then computed the residual
value of the model using five-fold cross-validation under each
parameter combination. We observed that the residual value
exhibited a slight fluctuation (Supplementary Figure S5A),
suggesting that our inference is relatively robust.

Single-Cell RNA-Seq Datasets, Data
Preprocessing, and Analysis
Mouse Embryonic Skin scRNA-Seq Datasets
Interfollicular epidermis (IFE) covers the surface of the animal
body and is a keratinized stratified squamous epithelium. The
datasets (GEO accession codes: GSE154579) we used were
published from our previous study (Lin, et al., 2020),
containing three developmental stages: E14.5, E16.5, and
E18.5 (newborn). The IFE cells were classified into six cell
states: basal cells (IFE-B.1 and IFE-B.2), transition cells (IFE-
T.1 and IFE-T.2), differentiated cells (IFE-D), and terminally
differentiated cells (IFE-TD). Normalized data were used for
all the analyses.
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Mouse Spinal Cord Injury Datasets
Spinal cord injury is the most serious complication of spinal cord
injury, often leading to severe dysfunction of the limbs below the
injured segment and triggers multiple processes. The published
spinal cord injury mouse datasets were downloaded from GEO
(accession codes: GSE162610) and included a total of 66,176 cells
from the uninjured and 1, 3, and 7dpi tissue (Zhu, et al., 2015).
The original study classified these cells into 15 distinct cell groups:
microglia, astrocytes, monocytes, macrophages, neutrophils,
div−myeloid cells, dendritic cells, lymphocytes,
oligodendrocytes, OPCs, neurons, fibroblasts, pericytes,
ependymal cells, and endothelial cells. Normalized data were
used for all the analyses.

COVID-19 Datasets
The processed transcriptomic data of 135,600 cells from patients
and control patients with no signs of disease with COVID-19
were downloaded from FigShare: https://doi.org/10.6084/m9.
figshare.12436517. This dataset includes eight moderate cases,
eleven critical cases, and five control cases (According to the
World Health Organization (WHO) guidelines, the severity of the
disease is classified) (Chua, et al., 2020). In the control, moderate,
and critical samples, each contains 2,982, 82,814, and 49,804 cells.
We performed downsampling analysis on the moderate and
critical cases with a maximum of 20,000 cells to reduce
computational cost. This dataset contains 20 cell types,
including ciliated-diff cells (differentiating ciliated), secretory-
diff cells (differentiating secretory), ciliated cells, FOXN4+ cells,
squamous cells, secretory cells, cytotoxic T lymphocytes (CTL),
natural killer T cells (NKT), B lymphocytes (BC), plasmacytoid
dendritic cells (pDC), monocyte-derived macrophages (moMa),
basal cells, proliferating NKT cells (NKT-p), IFNG-responsive
cells (IFNRep), regulatory T cell (Treg), neutrophils (Neu),
monocyte-derived dendritic cells (moDC), nonresident
macrophages (nrMa), resident macrophages (rMa), and
ionocytes. To infer the intracellular signaling network in
secretory cells, ciliated cells, and CTL, we only used the top 20
marker genes and the top 50 TFs associated with each cell
population based on the differential expression analysis.
Normalized data were used for all the analyses.

DISCUSSION

In this study, we generalized our previously developed tool
CellChat to perform comparison analysis of cell–cell
communication across multiple conditions or time points and
established an optimization-based framework to construct a
multiscale signaling network linking intercellular
communication with intracellular downstream signaling
response. This comparative analysis of the interactions
between cell types across different biological conditions is
essential for a biologically meaningful understanding of the
role of cell–cell communication from scRNA-seq data. We
demonstrated the effectiveness of our proposed approaches by
studying the signaling changes across three mouse embryonic
developmental stages, four time points after mouse spinal cord

injury, and patients with different COVID-19 severities
(i.e., control, moderate, and critical cases).

We found that our predictions can recapitulate known biology
to a substantial degree. For example, the prediction of the WNT
signaling pathway as the predominant signaling change during
mouse embryonic development is in agreement with our previous
finding that WNT signaling can inhibit the expansion of
epidermal stem cells and the appearance of abnormal stem cell
states during epidermal differentiation (Lin, et al., 2020). Our
predictions also reveal many signaling changes that recapitulate
previous findings or known biology during mouse spinal cord
injury, such as the increased myeloid cell–associated interactions
at 1dpi and enhanced OSM and SPP1 signaling, suggesting the
important signaling mechanisms of fibrosis mediated by myeloid
cells during wound healing after spinal cord injury. We found
that the IFN-II signaling pathway has changed significantly in the
patients of COVID-19 and can activate the master regulator
STAT1 to regulate the downstream ACE2 expression in the
secretory cells.

Although recent studies have developed different
computational methods to investigate cell–cell communication,
our study adds important understanding of the cell–cell
communication in several aspects. On the one hand, we
provide generalized functions in the CellChat R package for
comparative analysis of any number of datasets and even for
datasets with not exactly the same cell type compositions under
different conditions. It compares the number of interactions; it
also identifies changes of major sources and targets in cell groups
and changes in signaling pathways and ligand–receptor pairs. The
advantage is that the single-cell datasets used for comparative
analysis can be any number, not just limited to the comparison
between two datasets. Furthermore, we defined signaling
similarity by computing the Jaccard similarity between the
inferred cell–cell communication networks across different
datasets. Our current strategy that combines clustering analysis
can help to identify signaling networks that show a relatively large
difference in network architecture if they are located in different
clusters and far away from each other in the low-dimensional
space. However, considering more advanced methods such as
statistical tests could likely improve such analysis. We also
identified significant changes in senders and receivers of each
signaling pathway using network centrality measures such as out-
degree and in-degree to characterize the outgoing and incoming
interaction strength. Finally, we can use various forms of graphics
as output to visualize our results, making the results more
intuitive.

On the other hand, we proposed a mathematical
optimization model that can infer the TF-target gene
network by adding priori network information as a penalty
term. Previous studies have also focused on the downstream
signaling transduction of cell communication, but these
methods like NicheNet and scMLnet primarily use prior
network information from public databases, lacking the
integration of single cell data in a coherent way. In contrary,
our work lies in the integration of mathematical optimization
models and prior network information based on a data-driven
approach. Although previous studies showed that incorporating
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such prior information as a network constraint can improve the
model performance (e.g., Zhang and Zhang, 2020),
reconstruction of the TF-target network directly from single-
cell data using a more advanced method such as scLink (Li and
Li, 2021) will be likely helpful to build a better multiscale
signaling network. Furthermore, we extracted the cell
type–specific network based on differential expression
analysis and integrated with the upstream intercellular
communication network to form a multiscale cellular
communication network. In this way, the network we build
will likely be more precise and more biologically explanatory.

As single-cell multi-omics data is becoming more common
(Argelaguet, et al., 2021; Jin, et al., 2020; Zhang and Nie, 2021),
the emergence of these data is a challenging opportunity to build a
more systematic cellular communication network. In addition,
spatial transcriptomics provide additional information on the cell
location (Longo, et al., 2021). Integrating spatial location with
scRNA-seq data will likely reduce the false positive inference of
cell–cell communication.
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The latest progresses of experimental biology have generated a large number of data with
different formats and lengths. Deep learning is an ideal tool to deal with complex datasets,
but its inherent “black box” nature needs more interpretability. At the same time, traditional
interpretable machine learning methods, such as linear regression or random forest, could
only deal with numerical features instead of modular features often encountered in the
biological field. Here, we present MultiCapsNet (https://github.com/wanglf19/
MultiCapsNet), a new deep learning model built on CapsNet and scCapsNet, which
possesses the merits such as easy data integration and high model interpretability. To
demonstrate the ability of this model as an interpretable classifier to deal with modular
inputs, we test MultiCapsNet on three datasets with different data type and application
scenarios. Firstly, on the labeled variant call dataset, MultiCapsNet shows a similar
classification performance with neural network model, and provides importance scores
for data sources directly without an extra importance determination step required by the
neural network model. The importance scores generated by these two models are highly
correlated. Secondly, on single cell RNA sequence (scRNA-seq) dataset, MultiCapsNet
integrates information about protein-protein interaction (PPI), and protein-DNA interaction
(PDI). The classification accuracy of MultiCapsNet is comparable to the neural network and
random forest model. Meanwhile, MultiCapsNet reveals how each transcription factor (TF)
or PPI cluster node contributes to classification of cell type. Thirdly, wemade a comparison
between MultiCapsNet and SCENIC. The results show several cell type relevant TFs
identified by both methods, further proving the validity and interpretability of the
MultiCapsNet.

Keywords: capsule network, classification, data integration, interpretability, modular feature

INTRODUCTION

Recent advances in experimental biology have generated huge amounts of data. More detectable
biological targets and various new measuring methods produce data at an unprecedented speed. For
example, Microwell-Seq, a single cell RNA sequencing technology, has been used to analyze the
transcriptome of more than 4,00,000 mouse single cells, covering all major mouse organs (Han et al.,
2018); Single cell bisulfite sequencing (scBS-seq) has been designed to measure genome-wide DNA
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methylation at the single-cell level (Smallwood et al., 2014); and
mass-spectrometry based technologies could explore the
composition, structure, function, and control of the proteome
(Aebersold andMann, 2016). In addition, large and complex data
sets are produced by large-scale projects, such as “The Cancer
Genome Atlas” (TCGA) (Tomczak et al., 2015), and
“Encyclopedia of DNA Elements” (ENCODE) (Consortium,
2004), which were established through community
cooperation. There is an urgent need for next generation
methods to deal with large, heterogeneous and complex data
sets (Camacho et al., 2018).

As a promising data processing method, deep learning
methods have been employed in biological data processing
(Alipanahi et al., 2015; Camacho et al., 2018; Zhou et al.,
2018; Eraslan et al., 2019). Various deep learning models
could deal with various input data with different types and
formats. For example, RNA sequence data as real-value vectors

could be processed by simple feed forward neural network, which
is a component of more complex models, such as auto-encoder
(AE) (Lin et al., 2017; Chen et al., 2018), variational auto-encoder
(VAE) (Ding et al., 2018), and Generative adversarial network
(GAN) (Lopez et al., 2018). Sequence information, which is coded
by ATCG, could be converted into real valued vectors by deep
learning model using convolution neural networks (CNN) after
model training (Alipanahi et al., 2015). Furthermore, deep
learning models could integrate data with different types and
formats. For example, DeepCpG utilizes both DNA sequence
patterns and neighboring methylation states for predicting single-
cell methylation state and modeling the sources of DNA
methylation variability (Angermueller et al., 2017). However,
the deep learning methods usually run as a “black box”, which
is hard to interpret (Almas Jabeen and Raza, 2017). Great efforts
have been made to improve the interpretability of deep learning
models. The prior biological information, such as regulation

FIGURE 1 |MultiCapsNet is an interpretable classifier and data integrator with modular inputs. (A) The traditional interpretable machine learningmethods. The input
of this model is numerical. After training, the model will reveal the inputs (features) importance for classification (or regression). The size and color depth of the circle
indicate the importance of the features, while the larger and darker circle indicates that the feature is more important. (B) The MultiCapsNet is an interpretable classifier
with modular input. The inputs (features) with different format (real-valued vector, one-hot encoding vector, or sequence data) and different lengths are first
converted into real-valued vectors with equal length through trainable networks. Then, classification was based on those real-valued vectors of the same length. After
training, themodel will reveal the inputs (features) importance to classification. The size and color depth of the circle indicate the importance of the feature, while larger and
darker circle indicates that the feature is more important. (C) The MultiCapsNet could integrate data from different sources. (D) The MultiCapsNet could integrate prior
knowledge, such as gene regulatory information. Left: Gene regulatory networks, transcription factor and its targets are marked with same color. Right: expression of
genes that are regulated by the same transcription factor could be regarded as a data source.
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between transcription factors (TF) and target genes or priori
defined gene sets that retain the crucial biological features, could
specify connections between neurons in the neural networks in
order to associate the internal node (neuron) in the neural
networks with TFs and thereby ease the difficulty of
interpreting models (Lin et al., 2017; Chen et al., 2018). New
probabilistic generative models with more interpretability, such
as variational inference neural networks, are applied to scRNA-
seq data for dimension reduction (Ding et al., 2018).

Traditional interpretable machine learning methods, such as
linear regression (logistic regression) or decision tree (random
forest), could only deal with numerical or categorical feature
(Molnar, 2019) (Figure 1A). However, in the field of biology,
especially in the field of network biology, the data is highly
modular in nature. For example, in drug discovery, many
independent features with multiple labels (e.g., response to
drug, and disease state) across a multitude of data types (e.g.,
expression profiles, chemical structures) are needed; and in
synthetic biology, the input may include sequence data,
composition data and functional data (Camacho et al., 2018).
An interpretable machine learning method adapted with modular
input is demanded.

The capsule network (CapsNet) is a newly developed deep
learning model for digital recognition tasks (Sabour et al., 2017).
In the realm of biology, the CapsNet model has been directly
applied for protein structure classification and prediction (Dan
Rosa de Jesus et al., 2018; Fang et al., 2018) and is ripe for
application in network biology and disease biology with data from
multi-omics dataset (Camacho et al., 2018). In our previous work,
we proposed a modified CapsNet model, called single cell capsule
network (scCapsNet), which is suitable for single-cell RNA
sequencing (scRNA-seq) data (Wang et al., 2020). The
scCapsNet is a highly interpretable cell type classifier, with the
capability of revealing cell type associated genes by model internal
parameters.

Here, we introduce MultiCapsNet, a deep learning classifier
and data integrator built on CapsNet and scCapsNet. As a general
framework, the MultiCapsNet model should be able to deal with
modular data from multiple sources with different formats and
lengths, and give the importance scores of each data source for
prediction after training (Figures 1B–D). In order to demonstrate
its wide biological application, the MultiCapsNet model was
tested on three data sets. In the first example, we applied the
MultiCapsNet model to the labeled variant call data set, which
was originally used to test the models for automating somatic
variant refinement (Ainscough et al., 2018). According to data
source and data attributes, the 71 features listed in the data set
were divided into eight groups. Then the features in one group
were viewed as a whole to train the MultiCapsNet model. After
training, the performance of our MultiCapsNet matches well with
the previous feed forward neural network model and random
forest model. As an advantage our MultiCapsNet model directly
provides the importance score for each data source, while the
previous feed forward neutral network model needs an extra
importance determination step through shuffling individual
features to do so. Despite that our MultiCapsNet model is
substantially different from the previous feed forward neural

network model and the source importance measuring methods
are also different, the correlation between the importance scores
generated by those two models is highly correlated. In the second
example, we demonstrate how to integrate prior knowledge and
scRNA-seq data through MultiCapsNet model. The protein-
protein interactions (PPI) information stored in BIOGRID
(Stark et al., 2006) and HPRD (Keshava Prasad et al., 2009),
and protein-DNA interactions (PDI) from DREM 2.0 (Schulz
et al., 2012), are used as prior knowledge to specify network
connections, as in previous work (Lin et al., 2017). In this
example, the structures of the first part of the MultiCapsNet
model, i.e., the connections between inputs and primary capsules,
are determined by the PPI and PDI information. As a result of
these specified structures, each primary capsule is labeled either as
TF or PPI subnetwork (PPI), and inputs of each primary capsule
could be regarded as a data source. We use data from mouse
scRNA-seq dataset (Han et al., 2018) to train this MultiCapsNet
model and the classification accuracy of MultiCapsNet is
comparable to neural network and random forest model. After
training, the MultiCapsNet model reveals how each primary
capsule, which is labeled either as TF or PPI subnetwork
(PPI), contributes to cell type classification. The top
contributors of a particular cell type are usually related to that
cell type. In the third example, we make a comparison between
our MultiCapsNet and the established single-cell regulatory
network inference method: SCENIC (Single-cell regulatory
network inference and clustering) (Aibar et al., 2017). The
results show that many cell types relevant TFs are identified
by both methods, which further proves the validity and
interpretability of MultiCapsNet.

