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Editorial on the Research Topic

Currents in biomedical signals processing—methods and applications

1. Introduction

Biosignals asmeasurement of the human body’s functions provide useful information

regarding human condition. Thus, the analysis of biomedical signals has become one

of the most important methods for both interpretations and visualization in numerous

research areas such as inter alia biology or medicine. They also play a very important

role in health monitoring, diagnosis, but also as a source of data for the control purposes

(in Human-Machine Interfaces). It has also led to development of numerous modern

instruments designed for their detection, storage, transmission, and analysis. As the

biological signals appear to be random (stochastic), it is impossible to predict their value

in any time instant and therefore only statistical measures may be used in order to

determine their features.

Recent advances in signal computational methods have enabled the biomedical

signals in an efficient way in order to extract appropriate features and has been an

interesting subject for numerous research groups for over 40 years. More and more

sophisticated methods are being developed and applied including various classifiers and

filters. This Research Topic should focus on the most current trends in analysis of the

most popular biosignals such as EEG, ECG, EMG, which would be processed for various

applications such as inter alia clinical (rehabilitation, diagnostic purposes) or control

(human-machine interaction).

In this Research Topic titled “Currents in Biomedical Signals Processing—Methods

and Applications” a collection of contributions showing new advancements and

applications of advanced processing of biosignals for various applications was presented.
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The paper Binkowska et al. was focused on association

between long-term cannabis use and memory impairments.

Based on authors’ thorough literature review—very few studies

have examined this relationship, in particular in a poly-drug

context, when cannabis was combined with other addictive

substances. For this purpose the authors used event-related

potentials for the examination of the recognition process in

a visual episodic memory task in both cannabis users (CU)

and cannabis poly-drug users (PU). The hypothesis stated that

both groups (CU and PU) will have their behavioral and

phychophysiological-indicators of memory processes affected

with the use of cannabis alone or with other substances, with

the PU patients expressing stronger changes. The obtained

results proved alterations in recognition memory processing

in both groups compared to the healthy participants from the

control group (CG), and these were at most visible in cannabis

poly-drug users (PU), while there was no significant effect

for patients using cannabis alone. The paper proves that the

use of cannabis with other substances results with the biggest

disturbance in the brain function. The authors applied analysis

of electroencephalography (EEG) signals for this study, which

is non-invasive.

Another study involving analysis of EEG signals was

presented in Kwasniewicz et al., where the authors used brain

signals for the purpose of message credibility evaluation. No

similar studies could be found in the literature and the efficiency

of the obtained results was over 0.7. The authors found out

appropriate brain areas active depending on positive or negative

message reliability.

Also in Jakubowska et al., the authors used EEG signals,

where they assessed visual working memory (VWM) capacity.

The authors tired to assess the efficiency of training conducted

on a Real-Time Strategy (RTS) video game (StarCraft II) for the

purpose of VWM capacity improvement. The study involved 62

participants, who took part in two EEG sessions (before and after

the StarCraft II-based training).

Analysis of the EEG signals, which is a very challenging task

mostly due to the nature of these signals, was also presented

in paper Xu et al.; where the authors applied topological data

analysis (TDA) in order to analyse and understand the brain

signals. This paper is a short review and shows the opportunities

in analysis of EEG signals brought by the TDA, which differs

from traditional signal processing methods and has a very

wise potential usage in among the others Brain-Computer

Interfaces (BCIs).

As mentioned above—analysis of the EEG signals is difficult

among the others due to these signals’ non-stationarity. Also

the electroencephalography signals are prone to various external

and internal artifacts occurrence, where the internal artifacts

are frequently related with physiological activity, such as the

one related with eye movement and blinking. The eye blinking

(EB) artifacts strongly affect the signals’ quality. In Jurczak et al.,

the authors compared the most popular methods applied for

the electrooculography (EOG) artifacts removal—independent

component analysis (ICA) and regressionwith the convolutional

neural network (CNN) in order to eliminate the eye blinking

artifacts. The obtained results showedmuch higher performance

of the CNNmethod than the one given by regression or ICA.

In Barry et al. the authors focused on using more invasive

brain signals—electrocorticography (ECoG). The main aim of

this work was to examine ECoG spectrogram images for training

proper and reliable cross-patient seizure classifiers. In this paper,

the data collected from 113 patients was converted into RGB

spectrogram images. For classification purposes five different

convolutional neural networks (CNN) were applied, which gave

the cross-patient classification (seizure/non-seizure) accuracy of

87.9%, while the appropriate trained ResnEt50-based models

provided efficiency of 95.7%, which is very high.

Another study using deep learning algorithms such as

convolutional neural networks, in this case the osteogenic

convolutional neural network (OCNN), was presented

in Lan et al., where the authors decided to use them for

the rat bone marrow mesenchymal stem cells (rBMSCs)

osteogenic differentiation quantitative measurement. The study

showed that the OCNN enabled successful distinguishing of

differentiated cells at a very early stage and gave better prediction

performance compared with the single morphological

parameters. Based on the conducted experiments it is possible

apply the OCNN-based online learning models for further

rBMSCs osteogenic differentiation recognition.

The authors of Haraguchi et al. described the use of

less common signals, namely magnetoencephalography (MEG),

where the effect of menstrual cycle on brain activity has

been analyzed. In this work, the authors focused on objective

quantitative MEG parameters in order to investigate the effects

of the menstrual cycle on spontaneous neural oscillations. The

study involved 25 healthy female participant, with normal,

regular menstrual cycle. The testing was conducted twice: during

menstrual period (MP) and outside period (OP). The authors

of this paper showed that it is possible to use the menstrual

cycle as an accurate interpretation of functional neuroimaging

in clinical practice.

In Bartosik et al. statistical analysis was applied for the

purpose of selecting the most important personality features

based on attractiveness assessment. Based on authors thorough

literature study and on their research experience they claimed

that trust is based on facial appearance appraisal, which is

made based on facial morphological characteristics, such as

among the others color, complexion, shape, etc. In order to

select appropriate features the authors modeled a backward

step-wise logistic regression; they also analyzed the results of

the psychological tests together with the attractiveness and

trust survey.

In paper Boschen et al., the authors presented Fast

Scan Cyclic Voltammetry (FSCV), which has been used for

many years in animal models, but has not been applied on
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humans. The main aim of this work was to bring interest

into using the FSCV in human clinical studies. This article

showed also some technical challenges, which may limit its

clinical implementation, but these can be overcome while

properly addressed.

As mentioned above—analysis of biomedical data is a very

challenging task, but this makes is very interesting. We hope

that our Research Topic will be found interesting to readers

and researchers in fields of medicine, biomedical engineering

or neuroscience.
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Not Just a Pot: Visual Episodic
Memory in Cannabis Users and
Polydrug Cannabis Users: ROC and
ERP Preliminary Investigation
Alicja Anna Binkowska1* , Natalia Jakubowska1,2, Maciej Gaca3, Natalia Galant4,
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Background: While research has consistently identified an association between
long-term cannabis use and memory impairments, few studies have examined
this relationship in a polydrug context (i.e., when combining cannabis with other
substances).

Aims: In this preliminary study, we used event-related potentials to examine the
recognition process in a visual episodic memory task in cannabis users (CU)
and cannabis polydrug users (PU). We hypothesized that CU and PU will have
both–behavioral and psychophysiological–indicators of memory processes affected,
compared to matched non-using controls with the PU expressing more severe changes.

Methods: 29 non-using controls (CG), 24 CU and 27 PU were enrolled into the study.
All participants completed a visual learning recognition task while brain electrical activity
was recorded. Event-related potentials were calculated for familiar (old) and new images
from a signal recorded during a subsequent recognition test. We used receiver operating
characteristic curves for behavioral data analysis.

Results: The groups did not differ in memory performance based on receiver operating
characteristic method in accuracy and discriminability indicators nor mean reaction
times for old/new images. The frontal old/new effect expected from prior research
was observed for all participants, while a parietal old/new effect was not observed.
While, the significant differences in the late parietal component (LPC) amplitude was
observed between CG and PU but not between CG and CU nor CU and PU. Linear
regression analysis was used to examine the mean amplitude of the LPC component
as a predictor of memory performance accuracy indicator. LPC amplitude predicts
recognition accuracy only in the CG.

Conclusion: The results showed alterations in recognition memory processing in CU
and PU groups compared to CG, which were not manifested on the behavioral level, and
were the most prominent in cannabis polydrug users. We interpret it as a manifestation
of the cumulative effect of multiple drug usage in the PU group.

Keywords: cannabis (marijuana), polydrug use, recognition memory, EEG, late parietal component, SDT, ROC
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Binkowska et al. Cannabis Use and Episodic Memory

INTRODUCTION

Cannabis is the most commonly used illicit substance in the
world (United Nations Office on Drugs & Crime (UNODC),
2019) and approximately 26% of adult Europeans have a
history of using cannabis (European Monitoring Centre for
Drugs and Drug Addiction (EMCDDA), 2018). And it is
not without influence on their cognitive functioning. The
most consistent and prominent acute effects of cannabis are
impairments in the verbal learning and memory and working
memory as shown in recent meta-analysis, where reported
effect sizes were medium, between 0.5 and 0.7 (Zhornitsky
et al., 2021). Moreover, impairments in various cognitive
functions have been associated with the chronic cannabis use
(lasting beyond intoxication phase), with the most consistent
evidence in impairment of verbal episodic and working memory
(Broyd et al., 2016; Curran et al., 2016; Figueiredo et al.,
2020). Meta-analyses concentrated on the potential long-term
effects of cannabis use on cognitive domains, has shown the
significant deficits in executive functions, learning, working
memory, attention, processing speed, and the estimated effect
sizes were small (Grant et al., 2003; Schreiner and Dunn,
2012; Scott et al., 2018; Figueiredo et al., 2020; Kroon et al.,
2020a).

Less is known about the long-term impact of cannabis
on visual memory and learning. Studies suggest that THC
(tetrahydrocannabinol–the main psychoactive compound of
cannabis) may interfere with visual information processing,
which can lead to impairment of the visual memory of objects
and increase the chances of false recognition (Böcker et al.,
2010; Winton-Brown et al., 2011). Recently conducted study has
shown that people directly under the influence of cannabis exhibit
impairment in visual episodic memory, including learning
process (Doss et al., 2020). The question arises whether this effect
persists in regular cannabis users when they are no longer directly
intoxicated and if it is accompanied by altered brain function.
The formation and retrieval in episodic memory involve mostly
medial temporal lobe (MTL) structures such as the hippocampus
and parahippocampal gyrus (Brewer et al., 1998; Desgranges
et al., 1998). It is important to note that the highest density
of cannabinoid receptors (CB1) is in the hippocampus and
prefrontal cortex (Herkenham et al., 1990; Ameri, 1999).

There is strong evidence coming from studies on the relation
between brain function and episodic memory, that event-
related potential (ERP) components are helpful in understanding
physiological correlates of episodic memory (Rugg and Curran,
2007; Hoppstädter et al., 2015). The majority of studies on
learning and recognition tasks show that ERPs evoked by
previously experienced stimuli (“old” or “familiar”) are more
positive than ERPs evoked by new stimuli (“new”)–this effect
is known in the literature as the so called “Old/New effect”
(Rugg and Curran, 2007; Hoppstädter et al., 2015). There are
two main components of the Old/New effect–the frontal negative
(FN) deflection peaking between 300 and 500 ms, labeled the
FN400, which is related to the familiarity process (Curran, 2000;
Paller et al., 2007) and late positive component (LPC), which is
a posterior positive deflection, peaking between 400 and 800 ms,

related to the recollection process (Curran and Cleary, 2003; Rugg
and Curran, 2007).

While there is still a discussion about the cognitive
mechanisms involved in LPC generation, the research suggests
that it is related to categorical response, decision accuracy,
maintenance of visual working memory representations and
memory match, despite recognition memory (Danker et al.,
2008; Schendan and Maher, 2009; Gunseli et al., 2014). Study
conducted by Finnigan et al. (2002) has shown that the LPC
amplitude was significantly more positive for correct than
incorrect recognition responses not only when old but also when
new items were considered. Another research based on drift-
diffusion modeling of behavioral data showed that the LPC
amplitude predicts participants’ accuracy of recognition-memory
decisions on a trial-by-trial basis (Ratcliff et al., 2016).

To the best of our knowledge, there is only one study
investigating ERPs in non-intoxicated regular cannabis users
and heavy alcohol drinkers, which used the verbal memory task
(the Rey Auditory Verbal Learning Test, RAVLT) conducted by
Smith et al. (2017). The results did not show any behavioral
impairments, but indicated alterations in recognition memory
processing manifested by a larger LPC in heavy drinkers
compared to a control group. Cannabis-related differences were
related to a smaller FN400 component and a lack of the Old/New
effect, usually observed in a LPC response.

Detailed analysis of our collected data on self-reported
substance use as well as the hair sample analysis on drug use
(results were delivered after study accomplishment) revealed that
the majority of recruited cannabis users actually use other illicit
psychoactive substances as well.

Cannabis is the most commonly used drug within a polydrug
context (Mitchell and Plunkett, 2000; Carlson et al., 2005;
Lynskey et al., 2006; World Health Organisation, 2016). The
majority of cannabis users do not restrict substance use to
cannabis, but use other illicit or licit psychoactive substances
(mainly alcohol). As far as we know, research including polydrug
users (cannabis use only vs. combining cannabis with other illicit
substances) is extremely rare. Such comparison offers a deeper
insight into neurocognitive functioning of cannabis users and
polydrug cannabis users. That is why we decided to include two
cannabis users groups in our study–cannabis users and polydrug
users (cannabis + 1 ≤ other illicit drugs). Alcohol and tobacco
consumption level were controlled among groups as a potential
confounding variable. As we were interested in the residual
impact of cannabis, we included users who were not acutely
intoxicated during the time of study and who have had at least
12 h abstinence from cannabis.

The objective of the current study was to investigate if visual
episodic memory impairment lasts beyond the intoxication phase
in regular cannabis users (residual effect) and in those with
cannabis polydrug use, and if there are differences between users
and the controls in electrical brain activity related to memory
recognition. We decided to use sensitive analyses methods of
memory performance based on signal detection theory (SDT)
as they provide reliable information on memory qualities and
are considered as an indicator of MTL-dependent declarative
memories successful formation (Wais et al., 2006).
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The primary aim of our study was to answer the following
research questions: First, is performance on a visual episodic
memory task affected in regular cannabis users compared to non-
using controls? Second, are there differences in ERPs components
related to recognition between these users and the controls? If this
is the case, is there any relationship between electrophysiological
and behavioral indicators of memory performance? Additionally,
in line with previous research, we expected to observe the frontal
(FN400) and parietal (LPC) Old/New effect. We also expected
to find more positive LPC amplitude for correct than incorrect
answers, which would predict memory accuracy.

MATERIALS AND METHODS

Participants
Eighty-two participants provided informed consent to take part
in this study, 79 were included in study (reasons for exclusion of
three participants are described below), while 64 were included
in EEG data analysis (15 participants were excluded because
of bad EEG signal). The research protocol was approved by
the SWPS University Research Ethics Committee. We included
in study 29 non-using controls (CG) who used cannabis on
fewer than two occasions a year, and had not used in the
preceding 90 days and 50 cannabis users, that were further
divided in two subgroups which consist of 24 cannabis users
(CU) using cannabis at least once a month (regular use) for at
least 2 years (long-term use), and 26 cannabis polydrug users
(PU) defined as using cannabis (at least once a month for at
least 2 years) and using at least one other illicit drug in the
last 3 months. Inclusion criteria for all participants were as
follows: 21–42 years of age; Polish as a first language; normal
or corrected to normal vision. Participants were excluded if they
self-reported a history of brain injury, diagnosis of neurological
disease, psychotropic medications usage. Additional criteria for
cannabis users included: using cannabis at least once a month
(regular use) for at least 2 years (long-term use) and negative
results in screening test for cannabis use disorder (measured
as ≤12 points at The Cannabis Use Disorder Identification Test–
Revised (CUDIT-R; Adamson et al., 2010) delivered in an online
recruitment questionnaire before study. CUDIT-R is often used
in academic settings and is consider as having good psychometric
properties and time-efficient measurement (Adamson et al., 2010;
Kroon et al., 2020b). It is important to note that we invited to
our study participants who declared cannabis use only (and no
other illicit drugs) while recruiting to study, however, analyses of
collected data in lab settings and hair sample analyses revealed
polydrug use patterns in half of cannabis users. That is why we
decided to include them in a study as a separate group which
constitute a representative sample of cannabis users (Mitchell and
Plunkett, 2000; Carlson et al., 2005; Lynskey et al., 2006; World
Health Organisation, 2016).

Participants were screened for diagnosed psychiatric disorders
based on self-declaration of the presence of a diagnosis by a
mental health specialist, eight participants reported depression or
anxiety (4 CG, 1CU, and 3 PU), all other participants reported no
psychiatric disorders. Table 1 shows demographic and substance

use characteristics for 79 participants included in behavioral
analyses, while Table 2 shows the same characteristics for 64
participants included in EEG data analyses.

Cannabis users were included to CU group if they reported
in self-assessment regular and long-term cannabis use (described
above) and hair sample analysis reflected no other drug
metabolites detected in their hair [from analysis of hair
samples reflecting past 3-months exposure: THC+ (n = 12); no
cannabinoid metabolites detected (n = 12)]. Cannabis polydrug
users were included in PU group, if they reported in self-
assessment regular and long-term cannabis use and hair sample
analysis reflected other drug metabolites [from analysis of hair
samples reflecting past 3-months exposure: THC+ (n = 19);
1 ≤ other illicit drug metabolites detected (n = 26)]. The most
popular drug used in PU was MDMA (n = 17). Non-drug using
controls (CG) reported cannabis use on fewer than two occasions
a year, no use in the preceding 90 days (and no other illicit drug
use) in self-assessment and had no drug metabolites detected
in hair samples. Hair samples were not collected from eight
participants from the non-drug using control group.

As mentioned before three participants were excluded from
all analyses (1 in CG and 1 in PU because of current use
of psychotropic medication and another one in PU because
of deviant results – performance at random level indicating
no engagement in task, described in “Behavioral Performance”
section and psychotropic medication use). 15 participants were
excluded from EEG data analyses due to technical problems with
recording. Four participant reported shorter that 12 h abstinence
since last cannabis use (2 PU and 2 CU), while it was highly
possible that they used cannabis at night preceding experimental
sessions, we decided to include them in behavioral and EEG
analyses (2 CU and 1 PU, one of them was excluded because of
bad EEG signal), controlling whether the results would change in
case of their absence.

Participants were recruited via advertisements and social
media and received the description of their IQ test score and a
sample of their brains’ electrical activity for their participation.

Substance Use Assessment
Substance use was assessed by the self-reported drug history
questionnaire, which included the age of when cannabis use
first started, years of usage, days per month of usage, dose
in grams per week and time since last use. Questions about
other drug use were included. Additionally, illicit substance use
over the last 3 months was examined by 3 cm-hair samples.
The average concentration of each hair segment was calculated
and used for the final analyses. Hair samples were analyzed
for 512 drugs and their metabolites by an extremely sensitive
and specific analytical technique–Liquid Chromatography Mass
Spectrometry (LC-MS/MS). It is important to note that one
participant in CG and two in PU did not self-report psychotropic
medication which were detected in hair sample analysis, these
participants were excluded from the study.

What is more 23.1% of PU (n = 6) did not report
use of any other illicit psychoactive substance than cannabis,
but we detected them in their hair sample analyses (see
Supplementary Table 1).
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TABLE 1 | Demographic, neuropsychological and substance use characteristics
for participants included in behavioral analyses.

Group (n = 79) Controls
(n = 29)

Cannabis
users

(n = 24)

Polydrug
users

(n = 26)

Three group

comparisons

F2, 76 P

Male/female, % 48.3/51.7 54.2/45.8 65.4/34.6

Age, years, mean
(SD)

28 (5.13) 29.29 (5.09) 27.67 (4.6) 0.611a 0.545

Highest level of
education (Years)

16.8 (1.85) 17 (2.23) 16.3 (2.04) 0.737a 0.482

IQ test scores

[1pt] WAIS scores
Vocabulary

13.7 (2.06) 13.1 (1.72) 13.2 (1.7) 1.086a 0.343

WAIS scores
Similarities

13 (1.92) 13.3 (2.22) 12.9 (1.81) 0.259a 0.773

WAIS scores
Block design

12.9 (2.74) 13.4 (2.65) 13.6 (2.84) 0.441a 0.645

WAIS scores
Matrix reasoning

12.9 (2.3) 13.2 (2.54) 13.2 (2.22) 0.196a 0.822

WAIS scores
Digit span

12.1 (3.08) 13.1 (2.83) 13.2 (3.11) 1.086a 0.343

Diagnosed
psychiatric disorders
(% in group)

13.8 4.2 11.5

Alcohol, standard
drinks per week, %

0 3.4 0 0

<1 44.8 50 46.2

1–3 37.9 45.8 38.5

4–6 13.8 4.2 11.5

7–14 0 0 3.9

14≤ 0 0 0

Tobacco, %

No 75.9 45.8 65.4

Occasionally 24.1 45.8 26.9

Regularly 0 8.3 7.7

Cannabis use pattern

Onset age, years – 19.96 (5.7) 19.7 (3.43)

Duration, years – 9.04 (7.09) 8.61 (4.48)

Frequency of
cannabis use (% of
subjects)
Lifetime

0 82.8 0 0

Less than twice a year 17.2 0 0

2–3 times per month 0 0 7.7

1–3 times per week 0 33.3 23.1

3–6 times per week 0 33.3 23.1

Daily 0 33.3 38.7

No answer 0 0 7.6

Frequency of
cannabis use within
past 30 days

0 100 4.2 7.7

2–3 times per month 0 8.3 3.8

1–3 times per week 0 33.3 26.9

3–6 times per week 0 29.2 30.8

Daily 0 25 30.8

(Continued)

TABLE 1 | Continued

Group (n = 79) Controls
(n = 29)

Cannabis
users

(n = 24)

Polydrug
users

(n = 26)

Three group

comparisons

Dose in grams per
week (%)

Less than 1 g 0 33.3 30.8

1–2 grams 0 41.7 23.1

3–5 grams 0 25 30.8

>5 grams 0 0 11.5

No answer 0 0 3.8

Dose in puffs per one
use

– 7.5 (3) 7 (2.7)

Time since last
cannabis use (%)

<12 h 0 8.3 7.7

12–24 h 0 41.7 50

1–3 days 0 16.7 26.9

3–7 days 0 20.8 7.7

7–14 days 0 4.2 0

>14 days ago 0 8.3 3.8

Other illicit drug use
in last 30 days (% of
subjects)

0 100 100 61.5

1 time per month 0 0 34.6

2 < per month 0 0 3.8

Hair sample pos
(number)

THC – 12 19

MDMA – – 17

LSD – – 1

Amphetamine – – 4

Methcathinone – – 2

Cocaine – – 8

Cathine – – 1

Note: aOne-way ANOVAs; There were no significant differences between cannabis
users (CU), polydrug users (PU), and control group (CG) in tobacco H(2) = 5.441,
p = 0.066 and alcohol use patterns H(2) = 0.4, p = 0.819 as Kruskal–Wallis H
tests revealed, gender X(2) = 1.659, p = 0.436, diagnosed psychiatric disorders
X(2) = 3.256, p = 0.516 as χ2-tests shown. Comparison between CU and PU on
cannabis use pattern shown no significant differences in: onset age t(44) = 0.19,
p = 0.852, duration t(44) = 0.249, p = 0.805, dose in puffs per one use
t(43) = 0.587, p = 0.561 (series of t-tests has shown), lifetime frequency of use
Z = −0.326, p = 0.745, frequency of use in last 30 days Z = −0.403, p = 0.687,
dose in grams per week Z = −1.050, p = 0.294 and time since last cannabis
use Z = −1.044, p = 0.279 (series of Mann–Whitney U tests). It is important to
note that the ordinal data on substance use are presented in table in percentages,
however, during analyses (while performing series of Mann–Whitney U or Kruskal–
Wallis H tests) they were coded numerically. Hair sample analyses time-window
was 3 months preceding study participation.

Procedure
Researchers collecting data were blind to the group status and had
no knowledge of the cannabis/illicit drug use by the participants.
Participants were asked to refrain from cannabis and other
psychoactive substance use 12 h before attending the assessment
session to ensure that examination would occur while they
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TABLE 2 | Demographic, neuropsychological and substance use characteristics
for participants included in event-related potential (ERPs) analyses.

Group (n = 64) Controls
(n = 24)

Cannabis
users

(n = 19)

Polydrug
users

(n = 21)

Three group

comparisons

F2, 61 P

Male/female, % 50/50 52.6/47.4 66.7/33.3

Age, years, mean
(SD)

28.3 (5.34) 28.9 (5) 27.9 (4.34) 0.246a 0.783

Highest level of
education (Years)

16.8 (1.86) 16.8 (2.26) 16.3 (2.1) 0.42a 0.659

IQ test scores

WAIS scores
Vocabulary

13.8 (2.1) 13 (1.73) 13.4 (1.77) 0.933a 0.399

WAIS scores
Similarities

13.1 (2.03) 13.2 (2.46) 13 (1.87) 0.032a 0.969

WAIS scores
Block design

12.8 (2.95) 13.3 (2.68) 13.4 (2.71) 0.317a 0.73

WAIS scores
Matrix reasoning

12.5 (2.28) 13.4 (2.36) 13 (1.94) 0.865a 0.426

WAIS scores
Digit span

12.6 (2.64) 12.8 (3.08) 12.6 (3.12) 0.046a 0.955

Diagnosed
psychiatric disorders
(% in group)

16.7 5.7 4.8

Alcohol, standard
drinks per week, %

0 4.2 0 0

<1 41.7 47.4 47.6

1–3 41.7 52.6 38.1

4–6 12.5 0 14.3

7–14 0 0 0

14≤ 0 0 0

Tobacco, %

No 75 47.4 61.9

Occasionally 25 42.1 28.6

Regularly 0 10.5 9.5

Cannabis use pattern

Onset age, years – 19.47
(5.95)

20.06
(3.56)

Duration, years – 9.47 (7.73) 8.28 (3.97)

Frequency of
cannabis use (% of
subjects)
Lifetime

0 87.5 0 0

Less than twice a year 12.5 0 0

2–3 times per month 0 0 9.5

1–3 times per week 0 36.8 19

3–6 times per week 0 26.3 28.6

Daily 0 36.8 33.3

No answer 0 0 9.6

Frequency of
cannabis use within
past 30 days

0 100 0 9.5

2–3 times per month 0 10.5 4.8

1–3 times per week 0 36.8 23.8

3–6 times per week 0 26.3 38.1

Daily 0 26.4 23.8

(Continued)

TABLE 2 | Continued

Group (n = 64) Controls
(n = 24)

Cannabis
users

(n = 19)

Polydrug
users

(n = 21)

Three group

comparisons

Dose in grams per
week (%)

Less than 1 g 0 31.6 33.3

1–2 grams 0 36.8 23.8

3–5 grams 0 31.6 33.3

>5 grams 0 0 4.8

No answer 0 0 4.8

Dose in puffs per one
use

– 8.2 (2.6) 6.6 (2.7)

Time since last
cannabis use (%)

<12 h 0 10.5 4.8

12–24 h 0 42.1 52.4

1–3 days 0 15.8 23.8

3–7 days 0 21.1 10

7–14 days 0 5.3 0

>14 days ago 0 5.3 5

Other illicit drug use
in last 30 days (% of
subjects)

0 100 100 57.1

1 time per month 0 0 42.9

2 < per month 0 0 0

Hair sample pos
(number)

THC – 10 15

MDMA – – 15

LSD – – 1

Amphetamine – – 4

Methcathinone – – 1

Cocaine – – 7

Cathine – – 0

Note: aOne-way ANOVAs; There were no significant differences between CU, PU,
and CG in tobacco H(2) = 3.459, p = 0.117 and alcohol use patterns H(2) = 0.837,
p = 0.242 as Kruskal–Wallis H tests revealed, gender X(2) = 1.408, p = 0.495,
diagnosed psychiatric disorders X(2) = 2.406, p = 0.3 as χ2-tests shown.
Comparison between CU and PU on cannabis use pattern shown no significant
differences in: onset age t(35) = −0.359, p = 0.722, duration t(35) = 0.587,
p = 0.561, dose in puffs per one use t(34) = 1.832, p = 0.076 (series of t-tests
has shown), lifetime frequency of use Z = −0.566, p = 0.571, frequency of use in
last 30 days Z =−0.028, p = 0.978, dose in grams per week Z =−0.282, p = 0.788
and time since last cannabis use Z = −0.511, p = 0.609 (series of Mann–Whitney U
tests). It is important to note that the ordinal data on substance use are presented in
table in percentages, however, during analyses (while performing series of Mann–
Whitney U or Kruskal–Wallis H tests) they were coded numerically. Hair sample
analyses time-window was 3 months preceding study participation.

were not intoxicated. The abstinence was verified via the self-
reported time and date of last use, and no observable signs
of intoxication.

All participants were tested individually in one session. The
experimenter showed the participant the lab and recording
equipment and described the experimental protocol before
written informed consent was obtained. Participants then
completed a short demographics questionnaire and answered
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questions about their drug use in a separate room to protect
their privacy. After that, subjects performed a shortened version
of Wechsler Adult Intelligence Scale–Revised including five
subtests (Wechsler, 1981; Brzeziński and Hornowska, 1998).
Afterward, a 3 cm hair sample was taken from each participant
(from the scalp).

Prior to the beginning of the experimental task, participants
were verbally instructed as to what they would be experiencing
and were shown what the procedure of EEG electrode mounting
entails. Then participants were brought into a laboratory setting
and seated in front of a 24 inch BenQ XL2411Z computer
monitor (1,920 × 1,080 resolution, 100 Hz refresh rate) at a
distance of 60 cm. Electrodes were then mounted and participants
were briefly shown the EEG signal and explained how it is affected
by eye blinks and muscular movements, which was a part of the
procedure aimed at minimizing the amount of artifacts in the
signal. The procedure was then started, and upon its completion
subjects were provided with a place to wash their hair. The entire
procedure lasted no more than 3 h.

Experimental Task
The episodic memory task consisted of two sessions: learning
session and a recognition memory session at least 15 min later
(Figure 1). During the learning session, participants viewed a set
of 100 previously unseen, randomly selected images (each shown
only once) from five categories, in random order (cars, people,
animals, landscapes, food; from each category the same number
of images was presented). Each image was presented for 1 s. After
the image presentation, the subject assessed whether it showed
an animal or not (the aim of that question was to maintain
concentration on the task). The participants were informed that
a test based on these images will be carried out later. Between the
learning and recognition session there was at least a 15 min delay,
during which a distraction task was administered (Sternberg) to
prevent active rehearsal.

During the recognition session, participants viewed a set of
100 randomly selected images, 50 of which were new and 50 of
which had been presented during the learning session (the same
number of images were presented for each category). By using
novel and complex pictures, we wanted to decrease chances of
subjects to use verbalization as a memory strategy. If subjects had
difficulty attaching a verbal label to the complex stimuli, then the
probability of using this technique diminished. What is more, for
the long delay period between learning and recognition phase (as
in this study) information maintenance using a verbal strategy is
not as efficient as in the case of immediate testing phase (Ellmore
and Reichert, 2017). Subjects indicated whether they had seen
the image before (response “old”) or not (response “new”) on a
six-point confidence scale, along with the degree of confidence
in their answer.

One hundred and fifty pictures were selected to be used in
the current study from Wikimedia Commons under a Creative
Commons license (stimuli from the Figure 1 have not been used
in the study and come from the author’s private archive; examples
of stimuli used in the study are in Supplementary Figure 1).
The created database contains high quality photographs. All
images were shown at the center of the screen of a computer

placed in front of the participant. Participants responded
by pressing marked buttons on a keyboard. There were no
time restrictions for an answer. Stimulus presentation and
recording of responses were attained using PsychoPy (v1.85.6;
Peirce, 2007).

Signal Detection Theory
Performance during the memory task was analyzed with the
SDT approach. An image correctly identified as old is a hit
(remembered), an image incorrectly identified as old is a
false alarm, an image incorrectly identified as novel is a miss
(forgotten), and an image correctly identified as novel is a
correct rejection.

The confidence levels in the ROC are cumulative and
are calculated according to standard SDT analysis methods
(Macmillan and Creelman, 2004). Each ROC curve was generated
by plotting the hit rate against the false alarm rate for each
confidence level of the 6-point confidence rating scale, from the
most strict criterion (the proportion of hits and false alarms at the
highest level of confidence) to the most liberal criterion, ending
at (1,1). Recognition accuracy – the proportion of recognition
(Pr) was calculated by subtracting false alarm rates from hit rates
(Pr = H − FA) for each subject and was used as a measure
of overall memory performance (Snodgrass and Corwin, 1988).
Higher Pr values indicate better discriminability between old and
new stimuli, which means better recognition accuracy.

The area under the ROC curve (AUC) is a measure
of the discriminability, where 50% is chance and 100% is
perfect discrimination. It is a reliable measure of performance
accuracy as it is not influenced by response bias (C). C value
(C = −0.5[(z(H) + z(FA)]) is a decision bias parameter.
Positive C values indicate conservative response bias, while
negative indicate liberal response bias. The other measure of
discriminability or sensitivity is d-prime [d’ = z(H) - z(FA)] which
usually refers to the degree to which latent memory or perceptual
signals from two classes of repeatedly presented stimuli–target
stimuli or lure stimuli–overlap in the brain. Statistic d’ is the
standardized distance between the means of two underlying
strength distributions that are assumed to be Gaussian in form
and to have equal variance and take values between 0 and 4 SD. If
those two distributions overlap completely, then discriminability
is equal to zero. Detection capability/sensitivity (d’) increases
as the number of hits increases and as the number of false
alarms decreases.

EEG Recordings and Analysis
A 64-channel SynAmps RT Neuroscan EEG amplifier and
BrainProducts actiCap Ag/AG–Cl active electrode set were used
to record brain activity during task performance. All channels
were recorded at 1000 Hz sampling rate. Impedances were
held below 15 k�. All data was preprocessed offline using
MATLAB environment, EEGlab (Delorme and Makeig, 2004),
and ERPlab (Lopez-Calderon and Luck, 2014) software packages.
The signal was initially re-referenced to a common average and
then down-sampled to 250 Hz, followed by a high-pass filter
(cut-off = 0.1 Hz). Signals from bad electrodes were interpolated.
Movement artifacts were manually removed from the data, after
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FIGURE 1 | Trial structure at learning and recognition.

which an independent component analysis (ICA) was applied
for an eyeblink artifact rejection. Data epochs between −200
and 996 ms (with zero being the image presentation) were
extracted. The epochs were visually inspected for remaining
eye-blinks/movements and excessive muscle activity. Then the
segments were averaged from trials with correct responses,
according to the condition [(i) New image, (ii) Old image].
Correct old trials (Old image) were calculated for old items rated
5 or 6, while correct new trials (New image) were calculated for
new items rated 1 or 2. Incorrect responses were not included in
analyses as there were not enough of them. Baseline correction of
ERP amplitudes was performed for the interval from -200 to 0 ms.

The FN component was measured from the 350–550 ms time
window, from the F3, Fz, and F4 electrodes. LPC time window
was specified to 450–750 ms, and was obtained from electrodes:
C2, C4, C6, CP2, CP4, CP6, P2, P4, and P6 (Figure 2B). ERPs’
time windows and electrodes were defined according to the
literature and corresponding topographical maps (Rugg and
Curran, 2007; Danker et al., 2008; Hoppstädter et al., 2015; Tsivilis
et al., 2015; Kamp et al., 2016).

All analyses were conducted using IBM Corp. Released 2017.
IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY:
IBM Corp. and MATLAB custom scripts. An alpha level of 0.05
was used for all statistical tests.

RESULTS

Group Characteristics
Group comparisons for demographic, general functioning,
intelligence quotient and substance use were conducted with a
series of t-tests or ANOVAs for continuous variables, Mann–
Whitney U or Kruskal–Wallis H tests for most substance
use measures (on ordinal scales) and a χ2-test for categorical
variables. There were no significant differences between groups
in age, sex, education years, self-reported diagnosed psychiatric
disorders, verbal and fluid intelligence, alcohol and tobacco use
patterns nor for groups included in behavioral analyses nor
in ERPs analyses as shown in Tables 1, 2, respectively. Fluid

intelligence was assessed using Matrix Reasoning and Block
Design from WAIS-R. Verbal intelligence was assessed using
Vocabulary, Similarities and Digit Span from WAIS-R.

There were no differences in age of cannabis use onset,
frequency of cannabis use, dose in grams per week, frequency of
cannabis use within the past 30 days and dose in puffs per one use
between CU and PU (see Tables 1, 2).

Behavioral Performance
Memory performance estimates were calculated using the ROC
toolbox for MATLAB (Koen et al., 2017). Table 3 lists memory
performance indices for three groups. One-way ANOVA was
computed for each of the behavioral indices to test for significant
differences. There were no differences in H [F(2, 76) = 0.472,
p = 0.626, η2 = 0.12], FA [F(2, 76) = 1.510, p = 0.228, η2 = 0.038],
Pr [F(2, 76) = 0.159, p = 0.854, η2 = 0.004], d’ [F(2, 73) = 0.238,
p = 0.789, η2 = 0.006], AUC [F(2, 76) = 0.648, p = 0.526,
η2 = 0.017], and c [F(2, 73) = 1.574, p = 0.214, η2 = 0.041] between
groups. The statistically insignificant differences were preserved
when we excluded four participants who reported last use less
than 12 h before testing from analyses.

Participants successfully indicated the presence or absence
of an animal in 94% of the trials, which means they were
focused on the task. In general, subjects performed well. As
shown in Table 3 the average sensitivity (d’) and recognition
accuracy (Pr) were high. Participant’s reports of confidence fit
well to their performance (Figures 3A,C) and the ROC were
assymetrical (Figures 3B,D) with high average AUC values. Only
one participant AUC was 0.58, while 0.5 indicated performance
at a random level, this subject was excluded from the study due to
deviant results and lack of engagement in the task.

We also compared reaction times between correct old and
correct new trials. Correct old trials were calculated for old items
rated 5 or 6, while correct new trials were calculated for new
items rated 1 or 2, the same as in EEG analyses. Reaction times
were individually standardized and the observations above the
three standard deviations (for each participant separately) were
excluded from data analysis. RT for each group separately is
reported in Table 3. Repeated-measures ANOVAs, with Old/New
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FIGURE 2 | Group differences in the Late Positive Component (LPC). (A) Grand-averaged waveforms at a representative right centro-occipital cluster for correctly
recognized images. The shaded area represents the late (450–750 ms) time window used for the analyses. (B) Scalp topographies of the mean activity in
450–750 ms time window.

(two levels: Old Image vs. New Image) as a within-participant
factor, and Group (three levels: CG vs. CU vs. PU) as a between-
participant factor, were performed on the reaction times. ANOVA
analysis revealed that there was neither a main effect of Old/New
[F(1, 76) = 0.002, p = 0.962, η2 = 0.00] nor the Old/New×Group
interaction [F(2, 76) = 0.078, p = 0.925, η2 = 0.002]. All
effects for RT remain statistically insignificant when we excluded
four participants who reported last use less than 12 h before
testing from analyses.

Electrophysiological Data
Frontal Negativity
Figure 4A illustrates the grand average ERPs for correctly
recognized old and new images. Repeated-measures ANOVA,
with Old/New (two levels: Old Image vs. New Image) as a within-
participant factor, and Group (three levels: CG vs. CU vs. PU)

TABLE 3 | Recognition memory performance – mean (SD).

Control group Cannabis users Polydrug users

Hits (H) 0.78 (0.11) 0.77 (0.12) 0.75 (0.11)

False alarms (FAs) 0.12 (0.08) 0.1 (0.06) 0.09 (0.06)

Discrimination indices

Pr 0.66 (0.13) 0.68 (0.13) 0.66 (0.12)

d’ 2.08 (0.58) 2.19 (0.51) 2.12 (0.5)

AUC 0.89 (0.59) 0.89 (0.57) 0.88 (0.62)

Response bias indices

C 0.2 (0.31) 0.25 (0.27) 0.35 (0.29)

Reaction time (RT)

Old correct RT [s] 0.672 (0.3) 0.741 (0.21) 0.639 (0.27)

New correct RT [s] 0.681 (0.34) 0.728 (0.21) 0.646 (0.44)

Note Reaction times reported in seconds [s].

as a between-participant factor, was performed on the mean FN
amplitudes. ANOVA analysis revealed that there was a significant
Old/New effect [F(1, 60) = 5.211, p = 0.026, η2 = 0.08] but
no Group effect [F(2, 60) = 0.35, p = 0.706, η2 = 0.012], nor
Old/New × Group interaction [F(2, 60) = 0.019, p = 0.981,
η2 = 0.001].

Similarly, analysis, which excluded participants with shorter
than 12 h abstinence since last cannabis use, showed significant
Old/New effect [F(1, 57) = 5.882, p = 0.018, η2 = 0.094] and
no Group effect [F(2, 57) = 0.305, p = 0.738, η2 = 0.011], nor
Old/New × Group interaction [F(2, 57) = 0.032, p = 0.969,
η2 = 0.001]. Specific values of the FN are presented in Table 4.

Late Positive Component
Figure 2A illustrates the mean amplitudes of correctly recognized
images for each group. As mentioned before, we did not include
data for incorrectly recognized images in the analysis.

Repeated-measures ANOVA, with Old/New (two levels: Old
Image vs. New Image) as a within-participant factor, and Group
(three levels: CG vs. CU vs. PU) as a between-participant
factor, was performed on the mean LPC amplitudes. ANOVA
analysis revealed that there was a significant Group effect [F(2,
60) = 20.478, p = 0.017, η2 = 0.127] but no main effect of Old/New
[F(1, 60) = 0.706, p = 0.404, η2 = 0.012], nor Old/New × Group
interaction [F(2, 60) = 1.336, p = 0.271, η2 = 0.043].

Bonferroni-corrected multiple comparisons revealed
significant difference between CG and PU (p = 0.013) but
not between CG and CU (p = 0.593) or CU and PU (p = 0.425).

Analysis, which excluded participants with shorter than 12 h
abstinence since last cannabis use, showed significant Group
effect [F(2, 57) = 3.961, p = 0.025, η2 = 0.122] and almost
significant Old/New × Group interaction [F(2, 57) = 2.693,
p = 0.076, η2 = 0.086], but no main Old/New effect [F(1,
57) = 0.918, p = 0.342, η2 = 0.016]. Bonferroni-corrected multiple
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FIGURE 3 | Behavioral results. (A) Percentage of responses “old” and “new” as a function of confidence for all participants As X-axis corresponds to participants’
rating (1 = new, confident; 6 = old, confident) the highest probabilities for responses Old and New were 6 and 1. (B) The average receiver operating characteristic of
all subjects. (C) Percentage of responses “old” and “new” as a function of confidence for each group separately. (D) The average receiver operating characteristic for
each group separately. There were no significant differences between groups for any memory performance indicator and we can observe obvious similarities in
memory performance across groups.

comparisons revealed significant difference between CG and PU
(p = 0.02) but not between CG and CU (p = 0.571) or CU and PU
(p = 0.636).

As previous studies have reported, LPC is usually lateralized
on the left centro-occipital sphere (Curran and Cleary, 2003;
Rugg and Curran, 2007), we decided to duplicate presented
analyses on the left-lateralized electrode cluster (electrodes:
C1, C3, C5, CP1, CP3, CP5, P1, P3, and P5). Then it was
revealed that neither Group difference [F(2, 60) = 1.174,
p = 0.317, η2 = 0.038], Old/New effect [F(1, 60) = 1.815,
p = 0.183, η2 = 0.029], nor Old/New × Group interaction [F(2,
60) = 0.121 p = 0.886, η2 = 0.004] were significant on the
left-lateralized cluster.

Specific values of the LPC are presented in Table 5.

Regression Models
We did not observe any significant differences in any of the
memory performance indices between groups, which was also
observed in some previous studies (Smith et al., 2017; Sagar and
Gruber, 2019). While the Old/New effect was not observed for
the LPC component, there were significant differences in mean
amplitude between groups in this component for correct answers.
As LPC reflects attention, motivation, higher cognitive function,
decision accuracy, and memory judgments (MacNamara et al.,
2011; Wiens and Syrjänen, 2013; Ratcliff et al., 2016; Yang et al.,
2019), we decided to look for its influence on the measure of
overall memory performance – recognition accuracy (Pr). To test
whether the mean amplitude of the LPC component predicts
participants’ Pr, a linear regression was calculated.
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FIGURE 4 | Frontal Negativity for Old/New effect reflecting familiarity. (A) Grand-averaged waveforms at a representative frontal cluster for correctly recognized old
and new images. The shaded area represents the early (350–550 ms) time window used for the analyses. (B) Scalp topographies of the mean activity in 350–550 ms
time window.

TABLE 4 | Means and standard deviations of the mean amplitudes (µV) of the Frontal Negativities for all groups and conditions.

All participants Excluding participants with shorter than

12 h abstinence since last cannabis use

Control group Cannabis users Polydrug users Cannabis users Polydrug users

Old image -3.92 (3.60) -4.80 (4.38) -4.54 (3.26) -4.61 (4.62) -4.65 (3.31)

New image -4.45 (3.26) -5.28 (3.69) -4.98 (2.95) -5.23 (3.90) -5.12 (2.95)

Mean -4.16 (3.35) -5.04 (3.97) -4.74 (3.00) -4.90 (4.20) -4.88 (3.01)

TABLE 5 | Means and standard deviations of the mean amplitudes (µV) of the Late Positive Components for all groups and conditions.

All participants Excluding participants with shorter than

12 h abstinence since last cannabis use

Control group Cannabis users Polydrug users Cannabis users Polydrug users

Old image 2.01 (1.75) 2.71 (1.82) 3.22 (1.45) 2.81 (1.91) 3.16 (1.45)

New image 1.88 (1.63) 2.42 (1.45) 3.37 (1.36) 2.41 (1.45) 3.38 (1.40)

Mean 1.95 (1.67) 2.57 (1.55) 3.30 (1.33) 2.61 (1.61) 3.27 (1.36)

While the initial model, containing three groups, turned out
to be statistically insignificant [F(3, 59) = 1.902, p = 0.139] with
an R2 = 0.088, it contained significant influence of the mean
LPC amplitude (b = 0.027, p = 0.043), interaction between the
amplitude and the Group (b = −0.023, p = 0.045), and almost
significant influence of the Group (b = 0.07, p = 0.05). As the
insignificance of the initial model may be a result of an actual
relation existing in only one group, we decided to look at each
group independently (see Figure 5). Then it was revealed that
while the influence of the LPC was significant in CG (b = 0.034,
p = 0.02), both CU (b = −0.02, p = 0.248) and PU (b = −0.002,
p = 0.903) models were statistically insignificant.

Similarly, a model computed with extension of participants
with abstinence shorter than 12 h since last cannabis use was
statistically insignificant [F(3, 56) = 2.104, p = 0.11, R2 = 0.101],

but contained significant influence of the mean LPC amplitude
(b = 0.028, p = 0.036), Group (b = 0.077, p = 0.037) and
interaction between those (b = -0.025, p = 0.028). Auxiliary
models, created for each of groups independently, presented
similar results (CG: b = 0.034, p = 0.02; CU: b =−0.023, p = 0.156;
PU: b =−0.004, p = 0.844).

DISCUSSION

We believe this is the first EEG investigation of prolonged THC
exposure on memory processes in regular cannabis users and
regular cannabis polydrug users. The results showed alterations
in recognition memory processing, which were not manifested
on a behavioral level, but were prominent on a physiological
level and expressed the most in cannabis polydrug users.
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FIGURE 5 | Regression models for recognition accuracy indicator (proportion of recognition, Pr = Hits - False Alarms) as a function of the mean amplitude of the
LPC for each group separately. Scatter plot presents a significant relation between the mean amplitude of the LPC and Pr (r = 0.472, p = 0.02) in control group (CG)
and statistically insignificant relations in cannabis users (CU) (r = −0.287, p = 0.248) and polydrug users (PU) (r = −0.028, p = 0.903).

Based on the experimental procedure used in our study and
calculated behavioral indicators, we were able to precisely
analyse participants’ performance. Subjects’ confidence rating
charts and receiver operating characteristics, averaged for each

group separately (Figure 3) indicate they had an overall
good quality of their memories. It is also a signature that
MTL-dependent declarative memories were formed successfully
(Wais et al., 2006).
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The results have shown significant differences in mean
LPC amplitudes for correct answers between CG and PU. As
mentioned before the LPC is not unique for episodic memory
recollection, but is engaged in decision making during memory
judgments and related to various cognitive functions (Brezis
et al., 2016; Ratcliff et al., 2016). Increased brain activity
during cognitive task could be interpreted as a compensational,
stronger “neurophysiological” effort to overcome drug-induced
brain dysfunction and maintain normal behavioral performance
(Zeineh et al., 2003; Bhattacharyya et al., 2009; Roberts
et al., 2009), possibly higher engagement of attentional and
motivational resources in this case.

It is quite surprising, however, that we have not found
significant differences in LPC between CU and CG or PU.
The possible explanation is that use of other illicit drugs
among cannabis users altered brain function much more than
cannabis use only, and the differences observed between the
control group and cannabis users in previous studies were
enhanced by co-occurring use of other illicit drugs. The most
popular other illicit psychoactive substance among PU in our
study was MDMA. As previous studies have shown MDMA
is the most commonly used drug in polydrug context with
cannabis (Scholey et al., 2004; Daumann et al., 2004; European
Monitoring Centre for Drugs and Drug Addiction (EMCDDA),
2018). MDMA acts via serotonergic receptors and may cause
disturbances of serotonergic pathways (Benningfield and Cowan,
2013) and electrophysiological changes that reflect recruitment
of additional resources to perform cognitive tasks (Roberts et al.,
2018). The other psychoactive substances used among PU, such
as cocaine, amphetamine, and others may interact in a complex
way and cumulative effect may impact the further increased brain
activity (Zilverstand et al., 2018; Khajehpour et al., 2019). Still,
little is known about the interactive impact of various illicit drugs
on the human brain (Gouzoulis-Mayfrank and Daumann, 2006;
Van Dam et al., 2008; Shevlin et al., 2017), regardless of the
observed high frequency of polydrug use pattern.

What is more, the age of cannabis use onset in our participants
(∼20) could play an important role in shaping our results (no
difference between CU and CG), as usually in cannabis research
the age of onset is lower (during adolescence). That is why,
our results may be not possible to generalize on cannabis users
that started regular cannabis use much earlier. At the same
time, our participants were middle-aged and have shown long
lifetime cannabis use (∼10 years), giving us the opportunity
to investigate higher cumulative effects of cannabis use. It is
worthy to note that Smith et al. (2017) observed larger LPC
(indexing recollection) in heavy drinkers compared to a control
group, but not in cannabis users, without any concomitant
behavioral impairments.

We have also examined the direct relationship between the
ERP components’ amplitude and memory performance. We
checked whether the value-modulated LPC predicted behavioral
measures of a participant’s recognition accuracy. The initial
regression model containing LPC × Group interaction was
statistically insignificant, but further exploration revealed that
LPC amplitude predicts recognition accuracy in the control
group only. This result suggests that the higher the involvement

of the processes reflected in the LPC, the better non-drug
using participants are in discriminating between old and
new stimuli. Previous study has shown a positive correlation
between performance level on recognition memory task and
LPC amplitude only in healthy older people, but it was
not observed in participants suffering from mild cognitive
impairment (Waninger et al., 2018).

Due to a small CU sample size in our study, this explanation
should be treated with caution and should be further explored
in a larger sample. It is important to note that LPC is
located predominantly over posterior sites, often but not always
exhibiting a left-sided maximum, while in our study it showed a
right-sided maximum. It is not common but was observed before
(Tanguay et al., 2018; Hebscher et al., 2020).

Consistent with previous studies, we have observed a frontal
old/new effect thought to index familiarity, ERPs elicited by
previously seen stimuli (Old Images) were significantly more
positive in all groups (Curran, 2000; Paller et al., 2007). However,
we did not observe a parietal old/new effect (LPC). The absence
of LPC mean amplitude changes, depending on whether stimuli
was correctly identified as old or new, has been reported in
the literature before (Danker et al., 2008; Wolk et al., 2009;
Addante et al., 2012) and could be interpreted as reduction in
recollective processes following successful familiarity (Tibon and
Henson, 2015; Kamp et al., 2016). The FN400 and LPC are
usually interpreted in the context of the dual-process model of
recognition memory, where the LPC is the index of recollection
of episodic details about the prior stimulus encounter, and the
FN400 marks item-based, context free, familiarity assessment
(Yonelinas, 2002). It should be mentioned that there is a
still ongoing debate on the interpretation of these two ERP
components of recognition memory and the processes that
underlie them (Voss and Federmeier, 2011; Bridger et al.,
2012).

However, what was a little bit surprising for us, we did not
see any visible differences in behavioral indices of visual episodic
memory between groups. In light of our results, it should be noted
that studies employing neuroimaging and electrophysiological
techniques proved to be more sensitive to detect drug effects
(especially in non-intoxicated users) than traditional, behavioral
measures (Jager et al., 2007; Nestor et al., 2008; Cousijn et al.,
2014). Altered brain activation patterns in cannabis users relative
to non-users were observed across numerous brain regions even
when no differences in task performance were detected (Smith
et al., 2017; Sagar and Gruber, 2019).

In line with these results, it is interesting to note that LPC
amplitude in general was higher in CU and PU (Figure 2A), but it
did not predict memory accuracy. It may reflect subtle alterations
in neural circuits engaged in memory processing in both CU
and PU. Possibly, LPC rather reflects compensatory mechanisms
mentioned before, and higher attentional and/or motivational
engagement in PU and CU, as it does not correspond to a
recognition accuracy indicator in this case.

Strengths and Limitations
The use of hair sample analysis to define groups exposed or not
to cannabis and other drugs is limited in that it only provides
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information on exposure over the prior 3 months (when 3 cm
of hair is analysed). Unfortunately, hair sample analysis was not
available for eight participants from the control group. However,
it is important to note that biological measures of drug use (illicit
substances or psychotropic medication) is rarely used in non-
using controls in the research field on cannabis (or other illicit
drugs) and self-reported measures dominate for CU (Smith et al.,
2017; Khajehpour et al., 2019; Rangel-Pacheco et al., 2020) or the
urine/hair sample analyses detect cannabis use only (no other
illicit drugs nor psychotropic medication) (Yücel et al., 2016;
Prashad et al., 2018). That is why we would consider it as an
additional value of our study and exclusion of this participants
form analyses would make CG too small to obtain reliable results.
What is more, the obtained memory performance results and
ERPs are in line with previous studies and do not show any
artifacts (which possible drug use in this group could generate).
The reason why hair samples were not collected in this group
was that participants did not want to lose a big amount of
hair (diameter of a pencil) required for hair sample analyses,
because of esthetic reasons. As the observed tendency among
participants was rather to under-report drug use in cannabis
users (mainly in case of other illicit drug use) we assumed
their self-reports were reliable. In general, the best practice is to
use hair analysis with complementary tests for urine and blood
analysis as THC (similar to other drugs) takes about 2 weeks to
reach the hair shaft (Shah et al., 2019). Unfortunately, we did
not use these measurements in our study, because of funding
limitations and ethical concerns. At the same time, combined
self-reported and objective hair sample analyses were also the
strength of our study. While there is growing popularity of using
a combination of self-report and objective drug use assessment in
research on cannabis and neurocognitive functioning, the most
popular are drug urine tests, which despite all advantages have
a relatively short time-frame for various illicit drug detection.
The hair sample analysis provides the opportunity to detect many
drugs metabolites among much longer time-frames (restricted
by subjects’ hair length and research funding limits), which
makes it a suitable tool for long-term drug use assessment.
This kind of analysis has been used in research on cannabis
and neurocognition, but it has been restricted to cannabinoid
metabolites detection only. While hair sample analyses did not
prove THC presence in all cannabis users, it allowed to exclude
other illicit drug use in CU. Previous research showed that the
sensitivity of THC detection in hair is almost 80% in heavy
cannabis smokers compared to light and non- cannabis users, but
fell to 55% in any cannabis users compared to non-cannabis users
(Taylor et al., 2017).

The highly heterogeneous PU group is an important limitation
in our study (Supplementary Table 1), because we did not
include it preliminary in our research plan (as described in
“Participants” section). However, we decided to include them in
a study as a separate group (PU) as constituting a representative
sample of cannabis users (Mitchell and Plunkett, 2000; Carlson
et al., 2005; Lynskey et al., 2006; World Health Organisation,
2016). That is why we did not collect detailed information
about the polydrug use pattern (e.g., frequency of use, lifetime
use, whether different substances were used concurrently or

sequentially, substance dependence) as we intended to recruit
cannabis users only. This information would be beneficial to
understand better the issues of polydrug use and select a more
homogeneous group in future studies.

Moreover, our measure of psychiatric symptoms is based
exclusively on self-report (self-declaration of the presence of
a diagnosis by a mental health specialist), rather than clinical
evaluation or a structured interview. It would be important to
engage medical professionals in future studies for psychiatric
diagnosis as it is an important factor in polydrug use context.
While we used CUDIT-R to screen the severity of use-related
problems and recruit only participants with negative results
in screening for cannabis use disorder, we did not include in
our study screening for the severity of other illicit drug use-
related problems.

The control group in our study did not include only
individuals who had never used cannabis, but some of them
reported minimal use in their lifetime (<50 occasions). It is
considered acceptable and attenuates a potential cumulative
effect of cannabis use (Sagar and Gruber, 2019). We are aware of
the modest group sizes in our study, however, most neuroimaging
investigations in cannabis research have similar sample sizes
(Sagar and Gruber, 2019). While these samples appear to be large
enough to detect between-group differences in brain activation
patterns, it should be noted that our study has preliminary
character and further research is needed.

In summary, the findings of the present study indicate that,
when patterns of cannabis and polydrug use are examined in
greater detail, the unique effect of cannabis consumption seems
to be greatly attenuated. There was no significant effect for
cannabis alone, but only for cannabis in conjunction with other
illicit drugs, which most likely produce the biggest disturbance
in brain function.
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The objective of this study was to explore using ECoG spectrogram images for
training reliable cross-patient electrographic seizure classifiers, and to characterize the
classifiers’ test accuracy as a function of amount of training data. ECoG channels
in ∼138,000 time-series ECoG records from 113 patients were converted to RGB
spectrogram images. Using an unsupervised spectrogram image clustering technique,
manual labeling of 138,000 ECoG records (each with up to 4 ECoG channels) was
completed in 320 h, which is an estimated 5 times faster than manual labeling without
ECoG clustering. For training supervised classifier models, five random folds of data
were created; with each fold containing 72, 18, and 23 patients’ data for model
training, validation and testing respectively. Five convolutional neural network (CNN)
architectures, including two with residual connections, were trained. Cross-patient
classification accuracies and F1 scores improved with model complexity, with the
shallowest 6-layer model (with ∼1.5 million trainable parameters) producing a class-
balanced seizure/non-seizure classification accuracy of 87.9% on ECoG channels and
the deepest ResNet50-based model (with ∼23.5 million trainable parameters) producing
a classification accuracy of 95.7%. The trained ResNet50-based model additionally had
93.5% agreement in scores with an independent expert labeller. Visual inspection of
gradient-based saliency maps confirmed that the models’ classifications were based on
relevant portions of the spectrogram images. Further, by repeating training experiments
with data from varying number of patients, it was found that ECoG spectrogram images
from just 10 patients were sufficient to train ResNet50-based models with 88% cross-
patient accuracy, while at least 30 patients’ data was required to produce cross-patient
classification accuracies of >90%.

