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Background: Ovarian cancer is highly malignant and has a poor prognosis in the
advanced stage. Studies have shown that infiltration of tumor microenvironment cells,
immune cells and stromal cells has an important impact on the prognosis of cancers.
However, the relationship between tumor microenvironment genes and the prognosis of
ovarian cancer has not been studied.

Methods: Gene expression profiles and SNP data of ovarian cancer were downloaded
from the TCGA database. Cluster analysis, WGCNA analysis and univariate survival
analysis were used to identify immune microenvironment genes as prognostic signatures
for predicting the survival of ovarian cancer patients. External data were used to evaluate
the signature. Moreover, the top five significantly correlated genes were evaluated by
immunohistochemical staining of ovarian cancer tissues.

Results: We systematically analyzed the relationship between ovarian cancer and
immune metagenes. Immune metagenes expression were associated with prognosis.
In total, we identified 10 genes related to both immunity and prognosis in ovarian
cancer according to the expression of immune metagenes. These data reveal that high
expression of ETV7 (OS, HR = 1.540, 95% CI 1.023–2.390, p = 0.041), GBP4 (OS,
HR = 1.834, 95% CI 1.242–3.055, p = 0.004), CXCL9 (OS, HR = 1.613, 95% CI 1.080 –
2.471, p = 0.021), CD3E (OS, HR = 1.590, 95% CI 1.049 –2.459, p = 0.031), and TAP1
(OS, HR = 1.766, 95% CI 1.163 –2.723, p = 0.009) are associated with better prognosis
in patients with ovarian cancer.

Conclusion: Our study identified 10 immune microenvironment genes related to the
prognosis of ovarian cancer. The list of tumor microenvironment-related genes provides
new insights into the underlying biological mechanisms driving the tumorigenesis
of ovarian cancer.

Keywords: ovarian cancer, microenvironment, immune metagenes, prognosis, TCGA
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INTRODUCTION

Cancer seriously endangers human health, and in recent years,
the incidence of malignant tumors has increased annually.
The World Health Organization reported 18.1 million new
cancer cases and 9.6 million cancer-related deaths worldwide
in 2018. Ovarian cancer is a common gynecologic malignancy
and the fifth leading cause of cancer-related deaths in women
(Siegel et al., 2018). The lifetime risk of ovarian cancer in
women is 1.3%. The 5-year survival rate ranged from 29 to
93%, depending on the initial diagnosis (Torre et al., 2018).
Despite advances in treatment strategies and techniques, the
mortality rate of ovarian cancer remains high. The main reason
is the lack of obvious symptoms and effective screening for
ovarian cancer. Sixty percent of patients were diagnosed with
advanced ovarian cancer (Dinh et al., 2008). Standard treatment
for advanced ovarian cancer includes tumor cell destruction
and standard chemotherapy. However, most patients relapse
within 2–3 years after first-line chemotherapy and die as a
consequence of chemotherapy resistance (Odunsi, 2017). Thus,
new treatment strategies and paradigms are greatly needed
for these patients.

Malignant solid tumor tissue is heterogeneous and includes
not only tumor cells but also tumor-associated normal epithelial
and stromal cells, immune cells and vascular cells. The
process of tumor development depends on a variety of
complex signaling pathways between tumor cells and the
tumor microenvironment (Kreuzinger et al., 2017). With
the improvement of understanding the molecular basis of
immune recognition and immune regulation in tumor cells,
immunotherapy has aroused great interest (Nelson, 2015).
Tumor microenvironment cells and the degree of infiltration
of immune and stromal cells in tumors have been reported
to significantly contribute to the prognosis. In the tumor
microenvironment, immune and stromal cells are two main
types of non-tumor components and have been proposed
to be valuable for the diagnosis and prognosis evaluations
of tumors (Senbabaoglu et al., 2016; Winslow et al., 2016;
Ovarian Tumor Tissue Analysis (Otta) Consortium, Goode
et al., 2017). Many algorithms have been developed to
calculate tumor purity using gene expression and DNA
methylation data (Carter et al., 2012; Yoshihara et al.,
2013; Zheng et al., 2017). The immune and stromal scores
calculated based on the ESTIMATE algorithm (Yoshihara et al.,
2013) promote the quantitative determination of immune
and stromal components in tumors. In this algorithm, the
authors calculated immune and stromal scores by analyzing
specific gene expression characteristics of immune and stromal
cells to predict non-tumor cell infiltration. This algorithm
has been applied to prostate cancer (Shah et al., 2017) and
breast cancer (Jia et al., 2018), and the results show the
effectiveness of this algorithm, but there are no detailed studies
on ovarian cancer.

The Cancer Genome Atlas (TCGA) has been established
to improve cancer prevention, diagnosis and treatment by
applying high-throughput genome analysis techniques to
provide a better understanding of cancer (Cancer Genome

Atlas Research Network, 2008). To better understand the
effect of immune microenvironment-related genes on the
prognosis of ovarian cancer, we systematically analyzed the
expression profile data in the TCGA database and mined
the genes related to the microenvironment of ovarian
cancer and poor prognosis. Finally, we obtained a set of
microenvironment genes associated with poor prognosis in
ovarian cancer patients and validated them with the online
tool KMplot1.

MATERIALS AND METHODS

Data Source and Data Pre-processing
TCGA Data
We used the GDC API to download level 3 data for OC
patients from the TCGA database2 (December 26, 2018). The
data included the following: (1) RNA-seq data (n = 379).
The Fragment Per Kilobase of transcript per Million mapped
reads (FPKM) data of RNA-Seq were downloaded from the
TCGA and further converted into Transcript Per Million
(TPM) expression profiles and RNA-Seq Count data; (2) Single
nucleotide polymorphism (SNP) data (n = 436); and (3) Clinical
follow-up information (n = 587) including survival and outcome.

Immune Metagenes Scores
Thirteen kinds of immune metagenes, which correspond to
various types of immune cells and reflect various immune
functions, were identified from previous reports (Safonov et al.,
2017). For each sample, according to the gene expression levels
of immune metagenes, we selected the median expression level of
each type of immune metagenes and designated these levels as the
immune metagenes score for these samples.

Immune Cell Scores
We downloaded the scores of six types of immune cells
corresponding to each sample of ovarian cancer from the Tumor
Immune Estimation Resource (TIMER)3 database. The six types
of immune cells were B cells, CD4+ T cells, CD8+ T cells,
neutrophils, macrophages and dendritic cells.

Immune Scores and Stromal Scores
Stromal and immune scores were estimated from transcriptomic
profiles of the ovarian cancer cohort from TCGA using
the ESTIMATE algorithm. We used the R software package
estimate to calculate the immune and stromal scores of each
sample. ESTIMATE (Estimation of STromal and Immune
cells in MAlignant Tumor tissues using Expression data) is
a tool for predicting tumor purity, and the presence of
infiltrating stromal/immune cells in tumor tissues using gene
expression data. ESTIMATE algorithm is based on single
sample Gene Set Enrichment Analysis and generates three
scores: stromal score (that captures the presence of stroma in

1http://kmplot.com
2http://cancergenome.nih.gov
3https://cistrome.shinyapps.io/timer/
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tumor tissue), immune score (that represents the infiltration
of immune cells in tumor tissue), and estimate score (that
infers tumor purity).

Overall Survival Curve and Differential
Expression Analysis
The data were processed: (1) KM plots were generated to
illustrate the relationship between patients’ overall survival and
gene expression levels of immune metagenes. The relationship
was tested by log-rank test. (2) Weighted gene co-expression
network analysis (WGCNA), an R software package (Langfelder
and Horvath, 2008; Wang et al., 2019), was used to construct
a weighted co-expression network. A soft threshold of 8 was
selected to screen the co-expression modules. The protein-
protein interaction (PPI) network was retrieved from STRING
database (Szklarczyk et al., 2015) and reconstructed via Cytoscape
software (Shannon et al., 2003; Wang et al., 2020). (3)
The R software package clusterProfiler for KEGG enrichment
analysis was used, and a significance of false discover rate
(FDR) < 0.05 was selected. (4) Data analysis was performed
using the package DESeq2. The log2 (Foldchange)| > 1 and
FDR < 0.05 were set as the cutoff values to screen for differentially
expressed genes.

Immunohistochemical Staining (IHC)
We collected a total of 168 human ovarian cancer tissue
samples, which had accompanying follow-up information,
from archives of paraffin-embedded tissues between January
2010 and January 2015 at the Department of Pathology of
Beijing Chao-Yang Hospital. The follow-up was performed
until December 31, 2020. The pathological diagnoses were
reconfirmed by a pathologist. The patients included in present
study were all (1) Epithelial ovarian cancer, (2) Underwent
cytoreductive surgery and subsequent chemotherapy, (3)
With follow-up information. The exclusion criteria were (1)
Ovarian germ cell tumor, ovarian sex cord stromal tumor
or metastatic cancer, (2) Unstandardized treatment, (3) No
informed consent, (4) Lost to follow-up, and (5) No enough
pathological samples.

The project was approved by the Ethical Committee (Beijing
Chao-Yang Hospital), and informed consent was acquired from
patients. IHC was performed as previously described (Li et al.,
2010). Antibodies against the following were used: ETV7 1:200
abcam ab229832, GBP4 1:50 abcam ab232693, CXCL9 1:100
abcam ab137792, CD3E 1:500 abcam ab237721, TAP1 1:200
abcam ab137013. The scoring details have been described
previously (Zhang et al., 2015). The intensity of immunostaining
was graded as follows: 1+, weak; 2+, moderate; 3+, strong
or 4+, very strong. The area of positive cancer cells in each
microscopic field was categorized as follows: 1+, 0–25%; 2+,
25–50%; 3+, 50–75%, or 4+, 75–100%. The sum between 5
and 80 was obtained by multiplying the two scores by 5.
A sum from 0 to 42 was assigned as “low expression” and
that from 43 to 80 as “high expression.” All pathological
diagnoses were confirmed in a blinded manner by three
expert pathologists.

RESULTS

Correlation Analysis of Immune
Metagenes With Immunological
Components in the Tumor
Microenvironment
To observe the relationship between 13 types of immune
metagenes scores, we calculated the correlation between them, as
shown in Supplementary Figure 1A. The average correlations of
natural killer cells (NK), regulatory T cells (Tregs), interferon-
inducible genes (IF_I) and major histocompatibility complex
class II antigen (MHC2) with other metagenes were the
smallest and were 0.08157227, 0.23253018, 0.3120958, and
0.398014, respectively. The other classes of metagenes were highly
correlated, which indicates that there is a certain consistency
in the expression of metagenes in ovarian cancer. Furthermore,
we analyzed the immune metagenes scores and six kinds of
immune cells in the tumor microenvironment, as shown in
Supplementary Figure 1B. We found that in addition to NK,
Tregs and IF_I have smaller correlations with the content of six
kinds of immune cells, and the scores for other metagenes were
>0.4, suggesting that the immune metagenes and immune cells
in the immune microenvironment have a significant correlation.
Finally, we calculated the correlation between immune metagenes
and immune and stromal scores, as shown in Supplementary
Figure 1C. The correlation of the other 10 types of immune
metagenes, except for NK, IF_I and Tregs, was very high, with
an average higher than 0.4. In conclusion, the expression of
these immune metagenes was closely related to the immune
components in the tumor microenvironment.

Relationship Between Immune
Metagenes and Clinical Stage
According to the expression levels and stages of immune
metagenes in each sample, we calculated the expression level
distribution of immune metagenes in different stages, as shown
in Supplementary Figures 2A–M (the number of Stage I samples
was too small to be counted, so we counted only Stages II-IV).
Immune metagenes showed a trend of successively declining
expression of Stages II-IV, and ImmuneScore, follicular helper T
cells (Tfh) and signal transducer and activator of transcription
1 (STAT1) had significant differences in various stages. The
prognostic differences in the four stages were further analyzed
as shown in Supplementary Figure 2N, and different stages had
significant prognostic differences. This result suggests that the
expression of immune metagenes may be closely related to the
prognosis of ovarian cancer.

Prognostic Difference Analysis of
Immune Metagenes
To observe the expression and prognosis of the relationship
between immune metagenes, we classified as high- and low-
expression samples according to the median expression of
metagenes. KM plots was used for prognostic difference analysis,
as shown in Figures 1A–M. In all immune metagenes, the
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FIGURE 1 | (A–M) KM curve of the expression and prognosis of immune metagenes; group H represents high-expression genes, and group L represents
low-expression genes. (N) The expression distribution of immune metagenes.

low-expression group had a worse prognosis than the high-
expression group, in which ImmuneScore, Tfh, MHC1, STAT1
and Co_inhibition showed significant differences in prognosis,
suggesting that the high expression of metagenes was a good
prognostic factor. Next, we analyzed the expression distribution
of immune metagenes as shown in Figure 1N. Except for the
low expression of Tregs, the median expression of other types
of metagenes was generally high. This result suggests that these
immune metagenes are commonly expressed genes in ovarian
cancer, indicating the potential of these metagenes as a new
prognostic marker.

Relationship Between Immune
Metagenes and BRCA Mutations
BRCA genes are tumor suppressor genes that play important
roles in cell replication regulation, DNA damage repair and
normal cell growth. If BRCA genes are mutated, they will lose
their ability to inhibit tumorigenesis. There are hundreds of
BRCA mutation types, which are related to the occurrence of
many cancers in the human body; among these cancers, breast
cancer is the most closely related to BRCA mutations, followed by
ovarian cancer. Therefore, we analyzed the relationship between
these immune metagenes and BRCA1 and BRCA2 mutations.
First, MuTect (Cibulskis et al., 2013) was used to process SNP

data downloaded from the TCGA and to extract mutation
data of BRCA1 and BRCA2. The expression relationship of
immune metagenes in the BRCA1 mutation group and wild-
type group samples was analyzed as shown in Supplementary
Figures 3A–M. There were eight immune metagenes with
significant expression differences, and the expression of the wild-
type group was significantly higher than the mutant group. In
addition, Macrophages, MHC1 and STAT1 had no significant
differences, but the P-value was on the edge of significance.
Second, we analyzed the differences in expression for immune
metagenes between the BRCA2 mutation group and the wild-
type group, as shown in Supplementary Figures 3N–Z. There
were no significant differences in metagene expression among
immune metagenes. This finding is consistent with previous
studies and shows that BRCA2 mutations in ovarian cancer have
no prognostic significance (Goode et al., 2017).

WGCNA Analysis Mining Immune
Metagenes Related Modules
To further excavate the prognosis of ovarian cancer immune
microenvironment-related markers, we obtained the expression
data for a total of 379 samples. A total of 15,268 transcripts
with more than 75% TPM > 1 and median absolute
deviation > median was selected from these samples. First,

Frontiers in Genetics | www.frontiersin.org 4 May 2021 | Volume 12 | Article 6804137

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-680413 May 8, 2021 Time: 17:31 # 5

Huo et al. Microenvironment Signature for Ovarian Cancer

hierarchical clustering was used for cluster analysis of the
samples, as shown in Figure 2A. There were some outlier
samples. We screened the samples with a distance of more
than 47,000 as outlier samples and finally obtained a total of
328 samples. Second, Pearson correlation coefficient was used
to calculate the distance between each transcript. WGCNA was
used to construct a weighted co-expression network. A soft
threshold of 8 was selected to screen the co-expression modules.
The research showed that the co-expression network conforms
to the scale-free network; that is, the log(k) of the node with
connectivity k was negatively correlated with the log(P(k) of
the probability of the node, and the correlation coefficient was
>0.8. To ensure that the network was scale-free, we select β = 8
(Figures 2B,C). Third, the expression matrix was transformed
into an adjacency matrix, and then the adjacency matrix was
transformed into a topological matrix. Based on the topology
overlap matrix (TOM), we used the average-linkage hierarchical
clustering method to cluster the genes. According to the standard
of the hybrid dynamic shear tree, the minimum number of
genes in each gene network module was set to 30. After
determining the gene module by using the dynamic shearing
method, we successively calculated the characteristic vector value
(eigengenes) of each module and then performed cluster analysis
on the module to merge the modules that were close to each
other into new modules. Height = 0.25, deepSplit = 2, and
minModuleSize = 30 were the set values. A total of 62 modules
were obtained (Figure 2D). The gray module is the gene set that
cannot be aggregated into other modules. The transcript statistics
of each module are shown in Supplementary Table 4, from which
8,047 transcripts were assigned to 62 co-expression modules. We
calculated the correlation between the feature vectors of the 62
modules and the immune metagenes, as shown in Figure 2E.
The sienna3, yellow, antiquewhite4 and ivory modules have
the highest correlations with the immune metagenes, with an
average correlation >0.39. The number of transcripts in the
four modules was 69, 378, 33, and 54, respectively, containing a
total of 534 genes.

We further analyzed the function of genes in the four modules
most related to immune metagenes. Among the four modules,
the sienna3 module was enriched into 13 pathways. The yellow
module was enriched into 54 pathways. The antiquewhite4
module was enriched into 23 pathways. The ivory module was
enriched in 20 pathways. The relationship between the pathways
enriched by these four modules was analyzed (Figure 3); There
are 70 pathways enriched by the four modules, of which 31
are enriched by two or more modules, respectively. This result
indicates that there are many intersections between the enriched
pathways, of which eight are enriched by three modules at the
same time (allograft rejection, autoimmune thyroid disease, cell
adhesion molecules, Epstein-Barr virus infection, graft-vs.-host
disease, herpes simplex infection, human T-cell leukemia virus
1 infection NK cell-mediated cytotoxicity, and type I diabetes
mellitus). These pathways are closely related to immunity
and cell adhesion.

To select genes associated with immune metagenes, we
calculated the correlation between the gene and module and
analyzed the correlation distribution of these genes as shown

in Supplementary Figure 5. These correlation coefficients
presented a bimodal distribution. With 0.72 as the critical
point, we selected 248 genes with the maximum correlation
coefficient >0.72.

Differential Gene Analysis of Immune
Differential Samples
Most of the immune metagenes are related to the prognosis,
and the most significant type of immune metagenes such as
ImmuneScore and STAT1 were selected. First, samples were
divided into two groups, high ImmuneScore group and low
ImmuneScore group, based on the average according to the
ImmuneScore level. Then, the R software package DESeq2 was
used to analyze the differentially expressed genes between the
two groups of samples. In total, 219 differentially expressed genes
were obtained, as shown in Supplementary Figure 6A, indicating
that the up-regulated genes were significantly larger than the
down-regulated genes and that up-regulated multiple genes was
larger than the down-regulated multiple genes, in general. The
expression profiles of these 219 genes are further visualized
in Supplementary Figure 6B; there were obvious differences
in the expression of differentially expressed genes in the high
ImmuneScore group and low ImmuneScore group. Similarly, the
samples were divided into two groups, the high STAT1 group
and the low STAT1 group, based on the average according to
the level of STAT1. Differentially expressed genes were screened
by DESeq2, as shown in Supplementary Figures 6C,D. The
differences in the STAT1 distribution results are similar to those
in the ImmuneScore, and the expression levels were significantly
higher for high-expression genes than in low-expression genes.

Screening of Immune Microenvironment
Genes With Prognostic Value
To further analyze the co-expression relationship between genes
with different immune scores and immune metagenes, we
integrated 248 genes associated with the four most relevant
metagenes modules, 219 genes with differential expression from
ImmuneScore and 211 genes with differential expression from
STAT1. We selected a total of 70 genes from all three, excluding
24 genes in 13 immune metagenes and resulting in 46 genes,
as shown in Figure 4A. Next, we used the R software package
clusterProfiler for KEGG enrichment analysis of these genes,
and the selection threshold FDR < 0.05 is shown in Figure 4B.
A total of 19 genes were enriched into 12 pathways, and most of
these genes are related to immune diseases. The protein network
interaction of these 46 genes were analyzed by using the R
package STRINGdb. First, the 46 genes were mapped into the
STRING database, and the network relationships among these
genes were obtained as shown in Figure 4C. A total of 104 edges
and 40 nodes were obtained. We analyzed the degree distribution
of nodes in these networks as shown in Figure 4D. From this
result, the degree of each node is higher, with an average degree
of 5.7, indicating that these genes are closely related.

To screen genes with prognostic value in the immune
microenvironment, we first analyzed the relationship between
the expression of these 46 genes and prognosis using univariate
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FIGURE 2 | (A) The sample clustering analysis. (B,C) Analysis of network topology for various soft-thresholding powers. (D) The figure shows gene dendrogram and
module colors. (E) The correlation between each module and the expression of immune metagenes.

FIGURE 3 | (A) The enrichment results of the sienna3module. The larger the circle is, the more module genes are containedin the pathway. The redder the color is,
the more significant the gene was. (B) The pathways enriched by the yellow module.(C) The pathways enriched by the antiquewhite4 module. (D) The pathways
enriched by the ivory module. (D) An interactive network of pathways enriched by the four modules. (E) An interactive network of pathways enriched by the four
modules.
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FIGURE 4 | (A) Venn diagram. (B) Analysis results of KEGG enrichment. (C) Protein-protein interaction network. (D) Degree distribution of protein-protein interaction
network.

TABLE 1 | Genes with prognostic value.

Genes p-value HR Low 95%CI High 95%CI

ENSG00000225492 0.00023 0.9584 0.936978 0.980312

ENSG00000168394 0.001941 0.995765 0.993095 0.998441

ENSG00000138755 0.002792 0.994868 0.991517 0.998229

ENSG00000240065 0.00507 0.995758 0.992802 0.998723

ENSG00000211753 0.007477 0.975419 0.957792 0.993371

ENSG00000162654 0.008348 0.991075 0.984494 0.997699

ENSG00000211772 0.010813 0.986706 0.976604 0.996913

ENSG00000256262 0.013449 0.951503 0.914724 0.989761

ENSG00000010030 0.019584 0.978497 0.9608 0.996521

ENSG00000198851 0.02893 0.982099 0.966311 0.998146

ENSG00000277734 0.030677 0.990207 0.98141 0.999084

ENSG00000154451 0.031368 0.974711 0.95224 0.997713

ENSG00000152766 0.037442 0.961857 0.927262 0.997742

ENSG00000206337 0.048843 0.994756 0.989566 0.999973

survival analysis based on the prognostic information of the
samples. A total of 14 genes were obtained by selecting p < 0.05
as the threshold, as shown in Table 1. The hazard ratio (HR) of
these 14 genes was less than 1, and their high expression was
related to good prognosis. Furthermore, we used clinical stages
as a covariant to analyze the relationship between these genes and
prognosis to exclude the influence of clinical stages and ultimately
obtained 10 independent prognostic factors, as shown in Table 2.

According to the expression levels of these 10 prognostic genes
(CXCL9, ETV7, GBP4, TRBC2, GBP1P1, CD3E, USP30-AS1,

TRBV28, TAP1, and PSMB9), we divided the samples into two
groups according to the median expression levels. The prognostic
differences between the high-expression group and the low-
expression group were analyzed. As shown in Supplementary
Figures 7, 9 of the 10 genes with a high-expression prognosis
were significantly better than the low-expression prognosis.
There was a significant trend in the TRBV28 gene, but it was
not obvious. This may be because the 5-year survival rate is
inseparable, but the prognosis is obviously different after 5 years.

To verify the relationship between these 10 genes and
prognosis, we used the online tool KMplot to analyze the
relationship between these 10 genes and overall survival in
ovarian cancer. We retrieved 6 genes from the KMplot platform.
The KM curves of these 6 genes (two of which have two probes)
are shown in Figure 5, and six genes were characterized by a high
expression of prognosis as being good. Five of these genes (ETV7,
GBP4, CXCL9, CD3E, and TAP1) are significantly correlated with
prognosis, which is consistent with our analysis.

Evaluation of the Prognosis of Ovarian
Cancer and Hub Genes by IHC
From January 2010 and January 2015, 168 human ovarian
tissue samples which had accompanying follow-up information.
Supplementary Table 8 summarizes the characteristics of all
patients, including age, disease stage, and tumor grade. We
selected the five hub genes to evaluate gene expression values
by IHC. The expression of ETV7 (33.13 ± 1.65), GBP4
(28.48± 1.48), CXCL9 (23.30± 1.30), CD3E (36.52± 1.59), and
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TABLE 2 | Stages were introduced as covariates to obtain significant prognostic genes.

Genes p-value HR Low 95%CI High 95%CI Entrezid Symbol

ENSG00000138755 0.00849 0.995426 0.992033 0.99883 4,283 CXCL9

ENSG00000010030 0.04061 0.981223 0.963579 0.99919 51,513 ETV7

ENSG00000162654 0.022077 0.992104 0.985392 0.998861 115,361 GBP4

ENSG00000211772 0.02085 0.987918 0.977784 0.998157 28638 TRBC2

ENSG00000225492 0.00091 0.962018 0.940256 0.984283 400,759 GBP1P1

ENSG00000198851 0.048451 0.983727 0.967827 0.999888 916 CD3E

ENSG00000256262 0.026533 0.956429 0.919515 0.994825 100,131,733 USP30-AS1

ENSG00000211753 0.013667 0.977354 0.959721 0.995311 28,559 TRBV28

ENSG00000168394 0.005226 0.996155 0.993465 0.998852 6,890 TAP1

ENSG00000240065 0.009633 0.996091 0.993141 0.999049 5,698 PSMB9

FIGURE 5 | The prognostic KM curve of the seven genes in the KMplot platform.

TAP1 (29.94± 1.37) are shown in Figures 6A–K. The correlation
between expression of these genes and ovarian cancer prognosis
is shown in Figures 6L–P. These data reveal that high expression
of ETV7 (OS, HR = 1.540, 95% CI 1.023–2.390, p = 0.041),
GBP4 (OS, HR = 1.834, 95% CI 1.242–3.055, p = 0.004), CXCL9
(OS, HR = 1.613, 95% CI 1.080 –2.471, p = 0.021), CD3E (OS,
HR = 1.590, 95% CI 1.049 –2.459, p = 0.031), and TAP1 (OS,
HR = 1.766, 95% CI 1.163 –2.723, p = 0.009) are associated with
better prognosis in patients with ovarian cancer.

DISCUSSION

Ovarian cancer is the most common cause of death from
gynecologic malignancy (Torre et al., 2015). Epithelial ovarian
cancer (EOC) is the most common ovarian tumor with a
lack of specific clinical symptoms at early stage, 75% of
patients were diagnosed with advanced tumors (FIGO III/IV),

and the standard of treatment was complete resection of
all visible tumor lesions and platinum-based chemotherapy
(Ferlay et al., 2015). Although most patients with advanced
ovarian cancer respond to standard ovarian cancer therapeutic
approaches, 70% of patients will eventually relapse and develop
chemotherapy resistance (Hennessy et al., 2009). Therefore,
more effective prognostic and therapeutic strategies to reduce
the mortality rate of ovarian cancer are being actively
explored. Stromal cells, extracellular matrix and exosomes
comprise the tumor microenvironment. Intrinsic genes of
tumor cells, especially master transcription factors, determine
the occurrence, development and evolution of ovarian cancer,
but the surrounding microenvironment interacts with tumor
cells through secretory interactions, providing an impetus
for the invasion and metastasis of tumor cells (Pietras and
Ostman, 2010). In recent years, the tumor microenvironment
has gradually been considered to play an important role
in ovarian cancer metastasis and may become a potential
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FIGURE 6 | Immunohistochemistry for ETV7, GBP4, CXCL9, CD3E, and TAP1. Samples of ovarian cancer (N = 168). Ovarian cancer sample of weak and strong
immunostaining score for ETV7 (A,B), GBP4 (C,D), CXCL9 (E,F), CD3E (G,H), and TAP1 (I,J), respectively. Expression of each gene is depicted in (K) slides. (X
100). Overall survival (OS) curves for ovarian cancer (N = 168) according to ETV7 (L), GBP4 (M), CXCL9 (N), CD3E (O), and TAP1 (P) gene expression status (low or
high). Geneexpression status was divided according to their median values.
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biomarker for the diagnosis and treatment of ovarian cancer
patients (Luo et al., 2016). To fully understand the biological
behavior of ovarian cancer, it is necessary to consider the
environment in which ovarian cancer cells exist and how
they are manipulated by their surroundings to promote
malignant phenotypes.

In recent years, with the development of sequencing
technology, as well as public databases such as TCGA and
Gene Expression Omnibus (GEO) database, a large number
of studies have been conducted on human cancer gene
expression. In ovarian cancer, Men et al. (2018) performed
a genome-wide analysis of gene expression profiling in the
TCGA and developed an 11 gene expression signature-
based risk score that can predict a patient’s survival. In
another study that used robust Bayesian network modeling,
13 hub genes including ARID1A, C19orf53, CSKN2A1, and
COL5A2 signature with a prognostic function in ovarian
cancer was established (Zhang et al., 2014; Guo et al.,
2020). However, most studies focused on oncogene panels
of ovarian cancer.

In present study, we performed a multistep bioinformatics
analysis using data from the TCGA database and identified
a list of tumor microenvironment-related genes that may
contribute to ovarian cancer overall survival. We first
used RNA-Seq data of ovarian cancer in the TCGA (379
samples) to systematically analyze the relationship between
ovarian cancer and immune metagenes; we found that the
expression of immune metagenes was closely related to
the immune components in the tumor microenvironment.
Next, the expression levels of immune metagenes in different
stages were analyzed, and different stages had significant
prognostic differences (Figure 2). Third, by analyzing
the relationship between these immune metagenes and
BRCA1 and BRCA2 mutations, the expression of immune
metagenes was found to be related to only BRCA1 mutations.
Finally, we screened 10 genes related to immunity and
prognosis in ovarian cancer according to the expression of
immune metagenes. By cross validation with KMplot, an
independent cohort of 1,816 ovarian patients, we identified
5 tumor microenvironment-related genes that showed
a significant correlation between gene expression and
prognosis. Our results may provide new insights into the
underlying biological mechanisms driving the tumorigenesis
of ovarian cancer.

This study identified tumor microenvironment-related
genes, including monokine induced by gamma interferon
(MIG or CXCL9), E26 transformation-specific variant 7
(ETV7), guanylate binding protein 4 (GBP4), and CD3
epsilon chain (CD3E). In agreement with a previous study,
we found that these genes were differentially expressed in a
variety of human tumors and correlated with survival time.
For example, CXCL9 is located on human chromosome
4 and is induced by IFN-γ but not by IFN-α/β. CXCL9
predominantly mediates lymphocytic infiltration to the focal
sites and suppresses tumor growth (Gorbachev et al., 2007).
CXCL9 can predict survival and is regulated by cyclooxygenase
inhibition in advanced serous ovarian cancer (Bronger et al.,

2016). Wu et al. used the KM method as well as Cox’s
univariate and multivariate hazard regression models and
found that the higher the CXCL9 expression is, the higher
the overall survival rate for colorectal carcinoma patients
(Wu et al., 2016). In addition, plasma CXCL9 has been found
to predict the survival of patients with advanced pancreatic
ductal adenocarcinoma receiving chemotherapy, potentially
improving treatment outcomes (Qian et al., 2019). In cervical
carcinoma, low expression of CD3E was correlated with
poor disease-specific and disease-free survival, and high
CD3E expression was correlated with improved disease-
specific survival (Punt et al., 2015). Moreover, this gene was
also considered as a hub gene in head and neck squamous
cell carcinoma (Upreti et al., 2016). A high expression of
GBP4 was correlated with favorable overall survival in skin
(cutaneous) melanoma patients followed for over 30 years
(Wang et al., 2018). Therefore, these gene-associated tumor
microenvironments may serve as important roles in the
pathogenesis of ovarian cancer.

However, our study may have some disadvantages. First,
there is a lack of experimental research that can explain
the biological significance and molecular mechanism
of immune microenvironment genes in ovarian cancer.
Second, a small portion of the results are not statistically
significant, but there is a trend difference, which may
be due to the limited sample size. Third, the prognostic
value of these immune microenvironment genes needs
to be validated from a large independent cohort before
they can be applied to clinical practice. Moreover, the
microenvironment gene also significantly associated with
the prognosis of other histology types ovarian cancer
has been rarely studied in present research. According to
histological and pathological morphological differences,
ovarian cancer can be divided into various types: serous
carcinoma, mucinous carcinoma, endometrioid carcinoma,
clear cell carcinoma and other types of tumors. Different
types of ovarian cancer have obvious clinical pathological
differences and molecular differences (Tone et al., 2008).
However, since more than 70% of ovarian epithelial cancer
are serous types, there are no enough samples of other
types in the dataset from TCGA for effective analysis. In
further study, we will pay more attention to the prognosis
between the microenvironment genes and other types
of ovarian cancer.

CONCLUSION

In conclusion, through a comprehensive analysis of the data
of ovarian cancer patients, we found a group of immune
microenvironment genes that can be used as potential biomarkers
to predict the prognosis of ovarian cancer patients. This study
provides a new understanding of the potential relationship
between the tumor microenvironment and ovarian cancer
prognosis and provides a new molecular target for the
development of more effective treatment methods for ovarian
cancer. This study will help refine and personalize treatment.
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Pancreatic adenocarcinoma (PAAD) is one of the deadliest malignancies and mortality
for PAAD have remained increasing under the conditions of substantial improvements
in mortality for other major cancers. Although multiple of studies exists on PAAD,
few studies have dissected the oncogenic mechanisms of PAAD based on genomic
variation. In this study, we integrated somatic mutation data and gene expression profiles
obtained by high-throughput sequencing to characterize the pathogenesis of PAAD. The
mutation profile containing 182 samples with 25,470 somatic mutations was obtained
from The Cancer Genome Atlas (TCGA). The mutation landscape was generated and
somatic mutations in PAAD were found to have preference for mutation location. The
combination of mutation matrix and gene expression profiles identified 31 driver genes
that were closely associated with tumor cell invasion and apoptosis. Co-expression
networks were constructed based on 461 genes significantly associated with driver
genes and the hub gene FAM133A in the network was identified to be associated
with tumor metastasis. Further, the cascade relationship of somatic mutation-Long non-
coding RNA (lncRNA)-microRNA (miRNA) was constructed to reveal a new mechanism
for the involvement of mutations in post-transcriptional regulation. We have also
identified prognostic markers that are significantly associated with overall survival (OS)
of PAAD patients and constructed a risk score model to identify patients’ survival risk.
In summary, our study revealed the pathogenic mechanisms and prognostic markers of
PAAD providing theoretical support for the development of precision medicine.

Keywords: pancreatic cancer, somatic mutation, genomic variation, prognostic marker, complex disease

INTRODUCTION

Pancreatic adenocarcinoma (PAAD) remains one of the deadliest cancer types and has become
the leading cause of cancer-related mortality in the United States (Rahib et al., 2014; Ilic and
Ilic, 2016). The incidence and mortality rates of PAAD vary widely worldwide and are highest in
developed countries (McGuigan et al., 2018). Although studies have shown that smoking, obesity,
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hereditary diabetes and irregular diet are risk factors for the
development of pancreatic cancer, the pathogenesis was still
poorly understood. Several of treatments exist that can improve
the prognosis of PAAD patients. For example, nab-paclitaxel
plus gemcitabine (Von Hoff et al., 2013) and FOLFIRINOX vs.
gemcitabine (Conroy et al., 2011). Although these treatments
have improved the survival of some patients, the 5-year survival
rate of PAAD still remains severe at 8% (Siegel et al., 2017).
Therefore, it is necessary to deeply discover the carcinogenic
mechanism and possible therapeutic targets of PAAD.

Genomic variation refers to differences in the structure
and composition of DNA between individuals or between
populations. With the development of high-throughput
sequencing, multiple sources of disease-related genomic
variation have been identified such as copy number variation and
somatic mutations. Large-scale cancer genome sequencing
consortia, such as The Cancer Genome Atlas (TCGA)
(Tomczak et al., 2015) and ICGC (International Cancer
Genome et al., 2010), have provided somatic mutation data from
numerous of tumor patients. The role of somatic mutations
in the development of specific cancer phenotypes is the main
purpose of cancer genomics studies (Vogelstein et al., 2013).
Somatic mutations have significant tumor heterogeneity,
and each individual has different sets of mutations across
many genes. Therefore, exploring the mutation-driven
regulation of gene expression can better serve the purpose
of precision medicine.

Work from the past decade has given us a whole new
perspective on non-coding RNAs. For example, Long non-coding
RNA (lncRNA) have been demonstrated to play an important role
in chromatin reprogramming, transcription, post-transcriptional
modifications and signal transduction (Anastasiadou et al., 2018;
Wang et al., 2021). LncRNA could act as a miRNA sponge to
participate in competitive endogenous RNA (ceRNA) regulation
determined by microRNA (miRNA) response elements (MREs)
(Salmena et al., 2011), which is an important way for it to regulate
gene expression post-transcriptionally. Somatic mutations in the
MRE region of the lncRNA may weaken, enhance or prevent
binding to the pro-miRNA, which may cause some imbalance
in the ceRNA regulatory network and even alter the expression
of related target genes in the regulatory pathway (Thomas et al.,
2011; Thomson and Dinger, 2016).

Here, we have collected mutation data, clinical information
and transcript expression profile of PAAD from TCGA to
conduct a systematic investigation concerning mutation features,
pathogenesis and prognostic markers.

MATERIALS AND METHODS

Data Collection
The somatic mutation profiles (182 samples), clinical
information (222 samples), and RNA-seq profiles (178
tumor and 4 paracancer samples) of PAAD were collected
from TCGA (Tomczak et al., 2015).1 We collected hallmark

1https://portal.gdc.cancer.gov/

gene sets from the molecular feature database (MSigDB
v7.4 Liberzon et al., 2015)2 for enrichment analysis of
carcinogenic functions. The human genome annotation
data of GRCh38 v29 version including the position and
sequence information of lncRNA was collected from GENCODE
(Frankish et al., 2019)3. The sequence information of 2654
miRNA was obtained from miRbase v22 (Kozomara et al.,
2019)4 database. Further, we downloaded the experimentally
validated miRNA-target gene regulatory relationships from
miRTarBase v8.0 (Chou et al., 2018)5 to reconstruct ceRNA
regulatory relationships.

Statistical Analysis of Somatic Mutations
The R package maftools (version 2.8.0) (Mayakonda et al., 2018)
was used for the statistical and visualization of mutation location,
mutation form, mutation frequency and other information. The
package enables efficient aggregation, analysis, annotation and
visualization of MAF files from TCGA sources or any in-house
study. We also used the visualization results of maftools to reveal
new discoveries of PAAD.

Driver Gene Identification
We first counted the number of mutations in each gene
across samples to generate a mutation matrix. Combined
with the gene expression profile of PAAD from TCGA,
we retained genes that were mutated in at least two
samples. Further, the difference in expression of each gene
between mutated and unmutated samples was measured
by Student’s t-test and fold change. We set the cutoff
for p-value and fold change to 0.05 and 1.5, respectively
(He et al., 2021). We define genes that are differentially
expressed between mutated and unmutated samples as
mutation driver genes.

