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Tissue engineering opens multiple opportunities in regenerative medicine, drug testing,

andmodeling of the hematopoiesis in health and disease. Recapitulating the organization

of physiological microenvironments supporting leukocyte development is essential to

model faithfully the development of immune cells. Hematopoietic organs are shaped by

spatially organized niches defined by multiple cellular contributions. A shared feature

of immune niches is the presence of mesenchymal stromal cells endowed with unique

roles in organizing niche development, maintenance, and function. Here, we review

challenges and opportunities in harnessing stromal cells for the engineering of artificial

immune niches and hematopoietic organoids recapitulating leukocyte ontogeny both in

vitro and in vivo.

Keywords: hematopoiesis, organoidsmodel, bonemarrow niche, mesenchymal stroma cell, thymus epithelial cell,

3D culture

INTRODUCTION

Mechanistic studies of the human hematopoiesis, drug testing, immunization and regenerative
medicine purposes share a need for immune organoids recapitulating physiological immune niches.
Hematopoietic organs supporting leukocyte development are shaped by spatially organized areas
defined by multiple cellular contributions. All immune niches contain mesenchymal stromal cells
(MSCs) endowed with unique and specific roles in organizing niche development, maintenance
and function. MSCs were first described in murine bone marrow (BM) as a population of cells
containing fibroblast progenitors and capable to differentiate into cartilage, bones, adipocytes,
and to recapitulate a hematopoiesis supporting microenvironment upon transplantation (1, 2).
MSC features were subsequently identified in non-hematopoietic cells of the human BM niche
(2–6). Here the term “MSCs” will be used from a practical perspective, referring to an often
heterogenous populations of mesodermal origin, regardless of their multilineage potential and
self-renewal capabilities at the single cell level.

In this review we highlight the challenges and opportunities in harnessing MSCs for the
engineering of artificial immune niches recapitulating the physiological bone marrow (BM) or
thymic niche.
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THE BONE MARROW NICHE FROM THE
MSC PERSPECTIVE

MSCs in the Murine Niche
The BM is the primary lymphoid organ deputed to the
maintenance, self-renewal and lineage commitment of adult
hematopoietic stem cells (HSCs). HSCs originate from the dorsal
aorta in the aorta-gonad-mesonephron region of the embryo.
Embryonic HSCs seed and expand first in the fetal liver before
colonizing specific areas of the trabecular region of the BM
called niches where they become proper mature HSCs. Niches
are complex 3D environments composed of multiple cell types
and factors, such as extracellular matrix (ECM), oxygen tension,
soluble molecules, and shear forces, all of which govern the fate
of HSCs. Most of our knowledge regarding the components
of the BM niche and how they interact to modulate HSC fate
has been attained by findings in murine models due to the
limited possibilities to access and harness information from
human specimens. MSCs are critical contributors of the HSC
niche. A key feature of MSCs is the delivery of chemokines and
hematopoietic growth factors essential for the maintenance and
differentiation of HSCs (2). The chemokine CXCL12 engages
the CXCR4 chemokine receptor on HSCs. As a consequence,
the CXCR4/CXCL12 axis is essential for HSC retention within
the BM niche and maintaining HSC quiescence (7). SCF/KITL
engages the KIT tyrosine kinase receptor on HSC which is
crucial for their maintenance. Proteolytic cleavage and alternative
splicing mechanisms generate membrane bound and secreted
forms of SCF/KITL. Selective inactivation of the membrane
bound form of KITL in Sl/Sld mutant mice impairs long
term HSCs despite the presence of soluble KITL (8, 9). In
addition, adult deletion of SCF/KITL in inducible knock-out
mice depletes HSCs (10). This highlights the importance of
cell-to-cell contacts in the delivery of hematopoietic growth
factors to HSCs for their maintenance. The production of
niche factors has been an important feature guiding the
identification of MSC subpopulations relevant for the HSCs
niche. For instance, CXCL12gfp mice allowed to identify CXCL12
abundant fibroblastic reticular cells (CAR) (7), while SCFgfp

reporter mice showed SCF/KITL expression in both MSCs and
endothelial cells (ECs) (10). In addition to ECs and MSCs,
multiple other lineages have been reported to also contribute
to the maintenance of the niche: for instance, osteolineage
cells, adipocytes, neurons and hematopoietic cells. The endosteal
niche is found in proximity of the endocortical region of the
internal bone shell. It is formed mainly by MSCs together with
osteoclasts, osteoblasts, and tissue resident macrophages (11, 12).
Multiple lines of evidence locate the HSCs niches mainly in the
perivascular areas of BM. The perivascular niche is formed by
endothelial and other MSCs. SCFgfp reporter mice have enabled a
systematic evaluation of SCF/KITL-expressing cells and revealed
a crucial contribution of endothelial and perivascular MSCs
compartments (10).

The precise location of HSCs with respect to sinusoidal ECs
(sECs) or arterial ECs (aECs) has been controversial (13–18). It
is unclear if sinusoids represent a “proliferative” niche whereas

arteriole would represent a “quiescent” niche (15) or if sinusoids
are the main HSCs localization regardless of their proliferation
status (16). The late conclusion has been provided by examining
thoroughly HSCs localization defined by KIT+ GFP-labeled cells
in alpha-catulingfp reporter mice (16). The development of a
fluorescent reporter mouse line fully specific for long term Flt3−

HSCs (MFG mice) has enabled to address their localization
in un-manipulated environments by intravital imaging (18).
This breakthrough revealed that quiescent HSCs seat mostly
in vicinity to sECs (and the endosteum), in mildly hypoxic
environment (18). Despite the preferential localization of HSCs
next to sECs, sECs have recently been reported to express lower
levels of SCF/KITL and CXCL12 as compared to aECs, thereby
questioning the involvement of aECs in the niche (19–22).
Identifying the MSC population of the HSC niche and defining
its developmental potential within mesenchymal lineages has
proven to be a major challenge. Early work has evidenced
BM mesenchymal osteoprogenitors (i) can be engrafted and
regenerate bones (2, 23, 24); (ii) are endowed with a multi-
lineage potential for osteoblasts, chondrocytes, adipocytes, and
fibroblasts (2, 4). Later studies have attempted to prospectively
identify self-renewing and multi-potent bona fide MSCs (2). A
breakthrough in the field has been afforded by studies which
reported that murine CD45-Tie2-a+v CD105

+Thy1.1-fetal BM
MSCs are able to recapitulate a functional HSCs niche upon
transfer within the renal capsule (25). In addition, Morikawa
et al. have shown that PDGFRa+Sca1+CD45−TER119− MSCs
from mouse BM give rise to osteoblasts, reticular cells and
adipocytes after in vivo transplantation (26, 27). Taken together,
these studies have defined the so-called “two stem cells” paradigm
in whichmultipotentMSCs are both organizers and components,
besides HSCs, of the BM niche (25, 28, 29). The Frenette lab
has shown that Nestingfp reporter mice could be instrumental
to identify MSCs with stem cell properties: (i) high CFU-F
activity; (ii) a multi-lineage potential to generate fibroblasts,
osteoblasts, chondrocytes and adipocytes (in both mice and
humanizedmice); (iii) a self-renewal potential upon transfer (28).
More recently, MSCs activity has been tracked using the LepRcre

mice targeting MSCs expressing the leptin receptor (30, 31).
Recent scRNAseq studies have re-evaluated the heterogeneity
among LepR+ cells and highlighted the existence of two subsets,
one expressing adipocyte-related genes (Adipo-CAR) while the
other expressing osteogenic genes (Osteo-CAR) (19, 21). Micro-
dissection analysis suggests that Adipo-CAR would be more
associated to sinusoids, as compared to Osteo-CAR, preferring
arteriole and other regions (21, 22). Multiple line of evidences,
including the inference of developmental trajectories in silico
(32), suggest that the Adipo-CAR fraction of LepR+ cells
contains the most primitive MSC progenitors activity giving rise
to multiple adipocytes, osteoblasts and chondrocytes (22, 32).
Studies from the Morrison lab have established that LepR+ cells
account for most BM CFU-F activity, represent the main source
of bone and adipocytes in adult BM and can give rise to cartilage
(30). Various technical approaches have identified multiple
cellular entities within theMSCs compartment proposed to play a
major role in shaping of the perivascular niche (10, 15, 28, 33):
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i) Arteriole-associated pericytes. Pioneer work from the
Frenette lab identified arterioles-associated pericytes
expressing NG2/CSPG4 coupled with quiescent HSCs in the
endosteum region (15). NG2+ pericytes are rare and display
bright GFP levels in Nestingfp reporter mice (Nestinbright)
(15). Conditional and inducible cellular deletion of NG2
pericytes (using NG2-creERTMxROSAiDTR mice) induces
HSCs cycling and reduces long-term repopulating activity
(15). Nestinbright pericytes express high levels of CXCL12.
This feature is relevant for HSCs niche, as conditional
inactivation of CXCL12 -but not SCF- in NG2+ pericytes
reduces HSCs numbers, perturbs their localization within the
BM and induces their peripheral mobilization (34).

ii) Sinusoid-associated pericytes. Sinusoid associated MSCs
display high level of GFP in Cxcl12gfp mice (7), intermediate
level of GFP in Nestingfp reporter mice (15), and are
labeled in LepRcre mice (10, 30). From the niche point of
view, LepR+ positive cells (labeled in LepRcre mice) express
high levels of SCF/KITL and some levels of CXCL12 (10,
33). Conditional deletion of SCF in LepR+ cells depletes
quiescent HSCs (10). Conditional inactivation of CXCL12 in
LepR+ cells triggers HSCs mobilization in periphery (33). In
addition to SCF and CXCL12, Adipo-CAR produce multiple
hematopoietic factors like IL-15, IL-34, Csf1, Bmp4, Ccl19,
and Ccl2 (22). Furthermore, LepR+ cells act also as a major
source of IL-7, important for the homeostasis of lymphoid-
committed progenitors which also express CXCR4, ensuring
their correct positioning by responding to CXCL12 from
LepR+ MSCs (35).

MSCs in the Human Niche
Compared with the mouse system, much less knowledge exists
regarding the architecture of the human BM niche and the
function of its different cellular components. Using human bone
biopsy specimens, Guezguez et al. provided evidence of HSC
propensity to localize to endosteal regions of the trabecular
bone area (36). CD34+ cells follow a spatial gradient within
the marrow cavities with a maximal concentration in the first
50µm from the bone trabecula surfaces where the blood vessels
are most concentrated (37). Efforts in recent years have also
been made to identify the specific human MSC subpopulation
that supports HSC activity. In the human BM, a multi-potent
CD45−CD105+CD146+ sinusoid-associated fraction of MSCs
was shown to be able to recapitulate a functional HSCs niche
upon transfer under the mouse skin (5). Human pericytes
CD146+ express nestin, CXCL12, and LepR similar to mouse
perivascular MSCs and directly support the ex vivo maintenance
of human HPSCs through cell-to-cell contact and activation of
Notch signaling (38). A fraction of human CD146+ perivascular
MSCs expressing PDGFRα, CD51, and multiple niche factors
(e.g., CXCL12, SCF, and angiopoietin1) would correspond to an
ortholog of GFP-positive cells in Nestingfp mice. Upon transplant
in immunodeficient mice, this CD146+ MSC subset is mainly
localized in close proximity to mouse sinusoids and recruit
hematopoietic cells (39). All these evidences seem to suggest
that CD146+ perivascular cells could represent the human
counterpart of the CAR cells or nestin+ cells described in the

mouse. More recently, a population of CD146− CD271+ MSCs
localized in the trabecular region of the human BM has been
identified. Like the CD146+ perivascular cells, these CD271+

MSCs showed high clonogenicity, trilineage differentiation
capacity in vitro, and ability to transfer a HSCmicroenvironment
upon transplantation (40). CD271+SSEA4+ MSCs have also been
shown to express high levels of HSC-supportive genes and to
support HSC engraftment potential (41). These data indicate that
different subtypes of MSCs exist in the human BM niche and
interact with HSCs in specific regions.

MODELING THE BONE MARROW NICHE
USING MSCs

A Role for MSCs in Modeling the Niche
in vitro
HSCs in vitro generation is instrumental to understand
hematopoiesis as well as tomodel genetical disorders and cancers.
Moreover, large scale manufacturing of HSCs could represent
a valuable therapeutic option for many patients. To date, two
different approaches have been attempted in this way: (i) the
expansion of large number of HSCs from BM or umbilical
cord blood (CB) (42, 43); (ii) the de novo generation of HSCs
from induced pluripotent stem cells/embryonic stem cells or via
somatic cell reprogramming (44–48).

Standard culture protocols supporting the proliferation of
long term bona fide engraftable, self-renewing hematopoietic
stem and progenitor cells (HSPCs) with multi-lineage potential
remain a challenge. Given the natural role of MSCs in the HSC
niche, co-culture with MSCs is a very popular approach to
maintain and expand HSCs in vitro. However, these conventional
systems fail at reproducing the complexity of the BM niche.

The first step in mimicking the physiological HSC niche
consist on generating a 3D environment using different
biomaterials, such as hydrogels, silicate structures, and human
bone-derived scaffolds (49) (Table 1).

Those polymers provide structure and support for cell
proliferation but also a spatial control of the cell interactions.
This is achieved by physical limitation in cell-to-cell contact
and controlled availability of soluble factors. Integration of
ECM within these scaffolds has been explored. Feng et al.
demonstrated how a polyethylene terephthalate (PET) scaffold
can be engineered with ECM proteins, such as collagen and
fibronectin, to support the expansion and differentiation of CB-
CD34+ cells (50). Importantly, those synthetic scaffolds can be
colonized with different types of MSCs together with ECs to
mimic in vivo niches. Ferreira et al. and Raic et al. (54, 55)
have developed two independents models based on porous 3D
scaffold for the expansion of HSCs in vitro. Ferreira et al.
tested several natural polymers as scaffolds in combination with
MSCs as support and found that 3D fibrin scaffold seeded
with MSCs is the most efficient system to expand CD34+

cells. Importantly, expanded HSPCs maintain a more primitive
immunophenotype and exhibit strong engraftment and multi-
organ repopulation capability (54). Similarly, Raic et al. showed
that the positive effect of MSCs on preservation of HSPCs
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TABLE 1 | Modeling the BM niche in vitro using human MSCs.

Reference Scaffold-based culture system Hematopoietic cell

source

Findings

Feng et al. (50) Fibronectin (FN) or collagen-conjugated 3D

polyethylene terephthalate (PET) scaffold

CB-derived CD34+

HSPCs

Significant expansion of CD34+ cells with high SCID

repopulating function

Nichols et al. (51) Silicate scaffold coated with PDDA and clay

and seeded with stromal cells (human bone

marrow stromal HS-5 cell line and human fetal

osteoblast 1.19 cell line)

CD34+ HSPCs from

different sources

Support expansion of HSPCs and production of functional B

cells

Rödling et al. (52) 3D macroporous PEG hydrogel with

RGD-peptides seeded with human MSCs and

perfused in a bioreactor

CB-derived CD34+ HSPC Maintenance and differentiation of CD34+ HSPCs in dynamic

culture. Importance of perfusion on drug testing (myelotoxic

effects of chemotherapeutics)

Braham et al. (53) Bio printable pasty CPC scaffold with seeded

O-MSCs to model the endosteal niche, and

Matrigel containing both EPCs and MSCs to

model the perivascular niche

Primary CD138+ myeloma

cells

Significant increase in the proliferation of myeloma cells.

Essential role of the perivascular niche over the endosteal

niche in supporting myeloma cells

Ferreira et al. (54) Comparison of 3D PCL, PLGA, fibrin and

collagen scaffold either seeded or not with

UC-MSCs

CB-derived CD34+

HSPCs

All scaffolds except PLGA favored the expansion of HSPCs.

When the scaffolds are seeded with MSCs the results

improve, electing fibrin as the best scaffold

Raic et al. (55) 3D macroporous hydrogel scaffold seeded with

UC-, BM-MSCs, or osteoblast-like cells

CB-derived CD34+

HSPCs

HSPCs cultured with BM-MSCs in 3D systems have the

highest proliferative status while maintaining stemness

Leisten et al. (56) 3D collagen scaffolds in suspension to

generate a double niche, in semi-solid and

liquid phase

CB derived HSPCs Most differentiated cells are found in the liquid phase niche.

Differentiation is boosted by UC-MSCs. More immature

HSPCs relies in the solid phase of the scaffold

Bourgine et al. (57) Porous hydroxyapatise scaffold seeded with

BM-MSCs within a perfusion bioreactor

CB-derived CD34+

HSPCs

Supported maintenance of HSPCs; possibility to perturb

HSPCs behavior by molecular customization or injury

stimulation

Sieber et al. (58) Hydroxyapatite coated zirconium oxide scaffold

seeded with BM-MSCs in a microfluidic system

CB-derived CD34+

HSPCs

Successful long-term culture (up to 28 days) of HSPCs with

multilineage differentiation potential

Bruce et al. (59) 3D microfluidic model loaded with BM-MSCs

and osteoblasts encapsulated in collagen

matrix

B-ALL SUP-B15 cell line Decreased chemotherapeutic drug sensitivity of leukemic

cells in 3D tri-culture model from the 2D models

Chou et al. (60) Perfused PDMS organ chip with

“hematopoietic” channel (filled with BM-MSCs

in a fibrin gel) and “vascular” channel (lined by

HUVECs)

mPB-derived CD34+

HSPCs

Shwachman-Diamond

Syndrome BM-derived

CD34+ HSPCs

Supported differentiation of multiple blood-cell lineages;

reproduction of hematotoxicities after chemotherapy/ionizing

irradiation; reproduction of marrow recovery after

drug-induced myelosuppression; recapitulation of

hematopoietic abnormalities of patients with genetic disorders

HSPCs, hematopoietic progenitor stem cells; HUVEC, Human Umbilical Vein Endothelial Cells; PDDA, poly(diallyldimethylammonium chloride); CPC, calcium phosphate cement;

O-MSCs, osteogenic multipotent mesenchymal stromal cells; BM, bone marrow; MSC, mesenchymal stromal cells; PDMS, poly(dimethylsiloxane); PEG, polyethylene glycol; RGD,

arginylglycylaspartic acid; EPC, endothelial progenitor cells; PCL, poly(epsilon-caprolactone); PLGA, poly (lactide-co-glycolide) acid; UC, umbilical cord; CB, cord blood; PB, peripheral

blood; B-ALL, B-cell acute lymphoblastic leukemia.

stemness was more pronounced in a porous 3D hydrogel scaffold
in comparison to standard 2D culture systems (55). Moreover,
phenotypically immature HSPCs (CD34+CD38−) with self-
renewal and repopulation capacity are shown to be maintained
in 3D collagen co-culture with MSCs, in close proximity to the
collagen fibers (56). Nichols et al. demonstrated how a silicate
and clay 3D structure seeded with heterogeneous stromal cells
and human HSCs is able to expand the HSCs and promote B cell
development after 28 days, with a significant increase compared
to its 2D counterpart (51).

Latest development in the field is the combination of 3D
organoids with perfusion-based bioreactor systems, the so-called
“4D system,” to further increase the amount of resemblance to
in vivo niches. The BM microenvironment is indeed strictly
regulated by the concentration of soluble factors, oxygen levels,
and the mechanical stress applied by blood flow. The use of
bioreactors and microfluidics devices can than allow modeling

the niche situation more closely. Rödling et al. developed a
bioreactor system for perfusion of 3D scaffolds seeded withMSCs
mimicking the BM in vivo and demonstrated the importance of
perfusion during drug treatment as results are different with and
without perfusion (52). Indeed, while under static conditions the
more mature CD34− subpopulation was more sensitive to 5-
fluorouracil treatment, under dynamic conditions both CD34−

and CD34+ cells responded similarly. Bourgine et al. reported
the engineering of BM-like tissues in a perfusion bioreactor
system partially recapitulating structural, compositional and
organizational features of the native human osteoblastic niche
environment, resulting in the support of HSPC functions. Their
approach consists in the use of bone-like porous hydroxyapatite
scaffold functionalized by MSCs and osteoblastic cells and by
the ECM they deposited during perfusion culture in bioreactors
(57). 3D scaffold-based microfluidic chips have been introduced
for the generation of a “BM-on-a-chip.” Torisawa et al. in
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TABLE 2 | Engineering of MSCs for enhanced human niche activity.

Reference Cell culture Ectopic expression on

stromal cells

Findings

Patel et al. (66) BM-derived CD34+ HSPCs co-cultured with

OP9-DL1 cell line

IL-7 and FLT3L T cell progenitor proliferation

Carretta et al. (67) CD34+ HSPCs co-cultured with human MSCs IL-3 and TPO

over-expression

In vitro expansion of CD34+ HSPCs. In vivo, humanized

models producing IL3/TPO support growth of patient

samples

Anselmi et al. (68) CB-derived CD34+ HSPCs co-cultured with

MS5 or OP9 cell lines

FLT3L, SCF and CXCL12 In vitro formation of DCs resembling their circulating

counterparts. In vivo formation of a niche supporting the

differentiation of DCs and the maintenance of undifferentiated

HSPCs

BM, bone marrow; HSPCs, hematopoietic progenitor stem cells; MSC, mesenchymal stromal cell; CB cord blood; IL-7, Interleukin-7; FLT3L, FMS-like tyrosine kinase 3 ligand; IL-3,

Interleukin-3; TPO, thrombopoietin; SCF, stem cells factor; CXCL12, C-X-C motif chemokine ligand 12; DCs, dendritic cells.

a pioneer murine study showed that PDMS (poly-dimethyl-
siloxan) device loaded with bone forming factors could be seeded
in vivo by BM-MSCs, such as CXCL12+ CAR and Nestin+

LepR+ perivascular MSCs. Ex vivo culture of the organoid can
be achieved in a microfluidics chip (61). Sieber et al. loaded
hydroxyapatite-coated zirconium oxide scaffold with human
MSCs in a microfluidics chip. This enables HSPCs to maintain
multilineage potential up to 28 days in vitro (58). Chou et al.
seeded a fibrin scaffold with MSCs and CD34+ cells in a
microfluidics device embedding vascular channel seeded with
human ECs. Upon 4 weeks of culture the vascularized chip
recapitulated the ontogeny of multiple blood cell lineages while
maintaining undifferentiated HSPCs. Moreover, this system has
been used to model the impact of a genetic disorder on
myelopoiesis (60).

MSCs in microfluidic devices have also been instrumental in
modeling the leukemic niche in vitro for the sake of studying
chemotherapeutics and immunotherapy (53, 59, 62).

Engineering MSCs to Regulate HSC
Self-Renewal or Direct Hematopoietic
Differentiation
By virtue of their role in HSC niche, engineering of MSCs
offers a window of opportunity to control HSC self-renewal or
drive hematopoietic differentiation. Several factors regulate the
HSC-supporting activity of MSCs. For instance, primary Nestin+

murine MSCs rapidly lose their hematopoietic supporting
potential upon ex vivo culture (63). The transcriptional down-
regulation of key niche factors (SCF, ANGPT1, CXCL12,
VCAM1) is underlying this process (63). An elegant genetic
screen has revealed that overexpression of defined transcription
factors (Klf7, Ostf1, Xbp1, Irf3, Irf7) can “revitalize” the
niche promoting activity of ex vivo cultured primary MSCs.
MSCs overexpressing those transcription factors become able
to maintain transplantable HSCs (63). This important study
opens new avenues in the engineering of MSCs. Some niche
factors involved in the hematopoietic hierarchy present a limited
sequence homology between mouse and human genes. This is
limiting the reactivity across species thereby rendering mouse

MSCs sub-optimal for applications involving human HSPCs
(64, 65). For these reasons, multiple groups have attempted
the expression of defined human hematopoietic factors in
murine MSCs lines (Table 2). For instance, co-expression of
IL-7 and FLT3L synergizes with DLL1 expression in OP9 to
induce the proliferation of T cell progenitors (66). Building on
the MS5 mouse MSC line, Anselmi et al. have developed a
screening for combination of human niche factors promoting
the efficient generation of dendritic cells (DCs) from human
CB-CD34+ cells (68). They have found that a combination
of membrane-bound FLT3L and SCF and soluble CXCL12 is
efficient in promoting the differentiation of DCs resembling their
circulating counterparts (68). Importantly, transwell experiments
indicate that this system relies on the establishment of cell-to-
cell contacts. Subcutaneous engraftment of engineered MSCs
in basement membrane matrix (Matrigel R©) in NSG mice
defines a niche supporting both the maintenance of a pool of
undifferentiated CD34+ cells and the differentiation of DCs (68).
Within this niche, it was found that poorly differentiated human
CD34+ cells would develop cell-to-cell contact with engineered
MSCs. Previous reports have established that membrane-bound
forms of hematopoietic growth factors like SCF would be
specifically required for niche function in vivo (8, 9, 69–
71). A practical consequence of this is that engineering of
MSCs for the over-expression of membrane-bound SCF (or
FLT3L) is an attractive strategy to improve the niche-promoting
activity of MSCs in vitro or in vivo (68, 72) (Figure 1). In
the same vein, human BM-MSCs have been engineered by
Carretta et al. to over-express IL-3 and thrombopoietin (TPO).
IL-3/TPO over-expressing MSCs displayed an increased ability
to drive the in vitro expansion of CD34+ cells and improved
capacity to support in vivo growth of CD34+ progenitors
expressing the MLL-AF9 fusion gene in a humanized scaffold
xenograft model (67). In vivo delivery of engineering stromal
cells could be improved by the implementation of chemically
defined scaffold. For instance, Tavakol et al. have shown
that collagen coated carboxyl methyl cellulose micro scaffold
(CCMs) seeded with OP9 and HSPCs in vitro supports the
long term maintenance, over 12 weeks, upon engraftment in
immunodeficient mice (73).
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FIGURE 1 | Engineering of murine MSCs to recapitulate human hematopoiesis. MSC from murine bone marrow are isolated and expanded ex-vivo. Those are

subsequentially engineered to express human factors and injected together with human HSPCs into the back of an NSG mice in Matrigel plugs. The plug is retreated

2 weeks later. It displays an unorganized structure containing murine MSCs and vasculature together with human hematopoietic progeny. Progeny is dependent on

the factors expressed by MSCs.

Altogether those approaches highlight the versatility of
MSC engineering to control and direct HSPCs fate in health
and diseases.

A Role of MSCs in Recapitulating the
Human Bone Marrow Niche in vivo: The
Humanized Ossicle Models
Pioneer studies showing that human MSCs can establish
a hematopoietic microenvironment upon transplantation in
rodents at non-skeletal sites date back nearly 50 years (74–
76). The evolution of bone tissue engineering strategies together
with the identification of the human specific osteoprogenitor
subpopulations associated with the formation of ectopic bone
and bonemarrow have been fundamental steps for the generation
of humanized BM tissues in mice, the so-called “ossicle” model
(5, 25, 28, 29). These human MSC–generated organoids are
tissue-specific chimeras, as bone, myelo-supportive stroma, and
adipocytes derived from donor MSCs, while blood vessels and
hematopoietic tissues are derivatives of host tissues, and they are

harmoniously integrated into an overall tissue structure. Several
versions of heterotopic transplantation assays have been used,
which differ from one another concerning the site of grafting,
such as kidney, subcapsular space (25, 77), intramuscular
(78), and subcutaneous tissue (79) or type of osteoconductive
scaffold/material employed as a carrier (79).

The next level of humanization of human MSC–generated
ossicles has been the introduction of human HSCs. In 2010,
Vaiselbuh et al. for the first time reported the successful
engraftment of human hematopoietic cells in an ectopic
humanized niche obtained implanting subcutaneously in
immunocompromised mice polyurethane scaffolds coated with
human MSCs, giving rise to the first fully humanized bone/BM
organoid model (80). The establishment of a functional human
BM niche that could support the maintenance of human
blood cells opened the possibility to bridge gaps between the
interspecies divergence at a molecular and cellular level in
the hematopoietic niche and aspires to become an advanced
model to investigate human hematopoiesis and leukemogenesis.
Although many aspects of the hematopoiesis are conserved
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FIGURE 2 | Different strategies for the generation of humanized ossicles. In vitro expanded human MSCs (from healthy donors or patients) are seeded onto a

scaffold, (A) primed to differentiate in cartilage (B) or cultured on Matrigel® (C) Some protocols include the co-seeding of human ECs and the supplement of

osteogenic factors, such as BMPs and PTH. Following the first in vitro step, the implantable structures are transplanted subcutaneously into the back of

immunodeficient mice for the ossicle formation (D). Aberrant/normal human HSPCs can be added to the system by direct intra-ossicle transplantation (E) or

intravenous injection (F) either before or after the implantation of the ossicle. Irradiation is usually performed to promote engraftment. As an alternative, HSPCs can be

seeded onto the Matrigel® plug before the in vivo implant (G). The whole process can take several months. The resulting ossicle collected from the mouse is

composed of both myelo-supportive marrow stroma and hematopoietic tissues and its progeny of human origin (H). Sinusoidal endothelium, nerve fibers, residual

hematopoietic cells, and osteoclasts are derivatives of mouse host.

between mice and humans, several differences need to be taken
into consideration before applying results obtained in the mouse
to humans, specifically for studies aimed at preclinical testing
of new therapies (81). Several humanized ossicle models have
been reported to date and each has its specificity, as extensively
reviewed recently (Figure 2) (82, 83). Current strategies differ
for human stromal cell types, carrier material scaffold, human
hematopoietic transplantation protocols, and experimental time
frames (Table 3). Most protocols use stromal cells derived from
the BM of healthy donors. Reinisch et al. suggest that only MSCs,
as opposed to the umbilical cord-, skin-, or white adipose tissue-
derived MSCs, possess the capabilities to form ectopic bone and
BM in vivo (77). However, other studies reported the formation
of ectopic BM niches through endochondral ossification using
stromal cells from different sources, such as cord blood (94)
and adipose tissue (97), when primed toward chondrogenesis
in the presence of transforming growth factor-β in vitro before
implant. In most protocols, cells are seeded onto ceramic,
collagen, calcium phosphate, or hydroxyapatite-based scaffolds
or hydrogels before implantation. These scaffolds provide

instructive cues to ensure osteogenesis and represent a 3D
template that supports the formation of a bone organ. According
to their composition and degradation properties, scaffolds can be
entirely remodeled during the ossicle formation or remain part
of the organoid structure. The persistence within heterotopic
ossicles of artificial, mineralized scaffold material that are not
resorbable, is not desirable. It prevents the establishment of the
completely normal architecture of bone marrow and complicates
the analysis of stromal and hematopoietic cell populations
contained within the ossicle, particularly their quantitative
assessments. The transplantation of cartilage pellets made ex
vivo by MSCs consent to avoid these limitations due to the
use of exogenous scaffold (91, 93). Stimulating factors, such as
BMP2 (96), BMP7 (95), or parathyroid hormone (PTH) (87)
can be used to promote osteoblast differentiation of MSCs for
the successful in vivo formation of mature bone and BM tissues.
Furthermore, MSCs have also been genetically modified to
express BMP2 (98) or BMP7 (99) generating new bone in vivo.

Human blood cells (healthy or malignant) can be
administered either by peripheral (tail vein or retro-orbital)
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TABLE 3 | Humanized ossicle models.

References Scaffolds Cell source Implant generation Mice strain Time after

implant before

human blood

cells

transplantation

Conditioning Route of

hematopoietic

transplantation

Transplanted human blood

cells

Engraftment

period

Vaiselbuh et al. (80) Polyurethane

discs

BM-MSCs (10 ×

10∧6)

Seeding on scaffold and

culturing in medium + 20%

FBS + SDF-1 for 4–5 days

NOD/SCID Unknown None In situ injection Primary AML samples 1, 4, 8, 16, 20

weeks

Lee et al. (84) Polyacrylamide

hydrogel

BM-MSCs (1–5 ×

10∧5)

Seeding on scaffold and

culturingin medium + 10% FCS

for 1–3 days

NSG or Nu/Nu 4 weeks Sublethal

irradiation

Intravenous

injection

CD34+ HSPC 16 weeks

Chen et al. (85),

Jacamo et al., (86),

and Reinisch et al.

(87)

Matrigel BM-MSCs (1.5 ×

10∧6) and ECFCs

(1.5 × 10∧6);

BM-MSCs (2 ×

10∧6)

BM-MSCs are mixed with

ECFCs in Matrigel immediately

before implant; daily PTH

administration for 28 days in

ossicle-bearing mice

NSG 8–10 weeks Sublethal

irradiation

In situ injection;

intravenous

injection

CB derived-CD34+ HSPC or

MOLM13 leukemia cells;

NALM6 leukemia cells; primary

AML, APL, and MF samples

4–11 weeks for

CD34+, 2 weeks

for MOLM13; 10

days for NALM6,

7–24 weeks for

patient samples

Groen et al. (88),

Antonelli et al. (89),

Sontakke et al. (90),

and Carretta et al.

(67)

BCP BM-MSCs; IL-3-

and TPO-expressing

BM-MSCs

Seeding on scaffold and

culturing in osteogenic

induction medium for 7 days

RAG or NSG 6–8 weeks None Intracardiac or in

situ injection;

intravenous

injection

CB derived-CD34+ HSPC or

primary multiple myeloma cells;

CB-CD34+ BCR-ABL or

MLL-AF9 transduced; primary

AML or CML samples

8 weeks; from 14

to 38 weeks for

AML

Scotti et al. (91),

Fritsch et al. (92),

and Bourgine et al.

(6)

Collagen

sponges

BM-MSCs (2 ×

10∧6)

Seeding on scaffold and

culturing for 3 weeks in

chondrogenic medium, followed

by another 2 weeks of culture in

hypertophyc medium

STRG or

MISTRG

4 or 6 weeks Sublethal

irradiation

Intravenous

injection

CB derived-CD34+ HSPC 8 or 6 weeks

Serafini et al. (93)

and Pievani et al.

(94)

None BM-MSCs or

CB-BFs (3 × 10∧5)

Culturing for 3 weeks in

chondrogenic medium

supplemented with TGF-B1 as

pellet

SCID/beige 3 weeks Sublethal

irradiation

Intravenous

injection

CB derived-CD34+ HSPC 6 weeks

Holzapfel et al. (95) Tubular mPCL BM-MSCs (3 ×

10∧5)

Seeding on scaffold and

culturing in medium + 10%

FCS for 4 weeks, followed by 4

weeks of dynamic cell culture in

osteogenic medium

NSG 10 weeks Sublethal

irradiation

Intravenous

injection

Pelvic BM derived-CD34+HSPC

and CD34− cells

5 weeks

Abarrategi et al.

(96)

Collagen

sponges

BM-MSCs (1 ×

10∧5)

Seeding on scaffold and

culturing in medium + 10% FBS

supplemented with rhBMP2 for

3–7 days

NSG 48h or 6–4

weeks

pre-implant

None or

sublethal

irradiation

Pre-seeding in the

scaffold or in situ

injection or

intravenous

injection

CB derived-CD34+ HSPC or

patient AML samples

12 weeks

BCP, biphasic calcium phosphate; mPCL, medical grade polycaprolactone; BMSCs, bone marrow mesenchymal stromal cells; ECFCs, endhotelial colony-forming cells; TPO, thrombopoietin; CB-BFs, cord blood borne-fibroblasts;

FBS, fetal bovine serum; SDF-1, stromal derived factor 1; FCS, fetal calf serum; PTH, parathormone; TGF-β1, transforming growth factor β1; NSG, NOD/SCID/IL-2rγnull mice; STRG, Rag2−/− IL2rγ−/− mice expressing human TPO

and SIRPα; MISTRG, Rag2−/− IL2rγ−/− mice expressing human TPO, M-CSF, and SIRPα; CB, cord blood; AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; ML, myelofibrosis; CML chronic myelogenous leukemia;

HSPC, hematopoietic progenitor stem cells; BMP2, bone morphogenetic protein 2.
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TABLE 4 | Stromal systems recapitulating T cell maturation.

Reference Approach Findings

Röpke (124), Masuda et al.

(125), and Corbeaux et al. (126)

Culture of TECs on feeder cells Notch signaling pathway from thymocytes to TECs is involved in

TECs maturation and lymphoid development.

Schmitt and Zuniga-Pflucker

(127)

Co-culture of OP9 expressing hDLL1 with fetal liver progenitors

with addition of IL-7

Differentiation toward formation of α/β and γ/δ T cells

La Motte-Mohs et al. (128) CD34+CD38− HSPCs cultured on OP9-DL1 Appearance of CD7+ pro-T cells, CD4+ intermediate SP, and

CD4+CD8+ DP

Yeoman et al. (129) Murine FTOC seeded with human CD34+ HSPCs (human UCB or

BM HSPCs)

Formation of human T cells which can rapidly develop into CD4+

or CD8+ SP cells expressing CD3

Poznansky et al. (130), Traggiai

et al. (131), Ishikawa et al. (132),

and Pearson et al. (133)

Tantalum-coated carbon matrix embedded with murine thymic

epithelial cells and human cord blood CD34+ HSPCs

This system supports the differentiation of SP CD4+ or CD8+

mature T cells able to respond to mitogens

Chung et al. (134) Dissociation and re-aggregation of post-natal human thymus in

TEC and thymus mesoderm forming thymic organoids seeded

with CD34+ HSPCs

When engrafted within the quadriceps muscle sheath of NSG mice

thymic organoids are seeded by T cell precursors (from the cord

blood origin). Furthermore, the organoids support differentiation of

T cells exhibiting a broad repertoire of TCRβ chains

Parent et al. (135) Development of human thymic epithelium from iPSCs has opened

new avenues for the production of thymic organoids

Human ESCs-derived thymic epithelium supports the

development of murine T cells within thymus-deficient mice

Melkus et al. (136), Wege et al.

(137), and Kalscheuer et al. (138)

Implantation of fetal thymus under the renal capsule leads to the

formation of a competent thymus subsequently seeded by BM

HSPCs delivered intravenously

The organoid supports the full maturation of T cells in 15-20 weeks

Seet et al. (139) and

Montel-Hagen et al. (116)

3D artificial thymic organoids (ATOs) composed by ectopically

expressing DLL4 murine BM MSC line MS5 and HSPCs or iPSCs

This method recapitulates human lymphopoiesis. T cells display a

normally broad repertoire and exhibit normal responsiveness

(proliferation, cytokines) upon TCR triggering

TEC, thymic epithelial cells; HSPCs, hematopoietic progenitor stem cells; SP, single positive; NSG; TCR, T cell receptor; MSC, mesenchymal stem cells; iPSCs, induced pluripotent

stem cells; UCB, umbilical cord blood; ATO, artificial thymic organoid; TCR, T cell receptor. BM, bone marrow; DLL1/4, Delta Like Notch Ligand 1/4; FTOC, fetal thymic organ culture;

DP, double positive.

or intra-ossicle infusion for organoids of larger dimensions. By
contrast, Abarrategi et al. proposed co-implantation ofMSCs and
human CD34+ cells within a collagen sponge, thus avoiding the
requirement for subsequent transplantation (96). Conditioning
before transplantation does not seem to be a requirement for the
successful engraftment of ossicles within immunodeficient mice.
The human hematopoietic cell transplantation was generally
performed within 3–10 weeks after the in vivo implant of the
ossicles. Four weeks represent the minimum period required for
the formation of marrow cavities allowing human engraftment,
through osteoclasts resorption of mineralized tissue within

the ossicles (93). Engraftment assessment post-transplantation
was achieved from 4 to 38 weeks, depending on the type of
cells transplanted (malignant cells with fast/slow engraftment)

and the functional readout targeted (short/long-term HSCs
engraftment). However, numerous challenges remain to be
solved and the variability of different protocols does not allow to
do a comparison between different systems in terms of accurate
reconstitution of the human niche and potential for human
blood engraftment sustaining. The topic has been recently
well-reviewed by Dupard et al. (82). Despite the optimization
efforts, the ossicles remain largely chimeric as both the nervous

system and blood vessels are of mouse origin, although human

mesenchymal perivascular cells were detected (6). This implies
that investigations on the role of specific niche cellular factors

or cytokines should consider the influence of their murine
counterparts. Human vascular structure can be generated by
seeding human ECs (e.g., HUVEC) together with MSCs on
carrier materials (85, 96). Stringent quantification of both

human MSCs-derived stroma and human blood populations
in humanized ossicles is difficult to be performed and required
the application of most sophisticated imaging strategies. Most
of the reported ossicle approaches are based on the use of
primary MSCs isolated from BM of healthy donors. Specifically,
these cells are very heterogeneous in terms of proliferation and
differentiation capacity and this reflects not only the source-
and the donor-dependent variability, but also specific differences
in isolation/expansion procedures (100). Furthermore, there
is a striking batch-to-batch variability in their ability to form
ossicles in vivo. All these aspects highlight some limits in the full
exploitation of these models although this does not diminish the
potential of humanized ossicle approaches for studying human
healthy and pathological hematopoiesis.

Application of MSC-Derived Humanized
Ossicles to Study Human Normal
Hematopoiesis
The establishment of a human BM microenvironment within
heterotopic ossicles was associated with enhanced long-term
engraftment of human HSCs, as compared to mouse bones
(87, 95, 96). The human HSC engraftment was successfully
supported also by BM niches generated from cord blood
stromal cells (94). Notably, human MSCs, included in the
ossicle, release an increased level of cytokines, such as VEGF
and IL-6, that accelerates vascularization and enhances the
recruitment of human HSCs (84). Moreover, an improved
myeloid development was obtained compared with lymphoid-
biased human engraftment usually observed in the BM of
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intravenously transplanted NSG mice (85, 87, 96). Furthermore,
some studies have demonstrated that humanized ossicles
maintain the quiescence and the self-renewal potential of human
HSCs, which can successfully engraft secondary recipient mice,
with a higher efficiency compared to murine BM (87, 92).
Within the ossicle, human HSCs CD45+CD34+CD90+ have
been found in close proximity to human MSCs, suggesting
that direct cell-cell contact is fundamental to regulate their
fate (6). The ossicle system allows genetic manipulation of
human niche components to better understand directly in vivo
the role of specific factors critical for human hematopoietic
reconstitution. Overexpression of CXCL12 by human MSCs
in the ossicle results in a specific enrichment in common
myeloid progenitors, megakaryocyte/erythrocyte progenitors,
multipotent progenitors, and HSC populations expressing the
CXCR4 receptor (6).

Application of MSC-Derived Humanized
Ossicles to Model Human Malignant
Hematopoiesis
Patient-derived xenograft (PDX) mouse models are currently the
gold standard for studying the development of human leukemia.
However, engraftment and expansion of human acute myeloid
leukemia (AML) in vivo remain challenging as a substantial
number of samples fail to engraft also the most optimized host
mice, particularly in the case of malignancies less aggressive
(101). The reason may be that some subtypes of AML have low
progenitor cell frequency or some samples may be particularly
sensitive to the lack of a specific cell type in the mouse BM or
a factor that is poorly or not at all cross-reactive between mice
and humans. Hence, MSC-derived humanized ossicle models
have raised great interest in the leukemia field, as recently
extensively discussed in the review of Abarrategi et al. (83). The
first study of AML engraftment in humanizedmicroenvironment
was reported by Vaiselbuh et al., who demonstrated that primary
AML cells injected directly in pre-implanted scaffolds coated
with human MSCs or intravenously in mice after implant,
successfully engrafted in the ectopic niche (80). Further studies
demonstrated that AML samples non-engrafting in mouse BM,
such as acute promyelocytic leukemia (APL), were able to
efficiently engraft in the humanized microenvironment (87,
96). Importantly, ossicles maintained the clonal heterogeneity
in xenografted AML cells and their stem cell self-renewal
capacity better than murine BM, as demonstrated by serial
transplantation assays (87, 89, 90). Humanized BM ossicles are
useful also for the engraftment of small myeloid clones, such as
TP53 mutated AML subclones (102). Battula et al. developed a
different approach called “human bone implant” that consists of
subcutaneous transplants in NSG mice of fragments from freshly
collected human BM biopsies using Matrigel R© as a carrier (103).
The implanted human BM tissue undergoes vascularization
and bone restoration in mice, providing a functional human
BM microenvironment capable of supporting the human AML
engraftment. In addition to AML, a humanized ossicle system
has been used to engraft primary multiple myeloma patient
samples, which are known to be highly dependent on the

human BMmicroenvironment for their survival and growth (88).
Furthermore, humanized ossicles facilitated robust engraftment
of myelofibrosis specimens, which has previously shown only
limited engraftment with transplantation of large numbers of
patient-derived CD34+ cells in conventional xenograft models
(87). Genetical manipulation of human niche components can
likely help in better understanding the role of factors critical
for leukemia engraftment/progression. Deletion of hypoxia-
inducible factor (HIF)-1α in human MSCs impaired leukemia
engraftment in BM organoids by decreasing CXCL12 expression
(85). Another pilot study demonstrated that the blockade of
NF-kB activation through IkBα-SR overexpression in MSCs
in the humanized ossicle model reduces leukemia burden
following chemotherapy, diminishing the stroma-mediated
chemoresistance (86). Carretta et al. improved the development
of the myeloid compartment from leukemic samples by
genetically engineering human MSCs to express IL-3 and TPO
(67). Recently, a fully humanized hematopoietic niche system
has been exploited to investigate the multidirectional crosstalk
among AML, HSCs and the microenvironment and allowed
to identify stanniocalcin 1 and its transcriptional regulator
HIF-1α as specific mediators whereby AML impairs normal
hematopoiesis by remodeling the mesenchymal niche (104).
Of note, current 3D models use MSCs isolated from BM of
healthy donors, which are molecularly and functionally different
from disease-exposed ones. The use of patient-derived niche
components may further improve these models and help unravel
the role of the niche in the development of hematopoietic
diseases. We recently reported an AML stromal niche model
obtained using MSCs derived from BM of AML patients (105).
AML-MSCs derived ossicles contained a significantly increased
fraction occupied by adipocyte and represent an osteoprogenitor-
rich niche with the presence of osterix+/osteocalcin− pre-
osteoblasts and osteocalcin+/Dentin matrix acid phosphoprotein
(DMP) 1− immature osteocytes that correlated with the reduced
mature bone formation. However, the generation of humanized
ossicles from MSCs and hematopoietic cells from the same
patient in an autologous setting has yet to be demonstrated but it
would provide a personalized in vivomodel to test new therapies.

RECAPITULATING T CELL ONTOGENY
USING MSCs

T cells originate from BM derived lymphoid progenitors
differentiating in the thymus. The 3D organization of the thymus
is provided by different cell types and creates a complex unique
environment for T cell development (106). There are numerous
reasons and motivations to recapitulate T cell education in the
context of thymic organoids.

i) Primary immunodeficiencies constitute a major cause of
deficiencies. BM or umbilical cord transplant represent a
clinical approach that is potentially limited by the onset of
graft vs. host disease (GvHD) and slow reconstitution of the
T cell compartment (107). Also, patients who underwent
thymectomy or suffer from the DiGeorge syndrome, a
genetic disorder underpinning thymus hypoplasia resulting
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from microdeletion on chromosome 22, would benefit from
thymus bioengineering.

ii) Thymic involution. After reaching the maximum size
during adolescence, the thymus begins to shrink and
T cell generation decreases in a process called “thymus
involution” (108). Thymic involution is associated with aging
and exacerbated by several pathological and environmental
influences including viral and bacterial infections, drugs
or irradiation, affecting its functionality and leading to
a decline in naïve T cell output (109, 110). Defective
thymus structure and dysfunction negatively influences the
adaptive immune system (110). Therefore, regenerating
thymic function through replacing a defective thymus by
an artificial thymus organoid is of high clinical interest
for overcoming potential immunodeficiency or malignancies
and maintaining the adaptive immune system.

iii) Adoptive T cell therapy using infusion of antigen-specific
T cells is a promising approach in personalized medicine
for the treatment of cancer or chronic viral infections.
Engineering TCR-specific T cells starting from CD34+

HSPCs (111–113) or T cell precursors derived from induced
pluripotent stem cells (iPSCs) (49, 114–116) represent a
promising approach that necessitates to recapitulate T
cell ontogeny.

iv) The engraftment of thymic organoids into humanized mice
is a promising approach for the induction of T cell tolerance
against transplanted tissue (110).

v) Mechanistic studies. In vitro models of thymic education
offer unique advantage to study and mechanistically
dissect thymic selection. For instance, in vitro systems are
particularly amenable to live imaging approaches (117).

T cells differentiate from BM derived
Lin−CD34+/intCD38−CD45RA+ progenitors seeding the
thymus (118, 119), within the thymus T cell progenitors
upregulate CD7, CD1a, and CD4 to generate immature single
positive (ISP) cells. ISP cells further develop to CD4+CD8+

double positive (DP) cells that ultimately differentiate into
CD8−CD4+ or CD8+CD4− single positive mature T cells
(SP). Thymic epithelial cells mediate positive and negative
selection of T cell progenitors cells (TEC). TEC can be
classified in cortical (cTEC) and medullary (mTEC) epithelial
cells. cTEC deliver chemotactic (e.g., CCL25, CXCL12),
differentiation (e.g., DLL4), and survival (e.g., IL-7, SCF) signals
to developing T-cells undergoing positive selection (120, 121).
mTEC express AIRE, together with dendritic cells, present
self-antigens ensuring the deletion of high affinity self-reactive
T-cells (122).

Most experimental systems aiming at modeling thymus
function relies on the manipulation of TECs and fall outside of
the scope of this review focusing on mesodermal components of
hematopoietic niches (123). In brief, 2D culture of TECs provided
disappointing results in generating lymphocyte progenitors
in line with the loss of primary phenotype upon in vitro
culture (124–126) (Table 4). First attempts of 3D cultures were
based on murine fetal thymic organ culture (FTOC) (140,
141) (Figure 3B). Despite the successes in supporting T cell

development, FTOC evolved into reaggregate thymus organ
culture (RTOC) (141). RTOC allows to manipulate the cellular
composition and thereby to study the role of specific cell types,
pathways or key signals including the Notch Delta like ligand
(123) (Figure 3B).

Mesenchymal stromal cells are part of the physiological
thymic microenvironment. Recent single cell studies have
highlighted the complexity of the mesenchymal compartment
of the thymus. Thymic fibroblasts can be distinguished in
type 1 (Fb1) and type 2 (Fb2) fibroblasts (142). Fb1 cells are
characterized by the expression of an important key player in
innate immunity termed COLEC11 as well as by the expression
of the enzyme ALDH1A2 that controls the production of retinoic
acid functioning as an epithelial growth regulator. On the other
hand, Fb2 cells are characterized by ECM genes as well as
semaphorins that regulate vascular development. For that reason
Fb2 cells are mainly found close to large blood vessels lined with
VSMCs (142). ECM produced by thymic MSCs might play a
crucial role in the maintenance of TEC phenotypes. For instance,
human fibroblast/MSCs uniquely provides an environment
supporting promiscuous gene expression by mTECs associated
to AIRE and FoxN1 expression (143).

Here we provide examples of the implementation of MSCs in
modeling T-cell education and thymic function.

Harnessing MSCs to Recapitulate T Cell
Education
The Zúñiga-Pflücker lab has pioneered the implementation
of murine MSCs engineered to express NOTCH ligands to
drive T-cell maturation from HSPCs. OP9 is MSC line derived
from CSF1-deficient mice with a broad hematogenic activity
dependent on SCF/KITL expression (144) but unable to sustain
the generation of T cells (127). Schmitt et al. have shown that
ectopic expression of the Delta-Like-1 (DLL1) NOTCH ligand
is sufficient to confer the ability to support ontogeny of α/β
and γ/δ T cells from fetal liver progenitors in the presence of
FLT3L and IL-7 growth factors (127) (Figure 3A). DLL1 provides
a key signal for T cell specification at the expense of B cell
development. This approach was later found to also recapitulate
the ontogeny of human T cells from umbilical cord blood (UCB)
CD34+ HSPCs via the ordered appearance of CD7+ pro-T cells,
CD4+ intermediate SP, and CD4+CD8+ DP (128). Importantly,
the OP9 approach (using DLL4) could also be implemented
to generate T cells from human embryonic stem cells (145).
However, one major drawback of the OP9-DLL system is that T
cell differentiation andmaturation of TCR+ SP CD4+ or CD8+ T
cells remained inefficient for most sources of human pre or post-
natal HSPCs with the exception of UCB (146). Similar to the in
vitro TECs culture, the culture of Notch ligand expressing OP9
cell lines shows the drawback of lacking a 3D architecture (147).
The BLT (BM, liver, thymus) model of humanized mice provides
an option tomodel human thymus function in vivo. Implantation
of human fetal thymus under the renal capsule leads to the
formation of a competent thymus that can be seeded by BM
HSPCs delivered intravenously to support the full maturation of
T cells in 15–20 weeks (136–138) (Table 4).
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FIGURE 3 | Different strategies to recapitulate T cell ontogeny using MSCs. 2D co-culture of HPCs (hematopoietic progenitor cells) on bioengineered MSC-derived

OP9 cells expressing Notch ligands DLL1/DLL4 with recombinant IL-7 and FLT3-L (A). Isolation of murine thymic lobes from day 14 to 15 old mouse embryos

followed by their in vitro culture with deoxyguanosine for 5–7 days to deplete intra-thymic T cells. The thymic lobes are then repopulated by different T cell progenitors

and cultured on the surface of membranes as fetal thymic organ culture (FTOC). For reaggregation thymic organ culture (RTOC) thymic stromal cells (thymic SCs) are

extracted from the lobes and reaggregated with T cell progenitors by centrifugation. The cell suspension is cultured on a filter membrane in vitro (B). Post-natal human

thymus is dissociated in TECs and thymus mesoderm (TM) and further reaggregated with human CD34+ cells leading to the formation of thymic organoids. These

organoids support the development of mature human T cells when kept in culture or when engrafted within the quadriceps muscle sheath of NSG mice (C). Artificial

thymic organoids (ATOs) are generated by the centrifugation of bioengineered MS5 cells expressing Notch ligands DLL1/DLL4 with HSPCs or iPSCs, respectively.

After resuspension in a small amount of culture medium the cell suspension is placed on a membrane at the air-liquid interface to form 3D aggregates. This method

recapitulates human lymphopoiesis and offers the ability to generate conventionally naïve T cells from HSPCs or iPSCs in vitro (D).

Bypassing the need for fetal thymus mesodermal components
have been shown to help building 3D models of human
thymus. Using the dissociation and re-aggregation of post-
natal humans TECs and thymus mesoderm Chung et al. have
recapitulated thymus function (134) (Figure 3C). Those thymic
organoids supported the development of mature human T cells
when seeded with human CD34+ HSPCs (134). This system
offers the advantage to be amenable to lentiviral transduction
for manipulation of the thymic environment and bypass the
use of xenogenic (murine) thymic epithelium (134). When
engrafted within the quadriceps muscle sheath of NSG mice
previously reconstituted with human CB-CD34+ HSPCs, thymic
organoids are seeded by T cell precursors (from the CB origin).
Furthermore, the organoids support differentiation of T cells
exhibiting a broad repertoire of TCRβ chains (134).

More recently, Seet et al. have shown that MSCs can help
modeling thymus function (139). Seet et al. report a method
for the formation of artificial thymic organoids (ATOs) in
which TECs were replaced by the ectopically expressing DLL4
murine MSC line MS5 (MS5_DLL4) and centrifuged with
HSPCs or iPSCs, respectively (116, 139) (Figure 3D). ATO
simulate the 3D structure of the thymus and can be compared
to RTOC (139). After resuspension in a small amount of
culture medium the cell suspension was dropwise placed on

a membrane at the air-liquid interface to form 3D aggregates.
This method recapitulates human lymphopoiesis and offers the
ability to generate conventionally naïve T cells from ESCs or
iPSCs, respectively (116, 139). Furthermore, this system enables
long-term culture and provides improved positive selection due
to the 3D organization. T cells developing in ATOs display a
normally broad repertoire and exhibit normal responsiveness
(proliferation, cytokines) upon TCR triggering. Of crucial
relevance for clinical application, this method is amenable to
generate TCR-transduced T cells generated after efficient allelic
exclusion at the Vβ locus (116, 139). This has been exemplified
using TCR specific for NY-ESO or MART1 tumor-associated
antigens (116, 139). In sum, the ATO system demonstrates
the high versatility of engineered MSCs to recapitulate cellular
interactions underlying T cell development.

CONCLUSION AND FUTURE DIRECTIONS

This review highlights the potentially vast range of application for
MSCs in the engineering of immune niches supporting leukocyte
development. Among the multiple technological challenges
raised by the implementation of MSCs, some salient topics
emerge defining possible future directions in the field.
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Understanding MSCs Developmental
Phenotypic and Functional Heterogeneity
to Build Better Niches
Recent developments in high dimensional approaches,
such as unbiased scRNAseq have brought a fresh look on
the heterogeneity of MSCs associated to immune niches
(19–22, 148–151). For instance, whole genome expression
analysis reveals an exquisite specificity in the distribution of
niche factors among the diverse MSC types (22). Important
development in spatial transcriptomics and live imaging should
unravel the spatial organization of intracellular interactions
supporting the function of MSCs within niches (21, 152).
Deciphering the functional impact of MSCs heterogeneity
and the division of labor between different MSC types should
substantially assist tissue engineering purposes.

Engineering MSCs to Improve Their
Function
MSCs can be genetically manipulated ex-vivo to modulate
the expression of key molecules before they are embedded
within immune niches. This approach has been developed with
success for the establishment of immune niches supporting
AML engraftment (67) or supporting the development of
dendritic cells (68) in humanized mice. Further programming
of MSC transcriptional landscapes (63) broadly impacting on
their function might open new avenues for the engineering of
immune niches.

Harnessing the Differentiation Pathway of
Endogenous Progenitors for MSCs
Understanding the developmental pathways of MSCs
populations is of major relevance for tissue engineering. The
phenotype and function of differentiatedMSC types is potentially
difficult to maintain in ex vivo cultures (63). Therefore,
approaches co-opting the physiological developmental pathway
of MSCs are of particular interest. For instance, disentangling
the developing hierarchies within early MSC progenitors
underpinning the BM niche (30–32, 153) should facilitate the
technological implementation of MSCs to build synthetic niches
and organoids.

Stimuli-Responsive Dynamic Immune
Niches
An essential biological feature of immune niche is their ability
to respond dynamically to immune perturbations. BM, for

instance, also respond to acute inflammation, often by increasing
myelopoiesis, a process termed as “emergency myelopoiesis”
(154). In both cases dynamic changes of hematopoietic organs
rely on adaptation of the stromal network (19, 22, 150, 151,
155, 156). Assessing this responsiveness feature should be of
interest to recapitulate leukocyte development associated to
inflammatory settings.

Patient-Specific Immune Niches for Drug
Testing
Genetic variation is likely to impact on physiological niches
function. One key feature of the BM niche ossicle model
is the possibility to transfer in the mouse the human BM
microenvironment, either normal or pathological. For instance,
the ossicle models represent a valuable tool to unravel the
role of cellular and molecular mechanisms underlying the
interactions between the hemopoietic and stromal compartment
in normal or pathological niche. Ultimately, this analysis could
be performed using MSCs and malignant cells from the same
patient thereby defining a platform for drug screening. This
approach could be applied to targeted therapies interfering with
stromal support.
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The bone marrow is a complex ecosystem in which hematopoietic and non-
hematopoietic cells reside. In this review, we discuss the bone marrow niches in mice
that facilitate the survival, maintenance, and differentiation of cells of hematopoietic origin
based on the recent literature. Our review places a special focus on the hematopoietic
multipotent progenitors and on plasma cells, corresponding to the last stage of the B-cell
lineage, that play a key role in the humoral memory response. We highlight the similarities
between the microenvironments necessary for the establishment and the maintenance of
these two immune cell subsets, and how the chemokine CXCL12/CXCR4 signaling axis
contributes to these processes. Finally, we bring elements to address the following
question: are multipotent progenitors and plasma cells neighbors or roommates within the
bone marrow?

Keywords: bone marrow, hematopoietic stem and progenitor cell niches, multipotent progenitors, plasma cells,
lymphoid lineage, CXCR4, WHIM syndrome
INTRODUCTION

The bone marrow (BM) is a complex organ in which hematopoiesis takes place during adulthood.
Both hematopoietic and non-hematopoietic cell types cohabit in the BM and form distinct
environments capable of promoting cell differentiation and survival in response to the organism
needs. In this complex ecosystem, hematopoietic stem and progenitor cells (HSPCs) co-exist with
cells at various intermediate differentiation stages, including fully differentiated cells (e.g., plasma
cells [PCs]) (1). In the adult mouse, all functional hematopoietic stem cell (HSC) activity is found
within the Lin-Sca1+c-Kit+ (LSK) compartment, which comprises about 0.00125% of total BM cells.
This small cellular population is itself subdivided into various subsets based on the expression of cell
bbreviations: Ab, antibody; BCR, B Cell Receptor; BM, bone marrow; CLP, common lymphoid progenitor; EC, endothelial
lls; Emcn, Endomucin; GPCR, G protein-coupled receptor; HSC, hematopoietic stem cell; HSPC, hematopoietic stem and
rogenitor cells; LSK, Lin-Sca1+c-kit+; LT-HSC, long-term hematopoietic stem cell; MPP, multipotent progenitor; MSC,
esenchymal stromal/stem cell; PC, plasma cell; PSS, perisinusoidal stromal cell; PVS, perivascular cell; SCF, stem cell factor;
T-HSC, short-term hematopoietic stem cell; vWF, von Willebrand factor; WHIM, warts, hypogammaglobulinemia,
A
ce
p
m
S

infections, and myelokathexis; VCAM1, Vascular Cell Adhesion Molecule 1.
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surface markers such as CD34, CD135 (Flk2/Flt3), CD150, and
CD48 (2). Adult hematopoiesis is a thoroughly regulated process
that is initiated from quiescent pluripotent HSCs, which
encompass long-term HSCs (LT-HSCs) and short-term HSCs
(ST-HSCs) (3, 4). Multipotent progenitors (MPPs) are the
immediate progeny of HSCs. For several years, MPPs have
been considered as a homogeneous population with limited to
no self-renewal capacity – in contrast to the more immature
CD34-CD150+CD48- HSC compartment –, but with multi-
lineage differentiation potential toward the earliest myeloid and
lymphoid progenitors in the hematopoietic tree. However, recent
studies have shown that the MPP compartment is more
heterogeneous than expected and can be divided into four
distinct subsets with different lineage fates. MPP1, defined as
CD150+CD48-CD135-, shares characteristics with ST-HSCs
including multiple-lineage reconstitution ability (5, 6). At
steady state, they presumably give rise to functionally distinct
lineage-biased MPPs that are more proliferative, devoid of self-
renewal potential, and defined as megakaryocyte/erythroid
(ME)-biased MPP2 (CD150+CD48+CD135-), granulocyte/
macrophage (GM)-biased MPP3 (CD150-CD48+CD135-), and
lymphoid-biased MPP4 (CD150-CD48+CD135+) (4–7).
Although it is assumed that transition of HSCs from quiescent
to more proliferative states associated with differentiation
requires a unique set of bioenergetics demands, little is known
about the metabolic requirements of MPPs. The MPP
compartment is also dynamic and functionally plastic. In
particular, the lineage fate of MPPs seems to be not fixed and
can be redirected under specific conditions. Accordingly, the
Passegué laboratory showed that lymphoid-primed MPP4 with
their intrinsic GM poising contributed to myeloid output at
steady state and underwent a transient change in their molecular
identity that redirected them away from lymphoid differentiation
to participate, together with overproduced MPP2 and MPP3, in
the burst of myeloid production in blood regenerative conditions
(4). Moreover, increased myeloid differentiation is also observed
during chronic or infectious diseases, such as chronic
myelogenous leukemia and acute viral infection (8, 9), or
during homeostatic processes such as aging. Indeed, the
Trowbridge group recently reported a progressive loss of
lymphoid-primed MPP4 with aging concomitant with
expansion of HSCs (10). Apart from CXCL12 and IL-6, two
factors released by mesenchymal stromal/stem cells (MSCs) that
have been reported to regulate MPP homeostasis and
maintenance (11–14), our understanding of how cell-extrinsic
niche-related and cell-intrinsic cues drive the lymphoid versus
myeloid fate decision of MPPs is still incomplete.

Although not fully understood, it is now well established that
BM environmental cues are integrated by hematopoietic cells
throughout their differentiation and translate into distinct cell
fates. As a typical example, the chemokine CXCL12 produced by
non-hematopoietic stromal cells is essential to promote
Common Lymphoid Progenitor (CLP) differentiation toward
the B-cell lineage (15), through the progressive differentiation
of pro-B cells into pre-B cells and then into immature B cells (16,
17). This process is essential for efficient rearrangement of the
Frontiers in Immunology | www.frontiersin.org 223
immunoglobulin loci and production of a functional B-cell
receptor (BCR) (18–21). B cells then pursue their maturation
in the periphery and, upon activation during an immune
response and notably through the formation of germinal
centers, some B cells differentiate into PCs, which corresponds
to the final differentiation stage of the B-cell lineage responsible
for antibody (Ab) production. Most PCs are short lived but some
of them can relocate into the BM where they mature into long-
term PCs. This occurs in specific niches that support their
survival, maintenance and dormancy through cellular and
soluble factors and ensure long-term (potentially life-long)
protection against reinfection. Whether newly produced PCs
and long-lived PCs reside in and/or compete for identical niches
is still unknown (22, 23).