Keywords: semi-supervised labeling, ECoG labeling, big data, electrographic seizure classifier, epilepsy

INTRODUCTION

One of the major challenges in epilepsy treatment is the ability to reliably assess patient outcomes
(Engel, 2011; Engel et al., 2013). Patient reports of seizures can be unreliable and incomplete
because patients may be amnestic for seizures, may not document their seizures, or because
seizures often occur during sleep (Bazil et al., 2004; Kerling et al., 2006; Hoppe et al., 2007).
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A potential solution to this problem is to automatically
detect and count electrographic seizures from
electrocorticographic/physiological data captured using devices
such as implanted neuromodulation devices (Ryapolova-Webb
et al., 2014; Skarpaas et al., 2019), or health-monitoring wearables
that record long-term ambulatory patient data (Bruno et al.,
2018; Regalia et al., 2019).

Machine and deep learning models previously developed for
detecting electrographic seizures from physiological data have
demonstrated excellent performance (Thodoroff et al., 2016;
Acharya et al., 2018; O’Shea et al., 2018; Ansari et al., 2019; Roy
et al., 2019). However, most of these models are either patient-
specific or trained on small subsets of patients, which limits
their applicability to new patients or patients in whom only
small datasets are available. Additionally, previous models were
mostly trained on electroencephalographic (EEG) data captured
during intracranial EEG diagnostic monitoring, which may vary
substantially from data captured in a long-term ambulatory
setting and hence may not translate effectively to data captured
outside the clinical setting (Ung et al., 2017; Baumgartner and
Koren, 2018; Sun et al., 2018).

Large multi-patient ambulatory electrocorticographic (ECoG)
datasets obtained during clinical trials of the NeuroPace R© RNS R©

System may facilitate the development of machine learning (ML)
algorithms for seizure detection (Morrell, 2011; Bergey et al.,
2015; Skarpaas et al., 2019). However, training of a supervised
machine/deep learning electrographic seizure classifier (ESC)
requires ECoG datasets that contain training labels to mark both
electrographic seizure and non-seizure portions in the datasets.
In computer vision classification tasks involving classifying
everyday objects such as cats and dogs, the task of labeling large
datasets is often crowdsourced to non-specialist workers around
the world (example: Amazon Mechanical Turk1, FigureEight2,
Samasource3). A similar crowdsourcing technique may not be
suitable for labeling ECoG datasets given their complex nature.
Individuals specifically trained on labeling ECoG records are
needed, and even then, interlabeler agreement is not guaranteed
(Halford et al., 2011; Halford et al., 2015). The process of
creating training labels for large ECoG datasets can thus be
laborious and in many cases may even deter the development of
powerful ML models.

Electrographic seizure patterns are often stereotypical within
individual patients in time windows spanning a few months to
many years (Manford et al., 1996). Hence, if a representative
electrographic seizure pattern in a patient is manually labeled,
a method to automatically pre-label other similar electrographic
seizure patterns in the patient would substantially expedite
the process of manual review and labeling of ECoG data.
Further, if this method is generic and can be readily applied
to individual patient’s ECoGs without the need for patient-level
customizations, the solution could easily scale to large multi-
patient datasets. ‘One-shot’ and ‘few-shot’ learning techniques
for classifying objects with just one or a few training examples

1https://www.mturk.com/
2https://www.figure-eight.com/
3https://www.samasource.com/

of each class are currently being explored in computer vision
with promising results (Vinyals et al., 2016; Snell et al., 2017).
This paper describes a semi-supervised labeling technique,
based on unsupervised features extracted by a pre-trained
deep convolution neural network, for expediting the process
of labeling the large multi-patient ECoG dataset captured
with the RNS System.

Electrographic seizure patterns can vary substantially between
patients due to differences in seizure onset zones, disease
etiologies, and location and orientation of recording electrodes
(Haas et al., 2007). Given the heterogeneous nature of
electrographic seizures, development of ESCs that generalize
in new patients can be a complex problem, one on which
the rules- or feature-based algorithms may fare poorly. Deep
learning models can learn rules and features directly from
data and are particularly well-suited for problems that are
too complicated to craft rules (LeCun et al., 2015). Many
previous papers have demostrated the superiority of deep
learning based EEG classification models over traditional
machine learning models (Arora et al., 2018; Zeng et al.,
2018). In this paper several different deep learning models
of varying architectures and depths have been trained to
classify ECoG records as electrographic seizures or non-
seizures.

Performance of deep learning models generally improves
with depth. However, the majority of the previous work
on training deep learning models for seizure detection have
used convolutional neural networks (CNNs) that are <10
layers deep (Roy et al., 2019),which is relatively shallow
compared to the more recently developed contest-winning
models (Russakovsky et al., 2015; He et al., 2016). This is
presumably due to the limited amount of EEG training data
available in the previous studies. In the current study, training
and validation experiments were performed on the large multi-
patient ambulatory ECoG dataset (137,985 ECoG records from
113 patients) captured with the RNS System. Because of this
abundance of data, the deeper 18-layer ResNet18 and 50-layer
ResNet50 (He et al., 2016) architectures were experimented
with, in addition to shallower CNNs. ResNet models contain
residual blocks which have been shown to alleviate the problem
of exploding and vanishing gradients which can arise in deep
neural network architectures and were chosen for this reason
(He et al., 2016).

Despite the tremendous progress made by CNNs in
classifiying 2 dimensional (2D) image data (LeCun et al.,
2015), most of the previous work in training CNNs for
ECoG/EEG classification has focused on using raw time-series
signals as input to one dimensional CNNs (Ullah et al., 2018;
Roy et al., 2019; Yildirim et al., 2020). Very few studies have
explored converting ECoG time-series signals to spectrogram
images for training 2 dimensional CNNs, and even the ones
which do have demostrated their methods on relatively small
EEG datasets (Kuanar et al., 2018; Vrbancic and Podgorelec,
2018). Validating 2D CNN training on large multi-patient
ECoG spectrogram image datasets will certainly add confidence
in this technique, and will encourage similar EEG/ECoG
classification studies to leverage the latest developments in
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2D CNN image processing, potentially accelerating the rate of
neuroscience discoveries.

Although it is widely accepted that large ECoG training
datasets will lead to better model generalizability to new patients
(LeCun et al., 2015), to the best of our knowledge, characterizing
electrographic seizure classification accuracy in held-out patients
as a function of the number of patients whose data was
used for training, has not been performed. In this paper,
CNN models were trained with ECoG records from 10 to 80
patients, in increments of 10, to determine the generalizability
of models trained with ECoG records from varying numbers
of patients. All trained models were tested on expert-labeled
ECoG records from 80 additional held-out patients (i.e., in
addition to the 113 patients mentioned above) not used for
training or validation.

The work in this paper significantly adds to the existing
body of literature on labeling and training electrographic seizure
classifiers in several ways. First, it introduces a semi-supervised
labeling method for rapid manual-labeling of large ECoG
datasets. Second, it validates the use of ECoG spectrogram
images as inputs for training convolutional neural networks by
producing trained classification models with very high (>95%)
cross-patient classification accuracies. Third, it establishes a new
benchmark cross-patient electrographic seizure classification
accuracy level for ambulatory ECoG records. Fourth, it
characterizes classification accuracy as a function of the amount
of training data, thereby guiding the neuroscience community
on data collection requirements for solving similar ECoG/EEG
classification problems.

METHODS

The present study’s dataset comes from clinical trials of 256
patients treated with the NeuroPace R© RNS R© System (Bergey et al.,
2015). One hundred and ninety three randomly selected patients
were used for the analyses in this study.

All study protocols were approved by the US FDA
and the institutional review boards of the participating
investigation sites. All participants gave written informed
consent. The RNS System Feasibility, Pivotal and LTT studies are
registered on clinicaltrials.gov (NCT00079781, NCT00264810,
and NCT00572195).

The RNS System
The NeuroPace R© RNS R© System is an FDA approved adjunctive
treatment for patients with medically intractable partial onset
epilepsy having 1-2 seizure foci. Details about the RNS System
and the types of data it captures can be found in several previous
publications (Morrell, 2011; Bergey et al., 2015; Desai et al.,
2019b; Skarpaas et al., 2019). Briefly, the RNS System (Figure 1A)
consists of a closed-loop responsive neurostimulator device that
is placed in the skull. One or two quadripolar depth or strip leads
are connected to the device and implanted at the seizure foci.
The RNS System continuously senses brain activity and sends
electrical stimulation when patient-specific abnormal patterns, as
defined by the physician, are detected.

ECoG Acquisition and Patient Selection
ECoG records captured with the RNS System have a sampling
rate of 250 Hz per channel and are typically 90 s in duration,
however length may vary to a maximum of 180 s. An ECoG
record typically contains four channels of ECoG activity.
A variety of recording triggers save ECoG records including,
time(s) of day (scheduled ECoG records), detection of long
abnormal patient-specific patterns (long episode ECoG records),
and ECoG activity that saturates the recording amplifiers
(saturation ECoG records). About half of all ECoG records
captured with the RNS System are long episode (LE) ECoG
records. LE ECoG records can contain varying degrees of
abnormal epileptiform events on one or more ECoG channels
and are the only type included in this study. Figures 1B,C shows
four example ECoG records captured in one RNS System patient.

In the remainder of this paper, the term ‘ECoG record’
refers to an ECoG data file with up to 4 channels of ECoG
data, and the term ‘ECoG channel’ refers to each channel of
ECoG activity within an ECoG record. The terms ‘electrographic
seizures,’ ‘seizures,’ and ‘sz’ are used interchangeably to refer to
electrographic seizures; and ‘electrographic non-seizures,’ ‘non-
seizures,’ and ‘nsz’ are used to refer to electrographic non-
seizures.

Of the 256 patients enrolled in the RNS System clinical
trials, 193 were randomly selected for inclusion in this study.
Data from all 256 patients could not be processed due to
limited human labeler time resources. Data from 113 patients
were used to train, test and validate the ESC, and data from
the remaining 80 patients were used only for testing by
comparison of the ESC’s classification scores with those of a
board certified epileptologist. Figure 2 outlines the data split from
the 193 patients, and Figure 3 shows example spectral image
of ECoG channels labeled as non-seizures (top) and seizures by
a human labeler.

Patient-Specific 2D Embedding and
Clustering of ECoG Records
All analyses were performed using Python 3.5. Patient-
specific 2D embeddings of all LE ECoG records from 193
patients were created using unsupervised feature extraction
and dimensionality reduction techniques. Data preparation
involved removing any stimulation artifacts present in the
ECoG records (Desai et al., 2019a). In brief, blanked portions
of ECoGs (Figures 1B,C) were identified and marked along
with 10 samples preceding and 30 samples following the
detected artifact. ECoG data flanking either side of the marked
ECoG data were concatenated to delete stimulation and any
amplifier recovery artifact. Spectrograms of the time-series
ECoG data were computed using Tensorflow’s built-in function
tensorflow.contrib.signal.stft. Since high frequency (>90 Hz)
seizure and interictal activity is often observed in ECoG data
captured with the RNS System, frequencies from 0 Hz to
the Nyquist frequency (i.e., 125 Hz; sampling rate = 250 Hz)
were included in the spectrograms. The resulting grayscale
spectrograms were resized to (299 × 299) using Tensorflow’s
built-in function tensorflow.image.resize_nearest_neighbor, and
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FIGURE 1 | The RNS System and types of ECoG data captured. (A) Illustration of the NeuroPace RNS System. The neurostimulator is placed in the skull and
connected to up to two leads, each of which contains four electrode contacts. The leads can be cortical strip leads, depth leads or a combination. (B,C) Examples
of 4-channel electrocorticographic (ECoG) records for a single patient captured with the RNS System. (B) Scheduled/baseline ECoG record. (C) ‘Long Episode’ (LE)
ECoG records (i.e., ECoG records with detection of long abnormal patient-specific patterns). LE ECoG records can contain a variety of abnormal ECoG activity on
one to several ECoG channels. Stimulation artifacts are highlighted in red in panels (B,C). Stimulation artifact consists of short blanks in data followed by a brief
amplifier recovery artifact.

expanded to 3 identical color channels using Tensorflow’s built-
in function tensorflow.image.grayscale_to_rgb (Figure 4 step
[1]). Expansion of spectrograms to 3 channels was performed
because the pre-trained CNN (GoogLeNet Inception-V3) used
for feature extraction requires the input data to have shape
(299 × 299 × 3). The resulting 3 color channel spectrograms
were passed through the pre-trained GoogLeNet Inception-V3
model for feature extraction (Figure 4 step [2]). Tensorflow code
for converting the time-series ECoG data to spectrograms and
extracting features using the pre-trained GoogLeNet Inception-
V3 model is provided in the Supplementary Material. A similar
technique for embedding time-series ECoG data in 2 dimenional
surfaces for differentiating ECoGs by patient outcomes was
previously published by NeuroPace and are described in Desai
et al. (2019a).

The extracted features (dimensions 8 × 8 × 2048) were
flattened resulting in a vector of 131,072 floating point numbers
for each channel of ECoG data (Figure 4 step [3]). Features
vectors from the 4 channels in ECoG records were concatenated
to produce ‘ECoG-record-vectors’ that had 524,288 features. If
less than 4 channels were present in ECoG records (which
happened in a small fraction of ECoG records), zero-filled vectors

were used in the missing channel’s place. Principal Component
Analysis (PCA) was applied to randomly selected 1,024 ECoG-
record-vectors to derive a mapping function between the 524,288
features and the top 50 principal components. The mapping
function was then applied to all ECoG-record-vectors in a
patient to produce a reduced feature vector with 50 principal
components for each ECoG record. The resulting 50 components
were then passed to the t-SNE (t-distributed stochastic gradient
descent) algorithm to represent all ECoGs in a patient-specific
further reduced 2-dimensional embedding space.

Bayesian Gaussian Mixture (BGM; python function:
sklearn.mixture.BayesianGaussianMixture) was used for
automatically clustering ECoG records represented in the
patient-specific 2D embedding spaces. The BGM clustering
technique was chosen over other popular clustering
methods such as k-means, spectral, and dbscan (density
based spatial clustering) because of its ability to infer
the number of clusters from the data and because it
produced more sensible cluster identifications compared
to the other clustering methods that were evaluated. The
sklearn.mixture.BayesianGaussianMixture function takes
as input the maximum number of components/clusters
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FIGURE 2 | Patient splits for labeling, training, validating and testing electrographic seizure classifier models. (A) Patient splits for training and testing
electrocorticographic (ECoG) channel-level and ECoG record-level classification models with 80% patients’ data used for training and validation, and 20% patients’
data used for testing. The trained models were tested on individual ECoG channels within ECoG records from the 23 held-out patients in each training fold, to
generate ECoG channel-level classification test metrics. The trained models were additionally tested on an independent expert-labeled dataset from 80 patients with
seizure or non-seizure ECoG record-level labels. In this case, model predictions on individual ECoG channels within ECoG records were combined with the OR
operator applied to the seizure classification to produce ECoG record-level predictions. These were compared with expert labels to generate ECoG record-level
classification test metrics. (B) 10-80 patient splits for characterizing model performance as a function of amount of training data. *8 out of 113 patients did not have
ECoG channels with the ‘seizure’ label and were not included in this analysis. This was done to avoid creating training datasets (especially the ones with data from
small number of patients) with highly skewed number of examples of seizure and non-seizure classifications. The remaining 105 patients were split into 5 bins (with
21 patients in each bin) based on the number of labeled ECoG records available in the patient. Patients were uniformly and randomly selected from each of the 5
bins to create the 10-80 patient training sets. The 20 patient training set, for example, contained four patients randomly selected from each of the 5 bins. The trained
models were tested on ECoG records from 80 patients independently labeled by an expert. Note that unlike in panel (A), the only test dataset used in this case was
the expert labeled dataset from 80 patients.

(n_components). Depending on the data, the BGM model
can choose not to use all the components. Therefore, the
number of effective components/clusters can be smaller
than the number specified in n_components. For clustering
ECoG records in each patient using BGM, the n_components
attribute was set as maximum of [number of ECoG records
in patient/100] and 10. For example, for a patient with 5,000
ECoGs, n_components would be 50, and for a patient with 200
ECoGs, n_components would be 10.

Similar to observations in Macosko et al. (2015) where authors
clustered gene expression data, preliminary studies by NeuroPace
also showed superior clustering in the 2 dimensional t-SNE
output dataset compared to clustering in the original high
dimensional dataset. This is presumably because of a frequently
observed phenomenon called ‘curse of dimensionality’ in which
clustering algorithms lose effectiveness in high dimensional
spaces (Verleysen and François, 2005).

Labeling of ECoG Records
All LE ECoG records in 193 patients were manually labeled
and verified using a 2-step method. In 113 out of 193 patients,
ECoG records were given one of six labels: ‘ictal,’ ‘interictal,’
‘baseline,’ ‘noise,’ ‘low voltage fast only,’ or ‘unsure,’ and channels
in the ECoG record with the designated activity were selected
by author WB. WB was specifically trained in labeling activity in

ECoG records captured with the NeuroPace RNS System over a
2 month period by authors SD, TT and MM. Both time-series
waveforms and spectrogram views of data were used to guide
ECoG labeling. In case of labeling ambiguity, multiple reviewers
(authors SA, TT, and MM) provided inputs to ensure accurate
labeling. The ‘ictal’ label was selected if there was clear evolution
of baseline activity into electrographic seizure that lasted at least
10 s. The ‘unsure’ label was only selected when reviewers could
not reach a consensus on the activity type and ECoG records
with the ‘unsure’ label were not used for training, validation
or testing. ECoG channels with ‘interictal,’ ‘baseline,’ ‘noise,’
and ‘low voltage fast only’ labels formed the ‘electrographic
non-seizure’ classification while ECoG channels with the ‘ictal’
label were used as the ‘electrographic seizure’ classification.
When cluster centroid ECoG records were manually labeled, the
remaining ECoG records within the cluster were automatically
pre-assigned the same label.

The next step involved manual verification of the pre-assigned
labels. Thumbnails of ECoG records within each pre-labeled
cluster were displayed for label verification in a sorted order
based on their Euclidean distance to the centroid. If a pre-
assigned channel label did not match the activity observed on
that ECoG channel, the label was manually corrected by author
WB after consulting with additional reviewers as necessary.
Thumbnails of 15 ECoG records were displayed on each page
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FIGURE 3 | Examples of spectrogram images of ECoG channels. Top row (A) shows examples of spectrogram images computed from electrocorticographic (ECoG)
channels manually labeled as ‘electrographic non-seizure.’ Bottom row (B) shows examples of spectrogram images computed from ECoG channels labeled as
‘electrographic seizure.’

FIGURE 4 | Steps for creating 2D embeddings of patient-specific ECoG records. [1] Each channel in the time series electrocorticographic (ECoG) record was
converted to a spectrogram image after removal of stimulation artifacts. [2] Spectrogram image (size 224 × 224 × 3) of each ECoG channel was passed to a
pre-trained GoogLeNet Inception-V3 model for feature extraction. [3] The convolutional neural networks (CNN) extracted a feature matrix of dimensions
8 × 8 × 2048 for each spectrogram image. The feature matrix was flattened to create a feature vector of length 131,072. [4] Four feature vectors corresponding to
the four channels in an ECoG record were concatenated to create a feature vector of length 524,288 for each ECoG record. Vectors of zeros were substituted for
missing channels. [5] Dimensionality reduction with PCA and t-SNE was performed on the concatenated feature vectors to represent ECoG records in 2-dimensional
patient-specific embedding spaces. Unsupervised clustering of the resulting 2D data was performed. ECoG records closest to cluster centers (shown in black) were
identified and presented to the human labeler.# Cartoon representation of the GoogleNet Inception-V3 CNN model. Please refer to https://cloud.google.com/tpu/
docs/inception-v3-advanced for details about the GoogleNet Inception-V3 model.
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for label verification. Therefore if an ECoG cluster contained
90 ECoG records, 6 pages of ECoG records were displayed
with page 1 containing ECoG records that were closest to the
centroid and likely requiring no corrections to pre-assigned
labels. Whereas page 6 contained ECoG records that were farthest
from the centroids and hence was more likely to contain ECoG
records that required pre-assigned label corrections compared
to previous pages. When a closer look at activity in a ECoG
was desired, the thumbnail could be expanded to display high
resolution versions of the ECoG records in time series and
spectrogram view.

To compare the performance of the trained models with those
of an independent ECoG rater, an additional labeled test ECoG
dataset was created. In the remaining 80 patients, a board certified
epileptologist independently labeled centroid ECoG records as
either ‘electrographic seizure’ or ‘electrographic non-seizure.’ A
total of 262 and 333 ECoG records were labeled as either seizure
and non-seizure, respectively, by the epileptologist. Additionally,
the expert only provided labels at the ECoG record level, without
identifying the channels in the ECoG record to which the label
applied. That is, the seizure label was assigned to an ECoG
record if any of the channels in the ECoG record contained an
electrographic seizure, and the non-seizure label was assigned
otherwise. To compute labeler agreement percentage, author WB
additionally labeled all 595 expert-labeled ECoG records.

ECoG Preprocessing for Training CNN
ECoG records that were less than 80 s and greater than 100 s were
repeated or cropped to 90 s in length respectively. ECoG records
shorter than 80 s had a portion equal to the disparity duplicated
from the beginning of the record and concatenated onto the start.
Experiments were repeated with zero padding applied to short
ECoG records. In this case, instead of concatenating duplicate
portions of the ECoG, a vector of zeros was concatenated
onto the start to create the 90 s ECoG. ECoG records greater
than 100 s had 60 s before and 30 s after the storage trigger
(detection of LE) selected, the remaining portions of the ECoG
record were discarded.

Stimulation artifact rejection was performed on all ECoG
records as described in section “Patient-Specific 2D Embedding
and Clustering of ECoG Records.” Model training and testing
experiments were repeated without stimulation artifact
rejection to assess the impact of this step on the model’s
classification performance.

To facilitate additional ESC model training and testing,
spectrogram images of ECoGs were saved in folders organized
by class labels and patient IDs. This made it convenient to
perform error analyses for the different model architecture and
hyperparameter selections. Further, this type of data organization
made it stratightforward to apply several of Keras’s built-
in functions (such as ImageDataGenerator.flow_from_directory
function) for reading large datasets in batches for model training
and testing. The code used for converting ECoG data to spectral
images and saving them in.PNG format is provided in the
Supplementary Material section. Briefly, Matplotlib’s built-in
function matplotlib.pyplot.specgram with window size 256 and
step size 128 was used for creating the spectrograms (spanning

0-125 Hz on the frequency axis), and saved as RBG images using
the ‘jet’ colorsmap. Pixel values in the RGB images were scaled
between −1 and + 1 which is a standard preprocessing step
for training CNN models. ECoG classification experiments were
repeated with spectrograms images saved using the ‘grayscale’
colormap in which case spectrogram images were saved with the
3 color channels having the same value.

Model Training, Validation, and Testing
Experiments to Test the ECoG-Channel Level and
ECoG-Record Level Classification Performance of
Trained ESC Models
The 113 patients with ECoG channel level labeling were
randomly divided into three groups: 72 patients for training,
18 patients for validation and 23 patients for testing. This was
repeated five times for creating 5 folds of data for training,
validation and testing (Figure 2A). In the training dataset, the
majority classification (non-seizure class in all training folds)
was randomly downsampled to match the number of training
examples in the seizure and non-seizure classes. CNN models
were trained to classifiy each ECoG channel (note that each ECoG
record can contain up to 4 ECoG channels, see section “ECoG
Acquisition and Patient Selection” for details) as electrographic
seizure or non-seizure. The trained models in each of the 5
folds were tested on ECoG channels in the 23 patients held-
out in that fold.

Model performance was also tested on ECoG records from
80 patients independently labeled by an epileptologist. Model
predictions for ECoG records were derived by applying the OR
operator to the seizure classification. Consequently, if any of the
ECoG channels in the ECoG record were predicted as a seizure
by the trained model, the ECoG record was labeled a seizure.
A non-seizure label was applied only if all ECoG channels in
the ECoG record were predicted as non-seizures by the trained
model. Table 1A shows the number of patients, ECoG records
and ECoG channels in each of 5 folds.

Gradient-Based Saliency Maps
To gain some understanding of features learned by the trained
CNNs, and to ensure that classification is based on relevant
portions of the spectrograms, saliency maps (Simonyan et al.,
2013) of the trained classification model were created using
the built-in keras API, vizualize_saliency. Saliency maps are
computed as the gradient of the output with respect to the input,
and highlight the input regions in the datasets that contribute
most toward the output classification.

Trained Model’s Generalizability to Other Epilepsy
Datasets of Time-Series Brain Recordings
To test the trained ESC models’ generalizability to EEG datasets
captured with devices other than the RNS System, the models
were evaluated on the TUH EEG Seizure Corpus (v.5.1.0)4

(Shah et al., 2018), the largest publicly available EEG dataset.
Therein, 2,915 annoted seizures had an onset at >45 s into the
EDF data files and were used for testing. 90 s of EEG data

4https://www.isip.piconepress.com/projects/tuh_eeg/
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TABLE 1A | Number of patients, seizure and non-seizure ECoG channels in the training, validation and test datasets in each fold (and average across the 5 folds) for testing ECoG channel-level and ECoG record-level
classification performances.

Fold Training Validation ECoG channel-level testing ECoG record-level testing

# of pts # of SZ ECoG
channels

#of NSZ ECoG
channels*

# of
pts

# of SZ ECoG
channels

# of NSZ ECoG
channels

# of
pts

# of SZ ECoG
channels

# of NSZ ECoG
channels

# of
pts

# of SZ ECoG
records

# of NSZ
ECoG records

1 72 81,573 188,858 18 21,692 40,239 23 36,918 42,477 80 262 333

2 72 78,218 174,949 18 33,398 35,751 23 28,567 60,874 80 262 333

3 72 103,572 172,136 18 8,381 36,832 23 28,230 62,606 80 262 333

4 72 91,214 150,498 18 24,957 56,364 23 24,012 64,712 80 262 333

5 72 100,983 205,036 18 15,917 25,066 23 23,283 41,472 80 262 333

Avg 72 91,112 178,295 18 20,869 38,850 23 28,202 54,428 80 262 333

ECoG = electrocorticographic; NSZ = non-seizure; pts = patients; SZ = seizure. ∗Shown here is the total number of non-seizure ECoG channels available in the training dataset. Note that the non-seizure ECoG channels
were randomly downsampled to match the number of seizure ECoG channels to create balanced 50/50 class splits for training. Bold values are average of 5 folds.

TABLE 1B | Average number of ECoG channels (seizures and non-seizures) in training and validation datasets (and number of ECoG records in the test dataset) used in experiments for characterizing seizure
classification accuracy as a function of number of patients’ data used for training.

Training Validation ECoG record-level testing

# of pts Average # of SZ ECoG
channels across 5 folds

Average # of NSZ ECoG
channels across 5 folds*

# of pts Average # of SZ ECoG
channels across 5 folds

Average # of NSZ ECoG
channels across 5 folds

# of pts # of SZ ECoG
records in the 5 folds

# of NSZ ECoG
records in the 5 folds

10 14,469 23,263 5 5,229 7,717 80 262 333

20 26,064 57,695 5 7,037 15,701 80 262 333

30 39,356 87,258 6 8,441 19,504 80 262 333

40 51,730 113,262 8 10,873 13,212 80 262 333

50 67,034 133,792 10 13,733 25,686 80 262 333

60 80,767 159,479 12 15,352 25,598 80 262 333

70 94,769 181,877 14 16,938 39,042 80 262 333

80 108,277 214,530 16 20,656 37,438 80 262 333

The averages are computed across the 5 folds for each patient-level split. Numbers of training and validation ECoG channels in each fold for each patient-level split is shown in Supplementary Table 2. ECoG =
electrocorticographic; NSZ = non-seizure; pts = patients; SZ = seizure. Shown here is the total number of non-seizure ECoG channels available in the training dataset. Note that the non-seizure ECoG channels were
randomly downsampled to match the number of seizure ECoG channels to create balanced 50/50 class splits for training.
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spanning 45 s respectively on either side of annotated seizure
start times were converted to RGB spectrogram images using the
methods described in section “ECoG Preprocessing for Training
CNN.” The only differences in the data processing steps were
(1) skipping the stimulation artifact rejection step since it is
irrelevant to EEG data and (2) applying a 60 Hz denoising notch
filter to the raw timeseries data before the spectrograms were
created since 60 Hz noise is commonly present in EEG data. Each
EEG file resulted in 21 channels of data with channel referencing
performed as described in the.lbl file associated with each.edf file.
An equal number (2,915) of randomly selected 90-s EEG samples
with background activity were selected for testing.

Experiments to Characterize ESC Classification
Performance as a Function of the Amount of Training
Data
Multiple training sets were created by selecting ECoG records
from 10 to 80 patients in increments of 10 patients. Each training
dataset had an equal distribution of patients with few to many
ECoG channels to approximate the availability of data in the real-
world. Eight of the 113 patients had no ECoG channels with
seizure labels and were not included in these experiments. This
was done to avoid creating training datasets (especially the ones
with data from small number of patients) with highly skewed
number of examples of seizure and non-seizure classifications.
The remaining 105 patients with ECoG channel labeling were
divided into 5 bins based on the number of labeled ECoG
channels available for the patient. Each bin contained 21 patients,
where bin 1 had patients with the fewest labeled ECoG channels
and bin 5 had the patients with the most labeled ECoG channels.
Patients for each training set were equally (and randomly)
selected from all 5 bins. For example, the training dataset with 10
patients had 2 patients from each of the 5 bins, and the training
dataset with 80 patients had 16 patients from each bin. To create
incrementally larger training datasets, the same patients from the
prior smaller datasets were retained and new patients were added.

The validation dataset for each training dataset was created by
randomly sampling from the remaining (non-training) patients
in each of the 5 bins equally. Each validation set contained the
greater of five patients or 20% of the number of patients in
the training dataset. For example, there were 5 patients in the
validation datasets for the 10 and 20 patient training datasets, and
6 and 8 patients in the validation datasets for the 30 and 40 patient
training datasets, respectively. Table 1B and Supplementary
Table 2 shows the number of patients and ECoG channels in each
of the 5 folds for each level of patient split.

All trained models were tested on the same set of 262
seizure and 333 non-seizure ECoG records from the 80 patients
independently labeled by an epileptologist.

Model Architectures, Training
Hyperparameters, and Training Hardware
The five deep learning models evaluated and are summarized
graphically in Figure 5. The original ResNet50 and ResNet18
(available for download from keras.applications) were modified
by replacing the final 196 neuron dense layer with a 2 neuron
dense layer. This was done to adapt the 18 and 50 layer ResNet

models for the 2 class (seizure and non-seizure) classification task
described in this paper. Training was performed for a maximum
of 70 epochs with a learning rate of 10−6 for the 6, 7, and
12 layer CNNs or 10−7 for ResNets (18 and 50 layers) with a
learning rate decay factor of 0. The choice of learning rate and
learning rate decay factor was made after experimenting with
a range of values in preliminary experiments. Learning rates
higher than those listed above resulted in drastic fluctuations
in training and validation performance indicating undesirable
divergent behavior in the loss function, and those below the above
listed values resulted in very slow, suboptimal training. Initial
experiments with fine-tuning the training parameters of only
the final few layers of the ResNet models with the initial layers
retaining pretrained weights and biases from the imagenet dataset
demonstrated substantially worse classification performance on
the test dataset, compared to training the parameters in all
layers. Hence, the choice was made to fine-tune the weights
and biases of all layers. A training, validation and test batch
size of 32 was used with all models, and models were trained
with the Adam and Nadam optimizers. Training was stopped
earlier than 70 epochs, if <0.1% improvement in validation
accuracy was observed over 10 consecutive training epochs.
The trained model at the epoch number which produced the
highest validation accuracy was selected for testing. Keras v2.2.2
with Tensorflow v1.10.1 backend on an on-premise Ubuntu
16.04 machine with two NVIDIA GeForce GTX 1080 Ti GPUs
was used for running the experiments described previously in
Methods section “Experiments to Test the ECoG-Channel Level
and ECoG-Record Level Classification Performance of Trained
ESC Models.” Keras v2.3.1 with Tensorflow v2.1.0 on Compute
Engine Virtual Machines (machine type: n1-standard-4) with
NVIDIA Tesla K80 GPUs on the Google Cloud Platform was
used for running the experiments described in 2.6.4. Training was
enabled on all layers of all model architectures used in this study.

Trained Model and Code Availabilty
The trained deep learning models, and ECoG pre-processing
code described in this publication may be made available to
researchers for academic use. Requests sent to the research-
requests@neuropace.com will be reviewed in accordance with
NeuroPace data sharing policy and guidelines for requesting
support from NeuroPace for research. Key lines of python
code for pre-processing ECoGs are made available in the
Supplementary Material.

RESULTS

Semi-Supervised Labeling of ECoG
Records
Different patterns, sizes and/or numbers of LE ECoG record
clusters were obtained for each patient by the 2D embedding
and clustering process (Figure 6A). The median number of
clusters obtained with the BGM method was 9 (range: 2-45)
with a median of 161 (range: 1-1624) ECoG records in each
cluster. While in most cases, sensible cluster identification was
obtained with the patient-specific 2D embeddings, in some cases
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FIGURE 5 | The 5 model architectures used in this study. 6, 7, and 12 layer convolutional neural networks (CNN) models were trained and tested in this study along
with 18 and 50 layer ResNet models. Inspiration for the CNN model architectures was derived from a wide range of sources including https://tinyurl.com/y76stqkc,
while the ResNet model architectures are available on the Keras webpage: https://keras.io/api/applications/.

more dispersed LE ECoG record clusters were observed (example
orange and purple clusters in Figure 6A bottom-right panel).

Based on ad hoc analyses and visual inspection, two primary
factors appeared to be responsible for LE ECoG record clustering.
One factor was the type of electrographic activity in the ECoG
record and the other factor was the ECoG record length.
Electrographic activity indicative of seizures tended to produce
discrete clusters. Within a patient, multiple seizure clusters
were often apparent and distinguishable by seizure morphology
and the presence of seizures on different channels. Typically,
ECoG records <70 s in length tended to form separate clusters.

When electrographic seizures were captured in these short ECoG
records, they often clustered separately but in the vicinity of
other clusters containing short ECoG records. Since only a
minority of LE ECoG records captured with the RNS System
were short in length, clusters with short ECoG records were
an uncommon occurrence and did not substantially lengthen
the manual labeling effort. Similarly, in some patients, ECoG
records longer than 90 s (typically 180 s) were captured and in
those cases, ECoG records also tended to form separate clusters
similar to the short ECoG records. With the clustering tool
described above, channel-level manual labeling of 137,985 ECoG
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FIGURE 6 | Clustering of ECoG records in patient-specific 2D embedding spaces. (A) 2-dimensional embeddings of long episode (LE) electrocorticographic (ECoG)
records from six example patients included in this study. Different numbers and patterns of clusters were observed in the patient-specific 2D embedding spaces.
(B) 2D embeddings of 17,422 LE ECoG records from the patient with the most ECoG records included in this study. Only the green and gray clusters in the top right
of the embedding space contained electrographic seizures. (C) Example ECoG records from different locations in the 2D embedding space shown in panel (B).
ECoG record denoted with ‘a*’ is the centroid ECoG record within the green cluster in panel (B). ECoG records denoted with ‘a’ are two ECoG records that were
closest to the centroid ECoG (a*). ECoGs records b and c are two example ECoG records further away from the centroid in the same green cluster. Three example
ECoG records (d-f) from other areas of the embedding space contained interictal activity. ECoG record (g) is from a cluster (red cluster in panel B) that exclusively
contained short (<70 s) interictal ECoG records.

records from 113 patients took approximately 320 h. The time
required to label all of a patient’s ECoG records depended on the
number of records and variability within clusters. The median
labeling time was 1.5 h, while for some patients it took as little
as <15 min or as long as 3 days. These time estimates include
the time spent manually examining all cluster centroid ECoG
records in time and spectral domains, assigning each ECoG
channel to one of six labels (‘ictal,’ interictal,’ ‘baseline,’ ‘noise,’
‘low voltage fast only,’ and ‘unsure’) and manually reviewing
the pre-assigned (based on the centroid ECoG labels) channel
labels for every member of each cluster. As described in the
Methods section, if the pre-assigned channel labels did not
apply to a given ECoG channel, it was manually corrected after
consulting with additional reviewers as needed. The ML-assisted
labeling and verification process was faster in patients where
most clusters contained similar ECoG records compared to other
patients with more ECoG record variability within clusters. In
patients with highly similar ECoG records within clusters, usually

associated with stereotypical seizure and interictal activity, the
entire labeling and verification process took 15 mins or less
(for ∼1,200 ECoG records on average). However, it was more
common for 10-20% of the ECoG channels within a cluster
to require label correction. ML-assisted labeling of 17,422 long
episode ECoG records, the most from any patient (Figure 6B)
took only 2 h. In this patient, only two out of the 21 clusters
contained electrographic seizures. Figure 6C shows nine example
ECoG records embedded in the 2D space in panel (B). ECoG
records (a) closer to a cluster centroid ECoG (a∗) looked more
similar to the centroid ECoG compared to ECoG records (b,c)
further away from the cluster centroid. This trend was generally
seen in all clusters in all patients. Further, ECoG records from
other clusters (d-f) looked very different from ECoG records in
the green cluster (a-c).

Agreement between an independent expert labeller and author
WB on 595 ECoG records from 80 held-out patients (see Methods
section “Labeling of ECoG Records”) was at 98.3%. Eight and two
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ECoG records respectively labeled as seizures and non-seizures by
the expert did not agree with the labels provided by author WB.

ECoG Channel-Level and ECoG
Record-Level Classification
Performance of Trained ESC Models
Model Performance on ECoG Channels From 20%
Held-Out Patients
Test performances improved with increased depth of models
used for training, with the deepest trained model (ResNet50)
producing the highest precision and recall values among the five
model architectures trained. Figure 7 shows the precision recall
curves and confusion matrices for the five CNN models for a
randomly chosen data fold. F1 scores and test accuracies were
generally higher with the Nadam optimizer compared to the
Adam optimizer and are shown in Table 2. The corresponding
values with the Adam optimizer are shown in Supplementary
Table 1. While the ‘sz’ (seizure) class classification accuracy of
individual ECoG channels drastically increased with depth of
training models, the increase in accuracy in the ‘nsz’ (non-
seizure) class was moderate (Figure 7B and Table 2). Increases
in overall accuracies of 3.8% and 3.26% were observed when the
depth of the training model was increased from 6 to 7 layers,
and 7 to 12 layers respectively. However, accuracy increases of
only 0.51% and 0.28% were observed when model depth was
further increased from 12 layers to 18 layers, and 18 layers
to 50 layers respectively. Similar trends were observed with F1
scores, indicating that the point of diminishing returns relative
to model depth is around 12 layers. Among the five different
model architectures studied, the ResNet50 model had the highest
F1 score (94.26%) and class-balanced accuracy (95.72%), with
97.17% non-seizure class accuracy and 94.26% seizure class
accuracy. In addition to producing higher test performances,
deeper (≥12 layers) models also resulted in less fold to fold
variation in F1 scores and accuracies compared to the shallower
models (2.9%, 1.5%, 0.6%, 0.4% and 0.4% standard deviation
in overall accuracy values for the 6 layer, 7 layer, 12 layer
CNN, ResNet18 and ResNet50 respectively), indicating that the
shallower models not only underfit the training data, but were
also less robust compared to the deeper models.

ECoG length affected classification accuracy when comparing
short (<80 s), regular (90 s) and long (>100 s) records.
With the ResNet50 model, the average classification accuracies
on short (92.7%) and long (94.1%) ECoG channels were
significantly lower (p < 0.05, Wilcoxon rank sum test) compared
to classification accuracy on 90-s (96.4%) ECoG channels.
Similar trends in classification performance with short, long and
regular-length ECoG channels were observed with all model
architectures trained. The average classification performance
of the ResNet50 models on short ECoG channels was slighty
better when preprocessing was performed by duplicating and
concatenating the starting portion of the ECoG (92.7%), when
compared to zero-padding (91.8%), although this difference
was not statistically significant. The average classification
performance was slightly better (statistically non-significant)
when the stimulation artifact rejection step was applied (95.7%),

compared to when it was not applied (95.5%). Additionally,
the classification accuracy was significantly better (p < 0.05,
Wilcoxon rank sum test) when model training was done with
the spectrogram images saved in the ‘jet’ colormap (95.7%),
compared to spectrogram images saved in the ‘grayscale’
colormap (94.9%).

Model Performance on ECoG Records From 80
Expert-Labeled Held-Out Patients
As described in the Methods section, an ECoG record was
classified as a seizure if any of the 4 channels were classified
as a seizure by the trained ESC models. A non-seizure label
was assigned only if all 4 channels were classified as non-
seizures. A random binary classifier (with 50% chance of
classifying an ECoG channel as a seizure) would classify a 4-
channel ECoG record as seizure 93.75% of the time, and it
would classify a 4-channel ECoG record as non-seizure only
6.25% of the time. Hence, a random classifier would produce
extremely skewed class-specific accuracies guessing seizure ECoG
records correctly most of the time, while having a very poor
non-seizure class accuracy. In comparison, all trained models
produced more or less balanced seizure and non-seizure class
accuracies (as shown in Table 2B), demonstrating successful
training, with the test performance generally improving with
depth. A significant (p < 0.01, Wilcoxon rank sum test) increase
of 9.72% in overall accuracy and an 11.32% increase in F1
score was observed between the 6 layer CNN and the 12
layer CNN models, and a non-significant difference in test
performance (< 1.41%, p > 0.05, Wilcoxon rank sum test)
was observed between the 12 layer CNN and ResNet50-based
model. Similar to observations with ECoG channel level test
accuracies, substantial improvements in seizure class accuracies
were observed with increased CNN model depths, while the
non-seizure class accuracies remained relatively constant.

Training and validation curves for each type of model are
shown in Supplementary Figure 1. Training and validation
accuracies with the deeper ResNet50 and ResNet18 models
increased rapidly over the first few epochs with the condition
for early stopping (< 0.1% improvement in validation accuracy
observed over 10 consecutive training epochs) applying
substantially earlier than with shallower models.

Error Analysis
Type 1 (False negative) and Type 2 (False positive) error rates
for the representative data fold shown in Figure 7 are 17%
and 6% for the 6 layer CNN model, 12% and 6% for the 7
layer CNN model, 7% and 4% for the 12 layer CNN model,
6% and 5% for ResNet18 model, and 6% and 3% for the
ResNet50 model respectively. In all data folds, the deepest
ResNet50 model produced the least percentage of type 1 and
type 2 errors. Examination of errors showed that between 10-
15% of the misclassified ECoG channels could be attributed
to labeler error and were not model performance errors. The
remaining errors were due to model performance. A few example
ResNet50 classification errors are shown in Figure 8. Seizure
spectrograms with only faint frequency bands, lower amplitude
changes, or short durations (around 10 s) were sometimes
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FIGURE 7 | Precision Recall curves and confusion matrices for one example data fold. The trained models assigned a seizure or non-seizure label to individual
electrocorticographic (ECoG) channels, along with class prediction probabilities. The precision recall curves (left) show the precision or positive predictive value on
the y-axis, and recall or model sensitivity on the x-axis for different thresholds of prediction probabilities, for each of the five model architectures trained in this study.
The confusion matrices (right) show the number of ECoG channels of each classification (seizure and non-seizure) correctly and incorrectly predicted by the trained
models.

misclassified (Figure 8A). Also, non-seizure spectrograms were
sometimes misclassified when they contained cropped interictal
ECoG channels, resulting in short bursts of high frequency or
amplitude activity (typically found in electrographic seizures)
being repeated for longer than 10 s (Figure 8B). Finally, if ECoGs
longer than 100 s contained multiple long episode triggers, the
last one would be used for creating the spectrogram image. This
infrequently resulted in the main portion of the seizure being
cropped out of the resulting image, resulting in the ECoG channel
getting erroneously labeled as non-seizure.

Saliency Maps
Gradient-based saliency maps associated with the final fully
connected layer of the trained ResNet50 model are shown in
Figure 9. It appears that in seizure class, horizontal and diagonal
spectral power bands within the seizure activity are generally
highlighted, confirming that the neural network’s seizure
classifications are indeed based on seizure activity, and is not a
consequence of irrelevant feature learning. In comparison, non-
seizure class predictions had scattered background activation
patterns often associated with interictal spiking activity.

Model Generalizability to EEG Datasets Not Captured
With the RNS System
On the TUH EEG Seizure Corpus, the ResNet50 ESC models
had an average overall classification accuracy of 70.1% with an
average F1 score of 69.5%. The average seizure class classification
accuracy was 68.2%, while the non-seizure class classification
accuracy was 72%. In other words, 926 out of 2,915 seizure
spectrograms were missclassified as non-seizures, while 1,989
were correctly classified. Similarly, 817 out of 2,915 non-seizure
spectrograms were missclassified as seizures, while 2,089 were
correctly classified.

Error analysis revealed that the most common explanation
for the seizure and non-seizure misclassification in the TUH

EEG dataset was the presence of various types of noise in the
raw EEG data, with the classification performance generally
degrading with increased levels of noise in the EEG spectrograms.
A few examples of correctly and incorrectly classified EEG
spectrograms from the TUH EEG Seizure Corpus are shown in
Supplementary Figure 2.

ESC Classification Performance as a
Function of Amount of Training Data
Trends in F1 scores and class-balanced accuracies vs amount
of training data are shown in Figure 10 and Table 3. Models
were tested on expert labeled ECoG records from 80 patients.
The results show that training data from a minimum of 30
patients is required to achieve > 90% generalizability in new
patients. With the 6 layer CNN model, none of the 8 patient
splits achieved > 90% accuracy or F1 score. Training data from
50 patients were required to achieve F1 scores and accuracies
of over 90% with the 12 layer CNN models. On the other
hand, the deeper ResNet18 and ResNet50 models performed
better, requiring training data from fewer patients i.e., 40 and 30
patients respectively, to achieve ECoG record-level classification
accuracies of >90% in new patients. Deeper training models and
larger training datasets produced lower fold to fold variation in
performance metrics (see standard deviation values in Table 3
and Supplementary Table 3), compared to shallow models and
smaller training datasets.

DISCUSSION AND CONCLUSION

The work in this paper is novel and significant for several reasons.
First, it describes a semi-supervised technique for labeling large
ECoG datasets. This can be an important step for building
supervised machine learning models on large datasets, which
is becoming increasingly common in the heathcare domain.
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FIGURE 8 | (A,B) Example type 1 and type 2 errors by a trained ResNet50 model. Type 1 errors typically included short faint electrographic seizures, while type 2
errors typically included long trains of high amplitude interictal events, noise and repeated crops created during pre-processing electrocorticographic (ECoG)
channels in cases where length was shorter than 80 s.

FIGURE 9 | Saliency maps of a few correctly classified seizure and non-seizure class ECoG channels by the ResNet50 ESC model. The number on the top left
corner in each spectrogram image is the prediction probability of the model for the respective class.
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TABLE 2 | Test performance on held-out ECoG channels and expert labeled ECoG records.

Model Fold Performance on ECoG channels from 20%
held-out patients

Performance on ECoG records from 80 expert
labeled held-out patients

Test accuracy % F1 score Test accuracy % F1 score

Overall NSZ Class SZ Class Overall NSZ Class SZ Class

6 layer LR: 10−6 Opt: Nadam 1 90.16 93.59 86.74 89.37 86.32 92.49 80.15 84.51

2 88.62 94.48 82.76 85.10 84.21 93.99 74.43 81.76

3 83.03 93.91 72.14 77.72 81.00 89.49 72.52 78.03

4 89.79 92.62 86.97 84.08 83.68 97.90 69.47 80.71

5 87.80 89.93 85.66 84.15 89.85 94.59 85.11 88.67

Avg 87.88 92.90 82.86 84.08 85.01 93.69 76.34 82.73

7 layer LR: 10−6 Opt: Nadam 1 91.84 95.20 88.48 91.22 90.35 95.20 85.50 89.24

2 92.37 96.88 87.85 90.34 90.60 87.69 93.51 89.42

3 89.65 97.55 81.75 87.34 90.15 95.20 85.11 89.02

4 93.61 95.24 91.98 89.83 91.97 97.30 86.64 91.16

5 90.89 93.21 88.58 88.28 92.64 95.20 90.08 91.83

Avg 91.67 95.62 87.73 89.40 91.14 94.11 88.17 90.13

12 Layer LR: 10−6 Opt: Nadam 1 95.15 96.51 93.79 94.84 95.68 96.70 94.66 95.20

2 94.34 95.71 92.96 92.00 93.48 94.59 92.37 92.72

3 94.28 97.12 91.46 92.44 94.19 92.19 96.18 93.33

4 95.62 97.29 93.95 93.37 95.13 93.69 96.56 94.40

5 95.24 98.27 92.20 94.43 95.19 96.10 94.27 94.64

Avg 94.93 96.98 92.87 93.41 94.73 94.65 94.81 94.06

RN18 LR: 10−7 Opt: Nadam 1 96.05 97.03 95.07 95.79 93.82 90.69 96.95 92.87

2 95.19 96.71 93.68 93.35 91.88 85.29 98.47 90.69

3 95.13 97.98 92.27 93.79 93.97 90.99 96.95 93.04

4 95.07 95.67 94.47 91.66 94.99 91.89 98.09 94.14

5 95.76 97.22 94.30 94.65 95.52 92.19 98.85 94.70

Avg 95.44 96.92 93.96 93.85 94.04 90.21 97.86 93.09

RN50 LR: 10−7 Opt: Nadam 1 96.07 97.09 95.04 95.81 94.57 92.19 96.95 93.73

2 95.86 96.63 95.08 94.02 91.91 90.69 93.13 90.88

3 95.14 98.04 92.24 93.84 92.89 91.89 93.89 91.96

4 95.57 96.32 94.82 92.63 95.00 95.50 94.66 94.48

5 95.94 97.74 94.14 95.01 93.26 89.19 97.33 92.22

Avg 95.72 97.17 94.26 94.26 93.54 91.89 95.19 92.65

ECoG = electrocorticographic; NSZ = non-seizure; SZ = seizure. Bold values are average of 5 folds.

Second, it shows that despite the heterogeneous nature of
electrographic seizures, robust electrographic seizure detection
models can be built that classify ambulatory ECoG channels
in new patients with over 95% classification accuracy. Third,
it validates the method of converting time-series ECoG data
to spectrogram images for the purpose of CNN-based ECoG
classification models. Finally, it shows that with good CNN
architecture selection, data from as few as 10 patients can produce
cross-patient electrographic seizure classification accuracies of
88% (F1 score 87%), while a minimum of 30 patient’s labeled
ECoG records may be required for achieving a classification
accuracy of over 90%.

The prohibitive task of labeling a large ECoG dataset was
made manageable with the aid of an ECoG record clustering tool.
This tool enabled the manual labeling of ∼138,000 ECoG records
in 320 h. Using only 2 labels instead of 6 (as was the case in
this study) would have resulted in even faster labeling. It should

be emphasized that the unsupervised ECoG record custering
step was followed by a manual label validation step in which
pre-assigned labels given to every ECoG record were manually
verified, and corrections were made as necessary. However,
without the use of such an ECoG clustering tool for pre-labeling
ECoG records, a conservative estimate for labeling ∼138,000 4-
channel ECoG records is around 1533 h (at ∼10 s on average for
labeling each ECoG channel), not accounting for delays caused
by labeler-fatigue. Thus, use of the ECoG record clustering tool to
speed-up labeling of a large ECoG dataset was key to the success
of this project.

A goal of this study was to manually label the large NeuroPace
ECoG dataset for the purpose of building an electrographic
seizure classifier. A simple, ‘out-of-the-box’ technique that
produced reasonably good within-patient ECoG clustering was
desired, and hence the pre-trained GoogLeNet Inception-V3
model which can be applied to 3-color channel image data

Frontiers in Neuroscience | www.frontiersin.org 15 June 2021 | Volume 15 | Article 66737337

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-667373 June 22, 2021 Time: 17:6 # 16

Barry et al. Cross-Patient Electrographic Seizure Classifier

FIGURE 10 | F1 score and test accuracy of CNN and ResNet models trained with data from increasing numbers of patients. Convolutional neural networks (CNN)
and ResNet models were tested on expert labeled electrocorticographic (ECoG) records from 80 patients. A dotted line is drawn at F1 score value of 90% for
reference.

TABLE 3 | F1scores (mean ± standard deviation) as a function of number of patient’s data used for training.

Model Number of patients’ data used for training mean (standard deviation)

10 20 30 40 50 60 70 80

6 layer CNN 72.7 (3.7) 73.9 (3.7) 77.8 (5.2) 78.9 (5.3) 78.7 (5.7) 82.0 (6.4) 85.0 (2.7) 84.5 (1.1)

7 layer CNN 73.8 (5.0) 81.4 (2.5) 84.1 (4.1) 83.3 (6.5) 89.2 (1.7) 89.5 (1.8) 89.5 (1.3) 88.6 (1.8)

12 layer CNN 75.4 (5.7) 83.7 (2.3) 84.8 (3.1) 88.6 (1.6) 90.9 (2.0) 91.2 (2.3) 92.5 (0.6) 92.7 (0.9)

ResNet18 84.8 (5.1) 88.8 (2.0) 89.2 (1.3) 90.1 (0.7) 90.1 (0.8) 91.3 (1.4) 91.6 (0.9) 92.7 (0.8)

ResNet50 87.3 (2.3) 88.7 (2.0) 90.2 (1.6) 90.1 (0.7) 91.4 (1.6) 92.0 (1.3) 92.3 (1.1) 92.7 (0.7)

CNN = convolutional neural networks. Cells with F1 scores ≥ 90% are filled with green color.

was chosen as feature extractor, after experimenting with a few
different pre-trained CNN models. Dimensionality reduction was
then performed with PCA and t-SNE. Even though t-SNE is
a technique not known for preserving intercluster distances,
in our case, where ECoG labeling was done on a per-cluster
basis, preserving intercluster distances was not a priority
and did not negatively impact the manual labeling process.
In applications where preserving inter-cluster distances is of
importance, other more recently developed techniques such as
UMAP could be used instead (McInnes et al., 2018).In future
studies, models specifically trained on ECoG records, such
as autoencoders trained on unlabeled ECoG records (Tsinalis
et al., 2016), or CNN models trained on auxiliary tasks such
ECoG classification (i.e., similar to the ESC models trained
in this study) may be used as feature extractors to improve
ECoG record clustering performance. Alternatively, deep ranking
models trained using the triplet loss function with the goal of
learning optimal embedding functions, may be used (Wang et al.,
2014). Nevertheless, as shown in this present study, the use

of pre-trained CNN models for feature extraction followed by
dimensionally reduction proved to be adequately useful, and as
far as we know this is the first study to demonstrate the usefulness
of transferring pre-trained CNN weights to spectrogram images
of brain recordings for clustering brain data. Such a transfer
learning technique is likely to translate effectively to other types
of physiological data (Salem et al., 2018).

Long episode ECoG records make up over 50% of all ECoG
records captured by the NeuroPace RNS System and contain a
mix of baseline, interictal and ictal activity. Out of the 414,933
manually labeled channels from 137,985 long episode ECoG
records, 140,183 were given the seizure label, and 274,750 were
given one of five non-seizure labels. Since a sufficient number
of ECoG channels with the non-seizure label was available from
only labeling the long episode ECoG records, in the interest of
minimizing manual labeling time, it was deemed unnecessary
to label other types of ECoG records captured by the RNS
System (such as scheduled records and records triggered by
a patient applied magnet) for the purpose of training ESC
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models. The other types of ECoG records contain a much lower
proportion of seizures and many more non-seizure records. Since
balanced numbers of seizure and non-seizure ECoGs were used
for training, it is unlikely that including these ECoGs in the
training sets would have improved performance.

Five types of model architectures were trained and tested.
Three of them involved convolutional layers, max pooling, and
dense layers, connected linearly, and two of them involved
residual connections, as shown in Figure 5. Increasing the depth
of CNNs from 6 to 7 layers, and from 6 to 12 layers resulted
in improvements in ECoG channel-level accuracies of 3.8%
and 7.1%, respectively, with an accompanying decrease in fold-
to-fold performance variability. Since issues such as vanishing
and exploding gradients can manifest from pushing a neural
network too deep, the ResNet architectures, which have residual
connections to mitigate the above mentioned problems, were
used when expanding beyond 12 layers. Modest improvements
in accuracy were observed between the 12 layer CNN and
the 18 layer ResNet-based (0.51% improvement), and between
the 12 layer CNN and 50 layer ResNet-based models (0.79%
improvement) suggesting that the point of diminishing returns
with respect to model depth/complexity may be around 12
layers. When selecting a model for incorporation of an ESC in
embedded systems, the 12 layer CNN may be a better choice
compared to the ResNet-based models because of its substantially
smaller computational demands while having only slightly worse
classification performance. It should be noted, however, that since
the models described here were optimized for classifying 90-s
ECoG records, pipeline modifications and model revisions may
be necessary to identify seizures in a continuous data stream.
Additionally, the trained models may need to be converted to
compressed, lighter formats (the Tensorflow Lite format, for
example) for real-time model inference in embedded systems
with limited compute capability.

The classification performance of the ESC trained models were
only slightly worse on short (ResNet50 model accuracy: 92.7%,
12 layer CNN model accuracy: 91.1%) and long (94.1%, 93.3%)
ECoG channels compared to the classification performance on
90-s ECoG channels (96.4%, 95.4%). This small discrepancy in
performance was expected given that ∼67% of the data used in
this study were the regular-length (i.e., 90-s) ECoG channels.
Even though the trained ESC models performed best on regular-
length EcoG channels, the classification performances on short
and long EcoG channels were still very impressive making the
trained models applicable to EcoG channels of all durations
captured with the RNS System (maximum EcoG storage length
is 240 s, minimum is 30 s).

A few different hyperparameters such as the initial learning
rate, the learning rate decay factor, the optimizer type were tuned
empirically. Preliminary tests showed that initial learning rates
of 10−6 for the shallower (6,7, and 12 layer) CNNs, and 10−7

for the deeper ResNet-based architectures, with a learning rate
decay of 0, produced the best training and validation accuracies
among the parameter values tested, so these values were used
for all experiments reported in this paper. The choice of weight
initialization method (Xavier vs ImageNet weights) did not
make a difference on the model’s final training performance,

so ImageNet weight initialization was used where available (i.e.,
for the ResNet models), and Xavier initialization was used
in other cases. Additionally, the choice of gradient descent
optimization algorithm, i.e., Adam vs Nadam, did not make a
substantial difference to the models’ performance, although the
Nadam (which is Adam with Nesterov Momentum) optimizer
produced slightly better results. Overall, model training and
testing performance seemed to be robust to small variations in
hyperparameter selections.