METHODS

Datasets and Data Preprocessing
Labeled variant call dataset from previous work was used to test
the MultiCapsNet model (Ainscough et al., 2018). This dataset
contains more than 41,000 samples, which are assembled to train
models for automating somatic variant refinement. Each sample
in the dataset is manually labeled as one of four tags by the
reviewer: “somatic”, “ambiguous’, “germline”, and “fail”, which
represent the confidence of a variant call by upstream somatic
variant caller. As in previous work, we merged the variant calls
labeled as “germline” and “fail” into a class named “fail”. The
number of instances in each class are around 10,000, 13,000,
18,000 for “ambiguous”, “fail”, and “somatic”. There are 71
features that are associated with each sample, including cancer
types, reviewers, tumor read depth, normal read depth, and so on.
According to the data sources and data attributes, we divided
these 71 features into eight groups (Supplementary Table S1).
Group 1 contains nine cancer types, and is encoded as one-hot
encoding vector. We call group 1 as “Disease” because it indicates
the disease to which each variant call belongs. Group 2 contains
four reviewers, and is encoded as one-hot encoding vector. We
call group 2 as “Reviewer”. Group 3 contains information of
“normal VAF”, “normal depth”, “normal other bases count”, and
is called as “Normal_pro”, short for “Normal properties”. Group
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4 contains 13 features that describe reference reads in normal,
including base quality, mapping quality, numbers of mismatches,
numbers of minus and plus strand, and so on. We call group 4 as
“Normal_ref”. Group 5 contains 13 features extracted from
variant reads in normal, also including base quality, mapping
quality, numbers of mismatches, numbers of minus and plus
strand, and so on. We call group 5 as “Normal_var”. The last
three groups contain features drawn from tumor instead of
normal in previous three groups. As same as Group 3, 4, and
5, we label group 6, 7, and 8 as “Tumor_pro”, “Tumor_ref”, and
“Tumor_var” respectively.

The mouse scRNA-seq is measured by Microwell-Seq (Han
et al., 2018). We downloaded scRNA-seq data and the annotation
information through the link provided by the authors (https://
figshare.com/s/865e694ad06d5857db4b). Then we use the
annotation information to select parts of data from whole
dataset. The cell types we chose include “Cartilage cell”,
“Secretory alveoli cell”, “ Epithelial cell ”, “Kupffer cell”,
“Muscle cell”, “Dendritic cell”, “ Spermatocyte”, and the
number of instances in each cell type are 527, 1,195, 1,219,
356, 626, 717, 353. Moreover, we only use the genes contained
in prior knowledge (Lin et al., 2017) to fit the model structure, and
set the default value to zero when the downloaded scRNA-seq
data does not contain this gene (Han et al., 2018).

A SCENIC example dataset was used to compare the
performances of MultiCapsNet and SCENIC (https://scenic.
aertslab.org/examples/). The dataset (sceMouseBrain.RData)
contains seven cell types of mouse cortex and hippocampus
(Zeisel et al., 2015) [“astrocytes_ependymal” (224),
“endothelial_mural” (235), “interneurons” (290), “microglia”
(98), “oligodendrocytes” (820), “pyramidal_CA1” (939), and
“pyramidal_SS” (399)].

The Architecture and Parameters of the
MultiCapsNet Model
In the architecture of our multiCapsNet model, there are l
neural networks corresponding to l input modular data.

ui � tanh(Wi
pxi) i ∈ [1, 2 . . . , l] (1)

xi represents i’s input modular data. Wi
p represents weight

matrices of neural networks with dimension (n, ri), where the
ri is the length of the input modular data xi. The output ui of each
neural network i (i ∈ [1, 2 . . . , l]) is a vector with length n, viewed
as “primary capsule” in the model. The inputs standardization
part converts the modular data with different type and length into
real valued vectors with equal length n (n � 8 by default).

The standardized information is subsequently delivered
through primary capsule to the capsule in the final layer by
“dynamic routing” (Supplementary Figure S1). Each capsule in
the final layer, named “type capsule”, corresponds to each cell
type. They are denoted as vectors vj, where j ∈ [1, 2 . . . , k], k is
the number of cell types and m is the length of vectors. The
capsule network module is implemented in Keras (https://github.
com/bojone/Capsule).

Prior to the “dynamic routing” process, the primary capsules
are multiplied by weight matrices Wij to produce “prediction
vectors” ûj|i.

ûj|i � Wijui (2)

Then the iterative dynamic routing begins. Firstly, the
“coupling coefficients” cijis calculated by formula:

cij � exp(bij)∑k exp(bik)
(3)

Where bij is an intermediate parameter with initial value of zero,
representing the inner product of the prediction vector and type
capsule vector.

In order to compute the bij for next round iteration, the
weighted sum sj over all k prediction vectors ûj|i is calculated by
formula:

sj � normalize⎛⎝∑
i

cijûj|i⎞⎠ (4)

Secondly bij is computed by the dot product of ûj|i and sj as
the last step of one round dynamic routing process.

bij � ûj|i.sj (5)

After several rounds of dynamic routing, the type capsule vj is
calculated by a non-linear “squashing” function:

vj �




sj



2

0.5 + 



sj



2
sj



sj



 (6)

The following pseudocode illustrates the implementation of
MultiCapsNet.

1) for all primary capsule i: ui � Activation Function(Wi
pxi)

2) for all primary capsule i and type capsule j: ûj|i � Wijui
3) procedure ROUTING(ûj|i, r)
4) for all primary capsule I and type capsule j: bij ← 0.
5) For r iterations do
6) for all primary capsule i: ci ← softmax (bi)
7) for all type capsule j: sj ← normalize(∑

i
cijûj|i)

8) for all primary capsule i and type capsule j: bij ← ûj|i.sj
return vj ← squash (sj)

The implementation of MultiCapsNet can be found in https://
github.com/wanglf19/MultiCapsNet.

MultiCapsNet Model in Somatic Variant
Refinement Task
In the somatic variant refinement task, the eight groups mentioned
above in the section of “Datasets and data preprocessing” correspond
to eight input sources. Therefore, there are eight neural networks
corresponding to eight groups of input modular data (l � 8).

ui � tanh(Wi
pxi) i ∈ [1, 2 . . . , 8] (7)
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After the input standardization part, the input data xi is converted
into a primary capsule ui having the same length. Next, the
standardized information stored in the primary capsules would
be delivered to the final layer capsules by “dynamic routing”. The
capsules in the final layer, which corresponds to labels of variant
calls, is called “label capsule”. In capsnet, the non-linear “squashing”
function ensure that short vectors get shrunk to almost zero length
and long vectors get shrunk to a length slightly below 1 (Sabour et al.,
2017). The length of the label capsule represents the probability that
a variant call is either “ambiguous”,“fail”, or “somatic” (Figure 2). To
evaluate the performance of the model, we use the “area under the
curve” (AUC) score as previous (Ainscough et al., 2018) and
prediction accuracy.

MultiCapsNet Model That Integrates Prior
Knowledge
TheMultiCapsNet could integrate prior knowledge into its structure.
In brief, PPI information store in BIOGRID (Stark et al., 2006) and
HPRD (Keshava Prasad et al., 2009), and PDI coming from DREM
2.0 (Schulz et al., 2012), are used as prior knowledge for specifying
network connections between the inputs and the primary capsules
(Figure 4A), just as previous work used this prior knowledge to
specify network connections between the inputs and neurons (Lin
et al., 2017). For example, the prior knowledge indicates that
Gene1,. . ., Genen are regulated by a TF (colored with green), so
there are connections between Gene1,. . ., Genen and primary capsule
representing corresponding TF (green connection); the prior
knowledge indicate that Gene2,. . ., Genen are regulated by a TF
(colored with blue), then there are connections between Gene2,. . .,

Genen and primary capsule representing corresponding TF (blue
connection); and the prior knowledge indicates thatGene2, Gene3,. . .,
are in a subnetwork of PPI network (colored with red), then there are
connections between Gene2, Gene3,. . ., and primary capsule
representing corresponding PPI subnetwork (red connection).
Although there is only one input source, namely scRNA-seq data,
the input source can be decomposed into several parts by integrating
prior knowledge, and each part is connected to a primary capsule.
Therefore, we also took a single input source integrated with prior
knowledge as an input from multiple sources, each of which is
associated with a TF or a PPI subnetwork (Figure 4B).

In total there are 696 input modular data, with 348 TF-targets
relationships extracted from PDI information and 348 PPI
subnetworks. Therefore, there are 696 neural networks
corresponding to 696 modular data (l � 696).

ui � tanh(Wi
pxi) i ∈ [1, 2 . . . , 696] (8)

After the input standardization part, the input data xi is converted
into primary capsule uiwith the same length. Next, the standardized
information stored in the primary capsules would be delivered to the
final layer capsules by “dynamic routing”. The capsules in the final
layer, which correspond to cell types, is called “type capsule”.

MultiCapsNet Model Compared with
SCENIC
The SCENIC is a workflow for simultaneous reconstruction of
gene regulatory networks and identification of cell states using
scRNA-seq data (Aibar et al., 2017). The workflow consists of three

FIGURE 2 | Architecture of MultiCapsNet with two layers. The first layer consists of eight parallel neural networks, corresponding to eight data sources (groups).
The outputs of neural networks are the primary capsules (real valued vectors) with equal length. The second layer is the Keras implementation of CapsNet for
classification. The length of each label capsule represents the probability that the input data belongs to the corresponding classification category.
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modules (R/bioconductor packages): GENIE3 (GRNboost),
RcisTarget, AUCell. The first two modules were responsible to
find potential TF-targets relationships based on co-expression
and subsequently select the highly confident TF-target regulation
according to TF-motif enrichment analysis. After that, several
potential TF-target relationships across all cell types, called
regulons, were identified in the dataset. The AUCell would score
the activity of these regulons in each single cell. Finally, the
unsupervised method is used to cluster cell, identify cell types
and states based on the scores of the regulongs, which are used
as features for each cell. In our model, we utilized the regulon
information identified by the first two modules of SCENIC as the
prior knowledge to specify the connections between input and
primary capsules (Supplementary Figure S2A). The dataset,
intermediate results and the output of SCENIC for a mouse
brain example were downloaded from the website (https://scenic.
aertslab.org/examples/). The regulon information was extracted
from the intermediate result file (regulons_asGeneSet.Rds).

In total there are 253 regulons, which specify TFs and their
target genes. Therefore, there are 253 neural networks
corresponding to 253 modular data (l � 253).

ui � tanh(Wi
pxi) i ∈ [1, 2 . . . , 253] (9)

After the input standardization part, the input data xi is converted
into primary capsule ui with same length. Next, the standardized
information stored in the primary capsules would be delivered to the

final layer capsules by “dynamic routing”. The capsules in the final
layer, which correspond to cell types, is called “type capsule”.

Average Coupling Coefficients and Data
Source Importance
In scCapsNet, we showed that the average coupling coefficients
represent the contribution of the primary capsules to the final
layer type capsules for each cell type (Wang et al., 2020).
Similarly, in the multiCapsNet model, the type (label) capsule
vj derives from a weighted sum of prediction vectors ûj|i. The
weights are the coupling coefficients cij and the magnitude of
these coefficients could roughly be regarded as the contribution of
the primary capsules ui to the type capsules vj. Each sample
(single cell, somatic variant) generates its own coupling
coefficients. The average coupling coefficients for samples with
same type (label) are calculated by the formular:

ctype averageij � ∑typec
type
ij∑type1

(10)

Therefore, each classification category (cell type/variant call
label) corresponds to an average coupling coefficients matrix
(ctype averageij ), called type average coupling coefficients, with rows
representing type capsules and columns representing primary
capsules. The type average coupling coefficients matrix could be
plotted as heatmap for visualization of data. For each classification

FIGURE 3 | Architecture of MultiCapsNet integrated with prior knowledge. (A) The model has two layers. The first layer consists of 696 parallel neural networks
corresponding to 696 primary capsules labeled with either transcription factor (348) or protein-protein interaction cluster node (348). The inputs of each primary capsule
include genes regulated by a transcription factor or in a protein-protein interactions sub-network. The second layer is the Keras implementation of CapsNet for
classification. The length of each final layer type capsule represents the probability of input data belonging to the corresponding classification category. (B)
Alternative representation of MultiCapsNet integrated with prior knowledge. Genes that are regulated by a transcription factor or in a protein-protein interactions sub-
network, are groups together as a data source for MultiCapsNet. Figures 3A,B are equivalent with different representation.
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category (cell type/variant call label), the corresponding type average
coupling coefficients matrix contain an effective type capsule row,
which is the row whose type is consistent with this classification
category. For example, the effective type capsule row in the type
average coupling coefficients matrix (ctype 2 average

ij ) is the row
ctype 2 average
i2 . In this row, the magnitude of each element could
be regarded as the importance score of the corresponding
primary capsule to this classification category. The effective
type capsule rows of all classification categories
(ctype 1 average

i1 , ctype 2 average
i2 , ctype 3 average

i3 . . .) could be organized
into a new matrix, visually represented as an overall heatmap.

Algorithm Implementation for Comparisons
A neural network with sigmoid activation function was
implemented in Keras. The random forest and nearest-neighbour
are implemented with the Python package “scikit-learn”. The
comparison transformers model was originally used for
IMDB movie review sentiment classification dataset.
This transformer model contains the embedding layer for
embedding the words into vectors and the Multi-head
attention layer (https://github.com/bojone/attention/). We
replace the embedding layer with our data standardization
layer, and retain theMulti-head attention layer for classification.

RESULTS

MultiCapsNet Achieves High Classification
Accuracy and High Interpretability for
Modular Data From Variant Call Dataset
The variant call dataset (Please refer to Datasets and data
preprocessing in METHODS section for the details) was
randomly divided into training set and validation set with a

ratio of 9:1. Our MultiCapsNet model performs well in the
classification of variant call (Figure 4). The results show that
the AUC of the MultiCapsNet model is 0.94, 0.99, and 0.97,
respectively, in the classification categories of “ambiguous”, “fail”,
and “somatic” (Figure 4A). These AUC scores are similar with
those obtained by the Multi-head Attention model (0.93, 0.98,
0.96), feed forward neural network (0.93, 0.99, 0.96), and random
forest (0.96, 0.99, 0.98) (Ainscough et al., 2018). Meanwhile, the
average prediction accuracy of theMultiCapsNet model is around
0.873, similar to those obtained by the Multi-head Attention
model (0.866), and slightly lower than that of feed forward neural
network (0.887), and random forest (0.895).