In the last two decades, the notion of niches has become an
essential part of how we envision the organization and function
of the BM ecosystem. Although the definition of “niches” may
vary depending on the studies, a unifying view is that they
correspond to complex, dynamic microstructures in which
several soluble and membrane-anchored factors are produced,
allowing the correct positioning of a specific cell type to favor
interactions with other cellular actors and access to all the
elements necessary for their maintenance or differentiation
(24). To date, the definition of what a niche should be is based
on the analyses of essential elements constituting the survival
and differentiation cues for HSCs. These niches are thought to be
composed of perivascular mesenchymal units associated with
sinusoids and arterioles (25–28). However, a great heterogeneity
may exist in these cell populations and should be integrated into
the definition(s) of a niche. Strikingly, the nature of the niche(s)
supporting the differentiation and maintenance of other cell
types, including MPPs and PCs, has not been studied in detail.
In this review, we will discuss these niches, with emphasis on the
essential cellular network needed for MPP and PC maintenance
within the mouse BM. Based on current literature, we will
delineate the roles played by specific stromal cells and various
actors in the MPP and PC niches and highlight common factors
necessary for the maintenance of these cell populations including
the CXCL12/CXCR4 signaling axis. We will also open a
discussion on three essential and unresolved questions: (1) Do
specific niches or interaction networks exist for each MPP and
PC subset?; (2) Do MPP and PC subsets share niches or compete
for them?; and (3) Do MPP and PC subsets regulate their own
niche or affect each other?
THE VASCULAR VERSUS OSTEOBLASTIC
NICHES: HOW FAR FROM REALITY?

Bones can be anatomically divided in four main categories: long,
short, flat and irregular bones. The long bones can be structurally
divided in the epiphysis, which is filled with spongy bone and red
marrow, the diaphysis, a tubular shaft, lined with a dense and
compact cortical bone, and the intermediate metaphysis, which
contains the epiphyseal plate that allows bone growth (29).
Moreover, it can be schematically divided in three major
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regions: the cortical bone that forms the hard-outer layer of
bones, a central cavity containing the marrow, and the
endosteum, which corresponds to the interface between the
cortical bone and the marrow. The endosteum is enriched in
fully committed bone-forming osteoblasts and bone-resorbing
osteoclasts and spreads along the inner bone surface (29).
Arteriolar vessels are found near the endosteum, longitudinally
aligned along the diaphysis and supply oxygen, nutrients, and
growth factors to the marrow. Most vessels within the marrow
are specialized venules called sinusoids that form a dense
network. The sinusoids finally merge into a central sinus to
form the venous circulation (24). In addition to this spatial
distribution, different types of BM endothelial cells (ECs) have
been phenotypically identified in long bones and in flat and
irregular ones as well (30). CD31loEndomucin(Emcn)lo L-type
sinusoidal ECs are enriched in the marrow cavity, which is
poorly occupied by CD31+Emcn- arteriolar ECs. Arteries co-
stain for Sca-1 and CD31 and the distal smaller arterioles are
surrounded by Sca-1+ mesenchymal and hematopoietic cells
(26). On the contrary, the bone compartment is enriched for
arteriolar ECs, few L-type sinusoidal ECs and CD31hiEmcnhi
H-type ECs, a small fraction of the ECs at the end of the
CD31+Emcn- arteriolar network (30, 31). The last ones were
demonstrated to be in close contact with osteoprogenitor cells,
providing niche signals that promote bone development and
maintenance, besides healing after fracture (30, 32). These well-
organized vascular structures, together with the cortical bone,
have been classically used to discriminate osteoblastic/endosteal
areas versus (peri)-vascular areas within the BM. The recent
identification of transcortical vessels crossing the bone cortex
(33) suggests that former concepts based on the dichotomy of the
osteoblastic and vascular niches are not absolute and led to the
reconciling concept of endosteo-vascular niches (25, 26). Indeed,
perivascular units likely integrate contributions from ECs and
osteoprogenitor cells, including MSCs and perisinusoidal
stromal (PSS) cells, as well as from fully differentiated
osteoblasts, leading to a more complex definition of the HSC
niches (26, 34, 35).

Recently, the use of transgenic mice allowing the tracking of
specific cell lineages, associated with single-cell RNA-seq
analyses, has permitted to better characterize the diverse
components of the BM environment and the heterogeneity of
the cell types composing the hematopoietic niches (36–40).
Moreover, imaging techniques that allow simultaneous
mapping of the HSPCs and interacting stromal cells have been
critical for the discovery of BM niches (36–39, 41, 42). Taken
together, these key results suggest that HSC niches constitute a
critical spatio-temporal regulatory unit composed of multiple
mesenchymal, hematopoietic, and neuronal cell populations
associated with different vessel subtypes that cross-interact in a
highly dynamic setting and where exchange of key signals leads
to multi-directional regulation of the different partners. Of note,
most of these findings were made using mouse models and extra-
caution is required when extrapolating these data to human in
which the BM composition might be different (e.g., the human
BM contains noticeably more adipocytes). Because the roles of
Frontiers in Immunology | www.frontiersin.org 324
several cell types and many soluble and surface-anchored factors
in the BM have been broadly studied and reviewed recently (17,
43–48), we will focus on how the different BM niches can
regulate and potentially determine HSC fate and differentiation
into lineage-biased MPPs in mice. Moreover, we will discuss
whether these early progenitors may share some niche elements
with differentiated mature cells, namely PCs.
HSC AND MPP NICHES: DISTINCT OR
SHARED?

HSCs are distributed throughout the BM and, under physiological
conditions, around 30% of them are in a quiescent stage.
Histological and functional assays first indicated that these slow-
cycling LT-HSCs preferentially localize in endosteal and sub-
endosteal regions, in association with the osteoblasts and the bone
surface (49–51). Subsequent studies suggested that mature
osteoblasts have an indirect effect on HSC activity and
maintenance (52–55), whereas osteoprogenitor cells control
HSPC survival and commitment. In particular, depletion of the
rare peri-arteriolar osteoprogenitors (also called pericytes) changes
the spatial locationofHSCs,whichmove away fromthe arteries and
acquire a non-quiescent state, thereby increasing the proportion of
proliferative cells (51, 56). Therefore, most of the fast-cycling
proliferative ST-HSCs, committed progenitors, and differentiated
cells aredistributed in the central region andpredominantly localize
next to sinusoids (52, 57, 58). This suggests that HSCs require
different perivascular niches based on their cell cycle status and that
specific endothelial or perivascular reticular/mesenchymal cells
orchestrate this process. The enrichment of HSCs in contact with
sinusoidal endotheliummay ensure a more efficient hematopoietic
cell mobilization (52, 59, 60). Several niche factors have been
reported to provide HSCs with instructive clues to regulate their
location, retention, self-renewing, and fate (57, 61–65). In
particular, Stem Cell Factor (SCF) and CXCL12 are required for
HSCmaintenance and retention in theBM(17, 63, 66, 67). PSS cells
identified by surface expression of the Leptin receptor (LepR)
promote HSC maintenance and the use of knock-in mouse
models showed that these cells are the main source of SCF and
CXCL12 (31, 57, 62, 63, 67–69). SCF is present in bothmembrane-
bound and soluble forms, and specific deletion of this factor from
PSS cells decreases the numbers of HSC in the BM (28, 56, 63, 69).
Similarly, CXCL12 is a chemokine required for HSC retention and
localization in theBM, andCXCL12deletion fromPSS cells reduces
HSC numbers, while impacting their quiescence status and their
distribution (35, 65, 67).

Despite these breakthroughs, it is still unclear whether
lineage-biased HSCs and MPPs are broadly distributed through
the BM or occupy specific niches. Consistent with this idea, it
was shown that platelet and myeloid-biased von Willebrand
factor-positive (vWF+) HSCs, which also express high levels of
CD150, reside in close association with megakaryocytes in the
BM. Megakaryocyte depletion leads to vWF+ HSC expansion,
loss of their long-term self-renewal capacity, and lineage-bias
after transplantation, suggesting that megakaryocyte-enriched
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niches promote HSC quiescence as well as commitment (70–72).
On the other hand, vWF- lymphoid-biased HSCs are rather
enriched in arteriolar niches, and depletion of peri-arteriolar
Neuron-glial antigen 2-positive stromal cells significantly
reduces this population with no effect on the myeloid-biased
cell numbers (72). Despite our partial understanding of the exact
location of lineage-biased HSPCs, it is clear that their positioning
within the BM plays a critical role in directing which lineage-
specific signals are received by hematopoietic precursors.

In line with this, some studies suggest that MPPs reside
further into the endosteal surface, in more perfused areas (59,
73), whereas others indicate that lymphoid specification of MPPs
occurs in parallel to their migration away from the endosteal
region, which is regulated by G protein-coupled receptors
(GPCRs) (74). This suggests that the myeloid versus lymphoid
specification of MPPs may occur in different locations within the
BM and under different, specific conditions. More recently,
CXCR4 expression was shown to be required for proper
localization and differentiation of lineage-specific precursors.
Indeed, Cordeiro-Gomes et al. showed that conditional
deletion of CXCR4 in MPPs reduced their differentiation into
CLPs and decreased lymphopoiesis, with a dramatic reduction in
B, T, and natural killer cell production and, to a lesser extent, in
myeloid progenitors (69). The CXCL12/CXCR4 signaling was
not intrinsically required for in vitro lymphoid development
from CLPs, but for promoting CLP positioning close to IL-7+
cells and proper IL-7R activation in vivo. Therefore, MPPs share
with HSCs the requirement for CXCL12 signaling and may
reside in similar niches, but in closer association with IL-7+
cells. Indeed, depletion of CXCL12 or SCF expression from IL-7+
cells reduced both HSC and MPP numbers in the BM (17, 69).
Further insights into the role of the CXCR4/CXCL12 signaling
axis on HSPC lineage commitment come from the study
of a rare immunodeficiency called the WHIM (warts,
hypogammaglobulinemia, infections, and myelokathexis)
syndrome (14, 75–77), that leads to severe chronic pan-
leukopenia. Most of the patients present an autosomal-
dominant mutation in CXCR4, associated with receptor
desensitization resistance and consequently gain of function in
response to CXCL12 (78–81). Using an original knock-in mouse
model of the WHIM syndrome (82), Freitas et al. reported that
the profound circulating lymphopenia was associated with a
decrease in lymphoid-primed progenitor numbers in the BM
with no difference in the number of myeloid progenitors (14).
Thus, efficient CXCR4 desensitization regulates lymphoid
differentiation of HSPCs in the BM, and absence of this
regulatory mechanism likely contributes to the lymphopenia
observed in the mutant mice and likewise in the patients. This
study identifies MPPs as the key hematopoietic stage at which
CXCR4 signaling termination impacts lymphoid, but not
myeloid, lineage commitment. Altogether, these works suggest
a pivotal role for GPCRs, including CXCR4 signaling, in
regulating the fate of MPPs, for which the BM niches and their
precise localization are still largely unknown.

MPPs are not a homogeneous cell population but are
composed of distinct subsets that give rise to more
Frontiers in Immunology | www.frontiersin.org 425
differentiated progenitors in a biased manner in mice. Where
these subsets are localized in the BM and how they interact with
their environment is still unclear. Distinct lineage-biased
precursors seem to express different set of adhesion molecules,
with myeloid-biased CD34+ precursors expressing more
frequently LFA-1 and L-selectin and expressing a lower surface
density of CD44, VLA-4, and VLA-5 than lymphoid-biased
precursors (83). Moreover, the Kondo laboratory reported
three MPP subsets based on CD135 and Vascular Cell
Adhesion Molecule 1 (VCAM-1) expression, which differed in
their myeloid potential but displayed similar lymphoid
differentiation capacities in vivo (84). The difference in
adhesion molecule expression pattern may thus correlate with
different adhesion capacities and stromal cell niche pairs, which
in turn could lead to integration of distinct signals driving cell
fate (Figure 1). Whether MPP subsets share identical niches is
unknown but one can speculate that they establish distinct sets of
interactions with their niche even if they share one. A recent
study by Balzano et al. showed that HSCs and pro-B cells are
frequently found in the same niche in contact with LepR+ PSS
cells but form specific interaction networks with these cells,
through SCF and CXCL12 for HSCs, and through IL-7 and the
basement membrane component Nidogen-1 for pro-B cells (31).
If this is also the case for the lineage-biased subsets of MPPs, it
could explain the different impact of the CXCL12/CXCR4 axis
on myeloid versus lymphoid differentiation (14, 69). Further
research is required to address whether MPP subsets reside in
distinct niches in the BM and how these niches influence their
cell program and fate.
PLASMA CELL MATURATION AND
MAINTENANCE: MORE THAN
ONE NICHE?

PCs correspond to the terminal stage of B-cell lineage
differentiation and are the effectors of humoral immunity
through the secretion of large amounts of Abs. Following
antigenic stimulation of their BCRs and/or activation through
the Toll-like receptors, B cells can initiate a differentiation
process leading to PC generation (85, 86). In vivo, this process
occurs in two waves. The first wave is called extrafollicular, is
very rapid, and leads to PC differentiation in the next few days
after antigen exposure (87–89). By contrast, the second wave is
delayed, depends on T-cell help, and relies on the formation of
germinal centers, which are an anatomical structure within
secondary lymphoid organs (90). After their generation in the
secondary lymphoid organs, the vast majority of PCs dies
rapidly, with a half-life ranging from a few days to a few weeks
at most; however, a small pool of PCs persists in the BM for
many years, potentially throughout the life of the individual (91–
94). Germinal center-derived PCs are “tailored-made” to be the
most efficient cell type against the infectious agent, and
considered as constituting the main pool of long-lived PCs that
persist in the BM.
April 2021 | Volume 12 | Article 658535

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bonaud et al. Niches for PC and MPP
After their formation in the secondary lymphoid organs, PCs
are still immature and are referred to as plasmablasts or short-
term PCs. Upon their migration to the BM, they terminate their
maturation to become fully differentiated long-term PCs (95).
Frontiers in Immunology | www.frontiersin.org 526
There is still some confusion in the field about the nomenclature
that should be used to refer to this intermediate stage of
differentiation. The terms plasmablast or short-lived PCs are
used interchangeably by some authors, whereas others reserve
FIGURE 1 | Interactions between hematopoietic multipotent progenitors and mesenchymal stromal/stem cells in the BM. Schematic representation of a multipotent
progenitor (MPP) in its BM environment and the possible interactions established with a mesenchymal stromal/stem cell (MSC). Membrane receptors, adhesion
molecules, and soluble niche factors previously described for hematopoietic stem and progenitor cell (HSPC) maintenance in the BM are represented. CXCL12, IL-7,
IL-6, and SCF are mainly produced by the MSC and bind to CXCR4, IL-7R, IL-6R, and cKit, respectively, at the surface of the MPP. MSCs also produce proteins of
the extracellular matrix, such as fibronectin (FN) and hyaluronic acid (HA), which promote cell adhesion through integrin receptors and adhesion molecules expressed
by the progenitor cells, such as VLA-4, VLA-5, and CD44. Interactions in the form of cell-cell contacts are also represented and involve VCAM-1 and VLA-4,
expressed by both cell types, as well as LFA-1 expressed by MPPs and ICAM-1 expressed by perisinusoidal stromal cells, pericytes, and osteoblasts. Stromal cell
factor (SCF) and FLT3L can be found as both soluble and membrane-bound forms. FLT3L is produced mainly by fibroblasts within the BM. IL, interleukin; ILR,
interleukin receptor. Figure created using the BioRender icon library.
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the term plasmablasts to in vitro-differentiated cells, which are
very immature compared to PCs obtained in vivo after antigen
exposure. These potential discrepancies are due to the lack of
proper markers for these different stages of PC maturation,
especially in mouse models. Of note, the recently published
combination of the CD138, TACI, B220, and CD19 markers
offers a new scope to discriminate mouse PCs based on their
maturation stage (96). In human, the combination of CD19 and
CD138 allows to distinguish three steps of PC maturation with
the most mature PCs expressing CD138 and losing the
expression of CD19 (97). B-cell differentiation into PCs starts
in secondary lymphoid organs and is marked by the shunting of
B-cell gene expression program. However, the initial event that
allows switching from B cells to PCs is not well understood
although a decrease in BCR signaling seems an absolute
prerequisite for PC differentiation (98).

Newly generated immature PCs upregulate the expression of
the transcriptional factor Klf2, which in turn promotes the
expression of the S1P1 receptor essential for PC egress from the
secondary lymphoid organs and their migration toward the BM
through blood circulation (99–104). Immature PCs express the
chemokine receptors CXCR4 and CXCR3 at their surface,
essential for their migration into the BM and inflammatory
sites, respectively (105, 106). Extravasation of PCs from blood to
BM through the sinusoids is still poorly described (107) but may
represent a key step allowing PC exit from the cell cycle and final
maturation, which is characterized by the loss of the B-cell
markers B220 and CD19 (96, 97). Once in the BM, the
expression of S1P1 and CXCR3 is downregulated in PCs, while
the expression of CD138, CD93, and CXCR4 is increased (103,
105, 106, 108–111). CXCR4 is essential for PC homing and, likely
retention within the BM as CXCR4-deficient PCs fail to
accumulate in this organ (108). Moreover, fine-tuning of
CXCR4 signaling is also critical for PC homeostasis in the BM,
because a CXCR4-gain-of-function is associated with aberrant
accumulation of immature PCs and decreased detection of
germinal center-derived antigen-specific PCs in the BM
(112, 113).

Once in the BM, PCs finish their differentiation, while
possibly losing their ability to migrate (101) and the last
remnants of their B-cell identity, including the expression of
the B cell co-receptors B220 and CD19 (96, 97, 114–116). Loss
of surface expression of BCR was long considered as a hallmark
of PC differentiation. However, several reports suggest that
some membrane BCR remain expressed at the surface of IgM+,
and perhaps IgA+, PCs and continue to induce signaling in PCs
(117, 118). PC terminal maturation is also associated with the
expression or re-expression of some markers that might reflect
their degree of maturity including CD138 in human, and CD28,
CD38, and CD93 in mouse (97, 110, 119, 120). Within the BM,
PCs stop cycling and become quiescent. Their long-term
maintenance depends on factors produced by specific
microenvironments, also called niches, whose functions are still
not fully understood.

Many studies have demonstrated the key role of BM stromal
cells in the maintenance of PCs, partially through their ability to
Frontiers in Immunology | www.frontiersin.org 627
produce CXCL12 (57, 121). Notably, CXCL12+ stromal cells
appear essential for PC maintenance, at least in vitro. The recent
identification of BM stromal cell diversity is just starting to be
integrated into the field of PC research; early work just referred
to “MSCs” without any further characterization. These “MSCs”
likely represent heterogeneous stromal subsets rather than bona
fide mesenchymal stem cells (101, 122–124). As mentioned
before, all stromal cells may not secrete CXCL12, and PSS cells
(sometimes referred to as CXCL12-abundant reticular cells) are
one of the main sources of this chemokine in the BM (17, 57, 65,
125). Accordingly, BM PCs were reported to be in close contact
with perivascular CXCL12+ stromal cells (57, 126, 127), but
further characterization of this presumed dialogue is still lacking.

The close contact established between stromal cells and PCs,
notably through integrins and their ligands should be considered
as well. Several recent studies have characterized fibronectin as
part of the culture-expanded MSC secretome, with an important
role in the final maturation and survival of PCs through
interaction with the receptor VLA-4 expressed by PCs (102, 122,
124, 128, 129). VLA-4 also interacts with VCAM-1 that is
expressed by stromal cells, thus reflecting an important
redundancy in adhesion mechanisms (121) (Figure 2). Similarly,
YWHAZ was found in the human MSC secretome and shown to
be essential for PC survival and maturation, potentially through
the downregulation of mTORC1 (124). LFA-1 through its
interaction with ICAM-1 is also essential, but not sufficient, for
PC maintenance because disruption of the LFA-1 signaling axis
only causes a transient loss of PCs in the BM (130). In vitro
experiments have also unraveled a major role for the adhesion
molecule CD44, which is highly expressed by BM PCs, for their
maintenance. Hyaluronic acid, the ligand of CD44, is a component
of the extracellular matrix and the signals induced through CD44
are important to support PC survival (122, 131).

Moreover, PCs require soluble factors for their maintenance.
Among them, IL-6 produced notably by eosinophils and stromal
cells in BM supports PC survival in vitro, although its role in vivo is
unclear (131–134). PCs also need specific factors for their long-
term survival, including TNFa and two cytokines, BAFF and
APRIL (135, 136). They express the BR3 (also called BAFF-R),
BCMA, and TACI receptors for these cytokines. APRIL is critical,
both in vitro and in vivo, for the maintenance of PCs through the
induction of the pro-survival factor Mcl1 (137). In the BM, APRIL
is mainly produced by myeloid cells (133, 138–140). Although
eosinophils were first reported to be essential for PC maintenance
in the BM, it is now accepted that they may play a redundant role
in PC maintenance, and that other cell types including
megakaryocytes, osteoclasts, monocytes, and even maybe
regulatory T cells may contribute to PC survival niches (141,
142). Altogether, these data suggest the existence of a multicellular
niche for PCs within the BM with several hematopoietic
components and at least one stromal component that may
correspond to a CXCL12+ osteoprogenitor. Whether the
composition of these survival niches differs between human and
mouse is still unknown.

Most of these studies have not discriminated between fully
differentiated long-lived PCs and newly produced immature
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ones. Although the phenotypic changes occurring in PCs as they
mature suggest that immature and fully differentiated PCs have
different needs for survival factors, further research is needed to
understand the actual mechanism. Moreover, the exact location
of PCs depending on their maturation stage has never been
assessed. The existence of distinct niches or of a distinct set of
interactions within a similar niche for PCs according to their
Frontiers in Immunology | www.frontiersin.org 728
maturation stage will require further investigation. In light of a
recent paper suggesting that PCs may actually exit the BM and
recirculate (143), it would be interesting to determine whether,
like for HSPCs, distinct niches control the quiescence and the
reactivation of PCs. Finally, BM PC plasticity, motility, and
effector functions through Ab and cytokine secretion also need
to be considered in the context of the dialogue established with
FIGURE 2 | Plasma cell maintenance in the BM. Schematic representation of the main elements necessary for plasma cell (PC) maintenance in the BM, mainly
provided by interactions with MSCs. MSCs that sustain PC maintenance are characterized by the production of CXCL12 and are probably CXCL12-abundant
reticular cells or PSS subpopulations. MSCs express VCAM-1 and FN that interact with VLA-4 and LFA-1. The main sources of APRIL and IL-6 are cells of myeloid
lineage (especially megakaryocytes and eosinophils for APRIL and megakaryocytes, granulocytes, and eosinophils for IL-6). The ligands for CD38 and CD28 are
expressed by other cell types and are not represented on this figure. The ligand of CD93 is unknown; however, this adhesion molecule is essential for the
maintenance of long-lived PCs. CXCL9, one of the ligands of CXCR3, is produced by osteoblasts. CD138 is one of the main markers for PCs and is characterized
by long heparan sulfate chains that trap molecules and allow interactions with the extracellular matrix. HA, hyaluronic acid; FN, fibronectin; IL, interleukin; ILR,
interleukin receptor. Figure created using the BioRender icon library.
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their niche(s) (23). Indeed, through their localization and
persistence, PCs may play an important role in the
maintenance of HSPC niches.
CONCLUDING REMARKS AND
UNANSWERED QUESTIONS

Although our understanding of the elements necessary for the
maintenance of MPPs and PCs within the BM has tremendously
improved during recent years, several open questions remain.
For instance, the localization of the different MPP subsets
remains unknown. Although PCs are found mainly in close
Frontiers in Immunology | www.frontiersin.org 829
contact with CXCL12+ cells, the nature of these cells and how
they drive the precise positioning of PCs in the BM is not well
understood. Whether PC localization changes during their final
maturation is also unclear. As highlighted in this review, several
factors of the BM niches are essential for the maintenance of
MPPs and PCs. Both cell types share common characteristics
including adhesion molecules such as CD44 and LFA-1, and
dependence on cytokine/chemokine such as CXCL12 and IL-6.
These similarities, together with the ability of MSCs to produce
some of the common factors and to support them in vitro, may
argue in favor of a unique niche able to maintain both MPPs and
PCs (Figure 3A). If true, whether MPPs and PCs share or
compete for these niches is an open question. Furthermore, it
A

B

FIGURE 3 | Possible BM niche models for MPPs and PCs. Schematic representation of two different models of multipotent progenitor (MPP) and plasma cell (PC)
niches within the BM. (A) In the first model, MPPs and PCs share common niches and reciprocally impact their biology, maintenance, and fate. (B) In the second
model, MPPs and PCs display distinct niches despite common ligand/receptor interactions, and potentially have an indirect impact on each other. Common molecules
for PC and MPP maintenance within the BM are shown. FN, fibronectin; IL, interleukin; ILR, interleukin receptor. Figure created using the BioRender icon library.
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is worth noting that in conditions where the BM homeostasis is
disrupted (e.g., inflammation, aging), PCs can indeed impact
HSPCs and MSCs. It is known that both myelopoiesis and the
number of PCs increase with aging in the BM. Recently, two
studies reported that PC accumulation with age regulates the
production of inflammatory factors by BM stromal cells, which
in turn promotes myeloid-biased HSCs (144, 145). This impact
on myeloid cells is probably due to the ability of PCs to produce
IL-10, one of the key drivers of the myeloid differentiation (145,
146). Consequently, both studies suggest a potential impact of
PCs on MSCs and on the skewing of MPPs toward myeloid
lineage with age (10). Moreover, external factors, such as dietary
restriction and exercise, instruct hematopoietic precursors and
mature lymphocytes via modulation of BM stromal cells (147,
148). Interestingly, in Multiple Myeloma, that is characterized by
a massive influx of malignant PCs in the BM, the architecture of
the BM is disorganized with numerous lytic bone lesions and the
hematopoiesis process is also frequently impaired. Myeloma PCs
alter the function of osteoclasts and adipocytes to support their
maintenance, through their ability to produce fatty acid and
growth factors like IL6 or TNF-a (149–153). In this context,
malignant PC-imprinted BM stromal cells support deregulation
of the HSPC compartment, suggesting that hematopoietic
dysfunction in Multiple Myeloma results from PC-related
microenvironmental alterations (154, 155). While the impact
of PCs on HSPCs seems clear in pathological settings, it is still
unknown whether PCs and MPPs may affect each other in the
“young” BM and at steady state.

Based on our current understanding of the BM ecosystem, we
cannot affirm that the maintenance of PCs and MPPs is carried
out by only one cell subpopulation of stromal cells. If the PSS
cells are a good candidate due to their strong expression of
CXCL12 and their perivascular localization, this cell population
is outnumbered by MPPs and PCs, which, albeit rare, are still
about 10 times more numerous than PSS cells. This simple
observation questions a model wherein cells may form
exclusive pairs in their niche. Furthermore, PCs and MPPs are
both heterogeneous populations. At least two populations of PCs
(based on their maturation status) and three distinct
subpopulations of MPPs have been described in the BM. It is
difficult to envision how these different subsets may coexist in
common niches. Moreover, long-lived PCs are terminally
differentiated and relatively quiescent cells, in contrast to
MPPs, which can cycle and differentiate, suggesting that both
Frontiers in Immunology | www.frontiersin.org 930
the MPP and PC pools display a differential turn-over. Such
restrictions suggest another model with two distinct niches for
MPPs and PCs, featuring common factors and with some
possible exchange and/or interactions. However, such niches
have not been characterized so far and more insights into the
relative functions of the heterogeneous MSC subsets will be
necessary to support this model (Figure 3B). In conclusion,
the two models proposed are equally possible and are not
mutually exclusive; indeed, the existence of dynamic
interactions between the BM, inter-, and/or intra-niches is
probably the closest to reality. This may be linked to the ability
of the cells to come and go and, consequently, to modulate their
niche to fit their own needs.
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128. Roldán E, Garcıá-Pardo A, Brieva JA. VLA-4-fibronectin interaction is
required for the terminal differentiation of human bone marrow cells
capable of spontaneous and high rate immunoglobulin secretion. J Exp
Med (1992) 175:1739–47. doi: 10.1084/jem.175.6.1739

129. Cornelis R, Hahne S, Taddeo A, Petkau G, Malko D, Durek P, et al. Stromal
cell-contact dependent PI3K and APRIL induced NF-kB signaling prevent
mitochondrial- and ER stress induced death of memory plasma cells. Cell
Rep (2020) 32:107982. doi: 10.1016/j.celrep.2020.107982

130. DiLillo DJ, Hamaguchi Y, Ueda Y, Yang K, Uchida J, Haas KM, et al.
Maintenance of long-lived plasma cells and serological memory despite
mature and memory B cell depletion during CD20 immunotherapy in mice.
J Immunol (2008) 180:361–71. doi: 10.4049/jimmunol.180.1.361

131. Cassese G, Arce S, Hauser AE, Lehnert K, Moewes B, Mostarac M, et al.
Plasma cell survival is mediated by synergistic effects of cytokines and
adhesion-dependent signals. J Immunol (2003) 171:1684–90. doi: 10.4049/
jimmunol.171.4.1684

132. Jourdan M, Cren M, Robert N, Bolloré K, Fest T, Duperray C, et al. IL-6
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Notch Signaling in the Bone
Marrow Lymphopoietic Niche
Kilian Sottoriva and Kostandin V. Pajcini*

Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago,
IL, United States

Lifelong mammalian hematopoiesis requires continuous generation of mature blood cells
that originate from Hematopoietic Stem and Progenitor Cells (HSPCs) situated in the post-
natal Bone Marrow (BM). The BM microenvironment is inherently complex and extensive
studies have been devoted to identifying the niche that maintains HSPC homeostasis and
supports hematopoietic potential. The Notch signaling pathway is required for the
emergence of the definitive Hematopoietic Stem Cell (HSC) during embryonic
development, but its role in BM HSC homeostasis is convoluted. Recent work has
begun to explore novel roles for the Notch signaling pathway in downstream progenitor
populations. In this review, we will focus an important role for Notch signaling in the
establishment of a T cell primed sub-population of Common Lymphoid Progenitors
(CLPs). Given that its activation mechanism relies primarily on cell-to-cell contact,
Notch signaling is an ideal means to investigate and define a novel BM lymphopoietic
niche. We will discuss how new genetic model systems indicate a pre-thymic, BM-specific
role for Notch activation in early T cell development and what this means to the paradigm
of lymphoid lineage commitment. Lastly, we will examine how leukemic T-cell acute
lymphoblastic leukemia (T-ALL) blasts take advantage of Notch and downstream
lymphoid signals in the pathological BM niche.

Keywords: lymphopoiesis, hematopoieisis, Notch signaling, T cell development, bone marrow niches
INTRODUCTION

Notch signaling is a highly conserved pathway activated through cell-to-cell, ligand-receptor
interactions. There are five Notch ligands in mammals: Delta like (Dll) 1, 3 and 4 and Jagged
(Jag) 1 and 2 which are presented on the surface of multiple cells and tissues (1). When the ligand
interacts with one of the 4 mammalian Notch receptors, (Notch1-4) a series of proteolytic cleavages
releases the Notch receptor from the plasma membrane (2). Subsequently, the intracellular Notch
(ICN) domain translocates to the nucleus, where it binds to Recombining Binding Protein
Suppressor of Hairless (RBP-J) and co-activator Mastermind-like (MAML) (2, 3). Ultimately, it
is this tri-molecular complex that binds to enhancer and promoter elements to initiate
transcriptional activation of target genes. Along with Wtn, Hedgehog, and Bone Morphogenic
Peptide/TGF- b, Notch signaling is one of the fundamental pathways essential for mammalian
embryogenesis (4). Notch signaling plays a multitude of roles in the differentiation, proliferation,
self-renewal, and survival in diverse cell types across many tissues (5). Particularly well studied are
the roles of Notch1 in somite segmentation (6, 7), in angiogenesis and vascular development (8, 9),
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and the emergence of the definitive hematopoietic stem cell (HSC)
in the aorta-gonad-mesonephros (10, 11). In the post-natal murine
BM, HSC cell-autonomous and non-cell-autonomous Notch
signaling has been implicated in several contexts including aging,
regeneration, and mobilization, reviewed in these studies (12–15).
Though loss-of-function studies in adult mice do not support a
requirement for HSC cell-autonomous Notch activation during
homeostasis (16, 17) and in one more recent study in regenerative
hematopoiesis (18), Notch signaling has been implicated in the
development of several different blood lineages, including
megakaryocytes (19), NK cells (20), and erythrocytes (21). Yet, it
is the role of Notch signaling in the cell fate determination of the T
cell lineage that remains as the archetypic functionof thepathway in
adult hematopoiesis (22, 23).

The developmental progression from the BM HSC to the
production of functional peripheral T cells is physiologically
continuous but can be delineated using surface markers and
expression of key transcriptional regulators. In both mouse and
human, BM lymphoid progenitors give rise to thymic precursors,
which progress through well-defined developmental stages in the
thymus to become naïve T cells (24). Progression through
distinct stages of thymic T cell development requires the
careful coordination of several lineage regulatory transcription
factors, including: Ikaros, Gfi1, Myb, Runx family proteins, E2A,
HEB, TCF1, GATA3, Bcl11b, LEF1, and of course Notch1 (25).
In the thymus, the roles of Notch signaling have been well
studied. After homing to the thymus, early progenitors activate
Notch signaling, which is required for thymocyte development
(26–28). Notch is implicated in a variety of functions such as
inhibition of progenitor apoptosis, induction of T cell lineage
master regulators Gata3, Tcf7, and Bcl11b, as well as activation of
genes involved in functional T cell receptor (TCR) production
such as Ptcra (29–31). Notch signaling becomes dispensable for
T cell differentiation after b-selection occurs, at which point
subsequent development is dependent on signals from the pre-
TCR complex (29, 32). Themain receptor expressed by thymocytes
is Notch1, while the major Notch ligand expressed by cortical
Thymic Epithelial Cells (TECs) is Delta-like 4 (Dll4) (30, 33).
While the role of Notch in T cell development in undeniable, the
temporal and spatial aspects of the first requirement for Notch in
driving T cell fate have not been fully established. Recently, several
findings have begun to address this issue by suggesting that pre-
thymic Notch signals influence the ability of primitive BM
lymphoid progenitors to produce thymus-seeding cells (18, 34,
35). Here, we will review the work which encompasses our current
understanding of the BM populations that give rise to thymic
progenitors, and the role of Notch signaling as a niche
component in driving this process. Under this new paradigm of
pre-thymicNotch activation, wewill then examine the pathological
Notch-dependent mechanisms of the lymphoid niche in the
leukemic BM environment.
BM THYMOCYTE PROGENITORS

In adult mammals, the hematopoietic system is maintained via the
production offunctional blood cells and hematopoietic progenitors
Frontiers in Immunology | www.frontiersin.org 236
by self-renewingHSCs in the BM (36). The BMmicroenvironment
is composed of osteoprogenitors, stromal cells, endothelial cells,
and multiple hematopoietic cell types (Figure 1) (37, 38). At the
apex of BM hematopoiesis is the HSC, which is defined best by its
self-renewal and functional capacity to produce all the lineages of
blood rather than by a specific set of markers. Even so, for isolation
purposes the HSC has been classified by surface markers as Lin-

cKit+Sca1+CD150+CD48- (39), by thepresenceof effluxpumps (40)
andby the expression of intracellular proteins includingHoxb5 and
a-catulin (41, 42). Next in the hematopoietic hierarchy are the
HSPCs, which in murine hematopoiesis are generally classified by
the combinationof Lin-cKit+Sca1+ andbecome increasingly lineage
committed. This differentiationpotential arises at the expense of the
capacity to self-renew (43, 44). As the HSPCs gain lineage specific
potential, they begins to express surface proteins which have been
used to define specific progenitor populations in the BM, termed
Multipotent Progenitor Populations (MPP) (45–47).

In the case of early BM lymphopoiesis, several progenitor
populations have been described. Cells within the HSPC pool
which express the tyrosine kinase receptor Fms-like tyrosine
kinase 3 (Flt3) have been labeled as lymphoid-primed MPPs
(LMPP), also termed MPP4 (45, 48–50). LMPP lineage output is
functionally distinct from myeloid biased MPP2 (Flt3-

CD48+CD150+) and MPP3 (Flt3-CD48+CD150-) populations
as determined via murine transplantation experiments (50).
LMPPs were shown to have equivalent B and T cell potential,
retain some granulocyte and monocyte potential, but lack the
ability to produce erythroid and megakaryocyte lineages (49, 51).
LMPPs can be further segregated into lymphoid biased cells
through expression of a selection of surface proteins. The
Interleukin 7 receptor (IL7r), which is required for lymphoid
development, is expressed on a subset of LMPPs which efficiently
generate T cells and innate lymphoid cells in a murine
transplantation setting (52, 53). L-selectin (CD62L) is involved
in the trafficking of naïve lymphocytes to peripheral lymphoid
organs by binding to a selection of different glycan residues and
can be used to specify T lineage progenitors in the BM (54–57).
Expression of CD62L separates LMPPs which have transient B
cell potential and can yield rapid thymocyte production, but lack
the ability to produce cells of myeloid lineages (58). Furthermore,
CD62L upregulation has been shown to be an early event in the
lymphoid priming of human BM progenitors (59).

Additionally, Vascular Cell Adhesion Molecule 1 (VCAM1)
and Flt3 expression can be used to segregate MPPs with
combined lymphoid/myeloid (Flt3hiVCAM1+), erythroid
(Flt3loVCAM1+), or B and T cell potential (Flt3hiVCAM1-)
(60). VCAM1 is a cell adhesion molecule with roles in vascular
adhesion and transendothelial migration of leukocytes (61, 62).
Originally identified on the surface of endothelial cells (63, 64),
VCAM1 has since been found to be expressed on the surface of
multiple cell types including hematopoietic progenitors,
macrophages, and BM fibroblasts (65). It is through ligand
binding, specifically the a4b1 integrin (CD49d/CD29) and
a4b7 integrins expressed on the surface of leukocytes, that
VCAM1 mediates adhesion and transmigration of T cells and
macrophages (61, 66). The VCAM1- LMPP population in the
BM homogeneously expresses Flt3, and expression of C-C
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chemokine Receptor type 9 (CCR9), which also is suggested to
play a major role in the recruitment of BM derived cells to the
thymus, further delineates a subset of T cell progenitors (67–69).
Taken together, MPPs expressing Flt3, IL7r, CD62L, CCR9 and
lacking VCAM1 appear to be the main HSPC component
contributing to B and T cell development.

Downstream of the LMPP population, the Common
Lymphoid Progenitor (CLP), which in murine hematopoiesis is
isolated by surface markers Lin-cKitLoSca1LoFlt3+IL7r+,
represents a canonical branching point between myeloid and
lymphoid development and is restricted for lineage production of
Natural Killer (NK), B cell and T cell development (70). IL7
signaling is critically involved in BM B cell and thymic T cell
lymphopoiesis, and the CLP population is defined by IL7r
expression (70–72). Surface expression of Lymphocyte Antigen
6 Family Member D (Ly6D) can be used to divide the CLP
population into those with T cell biased potential (Ly6D-) and B
cell biased potential (Ly6D+) (73–75). Downstream of the CLP in
Frontiers in Immunology | www.frontiersin.org 337
bone marrow NK development is the Pre-Natural Killer
Progenitor (Pre-NKP) and Refined Natural Killer Progenitor
(rNKP) (76). In B cell development, the CLP differentiates into a
series of BM sub-populations traditionally referred to as the Hardy
Fractions (43), of which Fraction A (B220+CD43+CD24−BP-1-) is
immediately downstream of the CLP (77–79). The next well-defined
downstream T cell lineage progenitor of the CLP is the early T
lineage progenitor (ETP), which is the earliest T cell progenitor in
the thymus (80, 81).

While both LMPPs and CLPs possess T cell lineage potential,
efforts to determine the exact BM progenitor population which is
the Thymic Seeding Progenitor (TSP) have yielded conflicting
reports. Although transplantation of CLPs yields thymus
engraftment and thymopoiesis, Ikaros-deficient mice have been
shown tohave thymicETPswithout a detectableCLP population in
the BM (82, 83). Additionally, IL7r+ LMPPs can generate
thymocytes in a CLP-independent manner post-transplant (53).
A potential resolution for this issue has been proposed during
FIGURE 1 | The BM niche for pre-thymic T cell progenitor development. LMPPs and CLPs reside in the endosteal niche. Notch, IL7r, and CXCR4 ligands are
derived from the osteoblastic and stromal niche, while SCF is provided from peri-arteriolar cells. Flt3L is provided by mature immune cells. Overall, these signaling
pathways converge to stimulate lymphoid progenitors to the T cell lineage.
July 2021 | Volume 12 | Article 723055
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pre-natal thymopoiesis, where TSPs are produced in two separate
waves, the first of which resembles CLPs and a second resembling
LMPPs (84). However, a caveat to these findings is the use of
transplantation to determine functional kinetics of TSP generation,
which requires removal of these BM resident populations and
injection into a recipient’s bloodstream. Thus, while TSP
generation is determined in vivo, the path of the populations in
question from the BM to the bloodstream and finally the thymus is
in the form of a transplant and does not necessarily mimic natural
BM egress and thymic homing. This a principle commonly seen in
HSCstudies,where ithasbeenrecognized that transplantation leads
to oligoclonal dominance that does not reflect unperturbed
hematopoiesis (85, 86). In order to more accurately determine the
BM source for TSP generation, additional methods such as in vivo
lineage tracing and single cell RNA sequencing should be applied,
such as in recent work which unveiled direct production of
megakaryocyte progenitors (MkP) from long term HCSs (LT-
HSCs) (87). Thus, while the exact BM population for TSP
generation has yet to be specifically determined, both the LMPP
and CLP populations remain viable sources.
PRE-THYMIC NOTCH SIGNALING
IN LYMPHOPOIESIS

Notch signaling is essential for T cell development as shown by
the seminal loss-of-function studies by Radtke F et al. (28).
However, similar loss of function experiments that deleted the
DNA binding member of the trimolecular complex RBPJ (88–
90) as well as pan-Notch inhibition with a Mastermind
truncation named dominant-negative Mastermind (dnMAML)
(17) all indicated that loss of Notch signaling in the BM HSC
population had no effect on HSC homeostasis in adult mice.
However, as we have described above, several stages of progenitor
differentiation occur between the HSC in the BM and the
emigrating TPS. The critical temporal question is whether Notch
signaling is activated and required for development of the LMPP,
CLPor the ETP. Early insight into the role ofNotch inBMT lineage
lymphopoiesis can be found in studies which showed that the CLP
population expresses Notch1 at the mRNA level, and that Notch1
deficient CLP cells erroneously differentiate into B cells in the
thymus (91, 92). BM cells transduced with dnMAML failed to
produce ETP cells post-transplant, once again hinting at a pre-
thymic role for Notch in ETP generation (26). It was further
observed that CCR9+ T cell biased MPPs have the potential to
activate Notch signaling (68). To determine the expression of
individual Notch receptors in HSPC populations, an in vivo
lineage tracing system has been developed. Cre-recombinase was
“knocked into” the individual loci for Notch1-4, which allowed for
determination of receptor expression using a fluorescent Cre-
reporter mouse strain. This system revealed Notch1 expression in
LMPPs, Notch1 andNotch2 expression in CLPs, and an absence of
Notch3 or Notch4 in either population (21).

Abrogation of Notch signaling in the BM through inhibition
or genetic deletion of Notch receptors or ligands has indicated a
role for Notch-dependent T cell progenitor development in the
Frontiers in Immunology | www.frontiersin.org 438
BM. Injection of Notch ligand Dll4 neutralizing antibodies,
which have been shown to block ligand specific signaling, leads
to a decrease in the BM CLP population (93, 94). Consistently,
deletion of either Notch ligand Dll4 or Mindbomb (Mib), which
is involved in Notch ligand endocytosis, in Osteocalcin (Ocn)
expressing bone cells led to a significant decrease in the CLP
population (34, 95). Similar results were obtained when either
RBP-J or GDP-fucose protein O-fucosyltransferase 1 (POFUT1)
were deleted from BM hematopoietic progenitors (34, 96). The
CLP defect observed after conditional deletion of osteoblastic
Dll4 underscores the potential existence of an osteoblastic niche
for Notch-dependent priming of BM lymphoid progenitors
(Figure 1). Indeed, it has been shown that C-X-C Motif
Chemokine Ligand 12 (Cxcl12) derived from osteoblasts, and not
endothelial or hematopoietic cells, is required for CLP and LMPP
maintenance in the BM niche (97). The osteoblastic niche has also
been implicated in BM B cell progenitor development, through
stimulation of HSCs towards the lymphoid lineage via Gsa
dependent osteoblast IL7 production (98–100). Peri-arteriolar
LEPR+Osteolectin+ cells have also been shown to stimulate CLP
development through secretion of SCF (Figure 1) (101). This
osteoblast-derived SCF secretion decreases in aged mice which
have an imbalance in blood lineageoutputwith a propensity toward
myeloid populations (101, 102).

While there is mounting evidence supporting the osteoblastic
microenvironment as a lymphoid sub-niche in the BM, there are
also reports that implicate different niche cells in the priming of
lymphoid progenitors. For example, endothelial cells which express
high levels ofNotch ligandsDll4 and Jag1 (103) havebeen suggested
as an alternative niche for lymphoid progenitor development.
Deletion of endothelial expression of Dll4, but not Dll1, leads to a
decrease in the frequencyofCLPcells,withnoeffecton theLMPP in
the BM (104). However, a direct contribution of endothelial Notch
ligand to CLP Notch receptor activation was not shown, and the
potential mechanism of CLP depletion was myeloid skewing of
upstream HSCs. Additionally, conditional deletion of Cxcl12 in
endothelial cells lead to specific depletion of HSCs in the BM, not
lymphoid progenitors (97). Furthermore, deletion of SCF derived
from peri-arteriolar LEPR+ cells, and not arteriolar or sinusoidal
endothelial cells, depleted CLP cells in the BM (101, 105, 106).
Taken together these experiments do not support a direct
contribution of endothelial derived factors in lymphoid
progenitor maintenance during steady-state hematopoiesis in the
adult mouse bone marrow.

In most circumstances, the proposed endothelial niche, be it
sinusoidal or peri-arterial (101), has been shown to sustain
stemness and support self-renewal of HSCs or HSPCs, which
by virtue of their hierarchical position in BM hematopoiesis yield
more downstream progenitors including CLPs (107, 108). This is
evident in several experiments where regenerating or expanding
endothelial compartments produce more HSCs and by
connection more lineage specific progenitors (109–112).
Because Notch signaling is essential for endothelial growth and
regeneration, and because the endothelium is a primary niche for
HSCs, the effects observed in the CLP compartment could be
attributed to an increase in the general abundance in HSC
July 2021 | Volume 12 | Article 723055
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numbers. Disassociation of the intrinsic role of Notch signaling
in arterial cell fate and endothelial function must first be shown
to determine if endothelial cells represent the key components of
the BM lymphopoietic niche.

Hematopoietic derived signals have also been shown toplay a role
in CLP homeostasis. Flt3 and Flt3-Ligand (Flt3-L) regulate both
myeloid and lymphoid hematopoiesis, and Flt3-L knock-out mice
havea severedefect inCLPgeneration(113,114). Interestingly,Flt3-L
has been shown to be produced in the BM by immune cell
populations, including CD4+ memory T cells, rather than stromal,
endothelial, or osteoblastic niche cells (115, 116). Although a role for
Notch inregulationofFlt3 inhomeostatic lymphopoiesishasyet tobe
established, canonical Notch target Hes1 transcriptionally represses
Flt3 expression in Acute Myeloid Leukemia (AML) (117).
Additionally, lymphoma/leukemia-Related Factor (LRF), which
plays a role in erythroid and late lymphoid lineage decisions,
downregulates Dll4 in BM erythroblasts, thus preventing a Notch1
dependent increase inCLPgeneration at the expense of theHSCpool
(118–120).

Confirmation of the existence of the lymphopoietic sub-niche in
the BMhas been supported by other studies that have shown a cell-
intrinsic role for Notch receptor activation in BM lymphoid
development. Hematopoietic LRF expression promotes proper B
cell development through suppression of Notch signals in CLPs,
andhematopoietic deletion ofLRF leads to enhancedNotch activity
and extra-thymic CD4+CD8+ T cell generation in the BM (121).
Hypomorphic Notch signaling achieved by deletion of the Notch1
Transcriptional Activation Domain (TAD) showed a significant
decrease in CLP abundance in the BM (18, 122). Furthermore, an
inducible RBPj on/off genetic mouse model has confirmed a role of
pre-thymic Notch signaling. Specifically, Notch signaling through
RBPj is involved inCD62L+ LMPP generation, with no effect in the
T cell primed Ly6D- CLP (35). Collectively, these findings
confirm a cell-intrinsic role for Notch signaling in pre-thymic
T cell progenitor development in the BM microenvironment.
MECHANISMS OF NOTCH IN
CLP DEVELOPMENT

The activation of the Notch receptor is only the first step in the
signaling pathway that eventually leads to transcriptional
activation of target genes. While a direct role for Notch
signaling in pre-thymic progenitor development is evident, the
cell intrinsic mechanisms that prime T cell development
downstream of Notch in the BM are unknown. A possible
mechanism involves the regulation of receptors that are
important for cellular migration and tissue retention. Recently,
a genetic mouse model for inducible deletion and subsequent
inducible expression of RBPj in vivo has been developed (35). In
this model, floxed Rbpj can be conditionally deleted through an
inducible Vav-Cre transgene, while a tetracycline responsive
element-controlled hemagglutinin (HA)-tagged RBPJ transgene
can be induced via doxycycline (Dox) injection. RNA sequencing
of LMPP cells isolated from Rbpjf/+ control, RBPj knock-out, and
Dox induced RBPj-HA expressing mice suggested that PSGL1,
Frontiers in Immunology | www.frontiersin.org 539
CCR7, and CCR9 are regulated by Notch signaling in the CD62L+
LMPP population (35). Additionally, deletion of Dll4 in the
osteoblastic niche lead to a decrease in CLP cells expressing
CCR7 and P-selectin glycoprotein ligand-1 (PSGL1) (34).
PSGL1, CCR7 and CCR9 are all involved in the recruitment and
migration of BM derived progenitor cells to the thymus (69, 123,
124). However, Notch signaling has also been shown to directly
repress CCR9 expression in fetal liver derived T cell progenitors
produced via co-culture with stromal cells expressing Dll1 (125).
The caveat of fetal progenitor acclimation to ex vivo co-culture
conditions could account for these contrary results. Overall, these
observations highlight the possibility that Notch activation in BM
lymphoid progenitors prepares cells for thymic migration through
induction of genes involved in thymic homing.

Another chemokine pathway involved in BM hematopoiesis
is CXCR4/CXCL12, which regulates migration, survival, and
quiescence of various progenitor populations (126–130).
CXCL12 is expressed by several cell types in the BM, including
endothelial cells, osteoblasts, stromal cells, and hematopoietic
cells (131). Interestingly, stromal CXCL12 production and HSC
release from the BM have been shown to be influenced by
circadian neural release of noradrenaline, which activates
AdrB3 receptor on Nestin+ osteoprogenitors (132, 133).
Although migration of mature leukocyte populations in the
BM is regulated in part by circadian rhythms, a direct role for
circadian influences on BM lymphoid progenitor biology has yet
to be established (134). In humans, there is evidence that
MCAM+CD146+ subendothelial stromal cells express CXCL12
(135). Hematopoietic deletion of CXCR4 results in a reduction of
the BM stem cell pool. Specifically affected are HSCs in close
contact with CXCL12-abundant reticular cells which surround
sinusoidal endothelial cells in the BM (136). CXCR4 has also
been shown to regulate the integrity of the vascular barrier in the
BM, which further modulates hematopoietic trafficking (137).
Work in multiple cell types has revealed dynamic regulation of
CXCR4 by the Notch pathway in both mouse and human
mesenchymal and endothelial cells (138–142). In the BM,
Notch2 has been shown to directly activate CXCR4 expression
in HSPCs, while stromal production of CXCL12 has been shown
to play a role in CLP maintenance (143, 144). It should be noted,
however, that blockade with a Notch2 specific antibody yields
only a modest reduction of the CLP population compared to a
30% decrease with antibody blockade of Notch1 (144).
Furthermore, mice expressing CXCR4 mutations derived from
patients with Warts, Hypogammaglobulinemia, Infections, and
Myelokathexis (WHIM) syndrome, which prevent receptor
internalization and desensitization, have decreased LMPP and
CLP populations (145). These findings suggest a potential role
for the CXCR4/CXCL12 axis in the CLP population by placing
the CLP near CXCL12-abundant reticular cells, which have
further been shown to provide CLPs with the pro-lymphoid
cytokine IL7 (72, 126, 146). These observations highlight the
potential for the Notch-CXCR4 pathway in lymphoid progenitor
development and trafficking within the BM niche.

Lineage commitment of BM hematopoietic progenitors is a
complex process involving coordination of cell fate determining
July 2021 | Volume 12 | Article 723055
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transcriptional networks, which contribute to the heterogeneity
of the progenitor pool (44, 86, 147). Given that Notch signaling is
essential in the differentiation and maturation of thymic T cells, a
direct functional role for Notch signaling in the early BM
hematopoietic lineage decisions is a strong possibility (5, 25).
Indeed, Dll4 expressed by vascular cells has been shown to
suppress the myeloid transcriptional program in HSCs (104).
Abrogation of Notch within hematopoietic progenitors leads to
an altered myeloid differentiation program, with an increase in
GMP production at the expense of MEPs and CMPs (19, 148). In
the context of lymphoid progenitors, RNA sequencing has
shown that Notch inhibits the myeloid program in both the
thymic DN1a/b population and the CD62L+PSGL1+CCR9+

subset of LMPPs, which constitutes a putative TSP population
(35, 58). Additionally, deletion of Dll4 in Ocn+ BM osteoblasts
yields specific depletion of the T lineage primed Ly6D- CLP
population, hinting at a role for endosteal Notch signaling in
influencing B cell vs T cell fates in BMCLPs (34, 73). Such a role has
also been established in the thymus, as thymocyte Notch signaling
inhibits expression of B-lineage specific factors EBF1 and Pax5 (80).
Taken together, there are likely multiple distinct roles for the Notch
pathway in the priming and generation of lymphoid progenitors in
the BM, including activation of receptors involved in niche
trafficking and repression of alternative lineage potential.
NOTCH IN BM LEUKEMIC NICHE

Notch signaling has been implicated in progression of various
types of cancer, including Acute Lymphoblastic Leukemia (ALL)
(149). Notch signaling plays a well-established role in T-cell
acute lymphoblastic leukemia (T-ALL), which is a neoplasm of
T-cell blasts accounting for 25% of adult ALL (150). Greater than
60% of patient samples contain mutations in the Notch pathway,
with several gain of function mutations in the Notch1 gene, and
inactivating mutations in negative regulators of Notch signaling,
including FBW7 (151–158). Notch3, which is a Notch1 target
gene, has also been shown to play a role in T-ALL (159–161).
Mechanisms of Notch signaling in T-ALL oncogenesis include
promotion of anabolic cell growth and chemoresistance,
activation of the PI3K-AKT-mTOR pathway, and induction of
genes involved in G1/S cell cycle progression (158, 162, 163).
Notch has also been implicated in B cell leukemias. Hyperactive
Notch1 and Notch2 have been shown to sustain B cell Chronic
lymphocytic leukemia (B-CLL) (164–167). Conversely, all Notch
receptors and the Notch target Hes5 have been shown to act as
tumor suppressors in B cell ALL (B-ALL). Even so, Notch3 and
Notch4 can prevent apoptosis of human B-ALL cells cultured on
human stromal cells ex vivo (168–170).

In the context of the BMmicroenvironment, leukemic cells have
been shown to modulate the hematopoietic niche to form a pro-
leukemic microenvironment at the expense of homeostatic
hematopoiesis (Figure 2) (171). Interestingly, and unlike
homeostatic lymphoid progenitors, Notch driven T-ALL cells are
notmaintainedbya specificBMniche, but lead to remodelingof the
endosteal niche and loss of osteoprogenitors (172). Such
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remodeling leads to perturbations in BM hematopoiesis,
including reduced quiescence of HSCs and more severe leukemia
progression (173). Additionally, a multitude of cell extrinsic
signaling molecules have been implicated in the pathogenesis of
T-ALL (174). The CXCL12/CXCR4 pathway is involved in homing
of T-ALL cells to the bone marrow and in Leukemia Initiating Cell
(LIC) activity (175). LICs propagate leukemia progression via their
ability to both self-renew and produce clonal daughter blasts (176).
Similarly to homeostatic HSPCs, T-ALL cells are subject to
increased CXCR4 expression and activity downstream of Notch
activation (144, 175, 177, 178). In human Chronic Lymphoid
Leukemia (CLL) and Multiple Myeloma (MM), CXCR4 is also a
direct transcriptional target of Notch1 (179, 180). Furthermore,
CXCL12 receptor CXCR7 has been shown to be transcriptionally
activated by Notch signaling in T-ALL and potentiates CXCR4
signaling and migration (181, 182). This pathway has become
clinically relevant since CXCR4 inhibition has shown therapeutic
potential in T-ALL (183). Specifically, direct CXCR4 antagonism
prevents migration of CD4+/CD8+ leukemic cells from the thymus
to the bone marrow in hypermorphic Notch3 transgenic mice
(178). Furthermore, CXCR4 deletion in Notch1-induced T-ALL
cells or CXCL12 deletion in endothelial, but not perivascular cells,
limits T-ALL progression in mice through induction of cell death
(177, 183). Thus, the CXCR4/CXCL12 axis, regulated in part by a
hyperactive Notch pathway, is involved in the homing and
progression of several leukemia subtypes in the BM niche.

IL7 signaling is critical for lymphopoiesis and, in the context of
T-ALL, itplaysa role in activationof the JAK/STAT5andPI3K/Akt/
mTORpathways, with 10% of patient leukemia samples containing
activating IL7r mutations (184–186). Stromal derived IL7 has been
shown to activate the PI3K/Akt pathway, which is the dominant
pathway mediating the proliferative and pro-survival signals
downstream of IL7 in T-ALL cells (187–189). Notch1 activates
IL7r transcription inhumanhematopoietic progenitors, aswell as in
murine leukemia cells (190–192). Additionally, in a human T cell
leukemiacell line, IL7rhas been shown tobedirectly co-regulatedby
Notch1 and RUNX1 (182). Thus, hyperactive Notch signaling
contributes to the IL7 dependent proliferation of BM T-ALL cells.
Another growth factor involved inBM lymphopoiesis is Insulin-like
growth factor 1 (IGF1), which is released from osteoblasts,
osteoclasts, and stromal cells in BM and is critical for bone growth
(193, 194). Bone marrow levels of IGF1 decrease with age, resulting
in increased myeloid bias of HSCs, while temporary IGF1
stimulation of murine hematopoietic progenitors ex vivo
promotes lymphoid differentiation post-transplant in recipient
mice (195). Notch1 has been shown to directly activate expression
of Insulin-like growth factor 1 receptor (IGF1R) in T-ALL, which
contributes to leukemia survival through the PI3K/Akt pathway
(196, 197). IGF1R inhibition yields therapeutic benefits in several
solid tumor types and leukemias (198). However, not all T-ALL cell
lines are sensitive to IGF1R inhibition, with co-expression of surface
IGF1R and tumor-suppressor PTEN indicating IGF1 dependence
(196, 199). Interestingly,miR-233has alsobeenshown tobe aNotch
target which separately regulates IGF1R expression via targeting of
the 3′ UTR and reduction of IGF1R protein levels in T-ALL (200).
Taken together, Notch signaling in T-ALL allows for optimal
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signaling of BM derived growth factors, through regulation of
their receptors.

Another important, though understudied, component of the BM
niche is the extra-cellular matrix (ECM), which has been proposed
to regulate both HSPCs and leukemia cells (201–204). The ECM is a
vital component of structural and signaling mechanisms in all
tissues and consists of collogens, proteoglycans, and glycoproteins
(205–207). One protein involved in ECM binding is CD44, which is
a cell adhesion molecule that binds to hyaluronan, fibronectin,
collagen, E-selectin, and is involved in migration of fetal liver HSCs
to the fetal BM (208–212). CD44 is also expressed on adult HSPCs
and is involved in progenitor egress from the bone marrow and
entry into the thymus (213, 214). Conversely, CD44 has been
proposed to play a role in HSPC retention and quiescence, and
contributes to apoptosis resistance in LICs (215). A potential
mechanism of CD44 mediated chemoresistance in leukemia is
through induction of drug efflux (216). In human T-ALL, CD44
has been proposed as a target of Notch1 and suggested to be
required for BM engraftment of early leukemic cells (217).
Additionally, CD44 can be used as a marker of LICs and is
positively regulated by Notch signaling (218). In many tissues,
Frontiers in Immunology | www.frontiersin.org 741
additional ECM components have been shown to influence
Notch activity, and there is cross-talk between ECM mediated
signaling pathways and Notch (219). Microfibril Associated
Glycoprotein-2 (MAGP-2) is found in elastic fibrils and has been
shown to regulate Notch activity in COS cells and endothelial cells
via binding to Notch1 Epidermal Growth Factor (EGF) repeats
(220–222). The Cyr61, CTGF, and NOV, (CCN) family of ECM
proteins influence osteogenesis and angiogenesis by binding to and
enhancing Notch1 signaling (223–226). Additionally, Epidermal
Growth Factor-Like Protein 7 (EGFL7), which is secreted by
endothelial cells into the vascular microenvironment, regulates
angiogenesis in part through antagonization of Notch signaling
(227–230). These findings support the need for further exploration
into the cross-talk and direct regulation between ECM components
and the Notch pathway in T-ALL.
CONCLUDING REMARKS

This review serves to highlight recent work which describes a
pre-thymic niche in the BM where Notch signaling influences
FIGURE 2 | Notch driven mechanisms of T-ALL in the lymphoid niche. Hypermorphic Notch signaling promotes T-ALL progression and amplification of pathways
involved in early BM lymphopoiesis. Growth factor signaling from IL7 and IGF1 are augmented via Notch driven expression of IL7r and IGF1R. CXCR4 and CD44
promote maintenance of LIC blasts in the BM microenvironment.
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lymphoid, and specifically T cell, development. BM lymphoid
progenitors receive Notch signals primarily in the osteoblastic
niche, which also provides important signals involved in
lymphoid development, including CXCL12, IL7, and SCF.
Mechanisms of pre-thymic Notch signaling in BM lymphoid
development include induction of molecules involved in bone
egress and thymus migration. Ultimately a key outcome of this
Notch signaling agenda is the early repression of the myeloid
transcriptional program. However, while we know that Notch is
active and functions in the BM, the downstream target genes of
Notch activation in BM lymphopoiesis, particularly with respect
to proliferation and survival, have yet to be fully established. We
also examined the roles for aberrant Notch signaling in the BM
migration, maintenance, and proliferation of T-ALL. Taken
Frontiers in Immunology | www.frontiersin.org 842
together, the works described here underscore the need for
careful study of BM Notch signaling in lymphoid hematopoiesis.
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Stéphane J. C. Mancini,

UMR1236 Microenvironnement,
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In adult mammals, blood cells are formed from hematopoietic stem progenitor cells, which
are controlled by a complex cellular microenvironment called “niche”. Drosophila
melanogaster is a powerful model organism to decipher the mechanisms controlling
hematopoiesis, due both to its limited number of blood cell lineages and to the
conservation of genes and signaling pathways throughout bilaterian evolution. Insect
blood cells or hemocytes are similar to the mammalian myeloid lineage that ensures innate
immunity functions. Like in vertebrates, two waves of hematopoiesis occur in Drosophila.
The first wave takes place during embryogenesis. The second wave occurs at larval
stages, where two distinct hematopoietic sites are identified: subcuticular hematopoietic
pockets and a specialized hematopoietic organ called the lymph gland. In both sites,
hematopoiesis is regulated by distinct niches. In hematopoietic pockets, sensory neurons
of the peripheral nervous system provide a microenvironment that promotes embryonic
hemocyte expansion and differentiation. In the lymph gland blood cells are produced from
hematopoietic progenitors. A small cluster of cells called Posterior Signaling Centre (PSC)
and the vascular system, along which the lymph gland develops, act collectively as a
niche, under homeostatic conditions, to control the balance between maintenance and
differentiation of lymph gland progenitors. In response to an immune stress such as wasp
parasitism, lymph gland hematopoiesis is drastically modified and shifts towards
emergency hematopoiesis, leading to increased progenitor proliferation and their
differentiation into lamellocyte, a specific blood cell type which will neutralize the
parasite. The PSC is essential to control this emergency response. In this review, we
summarize Drosophila cellular and molecular mechanisms involved in the communication
between the niche and hematopoietic progenitors, both under homeostatic and stress
conditions. Finally, we discuss similarities between mechanisms by which niches regulate
hematopoietic stem/progenitor cells in Drosophila and mammals.
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INTRODUCTION

Hematopoiesis is the process that leads to the constant formation
of blood cells throughout metazoan life. In vertebrates,
hematopoietic stem and progenitor cells (HSPCs) give rise to
all blood cell types. In adults, HSPCs are found in the bone
marrow, and its microenvironment, termed ‘niche’, ensures
hematopoietic homeostasis by controlling the proliferation and
differentiation of HSPCs, both under normal conditions and in
response to a stress such as infection or systemic inflammation
(1–4). The ‘niche’ concept was proposed in 1978 by R. Schofield
(5) and refers to the cellular context that maintains and regulates
HSPC self-renewal and differentiation. The bone marrow
hematopoietic niche is now described as a complex
multicellular network that supports HSPCs, either via direct
adhesive interactions or via the secretion of many different
factors acting in a paracrine manner to control their
localization, maintenance, proliferation and differentiation. At
least two anatomically distinct HSPC niches exist in the bone
marrow. Imaging studies indicate that HSPCs localize around
arterioles in the endosteal area, which is in close proximity to the
bone surface and is called the endosteal niche (6), and around
sinusoids located in the inner bone marrow and called the
vascular niche (7–12). Recent advances in single cell
technologies allowed the identification of various populations
of niche cells with distinct transcriptional profiles, revealing the
huge complexity of the cell population within the bone marrow
hematopoietic niches (8, 13–16). Furthermore, the HSPC pool
Frontiers in Immunology | www.frontiersin.org 249
itself is heterogeneous, raising the possibility that distinct and
specific niche cell types control subsets of HSPCs (6, 17, 18).

