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Editorial on the Research Topic

Glucocorticoid and bone: Friend or foe?
Introduction

Glucocorticoids have potent anti−inflammatory effects and their discovery in 1948

improved therapy for many diseases with chronic inflammation noticeably. However,

glucocorticoid treatment causes severe side effects, including bone loss and increased

fracture risk. The first studies on the interaction between glucocorticoids and bone were

published shortly after their discovery over 60 years ago and interest on the interaction

between endogenous and exogenous glucocorticoids and bone grows (Figure 1). The

collection of articles on the topic “Glucocorticoid and bone: friend or foe” consists of

original and review articles which summarize and elaborate on current knowledge of

basic mechanisms of glucocorticoid hormones and their receptors in bone cells and on

the clinical aspects of treatment and prevention of glucocorticoid-induced

osteoporosis (GIOP).
Exogenous and endogenous glucocorticoid
metabolism and bone

Endogenous glucocorticoid hormones are main mediators of stress responses and

besides regulating immune responses, they influence whole body homeostasis,

metabolism and tissue homeostasis including the skeletal system. The activity of

glucocorticoids within the cells is controlled by the enzymes 11b-hydroxysteroid
dehydrogenases 1 and 2 (11b-HSD1, 11b-HSD2) acting in opposing manners. 11b-
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FIGURE 1

Number of publications listed in pubmed on "glucocorticoids and bone" over the last 50 years.
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HSD1 converts the inactive hormone cortisone into the active

form cortisol, whereas 11b-HSD2 oxidizes cortisol into

cortisone. Local pre-receptor metabolism of glucocorticoids by

11ß-HSDs contributes to cell-type and tissue specific actions of

glucocorticoids that may influence metabolism and also bone

homeostasis. Martin et al. review the role of 11ß-HSD enzymes

and local metabolism in bone homeostasis and bone function

and discuss strategies how to modulate local glucocorticoid

metabolism in order to treat bone diseases.

Activated glucocorticoids bind to the glucocorticoid

receptor, a nuclear receptor that induces transactivation or

transrepression of different target genes depending on cell

types. Lee et al. discuss in their review the complexity of

glucocorticoid actions in different bone cell types on a

molecular level. They further summarize recent studies on

influences of therapeutic glucocorticoids on circadian rhythm

of endogenous glucocorticoid levels and the consequent impact

of the disturbed circadian rhythm on bone integrity.

The article of Gado et al. summarizes the effects and

molecular mechanisms of therapeutic glucocorticoids on bone

cells, specifically on osteoblasts and osteocytes and highlight

their implications for clinical therapy of GIOP.

The clinical impacts of endogenous hypercortisolism on

phosphate homeostasis are investigated by Bosman et al. in a

retrospective study on 99 patients with Cushing’s syndrome

(CS). 16% of patients with CS had hypophosphatemia, which

was associated with increased cortisol urinary excretion. In a

subset of patients, serum phosphate level increased significantly

after CS patients went into remission. The authors postulate that

possible mechanisms for urinary phosphate excretion could

include FGF23, BMI and parathyroid hormone levels.
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Treatment and prevention of
glucocorticoid-induced
osteoporosis

Hayes et al. addresses the difficulties and uncertainties on

starting and stopping bone-protective medication in GIOP. They

state that there is a low awareness of GIOP but also a lack of clear

guideline recommendations in particular for when to stop

osteoporosis treatment. Based on current evidence the advice is to

stop bone-protective medication 6-12 months after glucocorticoid

discontinuation, since fracture remains elevated for about one year

following glucocorticoid treatment cessation. Since it is widely

known from the Denosumab and Teriparatide Administration

(DATA) extension study that teriparatide followed by denosumab

is effective for treatment-naïve postmenopausal osteoporotic

women with an increase in femoral neck, total hip and spine

BMD (1), it is interesting to see whether this also counts for

patients on glucocorticoids. Hirooka et al. investigated sequential

treatment strategies in GIOP patients who were pre-treated with

bisphosphonates. The study demonstrates that the treatment

sequence of two years of teriparatide followed by two years of

denosumab leads to higher femoral neck bone mineral density

(BMD) gain than with 4 years of continuous denosumab treatment

(non-randomized). Only little is described on herbal medicines for

GIOP. Zhang et al. review the potential use of herbal compounds.

They describe that compounds like escin, ginsenosides and

glycyrrhizic acid exert anti-inflammatory properties like

glucocorticoids, but without inducing GIOP, and also compounds

such as tanshinol and icariin that alleviate GIOP through

mechanisms including regulation of Wnt and RANKL/

RANK signaling.
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GIOP in various diseases

This section includes articles on bone health and fracture

risk of rare conditions, which are frequently treated with high

dose glucocorticoids.

Box et al. review current evidence and mechanism of bone

loss and increased fracture risk in large and small vessel

vasculitides with a particular focus on the impact of high dose

glucocorticoids on bone health. The article also elaborates on

other factors that increase fracture risk including chronic

inflammation, organ involvement such as chronic kidney

disease and relative immobility. The increasing use of

adjunctive glucocorticoid-sparing treatments may have a

potential positive impact on fracture risk in patients

with vasculitis.

The observational study by Liu et al. presents quantitative

computer tomography BMD data of nineteen patients with

Duchenne muscular dystrophy (DMD) treated with high dose

glucocorticoids. The study shows a gradual overall BMD loss

over 2 years at the lumbar spine. A multilevel mixed effect model

identified age and functional activity scores but not cumulative

glucocorticoid exposure as independent predictors of BMD loss.

Rymuza et al. describes the impact of intravenous

methylprednisolone on bone microarchitecture in 15 patients

with graves orbitopathy. The study shows that trabecular bone

score decreased significantly in 33% of patients treated with high

dose intravenous methylprednisolone. The authors highlight the

need for fracture risk and BMD assessment in these patients.

In summary, glucocorticoid effects on bone are still not

completely understood, thus this topic is still a major research
Frontiers in Endocrinology 03
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focus. The research topic provides state-of-the-art reviews and

novel molecular and therapeutic insights into the dichotomous

relationship between glucocorticoids and bone. Overall, novel

insights into the pathogenesis of GIOP may provide better

prevention and treatment strategies of affected patients.
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The role of tissue specific metabolism of endogenous glucocorticoids (GCs) in the
pathogenesis of human disease has been a field of intense interest over the last 20
years, fuelling clinical trials of metabolism inhibitors in the treatment of an array of
metabolic diseases. Localised pre-receptor metabolism of endogenous and therapeutic
GCs by the 11b-hydroxysteroid dehydrogenase (11b-HSD) enzymes (which interconvert
endogenous GCs between their inactive and active forms) are increasingly recognised as
being critical in mediating both their positive and negative actions on bone homeostasis. In
this review we explore the roles of endogenous and therapeutic GC metabolism by the
11b-HSD enzymes in the context of bone metabolism and bone cell function, and
consider future strategies aimed at modulating this system in order to manage and
treat various bone diseases.

Keywords: glucocorticoid, bone, 11beta-hydroxysteroid dehydrogenase, osteoclast, osteoblast, osteoporosis,
chronic inflammation
INTRODUCTION TO PRE-RECEPTOR GLUCOCORTICOID
METABOLISM

The role of tissue specific metabolism of endogenous glucocorticoids (GCs) in the pathogenesis of
human disease has been a field of intense interest over the last 20 years. This has fuelled clinical trials
of chemical inhibitors aiming to prevent metabolic side effects associated with corticosteroid excess,
such as insulin resistance, cardiovascular disease and hypertension (1–8). Several enzymes, but most
prominently 11b-hydroxysteroid dehydrogenase (11b-HSD) type 1 and 2 play a critical role in
regulating peripheral exposure to GCs within tissues via their pre-receptor enzyme activity (9, 10).
Abbreviation: 11b-HSD1, 11b-hydroxysteroid dehydrogenase type 1; 11b-HSD2, 11b-hydroxysteroid dehydrogenase type 2;
BLCs, bone lining cells; CBG, corticosteroid-binding globulin; CTx, carboxy terminal telopeptide of type I collagen; DXA,
dual-energy X-ray absorptiometry; GCs, glucocorticoids; GIOP, glucocorticoid induced osteoporosis; GR, glucocorticoid
receptor; HIFa, hypoxia-inducible factor alpha; HPA, hypothalamic-pituitary-adrenal; IL-6, interleukin 6; MAPK, mitogen-
activated protein kinase; NAD, nicotinamide adenine dinucleotide; NADPH, nicotinamide adenine dinucleotide phosphate;
NFkB, nuclear factor kappa-light-chain-enhancer of activated B cells; OPG, osteoprotegerin; P1CP, procollagen type 1
carboxy-terminal propeptide; P1NP, procollagen type 1 amino-terminal propeptide; PDGF-BB, platelet-derived growth factor-
BB; RANK, receptor activator of nuclear factor kappa-B; RANKL, receptor activator of nuclear factor kappa-B ligand; Runx2,
runt-related transcription factor 2; THE, tetrahydrocortisone; THF, tetrahydrocortisol; TNFa, tumour necrosis factor alpha;
VEGF, vascular endothelial growth factor.
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To date, therapeutic interventions have primarily focussed on the
GC activating enzyme 11b-HSD1 based on its expression in
tissues that are themselves targets for GCs such as bone, where
therapeutic GCs drive a rapid and sustained reduction in bone
formation and increased risk of fracture (11, 12). Here, global
transgenic deletion of 11b-HSD1 in murine models of
corticosterone excess have protected animals from deleterious
side effects, reinforcing the potential clinical utility of
pharmacological inhibition (13, 14). However, the role of
corticosteroid activation by 11b-HSD1 selectively within bone,
and the cell populations that regulate bone metabolism remain
cell and context dependant, and the value of selective 11b-HSD1
inhibitors in clinical practice is unclear. However, given the
deleter ious impact of therapeutic and endogenous
corticosterone excess on bone metabolism, a greater
understanding of the role of 11b-HSD1 in bone remains
paramount (15). This review examines the latest literature
relating to both the role of 11b-HSD1 in bone cells and its
regulation of bone metabolism, and further explores the value of
therapeutic 11b-HSD1 inhibition to treat osteoporosis.
GLUCOCORTICOID METABOLISM BY THE
11b-HSD1 AND 11b-HSD2 ENZYMES

The 11b-HSDs are intracellular enzymes that interconvert
endogenous GCs between their inactive and active forms
(Figure 1). There are two 11b-HSD enzymes. 11b-HSD1, in
Frontiers in Endocrinology | www.frontiersin.org 28
the presence of its cofactor nicotinamide adenine dinucleotide
phosphate (NADPH), primarily converts the inactive adrenal
corticosteroid cortisone to its active counterpart cortisol via its
oxoreductase activity (converting a ketone on the 11 position of
ring C to a hydroxyl group) and conferring increased affinity for
the glucocorticoid receptor (GR). This promotes downstream
GR signalling (16). In contrast, 11b-HSD2, in the presence of its
cofactor nicotinamide adenine dinucleotide (NAD), potently
inactivates cortisol to cortisone via its dehydrogenase activity,
protecting mineralocorticoid receptors in responsive tissues such
as kidney, colon and placenta from inappropriate activation by
cortisol (17, 18). Final metabolism and urinary clearance of
cortisol and cortisone occurs following their metabolism by 5a
and 5b-reductases. This, in combination with 3a-hydroxysteroid
dehydrogenase activity yields tetrahydrocortisone (THE)/
tetrahydrocortisol (THF) and allo THF. The ratio of THF to
THE metabolites excreted in the urine can be utilised as a
surrogate measure of systemic 11b-HSD1 activity (2). The 11b-
HSD enzymes also metabolise several synthetic GCs with 11b-
HSD1 activating GCs such as prednisone and 11b-HSD2
inactivating hydrocortisone and prednisolone. However, other
synthetic steroids such dexamethasone and methylprednisolone
are resistant to metabolism by the 11b-HSD enzymes due to
fluorine and methyl group substitutions that significantly reduce
metabolic clearance and increase half-life (19, 20). Whilst 11b-
HSD2 clearly plays a central role in mineralocorticoid responsive
tissues and in determining the circulating cortisol/cortisone
ratio, its basal expression outside of these tissues is limited and
FIGURE 1 | The adrenal corticosteroids cortisol and cortisone achieve a circulating equilibrium predominantly through their renal inactivation by 11b-HSD2 and
reactivation by hepatic 11b-HSD1. Both active and inactive serum free corticosteroids are able to enter bone cells. Here 11b-HSD1 can further activate and amplify
the actions of corticosteroids through the conversion of cortisone to cortisol where, in combination with serum free cortisol, it influences basal bone metabolism in
osteoclasts, osteocytes and osteoblasts.
August 2021 | Volume 12 | Article 733611
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its importance is less clear. Consequently, this review will
primarily focus on the roles of GC metabolism by 11b-HSD1
in the context of bone metabolism and bone cell function.
SYSTEMIC ENDOCRINE METABOLISM
VERSUS LOCAL AUTOCRINE
METABOLISM

The roles of 11b-HSD1 span ‘endocrine’ regulation of circulating
corticosteroid availability and systemic GC exposure, and the
fine-tuning of local tissue and cell specific exposure via its
‘autocrine’ activation of cortisol, independently of circulating
cortisol. The regulation of systemic endocrine cortisol activation
is primarily determined by hepatic 11b-HSD1, which is
constitutively and highly expressed within the liver (21, 22). In
contrast, the regulation of 11b-HSD1 in tissues, such as adipose,
muscle, bone and within sites of inflammation is dynamically
regulated in a highly cell and context specific fashion (23–28).
Whilst 11b-HSD1 within these tissues also influences circulating
endocrine metabolism (albeit to a much lesser extent than
hepatic 11b-HSD1), the overwhelming role of 11b-HSD1 in
this context is mediated through its autocrine influence on
local cortisol exposure independently of circulating cortisol
levels. The hypothalamic pituitary adrenal (HPA) axis
determines both ultradian and circadian regulation of systemic
cortisol levels, with stressors such as inflammation activating
production of cortisol by the adrenal gland and negative
feedback from GCs suppressing this. The expression of 11b-
HSD1 in the suprachiasmatic nucleus, or the “biological clock of
the brain”, and the hypothalamus imply a role for this enzyme in
circadian regulation of the HPA axis by the negative feedback of
active GCs (29). Additionally, 11b-HSD1 in the hippocampus,
visceral adipose tissue and subcutaneous adipose tissue has been
identified to exhibit circadian variation in gene expression and
enzyme activity (30, 31). Whilst circadian and ultradian rhythm
have not been shown to be substantially affected in murine
models with transgenic 11b-HSD1 deletion, its precise role in
central circadian regulation in response to stress and
inflammation remain poorly defined. Given its potent
inflammatory regulation within myeloid and mesenchymal
derived population, it has been hypothesised that chronic
activation of 11b-HSD1 may represent a causative factor in the
dysregulation of the HPA axis in inflammatory disease (32).
Systemic GC activation by hepatic 11b-HSD1 and inactivation
by renal 11b-HSD2 play a central role in establishing the
circulating ratio of cortisol to cortisone, with levels of active
cortisol (typically ranging from 100-600 nmol/l) being 5-6 times
higher than for cortisone (30-130 nmol/l) (27). Whilst this
circulating ratio helps determine endocrine GC signalling, its
function extends to the provision of cortisone as a substrate for
local 11b-HSD1 cortisol activation in peripheral tissues. For both
aspects of circulating corticosteroid action, one further factor,
corticosteroid-binding globulin (CBG) should be considered.
Here, approximately 90-95% of total circulating cortisol is
sequestered by CBG, and to a lesser extent serum albumin,
Frontiers in Endocrinology | www.frontiersin.org 39
preventing cell entry and GR mediated cell signalling (33–35).
Its relevance to local 11b-HSD1 signalling arises due to a greatly
reduced affinity of CBG (roughly 10-fold less) for the inactive
corticosteroid, cortisone (33, 36, 37). Consequently, whilst total
cortisone circulates at a 5-6-fold lower concentration than total
cortisol, serum free cortisone levels available for local autocrine
amplification by 11b-HSD1 can match or exceed that of serum
free cortisol (Figure 1). To appreciate the roles that 11b-HSD1
plays in utilising and activating this abundant pool of circulating
serum free cortisone within peripheral tissues such as bone, one
must first delineate its cellular expression and distribution within
bone itself.
THE ROLE OF 11b-HSD1 IN BONE
CELLS AND BONE HEALTH IN
NORMAL PHYSIOLOGY

The Role of Endogenous GCs in Bone Cell
Differentiation and Activity
Despite their well-known deleterious effects on bone at
therapeutic doses, endogenous GCs play key roles in the
formation and maintenance of bone under homeostatic
conditions. Continued GC signalling is required for
maintenance of adequate bone mass, as seen in models with
targeted deletion of GR in osteoblast progenitors or ectopic
expression of 11b-HSD2 in mature osteoblasts and osteocytes
which exhibit reductions in bone density (38–40). At the
individual cell level, GCs promote differentiation of osteoblasts
from mesenchymal cells via the Wnt/b-catenin pathway. Ectopic
expression of the 11b-HSD2 gene in mature osteoblasts via the
Col2.3 promoter or abrogation of Wnt signalling instead induces
adipocyte lineage commitment (41–43). GCs have also been
identified to drive differentiation of osteoclasts from
mesenchymal precursors and enhance the bone resorption
activity of mature osteoclasts (44–46). As well as direct effects
on bone cells, GCs influence bone metabolism via paracrine
signalling. GC stimulation of osteoblasts and osteocytes induces
production of receptor activator of nuclear factor kappa-B ligand
(RANKL) while suppressing expression of the RANKL decoy
receptor osteoprotegerin (OPG), resulting in survival and
activation of local osteoclasts (47–50). Within normal
physiological conditions, this GC-mediated regulation of bone
metabolism functions under strict homeostatic control to
carefully balance anabolic and catabolic effects on target cells.
Whilst GCs have stimulatory effects on osteoblasts at low doses,
they are inhibitory at higher doses, where they instead promote
apoptosis of osteoblasts (51, 52). Similarly, GC regulation of
mature osteoblast function via expression of Wnt proteins
functions in a dose-dependent ‘biphasic’ manner (53). Local
activation of GCs by the enzyme 11b-HSD1, at both the
autocrine and paracrine levels, helps determine available GC
for normal physiological responses, as well as potential roles in
states of inflammation and GC excess. The functional impact of
11b-HSD1 in bone metabolism has been demonstrated in
normal physiology and states of GC excess (54, 55). Systemic
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11b-HSD1 activity, and the inactive 11b-HSD1 substrate
cortisone, negatively correlated with measures of anabolic bone
formation by osteoblasts in cross sectional population studies
and was shown to increase with ageing. Furthermore, enzymatic
activity of 11b-HSD1 in ex vivo grown bone cells was found to
increase with donor age (56). These changes were independent of
circulating ‘endocrine’ cortisol, suggesting that 11b-HSD1 within
cells such as osteoblasts underpinned these observations. Whilst
osteoblasts were highlighted as a primary anti-anabolic target of
GC metabolism by 11b-HSD1, its dynamic regulation of
expression across multiple cell types, including osteocytes,
osteoclasts and endothelial cells, hint at a highly cell and
context specific role of 11b-HSD1 in bone metabolism in vivo.

The Role of 11b-HSD1 in Osteoblasts and
Osteocytes in Normal Physiology
Osteoblasts were initially shown to possess the highest levels of
11b-HSD1 in bone by immunohistochemistry and in situ
hybridisation (57, 58). Whilst patient studies had reported a
potential anti-anabolic role of 11b-HSD1 with ageing,
corticosteroid excess and post menopause, initial in vitro
studies revealed that the upregulation of 11b-HSD1 in
immature osteoblast precursors facilitated their differentiation
into osteoid producing osteoblasts (59). These findings fit with
the well characterised in vitro actions of GCs on cultures of
osteoblasts, where they stimulate differentiation via regulation of
specific growth factors and Wnt signalling molecules (41–43).
Consequently, these data revealed a potential anabolic role for
autocrine cortisol production by 11b-HSD1 in osteoblasts in
normal physiology. Murine models in the DBA-1 strain in which
GC activation was blocked selectively within osteoblasts
supported this hypothesis. Specifically, the overexpression of
11b-HSD2 selectively within osteoblasts, under control of the
2.3Kb Col1a1 promoter, resulted in potent cortisol inactivation
to offset endogenous 11b-HSD1 activity (38, 60–62). These
animals presented with reduced vertebral bone density and
attenuated cranial ossification and reduced periosteal
circumference indicating that 11b-HSD1 was required for
normal osteoblastic bone formation. Interestingly, similar
experiments in the C57BL/6 strain using the osteocalcin
promoter, and C57BL/6 animals with a global deletion of 11b-
HSD1 failed to reproduce these findings raising doubts as to this
explanation (13, 63). Here, the selection of the mouse strain itself
may explain this discrepancy, since C57BL/6 mice are reported
to have reduced responsiveness to the action of GCs on anabolic
bone formation (64). Whilst this can be overcome at higher
exogenous corticosteroid doses, these findings suggest that the
C57BL/6 strain may not be suited to examining the actions of
endogenous GCs in this setting (13). Ultimately, osteoblast
targeted deletion of 11b-HSD1 in an appropriate murine strain
is still required to address these questions. The anabolic role of
11b-HSD1 in osteoblast differentiation has been less clear in
human population studies. This may reflect the respective
cohorts examined, where factors such as ageing and exogenous
corticosteroid administration may see 11b-HSD1 move from an
anabolic role to one mediating corticosteroid excess and
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facilitating osteoblast autophagy and apoptosis (65, 66).
Certainly, in this context measures of 11b-HSD1 activity
negatively correlate with markers of bone formation such as
osteocalcin and procollagen type 1 amino-terminal propeptide
(P1NP) (54–56). It may be that the anabolic actions of 11b-
HSD1 may be more apparent in a younger population. Certainly,
trials using therapeutic inhibitors of 11b-HSD1 have yet to
identify significant changes on bone metabolism in phase II
trials (1–8). However, their penetrance within bone has yet to be
validated, and so their role in osteoblast differentiation in vivo
cannot yet be ruled out in humans. Ultimately, more targeted
approaches are still required to examine the anabolic roles of
11b-HSD1 in vivo in regulating bone metabolism in normal
physiology. However, whether therapeutic inhibition of 11b-
HSD1 is able to prevent the reported anti-anabolic effects of GCs
in osteoblasts in ageing, or post menopause has yet to
be determined.

The Role of 11b-HSD1 in Osteoclasts in
Normal Physiology
Analysis of human bone samples confirmed that osteoclasts also
express functional 11b-HSD1, but, similar to other bone cell
populations, not 11b-HSD2. To assess the functional importance
of pre-receptor metabolism of GCs by 11b-HSD1 healthy
volunteers were treated with the nonspecific 11b-HSD
inhibitor carbenoxolone. After 7 days of treatment, urinary
analysis showed normal levels of bone formation markers C-
and N-terminal pro-peptides of type I collagen (P1CP and P1NP,
respectively) but decreased pyridinoline and deoxypyridinoline,
metabolites of bone degraded by osteoclasts. This finding implies
a role for local activation of GCs in homeostatic bone resorption
(67). In support of this, the selective 11b-HSD1 inhibitor KR-
67500, which was found to ameliorate disease in a mouse model
of type 2 diabetes, promoted osteoblast maturation of C2C12
cells while blocking RANKL-induced differentiation of murine
bone marrow derived macrophages to osteoclasts. Specifically
11b-HSD1 inhibition was found to decrease the genes Ctsk, Fos,
Nfatc1 and Dcstamp, which are required for cellular fusion and
multinucleation and bone resorption (68). Despite these
findings, clinical trials of 11b-HSD1 inhibitors in diseases such
as diabetes, metabolic syndrome, Alzheimer’s, and glaucoma
appear to have a favourable safety profile in terms of bone
health, with minimal adverse effects reported (1, 3, 69). A trial
of 11b-HSD1 inhibition in idiopathic intracranial hypertension
specifically assessed serum levels of osteocalcin and sclerostin
and measured bone mineral content by dual-energy X-ray
absorptiometry (DXA) and found no differences in bone
metabolism with treatment (8). Blockade of 11b-HSD1
activation of GCs by ectopic expression of the 11b-HSD2 gene
in osteoclasts did not drive any negative skeletal phenotype in
mice, with Jia et al. reporting normal bone development, mass
and cell numbers (70). Similarly, the 11b-HSD1 knock-out
mouse does not appear to have any defects in bone
development or structure including under conditions of ageing
(13, 71). This suggests that though 11b-HSD1 may play a role in
increasing local GC levels for osteoclast differentiation and
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function, there is inbuilt redundancy in GC regulation of bone
metabolism in normal physiological conditions. There is
therefore no clear role for 11b-HSD1 in mediating bone
homeostasis via modulation of endogenous GCs in osteoblasts
and osteoclasts, at least under healthy steady state conditions.
However, ageing has been shown to increase levels of circulating
GCs as well as expression of 11b-HSD1, where dysregulated bone
homeostasis frequently presents as conditions such as
osteoporosis (72).

Together, whilst these studies suggest that 11b-HSD1
inhibition may have some limited actions on osteoblast and
osteoclast maturation and function, its impact on total bone
metabolism in normal physiology appear negligible. However,
further examination of their effects on bone metabolism across
factors such as ageing warrant further investigation.
11b-HSD1 MEDIATES THE ANTI-
ANABOLIC ACTIONS OF
GLUCOCORTICOID EXCESS IN BONE

Therapeutic GCs are widely utilised in the treatment of both
acute and chronic inflammation, and they are the second most
common cause of secondary osteoporosis and increased fracture
risk (73, 74). Rapid bone loss over several months occurs after
initiation of GCs, followed by a more gradual loss with long term
use (11). The dose and duration are significant factors in
determining the rate and severity of glucocorticoid-induced
osteoporosis (GIOP), and suppression of bone formation (75).
The underlying pathology of disease for which GCs is utilised
invariably influences this process, with chronic inflammation
being a well-described driver of systemic bone loss (75).
However, the independent action of glucocorticoids in the
absence of inflammation has been explored in healthy
volunteers and, in patients with Cushing’s disease and in
patients receiving excessive corticosteroid replacement in
conditions of adrenal insufficiency. In these situations a potent
suppression of anabolic bone formation is evident, as seen by a
marked decrease in circulating markers of osteoblastic bone
formation, such as P1NP and osteocalcin (76). This reflects a
wider uncoupling of formation and resorption in bone where
changes in osteoclastic resorption in response to GCs are less
evident or entirely absent (76–78). In patients with Cushing’s
disease, GC excess increases the risk of fractures secondary to
suppressed bone formation (79, 80). The direct and indirect
mechanisms whereby exogenous GCs influence bone formation
by osteoblasts are reviewed in greater detail elsewhere (81). This
review will now examine studies that have aimed to delineate the
contribution of GC metabolism by 11b-HSD1 to GIOP.

The Role of 11b-HSD1 in Osteoblasts and
Osteocytes in Glucocorticoid Excess
Several clinical studies have identified links between dysregulated
bone metabolism and 11b-HSD1 activity in patients receiving
therapeutic GCs (54, 67, 82). Increasing 11b-HSD1 activity and
its inactive GC substrate availability were shown to correlate with
Frontiers in Endocrinology | www.frontiersin.org 511
decreased serum markers of bone formation, P1NP and
osteocalcin. These data indicate that the pre-receptor activation
of therapeutic GCs by 11b-HSD1 mediate this suppression of
bone formation, either directly within the osteoblast themselves
or through an alternative indirect pathway. A direct role for 11b-
HSD1 within osteoblasts and osteocytes in mediating these
effects is supported by evidence of significant expression and
activity in these cell subsets when examined in human bone and
primary cultures (67, 83). However, further insights into the
mechanisms underpinning this have been limited to in vitro
studies in primary human and murine osteoblasts cultures. In
this context supra-physiological levels of corticosteroids promote
osteoblast differentiation and support osteoid deposition (41–
43). Whether these findings reflect a failing of these in vitro
models or are instead evidence of an indirect mechanism
whereby 11b-HSD1 indirectly regulates bone formation, such
as through influencing circulating anabolic and anti-anabolic
factors (such as androgens or parathyroid hormone) at
alternative sites have yet to be adequately answered. Further
insights have instead come from murine models of
corticosterone excess. Global genetic deletion of 11b-HSD1
protects against the anti-anabolic effects of therapeutic GCs in
bone (13). This is characterised by preservation of trabecular
volume, serum measures of bone formation and preservation of
osteoblast and osteocyte numbers following 4 weeks of GC
exposure. These findings mirror observations in similar animal
models of GIOP with osteoblast targeted blockade of GC
signalling, supporting the concept that 11b-HSD1 directly
mediates the anti-anabolic actions of GCs in bone (84). Studies
utilising osteoblast targeted transgenic deletion of 11b-HSD1 are
now still required to validate these findings. Regardless, these
studies reveal a critical role for 11b-HSD1 in the suppression of
bone formation in GIOP and provide evidence for the efficacy of
therapeutic inhibitors of 11b-HSD1 in conditions of GC excess.

The Role of 11b-HSD1 in Osteoclasts in
Glucocorticoid Excess
Whilst the actions of therapeutic GCs have been shown to
promote early osteoclast differentiation, and suppress bone
resorption by mature osteoclast, the role of 11b-HSD1 within
the osteoclast in GIOP is less well defined in the context (76–78,
85). Whilst a decrease in bone resorption markers have been
reported in healthy volunteers receiving the 11b-HSD inhibitor
carbenoxolone and then the inactive GC prednisolone, there has
been limited evidence to support a role for 11b-HSD1 in any
increases in bone resorption markers in GIOP. Whilst in vitro
examination of the role of 11b-HSD1 in osteoclasts in GIOP are
lacking, further insights are apparent from murine models
examining animals with transgenic deletion of 11b-HSD1 (13).
Here, oral GCs result in only a minor trend towards increased
osteoclast numbers and bone resorption markers with no
protection from this conferred in animals lacking 11b-HSD1.
Together, these studies imply that 11b-HSD1 plays a limited role
in mediating increased bone resorption in conditions of GC
excess. However, these observations may be hampered by the
relatively small contribution that osteoclasts play in mediating
GIOP, relative to the impact on bone formation.
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Collectively, these studies suggest that in conditions of
endogenous and therapeutic GC excess, inhibition of 11b-
HSD1 prevents the anti-anabolic actions of GCs and preserves
bone mass, whilst their impact on osteoclast numbers and
activity appear minimal.
GLUCOCORTICOID ACTIVATION BY
11b-HSD1 PREVENTS
OSTEOCLASTOGENESIS AND
BONE RESORPTION IN
INFLAMMATORY DISEASE

Systemic bone loss and increased risk of fracture at sites such as
the femoral neck, trochanter and spine are hallmarks of patients
with many chronic inflammatory diseases (86, 87). Here,
circulating inflammatory mediators such as tumour necrosis
factor a (TNFa) and interleukin-6 (IL-6) are predictors of
decreased bone mineral density and increased fracture risk.
Both bone formation and resorption show dysregulation in
chronic inflammatory disease such as rheumatoid arthritis,
with decrease in P1NP and increases in carboxy (C) terminal
telopeptide of type I collagen (CTx) showing strong correlation
with markers of disease activity (88, 89). At the cellular level, pro-
inflammatory factors act on osteoblasts to directly suppress
differentiation and osteoid deposition, whilst their actions on
osteoclasts are mediated both directly to increase activity, and
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indirectly through the RANKL/OPG signalling pathway to
increase both numbers and activity (90). The in vitro
mechanisms underpinning these actions are diverse and the
subject of numerous reviews (81, 91). Interest in the role of
endogenous GC activation by 11b-HSD1 in this context have
been fuelled by studies reporting marked increases in enzyme
activity, both systemically and at sites of inflammation (92–96).
In this context 11b-HSD1 has been shown to mediate anti-
inflammatory GC signalling, supporting resolution and tissue
repair. However, in the context of persistent and chronic
autoimmune inflammation, its role has been hypothesised to
switch to driving ongoing localised GC excess. To date, clinical
studies have yet to examine the interaction between 11b-HSD1,
bone metabolism and fracture risk in an inflammatory disease
cohort. Similarly, clinical trials of 11b-HSD1 inhibitors have yet
to examine their impact on bone metabolism in the context of
inflammatory disease. To date, no aberrant observations of
altered inflammatory responses or dysregulated bone
metabolism have been reported in these studies (1–8). At
present, significant gaps are present in our knowledge of the
role of inflammatory 11b-HSD1 activity in bone cells in chronic
inflammatory disease.

The Role of 11b-HSD1 in Osteoblasts and
Osteocytes in Inflammatory Disease
In vitro studies have revealed a potent upregulation of 11b-
HSD1 in mesenchymal derived cell populations, including
osteoblasts by pro-inflammatory factors such as TNFa and
FIGURE 2 | During inflammation within bone, pro-inflammatory factors including IL-6, IL-1b and TNFa have direct effects on bone cells including osteoblasts,
osteocytes and osteoclasts resulting in a net loss in bone in addition to a significant induction of the corticosteroid activating enzyme 11b-HSD1. This in turn drives
an anti-inflammatory resolution response where increased cortisol activation by 11b-HSD1 promotes a reduction in osteoclastic bone resorption thus suppressing
inflammatory bone loss.
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IL-1b (25, 83) (Figure 2). This inflammatory induction of 11b-
HSD1 is in turn synergistically upregulated in combination with
GCs, through a mechanism involving the suppression of p38-
mitogen-activated protein kinase (MAPK) and upregulation of
nuclear factor kappa-light-chain-enhancer of activated B cells
(NFkB) signalling (25). Together, this leads to a potent increase
in local GC activation in osteoblasts in response to inflammation
within bone, where they then suppress local inflammatory
mediators in a feedback mechanism that appears to support
resolution of inflammation (83). The impact of this synergistic
inflammatory regulation on bone metabolism in chronic
inflammatory diseases such as rheumatoid arthritis is less clear.
In vitro experiments using human primary osteoblast cultures
reveal that these endogenous GCs can suppress osteoblast
maturation and collagen deposition. In vivo rodent models of
polyarthritis offer further insights into these processes. Here,
global deletion of 11b-HSD1 severely exacerbates systemic bone
loss, and suppresses anabolic bone formation, with a marked
reduction in markers of mature osteoblasts, including runt-
related transcription factor 2 (Runx2) and OPG (26). These
findings would suggest that the anti-inflammatory actions of
local GC activation by 11b-HSD1 in this context outweigh their
detrimental anti-anabolic actions in osteoblasts. However,
targeted mesenchymal genetic deletion of 11b-HSD1
(including in osteoblasts), failed to reproduce this systemic
bone loss phenotype, indicating that the expression of 11b-
HSD1 in osteoblasts may not play a critical role in mediating
this inflammatory bone loss phenotype. More targeted studies,
examining osteoblast specific deletion of 11b-HSD1, are now
required to further explore these findings. This is particularly
since global deletion of 11b-HSD1 exacerbates the severity of
systemic inflammation, which is itself a confounder mediating
increased bone loss. Overall, these studies point to an important
role for 11b-HSD1 in regulating bone formation in chronic
inflammatory diseases and bone inflammation.

The Role of 11b-HSD1 in Osteoclasts in
Inflammatory Disease
Whilst attenuated bone formation undoubtedly plays a role in
abnormal bone metabolism in systemic inflammatory diseases,
such as polyarthritis, a marked increase in osteoclastic bone
resorption remains the primary mediator of the rapid bone loss
observed in this context (90). Whilst osteoclasts, and their myeloid
precursors express 11b-HSD1, its inflammatory regulation in vivo
is less well characterised (67). Numerous studies examining
myeloid precursors demonstrate a robust upregulation of 11b-
HSD1 over differentiation and in response to inflammatory
mediators such as TNFa, whilst similar studies in osteoclasts are
lacking (97, 98). However, murine models have significantly
advanced our understanding of the contribution of 11b-HSD1
in osteoclasts in this setting. In murine models of polyarthritis,
osteoclast mediated bone loss is markedly exacerbated in animals
with global deletion of 11b-HSD1, where it is the overriding factor
driving inflammatory bone loss through a shift in RANKL/OPG
signalling (9, 26, 99). These studies reveal a critical role for 11b-
HSD1 in protecting against inflammatory bone resorption and
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supporting resolution and repair in bone (Figure 2). As in
osteoblasts, whether these actions are mediated directly by 11b-
HSD1 expression within the osteoclast, or indirectly through
altered expression of local or systemic inflammatory mediators
that drive this increase in osteoclast mediated bone resorption has
yet to be elucidated and can only be addressed with osteoclast
targeted models of 11b-HSD1 deletion.

Together, these studies indicate that systemic inflammation in
conditions such as polyarthritis, 11b-HSD1 inhibition appears to
have limited affects in osteoblasts, but significantly exacerbates
inflammatory mediated osteoclast bone resorption and promotes
systemic bone loss.
11b-HSD1 PROTECTS AGAINST
INFLAMMATION-INDUCED BONE
RESORPTION IN RESPONSE TO
THERAPEUTIC GLUCOCORTICOIDS

In regard to bone metabolism, the effect of therapeutic GCs in
both acute and chronic inflammatory disease settings remains of
significant interest. Understanding the opposing actions of GCs
on bone metabolism in systemic inflammatory diseases, such as
rheumatoid arthritis, where they suppress the inflammatory
mediators that drive bone loss, whilst also acting directly on
bone cells to drive GC-induced bone loss, remains paramount.
Clinical studies examining this facet of GC action in chronic
inflammatory disease are limited by confounding factors such as
concurrent anti-inflammatory therapies, patient variation and
disease pathophysiology, and differences in steroid dose and
duration. Therefore, it is perhaps unsurprising that responses to
GCs in this context report divergent outcomes, including both
improvements in and worsened bone outcomes in patients with
inflammatory disease (100–103). Murine models of chronic
inflammatory arthritis receiving therapeutic GCs have
examined this process under more controlled experimental
conditions and revealed that GCs play an important role in
protecting against acute inflammatory bone loss mediated by
osteoclastic bone resorption, with both osteoclast numbers and
activity being significantly reduced (99) (Figure 3). Anabolic
bone formation was also significantly suppressed with GC
administration, however its actions on total bone metabolism
were subtle relative to the rapid inflammatory osteoclast
mediated bone loss. Whilst studies examining the contribution
of 11b-HSD1 to these findings are limited, several ex vivo studies
provide insight into this process.

The Role of 11b-HSD1 in Osteoblasts and
Osteocytes in Response to Therapeutic
GCs in Inflammatory Disease
Whilst therapeutic GCs suppress bone formation by osteoblasts,
in models of chronic inflammatory polyarthritis, the relative
contribution of 11b-HSD1 to these phenotypes are yet to be
reported (9, 99). Animal models of chronic inflammatory disease
with both global and osteoblast targeted transgenic deletion of
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11b-HSD1 are required to assess impact of therapeutic
corticosteroids in this setting. Given the potent suppression of
bone formation by therapeutic GCs, and the efficacy of
transgenic deletion of 11b-HSD1 in preventing this, it could be
predicted that inhibition of 11b-HSD1 in patients with chronic
inflammation and receiving therapeutic GCs might have a
similar protection from their anti-anabolic actions in
osteoblasts and osteocytes (99). However, considering the
exacerbation of inflammation in response to 11b-HSD1
deletion it may be that the inflammatory suppression of bone
formation is increased and coupled with a shift towards
increased pro-inflammatory factors by osteoblasts, such as
RANKL, TNFa and IL-6 by osteoblasts that would favour
osteoclast mediated bone resorption and bone loss (9, 26, 104,
105). Further considerations should include the lesser role of
dysregulated bone formation in acute inflammatory bone loss
where osteoclast mediated bone resorption has been shown to
play a greater role (106–108). Consequently, it may be that any
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beneficial effects of 11b-HSD1 inhibition on bone formation in
the context of inflammatory disease may be limited or realised
over longer periods of GC administration (Figure 3).