In MultiCapsNet, the coupling coefficient cij is viewed as
important scores, which is the weight that measure the
contribution of each primary capsule to the final layer type
capsule. Each input would generate its own coupling coefficient,
and the type average coupling coefficient is the average over all the
inputs with same classification category. After MultiCapsNet model
training, the type average coupling coefficients for each variant label
(“ambiguous”, “fail”, and “somatic”) were calculated and visualized
as heatmaps (Supplementary Figure S3A) (Please refer to
“METHODS” section for the detailed calculation formula of type
average coupling coefficients). In each type average coupling
coefficient, the most important row, named as “effective type
capsule row”, is the row whose type is consistent with this
classification category. The overall heatmap is assembled with the
“effective type capsule row”which describes the importance scores of
all the data sources for distinct category classification
(Supplementary Figure S3B). Therefore, the overall heatmap
also shows the contribution of each data source to the
recognition of each variant labels (“ambiguous”, “fail”, and
“somatic”). For example, the data source of “Disease” has the
contribution to the classification of “somatic” category and the
“Reviewer” source contributes to the classification of “ambiguous”

FIGURE 4 | The comparison between MultiCapsNet and feed forward neural network shows the high performance and interpretability of MultiCapsNet. (A) The
AUC scores demonstrate that the MultiCapsNet model achieves very high classification performances in all three classification categories. (B) The normalized group
(data source) importance scores generated by MultiCapsNet and feed forward neural network are highly correlated.
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category. The “Tumor_var” source is the most important one for the
classification of all the three categories (Supplementary Figure
S3B). Over 9 repetitions, the values of each row in 9 overall
heatmap are averaged to determine the importance scores of each
data sources for the classification of all the categories in
MultiCapsNet model (Figure 3B). In feed forward neural
network model, the feature importance is measured by average
change of AUC after randomly shuffling individual features. Based
on the step of features grouping, we added the feature importance
scores belonging to the same group together, and take these values as
importance of data sources (each group) in feed forward neural
networks model (Figure 3B). Then, we calculated the correlation
between the data source importance scores obtained by our
MultiCapsNet model and those provided by feed forward neural
network model. Although our MultiCapsNet model is substantially
different from the previous feed forward neural network, and the
source importance measuring methods are also different, there is
very high correlation between them (PearsonCorrelation Coefficient
� 0.876) (Figure 4B). Bothmodels indicate that tumor variant group
is very important for variant call classification.

MultiCapsNet Integrated with Prior
Knowledge Could Function as Classifier
and Identify Cell Type Relevant TF
The dataset is a portion of mouse scRNA-seq data measured by
Microwell-Seq, which consists of nearly 5,000 cells of seven types
and 9,437 genes (Please refer to METHODS section for the details).
The MultiCapsNet model that integrates prior knowledge
(Figure 4) was trained and tested by using this dataset. The
average validation accuracy and F1 score are around 97%,
comparable with those generated by the feed forward neural
network, Multi-head Attention model and random forest
(Supplementary Figures S4A, B). After training, the average
coupling coefficients, which represent the contribution of the
primary capsules (TF/PPI) to the type capsules (Cell type), were
calculated and visualized as heatmaps for each cell type (Figure 5A).
In each heatmaps, we should clearly observe that the high value
elements in the average coupling coefficients (dark line in the plot)
are exclusively located in the effective type capsule row. Then, the
corresponding type capsule row was selected from each heat map in
Figure 5A, and organized into an overall heatmap (Figure 5B).

We repeat the training process 9 times and generate nine overall
heatmaps accordingly. Based on the average value of the nine
overall heatmaps, the top 10 relevant TFs/PPI subnetwork was
generated (Supplementary Table S2). Most of the top 10 relevant
TFs/PPI subnetwork were specific to one cell type, and many of
them have been reported to be associated with corresponding cell
types previously (Figure 5C). For example, Gata1 and Gata2 are
top contributors for dendritic cell recognition. Previous work
indicated that Gata1 regulates dendritic cell development and
survival (Gutiérrez et al., 2007), Gata2 regulates dendritic cell
differentiation (Onodera et al., 2016). Srf and Yy1 are ranked as
the top contributors for muscle cell recognition by the model.
However, Srf is required for skeletal muscle growth andmaturation
(Li et al., 2005), Yy1 is associated with increased smooth muscle
specific gene expression (Favot et al., 2005). FoxA2 and FoxA3 are

ranked as top contributors for Cartilage cell recognition, and FoxA2
and FoxA3 are necessary to promote high-level expression of
several hypertrophic chondrocyte markers (Ionescu et al., 2012).
The model reports Rxrg, Rara, Rarg, Rarb, Rxra, and Rxrb as top
contributors for Kupffer cell recognition. Previous research report
RA receptor (RAR) and retinoid X receptor (RXR) were expressed
by Kupffer cells (Ulven et al., 1998; Ohata et al., 2000). Pgr is ranked
as a top contributor for secretory alveoli cell recognition, and the
progesterone receptor (Pgr) knockout mouse demonstrated that Pg
is required for alveolar morphogenesis (Oakes et al., 2006). Topors
is ranked as a top contributor for spermatocyte recognition.
Previous work indicates dtopors, the Drosophila homolog of the
mammalian Topors, plays a structural role in spermatocyte lamina
that is critical for multiple aspects of meiotic chromosome
transmission (Matsui et al., 2011).

The Comparison of MultiCapsNet Model
with SCENIC Shows That Several Cell Type
Relevant TFs Are Identified by Both
Methods
To further demonstrate the effectiveness of ourMultiCapsNetmodel
to reveal cell type related TFs from scRNA-seq data, we compare it
with established single-cell regulatory network inference methods:
SCENIC (Single-cell regulatory network inference and clustering)
(Supplementary Figure S2A). The scRNA-seq data from mouse
cortex and hippocampus were used to evaluate these two methods
(Please refer to METHODS section for the details).

After MultiCapsNet training, the average coupling coefficients
in the overall heatmap would indicate the most relevant TFs
associated with each cell type (Supplementary Figure S5). We
repeated the experiment 9 times, the average validation accuracy
was 97%, and the average F1 score was around 95%, which were
comparable to the results generated by feed forward neural
network, Multi-head Attention model and random forest
(Supplementary Figures S4C, D). According to the average
value of nine overall heatmaps, the top 30 relevant TFs could
be generated (Figure 6A left; Supplementary Table S3 top). The
original regulon may contain TFs that label the 253 regulons. In
order to eliminate the influence caused by the expression of those
labeling TF, the potential TF-target relationships that exclude the
labeling TF in the set of target genes are alsomade (Supplementary
Figure S2B). We also repeated the training process of
MultiCapsNet that integrated with those new potential TF-
target relationships. After training, the top 30 relevant TFs
could also be generated according to the average value of the
nine overall heatmaps (Figure 6A right; Supplementary Table S3
bottom). The results show that the inclusion or exclusion of
labeling TF has little influence on prediction accuracy and
interpretability of the model. The overlap rates of top 30 most
relevant TF of each cell type (around top 10% of total TFs)
between model including labeling TF and that excluding
labeling TF are very high, around 90% for every cell type
(Figure 6B).

Many high score TFs predicted by MultiCapsNet are
consistent with that reported by SCENIC (Aibar et al., 2017).
For example, in both methods, Rorb is identified as a relevant TF
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for astrocytes; Ets1, Elk3, and Gata2 are identified as relevant TFs
for endothelial-mural cells; Zmat4, Dlx5, Dlx2, and Dlx1 are
identified as relevant TFs for interneurons; Maf, Rel, Cebpa,
Cebpb, Nfatc2, Prdm1, Nfkb1, and Stat6 are identified as
relevant TFs for microglia; Sox10 and Sox8 are identified as

relevant TFs for oligodendrocytes. Besides the TFs listed
above, MultiCapsNet also detected several high confidence cell
type relevant TFs that are also found by SCENIC. For example,
Rfx3 shows a high association with both pyramidal SS and CA1
cells. Previous studies reported that downstream target of Rfx3

FIGURE 5 |MultiCapsNet integrated with prior knowledge could identify cell type associated transcription factor. (A) heatmaps of the matrices of average coupling
coefficients for each cell type. In each heatmap, there are 696 columns for 696 primary capsules (TF/PPI) and seven row for seven type capsules (cell types), and each
element in the average coupling coefficients is represented by a thin line. The brightness of these thin lines (elements in the average coupling coefficients) indicate the
contribution of the primary capsules (TF/PPI) to the specific cell type recognition. The dark lines (high score elements in average coupling coefficients) exclusively
reside in the corresponding effective type capsule row in each heatmap. (B) Overall heatmap of the combined matrix of average coupling coefficients. The combined
matrix contains the effective type capsule rows in Figure 5A where its recognition type is in accordance with the type of single cells input. (C) The table list several top
ranked contributors for specific cell type recognition, given by the MuiltCapsNet model, are associated with corresponding cell types which have been reported before.
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displayed cytosolic expression in pyramidal neurons
(Remnestål, 2015) and Rfx3 expresses in cortical pyramidal
neurons (Benadiba et al., 2012). Neurod2 is also identified as a
relevant TF for both pyramidal SS and CA1 cells. Previous
studies reported that Neurod2 coordinates synaptic
innervation and cell intrinsic properties to control
excitability of cortical pyramidal neurons (Chen et al.,
2016). Cux1 has been identified as a relevant TF for
pyramidal SS cells, and Cux1 has been reported as a
restricted molecular marker for the upper layer (II-IV)
pyramidal neurons in murine cerebral cortex (Li et al.,
2010). smarca4 has been identified as relevant TF for
pyramidal CA1 cells, and Brg1/smarca4 deficiency leads to
mouse pyramidal neuron degeneration (Deng et al., 2015).
Ezh2 has been suggested as a relevant TF for oligodendrocytes,
and the expression of Ezh2 in OPCs (oligodendrocytes
precursor cells), even up to the stage of pre-myelinating
immature oligodendrocytes, remains high (Copray et al.,
2009) (Figure 6C). Furthermore, the MultiCapsNet found
that Rpp25 is strongly associated with interneurons which

SCENIC did not, and Rpp25 has been reported up-regulated
in GABAergic interneuron (Fukumoto et al., 2018).

DISCUSSION

In the first example, we demonstrated that the proposed
MultiCapsNet model performed well in the variant call
classification. Data sources with different data types, such as one-
hot encoding vector and real valued vectors, could be standardized
into equal length vectors as primary capsules, and then pass the
information into final layer capsules by dynamic routing. The
importance of the data sources was measured by the sum of the
overall average coupling coefficients as the co-product of the model
training. These importance scores are highly correlated with the
importance scores calculated by feed forward neural network,
which are measured by average change in the AUC after
randomly shuffling individual features.

In the second example, we incorporated PPI and PDI information
into the structure of the MultiCapsNet model. This specified structure

FIGURE 6 | The comparison of MultiCapsNet and SCENIC shows the robustness and interpretability of MultiCapsNet. (A) Averaged overall heatmaps for mouse
cortex and hippocampus dataset show that MultiCapsNet perform consistently whether including(left) or excluding (right) the labelling TF from regulon. (B) The top
ranked contributors for specific cell type classification identified from dataset either including (left) or excluding (right) the labelling TF are highly overlapped. (C) The table
list several top ranked contributors for specific cell type recognition, given by both the MuiltCapsNet model and SCENIC.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 76760210

Wang et al. MultiCapsNet for Data-Integration and Classification

86

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


decomposed the input scRNA-seq data into several parts, each part
corresponding to a group of genes regulated by a TF or from a protein
interaction sub-network. Therefore, each part of the decomposition
inputwas regarded as a data source, and the associated primary capsule
could be marked as corresponding TF or PPI subnetwork. Although
the number of the primary capsules was one order of magnitude more
than that of previous CapsNet model, the model performed well, and
its classification accuracy was comparable with those generated by feed
forward neural network and random forest. After training, the
contributions of each primary capsule and its corresponding data
source to the cell type recognition were revealed by the MultiCapsNet
model as co-product of classification. The TF or the PPI subnetwork
that labeled the top ranked contributors were often relevant to the cell
type they contributed. The comparison of our MultiCapsNet model
with SCENIC showed several cell type relevant TFs identified by both
methods, which further proves the validity and interpretability of the
MultiCapsNet model.

To sum up, our MultiCapsNet model could integrate multiple
input sources and standardize the inputs, then use the standardized
information for classification through capsule network. In the
variant call classification example, the data types are limited to
one-hot encoding vectors or real valued vectors. With appropriate
dataset, the MultiCapsNet could integrate and standardize more
data types, such as sequence data, which can be integrated through
convolutional neural network. In addition, our MultiCapsNet
model could also incorporate the prior knowledge through
adjusting the connection between layers according to the
specification of the prior knowledge. In the example of scRNA-
seq, we include only PPI and PDI information. In the future, the
complex and hierarchical information of biological network will be
introduced into the MultiCapsNet model to better understand the
intricacies of disease biology (Camacho et al., 2018). Compared
with other interpretable machine learning methods, MultiCapsNet
could obtain similar classification accuracy under the condition of
modular inputs, making it more suitable for the modular
biological data.

MultiCapsNet model provides a framework for data integration,
especially for multi-omics datasets, which have data from different

sources and with different types and formats, or require prior
knowledge. Once the data could be transformed into real valued
vectors through trainable parameters, the data and transformation
process could be integrated into the MultiCapsNet model as a
building block. In this sense, the MultiCapsNet model possesses
enormous flexibility, and is applicable in many scenes, let alone that
it can measure the importance of data sources accompanying the
training step without any extra calculation step.
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FIGURE 4 | The comparison between MultiCapsNet and feed forward neural network shows the high performance and interpretability of MultiCapsNet. (A) The
AUC scores demonstrate that the MultiCapsNet model achieves very high classification performances in all three classification categories. (B) The normalized group
(data source) importance scores generated by MultiCapsNet and feed forward neural network are highly correlated.

FIGURE 3 | Architecture of MultiCapsNet integrated with prior knowledge. (A) The model has two layers. The first layer consists of 696 parallel neural networks
corresponding to 696 primary capsules labeled with either transcription factor (348) or protein-protein interaction cluster node (348). The inputs of each primary capsule
include genes regulated by a transcription factor or in a protein-protein interactions sub-network. The second layer is the Keras implementation of CapsNet for
classification. The length of each final layer type capsule represents the probability of input data belonging to the corresponding classification category. (B)
Alternative representation of MultiCapsNet integrated with prior knowledge. Genes that are regulated by a transcription factor or in a protein-protein interactions
sub-network, are groups together as a data source for MultiCapsNet. Figures 3A,B are equivalent with different representation.
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Immune checkpoint therapies such as PD-1 blockade have vastly improved the treatment
of numerous cancers, including basal cell carcinoma (BCC). However, patients afflicted
with pancreatic ductal carcinoma (PDAC), one of the deadliest malignancies,
overwhelmingly exhibit negative responses to checkpoint therapy. We sought to
combine data analysis and machine learning to differentiate the putative mechanisms
of BCC and PDAC non-response. We discover that increased MHC-I expression in
malignant cells and suppression of MHC and PD-1/PD-L expression in CD8+ T cells is
associated with nonresponse to treatment. Furthermore, we leverage machine learning to
predict response to PD-1 blockade on a cellular level. We confirm divergent resistance
mechanisms between BCC, PDAC, andmelanoma and highlight the potential for rapid and
affordable testing of gene expression in BCC patients to accurately predict response to
checkpoint therapies. Our findings present an optimistic outlook for the use of quantitative
cross-cancer analyses in characterizing immune responses and predicting
immunotherapy outcomes.