Gradient-based saliency maps were examined to confirm that
the features learned by the trained ESC models are relevant
to the classification task. Saliency maps associated with seizure
classifications, generally had pixels associated with horizontal and
diagonal seizure power bands highlighted, while saliency maps
associated with non-seizure classifications had pixels associated
with any interictal spiking activity occasionally highlighted.
Finally, tests were run to confirm that the choice of training
platform (virtual machines on the Google Cloud Platform
vs on-premise machines) did not affect model training and
testing performances.

Although model architectures and hyperparameters such
as the learning rate, optimizers and spectrogram colormaps
(which are often considered to be among the most important
hyperparameters) were experimented with, the hyperparameter
search space is enormous. In future experiments, neural
architecture search methods such as AutoML on Google Cloud
Platform will be used to further improve classification accuracies.
Additionally, data from only 113 patients were used for training,
validation and testing in this study. Manually labeling data from
all 256 RNS study patients and using data from additional
patients for training may lead to further improvements in
model performance.

The trained ESC models performed substantially better than
chance (70.1%; chance level is 50%) in classifying spectrogram
images of EEG data in the TUH EEG Seizure Corpus (an
EEG dataset not captured with the RNS System). Error analysis
revealed that the most common explanation for misclassification
was various types of noise present in the raw EEG data, with
the classification performance generally being much better on
EEG datasets with little/no noise, compared to nosier datasets.
This was expected given that the RNS System ECoG data used
to train the CNN models were practically noise-free. The only
type of denoising applied by us to the TUH EEG data was
a 60 Hz notch filter. The addition of other denoising steps,
while outside the scope of this paper, could potentially lead to
substantially better classification outcomes. The fact that the ESC
models trained on ECoG data captured with the RNS System
could classify seizures in EEG datasets captured with markedly
different lead types, electrode configurations and recording
electronics demonstrates the transferability of preprocessing
methods and trained models across different types of time-
series brain recording datasets. Fine-tuning weights and biases
in final layers of neural networks trained on large ECoG/EEG
datasets (such as the RNS System data used in this study)
with smaller labeled time-series brain datasets from a different
source could be a potential strategy for applying deep learning
classification/regression models to datasets with limited training
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data. Such a technique is frequently used for solving computer
vision problems (Shin et al., 2016).

As expected, the performance of trained models continued to
improve with the amount of training data used. In all patient-
level splits the deepest model (ResNet50 model) produced the
best results while shallowest model (CNN 6 layer) produced
the worst. Class-balanced accuracies were >90% when the
ResNet50 model was trained with labeled ECoG records from
30 patients. Surprisingly, training ResNet50-based models with
labeled spectrogram images from just 10 patients produced
a mean ECoG record classification accuracy of ∼88% in
new patients suggesting that the deeper ResNet50 models can
effectively learn electrographic seizure signatures even with
limited training examples, and can successfully generalize the
learnings to ECoG records from new patients. The shallow 6 layer
CNN, on the other hand, only produced a classification accuracy
of 73% with 10 patient’s training data. These findings suggest that
for EEG/ECoG classification tasks, it may be beneficial to train
deep CNN architectures (such as the ResNet50 architecture) even
in cases where data from only a limited number of subjects are
available, and that training experiments should not be limited
to shallow CNN models as has mostly been the case in the past
(Roy et al., 2019).

Future experiments are needed to study the relationship
between the distinct number of electrographic seizure patterns
used for training and cross-patient classification accuracy. In our
experiments to characterize model performance as a function of
number of patient’s data used for training, a substantial number
(∼14,500 per class or ∼29,000 in total) of seizure and non-seizure
spectrogram images were available from just 10 patients. Since
some patients have multiple seizure foci and seizure waveforms
can change over time, each patient likely contributed a few
different seizure patterns for training. This is because seizures
may originate in different brain areas with different seizure
waveforms, and because ECoG records used in this study cover
an average of 7.5 years per patient. This variety could explain
why models built with just 10 patients’ data generalized to new
patients with > 88% accuracy. Repeat analyses with data captured
from small numbers of patients over shorter periods will provide
additional insight into the minimum number of seizure examples
required for good performance.

About 34% of labeled ECoG channels used in this paper
belonged to the seizure class, while the remaining 66% of ECoG
channels belonged to the non-seizure class. Class balancing of
seizure and non-seizure class ECoG channels was performed only
in the training datasets and not in the test datasets. This was
done to compute the test performance on realistic distributions
of ECoG records captured with the RNS System. Hence, the
precision (positive predictive value), recall (sensitivity) and F1
scores (harmonic mean of precision and recall) reported in
this paper were computed on imbalanced datasets with about
twice the number of non-seizure examples as seizure examples
(see Table 1). However, these metrics do not reflect model
performance on continuous ECoG records. The RNS System
captures data intermittently with data capture biased toward
abnormal ECoG activity. In this paper, a training approach
that produced high cross-patient test classification performance

on such intermittently captured ECoG records was chosen.
Although training was not performed with the goal of applying
the models to continuous ECoG records, extrapolating the results
(97.17% non-seizure accuracy and 94.26% seizure accuracy on
90 s ECoG records; see Table 2) to continuous ECoG records
would result in a false positive rate of ∼1.1/h per ECoG
channel (with the sensitivity still being high at 94.26%). This
is assuming that the continuous ECoG records are cut into
90 s non-overlapping segments and fed into the model for
inference. If a patient only has a few seizures per month, this
could produce a large number of false positives relative to
true positives. Nevertheless, such a generic cross-patient model
could still be used in an offline setting to filter out ∼97% of
data and present the remaining 3% for further human review.
A better strategy, however, might be to alter the training approach
to optimize model classification performance on continuous
ECoG records. For example, data augmentation techniques
could be used to mimic continuous data capture by enriching
scheduled ECoGs in a training set of all ECoG record types,
and custom loss functions with additional penalties could be
used for minority class misclassifications. Such experiments
are outside the scope of this paper but certainty warrant
further studies.

Error analysis revealed some shortcomings in model
performance. In general, seizure ECoG channels with
very subtle seizure signals in spectrogram images were
sometimes misclassified as non-seizures. Conversely, non-
seizure spectrogram images with noise artifact or long trains of
high amplitude interictal activity were occasionally misclassified
as seizures. Several approaches may be taken to further improve
the classification performance of the electrographic seizure
detection models. Training ECoG channel classification models
with greater spatial context such as including spectrogram images
of ECoG activity from adjacent ECoG channels could lead to
higher classification accuracy for the primary channel. This
would mimic the behavior of a human labeler evaluating faint
seizure activity by using activity on adjacent ECoG channels.
Additionally, separate CNN or ResNet models could be trained
on shorter and longer ECoGs to improve the classification
performance of ECoG channels that are outside the typical
length range of 90 s. Since relatively few ECoG channels fall
outside the typical length range, one way to achieve this could
be to fine-tune the final layer(s) parameters of a base CNN or
ResNet model trained with 90-s ECoGs for the shorter and
longer ECoGs respectively. Alternatively, recurrent neural
networks architectures (RNN) or combined CNN and RNN
architectures which do not require the input data to be of fixed
dimensions may be trained.

In summary, this study demonstrates that converting time-
series ECoG records into spectrogram images and using them as
input to CNN models can be used to effectively train robust cross-
patient seizure classification models. Healthcare tools built using
these models may facilitate the physician’s review of EEG data
for epilepsy patients, and have the potential to improve clinical
outcomes due to improved diagnostic assessments. Additionally,
by characterizing the performance of various CNN models as
a function of amount of training data, this research provides
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ECoG/EEG data collection guidance for researchers interested in
solving similar ECoG classification problems.
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Resting-state neural oscillations are used as biomarkers for functional diseases such as
dementia, epilepsy, and stroke. However, accurate interpretation of clinical outcomes
requires the identification and minimisation of potential confounding factors. While
several studies have indicated that the menstrual cycle also alters brain activity, most
of these studies were based on visual inspection rather than objective quantitative
measures. In the present study, we aimed to clarify the effect of the menstrual cycle on
spontaneous neural oscillations based on quantitative magnetoencephalography (MEG)
parameters. Resting-state MEG activity was recorded from 25 healthy women with
normal menstrual cycles. For each woman, resting-state brain activity was acquired
twice using MEG: once during their menstrual period (MP) and once outside of this
period (OP). Our results indicated that the median frequency and peak alpha frequency
of the power spectrum were low, whereas Shannon spectral entropy was high, during
the MP. Theta intensity within the right temporal cortex and right limbic system was
significantly lower during the MP than during the OP. High gamma intensity in the
left parietal cortex was also significantly lower during the MP than during the OP.
Similar differences were also observed in the parietal and occipital regions between
the proliferative (the late part of the follicular phase) and secretory phases (luteal phase).
Our findings suggest that the menstrual cycle should be considered to ensure accurate
interpretation of functional neuroimaging in clinical practice.

Keywords: menstrual cycle, quantitative spectral parameters, regional oscillatory intensity, representative value,
spontaneous neural oscillation

INTRODUCTION

Advancements in neuroimaging techniques have led to their widespread adoption in the clinical
examination of functional brain diseases (Brammer, 2009; Khanna et al., 2015; Hoshi and Shigihara,
2020; Tanoue et al., 2021). In functional neuroimaging, brain function is primarily assessed
based on changes in metabolism (i.e., position emission tomography), blood flow (i.e., functional
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magnetic resonance imaging, fMRI), or electrophysiology [i.e.,
magnetoencephalography (MEG) and electroencephalography
(EEG)]. Both MEG and EEG record brain activity in terms of
“spontaneous neural oscillations,” which are altered by diverse
brain disorders such as epilepsy and dementia (Fernández
et al., 2013; Ahmed and Rutka, 2016). However, physiological
factors such as age and sex can also affect the frequency and
regional patterns of spontaneous neural oscillations, representing
potential confounding factors in relevant studies (Dustman et al.,
1993; Vysata et al., 2012; Barry and De Blasio, 2017; Hoshi and
Shigihara, 2020).

Several studies have indicated that the menstrual cycle also
alters brain activity (Lindsley and Rubenstein, 1937; de Barenne
and Gibbs, 1942; Creutzfeldt et al., 1976; Becker et al., 1982;
Bazanova et al., 2014). The menstrual cycle is produced by
a network between the hypothalamus, pituitary gland, and
ovaries, which interact via sex hormones such as gonadotropin-
releasing hormone (GnRH), follicle-stimulating hormone
(FSH), luteinising hormone (LH), oestradiol, and progesterone
(Creutzfeldt et al., 1976; Franz, 1988; Hawkins and Matzuk, 2008;
Brötzner et al., 2014; see Figure 1). The cycle causes changes
at the functional, molecular, and structural levels of the brain
and affects both emotion and cognition (Sacher et al., 2013).
Functional changes appear as a slowing down or attenuation of
spontaneous neural oscillations during the menstrual cycle, and
are accompanied by molecular-related changes in sex hormone
levels such as oestradiol and progesterone (Creutzfeldt et al.,
1976; Becker et al., 1982; Bazanova et al., 2014; Brötzner et al.,
2014). These two alterations have recently attracted attention
because they are often observed in patients with cognitive
dysfunction, including those with dementia (Ferna and Hornero,
2006; Poza et al., 2007; López et al., 2014; Shigihara et al., 2020a).
In the case of cognitive dysfunction, damage to the nucleus
basalis of Meynert in the basal forebrain leads to decreased
cholinergic input to the cortices, thereby leading to changes in
spontaneous neural oscillations (Gratwicke et al., 2013; Figure 1).
Although the hormones primarily responsible for these changes
differ between the menstrual cycle and cognitive dysfunction,
evidence suggests a shared neural basis given the interactions
between the cholinergic system and oestradiol (Newhouse and
Dumas, 2015). Despite the available evidence, most previous
studies were limited because they were based on visual inspection
(i.e., a subjective analysis). Given that neural signal processing
methods have dramatically improved over the last two decades,
further studies are required to explore the influence of the
menstrual cycle on neural patterns.

During the last few decades, researchers have proposed
several parameters for characterising the spectral features of
neural oscillations, including median frequency (MF), individual
alpha frequency (IAF), and Shannon entropy (SE) (Poza et al.,
2007). These parameters can be calculated mechanically from
the power spectral density (PSD) of the MEG signals. Thus,
they are objective and independent of the skill or experience
of the examiner. This is of paramount importance in clinical
practice, as it improves the reproducibility, replicability, and
reliability of the research findings. These parameters enable
intuitive quantification of the diverse properties of brain

activity. Furthermore, they are sensitive to changes in cognitive
performance and have been highlighted as potential biomarkers
for cognitive disorders such as dementia (Poza et al., 2007;
Hughes et al., 2019). Indeed, our hospital group utilises these
MEG parameters (MF, IAF, and SE) as clinical tools for evaluating
hundreds of patients with dementia, stroke, and epilepsy each
year. However, no such analyses have revealed how the menstrual
cycle affects spontaneous neural oscillations.

Advances in signal processing are not limited to representative
parameters of neural oscillations (MF, IAF, and SE).
Improvements in processing speed have allowed us to calculate
the regional oscillatory intensity of brain activity. Each brain
region is associated with specific functions (i.e., “functional
specialisation” Mahon and Cantlon, 2011), and there is often a
direct link between the damaged cortex and clinical symptoms.
Consequently, regional oscillatory intensity gives us information
relevant to neurological diseases (Fernández et al., 2013;
Sakamoto et al., 2016; Pratt et al., 2017; Shigihara et al., 2020b).
Previous studies have revealed that the menstrual cycle affects
regional brain activity at both the functional (Bayer et al., 2014;
Albert et al., 2015; Pletzer et al., 2019; Weis et al., 2019) and
structural levels (Hagemann et al., 2011; Pletzer et al., 2018).
fMRI studies have indicated that the menstrual cycle modifies
brain activity in various regions, such as the prefrontal cortex,
limbic system, hippocampus, amygdala, and striatum (Albert
et al., 2015; Pletzer et al., 2019; Weis et al., 2019). Anatomical
MRI studies have also reported that grey matter volume changes
along the menstrual cycle, reaching its maximum value at the
time of ovulation (Hagemann et al., 2011). In contrast, the
right parahippocampal/fusiform gyrus reaches its maximum
volume during the early follicular phase of the cycle (Pletzer
et al., 2018). Although these findings suggest that regional
oscillatory intensity should also vary along the menstrual cycle,
this hypothesis remains to be verified.

Therefore, in the present study, we aimed to clarify the
effect of the menstrual cycle on spontaneous neural oscillations
based on quantitative parameters rather than visual inspection,
with the goal of providing personalised clinical assessments (i.e.,
“precision medicine”). More specifically, we aimed to (i) update
previous findings related to the “slowing down and attenuation of
oscillatory intensity” using quantitative parameters (Study Goal
1) and (ii) identify the role of the regions responsible for the
observed changes in resting-state brain activity (Study Goal 2).
To achieve these goals, we measured resting-state spontaneous
neural oscillations in 25 healthy women using MEG once during
the menstrual period (MP) (i.e., “menses”) and once outside of
the menstrual period (OP) (see Figure 2). The representative
values of the spontaneous neural oscillations were calculated
using established algorithms and compared along the cycle to
standardise changes in these values.

MATERIALS AND METHODS

Participants and Ethics
Twenty-five healthy women (mean age ± standard deviation:
28.4 ± 8.0 years; age range: 22–48 years) were enrolled
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FIGURE 1 | Anatomical and molecular relationship between brain regions. Black lines represent anatomical connections. Red arrows represent molecular
connections. Blue words indicate generators of oscillatory activity. GnRH, gonadotropin-releasing hormone; FSH, follicle-stimulating hormone; LH, luteinising
hormone; Ach, acetylcholine.

in the present study. The length of their menstrual cycle
ranged between 25 and 36 days (29.6 ± 2.7 days), and none
of them used oral contraceptives. All participants were staff
members at Kumagaya General Hospital, and their health
condition was checked annually in accordance with Japanese
law (Industrial Safety and Health Act). The present study
was conducted in accordance with the ethical principles
of the Declaration of Helsinki and was approved by the
Ethics Committee of Kumagaya General Hospital (approval
number: 14). Written informed consent was obtained from each
participant during enrolment.

Procedure
All participants visited the MEG room twice: once during the MP
and once during the OP (see Figure 2). For eight participants,
MEG activity was acquired during the MP first. For the remaining
17 participants, MEG activity was acquired during the OP first.
The interval between the two MEG scans ranged from 6 to
133 days (mean ± standard deviation: 41.3 ± 43.4 days). For the
OP, participants were asked to report the beginning of the last MP

and the average length of their cycle to identify the phase of the
cycle (proliferative phase or secretory phase) on the day of MEG
recording. One participant failed to report the last MP, and her
phase was not identified.

The cycle is generally defined in two ways: ovarian cycle and
uterine cycle (Figure 2). These two cycles start with the first day
(beginning) of the MP, with ovulation occurring in the middle of
the cycle. In the ovarian cycle, the period from the first day of
menstruation to the day of ovulation is known as the follicular
phase, which lasts 16.9 days on average (Bull et al., 2019). The
interval from the day of ovulation to the next MP is known as
the luteal phase and lasts 12.4 days on average. Thus, we assumed
that the menstrual cycle can be divided into follicular and luteal
phases using the ratio 16.9:12.4, regardless of the length of the
menstrual cycle (Bull et al., 2019). We used this ratio to estimate
the phase of the cycle (follicular or luteal) on the recording
day. In the uterine cycle, the MP and subsequent proliferative
phase (i.e., “pre-ovulatory phase”) occupy the follicular phase
of the ovarian cycle. The secretory phase of the uterine cycle
corresponds to the luteal phase of the ovarian cycle. Thus, the
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Comparison 1
Comparison 2

Menstrual period
(MP)

Out of the period (OP)

Follicular phase Luteal Phase

Proliferative Phase Secretory Phase

First day of 
noitaluvOnoitaurtsnemeht

Uterine cycle

Ovarian cycle

FIGURE 2 | Periods and phases of the menstrual cycle. The first row defines the ovarian cycle, whereas the second row defines the uterine cycle. One cycle
includes two periods: the menstrual period (MP) and the period outside of menstruation (OP). The latter is further broken down into two phases: the proliferative and
secretory phases. The follicular phase comprises the MP and proliferative phase, whereas the secretory phase is equivalent to the luteal phase. In the present study,
neural activity was compared in two ways: (i) between the MP and OP (Comparison 1, solid arrows) and (ii) between the proliferative and secretory phases
(Comparison 2, broken arrows).

OP consists of the proliferative phase and secretory phase of
the uterine cycle.

In the present study, we performed two different comparisons
to assess changes in the spectral content of neural oscillatory
MEG activity along the menstrual cycle. First, we compared
spontaneous neural oscillations between the MP and OP
(Comparison 1 in Figure 2, within-participant design). Second,
we compared spontaneous neural oscillations between the
proliferative phase (the later part of the follicular phase) and
secretory phase (luteal phase) within the OP (Comparison 2
in Figure 2, between-participant design). Eleven participants
visited the MEG room during the proliferative phase, while 13
participants visited during the secretory phase. Data from one
participant was used for Comparison 1 only and was excluded
from Comparison 2 because the participant failed to report the
last MP, and the phase could not be identified.

MEG Scanning Details
Spontaneous neural oscillations were recorded for 5 min using
a 160-channel whole-head type MEG system (RICOH160-1;
RICOH Co., Ltd., Tokyo, Japan) in a magnetically shielded
room. During the scan, participants were asked to remain calm
in the supine position with their eyes closed. The scanning
conditions were controlled to be as consistent and comfortable
for participants as possible. The sensors and reference coils were
gradiometers, with diameters of 15.5 and 50 mm at the baseline,
respectively. Each pair of sensor coils was separated by a distance
of 23 mm. The sampling frequency was 2,000 Hz, and a 500-
Hz low-pass filter was used during recording. To co-register
MEG source images with structural brain images acquired using
canonical MRI, three fiducial magnetic marker coils were placed
on each participant’s face (5 mm above the nasion and bilaterally
10 mm in front of the tragus) during the MEG scan.

MEG Data Analysis
MEG data were pre-processed offline using the software package
SPM-12 (Wellcome Trust Centre for Neuroimaging, London,
United Kingdom1) and the MEAW system2. Two types of
standard MEG analyses were applied: sensor-level and source-
level analyses. Each method is associated with advantages over
the other (Shigihara et al., 2020a). Sensor-level analysis produces
mathematically reliable results and is less time-consuming than
source-level analysis (i.e., taking only a few minutes), making
it valuable for clinical practice. Sensor-level analysis is also
sensitive to global changes in brain activity, allowing researchers
to examine individual differences in spatial distribution. In
the present study, sensor-level analysis was used to obtain
representative values of the PSD and to replicate the previous
finding that spontaneous neural oscillations slow during the MP
(Lindsley and Rubenstein, 1937; de Barenne and Gibbs, 1942;
Creutzfeldt et al., 1976; Becker et al., 1982; Brötzner et al.,
2014) (Study Goal 1). In contrast, source-level analysis provides
information regarding regional brain activity, although it is time-
consuming (i.e., taking 30–60 min for a single patient). Source-
level analyses were adopted to assess differences in regional
changes between two conditions (MP vs. OP, or proliferative
phase vs. secretory phase) (Study Goal 2).

Sensor-Level Data Processing
Sensor-level analyses were performed in accordance with the
protocol described in our previous study (Shigihara et al., 2020a).
If necessary, prominent artefacts were manually removed via
principal component analysis (PCA) using the MEG analysis
software developed by the manufacturer because spectral
parameters are sensitive to artefacts. The software is authorised

1https://www.fil.ion.ucl.ac.uk/spm/
2https://www.hokuto7.or.jp/hospital/lang/english-home/meaw/
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for clinical use by the Ministry of Health, Labour, and Welfare of
Japan (equivalent to FDA approval). Most artefacts are caused by
silver tooth fillings and eye movements; hence, their frequency
is usually low (delta to theta range), which can influence the
computation of spectral parameters. In addition, artefacts from
outside the brain present as characteristic patterns on contour
maps and can lead to unnatural time courses for the PCA
components (Gross et al., 2013). Experienced clinicians and
technicians can distinguish these artefacts from brain signals
based on visual inspection. A 50-Hz band-stop filter was also
applied to remove power line noise. Thereafter, three spectral
parameters were calculated to summarise different properties
of spontaneous neural oscillations: MF, IAF, and SE (Poza
et al., 2007). The spectral parameters were computed from the
PSD, which was estimated using the Blackman–Tukey method
considering non-overlapping 10-s epochs. Afterward, the PSD
was normalised between 1 and 70 Hz (PSDn) (Gómez et al.,
2013). The first parameter, MF, refers to the median of the
distribution represented by the PSDn (i.e., the frequency that
splits the PSDn into two halves of equal power) (Poza et al., 2007).
The second parameter, IAF, refers to the frequency corresponding
to the peak of the PSDn in the extended alpha band (4–15 Hz)
(i.e., the dominant alpha activity), which usually appears in
human adults in the eyes-closed resting condition (Poza et al.,
2007). IAF is useful for describing the loss of neural oscillations
in the alpha band (i.e., the “shift-to-the-left” of the alpha peak).
Finally, SE is an irregularity measure closely related to the concept
of order in information theory that quantifies the distribution
of the oscillatory components of the PSDn (Poza et al., 2007).
These three parameters were calculated for each epoch and MEG
sensor, following which they were averaged across epochs and
sensor position (left and right). Of note, the side of the sensors
was not completely matched with each brain hemisphere because
our MEG system was equipped with axial gradiometers. As such,
left sensors received some signals from the right hemisphere.
However, it should be noted that a previous study demonstrated
that there is little signal contamination across regions, and that
sensor-level information (i.e., that from left and right sensors)
is nearly consistent with source-level information (i.e., that from
the left and right hemispheres) (Rodríguez-González et al., 2020).
Source-level analysis was performed to accurately determine
the source of the signals (see section “Source-Level Analysis”).
Finally, the averaged parameters were statistically analysed as
described in section “Statistical Analysis”.

Source-Level Analysis
The source-level analysis for individual participants (first-
level analysis) followed the pipeline used in a previous study
(Shigihara et al., 2020b). Continuous MEG signals were divided
into non-overlapping 10-s epochs. Because the experimental
environment generated a utility frequency, a 50-Hz band-stop
filter was applied to the epoched data. These filtered data were
then directly used for source-level analyses. To identify the
brain regions producing the resting-state-induced components,
a source inversion procedure was applied to the delta (0–
3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–25 Hz),
and gamma (low-gamma, 26–40 Hz; high gamma, 41–80 Hz)

oscillatory components separately, using a maximal smoothness
algorithm with a spatially coherent sources model (i.e., the COH
algorithm implemented in SPM-12) (Friston et al., 2008). This
source localisation algorithm is comparable to those used in
standardised low-resolution brain electromagnetic tomography
(Pascual-Marqui, 2002). The COH algorithm is a popular source
inversion algorithm that is often used in clinical environments
(Terakawa et al., 2008; Ray and Bowyer, 2010; Shigihara et al.,
2020b). Forward modelling was performed for the whole brain
using a single-shell model with canonical MRIs provided by SPM-
12. The source inversion and estimation steps were performed
by applying filters corresponding to each frequency band (from
delta to high gamma). No source priors were used for source
estimation. The estimated oscillatory intensity at each frequency
band and in each brain region (i.e., regional oscillatory intensity)
was saved as a source image file in the NIfTI format and used for
the second (group)-level analysis.

To increase the sensitivity to changes in regional neural
oscillatory intensity between the two conditions in two ways
(Comparisons 1 and 2 in Figure 2), we analysed the data
in different regions of interest (ROIs). Five sets of ROI
mask images (NIfTI format) were created using the WFU
pick atlas3 for each hemisphere (left and right) in order to
cover the whole cortex: frontal, temporal, parietal, occipital,
and limbic system. Oscillatory intensities were averaged within
each mask using the SPM function “spm_summarise” for each
condition in each participant. Averaged oscillatory intensities in
the ROIs (ROI values) were analysed as described in section
“Statistical Analysis”.

Statistical Analysis
We first performed Comparison 1 within each participant. As
condition order was not counterbalanced (eight participants were
scanned during the MP first while 17 were scanned in reverse
order), we examined the effect of order. The three sensor-level
spectral parameters were compared between first and second
MEG scans using a bootstrapping method, irrespective of the MP
or phases. For each parameter, the average difference between
the first and second scans was computed via resampling with
replacement data across all participants 20,000 times, and the
percentage of the resampled average difference larger or smaller
than 0 (the smaller value) was taken as the significance level (p-
value). As we observed statistically significant effects of order,
the effects were taken into account in the following statistical
analysis using a weighted bootstrapping approach. For this task,
the weights (i.e., proportion for resampling) were controlled so
that half of the resampled data were derived from the first MEG
scan, while the other half were derived from the second scan. This
approach resulted in pseudo-counterbalancing after resampling,
which allowed us to examine the effects of interest (e.g., difference
between phases) while controlling for the effects of order.

Second, sensor-level spectral parameters were compared
between the MP and OP (Comparison 1), and between the
proliferative and secretory phases (Comparison 2) using a
weighted bootstrapping method. For Comparison 1, the average

3https://www.nitrc.org/projects/wfu_pickatlas/
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difference between MP and OP was computed via (weighted)
resampling with replacement data across all participants 20,000
times, and the percentage of the resampled average difference
larger or smaller than 0 (the smaller value) was taken as
the significance level (p-value). For Comparison 2, the group
(i.e., proliferative and secretory phases) average was computed
via (weighted) resampling with replacement data across all
participants 20,000 times, and the group difference was stored for
each iteration. The percentage of the group differences larger or
smaller than 0 (the smaller value) was taken as the significance
level (p-value).

We also examined the relationships between participant
age, length of the menstruation cycle, and sensor-level spectral
parameters (during the MP, OP, and the difference between the
two) using a weighted bootstrapping approach. For each pair
of variables, Pearson’s coefficients were calculated via (weighted)
resampling with replacement data across all participants 20,000
times. The percentage of the resampled coefficients larger or
smaller than 0 (the smaller value) was taken as the significance
level (p-value).

Finally, we performed Comparisons 1 and 2 for source-
level ROI values using the same method used for sensor-
level spectral data. The comparisons were made for each ROI
and frequency band.

For all statistical analyses, we report the grand mean of the
statistical values (e.g., mean value of each condition, standard
error of resampled cases, group-difference: d, and average
correlation coefficient: r) across bootstrap iterations, as well
as p-values. Throughout all statistical examinations, statistically
significant p-values were determined after controlling the false
detection rate (FDR) using the Benjamini and Hochberg method
(Benjamini and Hochberg, 1995).

RESULTS

Sensor-Level Analysis (Spectral
Parameters)
Effect of Order
We observed significant effects of order on MF for sensors on
the right side (rtMF) and on IAF for sensors on both sides (rtMF:
d = −0.283, p = 0.025; IAF in the left, ltIAF: d = −0.199, p = 0.027;
IAF in the right, rtIAF: d = −0.214, p = 0.020), indicating that
values measured first were higher than those measured second.

Comparison 1: MP vs. OP
For sensors on both sides, rtMF and IAF were lower during MP
than during OP (rtMF: d = −0.288, p = 0.011; ltIAF: d = −0.238,
p = 0.004; rtIAF: d = −0.253, p = 0.002; Figure 3). Although MF
values for the left side (ltMF) were lower during MP than during
OP, the difference did not reach significance after FDR correction
(d = −0.236, p = 0.040). SE values on both sides were higher
during MP than during OP (right side, rtSE: d = 0.008, p = 0.001;
left side, ltSE: d = 0.009, p = 0.002).

For sensors on both sides, the difference between MF values
and the difference between IAF values were positively correlated
with MF and IAF values during the MP, respectively (ltMF:

r = 0.593, p = 0.006; rtMF: r = 0.623, p = 0.002; ltIAF: r = 0.587,
p = 0.001; rtIAF: r = 0.614, p < 0.001), but not during OP.
Differences in SE on both sides were negatively correlated with
SE during OP (ltSE: r = −0.572, p < 0.001; rtSE: r = −0.635,
p < 0.001), but not during MP.

Comparison 2: Proliferative Phase (Later Part of the
Follicular Phase) vs. Secretory Phase (Luteal Phase)
Although MF and IAF values were higher, while SE values
were lower, on both sides during the secretory phase than
during the proliferative phase (Figure 4), these differences did
not reach significance after FDR correction (ltMF, p = 0.190;
rtMF, p = 0.240; ltIAF, p = 0.202; rtIAF, p = 0.270; ltSE,
p = 0.314; rtSE = 0.329).

Age and Cycle Length
For sensors on both sides, age was positively correlated with
the MF value during the MP (ltMF: r = 0.416, p = 0.012; rtMF:
r = 0.398, p = 0.018) (Table 1). In addition, age was positively
correlated with the change in IAF between MP and OP on the left
side (r = 0.206, p = 0.040). The length of the menstrual cycle was
negatively correlated with the IAF value on both sides during the
OP (ltIAF: r = −0.379, p = 0.006; rtIAF: r = −0.407, p = 0.002).
The correlation between participant age and cycle length was
not statistically significant (p = 0.214). No statistically significant
correlations were observed for the other pairs between age/cycle
length and spectral parameters (Table 1).

Source-Level Analysis (Regional
Oscillatory Intensity)
Comparison 1: MP vs. OP
Theta intensity within the right temporal cortex and right limbic
system was significantly lower during the MP than during the
OP (right temporal: d = −0.007, p = 0.010; right limbic system:
d = −0.002, p = 0.003) (Table 2, Figure 5, and Supplementary
Figure 1). High gamma intensity in the left parietal cortex
was also significantly lower during the MP than during the
OP (d = −0.017, p = 0.037). No other differences in regional
oscillatory intensity were observed between the two conditions.

Comparison 2: Proliferative Phase vs. Secretory
Phase
Significant changes in regional oscillatory intensity were observed
on both sides for the parietal and occipital regions. Theta
oscillatory intensity was higher on both sides of the parietal
region during the proliferative phase than during the secretory
phase (Table 3 and Figure 6), while that in the occipital region
was lower during the proliferative phase than during the secretory
phase. In addition, delta oscillatory intensity was higher while low
gamma oscillatory intensity was lower during the proliferative
phase than during the secretory phase on both hemispheres. No
other differences were observed for any region or frequency band.

DISCUSSION

The present study investigated the effect of the menstrual cycle
on spontaneous neural oscillations based on quantitative MEG
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FIGURE 3 | Changes in (A) median frequency, (B) individual alpha frequency, and (C) Shannon entropy between the menstrual period (MP, open columns) and the
period outside of menstruation (OP, filled columns). Error bars represent the grand mean of standard errors over bootstrapped iterations. Asterisks (∗) indicate
statistically significant differences (after false-discovery rate (FDR) correction) between the two periods. Hash tags (#) indicate statistically significant correlations (after
FDR correction) between the value of the parameter in each period and its change.
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TABLE 1 | Correlation between spectral parameters and participant age/length of the menstrual cycle (Comparison 1 in sensor-level analysis).

MF IAF SE

Left Right Left Right Left Right

r p r p r p r p r p r p

Menstrual period (MP) Age 0.416 0.012* 0.398 0.018* 0.222 0.086 0.248 0.071 0.104 0.322 0.117 0.281

Cycle −0.171 0.150 −0.124 0.247 −0.219 0.083 −0.169 0.155 −0.273 0.100 −0.232 0.107

Outside of the menstrual period (OP) Age 0.381 0.050 0.310 0.070 0.103 0.207 0.132 0.167 0.008 0.498 −0.032 0.432

Cycle −0.120 0.250 −0.213 0.115 −0.379 0.006* −0.407 0.002* −0.120 0.260 −0.157 0.185

Change Age 0.163 0.236 0.275 0.059 0.206 0.040* 0.214 0.049 0.121 0.257 0.180 0.170

Cycle −0.116 0.219 0.082 0.296 0.117 0.187 0.216 0.087 −0.134 0.161 −0.015 0.446

r, average correlation coefficient across bootstrap iterations; p, p-values of weighted bootstrapping statistics, * indicates statistically significant correlation after FDR
correction.

parameters. Our analysis revealed four major findings: (i) MF
and IAF were lower during MP than during OP, mainly on the
right side of the MEG dewar; (ii) SE was higher during MP than
during OP; (iii) theta oscillatory intensity was lower in the right
temporal cortex and limbic system during MP than during OP;
and (iv) theta oscillatory intensity in the parietal and occipital
regions differed between the proliferative and secretory phases.

The menstrual cycle is a fundamental body rhythm that is
regulated by five basic hormones: GnRH, FSH, LH, oestradiol,
and progesterone (Creutzfeldt et al., 1976; Franz, 1988;
Hawkins and Matzuk, 2008; Brötzner et al., 2014; Figure 1).
These hormones interact with each other and affect various
brain functions in the sensory, cognitive, and emotional domains
(Farage et al., 2008; Poromaa and Gingnell, 2014). As neural
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oscillations are sensitive to changes in brain function (BaŞar,
2013; Mazaheri et al., 2018; Ohki and Takei, 2018), previous
studies have already reported that the EEG power spectrum
changes across the menstrual cycle (Lindsley and Rubenstein,
1937; de Barenne and Gibbs, 1942; Creutzfeldt et al., 1976;
Becker et al., 1982; Bazanova et al., 2014). Most of these previous
studies focussed on changes in alpha oscillations, which can
easily be identified and evaluated via visual inspection without
sophisticated techniques such as signal processing methods
(Lewine and Orrison, 1995).

Mean alpha frequency is higher during the luteal phase
(secretory phase) than during menstruation, and the change
is coupled with an increase in progesterone levels (Creutzfeldt
et al., 1976; Becker et al., 1982; Bazanova et al., 2014; Brötzner
et al., 2014). Other studies have reported that increased alpha
frequency during the luteal phase is associated with changes
in cognitive performance (Grandy et al., 2013; Bazanova et al.,
2014). Although it is difficult to analyse other neural oscillations
(i.e., delta, theta, beta, and gamma) without sophisticated
techniques, some studies have also reported that alterations in
these rhythms occur during the menstrual cycle. Nonetheless,
changes in theta oscillations remain controversial. On one
hand, Creutzfeldt et al. (1976) reported that mean theta power
was lower during the luteal phase than during the follicular
phase. On the other hand, Becker et al. (1982) reported that
mean theta power was lower during the periovulatory period
and higher during the perimenstrual period. This discrepancy
may be explained by methodological and statistical limitations
in the earlier study, which was conducted approximately 40–
50 years ago. Further evidence indicated that beta intensity was
significantly larger during the follicular phase than during the
luteal phase (Becker et al., 1982).

Despite these interesting findings, most previous studies
regarding the relationship between the menstrual cycle and
oscillatory patterns were based on visual inspection rather than
signal processing methods. In the present study, we updated these
findings by computing three different spectral parameters (MF,
IAF, and SE) (Study Goal 1) and regional oscillatory intensities
(Study Goal 2). We primally focused on differences between MP
and OP (Comparison 1) because they are practically/clinically
useful. Clinical practice is based on a good relationship between
the patient and clinician. Details regarding menstruation can be
difficult to discuss during a patient’s first visit, especially when
the clinician is male and when the patient’s chief complaint does
not seem to be related. Given its relevance to many conditions,
the classification of the MP and OP is essential in clinical
practice. In addition, we performed Comparison 2 (proliferative
vs. secretory phase) within the OP because the endocrine
environment differs between these phases. Although information
from Comparison 2 is applicable in limited gynaecological
situations, such information can help us to evaluate MEG data
more appropriately. Another potential area of interest may be the
relationship between hormone levels and dementia, as mentioned
in the Introduction. Some research indicates that hormone
replacement therapy can attenuate the progression of dementia in
women, for example (Moradi et al., 2018; Zhou et al., 2020). MEG
may therefore aid in determining the efficacy of such therapy.
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FIGURE 5 | (A) Schematic representation of regions of interest (ROIs) and (B) regional oscillatory intensity changes during the menstrual period (MP, open columns)
and the period outside of menstruation (OP, filled columns). Three parameters with significant changes (after false-discovery rate (FDR) correction) were displayed.
Error bars represent the grand mean of standard errors over bootstrapped iterations. LtP, left parietal; RtLimb, right limbic system; RtT, right temporal. Asterisks (*)
indicate statistically significant difference after FDR correction.

Spectral Parameters (Sensor-Level
Analysis)
In the sensor-level analysis, three spectral parameters (MF,
IAF, and SE) were used to quantify global changes in neural
oscillations related to the menstrual cycle. In this analysis, we
aimed to replicate and expand upon the previous visually based
finding that alpha frequency is low during the MP and high
during the OP, especially during the secretory phase (i.e., luteal
phase) (Study Goal 1). The IAF reflects the peak frequency of
alpha oscillations. IAF values were lower during the MP than
during the OP (Comparison 1). Although they were also lower
during the proliferative phase than during the secretory phase,
this difference was not significant (Comparison 2). These findings
are largely consistent with those of previous studies (Lindsley and
Rubenstein, 1937; de Barenne and Gibbs, 1942; Creutzfeldt et al.,
1976; Becker et al., 1982).

The MF reflects the oscillatory power balance between high
and low frequencies. Although both IAF and MF are affected
by changes in peak alpha frequency, MF is also affected by
changes in the theta, beta, and gamma bands. As observed
for IAF, MF was lower during the MP than during the OP
(Comparison 1). Similarly, although MF values were lower
during the proliferative phase (the later part of the follicular
phase) than during the secretory phase (luteal phase), this
difference was not significant (Comparison 2). There are three
possible interpretations regarding the change in MF: (i) changes
in alpha (peak) frequency, (ii) changes in power balance
between high and low frequencies, or (iii) both. These changes
are noteworthy because low MF and IAF values are often
observed in patients with cognitive dysfunction and dementia

(Poza et al., 2007). Previous studies have indicated that some
cognitive functions are impaired during the MP, including
mental rotation, visuospatial ability, verbal memory, and verbal
fluency, although these findings remain controversial (Sommer,
1992; Schöning et al., 2007; Hatta and Nagaya, 2009; Poromaa
and Gingnell, 2014; Farrar et al., 2015; Sundström-Poromaa,
2018). Low values of MF and IAF during the MP may reflect
impairments in cognitive function due to the menstrual cycle.

The SE is another spectral parameter that represents
the irregularity of the distribution of the neural oscillatory
components in the PSDn. Our findings indicated that SE was
higher during the MP than during the OP (Comparison 1).
Although SE was also higher during the proliferative phase than
during the secretory phase, this difference was not significant
(Comparison 2). Patients with dementia tend to exhibit lower SE
values, in addition to low MF and IAF values (Poza et al., 2007).
However, our participants exhibited lower MF/IAF values and
higher SE values during the MP than during the OP, suggesting
that the distribution of neural oscillatory components during MP
differs from that related to dementia.

Changes in MF and IAF values between the MP and OP
(Comparison 1, marked with # in Figure 3) were positively
correlated with their values during the MP, but not during the
OP. This result suggests that participants with low values of MF or
IAF during the MP exhibited larger changes in these parameters
between the MP and OP. Furthermore, despite being a relatively
short period within the menstrual cycle, the MP appears to
regulate changes in MF or IAF. In addition, the changes in SE
were negatively correlated with the value of SE during the OP,
but not during the MP, suggesting that participants with low SE
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TABLE 3 | Average oscillatory intensity within ROIs and the corresponding statistical differences between the proliferative and secretory phases (Comparison 2 in
source-level analysis).

Left Right

Freq Proliferative M Secretory M p Proliferative M Secretory M p

Frontal Delta 0.035 0.033 0.299 0.030 0.027 0.168

Theta 0.026 0.024 0.325 0.025 0.023 0.334

Alpha 0.009 0.008 0.326 0.010 0.009 0.212

Beta 0.021 0.016 0.079 0.018 0.016 0.221

Low gamma 0.032 0.028 0.172 0.027 0.023 0.151

High gamma 0.028 0.025 0.252 0.020 0.018 0.242

Temporal Delta 0.039 0.037 0.233 0.030 0.028 0.235

Theta 0.058 0.066 0.096 0.053 0.054 0.450

Alpha 0.047 0.048 0.419 0.047 0.044 0.330

Beta 0.051 0.045 0.203 0.038 0.033 0.185

Low gamma 0.049 0.053 0.288 0.032 0.036 0.235

High gamma 0.044 0.042 0.441 0.029 0.031 0.410

Parietal Delta 0.016 0.009 0.076 0.015 0.010 0.139

Theta 0.106 0.078 0.033* 0.083 0.058 0.013*

Alpha 0.079 0.064 0.141 0.062 0.049 0.125

Beta 0.111 0.080 0.092 0.072 0.051 0.062

Low gamma 0.124 0.116 0.331 0.087 0.074 0.145

High gamma 0.077 0.071 0.370 0.048 0.042 0.272

Occipital Delta 0.022 0.013 0.036* 0.008 0.004 0.006*

Theta 0.098 0.121 0.038* 0.068 0.090 0.015*

Alpha 0.121 0.133 0.144 0.089 0.091 0.435

Beta 0.100 0.102 0.446 0.064 0.071 0.219

Low gamma 0.083 0.115 0.007* 0.054 0.074 0.008*

High gamma 0.111 0.109 0.402 0.065 0.066 0.458

Limb Delta 0.043 0.038 0.099 0.030 0.028 0.151

Theta 0.016 0.021 0.124 0.015 0.017 0.306

Alpha 0.012 0.013 0.329 0.011 0.011 0.442

Beta 0.021 0.022 0.390 0.015 0.014 0.427

Low gamma 0.022 0.024 0.293 0.015 0.016 0.370

High gamma 0.023 0.028 0.205 0.015 0.018 0.231

M: average oscillatory intensity within ROI at given frequency in given phase; p, p-values of weighted bootstrapping statistics, asterisks (*) indicate statistically significant
difference after FDR correction. ROI, region of interest.

values during OP exhibited larger changes in SE between the MP
and OP. These results support the notion that MF/IAF and SE
reflect different properties of the PSDn.

In accordance with previous findings, MF and IAF exhibited
a partial positive correlation with age (Gómez et al., 2013;
Hoshi and Shigihara, 2020). However, we observed no significant
correlation between participant age and cycle length. We
speculate that this is due to bias in participant age: Most
participants were in their 20 s, only one was in her 30 s, and
four were in their 40 s. Research has indicated that the length
of the mensural cycle progressively decreases with age, and that
IAF progressively increases with age (Gómez et al., 2013; Bull
et al., 2019; Hoshi and Shigihara, 2020), consistent with our
finding that the length of the menstrual cycle was negatively
correlated with IAF.

Overall, the sensor level analysis successfully replicated the
previous findings and provided two additional results: (i) It is
plausible that the menstrual cycle affects frequencies other than

alpha rhythms; (ii) oscillatory brain patterns during the MP (i.e.,
increased SE) differ from those associated with dementia.

Regional Oscillatory Intensity
(Source-Level Analysis)
Whereas the sensor-level analysis investigated global changes in
neural oscillations in terms of quantitative spectral parameters
(MF, IAF, and SE), the source-level analysis provided deeper
insight into the brain regions responsible for these changes (Study
Goal 2). Interestingly, we observed significant changes in regional
oscillatory intensity in the theta and gamma bands rather than the
alpha band (Comparison 1 in Figure 5 and Table 2, Comparison
2 in Figure 6 and Table 3). Theta oscillations are generated by
a neural network between the hypothalamus, septal region, and
hippocampus (Colom, 2006; Figure 1). The hippocampus is a
major structure of the limbic system. Given that the hippocampus
is rich in oestrogen receptors, it is not surprising that it exhibits
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changes in function during the menstrual cycle (Woolley et al.,
1990; Shughrue and Merchenthaler, 2000; Lisofsky et al., 2015).
The hippocampus plays a key role in short-term memory: While
the right hippocampus is important for spatial navigation, the
left hippocampus is important for verbal memory (Hamid, 2014;
Ezzati et al., 2016; Kang et al., 2016). Performance on mental
rotation tasks, which are used to investigate spatial navigation,
fluctuates with oestradiol and progesterone levels. Previous
studies have indicated that task performance is high during the
MP and low during the midluteal phase (Hampson et al., 2014;
Barel et al., 2019). The hippocampus is located in the medial part
of the temporal lobe and is connected with the other parts of the
temporal lobe (Rolls, 1989; Wilson et al., 1990; Maller et al., 2019).
Consequently, it is reasonable to suggest that theta intensity
in the limbic system and temporal region changes between the
MP and OP (Comparison 1 in Figures 2, 5). Comparison 1
also revealed that high gamma intensity in the left parietal
region differed between the MP and OP. The left parietal lobe
is a critical region for verbal processing (Coslett and Schwartz,
2018), which is also modified during the menstrual cycle (Šimič
and Santini, 2012; Barel et al., 2019): Women exhibit their
best performance on verbal fluency tasks during the menstrual
and midluteal phases and worst performance during the early
follicular phase (Šimič and Santini, 2012; Barel et al., 2019).
Furthermore, gamma oscillatory activity is affected by grey matter
volume (Schwarzkopf et al., 2012), and research has indicated that
the volume of the left partial lobe changes during the menstrual
cycle (Protopopescu et al., 2008). It is plausible that changes
in grey matter volume during the menstrual cycle are linked
with changes in verbal fluency task performance and gamma
oscillatory intensity between the MP and OP (Comparison 1).

Comparison 2 (proliferative phase vs. secretory phase)
revealed that the menstrual cycle is associated with changes in
oscillatory intensity in the parietal and occipital regions. Changes
in theta oscillatory intensity were observed in both regions. These
two regions are important for visual perception, which is also
affected by the menstrual cycle (Ward et al., 1978). The amplitude
of the typical visual-evoked response, which is modulated by the
top-down attention system, is larger during the mid-luteal phase
(Lusk et al., 2015) than during other phases. Notably, changes
in these regions were observed in the theta band but not in the
gamma band, which is typically associated with the bottom-up
components of visual perception (Tallon-Baudry, 2009; Bastos
et al., 2012; Sauseng et al., 2015; Bartoli et al., 2020). Theta
oscillations are mainly generated in the hippocampus (Colom,
2006). However, it is unlikely that hippocampal activity directly
modifies theta oscillations in these regions. The strongest target
of hippocampal connectivity is the temporal lobe, followed by
the limbic system and subcortical structures such as the thalamus
(Maller et al., 2019). The occipital lobe is the third target,
while the parietal lobe exhibits weak direct connectivity with the
hippocampus. Thus, it is not plausible that the hippocampus
modifies theta oscillations in the parietal and occipital regions
without eliciting significant changes in the temporal region.

The hippocampus is connected with the thalamus, which
contains receptors for oestradiol, and several studies have
demonstrated that the menstrual cycle influences thalamic

activity (Sacher et al., 2013; Brinton et al., 2015; Hidalgo-Lopez
et al., 2020). In addition, the thalamus is connected with almost
all cortices via the thalamocortical radiations (Cunningham
et al., 2017; Caspers and Zilles, 2018; George and Das, 2019).
These radiations are categorised into four distinct parts based
on anatomical position: anterior thalamic radiations, posterior
thalamic radiations, superior thalamic radiations, and inferior
thalamic radiations (George and Das, 2019). Hence, we assume
that parietal and occipital theta oscillatory activity is modulated
by the hippocampus via the posterior thalamic radiations,
whose target regions are the parietal and occipital regions. This
assumption may explain the mechanism underlying the effect of
the menstrual cycle on visual perception. The posterior thalamic
radiation conveys top-down signals to these two regions from
other neural networks such as the attention system using theta
oscillations, which serve to provide top-down control (Bastos
et al., 2012; Sauseng et al., 2015). Attention exhibits a close
relationship with visual perception (Luck and Ford, 1998), and
previous studies have indicated that the attention system is
affected by the menstrual cycle via progesterone levels (Pletzer
et al., 2017). Other studies have indicated that attention is
associated with theta oscillations (Hermens et al., 2005; Keller
et al., 2017). We speculate that the attention system or relevant
networks modulate visual perception via theta oscillations.

In the occipital region, delta oscillatory intensity was higher
during the proliferative phase than during the secretory phase.
Enhanced delta oscillations in the caudal part of the brain are a
typical feature of cognitive dysfunction and dementia (Fernández
et al., 2013; Hughes et al., 2019). Although research has indicated
that the menstrual cycle alters cognition (Sacher et al., 2013),
these alterations are not the same as those observed in patients
with dementia. Delta oscillations are associated with network
activity rather than local activity (Bastos et al., 2012; Sauseng
et al., 2015), and enhanced delta oscillation is associated with loss
of cholinergic input from the nucleus basalis of Meynert (Lopes
da Silva, 1991; Gratwicke et al., 2013; Figure 1), which contains
oestrogen receptors (Ishunina and Swaab, 2001). Changes in the
activity of the nucleus basalis of Meynert modulate delta intensity
in the occipital region via cholinergic pathways.

Low gamma oscillatory intensity in the occipital region also
differed between these two phases. Interestingly, cross-frequency
coupling studies suggest that gamma oscillations are modulated
by low-frequency oscillations, such as delta and theta (Florin and
Baillet, 2015). Thus, alterations in gamma activity may occur
secondary to changes in the delta and theta bands. Overall,
the source-level analysis revealed that the menstrual cycle most
strongly influences theta oscillatory intensity, and that this
change originates in the limbic system and deep structures such
as the thalamus.

In addition, the source-level analysis revealed a trend in which
the rostral (frontal/parietal) and caudal (temporal/occipital)
regions exhibited reversal changes in oscillatory intensity
between the proliferative and secretory phases (Figure 6). In
most of the frequency bands, oscillatory intensities in rostral
regions during the proliferative phase were higher than those
during the secretory phase, while the inverse relationship was
observed in caudal regions. Similar results were observed in our
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FIGURE 6 | Changes in regional oscillatory intensity during the proliferative (open columns) and secretory (filled columns) phases. Error bars represent the grand
mean of standard errors over bootstrapped iterations, whereas asterisks (*) indicate statistically significant differences (after false-discovery rate (FDR) correction).
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previous study regarding healthy ageing (Hoshi and Shigihara,
2020). In the previous study, we speculated that this inverse
relationship may be explained by differences in the distribution of
the dopaminergic system, which dominantly controls the rostral
part of the brain (Alcaro et al., 2007). This may also explain
the present result, as the dopaminergic system is affected by the
menstrual cycle as well (Hidalgo-Lopez and Pletzer, 2017).

Limitations
The study has five main limitations. First, we did not measure
basal body temperature or levels of hormones such as oestrogen
and progesterone due to ethical reasons. These factors are
important and essential for identifying the phase of the menstrual
cycle. However, these measurements place a substantial burden
on participants, and many of them hesitated to mention the
details of their menstrual cycle even in the clinic. Although
the relationship between resting-state neural activity and the
menstrual cycle has been investigated in previous studies, most
of the results were based on subjective observations of EEG
data. Therefore, we computed quantitative measures of resting-
state neural activity and conducted the present study with a
minimum setting to simulate the same conditions as clinical
practice: recording neural oscillations non-invasively for 5 min
and asking the participants to report the first day of the last
MP. Despite this limited information, our results suggest that the
influence of the menstrual cycle should be taken into account
when functional neuroimaging is required in general practice
settings. Second, the order of measurements between the MP and
OP was not well balanced. MEG data from eight of 25 participants
were acquired during the MP first, while data were acquired
during the OP first in the remaining participants. To remove
this potential confounding factor, the two conditions should
have included an equal number of participants. In addition,
the number of participants in the proliferative and secretory
phases was not well matched due to the same ethical reasons.
To overcome the potential bias, we applied a sophisticated
statistical method, although we recognise that this is not the ideal
approach. Nevertheless, our results were significant, supporting
the notion that the menstrual cycle should be included as
a control variable in future studies. Third, participants were
recruited from a limited population: clinical staff in Kumagaya
General Hospital. Thus, some variables (e.g., educational levels)
may not have been the same as those in the general population.
However, this conservative approach allowed us to easily confirm
that all participants were healthy (Hoshi and Shigihara, 2020),
which is not always possible when participants are sampled
from the general population. Fourth, the study design was not
identical between Comparison 1 (i.e., within-participant design)
and Comparison 2 (i.e., between-participant design). The present
research was primarily designed to investigate differences in
neural oscillatory activity between the MP and OP (Comparison
1), as discrimination between the two phases is frequently
necessary in clinical practice. We undertook an additional
analysis (Comparison 2) to explore the mechanisms underlying
these alterations, which thereby required a different study design.
Fifth, to minimise the burden on research participants, we did not
assess cognitive or emotional function using neuropsychological

tests. Such tests may have been helpful in interpreting alterations
in resting-state cortical activity. Although these analyses were
beyond the scope of the present study, it may be interesting to
include these variables along with basal body temperature and
hormone levels in future studies.

CONCLUSION

Resting-state neural oscillations are used as biomarkers for
functional diseases, such as dementia (Poza et al., 2007; Hughes
et al., 2019), epilepsy (Worrell et al., 2004; Lundstrom et al.,
2019; Tanoue et al., 2021), and stroke (Sakamoto et al., 2016).
However, accurate interpretation of clinical outcomes requires
the identification and minimisation of potential confounding
factors. Our findings suggest that spontaneous neural oscillations
are affected by the menstrual cycle at both global and regional
levels, as well as by age and sex. The changes elicited by the
cycle are not limited to alpha rhythms, but also affect high- and
low-frequency oscillations, particularly theta rhythms. The limbic
system and parietal lobe play important roles in these changes
in spontaneous neural oscillations. In conclusion, our findings
suggest that the menstrual cycle should be considered to ensure
accurate interpretation of functional neuroimaging in clinical
practice, especially in the treatment of epilepsy and dementia.
Future studies may wish to focus on the association between
the frequency of epileptic seizures and the menstrual cycle (i.e.,
catamenial epilepsy) (Maguire and Nevitt, 2019) and on the
interactions between the healthy menstrual cycle and dementia
via hormonal systems (Moradi et al., 2018; Zhou et al., 2020).
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Behavioral and neuroimaging studies show that people trust and collaborate with others

based on a quick assessment of the facial appearance. Based on the morphological

characteristics of the face, i.e., features, shape, or color, it is possible to determine health,

attractiveness, trust, and some personality traits. The study attempts to indicate the

features influencing the perception of attractiveness and trust. In order to select individual

factors, a model of backward stepwise logistic regression was used, analyzing the results

of the psychological tests and the attractiveness and trust survey. Statistical analysis

made it possible to select the most important personality traits related to attractiveness

and trust assessments.

Keywords: trust and distrust, trust and reputation management, credibility, regress algorithm, machine learning

1. INTRODUCTION

The face is like a book that allows you to obtain information that is an important element
of social communication. Watching the faces of strangers, people make social (attractiveness,
credibility, intelligence, dominance) and personality (gender, age, emotions) assessments based on
facial readings (Kościński, 2007; Oosterhof and Todorov, 2008, 2009; Zebrowitz and Montepare,
2008). The information obtained is particularly important in the process of analyzing the degree
of credibility (Wierzbicki, 2008). It has been noted that attractive people are more often seen
as trustworthy (Shinners, 2009). In addition, credibility assessment is coupled with expressed
emotions. Happy and smiling faces are more credible in contrast to sad or angry faces (Sutherland
et al., 2017). Scientists have shown that women and people with children’s facial features have higher
trust (Buchan et al., 2008; Zebrowitz et al., 2015).

It is believed that the ability to recognize faces develops automatically from an early age and
is improved with development (De Heering et al., 2012; Jessen and Grossmann, 2019; Mondloch
et al., 2019). Depending on the circumstances, the human brain can detect faces in just over 100 ms
(Crouzet et al., 2010; Martin et al., 2018). This is important in the situations requiring an immediate
decision. It is worth adding that the first impressions regarding the seen face may appear about 33
ms after the stimulus exposure (Bar et al., 2006; Freeman et al., 2014). Recently, scientists have
presented views on the stage processing of the face. Visual features related to facial recognition
(among others, gender and age) are recognized the fastest, followed by identity identification (di
Oleggio Castello and Gobbini, 2015; Dobs et al., 2019).
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Facial credibility has been proven to be essential to the
trust that influences cooperation (Zebrowitz and Montepare,
2008). Murderers whose faces are trustworthy are more likely
to get milder punishments (Wilson and Rule, 2015; Ancāns and
Austers, 2018). Based on the assessment of the credibility of
the face, scientists are able to predict the results of political
choices (Ballew and Todorov, 2007). Face perception also has a
big impact on online sales, when buyers are more likely to choose
the offer of a seller with a more reliable face, regardless of the
issued reviews (Ert et al., 2016). Similarly in the “trust games,”
people are more likely to spend money on a trustworthy partner,
and the amount of the stake depends on the level of trust (Van’t
Wout and Sanfey, 2008; Chang et al., 2010).