The Role of 11b-HSD1 in Osteoclasts in
Response to Therapeutic GCs in
Inflammatory Disease
Increased bone resorption by osteoclasts is recognised as the
primary driver of bone loss in many inflammatory diseases and
this is rapidly suppressed in response to therapeutic GCs,
however no clinical or in vitro studies have examined the role
of 11b-HSD1 in this setting (106–108). Insights into this facet of
GC action have instead come from a single study examining
in vivo models of chronic inflammatory polyarthritis and
therapeutic GC administration in animals with global and
myeloid targeted transgenic deletion of 11b-HSD1 (9). In this
study, suppression of osteoclast bone resorption by oral GCs was
almost entirely abrogated in animals with global and myeloid
FIGURE 3 | In the absence of inflammation within bone, inhibition of 11b-HSD1 protects against the actions of exogenous glucocorticoids in both osteoblasts and
osteoclasts. The effect of these inhibitors is characterised by a protection from glucocorticoid induced apoptosis in both osteoblasts and osteocytes, preventing a
glucocorticoid suppression of bone formation. During chronic inflammatory diseases such as rheumatoid arthritis, the protective actions of 11b-HSD1 inhibition in
response to exogenous therapeutic glucocorticoids in osteoblasts and osteocytes remains evident but is overshadowed by a resistance to the anti-inflammatory
properties of exogenous glucocorticoids that results in aberrant osteoclast numbers and activation. Consequently, 11b-HSD1 inhibition results in rapid bone
resorption and exacerbation of both local and systemic inflammatory bone loss.
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targeted deletion of 11b-HSD1, revealing a critical role for local
GC activation by this enzyme in suppressing osteoclast numbers
and activity in chronic inflammation. Whether these effects
reflect a direct autocrine effect of GC activation by 11b-HSD1
within the osteoclast, or instead reflect wider changes in pro-
inflammatory factors such as RANKL, TNFa and IL-6 that drive
osteoclast driven bone resorption has yet to be determined (26,
104, 105). 11b-HSD1 has been shown to influence the RANKL/
OPG ratio in murine models of inflammation and this could play
a role in regulating inflammatory bone resorption (81). To
validate these findings now requires more targeted Cre driven
deletion of 11b-HSD1 in the osteoclast subset and in vitro
experiments that can delineate inflammatory regulation and
functional consequences of autocrine GC activation by 11b-
HSD1 within osteoclasts. Despite the need for future work, it is
clear that 11b-HSD1 is a critical mediator in suppressing bone
resorption in response to GCs and mediating their rapid bone
protective actions in this context.

Together, these studies reveal that in the context chronic
inflammatory diseases, such as rheumatoid arthritis, whilst 11b-
HSD1 inhibition prevents the anti-anabolic actions of
therapeutic glucocorticoids in osteoblasts, they abrogate GC
mediated suppression of osteoclast activity and inflammatory
bone loss.
POTENTIAL ROLES FOR 11b-HSD1 IN
BONE LINING CELLS AND ENDOTHELIUM

The endothelial cells that form the vascular structures of the
skeletal system are increasingly seen as important in the
processes of bone formation and maintenance. These vessels
supply vital nutrients and signalling molecules to osteoblasts and
osteocytes, which in turn act on endothelial cells to support
further vascular development, hence the processes of
angiogenesis and osteogenesis are said to be “coupled” (109).
Osteoblasts and their progenitors are therefore found in close
proximity to these osteogenesis-promoting endothelial cells,
termed type H vessels due to their high expression of adhesion
molecule CD31 and the endothelial sialomucin endomucin (110,
111). Osteoblasts and osteocytes support angiogenesis by
producing vascular endothelial growth factor (VEGF) via the
hypoxia-inducible factor a (HIFa) pathway (112, 113). VEGF
stimulates blood vessel invasion by acting on endothelial cells,
but also promotes migration and activation of osteoblasts,
linking these complementary functions of angiogenesis and
osteogenesis in formation or remodelling of bone (114, 115).
Similarly, preosteoclasts secrete platelet-derived growth factor-
BB (PDGF-BB) which promotes angiogenesis by recruiting
endothelial and mesenchymal progenitors and inducing
formation of type H vessels, this in turn stimulates bone
formation and remodelling (116, 117). These processes are all
attenuated by GC treatment, as seen in both in vitro and in vivo
models (118–120). It is not known what role, if any, 11b-HSD1
plays in type H vessel cells. However, expression of 11b-HSD1
has been identified in vascular endothelial cells and found to
Frontiers in Endocrinology | www.frontiersin.org 915
inhibit angiogenesis by interfering with endothelial cell
morphological changes required for tube formation (121–124).

Bone lining cells (BLCs) are derived from mature quiescent
osteoblasts and thought to perform a number of functions in
skeletal homeostasis [reviewed in detail by Wein (125)]. It is not
known whether BLCs express 11b-HSD1 like other
mesenchymal derived cells, if so it may perform a similar
function as in osteoblasts under conditions of inflammation,
ageing and GC excess (25). Treatment of mice with prednisolone
was found to inhibit BLC activation and proliferation, including
their conversion into new osteoblasts (126). However, despite
their importance in bone growth and repair, much remains to be
elucidated about the functions of BLCs and the importance of
11b-HSD1 metabolised GCs in this cell type.
FINAL CONCLUSIONS

The studies highlighted in this review reveal a complex role for
11b-HSD1 in bone remodelling, with some limited evidence for a
role in normal physiology, but a much greater role in mediating
the actions of GCs in conditions of exogenous and endogenous
corticosteroid excess and inflammation. With the interest in
therapeutic inhibitors of 11b-HSD1, these studies point to the
potential for their application in conditions such as Cushing’s
disease, where they would be predicted to prevent the anti-
anabolic action of GCs on bone to reduce the risks of
osteoporosis and fracture. In contrast, their application in the
context of inflammatory disease appears to be complicated by the
risk of exacerbating inflammatory bone loss by osteoclasts.
Therefore, in inflammatory disease the role of 11b-HSD1
appears to be protective, mediating the suppression of
inflammatory factors that drive bone resorption and decrease
osteoclast numbers and activity. Rather than inhibiting 11b-
HSD1, approaches may instead benefit from targeting
therapeutic GCs selectively to leukocyte and osteoclast
populations to more effectively deliver their beneficial bone
sparing actions in the context of inflammation. Whether the
inflammatory induction of 11b-HSD1 within bone resorbing
cells could be used to selectively facilitate metabolic targeting of
GCs for intracellular activation within osteoclasts to suppress
inflammatory bone resorption without driving off-target
metabolic side effects has yet to be determined.
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Objectives: In our previous 24-month study, we observed that teriparatide had some
advantages over denosumab for bone mineral density (BMD) in glucocorticoid-induced
osteoporosis (GIO) patients with prior bisphosphonate treatment. We conducted this
extension study to investigate whether the advantage of teriparatide obtained in the first 2
years would be maintained after the switch to denosumab.

Materials and Methods: We switched patients who had completed 24-month daily
teriparatide treatment to denosumab (switch group, n=18) and compared their BMD every
6 months up to 48 months with the group who continued to receive denosumab
(denosumab group, n=16).

Results: At 48 months, the lumbar spine BMDwas significantly increased from baseline in
both groups (denosumab: 10.4 ± 8.7%, p<0.001; switch: 14.2 ± 6.8%, p<0.001).
However, a significant increase in femoral neck BMD from baseline occurred only in the
switch group (11.2 ± 14.6%, p<0.05); denosumab (4.1 ± 10.8%). The total hip BMD
increased significantly from baseline in both groups (denosumab: 4.60 ± 7.4%, p<0.05;
switch: 7.2 ± 6.9%, p<0.01). Femoral neck BMD was significantly increased in the switch
versus the denosumab group (p<0.05).

Conclusion: In GIO patients with prior bisphosphonate treatment, the advantage of
teriparatide may be maintained after the treatment period. A continuous increase in BMD
can be expected with teriparatide followed by denosumab.
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INTRODUCTION

Glucocorticoid-induced osteoporosis (GIO) is a common and
serious adverse effect associated with glucocorticoid use. GIO is
characterized by decreased bone formation due to the increased
apoptosis of osteoblasts and osteocytes (1, 2). A fragility fracture
occurs in 30%–50% of patients who undergo long-term
glucocorticoid therapy, leading to worse life expectancy and
quality of life (3, 4). The most commonly used drugs for GIO
are bisphosphonates, and in several randomized controlled trials,
the bisphosphonates alendronate, risedronate, and zoledronate
were shown to increase the lumbar and femoral bone mineral
density (BMD) of GIO patients (5–7). Alendronate and
risedronate were also shown to significantly reduce the rate of
vertebral fractures in patients with GIO (5, 6), and zoledronic
acid was shown to increase the BMD in the lumbar spine and
femur to a greater degree than risedronate (7). However, even
after the administration of a bisphosphonate, the BMD of
some patients does not improve. Although BMD reduction
alone should not be considered a failure of treatment with
bisphosphonates (8), BMD is an important predictor of
fractures and is one of the indicators in considering whether
GIO treatment should be changed. In GIO patients whose BMD
does not improve after treatment with a bisphosphonate, there is
limited evidence regarding which subsequent treatment can be
recommended for increasing BMD.

Denosumab, which is a RANKL (receptor activator of nuclear
factor kappa-B ligand) inhibitor, and teriparatide (i.e., recombinant
human parathyroid hormone (1–34)), are drugs that are expected
to increase the BMD of women with postmenopausal osteoporosis
more effectively than bisphosphonates (9, 10). Denosumab and
teriparatide have also been shown to be effective for GIO, and they
were demonstrated to increase the lumbar spine BMD and hip
BMD to a greater degree compared to bisphosphonates in
several studies (11–13). In the Denosumab And Teriparatide
Administration (DATA) extension study of patients with
postmenopausal osteoporosis— which described excellent
therapeutic effects of a combination of denosumab and
teriparatide— the increases in the lumbar spine, femoral neck,
and total hip BMD did not differ significantly between the
denosumab-monotherapy group and the teriparatide-
monotherapy group after 24 months of treatment (14).

However, our study of patients with GIO showed that, unlike
the DATA extension study, denosumab and teriparatide did not
have equivalent effects on BMD (15). In that study, we compared
the effects of teriparatide and denosumab in GIO patients who
achieved low T-scores (< −2.5) in the lumbar spine or femoral
neck even after bisphosphonate treatment. We observed that at
24 months after patients were switched from a bisphosphonate to
denosumab or daily teriparatide, the BMD in the lumbar spine
increased significantly from baseline in both groups, and there
was a significant increase in the femoral neck BMD only in the
teriparatide group. We thus suspected that teriparatide might
have some advantages over denosumab for treating GIO patients
with prior bisphosphonate treatment. However, since the clinical
use of teriparatide is limited to 24 months, GIO treatment must
be modified after the completion of teriparatide therapy.
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The later DATA-switch study of postmenopausal osteoporosis
patients revealed that the transition from teriparatide to
denosumab further increased the BMD increased by teriparatide
(16). The efficacy of this sequential treatment has not been well
studied in GIO. In the present 4-year study, we extended our 2-
year study (15) and compared a treatment group that transitioned
from teriparatide to denosumab with a treatment group that
continued denosumab for 4 years. We investigated whether the
teriparatide advantage gained in the first 2 years would be
maintained in the subsequent 2 years.
SUBJECTS AND METHODS

Study Design
This study was conducted from 2014 to 2021 at Kindai University
Hospital (Osaka, Japan). The original study (15) was a 24-month,
prospective, open-label, non-randomized clinical trial. The present
study’s inclusion and exclusion criteria were the same as those of
the original study. GIO patients being treated with glucocorticoids
for connective tissue disease and low T-score BMD (< −2.5) in the
lumbar spine or femoral neck after ≥2 years of bisphosphonate
therapy were switched from the bisphosphonate to either
denosumab or teriparatide.

Forty-seven patients were enrolled in the original study, and
20 of 24 patients who received denosumab and 21 of 23 patients
who received teriparatide completed 2 years of treatment. In the
present 2-year extension study, the patients who were treated
with denosumab in the original study (n=20) received an
additional 24 months of denosumab (60 mg subcutaneous
injection, 1×/6 months). The patients who had received daily
teriparatide (n=21) were switched to denosumab. In both groups,
the patients also received elemental calcium or vitamin D during
the administration of denosumab.

This study was conducted according to the principles expressed
in the Declaration of Helsinki of 1983, and it was approved by the
Research Ethics Committee of Kindai University of Medicine.
Written informed consent to participate and have their data
published was obtained from all patients.
Assessments
The demographic characteristics recorded at baseline included
the patient’s age, sex, body mass index (BMI), and daily dose of
prednisolone (PSL). During the extended 2-year period, as in the
original study, the patients were examined every 6 months. At
months 30, 36, 42, and 48 from baseline, the BMD of each
patient’s lumbar spine (L1–L4) and femoral neck and total hip of
the non-dominant leg were measured by dual-energy x-ray
absorptiometry (Discovery A, Hologic, Marlborough, MA,
USA). A marker of bone resorption, i.e., tartrate-resistant acid
phosphatase 5b (TRACP5b), a marker of bone formation, i.e.,
procollagen type 1 N-terminal propeptide (P1NP), and albumin-
corrected calcium were similarly assessed at months 30, 36, 42,
and 48. The primary endpoint of this study was the percent
change in BMD from the baseline of the original study to
September 2021 | Volume 12 | Article 753185
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48 months. The secondary endpoints were the percent changes in
the bone turnover markers TRACP5b and P1NP every 6 months.

Safety
The treating physicians performed the physical examinations
and laboratory tests (hematological, blood chemistry, and
urinalysis). All adverse events were recorded.

Statistical Analyses
We used GraphPad Prism software (GraphPad Software, San Diego,
CA) for all statistical analyses. The baseline characteristics of the
denosumab and teriparatide groups were compared using the Mann-
Whitney U-test (the ratio of females was tested using Fisher’s exact
test). Similarly, the changes in the BMD and bone turnover markers
were compared between the two patient groups by the Mann-
Whitney U-test. Within-group changes in the BMD and bone
turnover markers were assessed by paired t-test. P-values<0.05 were
considered significant.
RESULTS

Baseline Characteristics and
Patient Disposition
Of the 20 patients treated with denosumab in the original study,
16 patients completed 48 months of denosumab treatment (the
denosumab group). The reason for discontinuation in the other
four patients were death (n=2), transfer to another hospital at the
patient’s request (n=1), and missing data (n=1). The cause of
death in the two cases was exacerbation of the originally existing
Frontiers in Endocrinology | www.frontiersin.org 322
myelodysplastic syndrome in one case and newly developed
lymphoma in the other.

Twenty-one patients who had been treated with teriparatide in
the original 2-year study were switched to denosumab, and 18 of
those patients completed a total of 48 months of treatment (the
switch group). The reasons for discontinuation were hospital transfer
at the patient’s request (n=1), death due to cerebral infarction (n=1),
and patient request (n=1). A final total of 34 patients was analyzed
(denosumab group, n=16; switch group, n=18) (Figure 1).

The patients’ underlying connective tissue diseases are listed in
the Supplementary Material. The clinical characteristics of the
patients at the baseline of the original study are summarized in
Table 1. There were no significant between-group differences in
age, sex, BMI, PSL dose, durations of PSL and bisphosphonate
treatment, BMD, or the two bone turnover markers at baseline. No
significant between-group difference was found in the daily average
dose of PSL during the 48-month study period: denosumab group,
3.3 ± 2.2 mg/day; switch group, 2.9 ± 1.4 mg/day. One patient in
the switch group was receiving etanercept, a tumor necrosis factor
(TNF) inhibitor. No patient in either group received anti-
interleukin-6 (IL-6) receptor antibody.

Changes in BMD
Figure 2 illustrates the percent changes in the BMD of the lumbar
spine, femoral neck, and total hip over the 48-month treatment
period. Seven patients dropped out of the present study, but the
results up to 24 months were roughly similar to those in the original
study. The 24-month results can be summarized as follows. A
significant increase occurred in the lumbar spine and femoral neck
BMD from baseline in the teriparatide-treated group (which is the
FIGURE 1 | Patient enrollment and disposition.
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switch group in the present study), and a significant increase
occurred in only the lumbar spine BMD in the denosumab group.
At 12 months, the teriparatide-treated group showed a significant
increase in the lumbar spine BMD and a tendency for a BMD
increase in the femoral neck compared to the denosumab group.
Frontiers in Endocrinology | www.frontiersin.org 423
At 48 months, the lumbar spine BMD had increased
significantly from baseline in both groups (Figure 2A). The
percent changes in the lumbar spine BMD from baseline to 48
months were as follows: denosumab group, 10.4 ± 8.7%
(p<0.001); switch group, 14.2 ± 6.8% (p<0.001). At 48 months,
there was no significant between-group difference in the lumbar
spine BMD. In the femoral neck, the percent changes in BMD
from baseline to 48 months were as follows: denosumab group,
4.1 ± 10.8% (p=0.21); switch group, 11.2 ± 14.6% (p<0.05)
(Figure 2B). At 48 months, the BMD of the femoral neck was
significantly increased from baseline only in the switch group,
and the BMD was significantly increased in the switch group
compared to the denosumab group (p<0.05). In the total hip, the
percent changes in BMD from baseline to 48 months were:
denosumab group, 4.60 ± 7.4% (p<0.05); switch group, 7.2 ±
6.9% (p<0.01) (Figure 2C). At 48 months, there was no
significant between-group difference in the total hip BMD.

Compared to 24 months, the BMD in the denosumab group
at 48 months was significantly increased in both the lumbar
spine and total hip. In the switch group, compared to 24 months,
the BMD at 48 months was significantly increased at all
measurement sites. The percent changes in BMD from 24 to
48 months were not significantly different between the two
treatment groups at any of the measurement sites.

As shown in the original study, a clinical vertebral fracture
occurred in two patients in the denosumab group during the first
2 years. During the extended 2-year period, no new clinical
fractures occurred in either patient group.
TABLE 1 | Clinical characteristics at baseline of the original study.

Characteristics Denosumab
group

Switch group p-value

n = 16 n = 18

Age, years 65.8 ± 11.3 60.3 ± 12.4 0.11
Female, % 93.8 100 0.47
BMI, kg/m2 20.9 ± 3.5 20.3 ± 3.0 0.56
Duration of predonisolone
treatment, months

188.2 ± 106.4 201.0 ± 118.4 0.82

Dose of predonisolone at entry,
mg

6.4 ± 5.1 5.0 ± 2.9 0.92

Duration of bisphosphonate
treatment, months

143.2 ± 96.5 141.8 ± 79.4 0.88

BMD, g/cm2
Lumbar spine 0.75 ± 0.12 0.74 ± 0.11 0.77
T score -2.53 ± 1.12 -2.72 ± 1.20 0.53
Femoral neck 0.49 ± 0.08 0.50 ± 0.06 0.47
T score -2.72 ± 0.66 -2.59 ± 0.52 0.39
Total hip 0.63 ± 0.09 0.64 ± 0.09 0.46
T score -2.21 ± 0.70 -1.98 ± 0.86 0.46

Bone turnover markers
Serum TRACP-5b, mU/dL 309.3 ± 116.8 253.0 ± 136.7 0.14
Serum P1NP, mg/L 32.7 ± 22.7 22.7 ± 15.7 0.13
Data are mean ± SD. BMI, body mass index; BMD, bone mineral density; TRACP-5b,
tartrate-resistant acid phosphatase 5b; P1NP, procollagen type 1 N-terminal propeptide.
A B

C

FIGURE 2 | Mean percent changes in BMD from baseline to 48 months in the lumbar spine (A), femoral neck (B), and total hip (C). Error bars: SEM. *p < 0.05,
**p < 0.01, ***p < 0.001 vs. baseline. †p < 0.05, denosumab group vs. switch group.
September 2021 | Volume 12 | Article 753185

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Hirooka et al. Teriparatide vs. Denosumab in GIO
Changes in the Bone Turnover
Markers and Calcium
The changes in bone turnover markers are shown as a percentage
change from baseline in Figure 3. In the denosumab group, the
serum TRACP-5b levels were decreased the most at 6 months
(−42.1 ± 6.2%) compared to baseline and significantly decreased
until 30 months, and the serum P1NP levels were decreased the
most at 6 months (−30.4 ± 8.3%) compared to baseline and
significantly decreased until 12 months. In the switch group,
both the serum TRACP-5b and serum P1NP levels increased the
most at 6 months of teriparatide treatment compared to baseline
(108.4 ± 25.1% and 491.6 ± 66.5%, respectively) and increased
significantly until 24 months.

After the switch from teriparatide to denosumab, the serum
TRACP5-b and serum P1NP levels decreased sharply at 30 months
(−110.5 ± 26.9% and −12.3 ± 12.1%, respectively), and after 30
months there was no significant difference from baseline. During
the first 24 months, the serum TRACP-5b and serum P1NP levels
in the switch group were significantly increased compared to those
of the denosumab group, but after 30 months, there was no
significant difference between the two groups. There were no
clinically meaningful changes in albumin-corrected calcium in
the two groups (Supplementary Material).

Adverse Events
During the period of 24 to 48 months, one case each of ischemic
enteritis, urinary tract infection, myocardial infarction, and
ovarian tumor were reported in the denosumab group, and one
case each of herpes zoster and angina pectoris were reported in the
switch group. These adverse events were classified as unrelated to
treatment by each patient’s physician and the study investigators.
DISCUSSION

In the results of our 4-year study, treatment with teriparatide for
2 years followed by denosumab for 2 years significantly increased
Frontiers in Endocrinology | www.frontiersin.org 524
BMD from baseline in the lumbar spine, femoral neck, and total
hip in GIO patients with prior bisphosphonate treatment.
Continuous treatment with denosumab for 4 years also
significantly increased BMD in lumbar spine and femoral neck,
but the increase in femoral neck BMD was significantly greater
with teriparatide followed by denosumab. Both denosumab and
teriparatide are the effective agents to increase BMD in GIO
patients. However, there are few reports investigating the effects
of these drugs in patients with GIO who have previously been
treated with bisphosphonates, and no study has compared the
two drugs in such patients. Our original study compared the
efficacy of both drugs in GIO patients with prior bisphosphonate
treatment, and this extension study investigated effective long-
term treatment strategies for GIO with these drugs.

There are only a few studies comparing the therapeutic effects
of denosumab and teriparatide. In the DATA extension study,
which was conducted in bisphosphonate-naïve women with
postmenopausal osteoporosis, both the denosumab- and
teriparatide-treated groups showed significant increases from
baseline in BMD at the lumbar spine, femoral neck, and total hip,
with no significant differences between the two groups (14). On the
other hand, our earlier study demonstrated that teriparatide has some
advantages over denosumab in GIO patients with prior
bisphosphonate treatment (15). The discrepancy in the results may
be due to the different backgrounds of the patients addressed in each
study. Osteoporotic patients who have been treated with
bisphosphonates have already had their bone turnover sufficiently
suppressed, and it is possible that the therapeutic effect of denosumab
(which suppresses bone turnover like bisphosphonates do) is
restricted. In addition, since GIO is caused primarily by an
inhibition of bone formation, we considered teriparatide, a bone-
forming agent, appropriate for the treatment of GIO.

Denosumab and teriparatide are potent osteoporosis therapeutic
agents that produce large increases in lumbar and femoral BMD
values. However, the discontinuation of either of these drugs results
in a rapid decline in BMD (17–19). Since the clinical use of
teriparatide is limited to 24 months, an important issue must be
A B

FIGURE 3 | Percent changes in serum TRACP-5b (A) and P1NP (B) from baseline to 48 months. Error bars: SEM. *p < 0.05, **p < 0.01, ***p < 0.001 vs. baseline.
†p < 0.001, denosumab group vs. switch group. TRACP-5b, tartrate-resistant acid phosphatase 5b; P1NP, procollagen type 1 N-terminal propeptide.
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addressed: how to maintain or further increase the BMD gain that
was obtained during this period. The DATA-switch study of
postmenopausal women with osteoporosis reported that the
transition from teriparatide to denosumab showed a greater
increase in BMD than the transition from denosumab to
teriparatide (16). The order of the administration of denosumab
and teriparatide may affect the outcome of increased BMD, but this
has not been fully examined in GIO patients. As with
postmenopausal osteoporosis, teriparatide followed by
denosumab would lead to a favorable increase in the BMD of
patients with GIO. In our results, femoral neck BMD at 48 months
was significantly increased in the switch group compared to the
denosumab group. This suggest that the BMD increase achieved
with teriparatide may be greater with a subsequent denosumab
administration, and that the advantage of teriparatide over
denosumab may be maintained after the switch to denosumab.

The body’s BMD depends on the balance between bone
resorption and bone formation. In the switch group, both serum
TRACP-5b, measured as a bone resorption marker, and serum
P1NP, measured as a bone formation marker, were increased by
teriparatide treatment, and these markers’ values then decreased
after the switch to denosumab. In the present denosumab group,
both serum TRACP-5b and serum P1NP were suppressed, and the
patients’ serum levels of TRACP-5b decreased significantly
compared to the baseline for a longer period than the serum
P1NP. These changes in bone turnover markers may be related to
the increase in BMD in both groups; however, changes in these
markers alone may not be sufficient to explain the difference in the
BMD results between the two groups. Switching from
bisphosphonates to denosumab suppresses bone turnover markers
in postmenopausal osteoporosis patients (20–22), but there are no
long-term data over 4 years, and data in GIO patients are also
insufficient. In our results, bone turnover markers in the denosumab
group were reduced from baseline, but these suppressions were less
than would be expected from previous reports. Although the exact
cause of these discrepancies is unknown, there were differences in
baseline characteristics of patients between our study and previous
reports in that our study had a longer duration of treatment
with bisphosphonates.

The dose of glucocorticoids used in inflammatory or
autoimmune diseases depends on each disease and its severity.
Strong immunosuppressive therapy for vasculitis and systemic
lupus erythematosus requires high doses of glucocorticoids,
whereas the use of ≤4 mg/day of PSL is often sufficient to
improve symptoms in rheumatoid arthritis (23, 24). Because
glucocorticoids increase the risk of BMD loss and fracture in a
dose-related manner (25), differences in the underlying disease
may affect the efficacy of therapeutic agents. Patients with various
connective tissue diseases were included in the present study, but
there was no significant difference in glucocorticoid dosage
between the denosumab and switch groups.

In addition to long-term administration, the effects of
glucocorticoids on bone metabolism are also observed in the
short term. Even if administered for only a few days, high doses
of glucocorticoids can affect bone metabolic markers and also
cause increased serum intact parathyroid hormone (PTH) levels
Frontiers in Endocrinology | www.frontiersin.org 625
and urinary calcium excretion (26). In the present study, both the
denosumab and teriparatide groups did not use more than
20 mg/day of PSL during the observation period, and there
was no significant difference in the daily average dose of PSL
between the groups. The usage of PSL in the two groups was thus
considered to be similar.

This study was designed to evaluate patients with GIO, and
patients were enrolled regardless of gender. Most of the patients
who participated in this study were female, but one male was
included in the denosumab group. The prevalence of
osteoporosis is more common in women than in men. Women
have a lower peak bone mass, smaller bone size, and tend to lose
bone at a younger age than men (27). Excluding one male patient
in the denosumab group did not significantly affect our results.

The major limitations of the present study are the lack of
randomization and the small sample size. In the original study, the
patients who chose the daily subcutaneous injection and were judged
by their physician to be capable of self-injection were assigned to
receive teriparatide, and the other patients were assigned to receive
denosumab. Although there was no apparent difference in the
baseline characteristics investigated between the two groups, it is
possible that a larger number of patients in the denosumab group
who were judged unable to perform self-injections by their physicians
also contained patients with low physical activity. In postmenopausal
women, exercise is effective for preventing lumbar spine BMD loss
(28), and there is a report that the combination of teriparatide and
whole-body vibration exercise resulted in a greater increase in lumbar
spine BMD than teriparatide alone (29). Potential differences in
physical activity and the exercise habits that might accompany it
between the present denosumab and switch groups could have
affected our results.

In addition, the present study’s primary endpoint was the
percent changes in BMD, not the incidence of fractures, and there
were no regular radiographic examinations to identify fractures. It is
not sufficient to determine the treatment effect solely by measuring
the BMD without assessing the incidence of fractures; however,
since BMD is an important predictor of fracture, we believe that the
present evaluation of the changes in BMD is very meaningful.

In the final results of our study, the 4-year treatment with
teriparatide followed by denosumab in GIO patients with prior
bisphosphonate treatment resulted in a continuous and large
increase in BMD in the lumbar spine and femur. Since
glucocorticoid therapy for connective tissue diseases is long-
term, continuous therapy for GIO is also necessary. It is desirable
to judge the effects of a therapeutic drug for GIO by referring to
changes in BMD and bone turnover markers; in addition,
patients who are considered to have an inadequate response to
bisphosphonates should be considered for a switch to an
appropriate agent. Our findings are important for rational drug
selection in the long-term continuum of drug therapy for GIO.
CONCLUSIONS

In our 4-year study, treatment with teriparatide followed by
denosumab significantly increased lumbar and femoral BMD
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values, with a greater increase in femoral neck BMD than
treatment with continued denosumab. The advantage of
teriparatide over denosumab in GIO patients who received
bisphosphonate as a pretreatment may be maintained after the
teriparatide treatment period, and treatment with teriparatide
first and then with denosumab is expected to result in a
continued BMD gain. Further studies with larger patient
populations are needed to confirm the efficacy of this
treatment strategy.
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Objectives: The influence of hypercortisolism on phosphate homeostasis is relatively
unknown. A few previous studies have reported on patients with Cushing’s syndrome
(CS) with hypophosphatemia in whom serum phosphate normalized after initiation of
treatment for CS. We aimed to investigate the prevalence of hypophosphatemia in CS,
the association between the degree of hypercortisolism and serum phosphate and the
change in serum phosphate after remission of CS. We compared the prevalence
of hypophosphatemia in CS with the prevalence in the population-based Rotterdam
Study (RS).

Methods: Patients diagnosed with CS and treated at the Department of Endocrinology of
Erasmus MC in the period of 2002-2020 were included and data was collected on age
at diagnosis, sex, serum phosphate, calcium and potassium levels, kidney function and
BMI. Using multivariate linear regression, we analyzed the association between 24h
urinary free cortisol excretion (UFC) and serum phosphate. Changes in serum phosphate
and covariates were tested with a repeated measurement ANOVA, using mean levels
of laboratory values for the periods before remission, and 0-14 days and 15-180 days
after remission.

Results: Hypophosphatemia before treatment was present in 16% of the 99 CS patients
with data on serum phosphate, 24h UFC and covariates. In comparison, the prevalence of
hypophosphatemia in RS was 2.0-4.2%. Linear regression showed a negative association
between the level of UFC and serum phosphate at diagnosis, which remained significant
after adjusting for covariates [b -0.002 (95%CI -0.004; -0.0004), p=0.021]. A subset of 24
patients had additional phosphate measurements at 0-14 days and 15-180 days after
remission. In this subgroup, serum phosphate significantly increased from 1.03 ± 0.17
mmol/L prior to remission to 1.22 ± 0.25 mmol/L 15-180 days after remission (p = 0.008).
BMI decreased after remission [-1.1 kg/m2, (95%CI -2.09 to -0.07), p=0.037]. Other
covariates did not show an equivalent change over time.
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Conclusion: In this retrospective study, we found that 16% of patients with CS had
hypophosphatemia. Moreover, serum phosphate was related to the level of cortisoluria
and increased after remission of CS. Potential underlying mechanisms related to urinary
phosphate excretion and possibly involving FGF23, BMI and parathyroid hormone levels
should be further explored.
Keywords: Cushing’s syndrome, cortisol, hypercortisolism, phosphate, hypophosphatemia, glucocorticoids
INTRODUCTION

Cushing’s syndrome (CS) results from chronic exposure to either
endogenous or exogenous excess of cortisol (1). A well-known
complication of hypercortisolism in CS is glucocorticoid-
induced osteoporosis (GOP) (2, 3). GOP is thought to be the
result of a combination of decreased intestinal calcium absorption
and renal calcium resorption, increased bone resorption, decreased
bone formation and muscle wasting. Consequently, biochemical
remission of Cushing’s syndrome results in an increase in bone
mineral density (3). Recently, it has been suggested that treatment
with glucocorticoids could also affect phosphate homeostasis and
even induce hypophosphatemia due to increased urinary
phosphate excretion (4, 5). Among drugs that are associated with
hypophosphatemia, glucocorticoids have been suggested to be
among the most common pharmacological agents associated
with profound hypophosphatemia in hospitalized patients (6).
Similarly, some case reports have described hypophosphatemia in
patients with CS (7–9). After treatment for CS, normalization of
serum phosphate levels has been reported after two weeks and can
take up to one year (7–9). Findling et al. reported seven patients
with CS who went in remission after treatment. One year after
remission, they reported a significant increase in tubular
reabsorption of phosphate, a reduction in daily urinary calcium
excretion, a decrease in immunoreactive parathyroid hormone
(PTH) and a decrease in 1,25 dihydroxy vitamin D (1,25(OH)

2D) (9). Similar to glucocorticoid use, it has been hypothesized that
hypercortisolism in CS can induce hypophosphatemia by
increasing urinary phosphate excretion or by inhibiting intestinal
phosphate absorption. This process may be mediated by Fibroblast
Growth Factor 23 (FGF23) (8, 10, 11). Indeed, Delucchi et al.
reported an association between sustained glucocorticoid treatment
and increased intact FGF23 levels in pediatric renal transplant
patients (12).

Phosphate is important for energy metabolism, cell signaling
and oxygen transport. It is also a component of DNA and RNA,
and it is critical for skeletal development and bone mineralization
(13, 14). Most of phosphate in the human body is stored in bone,
the remainder is localized in soft tissue (15). Phosphate deficiency
can cause a variety of clinical problems such as muscle weakness,
rickets in children and osteomalacia in adults (16). Phosphate
homeostasis is regulated by several factors of which PTH, 1,25
dihydroxy vitamin D and FGF23 appear to be the most important
(15, 17). Whereas knowledge of the role of phosphate and
phosphate homeostasis is increasing, little is known about the
relation between cortisol, and specifically Cushing’s syndrome
(CS) and phosphate homeostasis.
n.org 229
The prevalence of hypophosphatemia in CS is currently
unknown and the changes in phosphate concentrations after
treatment for CS have only been studied in very small patient
groups. Moreover, the role of potential confounders of
phosphate homeostasis, such as BMI and kidney function, have
not been adequately explored yet. In this study, we aim to
evaluate the prevalence of hypophosphatemia in CS, the
association between the level of 24h urinary free cortisol
excretion (UFC), as a marker of the degree of hypercortisolism,
and serum phosphate concentrations; the role of potential
confounders and the change in serum phosphate levels after
remission of CS.We compare the prevalence of hypophosphatemia
in CS to the prevalence in a population-based cohort study ofmales
and females.
MATERIALS AND METHODS

Patients
This retrospective study included patients from the endocrinology
department of the Erasmus University Medical Center, Rotterdam,
the Netherlands, who were diagnosed with endogenous CS in the
period 2002-2020. A diagnosis of CS was made based on three
screening tests: late night salivary cortisol concentration, 24h UFC
and the 1 mg overnight dexamethasone suppression test (1). In
patients with adrenocorticotropin hormone (ACTH) dependent
CS, a pituitary-dependent cause was differentiated from an ectopic
cause by bilateral inferior petrosal sinus sampling in case of a non-
visible adenoma onMRI or an adenoma less than 6mm. In patients
with ACTH-independent CS, CT or MRI was performed to image
the adrenal glands. To study the prevalence of hypophosphatemia
and the association between 24h UFC and serum phosphate
concentration, we included patients for whom serum phosphate
measurements were available that were taken after diagnosis and
before remission. A total of 99 patients had complete data on serum
phosphate, 24h UFC and covariates before remission and they were
included to study the prevalence of hypophosphatemia and the
association between UFC and serum phosphate. In addition, in the
subset of this population in whom serum phosphate had also been
measured after remission of CS, we studied the effect of treatment of
CS on serum phosphate concentration. For 24 patients with serum
phosphate measurements at time of diagnosis, serum phosphate
measurements and covariates were available postoperatively and
within 180 days after remission. Lastly, we determined the
difference in serum phosphate concentration between the time of
diagnosis and more than 180 days after remission. For this analysis
September 2021 | Volume 12 | Article 733793
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we included 45 patients with a serum phosphate measurement that
was taken at time of diagnosis and a serum phosphate measurement
taken more than 180 days, but less than 3 years, after remission,
when the patient either used hydrocortisone at a physiological
dosage or supplementation had stopped. We repeated this analysis
in 30 patients with additional information on covariates.

We compared the prevalence of hypophosphatemia in CS to
the prevalence in the Rotterdam Study (RS). RS is a population-
based study of males and females aged 40 or more from the
district Ommoord in Rotterdam, the Netherlands. The rationale
and design have been described in more detail elsewhere (18).
This study is ongoing since 1990 and is now composed of four
cohorts, named RS-I, RS-II, RS-III and RS-IV (initiated in 1990,
2000, 2005 and 2017). The Rotterdam Study has been approved
by the Medical Ethics Committee of the Erasmus MC
(registration number MEC 02.1015) and by the Dutch Ministry
of Health, Welfare and Sport (Population Screening Act WBO,
license number 1071272-159521-PG). All participants provided
written informed consent to participate in the study and to have
their information obtained from treating physicians. A total of
5,182 participants from RS-I, 2,511 from RS-II and 3,435 from
RS-III with information on serum phosphate concentration were
included to study the prevalence of hypophosphatemia in RS.
Methods
Serum samples from patients were analyzed as part of
standard care for CS, at the department of clinical chemistry of
Erasmus MC. Prior to 2013, 24h UFC was measured with a
chemiluminescence immunoassay using unextracted urine
(Immulite XPi, Siemens AG, Munich, Germany). The upper
limit of normal (ULN) of this assay was 850 nmol/24h. From
2013 onwards, UFC was measured using liquid chromatography/
tandem mass spectrometry (LC/MSMS, Waters Xevo-TQ-S,
Milford, MA). The ULN of this assay is 133 nmol/24h.
Hypercortisolism was defined as cortisoluria higher than the
ULN of 24 hour UFC. For the purpose of harmonisation for this
study, the level of cortisoluria was defined as the times of ULN
(xULN) of 24 hour UFC. Data on age, sex, cause of CS, level of
cortisoluria at time of diagnosis, serum phosphate and Cushing
related treatment were collected from the medical files.
Furthermore, we collected data on serum creatinine, total calcium,
potassium, body mass index (BMI), proton-pump inhibitors (PPI)
use, thiazide and loop diuretics use, as these variables have been
associated with phosphate homeostasis. BMI (kg/m2) was estimated
from weight and height measured at clinical presentation. To
calculate the estimated glomerular filtration rate (eGFR), the
Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)
equation was applied (19). Hypophosphatemia was defined as a
serum phosphate concentration below 0.80 mmol/L (normal range:
0.80-1.40 mmol/L).

In the subset of the population with serum phosphate
measurements after remission of CS, the treatment modalities
leading up to remission varied. In this population, the date of
remission was defined as follows: the date of biadrenalectomy or
adrenalectomy; the date of removal of the ACTHproducing tumor;
the date of the transsphenoidal hypophysectomy resulting in
Frontiers in Endocrinology | www.frontiersin.org 330
remission and the date when cortisoluria was less than ULN in
24 hour urine in medically or radiologically treated patients.
Statistical Analysis
The associations between 24h UFC and serum phosphate were
examined through linear regression models, with the serum
phosphate measurement that was taken nearest to the date of
diagnosis modeled as the dependent variable and xULN of 24
hour UFC modeled as the independent variable. Analyses were
adjusted for serum potassium, eGFR, total calcium, BMI,
smoking and use of loop diuretics, thiazide diuretics and PPIs.