Keywords: immunotherapy,machine learning of single cell sequencing, therapeutic response prediction, supervised
learning, deep learning, single-cell transcriptomic sequencing, basal cell carcinoma, pancreatic ductal
adenocarcinoma

1 INTRODUCTION

Cancer immunotherapy has shown to elicit substantial response to many cancers and has led to
significant increases in quality of life for cancer patients. This is especially true of checkpoint therapy,
which causes tumor regression in previously untreatable cancers. Response to checkpoint therapy
has been positively correlated with tumor mutational burden (TMB) and with presence of CD8+

T cells in the tumor microenvironment (characterized as “hot” tumors) (Yarchoan et al., 2017)
(Tumeh et al., 2014). However, the potential mechanisms of checkpoint therapy are still being
investigated and there are as of yet few prognostic markers for response (Bai et al., 2020). Potential
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biomarkers include the alteration of signaling pathways in tumor
cells, namely mutations in the interferon (IFN)-γ pathway, as well
as pathways related to tumor cell proliferation and infiltration
(Possick, 2017). Poor response to immunotherapy is also linked
to inactivation of PTEN, mutations of POLE, and linked
mutations in KRAS and STK11 (Wang et al., 2021).

Basal cell carcinoma (BCC) is a skin cancer with high TMB
(estimates range from a median of 47.3 mutations/Mb to 65
mutations/Mb), arising from skin membrane stem cells
(Chalmers et al., 2017) (Bonilla et al., 2016). Despite being
mostly characterized as a “cold” tumor, BCC has been shown
to exhibit partial and complete responses to checkpoint
therapy (Moujaess et al., 2021) (Walter et al., 2010).
Recently, the PD-1 inhibitor cemiplimab received FDA
approval for patients with advanced non-resectable BCC
that are resistant to Hedgehog pathway inhibition
(Moujaess et al., 2021). BCC is a relatively unique cancer in
that the TMB does not correlated with immunogenicity. This is
thought to be a combination of downregulation of major
histocompatability complex class I (MHC-I) expression and
immunosuppression via influx of T regulatory cells driven by
overexpression of the Hedgehog pathway (Walter et al., 2010)
(Grund-Gröschke et al., 2020).

Pancreatic ductal adenocarcinoma, a carcinoma arising from
ductal cells in the pancreas, is in essence an incurable disease, with
less than 5% survival rate over 5 years as of 2016 (Bengtsson et al.,
2020). This survival rate, in conjunction with projections that
pancreatic cancers will be one of the major causes of cancer-
related deaths by 2030, highlights a strong need to develop better
biomarkers and treatments (Rahib et al., 2014). Despite
significant progress having been made in oncology treatment,
PDAC has proven to be incredibly challenging to treat, due to a
multitude of factors including lack of symptoms before metastasis
and lack of specific clinical characteristics (Wolfgang et al., 2013).
PDAC has also been found to be non-responsive to checkpoint
immunotherapy, showing a poor response to CTLA-4, PD-1 and
PD-L1 therapies (Royal et al., 2010) (Renouf et al., 2020). The
reasons for this lack of response are still under study; proposed
factors include levels of microsatellite instability, tumor
infiltrating lymphocytes (TILs), and DNA mismatch repair
deficiency (Christenson et al., 2020) (Pu et al., 2019).
Although it has a relatively low TMB, PDAC has a highly
immunosuppressive tumor microenvironment and is
immunogenic (Fan et al., 2020).

In order to study the differential mechanisms by which BCC
and PDAC cancers resist checkpoint immunotherapy treatment
and building on our previous work (Dollinger et al., 2020), we
leveraged two recent single-cell transcriptomic datasets of PDAC
and BCC (Figures 1A and Supplementary Figure S1). Through
comparing these two datasets, we identified potential common
biomarkers for nonresponse to PD-1 blockade and differences in
the immune mechanisms combating tumor progression in these
two cancers. We found that PDAC suppresses MHC-I gene
expression in CD8+ T cells and upregulates MHC-I in
malignant cells compared to BCC. Furthermore, the PD-1/PD-
L signaling axis is significantly weaker in PDAC, leaving
diminished opportunity for phenotypic changes to occur

through boosting its activity. Utilizing machine learning
classification algorithms, we additionally discovered that
PDAC displays greater similarities to melanoma, which is
highly immunogenic and undergoes rapid metastasis, than to
BCC (Dollinger et al., 2020).

2 RESULTS

2.1 Characterization of the BCC and
PDAC TME
In order to characterize the transcriptomic differences
between responders and non-responders to PD-1 blockade
therapy, we analyzed a previously published scRNA-seq
dataset of basal cell carcinoma patients pre- and post-
treatment (Yost et al., 2019). The dataset consists of
24 site-matched samples from 11 patients with advanced
BCC; a total of 53,030 malignant, immune, and stromal
cells were obtained between the six responsive and five
nonresponsive patients. Unsupervised clustering of the
dataset revealed 20 distinct clusters (Figure 1B), including
8 T cell clusters and two malignant cell clusters (Methods).
Our clustering largely agrees with the original analysis
(Supplementary Figure S2A), with the exceptions that we
only found 1 B cell cluster and differentiated macrophages
into the M1/M2 polarization as defined in (Orecchioni et al.,
2019).

Separately, a dataset of 46,244 cells from 16 PDAC patients
and 8,541 cells from three non-malignant adjacent samples was
used to characterize the PDAC TME (Steele et al., 2020); all
samples were taken before any treatment and include both
surgical and fine-needle biopsy specimens. Both the malignant
and adjacent samples were integrated together before clustering,
which revealed 22 distinct subpopulations (Figure 1C). Whereas
the general cluster labels correspond with those of the original
paper, two important distinctions are made. First, CD8+ T cells
are divided into effector/activated cells, memory cells, and
chronically activated/exhausted cells, referred to hereafter as
exhausted cells; these labels correspond with the CD8+ T cell
subclusters in the BCC dataset to facilitate further direct
comparison, and are therefore not equivalent to those in
Extended Data Figure 4 of the original analysis. However,
examination of mean scaled expression of highly enriched
genes reveals that the newly defined clusters are
transcriptomically similar to those in the original analysis
(Supplementary Figure S2B). Second, within the population
of epithelial/ductal cells, two distinct clusters of malignant
cells were identified using 205 marker genes commonly
upregulated in PDAC tumor samples (Figure 1D) (Tang et al.,
2018). The identification of these clusters is novel and was not
detected by the original authors. Whereas one malignant cluster
had significantly elevated expression of nearly all marker genes
and a high percentage (>50%) of all cells expressing each gene, the
second malignant cluster had much more sparse and less
significantly elevated expression of the DEGs, suggesting that
there exists a wide spectrum in the degree of malignancy of ductal
cells (Supplementary Figure S2C). Both normal ductal cells in
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FIGURE 1 | Single-cell sequencing reveals distinct T cell subpopulations in BCC and PDAC and ductal cell subpopulations in PDAC. (A)Workflow diagram. (B,C)
Dimensional reduction of (B) BCC and (C) PDAC TME. (D) Dimensional reduction of PDAC ductal cells. (E) Differential gene expression between BCC responders and
nonresponders; positive fold change indicates greater expression in responders. (F) Single-cell resolution heatmap of top three differentially expressed genes per cluster
in merged BCC and PDAC dataset. (G)Normalized proportion of cells in each cluster identified in (F) that belong to BCC responders (BCC R), BCC nonresponders
(BCC NR), PDAC tumors (PDAC Can.), and adjacent PDAC samples (PDAC Adj.).
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malignant PDAC samples and those from adjacent samples
exhibited negligible expression of the 205 marker genes.

Comparing average gene expression across all cells between
responders and nonresponders in BCC, we found that MHC
genes are overexpressed in responders, whereas heat shock
protein (HSP) genes are overexpressed in nonresponders
(Figure 1E). This is in line with current literature: reduced
MHC-I expression is well-known to facilitate immune evasion
(Šmahel, 2017); MHC-II expression is correlated with response to
PD-1 blockade treatment (Rodig et al., 2018); and HSP genes are
associated with tumor proliferation and metastasis (Ciocca and
Calderwood, 2005). Merging both datasets, we find that the top
differentially expressed genes (DEGs) for each cluster aligns with
the marker genes used to identify them in (Yost et al., 2019) and
(Steele et al., 2020) (Figure 1F, Methods). Furthermore, no
significant difference was detected in the expression of top
DEGs in each cluster, e.g. expression of CCL4, CCL5, and
CD59 is similar between PDAC and BCC CD8+ effector
T cells. However, wide discrepancies can be seen in the
relative populations of different clusters between BCC
responders, BCC nonresponders, and PDAC patients
(Figure 1G). We find that BCC responders are more heavily
represented amongst B cells and T cells, whereas BCC
nonresponders have greater numbers of stromal, myeloid, and
malignant cells, recapitulating previous analyses (Dollinger et al.,
2020) (Yost et al., 2019). Meanwhile, PDAC tumors have very low
numbers of B cells and T cells in comparison to all BCC tumors,
but have much larger populations of macrophages and
endothelial cells. This highlights the challenges of using
immunotherapy in PDAC; it also justifies the comparison of
two different cancers due to the similarities in cell population
between non-responders in BCC and PDAC.

2.2 CD8+ T Cells Are More Active in BCC
Than PDAC
One of the main functions of PD-1 blockade is to reinvigorate
exhausted CD8+ T cells, leading to a stronger anti-tumor
response and eventual tumor regression (Verma et al.,
2019); thus, the altered function and composition of T cells
is a primary suspect in the nonresponse of PDAC to
immunotherapies. Due to the absence of data on PDAC
responders, in this section we compare T cells in PDAC to
those in BCC responders and nonresponders. Similarities in
composition or gene expression between the T cells of PDAC
and BCC nonresponders, as well as commonalities in the
differences between BCC responders and nonresponders
and the differences between BCC responders and PDAC,
provide potential factors for further study.

Comparing the T cell populations in PDAC tumor sites and
adjacent samples, we find significant differences in relative
subpopulation sizes – in particular, there are virtually no
regulatory T cells (Tregs), memory CD8+ T cells, or
exhausted CD8+ T cells in adjacent samples (Figure 2A).
This suggests that a subset of effector CD8+ T cells in the
PDAC TME enter an exhausted phenotype or differentiate into
memory cells after prolonged exposure to cancer (Xia et al.,

2019). Furthermore, we unexpectedly find a substantially
larger population of CD8+ exhausted and memory cells in
BCC responders and a diminished number of CD8+ effector
cells. Therefore, it is possible that BCC responders benefit
more from PD-1 therapy due to greater potential for
phenotypic shifts on the cellular level, or simply that T cells
in responders have experienced prolonged exposure to the
malignancy. Both PDAC populations lack proliferating T cells,
supporting its reputation as extremely immunosuppressive
(Foucher et al., 2018).

To determine whether these trends are patient-specific, we
first compared the fraction of all cells in each pre-treatment
sample that are identified as T cells (Figure 2B). As expected,
pre-treatment responders have a greater proportion of T cells
than nonresponders, although the difference is statistically
insignificant (p > 0.05). However, both BCC responders and
nonresponders have significantly higher T cell proportions
than both malignant and adjacent PDAC samples by a factor of
4–8. Comparing the proportion of T cells classified as activated
and exhausted, we find that the proportions are similar
between all patients, with the unexpected exception that the
vast majority of T cells in the adjacent pancreas samples are
effector CD8+ T cells (Figures 2C, D). This may indicate that
adjacent samples may not reflect a true negative control, as is
often used in the literature.

Identification of the top 2,000 genes with the most similar
gene expression between BCC and PDAC unsurprisingly
reveal no notable gene groups, supporting the theory that
the two cancers rely on different systems of immune
activation. However, we notice that HLA genes are amongst
the most highly enriched genes in both cancers; furthermore,
they are consistently overexpressed in BCC compared to
PDAC by a factor of 2-10 with the exception of HLA-E and
HLA-F, suggesting that PDAC suffers from much more severe
MHC-I suppression (Figure 2E). To confirm whether these
differences hold on a patient level, we constructed a MHC-I
and MHC-II score (Methods). Comparison of the per-patient
MHC-I scores between BCC and PDAC for each of the CD8+

T cell subclusters shows that regardless of the subcluster, BCC
CD8+ T cells have significantly elevated MHC-I expression in
comparison to PDAC; this discrepancy is most pronounced in
memory CD8+ T cells, where MHC-I scores are on average
4 times higher (Figure 2F). Similarly, per-patient comparison
of MHC-II scores show that all three groups of CD8+ T cells
have significantly lower expression in PDAC than BCC - in
particular, the majority of effector and memory CD8+ T cells in
PDAC exhibit virtually no MHC-II expression (Figure 2G).
This supports prior research demonstrating that MHC-I
molecules are degraded by autophagy-dependent
mechanisms in PDAC, thereby facilitating impaired antigen
presentation and resistance to checkpoint therapies (Johnson
et al., 2016); no such mechanisms have been implicated in BCC
and this provides evidence against such a mechanism existing
in the BCC TME.

We then compared the distribution of PD-1 and PD-L1/PD-
L2 expression in BCC and PDACCD8+ T cells (Figures 2H, I). In
both cancers, the vast majority (>95%) of cells exhibit zero

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 8064574

Liu et al. BCC/PDAC: Response to PD-1 Blockade

94

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 2 |CD8+ T cells in BCCexhibit higher signaling strength andMHC-I/PD-1 pathway expression compared to PDAC. (A)Proportion of T cell subclusters in BCC (R �
Responsive, NR � Nonresponsive) and PDAC (Can. � Cancerous, Adj. � Adjacent) samples. (B) Per-patient comparison of the proportion of all cells that are T cells. (C, D) Per-
patient comparison of the proportion of T cells that are (C) CD8+ effector and (D) CD8+ exhausted. (E) Differential gene expression in CD8+ T cells, BCC vs PDAC (positive fold
change indicates higher expression in BCC); the top 2000 genes with the lowest absolute value normalized fold change in expression are highlighted in red. (F-I) Per-cell
comparison between BCC and PDAC CD8+ T cell subclusters on (F)meanMHC-I, (G)meanMHC-II, (H) PD-1, and (I)mean PD-L1/PD-L2 gene expression. (J)Comparison of
fold change between average PD-1 pathway gene expression of BCC and PDAC T cell subclusters; positive values indicate greater expression in BCC. (K) Comparison of
aggregate outgoing and incoming signaling strength between BCC and PDAC T cell subclusters.
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expression in all subclusters; the only exception is exhausted
CD8+ T cells in BCC. Thus, no significant difference (p > 0.01) is
detected between BCC and PDAC in the expression distribution
of the PD-1 pathway. Due to the exceptionally low expression in
all clusters, we examined the mean expression of all cells in each
T cell subcluster (Figure 2J). We find that with the exception of
NK cells and Tregs in the expression of PD-1, BCC T cells are also
upregulated in PD-1/PD-L1/PD-L2 in all subclusters by a factor
of 3–7. These results imply that a combination of immune
suppression and low expression of the MHC-I and PD-1 gene
pathway in CD8+ T cells contribute to decreased response to PD-
1 blockade in PDAC, as there is not sufficient expression of the
PD-1 pathway to induce significant change in T cell activity with
PD-1 blockade.

