
EDITED BY :  Giacinto Barresi, Michela Balconi, Chang S. Nam and 

Ehsan T. Esfahani

PUBLISHED IN : Frontiers in Neurorobotics and Frontiers in Robotics and AI

NEUROERGONOMICS IN HUMAN-ROBOT 
INTERACTION

https://www.frontiersin.org/research-topics/17591/neuroergonomics-in-human-robot-interaction#articles
https://www.frontiersin.org/research-topics/17591/neuroergonomics-in-human-robot-interaction#articles
https://www.frontiersin.org/research-topics/17591/neuroergonomics-in-human-robot-interaction#articles
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/robotics-and-ai


Frontiers in Neurorobotics 1 September 2022 | Neuroergonomics in Human-Robot

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-83250-254-9 

DOI 10.3389/978-2-83250-254-9

https://www.frontiersin.org/research-topics/17591/neuroergonomics-in-human-robot-interaction#articles
https://www.frontiersin.org/journals/neurorobotics
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact


Frontiers in Neurorobotics 2 September 2022 | Neuroergonomics in Human-Robot

NEUROERGONOMICS IN HUMAN-ROBOT 
INTERACTION

Topic Editors: 
Giacinto Barresi, Italian Institute of Technology (IIT), Italy
Michela Balconi, Catholic University of the Sacred Heart, Italy
Chang S. Nam, North Carolina State University, United States
Ehsan T. Esfahani, University at Buffalo, United States

Citation: Barresi, G., Balconi, M., Nam, C. S., Esfahani, E. T., eds. (2022). 
Neuroergonomics in Human-Robot Interaction Lausanne: Frontiers Media SA. 
doi: 10.3389/978-2-83250-254-9

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/research-topics/17591/neuroergonomics-in-human-robot-interaction#articles
http://doi.org/10.3389/978-2-83250-254-9


Frontiers in Neurorobotics 3 September 2022 | Neuroergonomics in Human-Robot

04 Editorial: Neuroergonomics in Human-Robot Interaction

Giacinto Barresi, Chang S. Nam, Ehsan T. Esfahani and Michela Balconi

07 Robotic Assessment of Wrist Proprioception During Kinaesthetic 
Perturbations: A Neuroergonomic Approach

Erika D’Antonio, Elisa Galofaro, Jacopo Zenzeri, Fabrizio Patané, 
Jürgen Konczak, Maura Casadio and Lorenzo Masia

19 Human–Co-Bot Interaction and Neuroergonomics: Co-Botic vs. Robotic 
Systems

Federico Cassioli, Giulia Fronda and Michela Balconi

24 Direct Communication Between Brains: A Systematic PRISMA Review of 
Brain-To-Brain Interface

Chang S. Nam, Zachary Traylor, Mengyue Chen, Xiaoning Jiang, 
Wuwei Feng and Pratik Yashvant Chhatbar

35 I Am Looking for Your Mind: Pupil Dilation Predicts Individual Differences 
in Sensitivity to Hints of Human-Likeness in Robot Behavior

Serena Marchesi, Francesco Bossi, Davide Ghiglino, Davide De Tommaso 
and Agnieszka Wykowska

45 Peripheral Neuroergonomics – An Elegant Way to Improve Human-Robot 
Interaction?

Alessandro Del Vecchio, Claudio Castellini and Philipp Beckerle

50 The Complexity of Remote Learning: A Neuroergonomical Discussion

Federico Cassioli and Michela Balconi

54 The Role of Neuroergonomics in the Design of Personalized 
Prosthesis: Deepening the Centrality of Human Being

Laura Corti

59 Development of Modular and Adaptive Laboratory Set-Up for 
Neuroergonomic and Human-Robot Interaction Research

Marija Savković, Carlo Caiazzo, Marko Djapan, Arso M. Vukićević, 
Miloš Pušica and Ivan Mačužić

75 Beyond Digital Twins: Phygital Twins for Neuroergonomics in 
Human-Robot Interaction

Giacinto Barresi, Claudio Pacchierotti, Matteo Laffranchi and 
Lorenzo De Michieli

81 Design and Development of a Scale for Evaluating the Acceptance of 
Social Robotics for Older People: The Robot Era Inventory

Roberta Bevilacqua, Mirko Di Rosa, Giovanni Renato Riccardi, 
Giuseppe Pelliccioni, Fabrizia Lattanzio, Elisa Felici, Arianna Margaritini, 
Giulio Amabili and Elvira Maranesi

Table of Contents

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/research-topics/17591/neuroergonomics-in-human-robot-interaction#articles


TYPE Editorial

PUBLISHED 06 September 2022

DOI 10.3389/fnbot.2022.1006103

OPEN ACCESS

EDITED AND REVIEWED BY

Alois C. Knoll,

Technical University of

Munich, Germany

*CORRESPONDENCE

Giacinto Barresi

giacinto.barresi@iit.it

RECEIVED 28 July 2022

ACCEPTED 04 August 2022

PUBLISHED 06 September 2022

CITATION

Barresi G, Nam CS, Esfahani ET and

Balconi M (2022) Editorial:

Neuroergonomics in Human-Robot

Interaction.

Front. Neurorobot. 16:1006103.

doi: 10.3389/fnbot.2022.1006103

COPYRIGHT

© 2022 Barresi, Nam, Esfahani and

Balconi. This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Editorial: Neuroergonomics in
Human-Robot Interaction

Giacinto Barresi1*, Chang S. Nam2, Ehsan T. Esfahani3 and

Michela Balconi4,5

1Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy, 2Edward P. Fitts Department of

Industrial & Systems Engineering, North Carolina State University, Raleigh, NC, United States,
3Human in the Loop Systems Laboratory, Department of Mechanical and Aerospace Engineering,

University at Bu�alo, Bu�alo, NY, United States, 4International Research Center for Cognitive

Applied Neuroscience (IrcCAN), Catholic University of the Sacred Heart, Milan, Italy, 5Research Unit

in A�ective and Social Neuroscience, Department of Psychology, Catholic University of the Sacred

Heart, Milan, Italy

KEYWORDS

neuroergonomics, Human-Robot Interaction, human factors, robotics, human-

centered technology

Editorial on the Research Topic

Neuroergonomics in Human-Robot Interaction

Neuroergonomics (Parasuraman, 2003; Ayaz and Dehais, 2021; Gramann et al.,

2021) can be quite impactful to investigate and improve Human-Robot Interactions

(HRIs) (Scotto di Luzio et al., 2018; Roy et al., 2020; Rosén, 2021), analyzing and

affecting the neural processes of any individual interacting with a smart machine that

can work as collaborator, tool, or even extension of its user in ecologically valid contexts.

Accordingly, we can achieve a “neuroergonomic robot”: usable, acceptable, safe, and

minimally demanding in terms of mental workload according to indices of neural

activity, considered as the antecedents of any experience and behavior. A robotic system

may exploit these indices to recognize the individual conditions for adjusting its activity

to ameliorate the human-machine system performance alongside the safety and the

wellbeing of the user. The collection of papers presented in this Research Topic propose

examples of investigations and concepts on neuroergonomics in HRI, suggesting further

breakthroughs in user-centered robotics.

For instance, a manuscript introduces relevant topics in neuroergonomics that

highlight how the roots of this discipline also reach the ground between the discoveries

in neuroscience and the innovations in neuroengineering. Direct Communication

Between Brains: A Systematic PRISMA Review of Brain-To-Brain Interface, Nam et al.

discussed the current state of brain-to-brain interface (B2BI) technologies and its

potential in transmitting information between two individuals through a brain-computer

interface (BCI) and a computer-brain interface (CBI). Such a revolutionary concept can

lead to novel neuroergonomic paradigms of collaboration across robotic devices and

multiple users. This review definitely remarks the importance of the neurocognitive

and neurobiological concepts in this field, as presented about framework for teaching

and training in The Complexity of Remote Learning: A Neuroergonomical Discussion by
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Cassioli and Balconi. However, pondering the individual and

contextual requirements in this path also needs techniques of

other branches of human factors. Accordingly, Bevilacqua et al.

presented their Design and development of a scale for evaluating

the acceptance of social robotics for older people: The Robot-

Era Inventory: in this manuscript, the authors introduce a set

of scales for assessing social assistive robots cooperating with

older adults. This inventory can certainly work in synergy with

psychophysiological measures of elderly reactions during the

interaction with a device.

This would be especially advantageous in the domain of

social HRI, which encompasses neuroscientific studies like

the one of Marchesi et al.: I Am Looking for Your Mind:

Pupil Dilation Predicts Individual Differences in Sensitivity

to Hints of Human-Likeness in Robot Behavior. Through an

experimental investigation involving the humanoid robot iCub,

the authors demonstrate how patterns of pupil dilation and

response time can unveil individual biases in interpreting

the behavior of a human-like artifact, perceived as an

intentional agent. These results may lead to innovations in

the design of socially attuned humanoids. This neuroscientific

approach could surely be extended through the adoption of

portable neurotechnologies, as argumented by Cassioli et al.

in Human–Co-Bot Interaction and Neuroergonomics: Co-Botic

vs. Robotic Systems. The approach proposed by these authors

is especially peculiar for demonstrating the advantages of

organizational neuroergonomics on collaborative robotics. Such

a perspective remarks how neuroergonomics in HRI can

express its own contribution across multiple branches of human

factors. Another example of this versatility, considering both

physical and cognitive ergonomics, is constituted by a study

authored by D’Antonio et al. and titled Robotic Assessment

of Wrist Proprioception During Kinaesthetic Perturbations: A

Neuroergonomic Approach. In this research, the authors present

a refined methodology, based on a haptic neuroergonomic wrist

device, for investigating the effects of systematic perturbations

on the user’s proprioceptive and kinaesthetic acuity. Their

results are particularly valuable for the clinical evaluation

of neurological damages: such a delicate field requires

levels of performance, reliability, and robustness of robotic

devices that just the approaches of human factors—including

neuroergonomics— can guarantee. This study also dedicate

special attention to its methodological appropriateness, a critical

point in any interdisciplinary domain.

Indeed, we surely need to design and implement novel

solutions for research, as discussed by Savković et al. in

Development of Modular and Adaptive Laboratory Set-Up for

Neuroergonomic and Human-Robot Interaction Research. The

authors describe their specialized infrastructure for assessing

workers’ performance, safety, wellbeing, and experience,

considering anatomical, anthropometric, physiological,

and biomechanical data. However, devising innovative

equipment also requires to explore groundbreaking concepts

to introduce novel methodologies. For instance, Del Vecchio

et al. wrote Peripheral Neuroergonomics – An Elegant Way

to Improve Human-Robot Interaction? to remark how most

non-invasive human-robot interfaces based on the peripheral

nervous system seems to offer an appropriate interpretability.

This makes them currently advantageous over solutions

(especially the invasive ones) collecting data from the

central nervous system. Fostering synergistic approaches

based on peripheral neural signals alongside central ones

and motor data seems particularly promising, and it can

become imperative for the twinning strategy presented by

Barresi et al. in Beyond Digital Twins: Phygital Twins for

Neuroergonomics in Human-Robot Interaction. This paper

proposes a concept to replicate a remote human-robot system

through a partially virtual and partially mechatronic solution,

exploiting “phygital” features that make it more reliable and

easy to be manipulated by a person assessing its potential

states. Such a twinning design enables “metalaboratories” for

investigating the conditions of the remote robot users in their

context according to multimodal data collected by wearable

sensors. The need of heterogenous information is furtherly

highlighted by Corti in The Role of Neuroergonomics in the

Design of Personalized Prosthesis: Deepening the Centrality of

Human Being. The author points at the value of a quanto-

qualitative approach to bridge phenomenological and the

neuroscientific concepts and methods to investigate relevant

topics within the domain of neuroergonomics in HRI like

the prosthetic embodiment. This is a compulsory step for

understanding a multifaceted system based on the interactions

between humans and their robotic collaborators, tools,

and extensions.

Overall, this Research Topic offered the opportunity

to collect insightful contributions from experts in different

domains (from psychology to engineering, from neuroscience to

philosophy), foreseeing neuroergonomic (even neurosensitive)

robots as a step-change in human-centered technology transfer

within a greater journey for achieving practicality and

sustainability in HRI.
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Robotic Assessment of Wrist
Proprioception During Kinaesthetic
Perturbations: A Neuroergonomic
Approach
Erika D’Antonio 1*†, Elisa Galofaro 1,2†, Jacopo Zenzeri 3, Fabrizio Patané 4,

Jürgen Konczak 5, Maura Casadio 2 and Lorenzo Masia 1,6
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4Mechanical Measurements and Microelectronics (M3Lab) Lab, Engineering Department, University Niccolò Cusano, Rome,

Italy, 5Human Sensorimotor Control Laboratory, University of Minnesota, Minneapolis, MN, United States, 6 Faculty of

Engineering, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark (SDU), Odense, Denmark

Position sense refers to an aspect of proprioception crucial for motor control and learning.

The onset of neurological diseases can damage such sensory afference, with consequent

motor disorders dramatically reducing the associated recovery process. In regular clinical

practice, assessment of proprioceptive deficits is run by means of clinical scales which

do not provide quantitative measurements. However, existing robotic solutions usually

do not involve multi-joint movements but are mostly applied to a single proximal or distal

joint. The present work provides a testing paradigm for assessing proprioception during

coordinated multi-joint distal movements and in presence of kinaesthetic perturbations:

we evaluated healthy subjects’ ability to match proprioceptive targets along two of

the three wrist’s degrees of freedom, flexion/extension and abduction/adduction. By

introducing rotations along the pronation/supination axis not involved in the matching

task, we tested two experimental conditions, which differed in terms of the temporal

imposition of the external perturbation: in the first one, the disturbance was provided

after the presentation of the proprioceptive target, while in the second one, the

rotation of the pronation/ supination axis was imposed during the proprioceptive

target presentation. We investigated if (i) the amplitude of the perturbation along the

pronation/supination would lead to proprioceptive miscalibration; (ii) the encoding of

proprioceptive target, would be influenced by the presentation sequence between the

target itself and the rotational disturbance. Eighteen participants were tested by means

of a haptic neuroergonomic wrist device: our findings provided evidence that the order

of disturbance presentation does not alter proprioceptive acuity. Yet, a further effect

has been noticed: proprioception is highly anisotropic and dependent on perturbation

amplitude. Unexpectedly, the configuration of the forearm highly influences sensory

feedbacks, and significantly alters subjects’ performance in matching the proprioceptive

targets, defining portions of the wrist workspace where kinaesthetic and proprioceptive

acuity are more sensitive. This finding may suggest solutions and applications in
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multiple fields: from general haptics where, knowing how wrist configuration influences

proprioception, might suggest new neuroergonomic solutions in device design, to clinical

evaluation after neurological damage, where accurately assessing proprioceptive deficits

can dramatically complement regular therapy for a better prediction of the recovery path.

Keywords: proprioception, robotic assessment, multi-joint, static perturbation, motor control, biomechanics

INTRODUCTION

The term “proprioception,” introduced in the early twentieth
century, refers to the self-perception of position, motion and
orientation of the body or body segments (Goldscheider, 1898;
Sherrington, 1907; Evarts, 1981). Proprioceptive signals arise
from mechanoreceptors embedded in our joints, muscles, and
tendons such as muscle spindles or Golgi tendon organs
(Proske and Gandevia, 2012). In general, two submodalities of
proprioception are distinguished: (i) kinaesthesia, the sense of
limbmovement; (ii) joint position sense, the sense of limb position
(Proske, 2006). These two senses constitute the sensory stream
colloquially referred to as conscious proprioception.

Neurological pathologies, such as stroke (Carey, 1995)
or Parkinson’s disease (Konczak et al., 2012), can permanently
deprive the brain of its main sources of dynamogenic information
from skin and muscles (Debert et al., 2012), leading to a
compromised coding of the proprioceptive information, with
negative consequences in motor control and the associated
recovery progress (Marchal-Crespo and Reinkensmeyer,
2009; Schabrun and Hillier, 2009). Accurate assessment and
quantification of proprioceptive function becomes a leading
factor in the diagnosis and treatment of neurological diseases.

Despite the paramount importance of proprioceptive
feedback in motor coordination and recovery (Raspopovic et al.,
2014), actually, there are no established methods capable of
assessing multi-joint proprioceptive acuity in a reliable, objective
fashion. Recent advancements in robotic and haptic technology
(Yeong et al., 2009; Oblak et al., 2010) represent the starting
point for the development of automated, repeatable robot-aided
methodology for studying proprioception and potentially
provide standardized, quantitative methodology to evaluate
kinaesthetic and proprioceptive performance characterized by a
continuous ratio scale (Simo et al., 2014; Deblock-Bellamy et al.,
2018; Klein et al., 2018; Mochizuki et al., 2019). In addition, the
use of robotic devices to study sensory motor control should
be designed considering anthropometric and biomechanical
features, not only for what concerns the mechanical design but
also for the implementation of the related control strategies
(Chiri et al., 2012). These complementary characteristics (design
& control) are paramount to exploit the real potential of robotic
technology in both neuroergonomics, addressing general motor
behavioral aspects, and clinical environment where robustness
and reliability of such devices can be only reached starting their
conception from human factors.

Although it has been demonstrated that proprioception of
distal joints is particularly involved in fine manipulation of
daily living activities (Hoseini et al., 2015; Ponassi et al., 2018),

scientific literature primarily reports contributions focused on
proprioception at the level of proximal upper limb (shoulder
and elbow). Previous research focused on distal joints, with
particular emphasis on wrist’s proprioceptive functions (Aman
et al., 2015; Rose et al., 2018). In particular, concerning our
group, we extensively tested proprioceptive acuity using a device
named WristBot (Masia et al., 2009), which allows for the
implementation of a widely used test for the assessment of
position sense (Cappello et al., 2015), the Joint Position Matching
(JPM) paradigm (Goble, 2010): the test is run in absence of visual
feedback and evaluates the proprioception by quantifying the
accuracy in replicating a joint posture (proprioceptive target),
previously imposed as angular displacement. Previous works
investigated the wrist proprioception along a single degree of
freedom (DoF) evaluating (Marini et al., 2016a) its anisotropy
across wrist abduction/adduction (AA) and flexion/extension
(FE) DoFs, as well as a gradual change of proprioceptive
acuity during the developmental phase for individuals (Marini
et al., 2017). However, proprioception for distal multi-joint
movements, involving more than a single DoF, still remains an
open question, and there is limited evidence in literature on the
mechanism underlying the integration of proprioceptive sensory
stream from multiple concurring anatomical joints (Sketch et al.,
2018).

In daily manipulation tasks, the use of the wrist and hand
requires a complex motion strategy between the fingers and the
two distal DoFs corresponding to wrist FE and AA. Moreover,
the forearm can rotate along its longitudinal axis by engaging a
third wrist DoF, the pronation/supination (PS), which allows the
hand to cover a wider workspace and exploit the arm’s kinematic
redundancy. The wrist biomechanics, almost unique among
all human anatomical districts, allows an extremely efficient
manipulation dexterity, as highlighted by the study of Kane et al.
(2014), which showed how the combination of FE and AA ROMs
results in a workspace which is independent from the rotations
around the PS axis, being its motion completely disconnected
from the previous wrist joints. Within the framework of the
current study, we hypothesize that providing perturbations
along the PS axis, consisting in rotational offset of variable
amplitude along the forearm, will not lead to physical limitations
on the remaining wrist DoFs and sensory conflicts in terms
of proprioception acuity during joint position matching tasks.
The multi-joint biomechanics of the wrist joint are known,
yet the processing of proprioceptive information across its
DoFs is less well understood. Proprioceptive efferent signals
are encoded in reference frames localized at the level of joints
(Flanders and Soechting, 1995): in order to compute motor
commands, the central nervous system must process such
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sensory information and project it into a spatial representation
of motion (Colby, 1998). Yet, movement generation relies
on information redundancy by merging both visual and
proprioceptive feedback, continuously streamed during a general
task execution, and consequently integrating both absolute
spatial and local sensory streams, respectively (Snyder et al.,
1998). What happens if visual information is excluded from
the integrative process and motion computation must rely on
one sensory feedback? How, in such condition, an external
disturbance, altering the encoding of proprioceptive information,
influences the task performance? With this in mind, we
designed an experiment to investigate if the sole proprioceptive
information, can be robustly retained by the brain even in
presence of a kinesthetic disturbance altering the geometric
conditions between the presentation of the task and its execution.

How proprioceptive information is interpreted when
complex wrist motions are performed, and whether multi-joint
kinaesthetic sensory streams are encoded throughout the wrist
workspace, are examples of unanswered questions crossing the
domains of neurophysiology and clinical rehabilitation. Most
studies involving multi-joint tasks, have primarily investigated
distal arm goal directed movements toward visual targets:
results suggest that the relative contributions of vision and
proprioception to motor planning can change, depending on
the modality in which task relevant information is represented
(Sarlegna and Sainburg, 2007). Yet, all this extensive production
of results has covered experimental paradigms deeply involving
visual-feedback (Goble and Brown, 2009), while encoding
of proprioceptive targets in coordinated tasks is still an open
debate, especially for what concerns integration of proprioceptive
information among the DoFs of a multi-joint articulation.

The goal of the present research is to investigate, using a
neuroergonomic approach, the influence of wrist posture on
proprioceptive acuity during multi-joint JPM tasks and under
different perturbations. By imposing angular offset rotations in
different fashions of amplitude and sequence on the DoF which is
not involved in the matching task (PS), we tested proprioceptive
acuity on the remaining wrist joints, with the purpose of
providing insights on how (i) proprioception is encoded in a
complex biomechanical structure, (ii) sensory information are
integrated, and (iii) external disturbances are rejected.

METHODS

Participants and Experimental Setup
Eighteen young healthy subjects (age 27.4 ± 2.8 years (Mean ±

STD), 9 females) were recruited for the study: participants self-
reported no evidence or known history of neurological disease
and exhibited normal joints range of motion and muscular
strength. To be included in the study subjects had to be right-
handed, according to the Edinburgh Handedness Inventory
(Oldfield, 1971) [EHI score > 60; EHI score = 81.89 ± 13.07
(Mean ± STD)]. The research was in accordance with the
ethical principles of the 1964 Declaration of Helsinki, which
protects research participants. Each subject signed a consent form
conformed to these guidelines to participate in the study and to
publish pseudonymized individual data. All the study procedures

and documents were approved by the Heidelberg University
Institutional Review Board (S-287/2020). Experiments were
carried out at the Aries Lab (Assistive Robotics and Interactive
Ergonomic Systems) of the Institute of Computer Engineering of
Heidelberg University (Germany).

The experimental design involved a task, where subjects were
sitting in front of a screen, holding the handle of a haptic device
(WristBot) with their right hand (Figure 1A). Subjects were
blindfolded during the whole experiment, but during a phase of
familiarization the visual feedback was provided to explain the
task sequence and how to perform it correctly.

The employed device has three DoFs: FE (± 62◦); AA
(+45/−40◦); PS (± 60◦) and it allows almost the full range
of motion of the human wrist. It is driven by 4 brushless
motors dimensioned in order to compensate for weight and
inertia and to provide sufficient haptic rendering at the level
of wrist. Angular rotations on the three axes are acquired
by means of incremental encoders, resulting in a resolution
of 0.17◦. The continuous torque ranges at the different wrist
joints are 1.57Nm on FE, 3.81Nm on AA, and 2.87Nm on
PS, Figure 1A. During the experiment, participants sat beside
the robotic device with the frontal plane of their body aligned
perpendicularly to the PS axis of the robotic device, Figure 1B.
The position of each participant was carefully adjusted to
ensure a 90◦ elbow angle and the correct alignment between
the wrist and the robotic system axes, Figure 1B. Participants’
trunk was not constrained, yet the forearm was secured in such
a way that backrest ensures a 90◦ elbow angle, while hand
position on the device’s handle was kept constant over the
course of the experiment and registered for each participant
on her/his anthropometrics. Subjects forearm was strapped to
a mechanical support using anatomical references (i) to ensure
repeatability of wrist positioning, thus trying to limit inter-trial
variability, (ii) to avoid joints misalignment, and (iii) involuntary
relative movements between the device and the wrist during
task execution. Moreover, the device’s handle was carefully
designed to be opportunely adaptable to the different subjects’
anthropometrics, by means of a sliding system that allows to
secure the forearm on the device.

Task and Procedure
The protocol implemented explored how angular perturbations
can affect sensory acuity and consequently altering
proprioceptive thresholds. A similar experimental design
has been described in Masia et al. (2009), where, in a point-
to-point reaching task, rotational misalignments were applied
between the visual (spatial) and the proprioceptive (local) frames,
creating a visuo-proprioceptive miscalibration. We wanted to
use a comparable paradigm applied to a single sensory feedback
by using local rotations among the wrist degrees of freedom
by changing the configurations between the presentation of
the proprioceptive stimuli (target) and the matching task. In
particular, we used the wrist rotation along the PS axis to provide
the perturbation in the context of a passive JPM test, which
was exploited using the remaining DoFs of the wrist (Goble,
2010; Marini et al., 2016b). The proprioceptive task consisted
in an ipsilateral JPM along two DoFs of the wrist (FE and AA):
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FIGURE 1 | (A) The WristBot device. (B) Experimental setup. The subject is comfortably seated on a chair with the right forearm fixed on the WristBot robotic device

while holding its handle. In the contralateral hand the subject holds the button to press during the proprioceptive “Matching Phase.” The subject wears a mask over

his eyes to perform the experiment based only on his proprioceptive feedback. (C,D) are represented the temporal sequences for the two JPM conditions:

JPMUPJPMUP and JPMPPPM. From the initial position, the wrist joint is passively moved towards the proprioceptive target (passive reaching) and then maintained for

3 s. An auditory cue marks that the proprioceptive target is reached. After returning to the resting position participants are asked to match the target, as accurate as

possible (Matching Phase) by pressing the button with the contralateral hand. Another auditory cue signals to the subject the start of the Passive Matching Phase in

which it is required to stop the robot once the same movement amplitude has been perceived. In different temporal moments, depending on the condition

experienced, a perturbation is given (angular rotation along the PS axis of a certain random amplitude). This is evidenced by the red arrow in the figure. Orange dot

represents the device end-effector position, while the black dot represents the proprioceptive target position.

from an initial rest position (0◦ of FE, 0◦ of AA and 0◦ of PS) a
preset wrist stimulus or proprioceptive target, corresponding to
about 50% of the total functional wrist ROM (Kim et al., 2014),
was passively presented to a blindfolded participant, who was
then asked to match it, as accurately as possible in a subsequent
movement. In particular, these angles were: 32◦ for FE; 16◦ for
AA (Marini et al., 2016a).

The perturbation delivered to participants during the JPM
task consisted in seven pseudo randomized rotations along

the PS axis (−45◦, −20◦, −5◦, 0◦, +5◦, +20◦, +45◦),
at speed equal to 12◦/s and in two separate temporal
fashions: depending on the time in which the perturbation
was given, we distinguished two task conditions named
JPMUP (Unperceived Perturbation) and the JPMPP (Perceived
Perturbation), which will be explained in detail in the
next paragraphs.

Each target set consisted of 48 repetitions (trials) for each of
the two DoFs separately (FE and AA), for a total of 96 provided
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FIGURE 2 | Comparison between the two experimental conditions (JPMUP vs.

JPMPP) for the (A) Error Bias and for the (B) Matching Error outcomes for AA

(light blue) and FE (orange) DoFs. Each gray point represents the average

result for a single subject. The mean result across the population is reported as

light blue point for AA and orange point for FE joint. The line through the origin

(equality line) is represented by a black line; if the subject performance stays

above this line the error is higher for the JPMPP task, vice versa if it stays under

the line.

proprioceptive targets. It was divided into 2 sub-sets (20min
each), with a break of about 10min, to avoid fatigue and loss
of concentration.

Each single trial consisted in two separate phases indicated as
“Target Presentation Phase” and “Matching Phase”: seven blocks
composed the aforementioned phases and are depicted as a
breakdown in Figures 1C,D (in the figure, only test on the FE is
illustrated for sake of simplicity). From the initial wrist position
(Block 1), the robotmoved oneDoF to the preset angular position
corresponding to the proprioceptive target or stimulus (Block 2).
An auditory cue (high-frequency beep) was provided when the

robot reached the proprioceptive target: from this block onward,
the trial can follow a different order of presentation depending
on the two disturbance conditions, as explained as follows:

1. Condition JPMUP(Figure 1C): the current experimental
condition is separated in three main events during each
trial: presentation of the proprioceptive target PS perturbation
matching phase.
In details, each single trial in such condition started with
the wrist of the participant in the physiological neutral
configuration (Block 1), then the robot moved the wrist
to a proprioceptive target (Block 2) along FE (or AA) and
maintains such configuration for 3 s (Block 3) (Fuentes and
Bastian, 2010). Successively, the subject’s wrist is moved back
to the initial rest configuration (Block 4); At this point a
pseudo random perturbation around the PS axis (Block 5)
was provided. An auditory cue indicated the initiation of
the Matching Phase, where the rotated subject’s wrist was
passively moved by the robot toward the same direction of
the previously presented target (Block 6) on FE (or AA).
During this block subjects were instructed to stop the robot
motion by pushing a button with the contralateral hand, as
soon as they perceived to have reached a joint amplitude
matching the one of the previously presented target. The robot
speed was changed respect to the one experienced during
the proprioceptive target presentation (Block 2), to prevent
subjects from relying on the memory time factor during
execution of the matching phase. At last, the robot drove
back the subject’s wrist to the initial position prior next trial
initiation (Block 7).

2. Condition JPMPP (Figure 1D): contrarily to the previous
condition, we had 2 (and not 3) events: presentation
of the proprioceptive target including PS perturbation
matching phase.
The presentation of the target along FE (or AA) was passively
imposed by the robot starting from a rest position (Block 1–
2). At this point, contrarily to the previous condition, the
pseudo random PS perturbation (Block 3) was presented while
maintaining the target presentation on FE (or AA), held for
3 s (Block 4) and successively repositioning FE (or AA) to
the rest configuration (Block 5): this was the end of the
Target Presentation Phase. TheMatching Phase started with the
passive matching (Block 6): after an auditory cue, subjects were
required to stop the robot motion, by pressing the button in
the contralateral hand, once the same movement amplitude
has been perceived. Immediately after pressing the button,
the robot brought the subjects wrist back again to the initial
position for the next trial (Block 7).

Subjects were instructed to focus only on the location of
the proprioceptive target and try to reject the effect of the
perturbation along the PS axis during the Matching Phase.
They did not receive any feedback about their performance, to
eliminate a possible recalibration of the responses during the
test. Across 2 days of testing (day 1 and day 2), participants
were required to perform the task in a randomized order for
the two conditions JPMUP (day 1 or day 2) and JPMPP (day 1
or day 2).
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FIGURE 3 | Probability density distributions for the Error Bias of the two DoFs AA (A,B) and FE (C,D) in both the JPMUP (first column) and JPMPP (second column)

conditions. Colored lines show the mean distribution for the specific perturbation denoted in the legend. The vertical dotted line highlights the error equal to zero, a

distribution shifted to the left indicates error undershooting, while a distribution shifted to the right represents a tendency of target overshooting.

Data Analysis
Wrist joint rotations were recorded by means of the digital
encoders of the WristBot (data collection frequency set at
100Hz). Data were filtered offline using a 3rd order Savitzky–
Golay low-pass filter (cut-off frequency of 10Hz). For each
condition, as a measure of the overall accuracy, we computed two
indicators: the error bias and the matching error (Schmidt et al.,
2018).