Construction of Gene Co-expression
Networks
For the driver genes affected by mutations, we separately
calculated other genes co-expressed with each driver gene, which
may interact with each other and play a role in the occurrence
and development of PAAD. Pearson’s (Bishara and Hittner,
2012) correlation algorithm was used to calculate the correlation
between the expression of two genes, which was performed by
cor.test function of R. We defined gene pairs with p-value < 0.01
and correlation coefficient | R| > 0.5 as those with significantly
related expression. For all co-expressed genes, cytoscape (v3.7.0)6

(Shannon et al., 2003) was used to plot the co-expression network.
Further, NetworkAnalyzer was used to calculate the topological
properties of the network and to mark the size of the nodes
according to their degree.

2http://software.broadinstitute.org/gsea/msigdb
3https://www.gencodegenes.org/
4http://www.mirbase.org/ftp.shtml
5http://mirtarbase.cuhk.edu.cn/
6https://cytoscape.org/
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Identification of Putative
Mutation-miRNA-LncRNA Regulation
Units
Somatic mutations occurring in lncRNA may affect the affinity
of the original lncRNA and miRNA binding (Wang P. et al.,
2020; Zhang et al., 2021). Based on the lncRNA annotation
information collected from GENCODE (v29, GRCH38),
we relocated the mutations that occurred in the lncRNA.
Considering the requirements of miRNA target prediction
tools for predicted sequences, we extracted sequences of 21
approximately nucleotides (nt) upstream and 7 nt downstream
of the lncRNA somatic mutation site, which will be used to
construct mutation and wild sequences. TargetScan (v.6.0)7 and
miRanda (v2010),8 which are two miRNA target prediction
tools, were used to predict the possible combination of miRNA
and mutant/wild sequence. We also set stringent thresholds
of score > 160 and energy < −20 for miRanda (Betel et al.,
2008) and context score < −0.4 for TargetScan (Friedman
et al., 2009), and miRNA-targets that satisfy this threshold
are considered to be reliable. We define mutations that affect
the affinity of miRNA binding to wild sequences as putative
mutations, and the lncRNA in which the putative mutation
was located as ceL. Further, the altered binding affinity of
miRNA and mutation/wild sequence was divided into four
states including gain, up, loss, and down. For these ceRNAs
perturbed by somatic mutations, we constructed putative
mutation-miRNA-lncRNA (ceL) units.

Next, altered binding affinity of the original lncRNA and
miRNA may affect the expression of other downstream mRNAs
regulated by this miRNA (Wang et al., 2015; Wang P. et al.,
2019; Zhang et al., 2021). We collected miRNA-target mRNA
regulatory relationships from the miRTarBase database that were
validated by experiments including the luciferase reporter assay,
PCR, and western blotting to build the somatic mutation-
lncRNA-miRNA-mRNA (ceRNA dysregulation) network.

Functional Enrichment Analysis
For those mutated genes, we sorted the genes with a weight of
−log10(p-value). The sorted genes and hallmark gene set were
used for gene set enrichment analysis (GSEA) (Subramanian
et al., 2005). Similarly, for those genes co-expressed with the
mutation driver genes, we ordered the co-expressed genes
for each driver gene using the correlation coefficient as a
weight, which was also used for GSEA. The clusterprofiler
(v3.18.0) (Yu et al., 2012) R package was used to perform gene
ontology (GO) functional enrichment and kyoto encyclopedia of
genes and genomes (KEGG) pathway analysis on these mRNA.
We set p-value < 0.05 to screen for significantly enriched
functions and pathways.

Constructing Survival Prediction Model
We integrated significantly differentially expressed mutant genes
(p-value < 0.05 only) and other protein-coding genes perturbed

7http://www.targetscan.org/vert_60/
8http://www.miranda.org/

by putative mutations in these genes through the ceRNA
mechanism. First, we used univariate COX regression to screen
for genes significantly associated with overall survival (OS) in
PAAD patients (the cutoff of p-value was 0.05). Considering
that univariate cox regression was not sufficiently rigorous, lasso
regression (Alhamzawi and Ali, 2018) was used to further screen
for prognosis-related genes. Next, we randomly selected 70%
of all samples as the training set and the remaining as the
testing set. The train set were used to construct a multivariate
COX regression model (Fisher and Lin, 1999). The Hazard
Ratio hypothesis test was also used in the construction of the
regression model. We retained the genes passing the Hazard
Ratio hypothesis test to establish survival risk prediction model
and nomogram to predict the OS of PAAD. The reliability of
this risk prediction model was depicted by the receiver working
characteristic curve (ROC), and the area under curve (AUC)
also was calculated. The train set and test set was, respectively,
divided into high-risk and low-risk groups based on the median
risk score calculated by risk score model, and Kaplan-Meier
(KM) survival analysis was used to measure the difference
in OS between these two groups and bilateral logarithmic
rank test was used.

Statistical Analysis
All statistical analyses and graph generation were performed in
R (version 4.0.2). The R package resources were obtained from
http://www.bioconductor.org/ and https://cran.rstudio.com/bin/
windows/Rtools/.

RESULTS

The Landscape of Pancreatic
Adenocarcinoma Somatic Mutations
In this study, it is necessary to perform an overall statistical
analysis of the somatic mutations in PAAD. First, we evaluated
samples in the TCGA database collection for which somatic
mutation data were available. The result contained 182
samples with 25,470 somatic mutations. We counted the
distribution of somatic mutations on the genome including
chromosomal location and transcript type. We found that
somatic mutations were significantly enriched on chromosomes
17 and 19 (Figure 1A), suggesting the preference of PAAD
somatic mutation in the mutation position. Compared with
transcripts (mRNA) of protein-coding genes, several somatic
mutations occur in lncRNA (Figure 1A). Although relatively
few mutations occur in the non-coding region, studies have
confirmed that mutations within the non-coding genome are
a major determinant of human disease (Maurano et al., 2012).
Somatic mutations, including missense and nonsense mutations,
account for the largest proportion of all somatic mutations,
with missense mutations predominating (Figures 1A,B). We also
found mutations occurring at the transcription start site in only
four samples (Figure 1B). All these suggest that PAAD patients
are more likely to have mutations that alter protein function to
disrupt normal physiological mechanisms. Further, we counted
the frequency of mutations in each gene and the number of
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FIGURE 1 | Genomic overview of somatic mutations in PAAD. (A) The global view of genomic variations location. (B) Somatic mutations were classified into nine
clusters according to function and location. The bar plot shows the number of mutations in each cluster. (C) The bar plot illustrates the proportion of each cluster of
mutation in the top 10 genes in terms of number of mutations. The proportion of samples to which the mutation on each gene belongs was also calculated. (D) The
location and type of mutations occurring on gene TTN were shown by the lollipop chart. (E) The mutation correlation between the top 20 high-frequency mutated
genes. (F) The frequency of base substitutions (transitions and transversions) in PAAD.

samples with mutations in that gene, and the top mutated genes
were illustrated (Figure 1C and Supplementary Figure 1A). We
found that different genes have different preferences in the type
of mutation. For example, TTN, the gene considered to be most
frequently mutated in the pan-cancer cohort (Oh et al., 2020),
tended to have missense mutations in PAAD, whereas the TP53

gene had a high proportion of indel mutations. Studies have
shown that the impact of mutations on the prognosis of patients
is related to the type and background of the tumor (Hainaut
and Pfeifer, 2016). As a mutated gene commonly occurring in
PAAD patients, TTN has multiple non-sense mutation hot spots
(Figure 1D), which will have a significant impact on the function
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and structure of its encoded protein. We found no significant
exclusivity between high-frequency mutated genes in the PAAD
samples, and a general correlation between the TNN gene and
other high-frequency mutated genes (Figure 1E), revealing a
mutational feature of pancreatic cancer that the coordinated
mutation of multiple genes affects the normal physiological
mechanism. We found that nearly half of the point mutations
(base substitution) in PAAD patients are C > T substitutions
(Figure 1F and Supplementary Figure 1B). Transitions, one of
the two types of DNA base conversion, have a high proportion
of overall PAAD point mutations, which are capable of being
retained by evolution. However, transversions as another type
of DNA base conversion account for nearly 30% of overall
point mutations, and these mutations may be key factors in
the deterioration of pancreatic tissue. Taken together, all these
revealed the mutational features of PAAD.

Driver Genes Boost Tumor Invasion
Somatic mutations could indirectly affect biological traits by
regulating gene expression. It is thus intriguing to explore genes
whose expression changes affected by mutations. We integrated
the mutation and gene expression profiles of PAAD, with 173
samples having both mutation and gene expression data. A total
of 4,517 genes that were mutated in at least two samples were
collected to construct the mutation matrix. By comparing the
differential expression of each gene between mutant and non-
mutant samples, we identified a total of 31 driver genes that were
significantly differentially up/down regulated [p-value < 0.05, |
log2(fold change) | > log2(1.5)] (Figure 2A). We next sorted
the genes by fold change. The top 10 driver genes were RP11-
97C18.1 (ENSG00000225191), AC024937.4 (ENSG00000231464),
DRD1, CD5L, PCDH8, GK2, MAGEB6, SORCS3, TRIM51, and
PRDM9 (Figure 2B). The top driver gene RP11-97C18.1 is
a pseudogene of Adaptor-Related Protein Complex 2, Beta 1
Subunit (AP2B1), which is an essential adaptor of the clathrin-
mediated endocytosis pathway (Diling et al., 2019; Wang G.
et al., 2020). The driver gene AC024937.4 is also a pseudogene
of ADP-ribosylation factor-like 8B (ARL8B), which is involved in
cellular endocytosis, autophagy and the movement of phagocytic
vesicles on microtubule tracks to fuse with lysosomes (Marwaha
et al., 2017). All these suggest non-coding genes are essential in
the development and progression of PAAD. Further, consensus
clustering tools were used to cluster PAAD samples based on
driver gene expression profiles. These samples were divided
into six clusters (Supplementary Figure 2). We found that
PCDH8, which acts as a tumor-suppressor gene in multiple types
of cancer and inhibits tumor cell proliferation, invasion and
migration (Yu et al., 2020), was downregulated in clusters 3
and 4 (Figures 2C,D), suggesting that tumor cells may be more
aggressive in the two clusters with lower PDCH8 expression.
Patients in stage I were mainly concentrated in clusters 5 and
6 (Figure 2C). It is intriguing that there is no significant
difference in the number of sample mutations in each cluster
(Figure 2E), revealing that differences in gene expression of
samples among clusters are not simply determined by the number
of mutations. Taken together, all these suggest that driver genes

affected by mutations play an essential role in the proliferation
and invasion of PAAD.

Interaction of Essential Factors With
Driver Genes Regulates Oncogenic
Pathways
For those genes that were mutated, they may play an essential role
in the proliferation and invasion of tumors. In order to explore
the role of these genes in carcinogenic pathways, we performed
GSEA to identify hallmark pathways enriched in mutant genes
explaining somatic mutations in the genome of PAAD patients
(see section “Materials and Methods”). We found that IL2-STAT5
signaling, glycolysis, apoptosis and allograft rejection pathways
are significantly enriched in genes whose expression is affected
by somatic mutations (Figure 3A). Studies have shown that
interleukin-2 (IL-2) and the downstream transcription factor
STAT5 are essential for maintaining regulatory T (Treg) cell
homeostasis and function (Cheng et al., 2018), suggesting that
the immune microenvironment in tumor tissue of PAAD patients
affected by somatic mutations may be disrupted. The altered
glycolytic machinery in PAAD was designed to adapt to the
tumor microenvironment, which is consistent with previous
studies showing that cancer cells are preferentially dependent on
glycolysis (Ganapathy-Kanniappan and Geschwind, 2013). The
allograft rejection pathway affected by mutations may become the
key point of PAAD immunotherapy (Land et al., 2016).

Global reprogramming of the transcriptome occurs in order
to support tumorigenesis and progression. In addition to
the direct effect of mutations on gene expression, there are
other regulatory mechanisms such as transcriptional regulation,
ceRNA mechanisms, epigenetic. Genes co-expressed with driver
genes may have a potential role in tumor development. We
performed the Pearson correlation algorithm to identify genes
that may be influenced by other regulatory mechanisms co-
expressed with driver genes. We identified 495 genes (491 positive
and 4 negative) significantly associated with 19 driver genes (p-
value < 0.01, | R| > 0.5). These significantly related genes were
used to construct gene co-expression networks using cytoscape
(Figure 3B). We also counted the topological properties of the
network using the NetworkAnalyzer tool and found that the
gene FAM133A had the top degree (Supplementary Table 1).
FAM133A has been confirmed in previous studies to be related to
the invasion and metastasis of glioma (Huang et al., 2018). Next,
we performed a functional enrichment analysis of all genes in the
co-expression network using the R package clusterprofiler. We
found that these genes were significantly enriched in immune-
related functions and apoptotic pathways, such as complement
activation, immunoglobulin mediated immune response, B cell
mediated immunity, and apoptosis—multiple species (Figure 3C
and Supplementary Figure 3). For the 19 driver genes identified
as having co-expressed genes, we used GSEA to analyze the
functional features of the driver genes. Hallmark gene sets and
genes ordered by correlation coefficients were available for GSEA.
We found that the oncogenic pathway was significantly enriched
only in genes co-expressed with the driver genes FAM133A
and SORCS3, suggesting that most driver genes are required
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FIGURE 2 | Identification of driver genes. (A) The differential expression analysis comparing mutated and unmutated patients. Differentially expressed genes were
shown as red or green dots. (B) Expression level of the top 10 driver genes between mutated and unmutated samples was shown by boxplot. The rank sum test
was used to check the significance. (C) Distribution of driver gene expression in the samples. Column labels indicate the cluster and stage to which the sample
belongs. Row labels indicate the number of mutations in each driver gene. (D,E) Expression and mutation levels of the driver gene PCDH8 between the 6 clusters of
samples were shown by boxplot.

to synergistically regulate oncogenic mechanisms. In contrast
to the driver gene FAM133A, the driver gene SORCS3, in
combination with its co-expressed genes, plays an important
role in tumor metastasis, hypoxia and apoptosis (Figure 3D).
Taken together, all these indicate that the synergistic interaction
network of multiple driver genes may contribute to the complex
pathogenesis of PAAD.

LncRNA Mutations-ceRNA Indicates
Novel Mechanisms of Mutation
Regulation
LncRNA have been confirmed that genes are essential in pre-
and post-transcriptional regulation. The lncRNA with (miRNA)
response element (MRE) can be used as a miRNA sponge to
participate in the ceRNA regulatory mechanism. To explore
the impact of somatic mutations occurring on lncRNA MREs

on ceRNA regulatory mechanisms, we constructed mutant/wild
sequences to identify mutations that alter the affinity of lncRNA-
miRNA binding. Based on lncRNA annotation data collected
from GENCODE, we identified 497 somatic mutations occurring
on lncRNA compared to 24,604 somatic mutations occurring on
the genome. Affected by mutations, lncRNA may enhance, reduce
and lose their binding affinity to existing miRNAs, or even gain
binding affinity to new miRNAs (Figure 4A). Next, we examined
the influence of lncRNA mutations on miRNA binding sites
according to the TargetScan and miRanda. In total, we identified
277 somatic mutations for PAAD in 235 putative miRNA target
genes (putative lncRNAs). These mutation sites showed different
binding affinities to 447 miRNAs between the mutation and
wild sequences (Figure 4B). All these constituted 552 mutation-
miRNA-lncRNA regulation units. We further constructed ceRNA
dysregulation networks based on the identification of mutation-
miRNA-lncRNA regulation units (Figure 4C). We found that
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FIGURE 3 | Functional enrichment analysis of driving related genes. (A) The GSEA analysis of mutant genes, which explain somatic mutations in the genome of
PAAD patients. (B) Co-expression network of driver genes and their significantly related genes. The size of the node is related to the degree. (C) The top 10 GO
items that are enriched by genes significantly related to driver genes. This network shows the interaction between genes and GO items. (D) Top 10 hallmark
pathways enriched in genes related to driver gene FAM133A or SORCS3. significantly enriched pathways with GSEA p-values < 0.05 are highlighted in red
(FAM133A) or blue (SORCS3).

TTN-AS1 has top degree in the ceRNA dysregulation networks
and that five somatic mutations occurring on it affect the
affinity of binding to 11 miRNAs (8 Up/gain and 3 Down/loss,
Figure 4D). Combining 31 driver genes, we found that only
driver lncRNA AC090099.1 (ENSG00000255470) has mutations
involved in ceRNA regulation imbalance, which suggesting that
the mechanisms underlying changes in driver gene expression are
complex. We found two mutations in AC090099.1 that affected
binding affinity to four miRNAs (3 Up/gain and 1 Down/loss,
Figure 4E). In order to verify our prediction results at the
transcriptome level, we performed one-sample t-test to identify
the difference between the gene expression level of the non-
mutated sample and the mutant sample. We found significant
differences in the expression of AC090099.1 and the target
gene CEBPB and LHFPL3 regulated by miRNA hsa-miR-663a
between mutated and unmutated samples (Figures 4F–H). Taken
together, all these results suggest that ceRNA dysregulation due

to lncRNA mutations is an essential factor in variations of target
gene expression.

Identifying Prognostic Markers for PAAD
Genes affected by mutations played an important role in the
mechanism of carcinogenesis. It is meaningful to identify the
markers associated with prognosis of PAAD patients from
genes that are significantly differentially expressed between
mutated and unmutated samples (p-value < 0.05). In total,
we obtained 171 genes that were significantly differentially
expressed by mutation-driven. We performed univariate cox
regression to identify genes associated with overall survival (OS)
in PAAD patients, and 53 genes were selected by controlling for
p-value < 0.05. We further rigorously screened for these 53 genes
using lasso regression and 8 genes including SLC30A1, RBM10,
PNPLA6, DSG2, CHML, DLGAP5, TTLL6, and PDE4DIPP5
were identified as significantly associated with patient OS
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FIGURE 4 | Construction of the ceRNA dysregulated network. (A) Mutations in lncRNA affect binding intimacy with miRNA. (B) The number of lncRNA, miRNA and
somatic mutations in the ceRNA dysregulated network. (C) The ceRNA dysregulated network constructed by lncRNA, miRNA, and somatic mutations. The red, blue
and yellow nodes represent lncRNA, somatic mutation and miRNA, respectively. Up-regulated or newly gain affinity between miRNA and lncRNA used red line.
Down-regulated or loss affinity between miRNA and lncRNA used yellow line. (D) The ceRNA dysregulated sub-network of lncRNA TTN-AS1. (E) The ceRNA
dysregulated sub-network of lncRNA AC090099.1. (F–H) The distribution of the expression for lncRNA AC090099.1, CEBPB, and LHFPL3 was shown by density
curve. The expression value of these genes in the mutant sample were marked with a red line. One-sample t-test was used to calculate statistical significance.

(Supplementary Figure 4A). The multivariate Cox regression
were performed to construct survival risk prediction model using
these eight feature genes and train set, three of which, RBM10,
SLC30A1, and DLGAP5, were major genes that associated with
the risk of death in patients (Figure 5A). Nomograms were
used to illustrate the probability of survival risk at 6, 12, and
18 months (Figure 5B). The calibration curve was also used to
validate the stability of the risk prediction model (Supplementary
Figure 4B). In order to identify the best predictive time point
for the risk prediction model, we divided the 6–18 months
period into six time periods and evaluated the prediction results
using ROC curve. We found that the risk prediction result

reached the maximum area under curve (AUC) value of 0.84 in
the 474.5 days (Figure 5C). Further, we used multivariate Cox
regression coefficients of eight genes identified by lasso regression
to construct risk score models as follows: risk score = 0.65∗
SLC30A1—0.84∗ RBM10—0.27∗ PNPLA6 + 0.36∗ DSG2—0.21∗
CHML+ 0.54∗ DLGAP5—0.02∗ TTLL6—0.08∗ PDE4DIPP5, and
calculated the risk score for each PAAD sample. The samples of
train and test set were, respectively, divided into two categories
(high-risk and low-risk) based on the median risk score, and we
found that high-risk samples in both the training and test sets
exhibited an association with poorer PAAD OS (Figures 5D,E).
By combining clinical information from the PAAD sample with
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FIGURE 5 | Survival analysis of potential markers in PAAD. (A) Forest plots for multivariate Cox risk regression models. (B) Nomogram for survival risk prediction of
180, 365, and 545 days. The model contains eight features. (C) The ROC curve validation of the risk regression model at 6 time points. The different colored curves
represent specific time-points. (D,E) KM plot of train and test dataset in which high- and low-risk groups were show as different lines. Log-rank test was used to
calculate statistical significance. (F) Box plot of risk scores for samples of different tumor stages, tissue origin, and radiation therapy. The rank sum test and ANOVA
were used to measure differences between groups.

the risk score, we found that patients in stage II, III, and
IV had a significantly higher risk score compared to stage
I (Figure 5F), and found that the origin of the tumor was
significantly related to the patient’s survival risk (Figure 5F), and
found that patients treated with radiation have a significantly
lower risk of survival than those who are not treated with
radiation (Figure 5F). All these may provide support for the
treatment of PAAD.

DISCUSSION

In this study, we have used mutational and transcriptomic
data to reveal mutational features, driver genes and prognostic
markers in PAAD. Statistical analysis of the mutational profile
of PAAD revealed that relatively lower number of mutations
occurred in non-coding regions of the genome, with most
mutations occurring in coding regions affecting the structure and
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function of the protein. We identified 31 driver genes based on
statistical test that are strongly associated with apoptosis, energy
metabolism and invasion of tumor cells. Next, we constructed
a co-expression network determined by driver genes, revealing
the oncogene interaction mechanism and oncogenic pathways
of PPAD. We further constructed a ceRNA dysregulation
network using TargetScan and miRanda tools to reveal that
somatic mutations on lncRNA regulate the expression of target
genes at the post-transcriptional level. Using a dual screen of
univariate cox regression and lasso regression, we identified
eight genes that were strongly associated with the prognosis
of PAAD patients despite the existence of public databases for
studying the prognosis of pan-cancers (Qi et al., 2021). We also
constructed a risk score model to specify the risk of survival
for each patient, showing that higher risk scores have a poorer
probability of survival.

Pancreatic cancer is one of the deadliest malignancies
(Vincent et al., 2011). Multiple of studies have tried to reveal
the pathogenesis of pancreatic cancer and discover effective
treatments. For example, exploring the role of the microbiome
in the occurrence, development and treatment of PAAD (Wang
Y. et al., 2019), and discover the carcinogenic mechanism and
possible treatments of PAAD from the perspective of genetics
(Bhosale et al., 2018). The development of PAAD is influenced
by multiple factors, the most critical is the occurrence of
malignant mutations in the chromosomes. Malignant mutations
in chromosomes, which hold the genetic material of an
organism, will affect the physiological mechanisms of normal
cells. Although there are numerous of research results to support
the conquering of PAAD, few studies have focused on somatic
mutations in the genome (Chang et al., 2014). We integrated
mutagenomic and transcriptomic data to discover the oncogenic
mechanisms and potential prognostic markers of PAAD, which is
the rational application of multi-omics data in the era of big data.
In revealing the carcinogenic mechanism, multi-omics research
has more advantages than previous single-omics research.

CeRNAs are transcript that regulate each other by competing
shared miRNAs. The proposal of the ceRNA competition
mechanism provides a new direction for the post-transcriptional
regulation of genes. Considering the important role of non-
coding RNA in PAAD, we explored the impact of lncRNA
mutations on the ceRNA competition network. We have
identified 552 mutation-miRNA-lncRNA regulation units and

constructed a ceRNA dysregulated network. Although there
is not enough gene expression data (massive absence of
miRNA expression data) to support our prediction results,
it contributes to the exploration of the post-transcriptional
regulatory mechanism of PAAD.

In conclusion, this study provided the mutational landscape
of PAAD and discovered driver genes. The IL2-STAT5 signaling
pathway and allograft rejection affected by mutations provide
a new direction for the treatment of PAAD. Marker genes
associated with patient prognosis were identified through
univariate cox regression and lasso regression. We also provide
a survival risk prognostic model for PAAD patients. All these
findings in this study may provide theoretical guidance for the
diagnosis and treatment of PAAD.
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Background: Hepatitis C virus (HCV) infection is a major cause of cirrhosis and
hepatocellular carcinoma (HCC). Despite recent advances in the understanding of the
biological basis of HCC development, the molecular mechanisms underlying HCV-
induced HCC (HCC-HCV) remain unclear. The carcinogenic potential of HCV varies
according to the genotype and mutation in its viral sequence. Moreover, regulatory
pathways play important roles in many pathogenic processes. Therefore, identifying
the pathways by which HCV induces HCC may enable improved HCC diagnosis and
treatment.

Methods: We employed a systematic approach to identify an important regulatory
module in the process of HCV-HCC development to find the important regulators. First,
an HCV-related HCC subnetwork was constructed based on the gene expression in
HCC-HCV patients and HCC patients. A priority algorithm was then used to extract the
module from the subnetworks, and all the regulatory relationships of the core genes of
the network were extracted. Integrating the significantly highly mutated genes involved
in the HCC-HCV patients, core regulatory modules and key regulators related to disease
prognosis and progression were identified.

Result: The key regulatory genes including EXO1, VCAN, KIT, and hsa-miR-200c-5p
were found to play vital roles in HCV-HCC development. Based on the statistics analysis,
EXO1, VCAN, and KIT mutations are potential biomarkers for HCV–HCC prognosis at
the genomic level, whereas has-miR-200c-5P is a potential biomarker for HCV–HCC
prognosis at the expression level.

Conclusion: We identified three significantly mutated genes and one differentially
expressed miRNA, all related to HCC prognosis. As potential pathogenic factors of HCC,
these genes and the miRNA could be new biomarkers for HCV-HCC diagnosis.

Keywords: genetic mutation, transcriptome, miRNA, hepatitis C. virus, hepatocellular carcinoma
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INTRODUCTION

Hepatocellular carcinoma (HCC)—the second leading cause
of cancer−related deaths worldwide (Merte, 1989)—is often
diagnosed at an advanced stage and progresses rapidly. Therefore,
in HCC patients, early diagnosis is very important to improve
their prognosis. Currently, early clinical screening methods for
HCC involve serum alpha fetoprotein (AFP) detection and
liver ultrasound examination (Sato et al., 1993). However, the
sensitivity and specificity of markers such as AFP are marginal;
moreover, ultrasound examination considerably relies on the
subjective judgment of the operator, and conventional ultrasound
results are often not useful for the conclusive identification of
liver lesions. Therefore, a more effective, accurate method for
screening liver cancer is needed urgently. As the understanding
of cancer biology improves, liquid biopsy will become an
increasingly useful tool for early diagnosis. Risk factors for HCC
include cirrhosis, aflatoxin B intake, alcohol consumption, and
hepatitis B virus (HBV) and hepatitis C virus (HCV) infection.
Of these, HBV and HCV infections are the most notorious;
in general, HBV- or HCV-positive patients have a 15–20-fold
higher lifetime relative risk of HCC than HBV- and HCV-
negative patients (El-Serag, 2012). To date, few studies have been
focused on the factors leading to liver cancer in HCV patients.
At present, HCV RNA, cirrhosis, and HCV genotype are thought
to affect the occurrence of HCV-related liver cancer, but the
involvement of these factors has not been conclusively proven.
At present, the number of people affected by chronic HCV
infection is 180 million—linked to > 350,000 deaths annually
(Li and Lo, 2015). Epidemiological studies have also shown
that HCV is a risk factor for various diseases, including oral
manifestations, glomerulopathies, type 2 diabetes mellitus, and
insulin resistance (Montenegro et al., 2013; Carrozzo and Scally,
2014; Ozkok and Yildiz, 2014).

In total, 55–85% of people with HCV infection will develop
chronic hepatitis C, and 20–30% of people with chronic liver
disease will develop liver failure or cirrhosis (Mahale et al., 2017).
Over the course of 30 years, 1–3% of patients with HCV without
cirrhosis will develop HCC eventually (Huang et al., 2011; El-
Serag, 2012). Moreover, one-third of HCC cases have been
reported to be caused by hepatitis C (Parkin, 2006). At present,
there are three major known mechanisms for HCV-induced HCC
(HCV-HCC): direct pathways involving HCV core proteins,
indirect pathways caused by oxidative stress and steatosis, and
microRNA (miRNA)-related pathways (Tholey and Ahn, 2015).
While biological signaling systems are complex, the analysis of
linear pathways may still provide valuable insights (Weng et al.,
1999). In the study of HCV, core genes have been found to be
closely related to the carcinogenicity of chronic HCV infection.
The expression of core genes has been experimentally shown to
immortalize primary liver cells and induce cell transformation
and carcinogenesis (Li et al., 2010). In addition, the genome
sequencing analysis has demonstrated significant differences in
the characteristics of liver cancer patients with or without HCV
(Fishman et al., 2009). Taken together, these results indicate that
core HCV gene mutations are closely associated with increased
liver cancer risks.

In this study, the correlation between the key regulators
and prognosis was investigated by integrating whole-genome
and transcriptome sequencing data from The Cancer Genome
Atlas (TCGA) and Gene Expression Omnibus (GEO) databases.
We identified differentially expressed and mutated genes
between HCV-HCC and HCC groups and performed functional
enrichment analysis for genes in the module. Then, we explored
the association of the key regulators with patient prognoses. The
module and the key regulators may be potential biomarkers for
predicting HCV-HCC.

MATERIALS AND METHODS

The Cancer Genome Atlas and Gene
Expression Omnibus Data Acquisition
Gene mutation and mRNA and miRNA expression data as
well as clinical information were downloaded from TCGA 1

(Deng et al., 2016). In TCGA, liver hepatocellular carcinoma
(LIHC) samples are divided into two groups: the first group
contains HCV RNA or genotype or hepatitis C antibody
in the patient’s clinical information, and the other group
does not; here, we named the two groups HCC-HCV and
HCC. The gene/miRNA microarray as verifying cohorts
GSE154211 (Wang et al., 2021) and GSE119159 (Umezu
et al., 2020) were downloaded from GEO database. The data
were normalized, and R and its packages were employed in
all analysis steps.

Differential Analysis
MuTect2 Somatic Mutation data, analyzed using MuTect2, were
download from TCGA. TCGA provides somatic mutation data
in the MAF format. Therefore, we visualized somatic mutations
using the R package “maftools” (Mayakonda et al., 2018). In total,
96 HCC-HCV samples and 269 HCC samples were present in the
dataset. We calculated the mutational status of genes using the
algorithm in maftools, and the genes with p < 0.05, OR > 2, and
number of mutations > 5 were selected as the significantly and
differentially mutated genes.

According to the groupings, we performed normalization and
differential gene expression analysis using the R package “edgeR.”
False discovery rate (FDR) < 0.01 and | log2 fold change (FC)|
> 1 were used as cutoffs for identify differentially expressed genes
(DEGs) for further analysis. Two R packages “pheatmap” and
“ggplot2” were used for visualizing the heatmaps and volcano
maps, respectively.

In total, 139 HCV patients were enrolled in the GSE119159.
They included 99 patients who had not developed HCC and
40 who had developed HCC. A total of 10 samples (tumor and
non-tumor regions) from two HCV-related HCC patients and
three HCC patients were used to find the gene candidates in
HCV-related HCC in the GSE154211. For differential expression
analysis, we used the R package “limma.” | log2FC| > 1
and logFDR < 0.01 were used as cutoffs to identify DEGs for
further analysis.

1https://portal.gdc.cancer.gov/
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Construction of the Transcription
Factor–miRNA–mRNA Regulatory
Network
The human transcription factor (TF) and miRNA regulatory
networks were constructed by integrating miRTarBase,
TRANSFAC, and TransmiR (Vlachos et al., 2015;

Chou et al., 2018; Tong et al., 2019). The three databases
include curated interactions among human TFs, miRNAs, and
target genes. We uniformly named the genes and miRNAs within
the regulatory networks according to the National Center for
Biotechnology Information (NCBI) and miRbase databases.
Moreover, all regulatory relationships within the regulatory

FIGURE 1 | Genome–wide mutation profiles in LIHC. (A) Landscape of mutation profiles in LIHC samples. Mutation information of each gene is shown in the
waterfall plot, where different colors represent different types of variation. (B–D) Cohort summary plot displays distribution of variants according to variant
classification, type, and SNV class. (E) Mutation load in each sample. (F) Variant classification in each sample. (G) Top 10 mutated genes in LIHC. LIHC, liver
hepatocellular carcinoma; SNV, single-nucleotide variant.
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network were supported experimentally. In total, 888 TFs, 1,072
miRNAs, 3,150 target genes, and 18,056 edges were discovered in
the regulatory network.

Functional Enrichment Analysis
The key regulatory gene symbols were converted to Entrez
ID using the R package “org.Hs.eg.db.” To identify the
biological pathways involved in HCV-HCC occurrence and
development, we employed Gene Ontology–biological process
(GO-BP) function and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis and visualized
the results using the R packages “clusterProfiler” and “ggplot2.”

Survival Analysis
We constructed an HCV-HCC-related subnetwork and identified
key regulators from the subnetworks. Next, we investigated

whether the key regulators could distinguish HCC patients
with good or poor outcomes. From these data, we obtained
TCGA HCC dataset with mRNA/miRNA expression and clinical
information. Then, we used the key regulator expression values
and mutation information to cluster all patients into two groups.
The differential survival of the two study groups was finally
assessed using the log-rank test.

RESULTS

Mutation Analysis
We downloaded and analyzed the somatic mutation data of
392 TCGA-LIHC samples. The mutation information of all
genes in the samples is displayed as a waterfall diagram,
with different colors representing different mutation types

FIGURE 2 | Analyses of different somatic mutations and survival time in HCC-HCV and HCC samples. (A) Waterfall plot of detailed information of top 10 differentially
mutated genes in each group. (B) K-M curves of patients in the HCC group and HCC-HCV group. HCC, hepatocellular carcinoma; HCV, hepatitis C virus; K-M,
Kaplan–Meier.

Frontiers in Genetics | www.frontiersin.org 4 September 2021 | Volume 12 | Article 74160830

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-741608 September 3, 2021 Time: 12:7 # 5

Chen et al. Key Regulators of Hepatocellular Carcinoma

(Figure 1A). Further analysis showed that missense mutation,
single-nucleotide polymorphisms (SNPs), and C > T accounted
for the highest proportion of the variations (Figures 1B–D).
The median number of variations in all HCC samples was
74.5, and the maximum number of variations in a single
sample was 1,250 (Figure 1E). The number of variations in
different classifications in all samples is shown in a box diagram
(Figure 1F). The top 10 mutated genes in the 392 samples
were TTN (25%), TP53 (28%), CTNNB1 (24%), MUC16 (16%),
PCLO (11%), ALB (11%), RYR2 (10%), ABCA13 (9%), MUC4
(10%), and APOB (9%; Figure 1G). In total, 96 HCC-HCV
samples and 269 HCC samples were present in TCGA dataset;
the survival analysis indicated that HCC patients without HCV
lived significantly longer than HCC-HCV patients (Figure 2B).
With the use of the maftools algorithm, 41 differentially mutated
genes were identified (Supplementary Table 1). The top 10
differential mutated genes between the two groups of patients
were UNC5D (6–0), MYRF (5–0), PGLYRP4 (5–0), PREX2 (11–
7), EPHA4 (9–5), HECTD4 (8–4), REV3L (8–4), HIPK2 (6–2),
CHST3 (5–1), and TRO (5–1; Figure 2A). Moreover, HCC-HCV
patients with mutations in some genes had a poor prognosis
(Supplementary Figure 1).

Transcriptome Analysis
Differentially expressed mRNAs and miRNAs were identified
from two raw datasets: one containing GSE154211 and
GSE119159 downloaded from the GEO database and another
dataset from TCGA database. In total, 530 mRNA and 30 miRNA
transcripts were observed to be expressed differentially in the
HCC-HCV samples compared with HCC samples in TCGA
dataset—including, respectively, 412 and 25 upregulated and
118 and five downregulated transcripts. Hierarchical clustering
showed systematic variations in mRNA and miRNA expression
in the HCC-HCV and HCC samples (Supplementary Figure 2).
To identify the genes related to HCC-HCV in GSE154211, we
first divided the expression data into four groups to identify
DEGs between (A) HCC vs. HCC-HCV-adjacent, suggesting
related to HCV-related carcinogenesis; (B) HCC-HCV vs. HCC,
suggesting related HCV-related hepatocarcinogenesis; (C) HCC-
HCV-adjacent vs. HCC-adjacent, suggesting related to HCV-
related non-oncogenic effects; and (D) HCC vs. HCC-adjacent,
suggesting related to non-HCV-related carcinogenesis. Four
groups of data were then analyzed. Consequently, we identified
1,494 DEGs belonging to group A or B, but not group
C or D, as genes with strong potential to be relevant to

FIGURE 3 | The core regulatory module and key regulators. Blue color represents DEGs, green color represents DE-miRs, and red color represents different
mutation genes. DEGs, differentially expressed genes; DE-miRs, differentially expressed microRNAs.
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HCC-HCV (Supplementary Figure 3). In addition, 21 miRNA
transcripts were observed to be differentially expressed in the
developed HCC samples compared with the non-developed
HCC samples in GSE119159, including nine upregulated and 12
downregulated transcripts.

The Core Regulatory Module and Key
Regulators
To mine HCV-HCC-related regulatory relationships, we first
constructed a TF–miRNA–mRNA regulatory network as a
background network. Then, the HCV-induced HCC-related
subnetwork was constructed by mapping DEGs into the
background network. The nodes in the subnetwork contained
DEGs and genes directly connected to the DEGs. In total, 359
TFs, 395 miRNAs, 739 target genes, and 2626 edges were present
in the subnetwork.

We next mined the core regulatory module from the
subnetwork by extracting the top 20 nodes ranked by closeness
centrality and the edges among them. Notably, the regulatory
relationships between these 20 nodes and differential mutated
genes were added into the core regulatory module (Figure 3
and Supplementary Table 2). Finally, the core regulatory module
contained 24 nodes and 36 edges.

To analyze the function of genes in the module, we conducted
enrichment analysis of GO and KEGG, with FDR < 0.05
used as the cutoff to identify statistically significant GO terms
and KEGG pathways. We found that many GO terms and
KEGG pathways were implicated in the HCV-HCC processes in
previous studies. As shown in Figure 4A and Supplementary
Table 3, in the biological process and molecular function
categories, the significantly enriched genes were for vasculature
development regulation (Vescovo et al., 2016), ameboidal-type

and epithelial cell migration (Khera et al., 2017), cell aging
(Naggie, 2017), cell-matrix adhesion (Ninio et al., 2019), and
melanocyte differentiation and angiogenesis involved in wound
healing (Mohsen et al., 2014). Furthermore, KEGG pathway
analysis showed that the significantly enriched genes were for
small cell lung cancer, miRNAs in cancer, PI3K–Akt signaling
pathway (Cheng et al., 2015), Ras and p53 signaling pathways
(Vescovo et al., 2016), cellular senescence (Shiu et al., 2017),
endocrine resistance, and advanced glycation end products
(AGE)–receptor for AGE (RAGE) signaling pathway in diabetic
complications (Hyogo and Yamagishi, 2008; Figure 4B and
Supplementary Table 4).