Lastly, we compared the aggregate signaling strength of each
BCC and PDAC T cell subcluster to determine their level of inter-
cellular communication (Figure 2K, Methods). Signaling strength
was inferred using the CellChat package by considering multiple
measures of network centrality for each cluster, utilizing a
manually-curated database of hundreds of ligand-receptor
interactions (Jin et al., 2021). We find that nearly all BCC T cell
subclusters aremore dominant “senders” and “receivers” than their
PDAC counterparts. In particular, due to the small size of the CD8+

memory T cell population in PDAC, it exhibits negligible inter-
cellular communication, whereas CD8+ memory T cells in PDAC
are extremely active. Additionally, proliferating T cells in BCC are
the dominant senders and receivers, despite constituting 4% of the
BCC T cell population; no equivalent subcluster was identified in
the PDAC samples. Altogether, these results demonstrate that
CD8+ T cells in BCC are substantially more active than their
counterparts, both in aggregate and in the MHC and PD-1
pathways.

2.3 Differential Expression of MHC-I in
Malignant Cells Is Associated With
Response to PD-1 Therapy
Multiple distinct subtypes of PDAC have been defined on the
basis of significant inter-tumoral and intra-tumoral heterogeneity
to develop personalized treatment strategies (Moffitt et al., 2015).
To determine whether the two distinct malignant ductal cell
subpopulations in our clustering (see Figure 1E) represent
unique subtypes, we compared the marker genes for each
PDAC ductal cell subcluster (Figure 3A). We find that the
majority of the top markers for normal ductal cells in
cancerous patients are mitochondrial genes (MT-ND2, MT-
ND1, MT-ND4, MT-CO1, MT-ND5, MT-ATP6, MT-CO3, MT-
CYB, MT-ND3, MT-CO2, MTRNR2L12, MT-ND6, and MT-
ND4L), supporting previous research that mitochondrial
metabolic reprogramming may be crucial to the progression of
pancreatic cancers (Reyes-Castellanos et al., 2020). The
Malignant 2 cluster was characterized by upregulation of
several ribosomal protein (RP) genes, corroborating
hypotheses that unique RP transcript expression can be
utilized in defining unique cancer subtypes (Dolezal et al.,
2018). Interestingly, ductal cells from adjacent samples
exhibited elevated expression of marker genes for the

Malignant 1 subcluster in comparison to ductal cells from
cancerous samples. Although each malignant cell subcluster is
dominated by a subset of the cancerous samples (Supplementary
Figure S3A), suggesting that inter-tumoral heterogeneity led to
the presence of two distinct PDAC subtypes in the dataset, we fail
to identify concrete evidence linking either malignant cluster to
the cancer subtypes defined in (Moffitt et al., 2015) and (Bailey
et al., 2016).

While numerous studies have been conducted on the genetic
markers of BCC and PDAC individually (Pellegrini et al., 2017)
(Liu et al., 2020) (Tang et al., 2018) (Kunovsky et al., 2018), we
present here the first direct comparison between the expression
patterns of malignant cells in the two cancers (Figure 3B). We
find that unsurprisingly keratins (namely KRT5, KRT14, and
KRT17) which are marker genes for keratinocytes are
overexpressed in BCC compared to PDAC by approximately
an order of magnitude. Furthermore, many HSP genes are
unexpectedly upregulated in BCC malignant cells, despite their
well-known association with carcinogenesis and metastasis
(Ciocca and Calderwood, 2005) (Wu et al., 2017). Expression
of HLA genes (MHC-I and MHC-II) are slightly upregulated in
PDAC malignant cells. The most upregulated genes in PDAC
include SPINK1, known for contributing towards increased
tumor proliferation and poor cancer prognosis (Mehner and
Radisky, 2019); TFF1, which facilitates PDAC metastasis
(Arumugam et al., 2011); and S100A6, a key diagnostic marker
for PDAC (Leclerc and Vetter, 2015).

As the role of MHC-I and MHC-II in both BCC and PDAC
tumors are well-established, we sought to compare the
distribution of HLA gene expression between the two cancers.
Using the same calculation for the MHC-I and MHC-II scores as
Figures 2F–H, we find that on a cellular level, MHC-I expression
is significantly upregulated in PDACmalignant cells compared to
normal ductal cells from both cancerous and adjacent samples
(Figure 3C). Interestingly, ductal cells from adjacent samples also
had significantly higher MHC-I expression than those from
normal samples. This provides more evidence that adjacent
samples are not true negative controls. MHC-II expression
followed the same trends, notably with a majority of non-
cancerous ductal cells having zero expression (Figure 3D).

Looking at average MHC-I and MHC-II expression per
patient between malignant and normal ductal cells, similar
trends emerge. Whereas MHC-I expression is significantly
elevated in malignant cells, no significant difference exists
between average MHC-II scores, with the distribution of
scores for normal ductal cells actually possessing a higher
median and much greater variance (Supplementary Figure
S3C). This suggests that there exists significant inter-tumoral
variability in MHC-II expression, with the larger tumor samples
having lower expression and therefore disproportionately shifting
the cellular distribution downwards.

It appears that PDAC is non-responsive to treatment despite
having already-elevated levels of MHC-I expression. To
determine the relationship between MHC-I expression and
response, we turned our attention to analyzing differences in
MHC expression between BCC responders and nonresponders,
both before and after treatment. Surprisingly, we find that
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regardless of response status, MHC-I expression slightly
decreased post-treatment; however, nonresponders overall had
higher expression (Figure 3E). This is likely due to a combination
of greater initial tumor malignancy in non-responders and T cell
exhaustion over time. Meanwhile, responders had significantly
higher MHC-II expression pre-treatment, but both responders
and non-responders experienced drastic reductions in expression
post-treatment (Figure 3F). Whereas PDAC malignant cells
exhibited greater similarities in MHC-I expression to BCC

non-responders, MHC-II expression was more similar to BCC
responders.

2.4 Machine Learning Reveals Divergent
Immune Mechanisms in Response to PD-1
Blockade
With stark differences in immunogenicity, TMB, and tumor
progression between BCC and PDAC, it is hardly surprising

FIGURE 3 | Increased MHC-I expression is associated with nonresponse to PD-1 therapy in BCC and PDAC. (A) Single-cell-resolution heatmap of top 20 most
differentially expressed genes in each PDAC ductal cell subcluster. (B) Differential gene expression between BCC and PDAC malignant cells; higher gene expression in
PDAC is denoted by a positive log2 fold change. (C) Violin plot of MHC-I score by cell in ductal cells. (D)Differential gene expression in malignant cells, PDAC vs BCC. (E,
F) Violin plot of the (E) MHC-I and (F) MHC-II scores per cell in BCC malignant cells, classified by response (R/NR) and treatment (Pre/Post).
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that the immune mechanisms implicated through PD-1 blockade
in the two cancers are completely divergent. However, there exists
greater similarity in the immunosuppressivity and
immunogenicity between PDAC and melanoma, which
exhibits a relatively high response rate to PD-1 blockade of
30–45% (Sun et al., 2020) (Ribas and Wolchok, 2018). To test
whether the immune response of PDAC is more similar to BCC
or melanoma, and whether differential gene expression can
recapitulate these differences, we turn to machine learning.
CD8+ cytotoxic T cells are most directly responsible for killing
tumor cells and constitute the largest cluster in our datasets.
Therefore, in this section we attempt to construct a supervised
learning algorithm to predict whether individual CD8+ T cells
originate from a patient responsive or nonresponsive to
treatment. Patients with a high percentage of CD8+ T cells
predicted to be responsive will therefore have a higher
likelihood of response to PD-1 blockade.

Separate supervised learning algorithms were trained on both
BCC and melanoma CD8+ pretreatment T cells, subsetted from
(Yost et al., 2019) and (Sade-Feldman et al., 2018) respectively.
The BCC dataset consists of 4,311 cells (229 effector, 1,104
exhausted, and 2,978 memory) from five responders and 1,571
cells (73 effector, 2,439 exhausted, 4,156 memory) from six
nonresponders; the melanoma dataset consists of 1,512 cells
from 17 responsive samples and 1,239 cells from 31
nonresponsive (32 total patients). The cells from (Sade-
Feldman et al., 2018) were FACS sorted on CD45 + before
plating and sequencing. Identification of CD8+ T cells in the
melanoma dataset were taken directly from (Sade-Feldman et al.,
2018) and (Dollinger et al., 2020).

Each dataset was first filtered to include only genes with
expression detected in all three datasets (BCC, melanoma, and
PDAC). Classifiers were then constructed on the BCC and
melanoma CD8+ T cells through the sci-kit learn pipeline
(Pedregosa et al., 2011), using only the top 2,000 highly
variable genes in each dataset respectively (Figures 4A, B,
Methods). Through benchmarking multiple classifiers against
one another, we are able to identify the classification
algorithm which most accurately responds to the features
present in our datasets. With the exception of Naive Bayes, all
classifiers demonstrated high training accuracy (>73%) on the
BCC dataset; the best model was the multilayer perceptron (MLP)
neural network, which achieved 96.7% testing accuracy on the
original dataset after parameter optimization. Classifiers trained
on the melanoma dataset were noticeably weaker, with training
accuracy between 50 and 62%; after optimization, the best model
was the AdaBoost, which achieved 60.7% testing accuracy. This
could stem from the extremely high intratumor and intertumor
heterogeneity observed in melanoma, which lowers predictive
power (Grzywa et al., 2017). In addition, many of the melanoma
patients were previously treated with other chemotherapeutics,
potentially altering the immune environment and confounding
the classification of responders.

To guard against overfitting, classifiers utilizing a lower
number of most highly variable genes were constructed for
both BCC and melanoma. Remarkably, in both datasets,
predictive power remained notably strong until using just 20

or less genes. In particular, the 20-gene BCC classifier with 81%
accuracy utilized CXCL13, HSPA1A, HSPA6, HSPA1B, G0S2,
XCL1, CCL4, FOS, GNLY, TRBV11-2, XCL2, KRT86, NMB,
DNAJB1, CCL4L2, SOX4, ID3, HSP90AA1, NR4A1, and MT1G
(Supplementary Figure S4A, B). This suggests that traditional
gene expression tests may be used as a quick predictor of response
to PD-1 blockade with reasonably accuracy (60–80%) in BCC and
melanoma.

Melanoma and BCC are known to exhibit very different
immune mechanisms: whereas melanoma is immunogenic and
demonstrates resistance to immunotherapy, BCC is relatively
non-immunogenic and suffers from low immune cell
recruitment and activation (Dollinger et al., 2020). To confirm
these differences on a transcriptomic level, we tested the BCC
classifier on the melanoma dataset and vice versa. As expected,
both classifiers performed similarly to random chance (AUC �
0.501 and 0.486 respectively), providing support for the different
immune evasive and suppressive mechanisms of the cancers’
response to PD-1 blockade (Figure 4C).

On a per-patient resolution, the vast majority of BCC CD8+

T cells from responders or nonresponders are classified as
responsive or nonresponsive by the BCC neural net
respectively (Figure 4D) – there exists a significant difference
in the proportion of cells that are responsive between responders
and nonresponders (p � 0.004 35). However, when applied to
PDAC cells, slightly over half of the cells were declared
responsive. Meanwhile, surprisingly no significant distinction
(p � 0.13) can be made in comparing the percentage of cells
classified as responsive between melanoma responders and
nonresponders (Figure 4E), with several responders having
only a small fraction of cells being classified as such. This
indicates that construction of the classifier was likely biased
towards samples with larger numbers of CD8+ T cells. The
melanoma classifier furthermore identifies a mean of 33% of
cells in a PDAC patient as nonresponsive, similar to melanoma
nonresponders (p � 0.46) and significantly lower than responders
(p � 0.099), although there exists significantly inter-patient
variability. Under the assumption that the vast majority of
PDAC patients would not respond to PD-1 blockade, it is
evident that the melanoma classifier performs markedly better
on the PDAC dataset than the BCC classifier. This suggests that
similarities between resistance mechanisms between melanoma
and PDAC may extend to CD8+ T cells in addition to
macrophages (Zhu et al., 2014).

3 DISCUSSION

To date, multiple studies of BCC have established its relative ease
in prognosis and treatment; meanwhile, PDAC continues to
evade early-stage detection and exhibits uniformly poor
response to existing checkpoint immunotherapies. Consistent
with existing literature, our direct comparison of the BCC and
PDAC TMEs reveal that PDAC tumors foster a more
immunosuppressive microenvironment compared to BCC
(Foucher et al., 2018). In particular, although BCC is known
to downregulate MHC-I expression (Dhatchinamoorthy et al.,
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FIGURE 4 | BCC, PDAC, and melanoma exhibit different immune mechanisms in response to PD-1 blockade. (A,B) Dot plot of average gene expression vs
standardized variance of all CD8+ T cells in (A) BCC pre-treatment and (B) melanoma samples. (C) ROC and PR curve of a neural net (MLP) and AdaBoost classifier
trained on the top 2000 highly variable genes in BCC andmelanoma CD8+ T cells respectively; both models were subsequently tested on each dataset separately. (D, E)
Proportion of CD8+ T cells classified as responsive to PD-1 blockade per patient by the (D) BCC neural net and (E) melanoma AdaBoost classifier.
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2021), we find that PDAC suppresses both MHC-I and MHC-II
expression in CD8+ T cells even more severely by a factor of 2–5.
This further reinforces prevailing beliefs that BCC and PDAC
utilize divergent immune mechanisms in combating tumor
progression. However, through our novel identification of
malignant ductal cells in the PDAC TME, we find that the
two cancers exhibit similar expression of MHC genes,
although MHC-I and MHC-II expressions are slightly elevated
in PDAC.

Strikingly, we were able to construct a classifier to predict
response to PD-1 blockade in BCCCD8+ T cells with near-perfect
accuracy (97%). Even when considering data from only a handful
of highly variable genes, responders and nonresponders were
clearly distinguished. These results may suffer from overfitting
due to the lack of suitable testing data: it is unknown whether the
accuracy is artificially high due to the relative homogeneity of the
TMEs of the 11 patients studied, or that the classifier will remain
as successful in predicting the outcomes of other BCC cases. It is
very likely that these models neglected to encompass the full
spectrum of BCC subtypes, particularly nodular types with a high
rate of heterogeneous morphological features both intra- and
inter-tumorally (Pirie et al., 2018). However, our results strongly
support that rapid and affordable testing of BCC patients,
focusing on a small number (10–20) of genes, can accurately
predict their response to checkpoint immunotherapies.
Unfortunately, such clean results were not attained when
training classifiers on the melanoma dataset or when testing
either on PDAC; in these cases, our classifiers did not perform
significantly better than random chance, mirroring previous
efforts in the field (Banchereau et al., 2021).

The dearth of clinical data on the positive response of PDAC
patients to PD-1 blockade leaves open multiple avenues of
exploration. While the present study offers convincing
evidence that PDAC, BCC, and melanoma lie in unique
positions on the spectrum of immunogenicity, little is known
of the exact changes in the immune landscape triggered by PD-1
blockade treatment, even in responders. A recent study on the
same BCC dataset focusing on cell-cell communications offers
several possible avenues of investigation, including the role of
multiple tumor necrosis factor (TNF) pathways and a unique
subtype of CD8+ T cells characterized by high expression of
suppressive, cytotoxic, and heat shock protein genes (Jiang et al.,
2021). Furthermore, there is a crucial need for further research
into actionable mechanisms to overcome resistance to immune
checkpoint inhibitors – current studies point to the potentiality of
combination therapies in delivering individualized, multi-faceted
remodeling of the TME (Ott et al., 2017) (Drake, 2012). Other
hypothesized factors for immune resistance include tumor
exploitation of the PD-1/PD-L axis, immuno-editing in tumor
cells, the immunosuppressive effects of long non-coding RNAs
(lncRNAs), and insufficient re-invigoration of exhausted CD8+

T cells (Drake et al., 2006) (Sun et al., 2020).
We chose to focus on the role of MHC-I and MHC-II

expression in this investigation due to its well-established role
in stimulating immune responses, as well as the obvious choice of
PD-1/PD-L. However, various other genes and pathways
associated with resistance to PD-1 blockade, such as LAG-3

and the IDO pathway, were not studied in-depth (LaFleur
et al., 2018) (Chocarro de Erauso et al., 2020). Additionally,
recent studies have suggested that M2 macrophages and memory
B cells play vital roles in directly affecting cancer cells (Dollinger
et al., 2020) (Drake et al., 2006). With only six responders and five
nonresponders in our BCC dataset, it is also likely that many
cancer subtypes and diverse response mechanisms were not
detected.