For 15 years, Drosophila melanogaster has proven to be a
suitable model organism to investigate the mechanisms
controlling hematopoiesis, based both on limited blood cell
lineages and on functional parallels with the vertebrate system.
In flies, blood/immune cells are called hemocytes and are related
to vertebrate myeloid cells

Drosophila hematopoiesis occurs in two waves during
development (19, 20). The first wave takes place during
embryogenesis (21). A cluster of cells derived from the head
mesoderm gives rise to hematopoietic progenitors, which
differentiate into plasmatocytes and crystal cells. Plasmatocytes,
which are involved in phagocytosis of cellular debris and
pathogens, are equivalent to mammalian macrophages (21–24).
Crystal cells contain crystalline inclusions of prophenoloxidases,
which are required for the synthesis of melanin (25, 26) and are
involved in clotting and wound healing (27–29). These hemocytes
of embryonic origin persist in larval and adult stages (Figures 1A, B
and (30–34). The second wave of hematopoiesis takes place in larval
stages at two distinct hematopoietic sites: the hematopoietic pockets
and the hematopoietic organ called the lymph gland. Hematopoietic
pockets are aggregate of embryo-derived hemocytes segmentally
repeated in epidermal-muscular clusters underneath the larval
cuticle (Figure 1C). In addition, de novo blood cell specification
occurs in the lymph gland (see below) from hematopoietic
progenitors and give rise to plasmatocytes, crystal cells and a
third blood cell type called lamellocyte. Lamellocytes are not
A C

B

FIGURE 1 | Embryonic and larval hematopoiesis. (A, B) Embryonic hemocytes (blood cells) originate from the head mesoderm in the embryo and differentiate into
plasmatocytes (macrophages, light blue) and a small number of crystal cells (dark blue). Lymph gland progenitors (green) are specified from the thoracic cardiogenic
mesoderm in the embryo (A) Anterior (A)/Posterior (P) and Dorsal (D)/Ventral (V) axes are indicated. (B) At the end of embryogenesis, crystal cells remain clustered in
the anterior part, whereas plasmatocytes are dispersed throughout the embryo. The lymph gland is composed of one pair of lobes and is localized at the anterior
part of the dorsal vessel/cardiac tube. (C) In third instar larvae, plasmatocytes (light blue) and crystal cells (dark blue) of embryonic origin are found in circulation and
colonizing local microenvironments, in particular the hematopoietic pockets, where they expand. Close up of a hematopoietic pocket where neurons are in red,
oenocytes in grey, and plasmatocytes and crystal cells in light and dark blue, respectively. Activin-b produced by PNS neurons promotes plasmatocyte proliferation
and adhesion. The lymph gland (green) is composed of several pairs of lobes aligned along the cardiac tube.
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found in larvae under normal conditions, but they massively
differentiate in response to an immune stress such as wasp
parasitism. Lamellocytes are required for the encapsulation of
foreign bodies too large to be engulfed by phagocytosis (29, 35).
The lymph gland is localized dorsally, in close association with the
Drosophila dorsal vessel, which is the vascular system. At
metamorphosis, the lymph gland disrupts and all cells are
released into the circulation (29, 36). Both embryo and lymph
gland-derived blood cells are present in the adult fly and accumulate
in the respiratory epithelia and fat body (33, 34, 37). Their numbers
continuously decrease with aging (29, 38), and whether adult flies
are able to produce new blood cells is currently under debate. Ghosh
et al. identified active hematopoietic hubs, localized in the abdomen,
and supporting hematopoiesis in adults (34). However, this
conclusion is strongly questioned by a recent analysis which
studies hemocytes localized in the head and thorax regions and
where no indication of de novo blood cell production was observed,
even after bacterial infections (37). Since recent single cell RNAseq
analyses identify different hemocyte populations (39–42), it is
possible that hemocytes characterized in these two distinct
locations might have a different potential. This point deserves
further investigation.

While no data indicate that embryonic hematopoiesis is niche-
dependent, several studies established that larval hematopoiesis is
under the control of distinct niches. In this review, we will give an
overview of the various Drosophila hematopoietic niches
identified so far and of the molecular cascades that regulate the
communication between niche cells and progenitors, both under
homeostatic and immune stress conditions.
NEURONS AS A MICROENVIRONMENT
CONTROLLING EMBRYONIC-DERIVED
HEMOCYTES IN HEMATOPOIETIC
POCKETS

At larval stages, most embryonic-derived hemocytes are
differentiated macrophages. They are either circulating in the
hemolymph or residing in clusters, which are segmentally
repeated along the larval body wall and called hematopoietic
pockets (29, 43, 44) (Figure 1C). There is a continuous and
dynamic exchange between circulating and resident/pocket
macrophages (44–47). Large hepatocyte-like cells called
oenocytes, and sensory neurons from the peripheral neuronal
system (PNS), are in close contact with resident macrophages in
the hematopoietic pockets (Figure 1C). A subset of sensory
neurons that produces Activin-b, a ligand of the TGF-b family,
regulates their proliferation and adhesion to hematopoietic
pockets (48). It should be emphasized that the neuronal niche
in hematopoietic pockets and the niche in the lymph gland (see
below) have distinct functions. While the neuronal niche is
regulating differentiated macrophages, the niche in the lymph
gland is controlling both differentiated hemocytes and
hematopoietic progenitors. In vertebrate, tissue-resident
macrophages regulate tissue homeostasis and contribute to
Frontiers in Immunology | www.frontiersin.org 350
inflammation (49, 50). Resident macrophage proliferation is
strongly dependent on the tissue microenvironment, and
whether vertebrate neuronal sensing, as described in Drosophila,
regulates locally macrophage behavior remains to be addressed.

Finally, several studies report on the plasticity of embryonic-
derived hemocytes. Within hematopoietic pockets, plasmatocytes
can trans differentiate into crystal cells (51, 52). Furthermore,
embryonic-derived hemocytes can also give rise to lamellocytes
following parasitism (32, 53–56). A puzzling question was
whether signals from the neuronal niche might also regulate
blood cell plasticity in hematopoietic pockets. A recent study
established that in hematopoietic pockets localized at the caudal
end of the larva, the trans differentiation of macrophages into
crystal cells is promoted by the neuronal activity of a specific
subset of oxygen sensing neurons (52). This study establishes
that environmental conditions, such as oxygen levels, control
in vivo blood cell trans differentiation. Whether neuronal
control of blood cell trans differentiation in response to
environmental conditions is conserved during evolution,
deserves further investigation.
THE PSC ACTS AS A NICHE TO CONTROL
LYMPH GLAND HEMATOPOIESIS

In third instar larvae, the mature lymph gland is composed of
paired lobes: one primary pair and several secondary pairs. The
anterior lobes, which are the largest in size contain progenitors,
differentiating hemocytes and mature blood cells, while posterior
lobes are composed of a heterogeneous population of progenitors,
which do not undergo terminal differentiation (23, 36, 57, 58).
Each anterior lobe is divided into several zones (Figure 2A). A
central zone, called the medullary zone (MZ), contains tightly
packed blood cell progenitors (prohemocytes) characterized by the
expression of the Janus kinase/signal transducer and activator of
transcription (JAK/STAT) receptor domeless (dome) (23, 59).
Recently, the most internally localized subpopulation of MZ
progenitors was further characterized by expression of specific
markers such as the Thioester-containing protein-4 (Tep4) and
Col (60). This subpopulation is defined as “core progenitors”. The
neighboring progenitors lacking tep4 and col expression are called
“distal progenitors” (61). Recent advances in single cell
technologies established the transcriptional profiles of lymph
gland cells under homeostatic conditions and at various
developmental time points (41). The molecular signatures,
provided by single cell transcriptomic analysis, define an
additional prohemocyte sub-cluster called PH1 (prohemocyte 1).
At the periphery of anterior lobes, the cortical zone (CZ) is
composed of differentiated blood cells that can be identified
through the expression of specific markers for plasmatocytes
and crystal cells. Between the MZ and the CZ, cells undergo the
transition from progenitors to specified blood cells and
correspond to intermediate progenitors. They simultaneously
express markers for prohemocytes and for early differentiating
cells [Figure 2A and (59)]. At the posterior end of the primary
lobe is the PSC, identified by its expression of the Notch ligand
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Serrate (Ser) (23, 62), the homeobox protein Antennapedia (Antp)
(63) and high levels of Collier/Knot (Col/Kn), an orthologue of
mammalian Early B cell factor (EBF) (57, 64). In late third instar
larvae the mature PSC is composed of 30-40 cells [Figure 2A and
(57, 63, 64)] and it plays a role similar to a niche to control lymph
gland homeostasis.

Most studies on the PSC’s role as a niche were performed in
third instar larvae. The number of PSC cells is tightly controlled
and several intrinsic and extrinsic factors regulate their
proliferation. Since several recent reviews report on genes and
molecular mechanisms that control PSC cell numbers, we shall
not develop this specific issue but provide a table summarizing
the information [see Table 1 and reviews by (19, 20, 77)]. PSC
cells produce cytoplasmic processes called filopodia that extend
over 2 to 3 cell diameters. An interesting possibility is that
filopodia could be engaged in direct cellular contacts between
PSC cells and MZ progenitors (63, 64).

The PSC requirement to control the balance between
hemocyte differentiation and progenitor maintenance
(homeostasis) in third instar larvae was first reported by
Mandal et al. and Krzemien et al. In this context, Hedgehog
(Hh) secreted by PSC cells is a key regulator of lymph gland
homeostasis (63) and Col is required for PSC specification
during embryonic development (64). It has been proposed that
by controlling hematopoietic progenitor maintenance within the
lymph gland, the PSC plays a role similar to a niche. However,
several studies questioned the genuine interactions that take
place between MZ and PSC cells, since ablation of PSC cells
driven by the expression of the proapoptotic gene reaper (rpr)
does not affect MZ progenitor maintenance but rather reduces
crystal cell differentiation (78). Another study reported that
reduction of PSC cell numbers or alteration of PSC signaling
increases hemocyte differentiation without affecting the pool of
“core progenitors”. Altogether, these two studies establish that
core progenitors are maintained independently from the PSC
Frontiers in Immunology | www.frontiersin.org 451
[Figure 2A and (60, 78)]. More recent studies shed some light on
these discrepancies. Baldeosingh et al. examined the effects on
MZ progenitors of specific PSC cell ablation induced by rpr
expression. For this, they analyzed the expression of
Odd-skipped (Odd), a transcription factor expressed in all MZ
progenitors. In the absence of PSC cells, a prohemocyte
subpopulation with Odd-positive/Col-negative cel ls
differentiated into mature hemocytes, whereas the Odd-positive/
Col-positive cells remained undifferentiated (79). The study
further reported that Hh from the PSC is required to maintain
Odd-positive but not Col-positive prohemocytes, establishing that
the MZ cell population is composed of Hh-independent (core
progenitors) and Hh-dependent (distal progenitors) progenitors
(Figure 2A). Altogether these data confirm that the PSC only
regulates a subset of MZ progenitors and that this is achieved
through Hh signaling.

Blanco et al. investigated the role of Ser in the PSC. Ser
knockdown in PSC cells leads to increased plasmatocyte and
crystal cell numbers, which is in agreement with previously
published data (64). Furthermore, they report that Notch
knockdown specifically in core progenitors leads to a reduction
of their numbers. These data indicate that Ser in PSC cells restricts
hemocyte differentiation [Figure 2A and (61)]. Ser requires cell-
cell contact to activate the Notch pathway, raising the possibility
that PSC filopodia could mediate Notch signaling, although the
subset of progenitors controlled by Ser remains to be identified.

A recent study further established a role of the PSC in L1
larvae (80). At this stage the lymph gland is composed of PSC
cells and hematopoietic progenitors and no differentiation
occurs. The PSC counts 2-4 cells that express Col and Antp.
Through the expression of different markers, it has been shown
that two types of progenitors are present. One subset of
progenitors, expressing Notch, is aligned along the cardiac
tube, and this cell state is transient, since Notch positive cells
are only found during the first 20 hours of larval development.
A B

FIGURE 2 | Two niches control lymph gland homeostasis. (A, B) Schematic representation of third instar larva lymph gland anterior lobes. The medullary zone (MZ)
contains three types of progenitors: distal progenitors and core progenitors are in green and hatched green, respectively, and the PH1 is in pink. Intermediate
progenitors are in yellow, plasmatocytes and crystal cells in the cortical zone (CZ) are in light and dark blue, respectively. The PSC and the cardiac tube/vascular
system are in red and orange, respectively. (A) Differentiated hemocytes result from progenitors’ differentiation (green dashed arrow) In a wildtype (WT) lymph gland,
under homeostatic conditions, the PSC regulates the maintenance of a subset of MZ progenitors. Hedgehog (Hh) is required for maintaining distal progenitors. PSC
signals required for controlling PH1 remain to be identified, as well as the progenitor subset controlled by Ser expressed in the PSC. Pvf1 secreted by the PSC,
controls progenitor maintenance via differentiated hemocytes. (B) The cardiac tube corresponds to a second niche present in the lymph gland. The FGF ligand
Branchless (Bnl) activates its receptor Breathless (Btl) in progenitors. Btl-FGF activation regulates intracellular Ca2+ levels via PLCg, and controls the maintenance of
core progenitors and in turn the whole progenitor pool. The ligand Slit produced by cardiac cells activates its Robo receptors in the PSC. Robo signaling controls
PSC cell clustering and proliferation.
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Lineage tracing experiments established that this cell population
gives rise to most lymph gland cells at later larval stages, leading
the authors to propose that they correspond to genuine
Hematopoietic Stem Cells (HSCs). The presence of these HSCs
in L1 larvae is also niche-dependent. They rely on Dpp/BMP
signaling issued from the PSC.

In summary, these studies reveal a temporal role for the
PSC during larval development to regulate lymph gland
hematopoiesis and further establish that different signals, long
versus short distance, are produced by PSC cells throughout larval
development to regulate different progenitor subsets. Thus, the
lymph gland is a valuable model to investigate the spatial and
temporal role of the niche. Additional analyses are required to
identify other yet undetected PSC signals, define which
progenitor sub-clusters respond to which PSC signals, and
finally define how these various niche signals are integrated in
progenitor subtypes to control the balance between progenitor
maintenance and blood cell differentiation.
THE PSC INDIRECTLY CONTROLS
HEMATOPOIETIC PROGENITOR
MAINTENANCE VIA DIFFERENTIATED
HEMOCYTES

In third instar larvae, the PSC indirectly controls hematopoietic
progenitor maintenance via differentiated hemocytes. The PSC
also secretes another ligand called PDGF and VEGF-related
Frontiers in Immunology | www.frontiersin.org 552
factor 1 (Pvf1), which binds and activates the Pvr tyrosine
kinase receptor. Pvf1 is produced by PSC cells and transported
by vesicles into CZ cells that express Pvr. Pvr activation in the CZ
induces a Stat92E-dependent but JAK-independent signaling
cascade, leading to the overexpression of adenosine deaminase-
related growth factor A (Adgf-A). Stat92E activation is
dependent on the ARF1/Asrij complex that encodes a ras small
GTPase and an endocytic protein (71). Adgf-A downregulates
adenosine levels in neighboring MZ cells, leading to a reduced
activity of PKA (cAMP-dependent protein kinase 1). PKA
controls the degradation of active Cubitus interruptus (Ci), the
transcription factor mediating Hh signal transduction. This
backward signal to the MZ is called the “equilibrium signal”
(81, 82). Overall, signals from CZ and PSC cells regulate the
balance of Ci activity within the MZ, thereby controlling
progenitor maintenance (Figure 2A).
THE CARDIAC TUBE FUNCTIONS AS A
HEMATOPOIETIC NICHE

Within the MZ, “core progenitors” that express col and tep4, are
in close contact with the cardiac tube and are maintained
independently from PSC activity [Figure 2A and (60, 78, 79)].
This raises the possibility that cardiac cells contribute to the
regulation of lymph gland homeostasis. Two recent studies
investigated the role of the cardiovascular system under
homeostatic conditions and established that cardiac cells act
TABLE 1 | Genes and pathways involved in controlling the number of PSC cells and their cohesion.

Gene Cell type Genetic conditions Function References

Collier/knot PSC LOF (col RNAi) Reduces PSC cell number (65)
Wnt/Wingless PSC LOF (UAS-Dfz2DN) GOF (UAS-wg) Promotes PSC cell proliferation (66)
BMP / Decapentaplegic PSC LOF (dpp RNAi; UAS-tkv DN ) Inhibits PSC cell proliferation (65)
Dally-like Not determined dlp mutant Reduces PSC cell number (65)
Dmyc PSC LOF (dmyc RNAi)

GOF (UAS-dmyc )
Increases PSC cell number (65)

Insulin/TOR PSC LOF (InR RNAi) GOF (UAS-PI3K CAAX ) Increases PSC cell number (67, 68)
Bantam PSC LOF (UAS-sponge) GOF (UAS-bantam ) Increases PSC cell number (69)
Bag of Marbles PSC LOF (bam RNAi) Inhibits PSC cell proliferation (70)
Thor/4EBP PSC LOF (eIf4A RNAi) Increases PSC cell number (70)
Retinoblastoma-family protein PSC LOF (Rbf RNAi)

GOF (UAS-Rbf )
Inhibits PSC cell proliferation (70)

ARF1-GTP PSC and hemocytes LOF (arf1 RNAi) Increases PSC cell number (71)
Jumu progenitors LOF (jumu RNAi) Inhibits PSC cell proliferation

Promotes PSC cell clustering
(72)

Jumu PSC LOF (jumu RNAi)
GOF (UAS-jumu )

Increases PSC cell number (72)

Slit/Robo PSC and cardiac cells LOF (robo and slit
RNAi)

Inhibits PSC cell proliferation
Promotes PSC cell clustering

(73)

DE-cadherin PSC LOF (DE-cad RNAi) Reduces PSC cell number
Promotes PSC cell clustering

(73)

Cdc42 PSC LOF (UAS-cdc42DN) GOF (UAS-cdc42CA Increases PSC cell number
Promotes PSC cell clustering

(73)

Coracle PSC LOF (cora RNAi) Reduces PSC cell number (74)
Neurexin IV PSC LOF (nrxIV RNAi) Reduces PSC cell number (74)
Lar PSC LOF (Lar RNAi)

GOF (UAS-Lar )
Reduces PSC cell number (75)

NUP98-HOXA9 PSC and hemocytes GOF (UAS-NA9) Promotes PSC cell proliferation (76)
E2F PSC LOF (E2F RNAi) Increases PSC cell number (70)
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both i) indirectly via the PSC, and ii) directly on MZ progenitors
to control lymph gland hematopoiesis. An initial study showed
that the Drosophila cardiac tube is required to maintain the
integrity and function of the PSC through Slit/Robo signaling.
The Slit ligand secreted by cardiac cells activates Robo signaling
in the PSC. Slit/Robo activation controls both the number of PSC
cells and their cohesion, and in turn PSC function (Table 1). It
controls PSC size by repressing BMP signaling, and maintains
PSC cell clustering by regulating the activity of the Cdc42 small
GTPase and the accumulation of DE-Cadherin. This study was
the first to highlight an inter-organ communication between the
cardiac tube and the lymph gland in order to control PSC
morphology and consequently its function [Figure 2B and
(73)]. In a second study, which investigated whether cardiac
cells can directly act on MZ progenitors via secreted signals, the
authors performed a candidate RNAi screen in cardiac cells to
identify new potential signaling pathways involved in the
crosstalk between the vascular and the hematopoietic systems.
This study provided evidence that cardiac cells play a role similar
to a niche through the activation of Fibroblast Growth Factor
(FGF) signaling. The FGF ligand Branchless (Bnl) secreted by
cardiac cells was detected in MZ progenitors as cytoplasmic
punctate dots; it is internalized by MZ cells, most likely through
FGF-receptor-mediated endocytosis. Bnl binding to its receptor
Breathless (Btl) leads to Bnl/Btl-FGF pathway activation in MZ
progenitors, where it controls calcium levels via the activation of
phospholipase C (PLCg). A previous study showed that
reduction of cytosolic Ca2+ in lymph gland progenitors leads to
the loss of progenitor markers and to increased blood cell
differentiation (83). Altogether, these data indicate that
through the activation of Fibroblast Growth Factor (FGF)
signaling, the vascular system prevents hematopoietic
progenitors from massive differentiation, ensuring the proper
balance between blood cell populations within the lymph
gland. For the first time, this study provides evidence that the
vascular system, which directly controls blood cell progenitors
independently from the PSC, acts as a niche [Figure 2B and
(84)]. In conclusion, two distinct niches, the PSC and the cardiac
tube, control lymph gland homeostasis.
Frontiers in Immunology | www.frontiersin.org 653
EMERGENCY HEMATOPOIESIS:
KEY ROLE FOR THE PSC

Drosophila blood cells are the effectors of the cellular arm of the
innate immune response (24). Wasp parasitism is commonly
used to induce an emergency hematopoiesis, which culminates in
the massive differentiation of lamellocytes, a cryptic blood cell
type (29, 85). Lamellocytes are specialized hemocytes, which
mediate the encapsulation and killing of pathogens too large to
be phagocytosed. Resistance to wasp parasitism depends on the
ability of the Drosophila larva to reroute basal hematopoiesis and
produce lamellocytes, in a timely manner, to neutralize wasp eggs
before they hatch inside the fly larva. Following wasp egg-laying
in a Drosophila second instar larva, the egg is identified as a
foreign body and differentiation of lamellocytes from lymph
gland MZ progenitors and circulating/sessile hemocytes is
triggered (29, 32, 53–57). In response to wasp parasitism,
lymph gland hematopoiesis is drastically modified and shifts to
emergency hematopoiesis, leading to increased progenitor
proliferation 4-6 hours post-parasitism (59, 86). 20 hours post
parasitism, lamellocytes massively differentiate at the expense of
MZ progenitors, ultimately leading to the premature dispersal of
lymph gland anterior lobes [Figure 3 and (86)]. The PSC is
absolutely required for this emergency response, since
lamellocytes fail to differentiate when PSC cells are ablated by
targeted expression of rpr (60, 64, 78). It has been shown that in
Drosophila larvae, parasitization increases Reactive Oxygen
Species (ROS) levels in PSC cells, leading to the secretion of
Spitz (sSpi), one ligand of the Epidermal Growth Factor Receptor
(EGFR) signaling pathway (87). Spi issued from the PSC
activates the EGFR pathway, both in circulating embryo-
derived hemocytes and in MZ progenitors, which triggers their
differentiation into lamellocytes. [Figure 4 and (86, 87)].
Furthermore, it has been established that the Toll/NF-kB
pathway is activated in PSC cells in response to wasp
parasitism (86, 88). Activation of the pathway is triggered by
high ROS levels in PSC cells, which leads to expression of Spätzle
(Spz), the Toll/NF-kB pathway ligand, and subsequent activation
of the pathway in the PSC. This pathway controls, in a non-cell
FIGURE 3 | Lymph gland response to wasp parasitism. Schematic representation of 2nd instar larval lymph gland, composed of PSC cells and progenitors. Twenty
hours post parasitism, lamellocytes differentiate at the expense of progenitor maintenance. Thirty hours post parasitism, the lymph gland disrupts and cells are
released into the hemolymph, where they encapsulate the wasp egg.
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autonomous manner, lymph gland lamellocyte differentiation in
the MZ, which leads to premature disruption of lymph gland
anterior lobes, and in fine successful wasp egg encapsulation by
lamellocytes. It seems that in response to wasp infection, the
EGFR and Toll/NF-kB pathways act in parallel to trigger
lamellocyte differentiation from MZ cells [Figure 4 and (86)].
How Toll/NF-kB activation in the PSC acts on MZ progenitors
remains to be investigated.

JAK/STAT signaling is one of the evolutionarily conserved
signaling pathways involved in immunity (89) and specifically in
Drosophila for lamellocyte differentiation upon parasitism (90,
91). Under normal conditions, JAK/STAT is activated in lymph
gland MZ hematopoietic progenitors; in response to wasp
parasitism, the pathway is switched off in progenitors, thus
triggering their differentiation into lamellocytes (90).
Furthermore, wasp parasitism leads to JAK/STAT activation in
larval somatic muscles, which in turn controls the number of
circulating lamellocytes and the efficiency of wasp egg
encapsulation (92).

In depth analysis of lymph gland hematopoiesis focuses on
lymph gland anterior lobes. In response to wasp parasitism,
hemocytes from posterior lobes do not differentiate into
lamellocytes (23, 36, 58). The JAK/STAT pathway, which is
activated in posterior lobes in response to parasitism, is required
to prevent lamellocyte differentiation. Furthermore, while the
PSC is essential in anterior lobes for the response to wasp
parasitism, it plays no role in posterior lobes to prevent
lamellocyte differentiation. Altogether, these data indicate a
Frontiers in Immunology | www.frontiersin.org 754
differential response to parasitism between anterior and
posterior lobes. Finally, under wasp infection, cell coalescence
is observed in posterior lobes, and this response is prevented
when the PSC is ablated, suggesting a role for the PSC in this
response (58). In conclusion, a complex regulation of JAK/STAT
signaling is induced in response to wasp parasitism, and whether
JAK/STAT activity in the different cell types could depend on the
two niches, namely PSC or/and cardiac tube, certainly deserves
further investigation.

Besides wasp parasitism, Drosophila can be infected by
bacteria, fungi or viruses, which activate the humoral response
(24). Interestingly, a recent study established that bacterial
infection also alters lymph gland hematopoiesis, since it
reported increased plasmatocyte and crystal cell differentiation
at the expense of MZ progenitors upon infection. However, in
contrast to wasp parasitism, no lamellocytes differentiated. The
study further showed that septate junctions form a permeability
barrier at the PSC that is disrupted following bacterial infection
that trigger prohemocyte differentiation probably by enabling
PSC signals to extend into the MZ (74). The authors further
established that activation of the Toll/NF-kB and Immune
Deficiency (Imd) pathways in PSC cells leads to the loss of the
PSC permeability barrier. However, whether bacterial infection
disrupts the niche permeability barrier via the activation of NF-
kB pathways in the PSC is not known yet. Since the Toll/NF-kB
pathway is activated in PSC cells and is required for lamellocyte
differentiation, it is possible that the permeability barrier
modification in PSC cells in response to wasp parasitism
FIGURE 4 | Gene regulatory network controlling larval emergency hematopoiesis. The PSC (red) plays an essential role in mounting the cellular immune response. In
response to wasp parasitism, increased Reactive Oxygen Species (ROS) levels in the PSC cause lamellocyte differentiation from lymph gland progenitors (green) and
circulating hemocytes. ROS in PSC cells activate Toll/NF-kB and Spitz secretion (sSpi). sSpi, the EGFR ligand, induces lamellocyte fate. Toll/NF-kB activation in the PSC
regulates non cell-autonomously lamellocyte differentiation in the lymph gland. EGFR and Toll/NF-kB activation are required to regulate lymph gland stress hematopoiesis.
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contributes to niche hematopoietic progenitor signaling. These
data open novel insights into the cellular communication
between the PSC and MZ progenitors.

In mammals, systemic bacterial infection activates the Toll/
NF-kB pathway in mouse bone marrow endothelial cells,
provoking an “emergency granulopoiesis” (93, 94). This, again,
underlines the evolutionary conservation of molecular
mechanisms controlling stress-induced hematopoiesis between
Drosophila and mammals. As a conclusion, our comprehension
of the mechanisms regulating emergency hematopoiesis in
Drosophila should improve our fundamental understanding of
how inflammatory signaling regulates hematopoiesis in health
and disease conditions.
CONCLUSIONS AND PERSPECTIVES

Drosophila is a powerful in vivo model system to study the
dialogue between a hematopoietic niche and progenitor cells,
since several signaling pathways and transcription factors
involved in the Drosophila microenvironment play comparable
roles in mammals. Under homeostatic conditions, the
transcription factor Col/EBF, expressed in PSC cells, is required
for PSC specification (57, 64) and controls PSC cell numbers and
function through BMP/Dpp pathway activation (65). In mouse
osteoblasts, EBF2 is an essential component of the endosteal niche,
where it controls osteoblast numbers and regulates HSPC
maintenance (95, 96). The Notch pathway is also involved both
organism. The Notch ligand Serrate is expressed in the Drosophila
PSC, where it prevents progenitor differentiation (61, 62).
Similarly, in mammalian osteoblasts, Notch1 and 3 and the
ligands Jagged1 and Delta1 are all expressed and regulate
hematopoiesis, although the precise regulatory mechanisms
remain unclear (8, 97, 98). Furthermore, in Drosophila, Slit
secreted by cardiac cells activates Robo receptors expressed by
PSC cells. Silt/Robo activation controls PSC cell numbers and their
function (73), while, in mouse bone marrow Slit2/Robo4 controls
HSPC localization in the perivascular niche (99–101). In
Drosophila , the FGF pathway is a key player in the
communication between cardiac tube and hematopoietic
progenitors. In mammals, this pathway remodels bone and the
bone marrow microenvironment to support bone integrity, HSPC
maintenance and expansion, and plays a crucial role for proper
hematopoiesis during stress recovery (102). Finally, the high
similarity between Drosophila and mammalian bone marrow
hematopoiesis is further emphasized by our recent identification
of the cardiac tube as a second niche for lymph gland
hematopoiesis, reminiscent of the two niches, endosteal and
perivascular, controlling HSPC self-renewal and differentiation
in mammals.

Recent data based on single cell analysis revealed an
unsuspected heterogeneity among lymph gland hematopoietic
progenitors (41). Single-cell RNA sequencing performed on
circulating Drosophila larval hemocytes highlighted a similarly
unexpected heterogeneity among these cells, which were so far
believed to consist of merely two cell types, crystal cells and
Frontiers in Immunology | www.frontiersin.org 855
plasmatocytes (40, 42, 103). These results raised many questions
about the heterogeneity of theDrosophila blood cell pool and their
regulation by different niche cell types. Likewise, in mammalian
bone marrow, single cell approaches revealed a considerable
heterogeneity among both niche and hematopoietic stem
progenitor cells (10). Further analyses are now necessary to
decipher which niche cells control which progenitor subset,
to identify the signals involved in this crosstalk, and finally to
determine how information provided by the diverse niche cells is
integrated to control hematopoiesis under homeostatic conditions
and after infection.

Mechanisms regulating emergency hematopoiesis are poorly
understood. Oxidative stress regulates hematopoiesis via ROS
both in Mammals and in Drosophila (87, 104, 105). In
mammalian bone marrow, bacterial infection induces an
“emergency granulopoiesis” that leads to de novo production of
neutrophils. In this context, the TLR (Toll-like Receptor)/NF-kB
pathway is activated via TLR4 in mouse bone marrow
endothelial cells, a component of the vascular niche (93, 94).
In Drosophila, the cellular immune response to parasitism is a
typical emergency hematopoiesis. ROS levels increase in the PSC,
thus activating both Toll/NF-kB and EGFR signaling pathways,
which act in parallel to mount a stress hematopoiesis (86).
Whether the EGFR pathway plays a role in mammalian
hematopoiesis has not yet been established (106). Altogether,
those studies are in favor of evolutionary parallels between
Drosophila and mouse in the control of stress-induced
hematopoiesis. The recent identification of the cardiac tube as
a niche controlling lymph gland homeostasis under homeostatic
conditions obviously raises the question about its potential role
during emergency hematopoiesis.

Malignant hematopoiesis and inflammation in mammals is
often associated with an abnormal microenvironment (2, 3, 12,
107, 108). Thus, deciphering the mechanisms at play in the
HSPC/niche dialogue is of most importance and Drosophila
stands as an invaluable model to do so.
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Acute myeloid leukemia (AML) is one of the most common types of leukemia in adults.
While complete remission can be obtained with intensive chemotherapy in young and fit
patients, relapse is frequent and prognosis remains poor. Leukemic cells are thought to
arise from a pool of leukemic stem cells (LSCs) which sit at the top of the hierarchy. Since
their discovery, more than 30 years ago, LSCs have been a topic of intense research and
their identification paved the way for cancer stem cell research. LSCs are defined by their
ability to self-renew, to engraft into recipient mice and to give rise to leukemia. Compared
to healthy hematopoietic stem cells (HSCs), LSCs display specific mutations, epigenetic
modifications, and a specific metabolic profile. LSCs are usually considered resistant to
chemotherapy and are therefore the drivers of relapse. Similar to their HSC counterpart,
LSCs reside in a highly specialized microenvironment referred to as the “niche”.
Bidirectional interactions between leukemic cells and the microenvironment favor
leukemic progression at the expense of healthy hematopoiesis. Within the niche, LSCs
are thought to be protected from genotoxic insults. Improvement in our understanding of
LSC gene expression profile and phenotype has led to the development of prognosis
signatures and the identification of potential therapeutic targets. In this review, we will
discuss LSC biology in the context of their specific microenvironment and how a better
understanding of LSC niche biology could pave the way for new therapies that
target AML.

Keywords: leukemic stem cell (LSC), acute myeloid leukemia, stem cell niche, genetic heterogeneity,
therapeutic targets
INTRODUCTION

Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. AML is
characterized by the clonal proliferation of abnormal hematopoietic progenitors leading to blood
and bone marrow infiltration and consequently hematopoietic failure (1). Over the past decades,
intensive research has significantly improved our understanding of AML biology, highlighting the
role of clonal evolution and identifying potential therapeutic targets based on recurrent molecular
abnormalities (2, 3). However, therapeutic progress has been limited (4). Despite a promising initial
org October 2021 | Volume 12 | Article 775128159
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response to intensive chemotherapy, relapse occurs in the
majority of patients and prognosis remains poor with a long-
term overall survival of 40-50% in patients younger than 60 years
old (5–8). In older patients not able to endure intensive
chemotherapy, therapeutic options are limited, and long-term
overall survival remains low at 15% (9, 10).

Leukemic stem cells (LCSs), also sometimes referred to as
leukemic initiating cells, were first described 25 years ago, when
Lapidot et al. showed that a small subset of leukemic cells could be
transplanted and give rise to leukemia in immunocompromised
recipient mice (11). The same group latter identified the
CD34posCD38neg phenotype as a way to enrich the LSC
population. Similar to normal hematopoietic stem cells (HSCs),
LSCs are able to differentiate and self-renew suggesting a
leukemic hierarchy (12–16).

Like their normal counterpart, LSCs reside in the bone
marrow in a specialized microenvironment termed “niche”.
Schofield first described the concept of niche in 1978 and
defined it as a limited specific anatomical site where stem cells
could be maintained, undergo self-renewal, and where
differentiation is inhibited (17). Over the past 20 years, the
development of transgenic mice and the improvement of
imaging techniques has led to several breakthrough discoveries
suggesting that the bone marrow microenvironment plays a
central role in normal and pathological hematopoiesis (18).
Within the niche, LSCs are thought to be protected from
chemotherapy (19–22). Therefore, targeting the LSCs niche
represents a promising option to cure AML.
LEUKEMIC STEM CELLS ONTOGENY
AND PHENOTYPE

The concept of LSCs is based on the idea that a small subset of
cells is able to continually replenish the bulk of leukemic cells.
Leukemic stem cells are defined by their capacity to self-renew,
incompletely differentiate, and reinitiate leukemia upon serial
transplantation in immunocompromised mice (11, 23). Initially
thought to originate from the healthy HSC compartment, recent
studies have shown that LSCs may instead emerge from
committed progenitors (24, 25). Most of human AMLs have at
least two molecularly hierarchically ordered distinct LSCs
populations (24). Interestingly, the more mature LSC
population most closely mirrors normal granulocyte-
macrophages progenitors (GMP) whereas the immature LSC
population is functionally similar to lymphoid-primed
multipotent progenitors (LMPPs). Leukemia originates from
the acquisition of driver mutations by HSC or early
progenitors (26–28). Identification of clonal hematopoiesis of
indeterminate potential (CHIP) has recently generated a
significant interest (29). The sequential acquisition of
mutations in HSCs and progenitors over a lifetime is suspected
to favor hematological malignancies. However, given the high
frequency of CHIP in the general population, the exact
significance of these mutations and implication in
leukemogenesis still needs clarification. To add more
Frontiers in Immunology | www.frontiersin.org 260
complexity, LSCs ontogeny seems to be reversible as opposed
to the previously accepted idea that LSCs unidirectionally
differentiate into mature AML cells. Indeed, PU.1 gene
suppression in differentiated AML-derived cells has been
shown to revert AML cells to an immature, clonogenic
leukemogenic state (30).

Following the pioneering work done by John Dick’s group,
showing that LSCs are enriched within the CD34posCD38neg

fraction, several surface markers have been described. Indeed,
studies showed that when compared to normal HSCs, LSCs
displayed a higher expression of CD25 (31), CD32 (31), CD44
(32), CD96 (33), CD123 (34–36), GPR56 (37), C-type lectin-like
molecule-1 (38), IL1RAP (Interleukin 1 Receptor Accessory
Protein) (39, 40), N-cadherin, and Tie2 (41). However, a high
intra and inter-patients’ heterogeneity prevents the use of a single
surface marker to easily isolate LSCs.
THE HEALTHY HEMATOPOIETIC NICHE

Hematopoietic stem cells reside in a highly specialized
microenvironment or niche within the bone marrow (18).
Cellular and molecular interactions between niche constituents
and HSCs tightly control their self-renewal, proliferation, and
differentiation properties. The development of reporter mice and
the improvement of imaging techniques has led to a better
understanding of the niche since the concept was first
proposed in 1978 (17). Studies have identified several cell
populations, sometimes redundant, implicated in homeostatic
and pathologic hematopoiesis. Similar to the heterogeneity of the
hematopoietic system, niche cells are also highly heterogeneous
(42–46).

Early studies have suggested a major role of osteoblasts in
hematopoiesis by showing hematopoietic stem and progenitor
cells (HSPCs) and osteolineage cells in close proximity at steady
state and after bone marrow transplantation, additionally
osteoblasts have the capacity to support HSPCs in vitro (47–
50). Other studies showed a correlation between the number of
osteoblasts and LinnegSca1posc-Kitpos HSPCs (51, 52). However,
the specific genetic deletion in osteoblast of two key cytokines
required for HSC maintenance, stem cell factor (Scf) and CXC-
chemokine ligand 12 (Cxcl12), did not have a major effect on
HSCs (53–55). In addition, 3-D imaging of the bone marrow
revealed that HSCs were preferentially localized close to the
vascular network but not to the endosteal surface (56, 57).
However, osteolineage cells form a niche for early lymphoid
progenitors (53, 54, 58), and are implicated in the development
and progression of several hematological malignancies like
leukemia (54, 58–61).

The identification of the SLAM cell surface markers allowed
the imaging of purified HSCs in their native niche (62). This
study and others revealed the close proximity of HSCs and blood
vessels suggesting the existence of a vascular niche composed by
different types of blood vessels and associated perivascular cells
(18). Bone marrow mesenchymal stem cells (BM-MSCs)
represent a rare and heterogeneous population of stromal cells
October 2021 | Volume 12 | Article 775128
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characterized by their ability to self-renew and differentiate into
osteoblasts, chrondrocytes and adipocytes (63). In the bone
marrow, MSCs are located around the blood vessels where
they closely interact with HSCs and support hematopoiesis.
The development of new transgenic mice models led to the
identification of several MSC subsets with significant overlap
between the different populations identified (53, 55, 64–68). BM-
MSCs are major sources of key niche factors important for the
maintenance, proliferation and retention in the mouse bone
marrow of HSCs (69). Deletion of Scf or Cxcl12 in stromal
cells directly affects HSC number and localization (67, 70, 71).
Recent single cell RNA sequencing-based studies have confirmed
the high heterogeneity among stromal cells in the bone marrow
in particular within the MSC compartment at an unprecedented
resolution (42, 44, 45).

The bone marrow is highly vascularized which provides
nutrients and oxygen and furthermore allows HSCs and newly
generated hematopoietic cells to leave the bone marrow and
circulate throughout the body. Bone marrow vascularization is
composed of thin-walled arterioles paralleled to the long bone
axis and mostly closed to the endosteal region. Arteriolar vessels
are connected to the dense network of highly branched sinusoids
by type-H vessels at the proximity of the bone (72). Endothelial
cells are also key regulators of HSC maintenance and function,
and most HSCs localize within 5µm of a bone marrow vessel (56,
62). Indeed, endothelial cells express several factors that regulate
HSC function such as SCF, CXCL12, and Notch ligands among
others. Depletion of these factors has a dramatic effect on HSC
number at steady state and hematopoietic recovery following
myeloablative treatment (53–55, 73, 74).

The nervous system plays a crucial role in bone and bone
marrow homeostasis (75). Whereas parasympathetic fibers only
innervate the compact bone, the bone marrow cavity is
innervated by both sympathetic and sensory nerves (76, 77).
Although sympathetic nerves do not regulate HSC directly, they
are important regulators of HSC mobilization from the bone
marrow in response to G-CSF (78). HSCs are also released into
the circulation in a circadian manner in response to adrenergic
signals from the sympathetic nervous system (SNS) that regulate
the synthesis of MSC derived CXCL12, critical for the retention
of HSCs inside the bone marrow (65, 78, 79). Interestingly,
nociceptive nerves collaborate with the SNS in HSCmaintenance
and G-CSF-induced mobilization via the secretion of calcitonine
gene-related peptide (80). Bone marrow neuropathy observed in
aging or after the administration of genotoxic drugs induced a
profound remodeling of the HSC niche and affected bone
marrow regeneration (81–83). Non-myelinating Schwann cells
are also involved in HSCs maintenance by converting the latent
Transforming Growth Factor b (TGFb) into the active form
inducing HSCs quiescence (84).

In addition to bone marrow stromal cells, healthy HSCs are
also directly and indirectly regulated by their own hematopoietic
progeny including megakaryocytes, macrophages, regulatory T
cells, neutrophils and other myeloid cells, reviewed
elsewhere (18).
Frontiers in Immunology | www.frontiersin.org 361
THE LEUKEMIC NICHE

Although the exact location of LSCs within the bone marrow
niche still needs to be clarified, it is now clear that the
microenvironment plays a role in leukemogenesis and that
leukemic cells can also alter the bone marrow at the expense of
physiological hematopoiesis.

A Potential Role of the Microenvironment
in Leukemogenesis
Leukemogenesis was long regarded as a cell autonomous process.
This dogma was challenged by the early description of donor cell
derived leukemia in bone marrow transplanted patients (85).
These observations supported the “seed and soil” theory
proposed by Paget in 1889 who suggested that tumor
metastasis required favorable interactions between tumor cells
(the “seed”) and their microenvironment (the “soil”) (86). The
role of non-hematopoietic cells in leukemogenesis was first
demonstrated by the development of transgenic mice and the
capacity to delete genes in a cell-specific manner. In the context
of hematological malignancies, the proof of concept came from
the description of a myeloproliferative disorder induced by
deregulated expression of Jagged 1 in IkBa deficient
hepatocytes. In contrast, mice with a conditional deletion of
IkBa specifically in the myeloid lineage did not develop any
myeloproliferative neoplasm (MPN) (87), suggesting that
premalignant hematopoietic disorders can be initiated by
nonhematopoietic cells. Walkley, et al. demonstrated the role
of the retinoic acid receptor-g (RARg) in niche-driven MPN.
Mice deficient in RARg developed a MPN-like phenotype even
when transplanted with wild-type cells (88). The same group
investigated the role of the retinoblastoma protein (RB) in
hematopoiesis and demonstrated that the deletion of Rb
induced a MPN-like phenotype only when deleted in both the
hematopoietic and non-hematopoietic compartments (89).
These studies support the role of the interaction between
hematopoietic cells and their microenvironment in the
development of hematological malignancies.

Bone marrow MSCs play a central role in the regulation of
HSCs during homeostatic hematopoiesis while also involved in
the development of myelodysplasia and leukemia. Indeed,
specific deletion of the gene encoding Dicer 1, an enzyme
involved in micro-RNA processing in osteoprogenitors induces
myelodysplasia and sporadic secondary leukemia (59). This
phenotype was not observed when Dicer1 was deleted in the
hematopoietic cells demonstrating that the myelodysplasia was
environmentally induced. Deletion of Dicer1 induced the
downregulation of Sbds, a gene mutated in Schwachman-
Bodian-Diamond syndrome, which is a rare human disease
characterized by bone marrow failure and a predisposition to
leukemia. Specific deletion of Sbds in MSCs induced
mitochondrial dysfunction, oxidative stress, and activation of
the DNA damage response in HSPCs ultimately impairing
hematopoiesis and favoring leukemogenesis (90). This effect is
a consequence of the secretion of the pro-inflammatory
October 2021 | Volume 12 | Article 775128
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molecules, S100A8 and S100A9, by MSCs. Conditional
expression of a mutated form of Ptpn11, the gene encoding for
the protein tyrosine phosphatase SHP2, in MSCs and
osteoprogenitors also induced a MPN-like phenotype (91). To
further support the role of the osteolineage compartment in
leukemogenesis, activating mutation of beta-catenin in
osteoblasts induced AML by activation of Notch signaling
in HSPCs (92). By contrast, the defective activation of Notch
in the microenvironment leads to myeloproliferative disease
(93). This effect is attributed to a Notch-dependent repression
of the micro-RNA miR-155, regulating the inflammatory state of
the bone marrow niche (94).
Frontiers in Immunology | www.frontiersin.org 462
Healthy hematopoiesis is the consequence of close and
highly regulated interactions between HSPCs and their
microenvironment. Overall, cumulative evidence suggests that
niche constituents can also drive hematopoietic malignancy.

Remodeling of the Hematopoietic Niche
by Leukemic Cells
As our knowledge of the normal hematopoietic niche improved
in the past 20 years, the role of the microenvironment in
leukemia development captured the attention of the field.
Leukemic cells can remodel the niche creating a favorable
microenvironment at the expense of the normal hematopoiesis
FIGURE 1 | Remodeling of the healthy niche into a permissive leukemic niche. Neuropathy: Leukemic progression is associated with sympathetic neuropathy. Loss
of b2-adrenergic signaling directly promotes leukemic progression and triggers the expansion of MSCs primed for osteoblastic differentiation but with a defect in
terminal maturation leading to a reduction in mineralized trabecular bone. Mesenchymal stem cells: In leukemia, MSCs are dysfunctional expressing lower levels of
key healthy HSC niche factors such as Scf and Cxcl12 impairing healthy hematopoiesis. LSCs express high levels of the CXCL12 receptor CXCR4 and other
adhesion molecules such as CD44 and VLA-4 to usurp the adhesion mechanisms of healthy HSCs. MSC also contribute to LSC survival by the production of
microvesicules and via mitochondria transfer, providing energy support. Alteration of the vascular niche: The expression of VEGF in the leukemic niche induces an
increase in vascular density and the production of NO by endothelial cells increases vascular leakiness contributing to hypoxia. In leukemia, endosteal blood vessels
are more disrupted than the central bone marrow ones. Adipocytes: Leukemic cells support their own metabolism and survival by stimulating lipolysis which fuels
fatty acid oxidation in chemotherapy resistant LSCs expressing the fatty acid transporter CD36. Inflammatory niche: Activation of Notch signaling in osteolineage cells
leads to the activation of the NF-kB pathway in leukemic cells supporting their survival and proliferation. An autocrine secretion of pro-inflammatory molecules like
IL-1 and TNF-a also activates the NF-kB pathway. HSC, hematopoietic cells; SCF, stem cell factor; FA, fatty acid; LSC, leukemic stem cell; MSC, mesenchymal
stem cell; MV, microvesicule; NO, nitric oxide; ECM, extracellular matrix.
October 2021 | Volume 12 | Article 775128
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(Figure 1) (95). Imaging studies in mice have shown that
chemotherapy resistant human LSCs primarily home to and
engraft close to the endosteal region where they closely interact
with different microenvironmental structures (19).

The bone marrow vascularization is altered in AML with an
increased micro-vessel density consequence of the production of
pro-angiogenic factors like vascular endothelial growth factor
(VEGF) (96–99). AML progression induces the production of
nitric oxide (NO) which increases vascular permeability and
maintains overall hypoxia (100). Interestingly AML leads to a
differential remodeling of vasculature in central and endosteal
regions (101). A preferential disruption of the endosteal blood
vessels leads to progressive remodeling of the endosteal stroma
and the progressive loss of stromal cells. Inhibition of the AML-
driven vascular remodeling was shown to improve
chemotherapy efficiency in mice (100, 101).

Leukemic cells can reprogram MSCs to create a pro-tumoral
niche. MSCs reprogramming can occur following direct cell-to-
cell contact, via secreted factors, or via exosomes (102–104). In
addition, humanMSCs isolated from AML patients (AML-MSC)
displayed in-vitro reduced proliferative potential and increased
levels of apoptosis (105). Compared to MSCs isolated from
healthy donors, AML- MSCs have a lower expression of
several niche factors such as SCF, THPO, ANGPT1, VCAM1
and BMI1 (106). In mice, MSCs support AML cells by
transferring mitochondria to provide additional energy (107,
108). This transfer is enhanced by some chemotherapies and
provides a survival advantage to leukemic blasts and LSCs. This
transfer occurs through AML-derived nanotubes. Study in mice
showed that superoxide produced by AML cells NADPH
oxidase-2 (NOX2) stimulates the nanotubes formation in
MSCs. Interestingly, inhibition of NOX2 was able to prevent
mitochondrial transfer and improved survival in a xenograft
model (107). MSCs also help LSCs to cope with increased
reactive oxygen species (ROS) levels, consequence of the
mitochondrial transfer by providing increased bioenergetics
and detoxifying enzymes (109). Furthermore, MSCs protect
AML from chemotherapy through increased Notch and Wnt
signaling and inhibition of apoptosis (110–113). Dysregulation
of the cytokine profile is suspected to create a pro-tumoral niche
in AML (114, 115). LSCs reside in a pro-inflammatory
environment known to favor LSCs survival and proliferation.
As opposed to normal HSCs and differentiated blasts, LSCs
exhibit constitutive NF-kB activity. This activity is partly the
consequence of an autocrine tumor necrosis factor-a (TNF-a)
secretion, formed by an NF-kB/TNF-a positive feedback loop
(116). Activation of Notch signaling also contributes to the
activation of the NF-kB pathway (111). Similarly, LSCs
aberrantly express the co-receptor for interleukine-1 (IL-1),
IL1RAP. Downregulation of IL1RAP inhibits the clonogenic
activity of AML cells and leads to increased apoptosis (39).
Interestingly, LSCs express IL-1 suggesting another pro-
inflammatory autocrine loop. Within the leukemic niche,
cytokines can be produced by either immune or leukemic cells.
Several cytokines and soluble factors have been shown to affect
Frontiers in Immunology | www.frontiersin.org 563
leukemic cells survival and growth in-vitro (117). While pro-
inflammatory cytokines such as IL-1b, GM-CSF, IL-3, TNF-a
seem to promote AML cells growth, anti-inflammatory
molecules such as IL-1Ra, TGF-b and IL-10 have an inhibitory
effect (117–119). The function of a specific cytokine is dependent
on multiple complex molecular interactions within the
microenvironment. Therefore, despite a major improvement in
our understanding over the past decade, further studies are
needed to clarify the cytokine network in AML.

Adipocytes are classically considered negative regulators of
normal hematopoiesis (120). However, this negative action
seems to depend on adipocytes anatomical location. Indeed,
adipocytes in the active red bone marrow support blood
regeneration and myelo-erythroid maturation (121, 122). In
the context of AML, leukemic cells repress bone marrow
adipocyte maturation impairing myelo-erythoid differentiation
(122). Leukemic cells induce the lipolysis of triglyceride to free
fatty acids supporting their proliferation and survival (123).
Interestingly, outside the bone marrow, gonadal adipose tissue
represents a reservoir for LSCs. Within this adipose tissue,
leukemic cells create an inflammatory environment triggering
lipolysis and the released of fatty acids that fuel LSCs expressing
the fatty acid transporter CD36, contributing to chemo-
resistance (124).

The sympathetic nervous system is a critical regulatory
component of the bone marrow microenvironment that
controls the plasticity of bone marrow stromal cells under
homeostatic conditions (78, 79, 125). Aging, a condition
associated with myeloid biased hematopoiesis and an increased
risk of myelodysplastic syndromes and leukemia is associated
with sympathetic neuropathy and decreased b3-adrenergic
signaling (82, 83). In a MLL-AF9 mouse model, AML
infiltration induced sympathetic neuropathy which further
promoted AML (60). This neuropathy was associated with an
expansion of Nestin-GFPpos MSCs primed for osteolineage
differentiation, and HSC exhaustion. Loss of b2-adrenergic
signals directly promotes an expansion of LSCs expressing the
b2-adrenergic receptor. Studies using primary AML cells from
patients showed that leukemic cells altered adipogenesis in favor
of osteolineage differentiation (122, 126). However, sympathetic
neuropathy impairs terminal osteoblastic lineage differentiation
leading to a reduction in mineralized bone density (60).
Sympathetic neuropathy was also induced by the pro-
inflammatory environment observed in a JAK2V617F MPN
mouse model (127). In this context, Nestin-GFPpos MSCs are
reduced, which in turn led to the expansion of altered HSPCs and
disease progression.

Similar to their healthy counterpart, LSC localization is
dependent on the expression of cytokines and adhesion
receptors. Leukemic cells adhere to the bone marrow through
three main receptors: CXCR4, Very Late Antigen-4 (VLA-4) and
CD44 (128). The high expression of these adhesion molecules
facilitates the homing and retention of leukemic cells in the niche
impairing chemosensitivity (32, 129–131). In addition,
interactions between VLA-4 expressed by leukemic cells and
October 2021 | Volume 12 | Article 775128
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VCAM1 expressed at the surface of BM-MSC mediates
chemoresistance via activation of the NF-kB pathway in
stromal cells (20).
LEUKEMIC STEM CELLS: A
THERAPEUTIC OPPORTUNITY

LSCs as a Prognostic Marker
Patients with AML are treated according to a risk stratification
aiming to identify the patients with low, intermediate, and high
risk of relapse based on the disease characteristics at diagnosis
(9). Since LSCs have been implicated in treatment resistance and
relapse, quantification of the LSC pool could be an additional
prognostic factor beside the traditional genetic and molecular
abnormalities. As we discussed before, a clear definition of the
LSC phenotype does not exist, and different approaches have
been used to estimate the LSC pool in patients. Using flow
cytometry, Zeijlemaker W. et al. showed that CD34-positive
AML blasts were associated with an increased incidence of
relapse compared to CD34-negative AML (132). More recently,
the prognostic impact of LSC frequency defined by the
CD34posCD38neg phenotype combined with minimal residual
disease (MRD) evaluation was demonstrated in a prospective
study (133). High level of CD34posCD38low/CD123pos blasts at
diagnosis is predictive of an adverse outcome (134).
Interestingly, a recent study performed in older AML patients
showed that this predictive impact is only seen in patients treated
by intensive chemotherapy but not by hypomethylating agents
(36). Leukemic stem cells frequency seems to be correlated with a
lower white blood cell count, an adverse cytogenetic risk, and less
frequent NPM1 mutation (36, 135).

Stem cell gene expression signatures have been shown to have
a prognostic impact in AML, also highlighting the potential role
of leukemia stemness in treatment response (25). Based on this
observation, a 17 genes score (LSC17) that compared the gene
expression profiles between 138 LSCpos and 89 LSCneg isolated
from 78 AML patients was developed (136). A high score is
associated with a poor outcome after standard treatment
including HSC transplantation (136). The LSC17 was recently
challenged by the newly developed AML prognostic score (APS),
a 16 gene expression signature score, derived from RNA-
sequencing and whole exome sequencing results (137).
Interestingly, the authors hypothesized that APS can
outperform the LSC17 because of its capacity to capture signal
from the microenvironment.

How to Target the Leukemic Stem
Cell Niche
Compared with other hematological malignancies, therapeutic
progresses have been limited in AML highlighting the need for
new strategies. The microenvironment shelters LSCs, protects
them from genotoxic drugs and therefore represents a possible
cause of treatment failure and relapse. Different strategies have
attempted to target the LSC-niche interactions and several
studies are currently ongoing (Figure 2). LSCs can also be
Frontiers in Immunology | www.frontiersin.org 664
directly targeted based on their phenotypic and functional
differences compared to healthy HSCs. These strategies are
beyond the scope of this article and have been reviewed
elsewhere (31, 138–140).

Adhesion Molecules
Adhesion molecules maintain LSCs in the hypoxic niche
protecting them from cycling-dependent chemotherapies.
Targeting adhesion molecules aims to mobilize LSCs out of
their protective niche in order to expose them to
chemotherapy. LSCs express the receptor CXCR4 and migrate
in response to CXCL12 (141). Moreover, high levels of CXCR4
expression are associated with relapse and poor overall survival
in patients (142). Plerixafor, a potent inhibitor of CXCR4, is
currently used in association with G-CSF to induce HSCs
mobilization (143). In an acute promyelocytic leukemia murine
model, treatment with plerixafor in combination with cytarabine
and daunorubicine improved chemosensibility and overall
survival (144). Since this early study, plerixafor has been tested
in phase I-II studies, in combination with various
chemotherapies and hypomethylating agents with promising
results (145–147). Other CXCR4-CXCL12 axis inhibitors are
under clinical development like CX-01, BL-8040 and
ulocuplumab. These drugs showed encouraging results in
combination with chemotherapy in phase I-II studies (148–
151). However, larger phase III studies are needed to confirm
the benefit and the exact place of the CXCR4-CXCL12 axis
inhibition in AML treatment strategy.

Bromodomain and extra-terminal domain-containing (BET-
containing) proteins (BETPs)-inhibitors, can also target adhesion
molecules. Sustained degradation of BETPs induced the
downregulation of CXCR4 and CD44 expression, decreased the
LSC population, and improved overall survival in a patient-
derived xenotransplantation model (152). Importantly, BETPs
inhibition significantly reduced the number of LSCs when used
alone or in combination with chemotherapy. CD44 represents an
exciting target since it is differentially expressed between LSCs and
normal HSCs (130, 131). Administration of H90, a monoclonal
antibody directed to CD44, in immunocompromised mice
transplanted with human AML reduced the leukemic burden.
Interestingly, H90 seemed to specifically target the LSCs
population since no leukemia was observed in serially
transplanted mice (32).

Vascularization Remodeling and Hypoxia
VEGF was early identified as a promising target given its pro-
angiogenic and anti-apoptotic effects on leukemic cells (153).
However, results of clinical studies using bevacizumab, a
humanized recombinant monoclonal antibody directed against
VEGF have proven disappointing (154, 155). A recent study in
mice suggests that inhibition of NO production by endothelial
cells could restore the normal vascularization and improve
response to cytarabine (100). Targeting NO production by
inhibiting the NO synthase could therefore represent a new
therapeutic target. The niche represents a hypoxic environment
that maintains LSCs in a quiescent state. Moreover, hypoxia
inducible factor-1 (HIF-1a) expression induced by hypoxia
October 2021 | Volume 12 | Article 775128
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upregulates CXCR4 expression at the membrane surface of LSCs
(19). However, the exact impact of HIF-1a inhibition is still
debated (156, 157). Another way to target the hypoxic
microenvironment is to use hypoxia-activated prodrugs
(HAPs) (158) specifically designed to form cytotoxic agents
under hypoxic conditions while limiting the toxicity on normal
tissues. Evofosfamide (also known as TH-302) is a 2-
nitroimidazole-linked prodrug. In vitro, evofosfamide
treatment promotes a dose- and hypoxia-dependent apoptosis
and cell death in AML cells. Interestingly, in a xenograft model,
evofosfamide reduces LSC pool with limited toxicity on normal
hematopoiesis (159, 160). However, a phase I study conducted in
Frontiers in Immunology | www.frontiersin.org 765
49 patients with advanced leukemia showed disappointing
results with an overall response rate of only 6% only (161).
Other HAPs are currently under development.

Cytokines and Soluble Factors
Targeting the pro-inflammatory environment represents another
interesting strategy considering the importance of cytokines like
IL-1, IL-6 and TNFa for LSC survival and proliferation. IL-1 and
IL-6 inhibitors are already commercially available for the
treatment of autoimmune disease and cytokine released
syndromes (162, 163). It would be interesting to test these
inhibitors in combination with chemotherapy even if caution is
FIGURE 2 | Therapeutic targeting of the leukemic niche. The different molecular interactions between LSCs and the bone marrow niche constituents are shown.
Inhibitors are labeled in red. Most of the drugs shown in the figure are under pre-clinical or early clinical development. IL-1, interleukine-1; Ab, antibody; CD, cluster
of differentiation, FA, fatty acid; LSC, leukemic stem cell; MSC, mesenchymal stem cell; NOX2, NADPH oxidase 2; NO, nitric oxide; ECM, extracellular matrix; VEGF,
vascular endothelial growth factor; HAP, Hypoxia-activated prodrugs; PPARg, Peroxisome Proliferator-activated Receptor gamma; VCAM-1, Vascular Cell Adhesion
Molecule-1; BETPs, Bromodomain Extra-Terminal Protein.
October 2021 | Volume 12 | Article 775128

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Marchand and Pinho The Leukemic Stem Cell Niche
needed regarded the risk of infections. Given the higher
expression of IL1RAP at the surface of LSCs compared with
normal HSCs, targeting IL1RAP is an attractive option. Indeed,
in a preclinical study, targeting IL1RAP using a monoclonal
antibody induced selective killing of AML CD34posCD38pos,
and CD34posCD38neg cells both in vitro and in a xenograft
model (164).

Since leukemic cells trigger lipolysis and use fatty acids as a
source of energy, targeting the adipose tissue represents another
possible strategy. Studies in mice have shown that restoring
normal adipocyte maturation using PPARg agonists inhibits
leukemic growth. Similarly, inhibiting fatty acids transfer to
leukemic cells improved survival in a xenograft model (123).
However, further studies in human are warranted.
CONCLUSION

According to the cancer stem cell theory, LSCs sit at the top of
the hierarchy and are the source of the more differentiated
leukemic blasts. Even if these cells represent an attractive
target, eradicating LSCs is highly complex, notably due to the
lack of specific markers. AML is associated with a remodeling of
the hematopoietic niche where HSCs and LSCs reside, however,
modifications of the microenvironment also contribute to
leukemia development at the expense of normal hematopoiesis.
Since the first description of LSCs more than 25 years ago, our
Frontiers in Immunology | www.frontiersin.org 866
understanding of this small subset of leukemic cells has greatly
improved with the identification of potential therapeutic targets
paving the way for the development of new treatment strategies
in a still deadly disease.
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B-cell acute lymphoblastic leukemia (B-ALL) results from the expansion of malignant
lymphoid precursors within the bone marrow (BM), where hematopoietic niches and
microenvironmental signals provide leukemia-initiating cells (LICs) the conditions to
survive, proliferate, initiate disease, and relapse. Normal and malignant lymphopoiesis
are highly dependent on the BM microenvironment, particularly on CXCL12-abundant
Reticular (CAR) cells, which provide a niche for maintenance of primitive cells. During B-
ALL, leukemic cells hijack BM niches, creating a proinflammatory milieu incompetent to
support normal hematopoiesis but favoring leukemic proliferation. Although the lack of a
phenotypic stem cell hierarchy is apparent in B-ALL, LICs are a rare and quiescent
population potentially responsible for chemoresistance and relapse. Here, we developed
novel patient-derived leukemia spheroids (PDLS), an ex vivo avatar model, from
mesenchymal stromal cells (MSCs) and primary B-ALL cells, to mimic specialized niche
structures and cell-to-cell intercommunication promoting normal and malignant
hematopoiesis in pediatric B-ALL. 3D MSC spheroids can recapitulate CAR niche-like
hypoxic structures that produce high levels of CXCL10 and CXCL11. We found that PDLS
were preferentially enriched with leukemia cells displaying functional properties of LICs,
such as quiescence, low reactive oxygen species, drug resistance, high engraftment in
immunodeficient mice, and long-term leukemogenesis. Moreover, the combination of
PDLS and patient-derived xenografts confirmed a microenvironment-driven hierarchy in
org October 2021 | Volume 12 | Article 746492172
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their leukemic potential. Importantly, transcriptional profiles of MSC derived from primary
patient samples revealed two unique signatures (1), a CXCL12low inflammatory and
leukemia expansion (ILE)-like niche, that likely supports leukemic burden, and (2) a
CXCL11hi immune-suppressive and leukemia-initiating cell (SLIC)-like niche, where LICs
are likely sustained. Interestingly, the CXCL11+ hypoxic zones were recapitulated within
the PDLS that are capable of supporting LIC functions. Taken together, we have
implemented a novel PDLS system that enriches and supports leukemia cells with stem
cell features driven by CXCL11+ MSCs within hypoxic microenvironments capable of
recapitulating key features, such as tumor reemergence after exposure to chemotherapy
and tumor initiation. This system represents a unique opportunity for designing ex vivo
personalized avatars for B-ALL patients to evaluate their own LIC pathobiology and drug
sensitivity in the context of the tumor microenvironment.
Keywords: acute lymphoblastic leukemia, leukemia-initiating cell, bone marrow niche, mesenchymal stromal cells,
tumor microenvironment, B-cell development
INTRODUCTION

Childhood cancer, a global health priority, remains a leading
cause of death from disease in scholar age, with B-cell acute
lymphoblastic leukemia (B-ALL) exhibiting substantial number
of years of life lost and increasing rates of unfavorable outcome
cases in low- to middle-income countries (1, 2).