• The error bias ([◦]), is the mean, over N repetitions for
the same proprioceptive target (same DoF and disturbance
condition), of the signed difference between the presented
proprioceptive target location (ϑtarget) and the wrist position
at the end of the matching task movement (ϑi). It indicates
the subject’s tendency to overshoot (positive error bias) or
undershoot (negative error bias) the target after the Matching
Phase. For a consistent interpretation, we transformed the
signed error bias to a measure of a signed overshoot,
error bias OS (Galofaro et al., 2019):

error bias OS = sign(ϑtarget) ∗

∑N
i=1 (ϑ i − ϑtarget)

N
(1)

where ϑi is the measured value at the end of the i-th trial, ϑtarget

is the target position. In this metrics, negative values represent
an undershoot, while positive values represent an overshoot
independently of the sign of the target.

• The matching error ([◦]), evaluates the accuracy during
the Matching Phase and it is defined as the absolute
value of the difference between the ϑi and the ϑtarget

averaged over N repetitions of the same target in the
same disturbance condition:

matching error =

∑N
i=1 |ϑ i − ϑtarget|

N
(2)

Statistical Analysis
Data normality distribution was assessed using Shapiro-Wilk
test, and sphericity condition for repeated measures analyses of
variance (rANOVA) was assessed using the Mauchly test. The
first test was always verified: when the second was violated,
we applied the Greenhouse-Geisser correction. The three-way
repeated measures ANOVA test was used to examine the effects,
on the dependent variables (error bias, matching error) of the
robot rotation around the PS axis, the DoF and the tasks
condition, using three within-subject factors: (i) ‘condition’
(2 levels: JPMPP and JPMUP), (ii) ‘PS perturbation’ (7 levels:
−45◦,−20◦, −5◦, 0◦, 5◦, 20◦, 45◦), (iii) ’DoF’ (2 levels: AA and
FE) and their interaction. A post-hoc analysis was performed
using Paired t-tests to evaluate the significant pairwise differences
between each perturbation, DoF and condition. For all the tests,
the level of statistical significance was set at 0.05, except for post-
hoc analysis, where the significance level was chosen according
to the Bonferroni correction for multiple comparisons. Statistical
analysis was conducted by using IBM SPSS Statistics 23 (IBM,
Armonk, New York, USA).

RESULTS

Comparison Between JPMUP and JPMPP
Figure 2 shows the comparison between the two disturbance
conditions (JPMUP vs. JPMPP) in terms of the error bias (A)
and the matching error (B). As evidenced also by the rANOVA
results, for both outcomes, we did not find any significant
difference between the two conditions (JPMUP vs. JPMPP; error

Frontiers in Neurorobotics | www.frontiersin.org 6 March 2021 | Volume 15 | Article 64055112

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


D’Antonio et al. Wrist Proprioceptive Mapping Under Perturbations

TABLE 1 | Statistical p-values for the error bias between the seven perturbations.

JPMUP JPMPP

PS [◦] P (AA) P (FE) P (AA) P (FE)

45

20 <0.001* 0.007* <0.001* <0.001*

5 <0.001* <0.001* <0.001* 0.003*

0 <0.001* <0.001* <0.001* 0.008*

−45 0.558 0.877 0.389 0.532

−20 <0.001* 0.012* 0.002* 0.002*

−5 <0.001* 0.001* <0.001* 0.001*

20

5 0.007* 0.026* 0.015* 0.636

0 0.011* 0.015* <0.001* 0.200

−45 <0.001* 0.013* <0.001* 0.001*

−20 0.721 0.614 0.884 0.355

−5 0.011* 0.169 0.001* 0.838

5

0 0.569 0.430 0.245 0.171

−45 <0.001* <0.001* <0.001* 0.01*

−20 0.043* 0.284 0.186 0.734

−5 0.796 0.909 0.213 0.855

0

−45 <0.001* <0.001* <0.001* 0.017*

−20 0.05 0.155 0.020* 0.270

−5 0.705 0.426 0.863 0.136

−45

−20 <0.001* <0.001* 0.001* 0.002*

−5 <0.001* 0.001* <0.001* 0.006*

−20

−5 0.016* 0.620 0.005* 0.891

*represents significant differences between the two perturbations compared.

bias: F = 0.986, p = 0.329; matching error: F = 1.424, p
= 0.211 F). Error bias and Matching Error indicated that the
performance, averaged across all subjects and independently on
the investigated DoF (FE and AA), it’s closely distributed along
the equality line, demonstrating that the process underlying
encoding of proprioceptive target is not influenced by the order
of rotation of the reference frames between target presentation
and matching movement. Moreover, the same behavior persists
across all the spanned values of the PS perturbation.

Effects of Pronation/Supination
Disturbance on Over- and Under-Shooting
the Proprioceptive Targets
The trend of the subjects to overshoot or undershoot the angular
position of the proprioceptive target during the Matching Phase
was examined by analyzing the probability density distribution
of the error bias for across the two investigated DoFs FE
and AA (Figure 3). We evaluated the distribution for the 7
amplitude pseudo-random perturbations along PS and for both
the JPMUP and the JPMPP conditions. The tendency to overshoot

the proprioceptive target during the matching task was higher
for low amplitude PS perturbations, rather than for the largest
ones (−45◦ and +45◦) in both tested DoFs (FE and AA).
As previously reported in section Comparison between JPMUP

and JPMPP, also in this metric the two conditions (JPMUP and
JPMPP) did not influence the error bias. Task execution along
the AA axis (Figures 3A,B) shows a tall narrow distribution
mainly shifted to the right side for the perturbations which are
closer to the physiological neutral posture of the wrist (0,∓5◦,
∓20◦). For large PS perturbations (∓45◦), the distributions
were mainly centered around zero error bias, indicating a
better matching performance of the proprioceptive target. As
for the FE task, the results were similar, although characterized
by a less distinct, behavior: for both the target presentation
conditions (Figures 3C,D) subjects tended to overshoot the
proprioceptive targets, but with a more accurate matching for
those perturbations at the boundaries of the workspace (∓45◦),
rather than in configurations (0,∓5◦, ∓20◦) close to the neutral
position of wrist.

The aforementioned differences related to Error Bias were
confirmed by the rANOVA highlighting a significant effect of the
PS perturbation (F = 22.939, p < 0.001), and DoF (F = 37.199, p
< 0.001), but not their interaction effect (’PS perturbation∗ DoF’
effect F = 1.198, p= 0.312).

We statistically inferred the role of PS perturbation amplitude
by a paired t-test post-hoc analysis for the Error Bias, and
it revealed multiple significant differences (see Table 1). In
particular, for all perturbations’ amplitudes with the exception of
the case related to the DoF FE and the condition JPMPP, we found
an overshoot inversely proportional to the PS amplitude as visible
by a bell shape graph (Figure 4A).

At last, a post-hoc analysis between the two tested DoFs, is
reported in Table 2 for the Error Bias outcome: we found a
significant difference between FE andAA for all the perturbations
except for the condition JPMPP at 0

◦ of PS. In particular, subjects
presented a larger overshoot along the FE DoF, for all the
perturbations and conditions.

Proprioceptive Anisotropy Related to the
Perturbation Amplitude
In order to explore the distribution of proprioceptive acuity
over the different PS perturbation amplitudes and across the two
DoFs, we analyzed theMatching Error trend (Figure 4B).

The rANOVA showed onMatching Error showed a significant
main effect of the DoF (FE vs. AA) (F = 44.695, p < 0.001) as
well as of the PS perturbation amplitude (F = 3.025, p = 0.008).
Detailed numerical outcomes of the post-hoc analysis across the
two DoFs are reported in Table 3: again on theMatching Error, a
significant difference between FE and AA was found for almost
all the perturbations with the exception of 0◦ for the JPMPP and
−45◦ for the JPMUP. In particular, for both the conditions JPMUP

and JPMPP and for all the PS amplitudes, subjects showed a larger
Matching Error along the FE than the AA (Table 3), indicating
an anisotropy of proprioceptive acuity across two DoFs which
persists independently on the provided perturbations.
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FIGURE 4 | Outcome measures relative to the two DoFs: AA on the top and FE on the bottom for JPMUP (gray) and JPMPP (magenta) conditions. First column

represents the Error Bias (A). Second column is relative to the Matching Error (B). On the x-axis is evidenced the amount of angular perturbation provided along the

PS axis (−45◦, −20◦, −5◦, 0◦, 5◦, 20◦, 45◦) during the experiment.

The post-hoc analysis between PS amplitudes for the
Matching Error are reported in Table 4 and highlighted
significant differences for the JPMPP and the AA DoF. For
all perturbations’ amplitudes, we found a proprioceptive error
inversely proportional to the PS amplitude as visible by
a bell shape graph, Figure 4B. For large PS perturbations
(∓45◦), results show a better matching performance of the
proprioceptive target.

DISCUSSION

Understanding how proprioceptive information is encoded at
distal joints, has multiple intersections across different fields
involving physiology, motor learning, sensorimotor recovery as
well as those applications in haptics where proprioception is
predominantly involved in a robot mediated manipulation. In
rehabilitation practice, it is a common opinion among clinicians
that current proprioceptive assessment fails in providing a
reliable and quantitative information which would allow to
comparemotor and sensory deficits, known to be complementary
information to a comprehensive diagnosis of the recovery
process. However, authors usually focus on motor recovery
(Soekadar et al., 2019) while limited evidence can be found in

literature on the physiology of proprioception involving distal
joints at the level of hand and wrist, despite they are anatomical
districts covering an essential role in manual handling, and being
the joints mostly involved in fine manipulation and exploitation
of human dexterity, which is still unmatched in nature among
species (Hoseini et al., 2015; Moser et al., 2020). With this in
mind, we wanted to provide further evidences that using haptics,
proprioceptive acuity can be accurately and geometrically
characterized across the wrist’s DoFs, synergistically involved
during motor coordinated activities.

Hence, we decided to investigate if perturbations along one
wrist joint (PS), can significantly alter the mechanism underlying
perception of proprioceptive information on the adjacent DoFs
(FE and AA). Outcomes revealed multiple aspects, which, to
our knowledge have never been reported in previously published
contributions, for the reason that most of the literature on
proprioception primarily focused on proximal joints—shoulder
and elbow—and privileged research on influence and role of
multisensory integration in goal directed movements. Another
reason for such lack of results, is the affordability of complex
haptic devices, which not only assume operators able to skillfully
program and run specific tailored physiological tests, but also
they must be designed in such a way to provide robust and
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TABLE 2 | Statistical p-values for the error bias between the two DoFs (AA/FE).

UP PP

PS [◦] Mean ± SD [◦] p Mean ± SD [◦] p

−45 −0.72 ± 4.09 0.016* 0.39 ± 3.06 <0.001*

1.66 ± 6.21 3.76 ± 4.55

−20 2.24 ± 4.40 0.002* 3.31 ± 3.06 0.002*

4.59 ± 4.92 5.84 ± 3.19

−5 3.39 ± 3.42 0.004* 3.51 ± 3.18 0.035*

4.88 ± 3.45 5.05 ± 3.65

0 3.24 ± 3.22 <0.001* 3.65 ± 3.32 0.197

5.06 ± 3.54 4.51 ± 3.42

5 3.50 ± 3.67 0.034* 3.26 ± 3.55 0.010*

4.95 ± 5.23 5.30 ± 3.85

20 1.84 ± 4.05 0.013* 2.36 ± 3.17 <0.001*

3.89 ± 5.56 5.33 ± 4.28

45 −0.77 ± 4.10 0.018* 0.76 ± 3.03 0.007*

1.78 ± 6.90 3.02 ± 4.74

*represents significant differences between the two compared DoFs. Bold values

represent AA axis.

TABLE 3 | Statistical p-values for the matching error between the two DoFs

(AA/FE).

UP PP

PS [◦] Mean ± SD [◦] p Mean ± SD [◦] p

−45 4.81 ± 2.65 0.053 3.67 ± 1.55 0.001*

5.95 ± 4.00 5.68 ± 3.10

−20 4.83 ± 2.72 0.012* 4.18 ± 1.97 <0.001*

6.45 ± 3.55 6.73 ± 3.05

−5 4.78 ± 2.42 0.014* 4.64 ± 2.79 0.008*

5.94 ± 2.73 6.14 ± 3.11

0 4.63 ± 2.80 <0.001* 4.82 ± 2.56 0.128

6.50 ± 3.54 5.59 ± 2.83

5 4.75 ± 2.59 0.005* 4.76 ± 2.63 0.002*

6.49 ± 3.44 6.62 ± 3.47

20 4.53 ± 2.64 0.022* 3.75 ± 1.86 <0.001*

5.91 ± 3.52 6.15 ± 3.03

45 4.13 ± 2.04 0.005* 3.36 ± 1.74 <0.001*

6.22 ± 3.73 5.84 ± 3.31

*represents significant differences between the two compared DoFs. Bold values

represent AA axis.

accurate position/force rendering and at the same time perform
as reliable measurement systems.

By introducing a different order of presentation of the
proprioceptive targets and disturbance input, we tried to
understand if proprioceptive information is stored by the central
nervous system in an absolute or relative coordinates frame.
In our hypothesis the rotation of the reference system during
or after the presentation of a target could have affected the
final performance. Results clearly highlighted that mechanisms
underlying the encoding of a proprioceptive target does not

TABLE 4 | Statistical p-values for the matching error between the seven

perturbations.

JPMUP JPMPP

PS [◦] P (AA) P (FE) P (AA) P (FE)

45

20 0.377 0.473 0.145 0.114

5 0.296 0.813 0.023* 0.152

0 0.351 0.987 0.008* 0.860

−45 0.409 0.323 0.478 0.810

−20 0.312 0.863 0.061 0.160

−5 0.318 0.522 0.019* 0.246

20

5 0.666 0.198 0.020* 0.963

0 0.724 0.300 0.002* 0.120

−45 0.828 0.770 0.766 0.099

−20 0.526 0.513 0.456 0.711

−5 0.527 0.946 0.027 0.741

5

0 0.754 0.802 0.854 0.09

−45 0.458 0.245 0.031 0.058

−20 0.866 0.635 0.182 0.975

−5 0.926 0.194 0.947 0.793

0

−45 0.483 0.577 0.028 0.805

−20 0.620 0.977 0.067 0.104

−5 0.613 0.332 0.804 0.083

−45

−20 0.328 0.245 0.200 0.074

−5 0.350 0.692 0.069 0.131

−20

−5 0.883 0.483 0.157 0.861

*represents significant differences between the two perturbations compared.

depend on the temporal order of the superimposed geometrical
conditions; subjects are, in fact, able to store sequence of
joints’ configurations and to replicate, with the same accuracy,
a previously experienced proprioceptive target independently
on the initial conditions in which the target is presented
and encoded.

We also found that proprioceptive acuity varies across DoFs:
previously published works (Cappello et al., 2015; Marini et al.,
2016a) experimentally demonstrated the existence of wrist
proprioceptive anisotropy among its DoFs. Marini et al. (2016a)
provided a map of the wrist position sense across each DoF, by
means of the same robotic device used in our study, observing
that wrist AA has a higher proprioceptive acuity respect to the
remaining DoFs. Our results are in accordance, but also provide
a wider perspective, reporting evidences that proprioception at
the distal and multi-joint level, might be highly influenced by
the mutual configuration between the DoFs composing the wrist
anatomical joint, when the provided proprioceptive targets differ
in amplitude across each DoF.

In details, the quantification of wrist anisotropy across its
workspace and the dependence on initial posture, demonstrate
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that our peripheral sensory system tunes its sensitivity depending
on geometric conditions and independently from the order of
their presentation. Results clearly show a higher proprioceptive
acuity for large perturbation amplitude, when the pronation
supination (PS) was rotated ∓45◦. We found the lowest value of
theMatching Error for both AA and FE when the maximumwrist
PS perturbation of ∓45◦ was applied, unexpectedly meaning
that the neutral physiological posture of the forearm (zero
rotation of the PS) is not a configuration which enables the best
proprioceptive sensitivity. This effect finds its explanation when
considering the mutual relationship between the activation of
the mechanoreceptors, the anatomical structures of the muscular
and connective tissues that are instrumental in proprioceptive
coding (van der Wal, 2009). The aforementioned parts cannot
be divided into either joint receptors or muscle receptors when
muscular and connective tissues work in series to maintain
joint integrity and stability: this happens at the boundary of
their workspace.

It is known that joint receptors are highly reactive at the
extremes of joint workspace (Ferrell et al., 1987), when the joint
capsule is significantly stressed (McCloskey, 1978), for example
(in our experiment) when the wrist is rotated at ∓45◦ along
PS axis. The activation of the joint receptors, induced by the
connective tissues after the changes in muscle tension, occurs at
the limits of wrist’ range of motion (van der Wal, 2009), and it
might be responsible for the high proprioceptive acuity.

In our study there are anyway limitations: the first
concerns the small sample of subjects included in our
experimental sessions. Another limitation mostly refers to the
number of trials provided for each DoF, which has been
limited in order to avoid longer sessions with consequent
loss of attention from the subjects. In order to deeply
correlate joint- and mechano-receptor activation, proprioceptive
acuity and perturbations, other measurements, such as surface
electromyography (Mugnosso et al., 2018), could have been
included in order to highlight the physiological aspects in
terms of bio signals and not merely relying on kinematic data
extracted by the haptic device. At last, since the current study
investigates the influence of static wrist posture variation on
proprioceptive acuity, future research could explore how sensory
information is coded when time-variable dynamic conditions
are provided.

We also mentioned in the introduction the possible
application of the proposed paradigm for clinical settings: we
believe that using a neuroergonomic haptic technology for
quantification of sensory impairment is a viable option. Our
approach was meant to analyze the proprioceptive anisotropy
across the different DoFs of the wrist workspace, in particular
for healthy subjects. Yet the methodological approach must be
tailored in such a way to design a more compact test which
can be dispensed on patients where physiological conditions are
unpredictably variable and heterogeneous.

CONCLUSION

This study aims at providing a wider and more comprehensive
view on the physiological aspects influencing proprioception in

the complexmulti-joint articulation of the humanwrist bymeans
of a neuroergonomic robotic technology.

The outcomes are of interest for multiple disciplines: in
neuroergonomics and medicine, for instance, the tests assessing
sensory system’s integrity, must be performed considering that
different postural conditions may alter proprioceptive acuity.
Testing patients’ proprioception in a configuration which is
close to the joints’ physiological workspace limits, may increase
mechanoreceptors excitation and provide a fine measurement of
sensory acuity.

In haptics, especially for those applications where
telemanipulation of real or virtual objects are mediated by
robotic devices (robot aided surgical intervention), small
movement of the master can be better perceived and controlled
by the operator if her/his proprioception is set to a high
sensitivity level and therefore in a posture with is proximal to the
physiological boundaries of the joints’ workspace.
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HUMAN–ROBOT INTERACTION: A TECHNICAL AND
MANAGERIAL MATTER

The fourth industrial revolution comprehends smart manufacturing, where sensors, computing
platform, and data modeling are employed (Kusiak, 2018). Di Nardo et al. (2020), in the frame of
Industry 4.0, developed a model where the role of management is key in this new highly networked
environment. It is suggested that cyber-physical systems, along with massive data acquisition and
mining, might support the decision making and planning execution phases.

In this framework, technological advancements are a necessary, but not sufficient
condition. In fact, a functional and targeted human–machine interaction, defined as a
communication/interaction between the human user and machines via different interface in a
dynamic context, is also essential.

Management has to oversee the rising demand for tech-innovation, which is essential because of
the renewed complexity, the stricter time-to-market process, and a higher competition generated
by globalization (De Carolis et al., 2016), and to ensure that innovation fits well within the work
environment. In this sense, the automation of part of the process adds value only if substantial
changes are implemented among all the organization, which happens when the efficiency of the
machine is strengthened by human cognitive skills and adequate flexibility. Under this light,
neuromanagement, a new branch of management, was recently developed, where decision-making
processes (Balconi and Fronda, 2019, 2020a) and social behavior and interaction (Balconi and
Vanutelli, 2017; Venturella et al., 2017; Balconi and Fronda, 2020b) are studied in real-world
situations by using a neuroscientific approach.

The conjunction and the outcome of this multidisciplinary approach might boost smart
manufacturing, in particular for co-bot technology, where operational fluency between agents has
a significant weight for safety and productivity reasons. In this work, with the term “co-bot,” we
intend to underline its collaborative dimension, being it the main feature that differentiates from
other technological systems (Ajoudani et al., 2018).

CO-BOTS FOR THE INDUSTRY: ROLE AND APPLICATIONS

Co-bots can be defined as novel technological manufacturing systems, which are able to work with a
certain degree of dexterity and in conjunction with humans in the same physical workspace (Bauer
et al., 2016), with no barriers, mainly aiming at improving efficiency, flexibility, and quality in the
overall industrial process. Other possible appreciable dimensions are related to ergonomics and
safety (Kildal et al., 2018), being the co-bot mostly responsible and employable for monotonous
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and unergonomic tasks. Regarding the safety, it must be pointed
out that Industry 4.0 brings also emerging risks and challenges,
which are related to the human performance (Brocal et al., 2019).

More generally, according to the International Federation of
Robotics (IFR), co-bot technology might help in two different
contexts. In the small- to medium-sized companies, it could
be introduced to automate some parts of the production
line, without altering the rest and offering higher productivity
and quality improvements. Second, in companies with already
automated process (e.g., automotive sector), it could support
workers in completing assemblage tasks, often causing physical
injuries. Regarding the market data, in 2019, the professional
service robots sector grew by 32% (from US $8.5 billion to
$11.2 billion) (Executive Summary World Robotics, 2020), and
the sales volume for collaborative robots grew more compared
to the traditional ones (IFR Press Conference, 2020). Also,
the pandemic seems to have boosted the market for robotic
components in warehouses, factories, and home delivery and also
because the technology supports social distancing.

However, some important differences should be considered
and elucidated when comparing “robotic” and “co-botic”
systems, focusing on the level of interaction with the workers,
higher for the co-botic compared to the robotic one, which is
physically separated and has a fixated position.

The recent developments in sensors and data processing led
to systems that better assist and interact with humans (e.g.,
Fryman andMatthias, 2012). Although, fully collaborative co-bot
applications are not completely developed and used yet, and there
is a significantly high variance in the technical applications of
co-bot. In fact, depicting a hypothetical continuum for human–
robot collaboration, from no direct human–robot contact to a
real-time system that adjusts in response to the human behavior,
it is most common to have just shared workspace and/or
sequential collaboration conditions.

A successful industrial adoption of co-bots is derived
from proper training programs and an open communication
that address the company objectives. In the literature, three
categories of factors are highlighted: internal (management
support, company structure, research, physical conditions,
and receptiveness), external (regulatory environment, business
partner), and technological (technology context, degree of
innovation, and workspace) (Correia Simões et al., 2020). Besides
the delicate coexistence of operational efficiency and safety
requirements, another possible issue, as suggested by Bauer et al.
(2016), because of the novelty of co-bot technology, is that
old models assessing efficiency and profitability fail to give a
proper cost–benefit analysis, and these are not usually carried
out by companies. Furthermore, some dimensions, such as
ergonomics, stress, flexibility, and relationship data, are difficult
to be measured and quantified.

DISCUSSION: NEUROERGONOMICS IN
THE ORGANIZATION

The new paradigm advocates for an optimized human–robot
interaction (HRI), where robots carry out a fully collaborative

behavior, and both the strengths of the involved agents are
maximized. As already mentioned, previous approaches to HRI
showed difficulties in the measurement and quantification of
some dimensions such as ergonomics and interaction. Other
previous theoretical frameworks were proposed (e.g., Goodrich
and Schultz, 2007). In particular, a more novel approach (Gervasi
et al., 2020) postulates that collaborative systems can be evaluated
by combining both technical aspects with human social factors
and highlights eight latent dimensions, such as information
exchange, autonomy, adaptivity and training, human factors,
ethics, team organization, task, and cyber-security. In light of
these contributions, we believe that, with such set goal, the
adoption of neuroergonomics, for its study of neural networks
involving cognitive, perceptual, and emotional processing and, in
general, applied neuroscience, is mandatory to be considered.

As a result of the increased and renewed portability of brain–
computer interface (BCI), at reasonable cost, neurophysiological
and behavioral sensors can be useful for the development of
fully collaborative co-bots into the industrial context. In fact,
some of the weighting factors that should be considered in
the developed of co-bots are human fatigue, as a function
of time and workload, and executive functions (in particular
working memory, inhibition, and cognitive flexibility), which
are responsible for dynamic attentional coordination and are
impaired by stress (e.g., Shields et al., 2016), selective attention,
and cognitive states.

Indeed, each of these factors may better explain the usefulness,
applicability, and quantitative impact of co-botic systems in
real workplaces. Specifically, regarding fatigue, the optimization
process and the management of adjusting robots’ trajectories
could facilitate the human operator’s work. In this regard,
to reduce worker’s fatigue, elements such as the condition
of stability, the possible constraints of the activities, and the
presence of shared workspaces should be considered (Kim et al.,
2018; Hashemi-Petroodi et al., 2020). The presence of co-bots
in the industrial context could also be effective in terms of
performance, allowing better use of resource skills and executive
functions (Tsarouchi et al., 2016). Indeed, the advantages
introduced by the inclusion of robots with characteristics such
as strength, speed, precision, tirelessness, and repeatability
will allow reduced cognitive load and effort for the workers
performing their duties and allowing better use of intelligence,
creativity, and learning (Hashemi-Petroodi et al., 2020).

To assess mentioned dimensions in the co-bot, we highlighted
and propose some of the neurometrics that respond to
the purpose. A major distinction that should be taken into
consideration is the parameter domain, meaning if it refers
to the central electroencephalography (EEG) and event-related
potentials (ERPs), peripheral [electrodermal activity (EDA),
electrocardiogram data, respiratory system], or behavioral
(mostly derived from visual eye and gaze tracking systems)
system. The consideration of these parameters, consisting in the
detection and processing of sensory data, could allow co-bots to
more easily understand the objectives and intentions of human
partners and assist them in carrying out specific tasks.

Regarding the mental load, many studies used slow-wave
and fast-wave increases/decreases and (α/θ)/β or (α/θ)/(α + β)
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FIGURE 1 | A hypothetical model applied to HRI for the industrial adoption of co-bots, based on the Deming cycle.

ratios in the frontal and central brain areas (e.g., Wang et al.,
2020) to explore the brain networks contribution in cognitive
and emotional planning. In parallel, information about emotion
recognition has been collected via frontal asymmetry (Balconi
and Mazza, 2010; Balconi et al., 2014), normalized frontal
asymmetry (Balconi et al., 2009, 2015), theta-beta ratio (Angelidis
et al., 2018), and Hjorth parameters for affective state estimation
(e.g., Rakibul Mowla et al., 2020).

Regarding selective attention, instead, ERP approach can
be widely used to study the degree of attention, employing
P1 and N1 and later components such as P300, reflecting,
among the others, the identification of a target. In addition to
cerebral outputs, also behavioral measures can be collected, as the
identification of stimulus-driven saccades, time-to-first fixations,
and pupil dimension, which might be very informative about
visual attentional behavior and the overall representation of the
workers of their body position, movement, and acceleration in
the workplace.

On the other side, always more novel and varied techniques
are applied to biosignal and behavioral research (Cassioli and
Balconi, 2020), aiming at classifying, reducing the dimensionality
(Zhang et al., 2019), and predicting workers’ behavior. The
most notable is that the recent application of machine learning
to neurophysiological signal seems encouraging. Some of the
methods are artificial neural networks (Baldwin and Penaranda,
2012), k-nearest neighbors, support vector machine (Son et al.,
2013), and decision trees techniques (Solovey et al., 2014; Wang
et al., 2020), via deep learning brain decoding techniques,
showing that EEG signal might be used not only to obtain data
but also as a support in the designing process through the use
of brain activities, although it is important to note that actual
data and models refer to limited dataset and set of categories.
Also, intergroup differences might heavily limit the applications
of these approaches.

We then propose a quality cycle, structurally based, for the
most part, on Deming cycle (Deming, 1986) and in line with the
concept of neuroindustrial engineering coined byMa et al. (2012)
adjusted to the conjectured context for the development of an
optimal HRI drawn in this work (Figure 1).

In the first phase (planning), a screening and a
compartmentalization of the required processes are carried
out. In this phase, it is important to establish objectives and the
consequent BCI specifics (methods, chosen metrics) based on
the procedural flow and set goals. In the second phase (doing),
selected virtual and real scenarios are executed while data
are collected. As in co-bot systems the fluidity of interaction
and safety are primary requirements, we advocate for the
application of a holistic approach and the joint consideration
of central, peripheral, and behavioral parameters for the HRI
evaluation. The following dimensions, among others, should
be considered: the worker emotional discomfort, the executive
functions (with a focus on irrelevant stimuli inhibition), the
fatigue, and cognitive and emotional states in order to assist
in decision-making processes. Also, an easy-to-use interface
on which a feedback system is inserted should be provided in
order to make the workers aware of their performance and
status. Collected data is then (modeling/learning) used to
create bottom-up models, which will be tested again in the next
quality cycle. Finally, in the fourth phase, adjustments (change)
are implemented in the workspace for both workers and the
co-bots systems.

Furthermore, hyperscanning paradigms are now
able to obtain data on actions and social adaptation
during human-to-human interaction (Balconi et al.,
2019a,b; Balconi and Fronda, 2020b). If portability will be
increased, co-bots could receive precious information about
multiple and complex work–environment settings with
multiple agents.

Collaborative technology is still in its embryonic stage.
We expect that further technological, neuroscientific,
and behavioral developments will enrich and make
this technology more intuitive, intelligent, and suitable
for the human, leading to an optimized and safe
human–co-robot interaction.

Because of the augmented portability of sensors and
neuropshysiological systems, we believe that in the future smart
manufacturing could adopt neuroscientific protocols to support
workers on the field, aiming at increasing efficiency, ergonomics,
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and safety. In this work, we proposed a neuroindustrial quality
process for the development of an optimized HRI for co-
bot technology, based on the Deming cycle. We expect that
further technological and neuroscientific developments will
enrich and make co-bots more intuitive and suitable for
the human.
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This paper aims to review the current state of brain-to-brain interface (B2BI) technology

and its potential. B2BIs function via a brain-computer interface (BCI) to read a sender’s

brain activity and a computer-brain interface (CBI) to write a pattern to a receiving

brain, transmitting information. We used the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) to systematically review current literature related

to B2BI, resulting in 15 relevant publications. Experimental papers primarily used

transcranial magnetic stimulation (tMS) for the CBI portion of their B2BI. Most targeted

the visual cortex to produce phosphenes. In terms of study design, 73.3% (11) are

unidirectional and 86.7% (13) use only a 1:1 collaboration model (subject to subject).

Limitations are apparent, as the CBI method varied greatly between studies indicating

no agreed upon neurostimulatory method for transmitting information. Furthermore,

only 12.4% (2) studies are more complicated than a 1:1 model and few researchers

studied direct bidirectional B2BI. These studies show B2BI can offer advances in human

communication and collaboration, but more design and experiments are needed to

prove potential. B2BIs may allow rehabilitation therapists to pass information mentally,

activating a patient’s brain to aid in stroke recovery and adding more complex

bidirectionality may allow for increased behavioral synchronization between users. The

field is very young, but applications of B2BI technology to neuroergonomics and human

factors engineering clearly warrant more research.

Keywords: brain-to-brain interface, brain-computer interface, computer-brain interface, brain communication,

neuroergonomics

INTRODUCTION

In the past decade or so, a new neural interface technology, also known as a brain-to-brain interface
(B2BI), has entered literature as an extension of the usual applications of neuroimaging technology,
measuring one’s brain activity such as brain-computer interface (BCI, Nam et al., 2018), and brain
stimulation technology, activating the brain directly with electricity (hereinafter computer-brain
interface or CBI), to a multi-subject (sender-receiver) approach. B2BI allows two brains to mutually
exchange decoded neural information with each other through a BCI that reads a sender’s brain
activity and a CBI that writes the delivered brain activity to a receiving brain.
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Since its proof of concept by Pais-Vieira et al. (2013), B2BI
has found several interesting applications, ranging from simply
transmitting binary information (Grau et al., 2014) to creating
biological neural networks (Pais-Vieira et al., 2015). Perhaps
more excitingly, B2BIs have been used to issue instructions
to users (Jiang et al., 2019) and respond to questions (Stocco
et al., 2015). While these applications still only apply binary
information transfer, they show more complex applications of
such communication. Mashat et al. (2017) created a B2BI system
more focused on rehabilitation for patients. By combining a B2BI
with functional electrical stimulation (FES), they argued that
systems like this could allowmore advanced physical therapy. Lee
et al. (2017) argued that brain-to-brain systems could eventually
be applied to create thought-based communication between
people and even closed-loop feedback of one’s own brain activity.