To analyze the difference betweenmean serum phosphate before
remission and several time periods after remission, we applied a
repeated measures ANOVA. Measurements of serum phosphate
are not part of standard care for CS (20). Therefore, it was expected
that serum phosphate had been measured at different time points
and there would be missing data. To study the change in serum
phosphate postoperatively and after several months, mean serum
phosphate levels were calculated for the periods before remission,
0-14 days after remission and 15-180 days after remission and a
repeated measures ANOVA was performed. Normality was
assessed using Shapiro-Wilk’s test. Analyses were repeated after
exclusion of any outliers in the data. Sphericity was tested with
Mauchly’s test of sphericity. In the models chosen for statistical
analysis, it was not possible to adjust for covariates. Therefore, any
change in total calcium, potassium, eGFR and BMI was studied by
comparing themeans before and after remission using the statistical
approach as described above. Covariates that do not show a change
after remission are considered to have little or no effect on any
change in serum phosphate concentrations that may be observed.

To determine the change in serum phosphate concentration in
patients with a serum phosphate measurement taken at the time of
diagnosis and more than 180 days after remission, we applied a
paired student T-test. For this analysis we included the serum
phosphate measurement that was taken nearest to the date of
diagnosis and the first serum phosphate measurement that was
taken more than 180 days, but less than 3 years, after remission,
when the patient either used hydrocortisone at a physiological
dosage or supplementation had stopped. A hydrocortisone dosage
of 10milligram in the morning, 5 milligram in the afternoon and 5
milligram in the evening was classified as physiological. We chose
a cut-off of 3 years because we consider this time period to be
reasonably unaffected by change due to other factors such as
ageing (21)

Lastly, as a sensitivity analysis, we tested differences in serum
phosphate, cortisoluria, serum calcium, potassium, eGFR, BMI
and diuretics and PPI use between patients with and without
hypophosphatemia and between patients with ACTH producing
pituitary adenomas and ectopic ACTH production using chi-
square and Mann-Whitney U tests.

Results are presented as mean ± SD, except where otherwise
indicated. A p-value less than 0.05 was considered statistically
significant. All analyses were performed with IBM SPSS software,
version 25 (SPSS, Chicago, IL) and R version 3.6.1 (Vienna,
Austria). The medical ethical committee of the Erasmus MC
approved this study.
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RESULTS

The general characteristics of the study population (N=99) and
of the subset of the population with serum phosphate
measurements at 0-14 days and 15-180 days after remission
(N=24) are depicted in Table 1. In the total population, 73.7%
was female and the mean ± SD age at diagnosis was 46.4 ± 13.5
years. An ACTH producing pituitary adenoma was diagnosed in
74.7% of patients, ectopic ACTH production was diagnosed in
23.2% of patients and 2.0% had adrenal CS. In the subset of the
population with measurements at 0-14 days and 15-180 days
after remission (N=24), 67% was female and the mean age at
diagnosis was 50.3 ± 12.8 years. Of these 24 patients, 62.5% was
diagnosed with an ACTH producing pituitary adenoma and
37.5% was diagnosed with ectopic ACTH production.

Prevalence of Hypophosphatemia
In the total population of CS patients, mean serum phosphate at
time of diagnosis was 1.01 mmol/L ± 0.21. 16% of these patients
had hypophosphatemia. In RS-I of the Rotterdam Study
(n=5,182), 61.4% was female, mean ± SD age was 70.3 ± 9.0,
mean serum phosphate level was 1.19 mmol/L ± 0.20 and
hypophosphatemia was present in 2.0% of the population.
Frontiers in Endocrinology | www.frontiersin.org 431
In RS-II (n=2,511), 54.6% was female, mean ± SD age was
64.7 ± 7.8, mean serum phosphate level was 1.08 mmol/L ± 0.16
and hypophosphatemia was present in 4.2% of the population. In
RS-III (n=3,435), 56.4% of patients was female, mean ± SD age was
57.1 ± 6.8, mean serum phosphate level was 1.12 mmol/L ± 0.17
and hypophosphatemia was present in 2.9% of the population.

Association Between the Level of
Cortisoluria and Serum Phosphate at
Time of Diagnosis
Linear regression analyses showed a significant inverse
association between serum phosphate at time of diagnosis and
xULN of 24h UFC [b (95% CI): b= -0.003 (-0.005 to -0.002),
p<0.001], which remained significant after adjustment for serum
total calcium, potassium, eGFR, BMI, smoking, use of loop
diuretics, thiazide diuretics and PPIs [b (95% CI): b= -0.002
(-0.004 to -0.0004), p=0.021]. Additional adjustment for age and
sex did not change results (data not shown).

Change in Serum Phosphate
After Remission
In the group of 24 patients with serum phosphate measurements
after remission, mean serum phosphate was 1.03 ± 0.17 before
remission, 1.11 ± 0.30 mmol/L at 0-14 days and 1.22 ± 0.25 mmol/L
at 15-180 days after remission Figure 1 depicts the box and whisker
plots with the medians and interquartile range for the different time
points. In this group, 8% had hypophosphatemia at time of
diagnosis. A repeated-measures ANOVA showed that the mean
phosphate levels were statistically significantly different between
the different time points before and after remission F(2, 46) = 4,765,
p = 0.013. A post hoc test using Bonferroni correction showed a
substantial increase in serum phosphate from 1.03 mmol/L prior to
remission to 1.22 mmol/L 180 days after remission, a significant
increase of 0.19 (95%CI 0.04 to 0.33) mmol/L, p = 0.008 (Figure 2).
Analysis was repeated after exclusion of outliers of serum phosphate
and yielded similar results.

Next, we determined the difference in serum phosphate
concentration between the time of diagnosis and more than
180 days after remission. In this group of 45 patients, serum
phosphate increased significantly from 1.02 ± 0.18 mmol/L at
time of diagnosis to 1.12 ± 0.25 mmol/L at >180 days after
remission, a significant increase of 0.09 mmol/L (95%CI 0.02 to
0.17, p=0.019). Results were similar when restricting the analysis
to patients who also had eGFR, serum total calcium, potassium
and BMI measured more than 180 days after remission: increase
of 0.11 mmol/L (95%CI 0.001 to 0.21), p=0.051, N=30).

Changes in Covariates After Remission
In the group op 24 patients with phosphate measurements 0-14
days and 15-180 days after remission, no change was observed in
eGFR after remission of CS. There was a slight increase in serum
potassium concentration from 3.99 ± 0.45 mmol/L 0-14 days
after remission to 4.33 ± 0.28 mmol/L 15-180 days after
remission, a significant increase of 0.34 (95%CI, 0.07 to 0.61)
mmol/L, p = 0.009. Moreover, serum total calcium increased
from 2.14 ± 0.25 mmol/L at 0-14 days after remission (p=0.046)
TABLE 1 | General characteristics of the study population at time of diagnosis.

All With 0-14 and
15-180 day

measurements

N 99 24
Age at diagnosis, years 46.4 (13.5) 50.3 (12.8)
Female (%) 73 (73.7%) 16 (67%)
Phosphate, mmol/L 1.01 (0.21) 1.04 (0.19)
Hypophosphatemia (%) 16 (16.2%) 2 (8.3%)
Cortisoluria, xULN UFC median
(min, max)

2.6 (0.5, 144.3) 3.9 (0.6, 89.7)

Calcium, mmol/L 2.31 (0.21) 2.27 (0.18)
Potassium, mmol/L 4.0 (0.6) 3.9 (0.7)
eGFR, mL/min/1.73m2 97.7 (20.1) 100.6 (18.6)
BMI, kg/m2 29.0 (6.7) 28.9 (7.5)
Thiazide diuretics use (%) 20 (20.2%) 4 (16.7%)
Loop diuretics use (%) 4 (4.0%) 3 (12.5%)
PPI use (%) 24 (23.3%) 5 (20.8%)
Current smoking (%) 22 (21.4%) 5 (20.8%)
Cause of hypercortisolism
ACTH producing pituitary adenoma (%) 74 (74.7%) 15 (62.5%)
Ectopic ACTH production (%) 23 (23.2%) 9 (37.5%)
Adrenal CS (%) 2 (2.0%) –

Treatment
No remission (%) 8 (8.1%) –

Hypofysectomy(%) 22 (22.2%) 4 (16.7%)
Medication(%) 28 (28.3%) 5 (20.8%)
Bilateral adrenalectomy(%) 28 (28.3%) 13 (54.2%)
Adrenalectomy (%) 2 (2.0%) –

Carcinoid resection(%) 4 (4.0%) –

Radiation therapy(%) 6 (6.1%) 1 (4.2%)
Unknown (%) 1 (1.0%) –
Results are presented as mean (standard error) for continuous variables and count
(percentages) for categorical variables, unless otherwise stated. BMI, body mass index;
CS, Cushing’s syndrome; eGFR, estimated glomerular fi ltration rate; PPI,
protonpumpinhibitors; xULN UFC, the times of upper limit of normal of 24 hour urinary
free cortisol.
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to 2.28 ± 0.18 mmol/L at 15-180 days after remission (p=0.034).
Lastly, we observed a significant decrease in BMI when
comparing BMI at 15-180 days after remission with BMI
before remission [paired t-test: -1.1 (95%CI -2.09 to -0.07),
p=0.037] (Figure 3).

In the group of 30 patients with serum phosphate, total
calcium, potassium, eGFR and BMI measurements taken at
time of diagnosis and more than 180 days after remission, no
change was observed in serum calcium. Interestingly, eGFR
decreased from 98.83 ± 19.66 mL/min/1.73m2 to 83.30 ± 24.39
mL/min/1.73m2, a significant decrease of 15.53 mL/min/1.73m2

(95%CI 8.07 to 22.97, p-value <0.001), while serum potassium
increased from 4.11 ± 0.57 mmol/L to 4.46 ± 0.38 mmol/L, a
significant increase of 0.35 (95%CI 0.05 to 0.64, p-value=0.022).
BMI decreased from 30.2 ± 1.4 to 28.2 ± 1.5, a significant
decrease of 2.0 (95%CI -3.0 to -0.9, p-value=0.001).

Lastly, differences between patients with hypophosphatemia
and without hypophosphatemia and between patients with ACTH
producing pituitary adenomas and ectopic ACTH production
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were tested using chi-square and Mann-Whitney U tests.
Differences between patients with hypophosphatemia and
without hypophosphatemia are depicted in Table 2. Here, xULN
of 24h UFCwas higher in patients with hypophosphatemia than in
patients without hypophosphatemia (p=0.024). Patients with
hypophosphatemia had lower serum calcium levels (p<0.001)
and were more likely to have CS from ectopic ACTH
production than patients without hypophosphatemia. Differences
between patients with ACTH producing pituitary adenomas and
with ectopic ACTH production are depicted in Table 3. Patients
with CS from ectopic ACTH production were older (p=0.031), had
lower phosphate concentration at time of diagnosis (p=0.004),
were more likely to have hypophosphatemia (p=0.023), had higher
xULN of 24h UFC (p<0.001) and had lower potassium
concentrations (p<0.001) than patients with CS from ACTH
producing pituitary adenomas.
DISCUSSION

In this study we investigated the prevalence of hypophosphatemia
in CS, and the change in serum phosphate concentration and
potential confounders of phosphate homeostasis after remission of
CS. In addition, we explored the association between 24h UFC and
serum phosphate before remission. Data from our study showed
that hypophosphatemia was present in up to 16% of our patients
with active CS. The prevalence of hypophosphatemia in these
patients is four to six times higher than in participants from a
population-based cohort study. We also found that serum
phosphate increases after remission, which also suggests that
hypercortisolism affects serum phosphate concentration. The
level of cortisoluria found in hypophosphatemic patients and the
inverse association between the 24h UFC level and serum
phosphate concentration indicate modulatory effects of cortisol
on phosphate homeostasis.

Our results indicate that hypercortisolism in CS affects serum
phosphate even to the extent of causing hypophosphatemia.
Hypophosphatemia can cause multiple symptoms such as
fatigue and muscle weakness, which are complaints that are
commonly reported by CS patients. Nearly 60% of patients with
Cushing’s syndrome have muscle weakness (22). Glucocorticoid
FIGURE 1 | Box and whisker plots illustrating serum phosphate concentrations before remission, 0-14 days after remission and 15-180 days after remission. Boxes
include medians and interquartile range. Whiskers extend 1.5 times the interquartile range.
FIGURE 2 | Change in serum phosphate concentration after remission.
Mean serum phosphate levels and standard deviation were calculated for
the periods before remission, 0-14 days after remission and 15-180 days
after remission.
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induced myopathy is caused by an altered protein metabolism,
resulting in muscle atrophy and muscle protein catabolism (22).
In addition, it has been suggested that hypophosphatemia
causes a decrease in muscle ATP synthesis (23). Consequently,
hypophosphatemia may worsen muscle weakness in patients
with CS and may also contribute to the development of
Frontiers in Endocrinology | www.frontiersin.org 633
glucocorticoid-induced low bone mineral density and fractures
by causing osteomalacia. As can be expected, patients with CS
based on ectopic ACTH production had higher 24h UFC levels
than patients with CS due to ACTH producing pituitary adenomas
(24), and were in turn more likely to develop hypophosphatemia.

Our findings are in line with and extend previous reported
cases of hypophosphatemia in CS, in whom remission of CS
resulted in normalization of serum phosphate (7, 8). Similarly,
Findling et al. reported previously an increase in serum
A B

DC

FIGURE 3 | Change in eGFR (A), serum potassium (B), serum calcium (C) and BMI (D) after remission. Means and standard deviations were calculated for the
periods before remission, 0-14 days after remission and 15-180 days after remission. eGFR, estimated glomerular filtration rate.
TABLE 2 | Differences between patients with hypophosphatemia and with
normal phosphate concentration before remission.

Hypophosphatemia Normal
phosphate

P

N 16 83
Age at diagnosis in years 49.9 (19.7) 46.5 (19.5) 0.849
Female (%) 13 (81.3%) 60 (72.3%) 0.550
Phosphate, mmol/L 0.68 (0.13) 1.06 (0.17) <0.001
Cortisoluria, xULN UFC 5.6 (53.9) 2.6 (3.0) 0.022
Calcium, mmol/L 2.17 (0.37) 2.33 (0.21) 0.003
Potassium, mmol/L 4.0 (0.9) 4.1 (0.7) 0.362
eGFR, mL/min/1.73m2 101.7 (29.5) 100.1 (26.6) 0.680
BMI, kg/m2 26.8 (6.6) 27.6 (9.4) 0.356
Thiazide diuretics use (%) 0 20 (24.1%) 0.037
Loop diuretics use (%) 2 (12.5%) 2 (2.4%) 0.121
PPI use (%) 6 (37.5%) 17 (20.5%) 0.126
Current smoking (%) 3 (18.8%) 17 (20.5%) 0.590
Cause of hypercortisolism
ACTH producing pituitary
adenoma (%)

8 (50.0%) 66 (79.5%) 0.044

Ectopic ACTH production (%) 7 (43.8%) 16 (19.3%)
Adrenal CS (%) 1 (6.3%) 1 (1.2%)
Results are presented as median (interquartile range) for continuous variables and count
(percentages) for categorical variables. ACTH, adrenocorticotropin hormone; BMI, body
mass index; CS, Cushing’s syndrome; eGFR, estimated glomerular filtration rate; PPI,
protonpumpinhibitors; xULN UFC, the times of upper limit of normal of 24 hour urinary
free cortisol.
TABLE 3 | Differences between patients with an ACTH producing pituitary
adenoma and ectopic ACTH production before remission.

ACTH
producing

pituitary adenoma

Ectopic ACTH
production

P

N 74 23
Age at diagnosis in years 44.6 (17.7) 54.6 (22.6) 0.031
Female (%) 55 (74.3%) 16 (69.6%) 0.788
Phosphate, mmol/L 1.06 (0.21) 0.92 (0.30) 0.004
Hypophosphatemia 8 (10.8%) 7 (30.4%) 0.042
Cortisoluria, xULN UFC 2.3 (2.1) 19.1 (42.1) <0.001
Calcium, mmol/L 2.35 (0.20) 2.22 (0.24) 0.005
Potassium, mmol/L 4.1 (0.6) 3.7 (1.1) <0.001
eGFR, mL/min/1.73m2 99.4 (27.9) 106.9 (20.9) 0.031
BMI, kg/m2 28.2 (9.0) 24.5 (4.7) 0.004
Thiazide diuretics use (%) 20 (27.0%) 0 0.003
Loop diuretics use (%) 3 (4.1%) 1 (4.3%) 1.0
PPI use (%) 16 (21.6%) 7 (30.4%) 0.408
Current smoking (%) 17 (23.0%) 3 (13.0%) 0.387
September 2021 | V
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Results are presented as median (interquartile range) for continuous variables and count
(percentages) for categorical variables. ACTH, adrenocorticotropin hormone; BMI, body
mass index; eGFR, estimated glomerular filtration rate; PPI, protonpumpinhibitors; xULN
UFC, the times of upper limit of normal of 24 hour urinary free cortisol.
733793

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Bosman et al. Cortisol and Phosphate Homeostasis in Cushing’s Syndrome
phosphate concentration after treatment of ACTH-dependent
CS in 7 patients. However, the pathophysiological mechanism(s)
for these changes in serum phosphate concentrations is largely
unknown. Previous studies have suggested that glucocorticoids
may reduce intestinal absorption of phosphate and increase renal
phosphate excretion (4, 10). Indeed, Findling et al. observed an
increase in the tubular reabsorption rate of phosphate (TRP)
after treatment for CS.

There are several potential hypothetical mechanisms that
could explain the effect of glucocorticoids on serum phosphate
concentration. These are summarized in Figure 4. One
pathophysiological mechanism relates to FGF23, which is
mainly expressed and secreted by osteocytes and osteoblasts (8,
10, 11). Expression of FGF23 is regulated by serum phosphate
concentration. FGF23 regulates serum phosphate by e.g.,
increasing urinary phosphate excretion, but the role of
glucocorticoids in FGF23 regulation is still unclear. Delucchi
et al. reported an association between sustained glucocorticoid
treatment and increased intact FGF23 levels in pediatric renal
transplant patients (12). The same group reported an increase in
bone FGF23 protein abundance and in FGF23 expression in
MG53 cells, a human osteosarcoma cell line, when incubated
with dexamethasone (12). In contrast, Feger et al. reported a
downregulation of FGF23 transcription and protein synthesis in
UMR106 rat osteoblast-like cells and MC3T3-E1 cells after
incubation with dexamethasone or prednisolone. Similarly,
injection of dexamethasone or prednisolone in mice lead to a
decrease of serum C-terminal and intact FGF23 concentration
and bone FGF23 mRNA expression, but, strikingly, also to
increased renal phosphate excretion and decreased serum
Frontiers in Endocrinology | www.frontiersin.org 734
phosphate concentration, without affecting PTH (25). The
authors state that their findings could be explained by the
inhibitory effect of dexamethasone on membrane expression of
sodium-dependent phosphate transporters in the kidney,
resulting in increased renal phosphate excretion, as was
previously reported (26). FGF23 is not routinely measured in
patients with CS but Endo et al. reported a patient with
hypophosphatemia due to ectopic ACTH production whose
active FGF23 concentration was below the mean value
previously found in healthy adults (11). We also recently
observed normal C-terminal FGF23 levels in a patient who was
diagnosed with hypophosphatemia and adrenal CS (unpublished
observations). In this patient, serum phosphate concentration
also recovered after adrenalectomy. These findings would
support the hypothesis that the effect of glucocorticoids on
serum phosphate concentration is independent of FGF23 and
thus might be related to an effect of GCs on the sodium-
dependent phosphate transporters. However there is clearly a
need for larger studies on intact and C-terminal FGF23 before
and after treatment of CS.

A second pathophysiological mechanism might relate to BMI.
The majority of CS patients develop obesity (1, 27). Although the
treatment of CS has been shown to lower BMI, patients treated for
CS maintain a higher BMI than controls matched by sex and age
(28, 29). Indeed, our study showed a decrease in BMI after
treatment for CS. Previous literature has shown that BMI and
serum phosphate levels are inversely associated (30, 31).
Moreover, we recently observed evidence for a causal effect of
BMI on serum phosphate using a Mendelian Randomisation
approach (unpublished data). There are several theories on the
FIGURE 4 | Potential mechanisms that could explain the effect of hypercortisolism on serum phosphate concentration. BMI, body mass index; FGF23, Fibroblast
Growth Factor 23; PTH, parathyroid hormone; TSH, thyroid-stimulating hormone; 1,25(OH)2D, 1,25 dihydroxy vitamin D.
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pathophysiological mechanism behind this effect. A higher BMI is
associated with lower 25-hydroxyvitamin D levels (32), which in
turn could result in lower levels of 1,25(OH)2D leading to
impaired phosphate absorption from the intestine. FGF23 may
also play a role in adiposity associated decreases in serum
phosphate as adiposity has also been associated with FGF23.
Leptin, which has been shown to function as a FGF23
secretagogue, is strongly related to adiposity (33–35). Put
differently, the change in serum phosphate levels after treatment
for CS may be, at least in part, due to the decrease in BMI.

A third potential mechanism may involve kidney function. An
important consequence of chronic hypercortisolism is the
increased risk for cardiovascular complications, including
atherosclerotic vascular damage (28). In a case-control study in
18 patients, Haentjes et al. showed that patients with Cushing’s
disease have a decreased glomerular filtration rate compared to
controls (36). Early stages of chronic kidney disease are associated
with increased FGF23 levels and hyperphosphaturia (37).
However, in these early stages of chronic kidney disease, serum
phosphate levels are still maintained in the normal range. Hence,
this would not explain why CS patients are more likely to develop
hypophosphatemia. We did not observe a change in estimated
glomerular filtration when we compared eGFR at time of diagnosis
with 0-14 days and 15-180 days after remission. In contrast, we
observed a decline in eGFR more than 180 days after remission.

A fourth possible pathophysiological mechanism that we
considered involves serum potassium. Rat studies have shown
that a potassium deficiency can result in phosphaturia (38).
Similarly, in humans, potassium supplementation leads to a
decrease in FGF23 and an increase in serum phosphate levels
(39). Hypokalaemia can occur in any patient with CS (40). Due
to hypercortisolism, the 11b-hydroxysteroid dehydrogenase type
2 enzyme, which converts cortisol into cortisone, can get
saturated. Saturation of this enzyme results in activation of
mineralocorticoid receptors, which results in increased renal
excretion of potassium. Although we observed a slight increase
in serum potassium concentration from 0-14 days after
remission to 15-180 days after remission, we did not find a
significant difference when comparing serum potassium before
remission with serum potassium after remission.

A fifth potential pathophysiological mechanism involves
serum calcium. Both serum calcium and serum phosphate
levels are regulated by 1,25(OH)2D and PTH. It has been
postulated that glucocorticoids inhibit calcium absorption from
the intestinal tract, but this effect remains controversial (41). In
the case series of Findling et al, serum calcium did not change,
but there was a reduction observed in urinary calcium excretion
after treatment for CS. Interestingly, we observed a decrease in
serum calcium levels at 0-14 days after remission compared to
before remission. This decrease however was not seen for the
period of 15-180 days after remission. In theory it is still possible
that increased urinary calcium excretion combined with
decreased intestinal absorption during active CS results in
secondary hyperparathyroidism with an increase in urinary P
excretion. Unfortunately, serum PTH levels were not measured
in our patients because serum calcium was normal.
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Other hypothetical mechanisms that could be considered
include the role of hypothalamic-pituitary axes such as the
hypothalamic-pituitary-thyroid axis. Thyroid-stimulating
hormone and thyroid hormone can be influenced by
glucocorticoid excess which may affect serum phosphate
homeostasis (41–43). Most of our patients had ACTH
dependent Cushing’s syndrome. There is evidence that ACTH
influences bone mass (44, 45), but a direct effect of ACTH on
phosphate homeostasis remains to be elucidated.

This study has several limitations. A major limitation is the
retrospective nature of the study and the considerable number of
missing data. Because serum phosphate was not measured at set
time points, we calculated mean serum phosphate levels. We can
assume that this will negatively affect the variance of phosphate
over time. To draw conclusions on the course of the phosphate
levels over time we calculated several time points, including 0-14
days and 15-180 days after remission. It is not known at what time
during the day the blood samples were drawn, which could affect
serum phosphate levels (46). Finally, serum FGF23, 1,25(OH)2D,
PTH nor urinary phosphate concentrations were available to us.

In conclusion, we showed that hypophosphatemia can occur in
up to 16% of patients with CS, that serum phosphate concentration
is related to the degree of hypercortisolism and that remission of CS
results in an increase in serum phosphate. Effects were stronger in
patients with CS due to ectopic ACTH production. These results
suggest that hypercortisolism in CS affects phosphate homeostasis.
We postulate that hypophosphatemia in CS patients may contribute
to fatigue, muscle weakness and impaired bone quality. Therefore,
the effect of hypercortisolism on FGF23 and urinary phosphate
excretion should be further evaluated in a prospective setting and all
patients with CS should be evaluated for hypophosphatemia,
especially when it concerns CS from ectopic ACTH production.
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Glucocorticoids are drugs that are widely used to suppress inflammation and the
activation of the immune system. However, the prolonged use or at high doses of
glucocorticoid can result in adverse side effects including osteoporosis, bone loss, and an
increased risk of fracture. A number of compounds derived from natural plant sources
have been reported to exert anti-inflammatory activity by interacting with the
glucocorticoid receptor (GR), likely owing to their chemical similarity to glucocorticoids,
or by regulating GR, without a concomitant risk of treatment-related side effects such as
osteoporosis. Other herbal compounds can counteract the pathogenic processes
underlying glucocorticoid-induced osteoporosis (GIOP) by regulating homeostatic bone
metabolic processes. Herein, we systematically searched the PubMed, Embase, and
Cochrane library databases to identify articles discussing such compounds published as
of May 01, 2021. Compounds reported to exert anti-inflammatory glucocorticoid-like
activity without inducing GIOP include escin, ginsenosides, and glycyrrhizic acid, while
compounds reported to alleviate GIOP by improving osteoblast function or modulating
steroid hormone synthesis include tanshinol and icariin.

Keywords: glucocorticoid-induced osteoporosis, herb medicine, escin, ginsenoside, glycyrrhizic acid, icariin
INTRODUCTION

Glucocorticoids are drugs that modulate a diverse array of signaling pathways, modifying cognitive
signaling, exerting immunosuppressive and anti-inflammatory activity, and preserving normal organ
homeostasis and function (1). Since their first clinical deployment in the 1950s, glucocorticoids have
been widely adopted and are the most commonly utilized immunosuppressive drug class in the world
(2). The prolonged use of glucocorticoids, however, particularly at higher doses, can result in a variety of
adverse side effects including arterial hypertension, Cushing’s syndrome, type 2 diabetes mellitus,
osteoporosis, and increased susceptibility to infection (3).

Endogenous glucocorticoids regulate key processes including calcium homeostasis in the
intestines and kidneys, bone development, and mesenchymal cell differentiation at physiological
concentrations. By stimulating mature osteoblasts to increase canonical Wnt protein production,
glucocorticoids can promote the activation of b-catenin signaling in mesenchymal progenitor cells
such that they differentiate into osteoblasts rather than chondrocytes or adipocytes, thus favoring
osteogenesis. In osteoblasts, Wnt signaling also leads to the expression of osteoprotegerin (OPG),
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which suppresses osteoclastogenesis to maintain bone
homeostasis (4). At very high doses, however, glucocorticoids
can negatively impact bone integrity through a range of
mechanisms, with GIOP having first been described in
individuals with Cushing ’s disease expressing excess
endogenous glucocorticoid levels (5).

Ow ing t o the i r po t en t an t i - i nflammato r y and
immunomodulatory activity, glucocorticoids are widely used in
clinical contexts. However, their prolonged use can lead to adverse
outcomes including glucocorticoid-induced osteoporosis (GIOP),
which is themost common secondary cause of osteoporosis and an
important iatrogenic risk to patients in many contexts (6). Such
osteoporosis has been reported in patients with chronic
inflammatory diseases including inflammatory bowel disease,
chronic obstructive pulmonary disease, and systemic lupus
erythematosus (SLE) (7). Most SLE patients undergo chronic
glucocorticoid treatment, and one Dutch study with a 6-year
follow-up period detected a dose-dependent association between
the use of glucocorticoids and lumbar spine bone loss (8). Similarly,
a cohort study of individuals between the ages of 18 and 64
undergoing glucocorticoid treatment for a range of disorders
found that higher doses, longer treatment durations, and
continuous use were associated with the highest fracture risk (9).
Sustained treatmentwithprednisone (10mg/d) for over90dayswas
associated with 7- and 17-fold increases in the risk of hip and
vertebral fractures (9).
Frontiers in Endocrinology | www.frontiersin.org 239
Glucocorticoids can modulate bone biology via a number of
different mechanisms (Figure 1), suppressing osteogenesis and
promoting the apoptotic death of osteoblasts and osteocytes (10).
Additionally, these drugs can increase the number of osteoclasts
and enhance their function, resulting in an overall increase in
osteoclast lifespan (11).

Osteoblast signaling pathways that can be directly impacted
by glucocorticoid exposure include the peroxisome proliferator-
activated receptor g2 (PPARg2) (12), CCAAT/enhancer-binding
protein-a (C/EBPa) (13), adipocyte protein 2 (aP2) (14), and
canonical WNT signaling pathways (15). Glucocorticoids
promote PPARg2, C/EBPa, and aP2 upregulation, leading
precursor cells to preferentially differentiate into adipocytes
instead of osteoblasts, thereby leading to a decrease in overall
osteoblast numbers (12–15). Glucocorticoids also increase the
expression of inhibitory molecules including sclerostin in the
WNT-b-catenin signaling pathway while simultaneously
inhibiting the expression of WNT16 in a dose- and time-
dependent fashion, further contributing to reduced
osteoblastogenesis and bone loss (16, 17).

The receptor activator of nuclear factor-kB ligand (RANKL)-
osteoprotegerin (OPG) pathway is also amenable to modulation
by glucocorticoids, which increase RANKL production and
suppress OPG mRNA expression (18–20). Glucocorticoids can
also enhance Notch signaling in osteoblasts and osteocytes,
leading to increased Notch target gene expression including
FIGURE 1 | Direct glucocorticoid effects on bone. Endogenous or physiological glucocorticoids stimulate mature osteoblasts to produce canonical Wnt proteins, which
activate the b-catenin signaling cascade in mesenchymal progenitor cells and promote them to differentiate towards osteoblasts. These actions favor bone formation.
Additionally, Wnt signaling in osteoblasts and osteocytes promotes osteoprotegerin expression, which in turn inhibits osteoclast formation resulting in decreased or
unchanged bone resorption. Exogenous glucocorticoids negatively affect osteoblast and osteocyte function. In osteoblasts and osteocytes, increased PPARg2 and Notch
target gene expression and decreased wnt signaling contribute to decreased osteoblastogenesis, and activation of caspase 3 results in increased osteoblast and
osteocyte apoptosis. Glucocorticoids induce upregulation of expression of RANKL and M-CSF, which leads to increased osteoclastogenesis and osteoclast lifespan.
PPARg2, peroxisome proliferator-activated receptor-g2; RANKL, receptor activator of nuclear factor-kB ligand; M-CSF, macrophage colony-stimulating fact.
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hairy and enhancer of split (Hes) and Hes-related with YRPW
motif (Hey), which are repressive transcription factors that have
the potential to mediate the impairment of osteoblast
functionality and consequent reductions in osteogenesis (21, 22).

Glucocorticoid-induced apoptosis is linked to the enhanced
activity of effector proteins including caspase 3, 7, and 8
downstream of the pro-apoptotic Bim and Fas/FasL death
receptor pathways (10). Glucocorticoids can also stabilize GSK-
3b activity to induce osteoblast apoptosis.

Glucocorticoids can impact osteoblasts to increase the
RANKL : OPG ratio, thereby promoting osteoclast
differentiation and maturation such that the overall rate of
bone resorption increases. This effect can be further
exacerbated by the ability of glucocorticoid treatment to induce
the production of macrophage colony stimulating factor (M-
CSF), which is released from osteoblasts and enhances the
differentiation and activity of osteoclasts (23). The long-term
impact of glucocorticoids on osteoclast function, however, is less
certain, with multiple reports indicating that these compounds
can interfere with the osteoclast cytoskeleton such that the
activity of these cells may be increasingly impaired even as
their longevity increases (24–26).
THE IMPACT OF HERBAL MEDICINES ON
GLUCOCORTICOID- INDUCED
OSTEOPOROSIS

Many studies have shown that herbal medicines can significantly
increase bone density and improve clinical findings in GIOP
patients, thus serving as novel tools for the treatment and/or
prevention of this debilitating glucocorticoid-related
complication (27–29).

Herbal Medicines Exert Glucocorticoid-
Like Anti-Inflammatory Activity Without
Inducing GIOP
A range of herbal compounds have been suggested tomediate anti-
inflammatory activity by signaling through the glucocorticoid
receptor, likely owing to their structural similarity to
glucocorticoids. Notably, these compounds seem to be able to
mediate these effects without a significant risk of negative
glucocorticoid-related side effects such as GIOP.

Escin
Escin is a natural mixture of triterpene saponins extracted from
the seeds of Aesculus chinensis Bge. or Aesculus wilsonii Rehd.
Escin has been reported to exhibit pharmacological effects
similar to those associated with glucocorticoid administration.
For example, oral escin (5 and 10 mg/kg, p.o.) intake has been
found to suppress carrageenan-induced paw edema and to
inhibit prostaglandin E2 (PGE2) production (30). Notably,
when compared with glucocorticoids, escin (2 mg/kg, i.v.) has
been shown not to induce thymic or splenic immune cell
apoptosis in mice, nor does it promote the enhanced secretion
of endogenous corticosterone (31). Zhang et al. found that the
Frontiers in Endocrinology | www.frontiersin.org 340
sustained administration of escin (0.45 and 0.9 mg/kg for a
period of 10 days, i.v.) in the context of post-surgical bone
fracture healing has no adverse impact on wound or bone healing
processes (32). There is also evidence that glucocorticoids and
escin (2 mg/kg, i.v.) exhibit synergistic anti-inflammatory
activity when administered in vitro and in vivo at low doses,
suggesting at least partial overlap in the pharmacological
pathways impacted by these compounds (33). Combination
glucocorticoid and escin(5 and 10 mg/kg for a period of 16
days, i.g.) treatment can significantly decrease synovial
inflammatory infiltration, synovial hyperplasia, and bone
erosion in a rat model of adjuvant-induced arthritis (AIA) rats
while reversing some of the adverse effects of glucocorticoid
treatment alone such as reductions in boy weight and increases
in the spleen index relative to untreated rats (34). Administering
escin (10 mg/kg for a period of 14 days, p.o.) together with a low
dose of dexamethasone (Dex) has been shown to markedly
suppress paw swelling, joint pathology, arthritic index scores,
and immune organ pathology in an animal model, all while
reducing the necessary Dex dose and thus decreasing the rate of
adverse effects associated with Dex administration (35). The anti-
edema and anti-inflammatory properties of escin may be
attributable to its ability to bind to the glucocorticoid receptor
(GR), consistent with glucocorticoid-like activity (36). Escin (1.8
and 3.6 mg/kg, i.v.) may additionally augment the antioxidant
capacity of tissue in the context of lipopolysaccharide (LPS)-
induced acute lung injury (ALI) and endotoxin-induced liver
injury by suppressing the production of inflammatory
compounds including NO, TNF-a , and IL-1b while
simultaneously promoting GR upregulation in the liver and
lungs (37, 38).

Ginsenosides
Ginsenosides are the primary active ingredients isolated from
ginseng, and they have been reported to exhibit anti-
inflammatory activity in vitro and in vivo owing to their
structural similarity to steroid hormones. Compound K is a
ginsenoside that has, in vitro, been shown to suppress TNF-a-
induced fibroblast-like synoviocyte (FLS) migration, proliferation,
and secretion, consistent with joint-protective activity (80 mg/kg
for a period of 14 days, i.g.) (39). In a rat model of myocardial
infarction (MI), ginsenoside Rg3 (30 mg/kg for a period of 7 days,
i.g.) reduces inflammation via the inhibition of the NF-kB pathway
(40). Combining the ginsenosides Rh1 (20 mg/kg, i.p.) and Rg2
(20 mg/kg, i.p.) can suppress LPS-induced tissue damage and
inflammation by interfering with the ability of LPS to bind to
and trigger the activation of TLR4 (41). Ginsenoside Rb1 (10 and
20 mg/kg, i.p.) markedly alleviates LPS- or cantharidin-induced
acute kidney injury, LPS-induced septicemia, and dimethyl
benzene-induced ear edema in mice (42). Ginsenoside treatment
is also not associated with any significant adverse reactions. In
mice overexpressing TNF-a, ginsenoside Rg1 (20 mg/kg, i.g.)
can prevent bone erosion, inhibit synovial inflammation, and
reduce serum levels of both IL-6 and TNF-a, and treatment for
12 weeks with ginsenoside Rg1 was not associated with any liver
or kidney damage (43). Ginsenoside Rd (10 mg/kg, i.p.) can
suppress ischemia-induced microglial activation and inhibit
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proinflammatory cytokine production while inducing fewer severe
side effects as compared to glucocorticoids (44). Importantly, these
ginsenosides can also work in synergy with glucocorticoids to
inhibit inflammation. For example, combining corticosterone
with low concentrations of Rg1 can suppress the LPS-induced
production of NO and TNF-a by RAW264.7 macrophages while
simultaneously promotingGRupregulation (45). Ginsenosides can
also shape cellular responses in a GR-mediated manner, as in the
case of Rg1 (12.5 mg/kg, i.p.), which suppresses LPS-induced NF-
kB nuclear translocation and inflammatory cytokine production in
a GR-dependent fashion. Notably, Rg1 (20mg/kg for a period of 21
days, i.g.) has no adverse impact onmurine osteoblast differentiation
or proliferation (46). In a murine collagen-induced arthritis (CIA)
model system, the ginsenoside Rh1 (10 mg/kg for a period of
10 days, i.p.) was also able to augment the anti-inflammatory
activity of Dex by enhancing GR expression and binding without
inducing hyperglycemia (47). Ginsenoside CK (112 mg/kg for a
period of 24 days, i.g.) can also activate GR to suppress b-arrestin2
expression, thereby inhibiting inflammation (48).

Glycyrrhizic Acid and Glycyrrhetinic Acid
Glycyrrhizic acid (also known as glycyrrhizin) is the primary
glycoside derivative of licorice, and it has been ascribed a range of
anti-inflammatory activities. By suppressing signaling through
the Smad3 and MAPK pathways, for example, glycyrrhizin (30
and 100 mg/kg for a period of 28 days, i.g.) has been shown to
reduce the severity of bleomycin-induced inflammation and
pulmonary fibrosis in mice (49). Glycyrrhizin (10 mg/kg for
once every day in the first 3 weeks following by given once every
3 days until the twelfth week, intra-articular knee injection)
treatment can also alleviate inflammation and the degeneration
of cartilage tissue in a rat model of osteoarthritis via regulating
the TLR4/NF-kB and HMGB1 pathways (50). In vivo,
glycyrrhizic acid undergoes hydrolysis to yield glycyrrhetinic
acid, which is structurally similar to steroid hormones such that
it is able to exert a range of biological effects including
glucocorticoid-like anti-inflammatory activity through
interactions with steroid hormone receptors and metabolic
enzymes. For example, in a murine ALI model system,
glycyrrhetinic acid (10, 20 and 40 mg/kg for a period of 7 days,
i.g.) was able to reduce injury severity by suppressing NLRP3
inflammasome activation through the ROS-PI3K/AKT pathway
(51). Glycyrrhetinic acid (40 mM)may also be hepatoprotective in
the context of chronic liver inflammation, functioning by
suppressing the phosphorylation of IkBa phosphorylation and
the nuclear translocation of p65 so as to reduce iNOS expression,
thus alleviating inflammation (52). Glycyrrhetinic acid and
glycyrrhizic acid can interact with GR as ligands, modulating
glucocorticoid resistance can also prevent inflammation by
disrupting the GR-HSP90 (53, 54). As a relatively weak
glucocorticoid-like drug, glycyrrhizic acid can enhance the
effects of glucocorticoids while antagonizing the adverse effects
associated with high-dose glucocorticoid treatment. Licorice (75
mg/kg for a period of 5 days) can also suppress 11 beta-
hydroxysteroid dehydrogenase mRNA expression while
potentiating glucocorticoid activity (55). Therefore, glycyrrhizic
acid and glycyrrhetinic acid seem to be able to exert
Frontiers in Endocrinology | www.frontiersin.org 441
glucocorticoid-like anti-inflammatory activity without a
significant risk of negative glucocorticoid-related side effects
such as GIOP.