We further analyzed the genes in the core regulatory module
and found that expression of EXO1, VCAN, has-miR-200c-5p,
BMI1, has-miR-204-5p, and KIT was significantly correlated
with HCC prognosis in all patients; and thus, these genes were
considered key regulators (Figure 5A). In particular, we found
that the patients with low EXO1,VCAN, orKIT expression had an
adverse outcome (HR < 1; Figure 5A). The HCC-HCV patients
with mutations in these three genes have possibly also poor
prognoses (Figures 5B–D). They may be potential biomarkers to
predict the prognosis of patients at the genomic level. Moreover,
we found that has-miR-200c-5P was significantly overexpressed
in HCC-HCV samples (Figure 6A). The survival time of patients
with high has-miR-200c-5P expression was significantly lower
than that of patients with low expression (Figure 6B), suggesting
that has-miR-200c-5P may be a potential biomarker to predict the
prognosis of patients at the expression level.

Mutations in specific locations in EXO1 have been reported to
inactivate proteins that increase cancer susceptibility (Welchew
et al., 2002). KDR was also a significantly differential mutated
gene in the module. KDR is the principal receptor that promotes
the proangiogenic action of vascular endothelial growth factor

FIGURE 4 | GO and KEGG pathway enrichment analyses. (A) GO enrichment analysis of the module genes. (B) KEGG pathway enrichment analysis of the module
genes. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 5 | Key regulators are related to worse survival rate. (A) Forest plot of hazard ratios showing the prognostic values of genes. (B–D) Survival curves of key
regulators in the LIHC patients from TCGA dataset. LIHC, liver hepatocellular carcinoma; TCGA, The Cancer Genome Atlas.

and is involved in the tumorigenesis and progression of many
malignancies, including HCC (Zheng et al., 2014). Moreover,
BCL2 was the downstream gene in the core regulatory module.
BCL2 can be functionally divided into antiapoptotic and
proapoptotic groups. The balance between these two groups may
determine the fate of a tumor cell. In HCC, this balance is often
tilted toward the antiapoptotic members, leading to resistance
to death and rapid proliferation in cancer cells (Alenzi et al.,
2010). BCL2 expression in the HCC-HCV samples was lower
than that in the HCC samples, but the difference was non-
significant in TCGA data—which may be a reason for the worse
prognosis of HCC-HCV.

DISCUSSION

HCC is responsible for the second highest global mortality rate,
and HCV infection is a leading HCC risk factor. However, the
mechanisms of HCC initiation, development, and metastasis

are too complicated and thus unclear (Kanda et al., 2019).
Currently, several factors are believed to influence the evolution
of HCC from HCV infection. However, due to the lack of
appropriate models or data, determining the specific role of
HCV in the malignant transformation of liver cells is difficult.
To identify and characterize these mechanisms, researchers have
conducted genomic, transcriptomic, and epigenomic studies
(Khatun and Ray, 2019).

Driver mutations in cancer-associated genes alter downstream
signaling and transcription patterns, which are critical in
cancer progression (Lai and Yang, 2013; Zhang et al., 2014,
2015; Huh et al., 2019). These studies have revealed that
downstream gene mutations and gene expression changes are
critical in hepatitis-induced liver cancer development. In this
study, we found that mutations in a single gene can have a
significant impact on disease prognosis in patients, whereas
a combination of mutations in multiple genes is not an
effective predictor of prognosis. This may be due to the low
probability of simultaneous mutations of multiple genes; this
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FIGURE 6 | Relationship between miR-200c expression level and patient prognosis. (A) Significant difference was found in the miR-200c expression between
HCC-HCV and HCC patients. (B) HCC patients with high miR-200c expression have a relatively poor prognosis. HCC, hepatocellular carcinoma; HCV, hepatitis C
virus.

will be studied further in our future work. Genomic research
has found that long-term interactions between hepatitis virus
and immune system causes significant stress and damage to
the liver cells, making them undergo pathological adaptation—
even after elimination of the virus. Non-coding RNA (ncRNA)-
related analysis has indicated that miRNAs play a crucial
role in the posttranscriptional regulation of gene expression
(Wong et al., 2018). Deregulation of certain miRNAs leads
to the inactivation of tumor-suppressor genes and activation
of HCC-related oncogenes. In this study, we incorporated
whole-genome and transcriptomic sequence data to identify key
regulators of HCV-HCC and found that abnormal expression
of certain genes and miRNAs predict whether a patient

with HCV infection will develop HCC. These genes may be
potential biomarkers, which could enable HCC detection at
significantly earlier stages.

In the functional enrichment analysis, we found that genes
in the module were significantly enriched in the PI3K–Akt
signaling pathway that promotes survival and growth in response
to extracellular signals. KIT is an important receptor tyrosine
kinase (RTK) that can stimulate the PI3K–Akt signaling pathway
(Zhou et al., 2011). In addition, recent studies have shown
that KIT exon 9 had a mutation resistant to TGFβ, which
can promote HCC development in HCV patients (El-Houseini
et al., 2019). The miR-200 family—the most common family
of miRNAs—demonstrates low expression in various cancers
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and is closely associated with tumorigenesis and outcome,
particularly in HCC (Mao et al., 2020). has-miR-200c-5P is
significantly overexpressed in HCV patients and promotes
hepatic fibrosis (Ramachandran et al., 2013)—consistent with
our results. Moreover, the survival time of patients with high
has-miR-200c-5P expression was significantly lower than that of
patients with low expression in the current study. In general,
has-miR-200c-5P overexpression in esophageal cancer increases
resistance to chemotherapeutic drugs by dysregulating PI3K–
Akt signaling pathway (Karakatsanis et al., 2013). Therefore, we
speculate that has-miR-200c-5P and KIT may jointly regulate
the PI3K–Akt signaling pathway and affect drug response and
prognosis in HCV-HCC patients.

Although we identified some important regulatory genes
and miRNAs, the specific underlying mechanisms could not be
elaborated. Furthermore, HCC is complicated and multifactorial,
and taking all factors into consideration was difficult. Therefore,
additional studies determining whether genes correlated with
HCV-induced cancer are also correlated with liver cancer caused
by other factors are warranted.
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Liver hepatocellular carcinoma (LIHC) is a primary malignancy, and there is a lack of 
effective treatment for advanced patients. Although numerous studies exist to reveal the 
carcinogenic mechanism of LIHC, few studies have integrated multi-omics data to 
systematically analyze pathogenesis and reveal potential therapeutic targets. Here, 
we integrated genomic variation data and RNA-seq profiles obtained by high-throughput 
sequencing to define high- and low-genomic instability samples. The mutational landscape 
was reported, and the advanced patients of LIHC were characterized by high-genomic 
instability. We found that the tumor microenvironment underwent metabolic reprograming 
driven by mutations accumulate to satisfy tumor proliferation and invasion. Further, the 
co-expression network identifies three mutant long non-coding RNAs as potential 
therapeutic targets, which can promote tumor progression by participating in specific 
carcinogenic mechanisms. Then, five potential prognostic markers (RP11-502I4.3, 
SPINK5, CHRM3, SLC5A12, and RP11-467L13.7) were identified by examining the 
association of genes and patient survival. By characterizing the immune landscape of 
LIHC, loss of immunogenicity was revealed as a key factor of immune checkpoint 
suppression. Macrophages were found to be significantly associated with patient risk 
scores, and high levels of macrophages accelerated patient mortality. In summary, the 
mutation-driven mechanism and immune landscape of LIHC revealed by this study will 
serve precision medicine.

Keywords: liver hepatocellular carcinoma, somatic mutation, RNA-sequencing, genome variation, precision 
medicine

INTRODUCTION

Liver hepatocellular carcinoma (LIHC) is the most common primary malignancy of the 
liver and the third leading cause of cancer-related death worldwide (Bosch et  al., 1999; 
Bray et  al., 2018). Of these, liver cancer is the second leading cause of cancer-related 
death in LIHC, accounting for approximately 90% of all primary liver cancer cases  
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(Llovet et al., 2016). Studies have found that fat accumulation 
of liver can lead to non-alcoholic steatohepatitis, cirrhosis, 
liver failure, and LIHC (Kim et  al., 2021). Treatments for 
LIHC include hepatectomy, liver transplant, chemotherapy, 
and molecular targeted therapy. However, clinical treatment 
results show that these treatments are not effective for LIHC 
patients (Heimbach et  al., 2018). Therefore, there is an 
urgent need for the identification of new therapeutic targets 
for the development of new drugs.

Somatic variations, including copy number variations 
(CNVs) and point mutations, are considered to be the driving 
event for the occurrence and development of cancer. In 
recent years, researchers mainly focused on key mutated 
genes and their mutational characteristics (Zhang et  al., 
2021). However, the integration of mutagenomics with other 
omics data is more powerful in revealing the pathogenesis 
of patients and potential therapeutic targets (Fujimoto et al., 
2016). With the development of next-generation sequencing, 
multiple somatic variations have been discovered. Especially, 
accumulated studies have demonstrated that somatic variations, 
such as single-nucleotide variations and CNVs, could 
contribute to tumorigenesis (Wang et  al., 2020) and used 
to infer individual medications based on the RNA interaction 
network (Zhang et  al., 2018). Based on the notion that the 
instability of the genome is related to age (Chatsirisupachai 
et  al., 2021), it is crucial to investigate the relationship 
between the stability of the genome and the physiological 
mechanism of the patient. More recently, large-scale biomedical 
data, including multidimensional molecular profiles of tumor 
samples of LIHC generated by The Cancer Genome Atlas 
(TCGA; Tomczak et al., 2015) project, provide opportunities 
to uncover mutation-driven potential therapeutic targets and 
potential prognostic markers for liver cancer.

Over the past decade, the immune microenvironment has 
been a popular area of cancer biology research in relation to 
therapeutic targets. The immune microenvironment is composed 
of a variety of lymphocytes, such as T cells, B cells, and 
macrophages. Previous studies have shown that the composition 
of immune cells is closely related to tumor proliferation and 
metastasis. For example, CD8+ T cells show strong cytotoxic 
activity on tumor cells and have a strong inhibitory effect on 
tumor progression (Seo et  al., 2018). Macrophage polarization 
plays a key role in subverting adaptive immunity and promoting 
tumor progression (Mantovani et  al., 2002). The development 
of the immune cell fraction algorithm (Newman et  al., 2015) 
for bulk RNA-seq data provides convenience for investigating 
the relationship between specific immune cell content and 
tumor progression.

In the current study, we  integrated and analyzed the 
somatic mutations, CNVs data, and RNA-seq of LIHC 
collected from the TCGA database. The mutation landscape 
of LIHC and the metabolic features driven by mutations 
were revealed. Our work highlights potential therapeutic 
targets, potential prognostic markers, and the role of 
macrophages in tumor progression. These results promote 
the understanding of pathogenesis and provide a basis for 
the treatment of LIHC.

MATERIALS AND METHODS

Data Collection
The CNV data, somatic mutation data, clinical information, 
and RNA-seq profiles of LIHC collected by TCGA (Tomczak 
et  al., 2015) were downloaded from UCSC Xena browser.1 
Metabolic pathway and hallmark gene sets that will be  used 
for metabolic feature analysis and enrichment analysis of 
carcinogenic functions for LIHC were collected from the 
Molecular Signatures Database (Liberzon et al., 2015).2 Moreover, 
the annotation data of GRCh38 v29 for long-noncoding RNA 
(lncRNA) were collected from GENCODE (Frankish et  al., 
2019).3 The signature matrix of 22 immune cell types was 
collected from the previous studies (Newman et  al., 2015) for 
the analysis of immune cell invasion of tumor samples.

Processing of Mutation Data
We first counted the distribution of mutation sites on the 
human genome, including mRNA, lncRNA, and transcription 
start site, as well as the distribution of various types of mutation, 
including missense and nonsense mutation on the chromosome. 
Further, the R package maftools (version 2.8.0; Mayakonda 
et  al., 2018) was used for the statistical and visualization of 
mutation form, mutation frequency, and mutational correlation 
between genes, which provides great convenience for the research 
of mutation data and the reveal of characteristics. The number 
of mutations in each tumor sample was calculated and used 
to link the CNV data. We  downloaded the GDC GISTIC copy 
number dataset from the UCSC Xena browser, which is derived 
from focal copy number estimates, and the positions of the 
variant sequence corresponding to the genes. Both gene 
amplification and deletion events are thought to increase genome 
instability. By integrating the mutation information and gene 
copy number information of patient cohort, we  defined the 
top 20% of patients with copy number amplitude and mutation 
load as high-genomic instability group, the bottom 20% of 
patients with copy number amplitude and mutation load as 
low-genomic instability group, and the remaining patients as 
median/unknown-genomic instability group.

Gene Set Enrichment Analysis
Considering that there were multiple zero values in the gene 
expression matrix, we control the number of genes by requiring 
effective genes to be expressed in at least 10% of tumor samples. 
Based on the previously defined high/low-genomic instability 
samples, the rank sum test was used to identify genes that 
are significantly differentially expressed in the high/low-genomic 
instability samples. The cutoff of value of p is set to 0.01. For 
these significantly differentially expressed genes (DEGs), the 
genes were sorted using the logarithmic fold change as the 
weight and combined with the hallmark gene set to be  used 
for gene set enrichment analysis (GSEA; Subramanian et al., 2005) 

1 https://xenabrowser.net/
2 http://software.broadinstitute.org/gsea/msigdb
3 https://www.gencodegenes.org/
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by R package fgsea (version 1.1.0). We  set the value of p to 
<0.05 to screen out carcinogenic functions that are significantly 
enriched on DEGs.

Calculation of Metabolic Pathway Activity
Gene set variation analysis (GSVA; Hanzelmann et  al., 2013), 
which is an unsupervised manner to estimate changes in 
pathway activity over a sample population, was used to calculate 
the metabolic activity of each tumor sample by R package 
GSVA (version 1.32.0). We  set the number of genes in the 
gene set used for functional enrichment to be  at least 10 
and not more than 500. The rank sum test and fold change 
algorithm were also used to calculate the variation of metabolic 
pathway activity between high and low-genomic instability 
samples. Metabolic pathways with a value of p < 0.01 were 
considered to be  affected by mutations, and reprogramming 
has occurred.

Construction of Co-expression Network 
Mediated by Mutant lncRNA
We extracted lncRNA from DEGs which differentially expressed 
between high- and low-genomic instability samples based on 
lncRNA annotation data obtained from GENCODE. By combining 
somatic mutation and CNV data, we identified lncRNAs that 
were mutated in tumor samples and differentially expressed in 
the high-genomic instability group, defined as mutation-driven 
lncRNA (Md-lncRNA). Next, the Pearson correlation algorithm 
(Bishara and Hittner, 2012) is used to calculate the correlation 
between Md-lncRNAs and other DEGs, which was performed 
by cor.test function of R. We  have defined that gene pairs with 
value of p < 0.01 and | R | > 0.3 have significant correlation in 
expression and are co-expressed with each other (van Dam 
et  al., 2018). For these co-expressed genes, cytoscape (Shannon 
et  al., 2003) was used to plot the co-expression network, and 
Network Analyzer tool was used to calculate the topological 
properties of the network.

Identification of Potential Prognostic 
Markers
The genes in the co-expression network mediated by 
Md-lncRNAs were used as candidate markers. We  first used 
univariate COX regression and lasso regression (Alhamzawi 
and Ali, 2018) to screen genes that significantly associated 
with overall survival (OS) of LIHC patients (the cutoff of 
value of p was 0.05). Next, we  randomly selected 60% of all 
samples as the training set and the remaining as the test 
set. The training set was used to construct a multivariate 
COX regression model (Fisher and Lin, 1999). We  retained 
the genes passing the test of multivariate COX regression as 
potential prognostic markers and establish nomogram to 
predict the OS of LIHC. The reliability of the prediction 
model was validated by the receiver operating working 
characteristic curve (ROC), and the area under curve (AUC) 
also was calculated. The calibration curve was used to evaluate 
the predictive power of nomograph for survival risk.

Survival Analysis
The risk score for each patient was calculated according to 
the linear combination of expression values weighted by the 
coefficient from the multivariate Cox regression analysis:

Risk score i e
k
n

k ki ( )= ∗
=∑ 1
b

where n denotes the number of prognosis markers (n = 5), b  
was the coefficient of multivariate Cox regression analysis, and 
eki  was the expression level of kth prognosis-related gene 
expression of patient i. Further, the samples of train set and 
test set were, respectively, divided into high- and low-risk 
categories based on the median risk score calculated by risk 
score model, and Kaplan–Meier algorithm (Ranstam and Cook, 
2017) was used to compare whether the survival data of the 
two categories are different and bilateral log-rank test was 
used to validate the significance of the difference.

Calculation of Immune Cell Fraction
Based on the feature matrix of 22 immune cells obtained from 
previous studies, the CIBERSORTx tool4 (Newman et al., 2015, 
2019) was used to analyze tumor-infiltrating immune cells. 
CIBERSORTx is a method to characterize the cell composition 
of complex tissues from the gene expression profile. The 
parameter perms that the number of permutations when 
calculating the value of p was set to 1,000, and QN was set 
to TRUE to perform quantile normalization. In order to see 
more group differences in other cell types other than plasma 
cells, we  further transformed the original cell components into 
a log ratio of log (the fraction of plasma-cell +1e-3)/log (the 
fraction of immune-cell +1e-3) (He et  al., 2021).

Statistical Analysis
All statistical analyses and graph generation were performed 
in R (version 4.0.2) and GEPIA (version 2.0).5

RESULT

A Global View of Mutations for Liver 
Hepatocellular Carcinoma
Malignant mutations in the genome are the underlying cause 
of tumor development and progression. The identification of 
mutation characteristics is essential for the exploration of 
pathogenesis. We have first used maftool to evaluate mutation 
profiles of LIHC in the TCGA database collection for which 
somatic mutation data were available. A total of 44,847 somatic 
mutation sites in 375 samples were included in this study. 
We  counted the distribution of somatic mutations on the 
genome and found that somatic mutations are significantly 
enriched in specific regions of chromosomes 1, 11, 17, and 
19 (Figure  1A), indicating that the global mutations of LIHC 
have preference for location. Compared with transcripts 

4 https://cibersortx.stanford.edu/
5 http://gepia2.cancer-pku.cn/#index
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(mRNA) of protein-coding genes, fewer somatic mutations 
occurred in lncRNAs; Figure  1A), indicating that somatic 
mutations were more likely to directly affect the expression 
of protein-coding genes and the structure of proteins. However, 
few mutations in non-coding genes were still the main 
determinants of human diseases (Maurano et  al., 2012). 
Mutations in the transcription start site will regulate gene 

expression levels before transcription, which rarely occur on 
autosomes 4 and 13  in LIHC. Point mutations, including 
missense and nonsense mutations, are an important part of 
somatic variations, and LIHC shows the dominant position 
of missense mutations (Figure  1A and 
Supplementary Figures S1A,B). Further, we  counted the 
frequency of mutations in each gene, and the top  10 mutated 

A B
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FIGURE 1 | The landscape of liver hepatocellular carcinoma (LIHC) somatic variations. (A) The density distribution of somatic mutations on chromosomes. The 
four-layer circle plot shows the density distribution of nonsense mutations, mutations of transcription start site, missense mutations, mutations of long-noncoding 
RNA (lncRNA), and mutations of mRNA on chromosomes from inside to outside. (B) The waterfall plot shows the top 10 genes in terms of mutation frequency by 
sample. The mutation type of each gene in each sample is marked. (C) Mutation correlation heatmap of the top 10 high-frequency mutated genes. Locations with 
significant correlations are marked by stars. (D) Boxplot shows the frequency of base substitutions including transversion and transition. (E,F) The relationship 
between the number of mutated and copy number variation (CNV) genes in each sample and the stage are displayed with boxplot. The number of mutated and 
CNV genes is logarithmized, and the rank sum test is used to assess differences between groups. (G) The copy number amplitudes of tumor samples are presented 
in heat map. Column labels show sample types, including high/low-genomic instability and median.
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genes were identified (Figure  1B). TTN, the gene considered 
to be  most frequently mutated in the pan-cancer cohort (Oh 
et  al., 2020), tended to have missense mutations in LIHC. 
The content of albumin encoded by ALB has been confirmed 
to be  closely related to tumor development and patient 
prognosis (Li et al., 2018). We found that there was a significant 
mutational correlation between the genes TNN and ALB 
(Figure  1C), which indicates that TNN and ALB may play 
a synergistic role in LIHC. We  found that almost a quarter 
of point mutations in LIHC patients were C > T substitutions 
(Figure  1D; Supplementary Figure S1C). Transitions and 
transversions, as the two types of DNA base transformations, 
account for similar proportions in the entire LIHC point 
mutation (Figure  1D). Mutations of transversions, which 
account for a relatively high proportion, may be  a key factor 
in liver tissue degradation. By combining the mutation with 
the patient’s clinical information, we  found that patients of 
stage II have a higher number of mutated genes compared 
to stage I  (Figure  1E), which indicates that the accumulation 
of mutations appears as the stage increases. We  introduced 
copy number data of LIHC patients, further confirming that 
advanced patients have a higher accumulation of variation 
and genomic instability (Figure  1F). Next, we  defined high 
and low-genomic instability samples by integrating somatic 
mutation and copy number data. We  found that the high-
genomic instability samples in LIHC have overall gene 
amplification (Figure  1G). Taken together, all these revealed 
the mutational features of LIHC.

Metabolic Reprogramming Affected by 
Accumulation of Mutations
Genome variation can indirectly affect the metabolic efficiency 
of organisms by regulating gene expression. The rank sum 
test was used to identify genes that are significantly DEGs 
between high and low-genomic instability samples. 
We  identified 6,438 DEGs (value of p < 0.01), including 2,981 
upregulated genes and 3,457 downregulated genes (Figure 2A). 
After GSEA, we identified four carcinogenic functional pathways 
that are significantly enriched in DEGs (value of p < 0.05). 
We  found that the E2F pathway, which forms with CDK-RB 
driving cell cycle progression (Kent and Leone, 2019), is 
significantly enriched in upregulated DEGs (Figure  2B), 
indicating that the cell cycle is severely affected by the 
accumulation of mutations. The G2/M checkpoint can effectively 
detect the genome and prevent cells from entering mitosis 
(Anand et  al., 2020), which dysfunction may be  a key factor 
in the accumulation of mutations in high-genomic instability 
samples. We  found that the inflammatory response was 
significantly enriched in the downregulated DEGs (Figure 2B), 
which may be  due to the accumulation of mutations that 
caused the weakening or loss of tumor tissue immunogenicity 
(Capietto et  al., 2020). All these indicate that the resistance 
of some patients with advanced liver cancer to immune 
targeted therapy (Zongyi and Xiaowu, 2020) may be  due to 
the loss of immunogenicity caused by the excessive accumulation 
of mutations.

Metabolic reprograming affected by mutations was the basis 
for satisfying tumor proliferation and invasion. Gene set variation 
analysis (GSVA) was used to evaluate the metabolic activity 
of each tumor sample. By clustering the metabolic pathway 
activity score matrix, we found that there are obvious differences 
in metabolic function between the high and low-genomic 
instability samples (Figure  2C). Compared with low-genomic 
instability samples, high-genomic instability samples had higher 
pyrimidine synthesis activity (Figures  2D,E). Previous studies 
have shown that inhibiting the metabolic activity of pyrimidine 
synthesis can effectively reduce the carcinogenic ability of 
tumors (Wang et  al., 2019), which indicates that pyrimidine 
driver mutations that trigger pyrimidine anabolic remodeling 
can be  used as therapeutic targets for patients with advanced 
liver cancer. We  found that the activity of 
glycosylphosphatidylinositol (GPI)-anchor biosynthesis pathway 
is also upregulated in high-genomic instability samples 
(Figure  2F). The enhancement of GPI-anchor biosynthesis 
pathway activity could recruit macrophages to tumor tissues 
to generate TAM polarization (Dangaj et  al., 2011), suggesting 
that the high tumor invasion and metastasis ability shown by 
high-genomic instability samples may be  caused by the 
upregulation of GPI-anchored protein. All these indicate that 
the reprogramming of metabolic pathways provides the necessary 
preparations for tumor proliferation and invasion and is also 
the basis for tumor heterogeneity.

Mutated LncRNA Stimulates Tumor 
Progression
LncRNA has become an important participant in almost every 
level of gene function and regulation (Qian et  al., 2019; Wang 
et  al., 2021). It is intriguing to identify the driver mutation 
lncRNA between high- and low-genomic instability samples. 
We  extracted lncRNAs that were significantly differentially 
expressed between high- and low-genomic instability samples 
based on lncRNA annotation data, and combined CNV and 
somatic mutation data to identify three Md-lncRNAs 
(Figure 3A). We found that samples with Md-lncRNA AL589743.1 
copy number amplification clustered in highly mutant samples. 
Next, the Pearson correlation algorithm was used to identify 
DEGs that are significantly related to these three Md-lncRNAs 
at the gene expression level. We  found that 412 DEGs (value 
of p < 0.01 and correlation coefficient |R| >0.3) are involved 
in the regulatory network co-expressed with these three 
Md-lncRNAs (Figure  3B). To identify the role of these three 
mutation-driven lncRNAs in the carcinogenic mechanism of 
LIHC, gene ontology (GO) was used to perform functional 
enrichment analysis on DEGs that are significantly related to 
these three mutation-driven lncRNAs. We  found that DEGs 
co-expressed with Md-lncRNA AC037459.4 are mainly involved 
in the fat metabolism process of liver tissue (Figure  3C). The 
abnormal fat metabolism was the key cause of fatty liver, liver 
cirrhosis, and even liver cancer (Alves-Bezerra and Cohen, 
2017). DEGs significantly related to lncRNA AL589743.1 were 
enriched in protein processing and modification functional 
nodes (Figure  3D), suggesting that AL589743.1 is involved in 
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FIGURE 2 | Metabolic remodeling based on genome instability. (A) The results of the differential gene expression analysis between high-genomic instability and 
low-genomic instability samples are shown by the volcano graph. Grey dots represent non-differentially expressed genes, yellow dots indicate genes upregulated in 
high-genomic instability samples, and the green dots mean the opposite. (B) gene set enrichment analysis results of differentially expressed genes. Normalized 
enrichment score and corrected value of p are calculated. (C) The enrichment scores of tumor samples in each metabolic pathway calculated by GSVA are 
displayed by heat map. Column labels show sample types, including high-/low-genomic instability and median. (D) Analysis of the difference of metabolic pathway 
activity scores between high-genomic instability and low-genomic instability samples. (E,F) Comparison of pyrimidine synthesis and glycosylphosphatidylinositol-
anchor biosynthesis pathway activity among high-/low-genomic instability samples. The rank sum test is used to calculate the significance.
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carcinogenic mechanisms by regulating the structure and function 
of proteins. We also found that the high expression of AL589743.1 
was significantly associated with poor patient’s prognosis 
(Figure  3E), indicating that AL589743.1 can be  used as an 

important target for the treatment of patients with advanced 
liver cancer. Further, DEGs co-expressed with Md-lncRNA 
DSCR8 are mainly involved in protein processing and muscle 
cell apoptosis (Figure  3F). In previous studies, it has been 
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FIGURE 3 | Functional identification of mutation-driven lncRNA. (A) Waterfall plot illustrates variation types of copy number (amplification, deletion, and none/un-
detected) for each sample on lncRNA, including AC037459.4, AL589743.1, and DSCR8. The up-panel shows the number of mutated genes in each sample. 
(B) The relationship between mutation-driven lncRNA and co-expressed genes is shown by network. Circles represent co-expressed genes with lncRNAs; squares 
represented mutation-driven lncRNAs. Upregulated genes are marked with yellow; downregulated genes are marked with blue. (C,D) The bar graphs show the GO 
function enrichment results for genes co-expressed with lncRNA AC037459.4 and AL589743.1. (E,F) Survival difference between the two groups of samples with 
high and low expression of AL589743.1 and DSCR8. Univariate cox regression algorithm and log-rank test are used to evaluate the relationship between the 
expression of Md-lncRNA and patient survival.
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confirmed that DSCR8 can act as a miRNA sponge to activate 
the Wnt/β-catenin signaling pathway and promote the progress 
of LIHC (Wang et  al., 2018). Taken together, all these results 
reveal that three Md-lncRNAs to promote tumor progression 
by participating in specific carcinogenic mechanisms.

Prognostic Markers Correlated to LIHC
LncRNA and transcripts co-expressed with it play an important 
role in the carcinogenic mechanism, which can be  used as 
candidate prognostic markers. To identify prognostic markers 
of LICH, we  first performed univariate cox regression and 
lasso regression algorithm to identify genes associated with 
OS in LIHC patients (see method). Then, 20 genes were 
identified and significantly correlated with the patient’s OS of 
LIHC (Figure  4A). Through the multivariate Cox regression 
constructed by the 20 genes and training set, five of which, 
RP11-502I4.3, SPINK5, CHRM3, SLC5A12, and RP11-467L13.7, 
were identified as prognostic markers for LIHC (Figure  4B; 
Supplementary Figure S2). To evaluate the predictive 
performance of the model, we  showed the prediction results 
using ROC for five time points. We found that the risk prediction 
result reached the maximum AUC value of 0.72 (Figure  4C). 
Further, the nomograms algorithm was used to build a survival 
risk prediction model for LIHC (Supplementary Figure S3). 
The calibration curve was also used to validate the stability 
of the risk prediction model (Figure  4D). Moreover, the risk 
scoring model was constructed as follows: risk score =  
−0.37*RP11-502I4.3–0.11*SPINK5–0.16*CHRM3 + 0.06*SLC5A12 +  
0.42*RP11-467L13.7. The samples of train set and test set were, 
respectively, divided into high- and low-risk groups based on 
the median risk score. We  found that high-risk samples in 
train set are associated with poor prognosis of LIHC patients 
(Figure  4E). The test set also showed the same prediction 
results as the train set (Figure  4F), indicating the reliability 
of the risk score model in predicting the prognostic risk of 
patients. Taken together, we  have identified five potential 
prognostic markers in LIHC, which can be  used for 
clinical diagnosis.

Tumor Progression Regulated by the 
Immune Microenvironment
The tumor immune microenvironment plays an important 
role in the occurrence and development of tumors (Lei 
et al., 2020). The remodeling of the immune microenvironment 
is conducive to the progress of the tumor (Hinshaw and 
Shevde, 2019). Therefore, we  used the CIBERSORTx tool 
to calculate the immune cell abundance of each LIHC sample 
and paracancerous tissue sample through the deconvolution 
algorithm that is a special kind of forward convolution, 
where the size of the input image is first enlarged by 
complementing the 0 at a certain scale, followed by rotating 
the convolution kernel and then forward convolution. For 
the 22 immune cell fraction matrices obtained, the consensus 
clustering algorithm was used to identify the immune subtypes 
of LIHC. We  have defined four reliable tumor immune 
subtypes (Figure  5A and Supplementary Figure S4), which 

have specific immune cell composition. We  found that the 
normal samples are mainly clustered in the third cluster, 
which has a relatively low content of CD8+ T cell and 
CD4+ T cell (Figure  5B). Multiple tumor samples have 
similar immune cell composition to normal samples in the 
third cluster, indicating that these samples are in 
immunosuppressed state. Different from other clusters, the 
fourth cluster of tumor samples has a higher content of 
CD8+ T cells (Figure 5B), suggesting that this type of LIHC 
patients is more suitable for immuno-targeted therapy. In 
order to explore the formation mechanism of tumor 
immunosuppressive microenvironment, we  calculated the 
content of major histocompatibility complex (MHC). 
We  found that genes involved in the synthesis of MHC-I 
have lower expression levels in the third cluster and 
significantly higher expression in the fourth cluster 
(Figure  5C), indicating that the immunosuppression of the 
third cluster may be  caused by the loss of tumor 
immunogenicity. The MHC-II molecule, which is the CD4+ 
T-cell binding partner (Marty Pyke et  al., 2018), also had 
lower expression level in the third cluster (Figure 5D). Next, 
by linking the immune cell fraction and risk score of each 
sample, we  found that the fraction of Macrophages M0 is 
significantly related to the patient’s prognostic risk 
(Figure 5E). Tumor samples were divided into two categories 
(high/low fraction) based on the median of macrophages 
M0 fraction; we found that high-fraction samples are associated 
with poor patient’s prognosis (Figure  5F), suggesting that 
macrophages cells can promote tumor progression in the 
tumor microenvironment. Taken together, all these indicate 
that the loss of immunogenicity is a key factor for the 
formation of immunosuppressive microenvironment in 
multiple patients of LIHC.

DISCUSSION

In this study, we  have integrated multi-omics data to reveal 
mutation-driven pathogenesis and immune landscape of LIHC. 
Through the statistics of the mutation location and type, 
we  found the mutation characteristics of LIHC and defined 
two types of samples (high/low-genomic instability). We found 
that the inflammatory response was significantly enriched in 
the downregulated genes of the high-genomic instability samples 
by GSEA. Metabolic pathway activity analysis has shown that 
pyrimidine synthesis and GPI-anchor biosynthesis pathway 
are closely related to tumor progression and have low activity 
scores in high-genomic instability samples. We identified three 
mutations driving lncRNA and defined the molecular functions 
of these three mutations driving lncRNA in LIHC by 
constructing a co-expression network. Further, based on the 
genes involved in the co-expression network, we  identified 
four prognostic markers, including RP11-502I4.3, SPINK5, 
CHRM3, SLC5A12, and RP11-467L13.7, through univariate 
cox regression and lasso algorithm screening. We  also built 
risk score model to assess the prognostic risk of LIHC patients. 
Through the analysis of the immune cell fraction of tumor 
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and paracancerous tissue samples, we  defined four immune 
subtypes and found that the samples of immunosuppressive 
subtypes have low immunogenicity.

LIHC is a primary malignancy of the liver (Huang et al., 2016). 
Numerous of studies have tried to reveal the pathogenesis of 
LIHC and find effective treatments. For example, studies have 

A B

C D

E F

FIGURE 4 | Identification of potential prognostic markers of LIHC. (A) Lasso regression model screen genes related to overall survival (OS) of LIHC patients. 
Variation curve of regression coefficient and λ value is shown. (B) COX risk regression to assess the association between the expression level of genes and patient 
survival. Genes that are significantly related to patient survival are added value of p. (C) The ROC curve reflects the predictive power of the risk regression model at 
five time points from 1 to 5 years. The different colored curves represent specific time points. (D) Calibration curve of nomogram. (E,F) Kaplan–Meier (KM) curves for 
survival of train set and test set in high- and low-risk groups. Log-rank test was used to calculate statistical significance.
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shown that fibrosis of liver cells plays a vital role in the pathogenesis 
of liver cirrhosis and hepatocellular carcinoma (Liu et  al., 2020). 
TXNIP activates the expression of oncogenes to inhibit the 
proliferation of hepatocellular carcinoma cells and induces apoptosis 
(Liu et al., 2017). In the last decade, the immune microenvironment 
of tumor has been a popular area of cancer biology research in 
relation to therapeutic targets for drug discovery. Although 
checkpoint inhibitors have been successfully used in cancer 

treatment, they are only effective in 10–40% of cases (Hamid 
et  al., 2013; Callahan et  al., 2014). Previous study has shown 
that checkpoint inhibitors do not trigger cancer-specific T-cell 
responses in some patients (Sharma and Allison, 2015). Therefore, 
it is necessary to reveal the relationship between the immune 
microenvironment of LIHC and tumor progression and the 
relationship between immune cells, which can be  used to guide 
the combination medication of liver cancer patients.
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FIGURE 5 | Immune cell components of LIHC patients. (A) The samples are divided into several clusters based on the immune cell components of each sample. 
The consistency matrix is drawn as a heat map, and the column labels show the clusters. (B) The 22 immune cell fractions of each sample were displayed by heat 
map. Column labels, including clusters, tissue origin, and type of variation of samples, are displayed. (C,D) The relationship between genes encoding MHC I and 
MHC II molecules and clusters defined by immune cell components is shown by boxplot. ANOVA is used to calculate statistical significance. (E) The correlation 
between the fraction of macrophages M0 and the risk score is shown. (F) KM curves for survival in high and low fraction groups of macrophages M0. Log-rank test 
is used to calculate statistical significance.
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Recent reports from developed countries indicate that 
metabolic disorders caused by diabetes, obesity, and fatty liver 
are risk factors for LIHC (Makarova-Rusher et  al., 2016). 
Besides, the experimentally confirmed carcinogenic and 
regulatory mechanisms of lncRNA have been widely revealed 
(Wang et  al., 2019). Genes related to lncRNA AC037459.4 
were identified involved in the fat metabolism process of liver 
tissue, suggesting that AC037459.4 may mediate dysregulation 
of fat metabolism pathways in patients. Based on previous 
research on the identification of cancer prognostic markers 
(Yu et al., 2019), we identified five potential prognostic markers 
by multivariate Cox regression analysis, which can be  used in 
the clinical diagnosis of patients and guiding their treatment. 
The  subtype of LIHC with strong immunogenicity suggests 
that immune checkpoint inhibitor may have a better effect on 
these patients. The fraction of macrophages in tumor tissue 
was found to be  significantly associated with the risk of death 
in patients, consistent with previous studies demonstrating the 
involvement of macrophages in tumor invasion and metastasis 
(Chen et  al., 2020).

In conclusion, this study provided a mutation-driven metabolic 
landscape and immune landscape of LIHC. Three mutated lncRNAs 
were identified to drive transcriptional perturbed oncogenic pathways 
and affect patient prognosis. Five gene signatures associated with 
patient prognosis were identified through Cox regression and lasso 
regression. We  also identified four immune subtypes for LIHC. 
In conclusion, all these findings provide theoretical guidance for 
the optimization of LIHC treatment strategies.
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Background: The management of gastric cancer (GC) still lacks tumor markers with high
specificity and sensitivity. The goal of current research is to find effective diagnostic and
prognostic markers and to clarify their related mechanisms.

Methods: In this study, we integrated GC DNA methylation data from publicly available
datasets obtained from TCGA and GEO databases, and applied random forest and
LASSO analysis methods to screen reliable differential methylation sites (DMSs) for GC
diagnosis. We constructed a diagnostic model of GC by logistic analysis and conducted
verification and clinical correlation analysis. We screened credible prognostic DMSs
through univariate Cox and LASSO analyses and verified a prognostic model of GC by
multivariate Cox analysis. Independent prognostic and biological function analyses were
performed for the prognostic risk score. We performed TP53 correlation analysis, mutation
and prognosis analysis on eleven-DNA methylation driver gene (DMG), and constructed a
multifactor regulatory network of key genes.