Figure 1 shows a timeline of major events in B2BI research.
Though the first direct B2BI study involving transmitting
sensorimotor information between rodents was conducted in
2013, there existed very simple proof of concept studies and
exploratory literature on the subject as early as 2011. Early studies
used rodent models to test their devices, with Yoo et al. (2013)
controlling a rodent via a human connected to EEG, but the
first human-to-human study arrived from Grau et al. (2014).
Stocco et al. (2015) were the first to employ a bidirectional
design, transmitting information via magnetic stimulation in
one direction and visual feedback in the other. The same
year, Pais-Vieira expanded on their earlier system to create a
biological neural network through multiple ICM rats connected
bidirectionally. Stocco’s system was expanded on by Jiang et al.
(2019) with a different task, expanding the indirect bidirectional
B2BI literature.

FIGURE 1 | Timelines of advancement in brain-to-brain interface (B2BI) research.

Research Motivation
Despite the potential of its applications, B2BI is still in its
infancy and has a long way to go before mainstream adoption.
In particular, the contemporary B2BI research calls for additional
investigations in order to progress to maturity. First, no
systematic review study has been conducted in the field; to
the best of our knowledge, no comprehensive review study of
any kind has been conducted. This has the effect of isolating
studies from each other rather than forming a complete body
of research. Alongside the advances made in the field, B2BI
research also identifies many gaps in the literature that warrant
further investigation. Though small in number, the currently
published B2BI studies pose various problems, including (i) how
to highlight methodological concerns in research studies (Eagly
and Wood, 1994) critical in improving future work and (ii) how
to identify questions and areas where further research is or is not
necessary (Mahood et al., 2014). A systematic review, defined as a
“review of the evidence on a clearly formulated question that uses
systematic and explicit methods to identify” (Jahan et al., 2016,
p. 1), address both of these issues. A systematic review selects
and analyzes relevant research to extract and analyze the data
present. To our knowledge, existing literature on B2BI has not
been reviewed in depth, and we present the first systematic review
of the field. In this study, we seek to provide a systematic review
of B2BI literature allowing researchers, both current and future,
the ability to understand the state-of-the-art of B2BI as well as
determine future directions, topics, and terminology of the field.

In regards to that final point, the exact definition of a B2BI
varies between publications, and no set definition is agreed upon
or standardized. From the literature, B2BI can be defined as
a system, composed of a BCI and CBI portion, which records
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FIGURE 2 | A graphical scheme of collaboration type. Directionality refers to the flow of information, either just from sender to receiver or in both directions. Directness

refers to the use of brain stimulation to send information (a straight arrow) or other means (a curved arrow). It is important to note that indirect unidirectional systems

do not qualify as B2Bs by our definition and that indirect bidirectional systems could involve indirect (curved arrow) information transmission from the sender or the

receiver, not just as depicted.

a user’s brain activity and uses it to modulate another user’s
brain activity allowing information transfer between the two
brains. However, this definition does not accurately reflect the
rich diversity of B2BI systems. Through this systematic review,
we will define current B2Bs in terms of directionality (the flow of
information) and directness (the use of brain stimulation to send
information) (see Figure 2); in this study a true B2BI is defined as
a direct bidirectional B2BI. Unidirectional systems only transmit
information from one subject to another, while bidirectional
systems allow for the transmission of information back in a
call-and-response design. Each of these directions can also be
labeled as direct or indirect, indicating the means through which
information is sent. Direct transmission involves activation of
the receiving brain via the B2BI, through some means such
as magnetic, ultrasonic, or electrical stimulation. Direct B2BIs
employ only neuromodulation to impart information to the
receiver. Indirect transmission refers to any system that uses
any method other than neuromodulation at any point of the
communication. Direct and indirect uni and bidirectional B2BIs,
though fundamentally different in their design, often have similar
applications. B2BIs show potential in allowing communication
with locked-in patients, advanced user state monitoring, and
even potential military applications (Hildt, 2019). Some literature
that discusses B2BI does not meet these criteria; research by

Maksimenko et al. (2018) is fascinating and adjacent to the field,
but we believe closer relates to the subject of hyperscanning and is
outside the scope of this review. James (2011) has a similar issue,
discussing and theorizing about brain-to-brain communication
however failing to present a device that we think qualifies as a
true B2BI. These definitions allow us, as well as other researchers,
to continue to analyze and produce research in this new field.
Finally, we seek to identify research issues that have not been
fully addressed by the literature to date. Establishing research
directions and questions can help guide researchers looking
for new avenues and investigations to pursue in the budding
field of B2BI. In particular, this study focused on four main
research questions (RQs) regarding (1) BCI methodology, (2)
CBI methodology, (3) Collaboration type, and (4) Collaboration
model by subject type.

Chronologically, B2BI research has advanced from indirect
unidirectional systems to direct unidirectional systems to indirect
bidirectional systems. Early devices presented by James in 2011,
as well as other indirect unidirectional systems, bear most
resemblance to traditional BCI systems with visual feedback
rather than actual B2BIs. It was not until 2013–2015 that direct
B2BI systems became commonplace in research. From there,
researchers began to improve the systems and develop new
paradigms to test their applications. Such improvements include
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use of transcranial focused ultrasonic stimulation (tFUS) for
increased spatial accuracy of neuromodulation (Lee et al., 2017)
in non-invasive B2BI. Rodent studies are often capable of invasive
methods of neurostimulation, and thus research in the animal
model began with technology like implanted electrodes (Pais-
Vieira et al., 2013; Yu et al., 2014) and have equally advanced
into technology such as optogenetic recording and stimulation
of rat brains (Lu et al., 2020). Beyond just the individual BCI
and CBI devices or methods employed, task design has evolved
as well. Referred to in this paper as the collaboration model,
most studies in this review employ a 1:1 model, however N:N
models involving transmission of information between a network
of rodent brains have been tested (Pais-Vieira et al., 2015). In
2019, Jiang et al. added to the body of literature supporting the
collaborative potential of B2BI with a N:1 collaboration model.

Review Objectives
The overarching objective of this study was to conduct a
comprehensive review on B2BI research, with the goal of
systematically identifying, critically appraising, and synthesizing
all relevant studies on neural communication between two
or more brains. An explicit systematic method, the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) was used to address four specific research questions
(RQs) regarding BCI methodology (RQ1), CBI methodology
(RQ2), collaboration type (RQ3), and collaboration model by
subject type (RQ4) which together articulate the current-state-
of research being conducted in B2BI. PRISMA is known to
minimize bias and thus provide reliable findings from which
conclusions can be drawn (Liberati et al., 2009). To the best of
our knowledge, this is the first systematic review study that used
PRISMA to compile all relevant and cutting-edge B2BI research
to address the current state-of-the-art brain-to-brain interface
research since its first publication in 2011.

RQ1. What is the BCI system employed and what region

of the brain is neural activity recorded? To answer this BCI
methodology-related question, we analyze the usage frequency
of different BCI methods in the 15 selected research papers
on B2BI. Due to the small body of literature, all 15 studies
can be divided into using either electroencephalogram (EEG)
recording, intracortical microelectrodes (ICM), or optogenetics.
For increased clarity, these categories were further subdivided
into the region of the brain that the methods targeted: the
motor cortex, somatosensory cortex, visual cortex, or the nucleus
incertus. The BCI method used is important, as it relates to
not only the task performed by the “sender” in a B2BI system,
but also the type of information being encoded and sent (i.e.,
motor movements).

RQ2. What is the CBI system employed and what method

does that system use to elicit neural activity? To address
the CBI methodology of B2BI systems in literature, this paper
analyzes the usage frequency of different CBI technology
and the regions of the brain that they target. B2BI studies
utilize either intracortical microelectrodes (ICM), transcranial
magnetic stimulation (tMS), transcranial focused ultrasonic
stimulation (tFUS), or optogenetics. These devices were used to
stimulate either somatosensory cortex, motor cortex, or visual

cortex (phosphenes) in humans. In animal models, either the
somatosensory cortex, nigrostriatal pathway, nucleus incertus, or
antenna are targeted. The CBI methodology indicates what the
“receiver” is intended to do in a given B2BI task (i.e., move left
or right).

RQ3. Which of the four categories (indirect/direct

unidirectional or indirect/direct bidirectional) does the

collaboration between subjects fall under? To address the
question of collaboration type, we categorize all of these selected
literature based on directionality. As mentioned previously,
these terms refer to the overall design of the B2BI system,
indicating how the participants were able to communicate with
each other (i.e., using peripheral nervous system pathways or
direct neuromodulation).

RQ4. Through what model (1:1, N:1, 1:N, N:N) do the

subjects collaborate? To answer this collaborationmodel-related
question, we also further divide papers by species of subject, as
several studies employ cross-species B2BI. The 15 experimental
research papers selected only utilize humans, rodents, and
cockroaches as subjects. Inter-species pairs exist on several
occasions, and answering this question allows us to determine
the application of B2BI systems (e.g., communication, team
collaboration, decision making).

REVIEW METHOD

We applied the systematic approach PRISMA (Liberati et al.,
2009) in this review. Research articles were gathered from four
different databases: (a) IEEE Xplore for a technology perspective;
(b) PubMed, for a medical perspective, (c) Engineering Village,
for an engineering perspective; and (d) Web of Science for a
cross-disciplinary perspective (Powers et al., 2015).

Inclusion and Prescreening Criteria
Inclusion criteria were English articles written between 2013
and August 18th 2020. The first experiment conducted using
direct B2BI was published in 2013, so that year functioned as
our starting point. Unpublished or working papers, dissertations,
news articles, book chapters, conference papers, and ethical
reviews were excluded. Experimental research will be the focus
of this analysis, but mention will be given to those papers that do
not conduct an experiment but still contribute information to the
budding field of brain-to-brain communication.

The search term used in all four search engines was “brain
to brain.” Typically, a systematic review might include a more
complex search term, however there are very few publications
on this subject and even fewer domains that the technology has
been applied to. Figure 3 shows the flow diagram of PRISMA
with the number of studies from each online database. After
the keyword search, duplicates were removed and 193 articles
remained. Those articles were screened again based on titles
and abstracts, and 43 studies remained. Lastly, 15 experiment-
conducting articles were selected.

Eligibility Criteria
This review pertains specifically to experiments conducted
with B2BI devices. Experiment studies where subjects’ brain
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FIGURE 3 | PRISMA flow diagram of brain-to-brain interface research paper review.

activities were measured simultaneously but no data was actively
“sent” from one brain to the other were excluded. Due to the
small pool of literature, further screening based on subject or
experimental design (control group, measured variables, etc.)
proved infeasible. The main question when screening full text
articles for eligibility was whether or not the study recorded
activation from one brain that was used to selectively modulate
activation in a different brain. Screening based on this question
resulted in the 15 selected experimental studies.

RESULTS

The current status of B2BI research, based on the 15
selected papers, is shown in Figure 4 and Table 1. The
most commonly used device for BCI is EEG (12 papers,
80% of the literature), specifically the method of targeting
the motor cortex in a motor imagery (MI) task (7, 46.7%).
ICM was the most common CBI technology employed (6,
40%), and most frequently stimulated the somatosensory
cortex (5, 33.3%). The majority of papers utilized a direct
unidirectional collaboration (11, 73.3%) and the large
majority of papers utilized a 1:1 collaboration model
(13, 86.7%).

BCI Methodology
In the 15 B2BI studies analyzed, a total of 3 different
neuroimaging technologies were applied to record neural signals.
EEG was used by 80% (12) of the studies, ICM was used by
13.3% (2), and optogenetics was used by 6.7% (1) of the studies.
Every study that involved human subjects employed EEG for
the BCI portion of their experiment while ICM was used as a
BCI exclusively for rodent-to-rodent studies. Optogenetics was

FIGURE 4 | (A) The percentage of papers that target each region with their

BCI. (B) The percentage of papers that target each region with their CBI.
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TABLE 1 | Summary of 15 brain-to-brain interfacing studies.

BCI Device BCI Method CBI Device CBI Method Collaboration Type Collaboration Model References

(Neuroimaging) (Stimulation)

EEG MI tMS Visual Cortex Direct Unidirectional 1:1 (Human:Human) Grau et al., 2014

Motor Cortex Direct Unidirectional 1:1 (Human:Human) Rao et al., 2014, Rajesh

et al., 2020

Indirect Bidirectional 1:1 (Human:Human) Mashat et al., 2017

ICM Somatosensory Cortex Direct Unidirectional 1:1 (Human:Rodent) Yu et al., 2014, Zhang et al.,

2019

tFUS Somatosensory Cortex Direct Unidirectional 1:1 (Human:Human) Lee et al., 2017

SSVEP tMS Visual Cortex Indirect Bidirectional 1:1 (Human:Human) Stocco et al., 2015

N:1 (Human:Human) Jiang et al., 2019

ICM Antenna Direct Unidirectional 1:1 (Human:Cockroach) Li and Zhang, 2016

Nigrostriatal Pathway Direct Unidirectional 1:1 (Human:Rodent) Koo et al., 2017

tFUS Motor Cortex Direct Unidirectional 1:1 (Human:Rodent) Yoo et al., 2013

ICM Motor Cortex ICM Somatosensory Cortex Direct Unidirectional 1:1 (Rodent:Rodent) Pais-Vieira et al., 2013

Somatosensory Cortex ICM Somatosensory Cortex Indirect Bidirectional N:N (Rodent:Rodent) Pais-Vieira et al., 2015

Optogenetics Nucleus Incertus Optogenetics Nucleus Incertus Direct Unidirectional 1:1 (Rodent:Rodent) Lu et al., 2020

only used once (Lu et al., 2020), and that study was also a
rodent-to-rodent experiment. This discrepancy can be ascribed
to the high accuracy of invasive methods such as ICM and
optogenetics, assuming that the subject is willing to undergo
the operation. In human studies, non-invasive methods take
precedence despite their lower accuracy most likely because of
ease of access, application, and data analysis.

Of the studies that employed EEG, either motor imagery (MI)
or steady state visually evoked potentials (SSVEP) were measured
by the BCI. MI EEG was used as a simple method of generating
a binary signal, based on event related desynchronization
(ERD) between the left and right hemispheres during right and
left hand/feet movements, in Grau et al. (2014), Rao et al.
(2014), and Rajesh et al. (2020). MI EEG also functioned as
a direct translation, where the imagined movement of a hand
corresponded to a similar action on the receiving end (right hand
movement begets right turn, etc.) in Yu et al. (2014), Mashat et al.
(2017), Lee et al. (2017), and Zhang et al. (2019). SSVEP EEG
was applied in similar ways, with Stocco et al. (2015) using the
visually evoked potentials to create a simple binary signal (subject
focusing on one flashing LED or another) while Li and Zhang
(2016) and Koo et al. (2017) used flashing LEDs on the left and
right of a screen that corresponded to left and right movement of
the receiver.

As mentioned, invasive methods were used for all the
studies involving rodent-to-rodent transmission of information.
The higher accuracy of these methods allowed for more
unique applications. Pais-Vieira et al. (2013), the first study to
employ a direct brain-to-brain paradigm, measured motor cortex
activation in rats via ICM. Pais-Vieira et al. (2015) later went
on to measure somatosensory cortex activation in rats in their
network of rodent brains also using ICM. Lu et al. (2020) used
optogeneticallymodified rats tomeasure activation of the nucleus
incertus; this activation was used as a gauge of locomotion speed.

CBI Methodology
In total, four different CBI technologies were used in the selected
B2BI literature. Used equally most frequent were ICM and tMS,
each used by 40% (6) of the studies analyzed. Beyond those two,
13.3% (2) of studies used tFUS and 6.7% (1) used optogenetics.
As with the BCI methodology, CBI methodology is heavily
dependent on the task. In terms of ICM applications, Yu et al.
(2014) and Zhang et al. directly stimulated the somatosensory
cortex to steer themovement of trained rats. At the same time, the
somatosensory cortex has been stimulated by ICM for far more
complicated tasks, such as rodent behavioral synchronization on
a series of tasks (Pais-Vieira et al., 2013) and the creation of a
biological neural network of rodent brains to classify stimulus
and even forecast weather (Pais-Vieira et al., 2015). ICM was also
used to steer a cockroach through a maze via antenna stimulation
(Li and Zhang, 2016) and manipulate rat movement through a
maze via nigrostriatal pathway stimulation (Koo et al., 2017).

TMS forms the bulk of CBI methodology with human
subjects. Phosphenes, or tMS stimulation of the visual cortex to
produce artifacts in a person’s field of view, were used as a visual
indicator of a binary choice (1 or 0, yes or no, left or right) in
Grau et al. (2014), Stocco et al. (2015), and Jiang et al. (2019). The
remainder of applications of tMS were for stimulating the human
motor cortex either to press a button (Rao et al., 2014; Rajesh
et al., 2020) or directly move a subject’s limb (Mashat et al., 2017).
Though less common, tFUS is also capable of non-invasively
modulating neural activity. In B2BI literature, it has been used
in humans targeting the somatosensory cortex to produce tactile
sensations in the hands (Lee et al., 2017) and in rodents targeting
the motor cortex to produce tail movements (Yoo et al., 2013).
Lastly, as with their BCI, Lu et al. (2020) used optogenetically
modified rodents in the CBI portion of their study. The rodent’s
nucleus incertus was hit with light to produce activation, allowing
control of locomotive speed in the rat.
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FIGURE 5 | (A) Number of papers that employ each collaboration type. (B)

Number of papers that employ each collaboration model.

Collaboration Type
As stated previously in this paper, B2BI designs can be broken
down into four categories. These categories, and the percentage
of selected B2BI papers that fall into each of them, are shown
in Figure 5. Indirect unidirectional involves the transfer of
information in only one direction between two brains, however
the information transfer is not done through a neuromodulatory
device. While the classification of indirect unidirectional exists,
these studies are more akin to hyperscanning literature and are
not classified as true B2BI. The large majority of B2BI literature,
73.3% (11) of it, uses a direct unidirectional collaboration
type; direct unidirectional designs transmit information in
one direction between subjects using some form of direct
neuromodulation (tMS, ICM, etc.). These papers can be seen in
every category of BCI and CBI systems, as shown in Table 1.

Less common are the indirect bidirectional studies which
transmit information in both directions between subjects.
These are labeled as indirect as they transmit information
in one direction via neuromodulation, however the return of
information to the sender is done through indirect methods such
as visual feedback (e.g., messages on a computer screen). This
collaboration type was employed by 26.7% (4) of the selected
articles (Pais-Vieira et al., 2015; Stocco et al., 2015; Mashat et al.,
2017; Jiang et al., 2019). Stocco et al. (2015) and Jiang et al.
(2019) used a computer screen to close the loop and make the

system bidirectional, however this is not the only approach.
Mashat et al. (2017) utilized functional electrical stimulation
(FES) of the original sender’s arm to close the loop and signal
that information has been sent back from the receiver. Pais-
Vieira et al. (2015) directly transmitted information between a
network of rodent brains using ICM. We chose to classify this as
indirect bidirectional as the network was not fully connected (not
every rodent connected bidirectionally to every other), though
we acknowledge that the networked structure of their experiment
does stretch the bounds of our definition.

Collaboration Model by Subject Type
The collaboration model employed by each study is an important
descriptor of how information was sent in the system and
who the information was sent to. 46.7% (7) studies transmitted
information from human subject to human subject, shown
again in Table 1. There were several studies that employed
cross-species B2BIs, with 26.7% (4) of the studies transmitting
information from human to rodent (Yoo et al., 2013; Yu et al.,
2014; Koo et al., 2017; Zhang et al., 2019). Pais-Vieira et al.
(2013, 2015) specifically worked with only rodent to rodent
transmission, as did Lu et al. (2020), forming 20% (3) of
the literature. One study, Li and Zhang (2016) transmitted
information from a human to a cockroach as well.

Collaboration model is not diverse in the selected literature.
All but two studies, or 86.7% (13) of B2BI papers, use a 1:1
model. This means that information, regardless of directionality
(unidirectional or bidirectional) is only transmitted between 2
subjects. This trend is broken only by Pais-Vieira et al. (2015)
who employed a networked N:N model and Jiang et al. (2019)
who employed a N:1 collaboration model.

B2BI Definitions
The exact attributes of a B2BI system are not well-discussed.
One third of the studies conducted in the field do not include
a definition of brain-to-brain interfacing. Jiang et al. (2019)
provides a comprehensive definition, stating that “brain-to-
brain interfaces (BBIs) in humans are interfaces which combine
neuroimaging and neurostimulation methods to extract and
deliver information between brains, allowing direct brain-to-
brain communication. A BBI extracts specific content from the
neural signals of a ‘Sender’ brain, digitizes it, and delivers it
to a ‘Receiver’ brain.” Alongside this paper, the large majority
of studies, 8 out of the 10 that provide a definition, specify
the existence of a BCI and CBI component. This aligns with
the concept of neuromodulation being key in B2BI, and the
requirement of a CBI in the information transfer (i.e., a direct
rather than indirect).

In order to form as inclusive a definition as possible while
still maintaining the critical attributes that make a B2BI system,
we created a more standardized definition and provide with
it a classification of B2BI devices into further categories. A
B2BI is a system, composed of a BCI and CBI portion, that
records one (or several) user’s brain activity and uses it to
directly modulate another (or several other) user’s brain activity
allowing information transfer between the two brains, with
the CBI activation as a function of activity recorded by the
BCI allowing the receiver to infer the sender’s cognitive state.
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Reusing the terminology presented earlier, this definition further
classifies B2BI systems as either direct unidirectional, indirect
bidirectional, or direct bidirectional systems so long as they
include a CBI that directly modulates a receiving brain at some
point in the information transfer loop. Importantly, systems
that employ only BCI devices or only neurostimulation (such
as indirect unidirectional systems) are clearly excluded. Studies
such as James (2011) and Maksimenko et al. (2018), mentioned
previously, discuss and contribute to the realm of B2BI research,
however they fail to demonstrate a system that meets the
definition. In terms of further classification into categories
relating to collaboration model, this definition includes systems
involving more than just two subjects. Though very few studies
include complex collaboration models at this time, we aim to
include B2BI devices that exist now and that may exist in
the future.

DISCUSSION

B2BI Systems
Pertaining to the frequency with which each BCI device was
used and how it was used, we found that 80% of studies selected
used EEG. No other non-invasive BCI devices were reported,
with the remainder of studies using either ICM or optogenetics
in exclusively rodent models. These EEG based BCI systems
employed either MI (46.7%) or SSVEP (33.3%). The invasive BCI
methods on the other hand were able to target more specific
locations (nucleus incertus, motor and somatosensory cortex
itself). The application of non-invasive BCI methods for human
subjects makes sense, as implanting electrodes in humans is not
currently a commonplace procedure. EEG is the chosen option,
most likely due to an abundance of literature in the field of BCI
utilizing the technology, however EEG lacks the spatial resolution
to identify complex brain activity due to the source localization
problem. Of the most common EEG methods in the selected
literature, MI has been limited to mostly binary information
transfer potentially due to the difficulty of classifying more than
two or three options at once. SSVEP, while being capable of more
than two or three classes, is more akin to eye tracking than a true
measure of user-generated brain activity.

Future research should explore other BCI hardware. Though
far less practical in terms of size and ease of use, functional
magnetic resonance imaging (fMRI) has shown potential for
recognizing more abstract cognitive states and even emotions
(Ruffini, 2016). A BCI method such as functional near-infrared
spectroscopy (fNIRS) could potentially serve as a middle ground
in terms of the spatial resolution of fMRI and the portability of
EEG. With these new devices, the software portion of a B2BI
will need to change as well. Current systems transmit mostly
binary information and future applications of this technology,
especially those applying more advanced neuroimaging methods,
will require much greater throughput and more complicated
handling of brain activity before the receiver is stimulated by
the CBI.

In regards to analyzing the CBI devices used and where
they targeted (RQ2), there is far less consensus. The majority
of studies used either ICM (40%) or tMS (40%). These systems

targeted mostly the somatosensory cortex (33.3%), with slightly
fewer targeting the motor cortex (26.7%) and visual cortex
(20%). Invasive CBI devices were exclusively used with rodent
models while non-invasive CBI devices were used with both
rodents and humans. Invasive CBI techniques are usually not
preferred due to invasiveness-associated complications. Non-
invasive CBI systems including transcranial direct/alternating
current stimulation (tDCS/tACS), tMS, and tFUS have been
actively investigated because of the clinical-friendly, non-invasive
approach. Compared to other non-invasive neuromodulation
methods, such as tDCS and tMS, tFUS is promising due to its
excellent spatial selectivity and superior penetration depth (Lee
et al., 2016). The mechanism of tFUS neuromodulation remains
to be explored; low-intensity tFUS is theorized to exert acoustic
radiation forces via the acoustic pressure waves which can
interact with neuronal membrane to induce plasma membrane
deformation, and affect mechano-sensitive ion channels, to
modulate the activity of neurons (Tyler, 2012; Tyler et al., 2018).
Other underlying mechanisms may involve the intramembrane
cavitation induced sonophoresis (Krasovitski et al., 2011) and
the thermal effect of ultrasound (Darrow et al., 2019). These
unclear underlying mechanisms hinder scholars from choosing
optimal ultrasound parameters to modulate the neural activity
of the brain. In other words, different sonication settings
of ultrasound frequency, pressure, intensity, waveform, could
result in excitation or inhibition of neural activity, and cause
various degrees of neurofeedback. Such a challenge may
increase the difficulty of controlling CBI systems from the
software perspective.

Besides the interaction between ultrasound and brain,
another challenge for tFUS based CBI systems has to do with
the interaction between ultrasound and skull. The acoustic
attenuation and distortion caused by the skull has been
treated as a barrier for transcranial ultrasound application
for more than half a century (Hynynen and Clement, 2007).
Over the past 20 years, scholars found that low-frequency
ultrasound has less acoustic attenuation and distortion for
transcranial ultrasound propagation. Also, the development
of phased-array transducers makes it possible for transcranial
ultrasound therapy by applying aberration correction (Clement
and Hynynen, 2002). The low-intensity tFUS single-element
transducer, rather than multi-element (phased-array) transducer,
is the most common device for transmitting acoustic energy
to the desired region through the skull due to its low cost
and easy manipulation. However, in this case, it is hard to
adjust the directivity and focal depth of ultrasound beam, which
is a limitation of tFUS CBI systems to target specific areas
inside the brain from the hardware perspective. To overcome
such limitations, some promising methods have been proposed
recently, which includes applying acoustic lens (Maimbourg
et al., 2020) or holographic plates (Jiménez-Gambín et al., 2019)
in front of the tFUS transducer to achieve adjustable acoustic
beam steering and focusing. Furthermore, new applications
of tFUS based CBI systems may be explored more. As an
example, a sonogenetics approach can be used to stimulate
specific neurons in the desired area of the brain (Ibsen et al.,
2015).
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Improvements and standardizations in the realm of defining
these systems is also an important step, as the definitions
provided in the literature are inconsistent. Studies focus too
much on their application for transmitting motor information, as
in Mashat et al. (2017), overly specify attributes such as wireless
transmission, as in Rajesh et al. (2020), or only specify the
inclusion of a BCI and CBI portion and very little else, as in Rao
et al. (2014) and Li and Zhang (2016). More cohesion in the field
as to what type of B2BI is being presented would allow for quicker
communication of applications for these devices. Ideally, a more
robust definition like the one provided here will aid and expedite
discussion about this budding technology.

Experiment Design
We found the design of B2BI systems in the collected literature
to be lacking in diversity. As collaboration and communication
are some of the core applications of B2BI, results in this area
are key in demonstrating the potential of the technology. The
bulk of literature followed a direct unidirectional design (73.3%)
while no studies implemented a direct bidirectional design
(neuromodulation on both the sender and receiver). In a similar
fashion, almost every study employed a 1:1 collaboration model
(86.7%). More complex models were very rare. The majority of
1:1 studies employed either a human:human model (46.7%) or a
human:rodent model (26.7%). The frequency of these methods
is understandable; the field is very young and unidirectional
models must logically predate bidirectional models. Beyond that,
the use of human-to-rodent and rodent-to-rodent models is also
indicative of the precaution being taken in the realm of CBI
safety with human subjects. High confidence in neuromodulation
within human subjects is needed to expand into more complex
designs, such as networked human brains in an N:N model
resemblant of Pais-Vieira et al. (2015). Unidirectional models
are also likely far more common as bidirectional models would
double the cost of the device, making indirect bidirectional
systems (utilizing peripheral nervous pathways for the response)
more reasonable.

Future research needs to expand into more complex
collaboration designs and test the capabilities of B2BI. Jiang et al.
(2019) is the only study to employ a 2:1 collaboration model,
where the receiver had to identify which sender was more reliable
(due to the introduction of noise to a random receiver’s signal).
Multiple sender systems such as this more closely resemble
the diversity of some real world applications, and investigation
into 1:N collaboration models (with one sender broadcasting
to a group of receivers) should follow suit. To see the true
potential of collaboration in these devices, systems such as Pais-
Vieira et al.’s (2015) N:N model warrant further exploration
as well. Though uses in the domain of human subjects may
not be employed as biological neural networks, a network of
collaborating brains exchanging information to and fro could
hold useful applications in cases requiring complex teamwork.
All of these future directions require investigation into direct
bidirectional systems, something we have not seen yet in B2BI
literature. Transmission of information directly between brains,
both to and from each subject, is necessary to explore complex
applications of B2BI technology.

Unfortunately, and similar to the procedure used with existing
CBI systems such as tMS, tFUS neuromodulation usually requires
patients to get CT or MR scans first to provide researchers the
skull morphology. Then, based on such information and through
the assistance of a neuronavigation system, an appropriate
ultrasound beam with designed acoustic parameters can be
generated and transmitted into the desired region of the brain
for a given period of time. Given the two limitations of tFUS-
based CBI systems mentioned in B2BI Systems, how to monitor
and evaluate the ultrasound beam inside the desired region
of the brain would be a key to increase the success rate,
and decrease the risk of CBI experiments. Future work should
include mention of imaging guidance, temperature and neural
response monitoring for the sake of safety and effectiveness,
information that is lacking in some tMS and tFUS B2BI studies.
Since acoustic radiation force plays a crucial role for ultrasound
neuromodulation, magnetic resonance-acoustic radiation force
imaging (MR-ARFI) method can be used to specify the location,
and quantify the magnitude of ultrasound beam inside the brain
(Phipps et al., 2019). Furthermore, MR-thermometry is a useful
tool to show the temperature rise in the sonication area of the
brain (Ozenne et al., 2020). With these methods, it is expected to
ensure the operational safety of ultrasound neuromodulation for
clinical applications. Meanwhile, functional magnetic resonance
imaging (fMRI) has shown its effectiveness for measuring neural
activity of the brain (Beisteiner et al., 2020), and could help
researchers choose optimal sonication parameters for future CBI
and B2BI studies.