Herbal Medicines Capable of Inhibiting
or Treating GIOP
Icariin
Icariin is the main active ingredient of epimedium, which is a
natural compound that has been increasingly studied in the
context of osteoporosis treatment and prevention, as it has been
shown to simultaneously suppress bone resorption and expedite
bone formation (56). Icariin (125 mg/kg for a period of 14 days,
i.g.) can promote primary osteoblast maturation and associated
bone remodeling, inducing osteoblast mineralization and the
expression of key markers of terminal differentiation such as
alkaline phosphatase (ALP) and type I collagen (57–60). Icariin
(0.1 mM) also exhibits robust anti-apoptotic activity, promoting
BMSC proliferation and osteogenic differentiation via Wnt/b-
catenin pathway activation (61).

With respect to the symptoms of GIOP, icariin (5 mM for a
period of 48 h) can enhance trabecular bone density in the
context of glucocorticoid exposure, promoting osteogenic
differentiation via the suppression of Notch signaling (62).
Through the enhancement of autophagic activity, icariin
(50 mg/kg for a period of 30 days, i.p.) can reduce OVX-
induced bone loss in animal model systems (63), in addition to
disrupting the Dex-induced apoptotic death of osteocytes (58).
Icariin can also activate the ERK and ER pathways to control
bone homeostasis, promoting OPG expression andWnt pathway
activation. Inhibiting osteoclastogenesis is at least partially
responsible for the anti-osteoporotic activity of icariin and
compounds derived therefrom. The levels of the osteoclast
differentiation marker tartrate-resistant acid phosphatase
(TRAP) are reduced in a dose-dependent manner when
osteoclast precursor cells are treated with icariin (10 nM,
every 3 days) (64). Icariin (10 mM) is also able to directly
suppress RANKL-induced hemopoietic cell differentiation into
osteoclasts (65). In addition to regulating osteoclastogenesis,
icariin (50 and 100 mM) can arrest cell cycle progression in
osteoclast precursors, thereby inducing their apoptotic death
(66). It can further reverse deleterious Dex-induced trabecular
phenotypes while stimulating bone remodeling, increasing bone
calcium, OCN, and FGF-23 levels while reducing the levels of
bone resorption markers including CTX and TRAP-5b. Indeed,
in GIOP model mice, icariin (100 mg/kg for a period of 6 or
12 weeks, p.o.) treatment has been shown to protect against bone
degeneration, hypercalciuria, and hypocalcemia (67). As such,
icariin may be a valuable tool for use in the induction of bone
regeneration owing to its potent osteogenic bioactivity.

Many clinical studies have shown that Chinese medicine
containing epimedium has achieved good clinical effects in the
treatment of GIOP patients. Hugu Capsules (comprised of
epimedium, polygonum multiflorum, rehmannia glutinosa and
other traditional chinese medicines) can significantly increase
the bone mass of 51 patients with GIOP, improve bone turnover,
and relieve pain (68). Through observation of 50 GIOP patients,
Wu et al. found that taking Xianling Gubao capsule while using
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glucocorticoids treatment can increase the BMD of the patient’s
lumbar spine and proximal femur, thereby reducing the
incidence of osteoporotic fractures and having fewer adverse
reactions (69). Through clinical observation of 66 patients with
GIOP, Shi et al. found that Bugu Capsules (including
epimedium) can significantly reduce the impact of OP caused
by glucocorticoids, reduce blood calcium, parathyroid hormone
levels, and increase bone density (70).

Tanshinones
Tanshinone IIA, extracted from Salvia miltiorrhiza Bunge, is a
perennial herbal plant widely used as a folk remedy in Asian
countries. Several studies have proved that Tanshinone IIA
possesses many biological activities, such as anti-inflammatory,
free-radical scavenging abilities, antioxidant properties, liver
protection, and anti-cancer properties. Tanshinones are
compounds that can also simultaneously inhibit osteoclastogenesis
and bone resorption while promoting more robust bone formation
with concomitant osteoblastogenesis. These tanshinones (2, 5mg/ml)
suppress osteoclast development through the disruption of RANKL-
mediated NF-kB, MAPK, Akt, and M-CSF/c-Src signaling pathway
activation (71, 72). Tanshinone IIA, for example, can inhibit
Frontiers in Endocrinology | www.frontiersin.org 542
osteoclastogenesis through the inhibition of RANKL-induced c-Fos
andNFATc1 (71),withTanshinone IIA (20mg/mL for a periodof 30
min) pretreatment reportedly reducing the fusion, actin ring
formation, and resorptive activity of osteoclasts in a co-culture
system containing M-CSF and RANKL-treated calvarial osteoblasts
and BMCs (73). Mechanistically, Tanshinone IIA (10 mg/mL) can
function as a selective COX-2 inhibitor to suppress PGE2 and to
therebymodulateOPGandRANKL expression (74), all of which are
related toosteoclast function.Tanshinones (1mMforaperiodof24h)
can also disrupt the apoptotic death of osteoblasts and consequent
osteoporosis observed upon glucocorticoid treatment by inactivating
Nox4 (75). In osteoporosis model mice, Tanshinone IIA (10 mg/kg
for a period of 6 weeks, p.o.) was able to decrease the incidence of
fractures and severe osteopenia while augmenting bone strength,
mineral levels, and collagen in the bonematrix (76). Tanshinone (10
mg/kg for a period of 21 days, i.v.) was also able to upregulate
phosphoglycerate dehydrogenase and to thereby suppress OVX-
induced osteoporosis and BMSC senescence (77). Tanshinone can
alleviate theadverseeffectsofDex treatmentandconsequencecellular
injuries such as caspase-9-dependent apoptosis, increased cytosolic
cytochrome c and Nox levels, and increased ROS generation (75).
Current preclinical evidence suggests that these Tanshinones
TABLE 1 | Herbal medicines capable of inhibiting or treating GIOP.

Origin Main components In vitro In vivo Mechanism of bone
protection

Cells Dosage Animal Dosage and administration
route

Celastrus genus of the
Celastraceae family

Celastrol (78) – – Male C57BL/
6J mice

1 mg/kg, per day for 12 weeks,
i.m.

Activating Wnt signaling
pathway

Daphne odora var.
marginatai

Daphnetin (81) MC3T3-
E1 cells

20 mM for 48 h Male SD rats i.m., i.p.

Herba Cistanches Echinacoside (82) MC3T3-
E1 cells

10 mg/l for 48h – – Induction of osteoblast
apoptosis

Ginkgo Biloba Ginkgo biloba extract
(83)

– – Female Wistar
rats

28, 56 mg/kg, per day for 20 days
or 30 days, i.g.

Red Ginseng Red Ginseng (79) MC3T3-
E1 cells

250, 500, 1000
mg/mL for 48h

– –

Cnidium monnieri (L.)
Cusson

Osthole (80) – – Female SD rats 10, 20 mg/kg, per day for 8 weeks,
i.m.

Regulating TGF-b/Smad
signaling

Rhizoma gastrodiae Gastrodin (84) MC3T3-
E1 cells

1, 5 mM for 48 h Female SD rats 1, 5 mg/kg, per day for 60 days,
i.g.

Upregulating expression of
BMP

Myrica rubra Sieb. et
Zucc.

Myricetin (85) MC3T3-
E1 cells

20 mM Male SD rats 2.5 mg/kg,once every other day for
a period of 5 weeks, i.p.

Curcuma longa Curcumin (86) – – Male C57BL/
6J mice

200 mg/kg per day for 12 weeks,
i.g.

Inhibiting the activity of
RANKL/RANK signaling

Chansu Gamabufotalin (87) BMMs 100, 150 nM for
3-5 days

– –

Piper sarmentosum
Roxb.

Piper sarmentosum
(88)

– – Male SD rats 125 mg/kg Inhibiting the activity of 11b-
HSD1

Achyranthes bidentata
Bl.

b-ecdysone (89) BMSC 10-7 M for 8 h Male Swiss-
Webster mice

0.5 mg/kg Inhibiting the autophagy
produced by osteoclasts

Pueraria Lobata Total Flavones of
Pueraria Lobata (90)

– – Female SD rats 100, 200 mg/kg, per day for 12
weeks, i.g.

Promoting bone matrix
formation

Pueraria pseudo-hirsuta
TANG et WANG

Chilk extracts (91) – – Female wistar
rats

200mg/kg, per day for 6 months,
i.g

Decreasing sex hormone
levels

Lycium chinense Miller Lycium barbarum
polysaccharide (92)

– – Wistar rats 2.6 g/kg, per day for 12 weeks, i.g. Regulating calcium and
phosphorus metabolism

Salvia miltiorrhiza Bunge Salvianolic acid B (93) – – Male SD rats 40, 80 mg/kg, per day for 12
weeks, p.o.

Regulating lipid metabolism
balance
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preserve skeletal integrity primarily by suppressing bone resorption
and osteoclast formation, underscoring their potential value for the
treatment of GIOP.

Many other herbal medicines have also been found to reduce
GIOP incidence or severity through a range of mechanisms. For
example, celastrol can suppress GIOP incidence in rats by
modulating the Wnt and PI3K/AKT signaling pathways (78),
while KRG can induce the apoptotic death of osteoblasts,
highlighting its potential therapeutic utility as a tool to delay
the onset of osteoporosis (79). Osthole has been shown to
prevent Dex-induced osteoporosis in female rats, potentially by
normalizing hormone and cytokine homeostasis through
increases in TGF-b1 production (80) (Table 1).
CONCLUSION

Much like other hormone molecules, glucocorticoids can exert a
range of effects on tissues and organs when employed at
physiological and pharmacological doses. While awareness of
osteoporosis and other risks associated with prolonged or high
doses glucocorticoid use is growing, GIOP remains
underdiagnosed and inadequately treated. Herbal medicines
characterized to date have been shown to treat GIOP through
two primary mechanisms, with some exerting glucocorticoid-like
activity without a risk of adverse reactions, and the others
treating GIOP through mechanisms including the regulation of
Wnt signaling pathway, the induction of osteoblast apoptosis,
and the inhibition of RANKL/RANK signaling.
Frontiers in Endocrinology | www.frontiersin.org 643
However, Further clinical studies of these herbal medicines
are needed to demonstrate prevention properties in GIOP
patients. For example, sodium aescinate has been widely used
in clinic to treat traumatic and inflammatory edema, etc. A
randomized, parallel, controlled clinical trial can be conducted to
evaluate the anti-inflammatory efficacy combined with
glucocorticoids, as well as the side effects, GIOP.
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Glucocorticoid-induced osteoporosis (GIOP) leads to fractures in up to 40% of patients
with chronic glucocorticoid (GC) therapy when left untreated. GCs rapidly increase
fracture risk, and thus many patients with anticipated chronic GC exposures should
start anti-osteoporosis pharmacotherapy to prevent fractures. In addition to low
awareness of the need for anti-osteoporosis therapy among clinicians treating patients
with GCs, a major barrier to prevention of fractures from GIOP is a lack of clear guideline
recommendations on when to start and stop anti-osteoporosis treatment in patients with
GC use. The aim of this narrative review is to summarize current evidence and provide
considerations for the duration of anti-osteoporosis treatment in patients taking GCs
based on pre-clinical, clinical, epidemiologic, and pharmacologic evidence. We review the
pathophysiology of GIOP, outline current guideline recommendations on initiating and
stopping anti-osteoporosis therapy for GIOP, and present considerations for the duration
of anti-osteoporosis treatment based on existing evidence. In each section, we illustrate
major points through a patient case example. Finally, we conclude with proposed areas
for future research and emerging areas of interest related to GIOP clinical management.

Keywords: glucocorticoid-induced osteoporosis, glucocorticoids, bone fractures, bone density, anti-resorptive
treatment, bone density conservation agents, bisphosphonates, teriparatide
INTRODUCTION

Glucocorticoids (GCs) are potent immunosuppressive and anti-inflammatory medications with a
host of beneficial and negative effects (1). GCs are commonly prescribed to reduce inflammation
and to suppress the immune system for a broad spectrum of indications, including chronic lung
disease, inflammatory arthritis, connective tissue disease, and organ transplantation. As such, GC
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use is prevalent globally: at any time, 1.0 to 4.6% of UK and US
adults (up to 13.7 million persons, collectively) are taking oral
GCs, and 27% to 65% of these patients will receive long-term (≥3
months) GC treatment (2–6). GCs are essential medications, but
chronic GC use has detrimental effects, including metabolic
disorders [e.g., type 2 diabetes mellitus (7)]; impaired wound
healing (8); increased risk of infection (9); and glucocorticoid-
induced osteoporosis (GIOP), the most common cause of
secondary osteoporosis (10). GCs effects on bone health are
potent, and they increase fracture risk independently of other
risk factors like low bone mineral density (BMD) (11). Untreated
GIOP can lead to debilitating fractures that cause morbidity, with
reduced quality-of-life, mortality, and healthcare costs (12–14).
Up to 40% of patients who have GC use longer than 3 months
will experience a vertebral fracture (15). Thus, anti-osteoporosis
treatment is indicated for patients on long-term GC therapy to
preserve bone health and reduce fracture risk. Many
pharmacologic therapies for primary osteoporosis, like
antiresorptive treatments and teriparatide, have evidence of
anti-fracture benefits in patients with GIOP (16–18).

Unfortunately, GIOP is underdiagnosed and undertreated (6,
19–23). In one population-based US study from 2006, only half
of all postmenopausal women with long-term GC use received
anti-osteoporosis treatment, and this proportion decreased to 5%
for women less than 50 years of age and men (6). A more recent
investigation found only 42% of US patients with chronic
conditions warranting glucocorticoid exposure received any
osteoporosis monitoring or treatment (24). Lack of awareness
of the fracture risk caused by GC use limits appropriate initiation
of anti-osteoporosis therapy (25, 26). In addition, an urgent focus
on management of the condition for which GCs are prescribed
(e.g., active rheumatoid arthritis [RA]), which may include a
plethora of tests and examinations to assist in diagnosis and
symptom improvement, may also contribute to poor anti-
osteoporosis treatment levels. Fortunately, some interventions
have shown to substantially improve uptake of therapy to
prevent GIOP and fractures: a recent educational program in
the UK improved the proportion of patients on chronic GCs who
were indicated for therapy from 25 to 92% (27). Other
educational interventions have improved treatment, yet to a
lesser degree (28). However, even among clinicians aware of
the risk of GIOP, appropriate treatment is largely hindered by a
lack of clear evidence and recommendations regarding
populations that are indicated for GIOP therapy and when to
start and stop treatment to prevent GC-induced fractures.

The aim of this narrative review is to summarize current
evidence and provide considerations for the initiation and
discontinuation of anti-osteoporosis therapy for patients taking
systemic GCs based on pre-clinical, clinical, epidemiologic, and
pharmacologic evidence. Inhaled GCs or GC replacement (i.e.,
Addison’s disease) are not considered in this review. We first
provide an overview of GIOP pathophysiology, review current
guideline recommendations for anti-osteoporosis therapy
initiation among patients with long-term GC use, and present
considerations regarding the discontinuation of anti-
osteoporosis treatment for GIOP. We use a mock patient case
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to illustrate the key points and clinical debates that exist
throughout the review. We then conclude with proposed areas
for future research and emerging topics of interest related to
GIOP clinical management. The main points of this article are
presented graphically in Figure 1.
PATHOPHYSIOLOGY AND
EPIDEMIOLOGY OF GIOP

Patient Case: Part 1
Your patient is a 45-year-old Caucasian pre-menopausal female
(pronouns: she/her) living in Canada who has been recently
diagnosed with systemic lupus erythematosus (SLE) with
musculoskeletal and mucocutaneous involvement and a SLE
Disease Activity Index (SLEDAI) of 6, indicating moderate
disease activity (29). You initiate hydroxychloroquine (HCQ)
therapy and a tapering course of prednisone 15 mg per day,
reduced by 2.5 mg weekly down to 2.5 mg prednisone per day. A
6-week follow-up visit is scheduled. Your patient has no other
chronic conditions or prior fractures, does not smoke, consumes
2 alcoholic drinks per week, and has a BMI of 23.

Should you initiate anti-osteoporosis therapy for this patient
at her initial appointment? Do you need additional investigations
(e.g., dual-energy X-ray absorptiometry [DXA] scan)?

GIOP Pathophysiology
GCs increase fracture risk through a variety of mechanisms. Like
the pathogenesis of primary osteoporosis, GCs induce an
imbalance in the bone remodeling cycle governed by
osteoclasts and osteoblasts that break down and build bone,
respectively (30). Bone loss from GC exposure occurs in two
major time periods: a rapid initial phase where approximately 2-
9% of the BMD is lost within the first six months depending on
GC dose, with a steady reduction in BMD of about 0.5% to 2%
annually during continued treatment (11, 31–35). GCs decrease
BMD in trabecular bone, mainly in the vertebrae and femoral
neck, to a greater extent than in other types of bone (11, 36).
Initially, GCs appear to induce a transient excess of bone
resorption. GCs extend the lifespan of osteoclasts through
upregulation of receptor activator nuclear factor kappa-B
ligand (RANKL) while suppressing osteoprotegerin (OPG) in
osteogenic cells and suppression of apoptosis signals (37, 38).
Thereafter, GCs cause their most profound negative effects on
bone formation and quality (39) by reducing pro-osteogenic
gene expression and suppressing osteoblast differentiation and
proliferation, inducing apoptosis in osteoblasts and osteocytes,
and increasing osteocyte autophagy (40). GCs also disrupt the
function of bone marrow stromal cells (41), preventing their
subsequent maturation to osteoblasts and osteocytes (42).
Comprehensive reviews with further details of in vitro and in
vivo studies of glucocorticoid effects on bone cell function have
been recently published (39, 43).

GCs appear to increase fracture risk beyond their effects on
bone turnover and BMD. The independence of fracture risk from
BMD changes is even more profound for GIOP than primary
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osteoporosis. Multiple randomized controlled trials (RCTs) have
demonstrated that patients taking GCs had a significantly higher
vertebral fracture risk compared to similar patients with primary
osteoporosis and the same BMD values (31, 32, 44, 45). A meta-
analysis of epidemiologic studies showed that the BMD changes
seen at the spine and hip among GC users would correlate to an
expected relative risk of vertebral and hip fracture of 1.48 and
1.41, respectively, in patients with primary osteoporosis (45);
however, the observed relative risks for vertebral and hip fracture
were 2.40-3.05 and 1.54-2.34, respectively, depending on the
patient’s cumulative GC exposure (11). To account for the
poorer correlation between BMD and fracture risk in GIOP,
10-year fracture probabilities from the fracture risk assessment
(FRAX) tool are often increased by a factor of 1.15 to 1.20 for
patients currently exposed to 7.5 or more milligrams (mg) of
prednisone equivalents per day (prednisone equivalent daily
dose; henceforth, DD) (46). The disparity between the
predicted and observed fracture risk in patients taking GCs
compared to primary osteoporosis is often attributed to GC
effects on bone quality, though mechanisms for this effect are
unclear. The extension of osteoclast cell lifespans by GCs may
Frontiers in Endocrinology | www.frontiersin.org 349
impair osteoclast functioning long-term (47), reducing rates of
bone turnover and potentially resulting in lower bone quality.
GCs also affect the mineralization of bone by reducing expression
of bone matrix proteins, and GC effects on osteoblasts likely
reduce bone quality as well (30).

Fracture Risk Associated With GC Use:
Effects of Daily and Cumulative Dose
GC use strongly increases fracture risk, with highest observed
effects on vertebral fractures (48). Compared to matched
controls, patients on any dose of long-term GC therapy have
an average 3-times higher risk of vertebral fracture and a 2-times
higher risk of hip fractures (11). As in primary osteoporosis,
vertebral fractures can be asymptomatic and not come to clinical
attention. Up to 40% of patients taking chronic GCs have an
asymptomatic vertebral fracture, and 14% have two or more
asymptomatic fractures (15).

Dose-dependent effects ofGCsonboneare alsowell-established.
A large observational UK cohort study found that hip fracture risk
was 2.21-times higher among those taking 7.5 mg or more per day
versus GC users taking less than 2.5 mg per day (11). This dose-
FIGURE 1 | Graphical representation of the main points presented in this article.
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dependent relationship was even more profound for vertebral
fracture, where the risk among those taking 7.5 mg or more per
daywas2.83-timeshighercompared to those taking less than2.5mg
perday.Even low-dose chronicGCtherapy (<2.5mgperdayDD) is
associated with a 1.5-times increased vertebral fracture risk
compared to no use (11). Low doses do not appear to affect hip
fracture risk (relative rate 0.99 [95% CI 0.85 to 1.20]) (11). A more
recent study confirmed that, after confounder adjustment, GC
doses below 7.5 mg per day DD independently increased the risk
of clinical vertebral fractures (HR 1.59 [95% CI 1.11-2.29]) with
strong dose-response effects, but no association with overall
osteoporotic fracture risk was found (49).

Cumulative GC exposure also appears to affect fracture risk
independently of theDD.Acase control studyofDanish data found
that, compared to never-users, a high DD (≥15 mg) and high
cumulative dose (≥1 gram prednisone equivalent cumulative dose
[CD]) were independently associated with hip fractures (adjusted
odds ratio [ORadjusted] for DD ≥15 mg: 1.64 [95% CI 1.54 -1.74];
ORadjusted for CD ≥1 gram: 2.50 2.19-2.85)] and clinical vertebral
fractures (ORadjusted for DD ≥15 mg: 3.75 [95% CI 2.97 to 4.77]);
ORadjusted for CD ≥1 gram: 2.57 [95% CI 2.30 to 2.87]) (50). Those
with both high DD and high CD were at greatest risk (DD ≥15 mg
andCD≥1 gram: ORadjusted for clinical vertebral fracture 4.36 [95%
CI 3.32-5.72] and hip fracture ORadjusted 2.94 [95% CI 2.52-3.43])
(50). Another study found that intermittent high-dose GC without
high cumulative exposure (≥15 mg/day DD but <1 gram total CD)
was associatedwith amodest increased risk invertebral fracture and
no other fracture risk, but the risk of all types of fracture increased
dramatically if the patient had cumulative GC exposures ≥1 gram
(51). Similarly, another population-based Danish case-control
study illustrated that among patients with COPD, intermittent
high dose GC use (≥15 mg DD) was only associated with
osteoporotic fracture risk when the CD exceeded 1 gram (52). In
a population-based US study, a subgroup of patients less than 50
years of age only experienced a higher risk offracture after receiving
aCDof 1350mg or higher (24). Conversely, in theCPRDstudy, the
association between CD and fracture was nullified after accounting
for the DD, age, and other potential confounders (11). However, a
high DD and a CD greater than 5 grams was associated with a
profound increase in all fracture risk compared to prior periods of
no exposure (vertebral fractures: RR 14.42 [95% CI 8.29 to 25.08];
hip fractures: RR 3.13 [95% CI 1.49 to 6.59]) (11).

GCs may also indirectly increase fracture risk through other
mechanisms. GCs induce muscle atrophy by reducing protein
synthesis (30). Decreased muscle strength and insufficient balance
can thus lead to falls and increase impact of a fall, particularly in
older adults (53–55). GCs also impair gastrointestinal and renal
reabsorption of calcium and may result in hypocalcemia and
subsequent disruption of the bone turnover cycle (56), though
evidence on whether these changes have clinical impacts remains
controversial (57). Finally, some diseases that GCs are used to
manage and treat (e.g., RA) have detrimental effects on bone from
chronic inflammation (58, 59). It is still uncertainwhether there is a
tolerable dose of GCs for those with severe conditions that may
prevent disease-induced bone loss while avoiding increasing risk
through the aforementionedmechanisms either through lowdoses,
Frontiers in Endocrinology | www.frontiersin.org 450
intermittent use, or concurrent use of anti-osteoporosis therapies
(59). For example, two prospective studies in SLE patients showed
that a DD of less than 7.5 mg was not associated with bone loss in
these patients (60, 61); however, these low GC doses have been
consistently demonstrated to increase vertebral fracture risk in
other populations, so this topic remains controversial (11, 49).

Patient Case: Part 1 Response
At her initial appointment, anti-osteoporosis treatment is not
indicated for MP, and no DXA scan is needed at this stage. First,
the target prednisone DD (2.5 mg) and estimated CD after 6
weeks (367.5 mg) are below thresholds where fracture risk
increases in patients younger than 50 years of age (7.5 mg DD
per day and 1-1.350 g total CD) (11, 24, 49). Next, as GC
treatment is planned to be used as bridging therapy until HCQ is
anticipated to take effect, we can anticipate that MP will receive
fewer than 3 months of GC exposure and therefore is at lower
risk of fracture (11). Finally, outside of her GC exposure, due to
young age and no other major fracture risk factors (e.g., no recent
fragility fracture or prior vertebral fractures), she has an overall
low fracture risk (FRAX score estimating a 4.5% risk of
sustaining a major osteoporotic fracture over the next 10 years).
STARTING TREATMENT TO PREVENT GIOP

Patient Case: Part 2
At her 6-week follow-up appointment, your patient reports that
her joint symptoms have worsened. She has ongoing mouth
ulcers and she reports pleuritic chest pain. In addition, she is
found to have proteinuria, low complement levels, and elevated
double-stranded DNA antibody levels resulting in a high
SLEDAI score (16). You decide to initiate azathioprine as
adjunct treatment to HCQ and increase her prednisone dose to
40 mg daily for 1 month with subsequent reduction to a
maintenance dose of 10 mg daily thereafter until her
symptoms are better managed and disease score reduced. The
patient also undergoes a DXA scan, and her femoral neck BMD
T-score is -1.6. Her updated calculated FRAX score suggests a
6.1% probability of sustaining a major osteoporotic fracture in
the next 10 years.

Should you initiate anti-osteoporosis therapy at this visit?

GIOP-induced Fracture Risk at
Treatment Onset
Evidence suggests that bone loss and fracture risk increases
rapidly following GC initiation (62). A meta-analysis of ten
observational studies showed that the largest decrease in BMD
occurs in the first three months of GC treatment among first-
time users, regardless of daily dose (11). When considering
fracture risk, RCTs have shown an elevated vertebral fracture
risk in the first year after GC therapy initiation (21–25), while
population-based studies have found that fracture risk occurs
within three to six months after initiation (8, 20). One
observational study demonstrated a heightened fracture risk in
the first 30 days after GC initiation among adult patients less
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than 65 years of age using a self-controlled case series design
(62). The exact onset of fracture risk may also differ between
patients with varying baseline fracture risk.

While fracture risk remains heightened in users of GCs
throughout treatment, both fracture risk and the rate of bone
loss appear to stabilize after the first six to 12 months of
exposure, even among those receiving high GC doses (2, 11).
This pattern of risk may be due to the biphasic effects of GCs on
bone. The rapid increase in fracture risk in the first months of
GC exposure likely results from the initial rapid increase in bone
resorption due to enhanced osteoclast activity that results in a
negative uncoupling between bone formation and bone
resorption phases (63). This early phase is paralleled by a
second, more progressive phase where bone formation is
hampered (40, 64). Longitudinal gene expression profile
studies have indeed shown an early induction of genes related
to osteoclast function followed by a long-lasting suppression of
genes related to osteoblasts (65). Thus, the sustained, but stable,
fracture risk after the initial period likely results from the long-
term effects of glucocorticoids on osteoblast proliferation
and function.

Current Treatments for GIOP
Current therapies approved for the treatment of glucocorticoid-
induced osteoporosis in most jurisdictions include oral
bisphosphonates (21–23); intravenous bisphosphonates (24),
primarily zoledronic acid; denosumab (66–68); and anabolic
agents (18), primarily teriparatide (44, 69). Most therapies
were approved to treat GIOP primarily on the basis of BMD
bridging studies (70), with larger trials suggesting anti-fracture
effectiveness thereafter (16, 17, 69). Oral bisphosphonates have
been shown in multiple trials and population-based studies to be
associated with a significantly reduced fracture risk in GC users
(e.g., HR 0.58 [95% CI 0.51 to 0.66] for vertebral fractures and
HR 0.71 [95% CI 0.57 to 0.89] for nonvertebral fractures) (17).
Zoledronic acid is superior to risedronate in BMD benefits (34).
Teriparatide has robust evidence for its anti-fracture benefits
(44), and appears to be even more effective in GIOP than primary
osteoporosis in preventing vertebral fractures (69), perhaps due
to GC effects on bone formation (59). Teriparatide also has
evidence that it is more effective than alendronate, zoledronic
acid, and risedronate in increasing BMD and preventing
vertebral fractures (16, 44, 71). Denosumab, a monoclonal
antibody with anti-resorptive effects, has superior effects on
BMD over 24 months as compared to risedronate (67), though
fracture rates and adverse effects were not statistically different
between denosumab and risedronate. A comprehensive
summary of evidence of the effectiveness of therapies for GIOP
on fractures, BMD, and bone turnover has been recently
published (18).

Clinical Guideline Recommendations for
Starting Treatment to Prevent GIOP: Who
to Treat and Which Therapy
Current international clinical guidelines differ in their
assessment of who is indicated for anti-GIOP therapy (the
Frontiers in Endocrinology | www.frontiersin.org 551
American College of Rheumatology [ACR, 2017] (72); the
International Osteoporosis Foundation and European Calcified
Tissue Society [IOF-ECTS, 2012] (73); Royal College of
Physicians, National Osteoporosis Society, and Bone and
Tooth Society [RCP, 2002] (74); and the UK National
Osteoporosis Guideline Group [NOGG, 2017]) (75). A
summary of recommendations from international clinical
guidelines is presented in Table 1, with the ACR 2017 fracture
risk criteria available in Table 2. Generally, all recommend that
patients initiating ≥3 months of any dose of GC therapy and who
have experienced a prior fragility fracture should start anti-
osteoporosis therapy, regardless of age or GC dose. Similarly,
for those without a prior fracture, fracture risk assessments that
account for clinical risk factors (e.g., age, sex, GC dose) or
estimate a GC-adjusted fracture probability (such as that
derived from FRAX) are recommended to determine whether
treatment is indicated. However, thresholds for treatment are
heterogenous between guidelines, potentially from a lack of
evidence examining the anti-fracture benefits of GIOP
treatment among patients with varying fracture risk factors.
Similarly, the guidelines differ in how patients are categorized
as high versus low fracture risk. Nevertheless, all recommend
starting therapy as soon as possible for those who are indicated
based on evidence from pharmacologic and observational
studies; however, only the ACR guidelines explicitly suggest
undertaking a BMD measurement within three to six months
of initiation as part of fracture risk assessment (72).

Despite general agreement that anti-osteoporosis medications
should be initiated in patients at high fracture risk, the current
guidelines do not consistently recommend certain therapies over
others for GIOP patients. Only the ACR guideline explicitly
recommends initiating oral bisphosphonates (in addition to
calcium and vitamin D supplementation) over other anti-
osteoporosis treatments (72). The IOF-ECTS and NOGG
guidelines suggest that oral bisphosphonates can be considered
for first-line therapy in GIOP patients (73, 75). The RCP
guidelines do not suggest or recommend a certain therapy for
GIOP (74).

Oral bisphosphonates are justified in the ACR guidelines as
the preferred first-line therapy for the prevention of fractures in
GIOP due to their robust effectiveness, oral formulation, low
cost, well-characterized safety profile in immunosuppressed
patients, and lack of evidence showing that other therapies
have superior anti-fracture (not BMD) effectiveness (72).
Zoledronic ac id , denosumab, and ter iparat ide are
recommended by ACR as second-line treatment if oral
bisphosphonates are not effective or not tolerated (72).
However, there is increasing clinical trial and observational
evidence that teriparatide is superior to oral bisphosphonates
in preventing vertebral fractures in GC-naïve and GIOP patients
with severe spinal osteoporosis (44, 76, 77). Additionally,
considering the pathophysiology of GIOP is driven by effects
on osteoblasts, teriparatide is a particularly attractive treatment
option as it stimulates bone formation (77). We therefore suggest
that teriparatide may be considered as first-line therapy in
patients at high risk of vertebral fractures (e.g., with a recent
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vertebral fracture or very low vertebral BMD). Teriparatide
therapy is limited to 24 months in many jurisdictions and
should be followed up with antiresorptive treatment (78). We
also acknowledge that the use of teriparatide may be limited by
Frontiers in Endocrinology | www.frontiersin.org 652
cost, its required daily injections and its contraindications such
as a prior history of skeletal malignancy or radiotherapy (79).
Denosumab may not be a preferred first-line option for GIOP, as
discontinuation is associated with a rapid loss of effectiveness
TABLE 1 | Summary of guideline recommendations on anti-osteoporosis treatment for adults with glucocorticoid use.

Guideline Populations to be treated with an
anti-osteoporosis therapy

Treatment start Treatment duration

2017 American College of
Rheumatology Guideline for the
Prevention and Treatment of
Glucocorticoid-Induced
Osteoporosis (72) (ACR 2017)

Adults aged ≥40 years at moderate risk** of
fractureC

Fracture risk screening and potential
treatment initiation as soon as possible, but
max within 6 months of GC initiation for all
patients with anticipated long-term GC
treatment (≥3 mo)X

Adults ≥40 years continuing GC
treatment: continue treatment as
long as GCs used, then re-assess.
Adults ≥40 years stopping GC
treatment:

Adults aged ≥40 years at high risk** of
fractureA

Repeat fracture risk assessment every 12
monthsX

• Low fracture risk: discontinue
osteoporosis medication but
continue calcium and vitamin
DC

• Moderate or high fracture risk:
“complete” treatment with OP
medication like for general
osteoporosisA

Adults age <40 years at moderate or high
risk** of fractureC

Recommended first-line therapy: Oral
bisphosphonatesC

Special populationsC:
• Women of childbearing age at moderate

to high fracture risk who do not plan to
become pregnant within the period of
OP treatment

• Adults aged ≥30 years receiving very-
high dose GCs (initial dose prednisone
≥30 mg/day and cumulative dose > 5 g
in 1 year)

• Adults with organ transplant, eGFR ≥30
ml/min and no evidence of metabolic
bone disease who continue treatment
with GCs

UK clinical guideline for the
prevention and treatment of
osteoporosis, National
Osteoporosis Guideline Group,
(NOGG, 2017) (75)

Postmenopausal women taking GCs who
are: over ≥70 years of age, have had a
previous fragility fracture, or are taking ≥7.5
mg prednisolone/day or equivalentC

Start therapy immediately for indicated
patientsC

Continue treatment as long as GC
use continues, can consider
stopping if GC withdrawnC

Bone protective therapy may be appropriate
in some men and premenopausal women on
GC therapy who have a previous fracture or
are taking ≥7.5 mg/day prednisolone
equivalentC

Suggested first-line therapy: Alendronate or
risedronateX

International Osteoporosis
Foundation and the European
Calcified Tissue Society 2012
(IOF-ECTS 2012) (73)

Postmenopausal women and men aged ≥50
years committed or exposed to ≥3 months
oral GCs:

Start therapy at the onset of GC treatmentX Consider withdrawal of therapy
with reassessment of fracture risk,
preferably with a BMD
measurementX• ≥70 years of age, or

• Prior fragility fracture, or
• taking ≥7.5 mg/day prednisone

equivalent, or
• BMD T-score -1.5 or above country-

specific GC-adjusted FRAX intervention
threshold*X

Suggested first-line therapy:
Bisphosphonates or teriparatide (choice of
treatment mainly influenced by cost and
tolerability)X

Premenopausal women and men <50 years
committed or exposed to ≥3 months oral
GCs who have had a prior fragility fractureX

• Also consider treatment if taking ≥7.5
mg/day prednisone equivalentX

Royal College of Physicians,
National Osteoporosis Society,
and Bone and Tooth Society 2002
(74)

Consider treating patients with anticipated
GC use≥3 months C: AND

Start at initiation of GC therapyX Not specified

• >65 years, or
• prior fragility fracture, or
• BMD T score ≤-1.5C

No suggested first-line therapy.
December 2
MOF, major osteoporotic fracture (clinical vertebral, hip, wrist, or humerus).
Arecommendation based on randomized trial evidence.
Cevidence based on expert opinion, pharmacologic/preclinical evidence, or first principles.
Xrecommendation not graded, evidence not assessed, or good practice recommendation only.
*thresholds derived locally due to limitations of the algorithm.
**See Table 2 for definitions of high/moderate/and low fracture risk per the ACR 2017 guidelines.
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and there is some limited data to suggest that fracture risk might
be transiently increased (80–82). Anti-osteoporosis therapy is
often stopped after GCs are discontinued, as discussed in the
following section. Choice of treatment will likely also be
influenced by clinical characteristics like menopausal status
and renal dysfunction as well as insurance reimbursement and
formulary policies , geographic location, costs , and
patient preferences.

Patient Case: Part 2 Response
Your patient is at high fracture risk and, despite having no prior
fractures, we recommend that she be started on antiresorptive
therapy at this visit. Our recommendation to treat is based on
data that show independently increased risk of fractures for
patients less than 50 years of age associated with: a) CD
greater than 1350 mg (patient’s estimated cumulative dose at
this timepoint: greater than 2700 mg) (24); b) a DD higher than
7.5 mg (11, 24) per day and the excess risk added when a patient
has CD > 1 g and >15 mg DD per day (50); c) projected use
longer than 3 months that can increase fracture risk even with
low doses (11, 49); and d) a reduced BMD, which is also an
important factor in determining her fracture risk (83). This
recommendation is also in line with current recommendations
from select guidelines: treatment is indicated due to GC exposure
≥ 30 mg prednisone per ACR guidelines (72). According to RCP
guidelines (74), treatment is indicated because of projected
therapy duration of more than 3 months with a DD of more
than 7.5 mg/day in context of a BMD T-score which is less than
-1.5. Current IOF-ECTS and NOGG guidelines, however, would
not recommend starting treatment in this case (73, 75). MP
would be indicated according to the IOF-ECTS guidelines if she
had a prior fragility fracture or was older than 50 years of age and
postmenopausal. Similarly, she would be indicated by the NOGG
guidelines if she were postmenopausal, but these guidelines
suggest that some premenopausal women taking ≥7.5 mg DD
may be indicated for anti-osteoporosis therapy without further
elaboration. Finally, we recommended using antiresorptive
therapy (bisphosphonates) rather than teriparatide as first-line
therapy, as your patient does not have severe spinal osteoporosis
and thus antiresorptive therapy may be sufficient to prevent
fractures. We would recommend an oral bisphosphonate as
initial treatment due to the evidence of effectiveness for
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reducing fracture risk in GIOP (16), particularly with
risedronate therapy; low cost, as highlighted by ACR
recommendations (72); and ability for the clinician to stop
treatment abruptly once bone protecting treatment is no longer
required. However, the choice of bisphosphonate may be driven
by cost, formulary restrictions, and patient/prescriber preferences.
STOPPING TREATMENT TO PREVENT GIOP

Patient Case: Part 3
Ninemonths after disease onset, your patient’s joint symptoms have
improved, mouth ulcers and pleuritic chest pain have resolved, and
blood tests and urinalysis have normalized, indicating low SLE
disease activity. The patient currently takes 7.5 mg prednisone each
day, and you begin a tapering regimen for her prednisone over the
next 12 weeks and continue HCQ and azathioprine therapy. She
responds well to the tapering regimen and is found to have adequate
adrenal reserve on 2.5 mg prednisone daily. Twelve months after
her disease onset, the patient is able to stop prednisone altogether,
and her disease remains well-controlled with combination
treatment with HCQ and azathioprine.