Despite the purely computational nature of the present study,
our novel attempt to carry out quantitative comparisons of
completely different cancers using scRNA-seq will facilitate a
greater understanding of the immune landscape through the
identification of both differences and similarities across
different TMEs. Fundamentally, studying the activities of the
same celltype in different TMEs serves an equivalent purpose to
investigating the role of the same genes in different cancers.
Although BCC and PDAC reside on opposite extremes of the
spectrum of immunogenicity, the parallels that can be drawn
between them will point the way towards establishing new
immuno-oncology paradigms for more personalized and
sophisticated immunotherapies.

4 MATERIALS AND METHODS

4.1 Clustering
All clustering analyses were performed using Seurat (version 3.6)
(Stuart et al., 2019). The UMI matrices for the BCC dataset (Yost
et al., 2019) and PDAC dataset (Steele et al., 2020) were
downloaded from GEO accession GSE123813 and GSE155698
respectively; the count matrix for the melanoma dataset (Sade-
Feldman et al., 2018) was personally contributed by the authors of
(Dollinger et al., 2020). No clinical trials were performed in the
data acquisition or any other part of the preparation of this paper.
The following procedures were applied to both the BCC and
PDAC dataset; preparation and analysis of the melanoma dataset
is separately dealt with in Section 4.4.

To exclude low-quality cells and empty droplets, we excluded
all cells with less than 200 features detected; furthermore, we
excluded all features that were not present in at least three cells. In
preparation for clustering, we then followed the preprocessing
steps detailed in (Stuart et al., 2019). Briefly, we first normalized
the feature expression using the Seurat LogNormalization
method with defaults, then applied linear transformation to
shift the mean expression of each gene to 0 and the variance
to 1. We then identified the top 2000 highly variable genes
through calculating the “standardized variance” of each
feature, which captures single-cell dispersion in the context of
mean expression. Using these features, linear dimensional
reduction was conducted on the normalized through PCA.
The first 50 PCs for the BCC dataset and first 20 PCs for the
PDAC dataset were used to construct a KNN graph; the number
of PCs used was determined using the Seurat ElbowPlot
function by identifying the cutoff at which the percentage of
variance explained by each additional PC dropped significantly.
The Louvian algorithm was then applied on the KNN graph to
group cells together. The “granularity” of the clustering was
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determined by a resolution parameter which was set to 0.4 for
BCC and 0.5 for PDAC (Seurat default � 0.3, higher resolutions
correspond with a greater number of clusters).

To identify clusters, differential expression was performed to
identify the top upregulated features in each cluster in
comparison to all other clusters. Features were considered to
be upregulated if at least 25% of cells in the cluster expressed the
gene, the mean expression was greater by at least a factor of 20.25,
and the p-value was less than 0.05. The top 25 DEGs were then
recorded and entered into Enrichr for gene enrichment analysis
(Xie et al., 2021). Using a combination of different gene datasets
(e.g. Human Gene Atlas and Mouse Gene Atlas) and common
celltype marker genes, clusters were holistically identified. To
ensure that equally-named clusters between BCC and PDAC (e.g.
CD4+ T cells) were identified similarly and were suitable for
downstream comparison, cluster identification was checked using
marker genes identified in both (Yost et al., 2019) and (Steele
et al., 2020).

To validate the results of our clustering of the BCC dataset, we
constructed a heatmap to compare our cell labels with those
provided in the metadata of GEO accession GSE123813
(Supplementary Figure S2A). Specifically, we calculated the
percentage of cells in each metadata cluster that was classified
into each self-identified cluster. As no celltype identification was
supplied in the PDAC dataset, we were unable to do the same for
this dataset.

4.2 Statistical Analyses of Datasets
All statistical analyses were performed in RStudio version 1.4.
We merged the BCC and PDAC datasets together without
batch correction to compare expression of key marker genes
in each cluster (Figure 1F) and relative population sizes of
each cluster (Figure 1G); integration was not necessary as no
new clustering was conducted. To calculate the breakdown of
each cluster in the merged BCC + PDAC dataset between BCC
responders, BCC nonresponders, PDAC cancerous samples,
and PDAC adjacent samples (Figure 1G), we first normalized
the total size of each of the four batches so that each batch
would appear to have the same total number of cells. We then
determined the normalized proportion of cells in each cluster
that belonged to each batch by dividing the normalized
population size of each batch in each cluster by the total
normalized population of the cluster.

To compare the proportion of all cells that were identified as
T cells (Figure 2B), we first determined the number of cells in
each patient sample. Then, we calculated the fraction of these
cells that were labeled as either CD4+, CD8+ effector, CD8+

memory, CD8+ exhausted, regulatory (Tregs), proliferating,
NK, or miscellaneous T cells for each sample. To determine
whether differences in this percentage between different groups
were statistically significant, we performed Wilcoxon tests
using the stat_compare_means function in the ggpubr
package, version 0.4.0. A p-value lower than 0.05 was
considered to be statistically significant. The same procedure
was repeated for Figure 2C, D.

Comparisons of the distribution of expression of any
particular gene between different clusters and/or categories

(Figures 2F–I) were conducted by first taking the data from
the normalized UMI matrix, then exponentiating all of the values
so that any comparisons occur in non-log space. The distribution
of these values were plotted using the ggviolin function in the
ggpubr package; statistical significance was determined through a
Wilcoxon test. Identical procedures were used in Figures 3C–F.
The same method was also used to determine the p-values in
Figure 2J; however, the log2-fold difference was calculated by
dividing the mean expression of the particular gene of all BCC
cells to the mean expression of all PDAC cells in the particular
cluster. Mean expression was calculated using the
AverageExpression function in Seurat and was therefore
performed on raw data counts, as opposed to scaled/
normalized data.

To perform full differential gene expression between two
clusters (Figure 1E, Figure 2E, and Figure 3B), the Seurat
objects of the clusters of interest were first merged together.
Then, the EnhancedVolcano function from the Bioconductor
package was used to generate the volcano plots in Figure 1E and
Figure 3B. Features that were considered to be differentially
expressed were those with a p-value <0.05 and a log2-fold
absolute change greater than 0.5. For Figure 2E, the log2-fold
change for every gene was ordered and normalized (μ � 0, σ � 1);
then, the 2000 genes with the lowest absolute value normalized
log2-fold change were identified as the genes with most similar
expression.

Heatmaps of gene expression were generated using the
DoHeatmap function from Seurat. The genes displayed are the
top nDEGs per cluster (n � 3 and 25 for Figure 1F and Figure 3A
respectively).

4.3 Inference of Intercellular
Communication Network Strengths
Cell-cell communication was determined using CellChat version
1.1 (Jin et al., 2021). Briefly, the cell-cell communication network
was inferred by calculating the interaction probabilities, which is
directly dependent on average gene expression, for each ligand-
receptor pair in the CellChat database. The sum of
communication probabilities of outgoing signaling from and
incoming signaling to a particular cluster determines its
outgoing and incoming interaction strength respectively, as
plotted in Figure 2K.

4.4 Supervised Learning: Prediction of
Response to PD-1 Blockade in BCC and
Melanoma
Classifiers were constructed on CD8+ T cells in BCC and
melanoma (Figure 4). The BCC dataset consisted of all pre-
treatment cells identified as CD8+ effector, CD8+ memory, or
CD8+ exhausted. The melanoma dataset consisted of all CD8+

T cells as identified in (Dollinger et al., 2020).
All machine learning was conducted in Python using the

scikit-learn package (Pedregosa et al., 2011). Identification of
the top 2000 highly variable genes (Figures 4A, B) recapitulated
the process described in Section 4.1. To determine the best model

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 80645711

Liu et al. BCC/PDAC: Response to PD-1 Blockade

101

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


in differentiating cells from responders and nonresponders, nine
separate classifiers were trained separately on the BCC and
melanoma datasets:

• Nearest Neighbors (sklearn.neighbors.KNeighborsClassifier):
three neighbors

• Linear SVM (sklearn.svm.SVC): linear kernal, C � 0.025
• RBF SVM (sklearn.svm.SVC): γ � 2, C � 1
• Gaussian Process (sklearn.Gaussian_process.GaussianProcess
Classifier)

• Decision Tree (sklearn.tree.DecisionTreeClassifier):
max_depth � 5

• Random Forest (sklearn.ensemble.RandomForestClassifier):
max_depth � 5, max_estimators � 10, max_features � 1

• Neural Net (sklearn.neural_network.MLPClassifier): α � 1,
max_iterations � 1000

• AdaBoost (sklearn.ensemble.AdaBoostClassifier)
• Naive Bayes (sklearn.naive_bayes.GaussianNB)
• Quadratic Classifier (sklearn.discriminant_analysis.
QuadraticDiscriminantAnalysis)

All parameters used are the default ones unless listed
explicitly. Models were trained on 80% of the dataset and
tested on the remaining 20%. During parameter optimization,
the mean score from five-fold cross validation was used to
evaluate accuracy. The best classifier was chosen as the one
with the highest accuracy, i.e. proportion of true positives and
true negatives. For BCC CD8+ T cells, this was the neural net
classifier; for melanoma CD8+ T cells, this was the AdaBoost
classifier. After parameter optimization, the BCC classifier
had an architecture of one hidden layer with 20 nodes, a
rectified linear unit (relu) activation function (f(x) � max(0,
x)), and a stochastic-gradient based optimizer (adam); the
learning rate is α � 1 and all other hyperparameters are equal
to function defaults. The melanoma classifier has an
architecture of 500 estimators using the SAMME. R real
boosting algorithm and a learning rate of α � 1. To ensure
consistency, all classifiers trained using a reduced number of
highly variable features (Supplementary Figure S4A, B) used
the same architectures.

To calculate the proportion of cells in each patient that are
classified as responsive (Figures 4D, E), the BCC neural net
classifier was tested on the BCC pretreatment and PDAC
datasets, and the melanoma AdaBoost classifier was tested
on the melanoma and PDAC datasets. The number of CD8+

T cells classified as responsive in each patient was then divided
by the total number of CD8+ T cells in each patient. To
determine whether the results were statistically significant, a
Wilcoxon test was performed using the stat_compare_means
function in ggpubr; p-values less than 0.05 were considered as
significant.
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Supplementary Figure S1 | Visual abstract. (A) BCC and PDAC dataasets are
clustered and labeled through Seurat,resulting in the novel identification of malignant
ductal cells in PDAC (Section 2.1). (B) Several analyseswere performed on T cells
and malignant cells from both datasets, focusing on population subcluster
sizes,differential gene expression, and cell-cell signaling (Section 2.2/Section
2.3). (C) Machine learning classification models were successfully utilized to
predict whether individual CD8+ T cells in BCC and PDAC would respond to
PD-1 blockade; however, these models are not transferrable onto PDAC
(Section 2.4).

Supplementary Figure S2 | Validation of clustering in BCC and PDAC datasets.
(A) Heatmap depicting the proportion of cells in each cluster of the original
paper belonging to each cluster defined in this paper. (B, C) Dot plot of the
expression of (B) CD8+ T cell and (C) ductal cell marker genes in PDAC. Color
denotes the average expression across all cells in a subcluster, scaled per gene;
size denotes the percentage of cells with positive expression within the
subcluster.

Supplementary Figure S3 | MHC expression in malignant cells of BCC and
PDAC. (A, B) Breakdown of (A) PDAC ductal cell and (B) BCC malignant cell
clusters by patient. (C, D) Paired comparison of MHC-I and MHC-II scores per
patient in (C) malignant vs. non-malignant PDAC ductal cells and (D) pre-
treatment vs. post-treatment BCC malignant cells. Horizontal boxplots
represent the log2-fold difference in the MHC score per patient between the
two batches; the T-test calculates the likelihood that on average, there is no
difference in the score.
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Supplementary Figure S4 | Supervised classification of CD8+ T cells in BCC
and melanoma based on the top n highlyvariable genes. (A, B) ROC and PR
curves for classifier (architecture described in Methods) trained on the top n
highly variable genes in (A) BCC and (B) CD8+ T cells. (C) Comparison of the

proportion of top n highly variable genes that are common between BCC and
melanoma CD8+ T cells. (D) Fold change differential expression of MHC and
HSP genes between BCC and melanoma CD8+ T cells; positive values indicate
greater expression in BCC.
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DecOT: Bulk Deconvolution With
Optimal Transport Loss Using a
Single-Cell Reference
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Tissues are constituted of heterogeneous cell types. Although single-cell RNA sequencing
has paved the way to a deeper understanding of organismal cellular composition, the high
cost and technical noise have prevented its wide application. As an alternative,
computational deconvolution of bulk tissues can be a cost-effective solution. In this
study, we propose DecOT, a deconvolution method that uses the Wasserstein
distance as a loss and applies scRNA-seq data as references to characterize the cell
type composition from bulk tissue RNA-seq data. TheWasserstein loss in DecOT is able to
utilize additional information from gene space. DecOT also applies an ensemble framework
to integrate deconvolution results from multiple individuals’ references to mitigate the
individual/batch effect. By benchmarking DecOT with four recently proposed square loss-
based methods on pseudo-bulk data from four different single-cell data sets and real
pancreatic islet bulk samples, we show that DecOT outperforms other methods and the
ensemble framework is robust to the choice of references.

Keywords: bulk RNA sequencing, single-cell RNA sequencing, cell-type deconvolution, wasserstein distance,
optimal transport

INTRODUCTION

Quantification of gene expression changes in different tissues or under different conditions gives
information on how genes are regulated in organisms. The analysis of gene expression by using
RNA sequencing (RNA-seq) has contributed substantially, since its development more than a
decade ago, to our understanding of biological processes such as organism development, human
disease progression, and patients’ response to treatments. The classic RNA-seq applied to bulk
tissue samples has accumulated a rich reservoir of data sets, for example, GTEx, TCGA, and so
forth (Tomczak et al., 2015, Carithers et al., 2015). However, since tissues are heterogeneous,
which comprise a variety of cell types, the bulk sequencing data only measure the average state of
the mixed cell populations. In fact, the information of cellular composition is crucial. For
example, when developing diagnostic techniques, such information would enable researchers to
track the contribution of each cellular component during disease progressions (Schelker et al.,
2017).

With the rapid development of single-cell technologies, one way to obtain a cell-specific
transcriptome is to apply single-cell RNA-seq (Saliba et al., 2014). However, these experiments
remain costly and noisy compared to the mature bulk RNA-seq and have therefore been performed
only on a limited scale (Denisenko et al., 2020): (Kuksin et al., 2021). Alternatively, one may apply
computational deconvolution algorithms with bulk data, which provide cost-effective ways to derive
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cellular composition information and have the potential to bring
considerable improvements in the speed and scale of relevant
applications.