Applications
Applications of B2BI range from rehabilitation and treatment
to communication, collaboration and synchronization. After an
injury that is potentially treatable by brain stimulation, such
as a stroke, activation motor regions of the brain can help
the patient recover faster. Activation of motor cortex via brain
stimulation such as tMS can help promote neuroplasticity and a
relearning of lost motor ability (Neren et al., 2016). A physical
therapist could, through a B2BI, issue motor commands to a
patient during rehabilitation to assist in recreating lost pathways
in their brain. Something similar to this was done by Mashat
et al. (2017) using functional electrical stimulation (FES) of the
arm; the next logical step up from FES would be direct neural
stimulation rather than muscular. This application of B2BI could
potentially expedite rehabilitation of post-stroke patients through
neuroplasticity. Beyond the professional-patient relationship,
B2BI has significant future applications in communication
and collaboration. In the first B2BI study, Pais-Vieira et al.
(2013) demonstrated that rodents connected to a B2BI could
learn to synchronize their behavior without any peripheral
nervous system cues (such as sight of the other rat). Behavioral
synchronization such as this could be very advantageous in a
workplace where it is important for workers to move with each
other during a complex task. Adding to this a networked, or at
least >1:1, collaboration model could result in a team of workers
moving as a collective unit while completing a potentially
hazardous task. Stocco et al. (2015) posits that B2BI could find
application in communication between users when traditional
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verbal communication falls short, such as in users with Broca’s
aphasia or even different native languages. These applications
are supported by the relatively small body of literature we have
to date, but as research and technology progresses futuristic
applications become less futuristic.

As BCI technology becomes more capable of recording
nuanced brain activity and CBI technology more precise at
stimulating the brain, it becomes more possible to transmit
complex information between B2BI users. Future B2BI devices
could transmit abstract thoughts, memories, or emotions from
user to user, things that are often quite difficult to convey to other
humans through conventional means. As the body of research
continues to grow, so do the possibilities and applications of
this technology.

CONCLUSIONS

We systematically identified, critically appraised, and synthesized
15 relevant studies on brain-to-brain interfaces for information
transmission between brains. These studies, all published after
2013, fit the pre-specified inclusion and eligibility criteria. We
used an explicit systematic method, the preferred reporting
items for systematic reviews and meta-analyses (PRISMA)
to address 4 specific questions regarding BCI methodology
(RQ1), CBI methodology (RQ2), collaboration type (RQ3), and
collaboration model by subject type (RQ4). We also present a
wide-encompassing definition of a brain-to-brain interface to
simplify later reviews and classification.

Future challenges and directions for B2BI research
demonstrated in this review include:

• The lack of consensus on CBI methodology, indicating the
existence of benefits and drawbacks to each region of the brain
that may have been chosen.

• Very little diversity in CBI technology used. The large majority
of studies used either tMS or ICM. In terms of non-invasive
neuromodulation, other devices such as tFUS and transcranial
direct/alternating current stimulation (tDCS/tACS) could
allow novel applications of the technology in future studies
(Rao et al., 2014).

• Only a few studies that employ complicated collaboration
designs showed that few researchers have looked to stretch the
limits of what B2BI may be capable of.

• No direct bidirectional collaboration types, only studies
using peripheral nervous pathways (visual feedback). Future

research into direct bidirectional systems could allow B2BI
communication while performing more complicated tasks.

This systematic review is unfortunately limited in several ways
due specifically to the limited number of publications. The
PRISMA system could not be employed in its entirety as
certain measures, like the PICOS statement, were too limiting
for the small number of papers. Rather than filter the papers
analyzed by metrics such as participants and interventions,
specific research questions were listed in detail for analyses
and as many experimental papers were selected as possible.
The small number of papers targeted also poses possible
problems regarding bias within and across studies. In order
to most thoroughly present the state of B2BI research though,
all 15 studies were included and analyzed. All limitations
considered, this systematic review, based on the findings of
documented, transparent, and reproducible searches, should
help build cumulative knowledge and guide future research
regarding direct communication between brains via B2BIs. The
summarized findings herein will hopefully help facilitate new
discoveries and experimentation to push the boundaries of brain-
to-brain interfacing.
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I Am Looking for Your Mind: Pupil
Dilation Predicts Individual
Differences in Sensitivity to Hints of
Human-Likeness in Robot Behavior
Serena Marchesi 1,2, Francesco Bossi1,3, Davide Ghiglino1,4, Davide De Tommaso1 and
Agnieszka Wykowska1*

1Social Cognition in Human-Robot Interaction, Istituto Italiano di Tecnologia, Genova, Italy, 2Department of Computer Science,
Faculty of Science and Engineering, Manchester University, Manchester, United Kingdom, 3IMT School for Advanced Studies,
Lucca, Italy, 4Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, Università di Genova, Genova, Italy

The presence of artificial agents in our everyday lives is continuously increasing. Hence,
the question of how human social cognition mechanisms are activated in interactions
with artificial agents, such as humanoid robots, is frequently being asked. One
interesting question is whether humans perceive humanoid robots as mere artifacts
(interpreting their behavior with reference to their function, thereby adopting the design
stance) or as intentional agents (interpreting their behavior with reference to mental
states, thereby adopting the intentional stance). Due to their humanlike appearance,
humanoid robots might be capable of evoking the intentional stance. On the other
hand, the knowledge that humanoid robots are only artifacts should call for adopting
the design stance. Thus, observing a humanoid robot might evoke a cognitive conflict
between the natural tendency of adopting the intentional stance and the knowledge
about the actual nature of robots, which should elicit the design stance. In the present
study, we investigated the cognitive conflict hypothesis by measuring participants’
pupil dilation during the completion of the InStance Test. Prior to each pupillary
recording, participants were instructed to observe the humanoid robot iCub
behaving in two different ways (either machine-like or humanlike behavior). Results
showed that pupil dilation and response time patterns were predictive of individual
biases in the adoption of the intentional or design stance in the IST. These results may
suggest individual differences in mental effort and cognitive flexibility in reading and
interpreting the behavior of an artificial agent.

Keywords: intentional stance, human–robot interaction, pupil dilation, individual differences, human-likeness

INTRODUCTION

Artificial agents are becoming increasingly present in our daily environment. From vocal assistants to
humanoid robots, we are observing a change in the role played by these new entities in our lives
(Samani et al., 2013). However, it is still a matter of debate as to whether humans perceive embodied
artificial agents, such as humanoid robots, as social and intentional agents or simple artifacts
(Hortensius and Cross, 2018; Wykowska et al., 2016). Several researchers have investigated whether
humans would deploy similar sociocognitive mechanisms when presented with a novel type of
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(artificial) interaction partner (i.e., humanoid robots) as they
would activate in an interaction with another human (Saygin
et al., 2012; Cross et al., 2019; Wykowska, 2020).

In this article, we report a study in which we investigated
whether robot behavior—by being humanlike or
mechanistic—can modulate the likelihood of people adopting
the intentional stance (Dennett, 1971). The study also addressed
the question of whether pupil dilation—a marker of cognitive
effort—can predict the type of stance people would adopt toward
the robots, and how all these factors are related to individual
“mentalistically inclined” or “mechanistically inclined” biases.

According to Dennett (1971), the intentional stance is a
strategy that humans spontaneously adopt to interpret and
predict the behavior of other humans, referring to the
underpinning mental states (i.e., desires, intentions, and
beliefs). The intentional stance is an efficient and flexible
strategy, as it allows individuals to promptly interpret and
predict others’ behavior. However, when interacting with
nonbiological systems, humans might adopt a different
strategy, which Dennett describes as the design stance.
According to the author, we deploy this strategy when
explaining a system’s behavior based on the way it is designed
to function. The intuition behind Dennett’s definition is that
humans would adopt the stance that allows them to predict and
interpret the behavior of a system in the most efficient way. Thus,
the adoption of either stance is not predefined; on the contrary, if
the adopted stance is revealed as inefficient, one can switch to the
other stance.

Several authors have demonstrated that people tend to
spontaneously adopt the intentional stance toward other
human and nonhuman agents (Abu-Akel et al., 2020; Happé
and Frith, 1995; Heider and Simmel, 1944; Zwickel, 2009; see also
Perez-Osorio and Wykowska, 2019a and Schellen & Wykowska
(2019) for a review). However, it is not yet entirely clear which of
the two aforementioned stances humans would adopt when
interacting with humanoid robots. On the one hand,
humanoid robots present humanlike characteristics, such as
physical appearance (Fink, 2012). Hence, it is possible that
these characteristics elicit representations and heuristics similar
to those that we rely on when interacting with humans (Airenti,
2018; Dacey, 2017; Waytz et al., 2010; Złotowski et al., 2015). This
might trigger the neural representations related to the adoption of
the intentional stance (Chaminade et al., 2012; Gallagher at al.,
2002; Ozdem et al., 2017; Spunt et al., 2015). Indeed, the presence
of humanlike characteristics is one of the key factors that,
according to Epley et al., 2007, contribute to
anthropomorphism toward artificial agents, facilitating the
adoption of the intentional stance. On the other hand,
humanoid robots are man-made artifacts, and therefore, they
might evoke the adoption of the design stance, as they can be
perceived simply as machines (Wiese et al., 2017).

Recent literature has addressed the issue of adopting the
intentional stance toward robots. For example, Thellman et al.,
2017 presented a series of images and explicitly asked their
participants to rate the perceived intentionality of the depicted
agent (either a human or a humanoid robotic agent). The authors
reported that participants perceived similar levels of

intentionality behind the behavior of the human and the robot
agents. Marchesi et al. (2019) investigated the attribution of
intentionality to humanoid robots, developing a novel tool, the
InStance Test (IST). The IST consists of a series of pictorial
“scenarios” that depict the humanoid robot iCub (Metta et al.,
2010) involved in several activities. In Marchesi et al. (2019),
participants were asked to choose between mentalistic and
mechanistic descriptions of the scenarios. Interestingly,
individuals differed with respect to the likelihood of choosing
one or the other explanation. Such individual bias in adopting one
or the other stance toward humanoid robots called for examining
whether it is possible to identify its physiological correlates. In
fact, Bossi et al. (2020) examined whether it is possible to relate
individual participants’ EEG activity in the resting state with the
individual likelihood of adopting the intentional or design stance
in the IST. The authors found that resting-state beta activity
differentiated people with respect to the likelihood of adopting
either the intentional or the design stance toward the humanoid
robot iCub. Recently, Marchesi et al. (2021) have identified a
dissociation between participants’ response time and the stance
adopted toward either a human or a humanoid robot. Moreover,
the individual bias emerged as being linked to participants’
individual tendency to anthropomorphize nonhuman agents.

Since the literature presents evidence for various individual
tendencies to adopt either the design or the intentional stance, in
the present study, we aimed at using pupil dilation as a marker of
individual bias and cognitive effort invested in the task of
describing a robot’s behavior, by adopting either stance. In
addition, we were interested in finding out whether observing
different types of robot behavior (humanlike or mechanistic)
would have an impact on adopting the two different stances,
taking into account individual biases.

Pupillometry as an Index of Cognitive
Activity
We focused on pupil dilation, as pupillary response is a reliable
psychophysiological measure of changes in cognitive activity (for
a review, see Larsen and Waters, 2018; Mathôt, 2018). Literature
reports show that the pupils dilate in response to various
cognitive activities. Previous studies have investigated the
mechanisms underpinning pupil dilation, such as emotional
and cognitive arousal (how much activation a stimulus can
elicit) and cognitive load (the mental effort put into a task)
(Larsen and Waters, 2018; Mathôt, 2018). de Gee et al., 2014
reported that, in a visual detection task, pupil dilation was greater
for participants with a tendency to stick to their decisional
strategy (defined as “conservative participants”) who made a
decision not in line with their individual bias in the task. This
result shows that pupil dilation can be considered as a marker of
conflict between participants’ individual bias and the decision
they take. Moreover, it has been shown that the variation in pupil
size is linked to the activity in the locus coeruleus (Jackson et al.,
2009) and to the noradrenergic modulation (Larsen and Waters,
2018), and thus, greater pupil size can be considered as an
indicator of general arousal and allocation of attentional
resources. Other studies have used pupil dilation as an
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indicator of cognitive load and mental effort. For example, Hess
and Polt (1964) reported that pupil dilation is closely correlated
with problem-solving processes: the more difficult the problem,
the greater the pupil size. Moreover, the recent literature
(Pasquali et al., 2021; Pasquali et al., 2020) assessed the use of
pupillometry in real and ecological scenarios where participants
interacted with the iCub robot. The authors show that
pupillometry can be a reliable measure to investigate cognitive
load in the context of human–robot interaction. Overall, these
studies provide evidence that pupillometry is an adequate method
to study individual tendencies and how they are related to
resources allocated to a cognitively demanding task (for a
comprehensive review, see also Mathôt, 2018). Here, we
consider pupil dilation as a measure of cognitive effort related
to the activation of one or the other stance in the context of one’s
individual biases.

Aims of the Study
The aims of the present study were to 1) examine whether
observing an embodied humanoid robot exhibiting two
different behaviors (a humanlike behavior and a machine-like
behavior) would modulate participants’ individual bias in
adopting the intentional or the design stance (assessed with
the IST) and 2) explore whether this modulation would be
reflected in participants’ pupil dilation, which is considered as
a measure of cognitive effort. More specifically, we explored
whether observing a humanoid robot behaving either
congruently or incongruently with respect to participants’
individual tendency to adopt the intentional stance would lead
them to experience different levels of cognitive effort in the
InStance Test. That is because we expected participants to
experience an increase in cognitive effort due to the
dissonance between their individual tendency in interpreting
the behavior of a humanoid robot and the need for integrating
the representation of the observed behavior manifested by the
embodied robot.

MATERIALS AND METHODS

Participants
Forty-two participants were recruited from a mailing list for this
experiment (mean age: 24.05, SD: 3.73, females: 24) in return for a
payment of 15€. All participants self-reported normal or
corrected-to-normal vision. The study was approved by the
local Ethical Committee (Comitato Etico Regione Liguria) and
was conducted in accordance with the Code of Ethics of the
World Medical Association (Declaration of Helsinki). Each
participant provided written informed consent before taking
part in the experiment. All participants were naïve to the
purpose of this experiment and were debriefed upon
completion. Five participants were excluded from data
analysis, due to technical problems occurring during the
recording phase. Three participants were excluded due to
insufficient amount of valid pupil data (<60%). A total of 34
participants were included in the data analysis.

Pupil-Recording Apparatus, Materials, and
Procedure
In a within-subject design, participants first attended, in a dimly
lit room, the robot observation session, where they were
positioned in front of the embodied iCub and observed it
exhibiting a humanlike or a machine-like behavior. Right after
this session, the participants were led to a different room (dimly
lit) where they were instructed to sit down and position their head
on a chinrest. They were then presented with the IST. The
procedure would then be repeated for the second behavior of
the robot. Choosing a within-participants design, and exposing
participants to both behaviors of the robot, allows for a higher
control of their previous knowledge and experience related to the
iCub robot.

Items from the IST were presented on a 22-″ LCD screen
(resolution: 1,680 × 1,050). A chinrest was mounted at the edge of
the table, at a horizontal distance of 62 cm from the screen. The
monocular (left eye) pupil signal was recorded using a screen-
mounted SMI RED500 eyetracker (sampling rate of 500 Hz). The
dim illumination of the room was kept constant through the
whole duration of the experimental sessions. The IST items were
displayed through Opensesame 3.2.8 (Mathôt et al., 2012).

Robot Behavior
Before taking part in the IST, the participants were asked to
observe the embodied iCub robot, which was programmed to
behave as if it was playing a solitaire card game on a laptop
positioned in front of it. From time to time, the robot was turning
its head toward a second monitor, located on its left side, in the
periphery. On this lateral monitor, a sequence of videos was
played for the entire duration of this session. The behaviors
displayed by the robot, in terms of eye and head movements, were
manipulated between two experimental conditions. One
condition involved the robot displaying a humanlike behavior,
which was a replica of the behavior recorded in a previous
attentional capture experiment from a human participant
(detailed description of the robot behaviors is beyond the
scope of this article; for details, see Ghiglino et al., 2018). It is
important to point out that the behavior displayed by the robot in
this condition fully embodied the variability and the
unpredictability of the behavior displayed by the human when
the recording was first made. As a contrast condition, we
programmed the robot to display another behavior, which was
extremely stereotypical and predictable, defined as “machine-
like” behavior. While the “humanlike” behavior consisted of
several patterns of neck and eye movements, the “machine-
like” behavior consisted of just one pattern of neck and eye
movements. In other words, the “machine-like” behavior was
generated in order to display no variability at all. The order of
presentation of these two behaviors was counterbalanced across
participants.

InStance Test Stimuli and Task
After the observation session, the participants performed a 9-
point calibration, and they were then presented with the IST
(Bossi et al., 2020; Marchesi et al., 2019; Figure 1). The
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instructions in each trial were as follows: (i) first, look freely at the
baseline image (1,000 ms), (ii) freely explore the presented item
(5,000 ms), (iii) listen to the two sentences (5,000 ms Sentence A
and 5,000 ms Sentence B), and finally, (iv) choose the description
that you think better explains the presented scenario by moving a
cursor on a slider (until click) (Figure 2). The presentation order
of mechanistic and mentalistic sentences was counterbalanced.
Presentation of items was randomized. The IST was split into two
subsets1 of items, with half (one subset, 17 items) presented after
one observation session and the other half (17 items) after the
second observation session (the order of presentation of the
subsets was counterbalanced). An example of the mentalistic
sentences is “iCub pretends to be gardener”; an example of a
mechanistic sentence is “iCub adjusts the force to the weight of
the object” (Figure 2). The complete list of mechanistic and
mentalistic sentences, associated with the corresponding
scenarios, is reported in Marchesi et al. (2019) Supplementary
Materials.

To avoid eye movements related to the reading process, for
each scenario, the two descriptions were presented auditorily
through headphones (similarly to the procedure adapted for EEG,
Bossi et al., 2020). Moreover, to allow a reliable baseline
correction, we created a luminance-related baseline version of
each scenario using MATLAB function Randblock (https://it.
mathworks.com/matlabcentral/fileexchange/17981-randblock).
This function allowed us to create a scrambled version of each
item scenario with randomized blocks of pixel positions. The
scrambled items were used as specific baselines for each
corresponding scenario. This process was necessary to control
the different luminance levels of each item.

Pupil Data Preprocessing
All data were preprocessed (and analyzed) using R (version 3.4.0,
available at http://www.rproject.org) and an open-source
MATLAB (The Mathworks, Natick, MA, United States)
toolbox provided by Kret and Sjak-Shie (2019). To clean and
preprocess the data, we followed the pipeline proposed by Kret &
Sjak-Shie: 1) first, we converted the eyetracker data to the
standard format used by Kret & Sjak-Shie’s MATLAB toolbox.
Since we were interested in exploring how pupil dilation could
predict participants’ choice in the IST, we decided to take the
duration of each sentence as our time window of interest. Thus,

FIGURE 1 | Exemplification of the IST items with exemplification of Sentence A and Sentence B (Marchesi et al., 2019).

FIGURE 2 | Experimental time line.

1The two groups of items of the IST were created based on the results of Marchesi
et. al (2019), in such a way that the mean score and SD for both groups were
comparable (Group 1: M � 40.60, SD � 15.31; Group 2: M � 40.85, SD� 16.55,
t(34) � .82, p � .415).
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data were segmented and preprocessed separately for the selected
time windows. By applying this procedure, we reduced the
probability that the pupil dilation signal would be biased by
the preprocessing procedure (Procházka et al., 2010; Mathôt et al.,
2018). In this dataset, we included information relevant to the
pupil diameter, start/end time stamps of each segment, and
validity of the data point, in separate columns. 2) We filtered
dilation speed outliers, trend-deviation outliers, and samples that
were temporally isolated, applying the parameters described by
Kret and Sjak-Shie (2019). In greater detail, in order to mitigate
possible gaps due to nonuniform sampling, dilation speed data
were normalized following the formula below:

d′[i] � max(|d[i] − d[i − 1]|
|t[i] − t[i − 1]| ,

|d[i + 1] − d[i]|
|t[i + 1] − t[i]|). (1)

where d′[i] indicates the dilation speed at each sample, d[i]
indicates the pupil size series, and t[i] indicates the
corresponding time stamp. Dilation speed outliers were then
identified using the median absolute deviation (MAD, Leys
et al., 2013). MAD is a robust metric of dispersion, resilient to
outliers. Samples within 50 ms of gaps were rejected; contiguous
missing data sections larger than 75 ms were identified as gaps.
The MAD metric was applied to identify absolute trend-line
outliers. 3) We interpolated and smoothened the signal using a
zero-phase low-pass filter with a cutoff of 4Hz (Jackson et al.,
2009). After having applied the pipeline described above, data
were baseline-corrected by subtracting the mean pupil size during
the baseline phase from the mean pupil size in our time of interest
(ToI), and dividing by the mean pupil size during the baseline
(Preuschoff et al., 2011).

Mpupil size in ToI −Mbaseline pupil size

Mbaseline pupil size
. (2)

This process allows a clean comparison of the resulting
percentage of pupillary change relative to the baseline.

Sample Split and Dichotomization of the IST
Response
In line with Bossi et al. (2020), in order to investigate
individual biases, participants were grouped by their
average individual InStance Score (ISS, the overall score
across both robot behavior conditions): mentalistically
biased people (>0.5 SD over the mean score, N � 12,
average ISS for this group: 62.25, SD: 7.64) and
mechanistically biased people (<-0.5 SD below the mean
score, N � 9, average ISS for this group: 28.23, SD: 5.66).
People who were not clearly over or under the cutoff value
(−0.5 < score < 0.5 SD, N � 13, average ISS for this group:
44.90, SD: 4) were considered as the “unbiased” group.
Moreover, to be able to investigate participants’ stance in
the IST (mentalistic vs. mechanistic), we considered the type
of selected sentence (by considering as mechanistic a score
<50 and mentalistic a score >50) as the attributed explanation
to the item (from here on, defined as “Attribution”), leading to
a binomial distribution. Although this practice could lead to a

considerable loss of information, it allowed for a higher
control of the interindividual variability present in the raw
IST scores that could bias the overall mean score.

Data Analysis: Pipeline Applied for
(Generalized) Linear Mixed-Effects Models
Data analysis was conducted on the mean pupil size (baseline-
corrected) for the time windows of interest (Sentence A and
Sentence B time periods) using linear (or generalized linear where
needed) mixed-effects models (Bates et al., 2015). When it comes
to linear mixed-effects models (LMMs) or generalized linear
mixed-effects models (GLMMs), it is important to specify the
pipeline that was followed to create the models. (i) First, we
included all the fixed effects that allowed the model to converge.
(ii) We included random effects that presented a low correlation
value (|r| < 0.80) with other random effects, to avoid overfitting.
In all our models, Participant was included as a random effect.
(iii) The significance level of the effects for the LMM was
estimated using the Satterthwaite approximation for degrees of
freedom, while for the GLMM, we performed a comparison with
the corresponding null model (likelihood ratio tests, LRTs). Since
time series analyses were not planned, autocorrelation of factors
was not modeled. Detailed parameters for each model are
reported in the Supplementary Materials.

RESULTS

In line with Marchesi et al. (2019), the score in the InStance Test
was calculated ranging on a scale from 0 (extreme mechanistic
value) to 100 (extreme mentalistic value). In order to obtain the
average InStance Score (ISS) per participant, the scores across
single scenarios were averaged. Before performing any
preprocessing, the overall average score at the InStance Test
after observing the mechanistic behavior was 43.80, with SD:
17.69, and the overall average score after observing the humanlike
behavior was 43.44, with SD: 18.03 [t(65.97) � –0.08, p � 0.934];
thus, the type of robot behavior that participants observed did not
modulate the ISS. The overall sample average score at the
InStance Test was 43.62, SD: 17.26.

As in the study by Bossi et al. (2020), given that our focus was
the individual bias at the IST, in the present section, we will report
the results from the mechanistically and mentalistically biased
participants, leading to an overall total sample of N � 21
participants. Results on the very same models involving
unbiased participants as well are reported in the
Supplementary Materials (overall N � 34 participants).

InStance Test Individual Attribution and
Pupil Size
The first model (GLMM) aimed at investigating the relationship
between pupil size and participants’ attribution at the IST. Our
fixed effects were as follows: 1) the mean pupil size, 2) robot
behavior previously observed, and 3) participants’ general bias at
the IST, while we considered the selected attribution as the
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dependent variable. Because of this, the distribution of the
GLMM is binomial.

The main effect of RobotBehavior emerged as statistically
significant (b � −0.537, model comparison: χ2 (1) � 24.286,
p � <0.001). Results showed that participants chose more
often an attribution congruent with the behavior previously
observed on the robot (more mechanistic attribution after
watching machine-like behavior and vice versa) (Figure 3).

The interaction effect between RobotBehaviour * mean pupil
size was statistically significant as well (b � −9.291, model
comparison: χ2 (1) � 9.355, p � 0.002). Although the three-
way interaction between RobotBehaviour*mean pupil size *
individual bias was significant only when taking into account
the Unbiased group (see Supplementary Materials), our main a
priori hypotheses aimed at exploring differences due to
participants’ individual bias in the IST. Therefore, we
performed a planned comparison GLMM for each bias group
(Tucker, 1990; Kuehne, 1993; Ruxton and Beuchamp, 2008) to
test the interaction between RobotBehaviour * mean pupil size:
mechanistic group (model comparison: χ2 (1) � 7.701 p � 0.005);

mentalistic group (model comparison: χ2 (1) � 3.001, p �0 .083).
These results show that mechanistically biased participants
showed a greater pupil dilation for attributions congruent with
the robot behavior (b � −9.28, z � −2.757, p �0.005, Figure 4)
when attributing a mechanistic description after the observation
of the robot behaving in a machine-like way and when attributing
a mentalistic score after the observation of the robot behaving in a
humanlike way. On the other hand, mentalistically biased
participants showed a tendency, although statistically not
significant, toward greater pupil sizes for mentalistic
attributions, relative to mechanistic attributions, regardless of
the robot behavior (b � −4.45, z � −1.73, p � 0.083, Figure 4).

Behavioral Data Analysis
In order to investigate the relationship between behavioral data and
participants’ response times, we tested the quadratic effect of the
z-transformed IST score (included as the fixed factor) on log-
transformed response times (our dependent variable), as we
expected them to be smaller in the extremes of the score
distribution of the IST. Results showed a statistically significant

FIGURE 3 | GLMM: boxplot showing the statistically significant effect of RobotBehaviour * Bias on attribution, with extreme values as predicted by the model.
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FIGURE4 |GLMMon themechanistic group (N � 9) and thementalistic group (N � 12). Themechanistic bias group shows the interaction effect between attribution
and mean pupil size. No statistically significant effect on attribution and pupil size in the mentalistic bias group.

FIGURE 5 | LMM: statistically significant quadratic effect of the IST-z score on log-transformed response time showing faster RTs for extreme scores.
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quadratic effect of the IST score [b � −0.146, t (1,419.99) � −9.737,
p � <0.001] (Figure 5). These results show that participants were
overall faster when scoring on the extremes of the IST scale.

DISCUSSION

In the present study, we investigated whether adopting the
intentional/design stance could be predicted by changes in pupil
dilation and how both effects are modulated by participants’
individual bias in adopting the intentional stance and by a
behavior of a robot observed prior to the test. To address these
aims, we conducted an experiment in which participants first
observed the embodied humanoid robot iCub, programmed to
behave as if it was playing solitaire on a laptop positioned in front
of it. From time to time, the robot was programmed to turn its head
toward a second monitor on its left periphery, where a sequence of
videos was being played. The behaviors exhibited by the robot were
manipulated in a within-subjects design: in one condition, the
robot exhibited a humanlike behavior, and in the second condition,
the robot exhibited a machine-like behavior. After each session
with the robot, participants’ pupil data were recorded while they
completed the InStance Test. Participants were then divided into
two groups, based on the bias showed by their IST score: a
mentalistically biased group and a mechanistically biased group.

We found that both mechanistically and mentalistically biased
participants leaned more towardmentalistic attributions in the IST
after observing the robot’s humanlike behavior, as compared to the
mechanistic behavior. This shows that participants had some
sensitivity to the subtle differences in the robot behavior,
thereby attributing more “humanness” to the humanlike
behavior, independently of their initial bias (Ghiglino et al., 2020b).

We also explored the relationship between the individual bias
and the changes in pupil dilation as a function of the behaviors
displayed by the robot. We found that the two groups showed
different patterns. On the one hand, for mechanistically biased
people, pupil dilation was greater when they chose descriptions of
the robot behavior in terms that were “congruent” with the
previously observed robot behavior: a mentalistic attribution
after the humanlike behavior and a mechanistic attribution
after the machine-like behavior. We argue that this is due to
the engagement of additional cognitive resources, caused by the
cognitive effort in integrating the representation of the observed
behavior into the judgment (Kool et al., 2010; Kool and Botvinick,
2014). In other words, these participants might have had enough
sensitivity to detect the “human-likeness” or “machine-likeness”
in the behavior of the robot. We argue that the integration of this
piece of evidence into the judgment in the IST might have
required additional cognitive resources.

On the other hand, mentalistically biased participants showed a
tendency for greater pupil dilation when choosing the mentalistic
description, independent of the observed robot behavior. Perhaps
this group of participants showed engagement of additional
cognitive resources when they were choosing descriptions that
were in line with their initial bias (Christie and Schrater, 2015).
Adherence to the “mentalistic” descriptions, independent of
observed behavior, indicates, on the one hand, lower cognitive

flexibility than the mechanistically oriented participants and, on
the other hand, might be related to the general individual
characteristic to structure and make the external world
reasonable. This tendency to structure the external environment
and engage in cognitive effortful tasks is defined as “need for
cognition” (Cacioppo and Petty, 1982; Cohen et al., 1955; Epley
et al., 2007). Mentalistically biased participants might have a lower
need for cognition, and therefore pay less attention to all the subtle
behavioral cues exhibited by the agent and stick to their original
bias. Therefore, we may argue that this group is less prone to
changing the stance adopted to interpret an agent’s behavior.

One last (and interesting) finding of our study was that RTs were
faster on the extremes of the IST score distribution. This suggests
that perhaps once participants made a clear decision toward
mentalistic or mechanistic description, it was easier and more
straightforward for them to indicate the extreme poles of the
slider. On the other hand, when they were not convinced about
which alternative to choose, they indicated this through keeping the
cursor close to the middle and longer (more hesitant) responses.

Overall, it seems plausible that the general mechanistic bias leads
to allocating a higher amount of attentional resources toward
observation of the robot (Ghiglino et al., 2020a), resulting in
paying more attention to the details of the observed behavior (in
line also with Ghiglino et al., 2020b; see also Marchesi et al., 2020).
This, in turn, might influence the subsequent evaluation of robot
behavior descriptions. On the other hand, a mentalistic bias might
lead participants to stick to their spontaneous first impression
(Spatola et al., 2019) and a lower need for cognition (Cacioppo
and Petty, 1982; Cohen et al., 1955; Epley et al., 2007). Commonly,
individual differences and expectations shape the first impression
about a humanoid robot (Ray et al., 2008, Bossi et al., 2020, Horstmann
and Krä mer, 2019; Marchesi et al., 2021). Perez-Osorio et al. (2019b)
showed that people with higher expectations about robots tend to
explain the robot behavior with reference to mental states. This
might indicate that our participants with a mentalistic bias were
predominantly influenced by their expectations about the abilities
of the robot and, therefore, paid less attention to the mechanistic
behaviors of the robot. To conclude, we interpret the results in light
of the influence of individual differences in the allocation of
cognitive resources that might differ between people who are
prone to adopting the intentional stance toward humanoid
robots and people who, by default, adopt the design stance
(Bossi et al., 2020; Marchesi et al., 2021).