Perception of socially important stimuli relies on the temporal
cortical areas of the temporal lobe, and their connection with
emotions and motivation is provided, among others, by the
amygdala, orbitofrontal cortex, or cingulate cortex (Adolphs,
2001). Numerous brain tests have shown that the amygdala is one
of the most important regions during the credibility assessment
process (Engell et al., 2007; Todorov et al., 2008). The amygdala
activity is associated with the processing of lower level emotional
stimuli. It increases its activity during social assessment based on
the emotional state and intentions of others (Costafreda et al.,
2008). Depending on the degree of credibility of the face, the
amygdala is more or less activated, with reliably looking faces
reducing activity, and a decrease in credibility causing an increase
in its activity (Haas et al., 2015).

Appearance is one of numerous characteristics that can
influence the initiation or continuation of a relationship with
another person. It can also affect the level of trust in the other
person. As a matter of fact, there are so many canons of beauty
and criteria for choosing in people. The aim of the research
was to show the relationship between the personality traits
and the assessment of trust and attractiveness toward the faces
shown in the photos. For this purpose, there were carried out
a survey to examine whether the faces of the people in the
photos inspire trust and whether they are attractive as well as two
psychological tests: the IVE Impulsivity Questionnaire and the
NEO PI-R Personality Inventory. Both tests are used to diagnose
personality traits. Using IVE you can define three features
(impulsiveness, risk-aversion, empathy), and through NEO PI-
R five (neuroticism, extrovertness, openness to experience,
agreeableness, conscientiousness), each of these features has
six more elements. After applying the stepwise backward
logistic regression model, only those features that had the most
significant impact on the dependent variables, i.e., attractiveness
and trust, were selected. To our knowledge, this is one of the first
EEG protocols planned on this subject. The current study is a
pilot for further research using EEG.

2. TOOLS

Personality traits were examined using the NEO PI-R personality
questionnaire by the authors of McCrae and Costa, in the
Polish translation of Siuta. The NEO PI-R questionnaire is a test
modeled on the five-factor personality model (Big Five), which

takes into account five main dimensions (Costa and McCrae,
1992):

• neuroticism—a dimension defined by fear, guilt,
dissatisfaction, anger (high neuroticism). Susceptibility
to negative feelings causes weaker control over emotions,
increases stress, and leads to illogical behavior. Low
neuroticism characterizes emotionally stable, calm, and
composed people.

• extroversion—it defines people prone to social interactions,
able to feel positive emotions, active, and energetic. Extroverts
are friendly to others, talkative, focused on searching for new
stimuli. The opposite and at the same time the opposite end of
the scale of this dimension is introversion, which characterizes
less daring, more secretive people and avoiding such active
social contacts.

• openness to experience—expresses a tendency to look for new
life experiences. People with high openness are curious about
the world, more tolerant and easily take on new tasks.

• agreeableness—defined as an attitude toward other people. A
high level of agreeableness is characterized by trust in others,
honesty, and a disinterested willingness to help. Agreeableness
in a pejorative version reflects egocentrism, aggression, and
dry relationships with other people.

• conscientiousness—described by such values
as conscientiousness, punctuality, and diligence. High
conscientiousness is primarily duty, goal-oriented action, high
motivation, but also perfectionism or excessive dedication to
work. On the other side of the conscientiousness scale, there
are no defined life goals, lowmotivation to act and spontaneity
as well as impulse decision-making.

The first personality inventory consisted of three factors, each of
which had six subscales. On the basis of numerous observations,
the model was extended with two further features and only
modified in the following years. The current test consists of
the following trait factors: neuroticism, extroversion, openness,
agreeableness, and conscientiousness. Each of them is divided
into six subscales. The worksheet consists of 240 questions.
The respondent’s task is to answer questions on a scale of 0–4
depending on how true the question is for the participant.

The Impulsiveness Questionnaire (IVE) by Hans J. Eysenck
and Sybil B. G. Eysenck is a test used to diagnose personality traits
in adults and high school students. It consists of three scales:

• the scale of impulsivity characteristic of people who make
decisions without thinking about their effect,

• the scale of empathy, describing people sensitive to other
people’s emotions along with an adequate action,

• the scale of propensity to risk typical of people willing to take
on new challenges.

The sheet contains 54 questions to which the respondent answers
yes by marking “YES” or marking “NO” in the negative. The
result for individual scales is the sum of points scored for the
answers belonging to them (Caci et al., 2003).

From the available databases, two relatively large and generally
available resources were selected, which are intended for the
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development of science. Both sets are characterized by good
resolution and accuracy of the taken photos. Both databases
are designed to provide users with standardized and multi-
aspect-tested photo sets that have been used in other facial
processing studies (Silver et al., 2020; Assem et al., 2021).
The first is the Development Emotional Faces Stimulus Set
(DEFSS) which contains the total of 404 face pictures showing
different emotions such as sadness, happiness, fear, anger, and
neutral facial expressions. The models were people aged 8–
30, mostly white. An additional advantage is the verification
of photos made by the creators, during which independent
respondents and photographed people assessed the presented
emotions (Meuwissen et al., 2017). The second is theMulti-Racial
Mega-Resolution (MR2) which shows the photos of 74 people
between the ages of 18 and 25. Contrary to the previous database,
it presents the photos of various races people (European, African,
and East Asian), with only a neutral facial expression without
makeup (Strohminger et al., 2016).

One hundred photos (50 women and 50 men) were selected
from the two sets. Only photographs showing the face from
the front without emotions (with a neutral expression on the
face) were taken into account during the selection. Overall, 49
photos show the people of European descent, 31 photos the
people of African descent, and 20 photos those of East Asian
descent. A questionnaire was made for the obtained base, in
which three questions were displayed for each photo. The first
question concerned the gender of the person in the photo and
the respondent chose a woman and a man from the answers.
The second and third questions were about attractiveness and
trust, respectively. Using a five-point scale, the participants
determined to what extent the person in the photo is attractive
and to what extent they can trust the person in the photo,
where in both questions 1 meant not at all, and 5 very much.
Eighty-five students of computer science and cognitive science at
Maria Curie-Skłodowska University were invited to participate
in the survey, and their answers were statistically analyzed. The
photos are divided into four groups: attractive and trustworthy,
unattractive and untrustworthy, attractive and untrustworthy,
unattractive and trustworthy. Within these groups, based on the
division by sex and origin of the people in the photos, six photos
were selected for each group (Figure 1), rated the highest by the
respondents. As a result, 24 photos were selected for future study.

3. PROCEDURE

As part of additional activity in the classroom, 85 students of
Maria Curie-Skłodowska University enrolled in the research.
The participants were mainly first-year students of cognitive
science and first-year computer science, aged 18–24. Taking
care of the confidentiality of personal data and the comfort of
the participants, the laboratory employees generated random
logins and passwords, which were used by the students to
identify themselves while completing the questionnaires ensuring
their anonymity.

The study consists of two psychological tests and a face survey.
The first test in each case was the NEO PI-R. The test consisted

of 240 questions, the participant assigned an answer to each
question from 0 to 4 depending on how much he agreed with
the statement. The next test was IVE consisting of 54 questions
with the possibility of answering “yes” or “no.” The last one was
a questionnaire containing 100 photos of faces. For each photo,
three questions were displayed in turn: “What is the gender of the
person in the photo,” “How attractive is the person in the photo,”
“To what extent are you able to trust the person in the photo.”
The participant chose the answer to the first question, a woman
or a man, and chose the next two on a scale from 1 to 5 where 1
meant not at all and 5 very much.

4. DESCRIPTION OF THE STATISTICAL
METHOD

The statistical analysis was performed using the logistic
regression model in the SPSS program. It is a type of nonlinear
analysis that allows you to describe the direction and strength
of the relationship between individual explanatory variables in
quantitative or qualitative form and dichotomous dependent
variables that assume values of 0 or 1. The model was composed
of 34 explanatory variables which include of personality traits
tested with the NEO PI-R and IVE psychological tests. Due to
the characteristics of logistic regression and the desire to extract
the variables as well as possible,the dependent variables of the
model are attractiveness and trust represented by a dichotomous
variable where 1 means that the respondent assessed the face
from the photo as attractive/trustworthy, 0 means that the
respondent assessed the face in the photo negatively. The data
set introduced into the model did not include the division into
training and test sets. In addition, it is worth mentioning that the
presented study is a pilot for further research in which ERP will
be tested using EEG in the context of trust/not trust.

The designed backward stepwise logistic regression model
took into account additionally the Wald criterion to optimize
the number of variables influencing the dependent variables. The
higher Wald’s coefficient, the more influencing on attractiveness
and trust the variable is. A stepwise regression model was used,
which means that the model gradually changed. In this case,
along with the next step, one variable with the lowest value
of Wald’s criterion was rejected from the model and further
statistical activities were carried out on the remaining data set
(Table 1). The number of explanatory variables decreased to 5 in
the attractiveness model which obtained satisfactory results in 30
steps (Nagellerke’s R2 = 0.261) and to 9 in the confidence model
with the number of steps equal to 26 (Nagellerke’s R2= 0.434).

5. CORRECTNESS OF THE LOGISTIC
MODEL

Principal Component Analysis (PCA) is one of the statistical
methods that examines data without supervision. The main
goal is to reduce the number of input variables describing the
phenomenon under study. By design, this method is used to
explain the variability of complex data using new principal
components that are linear combinations of the observed
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FIGURE 1 | A set of photos selected for future research, divided into groups: (A) low attractiveness and high confidence, (B) high attractiveness and high confidence,

(C) high attractiveness and low confidence, (D) low attractiveness and low trust. Photos taken from the following databases: DEFSS (Meuwissen et al., 2017) and

MR2 (Strohminger et al., 2016).

variables. The new set is characterized basing on most of the data
from the original set with a reduced number of variables. The
PCA analysis can be an introduction before proceeding to further
statistical methods, such as cluster or discrimination analysis.

In the study, the backward stepwise logistic regression
eliminated, based on the Wald coefficient, the least significant
explanatory variables for the model. According to the purpose of
PCA, calculations were performed and the number of variables
necessary to describe the phenomenon was determined and
compared with the number of variables determined in the
backward stepwise logistic regressionmodel. For the calculations,
a correlation matrix containing 34 explanatory variables and
a constant was used. The operations were performed with
the use of functions available in the programming language
“R.” The PCA analysis was used to check that the logistic
regression model uses a sufficient number of describing
variables. Tables 2, 3 provide the PCA statistics for attractiveness
and trust.

On the basis of the Kaiser criterion, which recommends
distinguishing only those factors whose eigenvalues are >1, PCA
selected five components for attractiveness and seven for trust.

The components for the variable “attractiveness” explain more
than 90% of the variability of the input data (first component:
43.6%, second component: 21.6%, third component: 9.9%, fourth
component: 6.6%, fifth component: 3%) while the components
for the variable “trust” in about 87% (first component:
34%, second component: 22%, third component: 10%, fourth
component: 9%, fifth component: 5%, sixth component: 4%,
seventh component: 3%). The above statistical data indicate a
sufficient number of components that can be used to describe the
studied phenomenon. The logistic regression model, as a result
of the stepwise elimination of the least statistically significant
features, left five predictors for attractiveness and nine predictors
for confidence. Comparing the number of predictors necessary
to describe the phenomenon determined by the PCA with the
number of predictors left as a result of the logistic regression
model calculations, it is concluded that themodel left a minimum
and sufficient number of predictors to describe the attractiveness
while for the description of confidence it distinguished two
additional predictors above the minimum necessary.

The quality of the model was assessed using the Hosmer-
Lemeshow test (Table 4). In both cases the obtained results
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TABLE 1 | Summary of the most important explanatory variables (marked with a

“+” in the table) for the variables attractiveness and trust, which remained after

elimination by backward logistic stepwise regression based on the Wald

coefficient.

Variable Attractiveness Trust

N1- Anxiety − −

N2- Angry hostility + −

N3- Depression − −

N4- Self-consciousness + −

N5- Impulsiveness + −

N6- Vulnerability − −

E1- Warmth − −

E2- Gregariousness − −

E3- Assertiveness − −

E4- Activity + −

E5- Excitement seeking − −

E6- Positive emotions − −

O1- Fantasy − −

O2- Aesthetics − −

O3- Feelings − −

O4- Actions + −

O5- Ideas − +

O6- Values − −

U1- Trust + −

U2- Straightforwardness − −

U3- Altruism + +

U4- Compliance − −

U5- Modesty − −

U6- Tendermindedness − −

S1- Competence − −

S2- Order − +

S3- Dutifulness − −

S4- Achievement striving − −

S5- Self-discipline − −

S6- Deliberation − −

Empathy + +

sdr-Tendency to take risks − +

Impulsiveness + −

constant + +

showed no significance which proves the similarity of the
observed and expected values and a good fit of the model.

6. RESULTS

As a result of the analysis of the obtained data, the impact
of individual descriptive variables on dependent variables was
assessed. For a better understanding of the results of the
regression model, a table of correlation between the dimensions
of the NEO-Pi-R questionnaire and the subscales of these
dimensions is presented below. Table 5 shows only high
correlations between dimensions and their subscales. The data

TABLE 2 | Principal component analysis of a logistic regression model based on

the correlation matrix for the attractiveness predictor.

Standard

deviation

Proportion

of variance

Cumulative

proportion

Comp1 4.167 0.496 0.496

Comp2 2.752 0.216 0.712

Comp3 1.858 0.099 0.811

Comp4 1.515 0.066 0.877

Comp5 1.027 0.030 0.907

Comp6 0.968 0.027 0.933

Comp7 0.874 0.022 0.955

Comp8 0.744 0.016 0.971

Comp9 0.470 0.006 0.977

Comp10 0.454 0.006 0.983

TABLE 3 | Principal component analysis of a logistic regression model based on

the correlation matrix for the trust predictor.

Standard

deviation

Proportion

of variance

Cumulative

proportion

Comp1 3.466 0.343 0.343

Comp2 2.783 0.222 0.565

Comp3 1.914 0.105 0.670

Comp4 1.765 0.088 0.758

Comp5 1.298 0.048 0.806

Comp6 1.171 0.039 0.845

Comp7 1.050 0.031 0.877

Comp8 0.897 0.023 0.900

Comp9 0.886 0.022 0.922

Comp10 0.740 0.016 0.938

TABLE 4 | Goodness of fit test results from Hosmer and Lemeshow.

Step Chi-square df Relevance

Attractiveness 1 7.827 8 0.451

30 9.075 8 0.336

Trust 1 9.612 7 0.212

26 7.411 7 0.387

show that the subscales do not correlate significantly with
each other.

The model uses a default cutoff of 0.5. The case classification
derived from the logistic regression uses the predicted
probability. The case with the predicted probability greater
than the cutoff value is classified as positive (1), and less,
as negative (0). Based on Tables 6, 7, which compare the
classification of the tested values with respect to the dependent
variable with the classification resulting from the use of the
model, it is concluded that the model in which the dependent
variable is “attractiveness” classifies correctly 72.6% of the data.
In the model where the dependent variable is “trust,” the total of
78.8% of correctly predicted responses was recorded.
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TABLE 5 | Correlation between the dimensions of the NEO-Pi-R questionnaire and their subscales.

Neuroticism Extroversion Openness Agreeableness Conscientiousness

N1 0.780

E1 0.748

S1 0.711

E2 0.877

O2 0.742

U2 0.739

S2 0.711

N3 0.772

E3 0.761

U3 0.704

S3 0.801

N4 0.721

E4 0.815

U4 0.835

E5 0.740

S5 0.715

N6 0.759

TABLE 6 | Percentage of correct classifications in the training data for the

dependent variable “attractiveness”.

Observed

Predicted

Attractiveness Percentage of correct

classifications
0 1

Step 1 Attractiveness

0 48 4 92.3

1 5 27 84.4

Total percentage 89.3

Step 30 Attractiveness

0 45 7 86.5

1 16 16 50

Total percentage 72.6

TABLE 7 | Percentage of correct classifications in the training data for the

dependent variable “trust.”

Observed

Predicted

Trust Percentage of correct

classifications
0 1

Step 1 Trust

0 33 7 82.5

1 5 40 88.9

Total percentage 85.9

Step 26 Trust

0 30 10 75

1 8 37 82.2

Total percentage 78.8

In order to check how the model behaves in the event of data
reduction, the dimensions of the NEO-PI-R questionnaire were
omitted, leaving only the subscales of dimensions in the model.

TABLE 8 | Percentage of correct classifications in the training data for the

dependent variable “trust.”

Observed

Predicted

Trust Percentage of correct

classifications
0 1

Trust
0 30 10 75.0

1 8 37 82.2

Total percentage 78.8

TABLE 9 | Percentage of correct classifications in the training data for the

dependent variable “attractiveness”.

Observed

Predicted

Attractiveness Percentage of correct

classifications
0 1

Attractiveness
0 46 6 88.5

1 9 23 71.9

Total percentage 82.1

The above tables (Tables 8, 9) show that the model limitation
contributed to the improvement of the model quality in the
case of the dependent variable “attractiveness,” thus giving 82.1%
of correct classifications. The changes in the model did not
improve the classification for the dependent variable “trust.” The
interpretation of the classification accuracy of 70% + may be
misleading, although only the model from which the individual
data is predicted was presented in the studies. The study is only
a pilot and will be used for further analysis in EEG studies, the
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current indicators will be auxiliary indicators, while the main
indicators will be indicators taken from the EEG.

The values of the parameters of the regression model are
presented in Table 10. As a result of the reduction in the number
of variables increasing with each successive regression step,
several most influential components of the model were obtained.
For better illustration of the influence of individual features on
the assessment of attractiveness and trust, the data are presented
in Table 11. Additionally, the features influencing significantly
both predictors simultaneously were marked.

Among the variables for the assessment of attractiveness, the
most important is altruism (U3), which is the agreeableness
subscale in the NEO PI-R test. According to the data, as the
variable increases, the probability that the face in the photo
will be assessed as attractive increases over 2.5 times. This
variable is also the most important predictor when trust is the
dependent variable in the model. In this case the probability
of trust grows also more than 2.5 times with an increase in
the value of the predictor. Another factor that influences the
assessed attractiveness significantly is order (S2, component of
conscientiousness in the NEO PI-R test). The increase in the
variable enhances the chance of a positive visual assessment of
the person in the photo by about 50%. In the case of empathy,
which is a variable derived from the IVE questionnaire, it follows
that more emphatic people are prone to negative assessment of
attractiveness. The most similar results were obtained for the
variables O5 (ideas, openness subscale) and sdr (propensity to
risk from the IVE questionnaire). In both cases, an increase in
the value of the variable leads to an increase in the chances that
the respondent will evaluate the person in the photo as attractive.

As mentioned before for the dependent variable trust, a
particularly strong predictor is the variable U3 or altruism. In
addition to this variable, the N2 component, in other words,
angry hostility from the NEO PI-R test, described as a tendency
to irritation or anger, has a large impact. As follows from the
data the stronger the personality trait, the greater the probability
of trusting the person in the photo. Excessive self-consciousness
(N4) is another variable that plays a significant role in the model.
According to the presented statistics, the chances of trust by
people manifesting social anxiety or low self-esteem drop by
half. The group describing the dependent variable also included
a feature of the same name, i.e., trust (U1) from the NEO PI-
R test. When the variable changes, the probability that the face
in the photo is judged trustworthy doubles. Very similar results
were obtained for the variable O4 (actions from the NEO PI-
R test) and impulsiveness from the IVE test. In both cases, the
probability is doubled. The variable E4 (activity) has a negative
component whichmeans that its increase results in a reduction of
the probability of trust by ∼52%. The same relationship is found
empathy from the IVE test and for the E5 variable (excitement
seeking). The decrease in odds is∼44 and∼45%, respectively.

7. DISCUSSION

The subject of personality and its influence on human
behavior has been of interest for researchers for many

years. Müller and Schwieren (2020) examined the significance
of individual personality types on the behavior of participants
during a trust game. They showed that personality influences
human behavior based on trust with higher correlations with
ambiguous decisions than with risky decisions. They indicated
that neuroticists spend lower stakes during the game while
people characterized by agreeableness are inclined to donate
higher amounts. This statement can be translated into trust, i.e.,
agreeable people have a higher level of trust toward another
person than in the case of neurotics. Similar conclusions were
obtained by Ben-Ner and Halldorsson (2010) in the studies based
also on the trust game. They found that the personality type
positively influenced trust when the participant was characterized
by high agreeableness, extraversion, or low neuroticism.

In the above paper, the impact of individual personality traits
on the assessment of trust in people in the photos and on their
attractiveness was examined. Personality traits are listed on the
basis of the Neo Pi-R and IVE psychological tests and compared
with the questionnaires examining the attractiveness and trust
toward people in the photos. The faces obtained from generally
available databases with a neutral expression were used in the
research to minimize the impact of facial expression on the
assessment. The analysis was performed based on the logistic
stepwise backward regression. The included Wald coefficient
allowed for the elimination of the least significant descriptive
variables from the model with each successive step. The model
was developed in the SPSS program and the learning and training
of the model was carried out according to the procedures
available in the program. Based on the obtained data and the
performed analyses, it was shown that altruism has the greatest
impact on the perceived attractiveness and trust. In both cases
this trait has a positive effect on the dependent variable which
indicates that altruists are more likely to judge others positively.
Overall, it was noted that trust is largely influenced by the
components of agreeableness and neuroticism.

After collecting the data from the respondents, apart from
determining the personality traits influencing the decisions, a set
of photos was extracted to be used in the electroencephalographic
(EEG) examinations. The set of all 100 photos was divided
into four groups: attractive and trustworthy, unattractive and
untrustworthy, attractive and untrustworthy, unattractive and
trustworthy. These are different combinations of dependent
variables. Each of these groups has a different number of photos.
The most numerous groups are great attractiveness with great
confidence and small attractiveness with small confidence. The
reason for this allocation of photos is the relationship between the
attraction and the trust. Attractive people are believed to be more
trustworthy, and less attractive people are likewise unreliable
(Oosterhof and Todorov, 2008; Sutherland et al., 2017). Among
the photos from the group of high attractiveness and low trust,
there are only faces of people of African and European descent
with a slight predominance of people of African descent. On the
other hand, in the group where trust is great and attractiveness
small, there are usually faces of people of Asian and European
origin, with a slight predominance of the former. Based on the
highest average ratings for each photo and the gender of each
group, six photos were selected to be used in the EEG tests.
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TABLE 10 | Estimating the values of the parameters of the logistic regression model for the dependent variable—attractiveness and trust.

Trust Attractiveness

B
Standard

error
Wald Relevance Exp(B) B

Standard

error
Wald Relevance Exp(B)

Step 1 N1 −0.061 0.753 0.006 0.936 0.941 0.77 1.102 0.488 0.485 2.16

E1 0.073 0.758 0.009 0.923 1.076 −2.149 0.967 4.941 0.026 0.117

O1 −0.015 0.67 0 0.983 0.985 −0.11 0.828 0.018 0.894 0.896

U1 1.347 0.811 2.759 0.097 3.848 0.719 0.748 0.925 0.336 2.053

S1 −0.826 0.701 1.387 0.239 0.438 −2.232 1.363 2.683 0.101 0.107

N2 2.499 0.498 6.948 0.008 12.173 0.073 0.955 0.006 0.939 1.076

E2 −0.381 0.737 0.268 0.605 6.683 2.351 1.331 3.119 0.077 10.493

O2 −0.566 0.754 0.564 0.453 0.568 0.261 0.918 0.081 0.776 1.298

U2 −0.979 0.69 2.014 0.156 0.376 −1.705 1.137 2.248 0.134 0.182

S2 0.07 0.533 0.017 0.896 1.072 −2.252 0.905 6.19 0.352 0.487

N3 −0.246 0.603 0.166 0.684 0.782 −0.72 0.773 0.866 0.352 0.487

E3 0.133 0.781 0.029 0.865 1.142 −1.92 1.182 2.636 0.104 0.147

O3 −0.307 0.68 0.204 0.651 0.735 −1.339 0.936 2.048 0.152 0.262

U3 2.266 0.817 7.687 0.006 9.643 5.185 1.753 8.746 0.003 178.51

S3 −1.206 0.79 2.33 0.127 0.299 0.043 1.129 0.001 0.969 1.044

N4 −1.111 0.714 2.419 0.12 0.329 −1.757 1.041 2.849 0.091 0.173

E4 −1.168 0.755 2.391 0.122 0.311 −1.684 1.053 2.557 0.11 0.186

O4 1.204 0.785 2.351 0.125 3.335 1.183 0.827 2.049 0.152 3.265

U4 0.27 0.683 0.157 0.692 1.311 0.048 0.982 0.002 0.961 1.05

S4 −0.154 0.646 0.057 0.811 0.857 2.137 1.166 3.361 0.067 8.475

N5 −1.282 0.754 2.892 0.089 0.278 −0.188 0.835 0.051 0.821 0.828

E5 −0.322 0.718 0.201 0.654 0.725 −2.679 1.338 4.009 0.045 0.069

O5 −0.585 0.775 0.57 0.45 0.557 1.33 1.042 1.629 0.202 3.782

U5 −0.72 0.661 1.187 0.276 0.487 −2.238 1.099 4.146 0.042 0.107

S5 0.156 0.599 0.068 0.795 1.168 −1.189 0.794 2.239 0.135 0.305

N6 −0.135 0.795 0.029 0.865 0.874 −0.358 1.094 0.107 0.744 0.699

E6 0.417 0.669 0.389 0.533 1.517 1.075 0.891 1.456 0.227 2.93

O6 1.176 0.726 2.622 0.105 3.24 1.496 0.822 3.307 0.069 4.462

U6 −0.111 0.485 0.053 0.819 0.895 1.213 0.758 2.56 0.11 3.362

S6 1.317 0.847 2.419 0.12 3.733 0.575 0.865 0.442 0.506 1.777

impulsiveness 0.602 0.538 1.253 0.263 1.825 −1.418 0.824 2.958 0.085 0.242

sdr 0.346 0.57 0.369 0.544 1.414 1.505 0.937 2.581 0.108 4.505

empathy −1.243 0.621 4.002 0.045 0.288 −1.339 0.818 2.676 0.102 0.262

tmzS −1.016 0.652 2.43 0.119 0.362 −1.385 0.98 1.998 0.157 0.25

constant 0.04 0.358 0.013 0.91 1.041 −1.948 0.701 7.721 0.005 0.143

Step 26 U1 0.709 0.331 4.599 0.032 2.032 − − − − −

N2 1.153 0.442 6.8 0.009 3.169 − − − − −

U3 1.041 0.371 7.859 0.005 2.833 − − − − −

N4 −0.721 0.333 4.703 0.03 0.486 − − − − −

E4 −0.753 0.398 3.579 0.059 0.471 − − − − −

O4 0.694 0.357 3.776 0.052 2.001 − − − − −

N5 −0.605 0.374 2.609 0.106 0.546 − − − − −

Impulsiveness −0.717 0.368 3.794 0.051 2.047 − − − − −

Empathy −0.592 0.351 2.846 0.092 0.553 − − − − −

Constant 0.096 0.273 0.124 0.725 1.1 − − − − −

Step 30 S2 − − − − − −0.741 0.303 6 0.014 0.477

U3 − − − − − 0.961 0.32 9 0.003 2.615

O5 − − − − − 0.501 0.298 2.82 0.093 1.65

sdr − − − − − 0.535 0.299 3.208 0.073 1.707

Empathy − − − − − −0.471 0.292 2.608 0.106 0.624

Constant − − − − − −0.678 0.263 6.675 0.01 0.507

The table shows the statistics for each of the predictors in the model. As a result of the gradual elimination of the predictors in the light parts of the table (step 26 for the confidence

dependent variable, step 30 for the attractiveness dependent variable), the variables furthest away from the dependent variable are presented.
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TABLE 11 | List of personality traits with the most important ones for

attractiveness (marked light yellow—the positive impact on the dependent

variable, dark yellow—the negative impact on the dependent variable), trust

(marked light green—the positive impact on the dependent variable, dark

green—the negative impact on the dependent variable) and attractiveness and

trust at the same time (marked light blue—the positive impact on the dependent

variables, dark blue—the negative impact on the dependent variables).

Type of test Personality factors Component factors

Neo-Pi-R

Neuroticism

N1- Anxiety

N2- Angry hostility

N3- Depression

N4- Self-consciousness

N5- Impulsiveness

N6- Vulnerability

Extroversion

E1- Warmth

E2- Gregariousness

E3- Assertiveness

E4- Activity

E5- Excitement seeking

E6- Positive emotions

Openness

O1- Fantasy

O2- Aesthetics

O3- Feelings

O4- Actions

O5- Ideas

O6- Values

Agreeableness

U1- Trust

U2- Straightforwardness

U3- Altruism

U4- Compliance

U5- Modesty

U6- Tendermindedness

Conscientiousness

S1- Competence

S2- Order

S3- Dutifulness

S4- Achievement striving

S5- Self-discipline

S6- Deliberation

IVE

Empathy

sdr - Tendency to take risks

Impulsiveness

In the presented study, the focus was primarily on finding
the relationship between the choices made toward people in
the photos and personality trait. It is an introduction to further
research using electroencephalography. EEG research will be
developed on the above-mentioned set of faces and will be
conducted on a group of 60 students.

Stimulating the brain with various types of stimuli results in
the arousal coming from the centers responsible for reading and
processing them. The resulting neural processes are analyzed in
terms of time dynamics which are estimated using the event-
related potential (ERP). Component N170 is assumed to be
a component characteristic of facial perceptual processing and

appears ∼170 ms after the stimulus has occurred. N170 can
also appear as a result of multiple face presentations and is
called the adaptive effect of N170 (Eimer et al., 2010). ERP
components for trust and attractiveness appear both in the
initial stages of facial processing (e.g., P100) and later (e.g.,
late positive potential, LPP). The study (Marzi et al., 2014)
analyzed, inter alia, the differences between the ERP components
of trustworthy and untrustworthy faces. The stimulus responses
included P100 (110–130 ms), EPN (200–350 ms), and LPP (300–
500 ms). Additionally, components for trustworthy faces showed
lower amplitudes than untrustworthy faces. Both early and late
facial processings were recorded in the study (Yang et al., 2011)
where the reliability of pre-categorized faces was analyzed and
the most significant responses were obtained for the C1 (40–
90 ms) and LPC (400–600 ms). Early ERP modulations occur
in response to attractive/unattractive faces (Marzi and Viggiano,
2010; Hahn et al., 2016). Early registration of stimulus-induced
activity is the result of facial perceptual processing. The course
of facial identity processing results in the registration of the
signal within the N250 limits (Werheid et al., 2007) while the
signals resulting from cognitive processing that occur within
300–600 ms from the stimulus occurrence are represented the
latest (Calvo et al., 2018).

Taking into account the information already available on
the processing of visual stimuli by the brain in the context
of attractiveness and trust, and the data obtained in the
present study, an ERP analysis is planned in the next works
to find the correlation between the “class” of the face and the
activity of selected areas of the brain using photos of women
and men different facial features and nationalities, and then,
using appropriate algorithms, to accurately indicate the areas
of the cerebral cortex that showed the highest activity during
the experiment in individual people. As shown in the above
study, the personality traits of the evaluators influence largely
the decisions. In addition to the above-mentioned studies, the
signal analysis is planned in terms of individual differences of
respondents. The collected data in combination with EEG data
will constitute a sufficient set to build a classifier that will be able
to predict consensus based on personality traits.

8. CONCLUSIONS

On the basis of the estimated models there were demonstrated
the personality traits that are most important concerning
the behavior toward others, and more precisely they affect
the assessment of attractiveness and trust in people from the
photos significantly. Among all the features for both dependent
variables, altruism (U3) is the most important. The growing
probability of giving the grade “attractive” and “trustworthy”
can be justified by the character traits of these people, i.e.,
sensitivity to the fate of another person and selfless help. It has
been noticed that the components belonging to the groups of
agreeableness and neuroticism have a particularly large impact
on trust while altruism (U3), trust (U1), and angry hostility (N2)
increase the probability of trust twice or three times and excessive
self-consciousness(N4) reduces the probability by about 50%.
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Future study will assess the course of ERP induced during
social assessment based on the first impressions and facial
appearance and locate the most active areas of the brain,
detailing the Brodmann’s area (BA). For this purpose an
electroencephalographic test will be carried out to assess the
credibility and attractiveness of the presented faces. EEG data are
expected to help find a correlation between the face “class” and
the activity in the selected areas of the cerebral cortex.
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Understanding how humans evaluate credibility is an important scientific question in the

era of fake news. Message credibility is among crucial aspects of credibility evaluations.

One of the most direct ways to understand message credibility is to use measurements

of brain activity of humans performing credibility evaluations. Nevertheless, message

credibility has never been investigated using such a method before. This article reports

the results of an experiment during which we have measured brain activity during

message credibility evaluation, using EEG. The experiment allowed for identification

of brain areas that were active when participant made positive or negative message

credibility evaluations. Based on experimental data, we modeled and predicted human

message credibility evaluations using EEG brain activity measurements with F1 score

exceeding 0.7.

Keywords: EEG, credibility, source localization, LORETA, classifiers

1. INTRODUCTION

The World Wide Web has been designed for low barriers of entry, enabling fast, and cheap
publication of content. At the same time, the prevalent business model of the web provides high
incentives for producing Web content that impacts opinions and beliefs of Web users. These
commercial incentives are caused by the popularity of Web-based marketing and advertising.
However, Web content affects not just our shopping decisions, but also decisions regarding our
health, or politics. In this technical and economic environment, the spread of fake news has become
an increasingly significant social problem (Sharma et al., 2019). Fake news disseminate through
social media, Web-based newspapers, blogs, and regular Web pages.

Although combating fake news has been the focus of policy and scientific research since 2016,
to date, little is known about why people believe in fake news. While factors that contribute to
belief in fake news have been studied by social psychology (Rutjens and Brandt, 2018; Forgas and
Baumeister, 2019), these results have been obtained from the declarative studies. Simply asking
Web users whether they believe fake news, or indirectly inferring this conclusion from their
behavior, cannot reveal the real reasons for such a decision. The response to a question about the
believability of fake news also cannot be a basis for a certain conclusion that fake news was indeed
credible, because of possible biases in the response.
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Surprisingly, almost no previous research has attempted to
directly measure brain activity to study basic processes occurring
in brain during credibility evaluation. Previous research using
EEG or fMRI has been devoted to lie detection (Wang et al.,
2016; Meijer and Verschuere, 2017). This approach is based on
the investigation of the brain activity of the author, and not the
receiver of the message.

The focus of our research is the brain activity during
evaluation of message credibility. It is a fundamental aspect of
credibility evaluation that focuses on the content, and not on the
source of a message. In many online scenarios, Web users must
evaluate the credibility of content without knowing the content’s
author or source. Our goal is to identify brain areas and periods
of brain activity that are most active or most important in the
process of textual message credibility evaluation. This process
relies on the individual, subjective perception of a Web user and
can therefore be studied experimentally using EEG.

This basic question leads us to a more applicable goal: creation
of a method for EEG-based message credibility evaluation based
only on the observed brain activity. In the future, we envisage the
use of EEG for either testing the credibility of information in the
form of fake news, or (to the contrary) correcting information
designed to counteract fake news. Similarly to the use of EEG
in online marketing (Deitz et al., 2016; Guixeres et al., 2017),
researchers could evaluate in such a setting the credibility of
information using a panel of information consumers.

The goal of this article is to address the following research
questions:

• What brain areas are active while a receiver is evaluating
message credibility?

• Does brain activity during credibility evaluation depend on
message design?

• Can we model and predict human message credibility
evaluations using EEG brain activity measurements?

One of the difficulties in addressing these questions lies in
the fact that message credibility evaluation can be affected by
two competing factors: message design and prior knowledge
of message recipients. An experiment for studying message
credibility must control prior knowledge of experiment
participants about the message, as well as other factors that
may influence message credibility evaluation. In this article,
we describe an experiment that enables the study of message
credibility evaluation without prior knowledge, and with perfect
knowledge. In the former case, the message credibility evaluation
of experiment participants can be influenced by irrelevant factors
of message design. This situation reflects the reality of manyWeb
users who encounter fake news on various subjects.

2. RELATED WORK

2.1. Basic Concepts: Credibility and Truth
The concept of credibility is grounded in common sense and
in used in scientific research. Modern research on credibility is
active especially in the field of psychology, media science and
informatics (Viviani and Pasi, 2017). In research, credibility is
usually understood as a perceived quality of individuals. The

earliest theoretical work on credibility from the 1950s is due to
Hovland and Weiss (1951), who distinguished between source,
message, and media credibility.

Out of these three, source credibility and message credibility
are a good starting point for a top-down study of the
complex concept of credibility. These two concepts are closely
related to the dictionary definition of the term “credibility”
(Oxford Advanced Learner’s Dictionary): “the quality that
somebody/something has that makes people believe or trust
them.” A part of this definition focuses on a person (“somebody”)
and is close to the concept of source credibility. Another part is
about “something”—themessage itself. That part defines message
credibility that frequently needs to be evaluated on the Web
without knowing the source of the message.

Information scientists have studied credibility evaluations
aiming at designing systems that could evaluate Web content
credibility automatically or support human experts in making
credibility evaluations (Wawer et al., 2014; Liu et al., 2015;
Kakol et al., 2017). However, human credibility evaluations are
often subjective, biased or otherwise unreliable (Kakol et al.,
2013; Rafalak et al., 2014), making it necessary to search for
new methods of credibility evaluation, such as the EEG-based
methods proposed in this article.

The concept of truth is even more complex than the concept
of credibility. Without going into details (the reader is referred
to Wierzbicki, 2018 for a detailed discussion), there exist several
conflicting definitions of truth, such as scientific truth or post-
structuralist truth. Truth may be also undecidable, or truth
evaluation may be impossible in practice. However, the purpose
of processes of disinformation verification and debunking is to
discover information that is untrue and correct it by pointing
out the truth. In this article, we shall assume a definition of
truth as an objectively verifiable information that is the basis for
disinformation checking and debunking.

Having said that, the relationship between credibility and
truth is not simple. Non-expert web users may evaluate
information that is not true as credible. We would expect
that experts would evaluate only true information as credible.
However, experts are human too, and can make mistakes. On the
other hand, in many areas we have no choice but to rely on expert
opinion, and to accept experts’ credibility evaluations as truth.

2.2. Message Credibility
A search for the term “message credibility” on Google Scholar
returns over 1,000 results (for an overview of recent publications,
especially on the subject of Web content credibility, see Viviani
and Pasi, 2017; Wierzbicki, 2018). Media science researchers
have attempted to create scale for declarative measurements
of message credibility (Appelman and Sundar, 2016). Message
credibility has been investigated in the area of healthcare (Borah
and Xiao, 2018).

Message credibility has been defined as a scientific concept
by Hovland and Weiss (1951) as the aspect of credibility that
depends only on the communicated message, instead of the
message’s source or communication medium. On the Web, the
message is a webpage that includes an article (or a shorter text
in case of social media). Message credibility depends on the
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textual content, on images or videos (as well as advertisements)
embedded in the webpage, and on webpage design or style.

What follows is that message credibility is affected by many
factors (features of the message). Even if we consider only the
textual content, message credibility can be affected by semantic
or pragmatic aspects of the message (its meaning and style,
persuasiveness, sentiment etc.) This complexity is especially
important because message credibility is usually evaluated
rapidly on the Web.

Tseng and Fogg (1999) introduced the two concepts of
“surface credibility” and “earned credibility”. Surface credibility
is based on a fast and superficial examination of the message
(similar to System I reasoning, as introduced by Kahneman,
2011). Earned credibility, on the other hand, is the result of a
more deliberate and time-consuming evaluation of the message,
like System II reasoning. Research (Wierzbicki, 2018) has
established that most users evaluate webpage credibility quickly,
usually requiring several minutes (3 min are enough for most
Web page credibility evaluations). Earned credibility evaluation
requires much more time and usually involves a debunking
or verification process. These observations are relevant for our
experiment design. In this article, we focus on surface credibility
evaluations based on the contents of the message. In order to
begin understanding brain activity during message credibility
evaluation, we shall design messages that differ by a single aspect
that can be evaluated quickly.

Message credibility evaluation ofWeb content is often difficult
for ordinary Web users. This problem has led to numerous
attempts of designing automated or semi-automated IT systems
that support Web content credibility evaluation (Viviani and
Pasi, 2017; Wierzbicki, 2018; Sharma et al., 2019). In this article,
we focus on how humans make message credibility evaluations
without computer support.

2.3. Experimental fMRI and EEG Findings
Research on brain signaling in decision-making focuses on
neuroimaging (fMRI) and the activity of specific parts of the
brain in the situation when participants solve various tasks.

Many of these studies concern confidence in the person, as
in facial plausibility studies in which Amygdala activity has been
demonstrated (Rule et al., 2013), also as Precuneus-the medial
part of Brodmann Area (BA) 7, Inferior Frontal Gyrus—BA44,
BA45, BA47, Medial Prefrontal Cortex—BA12, BA25, BA32,
BA33, BA24 (Filkowski et al., 2016). The dynamic role of the
Paracingulate Cortex(BA9/32) and Septal Area in supporting
conditional and unconditional trust strategies in Trust Games
was investigated (Krueger et al., 2007). Also difference in neural
activation (BA7, BA8, BA40) between prosocials and proselfs
people during decision making and interaction effect between
dispositional trust and social value orientation (BA9, BA31,
BA39) was shown in Emonds et al. (2014).

Few of these studies are concerned with trusting the message
itself. In the Processing of Online Trust Signals study, online
shopping activity of Rolandic Operculum was reported with
the most trustworthy signal (BA 44 is part of it), calcarine—
is where the Primary Visual Cortex is concentrated (BA17),

Angular Gyrus (BA39) and Superior Motor Area, pre-SMA (BA
8) (Casado-Aranda et al., 2019).

Anterior cingulate cortex (BA24, 32, 33) activity was observed,
but only within high effort condition such as the quickest possible
pressing of the button task (Mulert et al., 2008) in the decision-
making study on the pitch of the tone.

Heekeren et. al. suggest that Posterior Superior Temporal
Sulcus and Ventromedial Prefrontal Cortex (BA10) are involved
in decision-making regarding scenarios devoid of violence and
direct bodily harm (Heekeren et al., 2003).

In terms of EEG, the N1 and P300 signals combined with fMRI
data in value-based decision-making were examined (Mulert
et al., 2008; Larsen and O’Doherty, 2014). In this study, decision
making involved activation of Dorsomedial Prefrontal Cortex
(BA8, BA9, BA10, BA24, and BA32) and Ventromedial Prefrontal
Cortex (BA10).

In a study by Douglas et al. (2013) with the help of ICA, the
authors managed to create satisfactory models using EEG signal
(power envelopes derived from spectral bands as features) in
classification of belief/disbelief decision-making.

Areas such as BA.08, BA.09 have been proposed to participate
in a general mechanism for perceptual decision-making in the
human brain (Heekeren et al., 2004).

3. EXPERIMENT DESIGN

3.1. Motivation for Experiment Design
As a practical reference situation that motivates our experiment
design, consider a receiver of a message on social media. The
message could be true, or it could be disinformation. The receiver
evaluates the surface credibility of the message. This means that
she will quickly (within a matter of minutes or even seconds)
decide whether themessage is credible or not, and act accordingly
(by forwarding, retweeting, or liking the message). This kind
of situation is so common that experts on media literacy have
coined the slogan: “think before you like” (Harrison, 2017). Fast,
superficial credibility evaluation is not only common, but can
lead to innumerable social harm, especially in the context of
health-related Web content.

For the sake of our reasoning, consider that the message
contains information related to health or medicine (about 60%
of Americans and Europeans go online looking for health
information; Viviani and Pasi, 2017). It could be a simple
statement like “Low doses of aspirin can be safely consumed
in the second trimester of pregnancy” to increasingly complex
statements, for example: “Coenzyme Q10 supplements may help
prevent statin side effects in some people, though more studies
are needed to determine any benefits of taking it.” For the record,
the first statement is generally true, especially if there is risk of
miscarriage. The second statement is mostly false and contains
a hedging part to make it more credible; it is designed to sell
coenzyme Q10 supplements, but can also discourage the use of
statins by people who need them because of high cholesterol
and arteriosclerosis.

Please note that the first factor that impacts a receiver’s
credibility evaluation of such a statement is the receiver’s
knowledge and experience. Controlling this factor is therefore

Frontiers in Human Neuroscience | www.frontiersin.org 3 September 2021 | Volume 15 | Article 65924372

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Kwasniewicz et al. What to Believe?

a crucial element of our experiment design. However, it is
hard to evaluate degrees of knowledge and control their impact
on credibility evaluation. For this reason, we designed two
experimental conditions: full knowledge and lack of knowledge.
Lack of knowledge is particularly characteristic of online
situations, such as when a non-expert social media user is
evaluating a message concerning health or medicine. The full
knowledge scenario is more applicable to credibility evaluations
by experts.

If the message is just a simple textual statement, the second
factor that can influence credibility evaluation is the message’s
persuasiveness. This factor is even harder to understand and
control. Contemporary research on Natural Language Processing
for detecting persuasive disinformation uses complex language
models, and achieve accuracy of 70–80% (Wawer et al., 2014).
For experiment design, this is insufficient. Moreover, persuasive
disinformation can influence many different cognitive biases or
heuristics—they can appeal to positive or negative emotions, use
hyperbolization, forgery, selective presentation of information,
and many other techniques. In a single experiment, it would be
impossible to consider all of them, and focusing on a single, yet
complex technique is contrary to our research goal of achieving a
generalizable understanding of how the brain processes message
credibility evaluation.

For this reason, in our experiment we decided to use a
simple factor that differentiates between messages—the message’s
complexity. Research has found that this factor has a significant
impact on message persuasiveness (Wawer et al., 2014; Kerz
et al., 2021). We use short messages that consist of one or a
few words, and long messages that give a detailed description of
the translated kanji characters. Results of our pilot experiment
(Kwaśniewicz et al., 2020) (and of the main experiment itself—
see section 4.1) indicate that receivers are influenced by message
complexity and tend to positively evaluate message credibility
of long messages more frequently than of short messages.
Message credibility evaluation without knowledge, affected only
bymessage length, is not random, as evidenced by statistical tests.

3.2. Controlling Participant Knowledge
The goal of the experiment was to observe electrical activity and
the most active areas of the participant’s brain cortex during tasks
involving message credibility evaluation, as well as the influence
of the message design and content on this process. In order to
ensure that participants could only rely onmessage design during
the experiment, it was designed so that the participants would not
be familiar with the topic of the messages. Selected topic of the
messages concerned the meaning of Japanese kanji signs.

The experiment was designed to create a situation in which
the participants assess truthfulness or falsehood with practically
no prior knowledge of the message subject. Knowledge of
participants about the correct meaning of Kanji signs used in
experiment was controlled. The initial condition ensured that
participants had no knowledge of Kanji signs1. However, the

1All experiment participants had no knowledge of Japanese. Japanese language is

not popular in Poland, it is not taught neither in schools nor at our University.

Before the participation, students filled up the questionnaire in which they were

participants were taught the meaning of three Kanji signs. When
they were shown a Kanji sign unfamiliar to them, experimental
setting resembled the case when a person who has no knowledge
of the subject receives fake news. In order to study the effect
of knowledge, we also showed them the previously taught
Kanji signs.

Note that instead of Kanji signs, we could have used other
images (for example, USG scans of different types of tissue).
Our choice of Kanji signs was motivated by the fact that this
type of image has been extensively studied using EEG (Sakurai
et al., 2000; Ardila et al., 2015; Higashino and Wakamiya, 2021),
and we knew from literature what brain activity to expect from
participants who examined Kanji signs.

3.3. Participants and Ethical Commission’s
Permission
The participants to the experiment were right-handed male
students without any knowledge of Japanese. A total of 107
participants took part in the experiment. EEG signal from 105
participants was collected. The experiment was carried upon the
permission of the University’s Bioethical Commission (MCSU
Bioethical Commission permission 13.06.2019).

3.4. Message Credibility Evaluation Task
In the first part of the experiment, participants were requested
to learn three Japanese Kanji signs by heart: eye,mouth and
mountain. These characters were chosen because of their
simplicity and a lack of similarity with other characters, making it
simple for participants to correctly identify them. In fact, during
the entire experiment, no participant made even a single mistake
during the identification of these characters.

In the next step, participants saw a single message on the
screen that contained a translation of a Kanji sign into their
native language. They had to answer whether they considered
the translation of the Kanji sign to be true or not. Participants
had to answer in a maximum of 3.5 s from the appearance of
the translation.

The decision task was formulated in the form of a question:
“Is this Japanese translation true.” The participants could answer
the question by selecting “Yes” or “No.” The choice of the
answer “yes” was equivalent to a positive evaluation of message
credibility. An example screen is shown on Figure 1. There were
260 such questions in total.

3.5. Controlling the Language Complexity
of the Message
The proposed translations shown to the participants differed in
the length of the explanation of the Kanji sign. The meaning
of 160 translations was explained in a single word, while the
meaning of the remaining 80 translations was explained in a full
sentence in the participants’ native language. Longer explanations
included were designed to give additional detail or to logically
explain the relationship between the shape and meaning of the
Kanji sign. For examples, see Figure 2. For brevity, we refer to

asked to tick the appropriate level of knowledge of foreign languages as well as

their age and others.
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FIGURE 1 | Typical screen shown to participant during the experiment. In this

case participant was to decide whether this Kanji sign means Eye, having

perfect knowledge about it.

FIGURE 2 | Examples of screens with a long (A) and short (B) notes used in

experiment for translation of Kanji sign.

the single-word Kanji sign translations as “short note,” and to the
longer translations as “long note.”

3.6. Experimental Cases and Data
There were 240 screens shown to each participant during
the experiments.

The first group of 80 screens contained one of the three Kanji
signs that the participants have learned before, described by a
short note. Therefore, the participants had perfect knowledge of
them. This first group of 80 screens consisted of 40 screens with
correct translations and 40 screens with incorrect translations.

In the second group, there were 80 screens with Kanji signs
that were completely unknown to the participants, described by
a short note. In the third group, there were 80 screens also with
completely unknown Kanji signs, described by a long note.

It should be noted that there was no group of screens with
perfectly-known Kanji signs described by a long note. The reason
for this is that for the perfect knowledge cases, we did not wish
to confuse users with other factors that could have an impact on
their message credibility evaluations.

Such a setup allowed us to register electroencephalographic
activity in the following six cases of choice:

1. TT: true translation of a known Kanji sign was evaluated as
credible

2. FF: false translation of a known Kanji sign was evaluated as
not credible

3. ST: short translation of an unknown Kanji sign was evaluated
as credible

4. SF: short translation of an unknown Kanji sign was evaluated
as not credible

5. LT: long translation of an unknown Kanji sign was evaluated
as credible

6. LF: long translation of an unknown Kanji sign was evaluated
as not credible

In this experiment, participants were not mistaken in questions
about known Kanji signs, and no signal has been registered for
the following hypothetical cases:

• true translation of a known Kanji sign was evaluated as not
credible (TF)

• false translation of a known Kanji sign was evaluated as
credible (FT)

This means that in our experiment, we can consider the cases
when participants knew the Kanji signs as a model of message
credibility evaluation with perfect knowledge.

3.7. Hypotheses
We formulated the following hypotheses:

1. Length of the note has a significant positive influence on the
participant’s decision about message credibility.

2. Decision of participants about message credibility in all three
cases (short note with or without previous knowledge, and
long note without previous knowledge) can be predicted based
on measurements of mean electric charges in participant’s
brains.

3. Length of the note has a significant influence on brain
activity during making decisions process concerning message
credibility, and there are some significant differences in the
models predicting decisions of participants who had seen long
note compared to participants who had seen short notes.

4. Previously learned knowledge of the shown Kanji sign had a
significant influence on brain activity duringmaking decisions
process concerning message credibility and there are some
significant differences in the models predicting decisions of
participants who had previously knowledge as compared to
participants who did not have this knowledge.

5. There are some significant differences in themodels predicting
decisions of participants who frequently choose long note as
compared to models of other participants.

6. There is a satisfactory model to predict the participants’
decision based on the left Brodmann Areas 08,09 described in
the literature as related to the decision-making process.

Hypothesis 1 is not directly related to participants’ brain
activities. It is rather a test of our experiment’s internal validity.
Positive validation of hypothesis 1 would confirm that there is
a relationship between one of the main independent variables of
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our experiment and the participant’s decision. Such a relationship
would partially confirm the internal validity of our experiment.

Hypothesis 2 can be validated by constructing classifiers that
predict the (binary) decision of participants with sufficiently
high accuracy. However, the validation of hypothesis 2 requires
training of three classifiers: first based on the set of participants
who evaluated message credibility based on their knowledge
(this classifier would have two classes: TT and FF), second
classifier based on message credibility evaluations made without
knowledge (classes: ST and SF), and third one based on the set
of participants who made decision under the impact of message
design (LT and LF).

Hypothesis 3 is related to the first and second research
question. It is focused on differences in the brain processes during
credibility evaluation processes under the impact of message
design (length). To validate this hypothesis, we need to compare
two models based on situation when short note is evaluated
(classes ST and SF) and when long note is evaluated (classes LT
and LF). To enable this comparison, the classifiers trained for
validating hypothesis 2 should be interpretable (based on logistic
regression, decision trees or a similar method).

Hypothesis 4 concerns the effect of other main independent
variable: previous learned knowledge of the Kanji sign. The
experiment design allowed us to control this variable: our
participants had perfect knowledge or no knowledge. We can
therefore study the effect of knowledge on message credibility
evaluation process. A validation of this hypothesis requires a
comparison between two different classification models: one for
classes TT and FF, and the other for ST and SF.

Similarly, the validation of hypothesis 5 requires training
of two classifiers, one based on the set of participants who
tend to evaluate long messages as credible, and another one
based on the remaining set of participants. The comparison
of these two classifiers is only possible if the two of them are
explainable, which excludes the use of black-box classifiers such
as neural networks.

Hypotheses 6 can be validated by constructing classifiers that
will use signal from left Brodmann Areas 08,09 and predict the
(binary) decision of participants with sufficiently high accuracy.

3.8. EEG Measurements
Our empirical experiments involved top EEG devices. We were
equipped with a dense array amplifier recording the cortical
activity with up to 500 Hz frequency through 256 channels
HydroCel GSN 130 Geodesic Sensor Nets provided by EGI2. In
addition, in the EEG Laboratory the Geodesic Photogrammetry
System (GPS) was used.

Estimating ERP for each of the 256 electrodes is not necessary
for ERP observation, as in general standards there are just a few
electrodes (in our case 26) playing an important role in cognitive
tasks3. However, for the sLORETA source localization analyses

2Electrical Geodesic Systems, Inc., 500 East 4th Ave. Suite 200, Eugene, OR 97401,

USA.
3The electrodes are described in EGI 256-channel cap specification as best for

cognitive ERP observations, covering the scalp regularly, and numbered as follows:

E98, E99, E100, E101, E108, E109, E110, E116, E117, E118, E119, E124, E125, E126,

E127, E128, E129, E137, E138, E139, E140, E141, E149, E150, E151, E152. Those

(used for verification of the next hypotheses) the ERP for all 256
electrodes had to be in fact calculated on the fly.

Having the ERP signal estimated for each electrode out of
256, it was possible to calculate the mean electric charge (MEC)
flowing through the BA situated under these electrodes on the
brain cortex in cognitive processing time interval (CPTI) as
described in Wojcik et al. (2018) and Kawiak et al. (2020).
Moreover, it was also possible to conduct the full source
localization analysis of the signal originating from all 256
electrodes using sLORETA algorithm (GeoSourse parameters set
as follow: Dipole Set: 2 mm Atlas Man, Dense: 2,447 dipoles
Source Montages: BAs). Mean electric current flowing through
each BA and varying in time was given as an output. Having
those values calculated, it was possible to integrate that current in
time and then get the MEC. The mean electric charge calculated
for each electrode using source localization techniques could, as
we intended, indicate the hyperactivity of some BAs that are not
necessary precisely situated under the cognitive electrodes. For
all calculations of MEC, the CPTI was divided into 5 ms time
intervals. The procedure of calculating MEC has been described
detail in Wojcik et al. (2018).

4. EXPERIMENT RESULTS

4.1. Impact of Note Length on Message
Credibility Evaluations Without Prior
Knowledge
As described in section 3.3, we have collected sufficient data to
measure ERP and execute source localization from 105 male,
right-handed participants. Signal was collected from 105 people
in cases TT∪FF, 104 in cases ST∪SF, and 95 in cases LT∪LF.
One person finished experiment after the first part (TT∪FF),
while nine others did not answer the question about long
notes (LT∪LF).

The impact of note length on message credibility evaluations
can be established by comparing four experimental cases: LT,
LF, ST, and SF. In particular, hypothesis 1 states that we
expect that note length has a significant positive influence on
the participants’ decision about message credibility. Thus, we
expect that

|LT|

|LT| + |LF|
>

|ST|

|ST| + |SF|
(1)

To check whether this condition is satisfied, we only needed to
count the number of experimental results in the four cases. There
were 4,079 results when participants evaluated long translation of
an unknown Kanji sign as true (LT case) and 3,526 results when
participants evaluated long translation of an unknown Kanji sign
as false (LF case). This gives a proportion of

|LT|

|LT| + |LF|
= 53.6% (2)

positive message credibility evaluations of long notes.
Correspondingly, there were 3,455 experiment results when

electrodes are automatically chosen for observing P-300 ERP signal by NetStation

software.
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FIGURE 3 | Data processing steps in analysis of experimental results.

participants evaluated short translation of an unknown
Kanji sign as true (ST case) and 4,977 experiment
results when participants evaluated short translation of
an unknown Kanji sign as false (SF case). The resulting
proportion of positive message credibility evaluations of short
notes is

|ST|

|ST| + |SF|
= 40.9% (3)

which is a significantly lower number than for long notes. This
observation positively verifies Hypothesis 1.

We also tested whether or not the message credibility
evaluation was random in the cases without knowledge.
Participants could evaluate the long or short note as credible.
If the choice would be random, the choices of the long
or short note should form a binomial distribution with
probability 0.5. We used the binomial test and calculated
the p-value, which was <0.000001 (we observed 3,455
choices of the short note out of 7,534 message credibility
evaluations). Therefore, we concluded that we could
reject the possibility that the choices of short or long
notes in the experiment cases without knowledge were
binomially random.

4.2. Method for Selecting Independent
Model Variables
In order to verify hypotheses 2, 3, 4, 5, 6 we needed to build
machine learning models of message credibility evaluations in
our experiment.

First step toward the creation of machine classificationmodels
consisted in the selection of independent variables. While it
would be possible to use the MEC from all Brodman Areas in
all time intervals to define independent variables, such a model
would most likely be overfitted, and would also have a minimal
capacity for interpretation. Therefore, we followed a special
method for selecting a smaller subset of independent variables
of the model based on the MEC from various Brodman Areas.