B-ALL starts and progresses in the bone marrow (BM), where
malignant precursor cells expand in the context of pro-inflammatory
microenvironments and a highly complex and dynamic BM
topology, endowed with the ability of selecting pre-malignant
clones able to evolve into tumor (3–6). A number of genetic
abnormalities associated with high-risk B-ALL suggest stem cell-
like properties, such as colonization of hematopoietic niches, and
highlight the cooperation between leukemia cells and BM
microenvironment by intrinsic and extrinsic signals. Furthermore,
the evaluation of the hematopoietic organization structure in B-ALL
has challenged the traditional hierarchy of the differentiation,
revealing that cell fate decisions are indeed supported by
heterogeneous hematopoietic stem/progenitor cell (HSPC) niches
in a more stochastic structure. A new model of hematopoietic
forming units suggests that HSPC can respond to environmental
cues driving intra- and inter-communication networks that may
create adaptable niches (7, 8).

Accordingly, CXCL12-abundant reticular (CAR) niches, formed
by specialized mesenchymal stromal cells (MSCs) (9) overlapping
with nestin and leptin receptor (LepR) expression (10, 11) and
producing high levels of CXCL12, SCF, and IL-7, are critical for B-
cell lymphopoiesis (12). The essential roles of the CXCL12/CXCR4
axis in niche positioning and cell cycle status of leukemia stem cells
have been highlighted by the specific deletion of CXCL12 from BM
MSCs, suggesting the differential use of CXCL12-niches by CXCR4+

malignant cells (13). The professional cytokine-secreting CAR cells
that create stage-specific micro-niche configurations crucial for
maintenance, cell cycling, and differentiation fate decisions of
lymphoid, and myeloid progenitors, have been recently defined by
transcriptomics single-cell approaches (14, 15), and confirmed the
org 273
critical interdependence of normal and malignant HSPC with their
niches (16). Although the lack of a phenotypic stem cell hierarchy is
apparent in B-ALL, leukemia-initiating cells (LICs) have been
recognized as a rare subpopulation endowed with stemness
properties and potentially responsible for chemoresistance and
relapse (17, 18). Therefore, due to their clinical and therapeutical
implications, it is critical to characterize the relationship between
LICs and their microenvironment. Computational modeling
approaches have recently inferred a unique inflammation-inducible
CXCR7+ B-precursor cell population, displaying abnormal
phenotypes and presumably able to colonize distinct emergent
inflammatory niches producing CXCL11 (19). Moreover, three-
dimensional (3D) hematopoietic structures have been instrumental
to advance our knowledge on cell-to-cell intercommunication,
nutrient diffusion, oxygen gradients, hypoxic zone formation, and
HSPC expansion (20, 21).

Thus, tobetter investigate theLICs in theirmicroenvironment,we
sought to implement a co-culture method capable of mimicking the
BM niche and sustain primary B-ALL cell growth and survival from
B-ALL patients. The resulting patient-derived leukemic spheroids
(PDLS) showed a remarkable ability to enrich leukemia cells with
stem cell properties. RNA-seq data from pediatric B-ALL-derived
MSCs provided evidence of two putativeMSCs subpopulations with
unique and distinguishable immunological expression profiles and
potential clinical implications (1): a pro-inflammatory and leukemia
expansion (ILE)-like niche, and (2) an immune-suppressive and
leukemia-initiating cell (SLIC)-like niche. Strikingly, PDLS
recapitulated the hypoxic CXCL11+ zones that support LICs,
revealing the previously undescribed relevance of CXCL11+

mesenchymal niches for cell maintenance of long-term leukemia
initiating and relapse population.

METHODS

Patient Characteristics and Sample Collection
This research has been performed in accordance with the
Declaration of Helsinki and was approved by the Ethics,
October 2021 | Volume 12 | Article 746492
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Research and Biosafety Committee from IMIEM (CIEICE-007-
01-13) and by the National Committee of Scientific Research at
IMSS (R-2012-3602-29 and R-2015-785-120). All samples were
collected after informed consent from parents. The study
included 147 B-ALL pediatric patients, 8 months to 16 years
old (8.15 ± 4.47), referred to the IMSS Specialties Hospital and
the IMIEM Children’s Hospital. At clinical diagnosis, 85% of
patients were classified as high risk and 41.5% as ProB/PreB-,
30.6% as ProB-, and 27.9% as PreB-ALL, with only 30%
exhibiting prognostic translocations. Control BM was obtained
from 12 healthy children undergoing minor orthopedic surgery.
BM specimens were collected by aspiration before any treatment
and according to international and institutional guidelines.
(Supplementary Table S1).

Isolation of Primitive Hematopoietic Cells
Mononuclear cells (MNCs) were separated by Ficoll-Paque Plus
(GE Healthcare Bioscience, NJ, USA) gradient. No sample
pooling was performed for any of the experimental strategies.
By immunophenotyping with fluorochrome-conjugated
antibodies (Supplementary Table S2), Pro-B cells were
identified as CD45low/-CD34+CD10+CD19+ and Pre-B as
CD45low/-CD34-CD10+CD19+, before sorting in a FACSAria II
flow cytometer (BD Biosciences, USA) (Supplementary Figures
S1A, B).

Cell Lines
REH and RS4;11 B-ALL cell lines were purchased from ATCC
(VA, USA) and cultured according to instructions. Nalm6 cell
line was kindly provided by Dr. JL Maravillas (INNSZ, Mexico).
Cell lines were tested for mycoplasma and authenticated using
STR assays.

Primary Mesenchymal Stromal Cells
MSCs were isolated by adhesion, as previously reported (22).

Patient-Derived Leukemic Spheroids
A total of 25,000MSCs were plated on 96-well round-bottom plates
previously coated with 1% agarose to induce spheroid formation for
24 h, before co-culture with leukemic cells (22). For harvesting,
PDLS were incubated with 0.05mMPBS-EDTA for 5min to detach
cells from the surface, followed by 10 min enzymatic treatment
(TrypLE Express, Gibco, CA, USA) and mechanical disruption. Cell
suspension was recovered from the inside of PDLS (PDLS-in) and
separated from outer cells and supernatant (PDLS-out), before
staining with fluorochrome-conjugated antibodies and/or direct
FACS analysis (Supplementary Figures S1C, D).

Cell Tracking Strategies
MSCs or B-ALL cells were stained with fluorescent dyes Cell
Trace Violet®, Cell Trace CFSE®, or Cell Trace Far Red®

(Invitrogen, Life Technologies, CA, USA), according to
the manufacturer.

Fluorescence Microscopy
PDLS were fixed with 4% PFA and 2 h treated with 0.01% Triton
X-100 (Bio-Rad, MX). Upon 1 h blocking with 3% BSA, they
Frontiers in Immunology | www.frontiersin.org 374
were incubated overnight at 4°C with primary unlabeled
antibodies in PBS 3% SFB, washed, and incubated for 1 h with
conjugated secondary antibody before 10 min DAPI staining and
Vectashield. BM biopsy staining was performed as
described (22).

Cytokine Detection
Supernatants were collected after 24 h of 3D culture and
investigated for cytokines by multiplex assays (Milliplex Map,
Millipore, Merck MX).

Proliferation Assay
FACS-sorted B-ALL cells were stained with CellTrace CFSE®

(Invitrogen, Life Technologies, CA, USA), co-cultured with MSC
spheroids, and further assayed for fluorescent dye dilution by
flow cytometry.

Pimonidazole Incorporation and Hypoxia
Detection
Hypoxia was detected by the Hypoxyprobe-1 Plus Kit
(Pimonidazole Hydrochloride, Chemicon International,
Temecula, CA, USA). Pimonidazole incorporation was
confirmed by flow cytometry and fluorescence microscopy.
Image-IT green hypoxia (Invitrogen, Life Technologies, CA,
USA) was used to track low oxygen levels.

Side Population Assay
Harvested cells were adjusted to 106 cells/ml and incubated with
Hoechst 33342 to a final concentration of 5 mg/ml (Sigma-
Aldrich, MX), 37°C for 2 h, prior to staining with anti-
human CD45.

Patient-Derived Xenografts
In vivo experiments were conducted according to the WCM
Institutional Animal Care and Use Committee (IACUC) and the
CINVESTAV Committee for Animal Care and Use (CICUAL)
guidelines and regulations. NOD/SCID gamma chain (NSG)
mice from the Jackson Laboratory (JAX, CA, USA) were i.v.
injected with primary B-ALL cells from 48 h cultures. Animals
were euthanized after 5 weeks or when exhibiting clinical signs of
leukemic disease. Human CD45+ cell frequencies in peripheral
blood and BM were investigated for engraftment monitoring.

Limiting Dilution Assays
Serial dilutions of leukemic cells were injected into NSG mice.
After 4 weeks, the engraftment was determined by flow
cytometry and documented as positive when human CD45+

cells recorded within mouse BM cells were >1%. ELDA program
was used to calculate the LIC content for each culture
condition (23).

RNA-Sequencing Library Preparation
and Analysis
Whole RNA was extracted from 5 × 105 MSC (RNeasy kit,
QIAGEN, MX), and samples with RIN > 8 were used for
experiments. Libraries were constructed by using the TruSeq
Stranded mRNA Library Prep Kit (Illumina, CA, USA) before
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mRNA sequencing on a NextSeq 500 instrument at INMEGEN
(Mexico). Paired-end reads were aligned to the human genome
reference GRCh38/hg38 (build 38.2) with the R software package
Rsubread (24) and read mapping statistics were reported
(Supplementary Table S3). Mapped reads were summarized to
gene level counts featured by counts function of Rsubread,
considering the built-in NCBI RefSeq gene annotation for gene
reference. Protein coding genes with detected counts in at least
one sample library were retained and normalized using TMM
normalization. Differential expression analysis was performed
with the edgeR package (25). Statistical analyses and plots were
performed using the programming language R (R Core Team,
2012). Gene ontology and functional enrichment analyses were
performed by Metascape (26). The original contributions
presented in the study are publicly available. RNA-seq data can
be found in E-MTAB-10838 (https://www.ebi.ac.uk/
arrayexpress/experiments/E-MTAB-10838/).

Data Analysis and Statistics
FlowJo 10.0.8 (TreeStar Inc., Ashland, OR, USA) and Infinicyt
1.8 (Cytognos, Spain) software were used for cytometry data,
while Prism 8 (GraphPad, CA, USA) software was used for
statistical analysis. Differences within groups were established by
non-parametric tests, considering significant probability values
<0.05. Mann–Whitney U test with a of 5% to define significance
was applied. Data were normally distributed and individual data
points for independently repeated experiments and mean (SD)
were graphed.
RESULTS

Mesenchymal 3D Spheroids Are Capable
of Reconstructing Unique B-ALL Niches
As 3D cellular organization is essential to preserve physiological
features of BM, we generated 3D structures to characterize the
leukemic niche by using MSCs derived from either primary B-
ALL at disease onset (ALL-MSC) or from healthy bone marrow
donors (HBM-MSC) (Figure 1A). We found that MSCs were
capable of forming a single multicellular spheroid within the first
24 h of non-adherent culture conditions with a direct cell
number–size relationship (Supplementary Figures S2A, B).
Despite the decrease in the MSC proliferation in 3D settings,
the classical MSC markers were conserved (Supplementary
Figures S2C, D). CXCL12-abundant reticular (CAR)
immunophenotype was confirmed in CXCL12hiSCFhiIL-7hi

HBM-MSC spheroids (Figure 1B) as well as the expression of
Nestin, PDGFRa, and LepR (Supplementary Figure S2E). In
contrast, a substantially lower abundance of typical
CXCL12hiSCFhi CAR cells in ALL-MSC spheroids with weaker
expression of CXCL12 and SCF (Figure 1B), but increased
production of IL-8, Flt3-L, GM-CSF, FGF-2, CXCL10, and
CXCL11, was observed in the supernatants evaluated at 24 h
(Figure 1C). ALL-MSCs in a 3D organization have the ability to
in vitro recapitulate unique CAR niche-like structures that
produce high levels of CXCL10 and CXCL11.
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Primary B-ALL Cells Can Be Expanded in
Mesenchymal 3D Spheroids
Since we confirmed the ability of the 3D ALL-MSCs spheroids of
recapitulate CAR niche-like structures, we sought to evaluate the
ability of primary B-ALL cells to migrate to the MSC spheroids
by assessing their colonization capacity. First, we stablished the
3D HBM- or ALL-MSCs spheroids, and 24 h later, we seeded
25,000 primary B-ALL cells CD10+CD19+ (n = 8), labeled with
Cell Trace Far Red. After 24 h of co-culture, spheroids were
washed and prepared for the whole-mount fluorescence
microscopy analysis or enzymatically disrupted to analyze their
cellular content by multiparameter flow cytometry (MPFC). We
found a clear advantage for ALL-MSC spheroids to facilitate the
colonization of leukemic cells when compared with the HBM-
MSC (Figure 2A). To evaluate niche saturation, serial spheroid
sizes were tested, finding that in all cases, only near 1%–3% of
leukemic cel ls were able to colonize inner niches
(Supplementary Figure S3A). Since CXCR4 has been
implicated in homing of leukemia cells to their niche (27, 28),
we tested the effect of plerixafor (AMD3100) in the colonization
of AMD3100-treated B-ALL cells to the 3D structures and found
that it can only partially prevent B-ALL cell spheroid colonizing,
with a 4.6-fold decrease (Figure 2B). The effect was similar when
the niche positioning of leukemic cells into normal BM spheroids
was investigated (Supplementary Figure S3B).

Next, we assessed the ability of the spheroids to maintain cells
capable of initiating leukemia without enrichment. Thus, we co-
cultured 25,000 MNCs from five different B-ALL patients with
either stromal-free (SF), MSCs monolayers (2D), or spheroids
(3D) for 48 h and then transplanted into NSG mice (Figure 2C).
We observed that 3D architecture was best at facilitating survival
and expansion of primary leukemia cells when compared to
other culture conditions (Figure 2D and Supplementary Figure
S3C). Importantly, 3D co-cultures in ALL-MSC expanded more
robustly (Figure 2D) and exhibited higher leukemic engraftment
at week 6 post-transplantation than other culture conditions
(Figure 2D and Supplementary Figure S3D). In addition, cells
cultured in the 3D system performed better than freshly thawed
MNC and transplanted (Supplementary Figure S3E). Taken
together, we demonstrated that ALL-MSC spheroids support
homing, survival, growth, and efficient engraftment of primary
B-ALL cells. This co-culture system is referred to as patient-
derived leukemic spheroids (PDLS).

Hypoxic Patient-Derived Leukemic
Spheroids Support Leukemia Cells With
Stem Cell Features
Despite the fact that LICs in B-ALL have been controversial due
to the lack of a specific immunophenotype (18), cells with stem
cell features have been shown to be enriched in hypoxic zones
within the BM (29). Here, we sought to characterize the cells
capable of colonizing the PDLS. Because leukemia initiation in
NSG mice is a feature of LICs, this and additional LIC properties
were evaluated in different compartments of 3D structures using
primary B-ALL samples. At 24 h, we harvested cells from the
supernatant (PDLS-out) and, upon enzymatic digestion of the
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PDLS structure, collected the cells that migrated into the inner
spheroid (PDLS-in). More than 90% of spheroid-colonizing B-
ALL cells (PDLS-in) showed low proliferation activity when
growing inside PDLS, while PDLS-out cells exhibited higher
proliferation (Figure 3A). Consistently, a quiescent (G0) profile
defined the PDLS-in cells (Figure 3B), which is a feature of LICs
(18). Furthermore, we investigated stem cell features such as
“side population” (Figure 3C and Supplementary Figure S4A)
and low ROS production (30) (Figure 3D), confirming that
PDLS-in cells also displayed such properties when compared
with other culture scenarios. Moreover, an increase in HIF-1a
expression was recorded (Figure 3E and Supplementary Figure
S4B), consistent with increased hypoxia in the PDLS-in cells,
assessed by the image-iT green hypoxia tracker and
pimonidazole incorporation. These data confirmed a PDLS-in
hypoxic setting for both MSCs and B-ALL (Figure 3E and
Frontiers in Immunology | www.frontiersin.org 576
Supplementary Figure S4C). Taken together, PDLS provide
strong evidence that stem-like B-ALL can be enriched by their
function and biological features within hypoxic niches,
suggesting that they may be the foundation of leukemia-
migrating and -proliferating cells.

PDLS Foster Cells With the Capacity of
Leukemia Initiation and Chemoresistance
As PDLS were colonized by leukemia cells with stem cell features,
we sought to determine whether cells isolated from PDLS-in are
characterized by the increased ability of homing. By serial
spheroid seeding assay, we discovered that PDLS-in were
capable of re-colonizing spheroids with higher efficiency than
PDLS-out cells (Figure 4A), highlighting their homing and stem
cell potentials. To further characterize the LICs capacity, 3,000
sorted CD45+ RS4;11 cells from 48 h PDLS-in and other culture
A

B

C

FIGURE 1 | B-ALL BM MSC form 3D spheroids endowed with high CXCL10 and CXCL11 production. (A) Mononuclear cells (MNCs) were obtained from healthy
BM (HBM) donors or B-ALL patients, and MSCs were isolated by their adherent properties and were cryopreserved to be used in further experiments. (B) A total of
50,000 MSCs from HBM or B-ALL were induced to form a stromal multicellular spheroid, and CAR-cell derived factors (CXCL12, SCF, and IL7) were evaluated by
immunostaining and FACS (n = 6). (C) Growth factors, cytokines, and chemokine production from B-ALL-MSC spheroids (3D) were evaluated after collection of 24-h
supernatants and normalized to HBM-MSC spheroids (n = 6). MSC, mesenchymal stromal cell; HBM, healthy bone marrow; B-ALL, B-cell acute lymphoblastic
leukemia; CAR-cell, CXCL12-abundant reticular cell; FACS, Fluorescence-activated cell sorting. *P < 0.05; **P < 0.01; ***P < 0.001. Error bars represent SD.
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scenarios were used to inject NSG mice. Leukemia burden was
weekly monitored, and final engraftment was evaluated at 6 weeks
(Figure 4B). Mice transplanted with purified PDLS-in cells showed
the highest numbers of human CD45+ cells peripheral blood (PB)
andexhibited the lowest overall survival (OS)of 44days (Figure4C).
BM analysis confirmed the facilitated engraftment with PDLS-in
RS4;11 cells. Such results were validatedwith three different primary
human samples from ProB and PreB pediatric-ALL patients
(Figure 4D). Limiting dilution assay revealed that LICs frequency
was 10 times less in stroma-free settingswhen compared toPDLS-in
conditions (Supplementary Figures S5A, B). Remarkably, a LICs
enrichment was observed in PDLS-in (1/45.2), compared with
PDLS-out (1/858) and SF conditions (1/704) (Supplementary
Figure S5C). MPFC analysis of PDLS-in confirmed that LICs
enrichment by PDLS was likely driven by functional attributes
assoc iated with leukemia stemness rather than by
immunophenotype (Supplementary Figure S5D), supporting
the notion of a functional LICs hierarchy driven by specialized
microenvironmental cues. Thus, PDLS could be potentially used
Frontiers in Immunology | www.frontiersin.org 677
as a proxy to determine the presence of LICs in pediatric B-ALL
patient samples.

As LICs have also been described as chemo-resistant (13, 18, 27,
31), we proceeded to investigate the response of the PDLS-in cells to
the most commonly used chemotherapy drugs for B-ALL
treatment. To this end, the ability of drugs to diffuse inside the
spheroid was investigated. When treating PDLS with the
anthracycline daunorubicin, the cells were able to uptake
daunorubicin within the first hour, evidenced by their red
fluorescence (Figure 5A). By examining the viability at 24 h of
treatment, we found that daunorubicin, prednisolone, and
vincristine, even at high concentrations, were not effective in
killing the PDLS-in cells (Figure 5B). Of note, combined
chemotherapy commonly used in B-ALL, including daunorubicin,
prednisolone, vincristine, and methotrexate (P-V-D-M), displayed
similar results when investigated in high-risk (HR) and standard-
risk (SR) patients (Figure 5C). Furthermore, when PDLS-in vehicle
or P-V-D-M-treated cells were purified and exposed for an
additional 24 h in stroma-free conditions, cells remained chemo-
A
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FIGURE 2 | Mesenchymal stromal spheroids support primary leukemogenic B-ALL cells. (A) Primary sorted B-ALL CD10+CD19+ blasts were labeled with CTFR
and co-cultured with HBM-MSC or ALL-MSC spheroids. After 24 h, spheroids were washed and analyzed by fluorescence microscopy and FACS. CTFR+ colonizer
cell frequencies determined upon enzymatic digestion (n = 7). (B) CTFR-labeled primary B-ALL cells were treated with a CXCR4 inhibitor (AMD3100) 5 mM for 3 h
and then co-cultured within PDLS. Upon 24 h, CTFR+ content was determined by FACS (n = 8). (C) Schematic representation of experimental design, 25,000
mononuclear cells from B-ALL patients were cultured in SF conditions, or co-cultured with HBM- or B-ALL-MSC monolayer (2D) or spheroids (3D). (D) Cell viability
was analyzed by flow cytometry upon 48 h and absolute cell number was determined (n = 5) (left). Leukemic cells from independent experiments were harvested at
48 h of culture and transplanted into NSG mice. Human engraftment of hCD45+ was weekly monitored in PB by FACS and engraftment in BM was determined 6
weeks after transplantation (n = 4) (right). MSC, mesenchymal stromal cell; HBM, healthy bone marrow; B-ALL, B-cell acute lymphoblastic leukemia; CTFR, Cell
Trace Far Red; FACS, Fluorescence-activated cell sorting; SF, stromal-free; PB, peripheral blood. *P < 0.05; **P < 0.01; ***P < 0.001, ***P < 0.0001. Error bars
represent SD.
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resistant (Figure 5D). Next, to determine the potential of PDLS-in
cells to recapitulate disease after chemotherapy, PDLS were treated
with combined chemotherapy for 24 h, washed to remove PDLS-
out cells, and cultured again in fresh wells. Strikingly, newly formed
PDLS-out cells were harvested upon 120 h and no differences were
observed when compared to untreated PDLS (Figure 5E), suggesting
that PDLS can capture clinical features, such as tumor reemergence after
cell survival within internal niches during chemotherapy.
Gene Expression Signatures for BM MSCs
Reveals Pro-Inflammatory and Suppressor
Niches in B-ALL Patients
In order to investigate the identity of MSCs isolated from
primary pediatric-ALL patients, we performed RNA
sequencing analysis of three different ALL-MSCs specimens
and HBM-MSC. Substantial and heterogeneous dysregulation
of gene expression was found when compared with HBM-MSC
(Figure 6A and Supplementary Table S3). Specifically, 103
genes were consistently overexpressed among ALL-MSC (fold
change > 2 and FDR < 0.05) (Figures 6B, C and Supplementary
Figures S6A, B) and, of high interest, two major gene ontology
Frontiers in Immunology | www.frontiersin.org 778
(GO) signatures were identified. A pro-inflammatory signature
was characterized by a large set of chemokines involved in
neutrophil recruitment, IL-17 signaling, metalloproteinase
functional activation, and leukocyte migration including
CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL8, CCL20, and
pro-inflammatory molecules like IL1B, IGF1, MMP1, MMP3,
andMMP8 (Figure 6D). An additional signature, predominantly
displayed by ALL-MSC3, showed a TLR signaling, cytokine-
mediated signaling, and a negative regulation of leukocyte
proliferation signatures. Moreover, high expression of
chemokines CXCL10 and CXCL11 and a substantial
expression of suppressor molecules like indoleamine 2,3-
dioxygenase (IDO1) and galectin 9 (LGALS9) (Figure 6D)
were apparent. Importantly, ALL-MSC did not exhibit
transcriptional differences in the typical MSCs markers CD73,
CD90, and CD105 (Supplementary Figure S6C), but a very low
transcriptional expression of CAR-niche associated genes
CXCL12 and SCF were found in CXCL10+CXCL11+ ALL-
MSC3 (Supplementary Figure S6D). When downregulated
genes were analyzed, we did not find apparent intersections
among samples. However, GO analysis at the individual level
showed that some extracellular matrix-associated proteins and
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FIGURE 3 | PDLS promote stem cell-like phenotype, quiescence, and hypoxia in a subset of primary B-ALL cells. (A) Primary sorted B-ALL CD10+CD19+ blasts
were labeled with CFSE and co-cultured with ALL-MSC to form PDLS. At 24 h, frequency of CFSEhi was determined by FACS in the supernatants after spheroid
removal (PDLS-out) and in the PDLS colonizer cells (PDLS-in) after several washes and enzymatic digestion (n = 5). (B) Primary B-ALL blasts were cultured in
stromal-free (SF) conditions and co-cultured with ALL-MSC in monolayer (2D) and PDLS settings for 48 h and cell cycle status was evaluated by Ki-67 staining and
DNA content by FACS (n = 5). (C) Side population cell contents are shown (n = 5). (D) ROS production was measured by FACS and ROSlow frequency was
recorded (n = 5). (E) Hypoxia was investigated by HIF-1a expression (left), image-iT fluorescent hypoxia probe (middle) and pimonidazole incorporation (right) by
FACS. Fluorescence microscopy of pimonidazole incorporation of PDLS is shown (n = 7). MSC, mesenchymal stromal cell; B-ALL, B-cell acute lymphoblastic
leukemia; PDLS, patient-derived leukemia spheroids; CFSE, carboxifluorescein; FACS, fluorescence-activated cell sorting. *P < 0.05; **P < 0.01; ***P < 0.001,
***P < 0.0001. Error bars represent SD.
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cell division-associated networks were dramatically altered in
similar extent for all three B-ALL MSCs (Supplementary Figure
S6A). Taken together, the MSC gene expression profiling
suggests two potential niches, according to their functional
elements within the B-ALL BM microenvironment. A pro-
inflammatory and leukemia expansion (ILE) niche, where
leukemic clones may proliferate and increase tumor burden in
the context of an activating pro-inflammatory milieu, and an
immune-suppressive and leukemia-initiating cell (SLIC) niche,
endowed with immunoregulatory and suppressive properties
and high transcription of CXCL10 and CXCL11.
A Hypoxic CXCL11hi Mesenchymal Niche
Can Be Recapitulated in the PDLS
In order to assess our transcriptional observations in our PDLS
system, we used immunostaining approaches to characterize
Frontiers in Immunology | www.frontiersin.org 879
CXCL11 expression in a leukemia microenvironment.
Strikingly, we found that CXCL11hi MSC spheroids were
enriched in hypoxic CXCL12hi zones with partial overlapping
(Figure 7A). Distinct CXCL11low and CXCL11hi cell populations
were also evident in ALL-MSC spheroids, while HBM-MSC
spheroids did not show CXCL11 expression (Figure 7B).
Moreover, the occurrence of CXCL11low/hi MSCs in B-ALL BM
biopsies was confirmed (Figure 7C), where CXCL11 co-stained
with CD19. Additionally, B-ALL cells, but not normal CD34+

precursor cells, expressed CXCR3 and CXCR7, the receptors for
CXCL10, CXCL11, and CXCL12, suggesting their advantage for
selective niche colonization (Figures 7D, E and Supplementary
Figure S7A). CXCL10hiCXCL11hi zones may represent exclusive
leukemia-positioning niches where B-ALL cells may also
contribute to CXCL11 expression (Supplementary Figure
S7B) presumably relevant for positioning of CXCR3+CXCR7+

LICs and suitable for immune scape (Figure 8 and
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FIGURE 4 | Leukemia-initiating cells (LICs) are enriched in PDLS internal niches. (A) Secondary spheroid colonization assay was performed with purified PDLS-in
and PDLS-out leukemic cells from primary PDLS (n = 8). (B) Schematic representation of experimental design, Leukemic cells were cultured during 48 h on stromal-
free (SF), MSC monolayers (2D), and PDLS and 3,000 CD45+ cells were transplanted into NSG mice. (C) Leukemia burden was monitored in peripheral blood by
FACS (upper panel) and overall survival was plotted (lower panel) when RS4:11 cells were used (n = 5). (D) Engraftment was determined in BM after 6 weeks of
xenotransplantation of RS4:11 cells (upper panel) or three different primary B-ALL cells (representative plots are shown in lower panel) (n = 5). B-ALL, B-cell acute
lymphoblastic leukemia; PDLS, patient-derived leukemia spheroids; MSCs, mesenchymal stromal cells; FACS, Fluorescence-activated cell sorting. *P < 0.05;
**P < 0.01; ***P < 0.001, ***P < 0.0001. Error bars represent SD.
October 2021 | Volume 12 | Article 746492

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Balandrán et al. PDLS Support B-Leukemia-Initiating Cells
Supplementary Figure S7C). Taken together, we demonstrate
that PDLS are capable of capturing a SLIC niche endowed with a
specialized gene expression signature and the selection of
malignant cells with stem cell functions.
DISCUSSION

93.5% of poor prognosis cases of pediatric leukemias are
registered in low- to middle-income countries, where 90% of
the world’s children live, with relapses occurring at very early
stages of treatment and increasing numbers of high-risk fates (1,
2, 32). Such epidemiology highlights the importance of a
comprehensive understanding of the origins and coevolution
of the disease in the context of micro/macroenvironmental cues.
The phenotypical and functional identity of LICs and leukemia-
relapsing cells (LRCs) and the niches where they evolve are
critical for the construction of a more integrated view of the
nature of leukemia subtypes and their potential control (33, 34).
Frontiers in Immunology | www.frontiersin.org 980
Here, we have addressed key aspects of the microenvironment-
related leukemia etiopathogenesis through implementation of
PDLS. This in vitro avatar model is a powerful tool to recapitulate
malignant niche biology in human–human settings that better
mimic natural ecosystems (Figure 8). We demonstrated that LIC
activity is promoted within PDLS niches and facilitated by hypoxic
microenvironments. The CXCL12/CXCR4 axis has been considered
the most important player in the chemotaxis and retention of
hematopoietic cells into their BM niches (9, 35, 36), and in normal
settings, MSC spheroids have shown to increase the CXCL12
expression (20, 22) as a result of hypoxia (37) and to promote
high cellular connectivity mediated by connexins (38). However,
upon leukemia onset, CXCL12 expression is downregulated in
MSCs (13, 22, 39, 40). Several studies have suggested that normal
HSPCs live in anatomic regions with lower O2 levels (29) and it is
becoming clear the critical role of the BM hypoxic niches in the low
oxidative stress status of quiescent HSPCs that avoid their
continuous differentiation and exhaustion. Indeed, pseudohypoxia
increases the HSPC engraftment, suggesting that HSPC exhaustion
can occur in non-hypoxic conditions (41). Further metabolic studies
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FIGURE 5 | LICs are protected from chemotherapy within PDLS. (A) B-ALL PDLS were incubated with daunorubicin (75 ng/ml) for 1 h and enzymatically disrupted;
red fluorescence was determined in CD45+ (B-ALL) and MSCs by FACS (n = 5). (B) Primary B-ALL blasts were cultured in SF, 2D and PDLS and CD45+ cell viability
evaluated upon 24-h treatment with daunorubicin, prednisolone, and vincristine (n = 3), or (C) combined chemotherapy: daunorubicin [75 ng/ml], prednisolone [10
ng/ml], vincristine [50 ng/ml], and methotrexate [5 mM] (P-V-D-M). (D) Viable leukemic cells recovered from PDLS-in untreated or 24-h P-V-D-M-treated were re-
exposed to the drugs for 24 h and their viability was measured by FACS (n = 5). (E) PDLS P-V-D-M-treated were replated; upon 120 h, PDLS-out leukemia re-
emerging was recorded (n = 7). B-ALL, B-cell acute lymphoblastic leukemia; PDLS, patient-derived leukemia spheroids; MSCs, mesenchymal stromal cells; FACS,
Fluorescence-activated cell sorting; NS, non-significant. *P < 0.05; **P < 0.01; ***P < 0.001, ***P < 0.0001. Error bars represent SD.
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at single-cell resolution in PDLS may reveal how pseudohypoxia
and the hostile hypoxic-inflammatory niches cooperate to preserve
LIC functions at the expense of normal hematopoiesis.

One of the crucial challenges when working on primary B-ALL
cells is the lack of suitable in vitro conditions to maintain or
expand them ex vivo, to accelerate therapy screening and even
target microenvironmental cues (16). Advances in the
understanding the microenvironment regulation in B-ALL have
been occurring by using mouse models and human co-culture
systems to replicate BM niches that support LICs (13, 16). So far,
our data strongly suggest that LICs can be enriched in PDLS, by
their niche requirements rather than immunophenotypic features,
according to the stochastic model proposed for B-ALL (17, 18).
LIC gene expression profiles are alike to those from measurable
residual disease (MRD) and LRCs, where low metabolic activity
and increased cell adhesion are common features (17, 42).
Interestingly, when LICs are released from their protective
Frontiers in Immunology | www.frontiersin.org 1081
niches, chemoresistance can be reversed as the stem cell
characteristics are modified (17). Unfortunately, in B-ALL, the
ability of certain niches to induce and support malignant stemness
remains unknown. An active competition for the niche may
displace normal HSPC, where pro-inflammatory signals
provided by leukemic cells or their microenvironment are
crucial (14, 22, 27, 28, 39, 43–45). We recently reported the
relevance of cortactin-mediated cell migration of B-ALL relapse
cells for extramedullary infiltration and intra-niche positioning
with high tropism for hypoxic PDLS zones (46). So far, our PDLS
model has been only investigated with MSCs and B-ALL cells, but
additional niche-associated cells, including those from CNS or
gonads, can be further studied at individual or collective levels for
their contribution on LICs maintenance.

Two MSC niches with unique and distinguishable expression
profiles and potential clinical implications are apparent, and
suggest the sequential replacement of normal niches with the
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FIGURE 6 | Differentially expressed genes in MSCs derived from B-ALL pediatric patients: RNA-seq approach. (A) Volcano plots of statistically significant
differentially expressed genes from three B-ALL patients compared to normal counterpart from a healthy donor is shown (n = 3). (B) Venn diagram on intersection
analysis of overexpressed genes found in (A). (C) Heatmap of genes consistently overexpressed after analysis of intersections (fold change > 2 and FDR < 0.05).
(D) Gene ontology and functional enrichment analysis is shown for two clusters. Dataset E-MTAB-10838.
October 2021 | Volume 12 | Article 746492

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Balandrán et al. PDLS Support B-Leukemia-Initiating Cells
FIGURE 8 | Concluding model. At leukemia debut, B-ALL blasts hijack and remodel CAR niche by inducing CXCL12 and SCF downregulation, concomitant to
proinflammatory cytokine production and followed by the emergence of a LIC-supporting niche endowed with suppressor properties. The functional identity of
normal CAR niche and the suggested inflammatory and leukemia expansion (ILE) and suppressive leukemia-initiating cell (SLIC) hematopoietic niches are highlighted.
Figure was created using BioRender templates.
A B

C

E

D

FIGURE 7 | CXCL11 characterize the MSC niche in B-ALL. (A) CXCL11 and CXCL12 was hypoxia-tracked by using the image-iT probe and analyzed by FACS and
representative CXCL11 and CXCL12 immunofluorescence staining in ALL-MSC spheroids (n = 3). (B) CXCL11 was determined by FACS in HBM-MSC and ALL-
MSC spheroids (nHBM-MSC = 3, nALL-MSC = 9). (C) CXCL11 and CD19 immunostaining in BM biopsies. (D) CXCR3, CXCR4, and CXCR7 expression analyzed
by FACS in B-ALL cell lines (n = 3) and primary B-ALL cells (n = 6). (E) Expression of CXCR2, CXCR3, CXCR4, and CXCR7 in B-ALL and Healthy BM CD19+CD79+
populations obtained from database GSE132509 analyses. MSC, mesenchymal stromal cell; HBM, healthy bone marrow; B-ALL, B-cell acute lymphoblastic
leukemia; CAR, CXCL12-derived abundant reticular; FACS, Fluorescence-activated cell sorting. *P < 0.05; **P < 0.01; ****P < 0.0001. Error bars represent SD.
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inflammatory and leukemia expansion (ILE) niche, followed by
the emergence of a CXCL10hiCXCL11hi suppressive and
leukemia-initiating cell (SLIC) niche, endowed with suppressive
capabilities that might be involved in maintenance of long-term
initiating or relapse clones. The classical CD73 pan-MSCs
marker was found to be increased in some ALL-MSC (data not
shown), which may relate to the suppressor role of adenosine
(ADO) metabolism in chemoresistance and Treg and suppressor
cell development, suggesting a niche-promoted “education”.

Although there is increasing evidenceof theNestin+CXCL12+ as
one essential BM niche (11), dysregulation of CXCL12 and SCF
related to pro-inflammatory microenvironment is a feature of ALL
(22, 28, 39, 40); the CXCL10/CXCL11/CXCR3 axis has been
implicated in chemotherapy resistance and CNS infiltration in B-
ALL (47). CXCL10 and CXCL11 share CXCR3 receptor, while
CXCL11 is recognized byCXCR7withmore affinity thanCXCL12.
Theoreticalmodels have suggested anunexpected role ofCXCR7 in
leukemogenesis (48) and our finding of a CXCL11hi hypoxic niche
highlights this. The newly identified CXCL11hi hypoxic niche may
play an important role attracting CXCR3hiCXCR7hi leukemic cells
even within a CXCL12low scenario. These observations suggest that
the remaining CXCL11hi sanctuaries and poor recovery of
CXCL12hi niches after treatment are likely to be supportive of
relapse or/andpoorHSPCengraftment duringBMtransplantation.
In fact, the immunosuppressive landscape associated with such
CXCL11hi hypoxic niche supports the notion of a potential
transient stage that may function as an attractive therapeutic
target as it only occurs in leukemia settings (Figure 8). In a very
elegant work, Witkowski et al. recently discovered an increased
frequency of non-classical monocytes CX3CR1+ at diagnosis and
relapse (49). Moreover, their elimination improves B-ALL
treatment response and survival. Interestingly, we discovered that
CX3CL1 is highly produced in the SLIC niche (data not shown).
Thus, there is apossibility thatnon-classicalmonocytesCX3CR1+are
also located in the SLICniche to cooperatewith immunosuppressive/
chemoprotective signatures.

Finally, it is well-known that MSCs can protect leukemic cells
in the presence of chemotherapeutic agents (13, 16, 31) by several
protective mechanisms (50) and now we have shown that LICs
enriched by PDLS can be moderately sensitized when they are
released form their niche.

Together, our data established, for the first time, an in vitro
functional 3D hematopoietic-mesenchymal avatar to study human
hematopoietic malignancies, which restore important BM
mesenchymal niche features with positive impact on primary
LICs in pediatric B-ALL. There are great expectations to use this
model in precision medicine to predict chemo-resistant leukemic
phenotypes, to explore novel therapeutic targets for elimination of
LICs in their own niche without affecting normal HSPC or to test
abnormal niche elimination strategies that favor niche fitness
recovery. PDLS may contribute the comprehensive understanding
of mechanisms behind human BM microenvironment alterations,
avoiding the use of laboratory animals. Moreover, we have provided
strong experimental evidence that supports the idea that LICs are
critically dependent on mesenchymal niche interactions and
evidenced the existence of a regulatory CXCL11hi MSC niche
Frontiers in Immunology | www.frontiersin.org 1283
with a potential role in leukemia initiation. Our new findings
contribute directly to understand the pathobiology of childhood
leukemias andmay be the foundation of niche scoring for Next-Gen
patient stratification and design of novel tools for their intervention
and prevention.
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Leon-Chavez, Vallejo-Ruiz, Hassane, Peŕez-Tapia, Ortiz-Navarrete, Guzman and
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Knowledge about the hematopoietic niche has evolved considerably in recent years, in
particular through in vitro analyzes, mousemodels and the use of xenografts. Its complexity
in the human bone marrow, in particular in a context of hematological malignancy, is more
difficult to decipher by these strategies and could benefit from the knowledge acquired on
the niches of solid tumors. Indeed, some common features can be suspected, since the
bone marrow is a frequent site of solid tumor metastases. Recent research on solid tumors
has provided very interesting information on the interactions between tumoral cells and
their microenvironment, composed notably of mesenchymal, endothelial and immune cells.
This review thus focuses on recent discoveries on tumor niches that could help in
understanding hematopoietic niches, with special attention to 4 particular points: i) the
heterogeneity of carcinoma/cancer-associated fibroblasts (CAFs) and mesenchymal stem/
stromal cells (MSCs), ii) niche cytokines and chemokines, iii) the energy/oxidative
metabolism and communication, especially mitochondrial transfer, and iv) the vascular
niche through angiogenesis and endothelial plasticity. This review highlights actors and/or
pathways of the microenvironment broadly involved in cancer processes. This opens
avenues for innovative therapeutic opportunities targeting not only cancer stem cells but
also their regulatory tumor niche(s), in order to improve current antitumor therapies.

Keywords: microenvironment, cancer-associated fibroblasts (CAFs), mesenchymal stem/stromal cells (MSCs),
cytokines and chemokines, energy/oxidative metabolism, mitochondrial transfer, angiogenesis, endothelial plasticity
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INTRODUCTION

The bone marrow (BM) is the site where hematopoietic stem cells
(HSCs) sustain hematopoiesis after birth and all lifelong in
mammals. From early progenitors to committed subsets of
myeloid and lymphoid lineages, proliferation and differentiation
mechanisms have been extensively studied. They were shown early
on, through the use of in vitro cultures, to be controlled by cells
from the BM microenvironment (1, 2) comprising mesenchymal
stem/stromal cells (MSCs), endothelial cells (ECs) and
macrophages (3). Since the beginning of the 2000’s, the identity
and organization of BM niches supporting hematopoiesis have
been extensively studied through the use of reporter mouse models
(reviewed in (4, 5)). Furthermore, the heterogeneity of BM MSCs
and ECs has recently been approached by single-cell RNA
sequencing, which has confirmed the presence of multiple
subpopulations within these two cell types (6–10). Beside this
heterogeneity of the BM microenvironment, it is now moreover
clear that the “one progenitor/one niche” rule does not prevail.
Indeed, a single niche can support not only hematopoietic subsets
at distinct developmental stages, but also mature immune cells
homing back to the BM (5, 10).

Because of the contained location of the BM, knowledge on
human hematopoietic niches is more limited even if strong
similarities could be observed with mice (10–12). For the same
reason, the nature of human leukemic niches and the molecular
mechanisms regulated by/within them are still unclear and results
strongly rely on in vitro cultures or on observations obtained in
syngeneic or xenograft mouse models [reviewed in (13, 14)].
Furthermore, the immune microenvironment in tumoral BM is
also poorly resolved and despite the tremendous progress that came
with the use of immunotherapies, resistance and relapse in acute
leukemia still concern many patients. Lessons could be learned
from solid tumors for which the easier study of microenvironment
(i.e., after surgery) has led to important advances. As in
hematopoietic malignancies, a complex crosstalk exists between
the tumor and the non-malignant cells in its microenvironment.
Interestingly, BM is a haven not only for normal and pathological
hematopoietic cells from the periphery, but also for metastatic cells
from solid tumors, indicating that at least some properties or
components of the tumor microenvironment must be shared
between hematopoietic and solid tumors.

Tumor development depends on a multidirectional crosstalk
between tumor cells, mesenchymal/endothelial cells and immune
cells. The immune landscape and modulation of immune
responses exerted by tumor cells, directly or through systemic
disruption, have been extensively studied (15–17). In this review,
we propose to confront and combine the knowledge gained on
stromal/endothelial niches of leukemic and solid tumors by
focusing on the BM as a common niche.
HETEROGENEITY OF CAFs/MSCs

The term “mesenchymal” is widely spread in the literature to
designate stromal cells from the microenvironment of many
Frontiers in Immunology | www.frontiersin.org 287
tissues. MSCs are stromal cells able to adhere in vitro to plastic
and spread on culture plates as spindle-cells or fibroblast-like
cells. Specific MSC shapes are associated with differentiation, for
instance rounded MSCs during adipogenic differentiation (18).
MSCs are characterized by a specific pattern of surface markers.
Namely, they express CD105, CD73, CD90 and CD146 in the
absence of CD45, CD34, CD14, CD11b, HLA-DR and
lymphocyte-lineage markers. MSCs secrete components of the
extracellular matrix (e.g. collagens, heparan sulphate, elastin,
aggrecan) and metalloproteinases as well as a large variety of
mitogenic growth factors, cytokines, chemokines and angiogenic
factors (19). These cells have also retained the ability to
differentiate into osteoblasts, chondroblasts and adipocytes
(20). However, inconsistent definitions of MSCs and varying
isolation and culture conditions have resulted in highly diverse
outcomes and confusing data (21, 22). The mesenchyme does
not constitute a lineage but is an embryonic tissue able to give
rise to connective tissue, blood vessels and blood cells that can
have different embryonic origins. Therefore, there are no
common MSCs in adult tissues, reflecting the fact that the
nature and properties of the globally termed “MSCs” likely
represent different cellular entities (21, 22). Since their initial
definition in the early 1990’s (23), the properties of MSCs have
been largely explored and debated, even with an attempt at
establishing a molecular signature (24). However, a consensus on
the definition and use of the term “MSC” is unlikely to be
reached. Indeed, with the major improvement of “omic”
technological tools in the past years, in particular at the single-
cell level, it has become quite obvious that MSCs encompass
different subpopulations and states of stromal cells and even
fibroblasts. The recent molecular mapping of murine BM niche
populations, under homeostatic conditions, by single-cell RNA
sequencing, clearly demonstrated a great cellular heterogeneity of
BM stromal cells (6–8, 10). This heterogeneity was also identified
in humanMSCs (from umbilical cord), among which two groups
were separated based on differentially expressed genes, including
CD73. The first group is characterized by an enriched expression
of genes involved in immune response/regulatory activities,
muscle cell proliferation and differentiation, stemness and
oxidative stress. The second presents a higher expression of
genes involved in extracellular matrix production, osteoblast
and chondrocyte differentiation, and bone and cartilage
growth (25).

In a malignant context, and more particularly in acute
myeloid leukemia (AML), the most recent studies report
functional abnormalities of human MSCs, which have a
significant impact on the aggressiveness of the disease. Among
these anomalies, growth deficiency, altered osteogenic
differentiation ability and reduced capacity to support
hematopoietic cells (26–31) have been described, as well as
modifications of the secretome (28, 32), which induce in vivo
shaping of the stromal niche by leukemic cells (33). Moreover,
single cell analyses of murine BM stromal cells recently revealed
that leukemia remodels the BM stroma to the disadvantage of
normal hematopoietic cells. This notably involves a blockade of
the osteoblastic development, as well as of the pathway of bone
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morphogenetic proteins (BMPs), including Bmp4. It also induces
a decreased expression of Cxcl12 and Kitl by leptin receptor
expressing osteoprogenitors that regulate HSCs (7) (Figure 1).

All solid tumors contain non-tumor stromal supporting cells
which are also called tumor-associated stromal cells. In
carcinomas, they are well-known as cancer-associated
fibroblasts (CAFs). Heterogeneity of tumor-associated stromal
cells between tumors and, more recently, within a single tumor,
has been disclosed, essentially through flow-cytometry, sorting
and single-cell RNA sequencing. Their role in tumor progression
Frontiers in Immunology | www.frontiersin.org 388
is still explored with the use of mouse models. In line with such
analyzes, four CAF subsets have been identified in breast and
ovarian cancers by combining the study of distinct CAF markers,
including the fibroblast activation protein (FAP), smooth-muscle
a-actin (SMA) and integrin b1 (CD29) (34–37). Two subsets
have also been detected in healthy tissues, reminiscent of normal
fibroblasts, while two myofibroblastic subsets (FAPHigh SMAHigh

CD29Med-High and FAPNeg SMAHigh CD29High) appear to be
restricted to tumors (Figure 1). These CAF subsets are
respectively characterized by their secretion and organization
FIGURE 1 | Paralleling the microenvironment and actors of the solid tumor and bone marrow niche. On the left part of the diagram, the solid tumor is governed by
cellular components such as healthy cells and tumor cells juxtaposed with immunosuppressive or neutral cancer-associated fibroblasts (CAFs) and myeloid-derived
suppressor cells (MDSCs). The different gradients of oxygen, pH and growth factors (BMP2, BMP4), then participate in the tumor cell fate (proliferation,
metastasis…). On the right panel, healthy hematopoietic stem cells (HSCs), bone marrow-mesenchymal stem/stromal cells (BM-MSCs), immune cells and tumor
cells (attracted from a solid tumor by chemokine gradients such as CXCL12) or leukemia cells, quiescent or not, will be confronted with gradients of oxygen, pH,
growth factors (BMP2, BMP4, SCF, APELIN) and cytokines (CXCL8, CXCL12, IL-1b) in a similar way as cells within the solid tumor. All these interrelations and
interconnections, controls and feedbacks, will allow the tumor cell to proliferate and spread. Oxygen gradients, on the left, result from diffusion of oxygen from the
blood vessels (vascular niche) as tumors grow outward from the local vascular architecture. Vascular niche may also be a source of factors favoring tumor growth
(i.e Apelin) in solid tumor and in the bone marrow niche. On the right, there is a double gradient between arterioles and sinusoids. The cells will adapt their
metabolism along these gradients and create, as a counterpart, a pH gradient due to the release of lactate and H+ protons. Bottom part: As crucial powerhouses for
cell metabolism and tissue survival, mitochondria will transfer horizontally from stromal cells to cancer and/or immune cells, via nanotubes, extracellular vesicles (EVs)
or freely, to allow recipient cells to adapt and modify their metabolism (mitochondrial respiration, ATP, pyrimidine synthesis) to meet different stresses (oxidative
stress) and energy demands.
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of extracellular matrix (ECM) components, in particular types 1,
3 and 6 collagen, and by a perivascular contractile gene signature
(34, 35, 37). Importantly, the association of the FAPHigh SMAHigh

CAF subset with poor outcome has been validated by different
laboratories in mouse models, as well as in some types of human
carcinoma (38–42), highlighting its relevance in distinct species
and cancer types.

Consistent with their accumulation in aggressive carcinomas,
FAPHigh SMAMed-High CAFs favor metastatic spread in breast
and ovarian cancers by directly interacting with cancer cells, and
the highly contractile FAPLow SMAHigh CAFs promote cancer
cell invasion in 3-dimensions by remodeling the surrounding
ECM (34–37, 43–45). Osteosarcoma-associated stromal cells
have been characterized by MSC markers and SMA expression,
like their healthy counterparts, but with a higher osteoblastic
potential and an increase in lung metastases in mouse models
(46). Mimicking the acidity of tumor microenvironment has
been shown to lead osteosarcoma-associated MSCs to acquire an
inflammatory phenotype, with an increased secretion of IL-6 and
CXCL8. Such conditions also promoted the stemness of
osteosarcoma cells (47). By contrast, healthy MSCs did not
modify the quiescent state of osteosarcoma cells (48).
Osteosarcoma-associated MSCs were moreover shown to
promote not only the invasiveness of osteosarcoma cells, but
also angiogenesis through the activation, proliferation and/or
differentiation of ECs (49).

Myofibroblastic CAFs (SMA+) secrete type-I collagen that can
modulate immune cells. In a mouse model of pancreatic
adenocarcinoma, it was recently demonstrated that the
reduction of total type-I collagen secreted by CAFs accelerated
the emergence of carcinoma. This was shown to be due to an
upregulation of the chemokine CXCL5 (see next section) in
cancer cells, leading to the recruitment of myeloid-derived
suppressor cells (MDSCs) and impairment of CD8+ cytotoxic
T-ce l l s (50) . Converse ly , the secre t ion of matr ix
metalloproteinases (MMPs) can favor tumor cell mobility
across collagen fibers and inhibit immune cell activity.
Melanoma-associated fibroblasts have thus been described as
negative immuno-modulators, through the secretion of MMPs
decreasing tumor cell lysis by natural killer (NK) cells (51). The
ECM composition can be modified by the protease activity of
FAP, which is expressed by tumor and stromal cells in many
human carcinomas and sarcomas (43, 52, 53). Consistent with
these observations, FAPHigh SMA+ CAFs have been identified in
aggressive carcinomas to exhibit immunosuppressive activities
(43, 44). Indeed, FAPHigh CAFs are associated with
immunosuppression and resistance to immunotherapies in
mouse models (37, 54, 55). Interestingly, the FAPHigh SMA+

CAF subset promotes immunosuppression by increasing the
infiltration of regulatory T lymphocytes (Treg) in human
cancers (34, 35). Within the FAPHigh CAF subpopulation, two
distinct subsets exhibiting either an ECM-producing
myofibroblastic phenotype (myCAF) or an inflammatory
profile (iCAF) were recently identified in different types of
cancers (56–60). Importantly, recent single cell sequencing of
FAPHigh CAFs from breast cancer cells allowed identifying eight
Frontiers in Immunology | www.frontiersin.org 489
different FAPHigh cellular clusters (59). Three of them were
further shown to be specifically associated with resistance to
immunotherapy in metastatic melanoma and in non-small cell
lung cancer patients (59). Taken together, these findings
highlight the existence of a network of numerous CAF and
MSC subpopulations in solid tumors and underline their
relevance in various cancer types and across species.
NICHE CYTOKINES AND CHEMOKINES

The BM is a major location where hematological malignancies
affecting myeloid or lymphoid lineages develop and is also an
important site of metastasis for solid tumors, especially breast,
prostate, and lung cancers (61, 62). The engraftment of metastatic
cells from solid tumors into the BM can generate secondary
tumors with either osteoblastic properties, notably in early
stages of metastasis of prostate cancer, or osteolytic properties in
the case of breast cancer (63–65). Osteoblastic lesions correspond
to an increased bone mass at the lesion site whereas osteolytic
lesions lead to a destruction of the bone structure. In the case of
prostate cancer, there is a preferential accumulation of cancer cells
in the lateral rather than medial endocortical bone region. This
former area is enriched in osteoblasts, which could explain this
phenomenon (66). The segregation of bone metastasis location
between prostate and breast cancers has been extensively studied.
Although this differential tropism is still not completely
understood, there is a consensus about the involvement of
chemokines in this phenomenon. The activity of chemokines
depends on their receptors, a family of G protein-coupled
seven-transmembrane-spanning molecules. Chemokines are
versatile secreted factors critically required to drive the
migration of immune and non-immune cells, notably within
lymphoid organs including the BM. Depending on the targeted
cell type, they can foster an effective anti-tumor immune response
or conversely contribute to a pro-tumorigenic microenvironment.
Early work from Zlotnik’s lab has shown that high production of
the chemokine CXCL12 (SDF-1) by the BM is sufficient to attract
breast cancer cells expressing CXCR4, one of the cognate receptors
of CXCL12 (67) (Figure 1). CXCR4 and CXCL12 are also critical
for the homeostasis of the BM ecosystem, with a key role in
controlling the production and mobilization of hematopoietic
stem/progenitor cells (HSPCs) (68, 69). Indeed, in the BM,
HSPC niches are thought to be composed of perivascular
stromal units associated with sinusoids and arterioles as
reviewed recently (70). In particular, many studies have shown
that a population of MSCs termed CXCL12-abundant reticular
(CAR) cells overlaps with leptin receptor (LepR)-expressing cells.
These CAR cells constitute a major component of HSPC niches by
their capacities to produce such niche factors as CXCL12, SCF and
IL-7. Similar stromal cells with salient features of CAR cells have
been identified in human adult BM (10, 71). In line with these
findings, the CXCL12/CXCR4 axis is key in immunosuppression
andmetastatic spread in solid tumors, through reciprocal crosstalk
between FAPHigh CAFs and regulatory T cells (Tregs), as well
as FAPHigh CAFs and cancer cells, respectively (24, 25, 27).
November 2021 | Volume 12 | Article 766275
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In addition to CXCR4 and CXCL12, numerous studies have
shown that chemokines act at different levels in the progression
of the primary tumor, modulating both tumor cell proliferation,
apoptosis, invasion, angiogenesis, recruitment of immune cells
and resistance to chemotherapy (72–76). It appears clearly that
some kind of “chemokine storm” and sustained inflammation take
place in the primary tumor. This comforts the notion of a complex
interplay between cancer cells, cells from the tumor
microenvironment (including CAFs, MSCs and ECs) and a
variety of immune cells, such as macrophages, B- and T-
lymphocytes, NK cells, neutrophils and dendritic cells (73, 75,
77). The final outcome of the tumor with either sustained
resistance of the host or immune escape of the tumor will
depend on these interactions.

Within the tumor microenvironment, MSCs are interesting
for multiple reasons. First, as stated above, these cells are highly
present in the BM but can also be found at lower levels elsewhere
such as in adipose tissue, lung or umbilical cord blood. They are
moreover detected in multiple types of primary solid tumors
(e.g., breast, ovarian, pancreatic cancers) (78–81). Several studies
have shown that BM or adipose MSCs [called adipose-derived
stromal cells (ADSCs)] have a particular tropism for primary
tumors (81, 82). MSCs can either favor or inhibit primary tumor
growth and metastasis (78, 81, 83–85)s. Recent evidence has also
shown that the nature of tumor cells, in particular their low or
high aggressiveness, dictates the type of interactions with MSCs
and notably the production of multiple chemokines and
prostaglandin E2 upon release of IL-1b by tumor cells. In turn,
chemokines produced by MSCs can stimulate the invasiveness
and potentially metastatic ability of tumor cells (81, 86, 87).
Finally, with BM metastasis of solid tumors, interactions become
possible with the other niches of BM MSCs. This interaction
might favor a release of new MSCs from the BM to colonize
primary tumors but may also affect the properties of MSCs
themselves, notably by turning them into CAFs (81).

As stated above, growing tumors establish a chronic state of
inflammation that acts locally but also systemically. The BM
responds to these stress signals by remodeling the stromal
landscape and expanding myeloid cells endowed with anti-
inflammatory/immunosuppressive functions, further sustaining
tumor progression. Several studies have reported that distant
solid or diffuse tumors interfere with hematopoiesis and immune
regulation within the BM. Primary breast tumors have thus been
shown to generate systemic signals that mobilize BM-derived
cells promoting tumor growth and dissemination. Tumor-
derived factors also interfere with BM myelopoiesis, increasing
the generation of granulocytic-MDSC (88, 89). In a spontaneous
model of mammary carcinogenesis, Colombo’s lab revealed
modifications of the representation of CXCL12-expressing BM-
derived MSCs and CXCR4-expressing myeloid cells (90). Such
changes in the hematopoietic compartment occurred as early as
at preinvasive disease stages and were concomitant with a
deregulation of circulating miRNAs. In addition, extracellular
vesicles (EVs) produced by follicular lymphoma B-cells have
been shown to promote the polarization of BM-derived MSCs to
secrete such factors as CXCL12 that could constitute in turn a
Frontiers in Immunology | www.frontiersin.org 590
BM follicular lymphoma permissive stromal niche (91). In AML
xenografts, blast-derived EVs convey endoplasmic reticulum
stress in vivo to the animal’s BM stroma. This drives a
subsequent osteo-differentiation of MSCs through the
incorporation and cell-cell transfer of BMP2 by AML-derived
EVs, promoting BM niche remodeling (92). Conversely, many
studies provide compelling evidence that the BM can sense
distant tissue transformation at premalignant/preinvasive
stages and influence cancer progression. Bone-making
osteoblasts have the capacity to impact distant cancer
progression outside the skeleton in such tumors as melanoma,
lung, and breast carcinomas. CXCL12 might constitute one of
the systemic bone-derived factors that would directly promote
breast cancer cell proliferation and metastasis (93). Other studies
indicate that cells of the osteoblast-lineage control cancer
progression in the same tumor types at least in part by
mobilizing tumor-promoting myeloid cells (94, 95). Finally,
BM remodeling could be beneficial or detrimental, depending
on the nature of targeted hematopoietic cells, i.e., healthy vs.
malignant. For instance, Belkaid’s lab recently showed that
dietary restriction promoted memory T-cell accumulation in
the BM. This was coordinated by glucocorticoids and associated
with BM remodeling that involved an increase in such niche
factors as CXCL12, erythropoiesis and adipogenesis.
Consequently, this was associated with enhanced protection
against infections and tumors (96). This work suggests a
strategy to optimize immunological memory during nutritional
challenges involving a spatiotemporal reorganization of the BM.
Unfortunately, the safe haven of the BM can also be remodeled
by malignant cells to disturb normal hematopoiesis. For instance,
AML can shape the BM landscape to support malignant growth
at the expense of normal hematopoiesis. Indeed, AML onset
impaired osteogenesis as well as the production of such
hematopoietic factors as CXCL12 (7). Likewise, altered
cytokine expression such as a decrease of CXCL12 production
in the BM of a mouse model of chronic myelogenous leukemia
(CML) conferred a growth advantage to leukemia stem cells
(LSCs) over normal stem cells (97). Finally, CXCL12 deletion
from MSCs reduced normal HSC numbers but promoted LSC
expansion and their elimination by tyrosine kinase inhibitor
treatment (98). These findings are consistent with cancer cells
impairing normal hematopoiesis and provide a foundation for
developing stromal-based therapies.