LIMITATIONS OF THE CURRENT STUDY
AND FUTURE WORK

In the present study, we opted for a within-subjects design to
reduce the influence of interindividual differences related to prior
knowledge/experience with the iCub robot. Nevertheless, we
cannot rule out the fact that our approach was indeed too
conservative, leading to a null effect of the robot behavior
manipulation on the raw IST scores due to a carry-over effect.
Future research should consider adapting similar paradigms to a
between-subjects design, since this option will allow for
controlling possible carry-over effects.
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CONCLUDING REMARKS

In conclusion, our present findings indicate that there might be
individual differences with respect to people’s sensitivity to
subtle hints regarding human-likeness of the robot and the
likelihood of integrating the representation of the observed
behavior into the judgment about the robot’s intentionality.
Whether these individual differences are the result of personal
traits, attitudes specific to robots, or a particular state at a given
moment of measurement remains to be answered in future
research. However, it is important to keep such biases in mind
(and their interplay with engagement of cognitive resources)
when evaluating the quality of human–robot interaction. The
evidence for different biases in interpreting the behavior of a
humanoid robot might translate into the design of socially
attuned humanoid robots capable of understanding the needs
of the users, targeting their biases to facilitate the integration of
artificial agents into our social environment.
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1. INTRODUCTION

The day seems not too far away, in which robots will be an active part of our daily life, just
like electric appliances already are. Hence, there is an increasing need for paradigms, tools, and
techniques to design proper human-robot interaction in a human-centered fashion (Beckerle et al.,
2017). To this end, appropriate Human-Machine Interfaces (HMIs) are required, and there is a
growing body of research showing how the Peripheral Nervous System (PNS) might be the ideal
channel through which this interaction could proficiently happen.

During daily motor tasks such as grasping, walking, or speaking, the central nervous system
(CNS) recruits a number of α-motoneurons in the ventral horn of the spinal cord and modulates
the rate at which they discharge action potentials. The α-motoneurons are further modulated by
supraspinal, afferent volleys and intrinsic motoneuron properties (Heckman et al., 2005; Enoka,
2008). The motoneuronal axonal action potentials are transformed into forces by a group of muscle
fibers (the muscle unit) innervated by one axon. The muscle unit and the motoneuron form
the final ensemble of all motor actions, the so-called motor unit. Translating neural commands
into muscular forces, (spinal) motor units represent a promising interface to the CNS. However,
there are some physiological constraints of motor control that must be taken into account by
robotic applications.

In this opinion paper, we claim that better user experience would lead to more intuitive control
and tighter human-robot interaction or even human-machine integration and vice-versa (see
Figure 1).

Using PNS data for intent detection as well as for online assessment of user experience
renders such interfaces technically promising and a tool to understand human behaviors and
reactions (Beckerle et al., 2019). To improve on this, we discuss developments in intent detection
and user feedback and user feedback emphasizing on anthropomorphic systems, which are
directly controlled by humans, e.g., prostheses and teleoperation, and aiming to create novel
sensorimotor paradigms.

2. PERIPHERAL-NERVOUS-SYSTEM–MACHINE INTERFACES
(PNS-MIs)

Interfaces for controlling anthropomorphic robotic systems, e.g., HMIs for self-powered
prostheses, cannot function like a joystick or a touch-screen for instance, since the user cannot
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FIGURE 1 | Peripheral-Nervous-System–Machine Interfaces (PNS-MIs) in human-robot interaction: PNS data facilitates simultaneous intent recognition and online

experience evaluation. This fosters novel sensorimotor interaction paradigms, sheds light on human behavior and reactions, and thereby opens up new directions for

human-robot interaction.

physically operate such devices. These HMIs must rather resort
to interpreting the user’s intent based on signals the user is
able to produce - usually, relevant biological signals related to
the intended muscle activation (Beckerle et al., 2019). Surface
electromyography (Merletti et al., 2011) is a primary example,
although different kinds of signals are currently being explored,
e.g., tactile information (Beckerle et al., 2018, 2019) and also
promising for other applications such as anthropomorphic
teleoperation (Nostadt et al., 2020) or teaching collaborative
robots (Cansev et al., 2021).

In principle, all signals generated by the users can and
should be used to interpret their intent, but clearly, the optimal
choice of signals and sensors depends on a tradeoff involving
several factors. This includes, e.g., how well the sensors can
be worn (ergonomy), how expensive the processing is (both
economically and computationally), and how invasive their setup
is. Furthermore, intent detection does not necessarily coincide
with classification of signal patterns; rather, it’s the ability to
provide the user a seamless control experience based upon such
signals, e.g., using regression instead of classification.

2.1. The Pros and Cons of CNS/PNS-MIs
Broadly speaking, signals related to movement and muscle
activation can be classified according to whether they are
recorded from the CNS or the PNS (Castellini et al., 2014). HMIs
relying on CNS signals include brain-machine interfaces using

surface electroencephalography as well as electrocorticography
with direct implants on the motor cortex and spinal implants
(Micera et al., 2010), or by decoding spinal motoneurons from
high-density EMG signals (Farina et al., 2017; Del Vecchio
and Farina, 2019). PNS-based HMIs, on the contrary, are
those using signals recorded from the limbs, either invasively
or non-invasively, e.g., implanted electromyography and direct
connections to peripheral nerves vs. surface electromyography,
force- and magneto-myography (Fang et al., 2015). Although
EMG interfaces are placed in the periphery (muscles) the signal
carried by the electrical activity generated by muscle fibers is
in a one-to-one relation with spinal motoneurons. Moreover,
minimally invasive approaches like local tomography of the
limbs, which entail no surgery but indeed the injection of energy
into the body, exist (Sierra González and Castellini, 2013; Gibas
et al., 2019).

Given the extreme density of neural cells found in the CNS,
most signals useful for robotic control to be potentially found in it
are physically unavailable for direct inspection, unless one resorts
to very invasive methods, e.g., the Braingate (Hochberg et al.,
2012). Non-invasive methods, on the other hand, strongly suffer
from cross-talk: the main problem is to tell signals pertaining
to the intent under examination from “all the rest.” Surface
electroencephalography, for instance, poses extremely complex
problems to interpret and discern the neural firing patterns of
interest, since each sensor can only record potentials from a large
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pool of neurons. Accordingly, damping and distorting effects
due to skull bone tissue complicate pattern recognition (Lazarou
et al., 2018). As opposed to that, an excellent signal-to-noise ratio
can be obtained at the price of getting in contact with the cerebral
cortex or the spinal cells (Hochberg et al., 2012).

PNS-based systems, on the other hand, can use better
separated and physiologically relevant signals, naturally enforced
by the anatomical branching of nerves and neurons as they
depart from the brain, brainstem, and spinal cord. If one is
interested in detecting the intent to move, exert forces and
torques, and/or activate one’s own muscles, then detecting
such activity from the PNS appears to be a better choice
especially if non-invasiveness is desired (Castellini et al., 2014).
On top of this, if minimal invasiveness is permitted or
desired, PNS approaches are probably even the best choice
nowadays. Ultrasound scanning and electromyographic sensors
implanted during osseointegration (Ortiz-Catalan et al., 2014)
or injected into the muscles (Becerra-Fajardo and Ivorra,
2019) offer high signal-to-noise ratios while entailing rather
low risk.

2.2. Improving on PNS-MIs
It has been known to physiologists for the last three decades that
the neural activation that is transmitted by the motoneuron is
delayed by the muscle tissue over a large range of values, from
roughly 50 to more than 200 ms (Partridge, 1965; Baldissera
et al., 1998). During fast motor tasks the nervous system
compensates this delay by increasing the motoneuron firing
frequency and the delay between the recruitment of successive
motor units. Therefore, the CNS tunes this delay dynamically.
Previous experiments in animal preparations demonstrated that
changes in stimulation frequency alters the delay between the
myoelectrical signal and the force produced by the muscle
tissues in a very large range (Partridge, 1965; Baldissera et al.,
1998). Recently, by decoding the activity of a large population
of motoneurons during contraction at different speeds, we also
found that the human nervous system modulates such delays
in a very broad range (50–250 ms for hand and leg muscles
Del Vecchio et al., 2018).

In virtually all prosthetic applications, however, this delay
is fixed (Farina et al., 2014) yielding devices that do not
follow the physiological modulation during natural processes like
muscle fatigue (Zhou et al., 1998), adaptation of contraction
speed (Del Vecchio et al., 2018), and muscular force output
(Del Vecchio et al., 2018). Still, neuroergonomics should indeed
translate these basic physiological findings into novel interface
designs and, potentially, prosthetic applications for improving
human robot-interactions. One potential solution to overcome
this limitation is to decode surface EMG in real-time. We have
previously shown that it is possible to retrieve the motoneuron
discharge timings with delays smaller than 2 ms (Glaser et al.,
2013; Barsakcioglu and Farina, 2018; Chen et al., 2020; Ting et al.,
2021). Moreover, the potential to identify individual motor unit
discharge times allows to label each motor unit to its unique
motor space, e.g., encoding flexion/extension or which digit.
Therefore, classification of EMG activity can be performed in a
highly accurate way by associating each motor unit to its specific

spatiotemporal space, as shown in a spinal cord injury case
(Ting et al., 2021).

2.3. Considering User Experience Through
PNS-MIs
Recent research outlines that PNS-MIs also have potential in
directly assessing user experience going beyond established
psychometric and physiological methods. An interesting example
is the embodiment of robotic systems such as prostheses or
teleoperation systems (Beckerle et al., 2019; Nostadt et al., 2020):
the embodiment of artificial limbs can be assessed through
surveying subjective experience with questionnaires (Longo et al.,
2008), objective behavioral measures (e.g., proprioceptive drift),
or (neuro)physiology (Christ and Reiner, 2014). This effect
was also shown for artificial limbs with myoelectric control
(Romano et al., 2015; Sato et al., 2018), but we might ask
ourselves whether myoelectric measurements could also be used
to analyze neuroergonomics of interaction with such devices.
Recent work by Preatoni et al. for instance (Preatoni et al., 2021)
indicates that proper sensory feedback makes a leg prosthesis
feel lighter.

For patients suffering from stroke, the experience of
device embodiment seems to have similar influence on
electromyographic activity as for other physiological
measures, i.e., electrodermal activity and skin temperature
(Llorens et al., 2017). While, Tsuji et al. (2013) even
report subjective survey results to be better represented by
electromyography than by electrodermal activity, (Llorens
et al., 2017) state that interactions between their subjective
and neurophysiological results were inconclusive. Besides
embodiment, the perception of pleasantness of affective touch
can be related to electromyographic as well as to electrodermal
measurements (Ree et al., 2019). This is very interesting since
providing affective information through touch was shown to
increase the embodiment of artificial limbs (Crucianelli et al.,
2013, 2018; van Stralen et al., 2014) and, hence, appears worth
considering in human-robot interaction (Beckerle et al., 2018).

Although myographic activity was measured at different sites,
i.e., hand and face (Tsuji et al., 2013; Llorens et al., 2017; Ree et al.,
2019), considering it in the assessment of user experience seems
promising. We have ourselves recently put forward the potential
connection between control based upon muscle activation and
action schemes in the sense developed by Piaget (Piaget, 1950).
Here, a proper PNS-MI could foster the creation of novel circular
reactions, leading to embodiment as a natural consequence
(Bettoni and Castellini, 2021). The factors influencing the effect
remain unexplored so far. Understanding and shaping these
interactions might be supported by multimodal data from an
interface integrating myography with other physiological data,
e.g., electrodermal activity or heart rate.

3. DISCUSSION

With this position paper, we advocate peripheral
neuroergonomics as an elegant way to improve HRI. Non-
invasively interfacing the peripheral nervous system seems to
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provide very good interpretability and is currently advantageous
over CNS-based interfaces, which outline higher invasiveness
as well. Moreover, peripheral interfaces can augment or
complement other modalities such as eye-tracking and
electroencephalography to improve the recognition of user
intentd and cognitive status. Generally, we expect considering
neuromechanical insights in novel interfaces designs to foster
improved HRI characteristics of robotic systems and devices.
An accurate closed-loop control of the neuromechanical delays
matching the physiological pathways would likely improve
sensorimotor interactions. In addition, peripheral neural
information can complement psychometric and physiological
methods to assess user experience, which indicates that
integrating myographic assessment in multimodal PNS-MIs
would bring the neuroergonomics of human-robot interaction
to a new level of quality.
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THE INHERENT COMPLEXITY OF LEARNING

In this work, we aimed at affirming the inherent complexity of learning processes and the
consequent benefits derived from a multi-layer cascade approach that considers heterogeneous
disciplines and furnishing actionable best practices, for the designing of a learning experience in
an organization.

Since disciplines, at different scales, bring together heterogeneous knowledge, we advocate for
an integration of them. The various types of learning (i.e., non-associative, associative, perceptual,
and motor) can be explored to understand the development, storage, and recall of memories, using
molecular, cellular, and systems data. Neurobiologically, learning corresponds to functional and
structural changes in the synapses at a variety of loci, throughout the central nervous system (e.g.,
Kopec et al., 2007). These modifications consist in post-translational variations of proteins in the
synaptic site, connected to synaptic plasticity, via interrelated changes in biochemistry, physiology,
and subcellular redistribution. Evidence from laboratory animals strongly supports this relation
(Lynch et al., 2007), even though a direct causality linked to behaviors is an open discussion (Mao
et al., 2011).

At a higher scale, modern brain imaging procedures have provided information about the
activation of brain regions such as the limbic system, the cerebellum, striatum, amygdala, and
other motor or sensory systems, which encode and store information into long-term memory
(Markowtich, 2005). These brain areas contribute to the development of competence and skills
in a worker.

Parallelly, assuming a synthetic rather than reductionist perspective, learning does not
necessarily consist of specific responses made to certain stimuli, conversely learning and memories
should not be considered stable and definite.

Finally, a distinction between learning and performance is needed. Even if highly related,
these two concepts do not perfectly match. For example, latent learning could be obscured by
a performance factor (e.g., a motivation deficiency can inhibit goal-oriented behaviors), such as
attention, sensory-receptor sensitivity, motivation, and arousal.

Recent human-based studies on cognition regarding training and memory added value to the
research line of learning. In this light, human brain functions are thought within an environment,
together with a dynamic relation, which is at least partially socially constructed, with work and
technology. The application of techniques such as fMRI, fNIRS, electroencephalography (Balconi
andMolteni, 2016; Belkhiria and Peysakhovich, 2020; Nozawa et al., 2021), together with behavior-
oriented approaches, allowed the development of neuroergonomics. Its main advance consists of
the assumed bottom-up, situational-oriented perspective. Via these techniques, combined with
novel computational modeling (Cassioli and Balconi, 2020), strategies for effective training can
be assessed (e.g., Kenny and Power, 2021), by comparing the related underlying neural processes.

For example, the impact of digital technology on learning processes in the organizational
framework is a crucial key point, even if it is still mostly unexplored. Novel organizational tools
may determine different behaviors and novel responses, with significant consequences on the
training efficacy.
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FIGURE 1 | The representation of a “multi-layer cascade” approach concurring

in the development of applicable best practice regarding the learning process.

Since the learning process is heavily influenced by the
employed medium and environmental factors, we propose
neuroergonomics as that perspective that uses neurobiological
evidence, by considering stressors and well-being, and focuses on
the cognitive and affective dimensions.

Each of these presented paradigms composes a layer that
concurs in the development of applicable knowledge for the
organization, enriching learning theories. We firmly believe
that the consideration of multiple sources of information could
help the development of best practices. A scheme is reported
in Figure 1. A multi-layer cascade orientation refers to that
epistemological approach we advocate for that sees cross-
contamination between different disciplines as valuable. Every
layer is enhanced by insights derived from previous layers
and leads in the direction of the development of actionable
best practices.

Despite this promising opportunity, scarce evidence,
which, for example, considers neurocognitive and emotional
parameters, was gathered, with limited applications in the
pedagogy of education for heterogeneous tasks or settings.

NEUROERGONOMICS IN THE
ORGANIZATION

An Operational Definition of
Neuroergonomics
Neuroergonomics investigates the neural bases of mental
and physical functions, in applied settings, such as work,
transportation, and health care (Parasuraman et al., 2012). It
is defined as the study of human brain function in relation
to work, together with technology (Parasuraman, 2003). Real-
world contexts are assessed within a framework where human
intentions, actions and behaviors are considered interdependent
with the environment (Dehais et al., 2020).

The emergence of new digital tools, together with the ubiquity
of technology, is known to play a transformative role within
organizational processes. For this reason, neuroergonomics, by
considering the neurocognitive and the physical dimensions, can
support the investigation of the complex relationship between
workers and learning mediated by technology.

From an epistemological and methodological perspective,
neuroergonomics in the organization assumes that the effects
of computer-mediated interaction are mirrored at psychological,
neurocognitive, and physiological levels. Biomarkers, which
refers to psychophysiological states, are then selected to
assess the cognitive dimension, by considering attentional
processes, executive functions and mental workload, and
affective states, such as arousal activity, emotional categorization,
cardiovascular fitness, and resiliency (Balconi et al., 2019;
Crivelli et al., 2019; Getzmann et al., 2021). Neuroergonomics,
merging neurobiological and neurocognitive evidence, with
quantitative-based behavioral analysis, can be employed to
record outcomes, and provide feedback on learning. In this sense,
neuroergonomics represents an approach that supports a deeper
understanding of workers and their behaviors and facilitates the
reaching of their maximum potential. To design a training in
an organization, the added value of neuroergonomics might be
substantial. For this reason, aspects such as environmental factors
and employed technologies (i.e., learning management system)
should be considered.

Environmental Factors and Learning
Experience
As mentioned above, training should be considered from a
holistic perspective, as people act within a learning environment.
In fact, as Kaplan and Kaplan (2003) argued, environment has a
profound effect on human cognition, behavior, and well-being.
Within the framework of attention restoration theory (Kaplan,
1995), environmental processes play a significant role in the
mental fatigue levels and in how restorative settings can foster
recovery. Many factors can intervene in the learning experience,
such as lighting. In fact, a natural source seems to influence
the limbic system, with positive impacts on mood, sleep, and
cognitive performance (Samani et al., 2013). Other parameters
that might interfere are room temperature, environmental noise
and many more. For example, the environmental restorativeness
should be as well considered because it elicits emotional,
cognitive, and physiological responses. Furthermore, spatial
arrangement helps defining the individual place identity, which
is a good driver for performance and fosters the sense of
community (Knight and Haslam, 2010) within the organization.

Technology Disruption and Learning
Technology-mediated interactions face a further challenge. The
technology disruption we experienced, calls for a sophisticated
analysis between different modalities (i.e., face-to-face vs.
remote) which impact the learning process. Since organizations
extremely often make decisions based on available resources,
when administering a training course, only the most efficient
solution should be considered (Waytz and Gray, 2018).
Actual evidence appears troublesome. Overall, there is a small
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understanding of how virtual contexts work on psychological
dimensions and how they impact work performance.

Online communication is sometimes linked to lower empathy
(Wellman et al., 2006). Also, remote training, often explored
on students or healthcare workers and is reported to present
both pros and cons. In fact, remote training allows no spatial
constraints, flexibility, and the possibility to easily access the
available resources (Hoyer, 2006). It could be then inferred
that lifelong learning in workers could be facilitated by distance
learning. Unfortunately, past research has shown that the
proliferation of open courseware (e.g., MOOCs) tends to
exacerbate individual differences, which are explained by training
motivation (Horrigan, 2016). Furthermore, the affordances of
technologies and their effects are not neutral (Houlden and
Veletsianos, 2019) and should also be contemplated. In addition,
since remote settings are not always designed for learning scopes,
they might present features which are not optimal for training.
Conversely, face-to-face interactions might result challenging
and stressful because of personal factors (i.e., anxiety trait), with
significant performance penalties.

Further evidence should be gathered considering setting (e.g.,
face-to-face vs. remote) conditions and their effects on the
learning outcome in workers. Authors think that both cognitive
neuroscience and neuroergonomics contributions are expected
to deliver more evidence in the coming era.

Moreover, research before SARS-CoV-2 highlighted a mild
positive relationship between employees’ engagement levels and
time spent in remote conditions. Data showed that, when
spending up-to-20% of the time from distance, employees
tend to be more motivated and attached to the company
(Gallup Organization, 2013). Moreover, the outspread of covid-
19 limited physical proximity and imposed stay-home restriction
and remote- and/or smart-working, accelerating the digital
transformation. Data indicated that people worked fewer
hours or even temporarily stopped working at their job (e.g.,
Gallup Organization, 2021), showing decreased engagement
levels in the daily activities and experienced (>40%) daily
worries and stress. In this light, being unengaged employees
means not having psychological attachments, with a lack of
energy and passion and a tendency to be resentful that
your own needs are not being met and thus avoiding the
acquisition of skills that strengthen the performance and boost a
company’s success.

Finally, we believe that remote learning on online platforms
is often presented to trainees via reward-oriented platforms.
Risks of an attentional shift from the course content to the
activity completion time (often offered in percentage) are more
than plausible. Indeed, workers might be wrongly rewarded
not by the skills or knowledge they acquire but by other
factors, such as the pace they keep. As previous scientific
evidence suggests, an inherent reward tends to be a stronger
psychological driver for a certain behavior compared to an
external one.

In the following paragraph, we briefly present some
recommendations which could be considered by practitioners
when designing a learning module within an organization.

CONCLUSION: RECOMMENDATIONS AND
FUTURE DIRECTIONS

As expounded, neuroergonomics can be operationalized as
the study of human brain function in relation to work
and technology.

To manage the inherent complexity of learning, we now
propose to consider the following recommendations which
should be considered when designing a learning experience in
an organization.

• Applying a multi-layer cascade approach. Based on current
scientific evidence-based knowledge from neurobiology,
cognitive neuroscience and neuroergonomics, best practices
should be developed and shared with trainers and learners.
The underlying neurobiological principles shape the pedagogy
of learning.

• Test, implement, test. Both reductionist and synthetic
approaches have shown to provide useful insights. Therefore,
we should design research that investigates how digital tools
impact human wellbeing, work performance, output quality
and learning. Since existing evidence is troublesome, a better
comprehension of its effects on the physiological, cognitive,
and affective dimensions is needed. According to the authors,
small evidence has been gathered on real-world contexts so
far. Neuroergonomics represents a good perspective where the
evaluation of learning processes is considered interdependent
with human behaviors, intentions, and the environment.

• Simplicity is seductive but often wrong. Learning abilities differ
due to age, role, motivation, mental state, and environmental
factors. Learning happens in all ages of a living organism,
although not always under equal conditions. Remote and face-
to-face settings both present pros and cons. Siding with a
certain one, until sufficient evidence is gathered (see ii.), denies
the inherent complexity of learning.

• Assuming an equality between behavior and learning is
wrong. Streaming and completing a training course does
not necessarily convert into the acquisition of competence.
When computing the efficiency of a technology system,
not pondering human factors might undermine the
ultimate purpose.

• Learning management systems should be competence-oriented.
Online platforms for learning courses (e.g., MOOC) should
not be reward-based considering completion, but knowledge-
and competence-oriented. Trainees should develop a focus on
the abilities they are learning, understanding how those skills
might be pragmatically valuable for them.

• Knowledge and competence are also socially constructed.
Remote vs. face-to-face training activities should be
considered based on trainees, course content, situational
and environmental factors. Blended solutions could represent
a possibility.

• Acknowledge the existence of miscellaneous unaccountable
phenomena. Culture, digital divide, data security, and privacy
are just a few of the many issues which should be further
considered when designing a training course.
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In this work, we highlighted how a multi-layer cascade
approach represents an attempt for an overall comprehension
of learning processes. Despite all, this study presents limitations.
We did not consider other factors such as the learning content,
individual traits, and personal predisposition. Future studies
could investigate the impact of these dimensions as well.

To conclude, future lines of research should focus on the
impact of technology disruption on human beings at work
and consider side factors by integrating contributions from
heterogeneous domains. Ultimately, beyond the chosen medium,
trainers, supported by scientists, should enable learners to obtain
gratification from the doing, not the results.
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1. FROM HRI TO HUMAN-ROBOT MERGE

In recent decades, we have witnessed the rapid development of new technologies in several fields of
our life. In particular, robotics grows so fast that it is often described as the technology of the future,
as in Gates (2007); this trend is also confirmed by the Executive Summary World Robotics (IFR,
2020). From a theoretical point of view, all these devices could be framed according to a paradigm,
which describes technology as a “medium” that relates the human being and the world (Ihde, 1990;
McLuhan, 1994; Floridi, 2014); in this way, the technological devices could be depicted by twomain
characteristics: a) “being-between” (Floridi, 2014), and b) “being-for” (Heidegger, 2010).

The first dimension, the “in-betweenness,” describes the functional and practical role of
technological mediation that takes place in the human-world relation; the preposition “between”
identifies the physical mediation of the devices which play, in different ways (Ihde, 1990), the role
of an intermediary of the experience. Instead, the second dimension, the “being-for,” emphasizes
an opposite dynamic related to the relationship between human beings and technological devices.
In this case, the preposition “for” highlights the necessity to design technology for someone and,
for this reason, to consider the technology according to a defined setting and a specific condition.
In particular, the “being-for” implies the necessity to rethink technological devices according to a
human-friendly paradigm. In this emerging framework, the importance of a relational approach
to technology becomes relevant in the design of reliable, efficient, and safe systems. Recently, this
focus on the user and their needs has been deepened into the human-centered approach (Boy,
2017; Auernhammer, 2020); its importance can be found in all devices requiring the development
of synergies and relationships between human and machine, from industrial robots to bio-medical
devices (Riener et al., 2005; Schaal, 2007; Zhou et al., 2017).

This article will address the case of active upper-limb prostheses to discuss the importance
and the limits of the neuroergonomics approach and human-centered design. In the relationship
exemplified by prosthesis, the technological device physically alters the human being (Verbeek,
2008). From the theoretical point of view, this intimate relation opens up a new interaction model,
which is based on a “merge” between the subject and technology. In line with Carrozza (2019), it is
possible to argue that this form of mediation goes toward a neurophysiological symbiosis between
humans and machines. The primary consequence of this approach is a focus on neurophysiological
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aspects considered essential and irreducible. Nevertheless, this
article argues that this emphasis is unable to gather the
dimensions necessary to develop functional and accepted
prostheses. In particular, this opinion paper argues that a neuro-
based approach is a necessary but not sufficient requirement for
a human-friendly device.

2. NEURO-APPROACHES: BENEFITS AND
RISKS

In response to the need to design prostheses “for” human
beings, which have better functionality and controllability
(Carrozza et al., 2006; Zollo et al., 2007; Atzori and Müller,
2015), research and prototypes of bio-inspired artificial limbs
have been developed in recent years. Compared to cosmetic
prostheses, these active devices, which are able to manipulate
objects, have a greater degree of usability, significantly improving
users’ quality of life and ADL (Activities of Daily Living)
(Cordella et al., 2016). Mainly the manipulative capacity is
modeled through myoelectric control (Scott and Parker, 1988),
or neural interface (Schultz and Kuiken, 2011). The myoelectric
control is based on identifying user intention through MES
(myoelectric signals) (Geethanjali, 2016); instead, in most cases,
the neural interfaces use TIME (Transversal Intrafascicular
Multichannel Electrode) (Badia et al., 2015). In this regard, a
recent study described the use of the PNS (peripheral nervous
system) as an “elegant” strategy to improve HRI because
“peripheral neural information can complement psychometric
and physiological methods to assess user experience, which
indicates that integrating myographic assessment in multimodal
PNS-MIs would bring the neuroergonomics of human-robot
interaction to a new level of quality.” (Del Vecchio et al.,
2021). Both these methodologies exploit the PNS (Ciancio et al.,
2016) that is emerging as the “ideal channel” of human-robot
interaction (Del Vecchio et al., 2021). The methods mentioned
above realize this “merge” according to two opposite dynamics.

The use of myoelectric technologies has had a significant
development in recent years because of some advantages that
are recognized by it. The decoding of the MES takes place
in a non-invasive way, as it is detected through the surface
of the skin, and is a reasonably accurate way as little muscle
activity is needed to control the prosthesis (Parker et al., 2006).
Currently, this method of prosthesis control is the most widely
used for commercial purposes. The TIME, on the contrary, is
a more invasive technique that allows not only to decode the
intention of the user but also to return manipulation feedback.
For this reason, this methodology needs electrodes implanted
in the afferent and efferent pathways (Raspopovic et al., 2014)
for bidirectional control of the prosthesis. Although they are
still investigational and very invasive techniques, early studies,
as in Zollo et al. (2019), highlight that, compared to myoelectric
technology, bidirectional prostheses have more refined control in
grasping and manipulating objects. This is explicitly due to the
sensory capacity of the prosthesis.

Since the literature review (Cordella et al., 2016) has revealed
a better control of the prosthesis and a more remarkable ability to

manipulate these devices, it is evident the strong appeal that the
neuro-based approach has in the design of efficient prostheses.
From this perspective, it is possible to affirm the central role of
neuroergonomics for further investigation focused on the user’s
needs. In particular, this discipline, which studies the brain and its
functions in performing tasks (Parasuraman, 2003; Parasuraman
and Wilson, 2008), has a strong impact in the field of biomedical
engineering and prosthesis design because neuroergonomics
defines an innovation working on the deep investigation of
perceptual and cognitive functions (Parasuraman, 2003). This
approach, based on recognizing the brain’s role in perception,
highlights the quantitative measure of the stimulus and its
reproduction in an artificial system. This approach is helpful in
developing systems that are able to realize a synergic “merge”
between human beings and technological devices; the significant
benefit of neuroergonomics can be summarized in two main
aspects: a) the discovery of the neural basis of perception, and
b) a more careful analysis of the neural resource of the action,
such as grasping. For this reason, in line with Parasuraman
(2003), I recognize an “added value” for this research field that
goes beyond the traditional limits of both neuroscience and the
ergonomic approach. According to this statement, it is possible to
conclude that there are several advantages to using a neuro-based
approach in terms of prostheses functionality and performance;
indeed, a neuroergonomics study could have finer decoding
of the user’s intention based on the brain activity and better
comprehension of the manipulation and grasping tasks.

In conclusion, the “added value” of neuroergonomics
concerns, in particular, the chance to design and development of
more functional and personalized prostheses. In this perspective,
the lack of functionality is recognized as a factor hindering
the use of the prosthesis (Biddiss and Chau, 2007); for
this reason, it (Cook and Polgar, 2015) is conceived as a
necessary element. Scientific evidence, as Petrini et al. (2019),
supports the hypothesis that an approach based on the body’s
neurophysiology represents a valuable solution to the problems
currently plaguing commercial prostheses. Nevertheless, we may
question whether a neuro-based approach is capable of guiding
design through a comprehensive focus on the human being.
In this perspective, functionality understood as the method
that estimates the performance of the device (Chappell, 2016),
turns out to be a necessary but not sufficient condition for a
human-friendly device as this perspective lacks in considering
the consequences and reasons that lead subjects to refuse or
reject prostheses. In literature, it is possible to find alternative
solutions that try to solve the problem; e.g., Biddiss proposes a
human-centered approach, called Need-Directed Design, which
provides a study of prostheses according to the priorities
of the user able to take into account, specifically, comfort,
cost, anthropomorphism, sensation, and functionality (Biddiss,
2009). Starting from this approach, it is possible to identify
another useful parameter for the design of prostheses, the
first-person experience1. It concerns a direct stakeholder’s

1 In this perspective, I argue that the inability to take into account the first-

person experience of the prostheses use may afflict the phase of personalization

of the prosthesis.
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involvement in the design phase of the prosthesis. The analysis
of the first-person prosthesis experience is not intended to
replace the neuro-based approach but rather to support it by
making explicit the central role of the user. This integration
responds to the problem of the explanatory gap (Levine,
1983) by trying to address neuro-based and phenomenological
approaches as two different perspectives on the subject. From
a methodological point of view, this new approach, which
can be defined as quanto-qualitative (Corti, 2021), wants to
combine diverse perspectives. This new investigation relates
both objective data, obtained by measuring the stimulus, and
the subjective feeling, described during the prosthesis’s use.
This critique aims not to revoke in doubt the central role
of the brain in the design phase but rather to highlight
the incomplete adequacy of a neuro-based paradigm for
personalized devices. Specifically, as argued before, a direct
user’s involvement in the design phase can significantly improve
prosthesis acceptance.