Results: The five-DMS diagnostic model distinguished GC from normal samples, and
diagnostic risk value was significantly correlated with grade and tumor location. The
prediction accuracy of the eleven-DMS prognostic model was verified in both the training
and validation datasets, indicating its certain potential for GC survival prediction. The
survival rate of the high-risk group was significantly lower than that of the low-risk group.
The prognostic risk score was an independent risk factor for the prognosis of GC, which
was significantly correlated with N stage and tumor location, positively correlated with the
VIM gene, and negatively correlated with the CDH1 gene. The expression of CHRNB2
decreased significantly in the TP53 mutation group of gastric cancer patients, and there
were significant differences in CCDC69, RASSF2, CHRNB2, ARMC9, and RPN1 between
the TP53 mutation group and the TP53 non-mutation group of gastric cancer patients. In
addition, CEP290, UBXN8, KDM4A, RPN1 had high frequency mutations and the function
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of eleven-DMG mutation related genes in GC patients is widely enriched in multiple
pathways.

Conclusion:Combined, the five-DMS diagnostic and eleven-DMS prognostic GCmodels
are important tools for accurate and individualized treatment. The study provides direction
for exploring potential markers of GC.

Keywords: gastric cancer, tumor marker, diagnosis, prognosis, DNA methylation, mutation

INTRODUCTION

According to the statistics released by the World Health
Organization in 2018, the incidence and mortality rate of
gastric cancer (GC) ranked fifth and third, respectively, among
cancers worldwide. GC is a characteristic cancer in East Asia with
an incidence rate of 32.1/100,000 and a mortality rate of 13.2/
100,000 (1). Among Eastern Asian countries, Japan, South Korea,
and China have the highest GC morbidity and mortality rates in
the world (Bray et al., 2018). Therefore, the prevention and
treatment of GC are essential for improving patient outcomes.
Although advances in surgery, radiotherapy, chemotherapy,
molecular targeting, and immunotherapy have improved
overall prognosis, diagnosis of GC is often delayed, resulting
in unsatisfactory outcomes (Bang et al., 2017; Cats et al., 2018;
Sundar et al., 2019). It is, thus, urgent to explore effective
biomarkers for early diagnosis and prognosis prediction of GC.

Epigenetic markers have been widely recognized in recent
years, particularly promoter hypermethylation. Compared with a
wide range of mutational variations in a specific gene, promoter
hypermethylation occurs in the same defined region of a gene in
all forms of cancer (Fu, 2015). Therefore, diagnosis and prognosis
prediction of patients with GC can be reliably obtained at the
epigenetic level via differential expression of common DNA
methylation (DNAm). DNAm is a major epigenetic
modification that participates in many important life activities,
such as cell proliferation, differentiation, development, apoptosis,
tumor development, and occurrence of other diseases, and it is
also one of the earliest discovered DNA modifications. DNAm
can cause changes in chromatin structure and DNA stability,
thereby regulating gene expression (Neri et al., 2017). Abnormal
DNAm located in the promoter region usually leads to silencing
of tumor suppressor genes or high expression of proto-
oncogenes, thereby promoting tumor progression (Das and
Singal, 2004). Among them, hypermethylation of tumor
suppressor genes is the most common and can be used as an
early tumor marker. Some specific DNAm sites are closely related
to GC, such as cell cycle-related genes P16 and MDGA2 (Hibi
et al., 2003; Wang et al., 2016), tumor suppressor genes,
apoptosis-related genes PCDH10 and BCL6B (Yu et al., 2009;
Xu et al., 2012), signal transduction-related genes FOXF2 and
RUNX3 (Sakakura et al., 2005; Higashimori et al., 2018), and
proto-oncogenes RAS and c-myc (Nishigaki et al., 2005; Licchesi
et al., 2010). The discovery of these DNAm sites has broad
application value in the early diagnosis, prognosis, and even
treatment of GC. However, only a small number of DNAm
sites have been approved for use as basic tumor markers

(NDRG4, BMP3, and SEPTIN9) (Imperiale et al., 2014; FDA).
There are many reasons for this, such as small numbers of test
samples, patient selection bias, lagging research design and data
analysis methods, lack of substantial clinical value, and other
factors have prevented thorough evaluation of the clinical value of
GC biomarkers. With the development of bioinformatics,
enabling the establishment of GC diagnostic and prognostic
models based on big data, the above problems can be resolved.

Few studies have described the application of a differential
methylation site (DMS) scoring system to construct
individualized GC diagnostic and prognostic models. In this
study, we integrated publicly available GC DNAm datasets
obtained from The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO) databases to construct a diagnostic
model and verify its ability to distinguish GC from normal tissues.
The DMSs were then matched with overall survival (OS) data and
a prognostic model was constructed. Finally, the prognostic
model was analyzed to explore its clinical application and
potential molecular mechanisms in patients with GC. The
correlations between clinical correlation analysis of the
diagnostic and analysis of independent prognostic factors will
help achieve accurate and individualized treatment in a clinical
setting.

MATERIALS AND METHODS

Obtaining DNAm Data of Gastric Cancer
We downloaded TCGA GC DNAm profiles (Illumina Human
Methylation 450 BeadChip, Illumina Human Methylation 27
BeadChip), expression profiles, and corresponding clinical data
through the UCSC Xena database (https://xena.ucsc.edu/) (Wang
et al., 2019). The Illumina Human Methylation 450 BeadChip
DNAm dataset contained two normal samples and 395 GC
samples, while the Illumina Human Methylation 27 BeadChip
DNAm dataset contained 25 normal samples and 48 GC samples.
The expression profile dataset contained 32 normal samples and
372 GC samples. Table 1 lists the clinicopathological
characteristics of the patients with GC. We downloaded the
GC DNAm profile dataset GSE30601 from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/) (Kurashige et al., 2016). The
GSE30601 dataset was based on the GPL8490 platform (Illumina
Human Methylation 27 BeadChip), containing 94 normal
samples and 203 GC samples. The data from TCGA GC
DNAm profiles were sorted and merged as the training
dataset; the GEO GC DNAm profile dataset was used as the
validation dataset. Because of the availability of public data in
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TCGA and GEO databases, this study did not require ethical
approval or informed consent.

Identification of Differential Methylated
Sites
We performed background correction and normalization on the
DNAm data in the training set (Zhang et al., 2019). Using normal
samples as controls, we screened the DMSs in GC samples using
the Wilcoxon test (Xu et al., 2017), with |log2 fold change (FC)| >
1 and false discovery rate (FDR) < 0.01 set as the threshold
considered to have biological significance. The “pheatmap”
package in R software was used to draw a DNAm heatmap of
DMSs in GC.

Screening of Diagnostic DNAm Markers
We used the random forest method in R software to predict key
DNAm sites in GC. The DNAm sites were sorted from high to
low according to their calculated “Mean Decrease Accuracy”
value, and 10-fold cross validation was performed five times to

screen representative DNAm markers in GC. We also used the
“glmnet” package in R software to predict key DNAm sites in GC
through LASSO regression analysis. DMSs that could distinguish
tumors from normal samples were defined as representative
DNAm markers in GC. Finally, shared DNAm markers
predicted by both methods were selected as reliable DNAm
markers for GC diagnosis (Zhou et al., 2019a).

Construction of DNAm Diagnostic Model
The “glm” package in R software was used to construct a
diagnosis prediction model with five reliable DNAm markers
through multivariate logistic regression analysis. The constructed
GC diagnosis prediction model was applied to distinguish GC
from normal samples in the training and validation datasets, and
the model’s accuracy was evaluated. Unsupervised hierarchical
clustering was used to show the DNAm status of five credible
diagnostic DNAm markers in the training set and validation set.

Correlation Analysis of DNAm Diagnostic
Model With Clinical Indicators
To evaluate the clinical application of the DNAm diagnostic
model in GC, we calculated the scores of patients with GC in
TCGA dataset using the constructed DNAm diagnostic model.
Samples with missing clinical characteristics were removed, and
correlations between diagnostic score and clinical characteristics
of patients were analyzed. The t-test was used for comparisons
between two groups, and the Kruskal–Wallis test was used for
comparisons between two or more groups. p < 0.05 was
considered statistically significant.

Construction of Prognostic Model Based on
Differential Methylated Sites
The “survival” package in R software was used to determine
DNAm sites of differential methylation associated with survival
of patients with GC through univariate Cox regression analysis,
and the random forest map was plotted for the top 20 DNAm
sites with the most significant differences (p < 0.01). Based on the
selected prognosis-related DNAm sites, the “glmnet” package in
R software was used to perform 10,000 simulations through
LASSO regression analysis, and key DNAm sites were
obtained after removing overlap through cross validation.

We used multivariate Cox regression analysis to construct the
following risk score formula for each patient (cg07990939Methylation
levels*(−8.908))+(cg08317263 Methylation levels*(−1.739))+(cg10301990
Methylation levels *(−4.088))+(cg10968649 Methylation levels
*(−20.267))+(cg13801416 Methylation levels *(−1.009))+(cg19614321
Methylation levels*(−1.779))+(cg20074795 Methylation levels
*(12.778))+(cg21052164 Methylation levels *(−0.941))+(cg26069252
Methylation levels *(7.734))+(cg26089280 Methylation levels
*(−8.569))+(cg27662379 Methylation levels *(−7.672)). Patients
were divided into low-risk and high-risk groups according to the
risk score formula using the median risk as the cut-off point. We
assessed survival differences between the two groups using the
Kaplan–Meier method, and compared these survival differences
using log-rank statistics. Receiver operating characteristic (ROC)

TABLE 1 | The clinicopathological characteristics of GS patients.

Alive (n = 216) Dead (n = 107) Total (n = 323)

Gender
FEMALE 89 (41.2%) 34 (31.8%) 123 (38.1%)
MALE 127 (58.8%) 73 (68.2%) 200 (61.9%)
Age
Mean (SD) 63.9 (10.7) 65.8 (10.3) 64.5 (10.6)
Median [MIN, MAX] 65 [30,90] 67 [41,90] 66 [30,90]
Grade
G1 5 (2.3%) 2 (1.9%) 7 (2.2%)
G2 74 (34.3%) 34 (31.8%) 108 (33.4%)
G3 137 (63.4%) 71 (66.3%) 208 (64.4%)
Stage
Stage I 30 (13.9%) 8 (7.5%) 38 (11.8%)
Stage II 84 (38.9%) 26 (24.3%) 110 (34.0%)
Stage III 94 (43.5%) 62 (57.9%) 156 (48.3%)
Stage IV 8 (3.7%) 11 (10.3%) 19 (5.9%)
T
T1 13 (6.0%) 1 (0.9%) 14 (4.3%)
T2 41 (19.0%) 16 (15.0%) 57 (17.6%)
T3 106 (49.1%) 56 (52.3%) 162 (50.2%)
T4 56 (25.9%) 34 (31.8%) 90 (27.9%)
M
M1 209 (96.8%) 99 (92.5%) 308 (95.4%)
M2 7 (3.2%) 8 (7.5%) 15 (4.6%)
N
N0 84 (38.9%) 24 (22.4%) 108 (33.5%)
N1 52 (24.1%) 30 (28.0%) 82 (25.4%)
N2 42 (19.4%) 25 (23.4%) 67 (20.7%)
N3 38 (17.6%) 28 (26.2%) 66 (20.4%)
Race
ASIAN 63 (29.2%) 21 (19.6%) 84 (26%)
BLACK 3 (1.4%) 6 (5.6%) 9 (2.8%)
WHITE 150 (69.4%) 80 (74.8%) 230 (71.2%)
Position
Body of stomach 54 (25%) 18 (16.8%) 72 (22.3%)
Cardia, NOS 49 (22.7%) 29 (27.1%) 78 (24.1%)
Fundus of stomach 33 (15.3%) 14 (13.1%) 47 (14.6%)
Gastric antrum 77 (35.6%) 40 (37.4%) 117 (36.2%)
Stomach, NOS 3 (1.4%) 6 (5.6%) 9 (2.8%)
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curve analysis was used to determine the accuracy of model
predictions (Xu et al., 2017).

Analysis of Independent Prognostic Factors
and Prognostic Risk Model
To evaluate the prognostic model and the effect of different
clinical characteristics of patients with GC on prognosis and
survival, we obtained phenotypic information of all samples from
the clinical data in TCGA dataset and extracted the risk model
samples separately, as well as the corresponding age, gender, and
other phenotypic and clinical information. We combined the
information in the risk model with the survival status of patients,
then used the “survival” package in R software to perform
univariate and multivariate independent prognostic analyses to
test the ability of the prognostic risk model and the clinical
characteristics of patients with GC to predict the prognosis
(Vasiljević et al., 2014).

Functional Analysis of Prognostic Risk
Score
To evaluate the clinical application and important functions of
the DNAm prognostic model in GC, we first calculated the risk
scores of patients with GC in TCGA dataset using the constructed
DNAm prognostic model and combined the risk scores with their
clinical data. Samples with missing clinical traits were removed,
and the correlation between risk scores and clinical characteristics
was analyzed. We used the t-test to compare two groups and the
Kruskal–Wallis test to compare two or more groups. p < 0.05 was
considered statistically significant. We then extracted the
expression levels of regulatory, cytotoxic, and
epithelial–mesenchymal transition (EMT) factors of known
immune checkpoint sites from the GC samples in TCGA
dataset and correlated these levels with the risk scores of these
samples to investigate whether the risk scores played an
important regulatory role in GC by influencing the above
factors. Finally, patients were divided into low-risk and high-
risk groups according to the prognostic risk model using the
median risk as the cut-off point. The low-risk group was used as
the control. We used the Wilcoxon test to screen significant
differentially expressed genes in the high-risk group, using the
standard threshold |log2FC| > 0 and FDR <0.05. The
“clusterProfiler” package in R language was used to perform
gene set enrichment analysis (GSEA) for the potential mechanism
of c2 (c2.cp.kegg.v7.1.entrez.gmt, c2.cp.biocarta.v7.1.entrez.gmt)
and c5 (c5.bp.v7.1.entrez.gmt) in the molecular signature
database (MSigDB). The number of random sample
arrangements was set to 1,000, and the significance threshold
was set to p < 0.05 (Zhou et al., 2019a).

Analysis of the Correlation Between Eleven
Prognostic-Related DMG and TP53
Mutations
UALCAN (http://ualcan.path.uab.edu/analysis.html) is a
comprehensive, user-friendly and interactive online data

analysis website based on relevant cancer data found in TCGA
database. We used the UALCAN database to evaluate the
expression levels of eleven prognostic-related DMG in gastric
cancer and normal gastric tissues (Chandrashekar et al., 2017).
Considering the unequal variances, the significance of differences
in the transcriptional levels was evaluated using the Student’s
t-test, and a p value of <0.05 was considered statistically
significant.

Mutation and Prognostic Analysis of Eleven
Prognostic-Related DMG
The cBioPortal (http://www.cbioportal.org) integrates data from
large-scale cancer research projects, such as TCGA and the
International Cancer Genome Consortium (ICGC), whose
gene data types cover somatic mutations, DNA copy number
changes, mRNA and microRNA expression, DNA methylation,
protein and phosphorus protein abundance, and provides visual
and multidimensional cancer genomic data (Cerami et al., 2012;
Gao et al., 2013). This study based on TCGA database, gene
expression data of 412 GC patients were included. We obtained
the relevant module information about 11-DMG mutation from
the cBioPortal. Set the parameters: “Enter a z-score threshold±1.
8”, then enter DMG to generate a mutation frequency
visualization chart, and then select the top 10 genes
significantly related to each gene mutations in “Co-expression”
module, delete duplicates and import them into Metascape.
Metascape (https://metascape.org/gp/index.html#/main/step1)
is a gene list analysis tool. It integrates data from over 40
types of biological information databases for gene annotation
and analysis, and provides a unique protein–protein interaction
(PPI) network analysis function.We used the “Multiple Gene list”
module of the Metascape tool to perform gene annotation and
enrichment analyses on the genes obtained from the cBioPortal
that were highly related to DMG mutations(27), and set the
parameters: “enrichment factorMin overlap � 3,” “p-value cut-off
value <0.01,” “Min enrichment >1.5” is considered statistically
significant, then select Gene Ontology (GO) enriching “Biological
Processes,” “Cellular Components” and “Molecular Functions”
and “KEGG pathways” classification. To further capture the
relationships between the terms, a subset of enriched terms
was selected and rendered as a network plot, where terms with
a similarity >0.3 were connected by edges. We selected the terms
with the best p-values from each of the 20 clusters, with the
constraint that there were no more than 15 terms per cluster and
no more than 250 terms in total. The network was visualized
using Cytoscape (Shannon et al., 2003), where each node
represented an enriched term and was colored first by its
cluster ID, and then by its p-value. For each given gene list,
PPI enrichment analysis was carried out using the following
databases: STRING (Szklarczyk et al., 2019), BioGrid
(Oughtred et al., 2019), OmniPath (Li et al., 2017), and
InWeb_IM (Li et al., 2017). Only physical interactions in
STRING (physical score >0.132) and BioGrid were used
(details). The molecular complex detection (MCODE)
algorithm (Bader and Hogue, 2003) was applied to identify
densely connected network components.
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Construction of Multi-Factor Regulatory
Network of Key Genes
In order to predict the regulatory factors of key genes related to
the prognostic model constructed in gastric cancer, we predicted
the upstream regulated miRNAs of key genes through Starbase
(http://starbase.sysu.edu.cn/index.php) and TargetScan (http://
www.targetscan.org/vert_71/), and intersected the prediction
results to obtain reliable miRNAs. After that, we further
predicted the lncRNA upstream regulated by the trusted
miRNA through the Starbase database, and predicted the
transcription factors (TF) that can regulate key genes through
the TRRUST (https://www.grnpedia.org/trrust) database. Finally,

the regulatory network among mRNA, miRNA, lncRNA and TF
was constructed by Cytoscape v3.6.1 software.

RESULTS

Identification of Differential Methylated
Sites in Gastric Cancer
To construct the diagnostic and prognostic GC models, we
performed background correction and normalization on the
DNAm data from 27 normal samples and 443 GC samples in
the training dataset. Among them, 1842 hypermethylated and 899

FIGURE 1 | Heat map of the top 20 significanly different methylation sites in gastric cancer (Arranged in p-value order).

FIGURE 2 | Screening of diagnostic DNA methylation (DNAm) markers in gastric cancer. (A)Multi-dimensional scaling plot of the proximity matrix generated from
random forest analysis in the training dataset. Red dots represent normal samples and blue dots indicate tumor samples. (B)Misclassification error for different numbers
of variables revealed by the LASSO regression model. Red dots represent the value of misclassification error, grey lines represent the standard error (SE), the two vertical
dotted lines on the left and right represent optimal values by theminimum and 1-SE criteria, respectively. “Lambda” is the tuning parameter. (C) Screening of DNAm
markers for reliable diagnosis. The green circle represents representative DNAmmarkers selected by random forest analysis, and the blue circle indicates representative
DNAm markers screened by LASSO regression analysis.
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hypomethylated sites were screened out in the GC samples.We used
R software package pheatmap to draw the methylation heat map of
the top 20 significanly different methylation sites in gastric cancer,
arranged in p-value order (Figure 1) (Supplementary Table S1).

Screening of Diagnostic DNAm Markers
Key DNAm sites in GC were predicted through random forest
analysis, combined with five repeated ten-fold cross validations,
resulting in 35 representative DNAmmarkers (Figure 2A). At the
same time, we also predicted 15 key DNAm sites in GC by LASSO
regression analysis (Figure 2B). The intersection of the
representative DNAm markers predicted by both methods
yielded five reliable diagnostic DNAm markers in GC
(Figure 2C).

Construction of a DNAm Diagnostic Model
Using multivariate logistic regression analysis, we established a
GC diagnosis prediction model with the five selected DNAm
markers (Table 2). Applying the model to the training dataset

yielded a sensitivity of 99.1% and specificity of 81.5% samples
(Figure 3A) and a sensitivity of 87.2% and specificity of 63.8% in
the validation dataset (Figure 3B). We also demonstrated this
model could differentiate GC from normal samples both in the
training dataset (AUC � 0.994) and the validation dataset (AUC �
0.829) (Figures 3C,D). Unsupervised hierarchical clustering of
these five markers distinguished GC from normal samples with
high specificity and sensitivity (Figures 3E,F). These results
indicated that the DNAm diagnostic model could be a
significant tool for distinguishing GC from normal samples.

Correlation Between DNAm Diagnostic
Model and Clinical Indicators
After excluding samples with missing clinical data, we analyzed
correlations between the diagnostic risk score and the clinical
characteristics of 323 patients obtained from TCGA dataset. The
results indicated that diagnostic risk score was significantly
correlated with grade and tumor location in patients with GC,
but not with age, gender, stage, extent of the tumor (T), presence
of metastasis (M), extent of spread to the lymph nodes (N), or
race of the patient (Figures 4A–I).

Prognostic Model Based on Differential
Methylated Sites
We combined the DNAm values of the DMSs in GC samples with
the survival data of the corresponding patients, using p < 0.01 as
the threshold standard to perform univariate Cox proportional
hazard regression analysis. We found that 137 DMSs significantly
affected the survival of patients with GC, among which the top 20

TABLE 2 | Characteristics of five methylation markers and their coefficients in GC
diagnosis.

Markers Ref.Gene Coefficients SE z.value P.value

12.209 3.242 3.766 <0.001
cg14383135 NPAS2 −2.609 7.309 −0.357 0.721
cg08797471 DAPK1 −19.390 5.950 −3.259 0.001
cg26619317 CNN3 −2.969 7.454 −0.398 0.690
cg17028039 FGFR2 −6.982 9.783 −0.714 0.475
cg25764464 PLEKHA5 −2.097 6.914 −0.303 0.762

SE: standard errors of coe-cients; z value: Wald z-statistic value.

FIGURE 3 | Construction of a diagnostic model of DNA methylation (DNAm) in gastric cancer. (A,B) Confusion tables of binary results of the diagnostic prediction
model in the training (A) and validation datasets (B). (C,D) Receiving operating characteristics curve analysis of the diagnostic prediction model with DNAm markers in
the training (C) and validation datasets (D). (E,F) Unsupervised hierarchical clustering of five DNAm markers selected for use in the diagnostic prediction model in the
training (E) and validation data sets (F).
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DNAm sites with the most significant differences are shown
(Figure 5A). We used LASSO regression analysis to remove
redundant DNAm sites, performed 10,000 simulations,
removed overlaps through cross validation, and finally
obtained 25 prognostic-related DMSs (Figures 5B,C). We
constructed a prognostic risk score formula for each patient
based on these 25 prognosis-related DMSs (Table 3). The
DNAm heatmap demonstrated the DMSs in the low-risk and

high-risk groups based on the prognostic (Figure 5D). The
corresponding ROC curve analysis demonstrated that the area
under the curve (AUC) value of the constructed prognostic model
was 0.747, which indicated the predictive power of the prognostic
model based on the expression of DMSs in GC (Figure 5E).
Further, the Kaplan–Meier curves suggested that the survival rate
of patients in the high-risk group was significantly lower than that
in the low-risk group (Figure 5F).

FIGURE 4 | Correlation analysis of DNA methylation (DNAm) diagnostic model and clinical indicators in gastric cancer (GC). (A–I) Correlation analysis between
diagnostic risk score and age, gener, tumor grade, T, M, N stage, race, and tumor site of gastric cancer.
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Analysis of Independent Prognostic Factors
in the Prognostic Risk Model
To further evaluate the prognostic model and the impact of
different clinical characteristics of patients with GC on
prognosis and survival, we obtained the corresponding
age, gender, phenotype, and clinical information for 315
patients with GC from TCGA dataset. We performed
univariate and multivariate independent prognostic analyses

(Figures 6A,B), revealing that the prognostic risk score value
and tumor site were significant high-risk factors and were
significantly correlated with the survival status of patients with
GC (p < 0.05). The corresponding ROC curve analysis
demonstrated that the constructed prognostic model had
the largest AUC value of 0.782, which also indicated the
predictive power of the prognostic model based on DMSs in
GC (Figure 6C).

FIGURE 5 | Prognostic model based on differential methylation sites (DMSs). (A) Random forest plot of the top DMS with the most significant differences through
univariate Cox proportional hazard regression analysis. (B) Results of LASSO regression analysis and 10,000 simulations. (C) Corresponding coefficient values of each
DMS in LASSO regression analysis. (D) DNAm heatmap of DMSs in the low-risk and high-risk groups with increasing prognostic risk score value. (E) Receiver operating
characteristics curve analysis of the prognostic model. (F) Kaplan–Meier survival analysis of DMSs related to prognostic model, abscissa for survival time, ordinate
for survival rate, blue curve for low-risk patients, red curve for high-risk patients. The number of high-risk and low-risk patients at each time point are located on the
bottom axis of the graph.

TABLE 3 | Characteristics of eleven methylation markers and their coefficients in GC prognosis prediction.

Markers Ref.Gene Coefficients HR Cl SE z.value P.value

cg07990939 CEP290 −8.908 1.35E-04 2.05e-07–8.94e-02 3.313 −2.689 7.17E-03
cg08317263 CCDC69 −1.739 1.76E-01 3.38e-02–9.13e-01 0.841 −2.068 3.86E-02
cg10301990 UBXN8 −4.088 1.68E-02 1.99e-04–1.41e+00 2.263 −1.807 7.08E-02
cg10968649 KDM4A −20.267 1.58E-09 1.73e-17–1.44e-01 9.352 −2.167 3.02E-02
cg13801416 AKR1B1 −1.009 3.65E-01 1.65e-01–8.05e-01 0.404 −2.496 1.26E-02
cg19614321 RASSF2 −1.779 1.69E-01 3.55e-02–8.02e-01 0.795 −2.237 2.53E-02
cg20074795 KDELR3 12.778 3.54E+05 1.54e+01–8.15e+09 5.124 2.494 1.26E-02
cg21052164 CHRNB2 −0.941 3.90E-01 1.22e-01–1.24e+00 0.592 −1.59 1.12E-01
cg26069252 EGR1 7.734 2.29E+03 1.69e+02–3.08e+04 1.327 5.826 5.67E-09
cg26089280 ARMC9 −8.569 1.90E-04 1.60e-09–2.25e+01 5.96 −1.438 1.51E-01
cg27662379 RPN1 −7.672 4.66E-04 1.65e-07–1.31e+00 4.053 −1.893 5.84E-02

HR: Hazard Ratio; CI: 95.0% confidence interval; SE: standard errors of coe-cients; z value: Wald z-statistic value.
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Functional Analysis of Prognostic Risk
Score
To evaluate the clinical application and important functions of
the DNAm prognostic model in GC, we calculated the prognostic
risk score of patients with GC from TCGA dataset and then
analyzed correlations with patient clinical characteristics. The
prognostic risk score was significantly correlated with extent of
spread to the lymph nodes (N) and tumor site in patients with GC
but not significantly correlated with other clinical features
(Figure 7A). We also analyzed correlations between
prognostic risk score and expression levels of regulatory,
cytotoxic, and EMT factors of immune checkpoint sites. The
results indicated that prognostic risk score was significantly
positively correlated with VIM, which was significantly
positively correlated with PDCD1, CTLA4, LAG3, TIGIT,
GZMB, and TNF and significantly negatively correlated with
CDH1 (Figure 7B). We screened 6,172 significant differentially
expressed genes in the high-risk group samples. GSEA on the
potential mechanism of c2 (c2.cp.kegg.v7.1.entrez.gmt,
c2.cp.biocarta.v7.1.entrez.gmt) and c5 (c5.bp.v7.1.entrez.gmt)
in the MSigDB (Figures 7C–E) revealed that highly expressed
genes in the high-risk group were significantly enriched in
multiple biological processes, such as the “calcium signaling
pathway,” “cytokine receptor interaction,” “focal adhesion,”

“neuroactive ligand receptor interaction,” and “regulation of
actin cytoskeleton,” indicating that these pathways may play
important roles in the development of GC.

Analysis of the Correlation Between Eleven
Prognostic-Related DMG and TP53
Mutations
We further analyzed the relationship between DMG mRNA
expression levels and TP53 mutation status in patients with
gastric cancer using the UALCAN data mining website. In the
correlation analysis of TP53 mutation status, it is worth noting
that the expression of CHRNB2 decreased significantly only in
the TP53 mutation group of gastric cancer patients. CCDC69,
RASSF2, CHRNB2, ARMC9, and RPN1 were significantly
different in the TP53 mutation group and TP53 non-mutation
group of gastric cancer patients (Figure 8).

Mutation and Prognostic Analysis of Eleven
Prognostic-Related DMG
We analyzed eleven prognostic-related DMGmutations and their
relationship with OS and PFS in gastric cancer patients using the
cBioportal website. Among 412 patients with gastric cancer, 242

FIGURE 6 | Analysis of independent prognostic factors in the prognostic risk model. (A) Random forest plot of univariate independent prognostic analysis; the left
side indicates clinical characteristics of gastric cancer (GC), the middle is the p-value. The hazard ratio indicates the risk rate with hazard ratio >1 indicating high-risk
clinical features, and hazard ratio <1 indicating low-risk clinical features. (B) Random forest plot of multivariate independent prognostic analysis; the left side represents
clinical characteristics of GC, the middle is the p-value. The hazard ratio represents the risk rate with hazard ratio >1 indicating high-risk clinical features, and hazard
ratio <1 indicating low-risk clinical features. (C) Receiver operating characteristics curve analysis of the prognostic model constructed with eleven differential methylation
sites (DMSs) in GC.
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had gene mutations, with a mutation rate of 59%. The mutation
rates of CEP290, CCDC69, UBXN8, KDM4A, AKR1B1, RASSF2,
KDELR3, CHRNB2, EGR1, ARMC9, RPN1 were 10, 5, 12, 11, 8,
2.9, 6, 7, 6, 7, and 13%, respectively. We observed that the
mutation rates of CEP290, UBXN8, KDM4A, and RPN1 were
more than 10% (10, 12, 11, 13%) (Figure 9A). In addition, high
mRNA expression was an important factor leading to high
mutation frequency in gastric cancer (Figure 9B). However,
Kaplan-Meier plotter and log-rank test analysis showed that
SMYD family mutations had no significant correlation with
OS and PFS in patients with gastric cancer (OS: p value �
0.887, PFS: p value � 0.548) (Figure 9C). Next, we used the
cBioportal to search for genes that were significantly related to
gastric cancer and DMG mutations (the top 10, respectively).
After deduplication, a total of 108 genes were obtained,
ZDHHC17, ARID4A, ATRX, ARID4B, UPF2, ZNF37BP,
CEP162, MDM4, CCDC66, PHIP, ASB2, PRKCB, GYPC,
SLC9A9, RASGRP2, JAM2, FNBP1, MAP3K3, PLEKHO,
GTF2E2, MAK16, CNOT7, PPP2CB, CCDC25, DCTN6,
INTS10, PPP2R2A, LEPROTL1, ELP3, AGO1, PTPRF,
COMMD6, NCOA2, COPS9, MRPL53, POLR3A, UHMK1,
CSNK1G1, AIDA, ADAP2, NRROS, HVCN1, LY86, TM6SF1,
TRPV2, MAP7, CSF1R, CHST11, TNFAIP8L2, FLI1, ARHGEF6,
ZEB2, RCSD1, MEF2C, FMNL3, ARHGAP31, CYRIA, SYNE1,

GIMAP8, CREB3L1, ARF4, AGR2, KCNK1, SEC13, BACE2,
CD55, KDELR2, S100P, BSN, RUNDC3A, CHGB, SCG3,
AP3B2, SYP, CACNA2D2, SEZ6, CELF3, GNG4, FOS, FOSB,
ZFP36, DUSP1, CSRNP1, NR4A1, JUNB, EGR3, CCN1, ATF3,
COL8A1, MAP1A, PKD2, EDNRA, AEBP1, TIMP2, SYDE1,
KANK2, SCARF2, DDR2, SEC61A1, COPG1, SRPRB, TFG,
P4HB, COPB2, UMPS, TMEM39A, RUVBL1 and PDIA5,
respectively. The 108 genes significantly related to 11-DMG
mutation obtained from the cBioportal were used through the
Meatascape website to perform GO and KEGG enrichment
analysis (Figures 10A–C). GO enrichment was divided into
three functional groups: biological processes (15 items),
molecular functions (1 item), and cellular components (2
items), and KEGG functional group (2 items). We found that
these genes were mainly involved in cellular response to calcium,
skeletal muscle cell differentiation, blood vessel development,
cellular response to growth factor stimulus, endoplasmic
reticulum to Golgi vesicle-mediated transport, peptidyl-serine
dephosphorylation, myeloid cell differentiation, transmembrane
receptor protein tyrosine kinase signaling pathway, MAPK
cascade, placenta blood vessel development, maintenance of
protein location, positive regulation of cell-substrate adhesion,
positive regulation of phospholipase activity, multicellular
organismal movement, positive regulation of cell motility. The

FIGURE 7 | Functional analysis of prognostic risk score. (A) Correlation analysis between prognostic risk score and age, gender, tumor grade, N stage, T stage,
race, and tumor location of the patient in the prognostic risk model. (B) Correlation analysis between prognostic risk score and expression levels of regulatory, cytotoxic,
and epithelial–mesenchymal transition (EMT) factors of immune checkpoint sites. (C–E) The results of gene set enrichment analysis on the potential mechanism of c5
(c5.bp.v7.1.entrez.gmt) and c2 (c2.cp.kegg.v7.1.entrez.gmt, c2.cp.biocarta.v7.1.entrez.gmt) in the molecular signatures database.
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molecular function of these genes mainly played a role in the
activity of calcium channels. The cellular components involved in
these genes were cytoplasmic ribonucleoprotein granules and
cytoplasmic regions (Table 4). In addition, in order to better
understand the relationship between DMG mutation-related
genes and GC, we conducted protein interaction network
analysis. After pathway and process enrichment analysis for
each MCODE component, it was found that the main
component of the cell involved was the endoplasmic reticulum
lumen, and the biological function was mainly related to COPI-
coated vesicle membrane, endoplasmic reticulum to Golgi
vesicle-mediated transport, COPI-coated vesicle, P-body,
nuclear-transcribed mRNA catabolic process, mRNA catabolic
process (Figures 10D–E).

Construction of Multi-Factor Regulatory
Network of Key Genes
Using databases such as Starbase, TargetScan and other databases
to predict the miRNAs upstream regulated of 11 key genes, and
intersect the prediction results, a total of 90 reliable miRNAs
capable of regulating 11 mRNAs were obtained. By predicting the
upstream of reliable miRNA regulated lncRNAs through the
Starbase database to, a total of 2,469 lncRNAs were obtained,
and the most reliable first three lncRNAs were selected for each
miRNA, and finally 270 credible lncRNAs were obtained. The
TRRUST database predicted transcription factors that can
regulate 11 key genes, and 13 TFs were obtained. Finally, the

regulatory network between mRNA, miRNA, lncRNA and TF
was constructed (Figure 11).

DISCUSSION

Although tumor markers for different types of cancers have been
rapidly discovered in recent years, there remains a lack of specific
and sensitive tumormarkers for the management of GC.With the
development and deeper understanding of epigenetics, abnormal
DNAm has become the most extensively studied epigenetic
mechanism in GC research, and the relationship between
DNAm and tumors has become a research hotspot. The
mechanism whereby DNAm promotes cancer may be related
to activation or inhibition of certain signaling pathways, and
DNAm is thus recognized as a potential tumor marker (Rashid
and Issa, 2004). However, the performance of a single DNAm site
in predicting the prognosis of GC is unreliable. A large
prospective trial with 7,941 patients with colorectal cancer was
conducted to evaluate the accuracy of screening circulating
DNAm by detecting the methylation level of SEPT9. The
results revealed a specificity of 91.5% but a sensitivity of only
48.2% (Church et al., 2014). Some studies have shown that the
prediction accuracy of GC models is improved by combining
multiple tumor markers (Li et al., 2020a; Bai et al., 2020). This is
because multiple markers can take advantage of the
complementary effects of genetic information and effectively
eliminate redundant genes through machine learning

FIGURE 8 | The relationship between 11-DMG mRNA expression levels and TP53 mutation in gastric cancer (GC) (mutation: red, non-mutation: orange, and
normal gastric tissues: blue) (UALCAN) (*p < 0.05, **p < 0.01, ***p < 0.001).
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algorithms. As a result, we developed a GC diagnostic model with
a 5-DMS signature and a GC prognostic model with an 11-DMS
signature. Through clinical correlation analysis of the diagnostic
models, independent prognostic factors analysis of prognostic
models and enrichment analysis of the high-risk prognostic risk
score group, our study provides potential targets and related
mechanisms for clinical diagnosis and treatment of GC.

The accuracy of a DNAm diagnostic model has been
confirmed for liver cancer (Luo et al., 2020). In the current
study, we developed a 5-DMS (NPAS2, DAPK1, CNN3,
FGFR2, PLEKHA5) signature diagnostic model and calculated
GC diagnostic risk scores to accurately distinguish GC from
normal tissues. The predicted results were highly consistent
with the actual results, indicating the model’s potential for
wide application. In addition, unsupervised hierarchical
clustering analysis demonstrated high specificity and
sensitivity. In subsequent analysis, the diagnostic risk score
was significantly correlated with grade and tumor site in

patients with GC. Since the disease state of gastric cancer
patients is often manifested in clinical characteristics, the
correlation analysis between the risk score calculated by this
diagnostic model and the clinical characteristics can further
understand the quality of our model and assess the clinical
status of GC patients, which is of great significance. In clinical
practice, the gold standard for GC diagnosis is pathological
results, but the diagnostic model still has high clinical value.
At the same time, this model and pathology are used for
diagnosis. If the two diagnostic results are consistent, it is
more convincing. Generally, pathological diagnosis is the main
method, andmodel diagnosis is the auxiliary method. In addition,
the model can assist in the diagnosis and classification of patients
with difficult pathological diagnosis, and can also be used for the
detection of tumor residual, recurrence and metastasis for
subsequent accurate and personalized treatment.

The prognostic model constructed in the current study
employed an 11-DMS (CEP290, CCDC69, UBXN8, KDM4A,

FIGURE 9 | Mutation of 11-DMG in gastric cancer (GC) patients (cBioportal). (A) A visual summary of 11-DMG mutation frequency. (B) Summary of mutation
frequency of 11-DMG in gastric cancer patients. (C) Kaplan-Meier plotter was used to compare the relationship between gene mutation (red) and gene non-mutation
(blue) of 11-DMG mutation with OS and PFS (p < 0.05 statistical significance).
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AKR1B1, RASSF2, KDELR3, CHRNB2, EGR1, ARMC9, and
RPN1) signature. In this model, prognostic risk score
effectively distinguished patients with GC into high-risk and
low-risk groups. Kaplan–Meier curves also confirmed that the
survival rate of patients in the high-risk group was significantly
lower than that in the low-risk group. By univariate and

multivariate Cox analyses, prognostic risk score was proven to
be an independent prognostic risk factor for GC. Compared with
other clinical factors (age, gender, tumor grade, clinical stage, T,
N, and M stage, race, tumor location), prognostic risk score had
higher predictive potential, which indicated the reliability of the
model for predicting the prognosis of patients with GC. Although

FIGURE 10 | Enrichment analysis of genes related to 11-DMGmutation in gastric cancer (GC) (Metascape). (A)Heat maps of Go and KEGG enrichment analysis of
108 adjacent genes related to 11-DMGmutation were stained with p-value. (B) Term-enriched network: colored by cluster ID, where nodes sharing the same cluster ID
are usually close to each other, (C) colored by p-value, terms containingmore genes tend to havemore significant p-values. (D) For the MCODE components identified in
the protein-protein interaction network, (E) the three best score items divided by p-value are used as the functional description of the corresponding components,
which are represented by the grid diagram.
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TNM stage is still the gold standard for the classification and
prognosis of GC patients, from the perspective of data analysis,
this prognostic model can better reflect the prognosis of gastric
cancer patients than TNM stage. With the continuous expansion
of subsequent data, the constructed prognostic model will with
higher stability and accuracy, it is not impossible to replace TNM
stage. In clinical practice, we often encounter GC patients with
the same TNM stage and other clinical characteristics, but their
prognosis is quite different, and the subsequent treatment plans
given are not completely the same. For this situation, we can
apply this prognostic model to classify and predict the prognosis,
so that doctors can summarize the treatment plans of patients in
the high-risk group and the low-risk group, and provide
corresponding treatment plans. Therefore, this prognostic
model has great potential value in the prognosis judgment and
treatment of GC patients, which is helpful for accurate and
personalized treatment in the clinical environment.