In recent years, a number of computational deconvolution
methods have been developed with the goal of estimating cell-
type composition within the bulk sample and/or cell-type-
specific states (Avila Cobos et al., 2018); (Jin and Liu, 2021).
According to whether references, such as expression profiles of
pure cell types or marker gene lists, are provided, these
deconvolution methods can be divided into supervised and
unsupervised categories. As completely unsupervised
approaches based on non-negative matrix factorization
(NMF) suffer from low deconvolution accuracy and
interpretation of their results largely depends on the ability
to recover meaningful gene features or expression profiles for
different cell types, the most commonly used methods are
under the supervised category and are often optimized by least
squares algorithms (Avila Cobos et al., 2018). The rapid
accumulation of publicly available scRNA-seq data on a
number of different samples (Baron et al., 2016), (Guo,
2020), led to the recent popularization of developing
deconvolution methods with scRNA-seq references. For
instance, Bisque learned the gene-specific conversion of
bulk data from the scRNA-seq reference, eliminating the
technical deviation of the sequencing technology between
reference and bulk data (Jew et al., 2020). MuSiC proposes
a weighted non-negative least squares regression framework
that simultaneously weighs each gene through cross-subject
and cross-cell variation (Wang et al., 2019). SCDC extends the
MuSiC method and proposes an ensemble framework which
applies multiple scRNA-seq data sets as reference
deconvolution. They claim that SCDC can implicitly solve
the batch effect between reference data sets in different
experiments (Dong et al., 2019).

Besides square loss, divergence functions for characterizing
differences between two distributions, for example, Kullback-
Leibler divergence, are also commonly applied as loss functions in
solving deconvolution problems (Lee and Seung, 1999). These
losses, as well as square losses, decompose vectors or distributions
in an elementwise manner, which neglects relationships between
features (in our case, correlations between genes) (Zhang, 2021),
(Afshar et al., 2020).

Recently, the Wasserstein distance, which originated from the
optimal transport (OT) problem (Monge, 1781); (Kantorovich,
1942), has shown its potential as a better loss function for
measuring the distance between distributions (Langfelder and
Horvath, 2008); (Arjovsky et al., 2017). Wasserstein distance
utilizes a metric between features (e.g., genes) called ground
cost to take advantage of additional knowledge from the
feature space (Rolet et al., 2016). Especially, when comparing
two non-overlapping distributions (distributions with non-
overlapping support), Wasserstein distance can still provide a
smooth and meaningful measure, which is a desirable property
that square loss and other divergence losses cannot offer (Weng,
2019), (Schmitz et al., 2018a). Since the first application of
Wasserstein loss in solving NMF problems in Sandler and
Lindenbaum, 2011, it has been successfully applied to blind

source decomposition (Rolet et al., 2018), dictionary learning
(Rolet et al., 2016), (Schmitz et al., 2018b), and multilabel
supervised learning problems.

Cell types are characterized in gene space. The expression of
genes is not mutually independent. The co-expression of genes
naturally induces a similarity or distance metric among genes
(Langfelder and Horvath, 2008). To the best of our knowledge,
such a relationship has not yet been leveraged to solve cell-type
devolution problems.

Here, we present DecOT, a bulk gene expression
deconvolution method that uses the optimal transport distance
as a loss and applies an ensemble framework to integrate
reference information from scRNA-seq data of multiple
individuals. We apply different ground cost metrics for
characterizing gene relations in DecOT. We optimize DecOT
under an entropic regularized form. We test the performance of
DecOT on pseudo-bulk mixtures generated from different data
sets and evaluate its robustness when different reference data are
supplied. Finally, we applied DecOT on a real pancreatic islet bulk
data set. DecOT is available on GitHub (https://github.com/lg-
ustb/DecOT).

MATERIALS AND METHODS

In this section, we will first give a brief review of the original
Wasserstein distance and the optimization algorithm with
entropic regularization. Then, we will introduce our proposed
DecOT framework for deconvolution. Finally, we will describe
the data sets and procedures used for benchmarking DecOT.

Wasserstein Distance and Entropic
Regularization
Wasserstein distance, originated from the optimal transport
problem (Monge, 1781); (Kantorovich, 1942), aims at
minimizing transportation costs between two probability
distributions. Given two histograms, p ∈ Σn and q ∈ Σs , the
Wasserstein distance between p and q with respect to ground
cost M is

W(p, q)M �def min
T∈U(p,q) <M,T> (1)

where Σn �def{qϵRn
+|< q, 1> � 1} is the set of histograms or an

n-dimensional simplex; <X,Y> �def tr(XTY) � ∑m
i�1Xi, Yi is the

Frobenius dot product between matrices X and Y; U(p, q) �
{T ∈ Rn×s

+ | T1 � p
TT1 � p

} is called the transportation polytope of p

and q; M is the transportation cost of mapping p to q, which is
also called the ground cost. W is a distance whenever Mij is a
metric in these two histograms’ element space (Villani, 2009).

The computation of Wasserstein distance is extremely costly
when the histograms’ dimension exceeds a few hundreds. Cuturi
et al. (Cuturi, 2013) introduced an entropic regularizer to smooth
the optimal transport problem, which can be computed at several
orders of a magnitude faster in speed than traditional algorithms
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Wγ(p, q)M �def min
T∈U(p,q) <M,T> − γh(T) (2)

where γ> 0 is a hyperparameter. h(T) �def −<T, logT> �
−∑i,j Tijlog(Tij) is the entropic function.

The problem (Eq. 2) is strongly convex, and the solution of
transport plan Tp can be optimized by solving a matrix
balancing problem, which is typically solved using the fixed
point Sinkhorn algorithm (Sinkhorn, 1967). The
hyperparameter γ plays an important role in the final
performance of Sinkhorn, with higher values of γ
corresponding to a faster execution of the algorithm but a
more diffused coupling. In this study, unless otherwise noted,
we use γ � 0.001 by default.

Cell-Type Deconvolution with Wasserstein
Loss
In this section, we will introduce the bulk tissue deconvolution
framework by applying the Wasserstein distance as a loss
function, which is the core part of DecOT.

We assume that each cell type has a unique expression profile
which can be characterized by a distribution/histogram in gene
space; for instance, we denote the expression profile over n genes
of cell type i as Ci ∈ Σn. Thus, the cell type-specific profiles of k
types can be represented as a k × n matrix,C ∈ Σk

n. For a set of
normalized bulk tissue samples Y � {Y1, . . . , Ym: Yj ∈ Σn,∀j},
the deconvolution problem is to solve the cell-type proportion or
mixture proportion P ∈ Σm

k for them bulk samples by giving cell-
type-specific profiles C, which can be represented by

Y ≈ C · P
To avoid individual/batch effects, here, we use reference data

from a single individual. The annotated scRNA-seq reference
data are then used by averaging the cell expressions within each
cell type to generate C. The Wasserstein distance not only
measures the difference between two distributions but also
accounts for the underlying geometry of the feature (gene)
space through the choice of an appropriate ground cost.
Since the expression of genes is not mutually independent,
the co-expression pattern between pairs of genes naturally
induces a similarity or a distance metric among genes. Such
a relationship forms the transportation cost among genes
(ground cost M) and will be incorporated in the
minimization of Wasserstein distance between the bulk
sample gene expression distribution Y and the estimated
mixture CP̂. In order to ensure a trackable calculation for
data containing thousands of genes, we apply the entropic
regularized Wasserstein distance as a loss, which results in
solving the following optimization problem

min
P∈Σm

k

∑m

j�1Wγ(Yj, CPj)M s.t. CP ∈ Σm
n (3)

In addition, since the cell-type proportions are non-negative,
we further added a regularization term, as performed by Rolet
et al. (Rolet et al., 2016) in solving the dictionary learning problem

with a fixed dictionary, to enforce non-negativity constraints on
the variables

min
P∈Σm

k

∑m

j�1Wγ(Yj, CPj)M − ρE(Pj) s.t. CP ∈ Σm
n (4)

where E is defined for matrices whose columns are in the simplex
as E(A) � <A, logA> and ρ> 0 is a hyperparameter. In this
study, unless otherwise noted, we use ρ � 0.001 by default.

Ensemble Deconvolution Results Across
Individuals
With the accumulation of publicly available single-cell data,
references from multiple individuals may be available. In order
to resolve variabilities in gene expression between references from
different individuals, we adopt an ensemble approach similar to
SCDC (Dong et al., 2019). The difference is that we focus on
individuals rather than reference data sets of different
experimental platforms. Assuming that single-cell data sets
from R reference individuals are available, we first deconvolve
the bulk gene expression data with entropic regularized
Wasserstein loss as described above for each individual
reference. Let Ĉ(r) and P̂(r) denote the cell-type-specific
average expression matrix and the cell-type proportion matrix
computed from the rth reference individual. Our goal is to find the
optimal combination strategy to ensemble the available
deconvolution results

(ŵ1, ŵ2, . . . , ŵR) � argmin
(w1 ,w2 ,...,wR)

l(P,∑R

r�1wrP̂(r)) (5)

where l is the loss function.
As explained by Dong in SCDC (Dong et al., 2019), function (5)

cannot be optimized directly since the actual cell-type proportionsP
are unknown, and the solutions to function (5) are approximately
equivalent to minimize the loss of gene expression levels. Therefore,
we change the optimization problem to

(ŵ1, ŵ2, . . . , ŵR) � argmin
(w1 ,w2 ,...,wR)

l(Y,∑R
r�1
wrŶ(r))

where Ŷ(r) � Ĉ(r)P̂(r) is the rth individual’s predicted bulk gene
expression levels.

We redefine the problem to non-negative least squares
regression by choosing the l2 norm as loss

min






Y −∑R

r�1
wrŶ(r)







2 s.t.∑R
r�1
wr � 1, wr > 0

Intuitively, wr can be seen as the similarity of cell expression
profiles between rth reference individual and a bulk tissue-derived
individual.

Ground Cost Selection
In Wasserstein distance, a key factor is the ground cost matrix
M, which defines the transportation cost. We obtain M from
the reference cells an expression histogram X whose columns
correspond to cells and whose rows correspond to genes. Mij

represents the dissimilarity of expression between gene i and
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gene j in reference cells. Here, we focus on four metrics,
including

(i) Euclidean distance: ||x − y||2 �
������������∑n

i�1(xi − yi)2
√

.
(ii) Cosine similarity: cos(x, y) � xy

||x||2 × ||y||2. We use 1 −
cos(x, y) as distance.

(iii) Pearson correlation: cor(x, y) � cos(x − �x, y − �y), where �x
and �y are the mean of the values of x and y, respectively. We
use 1 − cor(x, y) as distance.

(iv) Topological overlap-based dissimilarity measure (dissTOM)
(Ravasz et al., 2002; Li and Horvath, 2007; Yip and Horvath,
2007) underweighted gene co-expression network analysis
framework (Zhang and Horvath, 2005)

dω
ij � 1 − ∑uaiuauj + aij

min {∑uaiu,∑uaju} + 1 − aij

where aij is the power adjacency function. dissTOM metric
measures the distance between genes in a co-expression
network, which is converted into a scale-free network. We use
a python package POT (Flamary et al., 2021) to compute metrics
(i)–(iii) and WGCNA (Langfelder and Horvath, 2008)..., a R
package ... to compute dissTOM.

Benchmark Data Sets and Artificial
Pseudo-bulk Mixtures
To evaluate DecOT and compare it to other deconvolution
methods using l2 norm loss, we generated artificial pseudo-
bulk mixtures from four real RNA-seq data sets (see Table 1).
We partly adopt the preprocessing and quality control pipeline in
Cobos et al. (Avila Cobos et al., 2020) to the original data, which
include filtering genes with all zero expression or zero variance,
removing cells with the library size deviating from the mean size
over three median absolute deviations (MADs), keeping genes
with at least 5% of all cells having a UMI or read count greater
than 1, and retaining cell types with at least 50 cells passing the
quality control step (Avila Cobos et al., 2020).

After quality control, for each individual in each data set, we
split their cells evenly into the reference set and testing set with
similar distribution of cell types. Then, we generate
200 pseudo-bulk mixtures by randomly sampling 60% of
the cells each time in testing data sets and aggregate the
expression counts of each gene to generate the pseudo-bulk

sample. The true cell-type proportions are recorded, which
allows us to benchmark the performance of different
deconvolution methods. The flow chart for constructing
pseudo-bulk mixtures is shown in Supplementary Figure S1.

To evaluate the performance of deconvolution methods,
we need to measure the deviation of the estimated
proportion P̂ to the true P. Here, we apply the Pearson
correlation coefficient and root-mean-squared error
(RMSE) to evaluate the performance of deconvolution
methods:

(i) Pearson correlation: cor(P, P̂);
(ii) Root-mean-squared error: RMSE =

�����������������
1

k·m∑k
i∑m

j (Pi,j − P̂i,j)2
√

.

RESULTS

Method Overview
Since Wasserstein distance has been successfully applied to blind
source decomposition (Rolet et al., 2018) and dictionary learning
(Rolet et al., 2016), (Schmitz et al., 2018b) problems with excellent
performance, we aimed to apply Wasserstein loss on the bulk
deconvolution problem. We propose DecOT, which applies
Wasserstein loss to estimate the relative abundance of cell
types within a bulk sample by using a scRNA-seq reference
ensemble of multi-individuals. An overview of DecOT is
shown in Figure 1. DecOT first solves the entropic regularized
Wasserstein loss for the cell-type deconvolution problem (Cell
Type Deconvolution with Wasserstein Loss formula 4) based on a
single individual reference constitute of scRNA-seq data with
annotated cell types. Wasserstein distance aims to find the
optimal transport plan under a given transportation cost. In
our case, the transportation cost, also referred to as the
“ground cost,” represents the similarity or distance among
genes. Therefore, the application of Wasserstein loss can take
advantage of the relationship between genes to get an accurate
estimate.

When references from multi-individuals are available, to
minimize the possible bias induced by individual and/or
platform variations across different individual references, we
apply an ensemble framework similar to SCDC (Dong et al.,
2019), which aims to solve batch effects between reference data
sets. Instead of weighting deconvolution results across a data set,
DecOT seeks to optimize weights on results based on each

TABLE 1 | Four real scRNA-seq data sets.

Data set Tissue type Data type Protocol Individual samples Cells Genes Cell types

Baron (GSE84133) Baron et al. (2016) Pancreatic islet Single-cell
RNA-seq

Illumina HiSeq 2,500 (InDrop) 4 7,876 8,415 10

E-MTAB-5061 Segerstolpe et al. (2016) Pancreatic islet Single-cell
RNA-seq

Smart-seq2 10 1901 14,200 7

GSE81547 Enge et al. (2017) Pancreatic islet Single-cell
RNA-seq

Smart-seq2 8 2073 11,861 5

Kidney.HCL Han et al. (2020) Guo, (2020) Kidney Single-cell
RNA-seq

Microwell-seq 3 20,601 2,748 13
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individual reference. In this way, the individual or batch effects
can be accounted for simultaneously by DecOT.