3. DISCUSSION: A HUMAN-CENTRIC
APPROACH, INCLUDING THE
FIRST-PERSON DIMENSION IN THE
DESIGN OF PROSTHESES

In the design of personalized prostheses, the phenomenological
dimension that involves the first-person approach is becoming
increasingly important; e.g., Biddiss explicitly states, “If a
person feels that a prosthesis enhances their function and/or
appearance, they will use the device. Conversely, if the
prosthesis is perceived to hinder function or comfort, or
spoil the appearance, they will not use the device” (Biddiss,
2009). Therefore, recognizing the importance of feeling
for prosthetics implies the need to rethink an appropriate
methodology, which includes a phenomenological dimension,
for assessing prosthetic acceptability and embodiment. It is
clear that even if a neuro-based approach allows the creation
of interfaces between computer and brain, a first-person
analysis also has significant benefits for prosthetic design.
Specifically, this new methodology helps investigate upper
limb prostheses with haptic feedback as the sensory feedback
implies the first-person dimension. For this reason, in the
evaluation of sensitive prostheses, direct involvement of patients’
subjective reports is mandatory, as in Zollo et al. (2019).
Nevertheless, from a methodological point of view, there are two
potential risks:

1. consider subjective reports as secondary in that they are useful
only to support neuroscientific findings;

2. not investigating the experience according to a rigorous
methodology and criteria.

In literature, it is possible to find some methods that solve
the above problems and integrate the two dimensions, e.g.,
neurophenomenology (Varela, 1996; Lutz and Thompson, 2003).
Specifically, this approach aims at emphasizing how a first-person
approach can provide additional and essential information

(Thompson and Cosmelli, 2005) for the neuroscientific
investigation2.

The neurophenomenological approach has been empirically
tested in some studies, such as Lutz et al. (2002), Lutz (2002), Lutz
and Thompson (2003), and Lutz et al. (2008). In particular, Lutz
et al. (2002) conducted a study on visual tasks in which, in front of
continuous monitoring through Electroencephalography (EEG),
the subject is asked to describe the phenomenological content
of the action performed. The study showed that it is possible to
establish a relationship between the subject’s verbal descriptions
and the measurement of neural activity. The recognition of
mutual constraints between first-person experience and EEG
data suggests that the same study can be applied to upper limb
prostheses. This quanto-qualitative approach involves the subject
in the design process in an active and participatory3 way (Corti
et al., 2020). In this perspective, it is plausible to hypothesize
experimental settings to find mutual constraints between the
subjective (qualitative) reports on manipulation tasks and the
quantitative measure of brain activity. In particular, this strategy
aims at highlighting some phenomenological elements relevant
to personalized prostheses, such as naturalness of sensation,
perceived ability, and embodiment.

In conclusion, I argue that the mixed paradigm proposed
above can help in the development of functional devices and
also in detecting prosthetics embodiment. Thus, the quanto-
qualitative approach helps to connect paradigms, e.g., the
phenomenological and the neuroscientific ones, shedding light
on issues, such as embodiment. Adopting a methodology capable
of integrating multimodal data supports the investigation of
embodiment since it has 2-fold nature and cannot be completely
quantified (Corti, 2021). On one side, it has a neurophysiological
basis; on the other side, it is a phenomenological dimension
(Murray, 2008; De Preester and Tsakiris, 2009; De Preester, 2011).
Specifically, three conditions seem to emerge that simultaneously
involve the neurophysiological aspect and the phenomenological
dimension: (a) the physical presence of the prosthesis in
continuity with the body, (b) the disposition to use the prosthesis
for action, and (c) the recognition of that device as part of
one’s body.
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Savković M, Caiazzo C, Djapan M,
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The industry increasingly insists on academic cooperation to solve the identified

problems such as workers’ performance, wellbeing, job satisfaction, and injuries.

It causes an unsafe and unpleasant working environment that directly impacts the

quality of the product, workers’ productivity, and effectiveness. This study aimed

to give a specialized solution for tests and explore possible solutions to the given

problem in neuroergonomics and human–robot interaction. The designed modular

and adaptive laboratory model of the industrial assembly workstation represents the

laboratory infrastructure for conducting advanced research in the field of ergonomics,

neuroergonomics, and human–robot interaction. It meets the operator’s anatomical,

anthropometric, physiological, and biomechanical characteristics. Comparing standard,

ergonomic, guided, and collaborative work will be possible based on workstation

construction and integrated elements. These possibilities allow the industry to try,

analyze, and get answers for an identified problem, the condition, habits, and behavior of

operators in the workplace. The set-up includes a workstation with an industry work chair,

a Poka–Yoke system, adequate lighting, an audio 5.0 system, containers with parts and

tools, EEG devices (a cap and smartfones), an EMG device, touchscreen PC screen,

and collaborative robot. The first phase of the neuroergonomic study was performed

according to the most common industry tasks defined as manual, monotonous, and

repetitive activities. Participants have a task to assemble the developed prototype model

of an industrial product using prepared parts and elements, and instructed by the installed

touchscreen PC. In the beginning, the participant gets all the necessary information about

the experiment and gets 15min of practice. After the introductory part, the EEG device

is mounted and prepared for recording. The experiment starts with relaxing music for

5min. The whole experiment lasts two sessions per 60min each, with a 15min break

between the sessions. Based on the first experiments, it is possible to develop, construct,

and conduct complex experiments for industrial purposes to improve the physical,

cognitive, and organizational aspects and increase workers’ productivity, efficiency,

and effectiveness. It has highlighted the possibility of applying modular and adaptive

ergonomic research laboratory experimental set-up to transform standard workplaces

into the workplaces of the future.

Keywords: modular and adaptive laboratory workstation, experimental set-up, cognitive ergonomics, human-

robot collaboration, Poka—Yoke system, musculoskeletal disorders, industry−4.0
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INTRODUCTION

Numerous studies and research articles show that integrating
innovative advanced technologies of Industry 4.0 utilizing
lean and ergonomic helps to enhance the health and safety
of the workers performing monotonous, manual, repetitive,
physical demanding assembly activities at the workstations in
contemporary organizations (Schwab, 2016; Battini et al., 2020;
Pinzone et al., 2020) and to increase the efficiency of the
operators by improving performance, reducing production time,
and reducing errors (Colim et al., 2021).

With the increasing customer demand for unique,
customized, personalized, low-cost products in small batches in
the shortest possible time, organizations are being pressurized
to proactively answer and to improve the flexibility and
effectiveness of the production systems to maintain a competitive
advantage in the market (Battini et al., 2011; Battaïa et al., 2018).
The abovementioned can be achieved through automation
and manufacturing advancement (Tsarouchi et al., 2016; El
Zaatari et al., 2019), introducing collaborative robots and other
innovative Industry 4.0 technologies into production processes
(Tobe, 2015; Salunkhe et al., 2019; Cimini et al., 2020).

The monotonous, repetitive movements at high speed at the
industrial workstations are often performed in ergonomically
inadequate and non-physiological body positions over a long
period. It can cause occupational diseases (Shikdar and Garbie,
2011) such as mental and physical effort (Schaub et al.,
2013), fatigue, discomfort, forearm muscle effort, extreme
joint positions, which increases the risk of back pain and
musculoskeletal disorders (Barr et al., 2004) and other health and
safety problems (Petreanu and Seracin, 2017).

In the European Union member states, musculoskeletal
disorders (MSD) are one of the leading health problems of
workers (Maurice et al., 2017), causing absenteeism, inefficiency,
and productivity loss in the manufacturing industry (Schneider
et al., 2010; Bevan, 2015; El Makrini et al., 2019). MSD arises from
repetitivemovements of body parts, awkward postures (Ranavolo
et al., 2020), high demand for work or low autonomy, and low
job satisfaction (Petreanu and Seracin, 2017). The installation of
EMG sensors enables monitoring of muscle activity during the
assembly activities of parts and components and determines the
load and tension of the neck, arm, and shoulder muscles during
these activities. In this way, it is determined that when the first
symptoms of MSD begin to appear, the frequency of pain in
different regions of the body is examined so that appropriate
preventive measures could be taken (Segning et al., 2021).

Some research suggests a link between conditions in
which workers perform uncomfortable activities and decreased
productivity (Liao and Drury, 2000; Dainoff, 2002; Haynes and
Williams, 2008; Husemann et al., 2009). Numerous scientific
research articles indicate the importance of an ergonomically
acceptable designed work environment where repetitive assembly
work is performed (Coury et al., 2000; Isa et al., 2011). In
that case, special attention must be paid to the “golden zone”
(Sanders and McCormick, 1993). This zone is the cylindrical
segment-shaped area from the worker’s waist to shoulder height
and with forearm length as the radius. As the golden zone is

different for each worker, the workstation ensures that workspace
and arrangement of materials, components, and tools positions
could be adapted to the individual needs. Also, human–robot
collaborative interaction has been proposed as a potential
solution to improve workplace conditions, eliminate risk factors,
and improve wellbeing and satisfaction through physical and
cognitive aspects need to be considered (Fast-Berglund et al.,
2016; Kadir et al., 2018; El Zaatari et al., 2019; Prati et al., 2021).

At industrial workstations where manual, repetitive, and
assembly activities are performed, human errors are almost
inevitable, and numerous errors cannot be easily detected at
the further stages of production or during inspection (Wallace
and Vodanovich, 2003). Timely detection of falls in attention
and concentration through advanced EEG research contributes
to improving Occupational Safety and Health (OSH)—reducing
injuries during work and reducing accidents that could be fatal
in some situations (Parasuraman and Rizzo, 2006; Strasser, 2021;
Botti et al., 2022.

The motivation for writing this scientific research article
could be found in the fact that MSD, ergonomics, and
neuroergonomics have many common points that should be
identified and researched in the future within scientific research.
Examining the mental and emotional reactions, monitoring
operators’ performance, and examining all significant factors
that affect them during the cooperation between collaborative
robots and workers is an open question that should be explored
in the future through scientific research. Researching the
behavior of operators, monitoring neuroergonomics parameters
during collaborative work, and monitoring attention and fatigue
contribute to a better understanding of the phenomena that
occur and indicate the specifics of workers’ behavior. To achieve
the above, it is possible to design and develop a modular and
adaptive ergonomic research laboratory experimental set-up for
human–robot interaction and to test it according to the already
defined scenarios.

LITERATURE REVIEW

Konz (1995) and Das (2007) pointed out that job creation with
non-respect for the ergonomic principles is common in the
industry. Concerning this, performing complex operations of
assembling parts and components in non-ergonomic postures
on the workstations is an essential field of research for
many researchers (Loch et al., 2016). Performing activities
in an ergonomically inadequate workplace can cause MSDs,
physical and emotional stress on the workers, low efficiency
and productivity, and unsatisfactory product quality (Ulin and
Keyserling, 2004). Chiasson and Major (2015) surveyed 473
workers in 1 year. The examination results showed that a large
percentage of workers had MSDs and that a large number of
workers reported feeling pain. Bernal et al. (2015) consider that
MSD is more conditioned by psychological and social risk factors
than physical factors.

Numerous studies and research articles have shown that long-
term work in a sitting position results in increased feelings of
discomfort for the workers (McLean et al., 2001; Fenety and
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Walker, 2002; Callaghan et al., 2010). Some authors believe that
the most significant discomfort in the lower extremities occurs
when workers perform activities only in a standing position
(Roelofs and Straker, 2002). Frequently, changes in the body
position and performing activities combined with sitting and
standing positions and increasing breaks reduce discomfort
(McLean et al., 2001).

Scientific literature showed that ergonomic intervention
is the best strategy to improve workers’ health and safety
by preventing MSD and reducing injuries during the work,
discomfort, absenteeism (Burdorf, 2010; Takala et al., 2010; Botti
et al., 2014), and enhancing operator performance, productivity,
efficiency, product quality, and reliability (Hendrick, 2003; Dul
et al., 2004; Roper and Yeh, 2007; Vayvay and Erdinc, 2008;
Neumann and Dul, 2010). Furthermore, law regulations in this
area remind organizations of the importance of including an
ergonomic aspect when designing a prefabricated workstation
(Otto and Scholl, 2011). The authors have proved that the
application of ergonomic principles in the workplace directly
impacts reducing errors and increasing product quality (Jorgen
and Eklund, 1995; Hamrol et al., 2011; Thun et al., 2011; Falck
and Rosenqvist, 2012). Yeow and Sen (2006) believe that even
the cheapest ergonomic solutions can significantly have a positive
effect on the quality of activities. González et al. (2003) showed in
their study that product quality increased by 2% and additional
processing of the finished product was significantly reduced
after the improvement of physical ergonomics. Previous studies
on improving assembly performance have focused mainly on
conducting a batch experiment of different products, optimal
distribution of the activities, including assembly activities
(Arnold et al., 2004; Ullah et al., 2009).

In particular, some authors pointed out the importance
of developing fully adjustable and ergonomically designed
innovative workstations compared with the non-ergonomically
designed fixed traditional workstations (Eswaramoorthi et al.,
2010) to perform repetitive assembly tasks (Temple and Adams,
2000; Shikdar and Hadhrami, 2007). Other authors pointed
out the advantages of performing workstation activities in an
adequate ergonomic position, minimizing worker movements
during the working activities (Roelofs and Straker, 2002; Lin and
Chan, 2007; Davis et al., 2009). According toMuhundhan (2013),
placing materials, parts, and tools at operators’ fingertips reduces
unnecessary stretching reach and, in that way, worker’s fatigue is
also reduced.

The design of the workstation can be facilitated by the
innovative technologies of Industry 4.0 (Burggräf et al., 2019).
Some studies showed the digital transformation of the manual
workstation into a collaborative one (Pini et al., 2016; Gualtieri
et al., 2020; Colim et al., 2021; Palomba et al., 2021) and indicated
the benefits of collaborative cooperation between operators and
robots (Consiglio et al., 2007; Sadrfaridpour and Wang, 2017;
Heydaryan et al., 2018; Castro et al., 2019; Liau and Ryu, 2020;
Parra et al., 2020; Pérez et al., 2020). Gualtieri et al. (2021),
through the literature review of the research challenges on
ergonomics and safety in industrial human–robot collaboration,
pointed out the lack of studies on ergonomics compared to safety-
related topics. Few studies were concerned with occupational

health and indicated the benefits of human–robot collaboration
(Cherubini et al., 2016; Brun and Wioland, 2021).

Numerous authors believed that collaborative robots
contributed to the improvement of working conditions,
productivity, MSD reduction (Sadrfaridpour et al., 2016; Awad
et al., 2017; Pearce et al., 2018; El Makrini et al., 2019; Zanchettin
et al., 2019; Gualtieri et al., 2020; Liau and Ryu, 2020; Palomba
et al., 2021), improve the overall mental wellbeing of human
operators (Parra et al., 2020), and minimize the time of execution
the working activities (Hawkins et al., 2013). Ender et al. (2019)
pointed out the relationship between human–robot collaboration
and ergonomics (physical, cognitive, and organizational).

A review and detailed analysis of scientific research articles
showed that the research on workers’ effectiveness and manual
and repetitive assembly work performance was mainly based on
the determination of the correct body position (Fish et al., 1997;
Leider et al., 2015). In scientific research, much less attention
was paid to cognitive and perceptual factors that cause errors
during the implementation of the work tasks (Fish et al., 1997).
Falck and Rosenqvist (2012) showed that cognitive requirements
are related to the operator’s workload and errors made during
the performance of the activities. Earlier research on mental and
cognitive aspects relies on theoretical assumptions characterized
by subjectivity (Parasuraman, 2003). The results obtained from
the application of these methods are unreliable and biased
(Parasuraman and Rizzo, 2006; Lehto and Landry, 2012).

Some authors pointed out the advantages of using EEG
(Gevins and Smith, 2006) in measuring continuous and objective
brain activity and the cognitive state of the operator (Luck et al.,
2000; Murata et al., 2005; Jagannath and Balasubramanian, 2014)
at the workplaces that require a high concentration of workers
(such as assembly activities). The benefits of using an EEG device
are based on the timely and objective detection in case of a drop
in the attention and concentration levels, number of errors made,
and so on. EEG systems provide the possibility of continual and
objective measurement of workers’ attention (Mijović et al., 2015,
2016a, 2017).

The literature review determined that a few scientific
research articles have been written about physical and cognitive
ergonomics within the human–robot collaboration, and there
is room for further research in this area. Specific authors were
engaged in the research of cognitive ergonomy in human–robot
interaction (Maurice et al., 2013; Kim et al., 2018, 2019; Pearce
et al., 2018; Lorenzini et al., 2019; Zanchettin et al., 2019; Gualtieri
et al., 2020; Hopko et al., 2021) and some authors focused on
the relationship between physical ergonomics and human–robot
collaboration (Charalambous et al., 2016; Sadrfaridpour et al.,
2016; Rossato et al., 2021).

Our study points out a wide range of experimental
possibilities in human–robotic interaction. A modular and
adaptive experimental set-up presented in an article will allow
the researchers and practitioners to conduct neuroergonomic
research seeking answers about workers’ physical, mental,
and emotional overload, fatigue, and decreased concentration.
These aspects have become key indicators of product quality,
including the constant problems with workers’ absenteeism in
the industry.
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METHODS AND MATERIALS

This article presents a new, modular, and adaptive laboratory
model of industrial assembly workstation (hereinafter referred
to as workstation). This workstation model enables the realistic
replication of assembly work activities in the industry, from
simple ones to the complex interaction of workers and
collaborative robots. During the design and construction of the
laboratory model of the industrial assembly workstation, special
attention was paid to the workspace for handling materials,
parts, and components, considering that the operators should
predominantly perform tasks within the golden zone. This
zone is an ideal working area, where movements, reaching
materials, stretching, and bending are minimized, and workers
achieve the highest efficiency and productivity. The golden
zone rules improve workplace organization and reduce muscle
efforts and the occurrence of occupational diseases (MSDs).
The workstations’ construction is made of aluminum profiles
(frames 40 × 40mm and 40 × 80mm), primarily used in the
industry. The aluminum profiles are tightened with associated
tensioning elements to stiffen the whole structure to give stability.
The working surface is made of gray particleboard core covered
with a silicone tablecloth protecting the piece from slipping
during assembly.

Prolonged work in the same position causes strain on the
operator’s muscles, developing in the long-term occurrence of
MSDs. Therefore, whenever working activities allow, operators
should move from a sitting position to a standing position.
Numerous studies have shown that back pain occurs in the
workers who perform activities in a standing position (Andersen
et al., 2007; Roelen et al., 2008; Nelson-Wong and Callaghan,
2010) over a long time, and therefore, operators must be allowed
to perform activities by a combination of sitting and standing
positions. The developed workstation is electrically height-
adjustable using dual-lifting telescope system columns controlled
by a 2-key hand switch and adapted to the anthropological
characteristics of the participants. After a review of scientific
research articles, it could be concluded that the best option would
be for workers to perform activities on flexible workstations that
are adjustable in height (Wilks et al., 2006). Also, the industrial
work chair is height-adjustable, made of robust material, and
characterized by stability when changing the participants’ weight.

The workstation is upgraded with additional systems to
fully simulate complex conditions characteristic of a natural
work environment and enable advanced testing of participants’
behavior during manual assembly tasks. An industrial computer
is integrated into this workstation to monitor and control
the performance of various work tasks, process visualization,
and communication with the operator via HMI devices. A
touchscreen PC is connected to the system for task definition and
stimulus application.

Furthermore, special attention is paid to lighting. Lighting is
an indispensable factor in the ergonomic design of the assembly
workstation. It is essential to provide even illumination of the
work surface to avoid straining their eyes when performing work
activities. Individual reflectors that create superimposed solid
shadows can cause eye strain, and, as the result, there is fatigue

and a drop in concentration. Homogeneous LED lighting has
been installed on the new industrial workstation since it produces
only soft shadows, putting less strain on the eyes. Additionally, we
set up an audio 5.0 system to emulate the sounds of the industrial
environment. Different industries could record different sounds
and show a realistic work environment for different workplaces.

The workstation (Figure 1A) is additionally equipped with
blue plastic containers for storing assembly parts and tools,
and the Poka–Yoke system for automatic control of assembly
activities and prevention of errors. Systems that help workers
to perform assembly activities make it easier to perform
these activities and enable the worker to reduce errors (Fast-
Berglund et al., 2013) and increase productivity (Hinrichsen and
Bendzioch, 2018). The installed Poka–Yoke system (Figure 1B)
has 6 independent lines to supply 6 different key components of
the product, which are equipped with modules for access to the
control at the entrance as well as the exit of the line. Vessels with
mounting components move in a line via a wheeled conveyor.
Poka–Yoke modules are equipped with indicator elements that
indicate the next operation in the sequence and sensor elements
to identify the fulfillment of individual orders. Removing the
components for the current operation activates a sensor that
automatically confirms the end of the current operation and gives
a signal to activate the next operation.

Additional module for workstation represents a collaborative
robot (cobot) station that enables the design of the work tasks
where the operator and the robot will perform activities together.
Unlike classic robots, cobots have built-in sensors that allow
them to recognize and analyze workers’ intentions and adapt
their activities to the abilities of workers (Bonini et al., 2015)
by monitoring the physical and cognitive workload of workers.
The collaborative robot performs assembly activities that are
monotonous, tiring, and repetitive or involve workers straining
and bending. In this way, cobots improve working environment
conditions by reducing worker workload as well as the risk of
injuries at the workplace. Collaborative robots also perform those
activities that require maximum precision and that operators
cannot perform as reliably as robots. The operator performs
activities that require a high level of knowledge and skills and
decision-making skills (Figure 1).

The innovative EEG system is used to design and conduct
neuroergonomical experiments. Depending on the requirements
of the experiments, EEG data could be acquired using the
wireless EEG system in two possible configurations. The first
one is using a 24-channel gel-based EEG cap (EASYCAP
GmbH, Wörthsee, Germany) with 10–20 electrode placements
(the Ag/AgCl electrodes) (Figure 2A). The EEG data are
acquired using the lightweight EEG amplifier attached to the
back of the cap. The Bluetooth connection is used as a
communication protocol between the EEG amplifier and the
computer (mBrainTrain, 2019). The second configuration uses
the Smartfones (Figure 2B), the modified headphones to collect
EEG data (mBrainTrain, 2019). The Smartfones use 4 gel-free
electrodes placed around the ears and three in the central
scalp zone (Kartali et al., 2019). The EEG data were acquired
using a 500Hz sampling frequency in both configurations.
In the first configuration (the gel-based system is used), the
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FIGURE 1 | (A,B) A laboratory model of industrial assembly workstation.

FIGURE 2 | (A) EEG Cap, (B) EEG Smartfones, (C) EMG muscleBAN.

electrode impedances were kept below 10 kΩ , whereas in
the second configuration (the gel-free system), they were kept
below 20 kΩ because of the different electrode properties. For
EMG measurements during the neuroergonomical experiments,
muscleBAN (PLUXWireless Biosignals, Portugal) was used. This
wearable, wireless (Bluetooth or Bluetooth Low Energy data
transmission) device combines a single-channel EMG sensor,
triaxial accelerometer, and magnetometer and, in that way,
enables real-time acquisition with up to 16-bit resolution at up
to 1,000Hz sampling rate (Figure 2C). Small dimensions of the
device and an internal battery that ensure the autonomy of 8 h

make it suitable for workplace arm muscle activity and motion
data monitoring when placed in pairs on both forearms.

One of the most demanding challenges in all experiments is
the proper synchronization of all elements in the measurement
set-up, which needs to ensure that the timing of all events
and recorded data are defined and known with sufficient
precision. If the timing of these events cannot be well-
measured, this will cause the loss, reduction, or blurring of
any measured data and their relations to trigger events. The
function of synchronization is to eliminate timing errors,
which cannot be eliminated on hardware and measurement
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FIGURE 3 | LSL integration of key measurement set-up elements.

set-up levels or to be corrected after analysis, so they must
be solved before the measurement starts. For synchronization,
a specific software/API package was used, called the Lab
Streaming Layer (LSL), as a powerful tool that allows multiple
continuous data streams and discrete marker timestamps to
be acquired in an eXtensible Data Format (.XDF). The inputs
from multiple devices, connected to one measurement set-up,
are collected and synchronized via LAN network using LSL
(Figure 3).

Description of the Research Scenarios
The study of behavior and reactions during collaborative
interaction between workers and cobot represents a particular
challenge, where positive characteristics of the workers
(adaptability, creativity, ability to make quick decisions,
dexterity, perception, agility, cognitive abilities, ability to think
critically, and intellectual abilities) are combined with technical
characteristics of cobots (strength, endurance, precision, speed,
repeatability, and consistency) (Helms et al., 2002; Kruger
et al., 2009; Murashov et al., 2016) to perform work activities
more efficiently and safely. On the other hand, in traditional
work environments, work activities are strictly divided into

those performed by robots and activities performed by workers
(Wongphati et al., 2015; Maeda et al., 2016).

The designed workstation represents the laboratory
infrastructure used for conducting neuroergonomic experiments
and studying the behavior of operators at the workplace. Based
on workstation construction and integrated elements, four
basic scenarios could be performed to make workers’ behavior
comparative analyses (Figure 4):

1. Standard work—performing manual assembly work tasks
for a complex product without any specific intervention
or improvement at the workplace. Work is performed on
workstation “as is” without personal adjustments according to
ergonomic or “golden zone” standards.

2. Ergonomic work—work is performed on an ergonomically
optimized workstation with a workplace organized in
conformity with the ergonomic and “golden zone” principles
and standards.

3. Guided work—participants perform the same work tasks
as in the first scenario but with the additional involvement
of the Poka–Yoke station. The Poka–Yoke system has a
role in guiding operators through the repetitive process
of assembling parts and components, from operation to
operation, generating the start of each subsequent step
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FIGURE 4 | The research scenarios.

in a predefined sequence of steps and thus preventing
human errors.

4. Collaborative work—participants perform work tasks with
the support of a collaborative robot, where the collaborative
robot performs repetitive, simple activities that do not require
thinking and decision making.

Previously defined scenarios represent identified tools, methods,
and techniques that could ensure the transformation and
improvement of the standard industrial workplace, for manual
assembly tasks, into the workplace of the future (Figure 5). All
mentioned directions will be used in the nearest future, in some
forms and combinations, and that is why continuous work and
investigation of human behavior and reaction, to each of them,
have significant importance.

Description of the Experimental Session
The authors conducted a neuroergonomic study according to the
first scenario (standard work) during the initial research phase.

The participants’ working tasks were manual, monotonous,
and repetitive. Operator assembled parts and components
into the final product following the order of assembly and
pre-defined provisions concerning positioning the parts and
components, and so on. The experiment was conducted in
conditions that were, generally, in conformity with the natural
industrial environment. The selected work activities met several
prerequisites similar to actual industrial tasks, repeatable, and
feasible in laboratory conditions. Activities and tasks that were
identified as characteristic during the visits to the companies and
interviews with persons responsible for production and safety
were selected. This approach is called participatory ergonomics
intervention (De Guimarães et al., 2015). In this way, the
simulation of actual production is provided without changing the
structure of components and assembled parts.

To perform the experiment, the authors developed and
constructed a prototype model of an industrial product, which
is an abstraction of the connection plate and consists of a metal
base made of steel sheet with built-in threaded elements and

Frontiers in Neurorobotics | www.frontiersin.org 7 May 2022 | Volume 16 | Article 86363765

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
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FIGURE 5 | The workplace of the future.

a transparent acrylic cover connected with an aluminum hinge
(combination of three materials). Adjustable legs and electrical
connectors of various sizes are placed on the stand. Wiring
and connection of electrical connectors can be reported in
several ways (different job variation options). The product can
be completely disassembled, an essential factor for performing
multiple experiments. The very fact that such research can be
conducted in replicated work environments, where the work
process is simulated, is an excellent progress, and it can bring
necessary knowledge about worker cognition, which can later be
used in designing specific jobs (Mijović et al., 2016b).

Before starting, the entire experiment and its purpose are
explained to the participant. EEG cap is mounted on the
participant’s head, and the EEG device and associated computer
are configured and set according to the internal protocol. After
the final check is done, the technician starts the EEG device
and plays relaxing music for 5min. After 5min, the participant
starts the assembly process. The whole experiment consists of
two rounds per 60min, each, with a 15min break between the
sessions. The product assembly takes approximately 4min. The
assembly tasks and the components and tools used (①–11) are
shown in Figure 6.

Task no. 1: Take the steel plate base from the lot ① and place
it in the appropriate place, in an upside-down position.
Task no. 2: Take supports (four pieces) from the container ②

and tighten them to the end, manually, in their positions.
Task no. 3: Turn the object to the upper side. Take the white
acrylic with prepared glued connection elements from the lot
③. Take four round hex screws (M4x16) from container④ and
tighten them with an adequate hex key wrench.
Task no. 4: Take seven, one-by-one, wires from a container ⑤

(wires are 150mm in length and prepared for connection) and
connect them. The connections (number and task definition)
are carried out according to the information showed on the
installed touchscreen PC ⑥. There were two types of prepared
wiring schemes. The first type was schemes assumed to be easy
to connect. The second type was assumed to be challenging to
connect. The participant did not know which order scheme
would appear on the monitor. The participant randomly gets
a picture or pair of the symbols that have to be connected
(Figure 7).
Task no. 5:Take one hinge from container⑦, two countersunk
screws (M6x12), and tighten them with the adjustable torque
screwdriver ⑧ hung on the balancer.
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FIGURE 6 | Description of the experimental session.

Task no. 6: Take one transparent acrylic from plot ⑨, two
countersunk screws (M6x12), and two cap nuts to fasten a
hinge and the acrylic.
Task no. 7: Take one cylindrical plastic roller from container
⑩ and one threaded spindle rod from container 11 to tighten
the transparent acrylic to the steel plate base.

Finished prototype model of an industrial product is stored
in the predefined place while the participant starts with task
no. 1 again.

Initial Results and Discussion
The study’s main idea was to propose, develop, and test a
modular and adaptive laboratory workstation model that
could be used for various types of experiments requested

by the industry. The initial results are related only to
examining the possibility of conducting experiments on
a developed workstation and whether it is possible to
obtain satisfactory initial results by imitating the working
environment. Collected EEG data were processed using
MATLAB (MathWorks, Massachusetts, United States)
and EEGLAB (https://sccn.ucsd.edu/eeglab/index.php).
The EEG signals were first band-pass filtered in the range
1−40Hz, using an FIR filter generated by the EEGLAB. The
amplitude of the signal is in the range from 1 to 100 µV
(Figure 8).

Research has shown that, in response to the mental demands
of the task being performed, EEG signals tend to change
predictably, more specifically that EEG spectral power correlates
with task complexity (Brookings et al., 1996; Gevins et al.,
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FIGURE 7 | Types of schemes (A) easy to connect, (B) harder to connect.

1997; Stipacek et al., 2003; Missonnier et al., 2006). Namely,
due to observable changes in frontal midline theta band (4–
7Hz) and parietal midline alpha band (8–12Hz), their ratio
can be employed to estimate MWL (Holm et al., 2009; Zhang
et al., 2018; Andreessen et al., 2021). The so-called MWL
index is obtained by computing the ratio between signal
power in the theta band (4–7Hz) from the frontal midline
electrode (Fz) and signal power in the alpha band (8–12Hz)
from the parietal midline electrode (Pz). We windowed the
raw signal to compute the MWL index (using 5 s windows
with 4.9 s overlapping). The metric can be seen in Figure 9.
During the first 5min, a subject was idle (listening to some
relaxing music) while he was involved in the assembly work
for the rest of the time. As we can see, this is evident from

Figure 8, as the respective MWL index was low for the first
5 min.

Two participants took part in the initial experiment on the
developed modular and adaptive laboratory set-up. We can
extract comparative statistics for the first session to prove that
the MWL index is lower for lower-engagement activity (the
first 5min of resting time). The statistical data are shown
in Table 1.

The statistics prove that MWL is lower during the first 5min
of the session while subjects are taking rest. In addition to
that, note that EEG signal has different strengths (amplitudes)
for different participants, as the result of significantly different
MWL indexes for participant no. 1 and participant no. 2 under
the same task difficulty level. This is why EEG is usually
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FIGURE 8 | Band-pass filtered 24-channel EEG signal (5 s) recorded during the assembly task. On the y-axis we have signals from 24 electrodes by their name.