Among the eleven DMGs in the prognostic model, five DMGs
(KDM4A, AKR1B1, RASSF2, CHRNB2, and EGR1) are known to
be closely related to the occurrence and development of GC. The
protein encoded by the KDM4A gene acts as a trimethylation-
specific demethylase, which can specifically demethylate the “Lys-9”
and “Lys-36” residues of histone H3, thereby playing a central role
in coding for histones (Bavetsias et al., 2016). This protein can also
control the growth and invasion of GC cells by inhibiting the
KDM4A/YAP1 pathway (Chen et al., 2019). The AKR1B1 gene
encodes a member of the aldose/keto reductase superfamily, which
is composed of more than 40 known enzymes and proteins. The
related pathways include acetone degradation I (conversion to
methylglyoxal) and glycerolipid metabolism (Sivenius et al.,
2004; Wolford et al., 2006). AKR1B1 plays an important role in
the occurrence and development of GC, which had a certain
reference value for the prognosis of patients with GC (Li et al.,

2020b). The protein encoded by the RASSF2 gene has been found to
be a potential tumor suppressor and can act as a KRAS-specific
effector protein. It may promote apoptosis and cell cycle arrest,
stabilizing STK3/MST2 by protecting it from proteasome
degradation (Cooper et al., 2009). Meta-analysis has shown that
RASSF2 is significantly more methylated in GC, which can predict
the risk of GC (Zhou et al., 2019c). Neuronal acetylcholine receptors
are homo- or heteropentameric complexes composed of
homologous α and β subunits, of which the CHRNB2 gene
encodes one of several β subunits. The related pathways include
nicotine addiction and chemical synaptic transmission (Chen et al.,
2009). CHRNB2 and TP53 may also play a role in Helicobacter
pylori-associated GC, but the specific mechanism is unknown (Hu
et al., 2018). The protein encoded by the EGR1 gene belongs to the
EGR family of C2H2-type zinc-finger proteins and is a
transcriptional regulator (Hu et al., 2010). Its functions are
diverse and can regulate the transcription of many target genes,
thus, playing an important role in regulating the response to growth
factors, DNA damage, and ischemia. Its role in regulating cell
survival, proliferation, and cell death cannot be ignored. EGR1
protein can directly bind to the HNF1A-AS1 promoter region and
activate its transcription to promote the GC cell cycle (Liu et al.,
2018). The relationship between the remaining six DMGs andGC is
unknown. Further exploration of the potential functions and
mechanisms of these DMGs may deepen our understanding of
GC development and provide potential tumor markers.

Regulatory, cytotoxic, and EMT factors are significantly
associated with the occurrence, development, and immunity of
tumor (Zhou et al., 2019b), and their analysis can further explore
potentially important biological phenotypes. Correlation analysis
with these three factors revealed that prognostic risk score was
significantly positively correlated with VIM. This gene encodes a
type III intermediate filament protein responsible for maintaining

TABLE 4 | The GO and KEGG function enrichment analysis of genes related to 11-DMG mutation in GC.

GO Category Description Count % Log10(P) Log10(q)

GO:0071277 GO Biological Processes cellular response to calcium ion 6 5.61 -6.05 -1.71
GO:0035914 GO Biological Processes skeletal muscle cell differentiation 5 4.67 -5.24 -1.69
hsa04010 KEGG Pathway MAPK signaling pathway 8 7.48 -5.21 -1.69
GO:0001568 GO Biological Processes blood vessel development 13 12.15 -5.13 -1.69
ko04728 KEGG Pathway Dopaminergic synapse 6 5.61 -4.97 -1.69
GO:0071363 GO Biological Processes cellular response to growth factor stimulus 12 11.21 -4.90 -1.69
GO:0006888 GO Biological Processes endoplasmic reticulum to Golgi vesicle-mediated transport 6 5.61 -4.84 -1.68
GO:0070262 GO Biological Processes peptidyl-serine dephosphorylation 3 2.80 -4.31 -1.24
GO:0030099 GO Biological Processes myeloid cell differentiation 8 7.48 -3.96 -1.01
GO:0007169 GO Biological Processes transmembrane receptor protein tyrosine kinase signaling pathway 10 9.35 -3.84 -0.92
GO:0000165 GO Biological Processes MAPK cascade 11 10.28 -3.74 -0.89
GO:0060674 GO Biological Processes placenta blood vessel development 3 2.80 -3.70 -0.86
GO:0036464 GO Cellular Components cytoplasmic ribonucleoprotein granule 6 5.61 -3.54 -0.71
GO:0045185 GO Biological Processes maintenance of protein location 4 3.74 -3.37 -0.62
GO:0099568 GO Cellular Components cytoplasmic region 6 5.61 -3.21 -0.53
GO:0005262 GO Molecular Functions calcium channel activity 4 3.74 -2.95 -0.38
GO:0010811 GO Biological Processes positive regulation of cell-substrate adhesion 4 3.74 -2.90 -0.36
GO:0010518 GO Biological Processes positive regulation of phospholipase activity 3 2.80 -2.89 -0.36
GO:0050879 GO Biological Processes multicellular organismal movement 3 2.80 -2.87 -0.36
GO:2000147 GO Biological Processes positive regulation of cell motility 8 7.48 -2.76 -0.29

It includes the first 20 clusters and their representative enrichment terms (one for each cluster). “Count” is the number of genes in the provided list that have membership in the given
ontology term. “%” is the percentage of all genes provided found in a given ontology term (only input genes with at least one ontology term annotation are included in the calculation).
“Log10(P)” is the p value based on Log10. “Log10(q)” is a multi-test adjusted p value based on Log10.
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cell shape and cytoplasm integrity and stabilizing cytoskeletal
interactions. VIM protein is involved in neurogenesis, cholesterol
transport, and functions as an organizer of a number of other critical
proteins involved in cell attachment, migration, and signaling. EMT
is widespread in malignant tumor cells, of which VIM is a marker
gene. The higher the risk score, the more likely EMT will occur. We
performed GSEA to clarify the potential mechanisms involved in
GC that were identified in the high-risk score group. The
differentially expressed genes were mainly distributed in five
pathways: “calculation signaling pathway,” “cytokine receptor
interaction,” “focal assignment,” “neural ligand receptor
interaction,” and “regulation of actin cytoskeleton.” This indicates
that the above pathways may be related to the origin of GC, which
concurs with the results of previously published research (Liu et al.,
2016; Zhu et al., 2017; Xu et al., 2019; Zhou et al., 2020).

In order to understand the correlation between 11-DMG and
TP53 mutation, we analyzed their correlation on the data website
throughUALCAN. In the analysis, we found for the first time that
the expression of CHRNB2 was significantly reduced only in the
TP53 mutation group of gastric cancer patients, and the mutation
of tumor suppressor gene TP53 may be involved in the regulation
of mRNA expression in CCDC69, RASSF2, CHRNB2, ARMC9,
and RPN1(Sartorio and Morabito, 1988; Hu et al., 2018; Wang
et al., 2020). In the analysis of 11-DMG mutation and prognosis,
we found that CEP290, UBXN8, KDM4A, RPN1 had high
frequency mutations. The genes related to their mutations are
mainly related to pathways such as COPI-coated vesicle
membrane, endoplasmic reticulum to Golgi vesicle-mediated
transport, COPI-coated vesicle, P-body, nuclear-transcribed
mRNA catabolic process, mRNA catabolic process.

FIGURE 11 | The construction of multi-factor regulatory network of key genes in gastric cancer (GC). Diamond represents mRNA, V-shape represents miRNA,
circle represents lncRNA, and rectangle represents TF.
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To the best of our knowledge, the 5-DMS diagnostic and 11-
DMS prognostic models of GC have not been previously
reported. The models were verified by external datasets and
demonstrated good generalization ability, which can facilitate
clinical treatment decision-making. The DMSs selected in this
study are relatively novel, and subsequent research on these
DMSs will be of great significance. However, this study also
has some shortcomings. The small normal sample size may lead
to some bias in the results. Other omics fields, such as genome,
transcriptome, proteome, and metabolome, have shown
respective advantages in GC diagnostic and prognostic models
(Li et al., 2010; Chan et al., 2016; Deng et al., 2018; Zhang et al.,
2018; Shen et al., 2019); therefore, it is too early to assert that our
model is optimal. The models should be validated in a real-world
cohort. We hope to address these concerns in our future work.

In conclusion, the GC diagnostic and prognostic models
established in the current study are low cost, highly sensitive,
specific, and may facilitate accurate and individualized treatment
for patients with GC.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://xena.ucsc.edu/. https://www.ncbi.nlm.
nih.gov/geo/. http://ualcan.path.uab.edu/analysis.html.

AUTHOR CONTRIBUTIONS

Conceptualization, DL; Methodology, LW and GX; Formal
Analysis, XH and CW; Investigation, QJ and XW;
Writing–Original Draft Preparation, DX; Writing–Review and
Editing, LL; Supervision, YL; Project Administration, DX;
Funding Acquisition, YL. All authors have read and agreed to
the published version of the manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (No. 81770634) and Heilongjiang
Province General Undergraduate Colleges and Universities
Young Innovative Talents Training Plan (UNPYSCT-2018073).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.758926/
full#supplementary-material

Supplementary TableS1 | The methylation status of DMS: 1842 hypermethylation
sites and 899 hypomethylation sites were screened from 27 normal samples and
443 GC samples.

REFERENCES

Bader, G. D., and Hogue, C. W. (2003). An Automated Method for Finding
Molecular Complexes in Large Protein Interaction Networks. BMC
Bioinformatics 4, 2. doi:10.1186/1471-2105-4-2

Bai, Y., Wei, C., Zhong, Y., Zhang, Y., Long, J., Huang, S., et al. (2020).
Development and Validation of a Prognostic Nomogram for Gastric Cancer
Based on DNAMethylation-Driven Differentially Expressed Genes. Int. J. Biol.
Sci. 16 (7), 1153–1165. doi:10.7150/ijbs.41587

Bang, Y.-J., Xu, R.-H., Chin, K., Lee, K.-W., Park, S. H., Rha, S. Y., et al. (2017).
Olaparib in Combination with Paclitaxel in Patients with Advanced Gastric
Cancer Who Have Progressed Following First-Line Therapy (GOLD): a
Double-Blind, Randomised, Placebo-Controlled, Phase 3 Trial. Lancet Oncol.
18 (12), 1637–1651. doi:10.1016/S1470-2045(17)30682-4

Bavetsias, V., Lanigan, R. M., Ruda, G. F., Atrash, B., McLaughlin, M. G., Tumber,
A., et al. (2016). 8-Substituted Pyrido[3,4-D]pyrimidin-4(3h)-One Derivatives
as Potent, Cell Permeable, KDM4 (JMJD2) and KDM5 (JARID1) Histone
Lysine Demethylase Inhibitors. J. Med. Chem. 59 (4), 1388–1409. doi:10.1021/
acs.jmedchem.5b01635

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A.
(2018). Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and
MortalityWorldwide for 36 Cancers in 185 Countries. CA: a Cancer J. clinicians
68 (6), 394–424. doi:10.3322/caac.21492

Cats, A., Jansen, E. P. M., van Grieken, N. C. T., Sikorska, K., Lind, P., Nordsmark,
M., et al. (2018). Chemotherapy versus Chemoradiotherapy after Surgery and
Preoperative Chemotherapy for Resectable Gastric Cancer (CRITICS): an
International, Open-Label, Randomised Phase 3 Trial. Lancet Oncol. 19 (5),
616–628. doi:10.1016/S1470-2045(18)30132-3

Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., et al.
(2012). The cBio Cancer Genomics Portal: An Open Platform for Exploring
Multidimensional Cancer Genomics Data: Figure 1. Cancer Discov. 2 (5),
401–404. doi:10.1158/2159-8290.CD-12-0095

Chan, A. W., Mercier, P., Schiller, D., Bailey, R., Robbins, S., Eurich, D. T., et al.
(2016). 1H-NMR Urinary Metabolomic Profiling for Diagnosis of Gastric
Cancer. Br. J. Cancer 114 (1), 59–62. doi:10.1038/bjc.2015.414

Chandrashekar, D. S., Bashel, B., Balasubramanya, S. A. H., Creighton, C. J., Ponce-
Rodriguez, I., Chakravarthi, B. V. S. K., et al. (2017). UALCAN: A Portal for
Facilitating Tumor Subgroup Gene Expression and Survival Analyses.
Neoplasia 19 (8), 649–658. doi:10.1016/j.neo.2017.05.002

Chen, L.-h., Wang, L.-p., and Ma, X.-q. (2019). Circ_SPECC1 Enhances the
Inhibition of miR-526b on Downstream KDM4A/YAP1 Pathway to
Regulate the Growth and Invasion of Gastric Cancer Cells. Biochem.
Biophysical Res. Commun. 517 (2), 253–259. doi:10.1016/j.bbrc.2019.07.065

Chen, Y.,Wu, L., Fang, Y., He, Z., Peng, B., Shen, Y., et al. (2009). A NovelMutation
of the Nicotinic Acetylcholine Receptor Gene CHRNA4 in Sporadic Nocturnal
Frontal Lobe Epilepsy. Epilepsy Res. 83 (2-3), 152–156. doi:10.1016/
j.eplepsyres.2008.10.009

Church, T. R.,Wandell, M., Lofton-Day, C., Mongin, S. J., Burger, M., Payne, S. R., et al.
(2014). Prospective Evaluation of methylatedSEPT9in Plasma for Detection of
Asymptomatic Colorectal Cancer.Gut 63 (2), 317–325. doi:10.1136/gutjnl-2012-304149

Cooper, W. N., Hesson, L. B., Matallanas, D., Dallol, A., von Kriegsheim, A., Ward,
R., et al. (2009). RASSF2 Associates with and Stabilizes the Proapoptotic Kinase
MST2. Oncogene 28 (33), 2988–2998. doi:10.1038/onc.2009.152

Das, P. M., and Singal, R. (2004). DNA Methylation and Cancer. Jco 22 (22),
4632–4642. doi:10.1200/JCO.2004.07.151

Deng, X., Xiao, Q., Liu, F., and Zheng, C. (2018). A Gene Expression-Based Risk
Model Reveals Prognosis of Gastric Cancer. PeerJ 6, e4204. doi:10.7717/peerj.4204

FDA (2016). Premarket Approval (PMA) for Epi proColon. US Food and Drug
Administration. Available at: http://www.accessdata.fda.gov/scripts/cdrh/
cfdocs/cfPMA/pma.cfm?id�P130001 (Accessed April 21, 2016).

Fu, D.-G. (2015). Epigenetic Alterations in Gastric Cancer (Review). Mol. Med.
Rep. 12 (3), 3223–3230. doi:10.3892/mmr.2015.3816

Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., et al.
(2013). Integrative Analysis of Complex Cancer Genomics and Clinical Profiles
Using the cBioPortal. Sci. Signal. 6 (269), pl1. doi:10.1126/scisignal.2004088

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 75892616

Liu et al. DNAm Markers for Gastric Cancer

64

https://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://ualcan.path.uab.edu/analysis.html
https://www.frontiersin.org/articles/10.3389/fgene.2021.758926/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.758926/full#supplementary-material
https://doi.org/10.1186/1471-2105-4-2
https://doi.org/10.7150/ijbs.41587
https://doi.org/10.1016/S1470-2045(17)30682-4
https://doi.org/10.1021/acs.jmedchem.5b01635
https://doi.org/10.1021/acs.jmedchem.5b01635
https://doi.org/10.3322/caac.21492
https://doi.org/10.1016/S1470-2045(18)30132-3
https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.1038/bjc.2015.414
https://doi.org/10.1016/j.neo.2017.05.002
https://doi.org/10.1016/j.bbrc.2019.07.065
https://doi.org/10.1016/j.eplepsyres.2008.10.009
https://doi.org/10.1016/j.eplepsyres.2008.10.009
https://doi.org/10.1136/gutjnl-2012-304149
https://doi.org/10.1038/onc.2009.152
https://doi.org/10.1200/JCO.2004.07.151
https://doi.org/10.7717/peerj.4204
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm?id=P130001
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm?id=P130001
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm?id=P130001
https://doi.org/10.3892/mmr.2015.3816
https://doi.org/10.1126/scisignal.2004088
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Hibi, K., Koike, M., Nakayama, H., Fujitake, S., Kasai, Y., Ito, K., et al. (2003). A
Cancer-Prone Case with a Background of Methylation of P16 Tumor
Suppressor Gene. Clin. Cancer Res. 9 (3), 1053–1056.

Higashimori, A., Dong, Y., Zhang, Y., Kang, W., Nakatsu, G., Ng, S. S. M., et al.
(2018). Forkhead Box F2 Suppresses Gastric Cancer through a Novel FOXF2-
Irf2bpl-β-Catenin Signaling Axis. Cancer Res. 78 (7), 1643–1656. doi:10.1158/
0008-5472.CAN-17-2403

Hu, C.-T., Chang, T.-Y., Cheng, C.-C., Liu, C.-S., Wu, J.-R., Li, M.-C., et al. (2010).
Snail Associates with EGR-1 and SP-1 to Upregulate Transcriptional Activation
of p15INK4b. FEBS J. 277 (5), 1202–1218. doi:10.1111/j.1742-
4658.2009.07553.x

Hu, Y., He, C., Liu, J. P., Li, N. S., Peng, C., Yang-Ou, Y. B., et al. (2018). Analysis of
Key Genes and Signaling Pathways Involved inHelicobacter Pylori-associated
Gastric Cancer Based on the Cancer Genome Atlas Database
andRNAsequencing Data. Helicobacter 23 (5), e12530. doi:10.1111/hel.12530

Imperiale, T. F., Ransohoff, D. F., Itzkowitz, S. H., Levin, T. R., Lavin, P., Lidgard, G.
P., et al. (2014). Multitarget Stool DNA Testing for Colorectal-Cancer
Screening. N. Engl. J. Med. 370 (14), 1287–1297. doi:10.1056/NEJMoa1311194

Kurashige, J., Hasegawa, T., Niida, A., Sugimachi, K., Deng, N., Mima, K., et al.
(2016). Integrated Molecular Profiling of Human Gastric Cancer Identifies
DDR2 as a Potential Regulator of Peritoneal Dissemination. Sci. Rep. 6, 22371.
doi:10.1038/srep22371

Li, C., Zheng, Y., Pu, K., Zhao, D., Wang, Y., Guan, Q., et al. (2020). A Four-DNA
Methylation Signature as a Novel Prognostic Biomarker for Survival of Patients
with Gastric Cancer. Cancer Cel Int. 20, 88. doi:10.1186/s12935-020-1156-8

Li, T., Wernersson, R., Hansen, R. B., Horn, H., Mercer, J., Slodkowicz, G., et al.
(2017). A Scored Human Protein-Protein Interaction Network to Catalyze
Genomic Interpretation. Nat. Methods 14 (1), 61–64. doi:10.1038/nmeth.4083

Li, X., Yang, J., Gu, X., Xu, J., Li, H., Qian, J., et al. (2020). The Expression and
Clinical Significance of Aldo-Keto Reductase 1 Member B1 in Gastric
Carcinoma. DNA Cel Biol. 39 (7), 1322–1327. doi:10.1089/dna.2020.5550

Li, X., Zhang, Y., Zhang, Y., Ding, J., Wu, K., and Fan, D. (2010). Survival
Prediction of Gastric Cancer by a Seven-microRNA Signature. Gut 59 (5),
579–585. doi:10.1136/gut.2008.175497

Licchesi, J. D. F., Van Neste, L., Tiwari, V. K., Cope, L., Lin, X., Baylin, S. B., et al.
(2010). Transcriptional Regulation ofWnt Inhibitory Factor-1 byMiz-1/c-Myc.
Oncogene 29 (44), 5923–5934. doi:10.1038/onc.2010.322

Liu, H.-T., Liu, S., Liu, L., Ma, R.-R., and Gao, P. (2018). EGR1-mediated
Transcription of lncRNA-HNF1A-AS1 Promotes Cell Cycle Progression in
Gastric Cancer. Cancer Res. 78 (20), 5877. doi:10.1158/0008-5472.CAN-18-
1011

Liu, J.-j., Liu, J.-y., Chen, J., Wu, Y.-x., Yan, P., Ji, C.-d., et al. (2016). Scinderin
Promotes the Invasion and Metastasis of Gastric Cancer Cells and Predicts the
Outcome of Patients. Cancer Lett. 376 (1), 110–117. doi:10.1016/
j.canlet.2016.03.035

Luo, H., Zhao, Q., Wei, W., Zheng, L., Yi, S., Li, G., et al. (2020). Circulating Tumor
DNA Methylation Profiles Enable Early Diagnosis, Prognosis Prediction, and
Screening for Colorectal Cancer. Sci. Transl. Med. 12 (524), eaax7533.
doi:10.1126/scitranslmed.aax7533

Neri, F., Rapelli, S., Krepelova, A., Incarnato, D., Parlato, C., Basile, G., et al. (2017).
Intragenic DNA Methylation Prevents Spurious Transcription Initiation.
Nature 543 (7643), 72–77. doi:10.1038/nature21373

Nishigaki, M., Aoyagi, K., Danjoh, I., Fukaya, M., Yanagihara, K., Sakamoto, H.,
et al. (2005). Discovery of Aberrant Expression of R-RAS by Cancer-Linked
DNA Hypomethylation in Gastric Cancer Using Microarrays. Cancer Res. 65
(6), 2115–2124. doi:10.1158/0008-5472.CAN-04-3340

Oughtred, R., Stark, C., Breitkreutz, B.-J., Rust, J., Boucher, L., Chang, C., et al.
(2019). The BioGRID Interaction Database: 2019 Update. Nucleic Acids Res. 47
(D1), D529–D541. doi:10.1093/nar/gky1079

Rashid, A., and Issa, J. P. J. (2004). CpG Island Methylation in Gastroenterologic
Neoplasia: a Maturing Field. Gastroenterology 127 (5), 1578–1588. doi:10.1053/
j.gastro.2004.09.007

Sakakura, C., Hasegawa, K., Miyagawa, K., Nakashima, S., Yoshikawa, T., Kin, S.,
et al. (2005). Possible Involvement of RUNX3 Silencing in the Peritoneal
Metastases of Gastric Cancers. Clin. Cancer Res. 11 (18), 6479–6488.
doi:10.1158/1078-0432.CCR-05-0729

Sartorio, A., and Morabito, F. (1988). The Disability of Short Stature. Arch. Dis.
Child. 63 (2), 222. doi:10.1136/adc.63.2.222-a

Shannon, P., Markiel, A., and Ozier, O. (2003). Cytoscape: a Software Environment
for Integrated Models of Biomolecular Interaction Networks. Genome Res. 13
(11), 2498–2504. doi:10.1101/gr.1239303

Shen, Q., Polom, K., Williams, C., de Oliveira, F. M. S., Guergova-Kuras, M.,
Lisacek, F., et al. (2019). A Targeted Proteomics Approach Reveals a Serum
Protein Signature as Diagnostic Biomarker for Resectable Gastric Cancer.
EBioMedicine 44, 322–333. doi:10.1016/j.ebiom.2019.05.044

Sivenius, K., Niskanen, L., Voutilainen-Kaunisto, R., Laakso, M., and Uusitupa, M.
(2004). Aldose Reductase Gene Polymorphisms and Susceptibility to
Microvascular Complications in Type 2 Diabetes. Diabet Med. 21 (12),
1325–1333. doi:10.1111/j.1464-5491.2004.01345.x

Sundar, R., Huang, K. K., Qamra, A., Kim, K.-M., Kim, S. T., Kang, W. K., et al.
(2019). Epigenomic Promoter Alterations Predict for Benefit from Immune
Checkpoint Inhibition in Metastatic Gastric Cancer. Ann. Oncol. 30 (3),
424–430. doi:10.1093/annonc/mdy550

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al.
(2019). STRING V11: Protein-Protein Association Networks with Increased
Coverage, Supporting Functional Discovery in Genome-wide Experimental
Datasets. Nucleic Acids Res. 47 (D1), D607–D613. doi:10.1093/nar/gky1131

Vasiljević, N., Ahmad, A. S., Thorat, M. A., Fisher, G., Berney, D. M., Møller, H.,
et al. (2014). DNA Methylation Gene-Based Models Indicating Independent
Poor Outcome in Prostate Cancer. BMC cancer 14, 655. doi:10.1186/1471-
2407-14-655

Wang, K., Li, L., Fu, L., Yuan, Y., Dai, H., Zhu, T., et al. (2019). Integrated
Bioinformatics Analysis the Function of RNA Binding Proteins (RBPs) and
Their Prognostic Value in Breast Cancer. Front. Pharmacol. 10, 140.
doi:10.3389/fphar.2019.00140

Wang, K., Liang, Q., Li, X., Tsoi, H., Zhang, J., Wang, H., et al. (2016). MDGA2 Is a
Novel Tumour Suppressor Cooperating with DMAP1 in Gastric Cancer and Is
Associated with Disease Outcome. Gut 65 (10), 1619–1631. doi:10.1136/gutjnl-
2015-309276

Wang, X., Duanmu, J., Fu, X., Li, T., and Jiang, Q. (2020). Analyzing and Validating
the Prognostic Value and Mechanism of colon Cancer Immune
Microenvironment. J. Transl Med. 18 (1), 324. doi:10.1186/s12967-020-
02491-w

Wolford, J. K., Yeatts, K. A., Eagle, A. R. R., Nelson, R. G., Knowler, W. C., and
Hanson, R. L. (2006). Variants in the Gene Encoding Aldose Reductase
(AKR1B1) and Diabetic Nephropathy in American Indians. Diabet Med. 23
(4), 367–376. doi:10.1111/j.1464-5491.2006.01834.x

Xu, L., Li, X., Chu, E. S. H., Zhao, G., Go, M. Y. Y., Tao, Q., et al. (2012). Epigenetic
Inactivation ofBCL6B, a Novel Functional Tumour Suppressor for Gastric
Cancer, Is Associated with Poor Survival. Gut 61 (7), 977–985. doi:10.1136/
gutjnl-2011-300411

Xu, R.-h., Wei, W., Krawczyk, M., Wang, W., Luo, H., Flagg, K., et al. (2017).
Circulating Tumour DNAMethylation Markers for Diagnosis and Prognosis of
Hepatocellular Carcinoma. Nat. Mater 16 (11), 1155–1161. doi:10.1038/
nmat4997

Xu, Z., Li, Z., Wang, W., Xia, Y., He, Z., Li, B., et al. (2019). MIR-1265 Regulates
Cellular Proliferation and Apoptosis by Targeting Calcium Binding Protein 39
in Gastric Cancer and, Thereby, Impairing Oncogenic Autophagy. Cancer Lett.
449, 226–236. doi:10.1016/j.canlet.2019.02.026

Yu, J., Cheng, Y. Y., Tao, Q., Cheung, K. F., Lam, C. N. Y., Geng, H., et al. (2009).
Methylation of Protocadherin 10, a Novel Tumor Suppressor, Is Associated
with Poor Prognosis in Patients with Gastric Cancer. Gastroenterology 136 (2),
640–651. doi:10.1053/j.gastro.2008.10.050

Zhang, C., Zhang, B., Meng, D., and Ge, C. (2019). Comprehensive Analysis of
DNA Methylation and Gene Expression Profiles in Cholangiocarcinoma.
Cancer Cel Int. 19, 352. doi:10.1186/s12935-019-1080-y

Zhang, Y., Li, H., Zhang, W., Che, Y., Bai, W., and Huang, G. (2018). LASSO-based
Cox-PH M-odel I-dentifies an 11-lncRNA S-ignature for P-rognosis
P-rediction in G-astric C-ancer. Mol. Med. Rep. 18 (6), 5579–5593.
doi:10.3892/mmr.2018.9567

Zhou, K., Cai, C., He, Y., Zhou, C., Zhao, S., Ding, X., et al. (2019). Association
between RASSF2 Methylation and Gastric Cancer: A PRISMA-Compliant
Systematic Review and Meta-Analysis. DNA Cel Biol. 38 (10), 1147–1154.
doi:10.1089/dna.2019.4922

Zhou, Q., Wu, X., Wang, X., Yu, Z., Pan, T., Li, Z., et al. (2020). The Reciprocal
Interaction between Tumor Cells and Activated Fibroblasts Mediated by TNF-

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 75892617

Liu et al. DNAm Markers for Gastric Cancer

65

https://doi.org/10.1158/0008-5472.CAN-17-2403
https://doi.org/10.1158/0008-5472.CAN-17-2403
https://doi.org/10.1111/j.1742-4658.2009.07553.x
https://doi.org/10.1111/j.1742-4658.2009.07553.x
https://doi.org/10.1111/hel.12530
https://doi.org/10.1056/NEJMoa1311194
https://doi.org/10.1038/srep22371
https://doi.org/10.1186/s12935-020-1156-8
https://doi.org/10.1038/nmeth.4083
https://doi.org/10.1089/dna.2020.5550
https://doi.org/10.1136/gut.2008.175497
https://doi.org/10.1038/onc.2010.322
https://doi.org/10.1158/0008-5472.CAN-18-1011
https://doi.org/10.1158/0008-5472.CAN-18-1011
https://doi.org/10.1016/j.canlet.2016.03.035
https://doi.org/10.1016/j.canlet.2016.03.035
https://doi.org/10.1126/scitranslmed.aax7533
https://doi.org/10.1038/nature21373
https://doi.org/10.1158/0008-5472.CAN-04-3340
https://doi.org/10.1093/nar/gky1079
https://doi.org/10.1053/j.gastro.2004.09.007
https://doi.org/10.1053/j.gastro.2004.09.007
https://doi.org/10.1158/1078-0432.CCR-05-0729
https://doi.org/10.1136/adc.63.2.222-a
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1016/j.ebiom.2019.05.044
https://doi.org/10.1111/j.1464-5491.2004.01345.x
https://doi.org/10.1093/annonc/mdy550
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1186/1471-2407-14-655
https://doi.org/10.1186/1471-2407-14-655
https://doi.org/10.3389/fphar.2019.00140
https://doi.org/10.1136/gutjnl-2015-309276
https://doi.org/10.1136/gutjnl-2015-309276
https://doi.org/10.1186/s12967-020-02491-w
https://doi.org/10.1186/s12967-020-02491-w
https://doi.org/10.1111/j.1464-5491.2006.01834.x
https://doi.org/10.1136/gutjnl-2011-300411
https://doi.org/10.1136/gutjnl-2011-300411
https://doi.org/10.1038/nmat4997
https://doi.org/10.1038/nmat4997
https://doi.org/10.1016/j.canlet.2019.02.026
https://doi.org/10.1053/j.gastro.2008.10.050
https://doi.org/10.1186/s12935-019-1080-y
https://doi.org/10.3892/mmr.2018.9567
https://doi.org/10.1089/dna.2019.4922
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


α/IL-33/ST2L Signaling Promotes Gastric Cancer Metastasis. Oncogene 39 (7),
1414–1428. doi:10.1038/s41388-019-1078-x

Zhou, R., Zhang, J., Zeng, D., Sun, H., Rong, X., Shi, M., et al. (2019). Immune Cell
Infiltration as a Biomarker for the Diagnosis and Prognosis of Stage I-III colon
Cancer.Cancer Immunol. Immunother. 68 (3), 433–442. doi:10.1007/s00262-018-2289-7

Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O.,
et al. (2019). Metascape Provides a Biologist-Oriented Resource for the Analysis
of Systems-Level Datasets. Nat. Commun. 10 (1), 1523. doi:10.1038/s41467-
019-09234-6

Zhu, M., Wang, H., Cui, J., Li, W., An, G., Pan, Y., et al. (2017). Calcium-binding
Protein S100A14 Induces Differentiation and Suppresses Metastasis in Gastric
Cancer. Cell Death Dis. 8 (7), e2938. doi:10.1038/cddis.2017.297

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

The reviewer YG declared a shared affiliation, with the authors LL, DX, LW, CW,
XW, and GX to the handling editor at the time of the review

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Liu, Li, Wang, Wang, Hu, Jiang, Wang, Xue, Liu and Xue. This is
an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 75892618

Liu et al. DNAm Markers for Gastric Cancer

66

https://doi.org/10.1038/s41388-019-1078-x
https://doi.org/10.1007/s00262-018-2289-7
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/cddis.2017.297
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


GLOSSARY

GC gastric cancer

DNAm DNA methylation

DMS DNA methylation sites

DMG DNA methylation driver gene

TCGA the cancer genome atlas

GEO gene expression omnibus

MsigDB molecular signatures database

LASSO least absolute shrinkage and selection operator

FDR false discovery rate

GSEA gene set enrichment analysis

ROC receiver operating characteristic

NPAS2 neuronal PAS domain protein 2

DAPK1 death associated protein kinase 1

CNN3 calponin 3

FGFR2 fibroblast growth factor receptor 2

PLEKHA5 pleckstrin homology domain containing A5

CEP290 centrosomalprotein290

CCDC69 coiled-coil domain containing 69

UBXN8 UBX domain protein 8

KDM4A lysine demethylase 4A

AKR1B aldo-keto reductase family 1 member B

RASSF2 ras association domain family member 2

KDELR3 KDEL endoplasmic reticulum protein retention receptor 3

CHRNB2 cholinergic receptor nicotinic beta 2 subunit

EGR1 early growth response 1

ARMC9 armadillo repeat containing 9

RPN1 ribophorin I

PDCD1 programmed cell death 1

CTLA4 cytotoxic T-lymphocyte associated protein 4

LAG3 lymphocyte activating 3

TIGIT T cell immunoreceptor with Ig and ITIM domains

GZMB granzyme B

TNF tumor necrosis factor

EMT epithelial-mesenchymal transition

CDH1 cadherin 1

TF transcription factors.
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USH2A Mutation is Associated With
TumorMutation Burden and Antitumor
Immunity in Patients With Colon
Adenocarcinoma
Yuanyuan Sun†, Long Li†, Wenchao Yao, Xuxu Liu, Yang Yang, Biao Ma* and Dongbo Xue*

Laboratory of Hepatosplenic Surgery, Department of General Surgery, Ministry of Education, The First Affiliated Hospital of Harbin
Medical University, Harbin, China

Colon adenocarcinoma (COAD) is one of the diseases with the highest morbidity and
mortality in the world. At present, immunotherapy has become a valuable method for the
treatment of COAD. Tumor mutational burden (TMB) is considered to be the most
common biomarker for predicting immunotherapy. According to reports, the mutation
rate of COAD ranks third. However, whether these gene mutations are related to TMB and
immune response is still unknown. Here, COAD somatic mutation data were downloaded
from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium
(ICGC) databases. Bioinformatics methods were used to study the relationships among
gene mutations, COAD survival prognosis, and tumor immune response. A total of 22 of
the top 40 mutations in TCGA and ICGC databases were the same. Among them, the
USH2Amutation was associated with high TMB and poor clinical prognosis. According to
Gene Set Enrichment Analysis (GSEA) and the CIBERSORT algorithm, we determined that
the USH2A mutation upregulates signaling pathways involved in the immune system and
the antitumor immune response. In cases with a USH2A mutation, the immune score and
MSI score of TCGA samples increased, the expression of immune checkpoint genes
decreased significantly, and the TIDE score decreased significantly. Dependent on the
presence or absence of a USH2A mutation, TCGA COAD samples were analyzed for
differentially expressed genes, 522 of which were identified. Using a univariate Cox analysis
and LASSO COX analysis of these differential genes, a prediction model was established,
which established significant differences in the infiltration of immune cells, immune
checkpoint gene expression, immune score, MSI score, TMB, and TIDE in patients in
high- and low-risk groups. In conclusion, mutation of USH2A is frequent in COAD and is
related to an increase in TMB and the antitumor immunity. The differential genes screened
by USH2Amutation allowed the construction of a risk model for predicting the survival and
prognosis of cancer patients, in addition to providing new ideas for COAD immunotherapy.

Keywords: colon adenocarcinoma, USH2A, tumor mutation burden, immunotherapy response, bioinformatics
analysis

Edited by:
Xinyi Liu,

University of Illinois at Chicago,
United States

Reviewed by:
Xinting Pan,

The Affiliated Hospital of Qingdao
University, China

Dechao Bu,
Institute of Computing Technology

(CAS), China

*Correspondence:
Biao Ma

mabiaohero@126.com
Dongbo Xue

xuedongbo@hrbmu.edu.cn

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 21 August 2021
Accepted: 14 October 2021

Published: 02 November 2021

Citation:
Sun Y, Li L, YaoW, Liu X, Yang Y, Ma B
and Xue D (2021) USH2A Mutation is

Associated With Tumor Mutation
Burden and Antitumor Immunity in

Patients With Colon Adenocarcinoma.
Front. Genet. 12:762160.

doi: 10.3389/fgene.2021.762160

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7621601

ORIGINAL RESEARCH
published: 02 November 2021

doi: 10.3389/fgene.2021.762160

68

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.762160&domain=pdf&date_stamp=2021-11-02
https://www.frontiersin.org/articles/10.3389/fgene.2021.762160/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.762160/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.762160/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.762160/full
http://creativecommons.org/licenses/by/4.0/
mailto:mabiaohero@126.com
mailto:xuedongbo@hrbmu.edu.cn
https://doi.org/10.3389/fgene.2021.762160
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.762160


1 INTRODUCTION

Colon cancer is the third leading cause of cancer deaths, with
more than one million new cases diagnosed each year (Labianca
et al., 2010). COAD is the main pathological type of colon cancer.
The incidence of COAD is mainly related to age and eating habits,
and partly related to genetic diseases (Cunningham et al., 2010;
Watson and Collins, 2011). COAD is heterogeneous, and there
are significant differences in mutation patterns across different
patients (Punt et al., 2017). Increasing evidence has shown that
COAD is a molecular heterogeneous disease that contains a series
of genetic changes (Choi et al., 2015). Mutations in key genes can
affect tumor cell proliferation, differentiation, apoptosis, viability,
and distant metastasis (The Cancer Genome Atlas Network,
2012). Surgery combined with postoperative chemotherapy is
currently the main treatment for COAD. Although current
treatment methods including chemotherapy and surgery have
improved the survival rate of COAD patients, the prognosis of
COAD patients is still poor (Neri et al., 2010; Roncucci and
Mariani, 2015). The use of reliable biomarkers and the timely
diagnosis of treatment targets can significantly improve the
mortality of COAD patients and reduce the incidence of
COAD (Herzig and Tsikitis, 2015; Tsimberidou, 2015). The
immune system plays an important role in the occurrence and
development of cancer (Patel and Minn, 2018). The 2020 ESMO
clinical practice guidelines for colon cancer recommend the use of
immune scores to improve the prognosis of colon cancer (Argilés
et al., 2020). Therefore, it is necessary to study the relationship
between specific genetic variants and immune events, as well as
alternative methods of treating patients with different genetic
characteristics. The accumulation of somatic mutations is one of
the main causes of tumors and contributes to the expression of
neoantigens (Gubin et al., 2015). Studies have shown that TMB is
correlated with immunotherapy response (Goodman et al., 2017).
It was reported that a high TMB can predict the prognosis of non-
small-cell lung cancer and melanoma (Chen et al., 2019a; Chen
et al., 2019b). Furthermore, TMB is considered to be a predictive
biomarker of tumor behavior and immune response (Goodman
et al., 2017).