Can you discontinue antiresorptive therapy? If yes, when
should therapy be stopped?

Fracture Risk Following GC
Discontinuation
It is widely accepted that GIOP is to some extent reversible. Pre-
clinical evidence suggests this reversibility comes from a rapid
recovery of osteoblasts after GCs are discontinued. For example,
in patients withCushing’s disease, osteoblast activity aswell as bone
mineralization dramatically renews to baseline levels within 6
months after cure (84). GIOP’s effects on bone quality may
endure beyond this period, however; patients with a median
duration of remission from Cushing’s disease of 6 years showed
similar BMD values as age- and sex-matched controls but had
altered bone material properties (85). This impact on bone quality
may come from longstanding impact of GCs on osteoclasts and
osteocytes, which are less studied than osteoblasts (43).

While understanding recovery of preclinical markers helps to
attest to the reversibility ofGIOP, thedurationof excess fracture risk
TABLE 2 | Fracture risk assessments in the 2017 American College of Rheumatology guideline for the prevention and treatment of glucocorticoid-induced
osteoporosis.

High risk Moderate risk Low risk

Adults ≥40 years: Adults ≥40 years: Low risk:
• Prior osteoporotic fracture, or
• Hip or spine BMD T score ≤-2.5 in men age ≥50 years

or postmenopausal women, OR
• FRAX (GC-adjusted*) 10-year risk of MOF ≥20%, or
• FRAX (GC-adjusted*) 10-year risk of hip fracture ≥3%
• Adults <40 years:
• Prior osteoporotic fracture

• FRAX (GC-adjusted*) 10-year risk of MOF 10-19%, OR
• FRAX (GC-adjusted*) 10-year risk of hip fracture >1% but

<3%
• Adults <40 years:
• Hip or spine BMD T score < -3 or rapid bone loss (≥10% at

the hip or spine over 1 year) AND
• Continuing GC treatment at ≥7.5 mg prednisone/day for ≥6

months

Adults ≥40 years:
• FRAX (GC-adjusted*) 10-year risk

of MOF < 10%, OR
• FRAX (GC-adjusted*) 10-year risk

of hip fracture ≤1%
• Adults <40 years:
• None of the above risk factors

other than GC treatment
Decem
MOF, major osteoporotic fracture (clinical vertebral, hip, wrist, or humerus).
*If GC treatment >7.5 mg/day prednisone or equivalent, increase major osteoporotic risk by 1.15 (15%) and hip fracture risk by 1.2 (20%).
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after GC therapy is stopped determines the appropriate duration of
anti-osteoporosis therapy. Although select studies have shown that
prior GC use is associated with increased fracture risk (86) and
FRAX includes previous use of GCs as a fracture risk factor (46),
multiple large population-based studies have independently shown
that fracture risk decreases rapidly afterGCexposure is stopped (24,
51, 87). A 2018 US study of over 289,000 patients with GC use and
chronic conditions (RA, asthma, chronic obstructive pulmonary
disease, inflammatory bowel disease, multiple sclerosis, lupus, or
sarcoidosis) found thefirstmajor decrease in fracture risk after 60 to
182 days off therapy (adjusted HR [versus current use] 0.73, a 27%
decreased relative risk), with onlymarginal further decreases in risk
after longer periods off-therapy (35% decreased relative risk after
more than 365 days off therapy) (24). Similar trends were observed
in a cohort of US patients with RA (87). An earlier study on
intermittent glucocorticoid use examined the relationships
between time since discontinuation, daily dose, cumulative dose
and various types of fracture (51). Among those with >15 mg DD
per day, a rapid decrease in the risk of all fractures was seen in the 3
months after discontinuation, with the most profound decreases
observed for vertebral fracture risk in this period (51). No elevated
risk was seen beyond 12 months after discontinuation of GC
therapy. Those with less than 15 mg per day DD had no excess
risk beyond 9 months after their last dose. When examining
cumulative exposures, fracture risk returned to baseline levels
after 6 months in those with less than 1 gram total CD, while
those with ≥1 gram did not have a reduction to baseline levels until
15 months later. Conversely, a Danish population-based case-
control study did not observe this dramatic decrease in vertebral
fracture risk after discontinuation; when compared to never-users,
distant past users (>1 year) still had an elevated risk of vertebral
fracture (ORadjusted 1.23 [1.16-1.30]) but no apparent risk of hip
fracture (ORadjusted 0.97 [95% CI 0.93-1.01]) (50). Notably, most
studies have not examined whether fracture risk after GC
discontinuation differs by age, sex, or other fracture risk factors.

Due to evidence of the reversibility of GC effects on bone, all
current treatment guidelines suggest that anti-osteoporosis
therapy can be stopped after GC is discontinued (Table 1).
However, none recommend specific timing to stop therapy based
on empiric evidence. In addition, most recognize that the role of
BMD monitoring post-GC use has not been established. The
highest quality evidence for lower fracture risk patients stopping
anti-osteoporosis therapy after stopping GC treatment comes
from observational studies (11, 24, 50, 51), though we note that
some were published after the guidelines were released.
Consequently, most of the guideline recommendations are
based on expert opinion or in vitro studies as, to date, there
are no trials examining fracture risk with varying durations of
osteoporosis treatment after GC discontinuation. A recent review
on the pharmacology of GIOP and GCs recommends continuing
therapy for six to 12 months after discontinuation of GCs (43).
The only recommendation that is strong with high quality
evidence in the guidelines is the ACR 2017 recommendation to
continue anti-osteoporosis treatment if the patient is indicated
per primary osteoporosis guidelines after GC therapy, which is
based on RCT evidence in primary osteoporosis (72).
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Based on the available evidence, including preclinical data,
stopping anti-osteoporosis treatment immediately at the time of
GC discontinuation may not be ideal. However, additional real-
world evidence on fracture risk following both GC and anti-
osteoporosis medication is critical. In addition, estimating the
exact end time of glucocorticoid exposure is difficult using many
research data sources given tapering regimens and as needed
doses that are not captured through claims data, so observational
studies on the effects of discontinuing GCs and continuing anti-
resorptive therapy beyond GC discontinuation often have
methodological limitations (50). Nevertheless, based on
epidemiologic studies of the duration of elevated fracture risk
for up to 15 months after stopping GCs in some patients (24, 50,
51), clinicians might choose to continue therapy for another
three to six months for lower cumulative exposures (e.g., less than
1 gram CD), with longer periods (e.g., six to eighteenmonths after
GC discontinuation) for greater cumulative exposures.

Patient Case: Part 3 Response
Based on existing clinical and preclinical evidence, since your
patient is at low fracture risk aside from GC treatment, we
recommend that antiresorptive therapy can be stopped after GC
therapy is discontinued. We may consider continuing
antiresorptive therapy for six months after discontinuation of GC
therapy. The ACR, IOF-ECTS, and NOGG guidelines all
recommend (ACR) or suggest (IOF-ECTS, NOGG) stopping
anti-osteoporosis therapy once GC therapy is stopped (72, 73,
75). The RCP guidelines do not comment on discontinuing
therapy once GCs are stopped (74). As stated in Table 1, no
international guideline recommends a specific timing on stopping
anti-osteoporosis therapy.

Our recommendation to stop anti-osteoporosis treatment
and our suggestion to stop 6 months after last GC exposure
are limited based on available evidence, particularly the effects of
stopping among patients with high CD but are less than 50 years
of age. First, evidence has shown that patients of similar age to
MP (average age of 47 years) but who had cumulative exposures
of 675 mg or less (substantially lower CD than MP) had a
substantial decrease in fracture risk after 60 to 180 days of
stopping GC therapy (24). Patients with CD greater than 1
gram, but who had an average age of 64 years also had a
decrease in fracture risk starting at 3 months after last GC
dose, but risk remained elevated from never users until 15
months after stopping GCs (51).
FUTURE RESEARCH

While there is abundant evidence that anti-resorptive and anabolic
treatments help to prevent fractures inGIOP, there are clear gaps in
knowledge regarding the timing of treatment, particularly when to
discontinue in patients with few other fracture risk factors. Studies
of the effects of discontinuation of GCs on fracture risk also have
methodological limitations; future research could validate
algorithms to ascertain true timing discontinuation of GC therapy
to improve exposure measurement in fracture effects studies.
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In addition, most studies supporting the effectiveness were
underpowered to study effects in subgroups with additional
fracture risk factors (e.g., low body mass index, recent fragility
fracture). Future studies in these subgroups are particularly
important to determine the benefits of GIOP treatment in
patients with different baseline fracture risk. In addition, some
GCs may have bone-sparing effects (88) by controlling
inflammation and providing better disease control (89). An RCT
is underway to examine fracture and BMD outcomes among
patients with RA randomized to low dose GC or placebo added to
standardRAtreatment thatwill provide evidenceon this knowledge
gap (90). The utility of microindentation measurements to assess
and predict fracture risk, both while exposed to GC therapy and
after discontinuation (85) is another future area of study. Finally,
recent preclinical evidence suggests that GC-induced fracture risk
might result in part from the disturbance in circadian rhythm (91),
yet studies in humans are needed.
CONCLUSION

Patients on long-term GC therapy should be assessed for fracture
risk and potentially initiated on treatment to prevent GIOP.
Most guidelines recommend initiating anti-osteoporosis therapy
immediately for those on high-dose GC therapy, with a prior
fracture, or at high fracture risk according to guideline-specific
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categories, though evidence shows other groups are also at risk of
GC-induced fractures. Recommendations on stopping therapy
with GC discontinuation are less clear. Though anti-osteoporosis
therapy can be stopped in patients at low fracture risk after GC
therapy is discontinued, it may be appropriate to continue
therapy beyond GCs for a finite time (e.g., 6-12 months) due
to a residual, dose-dependent fracture risk after stopping GC
therapy. In particular, patients stopping after high cumulative
GC exposure may benefit from extended treatment. Clinical
trials comparing the relative anti-fracture benefits of varying
lengths of treatment after GC discontinuation are critical to form
strong recommendations on duration of treatment for GIOP.
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Glucocorticoids (GCs) are steroid hormones that respond to stress and the circadian
rhythm. Pharmacological GCs are widely used to treat autoimmune and chronic
inflammatory diseases despite their adverse effects on bone after long-term therapy.
GCs regulate bone homeostasis in a cell-type specific manner, affecting osteoblasts,
osteoclasts, and osteocytes. Endogenous physiological and exogenous/excessive GCs
act via nuclear receptors, mainly via the GC receptor (GR). Endogenous GCs have
anabolic effects on bone mass regulation, while excessive or exogenous GCs can cause
detrimental effects on bone. GC-induced osteoporosis (GIO) is a common adverse effect
after GC therapy, which increases the risk of fractures. Exogenous GC treatment impairs
osteoblastogenesis, survival of the osteoblasts/osteocytes and prolongs the longevity of
osteoclasts. Under normal physiological conditions, endogenous GCs are regulated by
the circadian rhythm and circadian genes display oscillatory rhythmicity in bone cells.
However, exogenous GCs treatment disturbs the circadian rhythm. Recent evidence
suggests that the disturbed circadian rhythm by continuous exogenous GCs treatment
can in itself hamper bone integrity. GC signaling is also important for fracture healing and
rheumatoid arthritis, where crosstalk among several cell types including macrophages
and stromal cells is indispensable. This review summarizes the complexity of GC actions
via GR in bone cells at cellular and molecular levels, including the effect on circadian
rhythmicity, and outlines new therapeutic possibilities for the treatment of their
adverse effects.

Keywords: glucocorticoid receptor, transgenic mice, osteoporosis, osteoblast, osteoclast
INTRODUCTION

Glucocorticoids (GCs) are steroid hormones that respond to stress and the circadian rhythm.
Endogenous GCs are released by the adrenal glands upon activation of the hypothalamic-pituitary-
adrenal (HPA) axis. Excessive or insufficient levels of endogenous GCs, Cushing's syndrome or
Addison's disease, respectively, result in low bone mass and increased fracture risk (1–5). Due to
their anti-inflammatory potential, exogenous GCs like dexamethasone, prednisolone, and many
others are synthesized for pharmacological applications. Since the late 1940s they are widely used to
treat autoimmune and chronic inflammatory diseases, recently they have been also utilized for
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Covid-19 treatment (6–8). However, long-term GC therapy can
cause severe adverse effects in bone such as osteoporosis, and 30-
50% of those patients experience fractures (9, 10).

Once GCs enter their target cell, they become activated by the
11b-hydroxysteroid dehydrogenase type 1 (11b-HSD1) or
deactivated by 11b-HSD2 (11, 12). After that initial step,
the activated GCs bind to the glucocorticoid receptor (GR), a
member of the nuclear receptor superfamily. GR is ubiquitously
expressed and acts as a monomer, homodimer or even a tetramer
(7, 13). The ligand-bound GR translocates into the nucleus and
induces transactivation or transrepression of target genes in
several ways (7): 1) direct binding of GR homodimers or
oligomers to DNA associated GC-response elements (GRE), 2)
direct binding of GR monomers to GRE, 3) tethering as a GR
monomer to other DNA-bound inflammatory transcription
factors such as NF-kB, AP-1, IRF-3 or Stat3.

Despite this common mechanism of GCs via GR, endogenous
and exogenous GCs act distinctively in bone and are dependent
on pathophysiological environments. Thus, it is necessary to
understand the role of GCs in bone cells and their mechanism of
action in several bone diseases. This review summarizes the
status of current studies on cellular and molecular, endogenous
and exogenous GC actions via the GR in bone cells. Additionally,
it describes the effect of circadian rhythmicity in GC actions, and
outlines new therapeutic possibilities for the treatment of their
adverse effects.
ENDOGENOUS GC ACTION IN BONE
HOMEOSTASIS

Endogenous GCs directly regulate bone homeostasis via the GR
in a cell-type specific manner.

Several animal models have proved that GC signaling in
osteoblast-lineage cells is critical to maintain bone mass. The
effect of inactivated GC signaling in mature osteoblasts and
osteocytes was investigated by overexpression of 11b-HSD2,
the responsible enzyme for GC inactivation. A 2.3 kb or 3.6 kb
fragment of Col1a1 promoter-driven overexpression of 11b-
HSD2 (Col2.3-HSD2 or Col3.6-HSD2) reduced cortical and
trabecular bone mass in mice, which suggests the importance
of GC signaling in osteoblast-lineage cells to regulate bone mass
(14–16). Interestingly, another mouse model blocking GC action
in osteoblast-lineage cells by osteocalcin promoter-driven
overexpression of 11b-HSD2 (OG2-11b-HSD2) did not show
any alteration in the bone under normal physiological conditions
(17). These discrepancies among different mouse models could
be explained by determining the specific stages of osteoblast-
lineage cells or investigating cell-type specific conditional knock-
out mouse models. Notably, GR deficiency in mice using cre
overexpression under the control of early committed osteoblast
progenitor markers (Runx2 or Osx1) resulted in decreased bone
mass (18, 19). Taken together, endogenous GC signaling in
osteoblast-lineage cells is essential in bone mass regulation.
However, osteocyte-specific endogenous GC action
remains inexplicit.
Frontiers in Endocrinology | www.frontiersin.org 260
Osteoclasts, another key cell type for bone mass regulation, are
not affected by endogenous GC signaling. Osteoclastogenesis and
bone formation were normal in mice with the GR deleted in
osteoclast progenitor cells (GRLysMCre) (18). Osteoclast-specific
overexpression of 11b-HSD2 using the tartrate-resistant acid
phosphatase (TRAP) promoter (TRAP-HSD2) did not alter bone
mass in mice (20). Collectively, endogenous GC signaling does not
affect osteoclastogenesis under normal physiological conditions.

However, GCs have a profound effect on bone loss that is
induced by a model of microgravity- the hindlimb unloading
(HU), a model that was developed for simulating the
environment of astronauts during space voyages. In this HU
model, rodents showed an elevated endogenous corticosterone
level (21), which led to a decreased bone mass due to decreased
osteoblastogenesis, and increased apoptosis of osteoblasts and
osteocytes (22). However, blocking of GC signaling in mature
osteoblasts and osteocytes using Col2.3-HSD2 transgenic mice
did not alter cortical bone mass in the HU model (22).
Osteoclastogenesis and bone resorption were enhanced during
HU due to enhanced receptor activator of nuclear factor-kB
ligand (RANKL) production in osteocytes (22). This outlines the
importance of endogenous GC signaling in mature osteoblasts
and osteocytes, in response to mechanical loading.
EXCESSIVE EXOGENOUS GC ACTION
IN BONE AND GC-INDUCED
OSTEOPOROSIS

Long-term GC therapy is the most common cause of secondary
osteoporosis, which leads to an increased risk of fractures (23, 24). In
patients, exogenousGCswithdoseshigher than2.5mg formore than
3 months are shown to weaken bone quality (25). There is also clear
evidence that exogenous GCs inhibit osteogenesis (6, 10).
Bone marrow stromal cells (BMSCs) isolated from patients
with corticosteroid-induced osteonecrosis showed impaired
osteogenesis (26). Similarly, BMSCs isolated from a rat GIO model
displayed decreased proliferation and osteogenic differentiation
(27). Application of exogenous GCs in vivo suppressed
proliferation and differentiation of osteoblasts and induced
apoptosis of osteoblasts and osteocytes, resulting in a low bone
mass (17, 18). This side effect could partially be rescued by
leukemia inhibitory factor (LIF) treatment that activated Stat3,
Mapk/Erk, and Akt signaling in GC-treated cells (28). Despite
long-term exposure to high dose GCs, osteoblast lineage-specific
GR deficient mice (GRRunx2cre) displayed normal bone formation
and unaltered osteoblast and osteocyte numbers (18). This is
corroborated by studies with GC inactivation in mature osteoblasts
and osteocytes, using mice overexpressed 11b-HSD2 under the
osteocalcin gene 2 (OG2) promoter (OG2-11b-HSD2). In these
mice, GC-mediated increased apoptosis of osteoblasts and
osteocytes is abrogated as well (17). These studies show that
exogenous GC treatment leading to GC excess impairs
osteoblastogenesis, the survival of osteoblasts, and osteocytes.

GCs affect the cross-talk among bone cells. Exposure to high
doses of GCs results in an increased amount of RANKL secreted by
January 2022 | Volume 12 | Article 815386
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osteoblasts and osteocytes. In turn, this increases the RANKL to
osteoprotegerin (OPG) ratio and enhances bone resorption by
osteoclasts (29–31).

Excessive GCs can also directly affect osteoclastogenesis (20, 32).
During the initial phase of the therapy, GCs increase bone
resorption by promoting osteoclast proliferation, osteoclast
differentiation, and prolonging their life span (20, 33–35).
However, the effect of long-term GC exposure on osteoclasts is
still not entirely resolved. A few studies reported that long-term GC
excess rather reduces osteoclast activity due to disrupted
cytoskeleton of the osteoclasts (35, 36). However, several other
studies addressed osteoclast apoptosis after long-term GC exposure
(32, 34, 35, 37). Some studies showed that GCs reduce osteoclast
apoptosis (34, 35), while others reported that GCs do not affect
osteoclast apoptosis at all (32, 37). Collectively, pharmacological
GCs affect osteoclastogenesis and bone resorption either directly, or
via increased RANKL secretion from osteoblasts/osteocytes.
GCs IN SKELETAL STEM CELLS

Skeletal stem cells are essential for bone development, growth,
and maintenance (38). During the last decade, skeletal stem cell
markers have been identified in humans and rodents (38–41). To
date, however, the role of GCs in these cells has not yet been
extensively explored. Earlier, a study demonstrated that GR
deletion in mesenchymal tissues using Dermo1-Cre induces
postnatal lethality due to defects in the lung and intestines
(42). GR silencing on human BMSCs showed an inhibited
osteogenic differentiation in vitro (43). These studies imply
that GC signaling via the GR plays a key role in mesenchymal
stem cells (MSCs) differentiation towards osteoblasts.

It is also known that GIO is clinically described by decreased
bone mass along with increased marrow adiposity (24), indicating
that GR regulates the balance between osteoblastogenesis and
adipogenesis of MSCs (44). High GC doses (1 µM
Dexamethasone) increased adipogenesis of human BMSCs
regulated by c-Jun signaling (43). Other studies suggested that
GCs induce adipogenic regulators. Adipogenesis was promoted in
cortisol (1 µM) treated mouse bone marrow-derived stromal cell
line ST-2, by increasing expression of Peroxisome proliferator-
activated receptor-gamma2 (PPAR-g2) and CCAAT/enhancer-
binding protein (C/EBP) transcription factors that are the
adipocyte master regulator (45). Similarly, C/EBPalpha
expression was increased in bone of dexamethasone-treated
mice (50 mg/kg daily for 5 weeks) as well as in primary BMSCs
isolated from those mice (46). Dexamethasone treatment in rat
BMSCs also increased PPAR-g expression in a dose-dependent
manner, whereas a PPAR-g knockdown promoted osteogenesis
(47). This GC-induced PPAR-g expression increases Secreted
frizzled-related protein 5 (SFRP5) expression which inhibits the
Wnt/b-catenin pathway and thus suppresses osteogenesis (47).

Taken together, endogenous GCs promote osteoblastogenesis
of MSCs, whereas exogenous or excessive GCs regulate the
balance between osteoblastogenesis and adipogenesis of MSCs.
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Further studies are necessary to investigate the role of GCs in the
fate decision of skeletal stem cells in vivo.
CIRCADIAN RHYTHMICITY AND GCs

Endogenous GCs are released under the control of circadian
rhythms, that are modulated by the central circadian clock in the
suprachiasmatic nucleus (SCN) of the hypothalamus (48). The
daily rhythmicity of plasma GC levels modulates physiological
processes in many peripheral tissues including bone (48, 49).

Indeed, diurnal rhythm appears in some bone metabolic
markers such as the bone resorption marker C-terminal cross-
linked telopeptide of type I collagen (CTX), osteocyte function
marker fibroblast growth factor 23 (FGF23), and turnover
marker serum osteocalcin (50–53). Other bone markers such
as sclerostin, procollagen type 1 N-terminal propeptide (P1NP),
OPG, or soluble RANKL serum levels did not display
rhythmicity (50, 52). However, the 24-hour serum profiles of
men displayed that bone formation marker P1NP was
significantly reduced after a long-term (3 weeks) disruption of
the circadian rhythm despite no alteration of CTX level (54). In
mice, disrupted circadian rhythm by weekly alternating light-
dark cycles (10 or 15 weeks) led to a reduced level of both P1NP
and CTX, implicating a decreased bone turnover due to
disrupted circadian rhythm (55). This is likely due to the
altered expression level of circadian locomotor output cycles
kaput (Clock) genes that regulate the circadian rhythm in bone
cells (55). Unexpectedly, unlike with the P1NP level, osteoblast
surface increased in these mice (55). Together with decreased
osteoclast surface, trabecular bone mass was increased in these
mice despite altered Clock gene expression in the bone due to
disrupted circadian rhythm (55). Nevertheless, this study
indicated the importance of circadian rhythm in bone health.
Investigations considering different ages and duration of
circadian rhythm disruption would provide further insights
into the effects of circadian rhythm in bone.

Furthermore, genetic deletion of Clock genes in mice leads to
altered bone phenotypes (56–61). Under normal physiological
conditions, brain and muscle aryl hydrocarbon receptor nuclear
translocator-like protein 1 (Bmal1) and period 1 (Per1) genes are
expressed with oscillatory rhythmicity in bone (58, 61). Bmal1
knock-out mice and mice with Bmal1 deletion in Osx+ osteoblast
precursors and their progeny showed a decreased bone mass
with increased bone resorption, suggesting that Bmal1 regulates
bone homeostasis by controlling osteoblast-mediated bone
resorption (58). An osteoclast-specific Bmal1 knock-out mouse
showed an increased bone mass due to reduced osteoclast
differentiation, indicating Bmal1 also regulates osteoclast-
mediated bone resorption (57). The Clock gene that forms
heterodimers with Bmal1 or Bmal2 regulates bone formation
via protein disulfide isomerase family A member 3 (Pdia3),
shown by reduced bone formation and increased apoptosis of
osteoblasts in Clock knock-out mice (56). On the other hand,
physical stress-induced GC signaling induces only the Per1 gene
in mouse liver, heart, lung, and stomach by binding the GR to the
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GRE in the Per1 promoter (62). However, it is not yet known if
the GR directly binds to Bmal1, Clock, and Per1 promoters to
modulate their actions in bone cells.

Conversely, a single injection of synthetic corticosteroids can
reset the circadian time in the periphery such as the liver, kidney,
and heart by modulating circadian gene expression (63–65).
Short-term dexamethasone treatment (2 hours) synchronizes
circadian gene expression in osteoblast and osteoclasts in vitro
(66, 67). Upon GC treatment, this circadian rhythm was also
observed in cultured osteoblasts of Per1::luciferase transgenic
mice (58). A single injection of dexamethasone could restore the
circadian rhythm of osteoclast-related genes such as cathepsin K
(Ctsk) in adrenalectomized mice (66). Per2 knock-out mice could
not restore the GC-induced bone loss despite a bisphosphonate
(Zoledronic acid) treatment, although Per2 knock-out
osteoblasts showed an increased proliferation capacity (68).

However, constant GC exposure by inserting slow-release
corticosterone pellets led to a shutdown of the endogenous HPA
axis due to negative feedback, and thus to a flattening of GC-
mediated circadian rhythm mediated gene expression (69). This
resulted in bone loss not only by the excessive effects of GCs but also
due to disrupted circadian gene expression, increased circulating
bone resorption marker, and decreased bone formation (69).

Taken together, daily endogenous GC rhythm is important
for bone homeostasis. A single treatment with exogenous GCs
can regulate circadian gene expression, whereas disrupted
circadian rhythm by continuous GC exposure contributes in
addition to direct GC effects on osteoporosis.
INFLUENCE OF GCs ON BONE
FRACTURE HEALING

It is well known that patients undergoing long-term GC
medication are at a significantly increased risk for bone
fractures (23, 70). Even though steroid use has not been found
to be a major risk factor for non-union fracture healing in clinical
studies (71), preclinical studies indicate that GCs also influence
the complex fracture healing process (6, 72). This applies not
only to GC therapy but also to endogenous GCs which control
many physiological processes and, as stress hormones, are
released upon a bone fracture. It can be anticipated that
endogenous as well and exogenous or excessive GCs influence
all stages of bone fracture healing, which necessitates a finely
tuned interaction between multiple cell types, including immune,
bone, and stromal cells which are all crucially regulated by GCs
(6, 72). A fracture leads to the disruption of bone, blood vessels,
soft tissues, and the release of danger-associated molecular
patterns (DAMPS). These quickly trigger an innate immune
response to contain the damage, and clear the wound site from
tissue debris and pathogens (73–75). The initial response
involves the activation of the complement system, the release
of inflammatory chemokines and cytokines from local immune,
endothelial and mesenchymal cells, as well as the recruitment
and activation of further immune cells, mainly neutrophils,
monocytes, and macrophages. Later, lymphocytes are also
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recruited to the fracture site and initiate an adaptive immune
response. The inflammatory phase is regarded to promote the
recruitment, proliferation, and differentiation of mesenchymal
and endothelial precursor cells, which are essential for
subsequent healing processes. This process comprises of the
formation of a soft callus with fibrous and cartilaginous tissue,
which is then continuously transformed into the bone by
endochondral ossification. Finally, the hard callus is remodeled
until the original bone structure is restored (73–75).

So far, only a few studies have addressed the role of endogenous
GCs during fracture healing by using mouse models with impaired
GC signaling (76–79). Fracture healing was significantly impaired
when the endogenous GC action was globally eliminated by using
mice with an inducible GR knock-out (GRgtROSACreERT2) (78). In
these mice, the early systemic and local immune responses upon
fracture were significantly increased. During callus formation,
cartilage-to-bone transformation was disturbed, confirmed by
persisting cartilage and reduced bony bridging of the fragments
in GRgtROSACreERT2 mice. This study suggests a crucial role of
endogenous GCs in all stages of fracture healing. Several studies
showed the role of GC signaling in distinct cell types during bone
regeneration. When GC signaling was disrupted in osteoblasts
using Col2.3-11ß-HSD2 mice (76), intramembranous bone
formation was not affected, whereas GR deletion in
chondroblasts using GRCol2CreERT2 mice resulted in impaired
endochondral bone healing, by increasing the cartilaginous
fraction of the fracture callus (77). To investigate whether GR
dimerization (which is regarded to be essential for the anti-
inflammatory effects of GCs) is important for fracture healing,
Hachemi et al used mice with a defective GR dimerization ability
(GRdim) (79). Impaired GR dimerization had no significant effect
on the healing process in a model of isolated femur fracture (79).
However, in a model of compromised fracture healing, induced by
hyperinflammation in a combined model of fracture and thoracic
trauma, impaired GR dimerization in GRdim mice reduced
inflammation and abolished the deleterious effects of
posttraumatic hyperinflammation on fracture healing (79). In
summary, these studies demonstrate that endogenous GCs
promote fracture healing by controlling the immune response
and by stimulating cartilage-to-bone transition.

In contrast to endogenous GCs, exogenously applied GCs can
provoke negative effects on the fracture healing process as
demonstrated in pre-clinical investigations in different species,
including rabbits (80, 81), rats (82), and mice (83, 84).
Consistently, these studies report impaired cartilage-to-bone
transformation, reduced quality and structure of the newly
formed bone, and poor biomechanical properties of the fracture
callus. However, these studies are mostly descriptive and the
molecular and cellular reasons for the delayed bone healing
under long-term GC therapy are still not fully understood.
GCs ACTION IN RHEUMATOID ARTHRITIS

Although GCs are used to ameliorate the symptoms of rheumatoid
arthritis (RA) since the 1950s, there are still surprises concerning the
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mode of action of GCs, their activating enzymes 11b-HSD1 and the
GR requirement in distinct cell types. In RA and osteoarthritis, GCs
are still in frequent use, in combination with other treatment
regimens (85). Preclinical animal models for the GC modulating
enzyme 11b-HSD1/2 and the GR in distinct cell types revealed
distinct requirements of GC function in different cells depending
on the model. First of all, the attenuation of complete GR
dimerization by a knock-in of a point mutation into the second
zincfingerdemonstrates that an intact functionof theGRallowsgene
regulation beyond the suppression of cytokines in different RA
models (86, 87). Accordingly, global inhibition of the GC activating
11b-HSD1 abrogated the therapeutic response towards
corticosterone by reduction of inflammatory symptoms inmice (88).

However, the definition of critical cell types for mediating GC
action present in RA varied in distinct animal models. In antigen-
induced arthritis, GR in T cells (presumably in Th17 cells) was
critical to confer anti-inflammatory effects, since mice lacking the
GR in T cells were completely resistant to the dexamethasone-
mediated reduction of joint swelling (86). In serum transfer-
induced arthritis, however, there was the surprising discovery
that global GR deletion in hematopoietic cells by hematopoietic
stem cell transfer into irradiated wild-type mice did not abrogate
the therapeutic effects of dexamethasone (87). Vice versa GR
global knock-out mice and mice with attenuated GR
dimerization failed to respond to dexamethasone, even when
their hematopoietic system was reconstituted by GR wild-type
cells (87). These mice could not induce anti-inflammatory
macrophages in the joint which are critical to resolve
inflammation in RA (87). Elimination of the GR in fibroblasts
(Col1a2CreERT2) attenuated the therapeutic response, strongly
suggesting that GCs affect the fibroblast like-synovial cell (FLS) –
macrophage crosstalk via the GR (87). Intriguingly, Hardy and
colleagues showed that GC production in myeloid cells might be
necessary for re-activating GC function (88). Thus, cellular cross-
talk targeted by systemic and locally produced GCs seems to
underly the therapeutic actions of GCs, which need to be further
elucidated. Given that FLS exists in pro-inflammatory and anti-
inflammatory subsets (89, 90) and interstitial/lining macrophages
are existing with different fates in arthritis (91), this raises the
complexity and fine-tuning of GR cross-talk.
CONCLUSIONS AND PERSPECTIVES

GCs are frequently used drugs in clinics despite their detrimental
effects on bone after long-term use. They act in cell-type specific
manner, and via cellular crosstalk mechanisms, which are still
partially unknown. Currently, some drugs are applied to treat GIO
by either inhibiting osteoclast activity (Bisphosphonates and
Denosumab) or stimulating osteoblast activity (Teriparatide)
(92). However, the utilization of drugs to treat unwanted effects
caused by other drugs is not ideal for patients. Thus, it is of utmost
importance to develop new therapies with a cell-type specific
delivery of GCs, and/or targeting downstream molecules to avoid
or minimize the detrimental effects. Further understanding of the
controversial effects of endogenous and exogenous/excessive GCs
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on the bone that are both anabolic and catabolic will help to
develop therapeutic concepts (Figures 1A, B). Daily GC rhythm
should be considered during GC therapy. Chronotherapy when
administering GCs could help to increase therapeutic efficacy, and
reduce detrimental effects, although further investigations are
required considering that the drug half-life and bioavailability
can be inflexible (93). In addition, preclinical models considering
factors such as physical stress, aging, and diseases can be
introduced to investigate diverse clinical settings. Advanced
technologies such as single-cell RNA sequencing and lineage-
A

B

FIGURE 1 | Paradoxical effects of GCs in bone. (A) Endogenous GCs
regulated by circadian rhythm (and expressing daily GC rhythm accordingly)
have anabolic effects on osteoblastogenesis (black arrows). When
endogenous GC level is increased upon stress (e.g. mechanical unloading),
however, bone mass is decreased due to inhibited osteoblastogenesis,
increased apoptosis of osteoblasts and osteocytes, and enhanced
osteoclastogenesis due to the increased RANKL secreted by apoptotic
osteocytes (red arrows). (B) Long-term exogenous GC therapy inhibits
osteoblastogenesis and survival of osteoblasts (red arrows). Increased
RANKL secretion by osteoblasts and osteocytes let enhance bone resorption
by osteoclasts (red arrows). Direct action of exogenous GCs on osteoclasts
has showed with increased osteoclastogenesis, increased proliferation and
longevity of osteoclasts during the initial phase of GC therapy (dotted red
arrow). However, direct effects of long-term GC therapy on osteoclasts still
remain elusive. Exogenous GCs also regulate the balance between
osteoblastogenesis and adipogenesis of MSCs that is one of feature of GIO
(black arrows). On the other hand, continuous exogenous GC therapy can
flatten the endogenous GCs rhythm (blue arrow), resulting in disrupted
circadian gene expression and levels of circulating bone turnover markers.
Together, Long-term GC therapy leads to bone loss by its direct action on
bone cells, and/or via disrupting GC rhythm. GC, Glucocorticoid; RANKL,
Receptor activator of nuclear factor-kB ligand; MSC, Mesenchymal stem cell;
GIO, GC-induced osteoporosis. This illustration was created with
BioRender.com.
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tracing animal models will allow us to map the alteration of
specific cell types present in bone in response to GCs. It will be also
helpful to determine dynamic spatial profile and crosstalk among
bone cells in clinically relevant models such as fracture healing and
RA. Further studies are needed to understand how GC rhythm
affects such disease models. These actions in combination will
ultimately broaden our scope to approach innovative therapies.
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Systemic vasculitides are a range of conditions characterized by inflammation of blood
vessels which may manifest as single organ or life-threatening multisystem disease. The
treatment of systemic vasculitis varies depending on the specific disease but historically
has involved initial treatment with high dose glucocorticoids alone or in conjunction with
other immunosuppressive agents. Prolonged glucocorticoid treatment is frequently
required as maintenance treatment. Patients with small and large vessel vasculitis are at
increased risk of fracture. Osteoporosis may occur due to intrinsic factors such as chronic
inflammation, impaired renal function and to a large extent due to pharmacological therapy
with high dose glucocorticoid or combination treatments. This review will outline the
known mechanism of bone loss in vasculitis and will summarize factors attributing to
fracture risk in different types of vasculitis. Osteoporosis treatment with specific
consideration for patients with vasculitis will be discussed. The use of glucocorticoid
sparing immunosuppressive agents in the treatment of systemic vasculitis is a significant
area of ongoing research. Adjunctive treatments are used to reduce cumulative doses of
glucocorticoids and therefore may significantly decrease the associated fracture risk in
patients with vasculitis. Lastly, we will highlight the many unknowns in the relation between
systemic vasculitis, its treatment and bone health and will outline key research priorities for
this field.

Keywords: vasculitis, osteoporosis, glucococorticoids, bone, fracture risk, fractures, large vessel vasculitis, AAV
INTRODUCTION

Systemic vasculitides frequently present as acute inflammation of various sized blood vessels which can
lead to stenosis and aneurysm of the aorta and its branches in large vessel vasculitis (LVV) or necrosis of
arterioles, capillaries and venules in small vessel vasculitis (SVV). Untreated large and small vessel
vasculitis can lead to rapid organ damage and consequent threat to life. Hence many conditions require
strong immunosuppression most commonly with a prolonged course of high dose Glucocorticoids
(GC). Long-term sequelae are frequently a result of acute and chronic inflammation, failure to suppress
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inflammatory activity or secondary to immunosuppression, in
particular GC (1, 2). Osteoporosis and increased fracture risk are
known comorbidities of prolonged and high cumulative GC doses
(3, 4). It is unclear how much the disease process and the
inflammation itself contribute to accelerated bone loss or if the
increased fracture risk is mainly a result of the negative impact of
GC on bone health and muscle strength. This narrative review will
explore the mechanism for rapid bone loss and increased fracture
risk in vasculitis, summarize current fracture data in various
vasculitis subgroups and outline recent developments which can
prevent or mitigate this issue.
MECHANISM OF BONE LOSS AND
INCREASED FRACTURE RISK IN
VASCULITIS

Bone undergoes continuous remodeling and restructuring to
maintain its strength and function. In healthy individuals, a
Frontiers in Endocrinology | www.frontiersin.org 268
precisely coordinated process of bone resorption through
osteoclasts and bone formation by osteoblasts allows the repair
of damaged bone and replacement of old bone with newly
formed mineralized osteoid. Disruption of this remodeling
cycle and an increase in bone resorption and/or suppression of
bone forming activity leads to systemic bone loss and
osteoporosis (5). The most important factors influencing bone
turnover in systemic vasculitis are shown in Figure 1 and
discussed in detail below.

Chronic Inflammation in Vasculitis
In large and small vessel vasculitis the inflammation of vessels is
frequently widespread with multisystem involvement and
patients usually present with signs of pronounced systemic
inflammation (1, 6). The impact of acute or chronic vasculitis
on bone physiology is poorly studied. Most data about the
interplay between inflammation and bone derives from more
common chronic inflammatory conditions such as rheumatoid
arthritis (7), spondyloarthritides (8), or connective tissue diseases
such as systemic lupus erythematosus (SLE) (9, 10).
FIGURE 1 | Pathogenesis of bone loss in vasculitis; Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis specific cells and antibodies are highlighted in
orange. Primed neutrophils express PR3 [proteinase 3] or MPO [myeloperoxidase] which bind ANCAs and trigger further neutrophil activation and through CD4+ T-
lymphocytes stimulation further ANCA production by B-lymphocytes. Key cells and cytokines in the pathogenesis of large vessel vasculitis {LVV} are highlighted in gray.
Dendritic cells in the adventitia trigger the inflammatory cascade by activation of T-lymphocytes, predominantly T helper 1 (Th1) and Th17 cells, and express interferon
and IL17. Primed neutrophils and Th cells promote proinflammatory cytokine production (Interleukin-6 (IL6), IL1 and Tumour Necrosis Factor (TNF)-alpha) which stimulates
osteoclastogenesis through increased RANKL production by stromal cells and through direct osteoclast stimulation. Inflammatory cytokines also inhibit the formation of
osteoblasts by increased DKK1 and Sclerostin expression. Glucocorticoids suppress osteoblastogenesis by RUNX2 suppresion and stimulates osteoclast proliferation
and longevity. BMD, bond mineral density; RANK4, receptor activator of nuclear factor kappa-B (ligand); PR3, proteinase 3; ANCA, anti-neutrophil cytoplasmic antibody;
FcgR, Fc gamma receptor; OC, osteoclast; TNFa, tumuor necrosis factor alpha; IL, interleukin; MPO, myeloperoxidase; RUNX2, runt-related transcription factor 2; DKK1,
Dickkopf WNT Signaling Pathway Inhibitor 1; CTLA 4, cytotoxic T-lymphocytes antigen 4; TH1/TH17, T-helper type 1/type 17 cell.
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Inflammatory arthritides and vasculitides have a number of
common pathways leading to chronic inflammation with key
inflammatory cytokines and cells, supported by the fact that
these conditions frequently share some immunosuppressive
therapies (11–14). However vasculitides in particular anti-
neutrophil cytoplasmic antibody (ANCA)-associated vasculitis
(AAV) frequently present with an acute systemic inflammation
which can affect multiple organs including kidney, lungs and
peripheral nerves, and requires rapid potent immunosuppression
including high dose GC in order to prevent severe organ damage
and death (15). In contrast, inflammatory arthritides frequently
present in an insidious way with polyarthritis as the main
manifestation which can be treated initially with mild
to moderate immunosuppression and if necessary with
subsequent escalation of therapy (16).