The relevance of stromal-based therapies is also supported in
hematological malignancies by data from Hasselbalch et al.
suggesting that chronic inflammation can be a driver of clonal
evolution in patients with myeloproliferative neoplasms (MPNs)
(99). In primary myelofibrosis (PMF), disease severity and
treatment complexity have mainly been attributed to the
association of clonal myeloproliferation and profound changes
in the BM stroma, associated with an excessive production of
cytokines, chemokines, growth factors and ECM components. It
was initially reported that stromal changes were reactional and
secondary to growth factor production by clonal hematopoietic
cells. However, the presence of molecular alterations of PMF
MSCs has been shown to provide an “intrinsic” osteogenic
November 2021 | Volume 12 | Article 766275
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signature and an increased differentiation into osteoblasts partly
dependent on endogenous TGFb1 production and activation
(100, 101). It has been suggested that the BM stroma of PMF
patients is progressively inflammatory-driven by clonal
hematopoietic cells towards an “autonomous” state where it
becomes independent of hematopoietic cell stimulation. This
in turn causes an alteration of the hematopoietic niche and
participates in the amplification of the hematopoietic clone. The
resulting inflammatory vicious circle becomes unbreakable in the
absence of combined stroma targeted therapies (100, 102).
Therefore, Stephen Paget’s theory (103) of the “seed (cancer/
leukemic cell) and soil (microenvironment)” is fully sustained.
However, in PMF, the bad soil (altered MSCs) endorse the bad
seed (clonal HSCs), revisiting Paget’s theory in the “bad seed in
bad soil” concept (104, 105). This strengthens the importance of
stromal cells and their reciprocal interactions with clonal
hematopoietic cells in the development and treatment of
neoplasia (106).
CELL METABOLISM AND
COMMUNICATION

While it has long been known that oxygen plays a key role in the
proper functioning of mammalian cells, the mechanisms by
which these cells adapt to the amount of oxygen available have
only became to be understood since the 1990’s, thanks to the
work of the three 2019 Nobel Prize winners in Physiology or
Medicine Drs Gregg Semenza, William Kealin and Sir Peter J.
Ratcliffe (107–111). The notion of hypoxia in hematopoietic
niches is even more recent. While the oxygen gradient created by
vascularization is understandable in solid tumors, the idea of
such a gradient took longer to emerge in the world of
hematopoiesis. It is now accepted, but not necessarily
integrated, that the oxygen (O2) concentration in the
hematopoietic niche varies between 1 to 4% of oxygen,
strikingly different from the peripheral blood concentration of
10 to 13% (112–114). As in solid tumors, the overexpression of
hypoxia-inducible factors (HIFs) has been reported in leukemia
to be a marker of poor prognosis. The metabolic adaptation of
tumor cells is one of the hallmarks driving aggressiveness in
cancer that is clearly emphasized by low oxygen concentrations.
Solid tumor cells are often glucose-addicted as sugar provides
metabolic intermediates that support proliferation and
migration. Thus, lactate metabolism and acidosis, other
characteristics of the hypoxic tumor area, must be highly
hypoxically controlled to avoid cell death (115). Based on the
work of Nobel Prize winner Otto Warburg in 1931 (116), it has
been speculated for decades that mitochondria were failing
during the tumor process. This theory finally materialized as
the Warburg effect whereby anaerobic fermentation is preferred
by some tumor cells. However, several studies have now proven
that mitochondria function normally in cancer cells and that
blocking oxidative phosphorylation (OXPHOS) is an adaptive
event (117, 118).
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Although glycolytic metabolic reprogramming is common in
cancer cells, several types of cells have been reported to prefer
OXPHOS for energy production (119–124). AML cells thus
highly depend on OXPHOS to satisfy their heightened
demands for energy. Mitochondrial and OXPHOS activities
greatly influence the sensitivity and in vivo efficacy of
chemotherapeutic agents (125). Increasing evidence reveals
that stromal cells affect the characteristics of cancer cells in the
tumor microenvironment (126–129). The niche plays an
important role in cancer cell metabolism by secreting
metabolites that are used for the tricarboxylic acid (TCA)/
Krebs cycle (130). Moreover, CAFs enhance the Warburg effect
by interacting with cancer cells and producing lactate used by
cancer cells as a fuel for mitochondrial OXPHOS (Figure 1).
This concept is widely known as the reverse Warburg effect
(131–133). Thus, the increase in reactive oxygen species (ROS)
promotes the activation of HIF-1a, inducing autophagy,
lysosomal degradation and loss of stromal Cav-1, consequently
contributing to glycolysis in CAFs. Besides, it has been recently
reported that interactions between MSCs and leukemic cells
increase oxidative stress in MSCs (134) with a concomitant
activation of glutathione (GSH)-based antioxidant defenses,
notably through overexpression of GPX3, a key determinant of
leukemic cell self-renewal (135, 136). These interactions also
enhance leukemic blast bioenergetics by increasing OXPHOS
and the TCA cycle (136). All these elements suggest that
metabolic interactions within their niche are important for the
maintenance of mitochondrial OXPHOS in cancer cells.

Mitochondria are not only involved in energy production
through the generation of ATP by OXPHOS. They also support
important anabolic reactions and are crucial regulators of
apoptosis via the expression of molecules of the BCL-2 family
at their surface (137). Horizontal transfer between two cells of
mitochondria and/or mitochondrial DNA (mtDNA) via
nanotubes, EVs or freely, is likely to have fundamental
consequences for the host (Figure 1). A first study showed that
active mitochondria and/or mtDNA from human bone marrow
MSCs could rescue respiration-deficient (r0) lung carcinoma
cells (138) and apoptotic PC12 cells (139). This effect was
described in several non-cancer situations where stressed cells,
frequently experiencing hypoxic or ischemic conditions, could
recover after the acquisition of mitochondria from their cellular
environment (reviewed in (140)). For instance, BM-derived
MSCs have been shown to protect lung epithelial cells from
lipopolysaccharide-induced injuries through the donation of
mitochondria (141). For cancer cells, two seminal publications
have shown that r0 cancer cells have an impaired tumorigenic
potential that can be restored, together with respiration, by the
transfer of mtDNA (142) or active mitochondria (143) from
surrounding cells, both in vitro and in vivo. Interestingly, it has
also been demonstrated that CAF-derived EVs can transfer
mtDNA to OXPHOS-deficient breast cancer cells, leading to
the restoration of mitochondrial metabolic activities (144). MSCs
moreover could transfer active mitochondria to AML leukemic
blasts, especially upon sensitization of leukemic cells by
chemotherapy, probably, among other sti l l unclear
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mechanisms, via AML cell-derived ROS (145, 146). It was also
demonstrated that MSCs recognize damaged mitochondria
released by leukemic cells under chemotherapy as danger
signals and react by stimulating mitochondrial biogenesis
followed by transfer of active mitochondria to AML cells (147).
Another interesting study showed that BM MSCs from acute
lymphoblastic leukemia (ALL) patients harbor a CAF phenotype.
Upon chemotherapy and ROS induction, they transfer
mitochondria to ALL blasts to support their survival and
resistance to chemotherapy (148). The uptake of mitochondria
by leukemic cells can increase their mitochondrial mass by up to
14% (145) and is associated with better fitness and a higher
resistance to chemotherapy. Since mitochondria-recipient cells
become able to resist apoptotic signals, it is possible that this
transfer could increase the pool of anti-apoptotic molecules of
the BCL-2 family in leukemic blasts. Another obvious effect of
mitochondrial transfer is an increase in ATP content (145, 147,
149) and in other important metabolites. A recent study
demonstrated that transferred mitochondria were important to
sustain pyrimidine synthesis and cell proliferation via the
dihydroorotate dehydrogenase (DHODH) enzyme present in
the mitochondrial membrane (150). Exogenous mitochondria
could also support resistance to ferroptosis cell death as DHODH
appears to mediate an important protective pathway against
ROS-induced lipid peroxidation that triggers ferroptosis (151).
Finally, mitochondrial transfer could modulate immune
responses as it has been reported that horizontal transfer from
MSCs could trigger Treg differentiation to limit tissue damage
and inflammation during graft-versus-host disease (152).
Whether this phenomenon also occurs in the BM
hematopoietic niche and affects other lymphoid cell subsets
such as cytotoxic T-lymphocytes or NK cells during leukemia
development remains to be studied.
VASCULAR NICHE, ANGIOGENESIS AND
ENDOTHELIAL PLASTICITY

The vascular endothelium refuels the tumor mass with oxygen
and metabolites and settles a favorable microenvironment for
tumor growth. This is strikingly illustrated in tumors from the
central nervous system, where homeostasis of the cerebral
vasculature is crucial. As for embryonic and adult stem cells,
cancer stem cells reside within a niche articulated around
vascular units (153), defined as the vascular niche. This
environment allows privileged control of metabolic conditions,
secreted protein dosage as well as fine-tuned regulation of cell
adhesion and communication with the surrounding ECM and
neighboring ECs (154). Cancer stem cells are indeed located in
the close vicinity of tumor blood vessels where ECs are suspected
to dictate stem cell identity (155, 156). The concept of (peri)
vascular niche is also highly significant in the BM and has
evolved through the better characterization of HSPCs. In mice,
the HSPC compartment is functionally and molecularly
heterogeneous, due in part to an extrinsic control by the BM
microenvironment, including ECs. Indeed, recent advances in
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cell imaging and HSPC reporter-mice have revealed the
association of HSPCs with at least two types of blood vessels.
The latter are central endothelium featuring sinusoids (157) and
an endosteal arterial/arteriolar endothelium which is close to
bone diaphysis and epiphysis and defines transition vessels (158)
(Figure 1). Sinusoidal and endosteal ECs differ phenotypically,
the latter expressing high levels of endomucin and CD31, while
sinusoidal ECs display low levels of both these markers. The
location of endosteal ECs in bone metaphyses, close to
osteoprogenitor cells, allows for an efficient coupling between
osteogenesis and angiogenesis. Furthermore, sinusoidal and
endosteal ECs are surrounded by unique specific perivascular
MSCs. Although most CXCL12 and SCF in the BM is produced
by CAR/LepR+ cells (159, 160), ECs are also a source of both
niche factors and hence are involved in the hematopoiesis
process. Arterial and transition vessel ECs by displaying such a
higher expression of CXCL12 and SCF maintain HSPC
quiescence, while sinusoidal vessels, fenestrated and more
permeable, promote BM cell trafficking (158, 161, 162).

Several studies have revealed the role of the BM vasculature in
the development of leukemia and chemoresistance. In AML,
vascular niches provide signals that regulate proliferation and
stem cell-like properties (163, 164). In a reciprocal way, AML
cells release inflammatory cytokines that activate the vascular
endothelium, inducing the expression of such adhesion
molecules as VCAM1, promoting AML proliferation and
chemoresistance (165, 166). External cues emanating from ECs
can regulate the fate of cancer stem cells both in solid tumors and
leukemia. In cerebral tumors, exploration of the endothelial
secretome identified the vasopeptide apelin (APLN) as a
central regulator for endothelial-mediated maintenance of
patient-derived glioma stem-like cells in vitro and in vivo
(167). Further studies confirmed the instrumental role of
APLN to sustain tumor cell expansion and progression (168).
Likewise, a subpopulation of APLN-expressing ECs in the BM
orchestrates HSPC maintenance, and further repopulation in the
therapy-induced damaged bone microenvironment (169). In
luminal breast carcinoma, the BMP2 was found to be
overproduced by ECs from the tumor stroma. This factor is an
important actor of the stem cell niche, participating also in the
initiation of stem cell transformation (170).

In hematological malignancies, sinusoidal ECs from the BM
vascular niche of patients with chronic myeloid leukemia have
been shown to be the main source of BMP2 and BMP4, involved
in the maintenance and expansion of leukemic stem cells (171).
BMP4 overproduction in the AML microenvironment
furthermore contributes to blast cells “reprogramming”
towards a stem-cell like phenotype (172). In addition, BMP4
produced by the leukemic microenvironment is involved in
leukemic stem cell quiescence mediated by Jak2/Stat3 signaling
and contributes to relapse and tumor escape (173) (Figure 1).
Similar data in solid tumors, from many laboratories, have
identified the BMP-signaling pathway as a major driver of BM
dormancy (174).

Seed and soil interactions have to be considered as reciprocal,
signals provided by cancer cells impacting ECs and vice versa.
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The influence of cancer cells towards EC is to promote
angiogenesis and increase vascular permeability to respectively
provide the oxygen required for growth and allow for cell
dissemination. In solid tumors, pro-angiogenic factors (VEGF,
Sema3A), either soluble or delivered through tumor-derived
EVs, contribute to an increase of both angiogenic potential and
permeability (175, 176). Malignant hematopoietic cells are high
consumers of oxygen and evolve in a hypoxic environment that
favors angiogenesis. An increase in BM vascular density and
angiogenic markers (VEGF-A, FGF2, VEGF-R) has been
highlighted in several hematological malignancies (177, 178).
The sites of active angiogenesis in tumor BM niches are still not
fully characterized, but ECs in the transient zone close to the
endosteal niche could mediate the local growth of blood vessels
in normal bone (158). In MPNs and leukemia, neo-vessels are
also characterized by an abnormal tortuous architecture (178,
179). In MPNs, increased microvascular density and expression
of VEGF have been reported to correlate with the allelic charge of
JAK2-V617F mutation (180, 181). In a subset of thrombotic
MPN patients, this mutation has been detected in hepatic and
splenic ECs as well as in endothelial progenitors, suggesting their
clonality (182). More recently, introduction of the JAK2-V617F
mutation in ECs has been shown to modify these cells towards a
pro-adherent and pro-thrombotic profile (183, 184). These
results suggest that, similarly to MSCs, ECs may have acquired
intrinsic modifications that participate in the activated/
inflammatory state within the BM niche and in leukemic
progression. An aberrant increase in permeability is an
additional striking feature of tumor blood vessels (185) which
strongly alters drug delivery in solid tumors (186). An increased
permeability of BM vessels, induced by leukemic cells, could also
be associated with an impaired perfusion hampering normal
hematopoiesis and supporting malignancy as shown in an AML
patient-derived xenograft model (166).

Beside their role in angiogenesis, ECs may also engage in the
dynamic process of endothelial-to-mesenchymal transition
(EndMT), which drives reprogramming of ECs towards a
mesenchymal phenotype (187). Initially described in normal
cardiac development, this plasticity has been highlighted in
several solid tumors in response to tumor environmental
soluble and/or mechanical cues, as well as upon therapeutic
assaults (188). EndMT may provide a source of CAFs (189) and
contribute to metastasis dissemination by destabilizing the
endothelial barrier (190). Furthermore, EndMT has been
described as a tumor arm to resist chemo- and radio-
therapies (191, 192). Recent data support such a transition
process in regenerative human BM, as a subset of ECs in
trabecular sinusoid vessels has been shown to display an
EndMT transcriptional signature (193). Importantly, this
endothelial derived-mesenchymal population harbors
properties of pluripotent stromal cells, with multi-lineage
differentiation capacity (adipocyte, osteoblast, chondrocyte)
and supportive capacity of hematopoiesis. Whether EndMT
plays a role in hematological cancer is not confirmed yet, but
this process surely could participate in the reconstitution of the
hematopoietic BM niche after therapy (193). In the BM and
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spleen of PMF patients, the presence of microvascular ECs
showing functional and morphologic changes associated with
the MSC phenotype is in agreement with the potential
contribution of EndMT to the BM fibrosis process that
characterizes this disease (194).
CONCLUSION

This review highlights how knowledge is progressing, in both
solid tumors and hematological malignancies, in identifying the
role of the multiple subsets of cells widely referred to as “cells of
the microenvironment”. The latter clearly constitute a network of
interacting subsets, which are increasingly well identified, but
still incompletely understood. From cytokine/chemokine release
patterns to interactions with angiogenesis and oxygen regulation,
much remains to be deciphered. However, this review clearly
highlights that solid tumors and hematological malignancies use
similar strategies to survive in a microenvironment dedicated to
their suppress ion, in part icu lar by modi fy ing the
microenvironment to adapt it to tumor growth, while altering
its physiological role.

Information generated by single-cell analyses can be used as a
blueprint for the identification of CAFs or MSCs subtypes in
various organs in different pathological conditions. Comparison
of CAF subtypes’ molecular profiles with those of MSCs will be
useful to identify potential mechanistic similarities in tumor
inflammation and niche alterations across malignancies. Much
remains to be done however before transposing the results
obtained in mouse models to the primary cells of human
tumors and hematologic malignancies.

It is obviously still needed to discover specific means to
interfere with the intricate interplay between niche actors that
affect cancer/leukemic growth and prevent leukemia relapse. The
power of multi-omic analyses of the tumor microenvironment,
associated with a pan-tumor integrative approach of cancer
niche abnormalities could be decisive in proposing new
therapeutic strategies targeting niches in order to eradicate
cancer cells.
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M-C, et al. French INSERM and the European EUMNET Networks on
Myelofibrosis. Does Primary Myelofibrosis Involve a Defective Stem Cell
Niche? From Concept to Evidence. Blood (2008) 112:3026–35. doi: 10.1182/
blood-2008-06-158386

105. Le Bousse-Kerdilès M-C. Primary Myelofibrosis and the “Bad Seeds in Bad
Soil” Concept. Fibrogenesis Tissue Repair (2012) 5:S20. doi: 10.1186/1755-
1536-5-S1-S20

106. Asher S, McLornan DP, Harrison CN. Current and Future Therapies for
Myelofibrosis. Blood Rev (2020) 42:100715. doi: 10.1016/j.blre.2020.100715

107. Wang GL, Semenza GL. Purification and Characterization of Hypoxia-
Inducible Factor 1. J Biol Chem (1995) 270:1230–7. doi: 10.1074/
jbc.270.3.1230

108. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-Inducible Factor 1 is a
Basic-Helix-Loop-Helix-PAS Heterodimer Regulated by Cellular O2
Tension. Proc Natl Acad Sci USA (1995) 92:5510–4. doi: 10.1073/
pnas.92.12.5510

109. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman
ME, et al. The Tumour Suppressor Protein VHL Targets Hypoxia-Inducible
November 2021 | Volume 12 | Article 766275

https://doi.org/10.1111/bjh.17396
https://doi.org/10.3390/cancers12020287
https://doi.org/10.1016/j.immuni.2021.01.012
https://doi.org/10.3390/cancers12082076
https://doi.org/10.1016/j.molmed.2010.01.003
https://doi.org/10.1677/ERC-09-0109
https://doi.org/10.1677/ERC-09-0109
https://doi.org/10.1158/2159-8290.CD-20-1808
https://doi.org/10.1158/2159-8290.CD-20-1808
https://doi.org/10.1634/stemcells.2007-1006
https://doi.org/10.1634/stemcells.2007-1006
https://doi.org/10.1038/sj.onc.1210920
https://doi.org/10.1172/JCI45273
https://doi.org/10.1016/j.bbcan.2016.10.004
https://doi.org/10.1371/journal.pone.0030563
https://doi.org/10.1371/journal.pone.0030563
https://doi.org/10.1038/nature06188
https://doi.org/10.3389/fcell.2020.545126
https://doi.org/10.1002/path.5357
https://doi.org/10.18632/oncotarget.4732
https://doi.org/10.18632/oncotarget.4732
https://doi.org/10.1158/2159-8290.CD-12-0101
https://doi.org/10.1158/2159-8290.CD-12-0101
https://doi.org/10.1182/blood-2018-11-844548
https://doi.org/10.1182/blood-2018-11-844548
https://doi.org/10.1002/JLB.3MR0717-292R
https://doi.org/10.1158/0008-5472.CAN-19-1425
https://doi.org/10.1158/0008-5472.CAN-19-1425
https://doi.org/10.1182/blood.2020008791
https://doi.org/10.1038/s41375-018-0254-2
https://doi.org/10.1038/s41375-018-0254-2
https://doi.org/10.1073/pnas.1718009115
https://doi.org/10.1371/journal.pbio.1002562
https://doi.org/10.1371/journal.pbio.1002562
https://doi.org/10.1126/science.aal5081
https://doi.org/10.1126/science.aal5081
https://doi.org/10.1016/j.cell.2019.07.049
https://doi.org/10.1016/j.cell.2019.07.049
https://doi.org/10.1016/j.ccr.2012.02.018
https://doi.org/10.1016/j.stem.2019.02.018
https://doi.org/10.1155/2015/102476
https://doi.org/10.1158/0008-5472.CAN-14-3696
https://doi.org/10.1158/0008-5472.CAN-14-3696
https://doi.org/10.1016/j.gdata.2015.04.017
https://doi.org/10.1155/2015/415024
https://doi.org/10.1016/S0140-6736(00)49915-0
https://doi.org/10.1182/blood-2008-06-158386
https://doi.org/10.1182/blood-2008-06-158386
https://doi.org/10.1186/1755-1536-5-S1-S20
https://doi.org/10.1186/1755-1536-5-S1-S20
https://doi.org/10.1016/j.blre.2020.100715
https://doi.org/10.1074/jbc.270.3.1230
https://doi.org/10.1074/jbc.270.3.1230
https://doi.org/10.1073/pnas.92.12.5510
https://doi.org/10.1073/pnas.92.12.5510
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mancini et al. Solid vs. Hematological Tumor Niches
Factors for Oxygen-Dependent Proteolysis. Nature (1999) 399:271–5.
doi: 10.1038/20459

110. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIFalpha
Targeted for VHL-Mediated Destruction by Proline Hydroxylation:
Implications for O2 Sensing. Science (2001) 292:464–8. doi: 10.1126/
science.1059817

111. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al.
Targeting of HIF-Alpha to the Von Hippel-Lindau Ubiquitylation Complex
by O2-Regulated Prolyl Hydroxylation. Science (2001) 292:468–72.
doi: 10.1126/science.1059796

112. Wielockx B, Grinenko T, Mirtschink P, Chavakis T. Hypoxia Pathway
Proteins in Normal and Malignant Hematopoiesis. Cells (2019) 8:E155.
doi: 10.3390/cells8020155
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The shape and spatial organization -the anatomy- of a tissue profoundly influences its
function. Knowledge of the anatomical relationships between parent and daughter cells is
necessary to understand differentiation and how the crosstalk between the different cells
in the tissue leads to physiological maintenance and pathological perturbations. Blood cell
production takes place in the bone marrow through the progressive differentiation of stem
cells and progenitors. These are maintained and regulated by a heterogeneous
microenvironment composed of stromal and hematopoietic cells. While hematopoiesis
has been studied in extraordinary detail through functional and multiomics approaches,
much less is known about the spatial organization of blood production and how local cues
from the microenvironment influence this anatomy. Here, we discuss some of the studies
that revealed a complex anatomy of hematopoiesis where discrete local
microenvironments spatially organize and regulate specific subsets of hematopoietic
stem cells and/or progenitors. We focus on the open questions in the field and discuss
how new tools and technological advances are poised to transform our understanding of
the anatomy of hematopoiesis.

Keywords: anatomy of the bone marrow, spatial organization of hematopoiesis, microenvironment, niches,
dynamics of hematopoiesis
INTRODUCTION

The bone marrow tissue provides a unique microenvironment -composed of both hematopoietic
and non-hematopoietic cells and extracellular matrix- that cooperate to accomplish several
functions: promote stem cell and multipotent progenitor self-renewal, regulate the differentiation
of each lineage, and provide structural support and spatial organization to the tissue. The
microenvironment is defined by three large structures: the bone tissue that encloses the marrow;
a vascular network, composed of arterioles that penetrate through the bone and give rise to a large
sinusoidal network that drains through a central vein; and a network of reticular stromal cells that
wraps around the different vessels. These structures cooperate with and regulate each other to
maintain the tissue (1).

Many other cell types regulate -directly or indirectly- hematopoiesis and are thus considered part of
the microenvironment. Non-hematopoietic cells include osteoblastic precursors, osteoblasts, osteocytes,
adipocytes, Schwann cells, sympathetic and sensory nerves, and fibroblasts. Hematopoietic components
org November 2021 | Volume 12 | Article 7684391100
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include macrophages, megakaryocytes, myeloid cells, and dendritic
cells. In-depth discussions on how these cells were recognized as
components of the microenvironment and their precise role on
hematopoiesis are available elsewhere (1–3). The components of
the microenvironment are not evenly distributed through the bone
marrow. As a result the microenvironment is spatially
heterogeneous. Different regions of the bone marrow contain
specialized microenvironments that organize hematopoiesis and
regulate unique progenitors, cell types, and blood lineages. The next
section discusses the evidence demonstrating that local
microenvironments dictate the anatomy of hematopoiesis.
THE ANATOMY OF HEMATOPOIESIS IS
SPATIALLY ORGANIZED BY LOCAL
MICROENVIRONMENTS

Spatial Organization of Hematopoietic
Stem Cells and Their Niches
The discovery of the SLAM markers allowed imaging of HSC
(defined as Lin-CD48-CD41-CD150+ cells) for the first time. This
first study showed that most HSC were in perivascular location
-in contrast to the established paradigm that stated that HSC
were enriched in endosteal regions (4). It also paved the way for
many other studies that used imaging to identify proximity
between candidate niche cells and HSC and then a functional
role for the niche cell was confirmed by genetic loss of function
experiments (5–10). The composition, spatial organization, and
function of HSC niches has been reviewed in detail elsewhere
(1–3). Due to the sheer abundance of sinusoids and perivascular
cells in the bone marrow virtually all (99%) hematopoietic cells –
including HSC– localize within 30mm sinusoids or perivascular
stromal cells (8, 11, 12). Both cell types are key regulators of HSC
function (1, 3). Additionally, small subsets of HSC also localize
near arterioles and/or the endosteum. Myeloid-biased HSC
(detected using von Willebrand factor reporter mice)
selectively localized near megakaryocytes -a key niche
component that promotes HSC quiescence (9, 13, 14)- in the
sinusoids. In contrast, lymphoid-biased HSC selectively localized
near arterioles (15). Depletion of megakaryocytes led to
expansion of myeloid biased HSC through loss of quiescence
while lymphoid-biased HSC were unaffected. Similarly, depletion
of Ng2+ periarteriolar stromal cells led to loss of the lymphoid-
biased HSC (15). Other studies showed that the fraction of HSC
with lowest levels of reactive oxygen species was enriched near
arterioles (16); that increases in arteriole numbers also cause
increases in HSC frequency (17); and that Ng2+ periarteriolar
cells support HSC function (6). Together these results support
the concept that sinusoids and megakaryocytes provide a niche
for myeloid-biased LT-HSC whereas arterioles provide a niche
for lymphoid-biased HSC. There is also evidence supporting the
existence of an endosteal HSC niche that promotes regeneration.
Imaging of fluorescently labeled HSC shortly after
transplantation showed that the donor HSC are selectively
enriched near the endosteal surface (18–20). Studies from the
Li lab propose that CD49b- cells represent a small subset of HSC
Frontiers in Immunology | www.frontiersin.org 2101
that selectively amplifies in the endosteum -supported by N-
cadherin+ stromal cells- in response to chemotherapy (21). In
agreement, live imaging analyses showed that a rare HSC subset
(MFG HSC) localized and amplified near the endosteum after
chemotherapy treatment (22).

It is important to note that although most studies agree with
the overall distribution described above there are ongoing
controversies regarding whether some HSC selectively localize
– and are maintained- by arteriolar and endosteal niches (8, 23);
whether HSC localization to different niche components is
selective or random [and thus controlled by the relative
abundance of each niche component (12)]; and about the
motility of HSC in live imaging analyses (22, 24). These are
likely because each group has used different cell surface markers,
transgenic reporters, and statistical approaches to identify HSC
and niche cells and to test for spatial relationships between
these cells.

Spatial Organization of Hematopoietic
Progenitors Downstream of HSC:
Role of the Microenvironment
HSC give rise to several types of multipotent (MPP) and
oligopotent progenitors (25–27). The localization of these cells
in the microenvironment and whether they map near HSC and
their niches is controversial. Early studies relied on short-term
tracking of fluorescently-labeled MPP and HSC adoptively
transplanted into non-myeloablated recipients. These revealed
that the transplanted HSC and MPP did not overlap and that
MPP localized further away from the endosteum than HSC (19).
Much more recently, the Camargo lab generated Mds1GFP+ and
Mds1GFP+Flt3-cre mice to differentially image subsets of
multipotent progenitors and HSC. In the Mds1GFP+ mice GFP
labels almost all HSC and subsets of MPP. In the Mds1GFP+Flt3-
cre mice constitutive cre-mediated deletion of the floxed
gfp allele restricts GFP expression to a small subset of HSC.
They found that GFP+ cells in Mds1GFP+ mice were closer to
transition zone vessels and farther away from the endosteum
when compared to GFP+ cells in the Mds1GFP+Flt3-cre mice.
This suggests that MPP and HSC reside in different
microenvironments (22). The Pereira lab defined multipotent
progenitors as Lin-CD41-CD48-cKIT-CD150-FLT3+ [which
corresponds to the MPP4 subset (25)] and found a similar
spatial distribution and interaction with perivascular stromal
cells as HSC suggesting that they occupy the same niches (28).
The differences between these studies are likely due to the
different mouse reporters and methods used to image the
multipotent progenitors.

It is likely that multipotent progenitors and lineage-
committed progenitors do not overlap. In vivo imaging of
adoptively transferred multipotent (Lineage-Sca1+c-kit+) or
lineage-committed (Lineage-Sca1-c-kit+) progenitors into non-
myeloablated recipients showed that both cells did not cluster
and remained largely immobile while contacting the surrounding
microenvironment (29). This suggested the existence of discrete
niches for multipotent and lineage-committed progenitors. The
existence of a distinct niche for erythropoiesis comes from
classical electron microscopy studies that showed that rare
November 2021 | Volume 12 | Article 768439
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macrophages, adjacent to sinusoids, provide a niche for islands of
erythroblast maturation (30), and these have been the focus of
many studies in the field (31). More recently, Comazzetto et al.,
demonstrated imaging of unipotent erythroid progenitors and
showed that they selectively localize next to perivascular stromal
cells that maintain them via SCF production (32). These indicate
that erythropoiesis takes place in the sinusoids.

Herault et al., imaged Lineage-Sca1-CD150-c-kit+FcgR+

committed myeloid progenitors (33). These are a mixed
population, containing granulocyte monocyte progenitors, and
unipotent monocyte or neutrophil progenitors (34, 35). These
myeloid progenitors were found as single cells evenly distributed
through the bone marrow. In response to inflammation they
formed large clusters that required signals provided by
megakaryocytes to emerge (33). We recently developed
strategies to image granulocyte progenitors, monocyte
progenitors, monocyte dendritic cell progenitors (MDP) and
most steps of terminal myeloid cell production (36). We found
that myeloid progenitors do not colocalize with each other or
HSC. Instead, they spatially segregate and attach to different
sinusoids –away from arterioles and the endosteum– where they
cluster with differentiated cells: granulocyte progenitors give rise
and cluster with preneutrophils, monocyte progenitors cluster
with Ly6Chi monocytes, and MDP cluster with dendritic cells
and Ly6Clo non-classical monocytes. CSF1 is a key cytokine
required for monocyte and dendritic cell production (37). When
searching for microenvironmental signals that regulate this
distribution we noticed that dendritic cells -which cluster with
MDP- selectively localized to a rare subset of CSF1+ sinusoids
(8% of all vessels). Conditional Csf1 deletion in the vasculature
led to loss of MDP, dendritic cells, and non-classical monocytes.
The surviving MDP no longer attached to sinusoids nor formed
clusters with dendritic cell or monocytes. These demonstrated
that myelopoiesis is spatially organized by signals produced by
discrete sinusoids and that CSF1+ sinusoids provide a unique
microenvironment for dendritic cell production (36).

Several studies indicate that B cell differentiation is spatially
organized and regulated by the microenvironment [for a recent
review see (38)]. Common lymphoid progenitors distribute
between the endosteum and arterioles and are maintained by
CXCL12 produced by osteoblastic cells (targeted using Col2.3-cre
or Osx-cre mice) and stem cell factor produced by osteolectin+

periarteriolar stromal cells (39–41). Cordeiro-Gomes found that
Ly6D+ common lymphoid progenitors were also in contact with
-and maintained by- a subset of IL7-producing perivascular
stromal cells but it is not clear whether these stromal cells are
evenly distributed through the bone marrow or enriched in
specific locations (28). Interestingly, subsets of stromal cells
predicted to support lymphopoiesis selectively localize near the
growth plate and trabecular regions (42). The Nagasawa lab
showed that most Pre-pro-B cells are in contact with CXCL12-
producing stromal reticular stromal cells but did not localize
near IL7-producing reticular cells. In contrast most Pro-B cells
did not contact CXCL12 producing cells but localized near IL7
producing cells (43). Mandal et al., showed that Pre-B cells and
Immature B cells selectively localize near IL-7-CXCL12+ reticular
cells and that CXCR4 (the ligand for CXCL12) was necessary for
Frontiers in Immunology | www.frontiersin.org 3102
Pre-B cell differentiation (44). Yu et al., demonstrated that
deletion of IFG1 in Osterix+ progenitors using Osx-cre mice
did not affect common lymphoid progenitors but led to arrest of
B-cell development at the Pro-B stage (45). Fistonich et al., found
that approximately 50% of ProB cells were in contact with
IL7+CXCL12+ reticular cells that simultaneously contacted
with a PreB cell. This suggested an overlapping niche for these
two populations (46). Interestingly, live imaging showed that
while ProB cells are largely static and remain attached to the
CXCL12+ reticular cells whereas PreB cells migrate between
different reticular cells (46). Together these studies strongly
suggest that -as B cell progenitors differentiate- they migrate
between subsets of stromal cells producing different amounts of
IL7, CXCL12, or IGF1. In contrast, the Mancini lab found that
most reticular cells coexpress IL7, CXCL12 and LepR, that ProB
cells localize near LepR+, and that ~15% of HSC colocalize with
Pro-B cells –much higher than predicted from random
distributions. They also identified Nidogen-1 as niche derived
factor regulating lymphopoiesis (47). Since HSC map near IL7
producing cells (28) these suggest that HSC and B cell
lymphopoiesis share overlapping niches.
OPEN QUESTIONS AND FUTURE
DEVELOPMENTS

The studies above demonstrate that the bone marrow is a
complex organ with a unique spatial architecture where
specific lineages are supported by discrete regions of the bone
marrow (Figure 1). The studies also lead to new questions and
reveal major gaps in our understanding of how spatial
relationships regulate hematopoiesis.

What Is the Anatomy of Stepwise
Hematopoiesis in the Steady-State?
Hematopoiesis occurs via stepwise differentiation of progenitors.
However, it has not been possible to map the location of many
progenitor populations – including different subsets of
multipotent progenitors, common myeloid progenitors, and
megakaryocyte erythroid progenitors. Additionally, for most
progenitors, it has not been possible to simultaneously image
multiple types of progenitors. Therefore, it is not known whether
different types of progenitors share the same niche (and are likely
regulated by the same cells and structures) or different niches
(which will suggest differential regulation). The main reasons
limiting studies to answer these questions are technological. For
example, progenitor populations can be routinely defined using
complex multicolor flow cytometry panels (25–27). However,
most confocal microscopes can only resolve a much more limited
number of fluorescent channels. Additionally, scRNAseq studies
demonstrated that many of the different flow gates used to
prospectively isolate the different progenitors contain
heterogeneous populations [e.g., heterogeneity of myeloid
progenitors (34)]. Precise mapping of the different steps of
blood maturation will require developing approaches to define
each type of progenitor by using fewer fluorescence channels as
November 2021 | Volume 12 | Article 768439
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done recently for stepwise mapping of myelopoiesis (36).
Alternatively, it might be possible to adapt iterative imaging
methods. In these, the samples are stained and imaged with a set
of fluorescent probes followed by removal of the fluorescence
and staining and imaging with new fluorescent probes. Two of
these methods, CODEX and IBEX, are able to resolve dozens of
parameters using confocal microscopy (48, 49).

Precise mapping of differentiation will also require clonal
fate-mapping to determine developmental relationships between
progenitors and adjacent cells. Different studies have used
confetti mice [in which cre recombination leads to expression
of one out of four fluorescent proteins (50) to examine clonal
relationships between cells of interest in the marrow (22, 51)].
However, the confetti model only allows simultaneous detection
of a very limited number of fluorescent tags in discrete
progenitor populations. A possible way of overcoming this
limitation is single-cell spatial transcriptomics, which is
developing at a breakneck pace. It might soon be possible to
obtain transcriptomic data, track thousands of barcodes for
clonal analyses, and obtain spatial information for single cells
in the bone marrow (52).

What Are the Cells and Extracellular
Matrix Structures Forming These
Specialized Microenvironments and How
Do They Function?
Answering these might require microdissection of the region of
interest followed by transcriptomics analyses to interrogate the
identity of the local cells. This technology is already available as
Frontiers in Immunology | www.frontiersin.org 4103
shown by a study from the Van Galen lab demonstrating
heterogeneity of growth factor production in different regions
of the bone marrow (53).

After identification of the components of each local
microenvironment the next step will be defining how they
function in regulating the proximal progenitors. This has been
accomplished by conditional Cre-mediated deletion of one
cytokine or growth factor in the candidate cells. However,
scRNAseq revealed extraordinary complexity of stromal cell
types (53–55) whereas common Cre drivers available to the field
target broad, heterogeneous, populations of stromal cells (55, 56).
Development of new CreERT2 mouse models, specific for cells in
local microenvironments -as done recently with Oln-creERT mice
to target the periarteriolar stromal cells that maintain common
lymphoid progenitors (41)- will greatly facilitate answering
these questions.

If Local Microenvironments Regulate
Unique Stem/Progenitors What Regulates
Progenitor Localization to These
Structures?
One possibility is that the specialized microenvironment
produces one or more chemotactic cues that selectively attract
the desired progenitor. Alternatively, this process might be
stochastic with progenitors migrating through the bone
marrow transiently interacting with stromal components. This
type of transient interactions was shown recently for HSC (24).
Eventually, one of these interactions will be of sufficient strength
and specificity to retain the progenitor in a specific
FIGURE 1 | The Figure shows the overall architecture of the microenvironment in the bone marrow as well and the localization of the indicated progenitors with
specific microenvironment. Note that because of the abundance of sinusoids and CXCL12- and SCF-producing perivascular cells virtually all cells are proximal to
both of these structures. Also note that most types of stem cells and progenitors have been imaged with a limited number of partner cells. Therefore, it is likely that
some of the structures depicted overlap (e.g. both erythroid progenitors and HSC have been shown to localize to SCF-producing perivascular cells). The precise
location of most multi and oligopotent progenitors remains unknown.
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microenvironment. In this case the relative abundance of each
local microenvironment will profoundly influence the likelihood
of successful interactions. A third possibility is that the stem/
progenitors themselves remodel local cells into a supportive
microenvironment. This type of remodeling has been shown to
occur in the zebrafish HSC niche (57). Distinguishing between
these possibilities will require live imaging of specific subsets of
progenitors. The major technical constrain will likely be the
development of fluorescent reporter strains to allow visualization
of unique progenitor subsets. Live bone marrow imaging has
been done in the mouse calvarium [where the bone is thin
enough to allow imaging with sufficient resolution (19, 22)] or by
carving a “window” in leg bones to image the marrow within (24,
29, 58). Importantly, recent studies have shown differences in the
frequencies of erythroid and lymphoid progenitors across
different bones (42, 59). These would have to be considered
when deciding which bones to study via live imaging.

What Is the Anatomy of Hematopoiesis
and Local Microenvironment in Response
to Insults?
Hematopoiesis is highly plastic and capable of sensing different
insults and respond by quickly adjusting blood cell production to
demand. Examples of this plasticity include hemorrhage which
triggers emergency red blood cell production and infection which
-depending on the infectious agent- can trigger emergency
neutrophil, monocyte, and/or dendritic cell production. The
bone marrow microenvironment plays critical roles in both
sensing and orchestrating the progenitor response to infection
[reviewed in (60)]. Importantly, inflammation and infection also
profoundly remodel the sinusoidal network and perivascular
stromal cells that maintain hematopoiesis and perturb stem cell
localization within the marrow (60). Key open questions are
a) whether hematopoietic stress responses use the same
anatomical structures as normal hematopoiesis or instead
depend on stress-specific anatomical cues and b) to what extend
remodeling of sinusoids perturbs the anatomical structures that
maintain the different progenitors. The most dramatic example of
acute insult to the bone marrow is myeloablation. This eliminates
not only hematopoietic cells but also the sinusoids and associated
perivascular cells whereas endosteal regions and arterioles are
more protected (6, 21, 61, 62). In this case the key open questions
are: a) how are the local microenvironments restored? and b) what
Frontiers in Immunology | www.frontiersin.org 5104
are the anatomical structures that support regenerative
hematopoiesis? Identification of these will likely lead to novel
therapies to promote restoration of blood cell production
after myeloablation.

Chronic insults also lead to progressive remodeling of the
microenvironment diminishing its capacity to support normal
progenitors and -in some cases- hijacking it to promote
pathogenesis. Examples of this pathogenic remodeling occur
during physiological aging, leukemia, and other proliferative
diseases (63, 64). Most studies have focused on determining
how this remodeling perturbs HSC function. Little is known
about how the different pathologies affect the structures that
support more mature cells and whether protecting these
structures can maintain normal hematopoiesis during disease.
CONCLUSION

Hematopoiesis in the bone marrow is spatially and regionally
organized by specialized local microenvironments that support
different types of stem cells and progenitors. The challenges in
imaging the bone marrow tissue have limited progress (65).
However, the future is bright. Adapting technological advances
validated in other tissues -including live imaging, multiparameter
microscopy, new reporter strains, and spatial transcriptomics- will
allow systematic examination of blood production in situ to define
how local cues from the microenvironment control normal and
pathological hematopoiesis.
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The hematopoietic stem cell (HSC) niche is a specialized microenvironment, where a
complex and dynamic network of interactions across multiple cell types regulates HSC
function. During the last years, it became progressively clearer that changes in the HSC
niche are responsible for specific alterations of HSC behavior. The aging of the bone
marrow (BM) microenvironment has been shown to critically contribute to the decline in
HSC function over time. Interestingly, while upon aging some niche structures within the
BM are degenerated and negatively affect HSC functionality, other niche cells and specific
signals are preserved and essential to retaining HSC function and regenerative capacity.
These new findings on the role of the aging BM niche critically depend on the
implementation of new technical tools, developed thanks to transdisciplinary
approaches, which bring together different scientific fields. For example, the
development of specific mouse models in addition to coculture systems, new 3D-
imaging tools, ossicles, and ex-vivo BM mimicking systems is highlighting the
importance of new technologies to unravel the complexity of the BM niche on aging. Of
note, an exponential impact in the understanding of this biological system has been
recently brought by single-cell sequencing techniques, spatial transcriptomics, and
implementation of artificial intelligence and deep learning approaches to data analysis
and integration. This review focuses on how the aging of the BM niche affects HSCs and
on the new tools to investigate the specific alterations occurring in the BM upon aging. All
these new advances in the understanding of the BM niche and its regulatory function on
HSCs have the potential to lead to novel therapeutical approaches to preserve HSC
function upon aging and disease.
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INTRODUCTION

Hematopoietic stem cells (HSCs) were among the first stem cell
types that found important clinical applications, and they are used
in the laboratory and in clinic for more than five decades. Despite
the huge interest and the clinical translation, it is still nowadays
not possible to culture these cells and expand them in the lab, and
one of the reasons for this pitfall is the importance of the in vivo
microenvironment, which is critical to preserving the regenerative
capacity of HSCs. The physiology of the HSC niche in adult
mammals is complex and strictly linked to specific cell types,
soluble and circulating factors, extracellular matrix components,
and a quite complex three-dimensional architecture within the
bone marrow. Importantly, the niche not only is a passive
substrate but also exerts active functions in preserving the
regenerative capacity of adult stem cells and in instructing their
differentiation into progenitors. Recently, the investigation of the
HSC niche upon aging revealed many unanticipated changes in
the bone marrow (BM) microenvironment, which might play
important roles in determining the reduction of the regenerative
capacity of aged HSCs and be strongly implied also in disease
progression, ranging from leukemia to myelodysplastic syndromes
and to immunosenescence. This review focuses on recent work
that contributed to identify major cellular players in the HSC niche
and highlights the newly reported remodeling of the niche on
aging. Finally, we focus on specific techniques and new
computational-based approaches that are starting to be explored
also in the context of the aging of the HSC niche.
THE BM NICHE SUPPORTING HSCs

The HSC niche is organized in a complex architecture, which
comprises many different cell types, extracellular matrix (ECM)
components, and soluble factors all involved in regulating HSC
behavior. Despite the enormous advances in the understanding
of the structure, function, and contribution of the BM niche in
regulating HSCs, there are still many unknown aspects that
require further elucidation. The emerging view tends to
identify the HSC niche not as a unique and homogenous
compartment but as a collection of dynamic subsets of micro-
niches where different components contribute to regulate specific
HSC functions. In line with this view, novel studies based on
RNA sequencing and spatial transcriptomic approaches are
highlighting the importance of the complexity in cell-type
composition within the bone marrow (BM) niche (1, 2).
Below, we will review the major niche cell types described to
display an important support function for HSCs.

Endothelial Cells
BM endothelial cells (ECs), in collaboration with perivascular
cells, form specialized microenvironments shown to be involved
in the regulation of HSCs and hematopoietic progenitor
cells (HPCs).

ECs have been identified as one of the biggest sources of pro-
hematopoietic factors such as Angiogenin, Notch ligands
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Jagged1 (Jag1), Jagged2 (Jag2), Delta-like ligand 1 (Dll1), and
Delta-like ligand 4 (Dll4), selectin E and, in particular arteries,
are enriched in the expression of CXC chemokine ligand 12
(CXCL12) and stem cell factor (SCF) (1).

Sca1+ arterial endothelial cells (aECs) constitute more than
the 23% of total BMECs and are found in arteries, arterioles, and
transitional vessels (or type H vessels). These aECs present a
peculiar elliptically elongated nuclear shape and express high
levels of vascular endothelial-cadherin (VE-Cad) and Zonulin-1
(ZO1). Type H vessels, composed by ECs highly expressing
CD31 and Endomucin (CD31hi and Emcnhi ECs), are a specific
subset of capillaries exclusively localized in the endosteal region
of the BM and promote angiogenic growth and osteogenesis by
providing signals to osteoprogenitor cells (3). Like type H vessels
which are exclusively endosteal-localized, the most abundant
fraction of arteries in the BM is in close to the endosteum. Both
type H vessels and arterioles display low permeability, preserving
HSCs from the exposure to high levels of reactive oxygen species
(ROS) (4). Taking advantage of whole-mount histological
approaches combined with mathematical modeling, arteries
and rare neural glial antigen 2-positive (NG2+) perivascular
cells in proximity of the endosteum have been identified as the
main niche cell types promoting HSC quiescence and involved in
HSC retention within the BM (5, 6).

Most BMECs are Sca1- sinusoidal endothelial cells (sECs)
and constitute type L vessels, which are characterized by low
expression of CD31 and Emcn (3) and display a high
permeability. sECs are associated with HSC mobilization,
promoting their activation, and providing an exclusive area
for mature leukocyte trafficking. In proximity of sinusoids, ROS
levels are increased compared to arteriolar areas, and this
feature enhances the migration capacity of HPCs (4).
Intriguingly, sinusoids have been reported also as a specific
localization site for non-dividing HSCs. Indeed, deep imaging
of the BM showed that around 85% of Ki67-a-catulin-GFP+ c-
kit+ HSCs are located within 10 mm from sinusoids, while Ki67
+ a-catulin-GFP+ c-kit+ HSCs are mainly localized in
proximity of the endosteum (7), suggesting the involvement
of the sinusoidal niche in promoting HSC quiescence. This
apparent discrepancy observed by Acar et al. compared to
previous work identifying the peri-arteriolar/endosteal niche
as the major site preserving HSC quiescence (5) can be
explained considering that the staining used to identify HSCs
by Kunisaki and colleagues (CD150+ CD48- CD41- lineage
cells) differs from the one used by Acar and colleagues (that
takes advantage of the a-catulinGFP mouse model to identify
HSCs as a-catulin-GFP+ c-kit+ cells). Moreover, despite the
same post-imaging process used for evaluating the distance of
HSCs from arteries and sinusoids, the bones used to perform
the analysis, the protocol used to perform the staining, and the
imaging techniques are not the same, while both authors rely on
Ki67 to identify the non-dividing fraction of HSCs. Overall, the
data might suggest that both arteries and sinusoids can be a
preferential site for quiescent HSCs, hinting at the possible
existence of different strategies played by arterial and sinusoidal
ECs to promote HSC quiescence.
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EC-HSC Interaction: Focus on
Notch Signaling
The direct interaction between ECs and HSCs is important to
maintain and expand the HSC pool by triggering Notch
activation in stem cells (8). Notch signaling is a fundamental
player in the specification of HSCs during development (9, 10)
and also in the regulation of adult HSCs where it is known that
Notch signaling activation maintains HSC self-renewal potential
(11), while its inhibition impairs HSC maintenance (12).

ECs express many Notch ligands (1, 8). For example, Jag1 and
Jag2 are expressed in ECs upon angiogenic stimuli (8). The
endothelium-specific knockout of Jag1, while not affecting the
vascular system, exhausts the HSC pool and impairs HSC
repopulat ion abi l i ty after transplantat ion and BM
reconstitution after myeloablation. These data strongly indicate
a key role of endothelial Jag1 in regulating HSC quiescence and
self-renewal (8, 13). Endothelial Jag2 does not influence HSC
homeostasis but plays a key role in regulating HSC function after
myeloablation. Specifically, the deletion of Jag2 in endothelial
cells causes a fast HSC exhaustion after both 5-fluorouracil (5FU)
treatment and g-irradiation (14).

The endothelial-specific inducible knockout of Dll1 does not
affect any hematopoietic populations, while the endothelium-
specific inducible deletion of Dll4 causes the expansion of
myeloid progenitors and the reduction in the frequency of
common lymphoid progenitors (CLPs), indicating that
endothelial Dll4 expression regulates lymphoid lineage
differentiation (1).

Of note, Notch signaling regulates HSC function also by
promoting EC regeneration. The endothelium-specific deletion
of the Notch1 transcriptional activation domain (TAD) in mice
causes a severe reduction of HSCs and progenitor cells in BM
after myelosuppression, due to increased apoptosis of ECs. The
increased apoptotic rate is linked to the EC insensibility to HSC-
and HSPC-dependent Angiopoietin1 (Ang1) stimulation. In
control conditions, Ang1 triggers Tie2 activation, which
reinforces Notch signaling in ECs and enhances Notch ligand
expression, thus improving the HSC-dependent bone marrow
repopulation after injury (15).

Mesenchymal Stromal Cells and
Perivascular Cells
Mesenchymal stromal cells (MSC) are rare non-hematopoietic
BM cells characterized by the ability to form multipotent
self-renewing mesenspheres and to self-renew in serial
transplantations. These cells are identified by the expression of
the intermediate filament nestin (Nes), and this aspect has been
used to generate mouse models to study these cells and their
contribution to the regulation of HSCs. Different groups
developed similar mouse models using the Nestin gene to
express the Cre recombinase and trace MSCs (NesCre mice).
However, these mouse models do not overlap precisely and they
were shown to target different cell types [see ref. (16, 17) for an
extensive review]. Further, of Frenette’s group derived from
NesCre mice a specific mouse model expressing the green
fluorescent protein (GFP) under the control of the regulatory
Frontiers in Immunology | www.frontiersin.org 3109
elements of the nestin promoter (Nes-GFP+ mice) (18). Based on
GFP expression levels, Nes-GFP+ cells can be classified into rare
Nes-GFPbright cells, exclusively localized at arteries, and into
more abundant Nes-GFPdim cells, prevalently associated with
sinusoids (5). Nes-GFP cells are innervated by noradrenergic
nerve terminals and respond to this stimulation by retaining
HSCs into the BM and promoting HSC and progenitor cell
homing by secreting CXCL12, c-kit ligand (c-kitL), interleukin-7
(IL7), angiopoietin-1 (ANG-1), and osteopontin (OPN) (18).

Pericytes are perivascular cells displaying mesenchymal stem
cell features, which have also been described as niche-supporting
cells. Classically, pericytes have been divided into NG2+ cells,
shown to overlap with Nes-GFPbright MSC (19) and into leptin
receptor-positive (LepR+) cells (20), largely coinciding with the
CXCL12-abundant reticular (CAR) cell population and
expressing CXCL12 and SCF (21). NG2+ pericytes are a rare
cell population, mainly localized at arteries and arterioles and
promoting HSC quiescence (5). LepR+ cells are mainly
associated with sinusoids (6, 21, 22) and have been shown to
control the stem cell pool size through CXCL12 (6) and HSC
mobilization through SCF secretion (23). A recent work based on
scRNA-seq data analysis deciphered and highlighted the
existence of an additional level of complexity in perivascular
cell organization and in their supportive function. Clustering
analysis defined NG2+ cells as NG2+ and Nes+ MSC
hierarchically located at the apex of differentiation into CAR
cells, osteoblast, and fibroblast. Of note, CAR cells appear to
include both Adipo-CAR cell population, highly expressing
leptin receptor (LepR), and Osteo-CAR cells, highly expressing
osterix (Sp7) and displaying low LepR levels. Interestingly, these
two CAR cell subtypes contribute to HSC regulation by different
cytokine secretory patterns, and due to their distinct localization,
HSC function is distinctly influenced based on the specific
localization within the BM niche (2).

Osteolineage Cells
Osteoblasts and spindle-shaped N-Cadherin+ (N-cad+)
osteoblastic cells are located into the trabecular bone region of
the endosteum and were the first cells identified to functionally
support HPCs (12, 24). Osteoblast-secreted ANG-1 (25) and
OPN (26) maintain the HSC pool by promoting HSC quiescence,
while parathyroid hormone (PTH) promotes HSC expansion
through a Jag1-dependent activation of Notch signaling in HSCs
(12). Osteoblast conditional ablation by ganciclovir-dependent
activation of the herpes virus thymidine kinase (TK) gene under
the control of a 2.3-kb fragment of the rat collagen 1 type I
promoter (Col2.3TKmice) leads to a block in hematopoietic
lineage progression with a reduction in lymphoid, erythroid,
and myeloid progenitors, subsequently followed also by HSC
depletion in the BM (27). Osteoblast-specific deletion of
CXCL12 in mice showed that this cell component of the
endosteal niche is the main effector in influencing lymphoid
differentiation (6). Further, the in vivo lineage tracing of N-cad+
bone marrow stromal progenitor cells demonstrated that this
supportive progenitor population contributes to osteoblast,
adipocytes, and chondrocytes, which maintain the most
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quiescent HSC fraction by providing SCF and by protecting them
from chemotherapeutic stress (28).

Interestingly, the endosteal peri-arteriolar niche is recently
emerging as a specific lymphoid differentiation-promoting site.
Indeed, in a very recent work Shen and colleagues demonstrated
that peri-arteriolar LepR+ Osteolectin+ osteoblast progenitor
cells promote CLP expansion and differentiation by secreting
SCF, as the specific deletion of SCF from these cells strongly
reduces CLP frequency in BM (29).

Adipocytes
The bone marrow adipose tissue (BMAT) represents 10% of the
total body adipose tissue, and, interestingly, BMAT strongly
differs from white adipose tissue (WAT) and brown adipose
tissue (BAT). The BMAT transcriptomic profile clusters apart
from WAT and BAT. Additionally, BMAT displays a higher
glucose uptake and a decreased insulin responsiveness (30).
BMAT is one of the most affected compartments upon aging,
expanding up to occupy 50% of the BM cavity (31).
Traditionally, adipocytes are considered negative regulators of
the BM microenvironment and HSC function, in contraposition
with osteoblasts which exert a positive function on HSC (32).
Recent evidence suggests a novel and positive role for adipocytes
in promoting HSC maintenance. Mattiucci and colleagues
demonstrated that BM adipocytes are closely related to BM-
MSCs rather than to other adipocyte populations (such as the
subcutaneous adipose tissue population) and that these cells
support HSC survival by expressing cell-specific cytokines, like
interleukin 3 (IL3), and other MSC-overlapped cytokines (33). In
line with this finding, Zhuo and colleagues showed that SCF
adipocyte-specific ablation reduces mouse survival by causing
HSC deficiency after myeloablation, indicating a positive role of
adipocytes particularly in promoting hematopoietic
reconstitution after myeloablation (34).

b-Adrenergic Sympathetic Stimulation
The sympathetic nervous system (SNS) in the bone marrow has
been shown to innervate both arteries and peri-arterial Nes-GFP+
stromal cells (5). The SNS innervation by b2 and b3 adrenergic
receptors (ADR) plays a key role in the circadian mobilization of
HSCs. CXCL12 is the major chemokine regulating HSC
mobilization and displays an inverse pattern with HSC circadian
mobilization. Interestingly, isoprenaline (a non-selective b-
adrenergic agonist) treatment of bone marrow stromal cell line
reduces CXCL12 expression levels, acting through the regulation
of the levels of the transcription factor Sp1, and BM denervation
critically alters CXCL12 circadian fluctuation in mice (35).
CXCL12 levels are regulated by b3- but not b2-ADR, as both
the selective b3-agonist (BRL37344) and the selective b3
antagonist (SR59230A) respectively increase and reduce the
CXCL12 expression levels in the MS-5 stromal cell line. This
indicates that b3-adrenergic stimulation controls the egress of
HSCs from the BM (35). On the contrary, b2-ADR stimulation is
involved in the reset of the local circadian clock by upregulating
the Per1 gene in the MS-5 stromal cell line, as the b2-selective
agonist (clenbuterol) treatment induces Per1 expression in the
Frontiers in Immunology | www.frontiersin.org 4110
same cell line, indicating that b2-adrenergic stimulation is
involved in regulating HSC homing into the BM (36).

Sympathetic innervation has been shown also to regulate
HSPC and leukocyte circadian egress and homing in mice.
Murine HSPCs and leukocytes preferentially home to the BM
at night while during day they are released into the systemic
circulation. During the night, the parasympathetic nervous
system (PNS) through cholinergic stimulation reduces the
egress of HSPCs and lymphocytes from BM by buffering b3-
adrenergic stimulation and increasing b2-adrenergic signal,
which promotes homing of hematopoietic cells by increasing
the expression of vascular adhesion molecules. Conversely,
during the day the depression of the b2-noradrenergic activity
promotes the b3-AR-CXCL12–dependent exit of hematopoietic
cells from the BM (37).

Megakaryocytes and Macrophages
HSC progeny is an important player in regulating HSC function,
and evidence shows the involvement of megakaryocytes,
macrophages, neutrophils, and regulatory T cells, among
others [see ref. (38) for a detailed review].

So far, megakaryocytes (MKs) are the ones mainly implied in
HSC regulation and young HSCs are often found in close
proximity to MKs (39, 40), which is interestingly not observed
upon aging (40, 41).

MKs’ control on HSC function is dual: it has been shown that
MKs control HSC quiescence by the release of specific factors like
CXCL4, as both global MKs and CXCL4 depletion cause an
expansion of the HSC pool and an increase in their proliferation
(39). Additionally, MKs promote HSC quiescence through TGF-
b secretion, which activates the SH2 domain–containing protein
tyrosine phosphatase SHP-1 (42). TGF-b also regulates HSC
quiescence by promoting SMAD2/3 phosphorylation in HSCs
(43). It would be fascinating to verify if these two TGF-b-
mediated signalings cross talk in regulating HSC quiescence.
Interestingly, MKs also play a role in promoting HSC activation
and proliferation after myeloablation, as MK deletion in Pf4-cre;
iDTR mice by diphtheria toxin (DTR) treatment before 5FU
administration causes a severe impairment of HSC expansion
and BM repopulation. Upon stress stimuli, MKs start to express
fibroblast grow factor 1 (FGF1), which overcomes TGF-b
signaling and promotes HSC activation and proliferation (43).

Of note, the MK and HSC interplay is not unidirectional. A
quiescent subpopulation of HSCs, characterized by the expression
of platelet integrin CD41 (CD41), has been identified as primed
toward myeloid differentiation and strongly increases upon aging
(44, 45). Deletion of CD41 in HSCs leads to hematopoietic defects
with loss of HSC quiescence and insensitivity of TGF-b signaling
(45), supporting the existence of a positive feedback loop between
CD41+ HSCs and MKs in regulating HSC quiescence and
myeloid differentiation.

Macrophages have been shown to play a key role in regulating
HSC quiescence and retention in the BM. DRAC+ macrophages
have been shown to regulate HSC quiescence through the
activation of the TGFb1-Smad3 pathway downstream of
CD82/KAI1. CD82/KAI1 is predominantly expressed in LT-
HSCs, and when knocked out, HSC proliferation increases.
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Depletion of DRAC (CD82/KAI1-binding partner) expressing
macrophages leads to a reduction of CD82/KAI1 levels in HSCs,
increased proliferation, and differentiation (46). CD169+
macrophages constitute another example of cells regulating
HSC retention in the BM. In CD169-iDTR mice, it has been
shown that the depletion of CD169+ macrophages after DTR
treatment causes an increase of HSCs and progenitor cells in
peripheral blood (47). Ablation of CD169+ macrophages in
CD169-iDTR mice upon DTR administration significantly
reduced not only the HSC number in the BM but also the
HSC, LSK, and GMP frequencies in the spleen. In line with their
function in the BM, macrophages are also responsible for the
retention of HSCs into the spleen, selectively through VCAM1-
mediated signaling. Knockdown of VCAM1 expression in
macrophages, using siRNA targeting VCAM-1 within
macrophage-avid lipidic nanoparticles, causes reduced
retention of splenic HSCs, LSKs, and GMPs, without affecting
HSC retention into the BM (48).
AGING OF THE BM NICHE: PHENOTYPIC
AND FUNCTIONAL REMODELING

Aging is a very complex physiological process that causes
substantial changes in the whole organism together with tissue-
specific changes in gene expression and cell composition (49). In
particular in the BM, upon aging the HSC pool is expanded, and
HSCs display a skewed differentiation to myeloid progenitors
(50) at the expense of the lymphoid ones (51) and an impaired
regenerative potential (51). The analysis of the mitotic history of
HSCs and progenitors cells upon aging highlighted that HSCs
andMPPs maintain their quiescent nature in a steady state, while
GMLPs increase their proliferation rate (52) in line with an
increase in their self-renewal potential at the expense of
differentiation. Upon aging, HSCs display also loss of cell
polarity (53), an intrinsic increase in Wnt5a non-canonical
signaling (54), deregulated autophagy (55, 56), deregulation
of the mitochondrial unfolded protein response (57),
downregulation of mitochondrial acetylation mediated by
SIRT3 (58), epigenomic alterations (59–62), and increased
symmetry of epigenetic division (63), indicating that aging
directly affects HSC function independently from the BM
niche: a phenomenon described as “intrinsic” HSC aging and
extensively reviewed elsewhere (64, 65). Interestingly,
transplantation of young LT-HSC into aged recipient mice
induces the expansion of the stem cell pool (66) and a
differentiation skewing toward the myeloid lineage (67), while
transplantation of aged HSCs into young recipients has been
shown to rejuvenate their transcriptomic profile, despite the poor
contribution to progenitor cells and the maintenance of a
myeloid differentiation bias (68). Interestingly, the
transplantation of rejuvenated HSCs into an aged niche
restrains their rejuvenated function (69), suggesting again that
BM microenvironmental aging contributes to promote an aging-
associated phenotype in HSCs. This niche-dependent aging
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phenotype is called “extrinsic” HSC aging [reviewed in ref. (38,
70)]. Recently, this concept has been further dissected by
analyzing the contribution of the middle-aged BM
microenvironment, which identified the decrease in IGF1 BM
levels as an essential aging-promoting factor for both HSCs and
niche cells. Restoring the IGF1 signal has been shown to rescue
Cdc42 and tubulin polarity, to reduce gH2AX focus and myeloid
differentiation skewing in middle-aged LT-HSCs (71). In
contrast, previous reports identified in the fasting-induced
decrease of IGF1-dependent stimulation of PKA activity as a
key factor to promote HSC self-renewal, balanced differentiation,
stress resistance, and regenerative capacities after chemotherapy
in aged mice (72). This apparent disagreement can be explained
considering the downstream pathways activated by IGF1. The
fasting-induced IGF1-mediated pathway has been described to
pass through PKA activation (72), while IGF1 effects observed
upon aging promote mTOR pathway activation (71).
Interestingly, the mTOR pathway is dependent on nutrients
and growth factors (73), suggesting more broadly that probably
there is still more to understand about the regulation of HSC
function by IGF1 during aging. Upon aging, many different niche
compartments undergo degeneration and remodeling, affecting,
on different levels of HSC behavior and function.

Vascular Remodeling
The BM vascular niche is profoundly changed upon aging.
Despite the preservation of the endothelial area occupancy and
the overall vascular volume, the frequency of endothelial cells
(ECs) is reduced during physiological aging (40). These changes
not only are associated with a vascular remodeling including
reduction of arteries and type H vessel density but also directly
affect HSC behavior (74).

In a young niche, the small arterioles located into the endosteal
compartment in specific association with NG2+ pericytes
represent the main quiescent niche for HSCs (5). HSCs in
proximity (within 20 mm of distance) to arteries and NG2+
pericytes display high retention of EdU and negative Ki67
staining. In agreement, upon induced activation or mobilization,
respectively by polyinosinic-polycytidylic acid (Poly(I:C)) or G-
CSF, the quiescent HSC fraction changes its localization relative to
Nes+ perivascular cells and their proliferation rate increases.
Interestingly, the conditional deletion of NG2+ pericytes impairs
HSC long-term repopulation ability by inducing HSC cycling.
This indicates that the proximity to NG2+ pericytes preserves
HSCs from genotoxic insults (5). During aging, arteries and
arterioles degenerate (75), decreasing their length and orientation,
which becomes disorganized and not supportive anymore for the
preservation of HSC quiescence (40, 76) (Figure 1A). Type H
capillaries are also affected by aging, and their number strongly
reduces over time, contrarily to sEC number which is not altered
in aged mice (3). Recently, it was shown that in young mice
arteries and arterioles are characterized by the expression of
netrin-1 (ligand of neogenin-1), which is decreased upon aging.
Neogenin-1 is exclusively expressed by quiescent HSCs and
promotes the maintenance of self-renewal and quiescence.
However, the aging-dependent decline of netrin-1 expression in
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FIGURE 1 | Vascular niche upon aging. (A) Upon aging, arteries and arterioles degenerate, changing their orientation and reducing their length (41, 75). Interestingly,
specific HSC-supporting signalings are lost at the arteries. In particular, Jag2 expression is lost at arterial ECs (aECs) (40) and mTOR is downregulated (77). The
sinusoidal niche preserves its structure and functionality, and sinusoidal ECs (sECs) maintain the signaling involved in the support of HSC functions. In line with these
changes, HSC localization in proximity to arteries and arterioles is reduced and HSCs migrate far away. Conversely, HSCs retain their localization in proximity to
sinusoids (40). (B) Four days after 5FU treatment, sinusoids are destroyed and there is a global increase in inflammation in both young and aged mice. Thirty days
after 5FU administration, young mice recover sinusoidal vascular integrity and Jag2 expression while aged mice show only a partial restoration of sinusoidal vascular
integrity and almost no recovery of Jag2. These correlate with aged HSCs localizing significantly further from sinusoids compared to control not 5FU-treated and
presenting with increased clustering (40).
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arteries and arterioles impairs this signaling axis, leading to HSC
expansion and to the reduction of their regenerative potential (76).
HSCs divide rarely, and in SCL-tTAxH2B-GFP mice, the less
dividing HSCs retain the pulsed histone H2B-green fluorescent
protein (H2B-GFP) label in vivo after doxycycline (Dox)
treatment and for this are defined as label-retaining HSCs (LR-
HSCs) (78, 79). The analysis of LR-HSC localization in aged mice
demonstrates further that quiescent HSCs in aged mice are mainly
localized at sinusoids (40), in line with the expansion of the non-
endosteal neurovascular niche at the expense of the endosteal
niche (41).