Immune checkpoint blocking therapy (ICB), which targets
programmed cell death ligand 1 (PDL1) and cytotoxic T
lymphocyte antigen 4 (CTLA4) pathways, has become a
treatment strategy for various types of cancer (Long et al.,
2017; Zhang et al., 2021). TMB is an indicator that is
independent of the expression level of PDL1 and can better
indicate the response to ICB treatment (Hodges et al., 2017;
Rizvi et al., 2018). A comprehensive analysis of 27 cancer types
reported that TMB is associated with better ICB treatment effects
(Yarchoan et al., 2017). At present, the proportion of patients
benefiting from ICB treatment in clinical practice is still very low,
and new biomarkers that predict the ICB response rate of patients
need to be developed (Ancevski Hunter et al., 2018; Janjigian
et al., 2018). The Tumor Immune Dysfunction and Exclusion
(TIDE) algorithm is a calculation method that uses gene
expression profiles to predict the ICB response in non-small-
cell lung cancer andmelanoma (Jiang et al., 2018). TIDE uses a set
of gene expression markers to estimate two different mechanisms

of tumor immune evasion, including tumor-infiltrating cytotoxic
T lymphocyte (CTL) dysfunction and immunosuppressive factor
rejection of CTL. A higher TIDE score denotes a higher chance of
antitumor immune escape and a lower response rate of ICB
therapy (Jiang et al., 2018). TIDE score is more accurate than
PDL1 expression level and TMB in predicting the survival and
prognosis of cancer patients treated with ICB (Jiang et al., 2018;
Kaderbhaï et al., 2019; Keenan et al., 2019; Wang et al., 2019b).
Several recent studies have reported its use in predicting or
evaluating the effects of ICB treatment (Bretz et al., 2019;
George et al., 2019; Liu et al., 2019; Pallocca et al., 2019;
Wang et al., 2019b). At present, whether gene mutations are
related to the COAD immune response and ICB treatment
response remains unclear.

In this study, we used The Cancer Genome Atlas (TCGA) and
the International Cancer Genome Consortium (ICGC) databases
to identify somatic mutations in COAD patients in the
United States and China. Then, we identified common mutant
genes in both cohorts, which were found to be related to TMB and
prognosis, thus confirming that gene mutations are related to

FIGURE 1 | Analysis flow chart.
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immune response and ICB treatment response. On the basis of
their differential expression caused by mutations, we constructed
a prognostic model composed of two genes with a predictive
effect on tumor prognosis and ICB treatment response. These
findings reveal that a gene mutation can be used as a biomarker
for predicting immune response and for evaluating the response
to ICB treatment in patients with COAD.

2 MATERIALS AND METHODS

2.1 Data Collection
We used a method similar to that of Gongmin Zhu et al (2020).
As shown in the flowchart (Figure 1), we downloaded
transcriptome data (n � 444), clinical data (n � 336), and
somatic gene mutation data (n � 398) from TCGA database
(http://portal.gdc.cancer.gov/projects) (data updated on 29
October 2020). For clinical data, patients with COAD were
included only when their clinical information was complete,
and patients without survival time, survival status, age, gender,
grade, or TNM classification data were not included. Next, the
somatic gene mutation data of Chinese COAD patients (n � 305)
was downloaded from the ICGC database (http://dcc.icgc.org/
releases/current/Projects) (data updated on 27 November 2019),
and the COAD dataset GSE39582 was downloaded from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/).

2.2 Bioinformatics Analysis
PERL software (version 5.32) was used to extract and sort TCGA
transcription data, somatic mutation data, clinical data, ICGC
mutation data, and GEO transcription data for subsequent
analysis. R software (version 4.0.3) package GenVisR was used
to analyze and visualize the MAF file of Varscn, the somatic
mutation data of colon cancer in the TCGA database. R software
package GenVisR was used to analyze and visualize the colon
cancer somatic mutation data TSV file of the ICGC database
based on the hg19 genome reference information. The venn
package in R software was used to take the intersection of the top
40 genes in the TCGA and ICGC datasets with mutation
evaluation rates, followed by obtaining the intersection genes
with the top mutation frequencies in both databases. Next, R
software package ggpubr was used to analyze the relationship
between gene mutations and TMB. The Kaplan–Meier (KM)
method was used to analyze the relationship between gene
mutation and survival prognosis. Univariate and multivariate
Cox methods were used to analyze the relationships among
patient clinical information (age, gender, tumor stage, and
TNM classification), TMB, gene mutations, and tumor
survival prognosis. In all comparisons, a p-value < 0.05 was
considered statistically significant. Software GSEA (version 4.1.0)
was used for gene enrichment analysis. According to the gene
mutations, TCGA expression data were divided into two groups:
mutation and wild-type. The arrangement was set to 1,000, and
the standardized enrichment score (NES) was applied using an
FDR q-value < 0.05 as the significance threshold for enrichment
(Subramanian et al., 2005). The edge R package was used to
analyze the differentially expressed genes between the gene

mutant group and the unmutated group (wild-type group). In
the analysis process, genes were considered significantly
differentially expressed for a p-value < 0.05 and a fold-change
(FC) difference >2 (i.e., absolute value of log2 FC > 1). The
enrichment analysis tool DAVID (Da et al., 2009) was used to
analyze the Gene Ontology (GO) (Ashburner et al., 2000)
functions and KEGG (Minoru and Susumu, 2000) pathways
involved in upregulated and downregulated genes (number of
parameter-enriched genes ≥2, p-value of hypergeometric test
<0.05). R software was used to perform KM survival analysis
and univariate Cox analysis of the differential genes using a
p-value < 0.05 as the filter value. R software package glmnet was
used to perform LASSO COX regression analysis and construct a
prognosis-related risk model. To evaluate the risk model, R
software package survival ROC was used to analyze the
prediction accuracy of the model, and univariate and
multivariate Cox analyses were used to evaluate whether the
risk score of the tumor patient model could be used as an
independent prognostic factor.

2.3 Tumor Mutation Burden and Evaluation
of Microsatellite Instability
Tumor mutation burden (TMB) refers to the total number of
gene coding errors, base substitutions, and gene insertion or
deletion errors per megabit (Mb) of tumor tissue. All base
substitutions and insertions in the coding region of the target
gene are counted, whereas silent mutations that cannot cause
amino-acid changes are not counted. The total number of
mutations counted was divided by the exome size (the
estimated value of the exome size was 38 Mb) to calculate the
TMB score for each sample (Chalmers et al., 2017). A
microsatellite is defined as a region of 10–60 base pairs
containing 1–5 repeated base-pair motifs (Shia, 2015).
Nucleotides in repetitive DNA fragments are spontaneously
lost or repeated to form microsatellite instabilities (MSIs) (de
la Chapelle and Hampel, 2010). According to the methods of
Bonneville et al., the MSI score of COAD samples was
characterized (Bonneville et al., 2017).

2.4 Tumor Immune Cell Infiltration Analysis
CIBERSORT is a deconvolution algorithm that can evaluate the
proportion of 22 tumor-infiltrating lymphocyte subsets in a large
number of tumor samples (Newman et al., 2015). This algorithm
is used to evaluate the relative abundance of immune cell
infiltration in tumor tissues. The number of permutations was
set to 1,000, and a p-value < 0.05 was used as the basis for the
successful calculation of the sample.

2.5 Prediction of ICB Treatment Response
R package estimate was used to calculate the immune score of the
tumor sample. The Tumor Immune Dysfunction and Exclusion
(TIDE) algorithm is a calculation method that uses gene
expression profiles to predict immune checkpoint blockade
(ICB) responses in non-small-cell lung cancer and melanoma
(Jiang et al., 2018). Accordingly, it was used to predict the
potential ICB response (Jiang et al., 2018).
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2.6 Data Analysis
R software (version 4.0.3) was used for statistical analysis and
graphing. The logrank test was used for KM survival analysis, and
the Mann–Whitney U test was used for analysis of the
relationship between gene mutation and TMB. In all
comparisons, a p-value < 0.05 was considered statistically
significant.

3 RESULTS

3.1 COAD Somatic Mutations
The analysis found that, in the mutation data of TCGA samples,
the top five most frequently mutated genes wereAPC, TP53, TTN,
KRAS, and SYNE1 (Figure 2A). In the mutation data of ICGC
samples, the top five most frequently mutated genes were APC,
TP53, TTN, KRAS, and MUC6 (Figure 2B); thus, we identified
some genes with high mutation frequencies in both databases.
Therefore, we selected the top 40 genes in both databases,

whereby we found an overlap of 22 genes, as depicted in a
Venn diagram (Figure 2C).

3.2 USH2A Mutation is Associated With
Tumor Mutation Burden and Survival
Prognosis
The mutation burden of COAD ranges from 0.05 to 188.31/Mb,
with a median of 2.45/Mb. Among the 22 genes screened by the
Venn diagram, the mutation of 21 genes was statistically related
to the tumor mutation burden in the sample (Figure 2D). In
order to study the relationship between these gene mutations
related to tumor mutation burden and the prognosis of COAD,
we further performed Kaplan–Meier analysis. The calculation
results of KM analysis (Table 2) showed that the USH2A
mutation and MUC4 mutation were related to tumor survival
and prognosis (Figure 3). Next, the mutation gene and the tumor
patient’s age, gender, tumor stage, and tumor mutation burden
were analyzed by univariate and multivariate Cox regression. The

FIGURE 2 | Overview of frequently mutated genes and TMB in COAD. (A)Waterfall plot shows the frequently mutated genes in COAD from TCGA database. The
left panel shows mutation frequency, and genes are ordered by their mutation frequencies. The right panel presents different mutation types. (B)Waterfall plot displaying
the frequently mutated genes in COAD from the ICGC cohort. The left panel shows the genes ordered by their mutation frequencies. The right panel presents different
mutation types. (C) Venn diagram shows 22 frequently mutated genes covered by both the TCGA and ICGC cohorts. (D) 21 genes with high mutation frequency
are associated with a higher TMB. ***p < 0.001, **p < 0.01, *p < 0.05, ns has no statistical difference.
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results (Table 1) showed that the USH2A mutation (HR � 1.909;
95% CI � 1.088–3.351; p � 0.024) and MUC4 mutation (HR �
2.232; 95% CI � 1.301–3.829; p � 0.004) were associated with a
poor prognosis of COAD; thus, they could be considered
independent risk factors. We further studied the relationship
between the location of the USH2A mutation site in the COAD
sample of the TCGA database and the survival of COAD. We
searched the UCSC database (http://genome.ucsc.edu/, hg38) and
found that the mutation sites provided are distributed in the exon
region of the USH2A gene (Supplementary Table S2). We
analyzed the mutation regions with a sample size greater than
2 (exons 17, 61, 63, 64, 70) and found that the mutations located
in exon 17 and exon 63 of USH2A are related to the survival of
COAD (Supplementary Figure S2).

3.3 Gene Set Enrichment Analysis
Since TMB has been reported as a biomarker for immunotherapy,
and since USH2A and MUC4 mutations are associated with
increased TMB, we further studied the relationship between
USH2A/MUC4 mutations and immune response using TCGA
data for GSEA. TheMUC4mutation revealed no pathway with an
FDR q-value < 0.05 (Figures 4D–F), whereas the USH2A
mutation featured the following significantly upregulated
pathways (Figures 4A–C): antigen processing and presentation
pathways, thyroid autoimmune disease pathways, and NK cell-
mediated cytotoxic pathways. These results indicate that the
USH2A mutation affects the signaling pathways of the
immune system.

3.4 USH2A Mutation in COAD is Associated
With Tumor-Infiltrating Immune Cells
GSEA results showed that the USH2A mutation affects the
signaling pathways of the immune system. Therefore, we used
the CIBERSORT algorithm to evaluate the relationship between
the USH2A mutation and tumor-infiltrating immune cells in the
colon cancer microenvironment. The results showed that the
composition of 22 immune cells in each sample was significantly
different (Figure 5A), and the immune score of USH2Amutation
samples was significantly increased (Figure 5D). We also found
that activated NK cells, follicular helper T cells (TFH cells), and
cδT cells were enriched inUSH2Amutation samples (Figure 5C).
In addition, the immune cell correlation matrix indicated
activated NK cells, TFH cells, and cδT, which were positively
correlated with each other (Figure 5B).

3.5 USH2A Mutation Affects
Immunotherapy
In cases with a USH2A mutation, among the common immune
checkpoint genes (PDL1, CTLA4, LAG3, SIGLEC15, HAVCR2,
PDCD1LG2, PD1, and TIGIT) (Wang et al., 2019a; Zeng et al.,
2019), the expression levels of PDL1, CTLA4, LAG3, HAVCR2,
PD1, LG2, and TIGIT were significantly increased (Figure 5E).
We compared the MSI scores of the USH2A mutant group and
the wild-type group, which showed that the MSI scores of the
former were significantly increased (Figure 5F). TIDE uses a set
of gene expression markers to estimate two different mechanisms
of tumor immune evasion: tumor-infiltrating cytotoxic T
lymphocyte (CTL) dysfunction and immunosuppressive factor
rejection of CTL. A higher TIDE score denotes a higher chance of
antitumor immune escape and a lower response rate of ICB
therapy (Jiang et al., 2018). We compared the TIDE scores of the
USH2A gene mutation group and the wild-type group, which
showed that the TIDE score of the former was significantly
reduced (Figure 5G). These results indicate that the USH2A
mutation affects the tumor immune response and may lead to a
better ICB treatment response.

3.6 Analysis of Differential Genes in Tumor
Samples After USH2A Mutation and
Constructing a Tumor Prognostic Risk
Model Based on Differential Genes
In order to further study the differential expression of tumor
tissue genes after USH2A mutation, we divided TCGA COAD

TABLE 1 | Univariate and multivariate COX overall survival analysis of patients with COAD.

Factors Univariate Multivariate

HR(95% CI) p-value HR(95% CI) p-value

Age (year) (≤65, >65) 1.829 (1.087–4.246) 0.023 2.475 (1.442–4.246) 0.001
Gender (male, female) 1.345 (1.087–4.246) 0.227
Stage (I and II, III and IV) 2.831 (1.723–4.652) <0.001 3.380 (2.022–5.647) <0.001
TMB (low, high) 1.002 (0.991–1.012) 0.780
MUC4 2.232 (1.301–3.829) 0.004 2.054 (1.196–3.528) 0.009
USH2A 1.909 (1.088–3.351) 0.024 2.067 (1.169–3.655) 0.012

TABLE 2 | The clinical prognostic calculation results of gene mutations related
to TMB.

Gene p-value Gene p-value

MUC4 0.002 PIK3CA 0.466
USH2A 0.010 MUC5B 0.469
TTN 0.077 TP53 0.527
RYR2 0.151 FBXW7 0.616
NEB 0.154 MUC16 0.675
SYNE1 0.167 FAT3 0.772
LRP1B 0.222 APC 0.819
FLG 0.325 PCLO 0.863
ZFHX4 0.395 OBSCN 0.876
CSMD1 0.447
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samples into a USH2A mutant group and a wild-type group, and
we used the edgeR package to analyze the differential expression
of genes. A total of 522 differentially expressed genes (DEGs)
were obtained, among which 440 DEGs were upregulated and 82

DEGs were downregulated (Figure 6A). Univariate Cox analysis
and LASSO COX analysis were performed on the above
mentioned DEGs, and a prognostic risk model based on the
expression of genes TNNT1 and ERFE was established

FIGURE 4 | USH2A mutation is associated with immune-related pathways. Gene set enrichment analysis was performed with the TCGA. (A–C) Gene enrichment
plots display that a series of immune-related gene sets are enriched in the USH2A-mutant group; (D–F) Gene enrichment plots display enrichment pathways in the
MUC4-mutant group. The nominal p-value and FDR q-value is shown in each plot.

FIGURE 3 | Gene mutation is associated with clinical prognosis. Kaplan-Meier survival analysis was used to determine survival curves that reflect the association
between gene mutations and prognosis. The p-value is shown each plot. (A) USH2A mutation is associated with the prognosis of COAD. (B) MUC4 mutation is
associated with the prognosis of COAD.
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(lambda.min � 0.0021, RiskScore � (0.1141) × TNNT1 + (0.2032
× ERFE) (Figures 6B–E,G). The ROC curve was drawn using R
software package survival ROC (Figure 6H). We used the GEO
database COAD dataset GSE39582 to validate the risk model
(Figure 6F) and draw the ROC curve (Figure 6I). In the
GSE39582 dataset, the survival of patients with high and low
risk scores is significantly different (Figure 6F), indicating that
the model has the ability to predict risk. Using the clinical data of
TCGA COAD to test the correlation between the risk score and
clinical characteristics, it was found that the age, survival status,

and tumor T stage of patients were significantly different in the
high- and low-risk groups (Figure 7C). Univariate and
multivariate Cox analysis found that the risk score is an
independent risk factor for the survival and prognosis of
cancer patients in TCGA cohort (Figures 7A,B) and
GSE39582 dataset (Supplementary Figure S1). Comparing the
immune checkpoint gene expression, immune scores, MSI scores,
TMB, and TIDE of patients in the high- and low-risk groups, we
found significant differences (Figures 8A–E). We also
compared the immune cell infiltration of samples from the

FIGURE 5 | USH2A mutation is associated with tumor immune cell infiltration and antitumor immunity. (A) The stacked bar chart shows the distribution of 22
immune cells in each sample. (B) Correlation matrix of immune cell proportions. The red color represents a positive correlation, and the blue color represents a negative
correlation. (C) Violin plot displaying the differentially infiltrated immune cells between the USH2A-mutant groups and the wild-type USH2A group. (D) Immune score of
USH2A mutant group and USH2A wild group samples. (E) Gene expressions of eight common immune checkpoints in USH2A mutant group and USH2A wild
group samples. (F) MSI scores of samples from the USH2A mutant group and USH2A wild group. (G) TIDE scores of USH2A mutant group and USH2A wild group
samples. ***p < 0.001, **p < 0.01, *p < 0.05, ns has no statistical difference. Green represents the USH2A wild group, and red represents the USH2A mutant group.
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high- and low-risk score groups, which showed that, in the high-
risk group, CD8 T cells, TFH cells, and activated NK cells were
significantly increased (Figure 8G). Our analysis found that the
TIDE score was negatively correlated with the sample risk score
(Figure 8F). These results indicate that patients at high risk with a
poor survival prognosis may have a better response to ICB
therapy, thereby improving their prognosis. Therefore, the risk
model can predict the survival prognosis of cancer patients and
guide the clinical treatment decisions of cancer patients.

4 DISCUSSION

In summary, by analyzing the somatic mutation characteristics of
398 USA COAD samples in TCGA database and 305 Chinese
COAD samples in the ICGC database, we found that USH2A is
frequently mutated in both cohorts, and its mutation is associated
with high TMB and poor clinical prognosis. We also found that
theUSH2Amutation is positively related to the signaling pathway
of the immune system. The results of tumor-infiltrating immune
cell analysis showed an enrichment of activated NK cells, TFH

cells, and cδT cells in the USH2A mutation samples, which is
consistent with the results of previous studies (Bindea et al., 2013;
Meraviglia et al., 2017; Zhang et al., 2020b). Dependent on the
presence or absence of a USH2Amutation, we divided the TCGA
COAD samples into two groups and analyzed the DEGs.
According to the GO (Supplementary Figure S3A) and
KEGG (Supplementary Figure S3B) enrichment analysis, we
found that the DEGs mainly involved processes linked to
cytokine activity and antibacterial humoral response and were
significantly enriched in the IL-17 signaling pathway, which are
all related to immune response. Querying the KEGG database
(https://www.kegg.jp/), we found that NK cells and cδT cells are
involved in the IL-17 signaling pathway, which confirms that the
pathway enrichment of DEGs afterUSH2Amutation is correlated
with tumor immune cell infiltration. After USH2A mutation,
analysis showed that immune checkpoint gene expression and
TIDE score decreased significantly, whereas immune score and
MSI score increased significantly, thus indicating that USH2A
mutation affects the antitumor immunity and is conducive to ICB
treatment. By performing univariate Cox analysis and LASSO
COX analysis of DEGs, we established a prognostic risk model

FIGURE 6 | Analysis of gene differential expression after USH2Amutation and construction of a prognostic model based on the differentially expressed genes after
USH2A mutation. (A) Volcano map of gene differential expression analysis. (B) Constructing the lasso coefficient prediction model. (C) Selecting variables in lasso
regression with minimum criteria by 1,000 times cross-validation. (D), (G) Risk plots for patients with higher and lower risk score. (E) Kaplan-Meier curve analysis of the
high-risk and low-risk groups. (H) ROC curves of the risk score. (F) Kaplan-Meier curve analysis of the GSE39582 dataset based on risk model. (I) ROC curves of
the risk score in the GSE39582 dataset based on risk model.
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based on the expression of genes TNNT1 and ERFE. Cox analysis
showed that risk score is an independent risk factor for tumor
survival and prognosis. The verification of the ROC curve using
the GSE39582 dataset showed that the model has the ability to
predict risk. Comparing the immune checkpoint gene expression,
immune score, MSI score, TMB, and TIDE of patients in the
high- and low-risk groups, significant differences were found,
whereby CD8 T cells, TFH cells, and activated NK cells were all
significantly increased in the high-risk group. These results
indicate that the risk model can predict the survival prognosis
of COAD patients and assess whether the patients will have a
good ICB treatment response.

The USH2A (also known as Usherin) gene encodes a protein.
The protein exists in the basement membrane and may play an
important role in the development and homeostasis of the inner
ear and retina (Weston et al., 2000). USH2A mutations are
associated with Usher syndrome type IIa, retinitis pigmentosa
(Xing et al., 2020), and tongue squamous cell carcinoma (Zhang
et al., 2020). In lung adenocarcinoma, theUSH2Amutation is one
of the most frequently mutated genes for predicting neoantigens
(Cai et al., 2018). In our research, we found thatUSH2Amutation

is associated with the overexpression of immune checkpoint
genes and increased TMB. TMB represents the accumulation
of somatic mutations in tumors. A high TMB helps to expose
more neoantigens, which may trigger a T-cell-dependent
immune response (Mcgranahan et al., 2016). Immune
checkpoint blockade (ICB), which targets programmed cell
death ligand 1 (PDL1) and cytotoxic T lymphocyte antigen 4
(CTLA4) pathways, has become a treatment strategy for various
types of cancer (Long et al., 2017; Zhang et al., 2021). We used
TCGA dataset to analyze the tumor response to immunotherapy
after USH2A mutation. We found that USH2A mutant tumors
have stronger immunogenicity, exhibited as higher TMB,
increased immune cell infiltration into tumor tissues, and
overexpression of immune checkpoint factors such as PD1,
PDL1, and CTLA4. This indicates that the USH2A mutation
can enhance tumor immunogenicity, allowing tumor patients
to benefit from antitumor immunotherapy. The expression of
PDL1 and TMB are correlated with the clinical benefit of patients
treated with ICB (Long et al., 2017). However, these two
biomarkers are continuous variables with no clearly defined
cutoff point above which a response is guaranteed. In

FIGURE 7 | Correlation between risk model and clinical characteristics. (A) Univariate COX analysis forest plot based on TCGA samples. (B) Multivariate COX
analysis forest plot based on TCGA samples. (C) Heat map of the correlation between risk scores and clinical characteristics in TCGA samples.
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FIGURE 8 | The high risk score is associated with a better tumor immunotherapy response in TCGA sample. (A) The expression of immune checkpoint genes in
TCGA samples in high and low risk groups. (B) The immune scores of the high and low risk groups of TCGA samples. (C) The MSI scores of the high and low risk groups
of the TCGA sample. (D) TMB situation of high and low risk groups of TCGA sample. (E) TIDE scores of the high and low risk groups of the TCGA sample. (F)Correlation
analysis between TCGA sample risk score and TIDE. (G) Differences in immune cell infiltration between high and low model scores. ***p < 0.001, **p < 0.01, *p <
0.05, ns, has no statistical difference. Green represents the high-scoring group of the model, and red represents the low-scoring group of the model.
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addition, the expression of PDL1 and TMB also vary depending
on the detection method and platform (Tsao et al., 2018; Addeo
et al., 2019). In contrast, USH2Amutations are easily detected by
next-generation sequencing, and their presence in this study was
closely related to the response to ICB treatment. Therefore, it is
worth considering the USH2Amutation as a potential biomarker
for the sensitization of patients to ICB therapy.

NK cells play a key role in innate and adaptive immune response
and tumor immune surveillance by recognizing and killing tumor
cells (Mandal and Viswanathan, 2015). Although tumor-related NK
cells are not common in tumor immune infiltration, they have been
associated with increased survival of colon cancer patients (Melero
et al., 2014). Higher NK cell activity is associated with poor prognosis
of skin T cell lymphoma (Mundy-Bosse et al., 2018). Explanations for
this difference include the impaired recognition of malignant CD4+

T cells mediated by NK cells and the inability of NK cells to form
functional immune synapses (Mundy-Bosse et al., 2018). TFH cells
are specialized T helper cells, and their most significant role is to
promote the formation and maintenance of germinal centers, as well
as the maturation of B cells and the acquisition of immune memory
(Vinuesa et al., 2016). Currently, it is generally believed that the TFH
cell–B cell axis in tumor-associated tertiary lymphoid structures
(TLSs) is conducive to the formation of an antitumor immune
environment (Galon et al., 2013). TFH cells produce chemokine
ligand 13 (CXCL13), which targets B cells and TFH cells themselves
via chemokine receptor 5 (CXCR5). High numbers of TFH cells and
high levels of CXCL13 are associated with increased survival of colon
cancer patients (Bindea et al., 2013). cδ T cells in the colon are the
first line of defense against pathogens in the intestinal tissue immune
monitoring program (Suzuki et al., 2020). Evidence has shown that
human cδ T cells have antitumor effects in colon cancer, which is
related to their ability to kill established colon cancer cells (Suzuki
et al., 2020). The knowledge of how cδ T cells promote colon cancer is
still limited, but the cδ T cells known to promote the progression of
colon cancer are mainly concentrated in the cδ T cell subset that
produces IL-17 (Van hede et al., 2017). In breast tumors and
gallbladder tumors, an increase in cδ T cells is associated with
poor prognosis (Ma et al., 2012; Patil et al., 2016). There has not
been a comprehensive histological analysis of the prognostic ability of
cδ T cells in colon cancer. In a follow-up study of colon cancer
patients, the immune score (including tumor-infiltrating cδ T cells)
was used to group patients. The 5 years recurrence rate of patients in
the high-immune-score group was only 4.8% (Pages et al., 2009).
Considering the relationship between high immune score and good
prognosis, it has been speculated that cδ T cells may be associated
with a better colon cancer prognosis (Suzuki et al., 2020). In this
study, the survival prognosis of patients with USH2Amutations was
poor; however, in the USH2A mutant tumor samples, there was an
enrichment of activatedNK cells, TFH cells, and cδ T cells, indicating
a change in the recognition of immune surveillance, as well as an
antitumor effect. Therefore, we found that, in COAD, the USH2A
mutation can induce changes in infiltrating immune cells, thereby
enhancing antitumor immunity.

The increased migration and invasion potential of colon cancer
cells leads to a significant decrease in the 5 years survival rate of
colon cancer patients. Therefore, an accurate prediction of
prognosis is essential for individualized treatment of these

patients. Today, gene expression profiling has become an
adjunct to cancer treatment; for example, Gene-expression
prediction models were built using transcriptome to predicte
colorectal cancer risk (Guo et al., 2021), the expression
characteristics of six lncRNAs were used as indicators to
evaluate the prognosis of patients with colorectal cancer (Zhao
et al., 2018), and an eleven gene signature was used as prognostic
index to predict systemic recurrences in colorectal cancer (Kim
et al., 2019). In this study, we identified the expression levels of two
mRNAs as reliable prognostic indicators of colon cancer. In this risk
model, the TNNT1 gene encodes a protein of the troponin subunit,
which is a regulatory complex located on the sarcomere filaments
(Wei and Jin, 2016). Studies have reported that TNNT1 is
significantly upregulated in colon cancer samples and cell lines.
The upregulation of TNNT1 is also related to a variety of
clinicopathological characteristics, and its high expression is
related to the poor prognosis of patients. Inhibition of TNNT1
can significantly inhibit cell proliferation, migration, and invasion,
while promoting cell apoptosis (Chen et al., 2020). TNNT1 may
promote the progress of COAD andmediate the EMT process (Hao
et al., 2020). On the other hand, ERFE is a glycoprotein hormone
encoded by FAM132B, which is produced upon the stimulation of
red blood cells by erythropoietin in the bone marrow and spleen
(Ganz, 2019). It has been reported that this gene is mainly related to
anemia and metabolic abnormalities (Seldin et al., 2012; Bondu
et al., 2019), whereas there are no reports of a tumor connection.
TNNTI gene expression in our research model was associated with
poor tumor prognosis, which is consistent with previous studies
(Hao et al., 2020). Patients with a higher TIDE score have a higher
chance of antitumor immune escape, thus showing a lower response
rate to ICB therapy (Jiang et al., 2018). In our study, a comparison of
the TIDE of patients in the high-risk and low-risk groups revealed a
lower score in the former, which indicates the potential for high-risk
patients to improve their survival prognosis through a better
response to ICB therapy, which can facilitate the choice of
clinical treatment for cancer patients.

The novelty of this study lies in the discovery that USH2A
mutations can affect the antitumor immunity of COAD and the
responsiveness to ICB therapy. Furthermore, we constructed a
prognostic model consisting of two DEGs, which could predict 1,
3, and 5 years survival rates in TCGA dataset and GEO validation
dataset GSE39582 with a relatively high AUC. The main
limitation of this study is that the ICGC database lacks
corresponding clinical data on Chinese COAD; thus, we could
not verify the significance of the USH2A mutation in the
prognosis of Chinese COAD patients and whether it can cause
the same immune response. Even though USH2A was frequently
mutated in Chinese COAD samples, its impact may be somewhat
heterogeneous among different races. Therefore, the relationship
between USH2A mutation and prognosis, including the analysis
of infiltrating immune cells and signaling pathways, needs to be
further verified in Chinese colon samples. In addition, the
differential expression of the two genes used to construct the
risk model was identified from TCGA data; although TCGA data
are of high quality, further experimental verification of the role of
these two differential genes in colon cancer is needed in vitro and
in vivo.
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In summary, this study showed that USH2A is frequently
mutated in COAD, which is associated with a high TMB and poor
prognosis. In addition, theUSH2Amutation upregulates immune
signaling pathways and promotes an antitumor immune
response. On the basis of two DEGs associated with the
USH2A mutation, we constructed a model with a predictive
effect on the prognosis of tumor survival. These findings
reveal a new gene whose mutation can be used as a biomarker
for predicting the response to antitumor immunity and ICB
treatment.
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Composition and Dynamics of H1N1
and H7N9 Influenza A Virus
Quasispecies in a Co-infected Patient
Analyzed by Single Molecule
Sequencing Technology
Peng Lin1,2, Tao Jin2,3, Xinfen Yu4, Lifeng Liang3, Guang Liu2, Dragomirka Jovic3, Zhou Sun4,
Zhe Yu3, Jingcao Pan4* and Guangyi Fan2,3*

1College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China, 2BGI-Qingdao, BGI-Shenzhen, Qingdao,
China, 3BGI-Shenzhen, Shenzhen, China, 4Hangzhou Center for Disease Control and Prevention, Hangzhou, China

A human co-infected with H1N1 and H7N9 subtypes influenza A virus (IAV) causes a
complex infectious disease. The identification of molecular-level variations in composition
and dynamics of IAV quasispecies will help to understand the pathogenesis and provide
guidance for precision medicine treatment. In this study, using single-molecule real-time
sequencing (SMRT) technology, we successfully acquired full-length IAV genomic
sequences and quantified their genotypes abundance in serial samples from an 81-
year-old male co-infected with H1N1 and H7N9 subtypes IAV. A total of 26 high diversity
nucleotide loci was detected, in which the A-G base transversion was the most abundant
substitution type (67 and 64%, in H1N1 and H7N9, respectively). Seven significant amino
acid variations were detected, such as NA:H275Y and HA: R222K in H1N1 as well as PB2:
E627K and NA: K432E in H7N9, which are related to viral drug-resistance or mammalian
adaptation. Furtherly, we retrieved 25 H1N1 and 22 H7N9 genomic segment haplotypes
from the eight samples based on combining high-diversity nucleotide loci, which provided
a more concise overview of viral quasispecies composition and dynamics. Our approach
promotes the popularization of viral quasispecies analysis in a complex infectious disease,
which will boost the understanding of viral infections, pathogenesis, evolution, and
precision medicine.

Keywords: H1N1 and H7N9, quasispecies, composition and dynamics, SMRT, precision medicine

INTRODUCTION

Influenza A virus (IAV) is a contagious pathogen that constantly infects many hosts, including but
not limited to humans, birds, and pigs (Medina and García-Sastre, 2011). Annual influenza virus
infections have significant health and economic burdens to mankind and livestock (Gordon and
Reingold, 2018). IAV is a member of the Orthomyxoviridae family, and its genome contains eight
negative-sense single-stranded RNA segments, ranging from 850 to 2,350 bp (Pleschka, 2013;
Hutchinson, 2018). IAV can be subtyped as HxNy by viral surface antigens hemagglutinin (HA)
and neuraminidase (NA) proteins, which govern the viral lifecycle at cellular entry and release of
virions (Dou et al., 2018). So far, eighteen different HA subtypes (H1-H18) and eleven different NA
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subtypes (N1-11) have been observed (Boktor and Hafner, 2019).
There are two common IAV cellular receptors:α-2,3-Sialic acid
(α-2,3-SA) and α-2,6-Sialic acid (α-2,6-SA) in hosts (Nelli et al.,
2010; França et al., 2013; Byrd-Leotis et al., 2017; Chen et al.,
2018a; Xu et al., 2019). The avian influenza viruses such H7N9
preferentially recognize α-2,3-SA receptors, while human
influenza viruses such H1N1 has a priority to α-2,6-SA
receptors (Xiong et al., 2013; de Graaf and Fouchier, 2014).
The α-2,6-SA receptors are dominant in the upper respiratory
tract (URT) of humans, while α-2,3-SA receptors are relatively
more abundant than α-2,6-SA receptors found in the lower
respiratory tract (LRT) of humans (Walther et al., 2013;
Lakdawala et al., 2015; Long et al., 2019).

Influenza A viruses in a host exist as a population including
thousands of virions containing closely related (but nonidentical)
genomes, also called quasispecies (Lauring and Andino, 2010;
Martínez et al., 2012; Watanabe et al., 2018; Bonomo et al., 2019;
Domingo and Perales, 2019). These closely related genomes result
from error-prone replication and frequent reassortment of
influenza virus genomes (Steel and Lowen, 2014; Pauly et al.,
2017). The complicated interactions (cooperativity or
interference) among genomes and their productions
collectively determine the biological or medical implications of
a viral population such as fitness, virulence, pathogenesis,
immune escape, or drug resistance (Vignuzzi et al., 2006;
Sanz-Ramos et al., 2008; Aragri et al., 2016; Schuster, 2016;
Perales, 2020). Therefore, it is primary to reveal the
composition and dynamic of viral quasispecies to better
understand viral infection, adaptation, and evolution at the
level of population (Xue et al., 2017; Donohue et al., 2019;
Jary et al., 2020).

Achieving thousands of full-length genomes in a viral
population is decisive for quasispecies composition. Previous
short-read massively parallel sequencing (MPS) projects have
collected abundant consensus genomic sequences (CGSs) and
single nucleotide variants (SNVs) to explore influenza virus
quasispecies (Van den Hoecke et al., 2015; Ali et al., 2016;
McGinnis et al., 2016). Nevertheless, the quasispecies
composition is still unclear because of degenerated CGSs and
scattered SNVs rooted in short reads from MPS (Schadt et al.,
2010; Beerenwinkel et al., 2012; Chen et al., 2018b). The long-read
single-molecule real-time sequencing (SMRT) provides an access
to full-length influenza virus genomes even with a low frequency
in a viral population (Ardui et al., 2018; Lui et al., 2019). The
circular consensus sequencing (CCS) reads (average length
13.5 kb) produced by SMRT are 5–15 times as long as the
genomic RNAs of influenza A virus, avoiding the
fragmentation and assembly of genomes before and after
sequencing (Wenger et al., 2019a; Van Poelvoorde et al., 2020).

The sample co-infected with two IAV subtypes is a very good
opportunity to embody the advantage of SMRT in distinguishing
different-subtype IAV genomic sequences and to quantify their
abundances. The co-infection in avian hosts is common (29.59%
in the live poultry market during 2016–2019 in China) (Bi et al.,
2020). However, to our knowledge, there were only two human
cases co-infected with two IAV subtypes reported in China since
2013. One case was a 15-year-old male co-infected with H7N9

and H3N2 in Jiangsu Province in April, 2013 and the other was a
58-year-old male with H7N9 and H1N1 in Zhejiang Province in
January, 2014 (Zhu et al., 2013; Li et al., 2014). In this study, an
81-year-old male was diagnosed with H1N1 and H7N9 IAV by
RT-PCR in Zhejiang Province in January 2016. Furtherly, the
composition and dynamics of H1N1 and H7N9 IAV quasispecies
in eight serial samples from this patient were revealed by SMRT,
which provided a window to observe the viral quasispecies
changes during the patient’s hospitalization treated with anti-
viral drug oseltamivir.