FIGURE 9 | MWL index of the first 15min of the experiment (window size is

5 s).

normalized when processing signals of different participants
together. One of the purposes of this experiment was to
distinguish periods of low and high complexity schemes and
estimate task difficulty with regard to time by looking at
the MWL index in real time. However, we would need to
test and record more subjects to conduct that analysis. That
way, we could make an average over their normalized MWL
index vs. time graphs and resolve the problem of individual
differences between subjects. The result would be an objective
(not participant-dependent) task difficulty with regard to time.
We plan to carry out this research soon and on a larger
sample. This research explains that it is possible to conduct

neuroergonomic research on a new, modular, and adaptive
laboratory workstation model.

We also noted some technical difficulties during the
experiment. One of the issues was switches stiffness. Participants
experienced problems if they made a wrong connection with
a wire and had to unlock the switch and lock it again. We
plan to solve the same making more ergonomic schemes.
Another problem was that the chair was inappropriate for the
experiment this long, as both subjects confirmed that they felt
mild pain in their backs after some time of being in that position.
Furthermore, the main participants’ remark was losing focus
during the 3-h experiment. They concluded that it is possible to
lose focus very easily, which could be the new research hypothesis
for future research work.

In the future, during our research activities, we will continue
to collect data corresponding to the remaining three different
scenarios (ergonomic work, guided work, and collaborative
work). This should enable a comparative analysis of participants’
behavior and monitor the operators’ psychological reactions
during the implementation of the same or similar work
tasks under different scenarios. The most important part of
the planned research activities is related to assessing the
neuroergonomics parameters and examining operators’ reactions
during the performance of the working activities in cooperation
with the collaborative robot.

CONCLUSIONS

Workplaces with high repetitiveness of tasks, high noise
levels, and poor ergonomics can cause both mental and
physical stress and reduce the operator’s attention. Over time,
products with many or similar components can cause an
increase in the number of errors. The increasing variety
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TABLE 1 | Average MWL indexes for both subjects in the cases of resting and

active time.

Participant no. 1 Participant no. 2

Resting MWL index 0.0472 0.1737

Active MWL index 0.3013 0.9187

of products was also identified as the leading cause of the
complexity perceived by an operator in carrying out his
tasks (Olwal et al., 2008). Taking into consideration that the
workforce is getting older, it is necessary to pay attention
to, so far, not so attractive parameters for monitoring and
improvement such as wellbeing, operators’ satisfaction, attention,
concentration, and fatigue. To enable monitoring of these
parameters, a new, modular, and adaptive laboratory model
of industrial assembly workstation for conducting advanced
research in the field of ergonomics, neuroergonomics, and
human–robot interaction is designed and built. This recently
designed workstation eliminates all limitations that characterize
a traditional workstation.

This newly developed workstation is designed to be operator-
centered and thoroughly adapted to the operator’s needs,
abilities, and limitations. The anthropometric characteristics of
the workers were taken into account so that the workstation
is suitable for both males and females and so that the workers
can carry out assembly activities within the golden zone. This
workstation includes the assembly area and it has a built-in
Poka–Yoke system. It can guide the actions carried out by
the worker and aims to improve the quality of the product
being assembled. Furthermore, it minimizes errors accidentally
made by the operators due to a drop in the concentration and
intentional errors.

The main elements from the industry were replicated in
the laboratory, taking into consideration spatial dimensions
of the workplace and ambient conditions. This article
describes an innovative neuroergonomic experimental set-
up studying operators’ comparative habits and behavior at
the workplace for four different scenarios—standard work,
ergonomic work, guided work, and collaborative work.
This ensures the transformation and improvement of the
standard industrial workplace into the workplace of the future.
The assembly task proposed by the authors consists of the
developed and constructed prototype model of an industrial
product that can be disassembled and thus used in numerous
experiments. Participants in the laboratory examination carry
out characteristic and standardized assembly activities. Initial
neuroergonomic tests using an EEG device were conducted
to show various research possibilities on the workstation. In
a replicated workplace, the whole process of producing the
final product was simulated. Operators’ reactions, behavior, and
responses to sophisticated conditions in the work environment

are monitored. The preliminary experiments showed that it
is possible to conduct neuroergonomic research on a new,
modular, and adaptive laboratory model of industrial assembly
workstation. Moreover, the industry could request various
scenarios to improve the operators’ ergonomics. The requested

scenario will be adapted in the advanced laboratory set-up, then
tested and analyzed with specific outputs proposed to solve the
identified problem.

The experimental set-up presented in this article is the
basis for conducting advanced research in the future. We will
collect data regarding ergonomic, guided, and collaborative
work that will show participants’ behavior and psychological
reactions during the implementation of the same or similar
work tasks. These results will be analyzed through a comparative
analysis to define which parameters are most important to be
monitored. The main focus will be on examining operators’
reactions during working activities in cooperation with the
collaborative robot.
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Savković et al. Modular Neuroergonomic Research Laboratory Set-Up

mBrainTrain (2019). mBrainTrain: Smartfones. Available online at: https://

mbraintrain.com/smartfones/ (accessed November, 2021)

McLean, L., Tingley, M., Scott, R. N., and Rickards, J. (2001). Computer

terminal work and the benefit of microbreaks. Appl. Ergon. 32, 225–237.

doi: 10.1016/S0003-6870(00)00071-5
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I. (2017). “Neuroergonomics method for measuring the influence of mental

workloadmodulation on cognitive state ofmanual assembly worker,” inHuman

Mental Workload: Models and Applications, eds L. Longo, M. Leva (Cham:

Springer), 213–224. doi: 10.1007/978-3-319-61061-0_14

Missonnier, P., Deiber, M. P., Gold, G., Millet, P., Pun, M. G., Fazio-

Costa, L., Giannakopoulos P., Ibáñez V. (2006). Frontal theta event-related

synchronization: comparison of directed attention and working memory load

effects. Journal of Neural Transmission. 113, 1477–1486.

Muhundhan M. (2013). Improved work station design for improved productivity.

Int. J. Sci. Eng. Technol. 2, 225–227. Available online at: https://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.402.4555&rep=rep1&type=pdf

Murashov, V., Hearl, F., andHoward, J. (2016).Working safely with robot workers:

recommendations for the new workplace. J. Occup. Environ. Hyg. 13, 61–71.

doi: 10.1080/15459624.2015.1116700

Murata, A., Uetake, A., and Takasawa, Y. (2005). Evaluation ofmental fatigue using

feature parameter extracted from event-related potential. Int. J. Ind. Ergon. 35,

761–770. doi: 10.1016/j.ergon.2004.12.003

Nelson-Wong, E., and Callaghan, J. P. (2010). The impact of a sloped surface on

low back pain during prolonged standing work: a biomechanical analysis. Appl.

Ergon. 41, 787–795. doi: 10.1016/j.apergo.2010.01.005

Neumann, W., and Dul, J. (2010). Human factors: spanning the gap

between OM and HRM. Int. J. Oper. Prod. Manag. 30, 923–950.

doi: 10.1108/01443571011075056

Olwal, A., Gustafsson, J., and Lindfors, C. (2008). “Spatial augmented reality on

industrial CNC-machines,” in Proceedings of SPIE 2008 Electronic Imaging (San

Jose, CA). doi: 10.1117/12.760960

Otto, A., and Scholl, A. (2011). Incorporating ergonomic risks into assembly line

balancing. Eur. J. Oper. Res. 212, 277–286. doi: 10.1016/j.ejor.2011.01.056

Palomba, I., Gualtieri, L., Rojas, R., Rauch, E., Vidoni, R., and Ghedin, A. (2021).

Mechatronic re-design of a manual assembly workstation into a collaborative

one for wire harness assemblies. Robotics 10, 43. doi: 10.3390/robotics10010043

Parasuraman, R. (2003). Neuroergonomics: research and practice. Theor. Issues

Ergon. Sci. 4, 5–20. doi: 10.1080/14639220210199753

Parasuraman, R., and Rizzo, M. (2006). Neuroergonomics: The Brain at Work.

Oxford University Press. doi: 10.1093/acprof:oso/9780195177619.001.0001

Parra, P. S., Calleros, O. L., and Ramirez-Serrano, A. (2020). “Human-Robot

collaboration systems: components and applications,” in 7th International

Conference of Control Systems, and Robotics (CDSR’20), Virtual Conference, Vol.

150, 1–9.

Pearce, M., Mutlu, B., Shah, J., and Radwin, R. (2018). Optimizing makespan and

ergonomics in integrating collaborative robots into manufacturing processes.

IEEE Trans. Autom. Sci. Eng. 15, 1772–1784. doi: 10.1109/TASE.2018.

2789820

Pérez, L., Rodríguez-Jiménez, S., Rodríguez, N., Usamentiaga, R., García, D. F., and

Wang, L. (2020). Symbiotic human-robot collaborative approach for increased

productivity and enhanced safety in the aerospace manufacturing industry. Int.

J. Adv. Manuf. Technol. 106, 851–863. doi: 10.1007/s00170-019-04638-6

Petreanu, V., and Seracin, A. M. (2017), Risk Factors for Musculoskeletal Disorders

Development: Hand-Arm Tasks, RepetitiveWork. Bucharest: National Research-

Development for Health and Safety.

Pini, F., Ansaloni, M., and Leali, F. (2016). “Evaluation of operator relief for

an effective design of HRC workcells,” in 21st IEEE International Conference

on Emerging Technologies and Factory Automation, ETFA 2016 (Berlin), 1–6.

doi: 10.1109/ETFA.2016.7733526

Pinzone, M., Albè, F., Orlandelli, D., Barletta, I., Berlin, C., Johansson, B., et al.

(2020). A framework for operative and social sustainability functionalities

in human-centric cyber-physical production systems. Comput. Ind. Eng. 139,

105132. doi: 10.1016/j.cie.2018.03.028

Prati, E., Peruzzini, M., Pellicciari, M., and Raffaeli, R. (2021). How to include user

experience in the design of human-robot interaction, robot. Comput. Integr.

Manuf. 68, 102072. doi: 10.1016/j.rcim.2020.102072

Ranavolo, A., Ajoudani, A., Cherubini, A., Bianchi, M., Fritzsche, L., Iavicoli, S.,

et al. (2020). The sensor-based biomechanical risk assessment at the base of

the need for revising of standards for human ergonomics. Sensors 20, 5750.

doi: 10.3390/s20205750

Roelen, C. A. M., Schreuder, K. J., Koopmans, P. C., and Groothoff, J. W. (2008).

Perceived job demands related to self-reported health complaints. Occup. Med.

58, 58–63. doi: 10.1093/occmed/kqm134

Roelofs, A., and Straker, L. (2002). The experience of musculoskeletal discomfort

amongst bank tellers who just sit, just stand or sit and stand at work.

Ergonomics 14, 11–29. Available online at: http://www.epistemonikos.org/

documents/cecc928db37f45c466709b4aba69fcd1da4c1f08

Roper, K. O., and Yeh, D. C. (2007). Ergonomic solutions for an aging workforce.

J. Facil. Manag. 5, 172–178. doi: 10.1108/14725960710775054

Rossato, C., Pluchino, P., Cellini, N., Jacucci, G., Spagnolli, A., and Gamberini,

L. (2021). Facing with collaborative robots: the subjective experience in

senior and younger workers. Cyberpsychol. Behav. Soc. Netw. 24, 349–356.

doi: 10.1089/cyber.2020.0180

Sadrfaridpour, B., Saeidi, H., and Wang, Y. (2016). “An integrated framework for

human-robot collaborative assembly in hybrid manufacturing cells,” in IEEE

International Conference on Automation Science and Engineering (CASE) (Fort

Worth, TX), 462–467. doi: 10.1109/COASE.2016.7743441

Sadrfaridpour, B., and Wang, Y. (2017). Collaborative assembly in hybrid

manufacturing cells: an integrated framework for human-robot interaction.

IEEE Trans. Autom. Sci. Eng. 15, 1178–1192. doi: 10.1109/TASE.2017.2748386

Salunkhe, O., Stensöta, O., Åkerman, M., Berglund, Å. F., and Alveflo, P.A. (2019).

“Assembly 4.0: wheel hub nut assembly using a cobot,” in 9th IFAC Conference

on Manufacturing Modelling, Management and Control (Berlin), 1632–1637.

doi: 10.1016/j.ifacol.2019.11.434

Sanders, M. S., and McCormick, E. J. (1993). Human Factors in Engineering and

Design, 7th Edn (New York, NY: McGraw-Hill Education).

Schaub, K., Caragnano, G., Britzke, B., and Bruder, R. (2013). The

European assemblyworksheet. Theor. Issues Ergon. Sci. 14, 616–639.

doi: 10.1080/1463922X.2012.678283

Schneider, E., Irastorza, X., and Copsey, S. (2010). OSH in Figures: Work-Related

Musculoskeletal Disorders in the EU. Luxembourg: Publications Office of the

European Union.

Schwab, K. (2016). The Fourth Industrial Revolution. New York, NY: Crown

Publishing Group.

Segning, C. M., Ezzaidi, H., da Silva, R. A., and Ngomo, S. (2021). A

neurophysiological pattern as a precursor of work-related musculoskeletal

disorders using EEG combined with EMG. Int. J. Environ. Res. Public. Health

18, 2001. doi: 10.3390/ijerph18042001

Shikdar, A., and Garbie, I. (2011). “Development of a smart workstation for

an assembly task,” in International Conference on Industrial Engineering and

Operations Management (Kuala Lumpur), 826–831.

Shikdar, A., and Hadhrami, M. (2007). Smart workstation design: an ergonomics

and methods engineering approach. Int. J. Ind. Syst. Eng. 2, 363–374.

doi: 10.1504/IJISE.2007.013184

Stipacek, A., Grabner, R. H., Neuper, C., Fink, A., and Neubauer, A. C. (2003).

Sensitivity of human EEG alpha band desynchronization to different working

memory components and increasing levels of memory load.Neurosci. Lett. 353,

193–196. doi: 10.1016/j.neulet.2003.09.044

Strasser, H. (2021). Compatibility as guiding principle for ergonomics work design

and preventive occupational health and safety. Z. Arb. Wiss. (2021). Available

online at: https://doi.org/10.1007/s41449-021-00243-0

Takala, E. P., Pehkonen, I., Forsman, M., Hansson, G. A., Mathiassen, S. E.,

Neumann, W. P., et al. (2010). Systematic evaluation of observational methods

Frontiers in Neurorobotics | www.frontiersin.org 15 May 2022 | Volume 16 | Article 86363773

https://mbraintrain.com/smartfones/
https://mbraintrain.com/smartfones/
https://doi.org/10.1016/S0003-6870(00)00071-5
https://doi.org/10.3389/fnhum.2016.00171
https://doi.org/10.1080/00140139.2016.1142121
https://doi.org/10.1016/j.promfg.2015.07.521
https://doi.org/10.1007/978-3-319-61061-0_14
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.4555&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.4555&rep=rep1&type=pdf
https://doi.org/10.1080/15459624.2015.1116700
https://doi.org/10.1016/j.ergon.2004.12.003
https://doi.org/10.1016/j.apergo.2010.01.005
https://doi.org/10.1108/01443571011075056
https://doi.org/10.1117/12.760960
https://doi.org/10.1016/j.ejor.2011.01.056
https://doi.org/10.3390/robotics10010043
https://doi.org/10.1080/14639220210199753
https://doi.org/10.1093/acprof:oso/9780195177619.001.0001
https://doi.org/10.1109/TASE.2018.2789820
https://doi.org/10.1007/s00170-019-04638-6
https://doi.org/10.1109/ETFA.2016.7733526
https://doi.org/10.1016/j.cie.2018.03.028
https://doi.org/10.1016/j.rcim.2020.102072
https://doi.org/10.3390/s20205750
https://doi.org/10.1093/occmed/kqm134
http://www.epistemonikos.org/documents/cecc928db37f45c466709b4aba69fcd1da4c1f08
http://www.epistemonikos.org/documents/cecc928db37f45c466709b4aba69fcd1da4c1f08
https://doi.org/10.1108/14725960710775054
https://doi.org/10.1089/cyber.2020.0180
https://doi.org/10.1109/COASE.2016.7743441
https://doi.org/10.1109/TASE.2017.2748386
https://doi.org/10.1016/j.ifacol.2019.11.434
https://doi.org/10.1080/1463922X.2012.678283
https://doi.org/10.3390/ijerph18042001
https://doi.org/10.1504/IJISE.2007.013184
https://doi.org/10.1016/j.neulet.2003.09.044
https://doi.org/10.1007/s41449-021-00243-0
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
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INTRODUCTION

Among the most recent enabling technologies, Digital Twins (DTs) emerge as data-intensive
network-based computing solutions in multiple domains—from Industry 4.0 to Connected Health
(Pires et al., 2019; Bagaria et al., 2020; Juarez et al., 2021; Phanden et al., 2021). A DT works as a
virtual system for replicating, monitoring, predicting, and improving the processes and the features
of a physical system—the Physical Twin (PT), connected in real-time with its DT (Grieves and
Vickers, 2017; Kaur et al., 2020; Mourtzis et al., 2021; Volkov et al., 2021). Such a technology, based
on advances in fields like the Internet of Things (IoT) and machine learning (Kaur et al., 2020),
proposes novel ways to face the issues of complex systems as in Human-Robot Interaction (HRI)
(Pairet et al., 2019) domains.

This position paper aims at proposing a physical-digital twinning approach to improve the
understanding and the management of the PT in contexts of HRI according to the interdisciplinary
perspective of neuroergonomics (Parasuraman, 2003; Frederic et al., 2020).

APPROACHING AND ADOPTING DIGITAL TWINS

The DT definition is still an object of debate, and reaching one could be a necessary step for
efficiently managing its technical requirements in terms of computing and connectivity (Shafto
et al., 2012; Haag and Anderl, 2018; Jones et al., 2020; Kuehner et al., 2021; Singh et al., 2021; Botín-
Sanabria et al., 2022; Wang D. et al., 2022). However, we can ignite our discussion by considering
how Fuller et al. (2020) highlighted that a DT is not just a digital model or an offline simulation
of a physical object. Nor does a DT correspond to a digital shadow, depicting the real-time states
and changes of a PT that can just be manually modified. The changes in a DT automatically mirror
and affect the status of its PT: the data flows bi-directionally (Van der Valk et al., 2020) and in real
time between twins in digital and physical worlds, possibly without any human intervention (Liu
et al., 2022) through the DT-driven control of an actuated PT. However, a DT is typically “played”
by experts like managers, engineers, and designers as a complex interactive simulation to predict
future issues in the PT according to its past and current behavior (Semeraro et al., 2021). This
leads to new policies as feedback to the real system, even with the assistance of artificial intelligence
layers (Umeda et al., 2019; Gichane et al., 2020). Considering their functions (Khan et al., 2022)
each DT can focus on (i) monitoring a PT, (ii) simulating the future states of a PT, (iii) directly
interacting—as an “operational DT”—with a cyber-physical system as PT.

Among the fields of DT application, robotics certainly offers several examples (Girletti et al.,
2020; Matulis and Harvey, 2021) of twinning solutions, especially in conditions of HRI like
human-robot collaboration (Malik and Bilberg, 2018; Maruyama et al., 2021; Tuli et al., 2021).
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In particular, literature in robotics offers interesting solutions
of intuitive extended reality interfaces (Alfrink and Rossmann,
2019; Burghardt et al., 2020) to ease the interaction of an expert
with a DT. In the next section, we propose that such an approach
can be further enhanced by emulating certain PT components
through a DT and others through a physical replica of the
robotic system.

PHYGITAL TWINS IN HUMAN-ROBOT
INTERACTION

Performing holistic, physical, and reality-based interaction with
a robotic system is more intuitive for the user than contactless
gestures to program or command the device and change its
state to accomplish a task (Jacob et al., 2008; Heun et al., 2013;
Blackler et al., 2019; Ravichandar et al., 2020). Following this
reasoning, we decided to highlight the opportunity of emulating
a PT through what we labeled as a “Phygital Twin.” This term
has already been used by Sarangi et al. (2018) to describe an
IoT setup designed to collect data and represent an environment
(even through portable devices) to assist a farmer in precision
agriculture paradigms. However, we envisioned the usage of this
label for a wider class of solutions by pondering the meaning of
the “phygital” attribute outside the domain of twinning processes.

As a neologism (merging two words: physical and digital),
this attribute has been typically adopted across various domains
like design and marketing, blending real and virtual dimensions
as in its etymology (Gaggioli, 2017; Mikheev et al., 2021). This
term was used, for instance, to define Tactile User Interfaces
(TUIs) like the “phygital map” in Nakazawa and Tokuda (2007),
the paradigms of “phygital play” (Lupetti et al., 2015) in mixed
reality-based robotic games (MRRGs) (Prattico and Lamberti,
2020), and interactive solutions for work and education proposed
during the COVID-19 pandemic (Chaturvedi et al., 2021; Burova
et al., 2022).

Overall, these are just examples in a general virtual-real
convergence trend (Tao and Zhang, 2017), like cyber-physical
twins (Czwick and Anderl, 2020). This trend occurs in healthcare
too (Gregory, 2022) about managing chronic conditions and
predicting their progress or the therapeutic outcome (Voigt et al.,
2021; Barresi et al., 2022). Furthermore, we must highlight how
intrinsically phygital are the recent definitions of the metaverse,
a digital world embracing cyber-physical systems and also DTs in
its connection with the real world (Yoon et al., 2021).

Exploiting the phygital approach we foresee a Phygital Twin
(PDT, highlighting both its physical and digital elements) as in
the example in Figure 1. Within a PDT, certain components of
the PT are replicated by digital objects and others by physical
objects within an integrated extended reality model. These
physical objects would be secondary instances of the same
products (not necessarily a robot) in the PT. In Figure 1, an
example of the human-exoskeleton system in a real context is
the PT emulated by a DT (in green, on the left), based on a fully
virtual model of the HRI system. On the other hand, the same
PT can be represented (on the right) by a PDT, based on a virtual
human “wearing” a real exoskeleton (identical to the one in the
real-world context and, possibly, sustained by a mannequin) into

a laboratory. Both settings, visualized by an expert through a
mixed reality headset, enable the live visualization of anomalies
in the right shoulder of the worker in this example.

Different from the case of the fully virtual model on the left,
the expert on the right can decide to alter the phygital model
through intuitive physical interactions with the lab exoskeleton
(working as a TUI), performing tests according to past and
current data from the PT. Indeed, the expert receives visual
feedback from the DT and more intuitive visuotactile feedback
from the PDT. After obtaining the informed consent of the
worker in the PT system, the experts can also update the remote
wearable robot software according to their predictions.

Thus, the PDTs enable intuitive phygital interactions with
experts to assess and improve the PT. Furthermore, its physical
components can emulate the ones of the PT more reliably
than a virtual simulacrum because they are based on the
same products. The PDT computer-generated elements may
also be visualized through a virtual reality headset instead of a
mixed reality one, according to the need of depicting the PT
context as a whole. However, focusing further on the virtual
human component can also be greatly advantageous to deepen
our knowledge of the user’s conditions, especially in terms of
neuromotor and neurocognitive processes, as the next section
will propose.

NEUROERGONOMIC TWINNING OF HRI
SYSTEMS

Through digital human modeling (Paul et al., 2021), DTs can
contribute to monitoring, assessing, and designing different
human-system interactions (Caputo et al., 2019; Greco et al.,
2020; Sharotry et al., 2022; Wang B. et al., 2022) according to
the perspective of human factors. In particular, neuroergonomics
(Mehta and Parasuraman, 2013)—especially computational
neuroergonomics (Farahani et al., 2019)—can advantageously
exploit twinning for understanding how the human nervous
system works in real contexts (Cheng et al., 2022), and improving
the design of any item interacting with it. This is certainly
true about neuroergonomics in HRI contexts (Cassioli et al.,
2021) for applications like monitoring motor control difficulties
(Memar and Esfahani, 2018), providing robots with adaptive
features (Lim et al., 2021), and improving brain-robot interfaces
(Mao et al., 2019). Overall, the exploitation of DTs in this field
can inherit the corpus of knowledge in neuroscience, especially
when human-machine interactions are investigated (Gaggioli,
2018; Ramos et al., 2021). Interestingly, literature in this area
already shows several approaches presenting analogies with
PDTs, which can contribute to neuroergonomics in HRI by
offering intuitive interactions with a phygital emulation of the
human-robot system.

For instance, the field of bionic prosthetics (Frossard and
Lloyd, 2021) offers this kind of solution, with emphasis on
twinning the residual limb more than the device. Interestingly,
Chen et al. (2022) labeled as “mechatronics-twin” a framework
integrating a 6-DoF manipulator with biomechanical models
to explore, through simulations, the operational behaviors of
prosthetic sockets with amputees. Such an example sounds quite
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FIGURE 1 | A Physical Twin (PT), based on a human-exoskeleton system in a context of usage, connected (on the left) to its Digital Twin (DT) in green, based on a

virtual model of the human-robot interaction (HRI) system, or (on the right) to its Phygital Twin (PDT), based on a holographic human “wearing” a real exoskeleton in a

laboratory.

close to the concept of PDT, which can have additional features
of real-time bidirectionality, intuitive physical interaction, and
ecological validity (resemblance with real contexts).

Furthermore, Pizzolato et al. (2019) proposed human
neuromusculoskeletal (NMS) system models for DTs to improve
the outcome of the interactions between users and assistive
or rehabilitative machines. NMS models implemented in robot
control solutions can offer phygital features. For instance, the
output of the interaction between a user and a mechatronic
device (possibly enriched by extended reality solutions) can
become a quantifiable index of healthy and pathological
conditions and responses to treatments. This wouldmake such an
output a peculiar type of digital biomarker (Wright et al., 2017):
a “phygital biomarker” or possibly, a “neurophygital biomarker”

(a promising step in this direction is based on neuromechanical
biomarkers for rehabilomics) (Garro et al., 2021). In line with this
reasoning, we could think about “neurophygital twins” to extract
biomarkers from the activity of their PTs: mechatronic devices
like rehabilitative exoskeletons (Buccelli et al., 2022) or, possibly,
any other robot (including humanoids) designed to interact with
humans wearing sensors.

Through intuitive phygital interactions between the
researcher or the clinician and the lab replica of the same
machine in the real world, neuroergonomic hypotheses on
psychophysiological and motor processes underlying HRIs
can be tested in simulated experiments based on a PDT. We
could also envision the development of neurorobotic systems
(Li et al., 2019) mimicking neurocognitive and neuromotor
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processes to physically replace a virtual human model in a
PDT: in this case, the neurorobotic model would be validated
through its interaction with another machine within the same
PDT. However, before addressing such challenges, the current
constraints in our knowledge and know-how must be pondered.
Besides the technical limitations in twinning (first of all,
the computational burden of emulating neural processes in
ecologically valid settings, without considering the connectivity
issues to approach the real-time standards), we must also
highlight how both DTs and PDTs raise ethical issues on privacy
and consent in data representation and storage, and on concepts
like “normality” and enhancement (Bruynseels et al., 2018;
Braun, 2021; Nyholm, 2021). These issues should be discussed
within the frame of the enablers and the barriers to twinning
adoption (Perno et al., 2020), even pondering the opportunities
offered by novel technological frameworks (Yi et al., 2022).

CONCLUSION

This position paper presented a novel “twinning design” concept:
PDT, based on physical replicas of PT components enriched with

virtual models and computational features to establish intuitive
and reliable phygital interactions with experts. Thus, a PDT
would facilitate the experts’ task of assessing and improving
the PT conditions. Furthermore, PDTs provide neuroergonomics
with tools for iterative human-centered design and evaluation
of robotic systems into a “metalaboratory” before and after
their deployment.
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Introduction: Nowadays, several robots have been developed to provide not only

companionship to older adults, but also to cooperate with them during health and

lifestyle activities. Despite the undeniable wealth of socially assistive robots (SARs), there

is an increasing need to customize the tools used for measuring their acceptance in

real-life applications.

Methods: Within the Robot-Era project, a scale was developed to understand the

degree of acceptance of the robotic platform. A preliminary test with 21 participants

was performed to assess the statistical validity of the Robot-Era Inventory (REI) scales.

Results: Based on the criteria observed in the literature, 41 items were developed

and grouped in different scales (perceived robot personality, human–robot interaction,

perceived benefit, ease of use, and perceived usefulness). The reliability of the Robot-

Era Inventory scale was analyzed with Cronbach’s alpha, with amean value of 0.79 (range

= 0.61–0.91). Furthermore, the preliminary validity of this scale has been tested by using

the correlation analysis with a gold standard, the Unified Theory of Acceptance and Use

of Technology (UTAUT) model.

Discussion: The Robot-Era Inventory represents a useful tool that can be easily

personalized and included in the assessment of any SARs that cooperate with older

people in real environment applications.

Keywords: technology acceptance, older people, social assistive robotics, usability, social presence, embodiment,

scale validity

INTRODUCTION

As stated by the World Population Prospects 2019 (United Nations, 2019), because of the
considerable increase in life expectancy, the population of persons aged 80 years or over is thought
to triple by 2050. Similarly, the number of people aged over 65 years is rapidly increasing; in 2019,
they were 1 in 11, but they will be 1 in 6 by 2050 (UNDepartment of Economic Social Affairs., 2019).
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Due to the aging population across the world, a lot of research
is being carried out to improve older adults’ quality of life
and ensure their independence for as long as possible. In this
scenario, one of the most explored technological solutions is
the use of socially assistive robots (SARs). A social robot is
defined as a humanoid or zoomorphic artificial agent. It has been
identified as an approach to meeting the mental health needs
of older adults through interaction or information exchange
(Oh et al., 2018). Despite the increasing interest in the field
of assistive robotics and technologies in general, one-third
of all the experimented solutions are abandoned during the
first year of use (Gurley and Norcio, 2009). For this reason,
the design and acceptability of service robots, their ability to
positively interact with individuals and coexist in domestic
environments, are crucial aspects to overcoming the resistance
toward service robotics (Salvini et al., 2010). This topic is
frequently explored in literature, confirming that acceptance is
often measured qualitatively (Krick et al., 2019). Nevertheless,
several scales have been used to evaluate SARs acceptability.
The most used is the Technology Acceptance Model (TAM),
grounded on the Theory of Reasoned Action (TRA) and the
Theory of Planned Behavior (TPB). According to the TAM
model, acceptance mainly depends on perceived usefulness and
perceived ease of use. These two discussed factors determine the
attitude toward use, which, in turn, influences the behavioral
intention to use the technology (Ammenwerth, 2019). From the
TAM, the Unified Theory of Acceptance and Use of Technology
(UTAUT) was derived. The UTAUTmodel argues that behavioral
intention and facilitating conditions influence user behavior.
Behavioral intention is, in turn, determined by three constructs:
performance, effort expectancy, and social factors. Furthermore,
gender, age, experience, and voluntariness of use modulate every
factor (Venkatesh et al., 2003). The UTAUT results have been
applied to several fields of research, even if neither the TAM nor
the UTAUT is specifically validated for the healthcare context
(Jewer, 2018) or with older adults (Heerink, 2010). Moreover,
some researchers extended the generalization of the original
model to the application to patients interacting with SARs (Jewer,
2018). The Almere model is an interesting case of this attempt.
This model is founded on the hypothesis that functionality
and technological features may not be exhaustive in describing
acceptance, but also social dimensions play a crucial role in the
acceptance path. Indeed, the Almere model found that trust is
moderated by attitude, which, in turn, is moderated by social
influence, perceived adaptivity, and anxiety (Heerink, 2010). This
model has an enhanced explanatory power, if compared to the
original UTAUT (Heerink, 2010), but it was not validated with
older users nor did it result theoretically strong, resulting in a
limit for the generalizability (de Graaf et al., 2019).