All steps of the method for selecting independent variables
are shown in Figure 3. First step is state-of-the-art EEG
signal processing and the use of the sLORETA algorithm for
source location. In contrast to our earlier research (Wojcik
et al., 2018; Kwaśniewicz et al., 2020) that used the mean
electric charge (MEC) flowing through each BA, in our new
approach, the MEC signal was normalized to the range from
0 to 1 for each BA of every participant. Brain cortex is
covered with the mantle of meninges, bones of the skull,
skin and hair which results in a different SNR. Therefore,
the electrophysiological activity of particular participants may
be different in its measured power. To avoid the impact
of such individual differences, we propose to normalize the
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MEC values. The normalized (scaled) MEC will be referred to
as sMEC.

In the next step, the dataset was divided into training and
validating datasets. There were 78 participants in the training
dataset and 27 participants in the validating one for TT and FF
classification, 78 (training) and 26 (validating) for ST and SF
classification, and 74 (training) and 21 (validating) for LT and LF
classification. This split was performed to avoid any possible data
leakage during the testing of the models. The remaining steps of
independent variable selection were done on the training dataset.
This means that the model was designed and trained using only
training data, and finally tested on a separate testing dataset.

An important step within the method was the selection of
time intervals for MEC calculation. Time intervals were selected
taking into account all possible lengths and offsets from stimulus,
with a resolution of 5 ms. This means that a considered time
interval could be [0, 25 ms] from stimulus, or [0, 990 ms]
(the entire duration of the experiment)—as well as all possible
combinations of the beginning and ending time, with a resolution
of 5ms. The choice of 5ms intervals was then found to be optimal
for classifier efficiency in such a temporal resolution turned out
to be the best for achieving satisfactory classification results.
Choosing higher time resolution would result in averaging the
MEC changes and the smaller resolution would be too tiny for
observation statistically significant differences in activity.

It was assumed that the difference in decision making would
be reflected in the signal of brain activity. It was not known
how long it took the participants to make a decision or when
exactly it was made before the response pad was clicked.
The 5 ms interval turned out to be insufficient to follow the
decision. The comparison of sMEC from different time intervals
made it possible to select those intervals with the largest mean
value differences for the selected classes. The selection of the
time intervals for which the sMEC was calculated was made
only from the training data set, preventing data leakage. The
validation of the classifiers on the testing set with good accuracy
results, positively verified the correctness of selecting such
explanatory variables.

For every selected time interval, we calculated sMEC for all
Brodmann Areas, for all responses. Next, we chose up to 5
Brodmann Areas that had the largest mean absolute difference
in sMEC for positive and negative credibility evaluations (for
the two classified cases). We limited the maximum number
of explanatory variables to 5, because in our previous studies,
logistic regression models using five Brodmann’s Areas had been
as accurate as those using more areas (Kwaśniewicz et al., 2020).

For 5 Brodmann Areas, there could be 39,175,752 models (all
combinations without repetitions of 5 Brodmann Areas out of
88) for a single time period. The number of time intervals to be
checked depends on the selected length, e.g., for 25mswe had 194
intervals to be checked for timeline 0–900 ms and the smallest
possible interval as 5 ms. From the above selected lengths, we
obtained 2,261 time intervals, and 391,758,752 combinations.
This means that there were 88,576,375,272 models to check.
Since this number was too large, we limited the number of
combinations of Brodmann Areas by only considering the 5
Brodmann Areas with the largest mean absolute difference in

sMEC for a given time interval between the two classes as in the
following equation:

N = I

Q
∑

i=1

(

Q

i

)

(4)

where Q= 5 and I= 2,261.
This limiting approach left us with possible 70,091 models.

Out of these, we selected the model with the best accuracy that
was estimated with the use of the bootstrap validation method
(1,000 repetitions) on the training data. Finally, the accuracy
of the chosen model was evaluated on the validating dataset. It
should be note that the models could have up to five explanatory
variables that are sMEC values from the chosen Brodmann Areas
in the selected time interval.

4.3. Machine Classification Models of
Message Credibility Evaluations
The logistic regression classifier was implemented in R language
using the stats v3.6.3 library.

Results are shown in Table 1. The best models achieved an
accuracy of at least 0.7 on the training and validating datasets,
which confirms hypothesis 2. Overall, the best results were
achieved for the classification of the ST and SF cases (short notes
without knowledge). However, the best models for the different
classification problems differ significantly with respect to the
time interval and the Brodmann Areas selected to determine the
independent model variables.

In particular, different time intervals and different Brodmann
Areas were used in the best model for long messages, and best
model for the short ones, which supports the Hypothesis 3.
Similarly, Brodmann Areas and time intervals differ for the best
models for known and unknown messages, which confirms the
Hypothesis 4.

The validation results of individual classifiers are shown in
the form of confusion matrices, ROC curves and Area Under the
Curve on Figures 4–6.

All areas used in the classifiers are shown in Figure 7. In
the case when participants evaluated message credibility without
prior knowledge, the best model used a signal in the range of
105-330 ms. The model used Brodmann Areas such as:

• BA.46 which is the area in which Fleck et al. (2006) observed
increased activity in decision making under uncertainty

• BA.36—activity of this area was observed when listening to a
foreign language (Perani et al., 1996)

• BA.02, BA.04—motor sensor areas, changes in these areas have
been observed associated with error processing in the context
of visual feedback (Wilson et al., 2019)

• Another area is BA.33—a part of Anterior cingulate cortex.
Basic theory states that the Anterior cingulate cortex is
involved in error detection (Bush et al., 2000). Evidence for this
conclusion has been derived from studies involving a Stroop
task (Posner and DiGirolamo, 1998).

When the participants had knowledge about the meaning of
Japanese characters, the model used the signal from a later time
interval: 330–530 ms and Brodmann Areas such as:
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TABLE 1 | Best models’ scores for each case used for verification of hypothesis 2.

Message Intervals Brodmann Bootstrap Validation Validation Validation Validation

case (ms) areas accuracy accuracy precision recall f1

Short note 105–330 R.BA.46, R.BA.0402 0.70 0.79 0.78 0.81 0.79

UNKNOWN R.BA.36,L.BA.33

(ST and SF) L.BA.

Short note 330–530 R.BA.39, L.BA.370.71 0.71 0.70 0.69 0.74 0.71

KNOWN L.BA.25,R.BA.31

(TT and FF)

Long note 830–855 L.BA.31, L.BA.44 0.70 0.74 0.67 0.78 0.72

UNKNOWN R.Hippocampus

(LT and LF) L.BA.09, R.BA.08

FIGURE 4 | Confusion matrix and ROC curve for short unknown message’s model (ST and SF).

FIGURE 5 | Confusion matrix and ROC curve for short known message’s model (TT and FF).
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FIGURE 6 | Confusion matrix and ROC curve for long unknown message’s model (LT and LF).

FIGURE 7 | Brodmann areas (left and right view) and hippocampus (coronal view) used in the best classifiers. The colors: green, yellow, orange, and red correspond

to the classifiers in the following order: TT and FF, LT and LF (entire population), LT and LF (long note prefered), ST and SF.

• BA37—a common node of two distinct networks-visual

recognition (perception) and semantic language functions

(Ardila et al., 2015)
• BA.39—involved in language reception and understanding

(Ardila et al., 2016)
• BA.31—studied in case of decision-making in perceptual

decisions (Heekeren et al., 2004)

• BA.25—considered a governor for a vast network involving
areas like hypothalamus, brain stem, amygdala, and
hippocampus (Ressler and Mayberg, 2007)

• BA.44—involved in processing of different types of linguistic
information (Heim et al., 2009).

Also, areas like BA.08, BA.09, BA.31,
Hippocampus have been linked to decision making
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TABLE 2 | Models for classification of message credibility evaluations of long notes without prior knowledge (LT and LF cases) for participants who preferred long notes

and for the entire population.

Case Intervals Brodmann Bootstrap Validation Val. Val. Val.

and group (ms) areas accuracy accuracy precision recall f1

LT and LF 800–875 L.BA.40, R.BA.04 0.71 0.73 0.7 0.7 0.7

long note R.BA.09

preferred

LT and LF 830–855 L.BA.31, L.BA.44 0.70 0.74 0.67 0.78 0.72

entire R.Hippocampus

population L.BA.09, R.BA.08

Boostrap and validation accuracies are presented in columns 4 and 5.

TABLE 3 | Coefficients in logistic regression for best models.

ST and SF LT and LF TT and FF

Variables Coefficients Variables Coefficients Variables Coefficients

Intercept −3.23286 Intercept 0.4133 Intercept −2.82279

R.BA.46 0.08884 L.BA.31 0.4360 R.BA.39 0.09693

R.BA.04 0.05689 L.BA.44 −0.3214 L.BA.37 0.03943

R.BA.36 0.06321 R.Hippocampus −0.2790 L.BA.25 0.06532

L.BA.33 0.02682 L.BA.09 0.4657 R.BA.31 −0.02018

L.BA.02 0.07420 R.BA.08 −0.4305

(Maddock et al., 2003; Heekeren et al., 2004; Deppe et al.,
2005; Volz et al., 2005; O’Neil et al., 2015).

Areas such as BA.08, BA.09 have been proposed to participate
in a general mechanism for perceptual decision-making in the
human brain (Heekeren et al., 2004).

4.3.1. Cognitive Bias for Long Notes
In our experiment, message credibility evaluation could be
affected by an irrelevant factor: the length of the message.
Hypothesis 5 concerns the existence of differences in the models
obtained for participants who frequently evaluated long note
as credible, as compared to other participants. To verify the
hypothesis, we needed to identify participants who evaluated long
notes as credible more frequently than short notes. In order to
do this, we calculated for each participant how many times that
participant evaluated long notes as credible (LC) and how many
times the same participant evaluated short notes as credible in
the absence of prior knowledge (SC). Next, for each participant
we calculated the ratio LC/SC. This ratio indicates how much
more frequently the participant evaluated long notes as credible,
as compared to short notes.

Forty-seven participants had a LC/SC ratio above the mean
value of all participants. We have followed the same procedures
as described above to build a model that classified the cases LT
and LF for participants in this group.

The best model for the classification of LT and LF for
participants who prefer long notes is different from the model for
all participants, as shown in Table 2 and its best coefficients in
Table 3. The model for participants who prefer long notes does

not use the areas L.BA.31, L.BA.44, R.Hippocampus, R.BA.08.
Both models also use other language networks.

BA40 is part of a language reception/understanding system
and it is involved in language associations (associating words
with other information) (Ardila et al., 2016). BA44—language
production system. BA 44 supports modality-independent lexical
decision making (Heim et al., 2007). Hippocampus is associated
with declarative memory, including the memory of facts (Squire,
1992). Overall findings showed that Hippocampus may be part
of a larger cortical and subcortical network seen to be important
in decision making in uncertain conditions (O’Neil et al., 2015),
some studies show that activity in regions BA 9, BA 31, increases
with increasing trust as well (Emonds et al., 2014). Research also
indicates activation of BA 8 reflects that we are uncertain (Volz
et al., 2005).

These results may indicate smaller uncertainty and distrust
associated with a negative message credibility evaluation of a
long note by participants who prefer long notes. Further work
should consist in creating amodel using the EEG signal to classify
the confidence level of the participants who evaluate long notes
as credible.

Changes in areas BA.9, BA.25, BA.31, BA.44 (Altshuler et al.,
2008; Klempan et al., 2009; Goodman et al., 2011; Alexander
et al., 2019), may also be related to mental illnesses such as
depression. Kim et al. (2012) indicates that low interpersonal
trust appears to be an independent risk factor for new-onset and
long-term depression.

4.4. Discussion and Limitations
For each case—short known message, short unknown message,
and long unknown message, we received different best
models that used sMEC from differing time intervals and
Brodmann Areas.

The Brodmann Areas, used by our models, confirm previous
studies in which the activity of these areas was observed in
decision-making processes under uncertainty, or it was related
to language processing.

Our method of model design relies on choosing time intervals
that had the largest differences in brain activity for the classified
cases. Optimal time intervals chosen for classifying pairs of
cases: ST and SF, TT and TF, LT and LF were: 105–330, 330–
530, and 830–855 ms, respectively. Significant differences in
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these time intervals correspond to the nature of the task for
each pair of cases. First pair, ST and SF, is message credibility
evaluation of short notes without prior knowledge. In this case,
models used the earliest time interval, which indicates that
brain activity crucial for making decisions occurred quite quickly
after the stimulus. On the other hand, second pair of cases,
TT and TF, involved message credibility evaluation with prior
knowledge. In this case participants needed more time, likely for
comparing messages to memorized facts and making decisions
based on comparison results. Last pair of cases based on message
credibility evaluation of long notes without prior knowledge. Late
time interval wasmost likely caused by the subjects having to read
a longer text.

Using the same time intervals as in our models for the same
cases, we created models consisting of the signal from the left
BA08 and BA09 given as areas involved in the decision making
process. The results we obtained were less effective than the
results of the models presented in Table 1: short known: accuracy
= 0.56, precision= 0.56, recall= 0.52, f1= 0.54 short unknown:
accuracy = 0.58,precision = 0.57, recall = 0.62, f1 = 0.59 long
unknown: accuracy = 0.64, precision = 0.59, recall = 0.55, f1 =
0.57. The models obtained from our research have a much higher
ability to predict message credibility evaluations, which seems to
be a specific brain process that cannot be explained as general
decision making. This means that Hypothesis 6 is not supported.

We had designed the experiment of message credibility
evaluation with consideration for internal validity. The task
of Japanese language (Kanji signs) translation was chosen in
order to exclude confounding variables, such as participant
prior knowledge, experience or opinions on the subject of the
evaluatedmessage.We were also able to verify internal validity by
evaluating the impact of one of the main independent variables
(length of the note) on the participant’s decisions (as stated by
hypothesis 1). The experiment also had low attrition rate, as over
90% of participants completed the experiment.

The comparison of the models that predicted decisions in
the cases with full knowledge (TT and FF) to the models that
predicted cases with no knowledge, but under the influence of
message design, shows great differences in the Brodmann areas
selected by the machine learning algorithm as most significant
for the prediction. This means that our results would allow to
determine whether a person that evaluates message credibility
bases this evaluation on what he knows (or believes that he
knows). Note that in our experiment, participants accepted our
translation of the three Kanji signs used in the full knowledge
cases without verifying them).

In order to evaluate the external validity of our experiment, we
can compare the results to results of a pilot experiment (Kawiak
et al., 2020). The pilot experiment involved a different and smaller
set of participants (57). It had a similar setting, but the long note
and the short note were presented on a single screen. Hypotheses
in the pilot experiment were similar to the ones described in this
article, and their verification results are the same.

The Brodmann Areas used in the best classifiers for both
experiments were different, because only one large time interval
was taken into account in the pilot study, while in the main
experiment we tested different smaller time intervals.

In the pilot study, short messages and long messages were
displayed on the screen at the same time, making it impossible
to determine whether the participant’s response was connected
to a positive message credibility evaluation of the first note
or a negative evaluation of the second note (and vice versa).
We have redesigned the main experiment to overcome this
shortcoming by displaying short and long messages separately.
This difference makes it difficult to directly compare models and
results obtained in the pilot study and the main experiment.
The results reported here regarding differences in brain activity
during message credibility evaluation with and without prior
knowledge are also missing in the pilot study (Kawiak et al.,
2020).

Nevertheless, in the pilot study message credibility evaluation
models used areas related to language processing and word
comprehension such as BA38, BA39, BA40. In both experiments,
there were classifiers that used areas like BA39—language
reception and understanding and BA46—decision making
under uncertainty.

Overall, we consider that the preliminary results in the pilot
experiment confirmed the external validity of our experiment,
because the results of hypothesis verification based on both
experiments were the same.

Our experiment had several limitations. First, only right-
handed, young men who were university students of a technical
subject were included in our sample.

Second, our experiment controlled and limited the factors that
could influence credibility evaluation. Only message credibility
was available to experiment participants, who did not know the
source of the message. While this setting resembled a situation in
which aWeb user evaluates credibility of content by an unknown
author, the experimental setting was still very limiting. Other
factors, such as the message look, persuasiveness, or emotional
content, could influence message credibility. A limitation of the
new method for selecting independent variables was the use of
the same time interval for all Brodmann Areas for the sMEC
calculations. The next step should be to search for different time
intervals for different Brodmann Areas in a single model.

5. CONCLUSION AND FUTURE WORK

Our results indicate that by using source localization algorithm
(sLORETA) and an easy-to-interpret logistic regression
algorithm, we can demonstrate and make use of the difference
in brain activity during the decision making process to classify
message credibility evaluations. This is an important first step
toward a deeper understanding of human credibility evaluations.
For instance, consider the credibility evaluation of debunking
information designed to counteract fake news. The findings from
this study can be used to guide the design of future experiments
with a panel of judges who would evaluate the credibility of fake
news or debunking information. Our results allow to determine,
by observing the brain activity of such a judge, whether he made
a credibility evaluation based on his knowledge (or what he
believes to know), or not.

The next step is to investigate other cognitive biases that can
affect message credibility evaluations, and to learn how to detect
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them using brain activity measurements. Our results show that
this is a promising research direction.

In future work, we will also study the activity of parts of
the brain in different time intervals and different frequency
bands for each part of the brain, and to build even
better classifiers of message credibility evaluation using more
advanced models.

The study by Douglas et al. (2013) proposed models using
various spectral bands of the collected signal, characterized by
good accuracy. These models were not based on source location
but on wavelets of EEG signals. In further work, we can also use
different bands to increase the number of explanatory variables
in the model.

The results of machine learning algorithms other than logistic
regression may turn out to be better than the results of
models presented in this article, at the expense of reduced
interpretability. This is another direction of our future research.
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(Kwaśniewicz et al., 2020). The experiment presented herein
is different than presented during the conference and research
conducted on different cohort. Finally, results presented herein
are then different from the results presented during the
conference as they refer to new experiment.

REFERENCES

Alexander, L., Clarke, H. F., and Roberts, A. C. (2019). A focus on the functions of

area 25. Brain Sci. 9:129. doi: 10.3390/brainsci9060129

Altshuler, L., Bookheimer, S., Townsend, J., Proenza, M. A., Sabb, F., Mintz,

J., et al. (2008). Regional brain changes in bipolar i depression: a

functional magnetic resonance imaging study. Bipolar Disord. 10, 708–717.

doi: 10.1111/j.1399-5618.2008.00617.x

Appelman, A., and Sundar, S. S. (2016). Measuring message credibility:

construction and validation of an exclusive scale. J. Mass Comm. Quart. 93,

59–79. doi: 10.1177/1077699015606057

Ardila, A., Bernal, B., and Rosselli, M. (2015). Language and visual perception

associations: meta-analytic connectivity modeling of brodmann area 37. Behav.

Neurol. 2015:565871. doi: 10.1155/2015/565871

Ardila, A., Bernal, B., and Rosselli, M. (2016). How localized are language brain

areas? A review of brodmann areas involvement in oral language. Arch. Clin.

Neuropsychol. 31, 112–122. doi: 10.1093/arclin/acv081

Borah, P., and Xiao, X. (2018). The importance of “likes”: The interplay of

message framing, source, and social endorsement on credibility perceptions

of health information on Facebook. J. Health Commun. 23, 399–411.

doi: 10.1080/10810730.2018.1455770

Bush, G., Luu, P., and Posner, M. I. (2000). Cognitive and emotional

influences in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222.

doi: 10.1016/S1364-6613(00)01483-2

Casado-Aranda, L.-A., Dimoka, A., and Sánchez-Fernández, J. (2019). Consumer

processing of online trust signals: a neuroimaging study. J. Interact. Market. 47,

159–180. doi: 10.1016/j.intmar.2019.02.006

Deitz, G. D., Royne, M. B., Peasley, M. C., and Coleman, J. T. (2016).

EEG-based measures versus panel ratings: predicting social media-based

behavioral response to super bowl ads. J. Advert. Res. 56, 217–227.

doi: 10.2501/JAR-2016-030

Deppe, M., Schwindt, W., Kugel, H., Plassmann, H., and Kenning, P. (2005).

Nonlinear responses within the medial prefrontal cortex reveal when specific

implicit information influences economic decision making. J. Neuroimag. 15,

171–182. doi: 10.1111/j.1552-6569.2005.tb00303.x

Douglas, P., Lau, E., Anderson, A., Kerr, W., Head, A., Wollner, M. A., et al.

(2013). Single trial decoding of belief decision making from EEG and fMRI

data using independent components features. Front. Hum. Neurosci. 7:392.

doi: 10.3389/fnhum.2013.00392

Emonds, G., Declerck, C. H., Boone, C., Seurinck, R., and Achten, R. (2014).

Establishing cooperation in a mixed-motive social dilemma. An fMRI study

investigating the role of social value orientation and dispositional trust. Soc.

Neurosci. 9, 10–22. doi: 10.1080/17470919.2013.858080

Filkowski, M. M., Anderson, I. W., and Haas, B. W. (2016). Trying to trust:

brain activity during interpersonal social attitude change. Cogn. Affect. Behav.

Neurosci. 16, 325–338. doi: 10.3758/s13415-015-0393-0

Fleck, M. S., Daselaar, S. M., Dobbins, I. G., and Cabeza, R. (2006). Role

of prefrontal and anterior cingulate regions in decision-making processes

shared by memory and nonmemory tasks. Cereb. Cortex 16, 1623–1630.

doi: 10.1093/cercor/bhj097

Forgas, J. P., and Baumeister, R. (2019). The Social Psychology of Gullibility:

Conspiracy Theories, Fake News and Irrational Beliefs. New York, NY:

Routledge. doi: 10.4324/9780429203787

Goodman, M., Hazlett, E. A., Avedon, J. B., Siever, D. R., Chu, K.-W., and New, A.

S. (2011). Anterior cingulate volume reduction in adolescents with borderline

personality disorder and co-morbid major depression. J. Psychiatr. Res. 45,

803–807. doi: 10.1016/j.jpsychires.2010.11.011

Guixeres, J., Bigné, E., Ausín Azofra, J. M., Alcañiz Raya, M., Colomer Granero,

A., Fuentes Hurtado, F., et al. (2017). Consumer neuroscience-based metrics

predict recall, liking and viewing rates in online advertising. Front. Psychol.

8:1808. doi: 10.3389/fpsyg.2017.01808

Harrison, G. P. (2017). Think Before You Like: Social Media’s Effect on the Brain and

the Tools You Need to Navigate Your Newsfeed. Buffalo: Prometheus Books.

Heekeren, H. R., Marrett, S., Bandettini, P. A., and Ungerleider, L. G. (2004). A

general mechanism for perceptual decision-making in the human brain.Nature

431, 859–862. doi: 10.1038/nature02966

Heekeren, H. R., Wartenburger, I., Schmidt, H., Schwintowski, H.-P., and

Villringer, A. (2003). An fMRI study of simple ethical decision-making.

Neuroreport 14, 1215–1219. doi: 10.1097/00001756-200307010-00005

Heim, S., Eickhoff, S. B., Ischebeck, A. K., Friederici, A. D., Stephan, K.

E., and Amunts, K. (2009). Effective connectivity of the left BA 44, BA

45, and inferior temporal gyrus during lexical and phonological decisions

identified with DCM. Hum. Brain Mapp. 30, 392–402. doi: 10.1002/hbm.

20512

Frontiers in Human Neuroscience | www.frontiersin.org 13 September 2021 | Volume 15 | Article 65924382

https://doi.org/10.3390/brainsci9060129
https://doi.org/10.1111/j.1399-5618.2008.00617.x
https://doi.org/10.1177/1077699015606057
https://doi.org/10.1155/2015/565871
https://doi.org/10.1093/arclin/acv081
https://doi.org/10.1080/10810730.2018.1455770
https://doi.org/10.1016/S1364-6613(00)01483-2
https://doi.org/10.1016/j.intmar.2019.02.006
https://doi.org/10.2501/JAR-2016-030
https://doi.org/10.1111/j.1552-6569.2005.tb00303.x
https://doi.org/10.3389/fnhum.2013.00392
https://doi.org/10.1080/17470919.2013.858080
https://doi.org/10.3758/s13415-015-0393-0
https://doi.org/10.1093/cercor/bhj097
https://doi.org/10.4324/9780429203787
https://doi.org/10.1016/j.jpsychires.2010.11.011
https://doi.org/10.3389/fpsyg.2017.01808
https://doi.org/10.1038/nature02966
https://doi.org/10.1097/00001756-200307010-00005
https://doi.org/10.1002/hbm.20512
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Kwasniewicz et al. What to Believe?

Heim, S., Eickhoff, S. B., Ischebeck, A. K., Supp, G., and Amunts, K. (2007).

Modality-independent involvement of the left BA 44 during lexical decision

making. Brain Struct. Funct. 212, 95–106. doi: 10.1007/s00429-007-0140-6

Higashino, T., andWakamiya, N. (2021). Verification and proposal of information

processing model using eeg-based brain activity monitoring. Int. J. Psychol.

Behav. Sci. 15, 10–17. Available online at: https://publications.waset.org/pdf/

10011731

Hovland, C. I., and Weiss, W. (1951). The influence of source credibility

on communication effectiveness. Publ. Opin. Quart. 15, 635–650.

doi: 10.1086/266350

Kahneman, D. (2011). Thinking, Fast and Slow. Macmillan.

Kakol, M., Jankowski-Lorek, M., Abramczuk, K., Wierzbicki, A., and Catasta, M.

(2013). “On the subjectivity and bias of web content credibility evaluations,”

in Proceedings of the 22nd International Conference on World Wide Web

(New York, NY: ACM), 1131–1136. doi: 10.1145/2487788.2488133

Kakol, M., Nielek, R., and Wierzbicki, A. (2017). Understanding and predicting

web content credibility using the content credibility corpus. Inform. Process.

Manage. 53, 1043–1061. doi: 10.1016/j.ipm.2017.04.003

Kawiak, A., Wójcik, G. M., Kwasniewicz, L., Schneider, P., and Wierzbicki,

A. (2020). “Look who’s talking: modeling decision making based on source

credibility,” in International Conference on Computational Science (Cham:

Springer), 327–341. doi: 10.1007/978-3-030-50371-0_24

Kerz, E., Qiao, Y., and Wiechmann, D. (2021). “Language that captivates the

audience: predicting affective ratings of ted talks in a multi-label classification

task,” in Proceedings of the Eleventh Workshop on Computational Approaches to

Subjectivity, Sentiment and Social Media Analysis, 13–24.

Kim, S.-S., Chung, Y., Perry, M. J., Kawachi, I., and Subramanian,

S. (2012). Association between interpersonal trust, reciprocity, and

depression in South Korea: a prospective analysis. PLoS ONE 7:e30602.

doi: 10.1371/journal.pone.0030602

Klempan, T. A., Sequeira, A., Canetti, L., Lalovic, A., Ernst, C., Turecki, G., et al.

(2009). Altered expression of genes involved in ATP biosynthesis and gabaergic

neurotransmission in the ventral prefrontal cortex of suicides with and without

major depression.Mol. Psychiatry 14, 175–189. doi: 10.1038/sj.mp.4002110

Krueger, F., McCabe, K., Moll, J., Kriegeskorte, N., Zahn, R., Strenziok, M.,

et al. (2007). Neural correlates of trust. Proc. Natl. Acad. Sci. U.S.A. 104,

20084–20089. doi: 10.1073/pnas.0710103104
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Visual working memory (VWM) is the ability to actively maintain visual information over
short periods of time and is strongly related to global fluid intelligence and overall
cognitive ability. In our study, we used two indices of visual working memory capacity:
the behavioral estimate of capacity (K) and contralateral delay activity (CDA) in order
to check whether training in a Real-Time Strategy (RTS) video game StarCraft II can
influence the VWM capacity measured by the change detection task. We also asked a
question whether individual differences in behavioral and psychophysiological indices
of VWM can predict the effectiveness of video game training. Sixty-two participants
(non-players) were recruited to the experiment. Participants were randomly assigned
to either experimental (Variable environment), active control (Fixed environment), and
passive control groups. Experimental and active control groups differed in the type of
training received. Training consisted of 30 h of playing the StarCraft II game. Participants
took part in two EEG sessions (pre- and post-training) during which they performed the
VWM task. Our results showed that working memory capacity (K calculated according
to Pashler’s formula) increases after training in both experimental groups, but not in a
control group. We have also found a correlation between average visual working memory
capacity (calculated as K) and mean CDA amplitude no matter which group we are
looking at. And, last but not least, we have found that we can predict the amount of
improvement in the RTS video game by looking at the psychophysiological indices (CDA
amplitude) recorded at baseline (before training), but only in the experimental group. We
think that the strength of the psychophysiological indicator of VWM capacity might be a
marker of the future success in video game acquisition.

Keywords: action video games, visual working memory, trainings, ERPs, EEG

INTRODUCTION

Visual working memory (VWM) allows us to maintain visual information over short periods
of time for manipulation or later access (Baddeley, 2003; D’Esposito and Postle, 2015). VWM
is an important cognitive function in our daily life and is essential for many higher-level
cognitive processes, like problem-solving, learning by observation, or reading (Fukuda et al., 2010;
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Shipstead et al., 2012). The capacity of VWM relates to
the amount of visual information, which can be maintained
in memory simultaneously and accessible if needed (Luck
and Vogel, 2013). Previous research (including neuroimaging
studies) has shown that VWM capacity is highly limited
(Luck and Vogel, 1997; Todd and Marois, 2004), differs across
individuals (Rouder et al., 2008), and predicts fluid intelligence
in adults (Fukuda et al., 2010; Unsworth et al., 2014). Studies on
VWM have relied on a well-established paradigm that measures
VWM capacity—the change detection task (Luck and Vogel,
1997, 2013), where participant maintains a visual image in
memory over a short delay interval and answers if any item (or
items) in a later probe image have changed compared to the
sample image. The number of items presented (memory load)
is manipulated, and performance (working memory capacity,
an estimate of the number of items stored in WM measured
by K calculated according to Pashler’s formula in our study)
is compared between trials of different loads. Change detection
accuracy mirrors a participant’s limitation of VWM capacity
and is usually limited to 3–4 items (Vogel and Awh, 2008). It
is suggested that the limitation of VWM capacity is associated
with visual search and multiple-object tracking performance
(Drew et al., 2011; Luria and Vogel, 2011). Previous research
has shown that participants with higher VWM capacity are
more effective in ignoring unnecessary items during task
performance (Vogel et al., 2005). In neurophysiological studies
of lateralized VWM, stimuli are presented peripherally, and
the subject’s task is to attend and maintain in VWM only the
items presented in a cued visual hemifield. This generates a
lateralized representation, which is larger contralateral compared
to ipsilateral of the memorized hemifield, in posterior cortical
areas over the retention period that results in a contralateral
delay activity (CDA). CDA is a negative slow-wave evoked
component that amplitude relates to the number of objects
maintained in VWM, so it could be interpreted as a neural
index of WM load (Vogel and Machizawa, 2004; Luria et al.,
2016). Previous research has shown that CDA amplitude is
correlated with memory capacity (Vogel and Machizawa, 2004;
Ikkai et al., 2010) and can be modified as a result of WM
training (Li et al., 2017). In this study, we used video games as a
specific kind of cognitive training having the potential for VWM
improvement.

The growing body of research suggests that playing video
games enhances the performance on tasks measuring visual
and attentional abilities (Green and Bavelier, 2007; Jakubowska
et al., 2021). Potential cognitive benefits are possible even
with relatively short periods of engagement in playing activity
(Green and Bavelier, 2007; Wilms et al., 2013), which makes
video games an attractive training option for restoring cognitive
functions following brain impairments and in preventive
cognitive interventions (Achtman et al., 2008). As there are
different kinds of video games, the particular category called
action video gaming (AVG) is thought to have a substantial
impact on human cognitive functioning. AVG requires players
to scan many different complex visual stimuli at the same time
and react to multiple stimuli or situations under time pressure
(Green and Bavelier, 2003, 2012). AVG is cognitively demanding

because of engaging many cognitive functions like working
memory, visual attention, and inhibitory control (Green and
Bavelier, 2003, 2012). Previous research has shown that long
experience in AVG was associated with VWM improvement
measured with a change detection task (Boot et al., 2008;
Blacker et al., 2014; Li et al., 2015) as well as other tasks
(Colzato et al., 2010; Sungur and Boduroglu, 2012; Waris et al.,
2019). These results suggest that AVG training may lead to
the enhancement of VWM. At the same time, VWM is a key
cognitive function in effective video gaming, because it allows
players to keep task-relevant visual stimuli over short periods
of time for manipulation or later access (Logie, 2011; Blacker
et al., 2014). Noteworthy, some studies suggest that cognitive
enhancement connected to video game playing does not show far
transfer’s characteristics (like general improvement in cognitive
functioning or learning), but seems to be limited to functions
being involved in a given type of video game (Oei and Patterson,
2014).

It is important to note that there are studies that have not
found a cognitive improvement after gaming training (Seçer
and Satyen, 2014; Dominiak and Wiemeyer, 2016). The possible
explanation of these divergent results could be connected to
different kinds of games being considered as AVG is actually a
broad category with wide inclusion criteria. The study conducted
by Dobrowolski et al. (2015) has shown that the achievement of
expertise in two different game genres, while both included in
AVG category called real-time strategy (RTS) and first-person
shooter (FPS), impacts differently cognitive functioning of
players. The higher performance in task engaging visual attention
and task-switching ability were observed only in RTS (but not
in FPS) players as compared to non-players (Dobrowolski et al.,
2015). Similarly, RTS experts seem to have higher accuracy and
larger VWM capacity than non-experts (Yao et al., 2020). The
possible interpretation of these results is that video gaming-
related cognitive benefits may depend on the type of actions
performed within the game (Dobrowolski et al., 2015). As RTS
gaming requires extensive interaction with the complex visual
environments, we assume it is highly possible to improve VWM
through training with this type of video game. While previous
investigations indicate that AVG experts have larger visual
attentional capacities, greater capacity of working memory, and
higher visual acuity as compared to non-gamers (Green and
Bavelier, 2003, 2012; Oei and Patterson, 2013), and that specific
AVG can positively affect the level of a given function (Bejjanki
et al., 2014; Choi et al., 2020), the impact of the initial level
of cognitive functioning on player performance remains largely
unexplored.

That is why we decided to use the (RTS) video game StarCraft
II with two different types of environments requiring diverse
cognitive workloads. Our training types were based on either
variable or fixed game environments. The opponent’s faction and
strategy varied in the variable environment group only (and it
was connected to the higher level of difficulty). Our participants
were randomly assigned to either a Variable environment, a
Fixed environment or the control group. Then it’s important
to mention that differences between variable and fixed training
models were investigated in previous studies, which proved
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that variable training enhances learning rates and retention,
and induce transfer to untrained tasks more, effectively than
fixed training (Kramer et al., 1999; Bherer et al., 2008; Erickson
et al., 2010). Moreover, training based on a variable environment
seems to have more in common—than training with a fixed
environment—with people’s gaming experiences in everyday life.

The objective of the current study was to investigate the
impact of RTS video game StarCraft II training on VWM
capacity by comparing training groups’ and control group’s
behavioral (k estimate of WM capacity) and ERP (contralateral
delay activity) data in a change detection task. Furthermore we
were also interested in whether initial, individual differences in
behavioral and psychophysiological indices of VWM can predict
the effectiveness of video game training, which could extend
our knowledge of the relationship between VWM and in-game
performance.

MATERIALS AND METHODS

Participants
A total of 104 participants were recruited online via a covert
questionnaire (Sobczyk et al., 2015). As a result of: (1) resignation
(n = 13); (2) wrong hardware configuration (n = 7); (3) failure
to meet all training objectives (n = 6); (4) bad quality of data
(n = 7); and (5) lost data (n = 9) only 62 of participants were
included in analyses reported here. Participants were randomly
assigned to two training groups: with Variable Environment
training (VEG; n = 22; 12 males; Mage = 25.05, SDage = 2.97),
with Fixed Environment training model (FEG; n = 21; 8 males;
Mage = 25.33, SDage = 3.01), and to two control groups: passive
control (PC) group (n = 8; 5 males, Mage = 24.63, SDage = 2.97),
that did not receive any training and active control (AC) group
(n = 11; males = 8; Mage = 25.55, SDage = 4.41). The participants
played Heart Stone for 30 h (8 h in the laboratory and 22 h
at home). As the size of the control groups was inappropriate
to analyze them individually, and neither 4 × 2 × 2 repeated
measures ANOVAs with Load and Session as the within-
subjects factors and Group as the between subject factor, nor
One-way ANOVAs with Group as a factor showed any between
group differences on behavioral or neurophysiological levels,
we decided to merge the groups into one Control group (CG;
n = 19; 13 males; Mage = 25.16, SDage = 3.80). Then it is
important to mention that dropout, which largely contributed
to the reduction of the size of the control groups, is a common
problem in longitudinal training studies (e.g., Moore et al.,
2017). Furthermore, our study employed restrictive recruitment
criteria, especially in terms of experience in video game playing,
which finally resulted in an inability to re-complete the control
groups. All participants reported normal or corrected-to-normal
visual acuity, normal color vision and normal hearing. They
were right-handed and reported not being on any medications,
no history of neurological or psychiatric disorders and injuries,
including no previous head trauma, no previous head or neck
surgery, and no brain tumors. All participants declared less than
5 h of video games played per week over the past 6 months and
no experience with Real Time Strategy or First Person Shooter

games. Informed consent was obtained from each participant
before the start of the experimental procedure.

Procedure
The study design and the informed consent form were approved
by the Ethics Committee of the SWPS University of Social
Sciences and Humanities. The research consisted of three
steps: (1) Pre-training measurement of cognitive function
via change detection task (Visual Working Memory task;
VWM); (2) Training sessions applied to active groups; and
(3) Post-training measurement (Figure 1). Experimenters were
present during all meetings. Measurement and training sessions
took place in the laboratories of the SWPS University in Warsaw.

Experimental Procedure
Prior to the beginning of the experiment, participants were
verbally instructed as to what they would be experiencing and
were shown what the procedure of EEG electrode mounting
entails. Then, after signing a consent form, participants were
brought into a laboratory setting and seated in front of a 24 inch
BenQ XL2411Z computer monitor (1,920 × 1,080 resolution,
100 Hz refresh rate) at a distance of 60 cm. Electrodes were
then mounted and participants were briefly shown the EEG
signal and explained how it is affected by eye blinks and
muscular movements, which was a part of the procedure
aimed at minimizing the number of artifacts in the signal.
The procedure was then started, and upon its completion
subjects were provided with a place to wash their hair. The
entire procedure lasted no more than 2 h and was identical
during both measurements. All subjects, who fulfilled training
requirements and participated in both measurement sessions,
were compensated for their participation with approx. 184 USD
after post-training measurement.

Experimental Task—Change Detection
Task Paradigm
The experimental task was based on the procedure outlined
by Vogel and Machizawa (2004). An initial fixation cross was
followed by an arrow, pointing which side of the screen needs
to be attended (whether right or left hemifield), after which a
pattern (memory array) of two to five colored squares appeared
in each hemifield of the screen. The same array appeared again
(test array) after a brief retention interval, with a 50% chance
that one of the squares in the cued hemifield changed its
color. Participants were tasked with detecting changes between
the memory and test array by responding with one of the
keys (same or different). Square colors were chosen at random
from seven possibilities (red, blue, violet, green, yellow, black,
white), with the constraint that one color appeared no more
than twice in a given test array. Squares (0.65 × 0.65 visual
degrees) were randomly positioned at the start of each trial in
two 4 deg. × 7.4 deg. hemifields (centered 3 deg. to the left
and right of a central fixation, light gray background), with a
minimum 2 deg. (center to center) distance between squares. All
participants completed 576 trials (144 per load) of the task along
with 16 initial practice trials.
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FIGURE 1 | (A) Study design: two measurement sessions were carried out during the study (pre-training and post-training). Training included 30 h of playing in the
real-time strategy game (StarCraft II), spread over 4 weeks. Training varied depending on the group. The Control group (CG) merges participants from Passive
Control, who participated only in the measurement sessions and Active Control, who additionally played Heart Stone for 30 h (8 h in the laboratory and 22 h at
home). (B) The visual-working memory task. Participants directed their attention to a cued hemifield (left of right, guided by an arrow at the beginning of each trial)
and compared two arrays of colored squares (memory and test arrays) separated by a retention interval. The test array was either identical to the memory array
(no-change condition) or differed by one color (change condition). Participants answered whether the two arrays were identical or not. (C) While all of the participants
from training groups played as a Terran faction during training, the opponent’s race and strategy varied according to the training group type. Participants from the
Variable Environment Group (VEG) could match three factions, from each could use one of five strategies. The faction and the strategy were randomly selected
before each match for the Variable group. In the case of a Fixed Environment Group (FEG), participants always played against the Terran faction, which used an
economic strategy.

Training
StarCraft II Training
The StarCraft II (SC2) training consisted of 30 h of training
time over a 4-week period. Training consisted of playing
matches (approx. 20 min each) against SC2’s artificial intelligence
(AI), and all matches were played at our laboratory. Training
objectives required the participants to train a minimum of 10 h
per week, but no more than 5 h per day. This was done to
avoid excessive skew in the distribution of training hours across
the training period. There were also two possible training types:
Fixed and Variable. The exact differences between the types of
training are described below and were presented in Figure 1.

Participants had to access an online platform before each
match in order to receive configuration parameters; the
parameters consisted of the difficulty setting, the opponent’s
faction, the opponent’s strategy, and the game map. Participants
from both groups played all of their matches as a Terran
faction. While the map was randomly selected from 14 maps
before each match in both—Fixed and Variable—training

versions, the opponent’s faction, and strategy only varied in
the Variable group. The Fixed group always faced the same
faction (Terran), and their opponent always applied a more
passive ‘‘Economic Focus’’ strategy. The Variable group could
face any of the three factions (each with their own unique
units and abilities) and also any of five opponent strategies:
Full Rush, Timing Attack, Aggressive Push, Economic Focus,
Straight to Air. The game difficulty was set adaptively for
both training types spanning across eight levels (1. Very
Easy; 2. Easy; 3. Medium; 4. Hard; 5. Harder; 6. Very Hard;
7. Elite; 8. Cheater) The online platform software recorded
the number of wins (+1) and losses (−1) and each time
the total passed the multiple of four threshold, the difficulty
was increased by one. The difficulty decreased whenever the
total dropped below the multiple of four threshold. The
training was preceded by an introduction phase designed to
familiarize participants with the core concepts of the game
and basic gameplay mechanics (see ‘‘StarCraft II Introduction’’
section).
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Starcraft II Introduction
The introductory phase consisted of eight parts: (1) a short
text describing the goals of the meeting; (2) a text and video-
based description of the overall game; (3) a video introduction
to the Terran faction, its units and buildings; (4) a text-based
description of the fundamental game concepts and in-game
interface; (5) an AI guided tutorial that introduces the gameplay
in real time, allowing participants to experience the game for
the first time; (6) a quiz requiring that the correct labels be
attached to each of the five basic unit and building types that
are available to the Terran faction, which was intended to check
if participants were attentive to the training materials; (7) two
films (25 min. each) describing basic strategies and explaining
the various stages that each match progresses through; and (8) a
three-match series in which the game progressively increased its
difficulty, speed, and available units, with no specific guiding
instructions. The entire introduction lasted approx. 2.5 h, and
did not count into the required 30 h of training. It was also
automated and self-paced, with experimenters only providing
assistance when needed and also during part 8 of the introduction
where assistance was provided to keep up the pace and direction
of each training game. Upon completion of this introduction,
participants were free to begin training on the following day.

EEG Recording and Analysis
A 64-channel SynAmps RT Neuroscan EEG amplifier and
BrainProducts actiCap Ag/AG-Cl active electrode set were used
to record brain activity during task performance. All channels
were recorded at 1,000 Hz sampling rate. Impedances were held
below 5 kΩ. All data were preprocessed offline using MATLAB
environment and EEGlab (Delorme and Makeig, 2004), and
ERPlab (Lopez-Calderon and Luck, 2014) software packages. The
signal was initially re-referenced to a common average and then
down-sampled to 250 Hz, followed by a band-pass filter between
0.1 and 40 Hz. Data epochs between −0.2 and 0.996 s were
extracted, and all epochs with incorrect behavioral responses
were rejected. The remaining epochs were manually filtered for
eye-blinks/movements and excessive muscle activity and then
averaged.

Data Reduction and Analysis
All analyses were conducted using R Statistical Software
(Foundation for Statistical Computing, Vienna, Austria), IBM
Corp. Released 2017. IBM SPSS Statistics for Windows, Version
25.0. Armonk, NY: IBM Corp, python and MATLAB custom
scripts.

Mixed ANOVAs (3 × 4 × 2) were used to analyze
the behavioral and neurophysiological data including the
between group variables of group (three levels: CG vs.
FEG vs. VEG) and the within group variables of load
(four levels: 2 vs. 3 vs. 4 vs. 5) and session (two levels:
pre-training measurement vs. post-training measurement).
Group comparisons for telemetric data were conducted by a
series of t-tests (two-group comparisons). Post hoc pairwise
t-tests were also performed in case of significant main
effects or interactions, with Bonferroni correction for multiple
comparisons.

Telemetric data were collected from a total of 5,494 games.
While SC2 replays allow obtaining dozens of different variables,
participants’ expertise or game results do not depend on any
particular one. Nevertheless, we selected basic predictor variables
that relate to cognitive-motor abilities and game proficiency. We
focused on (1) the number of matches played by each player;
(2) first army unit creation latency; and (3) first supply collection
latency. As better SC2 players play shorter matches, the first of
mentioned variables should reflect general players’ proficiency.
It should be emphasized that the number of played matches
positively correlated with the number of won matches (r = 0.964,
p < 0.001) and matches played on more difficult levels (Harder:
r = 0.458, p = 0.002; Very hard: r = 0.634, p < 0.001, Elite:
r = 0.605, p < 0.001; Cheater: r = 0.595, p < 0.001), but not
easier ones (Very Easy: r = −0.145, p = 0.354; Easy: r = −0.146;
p = 0.351; Medium: r −0.239, p = 0.122; Hard: r = −0.019;
p = 0.904). Then it can be assumed that a higher number of played
matches is due to players’ higher skills rather than multiple lost
matches. Latencies of first army unit creation and first supply
collection relate to two key moments in the game environment,
which faster execution should result in better performance in the
game. We also calculated the overall time each player spent in the
game environment which allowed us to confirm the fulfillment
of training assumptions. All mentioned telemetric variables were
tested for between-group differences by a series of t-tests.

For behavioral data, the capacity of visual working memory,
which is measured by the K value, was calculated using the
formula proposed by Pashler (1988),

where P(hit) = hits/(hits + misses), and P(FA) = false
alarms/(false alarms + correct rejections). In addition to the K
values of each set size, we also computed the average K value
(Kmean) for each participant’s visual working memory capacity.

For neurophysiological data, mean amplitudes of CDA
(lateralized waveforms; contra—ipsi), averaged across
P7/P8 electrodes, from 400 to 900 ms time window were
outcome variables (Figures 4A–C).

To examine the relationship between behavioral,
psychophysiological, and telemetric data, linear regression
analyses were conducted.

RESULTS

Telemetric Data
We started by calculating the total time spent in the game
and the mean number of played matches for each player.
Although there were no significant difference between groups in
time spent playing SC2 (p = 0.513), participants from Variable
group were able to play significantly more matches in that time
period (VEG: Mean = 99.68, SD = 24.782; FEG: Mean = 85.05,
SD = 14.5); t(34.152) = 2.376, p = 0.023 (Figure 2). Then we
calculated the mean latencies of first army unit creation and
first supply collection. Analysis revealed that participants from
the Variable group created their army units significantly faster
(VEG: Mean = 170.685, SD = 40.505; FEG: Mean = 219.243,
SD = 66.683); t(41) = −2.901, p = 0.006, but there were no
differences in the latency of the first supply collection (p = 0.696).
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FIGURE 2 | Telemetric variables obtained from the StarCraft II (SC2) environment. While hours spent playing SC2 (upper left) allows us to confirm that both groups
(VG: Variable Group; FG: Fixed Group) fulfill training assumptions, other variables indicate players’ proficiency. Barplots presenting first army unit creation (lower left)
and first supply collection (lower right) give latencies in seconds. Asterisks indicate statistical significance: ∗p < 0.05, ∗∗p < 0.01.

FIGURE 3 | The average K values for each set size in the two tests presented separately for each group. Lighter colors in the pair correspond to the pre-training
measurement and darker to the post-training measurement. Asterisks indicate statistical significance: •p < 0.08, ∗p < 0.05, ∗∗p < 0.01.

Behavioral Data
The capacity of visual working memory, measured by the K
values, were analyzed using a 4 (Load: load 2 vs. load 3
vs. load 4 vs. load 5) × 2 (Sessions: pre-training vs. post-
training) × 3 (Group: Control vs. Fixed vs. Variable) repeated-
measures ANOVA, with Load and Session as the within-subjects
factors and Group as the between subject factor (Figure 3).

Analysis revealed the main effects of Group [F(2, 59) = 3.209,
p = 0.048, η2 = 0.1], Load [F(3, 57) = 134.515, p < 0.001,

η2 = 0.49], Session [F(1, 59) = 30.22, p < 0.001, η2 = 0.07],
Load ∗ Session interaction [F(3, 57) = 2.808, p = 0.039,
η2 = 0.02] and Group ∗ Load interaction [F(6, 116) = 3.992,
p < 0.001, η2 = 0.05] but no Load ∗ Session ∗ Group
interaction [F(6, 116) = 1.806, p = 0.104, η2 = 0.085] or
Session ∗ Group interaction [F(2, 59) = 0.541, p = 0.585,
η2 = 0.018].

Additional analyses revealed that, while Control group wasn’t
able to significantly increase its capacity of visual working
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FIGURE 4 | (A) Grand average lateralized waveforms (contra—ipsi),
averaged across P7/P8 electrodes, separately for all lateralized target
distributions. For statistical analyses of CDA, the mean amplitude from 400 to
900 ms was used. (B) Mean CDA amplitude from 400 to 900 ms, separately
for each load. Error bars denote standard errors of the mean, corrected with
within-subjects comparisons. (C) Topography of the average activity at each
electrode site from 400 to 900 ms. As values were averaged across paired
electrodes, the topography is perfectly symmetrical. (D) Scatterplot of
working memory capacity (K) averaged across loads and contralateral delay
activity (CDA) averaged across loads.

memory at any of used loads, Fixed group increased it at the load
4 (p = 0.025) and load 5 (p = 0.049) and Variable group was able
to significantly increase it at every load (load 2, p = 0.029; load 3,
p = 0.008; load 4, p = 0.003, load 5, p = 0.044).

Psychophysiological Data
Contralateral delay activity was analyzed using a 4 (Load: load
2 vs. load 3 vs. load 4 vs. load 5) × 2 (Sessions: pre-training
vs. post-training) × 3 (Group: Control vs. Fixed vs. Variable)
repeated-measures ANOVA, with Load and Session as the
within-subjects factors and Group as the between subject factor.

Analysis revealed that the only significant effect was the Load
effect [F(3, 57) = 89, p < 0.001, η2 = 0.288], but no Session

FIGURE 5 | In-game behaviors relationship to psychophysiological and
behavioral variables. (A) Initial (from the 1st measurement point) contralateral
delay activity (CDA) averaged across loads 4 and 5 predicts the overall
number of played matches in the Variable Environment Group (VEG).
Observed effect turned out to be insignificant in the Fixed Environment Group
(FEG) only. (B) The averaged across training latency of first army unit creation
predicts participants’ mean K value obtained in post-training measurement.
The effect was significant in both groups.

[F(1, 59) = 0.087, p = 0.769, η2 = 0.002], Group [F(2, 59) = 2.212,
p = 0.118, η2 = 0.02], Load ∗ Session interaction [F(3, 57) = 1.336,
p = 0.272, η2 = 0.066], Load ∗ Group interaction [F(6, 116) = 0.412,
p = 0.87, η2 = 0.021] or Session ∗ Group [F(2, 59) = 0.667, p = 0.517,
η2 = 0.022].

Psychophysiological, Telemetric, and
Behavioral Data Relations
In the next step, we created a model containing a mean
contralateral delay activity (CDA) averaged across loads 4 and
5 obtained from pre-training measurement as a predictor, Group
as a moderator variable and mean number of played matches as
a dependent variable. Created model turned out to be significant
[F(3, 39) = 3.387, p = 0.028, R2 = 0.207] and contained significant
influence of the Group [b = 29.077, t(39) = 2.68, p = 0.011] and
tendency of interaction between CDA and Group [b = 10.736,
t(39) = 1.734, p = 0.079]. Next, it was revealed that while there
was no relationship between CDA and number of played matches
in the Fixed Group (p = 0.891), there was a significant negative
relationship in the Variable Group: the smaller initial CDA
amplitude averaged from loads 4 and 5, the more matches
participants played [one unit decrease in the average CDA
component’s amplitude resulted in an increase of 10.219 matches
played (t(39) = 2.077, p = 0.044); Figure 5A].

In the final analysis, we created a model containing a mean
latency of first army unit creation as a predictor, Group as a
moderator variable, and mean K obtained from post-training
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measurement as a dependent variable. Created model turned
out to be significant [F(3, 39) = 8.384, p < 0.001, R2 = 0.392]
and contained significant influence of the predictor [b =−0.009,
t(39) =−2.499, p = 0.017]. Group influence and interaction turned
out to be insignificant (p = 0.349; p = 0.12; Figure 5B).

DISCUSSION

The study presented here examined the relationship between the
RTS video game proficiency acquired during the training and the
improvement of the VWM capacity indexed with behavioral and
ERP measures. To properly inspect players’ game proficiency,
telemetric data from the game environment were used. EEG
and behavioral data were collected from non-gamers, who were
assigned to one of three groups (Control Group, Fixed Group,
and Variable Group).

Participants completed a change detection task, which is
the typical experimental paradigm used to examine the VWM
capacity, twice during their participation (pre-training and
post-training in active groups or over a period of 4 weeks in the
passive control group).

The obtained results suggest that VWM capacity
improvement was the most significant in the group of
participants with the Variable training model. This finding
stands in agreement with our initial hypothesis, which assumes
that video game influence may vary depending on the training
model.

Most importantly, our results show that we can successfully
explain game performance by looking at the initial values of
the psychophysiological index of VWM and also the behavioral
index of VWM (mean K value) at the post-training measurement
can be predicted from in-game behavior.

We believe that natural predispositions are an important
aspect of achieving success in training, but a good training
environment is no less crucial. Therefore, potential players can
reach their full potential only under the right conditions. The
combination of aspects of natural predispositions and different
training models allows for a better understanding of differences
in the obtained results, but above all—it shows how important it
is to control game environment conditions, which can diversify
the gameplay in an enormous number of ways.

VEG Participants Were Able to Achieve the
Biggest Improvement of Their VWM
Capacity During the Study
The participants from the group with the variable environment
training model were able to significantly improve their VWM
capacity (measured by Pashler’s formula of K value) on each
of the tested loads (from load 2 to load 5). This after-training
improvement in accuracy stands in agreement with studies,
which show that AVG experience is related to VWM abilities
(Green and Bavelier, 2003; Boot et al., 2008; Colzato et al., 2010;
Clark et al., 2011; Blacker and Curby, 2013; Oei and Patterson,
2013; Li et al., 2015). Still, the Fixed Environment Group had only
a significant increase on load 4 and load 5. Then it is important
to emphasize that AVG influence corresponds to applied game

mechanisms: SC2 matches require players to rapidly switch
between multiple sources of action and information in general,
but the training’s demands were different depending on the
training’s model. A similar effect was not observed in the
control group. Presented results argue that variable training
strategies can be more beneficial and allow not only to achieve
bigger improvement in specific task but also the occurrence
of the far transfer. The fact that VEG players were able to
achieve the biggest improvement of their VWM capacity after
their training is consistent with this interpretation. In contrast,
FEG players were not encouraged to thoroughly explore the
game environment, learn different strategies and maximize their
various skills, but rather, were trained to repeat one gameplay
model in a non-engaging way.

VEG Participants Were Able to Achieve the
Biggest Game Proficiency
As mentioned above, three in-game indicators were chosen to
measure game proficiency. (1) The number of played matches by
each player; (2) latency of creating the first army unit; and (3) first
supply collection latency. Telemetric data analysis shows us, even
though there were no significant differences in groups about time
spent on games, VEG players were able to play significantly more
games in that period of time.

In comparison with FEG, VEG participants were significantly
faster in creating their first army unit. However, there were no
associations between the collection of first supply latency and
group types.

These taken into account, we see that comparing with FEG,
VEG settings allowed non-gamer participants to be greatly
proficient in SC II.

CDA Component, K Value, and
Game-Related Factor Analysis
Neurophysiological output was closely analyzed with all
parameters using repeated-measure ANOVA. Analyses did not
pinpoint significant association either for group type or session.
Yet, the load variable had a significant effect on mean CDA
amplitudes. This means we observed different CDA amplitudes
on different loads. Our data support the notion that CDA is a
VWM indicator (Figure 4D).

Additionally, the K value had a correlation with CDA.
Therefore we understand that low-valued CDA components are
significantly associated with both increased VWM capacity and
increased input on VWM.

Game Proficiency Indicator Predicts VWM
Capacity (K Value)
Two predictive models give us key insights about the
relation between game performance, CDA, and K value
obtained from the measurements. Model A holds a predictive
value about the number of played SC II matches and the
mean CDA amplitude on loads 4 and 5 (collected from
pre-training session). Participants who have lower initial
mean CDA amplitude are less likely to play a higher number
of matches, which implies greater natural predispositions
to succeed in the game environment. Then it needs to be
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highlighted that this model was only found to be significant
for VEG. It shows that players’ natural predispositions can
result in better in-game development only in a favorable
environment.

Model B enables us to obtain information about participants’
level of VWM (K-value obtained from post-training
measurement) just by looking at the latency of creating the
first army unit. Such a model could help us (in the future) not
only to create a rule of thumb for measuring VWM in a specific
setting but also to determine players’ level of specific cognitive
skills in a more natural environment.

Although performed analyzes did not reveal a significant
model of moderated mediation, two independent regression
models, it’s important to interpret obtained results in a broader,
common context. As a complex game environment can be
reflected by dozens of telemetric variables, which only together
make up the full picture of the match and players’ skills, it may
not be possible to create a simple and efficient model with only
one telemetry variable.

Furthermore, initial VWN capacity, measured by K-value,
didn’t determine in-game performance regardless of the analyzed
indicator. Then behavioral results obtained from pre-training
measurement cannot be clearly associated with participants’
natural predispositions. It should be noted then, that AVG
requires more than one cognitive function, so the result of any
single behavioral variable may turn out to be insufficient to fully
reflect players’ in-game proficiency or predispositions.

Presented models, taken together, hold promising results
for both: RTS gaming’s impact on VWM, and the role
of neurophysiological indicators in recognizing the natural
predispositions of AVG players. In conclusion, this study
confirms that playing RTS games increases VWM capacity. As
these improvements were majorly observed in VEG participants
(yet still, FEG showed higher results in comparison with the
control group), it can be assumed that the intensity of AVG
influence depends on the adopted training model. What is
more, in the presented study we propose a neurophysiological
indicator, which may allow us to identify AVG players with
higher predispositions to become better gamers. Last but
not least: telemetric data sheds light on game performance,
and combining it with other variables via regression models
holds promising information as such, predicting the capacity

of VWM (K-value, scored) from just one game proficiency
indicator.