MATERIALS AND METHODS

Patient, Symptoms and Therapies
An 81-year-old male had a slight cough and chest distress on 1/
12/2016 at his home in Xihu District, Hangzhou City, Zhejiang
Province, China. On the morning of 1/15/2016, the symptoms
worsened with a nasty cough, chest distress and fever. That
afternoon, the man went to the local community hospital,
where the temperature was 38.5 C, and then he was sent to
the Hangzhou First People’s Hospital for medical treatment. The
examination showed that the white blood cell count (WBC) was
13.4 × 109/L, the percentage of neutrophils (N%) was 92.2%, and
the C-reactive protein (CRP) was 110 mg/L. The chest
radiographs showed an infection of the right lower lung. The
mezlocillin sodium and sulbactam sodium were given for
intravenous injection as an anti-infective therapy. The patient
was sent to the respiratory department for hospital treatment and
pneumonia was confirmed on 1/16/2016.

The next day, a PCR result from a throat swab was positive on
influenza A virus and the patient was sent to infection ward for
further treatment which included oseltamivir (75mg/bid) and
meropenem drugs. On 1/19/2016, patient’s symptoms worsened
further and chest radiographs confirmed that infections spread
on both lungs. The patient received endotracheal intubation and
then admitted to intensive care unit (ICU)The treatment was
continued, the dose of oseltamivir was doubled (150mg/bid) and
meropenem was changed to imipenem. On the same day, the
patient’s RT-PCR test taken from the throat was positive on theM
gene, H7 gene, N9 gene and H1 gene of influenza A virus. Next
day, the patient was transferred to Hangzhou Xixi Hospital for
treatment in isolation where the anti-viral oseltamivir (150mg/
bid) continued to be given until 2/20/2016. Although, the
symptomatic treatments such as diuresis, analgesia,
vasodilation and nutritional support has been given in the Xixi
hospital, the patient did not show signs of improvement, and
passed away on 2/28/2016.

In the patient’s anamnesis it is stated that the patient went to
local live poultry market and bought a live duck at a merchant’s
site about a week before the first symptoms appeared on 1/12/
2016. The live duck was slaughtered, depilated, and bellied by
the merchant at his site. After returning home, the patient salted
the duck. The patient had a history of hypertension and denied
the history of diabetes, viral hepatitis, tuberculosis, and other
diseases. There is no history of trauma, surgery, or blood
transfusion. Denying any history of drug or food allergies.
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Samples and RT-PCR
Ten serial samples were collected from this patient from 1/19/
2016 to 2/19/2016, including seven throat swabs and three sputa.
The swabs and sputa were placed into 1 ml viral transport
medium, transported to the laboratory within 24 h at 4°C, and
then frozen at −80°C. Viral RNAs were extracted from samples
using a RNeasy Mini Kit (QIAGEN, Germany). Identification of
influenza A virus was achieved by RT-PCR using specific primers
targeting the M, H7, N9, and H1 gene according to the protocol
provided by WHO manual (Organization, W.H, 2002). This
study was approved by the Institutional Review Board of BGI
(NO.BGI-IRB 16008).

Single-Molecule Real-Time Sequencing
Top eight samples were taken to perform single-molecule real-time
sequencing (SMRT). The cDNAswere synthesized from viral RNAs
by reverse transcription using Uni12 and Uni13 primers (Bi et al.,
2016). The PCR was performed using a Phusion High-Fidelity PCR
Kit (New England Biolabs) utilizing the barcoded influenza A virus
general primers (Supplementary Table S1) (Mei et al., 2016). The
concentration of PCR product was quantified by the Agilent
Technologies 2,100 bioanalyzer. The two corresponding volumes
of PCR products (containing equal mass of dsDNA) were mixed
into one sample and quantified in the bioanalyzer again. About
2–3 μg mixed sample was used to SMRTbell library construction
following the 2 kb template preparation protocol (Roberts et al.,
2013b). The sequencing was performed on a PacBio RS II
instrument (Pacific Biosciences, USA) with one SMRT Cell used
for each library, using P6/C4 chemistry with a 4 h movie (Bull et al.,
2016). SMRTbell adapter sequences were removed and circular
consensus sequence (CCS) reads were achieved with SMRT
Analysis v2.3 (Roberts et al., 2013a).

Sequence Quality Control
The raw CCS reads were filtered by removing low quality reads
(length<800bp, passes<5 or estimated accuracy<99.9%). The
800 bp length near the lower limit of influenza A virus
genomic RNAs was used to exclude non-full-length genomic
sequences. The other two criteria ensured reads with at least
99.9% estimated accuracy and necessary passes (Korlach, 2015).
The sequencing error bases (frequency<0.3%) were additionally
corrected to improve sequence reliability as follows: First, the
remaining sequences after filtration were split into corresponding
samples by 100% base match with barcodes. Then, the sequences
of one sample were grouped by subtypes and genomic segments
according to the sequence annotation result against an influenza
virus genomes database downloaded fromNCBI (https://ftp.ncbi.
nih.gov/genomes/INFLUENZA) using BLASR (v5.1 with
options: -bestn 1) (Chaisson and Tesler, 2012). All full-length
genomic sequences of one group were aligned end to end using
MUSCLE (v3.8.31 with default options) (Edgar, 2004). Following,
the number and percentage of base A/C/T/G in the same
nucleotide locus of genomic sequences were stated. Finally, the
very low frequency base which percentage was less than 0.3% in
the number of four type bases of the same nucleotide locus, was
replaced with the dominant type of base with the largest
proportion in this nucleotide locus.

Diversity Index of Genomic Sequences
The diversity index (Shannon entropy) of one group sequences is
calculated by the formula (Crooks and Brenner, 2004):

S � −100p∑
n

i�1
Piplog2Pi

In which S is the Shannon entropy and Pi is the ration of the
number of one type of sequence to the number of total types of
sequence in one group.

Nucleotide Loci With High-Diversity Base
Composition
In order to screen out nucleotide loci with high-diversity base
composition, we stated the number and percentage of base A/C/
T/G in one nucleotide locus and screened out the loci in which the
percentages of at least two types of bases were more than 10%.

RESULTS

Sequences Quality Control
The clinical symptoms and therapeutic schedule of this patient
were recorded in Table 1. Ten samples were collected from this
patient on different days, including seven throat swabs (S1-4,
S7-10) and three sputa (S5-7). The collected date, sample types
and Ct value of RT-PCR for H1N1 and H7N9 of each sample
were listed in Table 2. The top eight samples (S1-8) were
performed using SMRT with four SMRT cells (S9 and S10
were RT-PCR negative for influenza A virus). A total of
142,496 CCS reads (221.72 Mb) were generated from four
SMRT cells, of which 82,471 high quality reads (≥99.9%
estimated accuracy) were selected for further analysis
according to strict filtering criteria. The IAV mutation rate
was about 0.018–0.025%, which means that each replicated
influenza genome (∼13 kb) contained an average of 2–3
mutations (Pauly et al., 2017). However, the estimated base
sequencing error rate of high-quality CCS reads (∼0.1%) in this
study, was notable higher than the normal replication mutation
rate (0.018–0.025%) of IAV genomes. Therefore, it was
necessary to correct sequencing error bases in the prevention
of taking them for real mutations. Finally, 69 group sequences
were clustered from four SMRT cells according to samples,
subtypes, and genomic segments (Figure 1A). Among them, 58
group sequences were with a satisfactory abundance (the
sequences number ≥20). In case that the base type (A/C/G/
T) in one nucleotide locus of one group sequences was less than
0.3%, it was considered as sequencing error base. The base
sequencing error rates of 58 group sequences ranged from 0.13
to 0.21%, approximate to the estimated sequencing error rate of
0.1%, which are composed of 78.37% mismatches, 13.78%
deletions and 7.16% insertions (Figures 1B,C and
Supplementary Table S2). Thus, we set 0.3% as the cutoff
value to screen out sequencing error base types in nucleotide
loci of each group sequences and correct them with dominant
base types in these loci.
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Monitoring the Composition and Dynamics
of H1N1 and H7N9 Sequences
All the influenza virus genomic sequences produced by SMRT were
clustered into 69 groups by eight samples, two subtypes, and eight
genomic segments (Figure 1A). To monitor the composition and
dynamic of H1N1 and H7N9 genomic sequences, we calculated the
number of sequence reads, the number of sequence types, and the
diversity index of sequence types in each group (Figure 2). The 16
groups (eight fromH1N1 and eight fromH7N9) in the first sample
S1 confirmed that this patient was coinfected with H1N1 andH7N9
IAV. Interestingly, in sample S1, although the number of H1N1 and
H7N9 sequence reads were almost equal, the diversity index of
H7N9 sequence types was obviously higher than that of H1N1
(Figure 2). The reasons for the diversity difference of sequence
types between H1N1 and H7N9 were unclear. One possible
explanation was that in the upper respiratory tract (URT)
environment with the dominant α-2,6-SA receptors preferentially
recognized by H1N1 virus; the H7N9 virus had to generate more
various genomic sequences to adapt to the relative hostile
environment (Chen et al., 2013).

Furtherly, there was a sharp decrease of H7N9 viral load in the
URT samples from S1 to S4. But the H7N9 viral load was still
relative abundant in the subsequent LRT samples from S5 to S7
(Table 2 and Figure 2B). This might indicate that the H7N9 virus

had transferred to LRT environment fromURT (Gao et al., 2013).
Meanwhile, there was an obvious increase of H1N1 viral load in
the URT samples from S1 to S2 (Figure 2A). The reason for this
increase might be due to the transfer of H7N9 from URT to LRT
that contributes freeing up more cellular resources for H1N1
growth in URT environment.

High Diversity Nucleotide Loci in H1N1 and
H7N9 Genomes
Fifteen and eleven high diversity nucleotide loci were detected in
H1N1 and H7N9 genomes, respectively, in which the A-G
transversion was the most abundant substitution type (67% in
H1N1 and 64% in H7N9) (Table 3). In H1N1, another two
substitutions were C-T and A-C transversion (20 and 13%
respectively). IN H7N9, the C-T, A-C and G-T took the same
0.09% proportion respectively (Table 3). In terms of amino acid,
the percentage of non-synonymous mutation was greater than
synonymous mutation, especially the percentage of non-
synonymous mutation was up to 91% (10/11) in H7N9,
comparing with the non-synonymous mutation of 66% (10/15) in
H1N1(Table 3). In H1N1, all five synonymous mutations are in the
internal genes of IAV, including two in NS gene (R78R and L69L),
one in PB2 gene (T25T), one in NP gene (E64E) and one in M gene
(R134R). InH7N9, the only one synonymousmutationwas R753R in
internal PB2 gene (Table 3). TheH7N9with a high frequency of non-
synonymous mutation might indicate that H7N9 as avian-origin
influenza virus was subjected to higher selection pressures in the
human host (Wei et al., 2012; Xu et al., 2019). It is noteworthy to
mention that among of these high-diversity loci, four mutations in
H1N1 were involved in the evolution or viral drug-resistance, such as
the R222K in the HA protein and the H275Y, A204T and K207R in
NA protein (Table 3). In H7N9, three mutations were related to host
adaption or viral drug-resistance, including the G685R and E627K in
PB2 protein, and K432E in NA protein (Table 3).

The Haplotype Analysis of H1N1 and H7N9
Virus Quasispecies
We achieved 25 and 22 haplotypes for H1N1 and H7N9 genomic
segments in all eight samples based on combining high diversity
nucleotide loci in the same genomic sequences, respectively. For

TABLE 1 | The clinical symptoms and therapeutic schedule of this patient.

Date Symptoms Therapies

1/12/2016 Cough and chest tightness NA
1/15/2016 Cough and chest tightness worsen, fever The patient was sent to hospital
1/17/2016 RT-PCR positive for influenza A virus Oseltamivir (75mg/bid) + Meropenem
1/19/2016 Lung injury was confirmed by Chest

radiographs
Oseltamivir (150mg/bid) + Imipenem, Trachea cannula, ICU

1/20/2016–2/20/
2016

There were no signs of improvement Oseltamivir (150mg/bid), Symptomatic treatment (diuresis, analgesia, vasodilation, nutritional
support)

2/28/2016 This patient passed away NA

NA � Not available.
bid: Drug use frequency, twice daily.
ICU � Intensive Care Unit.

TABLE 2 | The sampling information and RT-PCR screening of H1N1 and H7N9.

Name Collected date Sample type RT-PCR screening

M(Ct) H7(Ct) N9(Ct) H1(Ct)

S1 1/19/2016 Throat swab + (28) + (29) + (30) + (28)
S2 1/28/2016 Throat swab + (26) + (38) + (38) + (27)
S3 2/02/2016 Throat swab + (30) + (38) + (38) + (30)
S4 2/03/2016 Throat swab + (30) − − + (31)
S5 2/04/2016 Sputum + (28) + (36) + (37) + (29)
S6 2/05/2016 Sputum + (29) − − + (31)
S7 2/06/2016 Sputum + (28) + (31) + (31) + (29)
S8 2/12/2016 Throat swab + (31) − − + (31)
S9 2/16/2016 Throat swab − − − −

S10 2/19/2016 Throat swab − − − −

Ct: The cycle threshold value of RT-PCR.
+: Positive RT-PCR result (0 < Ct < 40).
-: Negative RT-PCR result.
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instance, we obtained seven haplotypes of NA in H1N1 based on
four high diversity nucleotide loci (Table 4). The bases on high
diversity nucleotide loci of each haplotype and its abundance in
each sample were listed in Supplementary Table S4. Then the
composition and dynamics of viral quasispecies in this patient co-
infected with H1N1 and H7N9 IAV were displayed along the
clinical treatment process (Figure 3). In NA gene, the haplotype
Hap_2 replaced Hap_1 as the dominant haplotype withmore than
half proportion (53.11%,1,119/2,107) in sample S2, which contain
H275Y drug-resistant mutation. However, Hap_2 in NA failed to

be continuously dominant and Hap_1 return the dominant
haplotype in following samples (S3 to S6) (Figure 3A).
Similarly, we found Hap_3 of HA with antigenic drift mutation
R222K transiently become dominant in sample S6 (56.19%, 127/
226) (Figure 3A). Compared with the genomic segment integrity
of H1N1 viral quasispecies among almost all samples, The H7N9
quasispecies had a poor integrity except for the first sample S1
(Figure 3B). In conclusion, the haplotype provides a more concise
overview of viral quasispecies composition and dynamics than
whole genomic sequences (Figure 2 and Figure 3).

FIGURE 1 | The process of sequences grouping and the SMRT sequencing error rate. (A) There are 69 group sequences clustered from four SMRT cells by
samples, subtypes, and genomic segments. The sequences in one group indicates that they are with the same sample resource, the same Influenza subtype, and the
same genomic RNA segments. The light yellow and pink figures around each sample indicate the number of groups of H1N1 and H7N9. (B) The base sequencing error
rates of 58 group sequences. In each group, the number of sequences is more than 20. The rate is the ratio of the number of sequencing error bases to the number
of total bases in one group sequences. (C) The three types and their percentage of sequencing error bases. red indicates mismatch, blue indicates deletion, and green
indicates insertion. The percentage is the ratio of the number of one type of sequencing error bases to the number of total sequencing error bases in one group
sequences. The detailed values about sequencing error bases in each group are listed in Supplementary Table S2.
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FIGURE 2 | The abundance and diversity of H1N1 and H7N9 genomic sequences. In H1N1 (A) and H7N9 (B), from left to right, three subgraphs respectively
indicate the number of sequence reads, the number of sequence types and the sequence diversity index in each group. In each subgraph, eight colors represent eight
genomic segments of influenza A virus. One sequence type is defined that there are one or more different bases from any other sequence. The sequence diversity index is
calculated as the Shannon entropy formula described in the “Materials and Methods”. The detailed values about abundance and diversity of genomic sequences
are listed in Supplementary Table S3.

TABLE 3 | The high-diversity nucleotide loci in H1N1 and H7N9 genomes.

Subtype Segment Nucleotide loci Base compositiona Amino acidb

A C G T

H1N1 PB2 2045 124 0 608 0 G673D
PB1 99 0 38 0 138 T25T
PA 182 0 58 0 484 F53S
HA 86 148 3,071 0 0 D18E
HA 697 127 0 3,092 0 R222K
NP 133 155 0 6,391 0 G30R
NP 237 101 0 6,445 0 E64E
NA 147 127 5,288 0 0 Q43K
NA 630 107 0 5,308 0 A204T
NA 640 5,280 0 135 0 K207R
NA 843 0 4,217 0 1,198 H275Y
M 427 663 0 11,809 0 R134R in M1
M 835 107 0 12,365 0 W41* in M2
NS 260 9,591 0 114 0 R78R in NS1
NS 705 100 0 9,605 0 L69L in NEP

H7N9 PB2 1906 35 0 31 0 E627K
PB2 2080 10 0 56 0 G685R
PB2 2,286 52 0 14 0 R753R
HA 722 43 0 269 0 G234D
HA 1,163 208 0 104 0 Q381R
NP 661 76 0 0 385 F206I
NA 339 165 76 0 0 R107S
NA 448 215 0 26 0 T144A
NA 1,312 168 0 73 0 K432E
NS 523 0 101 0 457 L166P in NEP
NS 707 0 0 497 61 S70I in NEP

aThe number of base A/C/G/T in one nucleotide locus.
bThe site and types of amino acid corresponding to base composition.
Synonymous mutations.
*: Termination codon.
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TABLE 4 | The forming and abundance of NA haplotypes in H1N1.

Haplotype Loci and bases Abundance in each samplea

147 630 640 843 S1 S2 S3 S4 S5 S6 S7 S8 Totalb

hap_1 C G A C 282 (100%) 980 (46.51%) 1,228 (91.99%) 460 (78.23%) 710 (90.91%) 322 (100%) 0 0 3,982
hap_2 C G A T 0 1,119 (53.11%) 0 0 71 (9.09%) 0 0 0 1,190
hap_3 A G G C 0 0 0 126 (21.43%) 0 0 0 0 126
hap_4 C A A C 0 0 107 (8.01%) 0 0 0 0 0 107
Hap_3 C G G T 0 8 (0.38%) 0 0 0 0 0 0 8
hap_6 C G G C 0 0 0 1 (0.17%) 0 0 0 0 1
hap_7 A G A C 0 0 0 1 (0.17%) 0 0 0 0 1

aThe number and percentage of haplotype in each sample.
bThe number of haplotypes in all samples.

FIGURE 3 | The composition and dynamics of H1N1 and H7N9 virus quasispecies. In H1N1 (A) or H7N9 (B), eight subgraphs respectively eight genomic
segments of influenza A virus. In each subgraph, different colors indicate different haplotypes. In the same subgraph, the same color represents the same haplotype,
while in different subgraphs, same color is irrelevant. The forming and abundance of each haplotype are listed in Supplementary Table S4.
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DISCUSSION

Four mutations in H1N1 and three in H7N9 were related to viral
drug-resistance, host adaption or evolution. The H275Y in NA
protein of H1N1 was the widely investigated drug-resistant
mutation against oseltamivir as the commonly used first-line
drug for the treatment or prophylaxis of influenza (Hurt et al.,
2012; Vidaña et al., 2020). Another two mutations A204T and
K207R in NA protein of H1N1 were recently reported to have
effects on drug-resistance and vaccine efficacy (Nandhini and
Sistla, 2020; Skowronski et al., 2020). The antigenic drift mutation
R222K in the HA protein was believed to play a role in virus
evolution by altering receptor binding specificity (Al Khatib et al.,
2019). For H7N9, the mutation E627K on PB2 is a well-
characterized host adaption mutation from the avian signature
Glu (E) to the mammalian-adapted signature Lys (K), which have
been associated with enhanced polymerase activity, high virus
replication and pathogenicity in humans (Baccam et al., 2001).
Besides, the mutation G685R on PB2 also help to promotes the
mammalian adaptation of avian influenza virus (Baccam et al.,
2003; Capitán et al., 2011). Interestingly, the mutation K432E on
NA, alone or together with mutation H275Y on NA, had a
significant impact on the binding pattern and affinity of
oseltamivir for neuraminidase, rendering neuraminidase less
susceptible (Aguirre and Manrubia, 2008).

The viral quasispecies as a viral population plays a very important
role in the process of viral infection, adaption, and evolution through
complex cooperative or competitive interactions (Domingo et al.,
2012). A population of viruses can be partitioned into subpopulations
by the genetic similarities (Baccam et al., 2001; Baccam et al., 2003).
The spatial interactions of subpopulations have effects on host cell
availability and defense responses (Aguirre and Manrubia, 2008;
Capitán et al., 2011). A specific cooperative interaction is that mixed
populations of D151 and G151 variants in H3N2 viruses grow better
than pure populations of either variant, in which one subpopulation
is good at entering new cells, while the other is better at exiting cells to
spread the infection (Xue et al., 2016). In our case, the co-existent viral
population of H1N1 and H7N9 might help to H7N9 subpopulation
migration from URT to LRT and growth in LRT. The H1N1
subpopulation can grow in both URT and LRT of this patient,
while H7N9 grow better in LRT than URT, which is related to the
different distribution of α-2,3-SA and α-2,6-SA receptors in URT and
LRT, as well as the preferential recognition of H1N1 and H7N9 with
two receptors (de Graaf and Fouchier, 2014; Byrd-Leotis et al., 2017).
The H7N9 subpopulation was easier to transfer to the LRT with the
assistance of H1N1 subpopulation in the co-existence of H1N1 and
H7N9 than that only in H7N9.

Besides, the competitive interactions among viral quasispecies
are also reported (Andino and Domingo, 2015). An example is
that in co-infected cells with wild-type polioviruses at a high
multiplicity of infection (MOI) and drug-resistant virus at a much
lower MOI, the yield of drug-resistant virus was significantly
reduced to 3–7% of the output from a single infection due to the
interference of chimeric capsid formation (Crowder and
Kirkegaard, 2005). We detected the drug-resistant mutation
H275Y in NA protein and antigenic drift mutation R222K in
HA protein. But both failed to be continuously dominant in the

subsequent viral quasispecies composition. A possible
explanation is that the forming of the viral particles containing
mutations were interfered by normal strains with a similar
mechanism illustrated in above poliovirus.

The composition, complexity and dynamic of a viral
quasispecies determined its biological or medical implications,
such as host range, pathogenesis, and coping with selection
pressure (Roedig et al., 2011; Gregori et al., 2016; Barbezange
et al., 2018). In this work, the composition and dynamics of viral
quasispecies in a patient co-infected with H1N1 and H7N9
influenza A virus were clearly revealed along his treatment
process using the single-molecule real-time sequencing
(SMRT). Compared with the flaws of consensus genomic
sequences (CGSs) and single nucleotide variants (SNVs) by
short-read massively parallel sequencing (MPS), the SMRT
embody the obvious advantage in investigating the complex
haplotype distribution of an IAV population, especially a
population coexisting with two subtype IAV. Because of a
human co-infected with two subtype IAV is very rare, the
single patient in this study restricted the conclusions.
Fortunately, the co-existence of two or more subtype IAV in
wildfowls is not rare. These works studying the composition and
dynamics of viral quasispecies in wildfowls co-infected with multi
subtype IAV will be conducted in future. One scarcity of SMRT is
the limit of detection (LOD) not good enough to detect the low
abundant IAV sequences. For example, when the Ct values of RT-
PCR for IAV in samples of this study were less than 30, SMRT
was hard to generate IAV genomic sequences. This is also the
reason why several types of sequences were not detected in some
samples and only 69 rather than 128 groups to be conducted in
the study. Besides, the expensive sequencing costs is another
limitation. With the optimization and upgrade of SMRT in terms
of limit of detection and sequencing cost, using SRMT to reveal
the composition and dynamic of influenza A virus quasispecies
will become a necessary method for studying viral biological
behaviors and medical implications, which will boost the
understanding of viral infections, pathogenesis, evolution, and
precision medicine (Nakano et al., 2017; Wenger et al., 2019b;
Beaulaurier et al., 2020).
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Predisposition in Noncirrhotic Portal
Hypertension Patients With Multiple
Renal Cysts by Integrated Analysis of
Whole-Genome and Single-Cell RNA
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Background and Aims: The multiple renal cysts (MRC) occur in some patients with
noncirrhotic portal hypertension (NCPH) could be a subset of ciliopathy. However, the
potential genetic influencers and/or determinants in NCPH with MRC are largely unknown.
The aim of this study was to explore the potential candidate variants/genes associated with
those patients.

Methods: 8,295 cirrhotic patients with portal hypertension were enrolled in cohort 1 and
267 patients affected with NCPH were included in cohort 2. MRC was defined as at least
two cysts in both kidneys within a patient detected by ultrasonography or computed
tomography. Whole-genome sequencing (WGS) was performed in nine patients (four from
cohort 1 and five from cohort 2). Then we integrated WGS and publicly available single-cell
RNA sequencing (scRNA-seq) to prioritize potential candidate genes. Genes co-
expressed with known pathogenic genes within same cell types were likely associated
NCPH with MRC.

Results: The prevalence of MRC in NCPH patients (19.5%, 52/267) was significantly
higher than cirrhotic patients (6.2%, 513/8,295). Further, the clinical characteristics of
NCPH patients with MRCwere distinguishable from cirrhotic patients, including late-onset,
more prominent portal hypertension however having preserved liver functions. In the nine
whole genome sequenced patients, we identified three patients with early onset harboring
compound rare putative pathogenic variants in the known disease gene PKHD1. For the
remaining patients, by assessing cilia genes profile in kidney and liver scRNA-seq data, we
identified CRB3 was the most co-expressed gene with PKHD1 that highly expressed in
ureteric bud cell, kidney stromal cell and hepatoblasts. Moreover, we found a homozygous

Edited by:
Peng Wang,

Harbin Medical University, China

Reviewed by:
Chungang Feng,

Nanjing Agricultural University, China
Yi Ding,

Allen Institute for Brain Science,
United States

*Correspondence:
Jian Huang

huangj1966@hotmail.com
Huiguo Ding

dinghuiguo@ccmu.edu.cn

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 14 September 2021
Accepted: 26 October 2021

Published: 12 November 2021

Citation:
Wu Y, Wu Y, Liu K, Liu H, Wang S,

Huang J and Ding H (2021)
Identification of Genetic Predisposition

in Noncirrhotic Portal Hypertension
Patients With Multiple Renal Cysts by
Integrated Analysis of Whole-Genome

and Single-Cell RNA Sequencing.
Front. Genet. 12:775470.

doi: 10.3389/fgene.2021.775470

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7754701

ORIGINAL RESEARCH
published: 12 November 2021

doi: 10.3389/fgene.2021.775470

93

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.775470&domain=pdf&date_stamp=2021-11-12
https://www.frontiersin.org/articles/10.3389/fgene.2021.775470/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.775470/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.775470/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.775470/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.775470/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.775470/full
http://creativecommons.org/licenses/by/4.0/
mailto:huangj1966@hotmail.com
mailto:dinghuiguo@ccmu.edu.cn
https://doi.org/10.3389/fgene.2021.775470
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.775470


variant, CRB3 p.P114L, that caused conformational changes in the evolutional conserved
domain, which may associate with NCPH with MRC.

Conclusion: ScRNA-seq enables unravelling cell heterogeneity with cell specific gene
expression across multiple tissues. With the boosting public accessible scRNA-seq data,
we believe our proposed analytical strategy would effectively help disease risk gene
identification.

Keywords: whole-genome sequencing, single-cell RNA sequencing, gene mutations, multiple renal cysts,
noncirrhotic portal hypertension

INTRODUCTION

Cirrhotic portal hypertension complicated esophageal-gastric variceal
bleeding (EGVB), ascites, hepatic encephalopathy (HE), acute kidney
injury (AKI) or hepatorenal syndrome (HRS) and splenomegaly
accompanied by severe liver disfunctions, is almost accounted for
80–85%. In clinical practice, a small number of patients present with
portal hypertension, such as splenomegaly and or EGVB, HE, their
clinicalmanifestations are similar to the liver cirrhosis,but in fact, these
patients do not have liver cirrhosis, that is non-cirrhotic portal
hypertension (NCPH) (Khanna and Sarin, 2019; Gao et al., 2020).
Currently, chronic infections, autoimmune disorders, and genetic
determinants have been reported to be associated with
pathogenesis of NCPH (Vilarinho et al., 2016; Wu et al., 2019).
Interestingly, the NCPH is common in cystic fibrosis-associated liver
disease (Boëlle et al., 2019). Therefore, we speculate that liver disease in
multiple renal cysts (MRC) present as NCPH, except for a subset of
patients with ciliopathy affected by hepatorenal fibrocystic diseases
(HFDs), such as autosomal recessive polycystic kidney disease
(ARPKD) or Caroli syndrome (Abdul Majeed et al., 2020;
McConnachie et al., 2021). HFDs are a group of ciliopathies and
genetic disorders that involve developmental abnormalities in the
portobiliary system in association with fibrocystic degeneration of the
kidney (Lasagni et al., 2021). HFDs can cause enlarged kidneys, cyst
formation, biliary duct dilation, and congenital hepatic fibrosis (CHF),
resulting in portal hypertension (Myram et al., 2021). Therefore,
patients with NCPH with MRC may be a non-classical genetic
mutations or HFD phenotype.

Currently, single-cell RNA sequencing (scRNA-seq) has
revolutionized developmental biology and genomics. ScRNA-seq is
a powerful tool that can be used to elucidate the cellular composition
in the interest tissue, to define undescribed rare cell subsets, to dissect
regulators controlling cell fate transition, to pinpoint cell-type specific
responses to stress or stimulation, and to identify mechanisms of cell-
cell crosstalk (Han et al., 2020). In this study, we applied a novel
analytic approach that integrated whole-genome sequencing (WGS)
and scRNA-seq data to survey potential geneticmodifiers or candidate
disease genes in NCPH patients with MRC.

METHODS

Study Design and Patients
Total 8,295 cirrhotic portal hypertensive patients, diagnosed by
medical history, signs and imaging of portal hypertension

according to chinese guidelines on the management of liver
cirrhosis (Xu et al., 2020), were enrolled in cohort 1. The
etiologies of liver cirrhosis included hepatitis B (65.04%),
hepatitis C (15.79%), alcoholic cirrhosis (12.35%), and
autoimmune liver disease (6.82%). Two hundred sixty-seven
patients with NCPH in cohort 2, confirmed by radiologists,
hepatologists and pathologists based on enhanced computed
tomography (CT) or nuclear magnetic resonance imaging
(MRI) and/or pathology according to guidelines on the
management of NCPH of EASL (Khanna and Sarin, 2014).
The signs and symptoms, laboratory and endoscopy data were
obtained from Electronic Medical Record Management System
(EMRS). The portal and splenic vein diameter and splenic
thickness were measured using abdominal ultrasonography.
Model for end-stage liver disease (MELD) and Child-Pugh
score were assessed for the severity of cirrhosis. Transient
elastography liver stiffness measurement (LSM) was performed
using FibroScan™ (Echosens, Paris, France). The MRC were
defined as more than two cysts in both kidneys detected by
ultrasonography or CT.

The study protocol was performed in compliance with the
Declaration of Helsinki and approved by the Ethics Committees
of Beijing You’an Hospital Capital Medical University. Signed
informed consent was obtained from each participant for using
samples, materials and publication.

Whole-Genome DNA Sequencing
The peripheral blood of nine patients with MRC (four from
cohort 1 and five from cohort 2 separately) were collected for
WGS to explore potential genetic modifiers or candidate disease
genes. First, the genomic DNA was extracted from the peripheral
blood of those patients. The whole-genome DNA Sequencing
libraries were prepared according to the manufacturer’s
instructions. The raw reads were produced by a BGISEQ-500
sequencer at an average depth of 40×. The rare putatively
pathogenic variants were validated by Sanger sequencing.

Genomic DNA Analysis
Sequencing data were quality controlled with adapter and aligned
to human reference genome build hg19 (http://www.
gencodegenes.org/releases/19.html) with BWA aligner (Li and
Durbin, 2009). The GATK best practice Haplotype Caller pipeline
was implemented for SNV and indel calling (Li et al., 2009;
McKenna et al., 2010). SV was called with lumpy software, and
CNV was detected with FreeC software (Layer et al., 2014). All

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7754702

Wu et al. Transgenation in NCPH With MRC

94

http://www.gencodegenes.org/releases/19.html
http://www.gencodegenes.org/releases/19.html
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


SNV variants were annotated using ANNOVAR for
bioinformatics analysis (Wang et al., 2010). Several genomic
databases, including the 1,000 Genomes (1000G), ExAC
(Exome Aggregation Consortium), Exome Sequencing Project
(ESP), gnom AD (both WES and WGS databases), and CG46,
were used to assess the variant frequency in the population.
MCAP, SIFT, Polyphen2-HDIV, Polyphen2-HVAR,
MutationTaster, MutationAssessor, and Clinvar were
implemented to annotate the effect of missense variants.
GERPs were used to evaluate the conservation of the variant
locus. Rare putative pathogenic variants were filtered as follows
(Gao et al., 2020): the allele frequency of the candidate variant
should be lower than 0.01 among 1000G, ExAC, ESP 6500,
Genome Aggregation (GA) and Complete Genomics 46
(CG46) Databases (Khanna and Sarin, 2019); amino acid
changing variants were kept, and GERP scores should be
higher than 2.0 (Vilarinho et al., 2016); truncating variants
were kept, and for missense variants, MCAP scores higher
than 0.6 were automatically kept, whereas for other variants,
the effect should be annotated as “Deleterious” or “Highly
pathogenic” by at least two software programs for MCAP
scores between 0.025 and 0.6. PKHD1 protein domain
prediction was obtained using SMART (Letunic et al., 2021).
Cilia genes were obtained from Syscilia.org for downstream
analysis.

Single-Cell RNA Sequencing Analysis
Five sets of scRNA-seq data were used in this study.
Summarized gene expression matrices derived from multiple
organs from human fetuses were obtained from the GEO
database via accession number GSE156793 (Cao et al., 2020).
Single-cell expression data from kidneys were generated from
mice under accession number GSE140023 (Conway et al., 2020).
The adult human kidney and human liver single cell
transcriptome was achieved by accession GSE114530
(Hochane et al., 2019), GSE131685 (He et al., 2020) and
GSE159929 (Liao et al., 2020), respectively. The single cell
RNA sequencing analysis was implemented with Seurat
package (Version 3.9.9). Cells were discarded according to
the following criteria (Gao et al., 2020): cells that had fewer
than 400 genes (UMI >0) (Khanna and Sarin, 2019); cells that
had fewer than 600 UMI or over 10,000 UMI; and (Vilarinho
et al., 2016) cells that had more than 15% mitochondrial UMI
counts. After the above quality control, for mouse kidney,
human fetal kidney, human adult kidney and human liver
scRNA-seq analysis, we performed log-normalization with
the “vst” method and identified 2000, 3,000, 3,000 and 3,000
variable features, respectively. We then scaled by setting the
parameter “vars.to.regress” to “percent.mito” and
“nCount_RNA”. Principal component analysis (PCA) was
performed using the “RunPCA” function. The number of
PCs was chosen by visualization plot with the “ElbowPlot”
function. A shared nearest neighbor (SNN) graph was
constructed using the “FindNeighbors” function with the top
40 PCs, then cells were clustered by the “FindClusters” function
with the “resolution” parameter set to 0.5. The “RunUMAP”
function was used for the visualization plot with the “umap-

learn”method, setting “n.neighbors” to 40L, “dims” to 1:40, and
“min.dist” to 0.3. Marker genes for each cluster were detected
using the “FindAllMarkers” function, setting the parameter
“min.pct” to 0.3 and “logfc.threshold” to 0.6. Subsequently,
cell clusters were annotated manually to the major cell types
according to known markers. Any cluster with multiple markers
of two types of cells was manually discarded as a doublet.

Protein Conformation Modeling
The full-length human CRB3 was not annotated in the PDB
Database; thus, the intact wild-type and mutated CRB3 protein
sequences were annotated by Phyre2 (Kelley et al., 2015). Then,
protein conformational alteration was predicted using Chimera
software (Pettersen et al., 2004).

Data Visualization and Statistics
Microsoft R Open (version 3.6.1, https://mran.microsoft.com/)
was used. The R packages ggplot 2 (version 3.1.0) and pheatmap
(version 1.0.12) were used to generate graphs of the data.
Continuous variables were compared using independent T test
if data were normally distributed or Mann Whitney U test. The
categorical variables were compared using X2 tests performed
with SPSS 22.0 (IBM, United States).

RESULTS

Prevalence and Clinical Characteristics of
NCPH Patients With MRC
The prevalence of MRC in NCPH patients accounted for 19.5%
(52/267). It was significantly higher than that in cirrhotic patients

TABLE 1 | Comparison of clinical characteristics between NCPH patients with
MRC and Hepatitis B cirrhosis without MRC.

NCPH with MRC Hepatitis B cirrhosis
without MRC

P

(N = 52) (N = 92)

Age (y) 60.35 ± 15.47 52.13 ± 10.13 0.011
Sex (female/male) 24/28 31/61 0.076
EGVB 23 (44.23%) 31 (33.70%) 0.027
Ascites 15 (28.85%) 49 (53.26%) <0.001
Platelet (109/L) 108.00 (74.50, 141.50) 56.50 (41.00, 88.00) <0.001
INR 1.12 (1.04, 1.26) 1.23 (1.12, 1.37) 0.003
ALT (U/L) 23.65 (19.23, 36.38) 22.15 (17.45, 32.95) 0.13
AST (U/L) 37.15 (26.73, 60.45) 30.65 (23.95, 47.25) 0.308
TBIL (μmol/L) 19.85 (14.58, 41.40) 21.60 (15.83, 34.68) 0.087
ALB (g/L) 34.83 ± 6.62 34.23 ± 5.87 0.128
Creatinine (μmol/L) 67.20 (53.45, 87.88) 63.35 (53.75, 72.10) 0.133
Child-pugh score 6.00 (5.00, 8.00) 6.00 (5.00, 7.75) 0.965
MELD 5 (2, 7) 6 (3, 9) 0.559
LSM (kPa) 18.80 (13.25, 30.15) 21.80 (13.95, 30.35) 0.146
PV (mm) 13.05 ± 2.66 14.03 ± 3.15 0.637
SV (mm) 8.15 ± 1.37 9.05 ± 2.31 0.322
Platelet/LSM 5.81 ± 1.16 2.56 ± 0.57 <0.001

MRC, multiple renal cysts; EGVB, esophageal and gastric varices bleeding; ALB,
Albumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBIL, total
bilirubin; INR, international normalized ratio; MELD, model for end-stage liver disease;
LSM, liver stiffness measurement; PV, portal vein diameter; SV, splenic vein diameter.
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TABLE 2 | The clinical data for nine patients with MRC enrolled for whole-genome sequencing.