In young mice, the sinusoidal network occupies around 30%
of the total BM volume as assessed by whole-mount histological
analysis in long bones (5). Contrary to what happens to arteries
and arterioles, sinusoids are largely not affected by aging and
maintain the same volume occupancy, length, diameter, and
orientation of the vessels, as observed in young samples
(40) (Figure 1A).

Bone marrow ECs display a high expression of the Notch
ligand Jag2 in comparison to the same cells localized in other
tissues (14), and Jag2 expression is retained upon aging (40).
While in young animals the endothelial-specific Jag2 knockout
alters neither the proliferation rate of LT-HSCs nor their lineage
composition in the BM or peripheral blood (PB) in steady state
(14), the in vivo blockade of the endothelial Jag2 signal in aged
mice causes an increase in HSC proliferation and clustering, and
aged mice display a physiologic reduction of Jag2 expression at
aECs (40) (Figure 1). It has been shown that Jag2 expression is
upregulated in the recovering phase after BM myelosuppression
by both 5-fluorouracil (5-FU) and lethal g-irradiation and
promotes HSPC expansion upon BM reconstitution (14). The
administration of the chemotherapeutic agent 5FU, which
induces in addition to myeloablation a specific sinusoidal
damage, highlights critical differences in niche regeneration
when comparing young versus aged mice. Indeed, in young
animals there is a complete niche reconstitution and Jag2 at
sinusoids is re-expressed after 30 days from treatment. In aged
mice, the sinusoidal niche damage is persistent and HSC
localization is affected, which results in impaired hematopoietic
reconstitution and decreased overall survival after 5FU
(Figure 1B) (40).

As for other Notch ligands, Jag1 expression in ECs regulates
HSC homeostasis and regeneration capacity (13), while EC-
expressed Dll4 inhibits the activation of the myeloid
transcriptional program in HSCs (1). However, the endothelial
expression of these markers is not affected upon aging (40).

Notch signaling has been also demonstrated to play a key role
in regulating EC proliferation and artery and type H vessel
formation. The endothelium-specific overactivation of Notch
signaling in aged mice increases arterial and type H vessel
density, regulating HSC number. However, the endothelium-
specific Notch overactivation by deletion of the fbxw7 gene
mediating Notch proteasomal degradation does not overcome
the intrinsic aging of HSCs. Competitive transplantation of HSCs
isolated from aged EC-specific Notch-overactivating mice do not
show increased regenerative capacity nor rescuing of DNA
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damage accumulation (gH2AX foci) in HSCs, both classic
hallmarks of intrinsic HSC aging (74).

Additional signaling pathways have been identified to regulate
the functional interplay between ECs and HSCs as for example the
mTOR pathway. Upon aging, ECs downregulate mTOR signaling,
which induces a reduction in their support to hematopoiesis.
Specific deletion of mTOR in ECs (mTOR(ECKO) mice) leads to
loss of a-tubulin polarity, accumulation of gH2AX foci, and
change in the transcriptome of HSCs, and transplantation of
young HSCs in mTOR(ECKO) mice is sufficient to induce an aged
phenotype in stem cells (77).

The reduced expression of heme oxygenase 1 (HO-1) in ECs
and CAR cells upon aging has also been reported to impair
HSCs. Upon HO-1 reduction, ECs and MSCs reduce their release
of hematopoietic factors, promoting the acquisition of an aged
phenotype in HSCs. Transplantation of young HO-1 wild-type
HSCs into HO-1-deficient mice leads to a premature aging
phenotype in transplanted cells, with the exhaustion of their
regenerative potential and inability to reconstitute the BM upon
secondary transplantation (80).

Collectively, this evidence indicates the importance of the
vascular niche in supporting HSC quiescence, function, and
stress response during aging, highlighting the importance of
some specific endothelial-dependent pathways in preserving
HSC regenerative potential.

Endosteal Niche Degeneration
The endosteum in young mice strongly contributes to the
maintenance of HSC quiescence (12, 25, 26), and upon aging
the degeneration of the bone is dramatically affecting the
endosteum and the arteriolar and peri-arteriolar compartment.
Nes-GFPbright cell frequency is reduced at the endosteum and
increased in the proximity of the central vein. Moreover, these
cells reduce their colony-forming ability, while the more
abundant Nes-GFPdim cells do not change their localization at
sinusoids (75) (Figure 2). Interestingly, the analysis of HSC
localization showed that the frequency of HSCs in proximity to
Nes-GFPbright cells is reduced while there are no significant
alterations in HSC proximity to Nes-GFPdim cells (40). In the
stromal compartment, MSC number and their colony-forming
activity are reduced during aging. Moreover, these cells
downregulate CXCR4 expression, which leads to an increased
ROS production and DNA damage accumulation (Figure 2).
Competitive transplantation experiments showed that deletion
of CXCR4 in MSCs is sufficient to drive the acquisition of an
aged phenotype in young HSPCs, which show a reduced BM
repopulation capacity and myeloid differentiation skewing.
Interestingly, ex-vivo pretreatment of CXCR4-deficient MSCs
with the ROS scavenger N-acetyl-L-cysteine (NAC) restores
normal ROS levels in MSCs and ameliorates the phenotype of
HSPCs (82). In line with these changes, intravital multiphoton
microscopy analysis of the BM of young and aged mice showed
the decrease of the bone matrix coupled with a reduction in the
frequency of mature osteoblasts and the expansion of the
mesenchymal cell population (81). Upon aging, MSCs increase
IL6 and TGF-b expression and the TGF-b pathway has been
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demonstrated to be a key regulator of HSC aging, as its inhibition
in aged HSCs reverts their enhanced platelet lineage bias and
restores the lymphoid output upon transplantation (85).

During aging in human bones, the number of adipocytes is
increased and correlates with a change in their milieu of secreted
cytokines (86) (Figure 2). Studies conducted in mice showed that
the expansion of adipocytes upon aging is due to a pro-adipogenic
differentiation shift of osteo-adipogenic mesenchymal precursor
cells, causing a reduction of hematopoietic progenitors and HSC
number and repopulation capacity (83). Interestingly, a recent
paper showed that the fraction of CD34+ HSPC as well as the
number of differentiated myeloid cells in proximity to adipocytes
is increased in the BM of aged individuals, suggesting a possible
role of adipocytes in the increase of myeloid cells during aging by
promoting myeloid differentiation skewing (84).

In line with changes in the adipogenic population, osteoblast
(defined as CD45, Ter119, CD31, Sca1, and CD51+ cells)
frequency in the BM is reduced upon aging, as well as their
production of OPN (Figure 2). This has been shown to confer
an aged phenotype to HSCs (26), and thrombin-activated OPN
treatment rescues aging-related HSC phenotypes like loss of cell
polarity and myeloid differentiation skewing (66). An additional
study performed using OPN knockout mouse models displays
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also that OPN regulates the repopulation ability of aged HSCs
upon transplantation (87).

Recently, new data showed that the frequency of LepR+
Osteolectin + osteogenic progenitors decreases upon aging,
contributing to the reduction of the amount of CLP within the
BM in the elderly. Strikingly, the reduction of LepR+Osteolectin +
osteogenic progenitors observed on aging is dependent on a
change in the mechanosensing of the endosteal environment
because, in concomitance with physiological or induced bone
demineralization, the LepR+ Osteolectin + osteogenic progenitor
population is reduced, as well as CLPs, without any significant
change occurring in the frequencies of HSCs, MPPs, GMPs,
MEPs, or CMPs (29). Therefore, it is likely that the aged HSC-
intrinsic myeloid skewing is paralleled by a niche-dependent age-
associated degeneration of the lymphoid niche.

Sympathetic Adrenergic Signal Alterations
Sympathetic adrenergic signals play a key role in regulating
homing and egress of HSCs and hematopoietic cells from the
BM (88), and it has been shown that the SNS innervation is
strongly changed upon aging (Figure 3). However, there is not a
clear consensus on the nature of the changes occurring to
adrenergic fibers per se during aging, and analyses on the
FIGURE 2 | Degeneration and reorganization of the endosteal niche upon aging. The endosteal niche is one of the most affected compartments upon aging. The
bone area is compromised due to a reduction in the number of osteoblasts and in osteopontin (OPN) release (26, 66, 81). Arteries and arterioles degenerate,
becoming no more able to support HSC function (40, 41, 75). NESbright cells change their localization from arteries moving in proximity to sinusoids, while NESdim

cells do not change their localization (40, 75). The MSC population is increased upon aging (81). MSCs reduce CXCR4 expression and increase ROS production,
reducing their colony-forming ability and becoming less supportive for HSC maintenance (82). Adipocytes increase in number due to an enhanced pro-adipogenic
differentiation of MSCs (83), promoting HSC myeloid differentiation skewing (84).
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changes in sympathetic adrenergic innervation showed
contrasting results.

InMaryanovich et al., the analysis of adrenergic fibers by staining
for tyrosine hydroxylase revealed a strong and general reduction in
nerve density in old BM, coupled with a reduction of perivascular
Nes-GFPbright cell innervation (75). Consistently, also synaptic
contacts between adrenergic nerve fibers and BM-innervated cells
are reduced upon aging. Taking advantage of hind-limb denervation
to recapitulate the decrease of SNS stimulationoccurring upon aging,
it has been shown that after denervation HSCs increase their
proliferation and lose their polarity for Cdc42 and tubulin and
myeloid-biased CD41+ HSCs are expanded (75). Moreover, upon
transplantation, HSCs collected from denervated bones display
reduced engraftment compared to the non-denervated counterpart.
Interestingly, b3-ADR deletion in young mice causes a premature
aging phenotype and treatment with the b3-ADR agonist BRL37344
is able not only to rejuvenate HSCs by improving their engraftment
potential upon transplantation and normalizing their differentiation
skewing but also to rescue the acquisition of the aged phenotype in
HSCs after hind-limb denervation. These findings suggest that b3-
adrenergic stimulation is oneof themainplayers inmaintainingHSC
regenerative potential (75).

Conversely, a more recent paper described an increase in SNS
innervation upon aging. Taking advantage of the whole-mount
analysis of thick-bone sections, Ho and collaborators demonstrated
an increaseup to2.5 times inSNS innervationwith aging inbothflat
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and long bones, in association with a reduction of the endosteal
niche. This change in adrenergic stimulation promotes myeloid
differentiation skewing through the enhanced secretion of IL6 from
BM stromal cells. IL6-increased secretion is triggered by the
increased b2-ADR-mediated stimulation. In line with the
described role for b3-adrenergic stimulation in maintaining HSC
function,HSC frequency andmyeloidprogenitordifferentiation are
increased, and lymphoid differentiation is reduced in b3-ADR
knockout mice (Figure 3). Transplantation of HSCs isolated from
the progeria mouse model bearing mutation in the gene codifying
for thenuclear envelopeprotein LaminA/C (LmnaG609G/G609G) into
healthy recipients did not recapitulate the aged phenotype observed
into the progeria mouse model, while chronic treatment with the
b3-ADR agonist ameliorated the aged phenotype observed in
LmnaG609G/G609G mice, reducing the HSC frequency into the BM.
Altogether, these data support a key role for the niche and in
particular for b3-adrenergic stimulation in regulating the
premature aging phenotype observed in the context of LaminA/C
mutation (41).

Intriguingly, it has been shown that knockout of LaminA/C
alters the epigenetic and chromatin architecture of HSCs similarly
to what was observed in aged HSCs, which also present with very
low levels of LaminA/C compared to young stem cells (59, 60). It
would be therefore interesting to understand if the SNS in the BM
microenvironment can impact on the epigenetic and chromatin
architecture of HSCs.
FIGURE 3 | b-Adrenergic signaling alteration upon aging. b-Adrenergic innervation is strongly altered upon aging (41, 75). In young mice b3-adrenergic stimulation is
predominant and promotes lymphoid differentiation while b2-adrenergic stimulation is involved in regulating myeloid differentiation. Upon aging, b2-adrenergic
stimulation is increased and promotes MSC secretion of IL6, thus increasing HSC myeloid differentiation skewing.
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Despite the absence of a consensus on the extent of the
alteration of the SNS upon aging, it is clear that this niche cell
type strongly affects HSCs, contributing to the aging-associated
myeloid skewing.

Inflammaging
One of the major changes occurring upon aging in the BM is the
insurgence of a low-grade inflammatory state developed in absence
of any triggering infection defined as “sterile inflammation”. This
systemic, chronic, and low-grade inflammation in the BM
occurring during aging is termed “inflammaging” (89), and it has
been postulated as one of the major stimuli promoting HSC
aging and lymphoid to myeloid differentiation skewing (90).
Inflammaging is mainly driven by senescent cells that accumulate
upon aging (Figure 4). ChIP-seq analysis coupled with machine
learning approaches hinted at alterations of the transcriptional and
epigenetic landscapeas theprimary driver of the upregulationof the
inflammatory response occurring upon aging (95). Senescent cells
are characterized by a senescence-associated secretory phenotype
(SASP), which refers to the secretion of pro-inflammatory
molecules including chemokines and cytokines, bioactive lipids,
and exosomes.As soonas the roles of senescent cells and SASPwere
identified, new classes of drugs were developed to selectively kill
senescent cells (senolytics or senolytic drugs) or to inhibit the
inflammatory function of the SASP components (senomorphic
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drugs) (96, 97). Targeting senescent cells, inflammation and SASP
with senolytic drugs may represent a powerful rejuvenation tool,
since a reduction of circulating levels of inflammatory cytokines has
been associated with increased lifespan in several models and has
also been shown to improve aged HSC function (98–101). In a
recent work, Helbling and collaborators confirmed in mice the
increased transcription of inflammatory cytokines, such as IL1b
and IL6, and in inflammatory chemokine, such as Ccl5, Ccl6
CXCL9, CXCL10, and CXCL11, in aged BM stromal cells and
endothelial cells. Interestingly, the transcriptional signature of these
cells isoverlappingwith the signatureofyoungBMstromal cells and
endothelial cells upon lipopolysaccharide (LPS) stimulation (102).
Consistently, human MSCs isolated from aged donors display a
reduced colony-forming ability and a senescent-like phenotype
characterized by increased b-galactosidase and SASP factors.
Importantly, umbilical cord-blood (CB)-derived CD34+ HSPCs
exposed to agedMSC-conditionedmedium increase the expression
of the inflammatory cytokines MCP1 and IL8 and reduce cell
clonogenicity. This outcome is rescued if CB-derived CD34+
HSPCs are cultured in conditioned medium derived from MSCs
of aged donors treated with steroids, suggesting that the main
trigger inHSPC alteration is represented by the increased secretion
of SASP factors fromMSCs upon aging (103). Other cell types have
been demonstrated to be involved in the regulation of changes in
HSC and HSPC function by triggering an inflammatory response
FIGURE 4 | Inflammaging. Upon aging, senescent cells accumulate and acquire the so-called senescent-associated secretory phenotype (SASP) (89). SASP
contains different pro-inflammatory factors that increase the general level of sterile inflammation within the BM, promoting HSC myeloid differentiation skewing (81)
and HSC mobilization (91, 92). Interestingly, HSC myeloid differentiation skewing is also affected by macrophage’s activity. Upon aging, macrophages increase their
release of IL1 thus promoting HSC myeloid differentiation skewing (93) and inhibiting lymphoid differentiation (94).
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upon aging. In mouse and human aged BM, a megakaryocytic
skewing with an increase in CD41+ HSCs and megakaryocytic
progenitor frequency concomitant with the insurgence of an
inflammatory state has been observed. Experiments in aged mice
correlate this inflammatory state to an increase in activated
macrophages (Mjs) with a reduced phagocytic function and
increased release of IL1 (Figure 4). Interestingly, impaired
phagocytosis in Mjs young mice, due to alx gene deletion,
recapitulates the age-dependent myeloid skewing of HSC
differentiation (81). Additionally, IL1 is sufficient to drive
myeloid skewing in HSC: aged mice lacking IL1 receptor display
a specific decrease of myeloid biased MPP3, while IL1 chronic
administration in vivo expands Mac-1+Gr-1+ granulocytes,
simultaneously reducing B220+ B cells (93). Consistently,
treatment of aged mice with the IL1 antagonist Anakinra
improves HSC repopulation ability after 5FU treatment (104).
Complementary to this evidence, studies in mice (105) and in
rabbits (106) demonstrate that the adipocyte-promoted myeloid
expansion and IL1b production inhibit B lymphopoiesis.

Also, tumor necrosis factor alpha (TNFa) has been shown to be
upregulated in HSCs upon aging, promoting myeloid differentiation
skewing, HSC survival, and changes in the immunomodulatory
properties through the activation of a nuclear factor-kB (NF-kB)-
dependent gene program (94). Inflammaging has been shown to
promote HSC mobilization (91), and Cymer and colleagues suggest
the increased release of extracellular adenosine triphosphate (eATP)
in the BM as a trigger for inflammation-dependent HSC
mobilization (92).

Clonal hematopoiesis of indeterminate potential (CHIP) is
defined as the presence in the peripheral blood of a somatic
mutation with a variant allele frequency equal to or greater than
2%. CHIP is characterized by the expansion of HSC clones bearing
somatic mutations, its incidence increases upon aging, and it is
considered as a predisposing step to the development of
hematological cancer and cardiovascular diseases (107).
Proliferation and acquisition of a malignant phenotype have been
linked with the presence of an inflammatory environment (107,
108). It seems likely that thepro-inflammatorychangesoccurring in
the BM microenvironment upon aging can promote clonal
hematopoiesis and its transformation to a malignancy (109).
However, further experiments are needed to determine a direct
cause–consequence relationship between inflammaging andCHIP.

Taken together, this experimental evidence highlights that
inflammaging plays multiple and transversal roles in promoting
different features of the aged-associated functional impairment
of HSCs and increased cancer predisposition in the elderly.
TOOLS TO INVESTIGATE THE
AGING BM NICHE

Mouse Models
Mouse models represent one of the most important tools to
study and mechanistically investigate hematopoiesis and the
function of BM niche cells. For this reason, the development of
new murine models has increased exponentially in the last years.
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Xenotransplantation of human hematopoietic cells in mice
highlighted the existence of defined but important differences in
hematopoiesis and BM niche structure and supporting functions
between mice and humans. However, this limitation has been
partially overcome by a progressive “humanization” of several
murine models, through the expression of specific human
cytokines, and by the development of promising alternative
strategies to mimic a human BM niche ex-vivo (110). In fact,
the use of mouse models to study human hematopoiesis has
increased exponentially in the last decades [see ref. (111) for a
full list of all mouse models used for recapitulating human
hematopoiesis in mice]. More in general, mouse models have
been instrumental for understanding the supportive function of
the niche in regulating HSCs [for an extensive review see ref
(16)]. Mouse models also play a key role for deciphering the
molecular mechanisms that govern many complex physiological
processes, such as aging.

For example, Poulos and colleagues, using an in vitro
coculture system, reported that young BMEC can improve
aged HSPC function (112). However, only the use of a mouse
model to induce the knockout of mTOR specifically in BMEC
allowed the discovery of the molecular mechanism governing
this supportive role of BMEC. In fact, young mice upon BMEC
specific deletion of mTOR display a premature aging phenotype
with increased frequency of HSCs and myeloid cells and reduced
lymphoid cells. Moreover, the same mouse model allowed the
analysis of the vasculature in BMEC mTOR KO animals and to
point out that the observed premature aging phenotype in HSPC
was due to changes in the instructive signals arising from the
endothelial niche, excluding a possible role for vascular
degeneration, as the vasculature of knockout mice did not
manifest gross alterations (77).

An additional example of the important role of mouse models
to dissect the molecular mechanisms driving the niche-
dependent HSC aging is represented by OPN knockout mice.

OPN is a matrix glycoprotein secreted in the BM extracellular
matrix by osteoblasts and osteocytes (113, 114). OPN levels are
reduced upon aging (66), and taking advantage of the complete
knockout of OPN coding gene “secreted phosphoprotein 1”
(spp1), different null OPN viable mouse models have been
developed (115, 116). Thanks to these mouse models, it has
been possible to identify that OPN positively regulates
lymphopoiesis and erythropoiesis in aged mice and directly
promotes HSC regenerative capacity. Transplantation of HSCs
isolated from OPN null mice into lethally irradiated mice fails to
repopulate the donor BM, leading to a premature death of the
transplanted mice (87). Ex vivo thrombin-cleaved OPN
treatment of HSCs obtained from OPN null mice reverts their
premature aging phenotype (66).

The work of Ho and colleagues represent an additional
example of the essential role of the use of mouse models for
understanding the age-dependent alteration of BM niche cells.
Adrenergic stimulation is altered upon aging (75). However,
different receptors participate to modulate the adrenergic
response. Taking advantage of two different mouse models
bearing the specific deletion of b2-ADR and b3-ADR, Ho and
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colleagues demonstrated a different role of adrenergic
stimulation in driving HSC myeloid differentiation skewing.
They observed that in aged mice, b2-ADR stimulation
specifically drives myeloid differentiation skewing by a niche-
dependent signal, while b3-ADR stimulation is involved in
lymphoid differentiation. Aged Adrb2-/- mice display a reduced
frequency of myeloid progenitors, and transplantation of wild-
type BM cells into Adrb2-/- recipients recapitulates the
megakaryocyte and platelet loss. On the contrary, b3-ADR
knockout mice display a reduced frequency of lymphoid-biased
HSCs in association with an increase in LT-HSC frequency and
myeloid progenitors. Intriguingly, the double knockout for b2-
ADR and b3-ADR does not display myeloid skewing, suggesting
that the increase in adrenergic signal and the overcoming of b2-
ADR signaling over the b3-ADR one are the main drivers in
promoting myeloid differentiation skewing upon aging (41).

Another interesting example of the critical role ofmousemodels
to mechanistically dissect the role of the BM niche on aging was
recently providedbyFrischandcolleagues (81).Theydemonstrated
that aged mice display an impaired phagocytic activity in
macrophages, in correlation with a decrease in the expression of
the efferocytic receptor Alx. Taking advantage of the deletion of the
tyrosine receptor Alx (117), the authors modeled a mouse with
impaired phagocytosis. Young Alx knockout mice display
macrophages with an impaired phagocytic activity, and this
defect was sufficient to drive premature megakaryocytic skewing
ofHSCs (81). These data reveal the importance ofmousemodels as
tools to decipher specific molecular pathways responsible for the
interplay between stem cells and niche cells upon aging.

Mouse models can also represent a powerful tool to explore the
contribution of aging in cancer development and progression. In a
very recent paper, Hao and collaborators took advantage of a
chronic myeloid leukemia (CML) mouse model to test how aging
is affecting tumor progression in agedmice, highlighting the role of
the niche in the oncogenic process (118).

Engineering the Human BM Niche
The unique structure and architecture of BM represent a
limitation for its study in humans. The inability or the
difficulties in directly analyzing the whole BM in human
samples stimulated the development of novel technologies to
mimic and study the human BM (hBM) niche outside of its
natural localization (110) also to address its role in hematological
malignances. As a matter of fact, recent evidence highlighted a
crucial role for the niche in disease development and leukemia
expansion (119). The classical model for studying hematological
malignancies is represented by xenotransplantation assays, where
human hematopoietic cells are transplanted into mouse recipients.
However, this type of approach excludes the possibility to
investigate the signaling coming from the human niche. In these
experimental setting, engraftment analysis plays a key role to
define the disease and its aggressiveness. Unfortunately, mouse
models sometimes fail to properly recapitulate the disease due to
the murine (not human) microenvironment where the cells are
transplanted. Improvements in this sense have been done by
implementing immunocompromised mouse models expressing
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human cytokines [refer to ref (110, 120). for an extensive review];
nevertheless, this aspect requires further investigations and
additional strategies are raising.

The subcutaneous implantation in mice of scaffolds
supporting human niche cells represents one of the most
promising strategies to mimic and study the hBM and to
model hematological malignancies.

Ossicles have been described for the first time by Urist and
colleagues (121) and by Freidenstein and colleagues (122) as
human-derived bone formations containing in their inside
structured BM (120).

Friedenstein and collaborators extensively demonstrated that
freshly isolated BM cells by both trypsin digestion and bone
flushing are able to generate ossicles when absorbed into porous
sponges and transplanted under the renal capsule of mice (122).
Subsequently, Robey and Bianco have extended the use of ossicles
to model the pathogenesis of McCune-Albright fibrous dysplasia,
demonstrating the relevance of this tool for clinically related
investigations (123–125). Humanized ossicles can be generated
by seeding hMSC into EMC-based 3D scaffolds and
subcutaneously implanted in NSG-recipient mice. Abarrategi and
colleagues used a porous Gelfoam® scaffold composed by partially
dehydrated gelatin. HumanHSPCs or leukemic cells can be directly
seeded into the scaffold 48 h after MSC seeding or directly injected
into the mouse tail vein 4–6 weeks after the implantation of the
scaffold with comparable engraftment. Once implanted, the host
provides vascularization to the scaffold and is colonized with
hematopoietic cells (126). Interestingly, this approach has been
used to generate a humanized niche model to analyze the influence
of leukemic cell remodeling of the mesenchymal niche and its effect
on normal HSPC proliferation. For example, Waclawiczek and
colleagues demonstrated that patient-derived AML cells impair
normal hematopoiesis by influencing the release of HSPC-
supporting factors by MSCs, leading to the suppression HSPC
proliferation and differentiation (127).

A complementary approach to develop ossicles was described also
by Reinisch and colleagues. Using this method, hMSCs are directly
subcutaneously seeded into the flanks of immunocompromised NGS
mice. hMSC differentiation and ossification are induced by PTH
injections within 10 weeks after seeding. Normal or malignant
hematopoietic cells are directly seeded into the ossicle after
myeloablation (irradiation or busulfan-based chemotherapy) (128).

Formation of LT-HSCs into ectopic niches derived from fetal
bone and implanted in vivo under the kidney capsule requires
ossification (129); however, additional approaches have been
developed to mimic in vitro the human niche. For example, the
“bone marrow–on–a–chip” represents one of such approaches (130,
131) and it consists of a poly(dimethylsiloxane) (PDMS) device
coated with bone inducing materials, which is subcutaneously
implanted in mice to obtain an engineered BM (eBM). The eBM
can be subsequently cultured in vitro maintaining a functional
hematopoietic system (130). However, in line with the ossicle
technology, this strategy still requires the in vivo implantation step.

To overcome this issue in the BM-on-a-chip approach, Sieber
and colleagues used a hydroxyapatite-coated Sponceram 3D
ceramic scaffold to seed hMSCs and form an eBM. The similarity
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of the scaffold with the bone allows the formation of an eBM
completely in vitro which functions in association to a microfluidic
device to provide nutrients. Moreover, the chip system allows
hHSPC seeding and differentiation, forming an eBM stable up to
28 days (131). Another very interesting approach that excludes the
in vivo step is the ex vivo perfusion bioreactor model. This system
consists of a hydroxyapatite ceramic scaffold inserted into a
perfusion system. hMSCs are seeded into the ceramic scaffold
and induced to differentiate by administering an osteogenic
medium, leading to the formation of an engineered niche (eN)
where CD34+ HSPCs and recombinant growth factors (SCF, TPO,
FLT3-L) are subsequently added. The eN induces the expansion of
phenotypic HSPCs and promotes the maintenance of stem cells,
mimicking the human osteoblastic BM niche (132).

Another approach to mimic the human BM niche in vitro is
represented by decellularized matrix scaffold [see ref. (133) for
detailed information]. These scaffolds are produced by the
deposition of ECM by the immortalized MSC cell line SCP-1.
After the decellularization, CD34+ human HSPCs (obtained
from peripheral blood after mobilization) are seeded on the
scaffold. With this approach, Krater and collaborators
demonstrated that these scaffolds support HSPC functionality
and that they can also modulate it through integrin-mediated
signaling (134).

All these strategies have proved to be extremely useful in the
study of the humanBMniche, and it would be intriguing to explore
their potential application also for investigating aging of the human
BM niche. These approaches could be useful for dissecting the
contribution of specific cell types, secreted factors, and signaling
pathways in impairing human HSC function over time. An
engineered aged niche would offer a novel approach for defining
and recreate in vitro the time-line cascade of events involved in
aging of the BM niche, allowing not only the functional
characterization of the processes involved in driving aging of the
hematopoietic system but also the possibility of exploring new
therapeutic approaches targeting the stem cell niche directly.

Imaging Approaches
The BM is a densely packed tissue with a gelatinous consistence
that limits its investigation and the preservation of its three-
dimensional architecture by classical histological approaches.
New imaging approaches have been recently developed to
overcome these limitations [see ref. (135) for an extensive review].

A 3D analysis of BM architecture taking advantage of
extensive BM sectioning and analysis after perfusion has been
extensively used by the group of Nilsson to demonstrate that
HSC localization is not random after transplantation. While
progenitor and differentiated cells mainly localize in the inner
marrow, HSCs prevalently localize at the endosteal area (136),
requiring SCF (137) and hyaluronate (138) for their lodgment.
The key aspect of this analysis is the sectioning of the BM every
3.5 mm to evaluate each stem cell only once. This approach
requires extensive sectioning, and the BM 3D architecture might
be easily compromised. To overcome this aspect, different
strategies have been developed, like 3D-quantitative
microscopy (3D-QM) and BM whole-mount histology.
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3D-QM has been used by the group of Nombela-Arrieta to
image the BM niche and its components (139, 140), allowing the
modeling of the entire bone surface. This approach has
highlighted the real abundance and complex organization of
the sinusoidal network and mesenchymal reticular subsets and
its maintenance upon aging (141). The same approach has been
used to demonstrate that HSPCs are mainly localized at the
endosteal niche in close proximity to sinusoidal and non-
sinusoidal microvessels and that these cells display a hypoxic
profile (142). Recently, this technique has been also applied to
study the leukemic stem cell (LSC) niche. In a chronic myeloid
leukemia model, the importance of CXCL12 in promoting LSC
localization and clustering in close proximity of MSCs has been
highlighted. Moreover, it has been shown that CXCL12 deletion
in MSCs increases LSC clearance upon TKI treatment (143).

BM whole-mount histology represents one of the best
strategies to preserve and analyze the BM 3D architecture. This
approach allows the study of the BM niche directly in fixed bone
samples by immunostaining and confocal or multiphoton
microscopy imaging. This technique has been now more and
more used to study different components of the BM niche and
their changes upon aging (40, 41, 75). The possibility to image
the BM niche from the exposed surface to the inner marrow
spanning from the endosteal region to the perivascular one
allowed the identification of the HSC preferential localization
at arteries and endosteum in young mice (75). Moreover, this
technique made possible to image and dissect the localization of
rare label-retaining aged HSC at sinusoids in aged mice (40).
Similarly, this technique has been used to identify the changes in
the adrenergic stimulation occurring upon aging and how these
are affecting HSC behavior (41, 75). However, this technique is
limited by the nature of the sample and by the imaging power of
the confocal or multiphoton microscopes. Samples used for
whole-mount histology must be fixed in order to preserve the
3D BM structure. UV and visible light lasers used in confocal
microscopy usually allow a penetrance of about 100 µm into the
BM, which is further reduced in the case of combining
multiple fluorophores.

To improve the possibility of resolving the composition of the
BM niche by combining multiple fluorochromes together,
Schroeder’s lab developed a multicolor quantitative confocal
imaging approach. This technique applies to thick-bone sections
from PFA-fixed long and flat bones, cleared and decalcified before
the imaging process. Using a sequential staining based on primary,
secondary, and tertiary antibody combinations, it is possible to
image up to eight colors by confocal microscopy without linear
unmixing (144). This approach has been used to map non-
hematopoietic cells in the BM (145) and to demonstrate that
young cycling HSCs are preferentially located in proximity to
CXCL12 stromal cells and far from sinusoids and megakaryocytes
(146). Interestingly, this approach has been also extended to study
the functional distribution and differentiation of hMSCs seeded in
ossicles (147). Moreover, this multicolor quantitative confocal
imaging takes advantage of the specific image analysis software
“XiT,” able to analyze large data sets and to provide internal
controls for determining preferential cell localization (144).
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Similarly, Lucas’ lab combined the whole-mount histological
approach with staining of different antibodies and the Ubc-
CreERT2:Confetti mouse reporter to map the spatial segregation
of myeloid progenitors during differentiation. They took
advantage of the specific cytosolic localization of the Confetti
reporter vs. the localization at the cell membrane of the antibodies
to use the same color channel for staining different markers. The
discrimination of the fluorescent signal localization (intracellular
vs. cell surface) allows the clear identification of the specific cell
type and its localization within the BM compartment (148).

Another powerful strategy to overcome confocal imaging
limitations is represented by the use of multiphoton microscopy
and by the two-photon excitation fluorescence (TPEF)
microscopy. By using the near infrared light (700–1000 nm) to
excite the fluorophores, it is possible to combine more colors
simultaneously, reducing photobleaching in comparison to the
lasers used in confocal microscopy. In addition, TPEF takes
advantage of the second harmonic generation to image collagen
1 fibers in the bone (135) and the use of the infrared light for
imaging increases the resolution and the penetration of the light
into the samples up to a depth of 150 µm in calvaria (149). The
key advantage of TPEM is its applicability both on fixed samples
and for in vivo imaging. Currently, intravital imaging coupled
with TPEM represents the best strategy to analyze the BM niche in
living animals taking advantage of fluorescent reporter mouse
models. The group of Von Andrian extensively used this approach
to study HPC homing to BM after transplantation (150), HSC,
and HSC’s progeny trafficking and homing (151–155). One of the
most investigated bone for this analysis is the calvarium, because
this thin skull bone does not require major manipulation prior to
imaging, but it can also be applied to other bones like for example
the tibiae (53, 156, 157). Of note, this imaging approach has been
extensively applied to analyze young animals; however, it has been
rarely used on aged mice (53, 156). This is probably due to the
increased challenges of applying this technique in aged mice,
which are more fragile animals, limiting the applicability of this
technique. Recently, intravital imaging has been used to analyze
the physiological localization of HSCs in the calvaria in relation to
hypoxic areas within the BM, observing that HSCs are not found
in deep hypoxic areas (158). In this example, the authors took
advantage of the Mds1GFP/+ Flt3Cre reporter mouse models to
trace HSCs. The use of reporter mouse models is a key aspect of
this technique, as non-viable staining cannot be performed. Other
reporter mice that can be used are for example a-catulinGFP/+ and
labeling-retaining models (146). Of note, the use of these HSC
reporter lines can be combined with other reporters to image at
the same time different subsets of niche cells, such as those
currently used in histology as well [refer to ref (16, 17). for a
detailed list]. Intravital microscopy has been also extensively used
by Lo Celso’s lab to analyze the interplay between leukemic cells
and the BM niche. As an example, Duarte and colleagues
demonstrated that acute myeloid leukemia (AML) cells induce a
massive remodeling of the endosteal BM niche by releasing pro-
inflammatory and anti-angiogenic cytokines and that the
degenerated endosteal niche displays a reduced capacity to
support non-leukemic HSCs. Interestingly, HSC loss and the
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reduction of normal hematopoiesis are spatiotemporally
correlated with the AML-dependent endosteal remodeling (149).
COMPUTATIONAL TOOLS TO
INVESTIGATE THE BM NICHE

Next-generation sequencing (NGS) has created a paradigm shift
in medical and biological research. The advent of single-cell
sequencing has further enhanced the importance of NGS and has
enabled investigators to ask questions that would normally not
be feasible to address via bulk sequencing. Single-cell sequencing
methodologies enable the analysis of transcriptome, mutatome,
protein–DNA interaction, and broadly the epigenome.
Combined with increased statistical power and advanced
analytic tools geared toward single-cell analysis, one can then
look at, but not limited to, tissue heterogeneity, clonality, analysis
of gene- and allele-specific expression, and single-cell level
mutational analysis. For example, our groups have also applied
single-cell RNA-seq and single-cell Assay for Transposase-
Accessible Chromatin using sequencing (ATAC-seq) to look at
transcriptional and chromatin accessibility of HSC daughter
pairs (63) and allelic-specific expression associated with
inactivation of chromosome X upon aging (60).

More recently, combinatorial approaches have been
developed that would allow simultaneous interrogation of
macromolecules (multi-omics) and spatial context of cells. This
is especially highly interesting in tissues and systems with
relatively higher complexity and heterogeneity. Stoeckius et al.
(159) developed such a single-cell sequencing technique, which
they named as Cellular Indexing of Transcriptomes and Epitopes
by sequencing (CITE-seq). Using this method, one can look at
both the protein markers and transcriptome profile of the same
cell. By combining single-cell and spatially resolved
transcriptomics where the positional information of cells is
also deduced, Baccin et al. (2) mapped the molecular, cellular,
and spatial compositions of distinct bone marrow niches. A more
recent approach with potentially significant impact in
broadening our understanding of the relationship between
open chromatin and transcriptome at the single-cell level is
SHARE-seq (the simultaneous high-throughput ATAC and
RNA expression with sequencing) (160). Along these lines, the
single-cell method has also been modified to specifically fit the
needs of analysis of the niche or microenvironment in the body.
NICHE-seq, developed by Medaglia et al. (161), combined
fluorescent reporters, two-photon microscopy, and single-cell
RNA sequencing (scRNA-seq) to infer the cellular and molecular
compositions of niches. They stated that, using this technique,
one can sort and analyze cells from a given region in a
transgenic mouse.

In combination with the aforementioned single-cell technical
advances, a seemingly obvious but still not fully exploited
analytical approach that we strongly believe could significantly
expand our understanding of cell biology and allow in-depth
analysis of single-cell sequencing is deep learning. We have, for
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instance, successfully utilized deep learning to understand the
positional proximity of HSCs with niche cells in the bone marrow
and how, solely based on this information, one can predict
whether a given HSC is obtained from a young or aged mouse
(40). Our work shows the untapped potential of deep learning,
even with limited number of cells, in immunofluorescence and
imaging-based studies. Fortunately, most of the current single-cell
technologies generate data in the range of thousands, providing a
conducive platform for deep learning models that could be
optimally trained and validated. In agreement with our
statement and not surprisingly, Raimundo et al. (162) reported
that single-cell omics has seen a surge in use of machine learning
for dimensional analysis, batch normalization, classification,
trajectory analysis, and inference, emanating from the flexibility
and scalability of the method. Li et al. (163), for instance, used an
unsupervised deep embedding algorithm to gradually removes
batch effects. Yan et al. (164) discussed the potential of machine
learning in single-cell sequencing, where one can use structure of
cells and subpopulations with differentiation potential for stem
cell therapy.
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The multiome (multiple macromolecules being simultaneously
interrogated in a given cell) enhances the application of machine
learning by providing an additional and potentially orthogonal set
of information for a given cell, thereby helping in further
refinement of the deep learning model. As also stated by Li
et al. (163), machine learning has been used in gene regulatory
network inference or multimodal data integration based on single-
cell sequencing.
CONCLUSIONS: WHERE WE STAND
AND PERSPECTIVE FOR
THERAPEUTIC APPROACHES

Implementation of deep learning, by integrating various datasets,
is a highly promising novel approach to a long-standing question
regarding niche composition, dynamics, and cell-to-cell
communication. As a proof of principle, we show in Figure 5 a
model workflow on how to integrate data acquisition and analysis
FIGURE 5 | Implementation of deep learning, by integrating various datasets, to elucidate the impact of aging-mediated niche dynamics on HSC positioning and
function. Here are shown two types of datasets: 1) upper part: immunofluorescence positional information showing the relative distance of HSC to niche cells and 2)
lower part: single-cell sequencing of sorted HSCs. Due to the adaptability and flexibility of deep learning methodologies, both datasets are analyzed using, for
instance, an R implementation of Keras/TensorFlow (165). Models are trained using a subset of the data (TrainSet) and different kernel initializations and varying
numbers of hidden layers, depending on the dataset at hand. After validation of the model using a subset of data not included in the training (ValSet), prediction
accuracies are calculated. For the positional information, we assess if we can predict whether a given cell is young or aged HSC purely based on their relative
proximity/distance to a given niche cell and each other. As shown in our recent study (40), using such an approach, we could show ~83% prediction accuracy in
defining the age status of HSCs using positional information. Using single-cell dataset and deep learning, we have also recently developed an aging signature with
very high prediction accuracy (>95%; unpublished data), where the top predictors could show clear segregation of young and aged cells using principal component
analysis (PCA; lower right part of the figure). We propose here that by integrating spatial transcriptomics of specific regions of a bone section (including HSCs and
niche cells) and deep learning, one can perform an integrated analysis that will not only show transcriptional signatures of the cells assayed but also shed light on
how the HSC-niche cell proximity and transcriptional dynamics change upon aging.
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to elucidate the impact of aging-mediated niche dynamics on
hematopoietic stem cell (HSC) positioning and functionality. Two
types of datasets are shown: 1) immunofluorescence-based
positional information correlating the relative distance of HSC
to niche cells and 2) single-cell sequencing of sorted HSCs. As
aforementioned, due to the adaptability and flexibility of deep
learning methodologies, both datasets are analyzed using, for
instance, an R implementation of Keras/TensorFlow (165).
Models are trained using a subset of the data (TrainSet) and
different kernel initializations and varying numbers of hidden
layers, depending on the dataset at hand. Prediction accuracies are
calculated after validation of the model using a subset of data not
included in the training (ValSet). For the positional information,
we assess if we can predict whether a given HSC is young or aged
purely based on their relative proximity/distance to a given niche
cell and each other. As shown in our recent study (40), using this
approach, we could show ~83% prediction accuracy in defining
the age status of HSCs using positional information. Of note, it
would be interesting to refine this further, for instance, by
applying spatial transcriptomics of specific regions of a bone
section (including HSCs and niche cells) instead of classical
single-cell sequencing.

As aging is a multifactorial biological dynamic, various types
of datasets should be considered to improve our understanding
of both intrinsic and extrinsic processes affecting the aging
process. This also has a significant advantage in developing
novel and powerful deep learning models with improved
performance. By deducing the relative significance of the
factors under consideration, prioritization of intervention
schemes including rejuvenation and maintenance of cells of
interest in an in vivo setting can be planned.

More broadly, investigation of the BM niche is now gaining
growing attention for its new potential therapeutic and
translational angle, and also other approaches, ranging from
single-cell profiling, to spatial transcriptomics, to humanized
niche models will all contribute to consolidate and deepen our
understanding of how the BM niche supports HSC function over
time. At the moment, the most general consensus view indicates
Frontiers in Immunology | www.frontiersin.org 16122
the intrinsic aspects driving aging of HSC as largely fixed within
the cells and with few options to be influenced by the
microenvironment or by systemic rejuvenation interventions
(166). However, it is interesting to underline that rejuvenation
of aged HSCs proves to be beneficial to different tissues and it
could be also impacting on the BM niche itself. We are just
starting to explore the boundaries between intrinsic and extrinsic
HSC aging and their mutual interplay. Based on the current view,
it is quite likely that intervention strategies able to affect
contemporarily both aspects might have a much more
profound impact on hematopoiesis. Further, it would be very
intriguing to explore if this combined approach targeting
hematopoietic stem cell intrinsic and extrinsic aging could
extend to other somatic stem cells and tissues and contribute
to eventually extending lifespan and slowing aging of the
whole organism.
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40. Saçma M, Pospiech J, Bogeska R, de Back W, Mallm J-P, Sakk V, et al.
Haematopoietic Stem Cells in Perisinusoidal Niches are Protected From
Ageing. Nat Cell Biol (2019) 21:1309–20. doi: 10.1038/s41556-019-0418-y

41. Ho Y-H, Del Toro R, Rivera-Torres J, Rak J, Korn C, Garcıá-Garcıá A, et al.
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In the bone marrow (BM) of adult mammals, haematopoietic stem cells (HSCs) are retained in
micro-anatomical structures by adhesion molecules that regulate HSC quiescence,
proliferation and commitment. During decades, researchers have used engraftment to
study the function of adhesion molecules in HSC’s homeostasis regulation. Since the 90’s,
progress in genetically engineered mouse models has allowed a better understanding of
adhesionmolecules involved in HSCs regulation by BM niches and raised questions about the
role of adhesion mechanisms in conferring drug resistance to cancer cells nested in the BM.
This has been especially studied in acute myeloid leukaemia (AML) which was the first disease
in which the concept of cancer stem cell (CSC) or leukemic stem cells (LSCs) was
demonstrated. In AML, it has been proposed that LSCs propagate the disease and are
able to replenish the leukemic bulk after complete remission suggesting that LSC may be
endowed with drug resistance properties. However, whether such properties are due to
extrinsic or intrinsic molecular mechanisms, fully or partially supported by molecular crosstalk
between LSCs and surrounding BMmicro-environment is still matter of debate. In this review,
we focus on adhesion molecules that have been involved in HSCs or LSCs anchoring to BM
niches and discuss if inhibition of suchmechanismmay represent new therapeutic avenues to
eradicate LSCs.

Keywords: adhesion, haematopoietic stem cell, leukemic stem cell, haematopoiesis, bone marrow, acute
myeloid leukaemia
INTRODUCTION

Haematopoiesis takes place in the bone marrow of adult mammals and is the process leading to the
formation of blood components throughout life. Haematopoietic stem cells (HSCs) are at the apex of the
haematopoietic hierarchy and are able to self-renew and to differentiate into all blood cell types.
The balance between differentiation and self-renewal is controlled by intrinsic properties of HSC and
extrinsic cues delivered by the bone marrow microenvironment in micro-anatomical sites called “niches”.
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The concept of niche has been formulated by R. Schofield in 1978
who proposed that stem cell association with other cells prevents
maturation while its progeny proliferate and differentiate, unless they
can occupy a similar ‘niche’ (1). Although this working hypothesis
turned to be true, its formal proof has long time been hampered by
the lack of methods allowing precise localization of un-manipulated
HSC within their niche (2, 3). In addition, because HSC activity has
been essentially studied in transplantation assays, it has been difficult
to decipher whether experimental assays were measuring intrinsic
HSC stemness of engrafted cells or their ability to find a supportive
niche in which they can self-renew (4, 5). The development of
constitutive knock-out mouse models in the early 90’s, and
conditional or inducible models later on, has represented a
breakthrough to study the contribution of niche components to
mammalian haematopoiesis (6, 7). Accordingly, a bibliographic
search using combination of the words “haematopoiesis, adhesion
and niche” reveals that only seven publications combine such words
between 1989 and 2000, while more than hundred papers have been
published thereafter. This likely indicates that adhesion was initially
considered as an intrinsic property of HSC, while it has been
integrated to the niche concept later on. This review is focused on
adhesion molecules implicated in HSC or acute myeloid LSC
interaction with the BM microenvironment (Figure 1).
ADHESION MOLECULES INVOLVED IN
HSC RETENTION IN THE BONE MARROW

With the exception of CD44, haematopoietic adhesion molecules
belong to the immunoglobulin superfamily (Ig Sf), the cadherin
family, the selectin family or the integrin family. Adhesion
Frontiers in Immunology | www.frontiersin.org 2129
molecules promote cell/cell or cell/extracellular-matrix (ECM)
interactions and deliver survival signals to haematopoietic cells.
Reciprocally, stromal and endothelial cells express adhesion
molecules interacting with haematopoietic cells or ECM
contributing to the maintenance of bone marrow architecture.

Integrins
Integrins are non-covalent heterodimers of a and b chains. In
mammals, 18 a and 8 b subunits form 24 different integrin
heterodimers involved in embryonic development and
maintenance of tissue homeostasis. a/b chain pairing and
integrin interaction with ECM, cell surface molecules or
soluble factors have been extensively reviewed in the past and
will not be described in further details here (8–11).

One key property of integrins is that they can be expressed in
inactive, activated or clustered state on the surface. The switch
between inactive and active state results in increased ligand
affinity as a consequence of inside-out or outside-in signalling.
Integrin clustering further induces cytoskeleton rearrangement
and enhanced cell signalling (Figure 2).

Among a4b1, a5b1, a6b1, a6b4and a9b1 integrins that have been
involved in interactionofHSCwithbonemarrowmicroenvironment
(12–18), a4b1 is the most studied. The integrins a4b1 and a5b1 are
activatedby inside-out signalling that involves cytokines anddivalent
cations present in the bone marrow microenvironment, suggesting
that they are essential forHSC retention in the bonemarrow (19, 20).
Accordingly, HSPC mobilization using G-CSF is correlated to
decreased a4 integrin expression (21) and deletion or inhibition of
a4b1 integrin result in accumulation of HSC in the blood circulation
(22–25). Similar results were obtained using antibody against
VCAM-1, suggesting a central role of a4b1/VCAM-1 axis in HSC
retention in the bonemarrow (26). This is consistentwith thefinding
FIGURE 1 | Ligand/Receptor adhesion pairs involved in Haematopoietic Stem Cell (HSC, left) and Leukemic Stem Cell (LSC, right) retention in bone marrow niches.
November 2021 | Volume 12 | Article 756231

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Grenier et al. Adhesion Molecules in Niche Retention
that b1 null HSC fail to engraft in irradiated recipient and that b1 null
HSC from chimeric embryos are unable to seed foetal liver (27, 28).

Along this line, b7-deficient mice do not have defects in HSCs
function (29), while interaction between a4b7 and MadCAM-1
(mucosal addressin cell adhesion molecule-1) accounts for half
of the a4-integrin mediated homing activity to the bone marrow
(30, 31). Therefore, it seems that b1 integrin heterodimers play a
prominent role in bone marrow HSC retention as further
supported by the fact that the dual a9b1/ a4b1 inhibitor BOP
((N-(benzenesulfonyl)-L-prolyl-L-O-(1-pyrrolidinylcarbonyl)
tyrosine) induces a rapid mobilization of HSCs including those
that are located in the endosteal region which bind thrombin-
cleaved osteopontin with high affinity (32). This is also supported
by the finding that patients treated with natalizumab, an anti-a4

integrin antibody, present increased levels of circulating CD34+

progenitor cells associated with an higher migratory profile as
compared to GM-CSF mobilization (33, 34).

Finally, it has recently been reported in zebrafish that VCAM-
1+ patrolling macrophages can interact with HSCs in an a4b1
dependent manner and contribute to their retention in the niche
(35). This study confirms earlier findings in mouse models
showing that macrophages contribute to HSC retention within
niches through integrin-mediated interactions (36–38).

Selectins
The selectin family encompasses three members: E-
(Endothelial), P- (Platelets) and L- (Leukocyte) selectins
expressed by endothelial cells (E- and P- selectins), platelets
(P-Selectin) and leukocytes (L-Selectin). They have been initially
involved in the rolling of haematopoietic cells along vessels in
flowing blood (39–41).

The minimal requirements for Ca2+-dependent ligand
binding to selectins are the tetra-saccharides Sialyl Lewis X
(Slex) and Sialyl Lewis A (SleA) (42, 43). As reviewed elsewhere
Frontiers in Immunology | www.frontiersin.org 3130
(44), Slex and SleA synthesis requires several enzymes including a
(1–3)-fucosyltransferase activities as illustrated by defective
selectin-dependent leukocyte trafficking in FucT-VII deficient
mice (45). This is reminiscent of the phenotype of P-Selectin
deficient mice that harbour elevated number of circulating
neutrophils, loss of leukocyte rolling in mesenteric venules and
delayed leukocyte recruitment in peritonitis model (46). In
contrast, E-selectin deficient mice have no defect in
neutrophils trafficking suggesting a compensatory mechanism
mediated by P-selectin (47).

The study of double knockout mice for E- and P-selectin has
revealed defect in haematopoiesis with increased extramedullary
erythropoiesis and reduced haematopoietic progenitor cell
homing in irradiated deficient mice upon transplantation (41,
48). However, such functions were mostly attributed to HSPC
homing and it is only in 2012 that E-selectin was shown to
mediate HSC proliferation at the expense of self-renewal (49).
In contrast to E- and P- Selectin, early haematopoietic defects in
L-Selectin-deficient mice have not been reported so far (50).

Cadherins
Cadherins are transmembrane glycoproteins characterized by
tandemly repeated sequence motifs in their extracellular
segments that allow homophilic interactions in a Ca2+

dependent manner (51). N-cadherin is not only expressed by
neural cells but also by HSCs and spindle shaped osteoblastic
cells lining the bones, called “Spindle-shaped N-cadherin+CD45–

Osteoblastic” (SNO) in the original publication. Because
conditional inactivation of BMP receptor type IA (BMPRIA)
led to expansion of both SNO and HSC, with asymmetric
N-Cadherin distribution between SNO and HSC adjacent cells,
it has been proposed that N-cadherin-mediated adhesion
contributes to HSCs maintenance in endosteal niche (52). This
concept was further supported by the fact that the knock-out of
FIGURE 2 | Schematic representation of integrin activation. The variety of intracellular protein complexes involved in integrin signalling (kinases, adaptors…) is
depicted by forms recruited to the cytoplasmic tails of integrins.
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N-cadherin in LSK cells impairs long term engraftment in the
bone marrow but not in the spleen (53). However, the latter
demonstration used LSK cells, a compartment in which less than
20% of the cells are HSCs. Therefore, the function of N-cadherin
mediated adhesion in HSC maintenance has been challenged in
several studies. First, it was demonstrated that N-cadherin is not
expressed on purified HSCs and that osteoblasts are dispensable
for HSC maintenance (54). Second, the conditional deletion of
N-cadherin in HSC using Mx1-Cre did not affect
haematopoiesis, nor did its specific deletion in osteoblasts (55–
57). Therefore, the controversial function of N-cadherin in HSC
maintenance has been revisited in the light of the methodology
used to study its function (engraftment versus knock-out) and
with respect to heterogeneous expression of N-cadherin by HSC
subsets (58, 59). This led to the most recent concept that N-
cadherin mediated adhesion of HSC to BM stromal progenitor
cells (BMSPC) may only be revealed during emergency
haematopoiesis such as the one needed by “reserve” HSC to
survive chemotherapy (60).

Ig Sf Adhesion Molecules
Several Ig Sf adhesion molecules such as ALCAM (CD166), ESAM,
JAM-A or JAM-C are expressed by HSPCs and BM stromal or
endothelial cells (61–64). Some others such as ICAM-1 or VCAM-1
are expressed in the BMmicroenvironment and interact with integrins
expressed by HSPCs or contribute to more complex adhesive networks
involving IgSf/Integrin as well as IgSf/IgSf interactions such as the JAM
family members (65–68). Therefore, early haematopoietic defects
reported for IgSf deficient animals have to be interpreted with
caution unless specific conditional knock-out mouse models are
combined with orthogonal methods such as long-term engraftment.
Defects in early haematopoiesis following knockout have been reported
for ALCAM, ESAM, VCAM-1, JAM-C, JAM-B and ICAM-
1 (Table 1).
ADHESION MOLECULES INVOLVED IN
LSC RETENTION IN THE BONE MARROW

Similar to HSCs, LSCs are retained into specialized
microanatomical sites by adhesive interactions. Indeed, AML
development originates from LSC which share with HSCs the
ability to self-renew (79, 80). After disease initiation, acute
myeloid leukemic burst is accompanied by a remodelling of
bone marrow niches that alters the physiological adhesive
network of HSC (81–83). Whether adhesive remodelling
occurs already at disease initiation in immunocompetent
context remains to be addressed, but several adhesive Ligand/
Receptor pairs have been involved in AML development in
mouse models. Among them, only a limited number of
Ligand/Receptor pairs that cross barrier species have been
validated as putative therapeutic targets in preclinical setting
using patient derived xenograft (PDX) models. This has
encouraged some clinical trials targeting LSC adhesion to the
niche in order to sensitize these cells to chemotherapy as recently
reviewed by A. Villatoro et al. (84). In the next section, we will
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discuss the adhesion molecules known to contribute to LSC
stemness maintenance that belong to the emerging class of
adjuvant therapies for LSC eradication in AML.

CD44
CD44 is a class I transmembrane glycoprotein that does not
belong to an adhesion molecular family and that interacts with
ECM ligands such a as osteopontin, fibronectin or hyaluronan
(HA). When CD44 is sialo-fucosylated and bears SleX glycan, it is
called HCELL and interacts with E- and L-selectin (85, 86). In
addition, several isoforms of CD44 are generated by alternative
splicing and associated with different cellular processes (87).
CD44 isoforms are widely expressed on AML cells and
expression of the CD44-6v isoform has been associated with
poor prognosis (88, 89). Functionally, CD44 has been involved in
AML cell adhesion to bone marrow stromal cells (90, 91) and
ligation of CD44 with HA or activating antibodies such as H90
has been shown to reverse differentiation blockage in AML cells
(92). The same H90 activating antibody inhibited homing of
AML-LSC to microenvironmental niches reducing the leukemic
burden in a PDX setting. This was attributed to opposing effects
of the H90 antibody which increases adhesion of normal
CD34+CD38- cells to HA but inhibits adhesion of
CD34+CD38- AML blasts to HA (93).

Integrins
Overexpression of the integrins aMb2 (CD11b/Mac1), a2, a6 and
a4b1 by AML cells has been associated with poor prognosis (94–
96). Indeed, it has early been shown that both b1 and b2 integrin
chains are necessary for AML blast adhesion to BM stromal
cells (97).

Among the b1 integrins, a4b1 seems to play the most
prominent role through its interaction with fibronectin (FN)
and VCAM-1. Interaction of integrin a4b1 with FN protects
AML cells from chemotherapy and is associated with the
maintenance of minimal residual disease (MRD). Treatment
wi th a b lock ing ant ibody aga ins t a 4b 1 abrogates
chemoresistance and MRD in mice (98). Similarly, integrin
a4b1 interaction with VCAM-1 contributes to drug resistance
by activating NF-kB pathway in BM stromal cells which is
essential to promote chemoresistance in leukemic cells as
demonstrated by inhibition of NF-kB signalling (99). This
study illustrates the reciprocal crosstalk between LSC and
stromal cells since NF-kB activation in stromal cells
upregulates VCAM-1 which serves as a positive feedback loop
for leukemic cell adhesion to stromal cells.

More recently, the interaction between the integrin a2b1 and
collagen has been shown to confer doxorubicin chemoresistance
via the inhibition of Rac-1 (100). This protective effect is reversed
by anti-a2b1. Although these studies show the therapeutic
potential of integrin inhibition in AML, they do not formally
prove that LSC are more addicted to integrin-mediated adhesion
than normal HSC. To find such differential adhesive cues, Ebert
and collaborators have used results from pooled in vivo shRNA
screens. They have found that the integrin avb3 is essential for
leukemic initiation and maintenance but dispensable for normal
HSPC activity (101). This was attributed to constitutive
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activation of Syk, a candidate therapeutic target in AML, that is
phosphorylated upon engagement of surface receptors including
not only avb3 integrin, but also b2 integrins (102, 103). In
summary, integrin signalling converging toward specific
activation pathway such as NF-kB or Syk may represent
attractive therapeutic targets.

E-Selectin
E- and P-Selectins are constitutively expressed by bone marrow
endothelial cells and play a role in HSPC rolling on micro vessels
(39, 104, 105). However, they induce contrasting effects in HSPC
upon interaction in vitro (86, 106–108). The study of early
haematopoiesis in E-Selectin deficient mice (Sele-/-) has
revealed that inhibition of E-Selectin in vivo increases
dormancy and self-renewal of HSC (49). This is not mediated
by the conventional ligands of E-Selectin since HSC isolated
from mice deficient for P-selectin glycoprotein ligand-1 (Psgl-1
encoded by Selplg), HCELL (Cd44) or both do not present
increased dormancy. In contrast, LSC of AML make a different
selectin receptor usage that promotes AML cell survival. Indeed,
leukemic cells present alterations in glycosylation which leads to
expression of fucosylated ligands such as PSGL-1 (CD162) that
activate PI3K/Akt survival pathway (109, 110). Even more
interesting is the fact that inhibition of E-selectin interaction
with its ligands using a glycomimetic stimulates proliferation of
AML blast while dampening HSC cycling. Since these finding
have been confirmed in preclinical mouse models, this led to the
opening of phase II/III clinical trials combining inhibition of E-
se lect in with convent ional chemotherapy in AML
(NCT03616470, NCT03701308).

Ig Sf Adhesion Molecules
Most of the Ig Sf molecules expressed by normal HSC are also
expressed by LSCs in AML, however only few of them allows
enrichment of cells with leukemic initiating activity associated to
poor prognosis. We have shown that JAM-C is expressed by a
fraction of LSCs presenting high activation of Src kinase family
and enriched for leukaemia initiating activity. Increased
Frontiers in Immunology | www.frontiersin.org 5132
frequencies of JAM-C expressing cells identify AML patients
with poor disease outcome (111). This has been confirmed in an
independent study on a large cohort of AML patients (112, 113).
The “CD34+ CD38low CD123+ CD41- JAM-C+” cells are
enriched tenfold for LSCs as compared to cells lacking JAM-C
expression within the same compartment suggesting that JAM-C
may play a cell-autonomous signalling function at the transition
between healthy HSC and LSC. This would be consistent with
results showing that PDX or AML cell line engraftment of JAM-
C-expressing cells is only partially dependent on JAM-B
expression by recipient mice and with results showing that
silencing JAM-C expression is sufficient to decrease Src family
kinase activation (111). This could be due to promiscuous cis-
interactions between JAM-C and the integrin a4b1 since JAM-B
has been shown to bind a4b1 when interaction is facilitated by
the simultaneous engagement with JAM-C (67).

NCAM1(CD56) is another Ig Sf molecules whose expression
is correlated with poor overall survival in AML with t(8;21) (q22;
q22) and highly expressed by LSC in mouse AML models using
MLL-AF9 or Hoxa9-Meis1 as driver translocations (114).
NCAM1 expression confers drug resistance to AML cells and
knockdown of NCAM1 sensitizes blasts to genotoxic agents
(115). This is likely due to constitutive activation of the MEK-
ERK pathway, similar to what has been reported during neural
development (116). These two examples pave the way for the use
of Ig Sf molecule expression to stratify patients eligible to
treatments targeting downstream signalling pathways such as
Src or Mek/Erk.
OUTLOOK

Recent studies have shown that HSC niches are altered during AML
development with strong coordinated changes of the osteolineage
and endothelial compartments, and alterations of the mesenchymal
compartment occurring early during leukemic development.
Whether such alterations depend on adhesive interaction of
TABLE 1 | Knock-out mice of Ig Sf molecules presenting haematopoietic defects.

Adhesion
molecule

Year Ligands Altered phenotype Haematopoietic phenotype References

ICAM-1 1994 aLb2 cardiovascular, cellular, digestive/alimentary, growth/size/body, haematopoietic,
homeostasis, immune, mortality/aging, neoplasm, vision/eye

Expansion of Lt-HSC compartment
associated with impaired quiescence
and myeloid expansion

(69, 70)

VCAM-1 1995 a4b1 cardiovascular, embryo, growth/size/body, homeostasis, mortality/aging,
haematopoietic

Increased frequencies of circulating
progenitors

(65, 71)
a4b7

ESAM 2003 ESAM cardiovascular, cellular, growth/size/body, haematopoietic, immune Increased HSCs frequency and
proliferation compared to wild-type
mice

(63, 72)

ALCAM
(CD166)

2004 ALCAM nervous system, vision/eye, haematopoietic Defects in Lt-HSC engraftment
although no differences in absolute
numbers of HSCs were observed

(61, 73, 74)
CD6

JAM-C 2004 JAM-C behaviour, cardiovascular, cellular, craniofacial, digestive/alimentary, endocrine/
exocrine, growth/size/body, haematopoietic, immune, integument, mortality/aging,
nervous system, reproductive, respiratory, skeleton

Increased number of CMPs (75–77)
JAM-B
aMb2

JAM-B 2011 JAM-C haematopoietic, homeostasis, mortality/aging, skeleton Loss of quiescent HSCs and
exacerbated response to mobilizing
agent

(78)
a4b1
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leukemic initiating cells with BM microenvironment resulting in
localization of LSCs in specific sites remain to be defined, but it
seems that LSC take advantage of pre-existing adhesive pathways in
the niche to maintain survival signals and dormancy that protect
them from chemotherapies. Therefore, the selective disruption of
LSC from their niche by targeting single adhesion molecule remains
a major limitation for current therapies. A better knowledge of the
differences between LSC/Niche and HSC/Niche integrated adhesive
networks will help refining specificity of therapeutic strategies
directed against adhesive cues.
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The journey of a hematopoietic stem cell (HSC) involves the passage through successive
anatomical sites where HSCs are in direct contact with their surrounding
microenvironment, also known as niche. These spatial and temporal cellular interactions
throughout development are required for the acquisition of stem cell properties, and for
maintaining the HSC pool through balancing self-renewal, quiescence and lineage
commitment. Understanding the context and consequences of these interactions will
be imperative for our understanding of HSC biology and will lead to the improvement of
in vitro production of HSCs for clinical purposes. The aorta-gonad-mesonephros (AGM)
region is in this light of particular interest since this is the cradle of HSC emergence during
the embryonic development of all vertebrate species. In this review, we will focus on the
developmental origin of HSCs and will discuss the novel technological approaches and
recent progress made to identify the cellular composition of the HSC supportive niche and
the underlying molecular events occurring in the AGM region.