A) ANCA Associated Vasculitis
Microscopic polyangiitis (MPA) and granulomatosis with
polyangiitis (GPA) are ANCA associated vasculitides. AAV are
characterized by small-to-medium size blood vessel inflammation
and the presence of circulating ANCA antibodies which recognize
proteinase 3 (PR3) or myeloperoxidase (MPO). Most GPA
patients have ANCA with a cytoplasmic pattern (c-ANCA) that
are specific for PR3 whereas in MPA patients ANCA with a
perinuclear pattern (p-ANCA) with MPO specificity are
frequently found. In AAV, an initial trigger such as infection
causes T helper cells to stimulate macrophages, in turn activating
neutrophils and leading to formation of neutrophil extracellular
traps (NETs) (17–19). The complement system and altered T-
lymphocyte homeostasis lead to priming of neutrophils (18, 20,
21). NET degradation is impaired, causing prolonged exposure to
NET contents which disrupts tolerance to antigens including PR3
and MPO, leading to ANCA production (19). PR3 and MPOmay
be expressed on primed neutrophils which bind ANCAs and
trigger further excessive neutrophil activation, and both
neutrophils and CD4+ T-lymphocytes stimulate further ANCA
production by B-lymphocytes, setting up a vicious cycle resulting
in proinflammatory cytokine production [Interleukin-6 (IL6), IL8
and Tumour Necrosis Factor (TNF)-alpha (1, 22)] and endothelial
damage via reactive oxygen species, lytic enzymes and NET
components such as histones and matrix metalloproteinases
(MMPs) (12, 19, 23–26). The pathogenicity of various immune
complexes including PR3 ANCA can be modulated by
posttranslational modifications such as glycosylation of
immunoglobulins. Genetic associations support a predisposition
to AAV or to disease relapse. Examples include patients more
commonly expressing specific human leucocyte antigen (HLA)
polymorphisms such as HLA-DPB4 or less commonly expressing
functional immunoregulatory T-cell receptors such as the
cytotoxic T lymphocyte antigen 4 (CTLA) and program death 1
(PD1) (27–29).

B) Large Vessel Vasculitis
LVV is characterized by inflammation of the artery wall with
predominant CD4+ T-lymphocytes and macrophages which can
undergo granulomatous organization in the form of giant cells.
In LVV activated dendritic cells in the adventitia can trigger an
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inflammatory cascade with activation of T-lymphocytes,
predominantly T helper 1 (Th1) and Th17 cells, and express
interferon and IL17 (30). Dendritic cells drive the inflammatory
process and IL1, IL6 and IL21 are highly expressed in giant cell
arteritis (GCA) (31, 32).

Chronic Inflammation and Bone Turnover
Proinflammatory cytokines and their interaction with T- and B-
cells propagate chronic inflammation which in turn promotes
the differentiation of myeloid cells into macrophages and
osteoclasts. The differentiation from multinucleated precursor
cells into mature bone resorbing osteoclasts requires the
interaction of two crucial cytokines: Macrophage colony-
stimulating factor (M-CSF) and Receptor activator of nuclear
factor kappa-B ligand (RANKL) (33). Osteoprotegerin (OPG) is
a decoy receptor to RANKL and an important regulator of
osteoclastogenesis. Mechanisms such as binding of anti-MPO
to monocytes or phagocytosis of PR3 expressing neutrophils
stimulate the release of inflammatory cytokines including IL1b,
IL6, IL8 and TNFa (22, 34). Pro-inflammatory cytokines,
particularly IL6 and TNFa, have also been shown to suppress
bone formation. Overexpression of TNFa can inhibit osteoblast
differentiation either directly through inhibition of Runt-related
transcription factor 2 (Runx2) or via increased Dickkopf 1
expression which is an important regulator of the Wnt
pathway (35–37).

A) Large Vessel Vasculitis- Inflammatory Cytokines
The crucial importance of IL6 in the pathogenesis of LVV was
confirmed by the success of the introduction of IL6–inhibitors as
corticosteroid sparing agents (7, 38). Inflammatory cytokines
such as IL1, IL6, IL17 and TNFa can upregulate RANKL
production by osteoblasts, T-cells and stromal cells and
promote differentiation of osteoclast precursor cells (39) or
stimulate osteoclast activity by RANKL independent
mechanisms (40, 41). Murine and in vitro models have also
demonstrated IL6 mediated suppression of osteoblast
differentiation which can have a direct impact on skeletal
development (42, 43).

B) ANCA Associated Vasculitis - the Role of B cells
The clinical success of B-cell depletion in AAV in suppressing
disease activity and assuring long term remission provides strong
evidence for the important role of B-cells in AAV
pathophysiology (44–46).

B cell and bone cell development are closely interlinked.
Stromal cell derived cytokines including RANKL,

Osteoprotegerin (OPG) and IL7 are important regulators of
osteoclast maturation and differentiation and are also
important factors for the development of B cells (47). In
murine studies RANK knock out not only resulted in an
increased bone mass phenotype (osteopetrosis) but also in
impaired lymphocyte development (48).

B cells also produce cytokines which regulate bone cells, in
particular RANKL which promotes osteoclastogenesis.
Ovariectomy in mice not only causes bone loss through
estrogen deficiency and osteoclastic bone resorption but also
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due to proliferation of RANKL expressing B cells leading to
further acceleration of bone resorption (49). In ovariectomized
mice lacking B-cells bone loss is attenuated (50).

In particular, activated B cells in the context of chronic
inflammation promote bone loss through increased RANKL
production and other inflammatory cytokines that promote
bone resorption. In addition B cells and in particular plasma
cells may influence bone homeostasis through the production of
immunoglobulins. In Rheumatoid Arthritis for example
immunoglobulins have been shown to directly interact with
bone cells, specifically with osteoclasts (51, 52), either via the
Fcg receptor on the osteoclast surface (51, 53) or indirectly
through blocking OPG (52, 54).

B cell depletion therapy therefore may have a beneficial
impact on bone and may prevent accelerated bone loss in
chronic inflammatory conditions. To date only a small study
of 45 patients with RA who received B cell inhibitor treatment
(Rituximab) was performed. After one year of treatment no
substantial improvement in BMD was found compared to
baseline bone density (55). However this study was likely
underpowered and the time frame was too short to detect a
significant BMD change. Further studies and particular clinical
trials are required to establish the impact of B cell depletion
on bone.

Glucocorticoid Induced Osteoporosis
(GIOP) Pathophysiology
GC remain a cornerstone of treatment for most vasculitides and
the mainstay of treatment in LVV (56, 57).

The impact of corticosteroids on bone turnover is complex;
the most profound effect seems to be on bone formation.
Weinstein et al. (58) have shown that chronic GC treatment in
mice decreases proliferation of osteoblast precursors and
stimulates osteoblast and osteocyte apoptosis, which together
leads to a reduction of bone formation. These findings were
confirmed on biopsies of patients with GIOP (59). Long-term
GC exposure increases expression of the transcription factor
peroxisome proliferator-activated receptor (PPAR)g2 which
promotes the differentiation of mesenchymal cells to
adipocytes as opposed to osteoblasts. At the same time Runx2,
a pivotal transcription factor for osteoblastogenesis, is repressed
by GC. GC treatment also has a significant impact on bone
resorption. Corticosteroids suppress OPG production (60) which
leads to an increase in RANKL/OPG ratio and subsequent
stimulation of osteoclast proliferation (59, 60). GC also
prolong the lifespan of osteoclasts, further contributing to the
imbalance of bone formation and resorption in favour of
resorption and hence to net bone loss (58, 61). Therefore,
long-term corticosteroid use leads to bone loss and fatty
transformation of bone marrow (59, 62, 63).

Extra-skeletal actions of GC on organs such as muscles,
kidney and the endocrine system contribute to accelerated
bone loss and increased fracture risk. GC decrease calcium
absorption in the gastrointestinal tract (64) and decrease the
production of sex steroids such as Luteinising hormone (LH),
Follicle stimulating hormone (FSH) or Testosterone and Growth
hormone (GH) that puts a halt on bone turnover (65). Steroid
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associated muscle loss (sarcopenia) leads to reduced skeletal
loading and postural instability, which is an important risk
factor for falls (66).

Other Medications
Parenteral or oral Cyclophosphamide is frequently used in
organ- or life-threatening vasculitis (67, 68). The use of
Cyclophosphamide is associated with a number of potential
serious side effects including premature ovarian failure
characterized by a sharp drop of oestrogens causing early
menopause and accelerated bone loss (69). Recently Miyano et
al, (70) showed that in an AAV group who sustained fractures,
Proton Pump Inhibitor (PPI) users had a higher risk of fractures
than histamine-3 receptor antagonist users. Of interest, Abtahi et
al. (71) demonstrated in a cohort of patients with rheumatoid
arthritis a synergistic effect of GC and PPI in increasing fracture
risk. These findings may be of particular importance in patients
with GCA and LVV who at disease onset are frequently treated
with a combination of high dose GC and PPI.

Organ Involvement
Acute and chronic renal failure can occur as a consequence of an
acute flare of small to medium sized vessel vasculitis (3). Patients
with Chronic Kidney Disease (CKD) are at increased risk of
osteoporotic fractures (72–74). The mortality associated to
fractures increases with worsening renal function (6) and the
risk of hip fracture in a population with End Stage Renal Disease
(ESRD) is approximately two to four times higher than in the
general population (72, 73). The reasons for disturbed bone
metabolism in CKD are manifold. Beside accelerated bone loss
causing osteoporosis, additional metabolic disorders such as
secondary hyperparathyroidism, phosphate retention, elevated
fibroblast growth factor -23 (FGF 23), sclerostin overproduction
and chronic metabolic acidosis can have a detrimental impact on
bone quality. Metabolic bone disorders can result in renal
o s t eody s t rophy , adynamic bone d i s e a s e , o s t e i t i s
fibrosa or osteomalacia. Additionally, secondary factors such as
vitamin D deficiency may increase fracture risk even further
(75, 76)

Peripheral neuropathy is one of the frequent long-term
sequelae of AAV. A pooled analysis of multiple therapeutic
trials showed that 14% of microscopic polyangiitis (MPA) and
22% of granulomatosis with polyangiitis (GPA) patients were
found to have developed peripheral neuropathy in long-term
outcomes analysis (3). Peripheral neuropathy can lead to
gait disorders and increased falls risk (77) which strongly
increases fracture risk (78), likely by bone mineral density
(BMD) independent mechanism (79). Visual and hearing loss
can occur both in LVV and SVV (3, 80) which again
substantially increases falls (81) and subsequent fracture risk
(82, 83).

Relative Immobilisation
Clinical manifestations of systemic vasculitis such as
mononeuritis multiplex, stroke, blindness or severe arthritis
can lead to relative immobility (84–86). A prolonged period of
decreased physical activity and chronic inflammation leads to
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bone loss in addition to an accumulation of visceral fat and
sarcopenia (87–89). Recently sarcopenia, measured by reduced
hand grip strength, and associated with the type of vasculitis,
severity and high C-reactive protein (CRP), seemed to predict
increased fracture risk (90). This is in line with previous studies
which have shown that change of body composition in form of
muscle loss and addition of visceral fat associated with
glucocorticoid use increase the risk of osteoporosis and the risk
of sustaining fragility fractures (91, 92).

In summary fracture risk in patients with systemic
vasculitides is a composite score of BMD-related and BMD-
independent risk factors as shown in Figure 2. In order to
modify fracture risk many factors, for instance suppression of
inflammation, minimizing GC use and avoiding prolonged
immobility, should be considered.
OSTEOPOROSIS AND FRACTURE RISK IN
DIFFERENT VASCULITIS SUBGROUPS

Giant Cell Arteritis (GCA)/Polymyalgia
Rheumatica (PMR)
GCA is the most common primary systemic vasculitis with
incidence reported between 1.1 and 43.6 cases per 100,000 in
populations aged over 50 years, with significant variation noted
geographically (93). PMR is an inflammatory disorder
characterized by bilateral upper limb and hip girdle pain and
stiffness, with incidence rates of 41 to 112 cases per 100,000 (94–
97) among patients over 50 years. GC remain the mainstay of
treatment for GCA and PMR. In cohorts of GCA patients,
Frontiers in Endocrinology | www.frontiersin.org 571
median starting Prednisolone dose was 20-50 mg/day and
cumulative doses at 52 weeks were 4000-4800 mg (57). In
PMR initial treatment of Prednisolone 15–25 mg is generally
followed by a slow taper over 1–2 years (98, 99). Cumulative
doses of 3.2 g to 5.4 g are reported (100–102). Treatment beyond
2 years is common, with up to 60% of patients remaining on GC
at this point (103).

High rates of osteoporosis are seen in patients with GCA and
PMR. Reported prevalence of osteoporosis in GCA varies from
6.25% to as high as 85% (104, 105). The risk of osteoporosis
increases over time following diagnosis of GCA and PMR, with
the rate of increase highest in the 6 months following diagnosis
(105–107). Table 1 summarises available studies (4, 57, 104, 105,
107–117) on bone health in LVV.

Higher rates of fractures are seen in both GCA and PMR
compared to controls (4, 108) with hazard ratio for fracture 1.63
in PMR and 1.67 in GCA compared to controls. Prospective
studies of GCA and PMR patients reveal fragility fracture
incidence of 11-14% within 1 to 2 years of diagnosis (109,
110). Rates of fracture correlate with increased cumulative GC
doses (4). Evidence from claims data suggests that higher
cumulative doses of GC lead to higher complications and
increased risk of osteoporosis and fracture, with hazard ratio
(HR) for bone-related adverse events increasing 5% for every 1 g
increase in cumulative dose of Prednisolone-equivalent GC
(111). Similar findings have been established in cohort studies
for cumulative doses over 10 g or duration over 2 years
(112, 118).

There is some evidence that a lower dose of 5 mg
Prednisolone daily can lead to reduced BMD (119), but rates
FIGURE 2 | The multifactorial aetiology of increased fracture risk in vasculitides; IL interleukin, TNF tumour necrosis factor, PPI proton pump inhibitor, SOST
sclerostin, BMD bone mineral density.
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TABLE 1 | Summary of studies on osteoporosis and fracture risk in Giant Cell Arteritis (GCA) and Polymyalgia Rheumatica (PMR).

First author Year Study
population

Age Details Level of
evidence

Outcome measures Results

Healey (109) 1996 25 GCA or
PMR patients
in treatment
group
23 GCA or
PMR patients
in placebo
group

71.6 RCT of GC-treated GCA or PMR patients
receiving calcium, vitamin D and calcitonin,
or receiving calcium, vitamin D and placebo

1b - Change in BMD at
lumbar spine after 2 years
- New vertebral fractures
at 2 years

- Mean change in lumbar BMD
-0.1% intervention group), -0.2%
(placebo)
- Vertebral fracture incidence 11%
and 14%
- Higher cumulative GC dose
associated with greater loss in BMD

Kermani
(107)

2017 204 GCA
patients

71.3 Prospective cohort of GCA patients 2b - Damage items as per
Vasculitis Damage Index
and LVV Index of
Damage

- 22 (10.8%) developed
osteoporosis

Petri (104) 2015 4671 GCA
patients

N/A Retrospective cohort of GCA patients
(n=4671)

2b - Incidence of GCA
- Cumulative GC dose
- Comorbidities
associated with GCA

- RR 2.9 for developing
osteoporosis after diagnosis of
GCA

Mohammad
(113)

2017 768 GCA
patients
3072 controls

76.1 Retrospective cohort of GCA patients 2b - Occurrence of
osteoporosis or fragility
fracture

- RR 2.81 for incident osteoporosis
- RR 1.56 for incident fracture

Broder (111) 2016 2497 GCA
patients

71 Retrospective cohort of GCA patients 2b - GC-related adverse
events including
osteoporosis and fragility
fracture

- For every 1g increase in
cumulative GC dose, HR 1.05 for
osteoporosis and 1.04 for fracture
- Osteoporosis rate 0.099 events
per person year
- Fracture rate 0.066 events per
person year

Gale (57) 2018 8777 GCA
patients

73 Two retrospective cohorts of GCA patients 2b - GC cumulative dose
- GC-related adverse
events
- Association of adverse
event risk with GC use
greater than 52 weeks

- OR of osteoporosis for every 1g
increase in cumulative GC dose
1.03-1.06
- OR for fracture for every 1g
increase in cumulative GC dose
1.02-1.09
- Risk of osteoporosis for every 1g
increase in cumulative GC dose 3-
3.4%
- Risk of fracture for every 1g
increase in cumulative GC dose 1-
1.9%

Hatz (105) 1992 47 GCA or
PMR patients

N/A Prospective cohort of GCA and PMR
patients

2b - Side effects attributed to
GC at 6 months

- 7 (15.0%) developed osteoporosis
within 6 months

Andersson
(114)

1990 26 GCA
patients

78 Retrospective cohort of GCA patients 2b - BMD at heel
X-ray signs of
osteoporosis

- 69% of female patients developed
severe spinal osteoporosis after 5
years

Mazzantini
(115)

2012 222 PMR
patients

71 Retrospective cohort of PMR patients
treated with low-dose GC

2b - Fragility fractures
- Osteoporosis

- 55 (24.8%) developed
osteoporosis
- 31 (14.0%) sustained fragility
fractures
- GC duration and cumulative dose
were significantly associated with
osteoporosis and fragility fractures

Sokhal (110) 2021 652 PMR
patients

72.4 Prospective cohort of PMR patients 2b - Fragility fractures at 12
and 24 months

- 72 (11.0%) sustained fragility
fracture within 12 months of
diagnosis
- 60 (9.2%) sustained fragility
fracture 12-24 months after
diagnosis

Mateo (112) 1993 28 GCA
patients
28 PMR
patients
48 controls

N/A Case-control study of patients with GCA,
PMR and controls

3b - BMD at lumbar spine
and femoral neck

- Age and cumulative GC dose
significant predictors of femoral
BMD in men
- Age and weight, but not
cumulative GC dose, were
significant predictors of femoral

(Continued)
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of BMD loss and fracture risk are generally shown to correlate
with doses over 10 mg daily of Prednisolone (4, 112).

Few studies have established the risk of osteoporosis
attributable to the disease process itself in LVV. Much of the
work describing higher rates of osteoporosis in LVV is unable to
definitively establish a causative link with GC therapy (120, 121).
Rates of osteopenia and osteoporosis are higher in relapsing than
newly diagnosed patients with GCA (122), which may relate to
higher cumulative doses of GC use but cannot be distinguished
from the effect of prolonged inflammation in relapsing cases.

The available data on bone health in LVV typically predate
the introduction of the IL6-inhibitor Tocilizumab as a steroid-
sparing agent. Adjunctive use of Tocilizumab alongside GC in
trials facilitated faster reduction in GC treatment and lower
cumulative GC doses in the treatment of GCA (38). Widespread
use of Tocilizumab is expected to lead to fewer GC-related
adverse events in GCA, including osteoporosis and fractures.
However GC alone remains the primary treatment for GCA. BSR
and EULAR guidelines recommend Tocilizumab for relapsing
patients and those who have already developed, or are at high
risk of developing, a complication related to GC (123, 124). The
EULAR guideline emphasises that the addition of Tocilizumab
must be balanced against the risk of treatment-related adverse
effects in comorbid elderly patients. Recent ACR guidance
however recommends Tocilizumab plus GC over GC alone for
all new patients with GCA (125). As more patients at risk of
osteoporosis and fracture are treated with Tocilizumab, the
incidence of these outcomes is anticipated to reduce.
Frontiers in Endocrinology | www.frontiersin.org 773
ANCA Associated Vasculitis
AAV is a necrotizing vasculitis that predominantly affects small
vessels and is associated with ANCA specific for MPO and/or
PR3. AAV mostly present as systemic disease affecting multiple
organs. The main clinicopathologic subgroups of AAV are
microscopic polyangitis (MPA), granulomatosis with
polyangiitis (GPA) and eosinophilic granulomatosis with
polyangiitis (EGPA). Although these AAV variants are distinct
entities, the clinical manifestations can be overlapping and
available data on bone health and fracture risk mostly refers to
a pooled AAV group (2, 126). A cross-sectional study (127)
showed that amongst 99 AAV patients with an average age of 55
years, 57% had osteopenia and 21% had osteoporosis. Over two
thirds (69%) of patients were treated with prolonged high dose
GC with an average cumulative dose of 10.7 g. The cumulative
GC dose was inversely related to Z-score of lumbar spine and
proximal femur confirming the link between high cumulative GC
dose and systemic bone loss. In addition to the negative impact of
GC on BMD other factors were identified as potential
contributors such as low dietary calcium intake and previous
cyclophosphamide treatment. This study however was
performed almost 20 years ago when the availability,
knowledge and use of GC sparing therapies and osteoporosis
treatments such as bisphosphonates was scarce.

A population based cohort study from Southern Sweden
(128) found that osteoporosis was 4 times more commonly
diagnosed in patients with AAV when compared to an age and
sex matched general population control cohort (rate ratio 4.6,
TABLE 1 | Continued

First author Year Study
population

Age Details Level of
evidence

Outcome measures Results

BMD in women
- GCA patients had lower BMD

Wilson (108) 2017 5011 GCA
patients
5011 controls

72.9 Retrospective case-control study of GCA
patients versus control

3b - Incidence of
osteoporosis or fracture

- IRR for osteoporosis 2.4 in GCA
patients
- IRR for fracture 1.4 in GCA
patients

Paskins (4) 2018 2673 GCA
patients
12,136 PMR
patients
59,236
controls

71.9 Retrospective case-control study of GCA
patients PMR patients

3b - Time to fracture - Fracture incidence rate per
10,000 person years 148 for PMR
and 147 for GCA
- HR for fracture 1.63 for PMR and
1.67 for GCA

Wilson (116) 2017 5011 GCA
patients

72.9 Nested case-control studies of GC doses in
GCA

3b - Risk of osteoporosis or
fracture associated with
increasing GC dose

- 511 (10.2%) developed
osteoporosis, mean time to
developing osteoporosis 3 years
- 408 (8.1%) developed fracture,
mean time to fracture 3.2 years
- Increased risk of osteoporosis
with increasing cumulative GC dose

Haugeberg
(117)

2000 GCA or PMR
patients
- 26 currently
treated
- 28 previously
treated
- 30 newly
diagnosed

71 Cross-sectional study of BMD in currently
treated, previously treated and newly
diagnosed GCA or PMR patients

3b - BMD at radius, spine,
hip

- No significant difference in BMD
between groups
February
GC, glucocorticoid; BMD, bone mineral density; RCT, randomized controlled trial; IRR, incidence rate ratio; OR, odds ratio; RR, relative risk; LVV, large vessel vasculitis; HR, hazard ratio.
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95% CI 3.0-7.0). Two long-term follow up studies in SVV
including AAV demonstrated that osteoporosis was one of the
most commonly reported comorbidities affecting 14-16% of
patients when followed up over 7 to 8 years (129). A recent
study compared the bone mineral density of 35 treatment naïve
AAV patients with 35 healthy, age and sex matched controls. The
diagnosis with AAV was associated with osteopenia however
when adjusting for other variables such as BMI the association
was lost (130).The bone health in newly diagnosed treatment
naïve AAV patients is however an interesting question and larger
scale studies could provide valuable information on baseline
bone status and fracture risk.

Fractures are more common in AAV patients than the general
population, with one case control study of 543 AAV patients
having twice the risk of hip fracture compared to age and sex
matched controls (131). In a retrospective cohort of 22,821 AAV
patients, Miyano et al. reported 0.6% developed fractures
following diagnosis, with a median time to fracture of 52 days
(70). In two further retrospective cohorts of 246 AAV patients
11/246 (4.5%) and 24/278 (8.6%) developed fractures following
diagnosis (132, 133), whilst in a cohort of 83 AAV patients aged
65 and over, 8 (9.6%) developed fractures (134).

Bone Health in Miscellaneous
Vasculitic Disorders
Several other forms of small and medium vessel vasculitis can
affect children and/or adults [e.g., Behcet’s Disease (BD),
Polyarteritis Nodosa (PAN), IgA-associated vasculitis (IgAV)].
These miscellaneous vasculitides are relatively rare, occurring in
approximately 1:500,000 people across Europe (135). High doses
of GC, often administered to induce remission in the early phases
of these rare vasculitides, are highly probable to be detrimental to
BMD and fracture risk in affected patients. This is particularly
true in these rarer disorders as they often occur in childhood or
early adulthood when peak bone mass attainment may not have
been achieved.

BD, a multi-system disorder characterized by the presence of
recurrent oro-genital inflammation, most commonly occurs
between the ages of 20 and 40 years. Typically, it follows a
relapsing-remitting course and can affect multiple organ systems.
Inflammatory ocular, vascular, neurological or gastro-intestinal
disease is associated with a poorer prognosis and usually requires
high dose corticosteroid treatment to promptly prevent irreversible
end-organ damage. The current literature examining bone health in
BD and the impact of corticosteroids is limited. However, two
studies have compared BMD between patients with BD and age-
and gender-matched healthy controls. Tekin and colleagues
investigated differences in BMD and bone turnover markers
between 30 patients with BD (mean age 37 years) and 30 healthy
controls (mean age 35 years) (136). Lumbar spine and total hip
BMD was no different between the two groups and there were no
significant differences in markers of bone turnover. Another case-
control study by Bicer and colleagues in Turkey compared BMD
between patients with BD (n=35) and healthy controls (n=33) (137).
This study excluded patients receiving oral corticosteroid therapy
and post-menopausal women. Mean age in the BD group was 38
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years and in the control group was 40 years. Mean disease duration
in the BD group was 6.7 years. Similar to the study by Tekin, BMD
was not significantly different between patients with BD and healthy
control subjects. The European League Against Rheumatism
(EULAR) guidelines for the management of BD advises that if
required, high-dose corticosteroids should always be used in
combination with concurrent immunosuppressives such as
azathioprine, interferona, or anti-TNFa therapy (138). This
ensures that the requirement for long-term high dose
corticosteroids in BD is minimized and attenuates the impact of
corticosteroids on BMD and fracture risk.

For the management of systemic PAN, the French vasculitis
group advise corticosteroid therapy starting at a dose of 1 mg/kg/
day of prednisone to a maximum of 60 mg daily (139). There is
no agreed or widely accepted reduction strategy and several
different regimens are currently being employed worldwide,
often for up to 6 or 12 months (140). A prospective study of
patients with SVV assessing the long-term outcomes in patients
with PAN or MPA identified osteoporosis as one of the three
most common sequelae (129). Over a mean follow-up of 98
months, 18% of patients with PAN developed an osteoporotic
vertebral fracture compared with 15% of those with MPA
highlighting the importance of consideration of bone health in
systemic vasculitis.
BONE PRESERVING TREATMENTS IN
VASCULITIS: THE ROLE OF STEROID-
SPARING THERAPIES

Prevention and management of GIOP is addressed in several
guidelines and has been extensively reviewed in other articles and
is beyond the scope of this review (141–144). It is worth
highlighting that a dual-energy X-ray absorptiometry (DXA)
scan for BMD measurement is required in the majority of cases
for a fracture risk assessment. As glucocorticoids are particularly
associated with osteoporosis of trabecular bone, vertebral
fracture assessment (VFA) should be included routinely when
DXA scans are performed (145).

Across the spectrum of systemic vasculitis, new, more
targeted immunosuppressive and immunomodulatory
treatments have been developed to assist with the treatment of
systemic vasculitis.

ANCA Associated Vasculitis Treatment
In AAV, steroid-light and steroid-free regimens are beginning to
be used with some success (134, 146). Use of the targeted
complement 5a inhibitor Avacopan offers promise as a GC
substitute in AAV but more work is required (147). Likewise,
Mepolizumab, a monoclonal antibody against IL5 has also
demonstrated promise as a treatment adjunct to facilitate
greater chances of remission and a faster reduction in GC in
EGPA (148, 149).

Publication of the GiACTA study heralded a new era for the
treatment of GCA (38). The use of an IL6 inhibitor
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(Tocilizumab) in GCA has facilitated a significantly more rapid
reduction in corticosteroid treatment compared with
corticosteroid therapy alone. Significantly the GiACTA trial
showed reduced cumulative GC doses by 43.5% and 51.2% in
the two arms where Tocilizumab was used alongside GC taper as
compared to placebo plus GC taper. Evidence for the
glucocorticoid sparing effects of older, more conventional
disease modifying immunosuppressants such as methotrexate,
azathioprine or mycophenolate mofetil in systemic vasculitis is
extremely limited and merits further attention.
CONCLUSION

Osteoporosis and fragility fractures are significant long-term
complications in vasculitis and most data is available for
GCA. High dose GC are undoubtedly one of the main
contributing factors. Other factors may increase fracture risk
however further research is required to define the role of
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inflammation, medications and organ involvement on fracture
risk in vasculitides. Expansion of non-corticosteroid options
for the treatment of systemic vasculitis offers a great hope that
in the future, higher fracture rates and impaired bone health
will not be a significant problem for our patients suffering
from vasculitis.
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Radiology, The Third People’s Hospital of Chengdu, Chengdu, China, 3 Department of Radiology, Chengdu Qingbaijiang
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Objective: Boys with Duchenne muscular dystrophy (DMD) are at risk of bone damage
and low bone mineral density (BMD). The aim of the study is to examine lumbar BMD
values measured by QCT and identify the factors associated with BMD loss using a
multilevel mixed-effects model.

Methods: Lumbar BMD was evaluated by quantitative computed tomography (QCT) at
diagnosis, 1 and 2 years follow up in patients with DMD who were treated with GC.
Demographic data, functional activity scores (FMSs), laboratory parameters and steroid
use were recorded. A multilevel mixed-effects model was used to analyze BMD loss.

Results: Nineteen patients with DMD who had a total of sixty complete records between
January 2018 and October 2021 were retrospectively analyzed. At baseline, 15.8% of
patients (3/19) had low lumbar BMD (Z score ≤ −2), and the mean BMD Z score on QCT
was -0.85 (SD 1.32). The mean BMD Z score at 1 and 2 years postbaseline decreased to
-1.56 (SD 1.62) and -2.02 (SD 1.36), respectively. In our model, BMD Z score loss was
associated with age (b=-0.358, p=0.0003) and FMS (b=-0.454, p=0.031). Cumulative GC
exposure and serum levels of calcium, phosphorus, 25(OH)-vitamin D and creatinine
kinase did not independently predict BMD loss.

Conclusions: This study demonstrates that in DMD patients, lumbar BMD decreased
gradually and progressively. Age and FMS are the main contributors to BMD loss in boys
with DMD. Early recognition of risk factors associated with BMD loss may facilitate the
development of strategies to optimize bone health.

Keywords: Duchenne muscular dystrophy, osteoporosis, bone mineral density, glucocorticoids, quantitative
computed tomography
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INTRODUCTION

Duchenne muscular dystrophy (DMD) is an X-linked disorder
that is associated with progressive muscle wasting and weakness,
occurring in 1 of 3000-5000 live male births (1, 2). Boys with
DMD usually present symptoms before six years of
age, lose independent ambulation during the teenage years and
are life-limited by the third decade of life, usually due to
cardiorespiratory compromise (3). Low bone mineral density
(BMD) is a common feature in patients with DMD and is
associated with poor clinical outcomes and quality of life.
Osteoporotic fractures may occur during normal activities of
daily living in these patients, with a reported incidence of 21-44%
(4, 5).

Although recent DMD care guidelines recommend serial
spine radiographs to assess changes in spine morphology to
monitor and diagnosis osteoporosis (6), BMD values still play a
critical role in determining the overall trajectory of bone health,
regardless of whether a patient has bone fragility. Baseline and
annual dual-energy X-ray absorptiometry (DXA) scans for DMD
patients have also been suggested (6). However, there are
limitations of DXA in evaluating BMD that should be noted.
Several studies have shown that spine deformities or anatomical
changes can cause inaccuracies in BMD measurements made
with DXA (7–9). Therefore, BMD Z scores adjusted for age-
matched, height, bone age or bone size have been used to more
accurately estimate the actual BMD and evaluate bone health in
boys with DMD (10–14). In contrast, quantitative computed
tomography (QCT) is not subject to these limitations because it
is able to correct the scoliosis curves and directly measure the
true volumetric BMD at lumbar trabecular bone. In addition,
trabecular bone tends to be more metabolically active than
cortical bone and responds quickly to treatment (15). To our
knowledge, only one study about QCT-based BMD data in boys
with DMD was published in 2020, and it showed that QCT
markedly increased the diagnostic rate of osteoporosis compared
to DXA (16).

Factors negatively affecting bone health in DMD patients
include progressive muscular weakness, loss of weight bearing
activity and potent osteotoxicity of long-term glucocorticoid
(GC) therapy (17). To date, GC therapy is the only disease-
modifying therapy. However, prolonged use of GC predisposes
patients to osteoporosis by increasing bone resorption,
decreasing bone formation and growth and delaying puberty
(18, 19). On the other hand, mechanical stimulation may play a
vital role in stimulating bone growth (20, 21). Furthermore, low
levels of vitamin D cause abnormalities in osteoblast function
and imbalances in calcium metabolism and can worsen this
process. However, to our knowledge, which of these factors has
the greatest impact on BMD loss in boys with DMD has not been
well described.

Therefore, this study aimed to examine lumbar BMD values
measured by QCT and identify the factors associated with BMD
loss using a multilevel mixed-effects model, which might be
helpful in developing strategies to optimize bone health and
decrease the risk of fragility fractures in DMD.
Frontiers in Endocrinology | www.frontiersin.org 281
MATERIALS AND METHODS

Study Participants
We conducted a retrospective longitudinal study using data from
the electronic medical records of patients with DMD at West
China Second University Hospital from January 2018 to October
2021. A total of forty-two boys with DMD were confirmed by
means of genetic testing and/or muscle biopsy during this period.
Boys were excluded if they were not taking glucocorticoid
therapy. Additionally, patients who were lost to follow-up or
did not have BMD information were also excluded. Nineteen
boys were selected who had undergone annual “bone health”
assessments during at least 2 consecutive follow-ups irrespective
of their age (i.e., they had at least 2 years follow up). This study
was approved by the Institutional Review Board of West China
Second University Hospital. (IRB# 20200021gc).

Data Collection
All data were collected from the electronic medical records,
including age, height, weight, functional activity scores (FMSs),
laboratory parameters, status of steroid use, and BMD values at
each clinic visit. The results of laboratory tests, including serum
levels of calcium, phosphorus, 25(OH)-vitamin D, creatinine
kinase (CK), creatine kinase isoenzyme (CK-MB) and intact
parathyroid hormone (PTH), were recorded. The FMS reflecting
their functional activity level was defined by Swinyard and
Deaver’s 8-grade scale (22).

In GC-treated boys with DMD, the initial dose was usually
given in the form of either prednisolone or deflazacort at 0.75
mg/kg/d or 0.9 mg/kg/d, respectively, and then the dose was
increased according to body mass. At the same time, once the
hormone was taken, the children were given oral vitamin D3
(400 IU/d) and elemental calcium (400 mg/d) in the form of
dietary supplements. The conditions of GC use, including age at
initiation of GC use, daily dose and length of treatment, were also
recorded. The cumulative GC dose was calculated using
information recorded in the subjects’ medical records.

QCT Scanning and BMD Measurement
Procedures
We used a Neusoft 128-slice helical CT scanner (NeuViz128,
China) to acquire CT images of the lumbar spine (L1-L3; 120 kV,
70 mAs, 3-mm slice thickness). Quality control was ensured
throughout the study through daily calibration and cross
calibration with the European spine phantom (ESP-145) on 10
repeated scans acquired following a prescribed QCT scanning
protocol. The quality assurance (QA) results showed that the
ESP volumetric BMD measured at our center differed by less
than 5 mg/cm3 on average.

Asynchronous BMD calibration in combination with QCT
Pro analysis software (Mindways Software, Inc.) was used to
obtain lumbar spine (L1–L3) trabecular volumetric BMD (mg/cm3)
(Figure 1), as previously reported (16). References for vertebral
BMD Z scores based on age and sex were provided by the
manufacturer of the QCT software (Mindways Software) (23). A
low BMDwas defined as a Z score of ≤ -2.0 according to the current
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ISCD recommendations for children (15). All patients or their
families provided written informed consent to undergo
QCT scanning.

Statistical Analysis
Statistical analysis was performed using SPSS software (version
22.0). A multilevel mixed effect model was used to analyze BMD
loss. Level one was the patient’s relevant measurements at
different time points, and level two was the patient. The
outcome variable was BMD Z score. First, the intraclass
correlation coefficient (ICC) was used to determine whether
the dependent variable was significantly different among
individual levels and consider the necessity of establishing a
multilevel model. When high levels were significant, independent
variables including age, serum calcium, phosphorus levels, 25
(OH)-vitamin D, creatinine kinase (CK), FMS, and cumulative
GC dose were added to the fixed-effect portion of the model.
Interaction effects between each independent variable and time
were also considered. If the interaction term was not statistically
significant, it was omitted from the model. A two-tailed p value <0.05
was considered as statistically significant.
RESULTS

Baseline and Follow-up Characteristics
Nineteen boys with GC-treated DMD who had a total of sixty
complete records from January 2018 to October 2021 were
included in this study. At baseline, the mean age was 8.58 ±
1.87 years, and the mean age at GC therapy initiation was 6.67 ±
2.19 years. Serum CK and CK-MB levels increased gradually with
Frontiers in Endocrinology | www.frontiersin.org 382
increasing follow-up time. The serum calcium levels were in the
normal range in 19 patients, and only 1 patient had decreased
levels of serum calcium at the second year of follow-up. The
serum phosphorus levels decreased in 4 patients (21.05%
decrease) at baseline, and serum phosphorus levels decreased
in 7 and 8 patients after 1 and 2 years of follow-up, respectively.
The levels of serum 25(OH)-vitamin D were in the range of
deficiency, with a mean of 19.90 ± 4.28 ng/dL at baseline; 11
patients (57.89%) had vitamin D deficiency, and 8 patients
(42.11%) had insufficiency. The mean levels of serum 25(OH)-
vitamin D showed a decreasing tendency with increasing follow-
up. The demographic and clinical characteristics at baseline and
follow-up in patients with DMD are summarized in Table 1.

Assessment of Lumbar BMD
At baseline, QCT scans showed reduced lumbar BMD (Z score ≤ −2)
in 3 (15.8%) patients and normal lumbar BMD (Z score >−2) in 16
(84.2%) patients; the mean volumetric BMD of the lumbar spine was
127.83 ± 38.49 mg/cm3, and the corresponding BMD Z score was
-0.85 ± 1.32, ranging from 1.68 to -3.34. During follow-up, the
BMD Z score at year 1 and year 2 postbaseline decreased to a
mean of -1.56 (SD 1.62) and -2.02 (SD 1.36), respectively. Figure 2
illustrates the longitudinal changes in BMD value and Z score at
baseline and follow-up in these patients.