In this article, we report an attempt to provide a
comprehensive model and inventory for the evaluation of
the Robot-Era platform, developed inside the Robot-Era project
(GA 288899). Robot-Era was aimed at developing, implementing,
and demonstrating the general feasibility, scientific/technical
effectiveness, and social/legal plausibility and acceptability of
an advanced social robotic platform, integrated with intelligent
environments. The experimental phase of the project was

divided into two phases, the first one in a realistic setting and
the second one at home. A complete description of the project
and publications of the results are available here (https://cordis.
europa.eu/project/id/288899/it). After the first experimental
phase, the results suggest the need for a more customized tool
to assess the acceptability of the Robot-Era platform (Cavallo
et al., 2018), as already underlined by relevant authors in this
field (Heerink et al., 2009). The preliminary study conducted
highlighted the need for a deeper investigation of the social
presence dimension, and the abilities relevant to fostering the
human–robot interaction (HRI) (Bevilacqua et al., 2015; Cavallo
et al., 2018). The Robot-Era Inventory (REI) may represent a
first attempt to construct a tool able to include all the metrics
of relevance for assessing the acceptability of SARs in the
older population, in contrast to the scales already described,
and that can be easily personalized based on of the specific
services offered. In particular, dimensions, such as usability,
social presence, services’ acceptability, the personality of the
robot, and interaction capabilities, are considered pillars in the
field of social robotics assessment, but the relationships among
these concepts, the robotic features and human abilities, need
to be deeply investigated, to design a model that takes into
account the characteristics of the target, i.e., older people, and the
peculiarities of the services offered through the robotic solutions
and, consecutively, also a tool for measuring and understanding
the impact of using SARs.

MATERIALS AND METHODS

To build the Robot-Era Inventory, we started with the analysis of
the results of the first experimental phase, as clearly described in
a study by Cavallo et al. (2018). In light of the results obtained
and the literature in the field (Heerink et al., 2008, 2009; Heerink,
2010), the first step was represented by the theoretical design
of the model, including all the relevant domains, followed by
the drafting of the items to be included in the Inventory. For
the development of new concepts for the assessment model of
the Robot-Era platform, the starting point of the analysis was
represented by the Venkatesh UTAUT model (2003). As the
second step, the Robot-Era Inventory was administrated to 21
older people during an experimental setup described in par 2.4,
together with the UTAUT questionnaire. The internal validity of
the construct of the new scale was evaluated using Cronbach’s
alpha. The final version of the Robot-Era Inventory is composed
of 5 scales.

To build the Robot-Era Inventory, the steps proposed in
a study by Boateng et al. (2018) were followed regarding: (a)
the Item Development phase (through experts’ workshops for
identifying the domains and literature reviews on models, tools,
and dimensions, described in the following paragraphs) and (b)
the Scale Development phase (i.e., pretesting of the items with
21 older participants, first items reduction, and initial analysis
of content validity). As the authors already suggest, the steps
for scale validation may vary based on the purpose of the
study, resources’ constraints, and use of existing scales for item
generation in contrast with “de-novo” tools. For the Robot-Era
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Inventory, the items were grouped based on already available
scales (see Section The Robot-Era Model), plus a customized
section related to the Robot-Era platform’s services. However, the
full validation of the Inventory should include a higher number
of participants and a deeper statistical investigation to assess the
overall validity and reliability.

Social Presence and the Human–Robot
Interaction
As it is well known from the literature (Lee et al., 2006; Heerink
et al., 2008), social presence can be considered a determinant of
the acceptability and usability of socially assistive robots. This
particular dimension has received much interest both in the field
of social psychology and human–robot interaction (Biocca et al.,
2004). Many definitions of this concept have emerged, but it can
be said that the term “social presence” can be referred to as “the
sense of being there” (Witmer and Singer, 1998; Biocca, 2004) or
the feeling of being in the company of someone as “the perceptual
illusion of nonmediation” (Lombard and Ditton, 1997). From the
psychological perspective, the social presence can be ascribed to
the “theory of mind” paradigm (Gordon, 1986; Carruthers and
Smith, 1996). Following this theory, it can be said that when
interacting with a robot, the users expect the robot to respond
socially, to be able to express affection and appropriate responses
to the person’s social input, and, thus, to stimulate emotional
reactions (Damiano et al., 2015). In this way, it is possible to
assess the social presence of a SAR, by determining how the
robot can interpret social stimuli and how humans perceive and
interpret the robot socially (Fiore et al., 2013).

In 2004, Lee classifies three types of presence:

• The physical experience of entities or environments.
• The social experience refers to the experience of social actors

(both the humans and human like).
• The self-experience refers to the experience of one’s self

or selves.

Out of the three types, the social presence plays a crucial role
for the human–robot interaction and it could be considered the
ultimate goal of any designer of SARs (Breazeal, 2003; Fong et al.,
2003; Lee and Nass, 2003). It is, therefore, important that through
social signals, the robot conveys its social presence (Fiore et al.,
2013), to allow the person to consider the robot as a social agent,
able to influence the sociocognitive processes of the individuals
(Biocca and Harms, 2002; Fiore et al., 2013). Finally, Biocca et al.
(2004) suggested the need to contextualizing the theory of social
presence and its measurement, matching the insights from the
literature with the research objectives.

As for humans, the communication “rules” should guide the
development of social robots defined as “an autonomous or
semi-autonomous robot that interacts and communicates with
humans” (Bartneck and Forlizzi, 2004). In fact, to date, robots
are not seen as simple tools anymore, but also as companions,
thus able to interact socially with humans (Cobo Hurtado et al.,
2021). To do that, the robot must be able to understand what the
user is saying or doing, understand natural language, and should
be capable of establishing complex dialogs with its human. As

described also by Fong et al. (2003), the social robots should have
the following characteristics:

• Express and/or perceive emotions
• Communicate with high-level dialog
• Learn/recognize models of other agents
• Establish/maintain social relationships
• Use natural cues (gaze, gestures, etc.)
• Exhibit distinctive personality and character
• May learn/develop social competencies.

Responsiveness and prompt support are mostly requested
in emergency conditions, in which the user expects to receive
coherent and rapid feedback on the circumstance, to act
appropriately. For this purpose, the HRI may be supported by
multichannel sensory features, which generally include auditory,
visual, and tactile capabilities. Also, the esthetical parts of the
robots are relevant for communication, such as eyes, dimensions,
and shape (Bonarini, 2020). To appreciate and measure the
quality of the HRI, key elements of the interaction should be
defined during the setup of any experimentation or the design
of a new product: the human, the robot, their interaction, and the
context (Collins, 2019).

Regarding human characteristics, five personality traits of the
user are strong predictors of a positive HRI, namely, extroversion,
agreeableness, conscientiousness, neuroticism, and openness to
experience (Esterwood and Robert, 2021).

Acceptability
The acceptance of technology represents more complex
phenomenon with respect to the analysis of older people’s needs
per. se and it could be defined as “the demonstrable willingness
within a user group to employ technology for the task it is
designed to support” (Mynatt et al., 2000; Al-Youssef, 2015).

In general, there is a tendency to think that older adults
are less interested in technological advances and the use of
technology (Knapova et al., 2020). To understand the kernel of
the older people, rejection of new technological artifacts means
to understand deeply the person beliefs that characterized the
elderly and that can determine their closure to the innovation.
Although there are advantages to the use of technology by
older people, it is possible to notice a rejection of the artifacts,
caused by the low motivation to use technology, little knowledge
about the computer/technological world, and also the cognitive
and physical changes that older people undergo as they age
(Wildenbos et al., 2018). This last factor specifically leads to a
psychological condition known as “technostress,” a construct that
indicates how the difficulty of older people in using technology
leads to anxiety and depression about technology and, therefore,
a low level of acceptance of it (Nimrod, 2018).

The acceptance of a device is linked to intrinsic or extrinsic
factors related to the technology (Flandorfer, 2012), such as living
environments, social relationships, and needs, and it may lead
to the diffusion and exploitation of the systems, supporting new
markets and discovering new segments of consumers.

There are numerous studies (Wagner et al., 2010; Magsamen-
Conrad et al., 2015; Vroman et al., 2015; Knapova et al., 2020;
Zaman et al., 2022) that have researched and identified factors
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FIGURE 1 | The Robot-Era theoretical model that summarized the direct influences within the different factors.

that explain the level of technology acceptance by older people.
Personal factors, such as age and education level (Magsamen-
Conrad et al., 2015; Vroman et al., 2015; Vorrink et al., 2017),
psychological factors, such as motivation to use technology,
perceived anxiety, and cognitive abilities (Venkatesh et al., 2003;
Macedo, 2017), and environmental factors, such as financial
support and assistance from friends and family (Wagner et al.,
2010), come into play. Finally, personality-related factors also
play an important role (Vroman et al., 2015).

In this regard, Svendsen et al. (2013) have investigated the
degree to which users’ assessment of the core constructs of
the Technology Acceptance Model (TAM) is influenced by
personality as measured by a short version of the Big Five
Inventory (John et al., 1991). A web-based survey was used
where 1,004 users read a description of a software tool before
completing personality and the TAM inventories. The results
indicate that personality influences behavioral intention (BI). In
particular, the extraversion trait has significant, positive relations
to BI and this relation is fully mediated by the TAM beliefs,
in addition to the openness to experience, significantly and
positively related to perceived ease of use.

In this case, the analysis of the acceptability of the three robotic
platforms was mainly based on the administration of the UTAUT
questionnaires and ad-hoc questions on anxiety and perceived
enjoyment, and the evaluation of the acceptability oriented
to the services, employing through observations. Moreover,
the analysis of two personality traits, namely, the novelty-
seeking and the introversion/extraversion traits, will be added
to the preliminary questionnaire, while Anxiety, Attitude, and
Perceived Adaptability scales from the UTAUT were selected.
Among them, it was found that perceived adaptability is a crucial
dimension for evaluating the acceptance of social robots in older
people (Heerink et al., 2008).

Usability
Older people are often considered “technophobes” due to their
scarce knowledge and lack of accessibility to technology (Joshi
et al., 2020). The use of a robotic assistant for daily activities can
be felt by older people as a real challenge. Furthermore, long-term
use of robots is also rare because little research has tested them in
real human operating environments, where both the needs and
difficulties of interaction emerge (Cobo Hurtado et al., 2021).

Understanding the role of usability in the field of robotics is
not trivial, as the technical features of the robots are inextricably
connected with factors, such as social presence, empathy, and
feeling of being in a relationship (Rogers, 2009).

Following the principles of universal design, a product and
an environment should be usable by all the people, avoiding, as
much as possible, the need for adaptation or specialized design,
through the application of principles, such as equitable use,
flexibility, simplicity, and intuitive use, perceptible information,
tolerance for error, low physical effort, and size and space for
approach (Burgstahler, 2001). This means that the technology
should be built for as wider a range of users as possible and
also for secondary and tertiary end-users, most of all for the
informal caregivers (Van Den Broek et al., 2010). Technological
malfunctioning and limitations of robots represent two of
the most important barriers to the adoption of social robots.
Moreover, it can be stated that the usability of a robotic system is
a major concern among older adults (Papadopoulos et al., 2020).

Robots are smart objects that can be distinguished from
other similar products due to their navigation and manipulation
skills, in addition to the interaction modality. The usability is
influenced strongly by interactions that are executed by hardware
andmoving parts, not only by software. Robots can move around
autonomously, they can interchange or manipulate objects with
users, and due to their stronger interaction skills, they can be not
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TABLE 1 | Items selected for the inventory.

Dimension Acronym ITEMS

Perceived Robot Personality PRP The robot is unsociable-sociable

The robot is insensitive-sensitive

The robot is incompetent-competent

The robot is unintelligent- intelligent

The robot is moving rigidly- moving elegantly

The robot could be a friend of mine

I would like to have a friendly chat with the robot

I would trust the robot if it gives me advice

I have confidence in the robot ability to get the job done

I’m afraid the robot can hurt me

I feel safe when the robot moves around me

Human Robot Interaction HRI The robot was able to communicate his intention clearly to me

When talking with the robot I felt like I’m talking to a real person

The vocabulary of the robot is appropriate

The robot talks fluently

The robot is able to manage communication failures

How do you feel when the robot was moving his arm? agited-calm

How do you feel when the robot was moving his arm? quiescent-surprise

How do you feel when the robot speech? agited-calm

How do you feel when the robot speech? quiescent-surprise

I think talk to the robot is very easy

Perceived Benefit PB The robot is appealing and I really would like to use it more

I do not have the technical competences to make a good use of the robot

I think I could have a good use of the robot

Robot services match the needs I have

The robot is able to fulfill the goal I have settled

I feel more independent if supported by the robot in my daily activities

Easiness of use EU I couldn’t get anything accomplished with the robot

I will be able to use the robot without any support

I think the overall RE platform can be used only by people with no limitation

I have had fun using the robot

I was relaxed during the use of the robot

I feel nervous while using the robot

Perceived usefulness PU Reminding appointment

Communicate with carers

Carrying objects

Giving the sense of security in the home

Accompany inside the homeh36pay

I could use Robot-Era system only if necessary

I am willing to my living environment to be able to use the robot.

only perceived as machines, but also personal assistants or even
friends. For this reason, it was decided to maintain the concepts
expressed by ISO 9241 and the UTAUT dimensions of perceived
usefulness and perceived ease of use as relevant references for the
usability evaluation, both largely described in the literature.

Robot-Era Model
The Robot-Era model is designed in light of the literature in the
field and the lessons learned from the first testing experience with
the Robot-Era platform. In particular, the adaptation of available
tools seemed necessary to include a more comprehensive
approach to social presence and the HRI, determined by the
robotic capabilities and characteristics.

The relevant factors behind the model are divided into:
intrinsic. characteristics and interaction. factors.

For intrinsic. characteristics, we defined all those end-
users and robots’ characteristics that influence the interaction

condition, determined by embodiment and social navigation
for the robotic agent and acceptability antecedents, such as
attitude toward technology, personality traits, age, gender,
technology representations, eHealth, and health literacy, for the
human agent.

Regarding the robotic agent, the embodiment and social
navigation establish a basis for structural coupling by creating
the potential for mutual perturbation between system and
environment, a prerequisite for any robotic agent to be perceived
as a social being (Fong et al., 2003). On the human agent,
the acceptability antecedents represent a core set of essential
information to be collected, as largely reported in many studies
and theoretical approaches in the field (Bevilacqua et al., 2014).

As interaction. factors, we have defined all the key dimensions
to assess the overall acceptability of social robotics in any
experimental setup that required contact with older people to
cooperate in daily activities. These factors are:
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• Perceived. robot. personality, including all the characteristics
related to social presence, trust, and feeling of being in
company with someone.

• Human–robot. interaction, including the assessment of
communication skills and speech, perceived safety, and
physical contact.

• Usability, intended as ease of use and perceived usefulness.
• Acceptability, intended as attitude toward the system (in this

case, the Robot-Era, but these should be customized based
on the robotic services or technology), perceived benefit, and
adaptability to the needs and wishes of the participants.

Even if all the dimensions are strictly connected, Figure 1
summarizes the direct influences of the different factors: the
robotic agent’s intrinsic characteristics, for example, directly
influence the social presence and the HRI capabilities, while the
human agent’s acceptability antecedents may have a direct effect
on the perception of usability and acceptability of SAR, and on
the evaluation of the HRI features themselves. As observed, the
HRI plays a central role in the model, as it is the domain in
which the robotic agent and the human agent’ dynamics converge
together, in the co-construction of the social interaction.

To draft the items of the inventory, the tools and scales
from the literature were selected (Interpersonal Attraction
Scale; McCroskey and McCain, 1974; UTATU, Venkatesh et al.,
2003; Godspeed questionnaire, Bartneck et al., 2009) and then
customized for the Robot-Era robotic services. Table 1 shows the
items selected for the inventory.

Sample Description and Procedure
To assess the internal validity of the Robot-Era Inventory, a
preliminary test with 21 participants was performed, to be
replicated with a larger sample in a more advanced stage, in case
of initial positive evidence.

Sample Description

The study population consisted of 21 volunteers from a local
recreational center of the municipality, 13 men and 8 women,
with a mean age of 69.2 ± 3.9 years. Information about their
educational level, working situation, and monthly income are
given in Table 2.

Procedure

The first version of the Robot-Era Inventory was composed of
41 items to be rated on a 5-point Likert scale. The statistical
validation of the inventory was conducted in a piloted session in
the IRCCS INRCA facility with 21 older people, to test the validity
of the scales concerning the goal standard scale (the UTAUT
questionnaire). After the presentation of Robot-Era objectives
and the main functionalities and characteristics of the three
robots, the researchers have shown a video of Robot-Era platform
operating in indoor and outdoor contexts, to give a concrete
idea of the potential use of the robots. Before starting the test,
informed consent was signed by each participant and the subjects’
anonymity was guaranteed. After they saw the video, the Robot-
Era Inventory and the UTAUT questionnaire were administrated.
This video may be found here: https://www.youtube.com/watch?
v=XVJXdIZ6GVA.

TABLE 2 | Sample description.

Variable

Age, mean ± SD 69.2 ± 3.9

Gender, n (%)

Male 13 (61.9%)

Female 8 (38.1%)

Educational level, n (%)

Primary 9 (42.9%)

Secondary 7 (33.3%)

Tertiary 5 (23.8%)

Education in years, mean ± SD 11.2 ± 4.1

Working situation, n (%)

Retired 16 (76.2%)

Working full time 2 (9.5%)

Working at home 2 (9.5%)

Monthly income, n (%)

0–500 € 1 (5.3%)

501–1,000 € 2 (10.5%)

1,001–1,500 € 7 (36.8%)

1,501–2,000 € 6 (31.6%)

2001–2500 € 3 (15.8%)

Statistical Analysis for the Development of
the Robot-Era Inventory
The reliability of the Robot-Era Inventory scales was analyzed
with Cronbach’s alpha. Cronbach’s alpha is a coefficient of
internal consistency reliability and a solid construct would have
an alpha of at least 0.7 (Nunnally, 1978). The interpretation
of Cronbach’s alpha is (Gliem and Gliem, 2003): a. ≥. 0.9
Excellent; 0.8 ≤ a. <. 0.9 Good; 0.7 ≤ a. <. 0.8 Acceptable;
0.6 ≤ a. <. 0.7 Questionable; 0.5 ≤ a. <. 0.6 Poor; and a.
<. 0.5 Unacceptable. Based on the criteria observed in the
literature and the analysis, 41 items were developed and grouped
in different scales (Table 1). In addition, the same analysis was
performed on the UTAUT results to verify the reliability of the
scale in the experimental setting. Finally, the internal validity
of the constructs has been tested using the correlation analysis
between the Robot-Era Inventory and the Unified Theory of
Acceptance and Use of Technology (UTAUT) (Venkatesh et al.,
2003) subscales. The Bonferroni correction has been applied
to correct the multiple comparisons. A confirmatory principal
component analysis (PCA) using Varimax rotation method with
Kaiser normalization is conducted.

RESULTS

Cronbach’s alpha values of the Robot-Era Inventory (REI) scales
and the UTAUT scale are given in Tables 3, 4, respectively. In
Table 3, an adequate level of reliability is shown by the scores that
are all> 0.6.Table 4 shows that the UTAUT scales also have good
internal consistency within this study, except social influence
(SI). The correlation coefficients, after the Bonferroni correction,
between the Robot-Era Inventory scales and the UTAUT scales
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TABLE 3 | The Cronbach’s alpha values of the Robot-Era Inventory scales.

Dimension Acronym Cronbach’s Alpha

Perceived Robot Personality PRP 0.7416

Human Robot Interaction HRI 0.6947

Perceived Benefit PB 0.8480

Easiness of use EU 0.6784

Perceived usefulness PU 0.7064

TABLE 4 | The Cronbach’s alpha values of the Unified Theory of Acceptance and

Use of Technology (UTAUT).

Subscale ACRONYM Cronbach’s Alpha

Anxiety ANX 0.9269

Attitude ATT 0.8341

Facilitating conditions FC 0.8627

Intention to use ITU 0.9305

Perceived adaptability PAD 0.7386

Perceived enjoyment PENJ 0.9232

Perceived ease of use PEOU 0.6393

Perceived usefulness PU 0.8369

Social influence SI 0.4942

Trust Trust 0.8773

Social presence SP 0.8846

perception of sociability PS 0.8909

are shown in Table 5. As expected, there is a high value of the
correlation coefficients between the REI and UTAUT subscales,
even if only some correlations are significant. Several UTAUT
subscales do not show a significant correlation coefficient with
the REI subscales, probably due to the low sample size. Two of
the most important subscales in the literature and also in our
model are the TRUST and PS subscales. Both have a positive
and significant correlation with all of the HRI and PB subscales,
respectively. In fact, in both the models, importance is placed
on the robot’s ability to interact with the person. However, the
limitation of the UTAUT is that it was not built for the elderly
person, as opposed to the REI. Another important scale is the
intention to use (ITU), which is considered an essential scale for
technology usage adoption. In our case, it has two correlations
with our inventory with the perceived usefulness and with the
human–robot interaction.

Table 6 reports the analysis of the sociodemographic
characteristics of the sample, concerning the score obtained on
the REI and the UTAUT scales. As it is observed, no significant
differences in age, class, and gender were found for the REI scales,
while for the UTAUT, there is a significant positive correlation
between gender and facilitating condition, suggesting a positive
perception of available personal resources to use the robot from
the male respondents, and a higher perception of social influence
for the older people, underlying a probable positive role of the
environment to foster the system acceptability.

The factor loading obtained from the confirmatory principal
component analysis is reported in Supplementary Materials.

TABLE 5 | Correlation coefficients with the Robot-Era Inventory scales and the

UTAUT scales after the Bonferroni correction.

REI

PRP HRI PB EU PU

UTAUT ANX −0.3306 −0.4631 −0.4630 0.0142 −0.3617

ATT 0.4618 0.5797 0.5046 0.3914 0.6134

FC 0.2738 0.5755 0.5165 0.433 0.5552

ITU 0.6865 0.7454* 0.5497 0.4498 0.8175*

PAD 0.5301 0.7392* 0.6647 0.3933 0.5345

PENJ 0.5166 0.7654* 0.5173 0.4665 0.3527

PEOU 0.3548 0.6693 0.6404 0.6857 0.6621

PU 0.3024 0.4866 0.5566 0.6427 0.6507

SI 0.3973 0.2222 0.2311 −0.0265 0.3135

Trust 0.6042 0.7479* 0.6952 0.5511 0.5700

SP 0.6619 0.5817 0.6304 0.3305 0.5869

PS 0.6166 0.5070 0.7678* 0.5892 0.6496

ANX, Anxiety; ATT, Attitude; FC, Facilitating conditions;ITU, Intention to use; PAD,

Perceived adaptability; PENJ, Perceived enjoyment; PEOU, Perceived ease of use;

PU, Perceived usefulness; SI, Social influence; Trust, Trust; SP, Social presence;

PS, Perception of sociability; PRP, Perceived Robot Personality; HRI, Human Robot

Interaction; PB, Perceived Benefit; EU, Easiness of use; PU, Perceived usefulness.
* =r < 0.05.

This analysis confirms the validity of the theoretical subdivision
in subscales reported in this article. The PCA showed 5
components: the first component corresponds to perceived
benefit, the second component corresponds to perceived robot
personality, the third component corresponds to the human–
robot interaction, and the fifth component corresponds to
perceived usefulness. The second component is the only one that
has not immediate correspondence with our model. Correlations
among PCA components and the REI subscales are tested with
Pearson’s coefficients, which range from 0.3751 for factor 4 to
0.8807 (p < 0.05) for factor 1 corresponding to the REI PB.

DISCUSSION

Given the rising number of older people in nowadays society, it
is essential to understand the acceptability of social robotics to
support them in daily activities. The pervasiveness of robotics
in the healthcare context requires a deeper analysis in terms
of impact on the quality of life and cost-effectiveness of the
innovative solutions, but the successful diffusion of such devices
is strongly determined by their acceptability, in the short and
long term.

In literature, it is widely recognized the paramount
importance of the TAM and the UTAUT models, aimed at
providing insights on how to support the use of innovative
systems, especially robotics in the latter case. However,
the authors suggest the need to adapt the model and the
questionnaires to the requirements of the experimental setting,
and the technological artifacts (Heerink et al., 2008). Moreover,
as the research in the field is becoming more and more
multidisciplinary, understanding the impact of technology
acceptance on the quality of life of older people is a central
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TABLE 6 | The Robot-Era Inventory scales and the UTAUT by the gender and age groups, mean ± SD.

Scales Total Gender Age group

Male Female p <70 70+ p

REI PRP 37.6 ± 5.7 37.8 ± 6.3 37.4 ± 5.2 0.883 37.3 ± 5.3 37.1 ± 6.4 0.938

HRI 34.9 ± 4.5 36.2 ± 3.4 32.8 ± 5.5 0.088 35.0 ± 4.7 35.0 ± 4.8 0.999

PB 22.8 ± 4.9 23.5 ± 5.5 21.6 ± 3.7 0.398 22.9 ± 3.4 21.8 ± 6.5 0.903

EU 17.7 ± 2.4 18.4 ± 2.0 16.6 ± 2.8 0.106 17.5 ± 2.8 17.5 ± 1.3 0.999

PU 28.9 ± 4.0 29.2 ± 3.9 28.4 ± 4.2 0.642 29.2 ± 3.7 27.6 ± 3.8 0.376

UTAUT ANX 9.2 ± 5.0 8.5 ± 4.9 10.5 ± 5.3 0.379 9.8 ± 4.9 9.0 ± 5.5 0.725

ATT 11.0 ± 2.5 11.5 ± 2.0 10.3 ± 3.1 0.290 11.3 ± 2.0 10.0 ± 2.8 0.228

FC 6.4 ± 1.9 7.2 ± 1.3 5.0 ± 2.2 0.013 6.3 ± 1.7 6.3 ± 2.4 0.989

ITU 7.8 ± 3.1 8.3 ± 2.9 6.9 ± 3.5 0.337 8.4 ± 3.1 6.5 ± 2.8 0.198

PAD 10.2 ± 2.4 10.8 ± 1.8 8.9 ± 3.0 0.075 10.4 ± 2.3 9.6 ± 2.6 0.526

PENJ 17.7 ± 2.7 18.3 ± 2.5 16.9 ± 3.1 0.295 17.9 ± 2.7 17.6 ± 3.2 0.811

PEOU 17.3 ± 3.9 18.4 ± 2.1 15.5 ± 5.4 0.097 17.2 ± 3.5 17.0 ± 4.7 0.928

PU 10.3 ± 2.6 11.1 ± 2.1 9.0 ± 2.9 0.071 10.3 ± 2.7 9.9 ± 2.2 0.751

SI 8.1 ± 1.9 8.1 ± 2.1 8.2 ± 1.6 0.940 9.0 ± 1.0 7.0 ± 2.4 0.038

Trust 7.2 ± 2.1 7.6 ± 2.0 6.5 ± 2.3 0.250 7.5 ± 2.2 6.6 ± 2.1 0.389

SP 11.8 ± 4.3 13.0 ± 4.5 9.9 ± 3.2 0.130 10.8 ± 4.0 12.9 ± 4.9 0.353

PS 11.9 ± 4.9 12.5 ± 4.9 10.9 ± 4.9 0.479 11.3 ± 4.8 12.1 ± 5.3 0.719

p-values from unpaired t-test.

ANX, Anxiety; ATT, Attitude; FC, Facilitating conditions; ITU, Intention to use; PAD, Perceived adaptability; PENJ, Perceived enjoyment; PEOU, Perceived ease of use; PU, Perceived

usefulness; SI, Social influence; Trust, Trust; SP, Social presence; PS, Perception of sociability; PRP, Perceived Robot Personality; HRI, Human Robot Interaction; PB, Perceived Benefit;

EU, Easiness of use; PU, Perceived usefulness.

Bold values indicated statistically significant differences.

topic, especially for geriatricians. However, there is still limited
evidence of tools that assess the perceived improvement of
the quality of life, in combination with the acceptance of
technological services. This limitation is also due to the use
of qualitative methods and/or clinical scales in technological
trials, such as the Short Form-12, for example, to address the
improvement of quality of life after the system use. These
tools are designed for the clinical population in assistance
and care settings (Ware et al., 1996) and not to understand
the impact of technology for supporting active and healthy
aging, for example, at home, as they include the assessment
of a wide range of dimensions that are not the target of
technological devices, as SARs. The same can be said for the
independent living and autonomy domains. In this case the
most used tools are activities of daily living and instrumental
activities of daily living indexes (Lawton and Brody, 1969).
These scales are designed by adopting a medical perspective
to assess the functional and cognitive autonomy of older
people, but those activities (i.e., dressing, bathing, managing,
financing) are only partially addressed by the robotic solutions
and require a more complex combination of technological and
personal assistance to be supported. There are wider concepts
and definitions of autonomy in aging that may open up to
a profound understanding of the impact of technology and
its acceptance, not only of the aging phenomenon. As the
objective of any technological tool is the promotion of an
optimal aging process, the definition of successful aging has
the achievement of “high physical, psychological, and social

functioning in old age without major diseases” (Fries, 1980;
Cosco et al., 2014; Martin et al., 2014; Bevilacqua et al., 2020),
seems to be more appropriate to unveil the activities that the
older people consider of utmost importance for their quality
of life and that may be supported through technologies. More
recently, intending to promote a more comprehensive and
appropriate assessment of the aging population, the WHO
introduced the concept of intrinsic capacity (IC), defined
as “the composite of all the physical and mental capacities
that an individual can draw upon during his/her life” (Beard
et al., 2016), open up to those intrinsic characteristics that
the older people can put in place during the aging process
and that play a crucial role in the technology acceptance and
usage behavior.

In our model, we have tried to combine a wider approach to
understand the impact on the quality of life of the personalized
robotic services offered through the Robot-Era system, with the
construct of acceptance of technology from a traditional model,
like UTAUT. The Robot-Era Inventory includes the assessment
of the personalized services, an adaptation already suggested
in the literature (Heerink et al., 2008), with the evaluation of
the perceived robotic capabilities, influenced by the end-users
intrinsic characteristics. As it was designed, the dimension of
the human–robot interaction (HRI) represents the kernel of the
model, by including the evaluation of the robotic capabilities
(i.e., speech) and the perception of those by the older users,
representing a co-constructed space between the two agents that
shape the relationship, influencing the use of the system.
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This study represents an attempt to take a step further in the
field of technology assessment with older people, concerning the
SARs, and also a solution to the urgent need for the availability of
customizable tools, to be adapted to different experimental setups
and services.

As psychophysiological measures are considered one of
the main methods of assessment used for human studies
in the human–robot interaction together with self-report,
behavioral measures, and task performance analysis (Bethel
et al., 2007), future studies should take into consideration
the use of the scale of acceptance in combination with
biosignals, for example, related to anxiety during the use
of the robot. As the physiology of the autonomic nervous
system changes with age, the comprehension of the autonomic
arousal concerning to stressful stimuli, such as the use of
a SAR, is of paramount relevance in combination with
traditional assessment tools, to understand the reactions of older
people during the performance with the technology. Several
studies on social robotics have used combined evaluation of
quantitative and/or qualitative tools with biosignals, such as
ECG, electrodermal activity, and the electric brain activity, with
the aim of personalizing the behavior of the robot concerning
to the emotional state of the older users (Fiorini et al.,
2020).

Despite this, this study presents some limitations. First of
all, a higher number of participants should be involved in
the scale assessment, to collect data to refine the inventory.
A shorter version of the inventory needs to be developed
to be applied during any experimental setting, so as not
to constitute a burden for the older respondents. Moreover,
despite the validity of the video analysis as the methodology
to evaluate the HRI, the opportunity of administrating the
questionnaire after an effective interaction in a real or realistic
setting can be relevant. In the future, a cultural validity of
the inventory, by including older volunteers from different

cultural backgrounds and equally divided by gender, should
be conducted.
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