Keywords: hematopoietic stem cells, aorta-gonad-mesonephros, microenvironment, niche, single cell RNA
sequencing, tomography sequencing, embryo, hemogenic endothelium
INTRODUCTION

The origin of the hematopoietic system lies within the early developing embryo (1–5). Successive
waves give rise to hematopoietic stem and progenitor cells (HSPCs) with various lineage potentials
and self-renewal capacities. While initially a pool of short-lived differentiated cells is formed to
sustain the fast-growing embryo, multilineage and self-renewing hematopoietic stem cells (HSCs)
are then produced to support long-term hematopoiesis. HSCs are first detected in the aorta-gonad-
mesonephros (AGM) region prior to colonize mainly the fetal liver (and also the placenta) where
they mature and expand through self-renewal. Shortly before birth, HSCs emigrate from the fetal
liver and home to the bone marrow (BM) where they form the pool of adult HSCs that will
participate to the replenishment of all blood lineages for the remaining life of the organism. For
long, stem cells were considered as independent entities able to self-regulate their own behavior.
Four decades ago, Schofield was the first to postulate that stem cells are not complete autonomous
entities, as they require external signals from the local microenvironment or niche to regulate their
behavior and fate decisions to either remain quiescent, to self-renew or to differentiate in response to
the need of the organism (6). HSCs are in this regard unique as their formation requires sequential
interactions with distinct anatomical sites throughout development and in adults, e.g. the AGM,
org November 2021 | Volume 12 | Article 7903791137
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fetal liver and BM. While HSC niches are well documented in the
adult [reviewed in (7–9)], this is far from being the case
during ontogeny.

How embryonic and fetal niches exactly support and
contribute to the development of HSCs and the hematopoietic
system is of great interest both for our fundamental knowledge
and for the clinic to advance the therapeutic application of
hematopoietic (stem) cells. The increased number of diseases
and disorders treated at least in part by HSC transplantations
and the difficulties to find HSCs with the best donor-patient
compatibility is a major issue. Decades of efforts to develop
culture conditions, either to expand HSCs ex vivo or to generate
new HSCs in vitro, hold great promise but success remains
limited (10–13). The low production of HSC-like cells with
limited multilineage and/or self-renewal properties remains a
major barrier to a successful use of HSCs for transplantation and
gene modification. The reconstitution of a complete
microenvironment or at least some of its key components to
support the generation, maintenance and/or expansion of HSCs
in vitro will be necessary to overcome this barrier. However
important clues on how HSC production is supported by
successive niches in vivo is missing. In this review, we will
focus on the developmental origin of HSPCs and will discuss
the novel technological approaches and recent progress made to
identify the cellular composition, the importance of cell cross-
talk and the underlying molecular events involved between the
HSCs and the supportive microenvironment in the embryonic
aorta, the physiological cradle of the first adult-type HSCs.
HEMATOPOIETIC PRODUCTION OCCURS
IN VARIOUS HIGHLY VASCULARIZED
TISSUES DURING DEVELOPMENT

In mammals, the first hematopoietic cells are formed
independently of HSCs. This first or primitive wave generates
nucleated erythrocytes that emerge with and in close proximity
to endothelial cells (14). They derive from mesodermal
derivatives in blood islands of polyclonal origin, in the extra-
embryonic yolk sac (YS), around mouse embryonic day (E)7.25
(15–17). Beside primitive erythrocytes, a first wave of primitive
megakaryocyte and macrophage progenitors also arise in the YS
blood islands (18–20). A portion of these “primitive”
macrophages will persist throughout adulthood and give rise to
microglia, the tissue-resident macrophages in the adult brain and
central nervous system (21). Multipotent erythro-myeloid
progenitors (EMPs) will then produce erythrocytes,
macrophages, granulocytes and megakaryocytes (and possibly
also few B lymphocytes and NK cells) through a second
hematopoietic wave (also referred to as transient definitive
wave or EMP wave) in the YS vascular plexus, starting at ∼E8 -
E8.25 (18, 22–26). The YS does not provide a competent niche for
the differentiation of EMPs in mature cells, which instead occurs in
the fetal liver (23). Some macrophages reside in tissues, also referred
to as tissue-resident macrophages, of embryos and adults where
they act as immune sentinels involved in tissue homeostasis (27, 28).
Frontiers in Immunology | www.frontiersin.org 2138
The YS and the developing dorsal aorta in the para-aortic
splanchnopleura (which will give rise to the AGM region) also
generate lymphoid progenitors at ∼E8.5 - E9.5, independently of
HSCs, that are responsible for the initial immunity during
development and the persistence of some immune cells (i.e. B-
cells) into adulthood (29–33). The importance of these long thought
short-life “primitive” hematopoietic cells, of which in fact some
subsist and play important roles in late fetuses and adults, reinforces
the need for a better identification of the niche-derived signals
regulating their production. The 3rd or definitive hematopoietic
wave leads to the formation of HSCs that can be detected as early as
E10.5, in the aorta of the AGM region and in the extra-embryonic
vitelline and umbilical arteries (34–36). Slightly later, HSCs are also
found in other highly vascularized tissues such as the YS, and then
the placenta and the fetal liver where they expand before colonizing
their final destination, the BM (37–40). The impact of the
microenvironment on HSC behavior is well illustrated in the fetal
liver. During birth, the fetal liver undergoes dramatic changes in
hemodynamic forces when the umbilical inlets are ligated. These
changes trigger the transformation of arterial endothelial cells lining
the portal vessels into venous endothelial cells, characterized by the
loss of arterial markers (Neuropilin-1 and Ephrin-B2), acquisition
of the venous marker (Eph Receptor B4) and the loss of
Nestin+NG2+ pericytes through apoptosis (41). The latter cells are
critical niche components and are probably the main cause of the
emigration of HSCs from the fetal liver and their homing to the BM.

Hemogenic endothelial (HE) cells are a small subset of
endothelial cells (1–3% in distinct tissues), which have either
an arterial or venous identity (28, 42). HE cells can
transdifferentiate into hematopoietic cells through a so-called
endothelial to hematopoietic transition (EHT), a highly
conserved process across vertebrate species (17, 43–49). HE
cells can give rise to different types of hematopoietic cells,
suggesting that different types of HE cells exist (50, 51). In the
floor of the dorsal aorta, HE cells give rise to both EMPs and the
first adult-type HSCs (17, 43–47, 49, 52). Most HSPCs are
generated from HE cells with arterial characteristics, e.g. in the
AGM, vitelline and umbilical vessels and the vascular labyrinth
of the placenta and YS (53, 54). However, EMPs can also be
produced by venous HE cells in the plexus of the YS (55, 56) and
from HE cells in the heart that have not yet acquired an arterial-
venous specification (57). Macrophages can also directly derive
fromHE cells via EHT in the placenta (58). The mere presence of
HE cells does not guarantee that an EHT event occurs, indicating
that the EHT process is differentially steered by signals from the
niche, depending on their precise anatomical location and
surroundings. For example, HE cells in the aorta that are not
exposed to hemodynamic forces from blood flow do not give rise
to HSCs, while EMP emergence is unaffected (59–63). How
precisely HE cells acquire their hemogenic potential and how this
potential leads to the formation of different hematopoietic cells
through an EHT event remains to date largely elusive.
Nevertheless, there are strong evidences that spatial and
temporal signals from the microenvironment play a major role
in hemogenic specification (to acquire a hemogenic potential),
EHT, IAHC formation and HSPC production. As described in
this review, new single cell technologies will shed new light on
November 2021 | Volume 12 | Article 790379
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these processes to better understand how the establishment of
the hematopoietic system is regulated.

After EHT, hematopoietic cells are organized in intra-aortic
hematopoietic clusters (IAHCs) that remain transiently attached
to the inner side of the vessels in most species (44) (Figure 1).
IAHC-like structures have also been observed in non/less-
hematopoietic sites such as the somites or the cerebrovascular
sinusoids in the head (64). However, the detection of HSCs
(which circulate through the blood circulation) and the presence
of IAHCs in a tissue do not prove that EHT occurs in situ, as
shown in the mouse embryonic head (65, 66). The ultimate proof
that the de novo formation occurs in a tissue was provided for the
aorta by performing confocal imaging on zebrafish embryos
in vivo and on thick mouse embryo slices ex vivo (43, 67–69).
The continued existence of HE cells beyond embryonic stages,
leading to the formation of multipotent progenitors (MPP-3)
and few HSCs in the sinusoids of the BM in fetal/neonate chicken
and mouse was also reported and imaged, which could be
referred to as a 4th hematopoietic wave (70).
SPATIAL AND TEMPORAL EMERGENCE
OF IAHCs AND HSC ACTIVITY

Extensive research has explored the formation of the first HSCs
during development, with a particular focus on IAHCs. IAHC
cells express similar hematopoietic and endothelial markers as
HSCs (67, 71, 72), and both are absent in Runx1 knock-out
embryos (72, 73), suggesting that HSCs are likely part of IAHCs.
Frontiers in Immunology | www.frontiersin.org 3139
However, IAHCs appear earlier than HSCs in the aorta (E9.5
versus E10.5), suggesting that some IAHC cells will become
HSCs through gradual specification and maturation (Figure 1).
Indeed, it was found that IAHCs are mainly composed out of
HSC precursors (pre-HSCs type I and type II) that progressively
mature into functional HSCs (72, 74–76). Accordingly, IAHCs
contain very few HSCs and committed progenitors (that are
mainly present in the blood circulation and transiting from the
YS to the fetal liver). The process of maturation begins in
the aorta but mainly takes place after migration of the cells
into the fetal liver and placenta in mammals or in the caudal
hematopoietic tissue (CHT) in zebrafish embryos (77). Limiting
dilution transplantations and statistical analyses suggest that the
pool of adult HSCs in the fetal liver is formed by the pool of
IAHC cells (76). This finding raises the question what the
contribution of HSCs found in the YS and placenta (39) and
the pre-HSCs found in vitelline and umbilical arteries (54) is. A
transient production of lympho-myeloid-biased progenitors and
lymphoid cells prior to pre-HSC production was also reported in
IAHCs (78–80). Although the connections between these
different cell types remain unclear, it underlines the
heterogeneity and complexity of IAHC composition at
different time points and location during development. Of
note, various differentiation potentials of IAHC cells have been
revealed ex vivo, in presence of supportive stromal cell lines (OP-
9) and/or cytokines, which might not reflect the true fate of these
cells in vivo. The EHT is orchestrated by hematopoietic
transcription factors primarily driven by RUNX1 (46, 81, 82),
although it was reported that Runx1 deficiency does not preclude
FIGURE 1 | Spatial and temporal locations of IAHCs and HSPCs in the aorta of zebrafish, chicken, mouse and human embryos. The endothelial to hematopoietic
transition (EHT) leads to the production of single HSPCs in the aorta of zebrafish embryos, or clusters (intra-aortic hematopoietic clusters or IAHCs). IAHCs emerge
exclusively in the ventral side of the aorta in chicken and human embryos (arrow heads). In contrast, IAHCs also emerge in the dorsal side of the aorta in mouse
embryos (arrows). In chicken, IAHC cells ingress underneath the ventral aortic endothelium to form sub-aortic patches (SAPs). The starting time of IAHCs and
HSPCs/HSCs detected is indicated for each embryo species. D, dorsal; V, ventral.
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the formation of pre-HSCs type I but most likely blocks their
maturation into pre-HSCs type II (83). Ectopic expression of
Runx1 is sufficient to induce EMPs from non-HE cells (i.e. in YS,
aorta, heart), but only between E7.5 to E8.5 of mouse
development (82). Therefore, more complex events, such as the
initiation of the blood circulation and the proper arterial–venous
specialization of endothelial cells in the vascular niche
microenvironment, might contribute to temporal restriction of
EMPs and (pre-)HSCs appearance in IAHCs.

IAHCs originate from single HE cells that undergo 1 or 2
divisions to form a monoclonal core of IAHCs. Neighboring HE
cells are then recruited into IAHCs that become thereby
polyclonal while the cellularity increases (84, 85). Intra-cardiac
injection of Dll4 blocking antibodies results in the enhanced
recruitment of HE cells into IAHCs, suggesting that Dll4-Notch
signaling in HE cells regulates IAHC cellularity (84). Unusually
large IAHCs were also observed in Svep1-/- embryos that did not
originate from ectopic proliferation of IAHC cells (86). Svep1 is
expressed and secreted by mesenchymal cells surrounding the
aorta, highlighting the importance of microenvironmental
factors (Notch independent) in determining IAHC size (86).
Size and composition might also be determined by an increased
proliferation during pre-HSC expansion and a decrease when
cells start to acquire HSC identity (87). While slowly cycling cells
are located at the base of IAHCs, more proliferating cells
preferentially locate at the more apical part of IAHCs (87).
Thus, IAHC size is determined by recruitment of neighboring
HE cells, controlled by a combination of direct signaling between
HE cells and factors derived from the microenvironment, and
proliferation of the different cell types within IAHCs. Such local
regulation within and between IAHCs is an important concept to
further explore since HSC activity is affected by the increased
cellularity in IAHCs, as shown in Svep1-/- embryos (86).

The mechanism of HSC emergence is highly conserved and
regulated both in space and time in between species, with few
species-specific differences most likely due to anatomical constrains
(1) (Figure 1). The EHT is polarized and restricted to the ventral
side of the aorta in chicken, zebrafish and human embryos (4, 43,
88–91). After EHT, cells form IAHCs that remain transiently
attached to the endothelium before detaching and leaving via the
circulation to colonize the fetal liver in human and mouse. In
chicken, the entire floor of the aorta becomes hemogenic, forming
IAHC cells that ingress, at least in part, in the mesenchyme
underneath the ventral endothelium to form sub-aortic patches, a
site considered as the mammalian fetal liver equivalent (89)
(Figure 1). In zebrafish, HSPCs bud off as single cells from the
floor of the dorsal aorta into the sub-aortic space, where they
transiently reside and roughly half of them divide before entering
the circulation via the posterior cardinal vein (43, 68, 91) (Figure 1).
Half of these HSPCs are considered as HSCs, the rest being possibly
committed myeloid progenitors (92). Although “true”HSCs exist in
chicken (89), it remains unknown whether they emerge as pre-
HSCs and whether maturation and/or expansion occurs in the sub-
aortic patches.

HSPCs start to emerge at 26 hours post fertilization (hpf) with
a peak at 40 hpf, in the aorta of zebrafish embryos. IAHCs are
Frontiers in Immunology | www.frontiersin.org 4140
found between E2.25 and E5.5 (with a peak at E3) in the anterior
portion of the chicken aorta, from days 27 to 42 in the middle
portion of the human aorta, and between E9.5 and E14.5 (with a
peak at E10.5) in the middle portion of the mouse aorta (4, 34,
43, 68, 88–90, 93, 94). In contrast to other species, the mouse
embryo has the particularity to produce IAHCs also in the dorsal
part of the aorta (95, 96) (Figure 1). RNA-sequencing (RNA-
seq) comparative analyses performed on whole IAHCs isolated
from the ventral or dorsal part of the aorta revealed a strong
similarity at the molecular level at both E10.5 and E11.5 (97).
However, dorsal IAHCs are less numerous and have a lower HSC
potential (four times less) compared to ventral IAHCs, as shown
by limiting dilution transplantations of the subdissected parts of
the aorta (ventral [AoV] versus dorsal [AoD]) (95, 98). Using a
dissociation-reaggregation culture system that recapitulates HSC
development ex vivo (99), it was shown that the AoD tissue
induces a higher HSC production in the AoV tissue isolated at
E10.5 but not at E11.5. In contrast, the AoV induces the
production of HSCs in AoD at E11.5 but not at E10.5 (98).
Such experiments, although performed ex vivo, reveal that the
ventral and dorsal aortic microenvironment have reciprocal
effects on HSC development, depending of the developmental
time, and most likely on the differential release of factors by the
two regions (i.e. SCF, Shh, BMP) and the capacity of IAHC cells
to respond to specific signals by expressing the right level of
receptors at the right time point (75, 98, 100–102). The lack of
hemogenic potential of the dorsal aortic endothelium of most
other vertebrate species might also be explained by the different
origin of the endothelial cells populating the ventral and the
dorsal part of the aorta. In zebrafish embryos, the dorsal
endothelium does not originate from the splanchnopleura
(lateral plate mesoderm) but from the paraxial mesoderm
(103). In the avian embryo, the dorsal endothelium that
derives from the splanchnopleura is progressively replaced by
paraxial mesoderm-derived endothelial cells (as the ventral
endothelium), which corresponds to the end of aortic
hematopoiesis (104–106).
TISSUE COLLECTIONS AND
TRANSCRIPTOMIC APPROACHES TO
UNRAVEL THE MOLECULAR LANDSCAPE
OF THE AORTIC NICHE

Various interacting signals from unique niche populations
present in the different anatomical sites, as well as
biomechanical forces, form an intricate signaling network that
regulates the formation of HSPCs [for reviews (2, 9, 107–109)].
These signaling events are far from fully understood and many
questions remain such as the exact nature (timing and duration)
of signaling interactions between the niche and HSPCs and how
these interactions contribute to determine different cell fates in
endothelial/HE cells and IAHCs. Single-cell (sc) qPCR analyses
paved the way for the (single-cell) genomic techniques to explore
HSPC development. Although sc-qPCR offers high sensitivity
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and specificity, the quality of the data relies on high cell numbers
and carefully selected and tested primer panels. Such approach
identified important players that specify early blood formation
(110) or revealed that HE cells are molecularly specified toward a
hematopoietic fate two days prior the emergence of the first
HSCs (111). Bulk RNA-seq, scRNA-seq and microarray analyses
have then been performed to analyze the intrinsic regulation (e.g.
by transcription factors) of HSPC formation by sequencing
phenotypically enriched populations for arterial endothelial
cells, HE cells, cells undergoing EHT, pre-HSCs and/or HSCs
sorted from mouse, chicken, human and/or zebrafish embryos
(78, 86, 97, 112–123). Overall, these studies highlighted
important features. Among them are (i) the molecular
heterogeneity of the HE, pre-HSC and HSC populations, (ii)
the gene regulatory networks and trajectories involved during
HSPC formation, (iii) new surface markers for a better
localization and isolation of these rare embryonic cells, (iv) the
identification of specific cell-cell-interactions and (v) important
novel niche secreted factors. Single-cell transcriptomics of whole
mouse and human embryos or organs collected at early time
points of development also provided information on early
mesoderm specification and important regulators of the early
hematopoietic development (124–126). Several signaling
molecules and pathways critical for HSC emergence or
maturation have been identified by using knock-out/knock-
down approaches, large drug screening (in zebrafish) or by
performing mouse tissue explant or dissociation-reaggregation
cultures in presence of either growth factors or stromal cell lines.
Among others are Wnt, Notch, vitamin-A derived retinoic acid
signals, BMP4, cytokines such as the interleukin-3 (IL-3) and
stem cell factor (SCF), the catecholamines produced by the
sympathetic nervous system, pro-inflammatory signals, the
blood shear stress, chemokine such as Cxcl12 (SDF1),
hyaluronan and extracellular matrix compounds (9, 75, 100,
109, 127–129). Overall, these approaches hardly link a regulator
to a specific cell type (e.g. due to the limited purity of the cell
populations tested) or to an anatomical location, particularly for
the soluble factors.

In the avian model, dissection procedures that prevent the
migration of the sub-aortic mesenchyme, also abolish Runx1
expression in HE cells. Subsequently, the formation of IAHCs is
inhibited, proving the supportive role of mesenchymal cells in
hematopoiesis in the aorta (130). Notch expression also tightly
controls aortic hematopoiesis at specific time points of chicken,
zebrafish and mouse development (84, 130, 131). Obtaining a
global picture of all the molecular players expressed by the
surroundings of the aorta during HSC emergence is still not
achieved. In an attempt to identify putative molecules secreted by
the HSC supportive microenvironment, several groups have
compared cell lines derived from embryonic, fetal and
postnatal mouse blood-forming tissues where HSCs emerge,
expand or are maintained in vivo (e.g. from AGM sub-regions
(aorta-mesonephros [AM] and urogenital ridges [UG]), the
embryonic liver [EL] or the BM) (132, 133). Such cell lines
have been tested and characterized for their competency to
maintain/expand mouse and human HSPCs at different levels
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in vitro. Macro-array-based gene expression analyses of HSC-
supportive (UG26-1B6 and EL08-1D2) versus less/non-
supportive (UG15-1B7, AM20-1B4, EL28-1B3, and AM30-3F4)
stromal cell lines revealed an up-regulation of fibroblast growth
factor-7 (FGF-7), cathepsin K, thrombospondin 2 (TSP2),
pleiotrophin (PTN), and IGFBP-3 and -4 in the supportive cell
lines (134). This study demonstrated that ‘niche’ cells are not
necessarily in direct contact nor need to be in contact with HSCs
to fulfil their support capacity since secreted factors from the
microenvironment are sufficient to maintain the HSC stemness
properties (134). Using a similar approach, bulk transcriptome
comparative analyses of AGM (UG26.1B6 [supportive] vs
UG26.3B5 [less-supportive]), fetal liver (AFT024 [supportive]
vs BFC012 [non-supportive]) and BM (BMC9 [supportive] vs
BMC10 [less-supportive]) cell lines established the genetic
signature of the sequential embryonic, fetal and adult HSC
niches (135) (Figure 2A) . Through comprehensive
transcriptomic meta-analyses, 481 mRNAs and 17 micro-
RNAs were found organized in modular networks and
involved in critical signaling pathways. Beside known HSC
regulators, this study also identified unexpected ones such as
Pax9 and Ccdc80 that were functionally validated using
morpholino injections in the zebrafish model. While these
studies used solely in vitro cell lines, they opened the way for a
better identification/characterization of the molecular landscapes
of the sequential supportive HSC microenvironments.

Although very informative, studies performed on stromal cell
lines that are often clonal do not recapitulate the complexity of
the HSC microenvironment. Moreover, critical in vivo
components (i.e. blood flow/shear stress, circulating cells and
growth factors) as well as the spatial three-dimensional
organization of the aortic surrounding tissues are missing. It is
not certain that all the in vivo features need to be reproduced
in vitro, since HSC development can occur ex vivo when AGMs
are cultured after dissociation-reaggregation or as explant for few
days (35, 99). Several labs explored the aortic microenvironment
by dissecting intact hematopoietic organs or by dissecting
defined sub-regions, based on their HSC activity (i.e.
emergence, expansion). In mice, the middle third of the aorta
was identified as the HSC-containing region compared to the
most anterior or posterior third regions that were devoid of
HSCs (93) (Figure 2B). A micro-array transcriptomic analyses
performed on these different regions collected at E9 and E11
(before and during the acquisition of an HSC potential,
respectively) identified p57Kip2 and IgF2 as important
hematopoietic regulators (93). Using a more precise
microsurgery, the dorsal and ventral parts of the aorta and the
urogenital ridges (UGRs) were isolated from E9.5 to E10.5 since
the polarity along the dorsal to ventral axis of the embryo was
demonstrated as a clear demarcation of the supportive HSC
niche (136) (Figure 2C). Bulk RNA-sequencing on these
different tissues allowed to identify critical signaling pathways
and several secreted molecules, including Bmper as a ventrally
polarized new regulator of HSC development in the AGM
region. The use of human embryos at early stages when IAHCs
appear is challenging due to the difficulty to collect intact
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FIGURE 2 | (A–F) Experimental approaches of key studies to identify the HSPC supportive landscape of the embryonic aorta, i.e. the studies of Charbord et
al. (135) (A), Mascarenhas et al. (93) (B), McGarvey et al. (136) (C), Crosse et al. (117) (D), Yvernogeau et al. (86) (E) and Xue et al. (137) (F). The embryo
species and stages, the type of cells/tissues analyzed, and the experimental approach used for each study are indicated. The interactives website resources
provided in each study are also indicated (in blue). AGM, Aorta-Gonad-Mesonephros; FL, Fetal liver; BM, Bone marrow; E, Embryonic day; IAHCs, Intra-
Aortic Hematopoietic Clusters, HSCs, Hematopoietic stem cells; Nc, Notochord; Ao, Aorta; BM, Bone marrow; CS, Carnegie stage; CHT, Caudal
hematopoietic tissue; hpf, hour post-fertilization.
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embryos at the time of IAHC emergence in the aorta [around
Carnegie stage (CS) 13 (post-fertilization age of 30-33 days) (4)]
Different layers of cells surrounding the ventral and dorsal sides
of the aorta of human embryos were captured by laser dissection
and sequenced (LMO-seq) (117) (Figure 2D). In parallel,
scRNA-seq data obtained from sorted human CD34+ IAHC
cells were used to explore the cross-talk (e.g. involving secreted
factors, cell surface receptors) occurring between IAHCs and the
surroundings of the aorta. This approach allowed to highlight the
cardiac epidermal growth factor (EGF) and its major receptor,
endothelin 1 (expressed and secreted by endothelial cells), as a
potent enhancer of HSC generation in human embryos (117).

A major drawback in single cell and bulk sequencing
experiments is the lack of spatial information, which is
essential to understand the interactions between niche and
HSC cells. To perform RNA-seq while keeping spatial
information, tomography-sequencing (tomo-seq) was
developed (138). Embryonic thick slices or complete embryos
are sequentially cryosectioned along the axis of the embryo, e.g.
following a transversal or longitudinal orientation, and RNA
from each slice is collected for sequencing. RNA expression
profiles can then be visualized along the embryo axis. Genes
expressed highly or solely in specific tissues/areas can be used for
anatomical or orientation confirmation, e.g. Shh expression to
locate the notochord, orMpl (chicken), Gata2 (mouse) or Cxcl12
(zebrafish) expression for the aortic region containing IAHCs/
HSPCs (86) (Figure 2E). Genes expressed in tissues or regions of
interest can then be readily filtered out. By using this technique,
thick transversal embryo slices and/or embryo trunks were
collected from the 4 main species used to study developmental
hematopoiesis, i.e. zebrafish, chicken, mouse and human, at two
different developmental time points (beginning and time of
HSPC production) (86). Genes specifically expressed in the
ventral mesenchyme located underneath the aorta, and more
expressed in this region than in the rest of the tissue sample, were
identified. To further enhance the usability of these data,
transcriptomic datasets of sorted mouse (97) and chicken (86)
IAHC cells were generated and compared to the tomo-seq
datasets to identify genes and pathways potentially involved in
the cross-talk between IAHCs and the ventral aortic
microenvironment. Known ligands and corresponding
receptors in the aortic ventral microenvironment and IAHC
cells were identified, validating this experimental approach and
analysis. These were known to be involved in EHT and HSPC
survival, attachment, maturation, and/or expansion (e.g.
integrin, WNT, BMP, FGF, NOTCH, catecholamines), in
inflammation, extracellular matrix organization, cytoskeleton
rearrangement, in various cellular processes (protein
phosphorylation, intracellular protein transduction) and
specific pathways (Pi3K-AKT, MAPK, ERK, RAP1, and RAS).
Molecules with unknown hematopoietic role were also identified
and functionally validated in vitro and in vivo as important and
conserved HSPC regulators in mouse, chicken and zebrafish
embryos. These included (1): the adrenomedullin (ADM), a
hypotensive and vasodilator agent and its receptor RAMP2,
which regulates HSPC emergence in the aorta, and (2) SVEP1
(Sushi, Von Willebrand Factor Type A, EGF and Pentraxin
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Domain Containing 1), a secreted extracellular factor critical
for proper lymphangiogenesis (139), that was shown to also
regulate IAHC cellularity and HSPC production in the
aorta (86).

The cellular and molecular mechanisms underlying HSC and
multipotent progenitor expansion remain poorly understood.
Zebrafish embryos have been used to generate a “3D
transcriptional atlas” to characterize the spatiotemporal
transcriptome during HSPC expansion in the CHT region
(137) (Figure 2F). In this study, multi-dimensional RNA-seq
approaches were used, including bulk and scRNA-seq on HSPCs
isolated at 6 different time points (between 28 hpf and 3 mpf),
and in vivo GEO-seq performed on the CHT region where six
regions were collected on embryo sections by laser capture
microdissection at 55 hpf. These regions included the neural
tube (in the dorsal region), the muscles (left and right regions),
and the caudal artery, caudal vein and caudal vein plexus (in the
middle, intermediate and ventral regions, respectively). Such
approach combined with functional validation allowed to
reconstruct the panoramic transcriptome landscape (temporal
and spatial) of the zebrafish CHT, and highlighted the integrin
signaling protein Smchd1 as critical for HSPC expansion. Single-
cell and spatial transcriptomics recently provided a spatio-
temporal transcriptome map of the mouse fetal liver and
thereby identified transcriptionally heterogeneous HSPC
subsets, as well as HSC ‘pocket-like’ units composed of niche
cells (i.e. hepatoblasts, stromal cells, endothelial cells, and
macrophages), where macrophages and growth factors (MDK,
PTN, and IGFBP5) played an important role in HSPC
expansion (140).
TECHNOLOGICAL ADVANCES TOWARDS
THE MOLECULAR AND CELLULAR
DISSECTION OF THE HSC
MICROENVIRONMENT

The ability to visualize HSCs in their native environment has
been paramount for our current knowledge regarding HSC
dynamics and behavior in vivo (43, 48, 67, 68, 89, 141, 142).
However, immunostainings, in situ hybridizations and the use of
transgenic reporters only allow for the simultaneous
visualization of a handful of genes. Ideally, one would like to
image HSCs embedded in their niche in detail, or even follow
them by time-lapse imaging until they display the desired
behavior, capture the entire transcriptome and map this back
to the imaging data. This combination would permit the precise
identification of the different (sub)types of cells, as well as their
transcriptomic state. Such approach would be especially
powerful to e.g. elucidate the exact composition of small and
large IAHCs, the heterogeneity of various endothelium
(hemogenic and non-hemogenic) and the direct interactions of
HSCs with their successive embryonic, fetal and adult niches.
Although laser micro-dissection allows for the isolation of
relatively small sections of tissue after imaging that can
be processed for transcriptomic analysis (137), current
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technological advances are heading towards a more precise
capture of the transcriptome of a full slide. Visium spatial gene
expression by 10X Genomics permits such capture of the whole
transcriptome from a tissue section. Prior capture, there is an
optional step that allows for the visualization of proteins of
interest by immunofluorescence to gain a deeper understanding
of tissue organization or the localization of cells of interest
(Figure 3A). This first version of Visium has 5.000 uniquely
barcoded spots on 4 separate capture areas on each slide. Each
spot will capture a range of about 1-10 cells, depending on the
tissue thickness and tissue architecture (e.g. cell size). This
capture grid will undoubtedly become smaller in future
versions to reduce the number of cells captured per spot.
While such approach will definitely add to our understanding
of how HSCs are embedded and interacting with their
microenvironment, the financial burden to systematically study
HSCs in their native environment will be extremely high.

Whilst much attention goes out to transcriptomic approaches
(122), recent advances in protein-based techniques should not be
overlooked. Measuring proteins present in or on the cell by
fluorescence-based flow cytometry has proven to be a rapid and
powerful tool for isolating, sub-typing and phenotyping the cells
of the immune system, including HSCs (143, 144). Multiplexing
classic fluorescent and quantum dots labeled antibodies have
stretched the limit of this technique up to 17 parameters (145,
146). Further expansion of fluorescent based cytometry seems
unlikely due to the limitations to resolve the spectral overlap.
Replacing fluorescent proteins or quantum dots with element
isotopes (chelated antibody tags) dramatically reduced the cross-
talk between channels and enabled the simultaneous
measurement of up to 40 parameters, which is referred to as
cytometry by time-of-flight (CyTOF) (147, 148). Distinct
isotopes can be used to label different antibody panels that
include surface markers, transcription factors as well as
signaling molecules (phosphoproteins). By using CyTOF with
about 31 different isotopes, functional and hierarchical maps of
the immune/hematopoietic system have been drawn and show
that hematopoiesis is a continuum rather than a collection of
defined subsets (149–151). CyTOF was also instrumental in
identifying a pro-inflammatory subset of macrophages that is
involved in the development of HSCs (152). In addition,
integrating CyTOF with scRNA-seq could provide additional
discriminatory power for further sub-setting or functional
analysis between distinct subsets of cells like HSCs and
progenitors (153). Besides the precise immunophenotyping of
cells in suspension, recent advances have enabled CyTOF of
tissue sections or cells cultured on a slide. Aerosols of evaporated
cells by laser ablation are transported to the CyTOF mass
cytometry by an inert gas for detection (154). Data for each
cell is then mapped based on the laser ablation coordinates to
reassemble the original tissue architecture (Figure 3B). While
the selection and availability of antibodies used is crucial to the
success of this technique, it provides a new powerful way to study
for example sections of the embryonic aorta to elucidate the
composition of the vascular aortic, fetal liver and BM niches.
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RECAPITULATING THE ENDOGENOUS
HSC NICHE IN 3D-CULTURE SYSTEMS
TO PRODUCE BONA FIDE HSCS AND
OTHER BLOOD FORMING CELLS
Limitless access to different types of blood producing cells
manufactured in vitro is the “holy grail” of regenerative medicine.
This would, among others, combat the current shortage of donor
HSCsbyproviding a readily accessible source to all bloodgroups (red
blood cells) (155, 156)or functionalT-cells that canbe engineered for
anti-cancer therapies (157, 158). The crux of the matter is that these
in vitro produced cells should faithfully mimic their in vivo
counterparts. In vitro production of hematopoietic progenitors and
mature blood cells (e.g. red blood cells, platelets, megakaryocytes, T-
cells) from pluripotent stem cells or somatic cells, through
reprogramming or transgene free protocols, is achievable (159).
Reprogramming by (transient) expression of transcription factors
is also a very promising strategy to generate HSC-like cells in vitro
since a decade (11, 160–166). However, these HSC-like cells are
produced at a very low yield and remain limited in their capacities to
self-renewand/or to replenish all blood lineages,which is an absolute
requirement for therapeutic use. Moreover, the association of the
reprogramming factors with the development of leukemia remains
anunderlying risk. Indirect reprogramming (transgene free) through
co-culturing pluripotent stem or progenitor cells with supportive
cells that mimic the microenvironment in combination with
chemical manipulation has therefore become a more favorable
option. In its simplest form, this would be co-culturing pluripotent
stemcells (e.g. iPSCs,ESCs)or somatic cellswith a supportive cell line
(e.g.OP9-cells) and/or a cocktail of growth factors, hormones and/or
cytokines. Under these conditions, the formation of HE cells and
some hematopoietic progenitors was successfully obtained, while
HSCs are not or very rarely produced (167–173).As discussed above,
the formation of HSCs in vivo requires a chain of events involving a
complex sequence of both cell intrinsic and extrinsic factors that are
difficult to recapitulate in a “simple” in vitro setting. Furthermore,
one of the important open standing questions is whether it is
necessary to first mimic the AGM-like microenvironment, to
ensure HE formation and pre-HSC production in vitro, and
second to mimic the fetal liver microenvironment to support pre-
HSC maturation and HSC expansion. Comparing the
transcriptomes of in vitro-generated HSC-like cells to fetal liver
HSCs is an interesting approach to identify transcription factors and
molecular pathways that could improve the in vitro production of
HSCs (174). However, in vitro-generatedHSCs that faithfullymimic
the functionality of bona fide HSCs might have a different
transcriptional landscape.

Recent advances in the ex utero culture of post-implantation
mouse embryos, enabling the development until the hindlimb
formation stage (E11) (175), or in 3D-culturing systems (176, 177)
might offer a more sophisticated way of producing transplantable
HSCs in vitro, as these systems recapitulate key aspects of
developmental processes or organs. Disaggregation-reaggregation
assays in the 1950’s showed that a suspension of chicken
mesonephric cells could self-organize into the structural pattern of
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the original tissue, now generally referred to as organoids (178, 179).
To date, organoid technology is mainly used to model the
development of organs “in a dish”, including various diseases
affecting these organs. The AGM is a complex region composed of
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a myriad of cells, including endothelial cells, HE cells, mesenchymal
cells and various immune cells and it would be a challenging task to
mimic the precise organization and timing of influx of supportive
immune cells, likemacrophages, within organoids. Hence, reports of
A

B

FIGURE 3 | Schematic illustration of single cell sequencing of tissue slices and high-multiplex protein detection on tissue sections. (A) Schematic representation of 10X
Genomics Visium workflow. Fresh-frozen or paraffin embedded tissue sections are prepared on specialized slides that contain several capture areas or grid. Each grid
position has a known unique barcode, which is used for reconstructing the tissue after sequencing. These tissues can be stained with fluorescent antibodies or with one
of the principle tissue stains, e.g. hematoxylin & eosin, and subsequently imaged by microscopy prior RNA capture. Cells are then permeabilized and the RNA content is
captured for barcoding and library preparation. The library is sequenced by standard procedures and the data can be visualized in relation to the imaged tissues. (B). The
use of multiple fluorescent proteins and quantum dots to simultaneously label different cell components is limited to the ability to resolve spectral overlap between the
different fluorochromes. To increase the number of labels, classic fluorescent proteins have been replaced by specific elements or isotopes such as noble and post-
transition metals, rare-earth elements and halogens, which can be detected by mass cytometry. Antibodies against specific proteins (e.g. receptors or transcription
factors) can be tagged with these isotopes and used for staining of tissue sections and an image of the general morphology can be taken. A UV-laser evaporates the
cells in a typical confocal scanning movement (X,Y) and fumes of the cells are transported by an inert gas into the mass cytometer for measurement. The measured
isotopes and the corresponding X,Y coordinates can then be used to reconstruct an image which can be superimposed on top of the microscope images.
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successful HSC production by organoid technology are scarce,
although there are some 3D iPSC-derived organoid-like culture
systems that produce hematopoietic progenitors (180). The
succeeding step of organoid cultures are techniques to mimic the
first days of embryonic development in a dish. Pluripotent stem cells
or iPSCs in a round bottom plate or in a hanging drop will aggregate
into embryoid bodies (EBs) to form the three embryonic germ layers.
Providing these EBs with a tailored cocktail of growth factors and
cytokines at the right timewill result in the production of endothelial
cells, hematopoietic progenitors, erythrocytes, macrophages,
neutrophils and mast cells (181–186). Until recently, this approach
didnot yield any transplantableHSCs.However, by extending theEB
culture and optimizing the cocktail of cytokines and growth factors,
which includesBMP4,VEGF, IGF1, SCF, FLT3,TPO, IL-1, -3, -6 and
G-CSF, the formation of multilineage HSCs that produced myeloid,
lymphoid and erythrocytes in sequential transplanted recipients was
achieved (187). The success of generating HSCs from EBs might
result from the extension of the EB culture time, allowing germ-layer
specification and lineage commitment, or alternatively from the
maturation of pre-HSCs. Reconstitution of sub-lethally irradiated
recipientsby theseEB-derivedHSCsrequired the injectionof400.000
cells from dissociated EBs per mouse, indicating that the production
of HSCs in EBs is extremely low. One potential explanation for the
low yield might be the restricted number of cells receiving the
required spatial and temporal signals. This might be due to a sub-
optimal organization of the different germ layers in these EBs.
Interestingly, stimulating EBs with a pulse of a WNT/b-catenin
signaling agonist results in the break of symmetry and
subsequently leads to an anteroposterior axial organization with a
bilateral symmetry similar to vertebrate embryos (188, 189). These
so-calledgastruloidsdisplaykey featuresofmammaliandevelopment
after implantation although tissue organization is often limited.
Improvements in culturing conditions, such as embedding in
Matrigel or fusion of a pulsed and non-pulsed EB, enhanced tissue
organization and led to the formation of somite-like and neural
structures (190–192). Single cell transcriptomics of gastruloids of
different “developmental stages” and culturing methods showed
different mesodermal derived populations with expression of
endothelial and early blood markers like Etv2, Kdr, Cdh5, Kit,
Gata2, Runx1, Cd34 and Itga2b (190, 191, 193). This suggests that
gastruloids produce a hemangioblast-like cell type that might
differentiate into endothelial, HE and/or even early HSPCs.
Conformingly, detailed analysis of endothelial and blood markers
in gastruloids revealed the formation of a vascular plexus, the
production of blood progenitors and erythroid-like populations
(193). The presence of blood vessel like structures and expression
ofmarkers likeKit, Itga2b andRunx1 is suggestive for the presence of
HE cells and/or pre-HSCs, although additional functional assays are
needed to confirm whether gastruloids can produce such cell types.
Gastruloids are thus a promising and exciting new tool that does not
need touse animals (respect of the3R rules) andmight proof valuable
in understanding how extrinsic signals derived from the
microenvironment instruct HE cells to undergo EHT and maybe
produce (pre-)HSCs.However, the limited timewhengastruloids can
be cultured (equivalent to amouse embryo around E8.5-E9.5) might
preclude the formation of (pre-)HSCs.
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CONCLUDING REMARKS

An increasing number of studies based on RNA-sequencing and/or
spatial transcriptomics performed in different embryo species
confirmed the complexity of the aortic niche. The development of
new molecular approaches and the increasing power of scRNA-seq
technologies now offers the possibility to go one step further in the
study of HSC regulation by the surrounding microenvironment and
to generate high throughput datasets with limited material. The
main challenge will be to manage and integrate all RNA-seq, spatial
transcriptomic datasets in a comprehensive manner to obtain a
global/real picture of what is happening in the AGM region when
pre-HSCs/HSCs are generated, and to identify the fine tuning of all
the regulators that evolve both in time and space. Most datasets are
freely accessible and several labs have invested in creating interactive
websites, which makes the exploration of these data relatively easy
and allows to interrogate for the expression of any mRNA and miR
of interest in supportive/non-supportive cell lines (135), gene
expression in different sub-dissected regions of the AGM in
mouse (136) and in multiple species for comparison and
conservation (86), as well as in the CHT, the HSPC expansion
niche in zebrafish embryos (137) (Figure 2). The number of
molecules and pathways identified to be involved in hemogenic
specification, EHT, IAHC formation and pre-HSC maturation
within the aorta are continuously increasing. However, the
mechanism by which most of these molecules interact and/or
interfere, directly or indirectly, to regulate HSPC fate remains to
be elucidated.

The evolution and combination of sc-genomic and multiomic
techniques (e.g. Scifi-seq, ASAP-seq, ECCITE-seq, Visium) and
the efforts made to increase cell throughput with lower costs or
the detection of rare cell populations will continue to pave the
way for a better understanding of HSPC production and its fine-
tuned regulation by the supportive niche. The integration of
transcriptomics, proteomics, and epigenetic changes at single-
cell resolution and functional validations in vitro or in vivo will
be essential to understand HSPC development in physiological
condition with the goal to improve cell-replacement therapy, but
also in immune and blood disease conditions, e.g. in the case of
childhood leukemia that originate in utero.
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B-cell non-Hodgkin lymphoma (B-NHL) evolution and treatment are complicated by a high
prevalence of relapses primarily due to the ability of malignant B cells to interact with
tumor-supportive lymph node (LN) and bone marrow (BM) microenvironments. In
particular, progressive alterations of BM stromal cells sustain the survival, proliferation,
and drug resistance of tumor B cells during diffuse large B-cell lymphoma (DLBCL),
follicular lymphoma (FL), and chronic lymphocytic leukemia (CLL). The current review
describes how the crosstalk between BM stromal cells and lymphoma tumor cells triggers
the establishment of the tumor supportive niche. DLBCL, FL, and CLL display distinct
patterns of BM involvement, but in each case tumor-infiltrating stromal cells,
corresponding to cancer-associated fibroblasts, exhibit specific phenotypic and
functional features promoting the recruitment, adhesion, and survival of tumor cells.
Tumor cell-derived extracellular vesicles have been recently proposed as playing a central
role in triggering initial induction of tumor-supportive niches, notably within the BM. Finally,
the disruption of the BM stroma reprogramming emerges as a promising therapeutic
option in B-cell lymphomas. Targeting the crosstalk between BM stromal cells and
malignant B cells, either through the inhibition of stroma-derived B-cell growth factors
or through the mobilization of clonal B cells outside their supportive BM niche, should in
particular be further evaluated as a way to avoid relapses by abrogating resistance niches.

Keywords: B-cell non-Hodgkin lymphomas, cancer-associated fibroblasts, extracellular vesicles, tumor
microenvironment, stroma cell
INTRODUCTION

B-cell non-Hodgkin lymphomas (B-NHL) are a heterogeneous group of hematological
malignancies that emerge from different stages of normal mature B-cell differentiation (1).
Lymphoma evolution and treatment are complicated by a high prevalence of relapses (2)
primarily due to the ability of malignant B cells to interact with protective lymph node (LN) and
bone marrow (BM) microenvironments (3–5). In agreement, several studies have correlated BM
involvement with worsened prognosis and impaired chemotherapeutic response in B-cell
lymphomas (6–8). This review delves into the current knowledge of the BM stromal cell
org December 2021 | Volume 12 | Article 7846911153

https://www.frontiersin.org/articles/10.3389/fimmu.2021.784691/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.784691/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.784691/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:erwan.dumontet@chu-rennes.fr
https://doi.org/10.3389/fimmu.2021.784691
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.784691
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.784691&domain=pdf&date_stamp=2021-12-08


Dumontet et al. Bone Marrow Niche Adaptation in Lymphoma
modifications induced by the protumoral niche establishment in
B-NHL with a specific focus on diffuse large B-cell lymphoma
(DLBCL), follicular lymphoma (FL), and chronic lymphocytic
leukemia (CLL). Interestingly, these three B-NHL subtypes
displayed various BM involvement, with 11%-34% of DLBCL
(9, 10), 70%-80% of FL (11), and virtually all CLL cases showing
BM infiltration at diagnosis (Table 1). Moreover, this review
highlights the newly described role of extracellular vesicles (EVs)
in the seeding of the BM niche. EVs are released during
homeostasis and cell activation, with pleiotropic effects on
signaling between cells. EV cargos are enriched in nucleic
acids, proteins, and lipids. Briefly, the International Society of
Extracellular Vesicles had classified EVs into three main groups:
i) exosomes, the small vesicles with diameters ≤100-150 nm that
are formed inside multivesicular bodies; ii) microvesicles,
medium-size vesicles of plasma membrane origin with
diameters of up to 1000 nm; and iii) apoptotic bodies, the
large vesicles with diameters > 1000 nm that are produced by
apoptotic cells (12). Excellent reviews on the biomolecular and
functional characteristics of EVs as well as on the techniques
used for EV isolation and characterization have recently been
published (13, 14).

DLBCL is the most common aggressive B-NHL and accounts
for approximatively 24% of new NHL cases (15). Gene
expression analysis and study of genomic alterations have
identified distinct genetic subtypes in DLBCL, reflecting
differential pathogenesis, and associated with distinct clinical
behavior (16–19). Interestingly, recent studies have highlighted
the impact of tumor microenvironment (TME) heterogeneity on
tumor B-cell biological features and on DLBCL patient outcome
(20, 21).

FL accounts for about 20% of adult lymphoma and is an
indolent disease characterized by prolonged periods of
remissions preceding relapses and ultimate transformation into
DLBCL in about 30% of cases. The genetic hallmark of FL is the t
(14, 18) translocation occurring during the V(D)J recombination
of immunoglobulin genes in the BM. The resulting deregulation
of BCL2 provides a selective survival advantage to B cells during
the germinal center (GC) reaction, triggering illegitimate
recirculation of t (14, 18)pos post-GC B cells detectable in most
healthy individuals. Iterative (re)entry of these FL precursor cells
inside GC favors accumulation of additional genetic alterations
Frontiers in Immunology | www.frontiersin.org 2154
sometimes converging towards overt FL (22). Importantly, FL is
the paradigm of a neoplasia fully dependent on a complex
microenvironment network that coevolves with tumor B cells
to create a tumor supportive niche in both LN and BM (23, 24).

CLL is the most common hematologic malignancy in adults
in Western countries. CLL is preceded by a stage of monoclonal
B-cell lymphocytosis and is characterized by the accumulation of
mature clonal B cells resistant to apoptosis in the blood, BM, and
lymphoid organs. Patients with CLL have a heterogeneous
clinical course with some never needing treatment, while
others require treatment immediately after diagnosis or during
illness due to a more symptomatic and unfavorable clinical
course. In typical CLL cases, the tumor B cell clone exhibits an
abnormal expression of markers like CD5, CXCR4, and ZAP-70,
that are used to stratify the disease in conjunction with the
mutational status of the BCR reflecting different cell of origin (25,
26). Despite fully disseminated presentation, TME provides
crucial survival signals to malignant CLL cells within the
proliferation centers of LN and BM (27).

In these three mature B-cell neoplasms, specialized tumor
niches support survival, proliferation, and drug resistance of
tumor B cells. These highly heterogeneous niches include
defective tumor immunity, due to altered recruitment and cell
exhaustion of cytotoxic cells, to the amplification of
immunosuppressive cells, or to immune escape mechanisms
developed by tumor B cell themselves, hampering tumor
recognition, immune synapse formation, or anti-tumor cell
activation (23, 24, 27). Conversely, fully functional tumor
permissive cells, including CD4pos T cell, myeloid cell, and
stromal cell subsets, could be found. The relationship between
LN and BM protumoral niches and how the similarities and
differences between these microenvironments could impact
malignant B-cell features remains elusive. In FL, malignant B
cells found in the BM are characterized by a lower cytological
grade, a decreased proliferation, and a reduced CD10 expression
compared with LN FL B cells (28). Moreover, their gene
expression profile reflects their reduced proliferation and active
metabolism (29). Finally, somatic hypermutation analysis and
targeted deep sequencing demonstrate that different FL B-cell
subclones could be detected within LN versus BM, and suggested
that FL originates in the LN and infiltrates BM early in the course
of the disease, allowing further accumulation of BM-specific
TABLE 1 | Key elements involved in the generation of B-cell non-Hodgkin lymphomas bone marrow supportive niches.

DLBCL FL CLL

BM involvement (% of cases) 11-34% 70-80% All
Pattern Mixed: from localized focal infiltrates to

complete disruption
Nodular aggregates admixed with

lymphoid-like TME
Mixed nodular-interstitial, interstitial, and

diffuse
BM stroma factors involved in
B-cell homing

Unknown CXCL12 CXCL12 and VLA-4
CCL19, CXCL13

BM stroma factors involved in
B-cell survival

BAFF Hehghog ligands BAFF, CD44,
IL-6 IL-17A BAFF, TGF-b, VLA-4, Plexin-B1, CXCL12, C1q

CXCL12
Metabolic reprogramming
induced by BM TME

Unknown. BM B cells are metabolically less
active than LN B cells

BM stromal cells release glutathione and
trigger CLL glycolytic shift

Effects of tumor EVs on BM
stromal cells

Unknown. ↗CXCL12, ↗ ANGPT1, ↗ KITLG,
↗IL-7

↗VEGF
Inflammatory pro-tumoral phenotype
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mutations (28, 30, 31). Besides the exact cell composition and
supportive signals provided by BM niches, a major issue remains
to establish how these niches evolve during tumor development,
from the pre-tumoral stage to overt lymphoma, during
remissions and relapses.
LYMPHOMA BM STROMAL
MICROENVIRONMENT

BM constitutes the primary site for the maintenance and
differentiation of hematopoietic stem cells (HSCs) and for B-
cell lymphopoiesis. Different stromal cell niches dynamically
control these processes. Seminal papers have recently proposed
a molecular atlas of the BM stromal cells at the single cell
resolution, including osteoblasts, perivascular cells, endothelial
cells, and mesenchymal stromal cells, providing clues on how
various stromal cell subtypes could interact with HSCs and
differentiating B-cell subsets (32–34). In the context of B-NHL,
dynamic interactions between BM stromal cells and tumor B
cells have been described to play a key role in converting the BM
TME into a tumor supportive niche (34–36). DLBCL, FL, and
CLL display distinct patterns of BM infiltration (Table 1).
DLBCL show a mixed pattern of BM involvement that can
potentially range from localized focal infiltrates to complete
disruption of BM by lymphoma cell proliferation (37). In
contrast, FL infiltration is primarily localized to the
paratrabecular regions as nodular aggregates admixed with
lymphoid-like TME (38). In CLL several BM infiltration
patterns can be found including mixed nodular-interstitial,
interstitial, and diffuse (39). In each cases, stromal cells
exhibiting specific functional phenotype support recruitment,
survival, and proliferation of tumor B cells, mimicking the
cancer-associated fibroblasts (CAFs) described in solid cancers.

BM Stromal Cells Support
B-Cell Recruitment
BM DLBCL-CAFs have been poorly explored in situ. In contrast,
in FL, BM-CAFs, like their LN counterparts, overexpress
CXCL12 involved in the recruitment, adhesion, and activation
of FL B cells (40) (Table 1). Moreover, they ectopically express
CXCL13 and CCL19, the two lymphoid chemokines classically
expressed by LN follicular dendritic cells (FDC) and fibroblastic
reticular cells (FRC) respectively, thus recreating GC-like
structures able to recruit and support CXCR5posCCR7pos FL B
cells (41, 42).

CLL B lymphocytes could be attracted in vitro to BM stromal
cells whose protective effects require close cell proximity (43–45).
This colocalization of CLL tumor cells with their supportive
stromal cell niche relies on the deregulation of several chemokine
pathways (Table 1). The demonstration that the clinical efficacy
of BCR inhibitors in CLL is mediated, at least in part, by the
inhibition of chemokine receptor activity and the corresponding
mobilization of tumor cells out of their protective niches further
highlights the crucial role of stromal cell-derived chemokine in
CLL survival (46). First, high expression of CXCR4 on the
surface of peripheral blood CLL cells triggers their migration
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to BM stromal cells producing CXCL12 (45, 47–49). CXCR4
surface expression is regulated by its ligand, thus explaining the
decrease in CXCR4 expression on tissue tumor B cells, while
recirculating CLL B cells express high levels of CXCR4. In
parallel, blood CLL cells express high amounts of CCR7 (50).
Indeed, the recycling of CXCR4 and CCR7 receptors is
potentiated in CLL cells and contributes to their stronger
expression (51). Recently, it was shown that p66Shc (SHC-
transforming protein 1), which limits the recycling of CXCR4
and CCR7 by inhibiting their de-phosphorylation, is deficient in
CLL (52). Interestingly, CCR7 could also form heterodimers with
CXCR4 thus disrupting the CXCR4/CXCL12 downstream
signaling and reducing B-cell retention within BM (53).
Furthermore, other proteins expressed by CLL cells, such as
ZAP70 or CXCR7 have been shown to regulate the function of
CXCR4 (54, 55). Altogether, the modulation of CXCR4 function
could regulate the homing capacity of CLL cells within BM.
Second, CXCR5, the CXCL13 receptor, is also expressed at high
levels by CLL cells (56, 57). However, conversely to the ectopic
induction of CXCL13-expressing FDC in FL BM, CXCL13 seems
to be only involved in CLL B cell homing into LN and the
increase of CXCL13 level in the plasma of CLL patients is
correlated with LN size but not BM infiltration (58). Finally,
integrin a4b1 (VLA-4) plays a prominent role in the homing of
CLL cells to BM niches. VLA-4 major ligands, fibronectin and
VCAM-1, are constitutively present on BM stromal cells and
endothelial cells and are upregulated by inflammatory signals in
a NF-kB-dependent manner (59). In mouse xenograft models,
CLL cells from VLA-4neg patients showed significantly lower BM
homing rates than those from VLA-4pos patients. In contrast, the
spleen homing rates did not significantly differ. Clinically, the
VLA-4 status directly drives in the extent of human BM
infiltration (60).

BM Stromal Cells Support
B-Cell Survival
In DLBCL, the upregulation of Notch-3 in tumor cells under
close cell-cell contact with BM-derived stromal cells has been
implicated in the development of aggressive lymphoma cells
(61). In turn, such direct interaction between DLBCL cells and
stromal cells mediates an increase in B-cell activating factor
(BAFF) expression by stromal thus resulting in a decrease of
chemotherapy-induced B-cell apoptosis (62, 63) (Table 1). One
of the factors involved in the regulation of DLBCL B-cell
interaction with the BM stromal niche is the level of Jun
expression. Indeed, Jun-regulated genes mediate the interaction
of malignant cells with stromal cells and extracellular matrix
proteins and impact extranodal localization (64). There is also
evidence for tumor permissive effects of BM stromal cells on
DLBCL cells through secretion of IL-6 and IL-17A, which
promote both cell proliferation and drug resistance (8). Finally,
the crosstalk between malignant B cells and stromal cells in
DLBCL could also impact metabolic reprogramming in DLBCL.
DLBCL have been early considered as metabolically
heterogeneous (65, 66). Non-malignant cells from TME
including stromal cells have been proposed to contribute to
DLBCL metabolism by providing metabolic intermediates (67)
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but no data specifically address this issue in BM versus LN niches
even if the use of specific metabolic inhibitors have been recently
explored in some DLBCL subsets (68).

In FL, tumor B cells are strongly dependent on direct
interactions with a microenvironment close to that of normal
GC, including in particular follicular helper T cells (Tfh), myeloid
cells, and lymphoid stromal cell subsets (23, 24, 69). The
protumoral role of infiltrating lymphoid stromal cells has been
demonstrated in particular by the identification of ectopically-
induced FRC- and FDC-like cells within invaded BM (40, 70). To
date the origin and heterogeneity of the stromal cells supporting
FL B cells within LN and BM are not perfectly understood and it is
very likely that several FL CAF subtypes co-exist and organize
different cell niches with specific functions (38). Stromal cells
supporting FL B cell survival have been initially identified as
lymphoid-like stromal cells obtained in vitro by stimulation of BM
mesenchymal precursors by TNF-a (TNF) and Lymphotoxin-
a1b2 (LT) or by direct contact with malignant B cells (3).
Interestingly, BM stromal cells obtained from FL patients
display a specific gene expression profile even after in vitro
amplification, suggesting an imprinting on these cells by the
tumor context (40, 63, 71). VLA-4, which is expressed by FL-
CAFs, is involved in the growth of GC lymphomas and their
resistance to anti-CD20 treatments (72). In vitro, FL stromal cells
decrease tumor B cell apoptosis through a set of partially resolved
mechanisms, including the production of hedgehog ligands (Hh),
BAFF and TGF-b, over- expression of ABC-type multi-drug
transporters, and activation of a c-MYC/HDAC6 loop in tumor
cells (24, 73). Moreover, CXCL12 contributes to FL B cell
activation and synergize with BCR signaling (40). To date, the
metabolism of FL remains broadly unexplored. Gene expression
profile of FL B cells obtained from medullary niche reveals a
decreased expression of the genes involved in of glycolysis, fatty
acid synthesis, and OxPhos pathway compared to LN B cells (29).
However, the role of stromal cells from BM versus LN niches in FL
B-cell metabolic reprogramming remains to be evaluated.

CLL B cells could interact with stromal cells via different
receptor/ligand couples including ICAM-1/LFA-1 (74), VCAM-1/
VLA-4 (75–78), CXCR5/CXCL13 (79), BCMA/BAFF, or TACI/
BAFF (80), or by transpresentation of IL-15 from stromal cells to B
cells (81). Amon those, ICAM-1, VCAM-1 and BAFF have been
shown to be expressed by BM stromal cells. These interactions could
lead to leukemic cell survival via a CD44-dependent mechanism
involving up-regulation of MCL-1 in CLL B cells (82), activation of
NF-kB pathway (80), and result in migration and proliferation of
leukemic cells. In the same way, the interaction between CD100 (on
CLL B-cell surface) and Plexin-B1 (present on BM stromal cells)
extends CLL B cell viability and enhances proliferation (83). The
mutual activation of stromal cells and tumor cells also depends on
the CLL-mediated activation of Notch2 in BM stromal cells, leading
to C1q overexpression the reciprocal activation of the canonical
Wnt pathway in CLL cells (84) Moreover, BM stromal cell derived
CXCL12 exhibits a pro-survival effect on CLL tumor cells (44, 85,
86). BM Stromal cells may also induce protective epigenetic
modifications in CLL B cells including hypomethylation of the
lysine 27 of histone H3 protein subunit (H3K27me3) (87). Finally,
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BM stromal cells have an important role on CLL metabolism. CLL
cells have a net increase of reactive oxygen species (ROS) compared
to their normal counterpart and are highly sensitive to cellular
antioxydants, such as glutathione, to maintain their redox balance.
BM stromal cells trigger glutathione synthesis by CLL cells through
cysteine release, thus protecting tumor cells from drug-induced
apoptosis (88). Moreover, BM stromal cells contribute to the
glycolytic shift in CLL cells, at least in part by the Notch/Myc
axis, triggering an increased glycolysis associated with higher lactic
acid production, glucose uptake, and glucose transportation (89, 90).

BM Stromal Cells Organize the
Tumor Niche
Beyond these functions of direct B-cell support, lymphoma CAFs
are thought to be the organizers of the tumor niche. A role for the
composition of the stromal-cell derived extracellular matrix in
the pathogenesis of DLBCL was recently identified within tumor
LN, raising the question of its direct and indirect impact on
tumor growth, as an example through the modulation of
immune cell infiltration, within invaded BM (21).

FL-CAFs overexpress the chemokine CCL2 within invaded
BM, thus triggering the recruitment of monocytes that are then
converted into pro-angiogenic and anti-inflammatory
macrophages (71). FL tumor-associated macrophages have
been shown to play a key role in the growth of FL B cells
through the transpresentation of IL-15 and the triggering of
BCR-dependent signaling involving DC-SIGN-expressing
macrophages and oligomannose residues introduced in FL
BCR (91, 92). BM and LN FL-CAFs could also promote the
recruitment and survival of pro-tumoral neutrophils through the
release of large amounts of IL-8 (63). Of note, in DLBCL, tumor
cells have been shown to produce themselves IL-8 involved in the
recruitment of APRIL-producing neutrophils (93). Moreover,
BM and LN FL-infiltrating stromal cells also overexpress the
immunosuppressive molecule PGE2 (94) involved in the
recruitment or activation of suppressor cells such as Tregs and
MDSCs (95). Finally, CAFs have been shown in solid tumors to
physically hamper the recruitment of cytotoxic T cells to the
tumor and CD8pos T cells are retained at the periphery of FL
tumor aggregates in both LN and BM, suggesting that FL-CAFs
could contribute to tumor exclusion in lymphomas (96–98).

Overall, it is clear that close interactions of tumor B cells with
stromal cells within the BM, together with modulation of
chemokines and cytokines directly influence the growth of
DLBCL, FL and CLL, providing evidence that the BM niche
plays a critical role in both lymphoma survival and drug
resistance. Regardless of their cell of origin, the mechanisms
underlying the differentiation of lymphoma CAFs are of the
utmost importance given their potential as therapeutic targets.
EMERGENCE OF THE BM LYMPHOMA
STROMAL MICROENVIRONMENT

FL tumor B cells could directly contribute to the commitment of
BMstromalprecursors into anFRC-likephenotypeoverexpressing
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CCL2 and IL-8 through TNF-dependent mechanisms (3, 63, 71).
Moreover, even if they produce less LT than normal centrocytes,
the large number ofGC-like B cells ectopically found in invaded FL
BM probably contributes to a local overproduction of LT that
synergizes with TNF for the induction of lymphoid stroma
commitment. However, surrounding non-malignant cells could
also participate in the polarization of FL-CAFs. Neutrophils,
recruited by IL-8-producing BM FL stromal cells, could in turn
contribute to their differentiation into FRC-like cells through
activation of the NFkB pathway (63). In addition, LN FL-Tfh
overexpress IL-4 which induces a TransglutaminasehiPodoplaninlow

CD106hiCXCL12hi phenotype on human stromal cell precursors.
FL-Tfh also produce high amounts of TNF and LT, which sensitize
stromal cell precursors to the effect of IL-4, notably through increased
expressionof the STAT6 signalingmolecule (40). Even iffullymature
Tfh have not been detected within FL BM, IL-4 and CXCL12 have
been shown to be correlated in invaded FL BM (40). Finally, some of
the recurrent genetic alterations inFL regulate the re-educationof the
tumor niche by tumor B cells. In particular, the gain-of-function
mutations of the histone methyltransferase EZH2, which occurred
early in 20% to 30% of FL, are proposed to uncouple GCB cells from
the critical Tfh checkpoint whereas switching them to FDC
dependency (99). EZH2-mutated GC B cells downregulate many
genes linked to Tfh signaling, fail to engage Tfh, thus limiting
recycling toward the dark zone of GC, and survive in the light zone
as proliferating centrocytes overexpressing LT, TNF, and BAFFR, all
involved in GC B-cell/FDC crosstalk. HVEM loss-of-function
mutations detected in about 40% of patients with FL have been
associated, in a murine model of FL and in FL patients, with an
amplification of Tfh producing large amounts of IL4, TNF, and LT,
and able to activate FL-CAFwithin LN (100).No study had currently
evaluated how these genetic events could impact FL TME co-
evolution within BM. Even if such data are essentially lacking in
the context of DLBCL, some recurrent genetic alterations have been
recently associated with a specific TME pattern, with some of them
related to overexpression of genes associated with GC-like stroma or
extracellular matrix/FRC/CAF genes (21).