Multilevel Mixed Model Analysis With
BMD Z Score as the Outcome
It can be seen from the covariance parameter estimate of the null
model and the results of the Z test that the dependent variable is
not independent, and the measured values for a given individual
are similar (Z=2.74, P=003). The ICC was 73%; that is, 73% of
FIGURE 1 | (A) Images for a 7-year-old boy with DMD who has been treated with GC for 2 years. The measurements of L1, L2, and L3 vertebral trabecular
volumetric bone mineral density (BMD) are shown. The BMD of L1, L2, and L3 is 133.49 mg/cm3, 130.73 mg/cm3, and 135.56 mg/cm3, respectively; the average
lumbar volumetric BMD is 133.26 mg/cm3, and the Z score is -1.55. (B) The same boy with DMD was followed up after 1 year of GC therapy. The measurements of
L1, L2, and L3 vertebral trabecular volumetric bone mineral density (BMD) are shown; the BMD of L1, L2, and L3 is 128.42 mg/cm3, 116.83 mg/cm3, and 117.31
mg/cm3, respectively. The average lumbar volumetric BMD is 121.19 mg/cm3, and the Z score is -1.97.
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the variation in BMD Z score was caused by variation at the
individual level. Therefore, a multilevel mixed effect model was
adopted for the analysis. In the multilevel mixed-effects model
with BMD Z score as an outcome, after controlling for potential
confounders, cumulative GC exposure, serum levels of calcium
(decreased vs. normal), phosphorus (decreased vs. normal), 25
(OH)-vitamin D (deficiency vs. insufficiency) and CK were not
statistically significant predictors of the BMD Z score; only age
(b=-0.358, p=0.0003) and FMS (b=-0.454, p=0.031) were
associated with a decrease in BMD Z score (Table 2).
DISCUSSION

Previous studies have confirmed the value of QCT in assessing
BMD in pediatric patients (24–26). In DMD patients, obtaining
Frontiers in Endocrinology | www.frontiersin.org 483
accurate measurements of BMD is usually difficult. The most
common causes for this difficulty are severe spinal rotation,
scoliosis, and other musculoskeletal changes, which are present
in 70%-90% of patients with advanced DMD (27). Nevertheless,
QCT software can directly correct for scoliosis curves and
accurately measure trabecular bones. Therefore, this study is
significant because it is the first study to explore the factors
associated with lumbar BMD loss in boys with DMD using
QCT data.

We observed that lumbar BMD decreased longitudinally in
GC-treated boys with DMD. Up to 31.6% (6/19) of patients had
lumbar BMD Z scores ≤ −2 during follow-up. Suthar et al. (28)
reported a reduction in BMD measured with DXA (height
adjusted Z score ≤ −2) in 57% of boys with DMD in North
India, which was greater than that observed in our study.
Aparicio et al. (29) found osteopenia in the lumbar region in
TABLE 1 | Demographic and clinical characters at baseline and follow-up for patients with DMD.

Clinical variables Baseline (n = 19) Year 1 (n = 19) Year 2 (n = 19) Year 3 (n = 3)

Age (years) 8.58 ± 1.87 9.69 ± 2.06 11.15 ± 1.89 12.73 ± 2.08
BMI 18.25 ± 2.39 19.50 ± 3.94 19.88 ± 4.22 19.54 ± 3.53
Lumbar BMD (mg/cm3) 127.83 ± 38.49 123.90 ± 39.54 116.53 ± 38.58 115.43 ± 10.92
T value -1.75 ± 1.36 -1.87 ± 1.38 -2.15 ± 1.47 -2.13 ± 0.52
Z score -0.85 ± 1.32 -1.56 ± 1.62 -2.02 ± 1.36 -2.41 ± 0.51
≤−1.5 4 (21.1%) 9 (47.4%) 13 (63.2%) 3 (100.0%)
≤−2 3 (15.8%) 6 (31.6%) 6 (31.6%) 2 (66.7%)

Age started GC (years) 6.75 ± 2.34
Duration (M) 18.39 ± 10.78 33.89 ± 10.58 44.78 ± 14.45 61.33 ± 15.28
Cumulative exposure (g) 5.79 ± 3.77 11.9 ± 4.21 16.81 ± 5.92 23.72 ± 2.98
Decreased of calcium 0 (0%) 0 (0%) 1 (5.26%) 0 (0%)
Decreased of phosphorus 4 (21.05%) 7 (36.84%) 8 (42.11%) 1 (33.33%)
CK-MB (U/L) 158.32 ± 94.48 108.64 ± 77.19 99.65 ± 74.09 79.47 ± 57.97
CK (x103 UG/L) 15.81 ± 7.74 11.42 ± 5.82 12.87 ± 9.06 10.72 ± 2.72
25 (OH)-Vitamin D (ng/dL) 19.90 ± 4.28 19.14 ± 3.99 18.30 ± 4.74 15.17 ± 1.55
20-30 ng/dL 8 (42.11%) 6 (31.58%) 6 (31.58%) 0 (0%)
≤20 ng/dL 11 (57.89%) 13 (68.42%) 13 (68.42%) 3 (100.00%)

FMS 1.37 ± 0.68 1.37 ± 0.60 1.89 ± 0.94 1.67 ± 1.16
FMS>1 5 (26.32%) 6 (31.58%) 10 (52.63%) 1 (33.33%)
March 2022 | Volume 13
Data are presented as mean means ± standard deviation or n (%).
DMD, duchenne muscular dystrophy; BMI, body mass index; BMD, bone mineral density; GC, glucocorticoid; CK-MB, creatine kinase isoenzyme; CK, creatinine kinase; FMS, functional
activity score.
A B

FIGURE 2 | Longitudinal changes lumbar intrabecular BMD (A) and lumbar BMD Z score (B) at baseline and follow-up.
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30% of DMD patients who were not using any steroids.
Therefore, the discrepancies among the results of these studies
may be incomparable due to differences in population
characteristics or study designs.

Our findings suggest that age is an important risk factor for
lumbar BMD loss (b=-0.358, p=0.0003). Older patients with
DMD may have more significant bone health impairment than
younger patients who have better mobility and walking ability.
Age might be useful for estimating the risk of lumbar BMD loss
in boys with DMD. A previous study noted that age ≥10.5 years
was associated with a reduction in BMD in boys with DMD (30).
Summer et al. (31) observed that the age of appendicular lean
mass loss in DMD children was approximately 12 years.
However, their results may not be applicable to all DMD
patients because their studies were not investigating the effects
of GC exposure. Our study considered the effects of hormones
and obtained similar results to other studies. Therefore, early
interventions in boys with DMD could prove valuable.

It is well known that GC therapy is used to maintain muscle
strength and mobilization and protect cardiac and respiratory
functions in DMD (32), but potential side effects and consequent
toxicity related to bone health need to be taken into account.
Long-term GC treatment induces severe osteoporosis, resulting in
a deregulation in bone turnover (10). The effect of GC on bone is
highly dose- and time-dependent. Pharmacological doses of GC
induce bone loss, which becomes evident after 6–12 months of
chronic use (33). Dilber et al. found a cutoff value of 2100 mg/kg
for the cumulative dose, above which adverse effects on bone were
expected (34). However, Van Staa et al. found that the adverse
effects of oral GC on bone were related to the daily dose rather
than the cumulative dose of GC (35). In our study, we did not
observe any contribution of cumulative GC dose to BMD Z score
decrease using multilevel mixed-effects model analysis, which
could be due to the small number of patients in the study or to
the younger age and higher functional level of the patients still
taking GCs. On the other hand, the use of different GC regimens
may impact bone health outcomes in patients with DMD (36).
Crabtree et al. (37) observed that lumbar BMD in boys with DMD
was not significantly different between daily and intermittent GC
regimens either at baseline or over the duration of follow-up, but a
higher frequency of vertebral fracture and greater linear growth
impairment were found in those receiving daily GC treatment.

In our study, an association between FMS and BMD Z score
was observed in multilevel mixed-effects model analysis
Frontiers in Endocrinology | www.frontiersin.org 584
(b=-0.454, p=0.031). A previous study also observed that a
Vignos scale ≥6 for lower extremity function can predict BMD
loss (30). Progressive decline in muscle function with age is
frequently accompanied by a decline in BMD and bone quality,
leading to increased bone fragility fractures (13). It is still unclear
whether bone defects are due to a direct mechanical effect or
nonmechanical factors that also contribute to poor bone status
(38). A “muscle-bone interactions”model has been introduced to
explain the relationship between bone and muscle in children
with neuromuscular diseases (39). Physical therapy interventions
may have a positive effect in preserving and improving
motor function and muscle strength in boys with DMD
(21, 40), whereas the effect on improving BMD needs to be
further explored.

Among the clinical characteristics, serum CK, as a diagnostic
marker of DMD, was significantly higher than the normal value.
Furthermore, we did not observe any contribution of CK to BMD
Z score loss (b=0.013, p=0.408). The serum CK levels in children
with DMD usually reached a peak at the age of three and then
gradually stabilized and decreased, with an average annual
decrease of 8.7%-20% (41). The changes in serum CK reflect
the degree of muscle damage rather than bone damage.

Vitamin D is essential for skeletal health. It mediates the
mineralization of newly synthesized osteoid tissue within bone.
In the present study, we observed that the levels of serum vitamin
D were low in our subjects, and vitamin D deficiency was found
in 68.42% of the group at the 2-year follow-up, which can lead to
decreased intestinal calcium absorption and even an imbalance
in calcium metabolism (42). On the other hand, vitamin D
deficiency stimulated PTH secretion. PTH promoted calcium
release from bones to maintain calcium homeostasis, as observed
in DMD patients in previous studies (10, 42). In our study, the
mean levels of serum calcium and phosphorus were almost
within normal ranges. Therefore, in multilevel mixed-effects
model analysis, prediction of reduced BMD Z scores was not
possible with the serum calcium (b=0.443, p=0.434) or
phosphorus (b=-0.213, p=0.255) level.

Vitamin D deficiency also results in muscle weakness, a
problem from which boys with DMD already suffer. Therefore,
it is essential to ensure adequate daily intake of calcium and
vitamin D in DMD patients even if the patients do not show
increased levels of PTH or bone markers. In our analysis, we
did not observe any contribution of vitamin D deficiency
(vs. insufficiency) to BMD Z score loss (b=-0.077, p=0.630).
TABLE 2 | Multilevel mixed model of lumbar BMD Z score in patients with DMD.

Predictors b (95%CI) P value

Constant 2.118 (0.395,3.841) 0.018
Cumulative GC exposure (g) 0.0006 (-0,038,0.039) 0.974
FMS (FMS=1 vs. FMS>1) -0.454 (-0.866,-0.043) 0.031
Calcium (normal vs. decreased, mmol/L) 0.443 (-0.697,1.584) 0.434
Phosphorus (normal vs. decreased, mmol/L) -0.213 (-0.588,0.161) 0.255
Creatinine kinase (x103 U/L) 0.013 (-0.019,0.046) 0.408
Age (year) -0.358 (-0.537,-0.178) <0.001
25(OH)-Vitamin D (deficiency vs. insufficiency, ng/dL) -0.077 (-0.404,0.248) 0.630
March 2022 | Volume 13 | Article
CI, confidence interval; FMS, functional activity score.
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This was probably due to the routine use of dietary calcium and
vitamin D supplements in patients with DMD. Recent studies
have shown beneficial effects of vitamin D therapy on bone
health in DMD patients (42, 43). Cholecalciferol plus adequate
dietary calcium intake seems to be an effective first-line
approach that controls bone turnover, corrects vitamin D
deficiency, and increases BMC and BMD in most patients
with DMD.

The strength of this study is that mixed-effects model analysis
is a valid statistical method for assessing changes in BMD over
time, both within a patient and between patients. Since the data
in this study are hierarchical and the measurement results for
dependent variables within individuals are correlated, the
multilevel model can obtain more accurate parameter estimates
than the traditional linear regression model (44). Another
advantage of this study is that lumbar BMD was obtained by
QCT, which is more accurate than the DXA method. However,
there is a lack of comparable data, as QCT equipment is not
widely available. Our study has several limitations. First, a main
limitation of this study is the small number of participants. Thus,
some of our analyses may have been underpowered. Second,
QCT has a higher radiation dose than DXA, which might limit its
applicability to clinical use. Third, this retrospective study used
demographic and clinical data extracted from medical records in
a single institution. We are unable to assess the condition of
fractures because the data on long bone and vertebral fractures
are incomplete. Similarly, some data that may affect BMD were
not included in the analysis, such as nutrition status, vitamin D
treatment and testosterone therapy.

In conclusion, our study suggests that in DMD patients,
BMD showed a gradual and progressive decreasing trend. Age
and muscle function are the main contributors to lumbar BMD
loss in boys with DMD. Early recognition of BMD changes may
help in developing strategies for optimizing bone health,
especially in patients with the risk factors identified in
this study.
Frontiers in Endocrinology | www.frontiersin.org 685
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Despite the continued development of specialized immunosuppressive therapies in the
form of monoclonal antibodies, glucocorticoids remain a mainstay in the treatment of
rheumatological and auto-inflammatory disorders. Therapeutic glucocorticoids are
unmatched in the breadth of their immunosuppressive properties and deliver their anti-
inflammatory effects at unparalleled speed. However, long-term exposure to therapeutic
doses of glucocorticoids decreases bone mass and increases the risk of fractures –

particularly in the spine – thus limiting their clinical use. Due to the abundant expression of
glucocorticoid receptors across all skeletal cell populations and their respective
progenitors, therapeutic glucocorticoids affect skeletal quality through a plethora of
cellular targets and molecular mechanisms. However, recent evidence from rodent
studies, supported by clinical data, highlights the considerable role of cells of the
osteoblast lineage in the pathogenesis of glucocorticoid-induced osteoporosis: it is now
appreciated that cells of the osteoblast lineage are key targets of therapeutic
glucocorticoids and have an outsized role in mediating their undesirable skeletal effects.
As part of this article, we review the molecular mechanisms underpinning the detrimental
effects of supraphysiological levels of glucocorticoids on cells of the osteoblast lineage
including osteocytes and highlight the clinical implications of recent discoveries in the field.

Keywords: glucocorticoids, osteoblasts, osteocytes, glucocorticoid-induced osteoporosis (GIO), anti-resorptive
treatment, osteo-anabolic treatment
INTRODUCTION

Harvey Cushing first described the development of ‘osteoporosis of the skeleton’ in the spine of
patients suffering from endogenous hypercortisolism 90 years ago (1). Two decades later, clinicians
observed the same phenomenon in patients receiving synthetic glucocorticoids (GCs) (2). GC-
induced osteoporosis (GIO) is considered the third most common condition of pathological bone
loss following post-menopause and aging, and is the most frequent cause of secondary osteoporosis.
For instance, in the Global Longitudinal Study of Osteoporosis in Women (GLOW), about 2.7-4.6%
of women from 10 different countries received treatment with GCs (3). Although a considerable
proportion of GC-induced fractures remain asymptomatic and thus difficult to detect, exposure to
exogenous GCs has been linked to a high incidence of fractures, particularly in the spine. A rapid
n.org March 2022 | Volume 13 | Article 835720187
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reduction in bone mineral density (BMD) is generally observed
as early as 3-6 months after initiation of GC treatment and
persists during continued GC exposure (4–9). Aside from the
spine, typically locations of GC-induced fractures include the
ribs and pelvis (8, 10–12), indicating that sites rich in trabecular
bone are more affected than the cortical structures (10).
Interestingly, some studies observed a rapid development of
fractures in patients receiving GCs, even before any detectable
decreases in the bone mineral density (9, 13, 14), suggesting that
not just bone mass but also bone quality is compromised in the
presence of supra-physiological levels of GCs (Box 1).

Several molecular mechanisms underlying GIO have been
identified through in vivo and in vitro studies. Overall, the effects
of excess GCs in the skeleton are complex owing to the
multifaceted nature of interactions between local and systemic
factors. Generally, GCs act via the glucocorticoid receptor (GR),
which is ubiquitously expressed in all skeletal cell types. The
molecular nature of GC-GR interactions and their interplay with
target cells are manifold and complex. Briefly, upon ligand
binding the GR translocates to the nucleus where it either acts
as a dimer by binding directly to the DNA in the promotor
region of target genes or it may act as a monomer by interfering
with other transcription factors such as activator protein 1 (AP-
1) and nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-kB). A detailed review of the molecular action of the
GC-GR complex is provided by Hartmann et al. (18) or
Vandewalle et al. (19).

The skeletal effects of therapeutic GC use have to be separated
from the role of physiological GCs in the skeleton. Physiological
concentrations of GCs are critically required for differentiation of
stromal progenitors towards the osteoblast lineage – and away
from adipocytes – (20, 21) and thus support bone formation (22)
and the accrual of bone mass (23–25). Overall, physiological
concentrations of GCs exert anabolic effects throughout the
skeleton particularly during growth, whereas supraphysiological
(or therapeutic) levels of GCs result in loss of bone mass and
quality (26, 27). Early studies on GIO have described several extra-
Abbreviations: 11b-HSD2, 11b-hydroxysteroid dehydrogenase type 2; AP-1,
activator protein 1; ALP, alkaline phosphatase; BMP, bone morphogenic
protein; BMD, bone mineral density; CTX, carboxy-terminal collagen crosslinks;
C/EBPa, CCAAT-enhancer-binding protein alpha; CDK, Cyclin-dependent
Kinase; DUSP1, Dual-specificity phosphatase 1; DKK1, dickkopf1; ER,
endoplasmic reticulum; ERK, extracellular-signal-regulated kinases; Eif2a,
Eukaryotic Translation Initiation Factor 2A; FAK, focal adhesion kinase; GR,
glucocorticoid receptor; GCs, glucocorticoids; -GRE, negative GC-response
element; GIO, GC-induced osteoporosis; GLOW, Global Longitudinal Study of
Osteoporosis in Women; IL-11, interleukin-11; IGF-1, insulin-like growth factor I;
JNK, c-Jun N-terminal kinase; JAK2, Janus kinase 2; LncRNAs, long non-coding
RNAs; LIF, leukemia inhibitory factor; MKP1, MAPK phosphatase 1; MAPK,
mitogen-activated protein kinase; MMP, matrix metalloproteinase; M-CSF,
Macrophage colony-stimulating factor; NF-kB, nuclear factor kappa-light-
chain-enhancer of activated B cells; OPG, osteoprotegerin; OCN, osteocalcin;
P1NP, procollagen type I N-terminal propeptide; PPARg, Peroxisome
proliferator-activated receptor gamma; PTH, parathyroid hormone; PYK2,
Protein-tyrosine kinase 2 beta; RUNX2, runt-related transcription factor 2;
RANKL, receptor activator of nuclear factor kappa-B ligand; ROS, reactive
oxygen species; SOST, sclerostin; sRFP1, Secreted frizzled-related protein;
STAT3, Signal Transducer And Activator Of Transcription 3; TRAP-5b,
tartrate-resistant acid phosphatase-5b; TBS, trabecular bone score.
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skeletal effects, which may mechanistically underpin GC-induced
bone loss, such as i) a dysregulation of calcium homeostasis
through decreased intestinal calcium absorption and increased
renal calcium clearance; ii) a reduction in the growth hormone/
insulin-like growth factor axis; iii) alteration in gonadal steroid
hormones; or iv) the potential development of secondary
hyperparathyroidism. Also, the catabolic effects of GCs on
skeletal muscle have been marked as a contributor to increased
fracture risk via increased incidence of falls secondary to muscle
weakness (28–30). Interestingly, over the last two decades,
advances in mouse genetics have enabled the detailed
characterization of the mechanisms of GC-induced bone loss.
This led to the discovery that the direct effects of supra-
physiological levels of GCs on bone cells represent a significant
part of the pathogenesis of GIO. Generally, the pathogenesis of
GIO is characterized by two phases: an initial phase of accelerated
bone loss owing mainly to increased osteoclast-mediated bone
resorption; followed by a slow but continuous phase of qualitative
and quantitative bone loss as a result of the compromised function
of both osteoblasts and osteocytes. While all skeletal cell types –
namely osteoblasts, osteocytes and osteoclasts – are targeted by
GCs, it is now understood that cells of the osteoblast lineage are
the main effectors of GC-induced bone loss and the GC-induced
rise in fracture risk.

Here we review the molecular and cellular targets of
therapeutic doses of GCs with a particular focus on osteoblasts
and osteocytes as well as the implications for clinical therapy
of GIO.
THE OSTEOBLAST LINEAGE AS A KEY
TARGET FOR EXCESS GCs

Skeletal cells continually interact with one another through the
process of bone remodeling. Bone remodeling includes the
coordinated processes of bone formation and bone resorption.
Formation of new bone is performed by osteoblasts, whereas
bone resorption is carried out by osteoclasts. Osteocytes act as
mechanosensors and orchestrate the skeletal remodeling process
by initiating and governing the remodeling cycle (31, 32). While
exogenous GCs affect all cells of the remodeling process – either
directly or indirectly (Figure 1) –, cells of the osteoblast lineage,
and therefore bone formation, are key targets of GCs in
the skeleton.

Generally, exposure to supra-physiological levels of GCs
results in a strong suppression of bone formation and the
anabolic function of osteoblasts in both humans and rodents.
Treatment of patients with therapeutic doses of GCs rapidly
suppresses serummarkers of bone formation such as osteocalcin,
bone-specific alkaline phosphatase (ALP) and procollagen type I
N-terminal propeptide (P1NP) (33–40). Similarly, prolonged
exposure of rodents to excess GCs decreases the systemic
markers of bone formation and the osteoblasts’ anabolic
function, such as osteocalcin and P1NP (17, 41–46).
Histomorphological analysis of bones from GC-treated rodents
confirms these findings and reveals compromised bone
March 2022 | Volume 13 | Article 835720
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BOX 1 | Bone mineral density as a surrogate parameter in GIO.

GCs have been shown to substantially increase fracture risk in humans. Interestingly, the increase in fracture risk manifest itself immediately after the commencement of
GC therapy (8), leading to the hypothesis that GCs may damage bone beyond the loss of bone mass. And indeed, studies were able to establish that in patients suffering
from GIO fractures occurred more frequently compared to patients with postmenopausal osteoporosis even when BMD scores were taken into account (13). Similarly, it
has been established that the commonly used FRAX algorithm underestimates the occurrence of fractures in subjects treated with GCs (15). More recently the use of
trabecular bone score (TBS) has been shown to potentially remedy some of these concerns (16); however, its use has not been widely adopted and/or established as a
diagnostic tool in GIO. Overall, the predictive value of BMD is reduced in GIO compared to postmenopausal osteoporosis. This is of particular concern as virtually all
studies assessing the use of anti-osteoporotic medication in GIO utilize BMD as a surrogate parameter for fractures. Studies were not adequately powered to allow for an
analysis of fracture risk. This should be taken into account when evaluating the results of clinical trials comparing therapeutic agents in the context of GIO.

Preclinical studies have attempted to assess the underlying reason for the particularly high fracture risk in GIO compared to postmenopausal osteoporosis. Studies
in rodents were able to link the high fracture risk in GIO as well as the rapid onset of fractures following commencement of GC-therapy to their detrimental effects on
osteocytes. Lane et al. highlighted the role of the lacunar-canalicular network in this context, which is largely maintained by osteocytes (17). Others have built on this idea
and highlighted the role of the skeletal vasculature in GIO, see section ‘The Effects of Excess GCs on the Function of Osteocytes’ for further details. However, the rapid
increase in fracture risk with commencement of GC-therapy may also be the result of systemic effects of supraphysiological levels of GCs; i.e. GCs may decrease muscle
strength and adversely affect coordination and/or lead to an increase in falls (and thus fractures) due to their effects in the central nervous system. Hence, whether the
rapid and strong increase in fractures following commencement of therapeutic GCs is a result of bone-intrinsic effects of GCs or GC-action elsewhere in the body
remains to be determined.
FIGURE 1 | Osteoblasts and osteocytes as main targets of glucocorticoid (GC) excess in the skeleton. Exposure to supra-physiological levels of GCs affects many
aspects of osteoblast formation and function. Whereas GCs inhibit osteogenic commitment of stromal progenitor cells by diversion into adipogenesis, they inhibit
proliferation and differentiation of pre-osteoblasts through direct as well as autocrine/paracrine effects. Together with suppression of osteoblast function, all these
GC-induced alterations in osteoblasts suppress bone formation. Additionally, GCs induce apoptosis of both osteoblasts and osteocytes and cause disruptions in
osteocytic lacuna-canalicular network affecting bone quality. Osteoclast-mediated bone resorption is affected by GCs as well, especially through the regulation of the
RANKL/OPG system via osteoblasts and osteocytes. The figure was created with BioRender.com.
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formation and mineralization as well as a reduction in the
number and surface of osteoblasts (17, 23, 43, 45, 47–49).
Similar effects were observed in bone biopsies from GC-treated
patients (50–53). Overall, GIO occurs in both rodents and
humans with similar cellular and molecular features. Thus,
rodents may act as a suitable model organism to investigate
the molecular and cellular mechanism underlying GIO (54).

The significance of osteoblasts in the pathogenesis of GIO has
been made clear through the utilization of genetically modified
mouse models, in which GC-GR signaling has been disrupted in a
cell-specific fashion. Protection of osteoblasts from excessive GC
signaling by osteoblast-specific overexpression of the GC-
inactivating enzyme, 11b-hydroxysteroid dehydrogenase type 2
(11b-HSD2), not only prevented GC-induced osteoblast
apoptosis but also preserved osteoblast function and bone
formation (43, 55). Similarly, specific deletion of GR in
osteoblasts prevented both GC-driven bone loss as well as
compromised bone formation (23). Some – though not all –
studies investigating the disruption of GC signaling in osteoblasts/
osteocytes during GC excess showed that not only osteoblast
function and bone formation were preserved in this setting but
also the GC-induced increase in osteoclast number and activity
was prevented (43). Collectively, these results suggest that the
adverse skeletal effects of exogenous GCs result to a large degree
from their detrimental action on cells of the osteoblast lineage.
Quantifying the overall contribution of osteoclasts to the
development of GC-induced osteoporosis remains challenging.
The selective abrogation of GC-GR signaling in osteoclasts (by GR
knock-out) resulted in preserved bone resorption and preserved
bone formation, indicating a prominent role for osteoclasts in
GC-induced bone loss (56). However, – in the hands of different
researchers – the osteoclast-specific disruption of GCs (either by
11b-HSD2 overexpression or conditional GR knockout) had no
discernible protective effects against GC-induced bone loss since
osteoblasts were readily affected by excess GCs (23, 57).
Collectively, the weight of the evidence strongly points to the
osteoblast lineage as a more impactful target of GCs in the
skeleton compared to the cells of the osteoclast lineage.
THE EFFECTS OF GC EXCESS ON
THE FORMATION AND FUNCTION
OF OSTEOBLASTS

GCs cause alterations in the formation and apoptosis of
osteoblasts as well as their function, all of which contribute to
the pathogenesis of GIO. In vivo and in vitro studies have
determined that supra-physiological levels of GCs exert their
deleterious effects on cells of the osteoblast lineage at all stages of
differentiation, leading to reduced osteoblast formation.
Moreover, GCs limit both function and lifespan of osteoblasts,
ultimately resulting in compromised bone formation.
Furthermore, through the intrinsic link between bone
formation and bone resorption, GCs may alter osteoblast
activity and function through their action in osteoblasts and
osteocytes. The effects of exogenous GCs on molecular pathways
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within osteoblasts are manifold and the relative contribution of
each identified pathway is not always quantifiable. Nevertheless,
the main effects of GCs on osteoblasts can be outlined as follows:

a) Decreased Osteogenic Cell Fate of
Stromal Progenitor Cells
Given the multipotent nature of stromal progenitor cells in the
bone marrow, supra-physiological levels of GCs induce diversion
of these stem cells away from the osteoblast lineage towards the
adipocyte lineage. Ultimately, this diversion of stem cell
commitment leads to a decrease in the pool of osteoblast
progenitors and limits bone formation. Accordingly, it has
been shown that exposure to exogenous GCs in humans and
rodents is associated with increased bone marrow adiposity (58–
60). In line with these results, gene expression profiling of bone
tissue from GC-treated mice displayed an induction of
adipogenesis-related genes whereas osteogenic genes were
downregulated (49). Moreover, bone marrow stromal
progenitor cells from GC-treated rodents displayed reduced
osteoblastogenesis ex vivo (23, 45, 48), with enhanced direction
towards adipogenesis even in osteogenic media (59, 60).
Similarly, exposure of bone marrow stromal progenitor cells to
pharmacological levels of GCs results in decreased expression of
essential osteogenic transcription factors such as runt-related
transcription factor 2 (RUNX2), accompanied by concurrent
increased expression of adipogenic transcription factors such as
peroxisome proliferator- activated receptor gamma (PPARg) and
CCAAT-enhancer-binding protein alpha (C/EBPa) (61–66).

b) Suppressed Proliferation
of Osteoprogenitors
Acting also on committed osteoblast precursors, GCs have been
shown to inhibit and suppress their proliferation prior to full
differentiation. In pre-osteoblast cultures, exposure to
pharmacological ‘micromolar’ concentrations of GCs was
associated with cell cycle arrest at the G1 phase due to
downregulation of cell cycle activators such as Cyclin A, Cyclin
D, Cyclin-dependent kinase 2 (CDK2), CDK4 and CDK6 (67–
70) as well as upregulation of cell cycle inhibitors such as p53,
p21 and p27 (67, 69, 71). In addition, GCs were shown to
suppress the proliferation of osteoblast precursors through
suppression of intracellular mitogenic signaling pathways, such
as mitogen-activated protein kinase (MAPK) signaling via a
rapid increase in the expression of a tyrosine phosphatase,
MAPK phosphatase 1/dual specificity protein phosphatase 1
(MKP1/DUSP1), leading to dephosphorylation of extracellular-
signal-regulated kinases (ERK), p38 and c-Jun N-terminal kinase
(JNK) (72–74). Interestingly, while non-specific tyrosine
phosphatase inhibition reversed GC-induced suppression of
pre-osteoblasts in vitro and partly prevented deleterious bone
effects (of GCs) in a rat model of GIO,Mkp1 knockout mice were
not protected against the adverse effects of methylprednisolone
treatment (72–76). In a different studyMkp1 deletion was shown
to exacerbate inflammatory bone loss (77). These results suggest
that targeting MKP1 may not represent a viable strategy for the
prevention of GC-driven bone loss.
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c) Inhibited Differentiation of Osteoblast
Precursors Into Mature Osteoblasts
GC-induced inhibition of osteoblastogenesis is mediated mainly
via suppression of signaling pathways involved in promoting
osteoblast differentiation, importantly WNT and bone
morphogenetic protein (BMP) pathways. First, GCs have been
shown to inhibit the production of autocrine/paracrine WNT
proteins, such as WNT7b, WNT10 and WNT16 (22, 78), as well
as BMP proteins, such as BMP2, frommature osteoblasts (79–82).
Conversely, the GC-driven suppression of osteoblast
differentiation in vitro was corrected by supplementation of
culture media with WNT and BMP proteins. Second, GCs
increase the expression of inhibitory factors of the WNT and
BMP signaling pathways from osteoblasts as well as osteocytes
including WNT antagonists such as dickkopf1 (DKK1), sclerostin
(SOST), secreted frizzled-related protein 1 (sRFP1) and axin-2 (22,
41, 49, 79, 83–89), as well as BMP antagonists, such as Follistatin
and Dan (63, 79, 90). Third, exposure of pre-osteoblasts to supra-
physiological levels of GCs suppresses the canonical WNT
pathway through inducing degradation and inactivation of b-
catenin, therefore inhibiting osteoblastogenesis (68, 91, 92).
Moreover, suppression of growth factor pathways, such as
insulin-like growth factor I (IGF-I), may contribute to the
suppressive effects of GCs on osteoblastogenesis (93–96). GCs
also suppress anabolic cytokines such as interleukin-11 (IL-11)
and leukemia inhibitory factor (LIF) thereby reducing Janus
kinase 2 (JAK2) – signal transducer and activator of
transcription 3 (STAT3) signaling via inducing interaction of
the monomeric glucocorticoid receptor with the transcription
factor AP-1 (23, 97). Not only did supplementation of GC-
treated osteoblasts with IL-11 (23, 97) and LIF (98) reverse the
suppression in STAT3 signaling and osteoblast differentiation in
vitro, treatment with LIF protected mice against GC-driven bone
loss (98). Interestingly, reduced IL-11 expression was observed in
other models of bone loss such as age-related suppression of bone
formation, suggesting that IL-11 may be generally implicated in
bone diseases (99, 100). Nevertheless, IL-11 is known to affect
osteoclasts as well (101). Beside the direct targeting of key bone-
anabolic pathways such as WNT and BMP signaling, GCs
modulate the expression of miRNAs, including miR-29a, miR-
34a-5p and miR-199a-5p, which regulate proliferation and
differentiation of osteoblasts (102). A study by Wang and
colleagues showed an association of GC-induced osteoporosis
with miR-29a in rats, as GCs reduced the levels of miR-29a
leading to a subsequent increase in deacetylation and
ubiquitinylation of b-catenin, thus attenuating the pro-
osteogenic impact of WNT signaling on differentiation of
osteoblasts (103, 104). However, osteoblast-selective deletion of
Dicer, an important enzyme in miRNA biogenesis, did not affect
GC-induced suppression of osteogenesis both in vitro and in
vivo (105).

d) Decreased Function of Osteoblasts
In addition to suppressed osteoblast formation, GCs decrease the
anabolic function of osteoblasts, i.e., secretion of osteoid matrix
proteins (e.g., collagen and osteocalcin) and subsequent
Frontiers in Endocrinology | www.frontiersin.org 591
mineralization of the matrix itself. For instance, GCs
downregulate OCN (the gene encoding osteocalcin) gene
expression in human and rat osteoblasts through direct binding of
the GC-GR complex to a negative GC-response element (-GRE) in
the enhancer region of the osteocalcin gene leading to trans-
repression (106–108). Also, the expression of collagen from
osteoblasts was shown to be suppressed by excess GCs via
transcriptional and post-transcriptional mechanisms (109, 110).
Apart from the synthesis of bone matrix proteins, supra-
physiological levels of GCs were shown to provoke matrix
degradation through upregulating expression of metalloproteinases
such as matrix metalloproteinase 13 (MMP13) from osteoblasts
(49, 111).
THE EFFECTS OF EXCESS GCs
ON THE LIFESPAN OF OSTEOBLASTS
AND OSTEOCYTES

Aside from suppression of osteoblast differentiation and activity,
exposure to pharmacological levels of GCs triggers apoptosis in
osteoblasts as well as their descendants, osteocytes, limiting their
lifespan. Apoptotic osteoblasts and osteocytes were clearly
detectable in the bones not only from GC-treated rodents (17,
45, 48, 55, 112) but also from patients undergoing therapy with
GCs (45, 52, 113). It may be inferred that the GC-induced
osteoblast apoptosis, similarly to suppressed osteoblast
differentiation, likely contributes to the compromised bone
formation, ultimately leading to GC-induced loss of bone mass
and increase in fracture risk. More importantly, prevention of
GC-driven apoptosis in osteoblasts and osteocytes has been
associated with preservation of bone mass as well as strength
in mouse models of GIO. For instance, co-treatment of mice with
bisphosphonates (48, 114), intermittent parathyroid hormone
(PTH) (115) or osteoprotegerin (OPG) (116) alleviated the
adverse effects of pharmacological GCs on osteoblast and
osteocyte apoptosis as well as bone formation and
mineralization resulting in protection from bone loss.

Despite the evidence outlined above, some studies failed to
detect a GC-induced increase in apoptosis of osteoblasts and
osteocytes despite the detrimental effects of GCs on bone
formation (23). This might be related to differences in the
mouse strain and/or the dose of GCs utilized in the study.
Importantly, the induction of apoptosis in osteocytes and
osteoblasts has been shown to be dose- and time-dependent. In
response to low ‘nanomolar’ concentrations of GCs, osteocytes
and osteoblasts rely on autophagy to repair cellular damage and
maintain viability (112, 117–120). In mice treated with low dose
GCs, an upregulation of the expression of anti-oxidant and
autophagy genes as well as an appearance of autophagic
osteocytes and osteoblasts was observed in the skeleton (112,
119). However, prolonged exposure and/or high ‘micromolar’
doses of GCs result in suppression of autophagy as well as
excessive intracellular damage due to accumulation of
autophagosomes inside osteocytes and osteoblasts, which
ultimately lead to the activation of pro-apoptotic pathways and
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programmed cell death (112, 119, 121). Induction of autophagy
in osteocytes and osteoblasts has been hypothesized to underpin
a protective mechanism to preserve cellular viability (120, 122,
123); however, prolonged exposure to GCs is associated with
suppressed autophagy leading to apoptosis (117, 123, 124).
Indeed, enhancing autophagy in vivo by administration of the
phytoecdysteroid, b-ecdysone, to GC-treated mice prevents GC-
induced bone loss by reversing the suppression of bone
formation and the induction of apoptosis in osteoblasts and
osteocytes (121, 124). Likewise, pharmacological inhibition of
autophagy was associated with an increase in GC-induced
osteoblast apoptosis in vitro (117, 120). Nevertheless, the
significance of autophagy in the detrimental effect of GCs on
cells of the osteoblast lineage remains overwhelming (122, 125).
Targeting apoptosis and autophagy of osteoblasts and osteocytes
has been highlighted as a therapy for not only GC-driven bone
loss (125), but also in age-related osteoporosis (126, 127).