All these findings combined and experimental settings may
hold a guiding reference for future research opportunities and
commercial usage. Therefore it’s important to mention that
future investigations should examine a wider range of carefully
selected tasks, which can contribute to create a more complete
spectrum of cognitive functions and changes that they undergo
through VG training.
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Electroencephalography (EEG) is a widely used cerebral activity measuring device for

both clinical and everyday life applications. In addition to denoising and potential

classification, a crucial step in EEG processing is to extract relevant features. Topological

data analysis (TDA) as an emerging tool enables to analyse and understand data from

a different angle than traditionally used methods. As a higher dimensional analogy

of graph analysis, TDA can model rich interactions beyond pairwise relations. It also

distinguishes different dynamics of EEG time series. TDA remains largely unknown to the

EEG processing community while it fits well the heterogeneous nature of EEG signals.

This short review aims to give a quick introduction to TDA and how it can be applied

to EEG analysis in various applications including brain-computer interfaces (BCIs). After

introducing the objective of the article, the main concepts and ideas of TDA are explained.

Next, how to implement it for EEG processing is detailed, and lastly the article discusses

the benefits and limitations of the method.

Keywords: topological data analysis (TDA), electroencephalography (EEG), persistent homology, brain-computer

interface (BCI), machine learning

1. INTRODUCTION

Electroencephalography (EEG) records brain electrical activity in a non-invasive way and contains
rich information about the underlying brain state and function. It is intensively used in diagnosis
and analysis of various neurological disorders such as epilepsy, schizophrenia and autism spectrum
disorder (ASD) (van der Stelt and Belger, 2007; Billeci et al., 2013; Acharya et al., 2015) as well as
for non-clinical applications such as sport and sleep monitoring (Borbély et al., 1981; Thompson
et al., 2008).

A key step in EEG processing is to extract relevant features or markers for the considered
application. Many techniques have been developed, ranging from traditional spectral analysis, to
non-linear analysis, as well as to recent deep learning techniques (Muthuswamy and Thakor, 1998;
Müller et al., 2008; Murugappan et al., 2008; Subha et al., 2010; Craik et al., 2019). Since the brain
is a huge network of neurons wired together and its function is based on the synchronization of
neurons, it is natural to study EEG signals using functional connectivity metrics as features (Sporns,
2013). Most of the current work use graph theory as tools to extract features e.g., small-worldness,
global clustering coefficient and characteristic path length (Ismail and Karwowski, 2020). While
being powerful tools, graph models oversimplify the interactions between neurons by reducing
them to nodes and edges, thus capturing only low-dimensional information (0 and 1). In contrast,
topological data analysis (TDA) allows to explore higher-dimensional information by using higher
dimensional representations called simplicial complexes (a set of points, segments, triangles and
their higher dimensional analogs, cf. section 2.1 for a formal definition).
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Although it is not novel to classify time series by extracting
topological features using TDA (Seversky et al., 2016; Umeda,
2017), it is only recently that this technique has attracted
attention in the domain of EEG processing, especially for clinical
applications. Some pioneering work has shown that topological
features extracted from EEG signals reveal relevant information
for various neurological disorders (Wang et al., 2018; Ibáñez-
Marcelo et al., 2019; Yamanashi et al., 2021).

In this mini review, we aim to identify where and how
TDA can be used for EEG processing by reviewing the current
literature, and point out potential directions for future work. The
organization is as follows: section 2 is a short presentation of the
main principle of TDA; section 3 summarizes various ways to
apply TDA in EEG processing based on the current literature;
section 4 discusses the advantages and limitations of TDA for
EEG analysis and the gaps in current research.

2. TOPOLOGICAL DATA ANALYSIS

Topological data analysis is a young but rapidly growing domain
at the intersection of algebraic topology and data science. There
already exist some good tutorials for non-mathematicians like
data scientists or neuroscientists (Sizemore et al., 2019; Chazal
and Michel, 2021). For a more mathematical introduction to
algebraic topology, the books of Hatcher (2000) andGhrist (2014)
could be a good starting point. In this section we briefly describe
the main idea of TDA and refer the interested readers to the
above references. All the definitions are gathered in section 2.1
to facilitate the reading.

2.1. Definitions
DEFINITION 1. Two functions f , g :X → Y are said to be
homotopic if there exist a continuous function H :X× [0, 1] → Y
such that H(·, 0) = f and H(·, 1) = g. Two topological spaces X
and Y are homotopic if there exist continuous functions f :X → Y
and g :Y → X such that f ◦ g and g ◦ f are homotopic to idY and
idX , respectively.

DEFINITION 2. A k-simplex, noted as 1k = [v0, . . . , vk], is the
convex hull of a set of k+ 1 linearly independent points.

DEFINITION 3. A simplicial complex is a collection of simplices
satisfying following conditions: every subset and their intersections
are also simplices in the collection.

DEFINITION 4. The boundary of a k-simplex1k = [v0, . . . , vk]
is defined as an alternating formal sum of (k−1)-simplices, ∂k1k =
∑

i(−1)i[v0, . . . , v̂i, . . . , vk] where v̂i means omitting vi.

EXAMPLE 1. Take a 2-simplex 12 = [v0, v1, v2] for example:
∂212 = [v1, v2]− [v0, v2]+ [v0, v1] = [v1, v2]+ [v2, v0]+ [v0, v1].
Its boundary is in fact the loop formed by its edges.

REMARK1. A simple yet important property is that the boundary
of a boundary is always zero: ∂k◦∂k+1 = 0, ∀k ≥ 0. In other words,
im ∂k+1 ⊆ ker ∂k. Homology is defined based on this property.

EXAMPLE 2. To have an intuition of what goes on here, we could
take the same example above. ∂1 ◦ ∂2 12 = ∂1([v1, v2]− [v0, v2]+
[v0, v1]) = v2 − v1 − v2 + v0 + v1 − v0 = 0.

DEFINITION 5. The k-dimensional homology of a simplicial
complex C is defined as the quotient space Hk(C) : =

ker ∂k/ im ∂k+1, in which two elements that differ by a k-boundary
are considered as the same element. The dimension of Hk(C) is
called the kth Betti number.

2.2. Topology and Homology in a Nutshell
Topology is the mathematical branch which studies the
properties that are preserved by continuous deformation, such
as scaling, twisting but not tearing. It could be viewed as
“geometry without metric.” Distance is of no importance in
topology, instead the whole theory is based on the notion of
“closeness.” More precisely, what we call topological properties
are those invariant under homeomorphism (continuous map
whose inverse is also continuous). However, homeomorphism
is often too strict. A looser but useful notion is homotopy (see
Definition 1). It is not only useful in the theory, but also in
practice since a lot of noise in the real world data can also be
viewed in a homotopic way, such as an blurred edge is homotopic
(but not homeomorphic) to the ideal edge in a digital image.

Based on the notion of homotopy, homotopy groups can be
defined and distinguish different topological spaces. But they are
difficult to compute in general. An alternative notion is homology
(see Definition 5), which is based on simplicial complex (see
Definition 3) and can be computed effectively using the “divide
and conquer” strategy.

Intuitively, the k-dimensional homology catches k-
dimensional “holes,” i.e., independent cycles that are not
filled. Homology is a homotopy invariant and the dimensions
of the homology group, i.e., Betti numbers, are among the
first topological statistics applied in real world applications
(Giusti et al., 2015).

2.3. Persistent Homology
What makes TDA powerful and particularly suitable to capture
hierarchical features is persistent homology, a method that
extracts persistent topological features across scales. The key
notion is filtration, which is a nested family of subcomplexes
indexed by a parameter. The homology of these subcomplexes
evolves as the parameter grows, giving rise to the barcode or
persistence diagram as a description of persistence of connected
components (described with components’ birth and death) by 0-
dimensional homology, and of multidimensional holes by higher
dimensional homology.

Figure 1 illustrates two kinds of filtration that are frequently
used. Let f be a map from R to R as shown in Figure 1A.
Then the sublevel filtration consists of the family of subcomplexes
Sl = {1 ∈ R : f (1) < l}. For this example the only non
trivial topological information is carried by a 0-dimensional
homology since we have only segments (as shown at the bottom
of Figure 1A) and no loops. We see as the parameter l increases,
there are new components emerge, marked as birth, and also
some component merges with the other one, leading to its death
(by convention the elder rule is applied that keeps the older one).
The parameters corresponding to birth and death form a family
of intervals. Chazal et al. (2012) demonstrated that this family
of intervals is unique up to reordering and can be used as a
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FIGURE 1 | Examples of filtration and the associated barcode. (A) shows the sublevel filtration of function f (x). The first and second connected component appear at

point a and b respectively and merge together at point c, giving rise to two bars: one from a till infinity and the other from b to c. (B) shows several stages of Rips

filtration. At first, all points are isolated and we have the same number of bars and points. As balls grow larger, some balls start to merge together, giving death to

certain bars. Then one loop appears, marked as a 1-dimensional feature corresponding to the blue line in the barcode. Finally the loop is filled so the blue bar stops

and every point merges into one component living forever.

topological feature named barcode. We could also mark on the
plan R

2 the point at which the x and y coordinates correspond to
birth and death of a feature, respectively. These points, together
with the diagonal, are called persistence diagram.

Figure 1B is an example of Rips filtration. Given a set of points
X and a positive number α, the Rips complex Ripsα(X) is the
simplicial complex including all simplices in which the distance
between any two of their vertices is smaller than α. Rips filtration
consists of the family of Rips complex {Ripsα(X)}α indexed by

α. In the example in R
2, we could imagine balls with increasing

radius around the initial point cloud. As the balls become bigger,
they merge with each other, leading to the death of certain
connected components but also the birth of some loops (only one
for the example in Figure 1B). The larger the scale of the loop is,
the more persistent it is in the barcode. In most cases, long bars
correspond to significant features while short bars correspond to
noise. As α goes from 0 to∞, the topology of each Rips complex
goes from one trivial case, disjoint unions of points, to another
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TABLE 1 | Summary of applications of TDA to EEG analysis (ordered by publication date).

References Domain Transformation Method Features Classifier Dataset

Altındiş et al. (2021) MI-BCI - Time delay

embedding

Persistence diagram - Graz dataset

Bischof and Bunch (2021) Eyes-open/eyes-closed

classification

- Time delay

embedding

Betti-numbers CNN Bonn dataset

Yamanashi et al. (2021) Delirium - Time delay

embedding

Area of the 1-dimensional

Betti curve

- Private dataset

Majumder et al. (2020) Autism Spectrum

Disorder (ASD)

- Sublevel filtration Persistent entropy SVM Private dataset

Wang et al. (2020b) Aphasia ICA Sublevel filtration Persistence landscape - Private dataset

Wang et al. (2020a) Aphasia ICA Gradient filtration Persistence landscape - Private dataset

Ibáñez-Marcelo et al. (2019) Hypnotizability ICA Connectivity Homological scaffold - Private dataset

Nasrin et al. (2019) Brain state classification - Sublevel filtration Persistence diagram Bayesian learning US Army

Aberdeen Proving

Ground (APG)

simulation dataset

Wang et al. (2019) Seizure localization Fourier transform Sublevel filtration Persistence landscape - Private dataset

Altindis et al. (2018) MI-BCI - Time delay

embedding

Betti numbers kNN Graz dataset

Piangerelli et al. (2018) Epileptic seizure - Sublevel filtration Persistent entropy Linear classifier Physionet

Wang et al. (2018) Epilepsy Fourier transform Sublevel filtration Persistence landscape - Private dataset

trivial case, all points merged to one connected component. The
persistence homology records the evolution between the two
extreme cases, in the middle of which interesting features come
to light. So, unlike hard thresholding methods usually used in the
construction of graphs, TDA preserves more information.

3. TDA APPLIED ON EEG DATA

In order to retrieve and evaluate in a comprehensive manner all
research works related to TDA and EEG processing, a systematic
search was conducted as described here after. Hence, using
(topological data analysis, TDA) and (electroencephalography,
EEG) as search terms, we found 70 publications on PubMed and
85 publications on Web of Science. Then we examined the title
and abstract of each non-redundant publication and excluded
those concerning recording methods other than EEG (e.g., MEG,
fMRI) or using graph theory analysis instead of TDA as tools. The
remaining publications are summarized in Table 1.

We note that besides standard preprocessing steps, e.g., band-
pass filtering, downsampling, and artifacts removal, few authors
have chosen to transform data into another space. Independent
component analysis (ICA) is the one mostly used with the
purpose of getting source components, then followed by Fourier
transform for the purpose of denoising data.

From the papers that were collected, three methods of
employing TDA emerge: the first one applies it directly onto
the EEG signals; the second one applies it onto the connectivity
network; and the third one onto the phase space. For the
first group, sublevel filtration illustrated in Figure 1A is applied
directly on the EEG time series of each channel which is as the

function f in the example. For the second group, Rips filtration,
as illustrated in Figure 1B, is applied on the point cloud in
which each point represents a channel or a source component,
and the distance is measured by connectivity measures such
as Pearson correlation. For the third group, even though it is
possible to embed data spatially, all authors have followed time-
delay embedding well backed by Takens’ theorem (Takens, 1981)
which gives the minimum dimension of embedding in order to
reconstruct attractors (a set of points in the phase space that
is invariant under dynamics and “attracts” neighboring points)
up to diffeomorphism. Time-delay embedding of a time series
{x(t)}t is formed by keeping k observations before current time
(x(t − k+ 1), x(t − k+ 2), . . . , x(t − 1), x(t)). In the phase space
each point represents the state at a certain time. Takens’ theorem
guarantees that the differential, so topological, properties of the
attractors are preserved by time delay embedding, which permits
to distinguish different EEG time series based on the topology of
the attractors in the phase space.

A barcode or persistence diagram is constructed along with
the filtration process as shown in section 2.3. A metric structure
is still needed in order to measure differences between barcodes
or persistence diagrams. The Bottleneck distance, or Wasserstein
distance, measures the distance between persistence diagrams by
pairing points in the two diagrams.

There are many other ways to extract topological features
from persistence diagrams other than measuring distance in
the original space. The simplest way might be extracting
Betti numbers. Another simple method is persistence entropy
(Chintakunta et al., 2015) which gives a scalar description of
the barcode. Additionally, persistence landscapes introduced
by Bubenik (2015) smartly embed persistence diagrams into a
Hilbert space where most machine learning algorithms can be
applied, which makes them a popular choice.
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Finally, after the feature extraction step, a classifier might
be applied or not depending on the application at hand (e.g.,
diagnostic, active brain-computer interface, or mental state
estimation via a passive brain-computer interface). The most
used ones are linear classifiers due to the small size of clinical
datasets. However, when the amount of data allows, deep learning
methods show promising performance (Bischof and Bunch,
2021). TDA can also be combined with other frameworks such
as Bayesian networks (Nasrin et al., 2019).

4. DISCUSSION

TDA has many advantages. Firstly, topological features are
by nature robust and invariant to transformations such as
translation, amplitude and frequency scaling (Wang et al.,
2018). Secondly, TDA is well suited for neuroscience, especially
analyses involving connectivity networks. Neurons far apart can
communicate with each other since some axons extend up to
one meter or more, so it’s how they are connected, i.e., the
topological structure of the network, and not the distance that
counts. Thirdly, TDA can capture global and higher dimensional
features where other methods such as graph theory fails.

Themain limitation of TDA stems also from its strength. Since
it neglects all metric related information, this harms its ability
to distinguish data of different categories. Considering the pros
and cons of TDA, it is recommended to combine TDAwith other
methods to use it to its full potential. One promising direction is
the combination of TDA with deep learning techniques. There
have been some pioneering work e.g., the work of Carriere
et al. (2020), Kim et al. (2020), and Royer et al. (2021). Much
more still remains to be explored, especially leveraging the
particular structure of EEG signals. Another direction is to
associate TDA with statistics. The topological features could be
seen not as deterministic but random variables. The notions such
as convergence rate, consistency, confidence region etc. of the
extracted topological features could be studied.

Although there are theoretical results showing the robustness
of persistence diagrams under perturbations (Cohen-Steiner

et al., 2007; Bubenik, 2015), in practice the technical details of
applying TDA for EEG signals need to be further investigated.
Altındiş et al. (2021) started in this direction by trying to find the
optimal embedding dimension, time delay and time window size
using false nearest neighbor (FNN) test. The paired t-test showed
that the significance level of extracted topological features was
very sensitive to the choice of embedding parameters and hence
it was important to use the optimal parameters.

The current domain of application is still quite restricted to
clinical studies to improve the diagnostic of neurological diseases.
However, TDA is also quite suitable for other non-clinical
EEG related areas, e.g., EEG based brain-computer interface
(BCI; Wolpaw et al., 2000) which allows the explicit control of
machines or implicit mental state estimation using only EEG
signals. Further, the datasets used in current publications are
mostly private datasets, which if possible should be replaced
by publicly available ones for increased reproducibility and
comparison with other work.

TDA is going through rapid development, both in theory and
in application. With better theoretical foundation andmore open
source software and code published online1, we believe that it
will become part of the arsenal of tools for a broader scientific
community. Hopefully we will see more publications on EEG
processing using TDA in the future.
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Altındiş, F., Yılmaz, B., Borisenok, S., and İçöz, K. (2021). Parameter investigation

of topological data analysis for eeg signals. Biomed. Signal. Process. Control.

63:102196. doi: 10.1016/j.bspc.2020.102196

Altindis, F., Yilmaz, B., Borisenok, S., and Icoz, K. (2018). “Use of topological

data analysis in motor intention based brain-computer interfaces,” in 2018 26th

European Signal Processing Conference (EUSIPCO) (Rome), 1695–1699.

Billeci, L., Sicca, F., Maharatna, K., Apicella, F., Narzisi, A., Campatelli, G.,

et al. (2013). On the application of quantitative eeg for characterizing

autistic brain: a systematic review. Front. Hum. Neurosci. 7:442.

doi: 10.3389/fnhum.2013.00442

Bischof, B., and Bunch, E. (2021). Geometric feature performance under

downsampling for eeg classification tasks. arXiv[Preprint].arXiv:2102.07669.

Borbély, A. A., Baumann, F., Brandeis, D., Strauch, I., and Lehmann,

D. (1981). Sleep deprivation: Effect on sleep stages and eeg power

density in man. Electroencephalogr. Clin. Neurophysiol. 51, 483–493.

doi: 10.1016/0013-4694(81)90225-X

Bubenik, P. (2015). Statistical topological data analysis using persistence

landscapes. J. Mach. Learn. Res. 16, 77–102. doi: 10.5555/2789272.2789275

Carriere, M., Chazal, F., Ike, Y., Lacombe, T., Royer, M., and Umeda, Y.

(2020). “Perslay: a neural network layer for persistence diagrams and new

graph topological signatures,” in Proceedings of the Twenty Third International

Conference on Artificial Intelligence and Statistics, Vol. 108 of Proceedings

of Machine Learning Research, eds S. Chiappa and R. Calandra (PMLR),

2786–2796

Chazal, F., De Silva, V., Glisse, M., and Oudot, S. (2012). The Structure and Stability

of Persistence Modules. New York, NY: Springer International Publishing.

Chazal, F., and Michel, B. (2021). An introduction to topological data

analysis: fundamental and practical aspects for data scientists. arXiv math.ST

1710.04019.

Frontiers in Neuroscience | www.frontiersin.org 5 November 2021 | Volume 15 | Article 76170398

https://github.com/FatemehTarashi/awesome-tda
https://doi.org/10.1016/j.knosys.2015.08.004
https://doi.org/10.1016/j.bspc.2020.102196
https://doi.org/10.3389/fnhum.2013.00442
https://doi.org/10.1016/0013-4694(81)90225-X
https://doi.org/10.5555/2789272.2789275
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Xu et al. TDA for EEG Processing

Chintakunta, H., Gentimis, T., Gonzalez-Diaz, R., Jimenez, M.-J., and Krim, H.

(2015). An entropy-based persistence barcode. Pattern Recognit. 48, 391–401.

doi: 10.1016/j.patcog.2014.06.023

Cohen-Steiner, D., Edelsbrunner, H., and Harer, J. (2007). Stability

of persistence diagrams. Discrete Comput. Geometry 37, 103–120.

doi: 10.1007/s00454-006-1276-5

Craik, A., He, Y., and Contreras-Vidal, J. L. (2019). Deep learning for

electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16,

031001. doi: 10.1088/1741-2552/ab0ab5

Ghrist, R. (2014). Elementary Applied Topology. Scotts Valley, CA: CreateSpace

Independent Publishing Platform.

Giusti, C., Pastalkova, E., Curto, C., and Itskov, V. (2015). Clique topology reveals

intrinsic geometric structure in neural correlations. Proc. Natl. Acad. Sci. U.S.A.

112, 13455–13460. doi: 10.1073/pnas.1506407112

Hatcher, A. (2000). Algebraic Topology. Cambridge: Cambridge Univ. Press.

Ibáñez-Marcelo, E., Campioni, L., Phinyomark, A., Petri, G., and Santarcangelo,

E. L. (2019). Topology highlights mesoscopic functional equivalence between

imagery and perception: the case of hypnotizability. Neuroimage 200, 437–449.

doi: 10.1016/j.neuroimage.2019.06.044

Ismail, L. E., and Karwowski, W. (2020). A graph theory-based modeling

of functional brain connectivity based on eeg: a systematic review

in the context of neuroergonomics. IEEE Access. 8, 155103–155135.

doi: 10.1109/ACCESS.2020.3018995

Kim, K., Kim, J., Zaheer, M., Kim, J., Chazal, F., and Wasserman, L. (2020). “Pllay:

efficient topological layer based on persistent landscapes,” inAdvances in Neural

Information Processing Systems, Vol. 33, eds H. Larochelle, M. Ranzato, R.

Hadsell, M. F. Balcan, and H. Lin (Curran Associates, Inc.), 15965–15977.

Majumder, S., Apicella, F., Muratori, F., and Das, K. (2020). “Detecting autism

spectrum disorder using topological data analysis,” in ICASSP 2020-2020 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP)

(Barcelona: IEEE), 1210–1214.

Müller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., and

Blankertz, B. (2008). Machine learning for real-time single-trial eeg-analysis:

from brain–computer interfacing to mental state monitoring. J. Neurosci.

Methods 167, 82–90. doi: 10.1016/j.jneumeth.2007.09.022

Murugappan, M., Rizon, M., Nagarajan, R., Yaacob, S., Hazry, D., and Zunaidi, I.

(2008). “Time-frequency analysis of eeg signals for human emotion detection,”

in 4th Kuala Lumpur International Conference on Biomedical Engineering 2008,

eds N. A. Abu Osman, F. Ibrahim, W. A. B. Wan Abas, H. S. Abdul Rahman,

and H.-N. Ting (Berlin; Heidelberg: Springer), 262–265.

Muthuswamy, J., and Thakor, N. V. (1998). Spectral analysis

methods for neurological signals. J. Neurosci. Methods 83, 1–14.

doi: 10.1016/S0165-0270(98)00065-X

Nasrin, F., Oballe, C., Boothe, D., and Maroulas, V. (2019). “Bayesian topological

learning for brain state classification,” in 2019 18th IEEE International

Conference On Machine Learning And Applications (ICMLA) (Boca Raton, FL:

IEEE), 1247–1252.

Piangerelli, M., Rucco, M., Tesei, L., and Merelli, E. (2018). Topological classifier

for detecting the emergence of epileptic seizures. BMC Res. Notes 11:392.

doi: 10.1186/s13104-018-3482-7

Royer, M., Chazal, F., Levrard, C., Umeda, Y., and Ike, Y. (2021). “Atol: measure

vectorization for automatic topologically-oriented learning,” in Proceedings of

The 24th International Conference on Artificial Intelligence and Statistics, Vol.

130 of Proceedings of Machine Learning Research, eds A. Banerjee and K.

Fukumizu (PMLR), 1000–1008.

Seversky, L. M., Davis, S., and Berger, M. (2016). “On time-series topological data

analysis: New data and opportunities,” in 2016 IEEE Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW) (Las Vegas, NV: IEEE),

1014–1022.

Sizemore, A. E., Phillips-Cremins, J. E., Ghrist, R., and Bassett, D. S. (2019).

The importance of the whole: topological data analysis for the network

neuroscientist. Netw. Neurosci. 3, 656–673. doi: 10.1162/netn_a_00073

Sporns, O. (2013). Structure and function of complex brain networks. Dialogues

Clin. Neurosci. 15, 247–262. doi: 10.31887/DCNS.2013.15.3/osporns

Subha, D. P., Joseph, P. K., Acharya, U., R., and Lim, C. M. (2010). Eeg signal

analysis: a survey. J. Med. Syst. 34, 195–212. doi: 10.1007/s10916-008-9231-z

Takens, F. (1981). “Detecting strange attractors in turbulence,” in Dynamical

Systems and Turbulence, Warwick 1980, eds D. Rand and L.-S. Young (Berlin;

Heidelberg: Springer), 366–381.

Thompson, T., Steffert, T., Ros, T., Leach, J., and Gruzelier, J. (2008).

Eeg applications for sport and performance. Methods 45, 279–288.

doi: 10.1016/j.ymeth.2008.07.006

Umeda, Y. (2017). Time series classification via topological data analysis. Trans.

Jpn. Soc. Artif. Intell. 32, 1–12. doi: 10.1527/tjsai.D-G72

van der Stelt, O., and Belger, A. (2007). Application of electroencephalography to

the study of cognitive and brain functions in schizophrenia. Schizophr. Bull. 33,

955–970. doi: 10.1093/schbul/sbm016

Wang, Y., Behroozmand, R., Johnson, L. P., Bonilha, L., and Fridriksson, J. (2020a).

“Topological signal processing in neuroimaging studies,” in 2020 IEEE 17th

International Symposium on Biomedical Imaging Workshops (ISBI Workshops)

(Iowa City, IA: IEEE), 1–4.

Wang, Y., Behroozmand, R., Johnson, L. P., and Fridriksson, J. (2020b). “Topology

highlights neural deficits of post-stroke aphasia patients,” in 2020 IEEE 17th

International Symposium on Biomedical Imaging (ISBI) (Iowa City, IA: IEEE),

754–757.

Wang, Y., Ombao, H., and Chung, M. K. (2018). Topological data analysis of

single-trial electroencephalographic signals. Ann. Appl. Stat. 12, 1506–1534.

doi: 10.1214/17-AOAS1119

Wang, Y., Ombao, H., and Chung, M. K. (2019). “Statistical persistent homology

of brain signals,” in ICASSP 2019-2019 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP) (Brighton: IEEE),

1125–1129.

Wolpaw, J., Birbaumer, N., Heetderks, W., McFarland, D., Peckham, P.,

Schalk, G., et al. (2000). Brain-computer interface technology: a review

of the first international meeting. IEEE Trans. Rehabil. Eng. 8, 164–173.

doi: 10.1109/TRE.2000.847807

Yamanashi, T., Kajitani, M., Iwata, M., Crutchley, K. J., Marra, P., Malicoat,

J. R., et al. (2021). Topological data analysis (tda) enhances bispectral

eeg (bseeg) algorithm for detection of delirium. Sci. Rep. 11:304.

doi: 10.1038/s41598-020-79391-y

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Xu, Drougard and Roy. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 6 November 2021 | Volume 15 | Article 76170399

https://doi.org/10.1016/j.patcog.2014.06.023
https://doi.org/10.1007/s00454-006-1276-5
https://doi.org/10.1088/1741-2552/ab0ab5
https://doi.org/10.1073/pnas.1506407112
https://doi.org/10.1016/j.neuroimage.2019.06.044
https://doi.org/10.1109/ACCESS.2020.3018995
https://doi.org/10.1016/j.jneumeth.2007.09.022
https://doi.org/10.1016/S0165-0270(98)00065-X
https://doi.org/10.1186/s13104-018-3482-7
https://doi.org/10.1162/netn_a_00073
https://doi.org/10.31887/DCNS.2013.15.3/osporns
https://doi.org/10.1007/s10916-008-9231-z
https://doi.org/10.1016/j.ymeth.2008.07.006
https://doi.org/10.1527/tjsai.D-G72
https://doi.org/10.1093/schbul/sbm016
https://doi.org/10.1214/17-AOAS1119
https://doi.org/10.1109/TRE.2000.847807
https://doi.org/10.1038/s41598-020-79391-y
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-728092 November 8, 2021 Time: 15:29 # 1

REVIEW
published: 12 November 2021

doi: 10.3389/fnins.2021.728092

Edited by:
Grzegorz Marcin Wójcik,

Marie Curie-Sklodowska University,
Poland

Reviewed by:
Jit Muthuswamy,

Arizona State University, United States
Vassiliy Tsytsarev,

University of Maryland, College Park,
United States

Parastoo Hashemi,
University of South Carolina,

United States

*Correspondence:
Suelen Lucio Boschen

Souza.suelen@mayo.edu

Specialty section:
This article was submitted to

Neural Technology,
a section of the journal

Frontiers in Neuroscience

Received: 20 June 2021
Accepted: 25 October 2021

Published: 12 November 2021

Citation:
Lucio Boschen S, Trevathan J,

Hara SA, Asp A and Lujan JL (2021)
Defining a Path Toward the Use

of Fast-Scan Cyclic Voltammetry
in Human Studies.

Front. Neurosci. 15:728092.
doi: 10.3389/fnins.2021.728092

Defining a Path Toward the Use of
Fast-Scan Cyclic Voltammetry in
Human Studies
Suelen Lucio Boschen1* , James Trevathan2, Seth A. Hara3, Anders Asp1,4 and
J. Luis Lujan1,5

1 Applied Computational Neurophysiology and Neuromodulation Laboratory, Department of Neurologic Surgery, Mayo Clinic,
Rochester, MN, United States, 2 Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI,
United States, 3 Division of Engineering, Mayo Clinic, Rochester, MN, United States, 4 Mayo Clinic Graduate School
of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States, 5 Department of Physiology and Biomedical
Engineering, Mayo Clinic, Rochester, MN, United States

Fast Scan Cyclic Voltammetry (FSCV) has been used for decades as a neurochemical
tool for in vivo detection of phasic changes in electroactive neurotransmitters in animal
models. Recently, multiple research groups have initiated human neurochemical studies
using FSCV or demonstrated interest in bringing FSCV into clinical use. However, there
remain technical challenges that limit clinical implementation of FSCV by creating barriers
to appropriate scientific rigor and patient safety. In order to progress with clinical FSCV,
these limitations must be first addressed through (1) appropriate pre-clinical studies
to ensure accurate measurement of neurotransmitters and (2) the application of a risk
management framework to assess patient safety. The intent of this work is to bring
awareness of the current issues associated with FSCV to the scientific, engineering, and
clinical communities and encourage them to seek solutions or alternatives that ensure
data accuracy, rigor and reproducibility, and patient safety.

Keywords: clinical neurochemistry, deep brain stimulation, fast scan cyclic voltammetry, intraoperative,
neurochemical signaling, neurophysiology

INTRODUCTION

Fast scan cyclic voltammetry (FSCV) is an electrochemistry technique used for over 30 years
to study rapid neurotransmission in the brain of anesthetized and awake and behaving animals
(Ganesana et al., 2017; Rodeberg et al., 2017). FSCV detects electroactive neurotransmitters by
varying the electric potential between a small working electrode (on the order of a few micrometers
in diameter) and a larger reference electrode (on the order of millimeters in diameter). This process
oxidizes and/or reduces neurotransmitters at specific potentials and results in electrical currents
with amplitude proportional to the concentration of the neurotransmitter in the extracellular space
(Clark et al., 2010; Bucher and Wightman, 2015; Figure 1). Under the right conditions, this enables
the estimation of changes in neurotransmitter levels with high spatial and temporal resolution,
sensitivity, and chemical selectivity (Borland and Michael, 2007; Johnson et al., 2017).

However, in vivo neurotransmitter measurement via FSCV can be confounded by several factors
including interferant molecules with similar oxidation/reduction potentials to the neurotransmitter
of interest, electrode biofouling, shifts in pH and ionic concentrations, or increased oxygenated
blood flow in the electrode microenvironment. Additionally, electrical and motion artifacts
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can disrupt the electrochemical interface creating artificial signals
that appear similar to neurotransmitter release (Ariansen et al.,
2012; Lee et al., 2017). In small animal studies, a set of
guidelines known as the “Five Golden Rules” is typically used
to validate and increase reliability of in vivo neurotransmitter
measurements (Clark et al., 2010). These Golden Rules include
(i) identification of neurotransmitter-specific electrochemical
signatures, (ii) additional confirmation of the chemical identity
of each recorded neurotransmitter (e.g., through microdialysis
at the FSCV site), (iii) anatomical validation of the recording
location, (iv) kinetic validation of spontaneous or evoked changes
in neurotransmitter concentration, and (v) pharmacological
validation of recorded neurotransmitters (Clark et al., 2010;
Meunier et al., 2018). These guidelines are instrumental toward
ensuring the validity of pre-clinical FSCV measurements.

In the last 10 years, there has been a trend toward the
use of FSCV in patients undergoing neurosurgical procedures
to study human neurophysiology (Bucher and Wightman,
2015). Undoubtedly, advancing the knowledge of underlying
mechanisms and biological processes associated with the complex
chemistry of the human brain is critical to the development
of new and improved therapeutic interventions. For example,
the clinical use of FSCV may allow characterization of
changes in neurochemical signaling evoked by deep brain
stimulation (DBS) and could potentially advance treatment of
neurologic diseases (Lee et al., 2017). However, clinical questions
that can be currently answered with FSCV are limited by
technical barriers that must be addressed to ensure that clinical
studies have appropriate scientific rigor and mitigate risks to
patient safety. To address potential confounds during data
acquisition in humans, extensive pre-clinical testing of new
technologies designed to enable human use must be performed.
Additionally, there is a critical need for appropriate pre-clinical
studies mimicking the clinical environment. Risks should be
weighed against actual benefits of the clinical work to ensure
patient safety and high-quality data. The objective of this
manuscript is to initiate a discussion between the scientific,
engineering, and clinical communities regarding these issues and
encourage collaborative solutions that are safe and suitable for
neurochemical measurements in clinical studies.

INVESTIGATIONAL USE OF FAST SCAN
CYCLIC VOLTAMMETRY

While a clinical study may not directly benefit the patients
participating in the study, studies are likely to improve future
patient care. Notably, treatment improvements and benefits to
patients can only be accomplished by leveraging appropriate
pre-clinical studies and scientific rigor.

Large Animal Studies
Anatomical and physiological similarities, as well as behavioral
correlates to human conditions often make non-human primate
and swine models a better alternative for translational research
(Lind et al., 2007; Phillips et al., 2014). Unfortunately, only a small

number of FSCV studies have investigated neurotransmitter
release in vivo using large animal models (Table 1).

Dopamine release in large animals was first measured via
FSCV in 1984 in a non-human primate model (Cheney-
Thamm et al., 1984). In the study, the investigators detected
increased current peaks in the oxidation range for dopamine in
the caudate in response to pleasant stimuli and amphetamine
administration. However, these measurements were not properly
validated accordingly to the Five Golden Rules, i.e., use of
rudimentary electrochemical parameters and working electrode
material, which reduces reliability on the data collected.

It was not until 10 years later that FSCV was used again
in non-human primates to demonstrate reduced dopaminergic
release in response to electrical stimulation of the medial
forebrain bundle in an anesthetized 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine marmoset model of Parkinson’s Disease (Earl
et al., 1998). In this study, investigators validated dopamine
measurements by confirming dopamine-specific electrochemical
signature, and by demonstrating anatomically, electrically,
and pharmacologically evoked changes in the kinetics of
dopamine concentration.

Since then, other studies using FSCV in swine and non-
human primate models have utilized FSCV recording electrodes
(including both working and reference electrodes), recording
systems, and analysis techniques that had been well validated
in small animal models (Adams, 1976; Stamford et al., 1984;
Millar et al., 1985; Suaud-Chagny et al., 1992), ensuring rigor and
data reproducibility. Consistently, they have reported increased
dopamine release in the caudate-putamen as a function of
reward (Yoshimi et al., 2015), and electrical stimulation of the
subthalamic nucleus (Nakajima et al., 2017), fornix, and ventral
tegmental area (Lee et al., 2017). In addition, FSCV has been
used to detect cortical adenosine during seizure termination
in swine (Van Gompel et al., 2014), and to serve as the basis
of a neurochemical-based closed-loop DBS system in rodent,
swine, and non-human primate (Ariansen et al., 2012). More
recently, studies in non-human primates proposed new strategies
to overcome challenges regarding chronic FSCV recordings in
large animals, such as target optimization and spatial resolution
(Schluter et al., 2014; Schwerdt et al., 2017b). However, they
could not resolve other limitations such as tissue damage, glial
encapsulation, electrode biofouling, and material deterioration
that caused continuous signal loss (Kozai et al., 2015).

Overall, these pre-clinical studies show the feasibility of
recording of neurotransmitters via FSCV in acute and long-
term animal models. However, they do not directly address the
significant barriers to clinical use of FSCV, especially in the
operating room setting.

Scientific Rigor
It is not possible to apply the Five Golden Rules for
neurotransmitter measurement in the human operating
room. However, many of the potential confounds for FSCV
measurement in clinical studies can be anticipated. Data analysis,
including calibration and signal extraction algorithms designed
to distinguish neurochemical signals from interferents and
noise, depend mainly on the electrochemical properties of the
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FIGURE 1 | Fast Scan Cyclic Voltammetry in dopamine detection. Schematic of FSCV dopamine detection at CFM. (A) Triangular waveform typically used for
catecholamine detection. Each waveform ranging from –0.4 to 1.3 V takes 8.0 ms to be delivered and is followed by 92 ms of a constant potential held at –0.4 V.
Therefore, each waveform cycle takes 100 ms to be completed. (B) Illustration of a silica tubing-insulated CFM with the oxidation/reduction reactions of dopamine at
the carbon fiber exposed tip. (C) Pseudocolor-plot shows the changes in oxidation (0.6 V) and reduction (–0.2 V) currents (red dashed lines) corresponding to
dopamine release evoked by medial forebrain bundle electrical stimulation (black arrow and dashed line) in an anesthetized rat. The oxidation and reduction currents
(in nA) are represented in the color scale on the right side of the pseudocolor-plot. The pseudocolor-plot shows 300 triangular waveform cycles (–0.4, 1.3, and
–0.4 V) applied from 0 to 30 s at 10 Hz. Additional time after neurotransmitter release is typically showed in pseudocolor-plots to demonstrate that the background
current returns to baseline levels. (D) Dopamine voltammogram associated with the oxidation and reduction currents represented in the pseudocolor-plot. Adapted
with permission from The Schwerdt lab (http://schwerdt.pitt.edu/resources.html).

FSCV recording system. For example, the material composition,
configuration, and surface properties of FSCV electrodes define
the electrochemical properties of the recording system and
can affect the recorded signals (Bucher and Wightman, 2015;
Ganesana et al., 2017; Johnson et al., 2017; Meunier et al.,
2018; Puthongkham and Venton, 2019). Additionally, electrode
materials and recording system commonly used in small animal
models must be modified to ensure biocompatibility and the
ability to reach deep brain targets. Furthermore, confirmation
of measured signals accuracy via pharmacologic validation or
alternate neurochemical technique in humans is largely not
possible in the operating room due to increased hemorrhage
risk with additional alternate neurochemical recordings (Sansur
et al., 2007; Park et al., 2011), and risk of pharmacological
manipulations interfering with patient’s wellbeing during the
procedure. Moreover, the time required for recording system
stabilization and signal detection is large, but the total allowed
operating room time for safe experimental procedures is limited.
For example, in acute animal experiments using a single Carbon
fiber microelectrode (CFM), identifying an optimal area for
recording evoked neurochemical release within a given target
region can take several minutes to a few hours. This process
requires slowly moving the electrode to different locations
within the target and allowing enough time for the signal drift
to settle after each movement. In contrast, Institutional Review

Boards (IRBs) typically require that the research use of FSCV
adds no longer than 15–60 min to the overall procedure, which
varies across institutions with an average duration of 4 h. The
compressed timeframe of the operating room environment
combined with patient safety concerns require the use of one
single track, with very little or no time available for electrode
repositioning for recording optimization. The operating room
environment is also full of sources of noise and interference
from electronic equipment that can affect FSCV recordings in
unexpected ways. Although not exhaustive, the next sections
highlight the need for appropriate pre-clinical studies addressing
changes to the recording methods, experimental paradigm,
and data analysis techniques beyond what is described in
the FSCV literature before human neurophysiology studies
can be performed.

Novel Working Electrodes Designs
The working electrode is typically composed of carbon-based
materials (Table 2) to improve biocompatibility and chemical
inertness, as well as to reduce background currents that interfere
with the detection of neurochemical signatures associated with
specific neurotransmitters (McDermott and McCreery, 1994;
Patel et al., 2013; Rodeberg et al., 2017; Roberts and Sombers,
2018). CFMs have become the standard working electrode for
pre-clinical FSCV recordings. The popularity of CFMs can
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TABLE 1 | Fast scan cyclic voltammetry studies in large animals.

Study Species (common
name), n

Goal FSCV parameters FSCV electrodes Major findings

Cheney-
Thamm et al.,
1984

Macaca nemestrina
(Pigtail macaque)
2 females,
2 males

1 – Determine if
D-amphetamine increased
current oxidation in the
caudate of macaques, as
previously reported in
rodents.
2 – Determine if altered
behavioral states induced
by D-amphetamine affected
oxidation peaks.

Triangular waveform from
–0.2 to +0.6 V at 10 mV/s

Working electrode: Teflon coated
250 µm diameter SS wire ∼ 1 mm
exposed tip Reference electrode:
Ag/AgCl wires

D-Amphetamine treatment
enhances dopaminergic
signaling during presentation of
both pleasant and unpleasant
stimuli.

Cheney-
Thamm et al.,
1987

Macaca nemestrina
(Pigtail macaque)
2 females,
1 male

Demonstrate the feasibility
of using acetaminophen as
in vivo internal standard for
electrode calibration.

Triangular waveform from
–0.2 to +0.6 V at 10 mV/s

Working electrode: Teflon coated
250 µm diameter SS wire
Reference electrode: Ag/AgCl wire

Acetaminophen peak signal
was successfully detected by
FSCV in the non-human
primate brain.

Earl et al., 1998 Callithrix jacchus
(marmoset)
8 (unspecified
number of males
and females)

Evaluate electrically-evoked
dopaminergic efflux in the
striatum of normal and
MPTP-treated marmosets.

Triphasic triangular
waveform from –1.0 to
+1.4 V and resting
potential at 0 V at 480 V/s
at 2 Hz (15 ms/scan)

Working electrode: Glass insulated
7 µm diameter CFM ∼ 20–50 µm
exposed tip
Reference electrode: Ag/AgCl wire

Dopamine signaling in the
striatum remains responsive to
MFB electrical stimulation after
dopaminergic lesion induced by
MPTP.

Shon et al.,
2010

Sus scrofa
domesticus (Swine)
4 males

1 – Investigate if electrical
stimulation of the STN
evokes striatal dopamine
release in a large animal
model.
2 – Demonstrate feasibility
of performing FSCV
recordings in an
environment similar to
human OR.

Triangular waveform from
–0.4 to +1.5 V at 400 V/s
at 10 Hz

Working electrode: glass insulated
CFM (characteristics unspecified)
Reference electrode: Ag/AgCl wire

STN electrical stimulation
evoked intensity and frequency
dependent striatal dopamine
release.

Lee et al., 2011 Sus scrofa
domesticus (Swine)
Unknown number
of animals – males

Use a wireless
instantaneous
neurotransmitter
concentration
measurement system to
monitor electrochemical
signaling in the brain.

Triangular waveform from
–0.4 to +1.5 V at 400 V/s
at 10 Hz

Working electrode: CFM
(characteristics unspecified)
Reference electrode: Ag/AgCl wire

Dopamine signaling responded
in sigmoidal-like fashion to
pulse intensity and pulse-width
STN electrical stimulation.

Ariansen et al.,
2012

Macaca mulatta
(Rhesus macaque)
3 (unspecified
number of males
and females)

Determine if changes in pH
and oxygen are associated
with reward and/or reward
prediction.

Dopamine – Triangular
waveform from –0.4 or
–0.6 V to +1.0 or +1.4 V at
400 V/s at 10 Hz.
Oxygen – from 0.0 to
+0.8 V, a reversal to –1.4 V,
and then returned to 0.0 V,
at 10 Hz.

Working electrode: glass insulated
12 µm diameter CFM with 250 µm
exposed tip and coated with Nafion
and 4-sulfobenzene; 33 µm coated
with Nafion.
Reference electrode: Ag/AgCl wire

Oxygen and pH changes were
associated with the reward and
cues that predicted reward.
Dopamine responses evoked
by reward and cues were
overshadowed by pH changes
detected by FSCV.

Schluter et al.,
2014

Macaca mulatta
(Rhesus macaque)
2 males

Demonstrate the feasibility
of using FSCV to measure
real-time changes of
dopamine levels in the
striatum of macaques.

Triangular waveform from
–0.4 to +1.3 V at 400 V/s
at 10 Hz

Working electrode: fused silica
capillary CFM – 125–150 µm
exposed tip and 7 µm diameter.
Reference electrode: Ag/AgCl wire

Demonstrated striatal
dopamine responses evoked
by VTA/SNc and striatum
electrical stimulation, and by
unexpected rewards in awake
monkeys.

Van Gompel
et al., 2014

Sus scrofa
domesticus (Swine)
3 males

Determine if extracellular
adenosine concentration
increases during seizure
termination (in swine and
humans).*

Triangular waveform from
–0.4 to +1.5 V at 900 V/s
at 10 Hz

Working electrode: CFM – 100 µm
exposed tip and 7 µm diameter
Reference electrode: Ag/AgCl wire

Increased adenosine levels
were observed just prior to
seizure termination. FSCV
recordings were also performed
in human patients.*

Yoshimi et al.,
2015

Macaca fuscata
(Japanese
macaques)
3 females

Measure changes in
dopamine levels associated
with reward response.

Triangular waveform from
–0.4 to +1.3 V at 400 V/s
at 10 Hz

Working electrode: fused silica CFM
and glass capillary CFM – 7 µm
diameter and 300 µm exposed tip.
Reference electrode: Ag/AgCl wire

Dopamine release induced by
electrical stimulation and
reward signals was detected in
the macaque striatum by FSCV
on carbon fibers.

Min et al., 2016 Macaca mulatta
(Rhesus macaque)
3 males

Characterize striatal
dopamine release evoked
by STN DBS as a function
of stimulating and recording
electrode location.

Triangular waveform from
–0.4 to +1.5 V at 400 V/s
at 10 Hz

Working electrode: CFM – 7 µm
diameter and 100 µm exposed tip.
Reference electrode: Ag/AgCl wire

Evoked dopamine responses
were higher at the stimulation of
the dorsolateral posterior
border of the STN.

(Continued)
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TABLE 1 | (Continued)

Study Species (common
name), n

Goal FSCV parameters FSCV electrodes Major findings

Ross et al.,
2016

Sus scrofa
domesticus (Swine)
17 (unspecified
number of males
and females)

Determine the functional
connectivity between the
medial limbic and
corticolimbic circuits
following fornix DBS via
evoked-dopamine release
in the NAc.

Triangular waveform from
–0.4 to +1.5 V at 400 V/s
at 10 Hz

Working electrode: CFM – 7 µm
diameter and 100 µm exposed tip.
Reference electrode: Ag/AgCl wire

Electrical stimulation of the
fornix induced dopamine
release in the NAc and
increased BOLD activity in
structures along the
medial-corticolimbic circuitry.

Lee et al., 2017 Rattus norvegicus
(Sprague-Dawley
rats) 40 males
Sus scrofa
domesticus (Swine)
12 males
Macaca mulatta
(Rhesus macaque)
3 males

Demonstrate
proof-of-principle for
wireless measurement,
characterization, and
control of neurotransmitter
release.

For dopamine and
adenosine – triangular
waveform from –0.4 to
+1.5 V; for serotonin –
N-shaped waveform: –0.4,
+1.0, –0.4, +1.4 V

Working electrode: CFM – 7 µm
diameter and 100 µm exposed tip.
Reference electrode: Ag/AgCl wire

Demonstrated successful
in vivo, wireless, single or
multi-channel detection of
dopamine, adenosine, and
serotonin, with integrated
sensing and stimulation
feedback capabilities.

Nakajima et al.,
2017

Macaca fuscata
(Japanese
macaques)
3 females

Evaluate the effects of
clinically relevant STN and
GPi DBS in the modulation
of the activity of tonically
active striatal cholinergic
interneurons.

Triangular waveform from
–0.4 to +1.5 V at 408.6 V/s
at 10 kHz for 60 s, and
resting potential at 0 V.

Working electrode: SS insulated
CFM – 250–300 µm exposed tip.
Reference electrode: Ag/AgCl wire

STN DBS, but not GPi DBS,
induced striatal dopamine
release that was correlated to
increased activity of tonically
active cholinergic striatum
interneurons.

Schwerdt et al.,
2017b

Macaca mulatta
(Rhesus macaque)
3 females

Demonstrate the feasibility
of using an integrated
neurochemical modular
platform for monitoring
dopamine release from
sensors chronically
implanted in the brain of
non-human primates during
behavior and
stimulation-evoked
dopamine release.

Triangular waveform from
–0.4 to +1.3 V at 400 V/s
at 10 Hz

Working electrode: Array of chronic
and acute fused silica insulated
CFMs – 7 µm diameter and
150–300 µm exposed tip
Reference electrode: Ag/AgCl wire
or SS electrode

Modular platform allowed
measurements of dopamine
release from multiple sites in
the striatum while electrically
stimulating the SNc/VTA for up
to 170 days.

Settell et al.,
2017

Sus scrofa
domesticus (Swine)
4 (unspecified
number of males
and females)

Determine the
neuromodulatory effects of
VTA DBS on dopamine
release in the NAc.

Triangular waveform from
–0.4 to +1.5 V; or
N-shaped waveform: –0.4,
+1.0, –0.4, +1.4 V

Working electrode: CFM – 7 µm
diameter and 100 µm exposed tip.
Reference electrode: not specified

VTA DBS resulted in increased
dopamine release in the NAc
and increased BOLD activity in
the striatum, cortical and limbic
structures.

Trevathan et al.,
2017

Rattus norvegicus
(Sprague-Dawley
rats)
12 females
Sus scrofa
domesticus (Swine)
4 males
Macaca mulatta
(Rhesus macaque)
1 male

Characterize
subject-specific kinetics of
stimulation-evoked
dopamine release using
computational modeling.

Triangular waveform from
–0.4 to +1.5 V at 400 V/s
at 10 Hz

Working electrode: CFM – 7 µm
diameter and 100 µm exposed tip.
Reference electrode: not specified

Dopamine dynamics in
response to electrical
stimulation was modeled and
characterized based on
non-linear increased responses
of dopamine to increasing
SNc/VTA stimulus intensity.

SS, stainless steel; FSCV, fast scan cyclic voltammetry; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine CFM, carbon fiber microelectrode; MFB, medial forebrain
bundle; STN, subthalamic nucleus; OR, operating room; VTA, ventral tegmental area; SNc, substatia nigra pars compacta; DBS, deep brain stimulation; NAc, nucleus
accumbens; BOLD, blood-oxygen-level-dependent imaging; and GPi, globus pallidus internum.
*See Table 3.

be attributed mainly to their small size, which is critical for
minimizing damage to neural tissue and reducing the impact
on neurochemical transmission near the electrode (see Figure 2
for CFM and DBS electrode leads size comparison). Similarly,
CFM have shown good performance in maintaining normal
neurotransmitter kinetics at the measurement site and high
adsorption of neurotransmitters of interest (Borland et al., 2005;

Wang and Michael, 2012; Jaquins-Gerstl and Michael, 2015).
However, despite their desirable neurochemical detection
properties, CFMs are not optimal for clinical applications due
to their high manufacturing variability (Roberts and Sombers,
2018) and fragility, which increase the risk of breakage during
implantation into brain tissue (Schluter et al., 2014). Similarly,
surface modified CFM made by coating with polymer films
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TABLE 2 | Characteristics of commonly used fast scan cyclic voltammetry working electrodes in in vivo studies.

Electrode
material

Type of electrode
modification

Insulation Advantages* Disadvantages* References

Carbon fiber N/A Borosilicate glass Ease of fabrication, low cost,
biocompatible, recommended
for acute recordings.

Fragile, high risk of breakage,
poor fabrication uniformity,
susceptible to fouling.

Patel et al., 2013; Bucher and
Wightman, 2015; Rodeberg
et al., 2017; Roberts and
Sombers, 2018

Carbon fiber N/A Fused-silica capillaries
sealed with epoxy

Good insulating properties,
increased flexibility, low cost,
lower risk of breakage, small
diameter, biocompatible,
recommended for chronic
recordings.

Susceptible to fouling, poor
fabrication uniformity, torsion
applied to the carbon fiber not
well translated to the
fused-silica insulation.

Clark et al., 2010; Rodeberg
et al., 2017; Roberts and
Sombers, 2018

Carbon
nanotube

Surface-modified CFM Borosilicate glass
or
Fused-silica capillaries
sealed with epoxy

High mechanical strength,
improved electron-transfer
kinetics, high sensitivity to
adsorbed dopamine

Poor fabrication uniformity and
reproducibility.

Bucher and Wightman, 2015;
Ganesana et al., 2017; Yang
et al., 2017

Gold-
nanoparticles

Surface-modified CFM Borosilicate glass
or
Fused-silica capillaries
sealed with epoxy

High electroactive surface area,
fast electron-transfer kinetics,
highly sensitive

Increased fouling Zhao et al., 2012; Mohanaraj
et al., 2019

Carbon fiber Nafion-coated CFM Borosilicate glass
or
Fused-silica capillaries
sealed with epoxy

Improved selectivity and
sensitivity for dopamine, fast
response time

Poor uniformity and
reproducibility in creating Nafion
film around the electrode,
fouling susceptibilibility is similar
to bare CFM.

Brazell et al., 1987; Pihel et al.,
1996; Roberts and Sombers,
2018

Carbon fiber PEDOT:Nafion-coated
CFM

Borosilicate glass
or
Fused-silica capillaries
sealed with epoxy

Improved selectivity and
sensitivity for dopamine, fast
response time, low fouling

PEDOT is not approved for
human use

Vreeland et al., 2015;
Ganesana et al., 2017; Boehler
et al., 2020

Diamond Boron doped
conductive diamond

Borosilicate glass
sealed with resin
or
Stainless tube sealed
with resin
or
Parylene

Wide potential window, low and
stable background current, low
fouling, improved longevity and
resistance

Low sensitivity, slow
electron-transfer kinetics, costly
fabrication, poor doping may
lead to impurities on the surface

Yoshimi et al., 2011; Patel
et al., 2013; Bennet et al.,
2016; Ganesana et al., 2017;
Chang et al., 2019

Platinum Metal Unknown Less susceptible to breakage,
versatile for surface
modification and assembly into
arrays for
multi-neurotransmitter
monitoring

Susceptible to corrosion,
passivation,
increased fouling, low
sensitivity.

Jackowska and Krysinski,
2013; Roberts and Sombers,
2018

Gold Metal Unknown Less susceptible to breakage,
versatile for surface
modification and assembly into
arrays or miniature gold
electrodes, good sensitivity to
catecholamines,

Susceptible to corrosion,
passivation,
increased fouling, low sensitivity

Zachek et al., 2008; Jackowska
and Krysinski, 2013; Roberts
and Sombers, 2018

CFM, Carbon Fiber Microelectrode; PEDOT, poly(3,4-ethylenedioxythiophene).
*Relative to borosilicate glass CFM.

such as Nafion and PEDOT provides enhanced sensitivity,
selectivity, and kinetic properties for dopamine detection.
However, electrode reproducibility is still poor due to the
lack of coating uniformity (Brazell et al., 1987; Pihel et al.,
1996; Vreeland et al., 2015; Ganesana et al., 2017; Roberts
and Sombers, 2018). In addition, PEDOT is not currently
approved for clinical use due to the large range of PEDOT
variations determined by multiple factors such as the fabrication
technique, the dopant, and the functionalization of the polymer
(Boehler et al., 2020).

As an alternative to CFM and surface modified CFM,
several groups have attempted to develop Boron-doped diamond
(BDD) electrodes, which offer increased strength and longevity
compared to CFM (Martin et al., 1998; Suzuki et al.,
2007; Yoshimi et al., 2015; Bennet et al., 2016). However,
BDD has distinct electrochemical properties and significant
characterization studies must be performed to better understand
and optimize BDD for neurochemical sensing in the clinical
setting. To date, studies have shown that BDD electrodes are
not suitable for chronic in vivo neurochemical detections due
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FIGURE 2 | Comparison between typically used FSCV working electrode and
DBS electrode leads. From top to bottom: In-house made epoxy and silica
tubing-insulated CFM for detection of neurotransmitters via FSCV; Animal size
6-contact DBS electrode lead – NuMED, Inc. (2.0 Fr shaft,0.5 mm spacing,
and 42 cm length); Human size DBS electrode leads – Boston Scientific, Inc.
(Vercise DBS Directional Lead, 6.0 mm2 dome tip contact surface area,
1.5 mm2 segmented contacts surface area, 6.0 mm2 ring contacts surface
area, 1.5 mm contact length, 2.0 mm spacing, 1.3 mm diameter, 30–45 cm
length; and Vercise DBS lead, 1.5 mm contact length, 2.0 mm spacing,
1.3 mm diameter, 30–45 cm length).

to poor sensitivity and neurochemical adsorption rate, increased
fouling, and distorted signals (Yoshimi et al., 2011; Jackowska and
Krysinski, 2013; Chang et al., 2019).

Metal electrodes such as Gold and Platinum electrodes provide
increased mechanical strength being more resistant to breakage
during implantation. Additionally, these materials allow for novel
electrode arrays and the capability of multiple neurotransmitter
simultaneous detection. However, metal electrodes are hardly
used for clinical applications because of the risk of corrosion that
can lead to tissue damage, passivation and increased biofouling
that interfere with neurotransmitter detection (Zachek et al.,
2008; Jackowska and Krysinski, 2013; Roberts and Sombers,
2018).

Although novel electrode materials or configurations, such
as Platinum, Gold, and Nafion-coated CFM described above,
provide numerous benefits, the representation of signal and
artifacts in vitro and in vivo can vary significantly to those
measured with CFMs (Bucher and Wightman, 2015). For this
reason, it is important to fully validate novel working electrode
designs via large animal experiments with similar signal levels
and experimental paradigms to anticipated human studies.