DecOT Outperforms Deconvolution
Methods Based on Squared Loss
We evaluate DecOT with different ground costs as listed in
Ground Cost Selection, which we refer to as DecOT_dissTOM,
DecOT_euclidean, DecOT_cosine, and DecOT_correlation. For
these four settings, we apply the aggregated reference, which is,
pooling cells from multiple individuals to generate a single
reference. In addition, we also evaluate DecOT with dissTOM
under the ensemble framework (referred to as
DecOT_disTOM_ensamble). The various settings of DecOT
are then compared to four other square loss-based methods
(including Nonnegative least squares (NNLS), MuSiC, SCDC,
and Bisque) on artificial pseudo-bulk mixtures generated from
four scRNA-seq data sets (Table 1, Methods). Since it is possible
by design to assay both bulk-RNA and scRNA from the same

individual (Kuksin et al., 2021), we consider settings of reference
data in two situations:

a) There are annotated single-cell reference data from the same
individual, from which the bulk sample is collected. We term
such a situation as “paired”.

b) Reference data are all collected from other individuals. We
refer to such a scenario as “unpaired”.

We mimic the “paired” situations in the benchmark by
including cells (in the reference set) from the same individual
for generating a pseudo-bulk sample (in the testing set)
(Supplementary Figure S1).

Figure 2 shows the benchmark result of data set GSE81547
from Enge et al. (Enge et al., 2017) under these two situations.
Applying DecOT under the ensemble framework has the best
overall performance compared to other settings and methods.
The average RMSE of DecOT_dissTOM_ensemble over all
pseudo-bulks is 0.037 and 0.056 under paired and unpaired

FIGURE 1 |Overview of DecOT. Based on the Wasserstein loss, DecOT first converts the gene expression of single-cell and bulk samples into distributions. Next,
DecOT calculates the ground cost matrix from the single-cell expression data, which forms the correlations among genes, see Ground Cost Selection for details. Then,
for each individual reference, DecOT finds the optimal proportion of cell types by minimizing the Wasserstein loss under the premise of a given ground cost. Finally, in
order to resolve the impact of batch effects between individuals, DecOT uses an ensemble framework to weigh each individual’s deconvolution result.
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situations, respectively, and the average correlation is 0.946 and
0.893 (Figure 2A). Figure 2B shows the detailed estimation
results of individual sample 54_male in GSE81547. DecOT
with an ensemble framework using dissTOM shows the
greatest performance. Even when applying aggregated
references, Wasserstein’s loss still outperforms NNLS.

In order to show the overall quality of the various methods in
pseudo-bulk mixtures generated from different samples in
GSE81547, we compared the mean RMSEs and mean Cors,
which result from performing different methods on the
pseudo-bulk generated based on different individuals
(Figure 2C). For each individual, we rank the results across
different methods and rescale them to the interval between 0 and
1. As shown in Figure 2C, the dark-red and larger points within a
line represent a smaller RMSE and a larger Cor. In general,
DecOT using Wasserstein loss has better performance than
square loss methods in most cases, and the ensemble
framework can further improve the accuracy of the

deconvolution results even when the mixtures and reference
cells come from different individuals.

Similar conclusions are also obtained from benchmarks based
on the other three data sets. The results are shown in
Supplementary Figures S2–S4.

DecOT Performs Robustly Under the
Ensemble Framework
The choice of reference in solving the supervised deconvolution
problem is crucial. We first compare the performance of DecOT
by using references from different individuals. In detail, we
evaluate DecOT on the pseudo-bulk generated from the
testing set of 54_male in GSE81547 by respectively applying
reference data from each individual as well as under the
ensemble framework (paired and unpaired). Figure 3A shows
the result out of 200 pseudo-bulk mixtures in each reference
setting. Using references from the same individual (reference set

FIGURE 2 | Benchmark results using data set GSE81547. (A) Average RMSE and Cor of the deconvolution results of all mixtures in data set GSE81547. From the
overall results, the estimation of DecOT with the ensemble framework has smaller errors and stronger correlation than other methods. (B) Boxplot of RMSE from 200
replicate pseudo-bulk mixtures from sample 54_male. The top/bottom panel shows the results under paired/unpaired situation. (C)Overview of deconvolution results of
individual pseudo-bulk mixtures across all methods in data set GSE81547. For each individual, we rank the results across different methods and rescale them to the
interval between 0 and 1. A darker-red and larger point within a line represents a smaller RMSE and a larger Cor. Both paired (top) and unpaired (bottom) situations are
considered.
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from 54_male) outperforms the situation of applying references
from other individuals (Figure 3A). The deconvolution
performance is slightly improved with integrating results
across all individuals (paired), indicating that the DecOT
ensemble framework makes use of information from other
individuals to adjust the final estimation. Such a finding is
further confirmed in the case under the unpaired reference
situation; when excluding 54_male from the reference, the
estimation of DecOT under the ensemble framework still
obtains a smaller error than using other single individual
references. In fact, including more individual references under
the ensemble framework tends to improve the performance of
deconvolution (Supplementary Figure S5).

Deconvolution with paired single-cell data as a reference will
greatly improve the performance. However, in a more realistic
scenario, single cells collected from the same individual may have
missing cell types as compared to the paired bulk sample,
especially when the cell type is rare. Therefore, we conducted
an experiment by gradually and cumulatively removing cell types
in ascending order of cell count in the reference set of 54_male
(Supplementary Table S1) and used the data with the missing
cell type as a reference. When there is a missing cell type in the

reference, the deconvolution may allocate the expression of the
missing cell type to other types, which leads to biased estimation
(Figure 3B). One way to reduce such bias is to impute the
missing cell type in the reference by utilizing a publicly
available data set as a surrogate. Here, we use the mean
expression of the missing cell type from references of
other individuals for imputation (Figure 3C). Compared
to the results in Figures 3B,C, imputation of missing cell
types significantly improves the performance of
deconvolution. Nevertheless, regardless of imputation, the
estimation error will get worse as the number of missing cell
types increases.

Another possible way for reducing the impact caused by
missing cell types in paired single-cell references is to apply
DecOT under the ensemble framework. Since our ensemble
framework integrates deconvolution results respectively
performed under each individual reference, we can still apply
imputation on missing cell types in the paired reference. Table 2
compares the average RMSE of cases based on single references
from paired single-cell data (RMSE-54_male) and ensemble
references which account all possible individuals (RMSE-
ensemble). In addition, we use the unpaired ensemble case as

FIGURE 3 | Effects under different manipulation references benchmarked bymixtures constructed from 54_male of GSE81547. (A)Comparison of the results from
single individual references and multi-individual references under the ensemble framework. (B,C) Deconvolution results with missing cell types in paired references. The
cell types are progressively removed according to the ascending order of cell counts in 54_male. (B) Direct application of the paired reference from 54_male with the
missing cell type. (C) Application of the paired reference from 54_male with missing cell types imputed by references from other individuals.
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TABLE 2 | Optimal weights of different individual references under the DecOT ensemble framework. The weights and the overall performance are compared under different settings of the missing cell type in the paired
reference of sample 54_male. Imputation indicates that the reference profiles of missing types are imputed by references from other individuals.

Optimal weight with imputation RMSE-54_male RMSE-ensemble

1_male 21_male 22_male 38_female 44_female 54_male 5_male 6_male

54_male-all 0.0000 0.0000 0.1654 0.0000 0.0000 0.7504 0.0842 0.0000 0.0190 0.0175
54_male-delta 0.0000 0.0000 0.1691 0.0000 0.0000 0.7412 0.0817 0.0081 0.0234 0.0215
54_male-delta-ductal 0.0000 0.0000 0.1772 0.0000 0.0000 0.7293 0.0830 0.0104 0.0234 0.0218
54_male-delta-ductal-acinar 0.0000 0.0000 0.1684 0.0000 0.0000 0.6985 0.0934 0.0397 0.0318 0.0289
54_male-delta-ductal-acinar-beta 0.0000 0.0000 0.1765 0.0000 0.0475 0.6251 0.1509 0.0000 0.0359 0.0306
54_male-unpair 0.0000 0.0000 0.5114 0.0000 0.1837 — 0.1487 0.1561 — 0.0227

Optimal weight without imputation RMSE-54_male RMSE-ensemble

1_male 21_male 22_male 38_female 44_female 54_male 5_male 6_male

54_male-all 0.0000 0.0000 0.1462 0.0000 0.0000 0.7483 0.0859 0.0196 0.0190 0.0172
54_male-delta 0.0000 0.0000 0.1558 0.0000 0.0000 0.7310 0.0901 0.0231 0.0211 0.0165
54_male-delta-ductal 0.0000 0.0000 0.1625 0.0000 0.0000 0.7069 0.1093 0.0212 0.0293 0.0237
54_male-delta-ductal-acinar 0.0000 0.0000 0.2971 0.0000 0.0545 0.3624 0.2173 0.0686 0.1268 0.0444
54_male-delta-ductal-acinar-beta 0.0000 0.0000 0.4654 0.0000 0.1840 0.0081 0.1670 0.1755 0.6834 0.0226
54_male-unpair 0.0000 0.0000 0.4692 0.0000 0.1855 — 0.1683 0.1770 — 0.0224
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FIGURE 4 |Cell-type deconvolution of healthy and T2D human pancreatic islet samples. (A) Estimated composition of islet cell types in healthy and type 2 diabetes
(T2D) humans by DecOT under three settings of references. The violin plots show the proportion differences between healthy and T2D samples. (B) Independent sample
t-tests of beta cell proportion between healthy and T2D individuals. DecOT shows themost significant difference as compared to other methods. (C) Linear regression of
HbA1c expression level and the proportion of beta cells estimated by five methods. The reported p-values come from a multivariate linear regression model: beta
cell ratio ~ HbA1c + age + BMI + gender.
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a baseline. The weight contributions of references from each
individual are also displayed in Table 2. Since the pseudo-bulk
mixtures are constructed from 54_male, the reference from one’s
own cell (self-ref) contributed the most to the ensemble result.
The weight contribution from self-ref decreases with the
increasing number of missing cell types. The ensemble DecOT
estimation under the ensemble framework is always better than
using a single reference, even though it is collected from the same
individual as for the bulk sample. Such a result verifies that the
ensemble framework can integrate the information of multiple
individuals to get a better estimate even if there is a cell type
missing in the paired reference. In general, the results from the
ensemble framework are rather robust under missing cell types in
paired references (regardless of whether they are imputed or not).

Performance of DecOT on Human
Pancreatic Islet Data
Next, we apply DecOT with dissTOM as the ground cost to
deconvolve the bulk samples of 89 human islets from Fadista
et al. (Fadista et al., 2014), which contains 51 healthy individuals,
26 type 2 diabetic (T2D) individuals, and 12 unknown individuals.
We focus on the composition of six cell types of interest (alpha, beta,
delta, gamma, acinar, and ductal) in the human pancreatic islet. We
use three groups of scRNA-seq references, denoted as the Baron
reference (Avila Cobos et al., 2020), Segerstolpe reference
(Segerstolpe et al., 2016), and ensemble reference, which combine
data from both studies. Figure 4A shows the deconvolution results
of DecOT on the six types of cells by contrasting the status of
individuals (normal or T2D). The proportion of beta cells that
secrete insulin will gradually decrease with the progression of type 2
diabetes (T2D) (Kanat et al., 2011), (Hou et al., 2015). DecOT can
successfully detect such a proportion difference between normal and
T2D patients, regardless of which group of reference is used for
analysis. In addition, we also apply independent sample t-tests on the
beta cell proportion estimated by DecOT between normal and T2D
groups. The estimates of DecOT based on all three reference
groups all result in significant differences in beta cell
proportion between normal and T2D samples (Figure 4B).
When comparing the results with those of the four other
deconvolution methods, DecOT shows the most significant
p-values (Figure 4B). Note that for the ensemble reference,
SCDC applies its built-in ENSEMBLE method, which weighs
the deconvolution results across two sources of references.
The other methods directly use the pooled data as references.

Previous studies have shown that in human pancreatic islet
samples, hemoglobin A1c (HbA1c) is an important biomarker of
type 2 diabetes, and its expression level should be negatively correlated
with beta cell functions (Kanat et al., 2011), (Hou et al., 2015),
(Frogner et al., 2015). We perform linear regression to the
estimates of beta cell proportion (BP) by HbA1c and adding age,
gender, andBMI as covariates.Figure 4C shows the regression results.
The estimates of BP by NNLS and BisqueRNA failed to recover a
significant negative correlation to the level of HbA1c. The beta cell
proportion estimated by DecOT, MuSiC, and SCDC based on the
three groups of references discovered significant negative correlations
withHbA1c.When using a single-source reference, DecOT calculated

the smallest p-values (0.0599 and 0.0514), indicating a more
significant correlation between BP and HbA1c levels. In fact, the
estimated BP by DecOT is robust over all three groups of references,
which can be seen from the variation between the slops of the fitted
regression line in Figure 4C. In contrast, the slopes have greater
differences in MuSiC and SCDC cases when a different reference is
applied. In short, DecOT shows better performance on real data sets
and is robust to different sources of references.

DISCUSSION

In this study, we proposed DecOT, which applies single-cell data as
references and uses Wasserstein distance as a loss function for
decomposing bulk cell types. Compared with the commonly used
square loss methods, the optimization of Wasserstein loss in DecOT
is able to utilize additional information from gene space, for example,
ground cost induced by gene-gene relations. By benchmarking
DecOT with four recently proposed square loss-based methods on
pseudo-bulk data from four different single-cell data sets and real
pancreatic islet bulk samples, DecOT shows superior performance.

Wasserstein loss accounts for the distance between genes through
the ground cost matrix. In this study, we evaluated four possible
choices of ground cost, namely, three common metrics (Euclidean
distance, cosine similarity, and Pearson correlation) and the
dissTOM distance based on gene co-expression networks. In the
analysis of simulated data, the final deconvolution effect of the four
metrics did not showmuch difference; however, since the topological
overlapmeasure (TOM) has been considered amore robustmeasure
of gene interconnections (Li and Horvath, 2007), we recommend
using dissTOM over other metrics.

Although DecOT obtains better deconvolution accuracy by using
Wasserstein loss, optimization of such a loss also brings a greater
computational cost. The application of entropic regularization allows
tractable computation of data sets on a larger scale. However, there is
a trade-off between accuracy and computation time. This trade-off
can be tuned by the two hyperparameters γ and ρ. In
Supplementary Figure S6, we show the calculation time of
DecOT under different numbers of genes and the accuracy and
time of DecOT calculations under different choices of two
regularization parameters. We show that the performance of
DecOT is rather robust with parameters in the range of γ≤ 0.05
and ρ≤ 0.01, which results in higher calculation accuracy.

When applying a supervised bulk-cell-type deconvolution
algorithm, the possible individual variation and batch effect
should be noted when combining references from multiple
individuals and/or data sets. DecOT uses an ensemble framework
to weigh the deconvolution across multiple results from each
individual reference to mitigate individual effects. The weights of
the ensemble framework indicate, to a certain extent, the similarity of
the gene distribution between the reference individuals and the bulk
samples. In the benchmarks on pseudo-bulk data, DecOT using the
ensemble framework shows improved accuracy and robustness over
existing methods in most scenarios.

The performance of deconvolution will be greatly improved
when paired single-cell references are available. However, there
can be a problem regarding the cell-type integrity in the paired
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reference. We have tested two solutions in the study, imputation of
themissing cell types, and/or applying the ensemble framework with
DecOT. The results show that the ensemble framework can
effectively utilize information of missing cell types from other
reference individuals by adjusting the weights. Although the
imputation solution also achieves acceptable results, the ensemble
framework of DecOT shows more robust performance.
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