Finally, LT produced by CLL cells is involved in the polarization
and/or in situ generation of the tumor stromal network and the
secretion of CXCL13, IL-6, and IL-8 (74, 79).Moreover, the leukemic
clone produces retinoic acid in the stromal microenvironment which
contributes, at least in part, to the CXCL13 induction (101).

In addition to the factors described above, tumor derived EVs
seem to be involved in the communication between tumor cells
and their TME, in particular CAFs. Such mechanism could play a
central role in triggering initial induction of tumor-supportive
niche within distant sites, including BM.
ROLES OF EVS IN THE INDUCTION OF
BM LYMPHOMA STROMAL NICHE

To date no study has explored the putative involvement of EVs in
the induction of a BM lymphoma stromal niche in the context of
DLBCL. Moreover, only few studies have investigated the
involvement of EVs in the pathophysiology of FL (Figure 1).
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Recently, FL-derived EVs were shown to modulate the gene
expression profile of BM stromal cells, triggering an upregulation
of HSC niche factors including CXCL12, angiopoetin-1, KITLG, or
IL-7, and increasing the capacity of stromal cells to interact
specifically with BM FL B cells and support their survival and
their quiescent phenotype (29). Interestingly, the phenotype of EV-
treated stromal cells is quite different from that obtained under
treatment by TNF/LT or coculture with FL B cells supporting a role
of EVs in the activation of BM stromal cells before BM seeding by
malignant B cells. In fact, the level of CXCL12 is increased in non-
involved BM plasma suggesting that FL EVs could shape the BM
stromal niche before BM infiltration by tumor cells or at distance
from this BM infiltration (unpublished data). In the same way, the
analysis of the gene expression profile of BM stromal cells
highlights a continuum ranging from healthy donor BM stromal
cells, to stromal cells obtained from FL patients without BM
involvement, and finally from FL-invaded BM (29). Altogether
these data suggest that EVs could contribute to CXCL12
upregulation in the absence of direct contact with malignant B
cells and could then synergize with IL-4 produced by infiltrating T
cells admixed with FL B cells to further enhance local CXCL12
production. Interestingly, BM stromal cells activation by FL-
derived EVs was shown to rely on TGF-b dependent pathways
something that is reminiscent of the role of TGF-b in the B-cell/
stromal cell crosstalk within FL LN (42). How TGF-b and STAT6
pathways could synergize for the acquisition of FL CAF phenotype
within FL BM remains to be explored.

Bidirectional crosstalk has also been reported between CLL B-
cells and their surrounding stroma via EVs (Figure 1). CLL B
cells release large amounts of exosomes that show strong
expression of CD37, CD9, and CD63. Ibrutinib, a Btk inhibitor,
significantly reduces the amount of plasma exosomes in CLL
patients. Likewise, in vitro treatment of CLL cells with Idelalisib (a
PI3K inhibitor) decreases exosome secretion, something that is
not observed during treatment with fludarabine (102). This result
highlights the role of the BCR-PI3K pathway in controlling
exosome secretion in CLL. Besides BCR itself, CLL supportive
TME produces BAFF, APRIL, CD31, and plexin B1 that all
protect CLL cells from spontaneous apoptosis by synergizing
with BCR signaling (44, 103) and could influence EV secretion.
The comparison of the mRNA content of EVs produced by B cells
from healthy donors versus patients with CLL, and stimulated or
not through the TLR9 pathway, shows enrichment for the kinases
of the BCR pathway, LYN, SYK, MAPK1, MAPK2, and the anti-
apoptotic proteins BCL2 and BCL3 in CLL-derived EVs. These
EVs released by tumor B cells transfer their mRNA content to
non-malignant cells in the TME (104). Microvesicles derived
from malignant CLL cells and detected in peripheral blood also
deliver the receptor tyrosine kinase Axl into BM stromal cells
leading to the activation of a AKT/mTOR/p70S6K/HIF-1a axis
resulting in an increase in VEGF synthesis (105). This increase in
VEGF is associated with an increased neovascularization in
medullary (106) and extramedullary tissues, as well as a
paracrine pro-survival stimulation of tumor B cells (107). The
miRNA content of CLL B cell-derived exosomes is strongly
enriched in miR-21, miR-155, miR-146a, miR-148a, and let-7g
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(108). BM stromal cells treated in vitro with these CLL exosomes
acquire an inflammatory pro-tumoral phenotype, while
endothelial cells increase their capacity for angiogenesis (108).
These effects are consistent with what is known about the effect of
miR-21 and miR-146a in the transition from normal fibroblast to
CAFs (109–112). Indeed, CLL miR-146apos exosomes induce the
transition of BM stromal precursors into CAFs showing over-
expression of a-SMA and FAP (113). In addition, CLL exosomes
show specific enrichment in miR-202-3p, able to decrease
expression of Sufu (a component of the hedgehog pathway) in
stromal cells and to trigger stromal cell proliferation (114).
Finally, EVs isolated from cultures of CLL BM stromal cells
induce a significant decrease in spontaneous apoptosis of tumor B
cells and an increase in their chemoresistance to several drugs,
Frontiers in Immunology | www.frontiersin.org 6158
including fludarabine, ibrutinib, idelalisib, and venetoclax. In
addition, these EVs induce changes in the gene expression
profile of CLL cells mimicking the transcriptomic signatures
obtained after BCR stimulation (115).
DISRUPTING THE EV “REMOTE
COMMUNICATION” TO IMPROVE
LYMPHOMA PROGNOSIS

Analyzing the deregulation of extracellular proteins or miRNAs in
the blood and tumor niches of patients during B cell tumorigenesis
is a reliable tool for the identification of new tumor-targeted
therapies. For example, the detailed mode of action of the CD30
FIGURE 1 | Role of EVs in the lymphoma microenvironment structuration. A bidirectional crosstalk has been reported between CLL and FL tumor B-cells and
stromal cells via EVs that can give rise to a highly organized pro-tumor niche. ANGPT, Angiopoietin; BCR, B Cell Receptor; BM, Bone Marrow; CAF, Cancer
Associated Fibroblast; EVs, Extracellular Vesicles; TGF, Transforming Growth Factor-b; VEGF, Vascular Endothelial Growth Factor.
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antibody-drug conjugate Brentuximab vedotin in DLBCL is not
well understood since the clinical outcome seems to be partially
independent of the CD30 expression on the tumor cells. However,
as CD30pos bystander cells are enriched in the tumor tissue inmany
cases of DLBCL, CD30might be released within TME-derived EVs.
Thus a model was proposed in which even in the absence of CD30
on the tumor cells, EVs can transport the targeting protein from
cells of the TME to tumor cells (116). This model would explain the
clinical efficacy of Brentuximab vedotin also in cases of lack of the
targeting antigen on tumor cells. In the same way, DLBCL EVs
carrying miR-125b-5p can reduce tumor sensitivity to rituximab by
inhibiting TNFAIP3 expression and reducing CD20 expression
(117). Whether the miR-125b-5p/TNFAIP3 axis can be used as a
therapeutic approach for increasing DLBCL sensitivity to anti-
CD20 antibodies requires further investigations.

EVs released by B cell could carry CD39 and CD73, two
surface molecules known to hydrolyze ATP released by dying
cancer cells into adenosine that hijacks CD8 T cell immune
activity by binding the A2A adenosine receptors (118). One
could speculate that B-cell-derived EVs may have a similar effect.
The decrease of B-cell-derived EVs bearing CD73 and CD39 can
be achieved by deregulating the docking protein RAB27A (118).
This could be performed using an inactivated Epstein–Barr virus
carrying siRNA, but it is also possible to generate EVs derived
from cell lines producing RAB27A siRNA and to specifically
deliver it to tumor cells.

Ultimately, thanks to their molecular structure mimicking the
plasma membrane of the cells and their capability to reverse their
cargo into target cells, exosomes could be shaped and filled of
drug molecules, acting as drug-delivery systems. In fact, cancer
vaccine clinical trials relying on the administration of exosomes
produced by dendritic cells (Dexosomes), exploited to shuttle
antigenic determinants of immune response, were conducted to
immunize patients in the context of solid tumors (119–121). In
the same way, systemic administrations of TNF-Related
Apoptosis-Inducing Ligand (TRAIL)-armed exosomes have
shown a great anti-tumor effectiveness against FL/DLBCL cell
lines both in vitro and in a mouse model (122).
CONCLUSION

Despite very interesting recent data highlighting BM as a survival
niche for lymphoma B cells, numerous controversies remain open
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on the role of the BM versus LN niches during the early step of
lymphomagenesis or at the stage of post-treatment minimal
residual disease that could generate relapse. In FL, both pre-
tumoral B cells and early committed precursor cells, that will
give rise to overt FL, have been shown to be enriched in BM (22).
However, transformation events required iterative passages
throughout the GC making it difficult to define precisely
whether BM is a primary or a secondary tumor niche. The
influence of tumor genetics or patient features on the capacity of
tumor B cells to home and develop into BM remains completely
unexplored. A major limitation for all BM-dedicated studies is the
limited availability of good quality samples to perform phenotypic,
transcriptomic, and functional studies and the lack of iterative
sampling allowing evaluation of the impact of disease evolution or
therapeutic strategies. BM aspirates are scarce and do probably not
include the whole diversity of tumor/TME components, in
particular stromal cells. Moreover, fixed BM biopsies are very
difficult to exploit for spatial transcriptomics and even multiplex
immunohistofluorescence approaches. Such technical issue
hampers a precise evaluation of spatial heterogeneity in B-cell
lymphomas integrating BM as a key tumor site.

Altogether, many evidence support the clinical interest of
targeting the crosstalk between BM stromal cells and malignant
B cells, through the inhibition of stroma-derived B-cell growth
factors, the mobilization of clonal B cells outside their supportive
BM niche, or the reprogramming of tumor-supportive stromal
cells. Identifying the best therapeutic options, and how to
combine them with tumor-targeting drugs or immunotherapy
approaches will be the major challenge in the field.
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Ageing, and Diseases
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The bones and joints in the skeletal system are composed of diverse cell types, including
vascular niches, bone cells, connective tissue cells and mineral deposits and regulate
whole-body homeostasis. The capacity of maintaining strength and generation of blood
lineages lies within the skeletal system. Bone harbours blood and immune cells and their
progenitors, and vascular cells provide several immune cell type niches. Blood vessels in
bone are phenotypically and functionally diverse, with distinct capillary subtypes exhibiting
striking changes with age. The bone vasculature has a special impact on osteogenesis
and haematopoiesis, and dysregulation of the vasculature is associated with diverse
blood and bone diseases. Ageing is associated with perturbed haematopoiesis, loss of
osteogenesis, increased adipogenesis and diminished immune response and immune cell
production. Endothelial and perivascular cells impact immune cell production and play a
crucial role during inflammation. Here, we discuss normal and maladapted vascular niches
in bone during development, homeostasis, ageing and bone diseases such as rheumatoid
arthritis and osteoarthritis. Further, we discuss the role of vascular niches during
bone malignancy.

Keywords: bone, joint, ageing, endothelial cell, vascular niche
INTRODUCTION

The development of the skeletal system can progress via intramembranous ossification or
endochondral ossification. During intramembranous ossification, MSCs (Mesenchymal Stem
Cells) directly differentiate into osteoblasts to support bone growth. Endochondral ossification is,
however, used to generate most of the bones in the skeletal system and occurs via the formation of a
cartilage scaffold which is later replaced with bone through invasion of osteoclasts and
osteoprogenitors (1). Invasion of osteoclasts and osteoprogenitors is mediated through the
ingrowth of new blood vessels by the release of proangiogenic factors such as VEGF-A (Vascular
Endothelial Growth Factor A). During the later stage of endochondral ossification, an extension of
blood vessels towards the epiphysis facilitates the replacement of cartilage with trabecular bone and
the formation of long bones (2).

Bone participates in many physiological mechanisms due to its high degree of plasticity, which is
essential for maintenance of structure, protection and locomotion (3). Bone tissue consists of
osteoblasts, bone lining cells and osteoclasts in addition to mineral deposits. Subsequently, it has a
org December 2021 | Volume 12 | Article 7982111164
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cavity filled with blood vessels and soft BM (Bone Marrow) (4).
This part of the BM contains premature HSCs (Hematopoietic
Stem Cells) and non-HSCs. Later these premature HSCs become
mature, differentiate and get released into the vascular system.
These cells interconnected with the vessel network in the BM and
laid the foundation of ‘niche’, a dynamic environment for stem
cells renewal and home to differentiated cells (5, 6).

Although bone cavity nurture HSCs, MSCs also takes part in
cellular development and differentiation here. MSCs differentiate
into adipocytes, pericytes and neuronal cells. These differentiations
are termed as stromal network formation by a class of biologists (7,
8). Recent studies expand the knowledge of the heterogeneity of
mesenchymal stem and progenitor components and their specific
functions. These approaches allow us to understand their role in
hematopoiesis and disease progression (9, 10). The BM contains
multiple stem cell lineages, which participates in bone homeostasis
and osteogenesis. These cells create a specialized local
microenvironment, rich with growth factors and hormones. Due
to the enriched microenvironment, the BM serves as a niche
for metastatic cells, which disseminate from other organs to bone.
The BM is considered a vibrant ecosystem that regulates tumour
cells invasive, angiogenic and metastatic behaviour (11, 12).
Incessant crosstalk between cells and vessels in the BM creates
opportunities for the tumour cells to stabilize and interact with
neural, mesenchymal and endothelial cells in the tissue
microenvironment (13, 14).

Despite the aggressive approaches in detection and therapeutic
interventions, tumour cell dissemination remains the foremost
problem for cancer patients, particularly in bone metastasis.
Metastatic dissemination is a well-controlled multistep process,
which includes the crosstalk of tumour cells with the local
microenvironment, especially within the vasculature. Human
bone vasculature plays a key role in tumour progression and
helps establish the secondary site for tumour development. The
BM endothelial cells participate in homeostasis and help in
maintaining bone integrity (15, 16). Different stress conditions
modulate the bone vasculature and create a halt in blood flow in
aged bones which affects bone density and BM homeostasis.
Endothelial dysfunction also contributes to disease progression,
especially in cardiovascular mortality.
DIVERSE VASCULAR NICHES AND
PERIVASCULAR COMPONENTS OF THE
BONE MARROW

The BM tissue microenvironment encompasses functional,
cellular and non-cellular components including adipocytes,
immune cells, pericytes and stroma (8, 17). The BM tissue is
considered the most dynamic organ of the body due to its ability
to create virtually all blood cell lineage throughout the entire life
span of adult individuals (18, 19). The BM is an essential portion
of the bone cavity to regulate bone homeostasis and facilitate the
stem cell niche formation for self-renewal and differentiation of
stem cells. Extensive studies have been piloted to probe the role
Frontiers in Immunology | www.frontiersin.org 2165
of tissue microenvironment in homeostasis and disease
progression, and interestingly, a major segment of the research
ramble around the non-stromal cells. However, research
signifying the role of stromal components in the fate of disease
remains poorly explored. The term stromal cells is a vaguely-
defined and consist of a network of neural, mesenchymal and
endothelial cells with roles in homeostasis, tissue repair and
diseases in every organ (20, 21). Immuno-oncologists largely
term pericytes, diverse mesenchymal cells and endothelial cells as
stromal cells, however, the term is loosely defined and used
variably with and without the inclusion of vascular cells.

The BM stem cell niche is a very distinct site that is comprised
of supporting cells and makes a promising microenvironment for
cellular interactions and signalling (22, 23). The BM tissue is
enriched with different cell lineages including hematopoietic and
non-hematopoietic cells. All the non-stromal cells have
their determined contribution in tissue development along
with mesenchymal stem and progenitor cells. Interestingly,
mesenchymal stem cells are being used interchangeably with
mesenchymal stromal cells but a report of ISCT elaborates the
differences between these two cell populations. Mesenchymal
stem cells pose the ability of self-renewal and differentiation and
mesenchymal stromal populations contain homing and
immunomodulatory properties (24). To differentiate further,
the mesenchymal stromal cells should show plastic adherence
and express CD105, CD73 and CD90 markers and must not
express endothelial and haematopoietic markers (25, 26).

The BM mesenchymal cells are precisely used in tissue
engineering, tissue development and regeneration studies.
Recently it has been observed that MSCs can be differentiated
into ECs and VSMCs under mechanical stimulation (27). In
another study, the combined effect of small molecule inhibitors
of kinases and mechanical stimulation induces vascular cell-like
phenotypic alterations in MSCs. Such inductions increase the
expression of pericytes and endothelial markers in-vitro and also
the regenerative abilities of MSCs (28, 29). On the other hand,
the mesenchymal stromal network of the BM surrounds HSCs
for regulatory crosstalk, which has essential relevant implications
in stem cell biology and appeared as a principal regulator in bone
metabolism (14, 30).

Nevertheless, the mesenchymal network is not limited to
regulating the HSCs but encompasses the entire BM
hematopoietic development and comprises lineage-specific
differentiation, cellular trading, disease regulation and tissue
structural maintenance (30, 31). As we posit that the vasculature
is a completely different entity from the mesenchymal stromal
components, a detailed investigation needs to be done to
characterize each cell lineage. Recent technical progress expands
the understanding of phenotypic characterization, anatomy,
composition and unique functions of mesenchymal stromal
components (32). These advancements allow us to understand
theheterogeneityof theBMmesenchymal stromal components and
how these multiple cell lineages orchestrate hematopoiesis and
participate in malignancy (21). Interestingly mesenchymal stromal
cells express similar cell surface markers as on activated ECs and
mesenchymal stemcells (CD105+CD45-).However,mesenchymal
December 2021 | Volume 12 | Article 798211
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stromal cells only possess limited pluripotent potential with
differentiation directed towards osteogenic, adipogenic and
chondrogenic lineages, whereas mesenchymal stem cells also can
regenerate ECs (24–26, 33). Bone marrow derived mesenchymal
stemcells (CD105+,CD73+,CD90+,CD166+andCD45-)cultured
in VEGF richmedium show increased levels of endothelial-specific
markers such as KDR and FLT-1 (34). Subsequently, Meng et al.
shows the differentiation of mesenchymal stem cells into
endothelial cells in-vivo (35). Nevertheless, mesenchymal cell are
of increasing interest in regenerativemedicineapproaches torestore
worn-out or damaged tissue.
DIVERSE VASCULAR NICHES IN BONE
DEVELOPMENT AND HOMEOSTASIS

Humanskeletonorganization is ahighlydynamic systemwitha role
in architectural support, homeostasis and blood cells formulation
(36). Bone formation is a continuous process. The bone formation
process in the course of early embryogenesis begins in two different
modes, namely intramembranous and endochondral ossification,
as discussed above (37). Pre-existing mesenchymal tissue
transforms into bone tissue in both processes. Intramembranous
ossification is the result of direct condensation of mesenchymal
tissue in the bones. Skull, maxilla, clavicle andmostly the flat bones
are the products of this process (38–40). In the mode of
endochondral ossification, mesenchymal cells differentiate into
intermediate cartilage, which is later replaced by bone. This
process occurs in the femur and tibia, long bones of the system.
Chondrocytes develop through mesenchymal aggregation during
endochondral ossifications and help in the activation of osteoblast
differentiation. Surrounding cells of chondrocytes formulate
perichondrium, which has a quiescent state of cells and
undergoes hypertrophy (41).

Recent developments in endothelial biology suggests that
infiltration of vessels initiates bone formation during
embryogenesis. During this process, endothelial cells vascularize
the bone tissue and create a vascular bed throughout the length of
the bones. The vascular bed is composedof countless capillaries, the
central draining vein and arteries (42). Vascular infiltration into
hypertrophic columnar cartilage is responsible for the generation of
the primary ossification centre, which is eventually converted to a
secondary centre during embryogenesis (36). The process of
embryonic development includes vessel invasion to acquire
nutrients and oxygen (Figure 1A). The vessel infiltration process
during osteogenesis is somewhat similar to angiogenesis and
directed by specialized structures in the vessels. These vessels are
type-H and type-L; the distinction between these vessels ismade up
of comparative expression of endothelial markers, i.e., Endomucin
(non-arterial vessel marker) and PECAM-1 or CD-31 (a canonical
marker for endothelial cells). Type-H shows high expression, and
type-L shows a lowexpressionof thesemarkers (43, 44).Ahigh level
of Endomucin and PECAM-1 is determined by Notch signalling,
also responsible for higher expression of Kinase Insert Domain
Receptor (a VEGF receptor). Blood vessel infiltration enables the
Frontiers in Immunology | www.frontiersin.org 3166
enlistment of chondro-resorptive cells to disintegrate the existing
cartilage and initiate osteoblastogenesis (45).

Ossification is a well-coordinated and regulated process, an
essential part of homeostasis in the skeletal system. In general,
bones contains three major compartments, i.e. epiphysis,
diaphysis and metaphysis (46). Epiphysis contains the rounded
portion of the growing end of the bones; diaphysis is the
midsection of the bone, and metaphysis is the connection
between epiphysis and diaphysis of the bones and is
responsible for bone growth. Metaphysis contains an epiphysis
growth plate and is compartmentalized in several zones based on
the developmental process. Quiescent chondrocytes found in
reserve zones divide rapidly in the proliferation zone and move
to the epiphysis and begin to formulate hypertrophy in the
hypertrophic zone. Few chondrocytes start calcification in the
other zone, and the rest of the cells mature into the osteoblast
and become a part of the development of the skeleton.

Embryonic osteogenesis is the outcome of the ossification
process. Recent studies suggests the role of transcriptional
regulation in the development of osteoblast. SOX9 is the major
factor in endochondral ossification by controlling the
development of the skeleton. SOX9 activates chondrogenic
genes to initiate cartilage differentiation. Chondrogenic gene,
i.e. Col2a1 participates in craniofacial development and mutation
in this gene can cause spondyloepimetaphyseal dysplasia. Loss of
Sox9 can hinder cartilage differentiation and lead to cell death
ultimately (47–49). RUNX2 participates in skeletal development
by regulating the genes in osteoblast differentiation i.e., Spp1 and
Ibsp. The latest outcomes suggests that deletion of RUNX2 may
lead to inhibition of osteoblast differentiation and loss of the
above genes. Few studies reported that RUNX2 participates in
immature osteoblast and hinder the maturation of osteoblast
(50). OSX (Osterix) is another transcription factor that
participates in the maturation of osteoblast and the generation
of osteocytes. OSX regulates Spp1 and Sparc, and inhibition of
OXS resulted in irregular bone formation and accretion of
abnormal cartilage (51).

Skeletal homeostasis is referred to as the dynamic balance of
damage and repair of bone tissue. Bone formation and bone
resorption are the two major processes of homeostasis facilitated by
osteoblastandosteoclast, respectively (52).Thesecellsaremetabolically
very active, and any irregularities may prime to numerous congenital
disorders, deformities and bone sickness. In general, osteoblasts
generate mineralized osteons, which are concealed in calcium
deposition and later differentiate in osteocytes. After reaching a
certain limit, osteocytes activate osteoclastic differentiation via
RANKL, and when osteoclastogenesis leads to bone deformation,
they secrete IGF to activate osteogenesis (53). Bone homeostasis is
regulated by intrinsic and extrinsic factors such as mechanical stress,
obesity, and senescence. A dynamic balance between osteoblast and
osteoclast makes bone healthy and stronger. Recent studies show that
sirtuin1 (SIRT1) participates in the differentiation of stem cells in the
BMand bone-forming cells and regulate bone homeostasis. SIRT1 is a
deacetylaseandformulateepigeneticchanges inhistoneornon-histone
proteins (54). In bone, it is associated with bone mineralization. In
mesenchymal stemcells, SIRT1deacetylasesb-cateninandprompts its
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nuclear localization,where it regulates osteogenicdifferentiation. It also
regulates the differentiation of adipogenic tissue by inhibition of
PPAgR2 (55). ATF4, a leucine zipper transcription factor activates
BGLAP2 in osteoblast and participates in terminal differentiation.
Knockout studies show that it hinders bone homeostasis and
osteoblast differentiation (56). AP-1, another transcriptional factor,
which makes a complex with FOS, JUN and ATF, may act on
osteoblastic enhancer gene and promotes osteoblastogenesis and
regulate homeostasis (57, 58).

As discussed above, the vascular network is important for the
development of the skeletal system; it plays a requisite role in
homeostasis. Bone vasculature represents the prototypical
hierarchical network of vessels and arteries, participates in
paracrine signalling, blood perfusion, draining veins and
interconnecting capillaries (59, 60). Here we have shown the
specific role of vessel elongation required for the growth of cells
during regeneration (Figure 1B). Long bone contains infiltrated
Frontiers in Immunology | www.frontiersin.org 4167
vessels which are the source of blood, and some arteries invade
the diaphysis and reach towards metaphysis near the growth
plate. Type-H vessels are present in metaphysis and endosteum
and are the major factor in regulating bone homeostasis. Type-H
vessels are involved in the cross-talk between multiple cells in the
bone and couple osteogenesis and angiogenesis (44). Hypoxia-
inducible factors, especially HIF-1a, regulates type-H vessels.
HIF-1a stimulates type-H vessel expansion, increases the
number of osteoprogenitors and increase bone mass. Type-H
vessels are also regulated by the Notch pathway. Any functional
disruption in Notch signalling reduces the abundance of
endothelial cells and type-H vessels in postnatal angiogenesis
(61, 62).

Bone mineralization is a major factor in bone homeostasis.
SOD3 (superoxide dismutase-3) regulates oxidative stress levels
in cells by the formation of hydrogen peroxide from superoxide.
The bone remodelling process involved resorption of the
A

B

FIGURE 1 | Blood vessels mediate tissue development and regeneration: (A) Blood vessels play crucial roles during organogenesis. (B) Blood vessels play a critical
role in tissue repair and regeneration.
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mineralized matrix through osteoclast and replaced through
osteoblast by making new bones. Recent reports explored that
SOD3-/- mice show reduced bone strength and impaired
mineralization which affects bone mass and density (63). Tang
et al. recently explored the Role of Runx1 in osteogenesis and
homeostasis. Runx1 binds to core-binding factor b (cbfb) and
form a heterodimeric complex to bind the promoter complexes.
Runx1 plays a key role in mesenchymal stem cells commitments
for differentiation and regulates several signalling cascades
involved in bone formation, especially WNT/catenin pathways
which have a significant role in osteoblast-adipocytes lineage
differentiation. This study shows that knockout of Runx1
generates osteoporosis phenotypes in mice. Runx1 binds and
regulate the expressions of Bmp7 and Atf4 promoters and
participates in postnatal bone homeostasis (64). Vasculature
plays a significant role in the development of bone and
maintaining homeostasis.

The skeletal system is a highly important organ responsible
for the maintenance of haematopoiesis and osteogenesis.
This includes the production of hematopoietic stem cells and
differentiation into mesenchymal stem cells, osteoblasts and
other mature functional cells (65). Maintenance of stem
and progenitor cells is crucial in terms of healthy whole-body
homeostasis and function (66). The vessels in the bones supply
oxygen and nutrients via the central nutrient artery, the
periosteal artery or metaphyseal-epiphyseal artery. Blood flows
via these vessels through a densely populated capillary network
and drains through the central vein (67). Recent studies shows
the crucial role of the BM vasculature in regulating the fate of
stem and progenitor cells via BM niches (68, 69). The BM niches
have a distinct microenvironment that is highly complex and
predominantly consists of vascular components and signals
responsible for regulating stem and progenitor cell survival,
quiescence, mobilization, and differentiation (70, 71). These
signals consist of cell surface ligands, soluble factors, or cell-
cell interactions (68, 69).

As we discussed above the BM vascular niche consists of
multiple endothelial cell subpopulations, namely type-L, type-H
and arterial ECs (44). Subsequently, they are physically associated
with osteoprogenitors. Functional differences between type-H and
otherBMvessels, and secretion of angiocrine factors, regulate blood
cell proliferation and differentiation and therefore maintain
homeostasis and function. Different from sinusoidal ECs, arterial
ECs are found to be themajor source of stem cell factor (SCF) in the
BM, which is crucial for HSC function (72). Sinusoidal type-L
vessels aremainly supported by LepR-expressing perivascular cells,
which contribute to CXCL12-abundant reticular (CAR) cells that
support HSCs and contribute to the adipocyte lineage (73–75).
Distinct perivascular cell types from the mesenchymal origin are
found to be important for the support of the specialized vascular
niches (76, 77). Type-H vessels are covered with RUNX2 and
Osterix expressing progenitors (44, 78–80). Subsequently, type-H
capillaries and arterioles are associated with pericytes that express
NG2 and PDGFR-b receptors together with Nestin expressing
mesenchymal stem and progenitor cells (MSPCs) (81, 82).
Arteriolar niches play a pivotal role in maintaining HSCs
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quiescence and HSCs distribution between the BM niches (81,
83) and HSCs prefer to localize within the different vascular niches
in the BM. Imaging of HSCs localizing in the BM shows a highly
abundant presence of both dividing and non-dividing HSCs in the
central diaphyseal BM around sinusoidal vessels and distant from
arteriolar vessels (84). A quiescent subset of HSCs was found to
mainly localize around endosteal arteriolar vessels surrounded by
NG2+pericytes. ProliferativeHSCsmoved away fromthe arteriolar
vessels towards LepR+ perisinusoidal vessels (81, 82). Thus,
endothelial interaction with HSCs in the distinct BM vascular
niches regulate HSC quiescence and proliferation. This
interaction occurs mainly via the secretion of certain signalling
factors by the BM ECs, which is critical for HSCs homeostasis.
These factors consist of HIF-a, Notch ligands, CXCL12 and SCF
(76, 85). Cellular crosstalk in the bone tissue microenvironment is
operated through the vasculature. Ageing of vasculature has a
specific role in the functional capacity of organs. Here we are
discussing vascular ageing in the skeletal system in the next section.
AGEING OF VASCULAR NICHES IN BONE

Ageing is shown to affect the skeletal system via loss of mineralized
boneand the increase offracture risk and subsequently increases the
risk of osteoporosis (86). In the process of ageing, the BM
vasculature shows both morphological and metabolic changes
with a significant reduction in arteriolar vessels. The reduction of
type-H endothelium causes a decline in blood flow and reduced
expression of angiocrine and pro-hematopoietic factors such as
HIF-a, SCF, CXCL12 and Notch (76, 85). This decrease of
angiocrine factors is often associated with poor angiogenesis,
bone construction and increased risk of osteoporosis (87). HIF-a
is a transcription factor that is responsible for the regulation of
cellular response to oxygen levels (80, 88). In terms of bone
angiogenesis, HIF-a expression is increased in ECs and
osteoblasts under hypoxic conditions; this promotes the
formation of new bone and the growth of new vessels via the
expression of vascular endothelial growth factor-A (VEGF-A) and
other proangiogenic factors (80, 89). In the metaphysis bone area,
expression of HIF-a occurs in an oxygen-independent manner by
type-H vessels (44). The endothelial decrease of HIF-a that is
observed upon ageing, therefore, contributes to type-H vessel
decline and a reduction of osteoprogenitors, osteogenesis and
bone density (44). Interestingly, the presence of sinusoidal type-L
vessels remained unchanged upon biological ageing (44, 90).

As mentioned in the paragraph before, endothelial signalling
in the distinct BM vascular niches via Notch ligands, CXCL12
and SCF pathways regulate HSC homeostasis (76, 85). In aged
mice, the BM ECs show significantly lower levels of these
signalling pathways when compared to young mice (91, 92).
Notch signalling is one of the most critical cell-cell interaction
mechanisms that control cell fate (93). Notch activation in the
BM leads to ECs proliferation and the formation of type-H
vessels (94, 95). Subsequently, activation of Notch enhances
HSCs and both PDGFR-b+ and NG2+ perivascular cells,
indicating Notch as a mediator to promote vascular niche
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function (65, 76). CXCL12 is essential for HSC and lymphoid
progenitor maintenance and quiescence (96). CXCL12 is
expressed by BM EC, perivascular cells, osteoblasts,
sympathetic neuronal cells, and Nestin+ perivascular stromal
cells that are physically associated with HSCs (65, 70). Deletion
of CXCL12 in ECs and MSPCs reduced HSC frequency and
impaired long-term repopulation activity (75, 96, 97).
Endothelial and perivascular SCF is crucial for HSC
maintenance and survival (74, 98). SCF is expressed by
perivascular stromal cells, arterial ECs, type-H ECs and
sinusoidal ECs (65, 74, 76). Deletion of membrane-bound SCF
causes the significant depletion of HSCs. Subsequently, depletion
of SCF from peri-arterial mesenchymal stem cells also results in
the depletion of HSCs, which indicates the importance of the
mesenchymal compartment in HSC maintenance (74). Total
HSC numbers increase upon ageing. However, age-related
relocation of HSCs away from endosteal arteriolar niches
correlates with a reduction of self-renewal and loss of
quiescence (99–101). Subsequently, ageing of the BM vascular
niche can induce this ageing-associated HSC phenotype.
Infusion of young ECs is able to partially restore HSC
function, suggesting a relationship between changes in the
vascular niche and HSC ageing (85).

Ageing of the BM causes a set of complications leading to both
haematological and non-haematological diseases. Haematological
ageing inevitably leads to decreased functionality of the immune
system, which comes with a range of complications. Impairment of
the immune system increases the susceptibility for infection,
autoimmune disorders, and haematological malignancies (102–
104). Inflammatory responses by the immune system are an
essential response to tissue injury and infection. Upon infection,
ECs, MSCs and other hematopoietic and non-hematopoietic cells
are activated. Activation of ECs leads to an upregulation of pro-
inflammatory cytokines such as interleukins (IL) and TNF-a (105–
107). In the BM this response stimulates HSC proliferation,
migration, and differentiation to maintain the pool of immune
cells (104). Inflammation changes both the morphology and
function of the BM endothelium. These alterations show many
similarities to changes that are observed in the aged BMniche (108,
109). Both inflammation and ageing inducemyeloid differentiation
and impair HSC self-renewal capacity (104). Subsequently, serum
levels of pro-inflammatory cytokines such as IL-1, IL-6 and TNF-a
areupregulated in aged individuals (110, 111).Thepresenceof these
pro-inflammatory cytokines also further enhances the myeloid
skewing of HSCs (112). Other complications that can occur due
to ageing of the BM are numerous cancers such as acute myeloid
leukaemia or osteosarcoma and osteoporosis, which is also referred
toasbone loss disease.Non-haematological diseases associatedwith
skeletal ageing are OA (osteoarthritis) and RA (rheumatoid
arthritis). These conditions are characterized by bone
reabsorption of osteoclasts and high levels of pro-inflammatory
cytokines such as IL-6, IL-11, and TNF-a (113, 114). Vascular
ageing is one of the crucial aspects of the skeletal system to growand
differentiate. It has an impact on bone joint disease and bone
angiogenesis. We have covered the inflammatory status of joint
synovium in the coming section.
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VASCULAR NICHES IN JOINTS

Joints are built up by a series of different tissues that serve
different individual functions. However, all tissues cooperate to
maintain healthy joint movement and homeostasis. The
diarthrodial joint is structured by the presence of muscle, bone,
bursae, tendon, cartilage, joint capsule, synovial membrane, and
synovial fluid.

The synovial cavity is surrounded by the joint capsule, which
consists of fibrous connective tissue that is attached to both
bones. The synovium, apart from diarthrodial joints, is also
located in tendon sheets and bursae and is comprised of a
surface layer of cells, referred to at the intima and subintima.
Between all the intimal surface layers, fluid is located, which is
high in hyaluronic acid and has non-adherent properties. The
intima mainly contains bone-marrow-derived macrophages
called type-A synoviocytes and fibroblast-like cells called type-
B synoviocytes. Other than fibroblasts, B-synoviocytes express
high levels of VCAM-1. The cells of the intima are responsible
for the production of extracellular matrix molecules and
mediation of synovial fluid clearance and production (115,
116). We have illustrated joint synovium in a healthy
environment, which does not show any inflammation (Figure 3).

Blood vessels and lymphatic vessels are located in a mostly
collagenous tissue below the intima called the sub-intima (117).
The synovium can be categorized in fibrous, areolar, and adipose
depending on the composition of the sub-intimal layer. The sub-
intimal layer of fibrous synovium is found in locations that are
exposed to high pressure and are mainly composed of large
collagen fibres (118) (Figure 2A). The areolar synovium has
fewer collagen fibres, but more interfibrillar matrix and is found
in places where the synovium moves freely over the joint capsule
(118). Adipose synovium is found in intra-articular fat pads
(119). These three different types of synovia can also be found
together in a combination (118). Synovium is highly vascularized
tissue with the presence of arterioles, capillaries and venules with
fenestrae to supply oxygen and nutrients (Figure 2A). The
distribution of vessels is organized in a non-uniform manner
with the difference in population density according to the level of
mechanical stress. Synovium that is subjected to higher levels of
mechanical stress shows long loops of arterioles to supply more
blood. However, the synovium that is subjected to very high
mechanical forces has few vessels due to the low mechanical
stress resistance of blood vessels. Capillary density is not only
related to anatomical location but also the depth beneath the
synovial surface. As previously mentioned, most blood vessels
are located just below the intima, placing them in the sub-intima
(120–122). In the synovial joint, VEGF, angiopoietin (Ang) and
PDGF-b regulate vessel stability and induce fibroblast invasion.
Complementary action of VEGF and Ang is essential for vessel
formation, stability, and maturation; via regulation of EC
proliferation, migration, survival, and pericytes/EC interaction.
Dysregulated expression of VEGF and Ang in synovial tissue has
been associated with multiple pathogenic outcomes such as
rheumatoid arthritis. As shown, stress conditions alter vascular
and perivascular microenvironments in the knee joint
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(Figures 2B, C). Osteoarthritis and Rheumatoid arthritis are the
major chronic diseases associated with the joint. We have
covered these two interesting aspects of chronic inflammation
in the next section.
DYSREGULATION OF VASCULAR NICHES
IN OSTEOARTHRITIS

OA (Osteoarthritis) is a degenerative and chronic joint disease,
resulting from gradual degradation of articular cartilage and
underlying bone remodelling. Articular cartilage is positioned on
the joint surfaces and participates in movement (123, 124).
Articular cartilage is subsequently made up of chondrocytes,
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collagen and proteoglycans, in a combined form of a hydrated
extracellular matrix. It divides into several zones based on the
distribution and alignment of chondrocytes and collagen fibres.
During OA, subchondral bone shows sclerosis, abnormal
vasculature and formation of osteophytes. It is also assumed that
subchondral bone abnormalities contribute to cartilage
disintegration (125). In disease progression, blood vessels invade
the cartilages tissue andprompt the release of cytokines and create a
low-grade inflammatory environment. This inflammatory
environment hinders the identification of the molecular
mechanism of OA initiation. Increased inflammation may induce
angiogenesis and promote the invasion of vasculature in cartilage
tissue. Studies suggest that vascular changes are the prime factors in
the disease progression as it shows reduced perfusion. It is reported
A

B

C

FIGURE 2 | Bone and joint vasculature and perivascular niches. Confocal images showing blood vessels and perivascular cells in bones and joints. Exemplar bones
and joint sections immuno-stained for endothelial and perivascular cell markers as indicated on the images (A–C). The changes and vascular cells and perivascular
microenvironments can be observed during stress conditions such as radiation-induced injury. Specifically, the tile view imaged demonstrate the changes in vascular
morphology and accumulation of adipocytes post radiation (B, C). Scale bar represents 200 mm. gp, growth plate; ep, epiphysis.
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that subchondral bone has a link with cartilage and these
interactions increase during the disease progression.
Overexpression of TGF-b and osteoclast contributes to OA, and
expression of TGF-b increases through osteoclast induced matrix
resorption by positive feedbackmechanisms. Targeting TGF-b can
attenuate the OA by inhibiting aberrant bone remodelling and
angiogenesis (126–128).
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To explore the role of the vasculature in articular cartilage
destruction, studies were conducted on temporomandibular
joint osteoarthritis (TMJ OA). Vascular changes were analyzed
with the expression of CD31+ and a-SMA+ in human and
miniature pigs. They show that change in the vasculature is
linked with the bone transformation from cartilage tissue. The
study also shows the transformation of chondrocytes to
FIGURE 3 | Joint synovium in healthy and diseased condition: Healthy joint synovium displays a thick layer of cartilage, medium synovial fluid levels in the joint cavity
with intact synovial membrane and a strong, smooth outer bone layer (top left). In RA, the synovial membrane is swollen and has a high presence of synovial fluid,
which leads to damaged bone and cartilage (top right). On the cell-interaction level, increased leukocyte infiltration promotes inflammation, hyperplasia, and bone
destruction by osteoclasts. Dendritic-T cell interactions also release pro-inflammatory markers, which further enhances disease progression.
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osteoblast, confirmed with expression COL2 and RUNX2 in
vascular stretches (129). In another study, a microfluidic-based
in-vitro model presents the tissue vasculature role in OA
progression. This cartilage on a chip method includes co-
culture studies of primary endothelial cells with mesenchymal
cell lines and investigates the osteogenic differentiation and tubes
formation. Exposure of inflammatory cytokines to this model is
able to attain the OA characteristics by depicting increased
expression of MMP13 and ADAMTS5 (130).

The disintegration of cartilage tissue is completed by digestive
enzymes. MMP and ADAMTS target their respective molecule i.e.,
collagen and aggrecan, respectively. Activation of these proteases is
done by inflammatory cytokines secreted by chondrocytes,
especially IL-1b and TNF-a (131). OA, instigates the functional
and structural changes in bone and promotes catabolic protease
activities. However, the role of inflammation in bone disintegration
is debatable. Bone tissue undergoes plenty of modifications in OA
by attaining a sclerotic phenotype. Such structural and molecular
changes induced the BM lesions, which are sensitive to
cardiovascular risk factors. These lesions make the way to
cartilage damage and appreciate the subchondral bone changes
(132). Despite the understanding of the clinical aspects of OA, the
molecular basis is still vague. Recently, functional analysis of several
genes explains the significance of molecular pathology. High
throughput imaging analysis in mice resulted in 14 genes, and
their functional role in the pathogenesis of OA and 6 out of them
characterize for human pathogenesis. Based on rigorous screening,
data highlighted 4 genes, namely Bhlhe40, Pitx1, Sh3bp4 and Unk.
Reduced expression of PITX1 protein promotes subchondral bone
thickness and is involved in OA pathogenesis. A detailed study in
humans on gene expression shows that Ccd6, Col4a2, Arhgap30,
Gsdme, Unk, Josd1plays a crucial role in the pathogenesis of
OA (133).

Recently data shows a positive feedback mechanism that is
present in bone-cartilage and vascular crosstalk. In the process of
bone regeneration, type-H vessels participate in several
mechanisms along with the coupling of osteogenesis and
angiogenesis. This process involves type-H vessels, mTORC-1,
chondrocytes and VEGF-A. This complex environment promotes
activation of VEGF-A secretion and an increase in subchondral
angiogenesis, resulting in OA (134). Targeting angiogenesis in the
coupling of such pathways may affect the vascular invasion,
blocking of VEGF induced angiogenesis shows a promising effect
on cartilage destruction. Recent studies show that cytokine
neutralizing antibodies are effective to show a potential effect on
OA. It is observed that rapamycin can affect the pro-inflammatory
cytokines i.e., IL-1. IL-6 and inhibitsmTORpathway,whichmay be
an alternative approach to target OA in patients (135).
DYSREGULATION OF VASCULAR NICHES
IN RHEUMATOID ARTHRITIS

Rheumatoid arthritis is a common chronic inflammatory
autoimmune arthritis inclined by environmental and genetic
factors and resulting in inflammatory pain in the hands, feet
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and knees. During the disease progression, angiogenesis
promotes infiltration of inflammatory leukocytes and fibroblast
into the joints and leads to bone destruction and hyperplasia in
synovial joints. Hyperplastic conditions may prompt synovium
to bone invasion and destruction, which is in line with the help of
osteoclast cells. This process also inhibits the bone-forming
process and leads to RA (125, 136).

Primary endothelial cells arranged in blood vessel lining and
helped in cellular trafficking. Leukocytes migrate throughout
the vessels and enter the connective tissue after interaction with
the endothelial adhesion molecules. The endothelial lining of
vessels activated by pro-inflammatory factors lead to the
expression of adhesion receptors on the luminal side of
endothelial cells and promote the binding of leukocytes and
fibroblast. These interactions operate through ICAM-1,
VCAM-1 and E-selectin majorly (137, 138). The landing of
leukocytes and fibroblasts increases the inflammatory load and
affects the joints. Leukocyte trafficking starts with interaction
with selectin (CD15s) and is followed by the rolling on
the endothelial surface via VCAM-1, which helps in
transmigration. It has been observed that dendritic cells
attract towards joint and secrete inflammatory cytokines and
contributes to RA through IFN-a, IFN-b and IL-23. Dendritic
cells regulate Th-cell response in RA and create an imbalance in
the cytokine secretion and inflammation (139, 140).

Vasculature changes contribute to the pathology of both
conditions. In OA disrupted blood flow and ischemia in the
subchondral bone reduce the nutrient supply to the articular
cartilage, which lead to osteocyte cell death and articular damage
(141). Subsequently, increased type-H vessel formation due to
overexpression of VEGFA, PDFG-B and TGF-B induce
pathological subchondral bone angiogenesis, therefore
contributing to the development of OA (142–144). During RA,
activated blood vessels expressing ICAM-1, VCAM-1 and E-
selectin are responsible for leukocyte and fibroblast migration.
Therefore, actively contributing to the progression of RA (145–
148). The signalling process of joint inflammation, including the
cellular cross-talk, depict the diseased conditions (Figure 3).

Recent reports suggest that the interaction of leukocytes with
endothelial cells can increase after the TNF-a activation in
endothelial cells. The level of TNF-a is found to be increased
in RA pathogenesis. Few studies show that the generation of
biologic DMARDs (Disease-Modifying anti-RA Drugs), which
has specific targets in cytokine pathways, may affect the disease
progression in RA patients (149, 150). Oxidative stress is one of
the prime reasons for inflammatory activities in the joints.
Interaction between immune cells and antigens create ROS in
arthritis pathogenesis. Upregulation of p38 MAPK increases the
ROS generation, which in turn induce the secretion of pro-
inflammatory cytokines in RA. Activation of p38 contributes to
cartilage damage, synovial inflammation and angiogenesis.
Recent studies depict the importance of ROS inhibition in the
prevention of RA (151, 152). Tissue vasculature has different
properties in different organs. The specificity of each organ is
supported through its specific vascular niches. We have explored
this aspect of organ-specific vasculature in the following section.
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TISSUE-SPECIFIC VASCULAR NICHES
AND VASCULAR CHANGES

The kidney is an important organ in the health and homeostasis of
the human organism due to its role in clearing the blood of toxins
and waste products while maintaining haematological
homeostasis via regulation of acid-base balance, red blood cell
count and blood pressure via the secretion of hormones (153). The
renal vasculature is highly complex and essential for renal
function. Renal endothelial cells (RECs) show functional
differences according to their location (154, 155). RECs can be
subdivided into glomerular RECs (gRECs), medullar RECs
(mRECs) and cortical RECs (cRECs). Each subtype of RECs
differs from supporting the function of the renal gland. For
instance, cRECs are surrounded by pericytes and smooth muscle
cells, which can regulate the glomerular filtration rate (GFR) in the
cortex. gRECs, on the other hand, are fenestrated to allow water
passage yet restrict the passage of high-molecular-weight
substances (156, 157). ScRNA-seq exposed even higher levels of
heterogeneity across the RECs population with five sub-
populations found in the gRECs population, nine for the cRECs
population and ten for the mRECs (158). The heterogeneity of the
renal vascular systemmay hold the potential to better comprehend
and identify targets for a variety of renal conditions and disease
such as chronic kidney disease (CKD). CKD is considered a major
global problem, with 850 million people affected (159). Early-stage
CKD already shows clear evidence of endothelial dysfunction,
affecting vascular permeability, angiogenesis, inflammatory
response, and immunity. Further endothelial damage leads to
atherosclerosis and worsening of CKD disease prognosis with
progression towards end-stage kidney disease (160, 161).

The lung has a high population of ECs that serve to maintain
lung homeostasis. The vasculature of the lung can be subdivided
into systemic bronchial and pulmonary circulatory systems.
Quite remarkable of the lung vasculature is its capability to
recruit available vessels to allow for an increase in flow with little
increase of pressure during, for instance, exercise (162). The
pulmonary ECs (PECs) play a key role in regulating oxygen
exchange, controlling barrier function, and regulation of vascular
tone via nitric oxide, serotonin, endothelin, and prostacyclin
pathways (163). Extracellular interaction of PECs with
circulating and surrounding cells is essential to maintain
homeostasis by controlling thrombosis, inflammatory cell
adhesion, angiogenesis, and vascular wall integrity (164, 165).
Single-cell transcriptomics data of lung ECs show enrichment for
immune, regulatory signatures, suggesting a role in immune
surveillance. Subsequently, veins in the lung tend to have
upregulated expression levels of genes involved in cAMP
metabolism (166). cAMP is involved in controlling ciliary beat
frequency and suppression of the pro-inflammatory activity of
immune and inflammatory cells (167). Alterations of the
pulmonary endothelium are involved in the pathogenesis of
multiple lung diseases such as chronic obstructive pulmonary
disease (COPD) or acute respiratory distress syndrome (ARDS).
Lung diseases associated with pulmonary endothelial are mainly
characterized by increased permeability leading to vascular
Frontiers in Immunology | www.frontiersin.org 10173
leakage and oedema formation, the altered balance between
vasocontraction and vasodilation, acquisition of pro-
inflammatory phenotype, acquisition of pro-thrombotic
phenotype and miscommunication with adjacent vascular cell
wall (165, 168).

The liver is crucial for the maintenance of homeostasis due to
its involvement in detoxification, immunity, metabolism, and
nutrient storage. In order to fulfil these tasks, the liver is
comprised of numerous different cell types apart from
parenchymal hepatocytes. The non-parenchymal cells (NPCs)
consist of liver sinusoidal endothelial cells (LSECs), Kupffer cells
(KCs) and stellate cells (169). The nutrient-rich blood from the
hepatic portal vein and oxygen-rich blood from the hepatic
artery meet in the sinusoidal blood vessels (170). During this
process, the LSECs of the sinusoidal vessels assist in clearing
macromolecular waste and regulating hepatic vascularity (171).
Other than most endothelial cells, LSECs possess a higher
endocytic ability. As an example, 45% of all pinocytic vesicles
are attributed to LSECs and LSECs are shown to be more efficient
in absorbing/internalizing circulating antigens than dendritic
cells or macrophages of the spleen and Kupffer cells and
dendritic cells of the liver (172–174). LSECs are able to filter
the blood via selective exchange of molecules in the blood and
underlying stellate and hepatocytes due to their fenestrated
morphology (175). Due to the lack of a basement membrane
or basal lamina, there is direct access to the space of Disse
(perisinusoidal space) for interaction between blood and
hepatocyte or stellate cells (176). The LECs fenestrae have the
ability to change their diameter according to as a response to the
cellular microenvironment (177). The fenestrae are maintained
by cooperative paracrine and autocrine signalling of hepatocytes
and stellate cells. VEGF, NO and serotonin pathways have been
shown to be involved in the maintenance and regulation of
contraction or dilation of the fenestrae (178, 179). Loss or
reduction fenestrae number in LSECs is referred to as
defenestration (177). Defenestration leads to reduced hepatic
uptake of lipoproteins which can cause hypolipoproteinemia
(180). Subsequently, defenestration is involved in multiple
disorders like liver fibrosis, atherosclerosis, or non-alcoholic
fatty liver disease (NAFLD).

Malignancies in the kidney, lung and liver are associated with a
poor prognosis due to their fast progression andmetastasis. The role
of vasculature is very important for the progression of metastasis
from different organs towards the bone.We have created a dedicated
section for bone metastasis and tumour dormancy. Across these
organs,metastasis to the skeletal system is found to occur commonly
(181–185). After initial tumour growth in the organ of origin,
tumours cells undergo changes in cell signalling and cell-cell
interactions such as reduced intercellular adhesion (186, 187). This
causes the release of tumour cells in the circulatory system (188, 189).
In most tissues, blood vessels only express adhesion markers such as
VCAM-1 and ICAM-1 during exposure to inflammatory cytokines
(190). However, the blood vessel ECs in the metaphysis of the long
bones are characterized by their continuous expression of these
adhesive proteins, which promote the interaction between
circulating tumour cells (CTCs) (190, 191). The presence of
December 2021 | Volume 12 | Article 798211

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kumar et al. Diversity of Bone and Joint Vasculature
voluminous sinusoids reduces blood flow in the blood vessels of the
metaphysis, which allows for easier docking of CTCs (192, 193).
Subsequently, the BM ECs release high levels of growth factors that
attract metastatic tumour cells (194). Thus, across organ vasculature
supportsbonemetastasis by its structural, cell-interactionandgrowth
factor releasing characteristics.

As described in the previous paragraphs, age-dependent changes
of the vascular niche led to the loss of functional HSCs and
osteoprogenitors. In ageing vasculature, inflammation, endothelial
senescence, elevated oxidative stress, mitochondrial dysfunction,
impairment of proteostasis and genomic instability is observed
(195). Therefore, signalling from the microenvironment is an
essential driver of stem cell and tissue ageing. Exposing the age-
dependent changes of the vasculature has therefore has the potential
to identify markers and targets of the ageing process across different
organs and tissues. In recent years the topic of ECs heterogeneity
across organs and tissues has becomemore of interest (166, 196, 197).
Mapping of the tissue wide distribution of ECs, pericytes,
mesenchymal stromal cells, and the matrix is essential to
understand the age-related changes in the tissue microenvironment.
Recently, loss of both vessel density and pericytes are exposed as a
mark of ageing across tissue and organs (198). Ageing in organs show
the specific role of vasculature (Figure 4) Tissues like the skin, gut and
uterus who have high remodelling and regenerative capabilities (199–
201) are, however, able to maintain the abundance of blood vessels
and pericytes upon ageing (198). A similar phenomenon is observed
in bones where the vessel density is unaffected by ageing (44). This
can be explained by the relatively high regenerative capacity of bone
when compared with the kidney, spleen, heart, or brain. Increased
pericyte to fibroblast differentiation is observed with ageing, which
could help explain the general loss of pericytes. Fibroblasts involved in
joint inflammation and organ fibrosis are subsequently shown to
originate from pericytes, wherein in the case of organ fibrosis,
differentiated pericytes are considered a driver of fibrosis. Down-
regulation of multiple signalling pathways responsible for the
regulation of blood vessel maintenance and remodelling across
multiple organs results in vascular attrition and the pro-
inflammatory nature of ECs that is observed during ageing
(Figure 5) (198). It is proposed that EC inflammation combined
with alteration in the signalling pathways responsible for the
regulation of blood vessel maintenance and remodelling, ultimately
lead to loss of vasculature and accumulation of fibroblasts.
Accumulation of fibroblasts via pericytes to fibroblast transition is
known to occur in tumours and promote tumour growth and
metastasis (202). To understand the details of metastasis in the
bone microenvironment, we have dedicated a specific section. This
will describe the tumour metastasis and dormancy in the
bone microenvironment.
ROLE OF VASCULAR NICHES DURING
BONE MALIGNANCY

Cancer metastasis is a distinctive mechanism of malignancy, and
the invasion of bone is the most common choice of solid
tumours, especially in the breast and prostate. Recent studies
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formulated that bone metastasis is the major cause of death in
solid tumours (203, 204). Uprising clinical challenges during the
dissemination lead to hyper mortality in patients. Prior to
dissemination, tumour cells transition to mesenchymal to
initiate the invasion through basal lamina and sustain in the
circulatory system with the help of platelets. Tumour cells trigger
platelets aggregation by binding to VWF (vonWillebrand factor)
and stimulating the VEGF secretion to support angiogenesis.
Platelets thus secrete cytokines like LPA (Lipopolysaccharide)
and make the molecular switch which contributes to tumour cell
detachment and circulation in the bloodstream (205, 206). The
mesenchymal transition of tumour cells is modulated with a few
specific signalling cascades e.g., TGF-b and MAPK, and firmly
associated with metastasis progression. In tumour cells, MAPK
upregulation promotes MMP activation and, therefore, digestion
of surrounding tissue and invasion of the tumour cells.
Upregulation of MAPK shoves metastasis in a multidirectional
way by activation of MMP, regulation of adhesive components
and inhibition of retinoblastoma phosphorylation. Heparin-
binding epidermal growth factor receptor upregulates the
metastasis signalling via activation of MAPK in prostate cancer
(207, 208). In addition to MAPK, NF-kB also participates in
tumour metastasis via induction of EMT in tumour cells. In
general, NF-kB signalling is regulated by an inhibitor of NF-kB
(IkB). During cancer progression, the tumour necrosis factor-
alpha receptor inhibits the IkB activity. IkB inhibition hinders
the binding of NF-kB and IkB, which leads to hypoxic conditions
and NF-kB mediated activation of HIF-1a. HIF-1a triggers the
EMT in tumour cells and promotes metastasis (209, 210).

Although the reason for cancer metastasis is less implicit,
the whole process is well coordinated. The tumour
microenvironment is a major factor in metastasis as it contains
multiple cell lineages, which interact with the tumour cells (211).
Out of the mesenchymal stromal component, it is evident that
macrophages participate in all the phases of the metastasis
cascade. These macrophages are derived from monocytes and
are involved in cancer progression, as explained in recent studies.
Simultaneous deletion of IL-4 and CCR2 alone with monocytes
add back approach, explained that bone tissue originated
macrophages do not participate in tumour cells establishment
in bone tissue microenvironment (11, 212).

During circulation, platelet interaction with tumour cells
upregulates CCL2 expression on tumour cells and thus
promotes vascular permeability. Tumour cells engaged with
stromal cells via CCL5 metastasize and make a stable network
at bone tissue (213). Bone vasculature is different from other
organs due to fenestrated vessels architecture, which contributes
to tumour engagement and extravasation by constitutive
expression of adhesion proteins. Recent time-lapse imaging
and single-cell sequencing studies show the tumour-specific
blood endothelial cells, which helps in metastasis and are a
part of cells that express csf-1 (214). Type-L and type-H vessels
express proteins like P-selectin, E-selectin, ICAM-1 and VCAM-
1, which allow tumour cells to adhere and infiltrate to acquire
extravasation (215, 216). During the extravasation, endothelial
cells express and secrete growth factors, i.e. stromal cell-derived
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factor-1 (SDF-1), which promotes tumour cells to engage and
establish a cell mass through their interactions with the BM
cells (217).

Recent studies show the specific role of tumour-stromal cell
interactions in cancer progression and regulation. CXCL12, also
known as stromal cell-derived factor-1, and its localized
receptors participate in cellular interaction during cancer
progression and metastasis (218). CXCL12 and its receptors
can induce multiple signalling processes that control gene
transcription, cellular survival and apoptosis. The binding of
CXCL12 and its receptor CXCR4 initiates the membrane
changes and GTP exchange, which leads to dissociation of Ga
units of G proteins. Dissociation of Gb/Gg activates
phospholipase C (PLC-b) and induce the catalysis of PIP2 into
IP3 and DAG signalling and chemotaxis. Interaction between
CXCL12/CXCR4 initiates the phosphorylation of CXCR4, which
supports the calcium flux and activation of PI3K, MAPK
signalling and thus induce cancer cell proliferation (219–221).

Interestingly, CXCL12 secretion throughosteocytes functions as
a chemoattractant and helps in homing and retention of CXCR4
expressed cancer cells in the BM microenvironment. Tumour cell
homing requires interactions with the ECM, with a crucial role for
integrins. Integrin expression on tumour cells mediate critical
interaction in tumour development. Integrin a2b1 expressed on
tumour cells binds with type-I collagen, utmost ample protein
available in bone. Studies show that binding of integrin with
collagen type-I activates the integrin associated kinases and
induce cytoskeleton rearrangement through activation of Rho
pathway. Activation of RhoC GTPase is known to be a prominent
factor formetastasis, and it helps in the invasiveness of tumour cells
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andmetastasis to bone (222, 223). Recently, it is suggested that once
the tumour cell attains bone proximity, plenty of them undergo
apoptosis, and few of them survive. Tumour cells bump into the
unreceptivemilieu, which hinders the instant tumour growth in the
bone environment. The BM niche produce multiple factors like
Annexin A2, TGF-b, CXCL12 and IGF (insulin-like growth
factors), which allows tumour cells to remain in the dormant
stage (223, 224). Studies observed that tumour cells express a high
level of Axl during dormancy. Axl controls cellular proliferation,
EMT and innate immune response in general. Osteoblasts secrete
GAS6andactivateAxl receptors in tumour cells.Co-culture studies
of tumour cells with pre-osteoblastic cells show that osteoblasts
reduced the proliferation of tumour cells, which can be regulated by
low expression of Axl via targeting of TGF-b and TGFBR2. The
expression of TGF-b and TGFBR2 is elevated in co-culture studies
and thus contributes to tumour cell dormancy. The BMvasculature
niche provides stability to tumour cells and supports the tumour
dormancy due to the low sinusoidal blood flow and large vessel
diameter (225).

Dormancy of tumour cells depicts the progression stages
of cell cycles, i.e. G0/G1. Such cells remain dormant for
many years until activation occurs. Dormant tumour cells
show higher expression of p38 MAPK signalling and
downregulation of ERK MAPK signalling pathways. It is
reported that p38 controls the grid of quiescent transcription
factors, responsible for cellular growth/arrest and self-renewal
genes. TGF-b also contributes to cancer cell dormancy via the
regulation of activation of p38 signalling and quiescence. These
specific regulators in disseminated tumour cells marks as a
dormant signature in cancer cells. In addition to the
FIGURE 4 | Vascular ageing across different tissues: Vascular ageing causes the decrease in endothelial heterogeneity of the bone but not the overall vessel density.
This age-dependent change of the bone marrow vasculature is hallmarked by the decrease of type-H vessels (Left). Across all organs, different vascular changes are
observed during the ageing process. Decreased vessel density, artery numbers and pericytes number are observed in spleen, kidney, thymus and liver. Fewer
changes are observed in heart, brain, and lung (middle). On the other hand, gut, skin, and uterus maintain their vasculature integrity during ageing (right).
December 2021 | Volume 12 | Article 798211

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kumar et al. Diversity of Bone and Joint Vasculature
predominance of p38 activity, NR2F1 also regulates tumour cell
dormancy. NR2F1 is a nuclear hormone receptor that regulates
induced pluripotent reprogramming and also neural cell crest
differentiation. NR2F1 arrest the cell growth in disseminated
tumour cells via the regulation of SOX9, NANOG, SOX2 and
RARb (226–229).

Disseminated tumour cells get support from osteocytes and
start a positive feedback mechanism that initiates differentiation
of osteocytes in osteoblast and/or osteoclast. Tumour cells
recognize secretary molecules i.e. CCL5 and CXCL12 released
from stem cells and osteocytes (230). Due to the positive
feedback mechanism, this recognition prompts the osteocytes
to release growth derived factors (GDF 10 & 15) and secretion of
PTHrP (parathyroid related hormone protein) from tumour
cells. PTHrP has a specific receptor PTH1R on the surface of
osteoblast cells (231). After ligand interaction with the receptor,
osteoblasts secrete RANKL (receptor activator of NF-KB ligand).
RANKL binds on the RANKL receptor on osteoclast and induces
osteoclastogenesis (232). Recently it has been found that EZH2, a
transcriptional factor, play a significant role in bone metastasis.
EZH2 promotes PTHrP expression via integrin b1 and the
knockout of EZH2 inhibit breast cancer-induced bone
metastasis (233). However, RUNX2, a transcription factor, also
participates in osteoclastogenesis. Phosphorylation of RUNX2 by
integrin avb3/sma5 cascade or integrin avb3/src/rac1 cascade
Frontiers in Immunology | www.frontiersin.org 13176
activates Akt pathway and leads to upregulate NF-kB expression,
activation of RANKL, resulting in osteoclastogenesis (234–236).

This process induces bone resorption and secretion of growth
factors from osteoclast cells. All the growth factors maintain the
function of osteoblast and osteoclast, along with tumour
proliferation. This process disturbs the homeostasis and lead to
the formation of bone lesions and release the growth factors,
which in turn promotes tumour growth and increase bone
resorption. This feedback loop, named as “vicious cycle”,
amplified the metastatic lesion formation in bone and
ultimately progressed towards bone fracture and hypercalcemia
(237, 238).
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