Reference Electrode Biocompatibility
and Stability
Reference electrodes are pivotal to ensure stable, consistent, and
neurotransmitter-specific measurements. Reference electrodes

should not be polarized (i.e., pulled away from their open circuit
potential) during FSCV to avoid sensor drift, low signal-to-noise
ratio, and distorted neurochemical signals (Rodeberg et al., 2017).
Thus, investigators need to ensure that polarization is avoided
by increasing the surface area of the reference electrodes relative
to the active CFM, as well as by using materials that have a
stable in vivo reference potential and low polarizability properties.
Reference electrodes for in vivo neurotransmitter measurements
in animal models are typically made of Ag/AgCl, which are highly
cytotoxic making them unsafe for long-term (in the order of
hours/days) human use (Hashemi et al., 2011; Kolli et al., 2015;
Seaton et al., 2020). To avoid the safety concerns associated
with Ag/AgCl electrodes, stainless steel (SS) reference electrodes
have been used in humans (Kishida et al., 2011; Bucher and
Wightman, 2015). Unfortunately, SS is highly polarizable and has
an inhomogeneous grain structure that decreases the stability of
its open circuit potential by changing the protein adsorption to
the electrode surface, which can shift its open circuit potential
(Rajendrachari, 2018). The use of SS reference electrodes for
clinical FSCV (see Table 3) is an unresolved confound that
can significantly affect measurement sensitivity and specificity.
Thus, there is a critical need for the pre-clinical investigation
and validation of novel reference electrodes that are not only
biocompatible, but also that provide stable reference potentials
prior to human use.

Tissue Damage and Signal Integrity
Implantation of both working and reference electrodes disrupts
the blood-brain barrier, triggering a cascade of complex
molecular and cellular responses such as activation of glial
cells, loss of perfusion, secondary metabolic injury, neuronal
degeneration, and introduction of mechanical strain, which can
affect neurochemical sensing (Woolley et al., 2013; Kozai et al.,
2015). For example, studies have shown that brain hemorrhage
associated with electrode implantation in the human brain can
result in 1–2% of symptomatic hemorrhage (i.e., speech arrest,
hemiplegia, agitation, and confusion) and 0.5–0.9% of permanent
neurological deficit (Sansur et al., 2007; Park et al., 2011).
Therefore, any clinical FSCV work should minimize the risks
associated with mechanical tissue damage through rigorous pre-
clinical studies aimed at understanding and reducing mechanical
damage to neural tissue (ISO10993-6:2016, 2016).

Reduction/oxidation (redox) reactions can also disrupt
neurochemical diffusion to the region of the sensing electrode,
changing neurochemical concentrations near the electrode and
affecting detection of the neurochemical species of interest
(Wang and Michael, 2012; Jaquins-Gerstl and Michael, 2015).

Carbon fiber microelectrodes used in pre-clinical studies have
traditionally been fabricated from silica glass capillaries or tubing
with a small implantation profile (Bucher and Wightman, 2015;
Rodeberg et al., 2017). However, clinical FSCV studies have
mimicked setups used clinically to implant electrophysiological
sensing electrodes and relied on stainless steel cannulas to
implant either CFM or diamond electrodes, e.g., FHC#66-
IT(AO6) 165 mm SS insertion tube for placing depth electrodes
along a trajectory. The effect of the relatively large tissue insult
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TABLE 3 | FSCV studies in humans.

Study Goal FSCV parameters FSCV electrodes Major findings

Kishida et al.,
2011

Demonstrate feasibility of
sub-second dopamine
detection in humans during
brain surgery.

Triangular
waveform from
–0.425 V to +1.380 at
400 V/s at 10 Hz.

Working electrode: Glass insulated
7 µm CFM
Reference electrode: Stainless steel

First demonstration of real-time human
dopamine release measured during a
behavioral investment task.

Chang et al.,
2012

Quantify adenosine
concentrations in human
subjects with essential tremor
during VIM DBS.

Triangular
waveform from
–0.4 V to +1.5 at
400 V/s at 10 Hz.

Working electrode: Glass and
polyamide insulated 7 µm CFM with
50 µm exposed tip or silicone insulated
30 µm CFM
Reference electrode: Stainless steel

Demonstrated changes in extracellular
concentrations of adenosine in the VIM of
patients undergoing VIM DBS.

Van Gompel
et al., 2014

Determine changes in
extracellular adenosine
concentration during epileptic
activity (in swine and humans).*

Triangular
waveform from
–0.4 V to +1.5 at
400 V/s at 10 Hz.

Working electrode: Glass insulated
7 µm CFM
Reference electrode: Stainless steel, 24
gage

Extracellular adenosine concentration
increases prior to seizure termination.

Bennet et al.,
2016

Demonstrate sensitivity of
diamond-based electrode to
detect and quantify
neurotransmitter release in
human patients undergoing
DBS.

Triangular
waveform from
–0.4 V to +1.5 at
400 V/s at 10 Hz.

Working electrode: Parylene-C coated
boron-doped diamond, conical shape,
50 µm at the base and 100 µm long.
Reference electrode: Stainless steel

Dopamine and adenosine release were
detected using boron-doped diamond
electrode in human patients undergoing
DBS for tremor.

Kishida et al.,
2016

Determine whether subsecond
dopamine fluctuations in the
human striatum encode reward
prediction errors during a
sequential choice task.

Triangular waveform from –0.6
to +1.4 V at 400 V/s at 10 Hz.

Working electrode: 7 µm CFM
insulated with a polyimide-coated
fused-silica capillary
Reference electrode: Stainless steel

Demonstrated striatal dopamine changes
encoding experience-dependent reward
prediction error and counterfactual
prediction error.

Lohrenz et al.,
2016

Compare BOLD activity and
dopamine responses during a
sequential choice task in
humans.

Triangular waveform from –0.6
to +1.4 V at 400 V/s at 10 Hz.

Working electrode: 7 µm CFM
insulated with a polyimide-coated
fused-silica capillary
Reference electrode: Stainless steel

Demonstrated non-linear relationship
between BOLD activity and dopamine
release of subjects performing an
investment task.

Moran et al.,
2018

Demonstrate changes in the
serotonergic signaling during a
decision making task.

Triangular waveform from –0.6
to +1.4 V at 400 V/s at 10 Hz.

Working electrode: 7 µm CFM
insulated with a polyimide-coated
fused-silica capillary
Reference electrode: Stainless steel

Striatal serotonin correlates with decisions
in a sequential investment game and may
encode a strategy that modulates choice
selection to mitigate risk.

Montague and
Kishida, 2018

Demonstrate a new approach
for simultaneous
multi-neurotransmitter
detection and quantification.

Triangular waveform from –0.6
to +1.4 V at 400 V/s at 10 Hz.

Working electrode: 7 µm CFM
insulated with a polyimide-coated
fused-silica capillary
Reference electrode: Stainless steel

The elastic net approach extracted a
concentration-prediction model for multiple
analytes that included dopamine, serotonin,
and norepinephrine.

FSCV, fast scan cyclic voltammetry; CFM, carbon fiber microelectrode; VIM, ventral intermediate nucleus of thalamus; DBS, deep brain stimulation; and BOLD, blood-
oxygen-level-dependent imaging.
*See Table 1.

resulting from cannula insertion on measured FSCV signals is not
well understood and should be explored in large animal models.

Spatial Resolution and Heterogeneity of
Neurotransmitter Release
The high spatial resolution of FSCV, determined by the size of
the working electrode relative to the volume of neurochemical
release, is one of the driving motivators for use of FSCV to
detect neurochemical signaling. Working electrodes are typically
made from 7 to 30 µm diameter carbon fibers cut to 50–500 µm
lengths (see Figure 2). It is the small size of the CFM that allows
for rapid scan rates (>100 V/s) which enables neurotransmitter
measurements on a subsecond timescale without producing
large charging currents potentially harmful to the brain tissue
(Zachek et al., 2009). The spatial resolution of the CFM is on
the order of tens to hundreds of microns (Rodeberg et al., 2017),
much higher than microdialysis (Jaquins-Gerstl and Michael,
2015) and functional imaging (Glover, 2011). FSCV high spatial

resolution allows for neurotransmitter measurement in discrete
brain regions, which could potentially serve as guidance for
improved targeting of DBS electrode implantation.

It must be considered that studies have shown inconsistent
dopamine kinetics across different microdomains in small and
large animal models (Wightman et al., 2007; Moquin and
Michael, 2009; Taylor et al., 2015), which can lead to data
misinterpretation and demonstrate that FSCV recordings from
a single CFM are not adequate for testing specific hypotheses
of systemic neurotransmission. Thus, measurements obtained
at these high resolutions may not accurately represent activity
within the target brain nuclei due to sparse synaptic organization,
neuronal heterogeneity, and differences in neurochemical
release kinetics throughout the structures of interest. These
inconstancies in neurotransmitter release across a target of
interest, coupled with limited recording time in the operating
room, can make finding a suitable recording site difficult for
clinical studies. Sparsity and heterogeneity can be addressed
by developing FSCV electrode arrays capable of simultaneously
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sampling multiple brain regions (Zachek et al., 2010; Patel et al.,
2016; Schwerdt et al., 2017a). This, however, comes at the expense
of increased risk of hemorrhage and inflammation, which must
be weighed carefully against the expected benefit of the study.

Effects of Sterilization of Fast Scan
Cyclic Voltammetry Electrodes on
Recorded Signals
Sterilization of implantable devices is paramount to reduce
the risk of infection. However, this creates a challenge for
FSCV measurements as sterilization procedures can alter the
geometrical and chemical surface of the CFM, compromise
electrode insulation, affect electrical connections, and ultimately,
hinder biocompatibility (Nair, 1995; Godara et al., 2007; Zheng
et al., 2011; Chong et al., 2015). For example, CFM working
electrodes and Ag/AgCl reference electrodes are composed
of heat-sensitive materials, which makes steam and dry heat
sterilization inappropriate because these techniques can cause
polymer degradation and changes in physical or mechanical
properties (Nair, 1995; Mendes et al., 2007). Thus, sterilization
procedures should not only be evaluated for sterility prior to
clinical use, but also for the effect of surface modification on
signal specificity and accuracy.

Effects of the Operating Room
Environment on Recorded Signals
Continuous electrochemical recording is associated with baseline
instability and sensor drift as a function of time, ultimately
reducing measurement accuracy and reproducibility (DeWaele
et al., 2017; Mitchell et al., 2017). This drift can be caused by
a myriad of external factors such as temperature fluctuations,
changes in the chemical environment, or chemical reactions at
the sensing surface (Roberts and Sombers, 2018). The chemical
environment can be affected by biofouling caused by extracellular
proteins, redox reaction debris, cellular encapsulation around the
surface of the electrode, and many other factors (Kachoosangi
and Compton, 2007; Patel et al., 2013; Nicolai et al., 2017; Seaton
et al., 2020). To minimize these effects, several strategies such
as sensor cleaning, recalibration, and even replacement have
been used (Hermans et al., 2008; DeWaele et al., 2017; Mitchell
et al., 2017). However, these are not feasible in an intraoperative
setting, where available time is limited. Additionally, the relatively
long period of stabilization following implantation of an FSCV
electrode (Ramsson et al., 2015; Rodeberg et al., 2017; Castagnola
et al., 2020) limits the time available for data collection in the
operating room. Furthermore, the operating room environment
has numerous sources of noise. These are known to affect
electrophysiological recordings, but their effects have not been
characterized for electrochemical measurements using FSCV.

Challenges for Data Analysis
One of the most challenging aspects of FSCV is the complex and
variable nature of the data (Olivieri, 2008; Johnson et al., 2016).
Signals obtained in vivo often have contributions from multiple
analytes that require resolution prior to positive identification
and quantification. Consistency and accuracy can be improved

with automated multivariate statistical data analyses, such as
principal component regression, partial least squares regression,
and statistical models. Typically, information across the scan-
potential window can be used to separate overlapping signals
by using training sets (i.e., signals obtained from electrodes,
recording sessions, and/or subjects other than those used for
experimental data collection) as calibration models (Johnson
et al., 2016, 2017; Kishida et al., 2016; Lohrenz et al., 2016;
Rodeberg et al., 2017; Meunier et al., 2018). The effectiveness
of these analysis techniques depends on the existence of well-
characterized relationships between the potential at the working
electrode and the measured redox currents for the neurochemical
species of interest. For clinical FSCV, analysis algorithms should
be validated in vivo using the exact recording setup that will
be used clinically, at signal levels comparable to those normally
observed in pre-clinical settings.

Recent studies adopted a data analysis algorithm built from
a novel statistical model trained on in vitro data recorded
against Ag/AgCl reference electrodes. However, the algorithm
was applied to data recorded using SS reference electrodes in
patients during a task performed in the operating room without
previous pre-clinical validation (Kishida et al., 2011; Montague
and Kishida, 2018). Pre-clinical validation using the Five Golden
Rules afore mentioned should be performed prior to clinical use
of any analysis algorithms. Thus, algorithms such as the one
described above remains largely unvalidated until it is tested
both in vitro and in vivo in a pre-clinical model using the same
type of working and reference electrodes as those that will be
used clinically.

OTHER CONSIDERATIONS AND
TECHNICAL CHALLENGES TO FAST
SCAN CYCLIC VOLTAMMETRY IN
HUMANS

Patient Safety
Patient safety is paramount whenever clinical studies are
performed. As with all clinical studies, the onus of determining
safety risk lies with the investigator and local IRB, regardless
of whether the study involves the use of a device subjected to
an Investigational Device Exemption or not (Code of Federal
Regulations, 2021a). While not all risk can be eliminated, it is the
responsibility of the investigator and local IRB to create a risk
management process in order to identify, isolate, and mitigate
as much risk as possible (ISO14971:2019, 2019). In this way,
not only is the well-being of the patient protected, but also is
the integrity, rigor, and reproducibility of the collected data and
resulting conclusions.

Material Biocompatibility
Any material or device that comes into contact with tissue,
especially neural tissue, in a clinical study should be evaluated
for biocompatibility. Although extensive discussion of
biocompatibility testing is outside of the scope of this work,
guidance for this biocompatibility testing is provided by the
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FIGURE 3 | Impact of FSCV waveform on CFM and BDD electrodes longevity.
Scanning electron microscope images demonstrate the surface erosion of
CFMs (A,B) and BDDs (C,D) on day 1 (A,C) and day 6 (B,D) of continuous
FSCV. CFMs were significantly eroded after 6 days of continuous FSCV while
BDD electrodes show no noticeable changes. A FSCV triangular waveform
from -0.4 to 1.5 V and back to -0.4 V at 10 Hz at 400 V/s was continuously
applied to CFMs and BDDs immersed in Tris buffer over an extended period
of time. Adapted from Bennet et al. (2016).

ISO 10993 standard (ISO10993-1:2018, 2018). It is important
to note that even if the material itself is biocompatible, there
is a risk of harmful substances to be present on the material
as byproducts of manufacturing or other processing steps. In
commercially marketed medical devices, these risks are mitigated
by manufacturing under Good Manufacturing Practice protocols
(Code of Federal Regulations, 2021b), which help control any
deviation between manufacturing batches. Currently, no medical
device suppliers provide electrodes for FSCV, so it falls on the
investigator to ensure consistency between materials tested for
biocompatibility and those that are used for clinical FSCV work.

Electrochemical Reactions Due to
Waveform Selection
Different electrode materials exhibit unique electrochemical
properties that may lead to changes in the waveforms that
are used for neurochemical detection. These waveforms, in
turn, affect the various safety considerations listed above. Thus,
testing of the electrical FSCV potential waveforms is required to
determine the range of voltages that can be safely applied to the
tissue without inducing excitotoxicity, electrolysis, and reduced
electrode longevity. For example, harmful reactive oxygen species
are generated when oxygen is reduced (negative potentials) or
when water is oxidized (positive potentials; Roberts and Sombers,
2018). However, the potential at which these redox reactions
occur varies depending on the water window for the specific
electrode material. For voltage-controlled applications such as
FSCV, the water window informs whether a particular waveform
will result in electrolysis, which is damaging to tissue (Cogan
et al., 2004; Cogan, 2008). Therefore, all FSCV waveforms used
should be evaluated for tissue damage and safety for each
electrode material and configuration should be stablished.

It is also vital to ensure that the waveform does not damage
the electrode itself, as material dissolution is detrimental to
the longevity of the electrode (Figure 3) and the released
particulate could be harmful to tissue. To prevent electrode
damage, the largest potentials of a waveform should be applied
to the electrode in solution in a closed-system benchtop
setup over an extended period of time and optionally, at a
higher frequency than planned. The beaker solution should
be sampled at regular intervals and can be tested with mass
spectrometry to determine whether the electrode material is
dissolved into solution (Boehler et al., 2020). Subsequent
biological tests should be conducted to determine whether the
intended waveforms would damage cells due to excitotoxicity by
conducting safety tests of electrical stimulation in neural tissue

FIGURE 4 | Technical considerations and recommendations for conducting FSCV studies in humans. Numerous limitations associated with FSCV limit the type and
number of scientific questions that can be answered by clinical FSCV studies. These limitations pose safety risks to the patient and need to be addressed prior to the
clinical use of FSCV. Extensive pre-clinical testing including material biocompatibility, waveform safety, tissue damage, and sterilization methods must be conducted
following specific guidelines in order to develop a risk management process in cooperation with local IRBs to establish patient safety.
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(McCreery et al., 1988, 1990, Robblee and Rose, 1990; Shannon,
1992). Finally, pre-clinical studies with thorough histological
evaluation of tissue adjacent to and in the vicinity of the
implanted electrode should be conducted prior to human studies
(Cogan et al., 2004, 2016).

Sterilization Validation
As would be expected for any invasive medical device,
sterilization validation is essential to patient safety (ISO11737-
1:2018, 2018). Balancing this need with that of ensuring electrode
integrity may require exploration of novel sterilization methods.
As previously discussed, the heat-sensitive nature of some of the
components commonly used for FSCV electrodes, steam or dry
heat sterilization methods are not viable (Nair, 1995; Mendes
et al., 2007). However, sterilization methods that do not rely
on heat pose other challenges to patient safety. For example, γ

radiation generates free radicals that can cause tissue damage
(Ries et al., 1996; Gorna and Gogolewski, 2003; Mendes et al.,
2007). Similarly, ethylene oxide and its derivatives have been
reported to accumulate in some materials, potentially increasing
teratogenicity risk (Lucas et al., 2003; Mendes et al., 2007). As
previously mentioned, the investigator should characterize and
validate each sterilization technique for each FSCV sensor type,
composition, and geometry to ensure patient safety, in addition
to signal accuracy.

DISCUSSION

Many of the safety and efficacy concerns associated with FSCV
recordings in humans are due to interrelated technical challenges,
which makes these challenges difficult to address. However, once
the scientific and clinical benefits of the study are clearly defined
and the risks to patient safety minimized, residual risks can be
weighed against anticipated benefits. This risk-benefit analysis is
crucial to the success of the clinical work.

Investigators should perform a compelling risk/benefit
analysis to justify the clinical use of FSCV, ensure scientific
rigor, and articulate the scientific and clinical benefit of FSCV
studies. Addressing and mitigating risk to patient safety will help
ensure patients are not put at undue risk. Of course, not all risk
can be eliminated, and it is this remaining risk that must be
weighed against the proposed clinical benefit. Furthermore, it is
essential that both risks and benefits are appropriately and timely
communicated to patients through consent forms so patients can
make an informed decision about their participation.

Risk-benefit analyses are complex, so the authors propose that
the FSCV community develop the necessary guidelines through
partnership with the FDA to engender high-quality scientific
discoveries that FSCV can offer.

Clinical studies need not demonstrate that FSCV provides
direct patient benefit. However, evidence from pre-clinical
studies should be used to guide approval for use in human
subjects. Application of FSCV in clinical studies should be
carefully evaluated to ensure that only hypothesis-driven studies
that cannot be appropriately and methodically performed
in animal models are conducted in human subjects. Thus,

translational FSCV research should demonstrate scientific
rationale, feasibility, efficacy, and safety prior to attempting
clinical application.

While progress has been made in the clinical use of FSCV
(Table 3), it must be stressed that electrode safety and data
robustness have yet to be characterized. To date, clinical FSCV
studies have employed working and reference electrodes and
signal processing techniques that have not been validated by
translational research. The Five Golden Rules are not directly
applicable in the clinical setting. Thus, the operating room
environment necessitates the reconsideration of human FSCV
methodologies. Specifically, the following processes need
to be performed: acute and chronic target assessment and
confirmation, standardization of electrode manufacturing
processes, signal verification in human recordings, and
characterization of sources of electrical noise in the intra-
operative environment. Addressing these issues will facilitate
application of FSCV in the clinical setting, particularly if
FDA-approved working and reference electrodes become
commercially available.

The use of FSCV in humans must be understood as a clinical
intervention, and as such, should follow the same protocols
and guidelines required by the FDA to establish device safety
(Figure 4). Additionally, there are many gaps in knowledge
that complicate the risk/benefit analysis for the clinical use
of FSCV during existing surgical procedures. Until these gaps
are addressed, the likelihood of obtaining useful scientifically
rigorous data is low due to all the unknowns and the quality
of the recorded signal in the operating room environment.
Thus, clinical FSCV should only be performed when there is a
clear hypothesis that can further neuroscientific understanding
in the pursuit of improved therapeutic interventions, and
only after all risk factors discussed in this manuscript
have been mitigated.
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Morphology-Based Deep Learning
Approach for Predicting Osteogenic
Differentiation
Yiqing Lan1,2,3, Nannan Huang1,2,3, Yiru Fu1,2,3, Kehao Liu1,2,3, He Zhang1,2,3, Yuzhou Li1,2,3*
and Sheng Yang1,2,3*

1Stomatological Hospital of Chongqing Medical University, Chongqing, China, 2Chongqing Key Laboratory of Oral Diseases and
Biomedical Sciences, Chongqing, China, 3Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher
Education, Chongqing, China

Early, high-throughput, and accurate recognition of osteogenic differentiation of stem cells
is urgently required in stem cell therapy, tissue engineering, and regenerative medicine. In
this study, we established an automatic deep learning algorithm, i.e., osteogenic
convolutional neural network (OCNN), to quantitatively measure the osteogenic
differentiation of rat bone marrow mesenchymal stem cells (rBMSCs). rBMSCs stained
with F-actin and DAPI during early differentiation (day 0, 1, 4, and 7) were captured using
laser confocal scanning microscopy to train OCNN. As a result, OCNN successfully
distinguished differentiated cells at a very early stage (24 h) with a high area under the curve
(AUC) (0.94 ± 0.04) and correlated with conventional biochemical markers. Meanwhile,
OCNN exhibited better prediction performance compared with the single morphological
parameters and support vector machine. Furthermore, OCNN successfully predicted the
dose-dependent effects of small-molecule osteogenic drugs and a cytokine. OCNN-
based online learning models can further recognize the osteogenic differentiation of
rBMSCs cultured on several material surfaces. Hence, this study initially demonstrated
the foreground of OCNN in osteogenic drug and biomaterial screening for next-generation
tissue engineering and stem cell research.

Keywords: deep learning, convolutional neural network, osteogenic differentiation, drug screening, online learning

INTRODUCTION

BMSCs are the most frequently used subtype of stem cells with a vigorous proliferative and
differential capacity, making them a promising tool in tissue engineering, biomedicine,
biomaterials, and many other fields (Mauney et al., 2005; Guan et al., 2012; Chiu et al., 2014;
Yang et al., 2017; Farokhi et al., 2018; Qi et al., 2020). Assessing the osteogenic differentiation of
BMSCs is of great importance for these applications, but is challenging because of the time-
consuming process and low temporal-spatial resolution of conventional methods. For example,
polymerase chain reaction and western blot only assess the bulk expression level, while histochemical
staining, such as Alkaline phosphatase staining (ALP) and Alizarin red staining (ARS), often requires
14 days, 28 days, or even longer to induce observable biochemical changes (Waisman et al., 2019),
which hinders the high-throughput screening of small molecules, cytokines, and biomaterials.
Hence, an accurate, early-stage, and single-cell resolution method is urgently required to assess the
osteogenic differentiation of BMSCs for next-generation biomedical applications.
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During osteogenic differentiation, BMSCs tend to change
from a spindle-like shape to a polygon-like shape and are
enlarged in vitro (Fan et al., 2012), while the arrangement or
texture of the cytoskeleton also manifests distinct alterations
(Treiser et al., 2010; Oei et al., 2019). On the one hand, the
osteogenesis process is accompanied by augmented cell volume
and programmed cytoskeleton remodeling. On the other hand,
the direct modulation of cellular adhesive areas and cytoskeletal
texture substantially influence osteogenic differentiation
(McBeath et al., 2004; Engler et al., 2006; Zhang et al., 2015).
For instance, our previous studies demonstrated that the
regulation of the cytoskeleton by surface topography directly
mediates cell differentiation and is associated with the activation
of multiple adhesion and morphological proteins, such as FAK,
RhoA, and YAP (Zhang et al., 2015; Zhang et al., 2016; Li et al.,
2019). Therefore, the cellular morphology of BMSCs provides
invaluable information for osteogenic differentiation prediction
(Thomas et al., 2002; Marklein et al., 2016).

The cellular morphology data comprise a large number of
high-dimensional image features and are challenging for
prediction methods. Previously, machine learning models,
including the Bayesian linear regression (Cutiongco et al.,
2020) and support vector machine (SVM) (Chen et al., 2016;
Yelin et al., 2019; Chen et al., 2021), were successfully applied to
predict early-stage cell osteogenic differentiation based on the
cytoskeletal morphology of biomaterials with different micro-
environmental cues. Nonetheless, the data processing and
parameter optimization of conventional machine learning
require a high degree of specialized knowledge and
considerable human efforts. Fortunately, novel deep learning
methods can avoid these manual processes and achieve a high
performance (Moen et al., 2019), which has been successfully
applied to predict cellular senescence (Kusumoto et al., 2021),

neural stem cell differentiation (Zhu et al., 2021), and screening
drugs (X. Yang et al., 2019).

Herein, as illustrated in Figure 1, we established and trained a
deep learning model, called osteogenic convolutional neural
network (OCNN), on the high-content laser scanning confocal
microscope (LSCM) images of the rBMSCs during the early stages
of osteogenic differentiation. The predicted osteogenic scores
(POS) obtained from OCNN were verified using traditional
biomarkers. Subsequently, we compared the performance of
OCNN with single-cell morphological parameters and support
vector machine models. Lastly, we evaluated the performance of
the OCNN and its modification on the osteogenic differentiation
predictions of the rBMSCs cultured with different soluble drugs
and on different biomaterial substrates. We hope that this study
could preliminarily demonstrate the promising potential of deep
learning in stem cell research, drug screening, and novel
biomaterial development.

MATERIALS AND METHODS

Fabrication of Materials and
Characterization of Surface Topography
Titanium plates with different nano-topographies were fabricated
via sandblasting and acid etching, as previously described in our
work (Li et al., 2019). Pure titanium plates (diameter of 14 mm
and thickness of 1 mm, Chongqing University, Chongqing,
China) were polished to 600 grit. Smooth surfaces were
treated with 30 wt% HNO3 for 5 min. Micro surfaces were
created by blasting with 100 l m aluminum oxide particles and
incubated in 5 NHCl for 12 h and 30 wt%HNO3 for 5 min. Nano
surfaces were manufactured via treatment with a 50/50 v/v%
solution of 30% H2O2 and 2 N H2SO4 for 2 h. Titanium plates

FIGURE 1 | Schematic flow chart of the training, validation, comparison, and application procedures and outcomes of OCNN in this study.
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were ultrasonically washed with dd water and sterilized with
75 wt% ethanol and ultraviolet light.

The substrates were coated with hyaluronic acid (HA),
collagen I (Col-I), poly-dopamine (DOPA), and amyloid fibrils
as previously described briefly. The glass coverslips were cleaned
ultrasonically in ethanol and then rinsed with deionized water.
After air-drying and UV irradiation for 30 min, 1 ml aqueous
solution of HA (1 mg/ml), Col-I (0.1 mg/ml, PBS), DOPA (2 mg/
ml, 10 mM Tris-HCl, pH 8.5), and lysozyme (1 mg/ml, 50 mM
TCEP) were poured onto the substrate and allowed to react for
3 days, 3, 16, and 2 h, respectively. The topography of the
prepared titanium plates and glass coverslips with different
surface coatings was observed using high-resolution scanning
electron microscopy (SEM, Hitachi S-4700).

Cell Culture
The rBMSCs were collected from the bone marrow of 4–6-week-
old female rats as previously described (Ren et al., 2021) and
identified by flow cytometry and differentiation phenotypes
(Supplementary Figure S1). The cells were resuspended in
complete medium and transferred to a Petri dish, cultured at
37°C with 5% CO2. The medium was changed after 1 day and
2 days respectively. After achieving confluency of 80–90%, the
rBMSCs were digested, counted, and seeded on substrates with an
initial cell density of 5,000–10,000 cells/cm2. In addition, they
were cultured with Dulbecco’s Modified Eagle’s medium-low
glucose containing 10% FBS and 1% penicillin/streptomycin
and supplemented with PBS (basic medium, BA) or 10 nM
dexamethasone, 10 mM β-glycerophosphate, and 50 μM
ascorbic acid (osteogenic medium, OS). For the glass
coverslips, the rBMSCs were cultured for 0, 1, 4, and 7 days.
Whereas for the drug screening assays, they were cultured for 1
and 14 days, and for the biomaterial assays, they were cultured for
1 day. All animal operations were performed in accordance with
the guidelines of the Animal Care and Use Committee of China
and were approved by the ethics committee of Chongqing
Medical University Affiliated Hospital of Stomatology (Ethic
No. 2021033).

Data Acquisition and Pre-processing
The rBMSCs were washed with PBS three times, fixed with 4%
formaldehyde in Dulbecco’s phosphate-buffered saline (D-PBS),
and washed repeatedly. Subsequently, they were permeabilized in
0.2% Triton-X100 (PBS) for 5 min and washed with PBS three
times. Next, they were soaked in staining buffer containing
0.33 mM Alexa Fluor 488 phalloidin (Yisheng, China) and
10 mg/ml bovine serum albumin (PBS) for 1 h. After washing
three times with PBS, nuclei were stained with 0.3 mN 40, 6-
diamidino-2-phenylindole (DAPI, Beyotime, China) for 3 min
and then rinsed with PBS. Samples were observed and imaged
with LSCM at a magnification of ×200 (Leica TCS SP8,
Germany), and each 2-D image was taken at the maximum
projection of the z-stack and saved as a 1,024 × 1024-pixel
RGB image in the Tiff format.

For model development, single-cell images were cropped from
the original LSCM images (5–10 cells per image) to obtain
2,916 single-cell images, approximately 500–600 images in

each group (0, 1, 4, and 7 days with BA/OS). Notably, cells
adjunct to other cells were abandoned because of the potential
influence of cell-to-cell contact (Chen et al., 2016). The
fluorescence intensity was globally normalized to correct the
batch effect from different biological repeats.

rBMSC Osteogenic Differentiation Assays
An mRNA was extracted by lysing the cells with TRIzol (Takara,
Japan) and incubated with chloroform for 10 min, followed by
centrifugation at 12,000 rpm for 15 min at 4°C. Then, it was
purified using ethanol, resuspended in DEPC water (Biosharp,
Japan), and quantified using a Nanodrop spectrophotometer
(Thermo Scientific, Waltham, United States). Next, it was
reverse transcribed to cDNA by using the RNAiso Plus
reagent kit (Takara) and amplified using the ProFlex PCR
system (Thermo Scientific). Finally, the genes expression levels
were quantified using the Power SYBR Green PCR master mix
(Takara) in a real-time PCR machine (Applied Biosystems 7500,
Life Technologies, Waltham, United States). The primer
sequences used in this study are listed in Supplementary
Table S1.

For flow cytometry, the rBMSCs were digested, diluted with
PBS, and stained with FITC Mouse Anti-Rat CD90 (Biolegend,
San Diego, United States) and FITC Mouse Anti-Rat CD44
(Biolegend).

For immunofluorescence staining, they were fixed with 4%
formaldehyde, permeabilized with 0.2% Triton-X100, and
washed repeatedly. Then, they were blocked using 3% donkey
serum for 1 h and incubated overnight with a Runx-2 primary
antibody (1:200, Abcam, United Kingdom). After washing with
PBS three times, cells were incubated with the fluorescent
secondary antibody (1:350, Alexa 647, Jackson
ImmunoResearch, West Grove, United States) for 1 h. Finally,
the cytoskeleton and nuclei were stained according to the above-
mentioned procedure.

For drug screening, the rBMSCs were treated with an OS
medium accompanied by incremental concentrations of
alendronate sodium (1, 5, or 10 μM), simvastatin (0.1 μg/ml,
0.5 μg/ml or 1 μg/ml), 1α, 25-dihydroxyvitamin D3 (1, 10 or
100 nM) as well as BMP-2 (50 ng/ml, 100 ng/ml and 200 ng/ml).
After cultivation for 14 days, the cells were fixed with 4%
paraformaldehyde for 10 min and washed with PBS. Then,
they were stained with 1% Alizarin Red S (Solarbio) for
10 min and washed twice with PBS. The stained cells were
captured using a stereomicroscope (Zeiss SteREO
Discovery.V12, Germany) and quantified using ImageJ (NIH
Image, Bethesda, MD).

Development of Convolutional Neural
Networks
To develop OCNN, three classic deep learning models with pre-
trained weights (ImageNet), including VGG 16 (Simonyan and
Zisserman, 2014), Inception V3 (Szegedy et al., 2016), and
ResNet50 (He et al., 2016), were screened to select the
convolutional core. The transfer learning method was used to
extract the rBMSC features, and a binary classifier with softmax
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FIGURE 2 | Development and validation of a conventional, static, and baseline model (OCNN) for sensitive high-throughput and automatic osteogenesis prediction
on flat coverslips. (A) Visualization of diverse single-cell datasets. The styles from the network for all images in the cell dataset were embedded using t-SNE. Each point
represents a different LSCM image. Grey: basic (BA) group; light to deep blue: osteogenic (OS) group on days 0,1,4, and 7. Each photo: green, F-actin; blue, nuclei.
Scale bar, 50 µm. (B) 10-fold cross-validated ROC curves of Inception V3 at four-time points (validation dataset). The gray line represents each independent
validation; the red line represents the average ROC; the light red area represents the 95% confidence interval. (C) A randomly selected new test dataset was used to
evaluate the classification performance of OCNN (50 images of BA/OS group each). ROC curves at four-time points. The orange line represents the independent
validation. (D) The saliency map showed key identification regions for the prediction of BA or OS cells.
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FIGURE 3 | OCNN highly correlated with conventional biochemical markers and performed better than single morphological parameter and support vector
machine in osteogenic differentiation prediction. (A)Real-time PCR gene expression levels ofOsx,Runx2 relative toGAPDH in rBMSCs cultured in BA/OS for 0, 1, 4, and
7 days (B) BA/OS Images of 0, 1, 4, and 7 days were classified and scored according to OCNN. (C) Flow cytometry determination of the MSC-specific surface markers
(CD44, CD90) in OS groups at different induction times (0, 4, 7 days). (D) Images in the OS group of 0, 4, and 7 days were classified and scored according to
OCNN. (E) rBMSCs’ immunofluorescence staining of Runx2 protein cultured in both types of the medium on day 4. Green: F-actin; Blue: Nuclei; Red: Runx2 protein.
Scale bar: 100 µm. (F)Using the Nuclear/cytoplasm intensity ratio of Runx2 protein to define the extent of single-cell osteogenic differentiation and compared with OCNN

(Continued )
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activation was added to the top of the models for predictions. The
training process was conducted on a computer with an Intel Core
i7-9700F, 32 GB RAM, and an NVIDIA GeForce RTX 2080Ti
and implemented with Keras v.2.2.4 (http://github.com/fchollet/
keras). Detailed information about the training of convolutional
neural networks can be found in Supplementary Table S2.

During training, single-cell images were randomly distributed
into training and validation sets at a ratio of 9:1. Conventional
data augmentation was performed to reduce overfitting
(Supplementary Figure S2). The Adam optimizer was
adopted, and hyper-parameters (dropout ratio, learning rate,
and batch size) were optimized to improve the performance.
Ten-fold cross-validation was used to evaluate the prediction
performance of the three models. For online learning, OCNNwas
further supplemented with small training samples (50–100) from
different biomaterials.

To quantitatively measure the osteogenic differentiation in a
linear space, predicted osteogenic score (POS) was proposed by a
logit transformation of the final model output p for data scaling,
similarly to a previously described method to quantify the cell
senescence (Kusumoto et al., 2021):

POS � ln
p

1 − p

Single-Cell Morphological Parameters and
Support Vector Machines
Cell morphology was measured on single-cell images using an
open-source software Cellprofiler (the Broad Institute of Harvard
and MIT, United States) (Lamprecht et al., 2007), yielding
25 single-cell morphological parameters. Six representative
morphological parameters were selected by correlation analysis,
including three shape parameters (area, perimeter, aspect ratio)
and three texture parameters (contrast, correlation, and entropy).

Support vector machines were constructed using the Sci-kit
package in Python. Feature dimensions were reduced to three
from the morphological parameters using the linear kernel
support vector machine technique. Hyperparameter
optimization was conducted using the wrapping algorithm.

Evaluation of Model Performance
To evaluate the model performance, the true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) values
were counted. Then, six measurements, including accuracy,
sensitivity, specificity, precision, recall, and F1-score, were
calculated as follows:

Sensitivity � TP
TP + FN

Specif icity � TN
TN + FP

Accuracy � TP + TN
TP + FP + TN + FN

Precision � TP
TP + FP

F1 − score � 2pPrecisionpRecall
Precision + Recall

The ROC curve was plotted based on the sensitivity and
1—Specificity scores, and the AUC value was computed.

Statistical Analysis
The statistical charts were created using Origin 2018 (OriginLab,
Northampton, United States), and the data were presented as
mean ± standard deviations. For comparison between two
groups, the unpaired Student’s t-test was used, and a value of
<0.05 was considered statistically significant. For correlation
analysis, a value of <0.05 was considered statistically significant.

RESULTS

Morphological Characteristics of rBMSCs
Under LSCM
To investigate the morphological changes of the rBMSCs during
the early stages of osteogenic differentiation, we collected the
rBMSCs cultured in osteogenic (OS) and basal (BA) mediums
and then took LSCM images on days 0, 1, 4, and 7. As shown in
Figure 2A, via the naked eye observation, the cellular shape
changed from spindle-like to more extensive, and the
cytoskeleton arrangement seemed to become more complex
and crossed after induction for 4 days. However, by depositing
25 objective morphological parameters into two-dimensional
t-SNE (Van der Maaten et al., 2008), we found a clear left-to-
right shift of group OS starting from day 1, while group BA
exhibited a more randomized distribution, which partially
overlapped with the OS group.

To recognize the distinct but overlapping underlying pattern
of the cellular morphology, we next developed OCNNmodels via
the transfer learning of single-cell images using three classical
deep learning models, VGG-16, Inception V3, and ResNet-50, as
shown in Supplementary Figure S3 and Supplementary Table
S3. Based on the general performance, we selected the pre-trained
Inception V3 as the convolutional core of the OCNN to perform
our follow-up studies. As shown in Figure 2B, the OCNN showed
average AUCs of 0.936, 0.953, and 0.967 on days 1, 4, and 7,
respectively, in 10-fold internal cross-validation. To validate
the model generalization ability, OCNN was further tested on
an independent, external dataset from biological repeats at

FIGURE 3 | predicting score on day 4. Data are shown asmean. p values by two-sided Student’s t-test. *: p＜ 0.05; ***: p＜ 0.001. (G) Schematic diagram of Cellprofiler
software for cell localization and cell morphology capture. (H) Cell morphology was measured on the cell images of the validation dataset of 0, 1, 4, and 7 days using
CellProfiler software (United States), and six representative morphological parameters were selected: area, perimeter, aspect ratio (shape); contrast, correlation, and
entropy (texture). Box plots were used to observe the differences between the BA/OS groups on the six parameters. (I) ROC curves of deep learning, support vector
machines (SVM), and six parameters, comparing the classification performance of four-time points.
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four-time points, which also showed satisfactory AUCs of 0.919,
0.850, and 0.906 on days 1, 4, and 7, respectively (Figure 2C). The
AUCs on day 0 were 0.555 (internal validation) and 0.520
(external validation), which is expected, since day 0 implies
that cells had not received any treatment.

To better understand the morphological differences
recognized by OCNN, we visualized the important regions
that are relevant to the predictions via a Saliency Map
(Simonyan, Vedaldi, et al., 2014), which reflected the
activation of specific pixels upon specific predictions.
Interestingly, as shown in Figure 2D, the nucleus and peri-

nucleus cytoskeleton were mostly activated for the BA
predictions, while more cytoplasmic cytoskeletons were
activated in the OS prediction, probably reflecting the
importance of the cytoskeleton in stemness or osteogenic
differentiation. Nuclear morphology is an important indicator
of cell function and is correlated with osteogenic differentiation
via lamin A/C under external forces, nano-topography, and
chemical coatings (Werner et al., 2017). On the other hand,
the strong stress fibers of the cytoskeleton drew considerable
concern in the OS group, as revealed in previous findings (Engler
et al., 2006) that the intensity and arrangement of F-actin and

FIGURE 4 |OCNN for drug screening. (A) The predicted osteogenic score (POS) of the rBMSCs cultured with different concentrations of simvastatin on day 1 and
Alizarin red staining on day 14 was quantified by ImageJ. Linear fits were performed using the POS and Alizarin red staining areas to calculate the correlation, p＜ 0.05.
(B) The predicted osteogenic score (POS) of the rBMSCs cultured with different concentrations of alendronate sodium on day 1 and Alizarin red staining on day 14 was
quantified by ImageJ. Linear fits were performed using the POS and Alizarin red staining areas to calculate the correlation, p＜0.05. (C) The predicted osteogenic
score (POS) of the rBMSCs cultured with different concentrations of VD3 on day 1 and Alizarin red staining on day 14 was quantified by ImageJ. Linear fits were
performed using the POS and Alizarin red staining areas to calculate the correlation, p＜0.05. (D) The predicted osteogenic score (POS) of the rBMSCs cultured with
different concentrations of BMP-2 on day 1 and Alizarin red staining on day 14 was quantified by ImageJ. Linear fits were performed using the POS and Alizarin red
staining areas to calculate the correlation, p＜0.05.
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non-muscle myosin-II plays an important role inMSC osteogenic
differentiation. Considered together, these data showed the
plausibility of the binary prediction models based on deep
learning trained via nucleus and cytoskeleton morphology
images.

It was worth noting that a small proportion of the images were
incorrectly classified when using the OCNN, indicating that there
may be some degree of differences in the level of single-cell
differentiation within the stem cell population under
nonosteogenic and osteogenic induction conditions, which
cannot be classified via deep learning (Supplementary
Figure S4).

Biochemical Changes and
Morphology-Based Predictions During
Osteogenic Differentiation Compared with
OCNN
Next, we analyzed the consistency between OCNN predictions
and conventional biochemical measurements, including qRT-
PCR, flow cytometry, and immunofluorescence staining. To

compare in a one-dimensional linear space, we came up with
the concept of the predicted osteogenic score (POS), a logit
transformation value from the OCNN output for each single-
cell image, as a modified method from previous studies.

As illustrated in Figure 3A, we first compared the POS with
the mRNA expression level of two osteogenic markers, osterix
(Osx) and runt-related transcription factor 2 (Runx2), on days 0,
1, 4, and 7. From the result, there were no significant differences
in both Runx2 and Osx gene expression from the BA/OS groups
on days 0 and 1. The Osx gene expression in the OS group was
upgraded on day 4 (n � 3, p < 0.05) and day 7 (n � 3, p < 0.05),
and the Runx2 gene expression in the OS group was upgraded on
day 7 (n � 3, p < 0.05). In comparison, the POS was significantly
upregulated from day 1 (n � 50 cells from three biological repeats,
p < 0.001), indicative of the early sensitivity of OCNN
(Figure 3B).

Second, to scrutinize the POS at the single-cell level, we
compared it with the flow cytometric analysis of the cell
surface markers in the OS group on days 0, 4, and 7. On
day 0, the rBMSCs had a high expression of mesenchymal
stem cell marker CD90, which decreased with time; however,

FIGURE 5 |OCNN prediction and OCNN-based online learning for rBMSCs on titanium surfaces. (A) (D) (G) (J) SEM images of control and three different titanium
surfaces: smooth, micro, and nano, scale bar � 300 nm. (B) (E) (H) (K) LSCM images of the rBMSCs on control and three different titanium surfaces: smooth, micro, and
nano. Basal medium (BA), osteogenic supplementmedium (OS). Induction time: 24 h; green: F-actin; blue: nuclei. Scale bar, 100 µm. (C) (F) (I) (L)Comparison of OCNN
prediction and OCNN-based online learning results using ROC curves. Black line: OCNN prediction; red line: OCNN accompanied with online learning.
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there were still partial overlaps with the results of day 0 (Dhaliwal
et al., 2016) (Figure 3C). This decreasing trend was more evident
for CD44 than CD90. Similarly, the POS also showed a right-shift
tendency, similar to flow cytometry (Figure 3D).

Then, to visually inspect the POS, we compared it with the
immunofluorescence staining of Runx2 at the protein level on
day 4 (Figure 3E), since the spatial distribution of this nuclear
transcription factor could reflect the osteogenic differentiation (Z.
Chen et al., 2019). Compared with group BA, the red staining of
Runx2 in the OS group was more concentrated in the nucleus,
which is consistent with previous findings. Subsequently, we
performed a correlation analysis of the Runx2 nuclear/
cytoplasm ratio and POS (Figure 3F) and found a significant
correlation (p < 0.05) with a moderate relationship (r � 0.4978).
Based on these results, the POS is consistent with conventional
biochemical markers; thus, laying the biological basis for further
applications.

Single-cell morphological parameters have been widely
suggested to be associated with cell phenotypes (Bakal et al.,
2007; Prasad and Alizadeh, 2019; Wu et al., 2020), and some
machine learning methods based on these features have been
recently developed to predict osteogenesis. We extracted 25
morphological parameters (Figure 3G; Supplementary Figure
S5) and selected six typical features that were significantly
correlated with the cell phenotypes (Figure 3H;
Supplementary Figure S6), suggesting the upregulation of the
cell area, perimeter, cytoskeleton correlation, and entropy, as well
as the aspect ratio and cytoskeleton contrast during osteogenesis.
Support vector machine models were then developed based on
these parameters.

We then compared the prediction performance between
single-cell morphological parameters, support vector
machine, and OCNN in a biologically independent dataset
(n � 20) (Figure 3I). As expected, no model could
distinguish cells in the two groups on day 0. Impressively,
OCNN achieved a fantastic AUC of 0.998 on day 1, which
was higher than that of the support vector machine (AUC �
0.807) and single-cell morphological parameters (AUCs ranged
from 0.579 to 0.775). The advantage of the OCNN was
maintained at day 4 (AUC � 0.993) and day 7 (AUC � 0.972)
compared to those of other methods. It is worth noting that
three highly correlated morphological parameters during every
support vector machine training process were displayed: area,
perimeter, and contrast on day 0; area, aspect ratio, and
perimeter on day 1 and day 4; and area, perimeter, and
entropy on day 7. From the results, it can be concluded that
the area and perimeter are significant indicators for
distinguishing cellular morphology. In addition, these results
further support the idea of using deep-learning-based models in
cell phenotype analysis.

Screening of Osteogenic Small Molecule
Drugs
We examined the application potential of OCNN in predicting
the osteoinduction ability of small molecule drugs or cytokines at
an early stage (Figure 4). First, we examined the effects of

simvastatin (Figure 4A), whose osteogenic induction ability
was reported by enhancing the Rho/actin/cell rigidity pathway
as well as increasing the actin filament organization and cell
rigidity (Tai et al., 2015). We calculated the POS from the
rBMSCs supplied with 0.1, 0.5, and 1 μg/ml simvastatin on
day 1 (n ≥ 50), and alizarin red staining was carried out on
day 14. The Pearson analysis revealed a significant correlation
(p < 0.05) with a very strong relationship (r � 0.9407) between the
OCNN prediction at the early stage (day 1) and the final
osteogenesis in vitro.

Second, we examined the dose-dependent osteogenic
induction ability of the two small molecules via other
biochemical mechanisms (Figures 4B,C). Alendronate sodium
affected the osteogenic differentiation by activating ERK and JNK
(Fu et al., 2008), while 1α, 25-dihydroxyvitamin D3 (VD3)
activated the nuclear vitamin D receptor (VDR) and promoted
the osteogenic differentiation (Lou et al., 2017) (He et al., 2020).
The Pearson correlation coefficient was 0.9257 (p < 0.05) for
alendronate sodium and 0.8411 (p < 0.05) for 1α, 25-
dihydroxyvitamin D3. These results suggested that the OCNN
was able to distinguish osteogenic phenotypes modulated by
different biochemical signals.

Lastly, we examined the predictive ability of the OCNN under
the influence of a classic osteogenic growth factor, i.e., bone
morphogenetic protein 2 (BMP-2, Figure 4D). Bone
morphogenetic proteins (BMPs) are effective regulators of
osteoblast proliferation and differentiation, and among them,
BMP-2 has been the most studied cell growth factor in the
bone tissue regeneration field (Salazar et al., 2016). The Pearson
analysis revealed a significant correlation (p < 0.05) with a strong
relationship (r � 0.9090) between the OCNN prediction and BMP-
2 induced osteogenesis. Collectively, these results demonstrate the
feasibility and reliability of OCNN for drug screening.

OCNN Prediction and OCNN-Based Online
Learning for Cells on Titanium Surfaces and
Chemical Coatings
The substrate characteristics of biomaterials are of great
importance and have a significant impact on cell morphology.
Therefore, we hypothesized that the baseline OCNN may not be
suitable for predicting osteogenic differentiation in this scenario.
This dilemma may be tackled by the idea of online learning,
which implies supplying small additional samples to the baseline
model, due to the migratory nature of deep learning (Lobo et al.,
2018).

To examine this hypothesis, we fabricated titanium surfaces
with different nanotopographies: smooth, micro, and nano, as
described in our previous work. Glass coverslips were chosen as
the control and were flat with no extra features under SEM
(Figure 5A). On day 1, the cell morphology in the OS group
exhibited no visible changes to the naked eye (Figure 5B).
However, the baseline OCNN model still captured certain
underlying patterns; thus, achieving a satisfactory AUC of
0.990 (Figure 5C).

For titanium surfaces, the smooth group (Figure 5D) is flat
with no obvious ridges or nanoscale features, while the micro
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group (Figure 5G) showed numerous ridges and grooves, and the
nano group (Figure 5J) showed dense nano-features. On day 1,
the cell morphology on these substrates showed extreme
inconsistency and diversity; thus, no patterns in group BA/OS
could be observed with the naked eyes (Figures 5E,H,K).
Interestingly, the baseline OCNN also performed poorly in
predictions on titanium surfaces, with AUCs of 0.740 (smooth,
Figure 5F), 0.783 (micro, Figure 5I), and 0.401 (nano,
Figure 5L). Fortunately, after supplying small data (n �
50–100 and 1/16–1/8 of baseline training data) to the baseline
OCNN, the AUC increased to 0.868 (smooth), 0.896 (micro), and
0.673 (nano).

Next, we examined the performance of the baseline and online
OCNNs on several common chemical coatings, including
collagen I (Col-I), hyaluronic acid (HA), amyloid fibrils, and
poly-dopamine (DOPA). On Col-I (Figure 6A) and HA
(Figure 6D) coatings, no micro or nanostructures were
observed under SEM, similar to the glass coverslips. Under
LSCM, the cell morphology in group BA/OS could not be

distinguished by the naked eye at day 1 (Figures 6B,E).
However, unlike on the glass coverslips, the baseline OCNN
could not predict the phenotypes associated with the OS on Col-I
(AUC � 0.460) but canmoderately predict on HA (AUC � 0.797),
suggesting that the chemical components of substrates have an
essential influence on cell phenotypes (Arora et al., 2020). After
supplying online data, the AUC increased to 0.946 (Col-I,
Figure 6C) and 0.799 (HA, Figure 6F). This result
demonstrates the ability of online OCNN to distinguish cells
cultured in microenvironments with different chemical cues.

Amyloid fibrils and DOPA coatings exhibited microspheres
with diverse shapes and continuity (Figures 6G,J); thus,
representing a mixture of different nanotopographies and
chemical components. Under LSCM, the cell morphology in
group BA/OS could not be distinguished with the naked eyes
on day 1 (Figures 6H,K). The predictions of the baseline OCNN
were acceptable in the amyloid fibrils (AUC � 0.698, Figure 6I)
but performed poorly in DOPA (AUC � 0.424, Figure 6L). These
results further suggest that the material properties of the

FIGURE 6 | OCNN prediction and OCNN-based online learning for rBMSCs on chemical coatings. (A) (D) (G) (J) SEM images of four different chemical coatings:
collagen I, hyaluronic acid, amyloid fibrils, and poly-dopamine, scale bar � 1 µm. (B) (E) (H) (K) LSCM images of the rBMSCs on four different chemical coatings: collagen
I, hyaluronic acid, amyloid fibrils, and poly-dopamine. Basal medium (BA), osteogenic supplement medium (OS). Induction time: 24 h; green: F-actin; blue: nuclei. Scale
bar, 100 µm. (C) (F) (I) (L) Comparison of the OCNN prediction and OCNN-based online learning results using ROC curves. Black line: OCNN prediction and red
line: OCNN accompanied with online learning.
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substrates, including the nanotopography and chemical
components, can substantially reform the cell morphology,
which may explain the controversial association between
certain cell phenotypes and final cell fate (Arora et al., 2020).
After supplying online data, the AUC increased drastically to
0.851 (amyloid fibrils) and 0.992 (DOPA).

DISCUSSION

In this paper, we show that the CNNs can be trained with images
taken by a laser confocal microscope and then classify images
with slight morphological variations correctly. We applied three
classical deep learning CNNs VGG-16, Inception V3, and
ResNet-50 for transfer learning and achieved accuracy higher
than 80% on the validation set except for day 0. Then the selected
OCNN models from above also achieved excellent results on the
independent test set. We believe that several conditions allowed
us to achieve such high accuracy with the trained neural
networks. First, we set the cell seeding at a suitable density for
the study. Second, the starting size of the single-cell images is a
uniform 640*640 pixels, which ensured the size and uniformity of
the original input data. Third, by certain image pre-processing
methods, for example, rotation, mirror flip, and scale, the number
of images provided to CNN was increased and the training effect
gained better than that of images without image processing.

We validated the prediction results of OCNN by conventional
biochemical markers to verify the osteogenic differentiation
phenotypes of rBMSCs at the corresponding training time
points and there was a good fit between them, which laid the
foundation for the subsequent application of OCNNs. In
addition, the feature extraction of single-cell images was
performed by Cellprofiler, and the classical shape and material
parameters were selected to distinguish the single-cell phenotypes
at uniform time points. Also, the SVM models that integrated
these parameters were applied simultaneously. Neither single-cell
parameters nor SVM models could reach the classification
accuracy of OCNNs, reflecting the superiority of OCNNs.

For further application of OCNNs, we conducted dose-
relevant predictions of osteogenic drugs and online learning-
based predictions for cells cultured on different material surfaces,
both of which yielded well results. In the drug screening part, we
examined the ability of OCNN in predicting the osteoinduction
ability of small molecule drugs or cytokines at an early stage and
the results were in high consistency with 14-days alizarin red
staining results. On OCNN-based online learning for cells on
material surfaces, it can be seen that by online tuning the base
model with a small amount of data, better prediction effects can
be obtained, overcoming the phenotypical alterations on
substrates with different nanotopographies and chemical
components.

Compared with previous studies, this study presents several
advances. First, previous relative studies adopted some machine
learning techniques like linear discriminant analysis (Marklein
et al., 2016), unsupervised clustering (Khayal et al., 2018), and
bayesian linear regression (Cutiongco et al., 2020), to trace the
osteogenic differentiation of stem cells, requiring considerable

human efforts to select features and construct models, which are
avoided by applying deep learning methods. Second, when we
focus on image-based deep learning in the biomedical area, many
other deep learning methods like YOLO (Li et al., 2021), GANs
(Rubin et al., 2019; Sirinukunwattana et al., 2021) were applied
and achieved good results. Compared with those methods, we
conducted the evaluations of more parameters (Accuracy,
Sensitivity, Specificity, Precision, F1-score, AUC) with
satisfactory results. Furthermore, the strong correlation
between OCNN’s predictions and osteogenic biomarkers was
reached, and applications in osteogenic drug and biomaterial
screening were implemented by OCNN and OCNN-based online
learning. Third, cell morphology showed distinct changes and
extensive versatility on substrates with different topography and
chemical components. Moreover, conventional approaches
usually need to train different models to associate cell
phenotypes with microenvironment cues, which demands a
large amount of data. By applying online learning techniques
to OCNN, deep learning models can drastically improve their
performance with a small amount of additional data.

Nonetheless, this study has several limitations. First, only the
2D cellular morphological characteristics were studied. Some 3D
characteristics, such as cell volume and cell sphericity, are tightly
correlated with 3D microenvironment cues and may have a
substantial impact on the fate of cells (Bao et al., 2019;
Remuzzi et al., 2020). Second, despite the cytoskeleton, more
features such as nuclear skeleton, nuclear transcription factors,
and chromatin morphology are also related to osteogenic
differentiation. Multicolor immunofluorescent staining can
capture more of this high-dimensional information
simultaneously; thus, improving the prediction accuracy and
generalizability. Prospectively, for future OCNN development
on 3D and high-throughput data, advanced network structures
and cloud-based techniques need to be constructed to tackle the
increased computational complexity and the consumption of
computing power. Last, in the original data acquisition
process, automatic single-cell identification and segmentation
procedures were lacking. In future studies, an automatic
technique shall be carried out to accelerate the whole process
by some algorithms like the watershed method (Ng et al., 2006),
YOLO (Redmon et al., 2016), or U-net (Ronneberger et al., 2015).

In conclusion, to predict the osteogenic differentiation of
rBMSCs, a deep learning model, OCNN, was successfully
developed based on single-cell LSCM images. The output of
the OCNN and POSs correlated well with conventional
biomarkers. OCNN showed better predictions than single
morphological parameters and support vector machines. It
successfully predicted the dose-dependent osteogenic effects of
three small molecule drugs (simvastatin, alendronate sodium,
and 1α, 25-dihydroxyvitamin D3) and the osteogenic cytokine
BMP-2. Moreover, OCNN with online learning successfully
predicted the phenotypes associated with osteogenic
differentiation on different biomaterial substrates. Therefore,
this study preliminarily proved the application value and
promising prospect of deep learning-based techniques in
osteogenic drug screening, biomaterial development for bone
tissue engineering, and cell-matrix interaction research.
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Electroencephalography (EEG) signals are disrupted by technical and physiological
artifacts. One of the most common artifacts is the natural activity that results from the
movement of the eyes and the blinking of the subject. Eye blink artifacts (EB) spread
across the entire head surface and make EEG signal analysis difficult. Methods for
the elimination of electrooculography (EOG) artifacts, such as independent component
analysis (ICA) and regression, are known. The aim of this article was to implement the
convolutional neural network (CNN) to eliminate eye blink artifacts. To train the CNN, a
method for augmenting EEG signals was proposed. The results obtained from the CNN
were compared with the results of the ICA and regression methods for the generated
and real EEG signals. The results obtained indicate a much better performance of the
CNN in the task of removing eye-blink artifacts, in particular for the electrodes located
in the central part of the head.