Several studies using in vitro osteoblast and osteocyte cultures
revealed some of the molecular mechanisms underpinning GC-
induced apoptosis. Not only mechanisms related to regulation of
transcription, but also rapid non-genomic mechanisms have been
attributed to the apoptotic impact of GCs on the osteoblast lineage.
The most evident subcellular apoptotic pathways in osteoblasts
and/or osteocytes influenced by genomic GR actions have been
upregulation of pro-apoptotic proteins such as BIM, BAK, p53
and p21 (67, 71, 128–130), as well as the suppression of survival,
anti-apoptotic factors such as BCL-2, BCL-Xl andMCL-1 (67, 112,
131, 132). In addition, suppression of MAPK – ERK pathway
through upregulation of MKP1/DUSP1 may act as another
mechanism for GC-driven apoptosis in osteocytes and
osteoblasts, as a non-selective protein tyrosine inhibitor was able
to prevent GC-driven osteoblast apoptosis in vitro and in vivo
(133). An increase in oxidative stress in the endoplasmic reticulum
(ER) is one of the non-genomic pathways implicated in
accumulation of reactive oxygen species (ROS), which may
activate JNK signaling and programmed cell death in osteoblasts
(84, 131, 134–136). Generally, prevention of oxidative stress exerts
protective effects on osteoblasts and osteocytes thus preserving
bone formation in addition to mediating anti-resorptive effects on
osteoclasts (137). Prevention of ER stress and ROS accumulation
via knocking down Eif2a (Eukaryotic Translation Initiation Factor
2A) not only prevented GC-induced apoptosis in vitro and in vivo,
but also was associated with protection against bone loss (138).
Inducing the protein tyrosine kinase 2 beta (PYK2) pathway and
blocking focal adhesion kinase (FAK) signaling may contribute to
GC-induced apoptosis in cells of the osteoblast lineage (136). In a
recent report, genetic and pharmacological inactivation of Pyk2
signaling was proven effective in preventing not only apoptosis in
osteoblasts and osteocytes, but also GC-induced bone loss,
although reversing compromised osteoclast function was shown
to likely contribute to such protective effects (139). Moreover,
induction of Fas receptor/CD95 may advance apoptotic pathways
in osteoblasts and osteocytes (140). Two recent studies
hypothesized that long-non coding (lnc) RNAs are involved in
GC-induced osteoblast apoptosis. Long-non coding RNAs are a
large family of RNA molecules that are able to regulate protein
Frontiers in Endocrinology | www.frontiersin.org 692
expression and/or function. Lnc-MALAT1 and lnc-EPIC1
expression were shown to be altered in human osteoblasts
treated with dexamethasone and to interact with AMP-activated
protein kinase signaling and MYC [a regulator of osteoblast
survival] (141, 142). However, the role of lncRNA in GIO
remains to be validated in vivo.
THE EFFECTS OF EXCESS GCs ON THE
FUNCTION OF OSTEOCYTES

Osteocytes play a crucial role in bone homeostasis through
modulating the formation and activity of osteoblasts and bone
formation via the release of WNT signaling inhibitors, sclerostin
and dickkopf1 (DKK1) (143). In a number of studies, an
upregulation of sclerostin gene and protein expression has been
observed in the cortical-rich bones from GC-treated mice, where
osteocytes are generally more abundant than osteoblasts (39, 49,
87, 144). Strong evidence for the significant contribution of the
GC-driven upregulation of sclerostin in osteocytes to GIO has
come from studies of abrogated sclerostin action in rodent models
of excess GCs. Administration of anti-sclerostin antibodies to rats
and mice prevented the development of GC-induced bone loss
largely via preserving the function and number of osteoblasts and
maintaining bone formation and mineralization (46, 145). In
addition, knocking out Sost (the gene encoding sclerostin) in
mice provided protection from GC-driven bone loss (144). In
humans, the contribution of sclerostin to GC-induced bone loss is
less clear. One study described a trend increase in serum levels of
sclerostin in patients receiving pharmacological GCs (36).
However, the serum levels of sclerostin were decreased in the
patients treated with GCs in comparison to matched controls (39),
and similar results were observed after acute treatment with
therapeutic GCs in another study (146). DKK1, another WNT
inhibitor expressed in osteocytes, is upregulated in GC-treated
animals, and anti-sense silencing of Dkk1 in mice was effective in
preserving bone mass as well as bone formation during GC excess
(49, 89). In a recent study, conditional knockout of Dkk1 in
osteoblasts and/or osteocytes prevented the development of GC-
induced bone loss via reversing the adverse effects of GCs on
osteoblasts and bone formation (41). Notably, both sclerostin and
DKK1 have emerged as promising therapeutic targets in a number
of bone diseases (147), and may be utilized clinically for the
management of GIO in the future.

Aside from affecting the regulatory role of osteocytes through
sclerostin and DKK1, several alterations in the bone environment
around the osteocyte-lacunar environment have been reported in
response to pharmacological levels of GCs. In bones from GC-
treated mice, changes in the bone matrix surrounding osteocyte
lacunae were observed, specifically an increased lacunae size as well
as perilacunar hypomineralization (17). Additionally, these effects
were associated with compromised bone strength (17). Moreover,
osteocyte perilacunar remodeling was shown to be adversely
affected by exogenous GCs: a GC-induced suppression of the
expression of matrix metalloproteinases (MMPs) leads to
collagen disorganization and degeneration of the lacuno-
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canalicular network (148). In the in vitro setting, Gao et al. were
able to show that the gap-junction connectivity of osteocytes was
adversely affected by dexamethasone treatment of an osteocyte cell
line (MLYO-cells). These dexamethasone-induced changes
resulted in a suppressed amount of Connexin 43 due to
degradation by autophagy, thus leading to shortening of
osteocyte dendrites, which likely contributes to the compromised
connectivity between osteocytes (149). Furthermore, GCs were
shown to impair the skeletal vasculature leading to a reduction in
solute transport from the circulation to the osteocyte-lacunar-
canalicular network and a decrease in the interstitial fluid,
thereby compromising bone strength (150). Interestingly, PTH
treatment was able to rescue skeletal vascularity during GC
exposure (151). More recently, two studies highlighted the role of
the skeletal vasculature in the context of GCs during growth. GC-
exposure in young mice (typically around 3 weeks of age) impaired
angiogenesis and osteogenesis simultaneously (152, 153). Liu et al.
were able to show that osteoclast-derived angiogenin was decreased
in response to elevated levels of GCs, leading to an increase in
blood vessel senescence (153).

In summary, GCs exert a detrimental impact on the function
and lifespan of osteocytes leading not only to compromised bone
formation but also to disruptions in the lacunar-canalicular network
(Figure 1). The GC-induced dysfunction of the osteocyte-
canalicular network may represent a potential mechanism
underlying the predisposition to developing fractures shortly after
initiation of GC treatment prior to any significant decreases in BMD
– a frequent clinical observation (8). The role of the skeletal
vasculature in GIO has been highlighted through recent studies
and its role needs further exploration – particularly its connection to
bone cells (i.e. osteoblast, osteocytes and osteoclasts) as well as its
link to fracture risk.
THE EFFECTS OF GC EXCESS ON
OSTEOCLASTS

While the adverse effects of GCs on osteoblasts and osteocytes
contribute to the long-term phase of bone loss and compromised
bone strength in GIO, the initial rapid phase of bone loss
typically observed in humans and rodents originates from a
rapid induction of osteoclast-mediated bone resorption. In a
number of in vivo studies, treatment of rodents with GCs results
in a rapid elevation of systemic parameters of bone resorption
including serum and/or urinary bone resorption markers, such
as carboxy-terminal collagen crosslinks (CTX) and tartrate-
resistant acid phosphatase-5b (TRAP-5b), upon exposure to
supra-physiological levels of GCs (17, 41, 43, 46, 49). In
addition, in the bones from GC-treated rodents, an increase in
the number of osteoclasts, as well as an increase in gene
expression of osteoclast-mediated bone resorption have been
reported shortly after exposure to exogenous GCs (17, 45, 46, 48,
49). While some studies also showed upregulation of osteoclast
activity and bone resorption markers at later time-points (41, 47,
154, 155), other studies failed to detect increases in bone
resorption especially after prolonged GC exposure (45, 156). In
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addition, one study by Henneicke et al. showed that treatment
with corticosterone affected osteoclasts in a site-specific manner
in rodents: an increase in osteoclasts was detected in the
endocortex, while they were reduced in the pericortex of tibia
from GC-treated mice (43).

Several in vivo and in vitro studies have determined that the
mechanisms of elevated osteoclast-mediated bone resorption in
GIO originate not only from direct effects of GCs in osteoclasts, but
also from indirect effects via the osteoblast lineage. It has been
shown that the early increase in osteoclastic bone resorptionmay be
accounted for by an increase in the survival of mature osteoclasts
and reduced predisposition to apoptosis (48, 56, 57, 157). However,
the direct impact of excess GCs on osteoclastogenesis and osteoclast
activity has been controversially discussed due to conflicting results
from in vitro studies. While some authors observed that
pharmacological GCs augmented osteoclast formation and
resorptive activity (158–160), others reported a reduction in
proliferation of osteoclast precursors (56, 157). Additionally, bone
marrow macrophages (osteoclast precursors) from GC-treated
animals gave rise to a lower number of osteoclast precursors ex
vivo than their placebo controls (45, 48). Furthermore, exposure of
in vitro-formed osteoclasts to GCs increased their longevity, yet, in
the same study, it decreased their resorptive function due to defects
in cytoskeleton reorganization (56, 157). Interestingly, a recent
study found that dexamethasone delayed the formation of
multinucleated osteoclasts on plastic surfaces yet increased the
formation of resorption pits on dentin slides (161). Ultimately,
the contribution of direct effects of GCs on osteoclasts to the overall
phenotype of GIO remains unclear due to the large amount of
conflicting data.

In contrast, the indirect effects of GC excess on
osteoclastogenesis and bone resorption have been well
characterized across both in vivo and vitro studies. The
receptor activator of NF-kB ligand (RANKL) – osteoprotegerin
(OPG) system, which plays a crucial role in the differentiation of
osteoclasts, is affected to a large degree by pharmacological levels
of GCs. Several studies demonstrated that supraphysiological
levels of GCs induce the expression and production of RANKL
from osteoblasts in culture (162–165), a finding also confirmed
in vivo (144, 166). Administration of a human anti-RANKL
antibody to mice expressing human RANKL conferred
protection from GC-induced bone loss (166). Some studies
suggest that osteocytes – rather than osteoblasts – are the
principle source of RANKL in vivo (167, 168); however, a
more recent study failed to show an increase in RANKL in the
osteocyte-enriched bones from GC-treated rodents (47).
Interestingly, in the same study a genetic knockdown of Rankl
specifically in osteocytes provided partial protection from GC-
induced bone loss via reversal of the osteoclast induction (47).

Aside from RANKL, GCs have been shown to reduce the
production of OPG, the decoy receptor of RANKL, from
osteoblasts and/or osteocytes, which may aide GC-driven
osteoclastogenesis (47, 144, 162–165, 169, 170). Additionally,
administration of OPG was able to reduce GC-induced bone
resorption in calvarial organ culture (165) as well as prevent GC-
induced bone loss in rodents (116). Indeed, some studies suggest
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that the increase in the ratio between RANKL and OPG in bone
may be largely due to suppressed OPG rather than due to increased
RANKL (47, 144, 169). Other indirect contributors to GC-induced
bone resorption include macrophage colony-stimulating factor (M-
CSF): exposure of osteoblasts to pharmacological levels of GCs was
shown to induce the expression of M-CSF, which acts as an
essential factor for osteoclast differentiation (171).

In summary, GCs certainly exert direct effects on osteoclasts;
however, whether these direct effects contribute to the phenotype
of GC-induced bone loss remains controversial. In contrast, in
vivo and in vitro studies clearly demonstrate that GCs readily
induce osteoclast formation indirectly through upregulation of
pro-osteoclastogenic factors derived from cells of the osteoblast
lineage (Figure 1).
TARGETING OSTEOBLASTS AS A
THERAPEUTIC APPROACH FOR THE
MANAGEMENT OF GIO

As the mainstay of osteoporosis therapy anti-resorptive
bisphosphonates have been widely used in the therapy of GIO.
Generally, the use of bisphosphonate in GIO leads to an increase
in bone mineral density compared to placebo or calcium and
vitamin D supplements (15). Thus, three different
bisphosphonates are currently approved for the treatment of
GIO, namely risedronate (172, 173), alendronate (174) and
zoledronic acid (175). Zoledronic acid has been shown to be
superior to risedronate in GIO and postmenopausal osteoporosis
(175) and is generally considered the most potent
bisphosphonate. Although not an osteoanabolic therapy,
denosumab, a RANKL inhibitor, counteracts a key mechanism
of GCs in bone – the induction of RANKL release from
osteoblasts and osteocytes. Clinical studies showed a larger
increase in bone mineral density (BMD) during denosumab
therapy compared to risedronate confirming its superiority to
one of the bisphosphonates in GIO (176, 177). Unfortunately,
denosumab has not yet been evaluated against the most potent
bisphosphonate zoledronic acid in the context of GC use, but its
value in the treatment of GIO is undeniable.

While bisphosphonates and denosumab have been
successfully utilized to combat GIO, they only offset the GC-
induced activation of osteoclasts – which is of particular
importance during the initial stage of GC-therapy. However, as
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outlined above, bisphosphonates fail to address the suppression
of osteoblast and osteocyte function, which are a crucial part of
the pathogenesis of GIO. The development of targeted
osteoporosis therapies opens up the possibility of targeting the
mechanism underlying GIO more specifically.

Currently only one osteoanabolic agent, targeting bone
formation directly, is approved for the treatment of GIO. As a
parathyroid hormone (PTH) analog (1-34 PTH), teriparatide
primarily stimulates bone formation – even though bone
resorption is activated in response to teriparatide as well.
However, bone resorption is initiated much later than bone
formation resulting in an ‘anabolic window’, during which new
bone is formed (178). Mechanistically, as an anabolic therapy it
mitigates the GC-induced suppression of osteoblast (and
osteocyte) activity, which forms a key part of the mechanism
underpinning GIO. In the clinical setting, teriparatide has been
shown to increase BMD to a larger extent than risedronate (179)
and alendronate (180, 181) during GC exposure, thus
highlighting the key role of osteoanabolic therapy for GIO. At
this stage, no adequate comparison between teriparatide and
denosumab exists during GIO (182), hence, no conclusions may
be drawn regarding their relative potency in the context of
GC therapy.

Novel osteoanabolic therapies such as the PTH-related
protein analogue abaloparatide (183) and the anti-sclerostin
antibody romosozumab (184, 185), which have been approved
for the use in postmenopausal osteoporosis, have not yet been
evaluated in GIO. Given their osteoanabolic properties, they may
prove similarly effective as teriparatide.

In summary, all available pharmacological therapies are
effective in GIO, this includes bisphosphonates, denosumab as
well as teriparatide (Table 1). Therapies, which target the
molecular and cellular mechanisms of GCs in the skeleton
such as denosumab and teriparatide, have been shown to be
superior to bisphosphonates in GIO. Some (186) but not all (187)
guidelines reflect this by recommending the use of teriparatide in
severe cases of GIO or following the occurrence of fractures
under treatment with bisphosphonates.
SUMMARY

Glucocorticoids affect the three main cell types within the
skeleton – osteoblasts, osteocytes and osteoclasts – ultimately
leading to a loss of bone mass and bone quality as well as causing
TABLE 1 | Current and future pharmacological GIO therapy.

Drug Administration Mechanism of action Renal function Approval for GIO

Risedronate oral, 5 mg daily or 35 mg weekly anti-resorptive (bisphosphonate) avoid if GFR < 50 (35) mL/min/1.73 yes
Alendronate oral, 70 mg weekly anti-resorptive (bisphosphonate) avoid if GFR < 50 (35) mL/min/1.73 yes
Zoledronic acid i.v., 5 mg every 12 months anti-resorptive (bisphosphonate) avoid if GFR < 50 (35) mL/min/1.73 yes
Denosumab s.c., 60 mg every 6 months anti-resorptive (RANKL antibody) no adjustment yes
Teriparatide s.c., 20 µg daily osteo-anabolic [recombinant PTH (1-34)] no adjustment yes
Abaloparatide s.c., 80 µg daily osteo-anabolic [recombinant PTH (1-34)] no adjustment no
Romosozumab s.c., 210 mg every month osteo-anabolic (synthetic PTHrp analog) no adjustment no
March 2022 | Volume 1
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a substantial increase in fracture risk. Preclinical studies have
highlighted the key role of osteoblasts and osteocytes in the
pathogenesis of glucocorticoid-induced osteoporosis and
emerging clinical evidence supports the superiority of
osteoblast-targeted therapies. Future studies should develop
and evaluate therapeutic strategies that not only alleviate GC-
induced bone resorption but also prevent the GC-induced
damage to osteoblasts and osteocytes and activate bone
formation. Furthermore, novel aspects of GIO such as the role
of the skeletal vasculature ought to be explored in greater detail.
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Background: Therapy with intravenous glucocorticoids (GCs) is associated with various
side effects, however, the impact on bone remains elusive. Trabecular bone score (TBS) is
a diagnostic tool providing information on bone microarchitecture based on images
obtained from dual-energy X-ray absorptiometry. We investigated the influence of the
intravenous methylprednisolone (IVMP) pulse administration on TBS in patients with
moderate-to-severe Graves’ orbitopathy (GO).

Methods: Fifteen patients with GO were treated with 12 IVMP pulses (6x0.5g, 6x0.25 g
on a weekly schedule). They received supplementation with 2000 IU of vitamin D and 1.0 g
of calcium throughout the study period. TBS was assessed at baseline and after last IVMP
pulse. To determine the difference between values at baseline and after treatment the least
significant change (LSC) methodology was used. We compared pre- and posttreatment
mean TBS values.

Results:We found a significant decrease of TBS in 5 out of 15 (33%) patients. Mean TBS
value decreased becoming 2.4% lower than at baseline (p<0.05).

Conclusions: IVMP pulse therapy exerts negative effect on bone microarchitecture in TBS
assessment. The analysis of the clinical risk factors for osteoporosis and the evaluation of
bone mineral density and TBS should be considered before initiating IVMP therapy.

Keywords: graves’ orbitopathy, graves’ ophthalmopathy, trabecular bone score, EUGOGO, methylprednisolone
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INTRODUCTION

Glucocorticoids (GCs) are highly effective and widely used for
treatment of various autoimmune diseases. Therapy with GCs is
associated with multiple side effects (1–5), including the negative
impact on bone, leading to secondary osteoporosis and an
increased risk of fractures (6, 7).

GCs affect bone in several ways: they decrease calcium
absorption in the gut (8), reduce calcium reabsorption in the
kidney (9), decrease production of sex hormones (10), cause
proximal muscle weakness (11). However, the main negative
mechanism involves the increase of the osteoclast lifespan,
stimulation of the osteocyte and the osteoblast apoptosis, and
the decrease of the osteoblastogenesis. These processes lead to
enhanced bone resorption, decreased bone formation, and finally
reduction of bone quality and structure (12, 13).

GCs have probab ly a grea t e r impac t on bone
microarchitecture rather than on bone mass (14–16). Among
patients treated with oral GCs individual fracture risk is
increased independently of bone mineral density (BMD) as the
fractures often occur with non-osteoporotic T-score values (10,
17). The effects of GCs on bone quality are not fully expressed by
BMD measurement (14, 16, 18). Therefore, to identify GCs-
treated patients with high risk of fracture, the analysis of other
factors contributing to bone strength and resistance to fracture
is needed.

The trabecular bone score (TBS) is a non-invasive technique
that performs novel gray-level texture measurements
on lumbar spine DXA images, and thereby enables
estimating trabecular microstructure and assessment of bone
quality (19). Low TBS values indicate weak bone, prone to
fractures with fewer poorly connected trabeculae, whereas
elevated TBS values reflect denser bone with stronger bone
microarchitecture. As shown in previous studies, TBS might be
a good indicator of bone health in patients treated with GCs, as
it seems to be more sensitive than BMD in detecting the GCs-
induced fractures (14, 20–22).

Although the negative impact of oral GCs on bone
microarchitecture was demonstrated in several studies (18,
20–22), the influence of intravenous GCs remains elusive. A
few studies suggest no negative impact of intravenous
methylprednisolone (IVMP) on BMD (23–26). Others
demonstrate loss of BMD (27, 28). There is only one pilot
study reporting no change of TBS after IVMP pulse
therapy (29).

GCs administered intravenously are commonly used in a
variety of autoimmune diseases. IVMP therapy in weekly
infusions is still the first-line treatment according to the latest
European Group on Graves ’ Orbitopathy (EUGOGO)
recommendations in patients with moderate-to-severe and
active Graves’ orbitopathy (GO) (30–32). Throughout the
therapy bone protection is recommended (32). The aim of our
study was to investigate early changes of TBS after IVMP therapy
with cumulative dose of 4.5 g in euthyroid patients with active,
moderate-to-severe GO.
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MATERIALS AND METHODS

Patients
Consecutive patients with active, moderate-to-severe GO were
enrolled to participate in the study between 2018 to 2021. GO
was diagnosed and treated according to the EUGOGO
recommendations (33). The study was conducted at the
Department of Internal Medicine and Endocrinology, Medical
University of Warsaw. Exclusion criteria were: age < 20 years;
BMI < 17 kg/m2 or > 37 kg/m2; treatment with oral or
intravenous GCs within the last 6 months; any other treatment
known to significantly alter bone metabol ism (i .e .
bisphosphonates or other drugs with anti-fracture effects,
heparin, vitamin-K antagonists, proton pump inhibitors,
selective serotonin reuptake inhibitors, benzodiazepines,
antiepileptic, antipsychotic drugs); clinical diagnosis of
osteoporosis based on the presence of low-energy fractures, or
BMDmeasurements (DXA T score below -2.5 SD), as defined by
the World Health Organization (WHO) (34). We included to the
study 15 patients: 14 patients diagnosed with Graves’ disease and
1 patient with Hashimoto thyroiditis. Among patients with
Graves’ disease, 11 patients were treated with antithyroid drugs
(alone or according to a “block and replace” schedule) and 3
individuals who were at least 6 months after the last radical
treatment (thyroidectomy and/or radioiodine therapy) received
levothyroxine. One patient had Hashimoto thyroiditis treated
with levothyroxine. All patients remained clinically euthyroid,
with free triiodothyronine (fT3) and free thyroxine (fT4) levels
within the reference range at baseline, in the last month prior to
the study as well as throughout the time of the IVMP therapy. All
patients were treated with IVMP pulses in a 12-week protocol
(six infusions of 0.5 g, followed by six infusions of 0.25 g;
cumulative dose 4.5 g) according to the current EUGOGO
recommendations (33). Supplementation with 2000 IU of
vitamin D and 1.0 g of calcium daily was routinely initiated in
all patients at the beginning of IVMP therapy and continued
throughout the study. The 25-hydroxyvitamin D [25(OH)
D] concentrations below 20 ng/mL were described as deficient,
concentrations of 20-30 ng/mL as suboptimal , and
concentrations higher than 30 ng/mL as optimal vitamin D
status, based on the guidelines for vitamin D supplementation
and treatment of deficits approved in Central Europe (35). The
baseline characteristics of the study group are presented in
Table 1. All procedures were performed in accordance with
the 1964 Helsinki declaration. Informed and written consent was
obtained from all individual participants included in the study.
The study was approved by the Local Bioethics Committee (KB/
197/2018).

BMD and TBS Evaluation
Areal BMD (grams per cm2) of the lumbar spine (L1–L4) and
the femoral neck were assessed using dual-energy X-ray
absorptiometry (DXA) at baseline (within 2 weeks before
IVMP therapy) and within one month after the 12th IVMP
pulse. DXA scans were performed by one technician using the
July 2022 | Volume 13 | Article 893600
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Hologic Discovery A Densitometer. BMD measurements were
calculated, and Z-scores and T-scores were subsequently
analyzed by the same physician. Osteoporosis and osteopenia
were diagnosed in individuals with a T-score of the lumbar spine
and/or the femoral neck ≤−2.5 standard deviation (SD) and
between <−1.0 and >−2.5 SD, respectively (34).

TBS was calculated using iNsight® Software (version 3.0,
Med-Imaps, Pessac, France) on the DXA lumbar spine (L1-L4)
images. The TBS absolute values for the sum of vertebrae L1-L4
were reported. The absolute TBS values <1.230 were considered
as the degraded microarchitecture, TBS values between ≥ 1.23
and <1.31 indicated partially disturbed bone microarchitecture,
whereas TBS values ≥ 1.31 were assessed as normal (36).

The least significant change (LSC) methodology was used to
evaluate the differences in BMD expressed in g/cm2 and TBS
values before and after the IVMP treatment. LSC values for BMD
and TBS were calculated for the DXA device in the Medical
University of Warsaw’s densitometry unit and were estimated to
be 3% for the lumbar spine BMD, 5.4% for the femoral neck
BMD and 4.6% for TBS. An increase or decrease of BMD or TBS
equal to or exceeding the LSC was considered significant.

Laboratory Evaluation
Thyroid-stimulating hormone (TSH), fT3, fT4, thyrotropin
receptor antibodies (TRAb) and 25(OH)D levels were assessed at
baseline and after the last IVMP pulse. TSH, fT3, fT4, TRAb and 25
(OH)D were examined using an electrochemiluminescence
immunoassay on Cobas 8000 Analyzer (Roche Diagnostics,
Frontiers in Endocrinology | www.frontiersin.org 3103
Mannheim, Germany). The reference ranges for TSH, fT3, fT4
and TRAb were: 0.27–4.2 mIU/mL, 3.1–6.8 pmol/L, 12.0–22.0 pmol/
L and <1.8 IU/mL, respectively.

Statistical Analysis
All analyses were performed using SPSS statistical software
version 22.0 (IBM SPPS Statistics, New York, US). Continuous
variables are expressed as means ± standard deviation (SD),
while categorical variables are expressed as numbers (n) and
percentages (%). The Shapiro-Wilk test was used to confirm or
reject the normal distribution of each continuous variable.
Comparisons between continuous data were performed using
paired t-test (for parameters with normal distribution) or
Wilcoxon rank sum test (for parameters with distribution
deviations). Categorical data were analyzed using Fisher exact
test. Comparisons between continuous data were performed with
the Mann – Whitney U test. Pearson correlation test was
performed to investigate correlations. Statistical significance
was established for results with p<0.05.
RESULTS

Baseline Data
At baseline, 3 out of 15 patients (20%) had degraded, and 2 out of
15 patients (13%) had partially disturbed microarchitecture. We
found osteopenia in 4 out of 15 patients (27%): in 2 patients only
in the lumbar spine BMD, in 1 patient only in the femoral neck
TABLE 1 | Baseline characteristics of patients (n = 15).

Characteristic Number of patients (%) or mean ± SD (range)

Age, years 53.6 ± 10.6 (40 ÷74)
Male/female 2/13 (13%/87%)
Menopause (in women) 6 (46%)
Years after menopause (in women) 15.3 ± 15.3 (5.0 ÷ 30.0)
Body mass index (kg/m2) 28.0 ± 6.0 (20.3 ÷ 37.0)
Current smokers 6 (40%)
Thyroid disease
Duration of thyroid disease (years) 3.6 ± 6.9 (0.3 ÷ 24.0)
Graves’ disease treated for hyperthyroidism 11 (73%)
Graves’ disease after radical treatment on levothyroxine 3 (20%)
Hashimoto thyroiditis on levothyroxine 1 (7%)
Duration of therapy with antithyroid drugs (months)a 8.6 ± 4.4 (4.0 ÷ 18.0)
TSH (reference range: 0.27–4.2 mIU/mL) 1.8 ± 1.7 (0.005 ÷ 5.1)
fT4 (reference range:12.0–22.0 pmol/L) 15.3 ± 2.7 (12.0 ÷ 21.1)
fT3 (reference range: 3.1–6.8 pmol/L) 4.3 ± 0.9 (3.1 ÷ 6.2)
TRAb (reference range: <1.8 IU/l) 13.5 ± 12.5 (1.7÷ 40.0)
25(OH)D (ng/mL) 32.3 ± 12.3 (13.8 ÷ 57.0)
DXA lumbar spine: BMD (g/cm2) 1.05 ± 0.1 (0.89 ÷ 1.25)
DXA lumbar spine: T-score (SD) -0.01 ± 1.1 (-1.6 ÷ 1.8)
DXA lumbar spine: Z-score (SD) 0.99 ± 1.6 (-1.2 ÷ 4.1)
DXA femoral neck: BMD (g/cm2) 0.83 ± 0.1 (0.61 ÷ 0.93)
DXA femoral neck: T-score (SD) -0.23 ± 0.7 (-2.1 ÷ 0.6)
DXA femoral neck: Z-score (SD) 0.61 ± 0.8 (-0.7 ÷ 2.5)
Densitometric osteopenia 4 (27%)
Lumbar spine: osteopenia 3 (20%)
Femoral neck: osteopenia 2 (13%)
TBS for vertebrae L1-L4 1.31 ± 0.2 (0.92 ÷ 1.50)
Partially disturbed microarchitecture 2 (13%)
Degraded microarchitecture 3 (20%)
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BMD and in another patient in both measurement sites. The
baseline TBS values correlated negatively with BMI (r=-0.72,
p=0.003). We observed vitamin D deficiency in 2 patients.

Effect of IVMP Therapy on TBS and BMD
According to the LSC criteria, we found the following changes in
TBS and BMD after 12 weeks of IVMP therapy (Figure 1):

- decrease in TBS in 5 out of 15 patients (33%)

- decrease of BMD in 2 out of 15 patients (13%; 1 in the lumbar
spine BMD, 1 in the femoral neck BMD)

- increase of BMD in 7 out of 15 patients (47%; all in the lumbar
spine BMD)

- no increase of the femoral neck BMD

- no increase of TBS.

Mean TBS value decreased becoming 2.4% lower than at
baseline (p=0.04). Mean lumbar spine BMD increased becoming
1.6% higher after IVMP therapy than at baseline (p=0.047).
There was no significant change in mean post-treatment femoral
neck BMD as compared to the baseline. (Figure 2, Table 2).

The correlations between the baseline TBS values and the
changes in TBS with selected parameters are presented
in Table 3.

There were no significant differences between the groups with
decreased TBS (drop in TBS equal to or exceeding the LSC) vs.
no change in TBS after IVMP treatment as far as the selected
characteristics were considered (Table 4).

In Table 1 (of the Supplementary Material) we have
included the results of BMD and TBS of our study group
before and after treatment with IVMP pulses.
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A decrease of TBS equal to or exceeding LSC value occurred
in 2 out of 2 women and in none out of 2 men with osteopenia
before IVMP therapy. In one woman with degraded TBS a
decrease exceeding LSC value occurred. There was no
correlation between the changes in TBS and the baseline TBS
values (r =-0.03, p=0.91). However, no correlation was found
between the changes of TBS and the baseline lumbar spine BMD,
or the femoral neck BMD. Details are presented in Table 3.

There was no significant difference in serum 25(OH)D
concentration. No correlation was found between changes in
TBS and baseline vitamin D status.
DISCUSSION

The presented study revealed a decrease of the mean TBS value
in patients with GO treated with IVMP. The reduction of TBS
value equal to or exceeding the LSC occurred in 33% of the
patients. In contrast, we observed the overall increase of
the mean BMD in the lumbar spine as well as the increase in
the lumbar spine BMD exceeding the LSC value in almost half of
the study group.

This is the first study showing the negative effect of the
intravenous GCs on bone microarchitecture. The current
results differ from research performed by Censi et al. involving
GO patients treated with IVMP pulse therapy, in which no
change in neither of TBS nor BMD was found (29). The possible
explanations for the divergent results include different
cumulative doses of IVMP (4.5 g of IVMP in the current
research vs. 1.5-5.25 g of IVMP in Censi et al. study), different
timing of follow-up and no analysis according to the LSC criteria
FIGURE 1 | Percentage of TBS and BMD changes according to the LSC criteria in 15 patients after IVMP therapy. TBS trabecular bone score BMD bone mineral
density LSC least significant change IVMP intravenous methylprednisolone. Bullets and squares represent individual percentage of BMD and TBS changes (black
squares represent a decrease in TBS or BMD – equal to or exceeding LSC calculated to be 4.6% change for TBS, 5.4% change for femoral neck and 3% change
for lumbar spine; black bullets represent an increase in BMD equal to or exceeding LSC; white bullets represent no change in TBS or BMD). BMD, bone mineral
density; IVMP, intravenous methylprednisolone therapy; LSC, least significant change; TBS, trabecular bone score.
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in Censi et al. research. The results of our research stay in
agreement with recent studies involving patients treated with
oral GCs that demonstrate the decline of TBS while BMD
remains unchanged (20–22) . The trabecular bone
microarchitecture seems to be more affected than BMD not
only in patients treated with oral but with intravenous GCs as
well. The findings of our study bring evidence that the adverse
effects of IVMP on bone are not fully captured with BMD
evaluation and that TBS adds value to the BMD assessment.

Based on previous studies, the decrease in bone quality plays a
significant role in the rapid increase in fracture risk occurring in
GCs-treated patients. Fractures may be better predicted when
TBS is used in addition to BMD (37–40). It highlights the clinical
need for methods that can identify GCs-treated individuals
particularly vulnerable to steroid-induced deterioration of bone
quality, as those are at increased risk of fractures. The results of
current study indicate that the decrease in TBS despite the
increase of BMD might be an indicator that the intravenous
GCs are not so safe in terms of bone safety. Further studies with a
larger study group should include vertebral and non-vertebral
fracture assessment during therapy as well as in the follow-
up period.

Some of the clinical risk factors need to be taken into
consideration when assessing the influence of GCs on bone
microarchitecture. We found a negative correlation of baseline
TBS with BMI. This stays in agreement with other reports
suggesting that lower TBS values are present more frequently
Frontiers in Endocrinology | www.frontiersin.org 5105
in patients with higher BMI (41). However, we noticed no
correlation between change in TBS and BMI. We found no
correlations between baseline TBS, or change in TBS and
baseline levels of TSH, fT4, fT3, TRAb or duration of
treatment with antithyroid drugs. There were no differences in
baseline TSH levels between subjects with a decrease versus those
lacking any change in TBS.

Another issue that should be considered is that Graves’
disease itself has been demonstrated to have a strong
correlation with decreased TBS due to the hyperthyroidism
that increases bone resorption (42). Bone loss is enhanced
because of the thyrotoxicosis as well as the excessive release of
inflammatory cytokines (43). In the present study, all the patients
had documented fT4 and fT3 within the reference range for at
least one month before the first IVMP infusion as well as during
the whole therapy. During the observation time the majority of
patients were treated with antithyroid therapy, which had been
initiated without delay in the past. Previous studies concerning
the reversibility of bone loss after the initiation of antithyroid
therapy have shown that bone quantity measured by BMD as
well as bone quality measured using TBS improve
simultaneously after thyroid function normalization (44, 45).
The increase in BMD after IVMP therapy observed in current as
well as in our previous study (23) were greater for sites rich in
trabecular bone (lumbar spine) than with cortical bone (femoral
neck), as trabecular bone is more metabolically active, and
changes occur earlier than in cortical bone (46). Taking
TABLE 2 | Comparison of bone mineral density and trabecular bone score between baseline and after intravenous methylprednisolone therapy (n = 15).

Variable Before IVMP After IVMP P

Lumbar spine BMD (g/cm2) 1.05 ± 0.11 1.07 ± 0.11 0.047
Femoral neck BMD (g/cm2) 0.83 ± 0.08 0.84 ± 0.10 0.43
TBS 1.31 ± 0.15 1.28 ± 0.16 0.04
July 2022 | Volume 13 | Article 8
Continuous variables are presented as means ± SD.
BMD, bone mineral density; IVMP, intravenous methylprednisolone; SD, standard deviation; TBS, trabecular bone score.
FIGURE 2 | Mean bone mineral density and trabecular bone score values before (white) and after (gray) intravenous methylprednisolone (IVMP) therapy. Values
shown above are D, calculated as 100 x (after IVMP value – before IVMP value)/before IVMP value. Data are expressed as mean ± SD. *p<0.05 vs. baseline. BMD,
bone mineral density; TBS, trabecular bone score; IVMP, intravenous methylprednisolone therapy; SD, standard deviation.
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everything into consideration, we cannot exclude that the BMD
changes during the therapy with intravenous GCs were
secondary to the ongoing restoration of BMD after the
stabilization of thyroid function as well as the reduction of the
inflammatory state. However, the decrease of TBS occurring
simultaneously with the increase of lumbar spine BMD indicates
that in the course of the IVMP therapy the restored bone density
might have been unevenly distributed within the trabecular bone.
Further study and analysis are needed in order to confirm our
observations as well as to identify patients particularly vulnerable
to bone quality deterioration during IVMP therapy.

There are studies indicating that the supplementation with
vitamin D might be effective in preventing of bone loss in GCs-
treated patients (47). In our study the mean vitamin D status at
baseline was optimal, the supplementation with 1.0 g of calcium and
2000 IU of vitamin D was continued through the whole study
period. We did not observe any correlations between changes in
TBS and baseline vitamin D status. There was also no difference
between groups with and without decrease of TBS equal to or
exceeding LSC as far as baseline 25(OH)D concentration was taken
into account. It is noteworthy that despite the optimal vitamin D
status at baseline and the sufficient vitamin D prophylaxis, the
decrease in TBS could not be prevented.
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The biggest limitation of our study is a small sample size
including men, pre- and postmenopausal women, different age
groups and the reassessment of TBS after a relatively short follow-
up period. However, the strength of our study is the therapy of all
subjects according to the same protocol. We consider this research
as a pilot study that allows us to design larger prospective research
with longer follow-up period. More studies with additional
measurements of TBS and fracture assessment are needed to
determine whether TBS improves with time and if the fractures
occur in patients after IVMP therapy. Patients with GO sometimes
require the second-line treatment including, among others, the
second course of IVMP with a higher cumulative dose (7.5 g) or
oral GCs, which may potentially further exacerbate bone
microarchitecture. Finally, TBS is an indirect index of bone
microstructure state, and the accuracy of TBS measurements
might be affected by body composition (48). However, each
patient served as his or her own control.

It is noteworthy that according to the latest EUGOGO
recommendations (32), in the most severe forms of moderate-
to-severe and active GO, a higher cumulative dose of IVMP
(7.5 g) is recommended as an alternative first-line treatment.
Further studies aimed to assess bone microarchitecture in
patients treated with different cumulative doses of IVMP (4.5 g
TABLE 4 | Comparison of selected baseline characteristics of patients with and without decrease of trabecular bone score (TBS) (decrease in TBS equal to or
exceeding the least significant change) after intravenous methylprednisolone therapy.

Characteristic Decrease of TBS 5/15 (33%) No change of TBS 10/15 (66%) P

Age (years), mean ± SD 59.0 ± 13.8 50.9 ± 8.1 0.33b

Women, n (%) 5 (100%) 8 (80%) 0.52a

Women after menopause, n (%) 3 (60%) 3 (30%) 0.59a

BMI (kg/m2), 27.8 ± 6.3 27.4 ± 4.8 0.90b

Smokers, n (%) 2 (40%) 4 (40%) 1.00a

TSH (µIU/mL), mean ± SD 1.5 ± 2.0 1.9 ± 1.6 0.76b

TRAb (IU/L), mean ± SD 20.0 ± 17.4 10.3 ± 8.6 0.27b

25(OH)D (ng/mL), mean ± SD 27.5 ± 7.0 34.7 ± 14.0 0.46b

Osteopenia (T score -1.0 to >-2.5), n (%) 2 (40%) 2 (10%) 0.56 a

Degraded or partially disturbed microarchitecture (TBS <1.31), n (%) 1 (20%) 4 (40%) 0.60a

Lumbar spine BMD (g/cm2), mean ± SD 1.040 ± 0.1 1.061 ± 0.1 0.81b
July 2022 | Volume 13 | Article 8
aChi-squared Test;
bMann – Whitney U test.
BMD, bone mineral density; BMI, body mass index; TBS, trabecular bone score; TSH, thyroid-stimulating hormone; TRAb, TSH receptor antibodies; SD, standard deviation; 25(OH)D, 25-
hydroxyvitamin D.
TABLE 3 | Correlations between the baseline trabecular bone score (TBS) and change in TBS with selected parameters.

Parameter Baseline TBS Change in TBS

Age r=0.06, p= 0.84 r=-0.18, p=0.52
Baseline BMI r=-0.72, p=0.003 r=-0.10, p=0.71
Baseline TRAb r=0.18, p= 0.52 r=-0.32, p=0.25
Baseline TSH r=-0.01, p= 0.97 r=0.01, p=0.99
Baseline 25(OH)D r=0.35, p=0.20 r=-0.03, p=0.93
Baseline lumbar spine BMD r=0.42, p=0.12 r=0.12, p=0.67
Change in lumbar spine BMD r=0.23, p=0.41 r=0.26, p=0.35
Baseline femoral neck BMD r=-0.27, p=0.33 r=0.04, p=0.90
Change in femoral neck BMD r=-0.26, p=0.34 r=0.02, p=0.95
Duration of therapy with antithyroid drugsa r=-0.15, p=0.65 r=0.31, p=0.31
aAnalysis performed in 11 patients treated with antithyroid drugs throughout the study.
BMD, bone mineral density; BMI, body mass index; IVMP, intravenous methylprednisolone; TBS, trabecular bone score; TRAb, TSH receptor antibodies; TSH, thyroid-stimulating
hormone.
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vs. 7.5 g) are needed. The assessment of the impact of IVMP on
bone markers would have also a great value as the mechanisms
through which IVMP exerts its effects on bone remain not
fully recognized.

In conclusion, our study revealed that IVMP pulse therapy
with cumulative dose of 4.5 g is associated with loss of bone
microarchitecture in TBS assessment with no negative effect on
BMD among patients with GO.
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3. Pelewicz K, Miśkiewicz P. Glucocorticoid Withdrawal-An Overview onWhen
and How to Diagnose Adrenal Insufficiency in Clinical Practice. Diagnostics
(Basel) (2021) 4:728. doi: 10.3390/diagnostics11040728
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