Keywords: artifacts, electroencephalography, electrooculography, convolutional neural network, independent
component analysis

INTRODUCTION

Motivation
Electroencephalography (EEG) is a method of examining brain activity commonly used in medical
diagnostics (Levin et al., 2018; Browarska et al., 2021). Unfortunately, in some cases direct analysis
of the EEG signal is very difficult or even impossible due to the presence of artifacts (Kilicarslan and
Contreras-Vidal, 2017; Kawala-Sterniuk et al., 2020; Zhang C. et al., 2020). There are many types
of physiological artifacts, for example those caused by muscle clenching, jaw, tongue movements,
or eye movements. One of the strongest artifacts that interfere with the analysis of EEG signals
are electrooculography (EOG) artifacts. EOG artifacts are generally high-amplitude patterns in the
brain signal caused by blinking of the eyes or low-frequency patterns caused by movements (such as
rolling) of the eyes (Anderer et al., 1999). EOG activity has a wide frequency range, being maximal
at frequencies below 4 Hz, and is most prominent over the anterior head regions (McFarland et al.,
1997). The subject of the article concerns the elimination of EOG artifacts created during blinking
(Pham et al., 2017).

Generally, the concept of EOG artifacts is broader and covers both the activity of eye movement
and blinking. For the purposes of this article, the authors equate the concept of EOG with eye
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blinks (EB). To eliminate them, the authors proposed a deep
neural network-based method and compared its operation
with the popular methods of artifact elimination – ICA and
regression. During the research, the focus was on the analysis
of real EEG signals recorded with the use of a professional
biomedical signal amplifier. Twenty people participated in the
experiment, and each session lasted about 60 min. The authors
also used computer-generated signals to train and test the neural
network. For this purpose, an algorithm was created to generate
EEG/EOG signals.

State of the Art
Many methods are used to remove artifacts from the EEG
signal (Mumtaz et al., 2021). The simplest of them just reject
those fragments of EEG signals with artifacts. Unfortunately, this
approach results in the loss of all information from the rejected
signal fragments (Hasasneh et al., 2018; Khatwani et al., 2018;
Nejedly et al., 2019; Tosun and Kasım, 2020; Iaquinta et al.,
2021; Placidi et al., 2021). In addition, we must have a very good
artifact detection algorithm that will allow us to identify them.
Artifacts can also be selected by an expert by visual inspection.
This approach is not always possible and usually applies to off-
line analyzes. Artifact removal approaches may require so-called
reference channels (Mumtaz et al., 2021). The regression method
requires such a reference channel, that is, the one based on
which artifacts of the remaining channels are removed (Mannan
et al., 2018). Usually, one of the channels from the “frontal”
position or the EOG signal is chosen as the reference channel.
Then, with the use of signals from the reference channel, the
regression method eliminates artifacts from successive electrodes
(propagated from the reference electrode to the others). This
means that the artifacts are not removed from the reference
electrode (it only serves to eliminate artifacts from other
electrodes). When artifacts are removed using a reference
electrode (Mannan et al., 2018), it is assumed that neural activity
(EEG) and electro-oculographic signals (EOG) are not correlated.
In turn, the independent component analysis method (ICA)
(Jiang et al., 2019) does not require a reference channel. The ICA
method allows for the determination of the signal components
(statistically independent), which enables the rejection of artifacts
and disturbances. This method allows the removal of artifacts
from all electrodes. In the ICA method, rejected components are
often selected on the basis of their visualization. It requires expert
knowledge (Mannan et al., 2018) and signal recording with the
use of multiple channels. However, there are methods that allow
for automatic selection of rejected components (Li et al., 2017).
Hybrid methods are also used to remove artifacts (Li et al., 2017;
Mumtaz et al., 2021). Their idea is to use more than one algorithm
to remove artifacts. An example is the use of the combination
of wavelet transform and blind signal separation (BSS) (Rakibul
Mowla et al., 2015). By means of BBS, signals are decomposed
into components, and then the components are subjected to the
wavelet transform. The next step is to remove components that
contain artifacts based on thresholding and then reconstruct the
signal. Other examples of hybrid methods are the combination
of adaptive filtering and BSS and the combination of BSS and
supporting vector machine (SVM).

Deep learning methods are becoming more and more popular
every year. An example of this method may be the convolutional
neural network (CNN), which has a very wide application in
many different fields of science (Arora et al., 2020). An example
may be the field related to computer vision and image recognition
(Chen et al., 2019; Lou and Shi, 2020). CNN has also found
application in neuroinformatics to recognize emotions (Zhang
Y. et al., 2020) and detect mild depression (Li et al., 2020)
using encephalography. Another application is the detection of
myocardial infarction based on the ECG signal (Natesan et al.,
2020). On the basis of existing applications, it is assumed that
convolutional networks can also work well in tasks related to
cleaning biomedical signals from artifacts. Moreover, CNN offers
very wide possibilities to select structures and hyperparameters
(Arora et al., 2020).

In work (Garg et al., 2017) a 10-layer convolutional neural
network (CNN) is presented, which directly labels eye-blink
artifacts. Thirty subjects were tested. The classification accuracy
achieved was 99.67%, the sensitivity was 97.62%, the specificity
was 99.77%, and the ROC AUC was 98.69%. The authors also
showed that the learned spatial features correspond to those that
human experts typically use, which corroborated the validity of
the model. In work (Placidi et al., 2021) independent component
analysis (ICA) is used to split the signal into independent
components (ICs) whose re-projections on 2D scalp topographies
(images), also called topoplots, allow to separate artifacts and
useful brain signals (UBS). In the article, a completely automatic
and effective framework for EEG artifact recognition by IC
topoplots is presented, based on 2D convolutional neural
networks (CNNs), capable of dividing topoplots into four classes:
three types of artifacts and UBS. Experiments carried out on
public EEG datasets showed an overall accuracy of more than
98%. In Iaquinta et al. (2021) a reliable and user-independent
algorithm is presented to detect and remove eye blink in EEG
signals using CNN. For training and validation, three sets of
public EEG data were used. All three sets contain samples
obtained while the recruited subjects performed assigned tasks
that included blinking voluntarily at specific moments, watching
a video, and reading an article. The model used in this study
was able to have an embracing understanding of all the features
that distinguish a trivial EEG signal from a signal contaminated
with eye blink artifacts. In Sun et al. (2020) a one-dimensional
residual convolutional neural network (1D-ResCNN) model for
raw waveform-based EEG denoising is proposed. An end-to-end
(i.e., waveform in and waveform out) manner was used to map
a noisy EEG signal to a clean EEG signal. The proposed model
was evaluated on the EEG signal from the CHB-MIT Scalp EEG
Database, and the added noise signals were obtained from the
database. The proposed model was compared with independent
component analysis (ICA), fast independent composite analysis
(FICA), recursive least squares (RLS) filter, wavelet transform
(WT), and deep neural network (DNN) models. Experimental
results show that the proposed model can produce cleaner
waveforms and achieve a significant improvement in SNR and
RMSE. Meanwhile, the proposed model can also preserve the
nonlinear characteristics of the EEG signals. In Yang et al. (2018)
the use of the deep learning network (DLN) to remove ocular
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artifacts (OA) in EEG signals was investigated. The proposed
method consists of an offline stage and an online stage. In the
offline stage, training samples without OAs were intercepted and
used to train a DLN to reconstruct the EEG signals. In the
online stage, trained DLN was used as a filter to automatically
remove OAs from contaminated EEG signals. The advantages
of the proposed method are the non-use of additional EOG
reference signals, the possibility of analyzing any number of
EEG channels, time savings, and strong generalizability. The
proposed method was compared with the classic independent
component analysis (ICA), kurtosis-ICA (K-ICA), second-order
blind identification (SOBI), and a shallow network method.
Experimental results show that the proposed method performs
better even for very noisy EEG.

A large number of teaching examples are needed to train
the CNN. Unfortunately, the number of recorded EEG signal
examples is often too small. Therefore, there is a need to use
a technique called augmentation to increase the number of
training examples. Various methods of augmentation of EEG
signals are presented in Lashgari et al. (2020). In Lashgari et al.
(2020) the authors indicate that the most popular methods of
augmentation are those based on noise addition, GAN networks,
sliding window, sampling, Fourier transform, recombination
of segmentation. Wang et al. (2018) added Gaussian white
noise to training data (in the time domain) to obtain new
samples for an emotion-recognition task. Differential entropy
(DE) features were used to train classifiers. For EEG signals,
the DE features are equivalent to the logarithm of the energy
spectrum in the delta (1–3 Hz), theta (4–7 Hz), alpha (8–
13 Hz), beta (14–30 Hz), and gamma (31–50 Hz) frequency
bands. The authors opted for Gaussian noise due to concerns
that adding some local noise, such as Poisson or salt-and-pepper,
may change the intrinsic features of EEG signals. In Wang et al.
(2018) two basic data augmentation approaches used in image
processing were implemented: geometric transformation and
noise addition. In Luo et al. (2020) methods based on two deep
generative models, variational autoencoder (VAE) and generative
adversarial network (GAN), and two data augmentation
strategies were proposed. To evaluate the effectiveness of these
methods, a systematic experimental study was carried out on
two public EEG datasets for emotion recognition, namely SEED
and DEAP. First, realistic-like EEG training data in two forms
were generated: power spectral density and differential entropy.
Then, the original training data sets were augmented with a
different number of realistic-like generated EEG data. Finally,
support vector machines and deep neural networks with shortcut
layers were trained to build affective models using the original
and augmented training datasets. In Bao et al. (2021) a data
augmentation model named VAE-D2GAN was proposed for
EEG-based emotion recognition using a generative adversarial
network. EEG features representing different emotions were
extracted as topological maps of differential entropy (DE) in five
classical frequency bands. The proposed model was designed
to learn the distributions of these features for real EEG signals
and generate artificial samples for training. The variational
autoencoder (VAE) architecture can learn the spatial distribution
of the actual data through a latent vector and is introduced

into the dual discriminator GAN to improve the diversity of the
generated artificial samples.

Aim of the Paper
We propose a method based on the convolutional neural network
(CNN) that allows the removal of eye blink artifacts from the EEG
signal. The results obtained with the use of CNN were compared
with the most popular methods of artifact removal – ICA and
regression. For the implementation of the CNN-based method,
it was necessary to achieve the intermediate goal, which was the
implementation of the EEG signal and EOG artifact generators.
The use of only a real EEG signal does not give the possibility of
direct evaluation of the obtained results because we do not have a
reference (it is not known what the real EEG signal is). Generated
signals also enable better training of the neural network.

Signal fragments from 2 channels are fed to the CNN input.
The first channel contains the eye blink signal and the second
channel contains the EEG signal from which we want to remove
the eye blink artifacts. The idea is presented in Figure 1. In this
case, at the CNN input, fragments of the signal from the Fp1
electrode (eye blink artifacts) and the signal from which we want
to eliminate blinks (the C3 electrode) are fed. CNN eliminates the
eye blink signal (C3 – CNN). Then the input signals are shifted.
This operation can be performed for each electrode.

The article is organized as follows. In the section “Materials,”
two types of EEG/EOG signals used during the experiments
were presented: real and generated signals containing eye blink
artifacts. Details on generating artificial EEG signals with eye
blink artifacts are also provided. The section “Methods” describes
the structure of the CNN proposed to remove artifacts and
details of training the network. Furthermore, two commonly
used methods for removing eye blink artifacts are presented,
i.e., independent component analysis and regression. The section
“Results and Discussion” presents the results of the comparison
of ICA, REG, and CNN methods for removing eye blink
artifacts. The advantages and disadvantages of using CNN for this
task are discussed.

MATERIALS

To develop and evaluate eye blink artifact removal algorithms,
we decided to use two datasets. The first set contains the real
signals recorded for the N-back experiment. The N-back task
is a standard method used to examine memory and attention
(Salimi et al., 2020). This data set has a long duration and contains
registrations from multiple users. Thanks to our algorithm, it
was possible to generate a second set of artificial EEG/EOG
signals. This data set was of particular importance for CNN
training and testing.

Real Electroencephalography Signals
Real EEG signals were recorded during an EEG test conducted
with 20 people during an N-back task. EEG signals were recorded
for the purposes of previous research related to the detection
of user fatigue (Kołodziej et al., 2020). However, its use for
research on methods to remove EB artifacts was not accidental.
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FIGURE 1 | The idea of using the CNN to eliminate artifacts.

EEG signals were recorded for a relatively long time. There are
numerous eye blink (EB) artifacts in the EEG signal. Participants
(women and men) were 19–25 years old. They were informed
about the overall purpose and organization of the experiment.
The whole experiment lasted about 80 min and the experiment
was always carried out at 10:00 am in a single session. Participants
were recruited through an advertisement on the Internet and
social media. During recruitment, they were asked to complete
a survey via the Internet to collect basic information about
them, such as age, sex, education, and presence/absence of
neurological and psychiatric diseases. We only invited those who
met the basic requirements (including, but not limited to, written
permission to participate in the experiment and confirmation of
no medical burden).

The letters were presented to the participants on a computer
screen (one at a time). The task was to indicate whether the
letter presented currently is the same as N = 2 letters back.
Each participant completed the N-back task for 60 min. To
register the EEG signal, we used a professional biomedical signal
amplifier g.USBamp and an EEG cap equipped with 16 electrodes.
The distribution of electrodes and their names are presented in
Figure 2. The sampling frequency was 512 Hz. Electrodes were
arranged according to the international 10–20 system: Oz, O2,
O1, Pz, P4, P3, C4, C3, Cz, F8, F7, Fz, F4, F3, Fp1, and F9. No
preprocessing methods were used.

A fragment of the EEG signal from one of the subjects is
shown in Figure 3. Eye blink artifacts are very clearly visible,
located around 10 and 12.5 s. The highest amplitudes of artifacts
were recorded on the Fp1 and P3 electrodes. The propagation of
artifacts to other electrodes is also visible.

FIGURE 2 | Electrodes and their location on the head.
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FIGURE 3 | Recorded EEG signal fragment.

The 1-s window presenting the signal fragment from Figure 3
is shown in Figure 4. It is a zoom-in on the eye blink
artifact occurrence.

Generated Electroencephalography/
Electrooculography Signals
The real EEG signal contains various types of artifacts that
appear when the test is performed. However, we do not
have a reference signal from which to conclude what the
EEG signal should look like after the artifacts have been
removed. To enable such an evaluation, we have developed
software that allows the generation of artificial EEG signals
without artifacts and the addition of EOG artifacts to them.
Due to this, it is possible to compare the performance
of each of the analyzed methods (we have an EEG signal
contaminated with artifacts and a clean EEG signal that should be
obtained after cleaning). Statistical parameters of the generated
signals were determined on the basis of observations of real
signals recorded during the tests. These are the standard
deviation (5–15 µV), the peak-to-peak value (45–100 µV), the
interval between the appearance of eye blinks (0.5–4 s), the
amplitude of eye blinks (0–650 µV), and the length of the
signal in seconds.

The first step is to generate an EEG signal and then
add artifacts with the appropriate electrode-dependent gain
to it. The EEG signal can be generated in many ways. One
of them is to get pink noise with given parameters. Pink
noise, also known as 1/f noise, is a random stochastic process
or a signal whose mean power spectral density is inversely

proportional to frequency (Isar and Gajitzki, 2016). According
to Voytek et al. (2015), many natural phenomena, including
electroencephalography, can be described by 1/f noise. We
decided to use a different method of EEG signal generation
(Sakai et al., 2017). This method generates an EEG signal based
on random modifications of the spectrum of a real signal.
As the EEG reference signal, the signal fragment from an
electrode subjected to minimal EOG interference (e.g., the Cz
electrode) is selected. Thus, the generated signal corresponds
best to the undisturbed EEG signal. The signal generation
process begins with the calculation of the spectrum of a given
fragment of the real EEG signal using the fast Fourier transform
(FFT). Then, random coefficients are generated and a modified
spectrum is created by adding/subtracting the random values
to the FFT coefficients of the real EEG signal. The spectrum-
modifying coefficients are in the range of ±2 µV. The last
step is to apply the inverse Fourier transform (IFFT), which
enables us to obtain a time-domain signal similar to the
real EEG signal. The generated EEG signal has a spectrum
similar to pink noise.

The generated EEG signal is in the form of a 1-s window that
can be combined into a signal with a predetermined number of
seconds. The generation algorithm ensures that the amplitude
differences at the border of the joined windows are not too large.
The incoming signal can differ up to 7 µV from the last sample of
the signal already created – this value was determined based on
the observation of real signals. The generated signal (on different
electrodes) based on the real EEG signal from the Cz electrode
is shown in Figure 5. The spectra of the individual signals are
also shown there.
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FIGURE 4 | The EEG signal fragment containing the occurrence of an eye blink artifact.

The next step is to generate eye blink artifacts, according to the
parameters determined on the basis of observation of real signals.
The propagation of artifacts on the EEG signal on individual
electrodes is very important here. For this purpose, the range of
coefficients responsible for artifact propagation was established
for each of the electrodes, depending on their position. Artifacts
were added to the pure signals after appropriate amplification or
attenuation, depending on the coefficient specified for the given
electrode. The eye blink artifact resembles the shape of a Gaussian
window and this shape was used to generate the artifacts (Alquran
et al., 2019). Eye blink artifacts were generated and added to the
clean signal (with an appropriate time interval). Figure 6 presents
5 s of pure EEG signal and EEG signal with eye blink artifacts
propagated on individual electrodes.

Zoom in on the EEG signal (Figure 6) containing the
occurrence of the EOG artifact and its propagation to the
remaining electrodes is shown in Figure 7.

The generated signals allow the check and comparison of
individual methods because we have a reference in the form of a
pure EEG signal. In the case of cleaning the real EEG signal from
artifacts, it is not possible to compare the waveforms with the
reference signal (pure EEG) because it is not known. Artificially
generated signals were also used to train CNN.

METHODS

In our research, we compared the use of the CNN method
to remove EB artifacts with the two best-known methods:
regression (REG) and independent component analysis (ICA).

Each method works differently. The ICA method tries to find the
most independent components. Based on expert knowledge or
quantitative measures, we are able to identify ICA components
responsible for artifacts and remove them. The regression
method removes artifacts from individual channels. For this, it
is required to indicate the signal in which the artifacts are found.
We assumed that this is the signal from the Fp1 electrode.

Independent Component Analysis
The ICA method (Cheng et al., 2019; Jiang et al., 2019) allows
the removal of artifacts from the EEG signal without the need
for a reference channel. The ICA method works by decomposing
the recorded signal into independent components. In principle,
the components will include those responsible for the sources
of artifacts. Such artifact-containing components are rejected
automatically or by an expert, and the signal is then reconstructed
by mixing the remaining components. As a result, we get signals
without artifacts. The problem can be described by the equation
(Jiang et al., 2019):

X = W ∗ S

We assume that X is the matrix of signals recorded by the
measuring electrodes, W is the mixing matrix, and S is the matrix
of source signals. After transforming the equation, we get the
unknown source signals:

S = W−1
∗ X

The assumption of the ICA method (Jiang et al., 2019) is the
statistical independence of the source signals. The aim of ICA
is to find such a mixing matrix W that allows one to obtain the
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FIGURE 5 | The real EEG signal from the Cz electrode, its spectrum, and the artificial signals generated on its basis along with the spectra.

most independent result signals. If the components responsible
for artifacts (eye blink or other) are found, it is enough to reset
the appropriate weights of the W matrix and then mix the other
components. The matrix Wm is the modified mixing matrix.

X = Wm ∗ S

Before making the transformation, the low frequencies
were filtered out (high-pass filtering, cutoff frequency 1 Hz,
Butterworth filter order 6). We decided to choose 15 ICA
components. Two components 0 and 1 (associated with artifacts)
were removed and then the signal without these components was
reconstructed. Examples of the components calculated for the

real signal are shown in Figure 8. Each component was visually
assessed and the eye blink components were selected.

Linear Regression
The regression method, according to Urigüen and Zapirain
(2015), was very often used to remove EOG artifacts in the
1990s due to its simplicity and low computational requirements.
Regression is still a popular and commonly used method of
artifact removal (Ranjan et al., 2021). The method requires a
reference channel, which was chosen by us as Fp1 (the electrode
closest to the eye). The regression method assumes (Urigüen and
Zapirain, 2015) that each EEG measurement channel is the sum
of a certain clean source signal and a reference signal (containing
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FIGURE 6 | Artificially generated EEG and EEG + EOG signals.

artifacts). The aim of regression is to estimate the optimal value
of the propagation coefficient for each of the electrodes (except
the reference one), allowing proper removal of artifacts. Removal
of artifacts is the subtraction of a certain amount of the EOG
reference signal (from the Fp1 electrode) from the contaminated
EEG. As a result, we obtained a cleaned signal. In general, the
regression equation (Jiang et al., 2019) can be written as:

EEGclear = EEGnoised − B ∗ EOGref

EEGclear is the artifact-cleaned EEG signal, EEGnoised is the signal
before artifact removal, B is the propagation factor, and EEGref is
the EOG reference signal. With multiple regression (Urigüen and
Zapirain, 2015), the signals measured on individual electrodes
are influenced by more than one reference signal, for example,
horizontal, vertical, or radial ocular artifacts.

The linear regression method used by us takes the data from
the Fp1 electrode (EOGref ) and subtracts from each sample the
mean of the signal recorded on that channel (EOGref _maen).
Assuming that we have N samples, we can represent this as an
equation:

∀n ∈ {1, ..., N} EOGref (n) = EOGref (n)− EOGref _maen

The signal is then multiplied by its transposition to compute the
cov factor.

cov = EOGref ∗ EOGref
T

In the next step, for each of the channels (separately, in order
to reduce memory use), data is collected, and the average is
calculated, which is subtracted from the entire signal for a given

channel, similarly to the reference channel. To remove artifacts,
from a channel (other than Fp1) containing N samples, the
recorded EEGnoised signal with an average equal to EOGnoised_maen
is transformed as follows:

∀n ∈ {1, ..., N} EOGnoised (n) = EOGnoised (n)− EOGnoised_maen

Then the coefficient B is calculated as a solution to the linear
equation:

cov ∗ B = EOGref ∗ EOGnoised
T

After transforming the equation we get:

B = cov−1
∗ EOGref ∗ EOGnoised

T

In the next step, the reference signal multiplied by factor B is
subtracted from the signal from the analyzed channel (electrode).
In this way, we obtain a signal cleaned of artifacts for a given
electrode (EEGclear).

EEGclear = EOGnoised − B ∗ EOGref

The algorithm works in this way until all channels are cleared
(apart from the reference channel, which in our case is Fp1).

Convolutional Neural Network
Convolutional neural networks (CNN) (Arora et al., 2020) are
most often used in problems related to computer vision. These
networks can be used not only for classification but also for
regression problems. A characteristic feature of CNN compared
to the traditional neural network is the fact that during its
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FIGURE 7 | Close up on the eye blink artifact.

FIGURE 8 | ICA components for the real signal sample.

operation it focuses on the extraction of features (Arora et al.,
2020). Each CNN consists of four basic layers – the convolution
layer (filters with given shapes that allow for the extraction
of features), pooling layer (they are used to reduce the size
of analyzed data, we distinguish several types of pooling, for

example, MaxPooling or Average Pooling), fully connected layer
and loss function (responsible for calculating errors between the
current and the desired network output). There are many CNN
structures, they can vary in the number of layers, shape and size
of filters, activation functions, and other parameters. Examples
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of very popular networks are AlexNet, GoogLeNet, and VGGNet
(Arora et al., 2020; Mutasa et al., 2021).

The operation of CNN is broken down into several stages
(Mutasa et al., 2021). First, filters allow the designation of a
feature map. This is done by the convolution layer (Vinayakumar
et al., 2017). It is a key component of CNN. The process
is repeated several times to filter the feature maps obtained
with the use of subsequent convolutional kernels. Characteristic
parameters of the convolution layer are the number and size
of filters in individual layers, the step by which the window
corresponding to the filter is moved (Murata et al., 2018).
The pooling layer is usually placed between two convolutional
layers (Zhao and Wang, 2019). The layer performs the pooling
operation on feature maps, i.e., the reduction of data size while
maintaining the most important features. For this purpose, the
data is divided into cells of equal size and a certain value is
kept for each cell (maximal – Max Pooling, average – Average
Pooling). The pooling layer has two main hyperparameters.
These are the size of the cell into which we divide the data and the
step by which individual cells will be separated from each other.
The ReLU correction layer allows you to convert all negative
values to zero. It comes as an activation function (Tan and Pan,
2019). The fully connected layer is often the last layer of CNN.
A feature vector is fed as an input, which is transformed into a
new vector using a linear combination and an activation function.
The network output is compared with the training data set and
the resulting loss, depending on its degree, causes the network
weights to be updated using gradient and backpropagation.
During the training of the neural network, this process is repeated
many times to improve the quality of the model.

Selecting the correct CNN structure requires a lot of research.
We focus on ensuring a compromise between operating time
and the effectiveness of cleaning the signal from artifacts. Due
to the one-dimensional input data (signal to be cleaned and
reference signal from Fp1), one-dimensional filters were used.
Two convolutional layers were created. In the first one, the
number of filters was 20, and the kernel size was assumed to be
40. The filter shift step was set to 2. The second convolution layer
contained 10 filters and the kernel size was set to 20. The shift step
was 1. In both convolutional layers, the activation function was
the ReLU. Next, a densely connected layer was added, which also
defined the size of the output data (1-s window, 512 samples). The

TABLE 1 | The structure of the proposed CNN.

Layer Parameters

Input Layer Input shape (512,2)

Convolutional_1D_1 20 filters 40 × 1 convolutions with stride 2 and
padding same

Relu_1 ReLU

Convolutional_1D_2 10 filters 20 × 1 convolutions with stride 1 and
padding same

Relu_2 ReLU

Flatten_3 Flatten layer – flattens the input to fully connected
layer

Dense Output Layer Output layer with desired clear signal shape (512)

ADAM optimizer was used in the training process. Table 1 shows
the structure of the convolutional network. The network training
set contained 70,000 1-s EEG/EOG signal windows, which were
broken down into training data (80%) and validation data (20%).

Training the CNN required the determination of the number
of epochs and examples that were fed to the input during
subsequent iterations (batch size). The selected batch size was
128. This allowed for the use of less memory. Furthermore, more
frequent updates of the network weights were performed, which
accelerated training. The number of epochs used in CNN training
was 10. We considered adding batch normalization layers, but it
did not improve the performance of the network. Therefore, we
decided to omit them. The network structure generated with the
use of the tensorflow packet is shown in Figure 9.

The ADAM optimization algorithm was used in the learning
process. The parameters selected during the training are
summarized in Table 2. The chosen loss function was the
mean square error.

With the use of Learning rate we can determine how much
weights will be modified in subsequent training iterations (Yoo
et al., 2019). Beta_1 and Beta_2 are hyperparameters used for
first- and second-order moment estimation, respectively. Thanks
to them, it is possible to correct the moments by removing the
bias (Şen and Özkurt, 2020). The epsilon parameter is responsible

FIGURE 9 | Structure of the proposed neural network.

TABLE 2 | ADAM optimization function parameters.

Parameter Value

Learning rate 0.001

Beta_1 0.9

Beta_2 0.999

Epsilon 1e-07
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for preventing a possible division by zero when updating the
weights. Therefore, very low epsilon values should be chosen in
such a way as not to affect the result and, at the same time, to
ensure no division by zero.

RESULTS AND DISCUSSION

To evaluate the effectiveness of the proposed CNN method for
removing eye blink artifacts, comparisons were made with the
ICA and regression methods. To be able to compare the methods,
a set of EEG signals and a set of signals containing eye blink
artifacts were generated. The pure EEG signal served as the
reference signal. Then, ten 1-s windows containing EOG artifacts
were generated. For each window, statistical coefficients (Ckk,
CFp1 MAPE, RMSE, and Skewness) were calculated, allowing a
comparison of the effectiveness of artifact removal.

The Ckk is the correlation between the cleaned signal (with
the use of one of the methods – CNN, ICA, and regression) and
the original signal on the electrode k. The measure used is the
Pearson correlation. The higher the absolute value of the Ckk, the
better, because the signal after cleaning is closer to the real signal.
CFp1 is the correlation between the samples of the signal from the
Fp1 (reference) electrode and the samples of the cleaned signal
for a specific electrode. In general, it is better to keep the CFp1
value as low as possible. MAPE determines the mean percentage
error between the reference signal (EEG) and the one cleared by
an algorithm. It is calculated as the arithmetic mean of the sum of
the absolute values of the differences between the samples from
the real signal and the cleaned signal, related to the real signal.

MAPE
(
y, ŷ

)
=

1
nsamples

nsamples−1∑
i = 0

|yi − ŷi|∣∣yi
∣∣

The number of inputs is denoted by nsamples, yi is the value for
the i-th sample, and ŷi is the model predicted value for the i-th
sample. RMSE is the root mean square error. It is calculated as
the root of the arithmetic mean of the sum of the squares of the
differences between the samples of the raw signal (EEG) and the
signal cleaned by the given method.

MSE
(
y, ŷ

)
=

1
nsamples

nsamples−1∑
i = 0

(
yi − ŷi
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√
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)
MAPE and MSE errors should be kept as low as possible. The
Skewness describes the skewness calculated for the cleaned signal
using a given method. For normally distributed data (perfectly
symmetric distribution), the skewness should be zero. If skewness
is greater than zero, the largest number of data is on the left side
of the curve representing the probability distribution. A skewness
that is different from zero may indicate an existing eye blink
artifact (Xiang et al., 2020).

We calculated Ckk, CFp1, MAPE, RMSE, and Skewness for
all electrodes and all subjects. Detailed results are presented

in Supplementary Appendix 1. The calculated values of the
coefficients are plotted on the head surface (Figures 10–14). Such
a representation allows for easier comparison of the results.

Figure 10 shows the Ckk value plotted on the head surface.
A great similarity can be observed in terms of the distribution
and values for the CNN and ICA methods. On the other hand,
higher values of the Ckk coefficient occur for the REG method.

Figure 11 shows the values of CFp1 plotted on the head surface.
The lowest values of the coefficients are observed for the REG
method. This is due to the principle of the REG method, that
is, minimizing the correlation between individual electrodes and
the Fp1 electrode (associated with eye blink artifacts). We can
observe an increase in the CFp1 value for the electrodes at the front
of the head for the CNN method. On the other hand, lower values
of CFp1 can be observed for electrodes placed in the back of the
head. For the ICA method, the distribution of the CFp1 coefficient
is more homogeneous. In this case we did not observe negative
values of the CFp1 coefficient.

Figure 12 shows the Skewness plotted on the surface of the
head. The smallest disproportions of the coefficient values (close
to zero) are observed for the ICA and REG methods. However,
we can observe significant disproportions for the CNN method.
For the CNN method, we can observe positive values of the
skewness coefficient for the electrodes at the front of the head,
while negative values for the electrodes at the back of the head, in
particular for the electrodes O1, O2, and Oz.

Figures 13, 14 show the RMSE and MAPE errors. We can
observe an increase in the values of the errors for the electrodes
in the front of the head for the ICA and REG methods. Much
lower values of the RMSE and MAPE errors can be observed
for the CNN method, especially in the front part of the head.
We observe lower values of the MAPE error for the entire
head area for the CNN method compared to the ICA and
REG methods. In our opinion, the MAPE/RMSE measure best
describes the effectiveness of artifact removal as it relates to the
reference signal.

To discuss in more detail the values obtained for Ckk, CFp1,
MAPE, RMSE and Skewness, four electrodes were selected,
located in the central, parietal, frontal, and occipital parts of the
head: Cz, P3, F3, and Oz. The Ckk, CFp1, MAPE, RMSE, and
Skewness values for electrodes Cz, P3, F3, and Oz are presented
in Tables 3–6.

Table 3 presents the coefficients related to cleaning the signal
from the Cz electrode. This electrode is located in the center of
the head. In this case, very good results achieved by the CNN
method can be observed. The correlation Ckk (0.93) is very high.
The errors MAPE (0.805) and RMSE (2.935) have low values.
The CFp1 coefficient (−0.027) is low, which confirms the correct
elimination of eye blink artifacts.

Table 4 shows the coefficients related to cleaning the signal
from the P3 electrode. The electrode is located on the left side
of the central part of the head. You can also notice very good
removal of artifacts using the CNN method. The cleaned and
real EEG signals are strongly, positively correlated – the Ckk
coefficient is 0.869. The MAPE (1.219) and RMSE (4.381) errors
for the CNN method are the lowest among the methods analyzed.
The Skewness coefficient (−0.018) is also the smallest – it proves
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FIGURE 10 | The average value of Ckk coefficient plotted on the head surface.

FIGURE 11 | The average value of CFp1 coefficient plotted on the head surface.

FIGURE 12 | The average value of Skewness coefficient plotted on the surface of the head.

that the distribution is even. The correlation with the Fp1
electrode is negative and reaches values close to the ICA method
(CFp1 equal to −0.321). In this case, the CNN method turned
out to be comparable (and even better in terms of errors) to
the regression method. Additionally, the ICA method introduced
changes to the signal skewness, which is not desirable for proper
signal cleaning.

Table 5 presents the coefficients related to the cleaning of the
signals from the F3 electrode. This electrode is located in the
left front of the head. In this case, the CNN cleaning results
are comparable to those of ICA. The CNN method achieved
significantly smaller MAPE (2.712) and RMSE (11.975) errors
compared to the other methods. However, the obtained values
of Ckk (0.508) and a relatively high positive correlation with
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FIGURE 13 | The average value of RMSE coefficient plotted on the surface of the head.

FIGURE 14 | The mean value of MAPE coefficient plotted on the head surface.

the Fp1 reference electrode (CFp1 equal to 0.790) indicate partial
removal of artifacts. Furthermore, the Skewness index for the
CNN method is high (1.499), which may indicate the existence
of artifacts in the signal despite attempts to clean it.

Table 6 presents the average values of the coefficients for the
Oz electrode. This electrode is located on the back of the subject’s
head. In this case, the advantage of the ICA and regression
methods over CNN can be observed. The Ckk coefficient that
describes the correlation between the cleaned and the original
signal is much lower for CNN (0.556) than for the other

TABLE 3 | The averaged values of Ckk , CFp1, MAPE, RMSE, and Skewness for
the Cz electrode.

Method Ckk CFp1 MAPE RMSE Skewness

CNN 0.930 −0.027 0.805 2.935 0.037

ICA 0.692 0.481 4.485 13.140 −0.113

REG 0.934 <0.001 4.795 12.145 −0.051

TABLE 4 | The averaged values of Ckk , CFp1, MAPE, RMSE, and Skewness for
the P3 electrode.

Method Ckk CFp1 MAPE RMSE Skewness

CNN 0.869 −0.321 1.219 4.381 −0.018

ICA 0.872 0.313 3.952 7.763 −0.157

REG 0.974 <0.001 3.010 6.832 −0.079

methods (0.944 for ICA and 0.980 for regression). This means
that there is a discrepancy between the cleaned signal and the
original one. The other coefficients, MAPE equal to 2.810 and
RMSE 10.978, are also high for the CNN method. The CFp1
coefficient indicates a high content of artifacts in the cleaned
signal – the correlation of the cleaned signals on individual
electrodes with the Fp1 reference electrode is high (−0.725). The
Skewness for the CNN method (−0.875) also indicates a higher
occurrence of artifacts than for the ICA (−0.073) and regression
methods (−0.036).

TABLE 5 | The averaged values of Ckk , CFp1, MAPE, RMSE, and Skewness for
the F3 electrode.

Method Ckk CFp1 MAPE RMSE Skewness

CNN 0.508 0.790 2.712 11.975 1.499

ICA 0.567 0.685 10.650 22.356 0.092

REG 0.872 <0.001 10.115 19.954 0.084

TABLE 6 | The averaged values of Ckk, CFp1, MAPE, RMSE, and Skewness for
the Oz electrode.

Method Ckk CFp1 MAPE RMSE Skewness

CNN 0.556 −0.725 2.810 10.978 −0.875

ICA 0.944 −0.006 1.062 3.402 −0.073

REG 0.980 <0.001 0.645 1.719 −0.036
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FIGURE 15 | Artificially generated 1-s window of pure EEG, EEG + EOG, and cleaned signal using ICA, regression, CNN methods. The letter A represents the
moment the blink artifact occurred.

Analyzing Tables 3–6, it can be seen that for the CNN method,
the Ckk coefficient is high for the Cz (0.93) and P3 (0.869)
electrodes, which means that the signals are cleaned properly.
A high correlation indicates a strong similarity between the
cleaned signal and the original. The ICA and CNN methods
are distinguished by relatively low MAPE and RMSE errors (for
3 out of 4 electrodes CNN achieves much lower errors). The
cleaned signals are strongly correlated with the original, and the
Ckk coefficients are high (for the Cz electrode −0.93, for the
P3 electrode −0.869). Furthermore, cleaned signals are poorly
correlated with the Fp1 reference electrode.

Figure 15 shows the artificially generated 1-s window (512
samples) of EEG, EEG + EOG, and cleaned signals using each
of the tested methods – CNN, ICA, and regression. In the case
of generated signals, the CNN changes the polarization of the
Oz, O2, and O1 electrodes at the place of the artifacts (marked
A in Figure 15) – this is not the desired phenomenon. Figure 5
shows the differences in the cleaned signals obtained with the
use of the tested methods. You can observe discrepancies in the
cleaned signal using the ICA method in relation to the others, for
example, electrodes F7, F8, and Fz.

Figure 16 shows the spectrum of the signal from the Cz
electrode (presented in Figure 15). EOG signals (Banerjee et al.,
2013) are in the range of 0.1–20 Hz. In Figure 16, it can be seen
that all the methods eliminated low-frequency amplitudes. The
CNN-based method performed very well. The spectrum of the
cleaned signal is closest to the original one. It should be noted
that the ICA method introduced a significant distortion of the
spectrum for 5–10 Hz.

Figure 17 shows a close-up of the signal from the Cz electrode.
There is a noticeable difference in the operation of ICA and
other methods visible in the times A, B, and C marked in
Figure 17. Changes in the signals for A and C are caused by the
presence of a constant component – in many cases of EEG signal
analysis, it does not matter. It can also be seen that the highest
coverage of signals with the original EEG (correct cleaning) is
in the case of the regression method and CNN. In the part
marked B, we can observe a significant modification of the signal
using the ICA method.

Figure 18 shows the cleaning effect on the real EEG signal
(user S03). It can be seen that artifacts from the real EEG signal
are correctly removed. The ICA method, as described above, also
cleans the signal on the reference electrode. It can be seen that the
removal of artifacts from the Fp1 reference electrode with ICA is
much worse than the cleaning of signals on other electrodes.

Figure 19 shows the spectrum of the signal from the Cz
electrode (presented in Figure 18). There is a visible decrease in
the amplitudes of successive bands of the spectrum in the low-
frequency range, which indicates the correct operation of the
methods used to eliminate eye blink artifacts. It can be seen that
all the methods allow us to obtain a similar spectrum.

Figure 20 shows a close-up of the signals recorded on
electrode Cz (presented in Figure 18). The figure shows two eye
blink artifacts labeled A and B. The first was correctly removed
with each of the analyzed methods. In the case of B, it can be
seen that the artifact removal using the ICA method was not
complete. Much better results were obtained using CNN and the
regression method.
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FIGURE 16 | The spectrum of the signal from the Cz electrode.

FIGURE 17 | A fragment of the simulated EEG signal for the Cz electrode. The letters A–C represent selected moments: A and C the EEG signal fragment without
artifacts and B with an eye blink artifact.

The above discussion shows that the application of the CNN
method gives very good results in the removal of eye blink
artifacts, in particular for the electrodes placed in the central part

of the head. Therefore, the application of the proposed method
may be useful as a pre-processing in the analysis of the P300
potential or other event-related potential (ERP) occurring in the
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FIGURE 18 | The real EEG signal fragment recorded during the test and cleaned by ICA, regression, CNN method.

FIGURE 19 | An example of the spectrum of the signal from the Cz electrode.

central part of the head. To verify the usefulness of the method
to eliminate eye blink artifacts, we cleared the EEG signals from
the Cz electrode for the signals registered during the experiments
with the N-back task.

Table 7 presents the signal statistics – parameters describing
the real signal and signals after artifact removal for the Cz
electrode. Average values for standard deviation and peak-to-
peak values are shown for all 20 users. The results obtained
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FIGURE 20 | A fragment of the EEG signal recorded for the Cz electrode. The letters A and B represent the times when the blink artifact occurred.

indicate that the artifacts are correctly removed. The peak-to-
peak value for the tested methods is lower than that for the raw
signal containing the artifacts. The peak-to-peak value of the
signal before cleaning is 141.76 µV. After cleaning, it decreases
for each method (CNN – 88.8 µV, ICA – 93.73 µV, regression –
101 µV). These indicate a good performance of the CNN and
ICA methods and slightly worse for the regression method. In
addition, a reduction in the standard deviation can be seen for
each method. This indicates a reduction in the scattering of
samples in the cleaned signal compared to the raw signal. The
decrease is most noticeable for the CNN method (from 25.89 µV
to 15.197 µV) and regression (from 25.89 µV to 16.58 µV).

Eye blink artifacts produce much larger amplitudes than
potentials of interest in the EEG signal. This is especially true for
ERP. During the N-back task, the users watched the computer
monitor. Stimuli that are presented for a long time can cause
discomfort in the examined person and force the eyes to blink.
This is a natural activity. It happens that such blinks provoked
by the presented stimuli can be easily mistaken for the desired
potentials. Such an example can be observed in the case of
recorded signals. For user S03, about 0.4 s after the stimulus

TABLE 7 | Statistical parameters describing 3 s of the real and cleaned signals
(using CNN, ICA, and regression methods) for the Cz electrode.

Method Standard deviation Peak-peak

Real EEG 25.89 141.76

CNN 15.197 88.80

ICA 18.22 93.73

REG 16.58 101.00

presented, blinking of the eyes occurs very frequently and
regularly. It is observable on the FP1 electrode but also on Cz,
where we would expect, e.g., the P300 potential. Figure 21 shows
an example of averaged ERP after the N-back stimulus. ERP
without filtration (real) is shown in blue, orange – after removing
artifacts using CNN, green – after removing artifacts using the
ICA method, and red – after removing artifacts using regression.
Even averaging, which is standard in this type of analysis, does
not eliminate the problem of repetitive artifacts. This may result
in incorrect interpretation of potentials.

Next, we check the operating times of the CNN, ICA, and
regression algorithms implemented. We used the real signal
(S03_EEG), fragments of various lengths were selected – 10 s,
60 s, 10 min, 30 min, and 50 min. The operation of the methods

FIGURE 21 | Averaged ERP potential for the user S03 – electrode Cz.
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TABLE 8 | Real signal cleaning times using CNN, ICA, and regression.

Duration CNN (s) ICA (s) REG (s)

10 s 5.29 0.437 0.043

60 s 32.414 0.662 0.0799

10 min 335.13 5.33 0.489

30 min 984.10 18.681 1.373

50 min 1578.91 19.690 2.176

was tested using a computer equipped with an Intel Core i7-
9750H 2.60 GHz processor, 32 GB RAM, and a GeForce GTX
1660 Ti graphics card with 6 GB GDDR6 memory. Table 8 shows
the operating times of each method needed to clean EEG signals
of various lengths.

According to the data in Table 8, it can be seen that the CNN
method is the slowest method. It takes about 26 min to clean
1 h of an EEG signal with 16 channels. The fastest method is
regression – for a signal lasting 50 min, the cleaning lasted 2.176 s.
The time differences are due to the computational complexity of
the individual methods. Despite long training and long operating
time, the CNN method gave very good results in cleaning the
signals from the electrodes located in the center and slightly on
the back of the head. The RMSE and MAPE errors for these
electrodes are much lower than those obtained when using other
methods. In the case of analysis of real signals, the CNN method
does not introduce distortion into the cleaned signal, which
shows its advantage over the ICA method.

It should be noted that in experiments we used a signal
database recorded previously with a fixed sampling frequency
(fs = 512 Hz). The trained CNN for set conditions cannot be used
for differently recorded EEG signals. Changing the sampling rate
or changing the amplifier has to be associated with retraining the
CNN. However, the results presented show that it is a promising
method of artifact removal. In future experiments, the authors
plan to record EEG signals, EOG signals, and muscle activity.
The network could then be trained not only to remove EB-type
artifacts, but also artifacts related to the movement of the eye,
facial muscles, and neck. Future research should also include
optimization of the number of samples of the EEG signal fed the
CNN. Currently, the number of samples is 512. This number of
samples is somewhat of a compromise between the signal time,
which may contain a blink pattern, and the number of samples
at the input of the network. Too many samples make it difficult
to train the network, but too few samples could not take into
account the shape of the eye blink.

CONCLUSION

Experiments have shown that the use of CNN method gives better
results in the task of removing eye blink artifacts than regression
methods or independent component analysis. The mean value
of the MAPE error for the CNN method was 4.69, for the ICA
method it was 7.84, and for the REG method it was 7.76. The
CNN method better removes eye blink artifacts, especially in the
central and parietal parts of the head. An example can be the

electrode Cz. In that case, for the CNN method, errors such as
MAPE (0.805) and RMSE (2.935) are much lower than for ICA
(MAPE = 4.485 RMSE = 13.140) and regression (MAPE = 4.795
RMSE = 12.145). Furthermore, visual inspection showed that
the ICA method introduces distortion in the shape of the EEG
signal. No such changes were observed for the regression method
and CNN. On the other hand, better artifact removal results
were obtained for ICA and regression methods when it comes
to electrodes placed in the occipital area of the head (O1, O2, and
Oz). In this case, the use of the CNN method is questionable. It
should be noted that the CNN method is much better suited for
offline removal of artifacts than online removal. This is because
we need to have a set of signals that are needed to train the
network. In addition, we need to train the network. The time
required on the CNN method to work on short EEG signals
is acceptable (a few minutes). For EEG signals that last several
hours, the analysis may be too time-consuming. Further research
should also consider other CNN neural network structures and
training the network using more examples and types of artifacts.
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Şen, S. Y., and Özkurt, N. (2020). “Convolutional neural network hyperparameter
tuning with adam optimizer for ECG classification,” in Proceeding of the 2020
Innovations in Intelligent Systems and Applications Conference (ASYU), 1–6.
doi: 10.1109/ASYU50717.2020.9259896

Sun, W., Su, Y., Wu, X., and Wu, X. (2020). A novel end-to-end 1D-ResCNN
model to remove artifact from EEG signals. Neurocomputing 404, 108–121.
doi: 10.1016/j.neucom.2020.04.029

Tan, Z., and Pan, P. (2019). “Network fault prediction based on CNN-LSTM
hybrid neural network,” in Proceeding of the 2019 International Conference
on Communications, Information System and Computer Engineering (CISCE)
(Haikou: IEEE), 486–490. doi: 10.1109/CISCE.2019.00113

Tosun, M., and Kasım, Ö (2020). Novel Eye-Blink Artefact Detection Algorithm
from Raw EEG Signals Using FCN-Based Semantic Segmentation Method
- Tosun - 2020 - IET Signal Processing - Wiley Online Library. Available
online at: https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-spr.2019.
0602 (accessed December 21, 2021).

Urigüen, J., and Zapirain, B. (2015). EEG artifact removal – state-of-the-art and
guidelines. J. Neural Eng. 12:031001. doi: 10.1088/1741-2560/12/3/031001

Vinayakumar, R., Soman, K. P., and Poornachandran, P. (2017). “Applying
convolutional neural network for network intrusion detection,” in Proceeding of
the 2017 International Conference on Advances in Computing, Communications
and Informatics (ICACCI) (Udupi: IEEE), 1222–1228. doi: 10.1109/ICACCI.
2017.8126009

Voytek, B., Kramer, M. A., Case, J., Lepage, K. Q., Tempesta, Z. R., Knight,
R. T., et al. (2015). Age-related changes in 1/f neural electrophysiological
noise. J. Neurosci. 35, 13257–13265. doi: 10.1523/JNEUROSCI.2332-
14.2015

Wang, F., Zhong, S., Peng, J., Jiang, J., and Liu, Y. (2018). “Data augmentation for
EEG-based emotion recognition with deep convolutional neural networks,” in
MultiMedia Modeling Lecture Notes in Computer Science, eds K. Schoeffmann,
T. H. Chalidabhongse, C. W. Ngo, S. Aramvith, N. E. O’Connor, Y.-S. Ho,
et al. (Cham: Springer International Publishing), 82–93. doi: 10.1007/978-3-
319-73600-6_8

Xiang, J., Maue, E., Fan, Y., Qi, L., Mangano, F. T., Greiner, H., et al. (2020).
Kurtosis and skewness of high-frequency brain signals are altered in paediatric
epilepsy. Brain Commun. 2:fcaa036. doi: 10.1093/braincomms/fcaa036

Yang, B., Duan, K., Fan, C., Hu, C., and Wang, J. (2018). Automatic ocular
artifacts removal in EEG using deep learning. Biomed. Signal Process. Control
43, 148–158. doi: 10.1016/j.bspc.2018.02.021

Yoo, J.-H., Yoon, H., Kim, H.-G., Yoon, H.-S., and Han, S.-S. (2019).
“Optimization of Hyper-parameter for CNN Model using Genetic Algorithm”,
in Proceedings of the 2019 1st International Conference on Electrical, Control and
Instrumentation Engineering (ICECIE) (Kuala Lumpur, Malaysia: IEEE), 1–6.
doi: 10.1109/ICECIE47765.2019.8974762

Zhang, C., Lian, Y., and Wang, G. (2020). “ARDER: an automatic EEG
artifacts detection and removal system,” in Proceeding of the 2020 27th IEEE
International Conference on Electronics, Circuits and Systems (ICECS), 1–2.
doi: 10.1109/ICECS49266.2020.9294865

Zhang, Y., Chen, J., Tan, J. H., Chen, Y., Chen, Y., Li, D., et al. (2020). An
investigation of deep learning models for EEG-based emotion recognition.
Front. Neurosci. 14:1344. doi: 10.3389/fnins.2020.622759

Zhao, J., and Wang, Z. (2019). “Study on the influence of the distribution
of convolution kernels,” in Proceeding of the 2019 IEEE 9th International
Conference on Electronics Information and Emergency Communication
(ICEIEC) (Beijing: IEEE), 1–4. doi: 10.1109/ICEIEC.2019.8784457

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Jurczak, Kołodziej and Majkowski. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 20 February 2022 | Volume 16 | Article 782367146

https://doi.org/10.1109/ASYU50717.2020.9259896
https://doi.org/10.1016/j.neucom.2020.04.029
https://doi.org/10.1109/CISCE.2019.00113
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-spr.2019.0602
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-spr.2019.0602
https://doi.org/10.1088/1741-2560/12/3/031001
https://doi.org/10.1109/ICACCI.2017.8126009
https://doi.org/10.1109/ICACCI.2017.8126009
https://doi.org/10.1523/JNEUROSCI.2332-14.2015
https://doi.org/10.1523/JNEUROSCI.2332-14.2015
https://doi.org/10.1007/978-3-319-73600-6_8
https://doi.org/10.1007/978-3-319-73600-6_8
https://doi.org/10.1093/braincomms/fcaa036
https://doi.org/10.1016/j.bspc.2018.02.021
https://doi.org/10.1109/ICECIE47765.2019.8974762
https://doi.org/10.1109/ICECS49266.2020.9294865
https://doi.org/10.3389/fnins.2020.622759
https://doi.org/10.1109/ICEIEC.2019.8784457
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	Currents in Biomedical Signals Processing - Methods and Applications
	Table of Contents
	Editorial: Currents in biomedical signals processing—methods and applications
	1. Introduction
	Author contributions
	Conflict of interest
	Publisher's note

	Not Just a Pot: Visual Episodic Memory in Cannabis Users and Polydrug Cannabis Users: ROC and ERP Preliminary Investigation
	Introduction
	Materials and Methods
	Participants
	Substance Use Assessment
	Procedure
	Experimental Task
	Signal Detection Theory
	EEG Recordings and Analysis


	Results
	Group Characteristics
	Behavioral Performance
	Electrophysiological Data
	Frontal Negativity
	Late Positive Component
	Regression Models


	Discussion
	Strengths and Limitations

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	A High Accuracy Electrographic Seizure Classifier Trained Using Semi-Supervised Labeling Applied to a Large Spectrogram Dataset
	Introduction
	Methods
	The RNS System
	ECoG Acquisition and Patient Selection
	Patient-Specific 2D Embedding and Clustering of ECoG Records
	Labeling of ECoG Records
	ECoG Preprocessing for Training CNN
	Model Training, Validation, and Testing
	Experiments to Test the ECoG-Channel Level and ECoG-Record Level Classification Performance of Trained ESC Models
	Gradient-Based Saliency Maps
	Trained Model's Generalizability to Other Epilepsy Datasets of Time-Series Brain Recordings
	Experiments to Characterize ESC Classification Performance as a Function of the Amount of Training Data

	Model Architectures, Training Hyperparameters, and Training Hardware
	Trained Model and Code Availabilty

	Results
	Semi-Supervised Labeling of ECoG Records
	ECoG Channel-Level and ECoG Record-Level Classification Performance of Trained ESC Models
	Model Performance on ECoG Channels From 20% Held-Out Patients
	Model Performance on ECoG Records From 80 Expert-Labeled Held-Out Patients
	Error Analysis
	Saliency Maps
	Model Generalizability to EEG Datasets Not Captured With the RNS System

	ESC Classification Performance as a Function of Amount of Training Data

	Discussion and Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	The Menstrual Cycle Alters Resting-State Cortical Activity: A Magnetoencephalography Study
	Introduction
	Materials and Methods
	Participants and Ethics
	Procedure
	MEG Scanning Details
	MEG Data Analysis
	Sensor-Level Data Processing
	Source-Level Analysis

	Statistical Analysis

	Results
	Sensor-Level Analysis (Spectral Parameters)
	Effect of Order
	Comparison 1: MP vs. OP
	Comparison 2: Proliferative Phase (Later Part of the Follicular Phase) vs. Secretory Phase (Luteal Phase)
	Age and Cycle Length

	Source-Level Analysis (Regional Oscillatory Intensity)
	Comparison 1: MP vs. OP
	Comparison 2: Proliferative Phase vs. Secretory Phase


	Discussion
	Spectral Parameters (Sensor-Level Analysis)
	Regional Oscillatory Intensity (Source-Level Analysis)
	Limitations

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Are You Able to Trust Me? Analysis of the Relationships Between Personality Traits and the Assessment of Attractiveness and Trust
	1. Introduction
	2. Tools
	3. Procedure
	4. Description of the Statistical Method
	5. Correctness of the Logistic Model
	6. Results
	7. Discussion
	8. Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	References

	What to Believe? Impact of Knowledge and Message Length on Neural Activity in Message Credibility Evaluation
	1. Introduction
	2. Related Work
	2.1. Basic Concepts: Credibility and Truth
	2.2. Message Credibility
	2.3. Experimental fMRI and EEG Findings

	3. Experiment Design
	3.1. Motivation for Experiment Design
	3.2. Controlling Participant Knowledge
	3.3. Participants and Ethical Commission's Permission
	3.4. Message Credibility Evaluation Task
	3.5. Controlling the Language Complexity of the Message
	3.6. Experimental Cases and Data
	3.7. Hypotheses
	3.8. EEG Measurements

	4. Experiment Results
	4.1. Impact of Note Length on Message Credibility Evaluations Without Prior Knowledge
	4.2. Method for Selecting Independent Model Variables
	4.3. Machine Classification Models of Message Credibility Evaluations
	4.3.1. Cognitive Bias for Long Notes

	4.4. Discussion and Limitations

	5. Conclusion and Future Work
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	References

	Psychophysiological, but Not Behavioral, Indicator of Working Memory Capacity Predicts Video Game Proficiency
	INTRODUCTION
	MATERIALS AND METHODS
	Participants
	Procedure
	Experimental Procedure
	Experimental Task—Change Detection Task Paradigm
	Training
	StarCraft II Training
	Starcraft II Introduction

	EEG Recording and Analysis
	Data Reduction and Analysis

	RESULTS
	Telemetric Data
	Behavioral Data
	Psychophysiological Data
	Psychophysiological, Telemetric, and Behavioral Data Relations

	DISCUSSION
	VEG Participants Were Able to Achieve the Biggest Improvement of Their VWM Capacity During the Study
	VEG Participants Were Able to Achieve the Biggest Game Proficiency
	CDA Component, K Value, and Game-Related Factor Analysis
	Game Proficiency Indicator Predicts VWM Capacity (K Value)

	DATA AVAILABILITY STATEMENT
	ETHICS STATEMENT
	AUTHOR CONTRIBUTIONS
	FUNDING
	REFERENCES

	Topological Data Analysis as a New Tool for EEG Processing
	1. Introduction
	2. Topological Data Analysis
	2.1. Definitions
	2.2. Topology and Homology in a Nutshell
	2.3. Persistent Homology

	3. TDA Applied on EEG Data
	4. Discussion
	Author Contributions
	Funding
	References

	Defining a Path Toward the Use of Fast-Scan Cyclic Voltammetry in Human Studies
	Introduction
	Investigational Use of Fast Scan Cyclic Voltammetry
	Large Animal Studies
	Scientific Rigor
	Novel Working Electrodes Designs
	Reference Electrode Biocompatibility and Stability
	Tissue Damage and Signal Integrity
	Spatial Resolution and Heterogeneity of Neurotransmitter Release
	Effects of Sterilization of Fast Scan Cyclic Voltammetry Electrodes on Recorded Signals
	Effects of the Operating Room Environment on Recorded Signals
	Challenges for Data Analysis

	Other Considerations and Technical Challenges to Fast Scan Cyclic Voltammetry in Humans
	Patient Safety
	Material Biocompatibility
	Electrochemical Reactions Due to Waveform Selection
	Sterilization Validation

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	References

	Morphology-Based Deep Learning Approach for Predicting Osteogenic Differentiation
	Introduction
	Materials and Methods
	Fabrication of Materials and Characterization of Surface Topography
	Cell Culture
	Data Acquisition and Pre-processing
	rBMSC Osteogenic Differentiation Assays
	Development of Convolutional Neural Networks
	Single-Cell Morphological Parameters and Support Vector Machines
	Evaluation of Model Performance
	Statistical Analysis

	Results
	Morphological Characteristics of rBMSCs Under LSCM
	Biochemical Changes and Morphology-Based Predictions During Osteogenic Differentiation Compared with OCNN
	Screening of Osteogenic Small Molecule Drugs
	OCNN Prediction and OCNN-Based Online Learning for Cells on Titanium Surfaces and Chemical Coatings

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Implementation of a Convolutional Neural Network for Eye Blink Artifacts Removal From the Electroencephalography Signal
	Introduction
	Motivation
	State of the Art
	Aim of the Paper

	Materials
	Real Electroencephalography Signals
	Generated Electroencephalography/ Electrooculography Signals

	Methods
	Independent Component Analysis
	Linear Regression
	Convolutional Neural Network

	Results and Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Supplementary Material
	References

	Back Cover