P1 P2 P3 P4 P5 P6 P7 P8 P9

Age (at first diagnose) 26 (5) 36 (34) 35 (13) 60 (55) 75 (73) 71 (60) 53 (45) 46 (36) 47 (42)
Complication of PH EVB EVB No No No Ascites EVB EVB No
Child-Pugh Score 5 5 8 6 8 10 8 5 5
LSM (kPa) 14.3 35 15.2 5.8 8 9 12 2.8 3.8
EGV Severe Severe Severe No Moderate Moderate Severe Severe No
Renal function Normal Normal CRF II Normal Normal Normal Normal Normal Normal
ALT/AST 43.2/47.4 Normal 53.2/42.4 49.7/40.2 53.2/82.7 Normal Normal Normal Normal
Hypersplenism Yes Yes Yes No Yes Yes Yes No No
No. renal cysts 3 3 4 3 2 3 2 3 2
Maximum renal cyst (mm) 38 13 24 24 13 15 4 30 25
No. hepatic cysts 0 0 3 1 5 0 3 3 2
Maximum liver cyst (mm) NA NA 23 4 17 NA 8 7 14
Dilatation of the intrahepatic bile duct Yes Yes Yes No No No No No No
PV (mm) 9 10 12 14 13 13 14 11 12

PH, portal hypertension; EGVs, esophageal and gastric varices; EVB, esophageal varices bleeding; LSM, liver stiffness measurement; PV, portal vein diameter; CRF: chronic renal failure;
ALT, alanine aminotransferase; AST, aspartate aminotransferase. The units for ALT, and AST, was U/L. NA, no data.

FIGURE 1 | The pathological and clinical presentation of one CHF patient with NCPH. (A) The left panel shows diffuse fibrosis in the liver. The right panel shows a
small bile duct hamartoma. (B) Endoscopy showed esophageal varices (left) and gastric varices (right). (C) The abdomen CT images show slight dilatation of the
intrahepatic bile duct and splenomegaly (left), and multiple renal cysts in the bilateral kidneys (right).
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with portal hypertension (6.2%, 513/8,295), p < 0.05. The
clinical characteristics of NCPH patients with MRC were
compared with 92 hepatitis B virous (HBV) related cirrhosis
without MRC, which randomly selected (1:2) in cohort 1
(Table 1). The NCPH patients with MRC had a relatively
older onset complications of portal hypertension (p < 0.05).
In terms of the manifestations of portal hypertension, the
proportion of EGVB was prominent (p < 0.05), while ascites
was less (p < 0.001). The platelet counts were higher than that of
hepatitis B cirrhosis (p < 0.001). Although there was no
significant difference in LSM between the two groups, the
ratio of platelet counts/LSM in NCPH patients with MRC
was significantly higher than it in hepatitis B cirrhosis
without MRC patients (p < 0.001). The clinical
characteristics of nine patients with MRC enrolled for WGS
were summarized in Table 2. Three patients (P1-3) showed
CHF by liver biopsy (Figure 1A), in which two patients exhibit
early-onset in childhood or adolescence and underwent
splenectomy procedure before their visit to our hospital. The
endoscopy and CT imaging confirmed EGV, dilated bile ducts
and multiple renal cysts in those patients (Figures 1B,C).

The others NCPH patients (P4 and P5) showed late-onset
of complication, their clinical manifestations, including
large hepatorenal cysts and normal LSM, implied
underlying HFDs although there is no pathological
evidence. Moreover, four HBV-positive patients (P6-P9)
were diagnosed at middle age with normal liver function
may also pinpoint to the need of dissecting genetic factors
for HFD phenotypic expression.

Early Onset Harbored Compound Rare
Pathogenic Variants in PKHD1
The copy number variations or structural variants spanning known
HFD-related genes were not observed. Subsequently, we identified all
gene mutations in the known Caroli syndrome-causing gene PKHD1
in 3 CHF patients with NCPH (Supplementary Table S1). All
missense mutations in PKHD1 had GERP scores higher than 5.4,
indicating that these mutations were in evolutionarily highly
conserved regions. Moreover, all three patients harbored an
additional truncation mutation, which were not reported in any
public databases. Therefore, we assumed that the patients carried
recessive mutations in PKHD1, and validated the mutations by
Sanger sequencing (Figure 2A). In addition, analysis of PKHD1
mutation distributions in different protein domains showed that all
mutations were located in the extracellular domain (Figure 2B).
Further, by using scRNA-seq data to explore PKHD1 expression, we
found that PKHD1 was highly expressed in ureteric bud cells and
stromal cells and moderately expressed in metanephric cells in the
kidney. In contrast, PKHD1 was highly expressed on hepatoblasts in
the liver (Figure 2C). Moreover, we also detected PKD1 compound
mutations, which may explain that the patient P1 had early disease
onset at the age of five and large renal cysts (38mm).

Potential Candidate Genes Associated With
HFDs Phenotype
To narrow the potential HFD phenotype-associated genes, we
retrieved all known cilia genes from the literature and the
European project SYSCILIA (Boldt et al., 2016). After

FIGURE 2 | Gene mutations analysis of PKHD1. (A) The rare putative pathogenic variants in PKHD1 were validated by Sanger sequencing. (B) Schematic
representation of variant distributions in the PKHD1 domain. (C) Violin plot of PKHD1 expression in mouse kidney and human liver tissues by scRNA-seq analysis. The Y
axis was normalized expression level for PKHD1 in different cells.
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FIGURE 3 | Prioritization of detected cilia genes with scRNA-seq. (A)Heatmap of detected cilia gene expression in multiple human fetal organs using data under accession
GSE156793. Gene expression have been scaledwith normalized read counts for each gene. (B)Heatmap of detected cilia gene expression in different cell types from human fetal
kidney and liver tissues (from GSE156793). Gene expression have been scaled with normalized read counts for each gene. (C) UMAP plot showing the clustering of different cell
types in mouse kidneys (from GSE140023). (D) Dot plot of cilia genes in mouse kidney (from GSE140023). The expression inferred Pkhd1, Crb3 and Tuba4a had similar
expression pattern. Dot size indicatedpercentageof cell which expressedgene of interest and color indicated expression level. (E)UMAPplot showing the clustering of different cell
types in human fetal kidney (from GSE114530). (F) Dot plot reflecting the cell type expression patterns of the detected cilia genes (from GSE114530). This result supported that
PKHD1 and CRB3 had similar expression pattern. (G)UMAP plot showing the clustering of different cell types in human fetal kidney (fromGSE131685). (H)Dot plot reflecting the
cell type expression patterns of the detected cilia genes (fromGSE131685). (I)UMAP plot showing the clustering of different cell types in the adult human liver (fromGSE159929).
(J) Dot plot reflecting the cell type expression patterns of the detected cilia genes (from GSE159929).
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prioritizing candidate disease-associated cilia genes by scRNA-
seq analysis, the cilia-related mutations derived from the
enrolled patients were listed in Supplementary Table S1,
such as CRB3 p.P114L. We first plotted the expression for
candidate cilia genes in multiple human fetal organs, and
annotated different cell types, particularly in the kidneys and
liver (Figures 3A,B). We further assessed the cilia genes of cell
clustering and annotated different cell type in adult mice kidney
and adult human liver using uniform manifold approximation
and projection (UMAP). We found that CRB3, TUBA4A,
PTCH1 and CEP290 co-expressed with PKHD1 (Figures
3C,D). Similar co-expression pattern were also seen in
human fetal kidney (Figures 3E,F) and adult kidney (Figures
3G,H). Followed by cell clustering and annotation in adult
human liver, the CRB3 and PKHD1 co-expression were
spotted in hepatoblasts (Figures 3I,J). To further investigate
the functional effect of the CRB3 p.P114L variants, we
performed protein structure remodeling and predicted that
the mutation would lead to protein conformational
alterations in the PDZ-domain (Figure 4A). The bona fide
tight junction assembly acquired the capacity for PRKC1/
PARD6A complex translocation to the apical surface by
interacting with the CRB3 C-terminus. Hence, we speculated
that this mutation might ultimately blocking CRB3 function.
With additional scRNA-seq data, we believe that this newly
proposed analytical strategy may help clinicians and geneticists
to map disease-related genes (Figure 4B).

DISCUSSIONS

Currently, the etiologies and genetic pathogenesis of NCPH
with CHF, especially idiopathic non-cirrhotic portal
hypertension (INCPH), have not been fully elucidated
(Lanktree et al., 2021). The MRC is more common in CHF
and NCPH (Vilarinho et al., 2016; Boëlle et al., 2019;
McConnachie et al., 2021). We have reasons to believe that
MRC, as a cilia, may have genetic variation disorders, especially
non-classical genetic mutations of HFD phenotype in INCPH
with MRC patients. In this study, the prevalence of MRC in

NCPH patients was accounted almost for 19.5%, which was
significantly higher than the cirrhotic portal hypertension
patients with known etiologies. The clinical characteristics of
NCPH with MRC from these data were older-onset of the
complications of portal hypertension, obvious manifestations
of portal hypertension, such as EGVB, and having preserved
liver functions.

Genome-wide single-cell analysis represents the ultimate
frontier of genomics research (Boldt et al., 2016). In particular,
scRNA-seq studies have been boosted in the last few years of new
technologies enabling the study of the transcriptomic landscape
of thousands of single cells in complex pathogenesis of diseases
(Ying et al., 2021). Owing to the dramatic improvement in
scRNA-seq technology, especially integrating WGS and
scRNA-seq, tissue-specific expression at the single-cell level
has improved our understanding of biological processes
(Zeggini et al., 2019). In this study, WGS and scRNA-seq were
performed to survey potential genetic modifiers or candidate
disease genes in NCPH patients with MRC. The results showed
that genes also expressed in ureteric bud cells, stromal cells, and
hepatoblasts may have additive effects on NCPH with MRC. We
also found that CRB3, TUBA4A, PTCH1 and CEP290 co-
expressed with PKHD1 at hepatoblasts in liver using UMAP.
Interestingly, we discovered that patient P5 carried a homozygous
candidate mutation in CRB3 without family history of MRC. The
CRB3 encodes an apical transmembrane protein that regulates
the morphogenesis of tight junctions in mammalian epithelial
cells (Lemmers et al., 2004). CRB3 protein plays an important role
in apicobasal polarity formation, such as cyst formation (Hurd
et al., 2003). Furthermore, CRB3 participates in interactions with
TAZ/YAP, thereby affecting transforming growth factor (TGF)-β
signaling. Disruption of CRB3 function enhances TGF-β
signaling and predisposes cells to TGF-β-mediated epithelial-
to-mesenchymal transition (Varelas et al., 2010). Therefore, loss
of function of CRB3 could potentially be linked to cyst formation
and/or fibrosis. Importantly, further narrowing of the candidate
gene selection showed that CRB3 could be a novel disease risk
gene for HFDs. Although patients carrying a homozygous
mutation in CRB3 showed late disease onset, this mutation
affects PDZ domain conformation and might alleviate protein

FIGURE 4 | (A) Prediction of the conformation of CRB3 protein. The yellow chain shows the wild-type protein, and the blue chain shows the mutated protein.
Residue 114 is pointed by arrow and highlighted in red on the protein backbone. (B) Schematic illustration of the novel analytic strategy to identify disease-related genes.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7754707

Wu et al. Transgenation in NCPH With MRC

99

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


function rather than cause complete loss of function. However,
further studies are needed for functional validation of the
pathogenicity of this gene.

One of the limitations of this study is the lack of parental
genomic materials and family pedigree of MRC, making it
challenging to further prioritize selected candidates. In
addition, the present study lacks WGS analysis in MRC
patients with mutations in known pathogenic genes, such as
ARPKD phenotypes associated genes and PKHD1 or PKD genes
because of small sample size of NCPH with MRC and hepatitis B
cirrhosis patients without MRC. Furthermore, the novel
identified CRB3 p.P114L variant has not been undergone
biological function study, and we will conduct the research in
the future.

CONCLUSION

CRB3 gene is commonly co-expressed with PKHD1 in NCPH
with MRC. The homozygous variant in CRB3 may be associated
with genetic pathogenesis of NCPH with MRC. Therefore, we
speculate that there may be non-classical genetic mutations in
NCPH patients with MRC. CRB3 may be a novel homozygous
candidate gene mutation.
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Identifying Potential Biomarkers of
Prognostic Value in Colorectal Cancer
via Tumor Microenvironment Data
Mining
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Colorectal cancer (CRC) is a common cancer that has increased rapidly worldwide in the
past decades with a relatively high mortality rate. An increasing body of evidence has
highlighted the importance of infiltrating immune and stromal cells in CRC. In this study,
based on gene expression data of CRC patients in TCGA database we evaluated immune
and stromal scores in tumor microenvironment using ESTIMATE method. Results showed
there was potential correlation between these scores and the prognosis, and that patients
with higher immune score and lower stromal score had longer survival time. We found that
immune score was correlated with clinical characteristics including tumor location, tumor
stage, and survival time. Specifically, the right-sided colon cancer had markedly elevated
immune score, compared to left-sided colon cancer and rectal cancer. These results might
be useful for understanding tumor microenvironment in colorectal cancer. Through the
differential analysis we got a list of genes significantly associated with immune and stromal
scores. Gene Set Enrichment and protein-protein interaction network analysis were used
to further illustrate these differentially expressed genes. Finally, 15 hub genes were
identified, and three (CXCL9, CXCL10 and SELL) of them were validated with
favorable outcomes in CRC patients. Our result suggested that these tumor
microenvironment related genes might be potential biomarkers for the prognosis of CRC.

Keywords: immune, stromal, hub genes, colorectal cancer, survival analysis, tumor location

INTRODUCTION

Colorectal cancer (CRC) is one of the most commonly occurring cancers, whose incidence occupies
10% of all cancer diagnoses (Sung et al., 2021; Wong et al., 2021). As the second most common cause
of cancer death, Colorectal cancer has been increasing rapidly in the past decades with over 1.9
million new cases reported in 2020 (Arnold et al., 2017; Sawicki et al., 2021). Colorectal cancer may
develop on either the proximal colon (right side), the distal colon (left side) or the rectum. Right-
sided colon cancer (RCC) differs from the left-sided colon cancer (LCC) and rectal cancer (RC) in
pathogenesis and prognosis, exhibiting distinct molecular characteristics and histology (Baran et al.,
2018; Imperial et al., 2018; Siegel et al., 2020). Presently, CRC screening is not common and the
diagnosis is usually made after the onset of symptoms. Because the tumor status and TNM stage at
diagnosis have a fundamental role in CRC prognosis, early symptom investigation and diagnosis are
of high importance (Bosch et al., 2011; Kawakami et al., 2015). However, although CRC prevalence is
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high, the awareness of colorectal cancer and its symptoms is
relatively low. Due to wide variation in colorectal cancer and
complexity in treatment outcome prediction, investigation for
new strategies and new biomarkers is necessary in CRC for
improving prognosis.

It has been documented that tumor microenvironment
(TME) has a great impact on tumor cells and clinical
outcomes (Turley et al., 2015; Lim et al., 2018). Apart from
tumor cells, TME also comprises a variety of nontumor
components including endothelial cells, immune cells,
inflammatory mediators, and extracellular matrix (ECM)
molecules (Lorusso and Rüegg, 2008; Bolouri, 2015). The cells
and molecules in the TME are in a dynamic process, jointly
promoting tumor immune escape, tumor growth and metastasis
(Quail and Joyce, 2013). Accumulating evidence suggests that the
stromal and immune cells, which constitute two main nontumor
components in the TME, are valuable in investigating tumor
diagnosis and clinical outcome (Kalluri and Zeisberg, 2006;
Hanahan and Weinberg, 2011; Fridman et al., 2012). Recent
evidence has indicated that tumor microenvironment plays a
significant role in colorectal carcinogenesis, metastasis and the
choosing of therapy strategies (Peddareddigari et al., 2010;
Pedrosa et al., 2019). T cells, a major part of the immune
system, were described to be of major importance for tumor
growth, invasion, early metastasis and prognosis in colorectal
cancer (Pagès et al., 2005; Mlecnik et al., 2011). Calon et al.
suggested that high expression of mesenchymal genes associated
with poor outcomes in CRC patients is primarily caused by
stromal cells instead of epithelial cancer cells (Calon et al., 2015).
To promote the understanding of cancer prognosis, efforts have
been made in studying tumor microenvironment components
and developing novel immunotherapeutic strategies in recent
years. Algorithms such as ESTIMATE (Estimation of STromal
and Immune cells in MAlignant Tumor tissues using Expression
data) (Yoshihara et al., 2013) have been developed to predict
tumor purity and levels of infiltrating stromal and immune cells
in tumor, such as gastric cancer, hepatocellular carcinoma and
colorectal cancer (Mao et al., 2018; Deng et al., 2019; Wang et al.,
2019).

To promote the understanding of CRC microenvironment
and prognosis, in this study we took use of ESTIMATE algorithm
and public database to evaluate the tumor-infiltrating immune
and stromal cells of TME. By performing survival analysis and
correlation analysis, we explored the relationship between
immune/stromal score and clinical factors in CRC. Moreover,
we aim to extract a list of tumor microenvironment associated
genes of prognostic value, through the differential analysis,
network construction and survival analysis. We hope to
provide insights to investigate stromal and immune cells of
CRC and offer evidence to potential prognostic markers.

MATERIALS AND METHODS

Data Collection and Preprocessing
In this study, gene expression profiles of colorectal cancer were
downloaded and collected from The Cancer Genome Atlas

(TCGA) data portal (https://portal.gdc.cancer.gov/) using
TCGAbiolinks (Colaprico et al., 2016) R package. Relevant
clinical information including age, gender, survival time,
pathologic stage, and tissue or organ of origin were also
obtained from TCGA database. Patients with primary
tumor expression and survival information were retained in
this study. Before further analysis, TCGA gene expression
profiles were normalized using R package DESeq2 (Love
et al., 2014).

GSE41258 expression and clinical data were also downloaded
from the Gene Expression Omnibus (GEO) database as the
validation set. The GSE41258 dataset was processed via the
Affymetrix MAS5 background correction algorithm using affy
package (Gautier et al., 2004) in R and log2 transformation. Probe
sets were transformed into gene sets by retaining only the probes
with the highest expression levels if one gene corresponds to
multiple probes. When multiple genes per probe, this probe
would be discarded.

Estimation of Immune and Stromal Scores
The normalized expression data was analyzed by the
ESTIMATE algorithm for calculating the Immune and
Stromal Score. We used ESTIMATE to calculate the fraction
of immune and stromal cells in tumor using the gene
expression data. In our study v.1.0.13 estimate R package
(Yoshihara et al., 2013) was used to predict the level of
infiltrating immune cells (immune score) and the level of
infiltrating stromal cells (stromal score).

Survival Analysis Based on Immune and
Stromal Scores
Survival analysis was performed by R package survival (Therneau,
2019) and survminer (Kassambara et al., 2019) to assess the
association of immune and stromal score with prognosis. The
best cut-off value of immune/stromal score was inferred using R
program surv_cutpoint. Subsequently, patients were divided into
two groups (high vs. low) based on the cut-off value. The Kaplan-
Meier (KM) method was used to estimate the likelihood of
survival based on the observed overall survival time. Overall
Survival differences between high and low score groups were
compared by log-rank test.

Differential Gene Expression Analysis
We analyzed differentially expressed genes (DEGs) between high
score and low score groups using R package DESeq2 (Love et al.,
2014), which based on the negative binomial distribution
algorithm. And |log2 fold change (FC)| > 2 and p value < 0.01
were selected as the criteria to select the significantly different
genes. R package pheatmap (Kolde, 2019) was used to visualize
the DEGs.

Function Analysis
To explore the potential function of DEGs, function analysis was
carried out by using the Gene Set Enrichment Analysis (GSEA)
web server (Mootha et al., 2003; Subramanian et al., 2005).
Enrichment analyses of hallmark gene sets, ontology gene
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terms (cellular component, molecular function, and biological
process), and KEGG gene sets were selected to extract biological
insight in different risk groups. The top 20 biological functional
terms with False discovery rate (FDR) q-value below 0.01 were
selected.

PPI Network Construction and Hub Gene
Selection
To further investigate the relationship between different genes,
the protein-protein interaction (PPI) network analysis was
performed via the version 11.5 STRING (Search Tool for the
Retrieval of Interacting Genes, https://string-db.org/) (Szklarczyk
et al., 2015), an online tool and database of protein-protein
interaction. A minimum required interaction score > 0.7 were
selected and reconstructed in the Cytoscape (Shannon et al.,
2003) software. In a gene candidate module, one gene with high
correlation with other genes is called a hub gene. In this study,We
used CytoHubba plugin (Chin et al., 2014) in Cytoscape v3.7.1 to
find hub genes in PPI network. The top 15 genes with the highest
prediction scores calculated by the Maximal Clique Centrality
(MCC) algorithm were defined as the hub genes.

Statistical Analysis
All statistical analyses were performed in R statistical
environment version ≥ 3.5.0. Cox proportional hazard
regression survival analysis was applied to overall survival time
with different clinical features including age, gender, tumor
location, tumor stage, immune score and stromal score.
Correlations between the clinical factors and immune/stromal
score were also calculated in this study. Kruskal-Wallis Test for
three or more groups and Wilcoxon Test for two groups were
used to estimate the P value.

RESULTS

Tumor Immune and Stromal Scores
Significantly Associated With Prognosis
in CRC
HTSeq-Counts based gene expression profiles and clinical
information of 613 CRC patients were downloaded from
TCGA database. In this cohort, patients were diagnosed with
colorectal cancer between 1998 and 2013 and their sequencing
and clinical information were collected into the TCGA database.
Among them, 286 (46.7%) patients were female and 327 (53.3%)
patients were male. The ages ranged from 31 to 90. Clinical
diagnosis included 189 (30.8%) cases with right-sided colon
cancer, 132 (21.5%) cases with left-side colon cancer, and 85
(13.9%) cases with rectal cancer. The Pathologic stage I, stage II,
stage III and stage IV accounted for 16.8% (n � 103), 37.0% (n �
227), 28.9% (n � 177) and 14.0% (n � 86) of the total number
(Table 1). In addition, based on ESTIMATE algorithm immune
and stromal scores were obtained. Stromal scores for the analyzed
CRC cohort ranged from -2,531.36 to 1,481.74, and immune
scores were distributed between −1,724.23 and 1,856.93,
respectively. The average immune score was −600.92 and the
median was −658.63. The average stromal score was −966.83 and
the median was −1,026.69.

To explore the potential correlation of overall survival time with
stromal and immune scores, 613 CRC cases were divided into high-
and low-score groups according to the cut-off of stromal/immune
scores. As shown in Figure 1, survival analysis indicated that both
the immune and stromal scores were significantly correlated
with overall survival time, and that patients with high immune
score or low stromal score significantly correlated with better
overall survival time (Figures 1A,B, p-value � 0.048 for immune

TABLE 1 | Summary and Cox Regression Analysis of overall survival for TCGA CRC study dataset.

Characteristics Count Univariate Cox Multivariate Cox

Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value

Age 613 1.03 (1.015-1.049) <0.001 1.04 (1.021-1.067) <0.001
Gender
Female 286 1 - 1 -
Male 327 1.02 (0.710-1.454) 0.93 0.88 (0.554-1.400) 0.59

Location
Right 189 1 - 1 -
Left 132 0.70 (0.435-1.134) 0.15 0.58 (0.349-0.974) 0.04

Rectum 85 0.72 (0.386-1.326) 0.29 0.55 (0.279-1.094) 0.09
Stage
Stage I 103 1 - 1 -
Stage II 227 1.72 (0.712-4.150) 0.23 1.03 (0.384-2.775) 0.95
Stage III 177 3.19 (1.345-7.580) 0.01 2.31 (0.870-6.151) 0.09
Stage IV 86 8.62 (3.647-20.370) <0.001 7.36 (2.803-19.327) <0.001

Stromal score
High 230 1 - 1 -
Low 383 0.69 (0.483-0.998) 0.05 0.66 (0.332-1.312) 0.24

Immune score
High 425 1 - 1 -
Low 188 1.44 (1.001-2.071) 0.05 2.07 (1.060-4.043) 0.03
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score and p-value � 0.047 for stromal score, log-rank test). Patients
with high immune score had a median overall survival time of
101.4 months, while patients with low immune score had a median
survival of 62.7 months. Patients with lower stromal score also had a
longer median overall survival compared to those with high stromal
score. Especially, patients with combined high immune score and
low stromal score have a significantly better overall survival time
than others (Figure 1C, p-value � 0.00021, log-rank test).

In order to validate these results which were obtained from the
TCGA database, we downloaded and analyzed another
independent cohort in GEO database. We retrieved 182 CRC
patients’ gene expression data and clinical information from
GSE41258 cohort as validation set. Although the difference
was not statistically significant, Patients with high immune
score displayed a longer median survival (Supplementary
Figure S1A, high- vs. low-score � 91 vs. 86 months). And
patients with lower stromal score showed a longer median
survival (Supplementary Figure S1B, high- vs. low-score �
72 vs. 113 months). Consistently, patients with high immune
score and low stromal score in the validation cohort had a longer
survival time (Supplementary Figure S1C, p-value � 0.021, log-
rank test). These results indicated that higher level of immune
score and lower level of stromal score in CRC might mean the
favorable survival outcome, which might provide potential
prognosis stratification factors for clinical predictions.

Immune Scores Correlated With Tumor
Location and Tumor Stage in CRC
To determine the clinical significance of immune and stromal
scores, we investigated the association between immune/
stromal score and clinical features, and the results suggested

that the right-sided colon cancer have a significantly higher
immune score. Immune score significantly correlated with
tumor stage and tumor location (Figures 2A,B, p-value <
0.01). The median immune score of the RCC patients ranked
the highest of all three tumor location subtypes, and the LCC
subtype cases had the lowest immune scores (RCC vs RC �
−571.65 vs −838.1, p-value � 0.019, RCC vs LCC � −571.65 vs
−860.61, p-value � 0.00012, LCC vs RC � −860.61 vs −838.1,
p-value � 0.23, Wilcoxon Test) (Figure 2B). Similarly, the rank
order of immune scores across tumor stage from highest to
lowest was Stage I > Stage II > Stage III > Stage IV (Figure 2A).
What’s more, we found immune score was also significantly
associated with tumor location and the RCC also had the
highest immune score in GSE41258 dataset (Supplementary
Figure S2B, p-value � 0.032), which indicated that immune
score might be predictive in the classification of CRC tumor
location. However, we found no significant differences
between stromal scores with CRC tumor stage or location
(Figures 2C,D, p-value > 0.05). Consequently,
immunotherapy is likely to be more effective for right-sided
colon cancer with more immune infiltration and activation
in CRC.

Differential Expressed Genes Revealed by
Immune and Stromal Scores in CRC
To reveal the correlation of gene expression profiles with
immune and stromal scores, we performed differential
expression genes analysis using DESeq2, and 318 DEGs
were screened out in total. By comparing immune scores
between high- and low-score groups, 188 genes were
identified to be differentially expressed genes. A total of 150

FIGURE 1 | Association between tumor microenvironment and overall survival time in TCGA CRC cohort. (A) Kaplan–Meier curves of high and low immune score
groups. (B) Kaplan–Meier curves of high and low stromal score groups. (C) Kaplan–Meier curves of G1 (high immune score and low stromal score group) versusG2 (low
immune and stromal score group, high immune and stromal score group, low immune score and high stromal score group).
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DEGs were found for high stromal score as compared to low
stromal score. What’s more, we got 43 DEGs when high
immune and low stromal score patients were compared to
the rest. The expression level of the DEGs in each group was
displayed in heatmap (Figure 3). The subsequent analysis in
our study were based on these DEGs.

To better understand the potential biological functions and
mechanisms of DEGs in different immune and stromal score
groups, Gene Set Enrichment Analysis was used to annotate the
biological roles of these DEGs. GO: BP, GO: CC, GO: MF, KEGG
pathways and hallmark gene sets were included in the functional
enrichment analysis. The top 20 functional terms of DEGs in each

group were shown in Figure 4. For the immune score group, the
DEGs were mostly enriched in the regulation of immune system
process and defense response. For the stromal score group and
combined group, the top biological terms were external
encapsulating structure and muscle system process.
Moreover, circulatory system development, collagen
containing extracellular matrix, external encapsulating
structure, intrinsic component of plasma membrane, and
skeletal system development were enriched in at least 2
groups. According to the result of GSEA, it could be
concluded that these 318 DEGs were mostly involved in the
immune regulation biological process that modulates the

FIGURE 2 | Association between tumor microenvironment scores and clinical features in TCGACRC cohort. (A) Distribution of immune scores in consecutive CRC
tumor stages. (B) Distribution of immune scores from distinct CRC primary tumor locations. (C) Distribution of stromal scores in consecutive CRC tumor stages. (D)
Distribution of stromal scores from different CRC primary tumor locations.
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frequency, rate, extent of an immune system process, and
cytokine-cytokine receptor interaction pathway.

Hub Gene Selection Based on PPI Network
In order to evaluate the protein interactive relationships among
DEGs, PPI network was constructed based on STRING database
and nodes that reported high scores in the network were screened
as hub genes. A total of 318 differential expressed genes
comprised 318 nodes and 372 edges based on STRING
database, and result was visualized in Figure 5 after hided
disconnected nodes in the network. Following STRING
analysis, the network was reconstructed in the Cytoscape.
According to the calculation of CytoHubba plugin module, we
identified a list of important genes, from which the top fifteen
genes identified by the MCC algorithm were used for further
analysis. Finally, 15 genes were selected as hub genes (CD86,
ITGAM, PTPRC, FCGR3A, FCGR3B, MRC1, CD163, CCR2,
SELL, CD69, CXCL10, CXCL8, CXCL9, CCL19 and CCL4),
which were marked with red color in the PPI network
(Figure 5). And we found that these genes were significantly
enriched in the external side of plasma membrane, cell surface
and chemokine receptor binding according to Gene Set
Enrichment Analysis (Supplementary Table S1).

Identification and Validation of Survival
Related Hub Genes
We performed survival analysis between the 15 hub genes and the
overall survival time to identify potential prognostic or predictive
markers for CRC. Colorectal cancer samples were splited into
high- and low- expression groups according to the optimal
survival cut-off. We found that 11 hub genes were correlated
with survival in TCGA dataset (Figures 6A–C and

Supplementary Figure S3, p-value < 0.05, log-rank test). As
shown in Figure 6, CXCL9 and CXCL10 were significantly
correlated with the overall survival time in TCGA dataset
(Figures 6A,B, p-value < 0.05, log-rank test), and a higher
expression of them might correspond to better survival.
Importantly, similar result was observed in the validation set
GSE41258 (Figures 6D,E, p-value < 0.05, log-rank test).
Moreover, high expression of SELL also showed longer overall
survival in TCGA dataset (Figure 6C, p-value < 0.05, log-rank
test), even though this pattern was not statistically significant in
GSE41258 cohort (Figure 6F, p-value � 0.053, log-rank test).
Higher expression of PTPRC and CCL4 had a better survival time
in TCGA dataset (Supplementary Figure S3, p-value < 0.05, log-
rank test) and showed a longer median survival time in
GSE41258, but this correlation was not statistically significant
(Supplementary Figure S4, 0.05 < p-value < 0.1, log-rank test).

DISCUSSION

Colorectal cancer is one of the most common pathological types
of cancer. Previous research have demonstrated that tumor
microenvironment play an important role in the occurrence
and development of CRC (Peddareddigari et al., 2010; Kamal
et al., 2020). Data from previous studies indicated that the
infiltration of immune cells into the tumor bed may be a
valuable prognostic factor in the treatment of colorectal tumor
(Pagès et al., 2005; Galon et al., 2006; Galon et al., 2007; Ganesh
et al., 2019). Research showed that the high density of infiltrating
memory CD45RO+ T cells, one type of immune cell, was
associated with the absence of signs of early tumor
lymphovascular and perineural invasion, a less advanced
tumor stage, and a good clinical outcome (Pagès et al., 2005).

FIGURE 3 | Compare of gene expression profiles in different immune/stromal score groups to identify DEGs. (A) Heatmap showing DEGs in high versus low
Immune score groups. (B) Heatmap showing DEGs in high versus low Stromal score groups. (C) Heatmap showing DEGs in G1 (high immune score and low stromal
score group) versus G2 (low immune and stromal score group, high immune and stromal score group, low immune score and high stromal score group).
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Cancer-associated fibroblasts (CAFs) are one of the most
abundant and key components of the tumor mesenchyme
among all the stromal cells (Liu et al., 2019). According to the
study of Isella et al., the presence of high levels of CAFs was
associated with poor prognosis in untreated CRC (Isella et al.,
2015). Understanding the relationship between tumor
microenvironment and patients’ clinical features is vital in
figuring out cancer recurrence and metastasis mechanisms.
However, this mechanism is not well-understood yet.

In this study, we used the ESTIMATE algorithm to evaluate
the infiltration degree of immune and stromal cells in colorectal
cancer. A total of 613 CRC patients were divided into two groups
based on the immune and stromal scores calculated by the R
function ESTIMATE. As a result, we found high immune score
was related with prolonged survival time. This observation was in
general agreement with the study of Mlecnik et al. (Mlecnik et al.,
2016). Besides, we found lower stromal score indicated a longer
overall survival time, which further confirmed previous work by
Calon et al. (Calon et al., 2015). More importantly, when patients

had high immune and low stromal scores, they displayed a
significantly better clinical outcome. The similar trends were
also observed in another independent dataset GSE41258.
These results from our study may help elucidate the
underlying mechanisms in colorectal cancer microenvironment
and prognosis.

Apart from that, we found clinical factors including primary
tumor location and tumor stage were significantly correlated with
immune score in CRC. It is worth noting that right-sided colon
cancer had significantly higher immune score, as compared to
left-sided colon cancer or rectum cancer. These findings might
explain why right-sided colon cancer, presenting a high level of
neoantigens, responded well to immunotherapies rather than
adjuvant chemotherapies (Ribic et al., 2003; Wang et al., 2015;
Passardi et al., 2017; Baran et al., 2018). To the best of our
knowledge, previous researches mainly focused on the difference
between right-sided and left-sided colon cancer (Petrelli et al.,
2017; Mao et al., 2018; Zhang et al., 2018). Our study provides a
more comprehensive analysis about right-sided, left-sided, and

FIGURE 4 | Functional enrichment analysis of immune and stromal scores related DEGs. (A) GSEA analysis results of immune score related DEGs. (B) GSEA
analysis results of stromal score related DEGs. (C) GSEA analysis results of immune and stromal score related DEGs. Top 20 terms were exhibited according to the
significance of FDR q-value.
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FIGURE 5 | PPI network analysis of DEGs and their hub genes screen. The hub gene nodes were highlighted in red.

FIGURE 6 | Validating the hub genes by survival time in TCGA and GEO cohorts. (A–C) Kaplan-Meier plots reflecting the overall survival status of CRC patients in
TCGA cohort. (D-F) Kaplan-Meier plots showing the overall survival status of CRC patients in GSE41258 cohort.
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rectum in CRC patients. Our results further indicated that
immune infiltration was different among right, left, and rectal
CRCs. These immune infiltrating differences might contribute to
the different survival time of CRC patients and providing a
potential explanation for prognostic survival associated with
primary tumor location (Petrelli et al., 2017).

Through the immune and stromal scores related DEGs
analysis, a total of 318 DEGs were screened out and many of
them were involved in tumor microenvironment related
biological processes and pathways. Specifically, based on the
DEGs analysis and GSEA annotation results, 188 DEGs were
significantly correlated with immune score and most of them
were involved in function that modulates the frequency or extent
of an immune system process. Based on the analysis of DEGs and
annotation of GSEA, 150 genes were significantly correlated with
stromal score and mainly enriched in a structure that lies outside
the plasma membrane and surrounds the entire cells.

Via PPI network construction, 15 genes (CD86, ITGAM,
PTPRC, FCGR3A, FCGR3B, MRC1, CD163, CCR2, SELL,
CD69, CXCL10, CXCL8, CXCL9, CCL19 and CCL4) were
selected as hub genes. Especially, three genes (CXCL9,
CXCL10, and SELL) were detected to be correlated with
overall survival time both in the TCGA dataset and the
validation GEO dataset. As shown in Figure 6, their higher
expression was associated with an increased survival rate,
indicating that they might be potential prognostic targets of CRC.

C-X-C motif chemokine ligand 9 (CXCL9, also known as
CMK and MIG) and C-X-C Motif Chemokine Ligand 10
(CXCL10, also known INP10 and SCYB10) are mainly
involved in selective and non-covalent interaction with the
CXCR3 chemokine receptor and cytokine activity according
to the Gene Ontology annotation. The protein encoded by
CXCL9 is a member of CXC chemokine family that
participates in T cell trafficking. Previous study suggested
that CXCL9 plays an important role in different types of
tumors (Ding et al., 2016). CXCL9 can be a tumor
suppressor in breast cancer, non-small cell lung carcinoma,
and colorectal cancer (Addison et al., 2000; Denkert et al., 2010;
Wu et al., 2016). Conversely, it acts as tumor promoter in
various types of cancer such as hepatocellular carcinoma,
oral cavity squamous cell carcinoma, squamous cell cervical
cancer, and chronic lymphocytic leukemia (Yan et al., 2011;
Chang et al., 2013; Zhi et al., 2014; Liu et al., 2015). CXCL10
which is an important paralog of CXCL9, binds CXCR3 receptor
to induce a variety of processes including chemotaxis, regulation
of cell growth and apoptosis, regulation of angiostasis, and
activation of immune cells (Liu et al., 2011; Sidahmed et al.,
2012). The study of Chen et al. revealed that lower expression of
CXCL10 was significantly associated with unsatisfied survival
time (Chen et al., 2020). Our result showed that high expression
of CXCL9 and CXCL10 were correlated with a better prognosis,
which is consistent with studies of colorectal cancer in recent
years (Wu et al., 2016; Chen et al., 2020).

SELL, also known as CD62L and L-selectin, belongs to the
selectin family of glycoprotein adhesion molecules (Lefer, 2000),
which is expressed on multiple tumor-infltrating immune cells
and abundant in the surface of neutrophils (Lefer, 2000; Kumari
et al., 2021). Recent study suggest that L-selectin might be a
favorable prognosis factor in breast cancer (Kumari et al., 2021).
To the best of our knowledge, there are limited studies about
SELL expression and overall survival time in colorectal cancer. In
this study, the high level of SELL was found correlated with better
survival of CRC patients, indicating that SELL might be a new
potential prognostic biomarker in CRC.

In Summary, based on the tumor immune and stromal
analysis, we found that tumor microenvironment was related
to CRC survival outcome and clinical characteristics such as
tumor stage and location. And we identified a series of candidate
genes which might serve as prognostic biomarkers in CRC.
However, there were some limitations in our study. All
analysis was based on public data mining instead of
experiments. More experiments need to be carried out in
order to further verify our conclusion and have a
comprehensive insight on the potential link between the
tumor microenvironment and colorectal cancer. Our current
findings might provide insights into understanding the
potential role of tumor microenvironment in CRC.
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Integrated Analysis of ceRNA Network
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Ruifei Liu1†, Zhengzheng Gao2†, Qiwei Li 3†, Qiang Fu3, Dongwei Han3, Jixi Wang4, Ji Li 4*,
Ying Guo5* and Yuchen Shi3*
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Jiaxing, China, 5First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China

Glioblastoma (GBM), originating in the brain, is a universally aggressive malignant tumor
with a particularly poor prognosis. Therefore, insight into the critical role of underlying
genetic mechanisms is essential to developing new therapeutic approaches. This study
aims to identify potential markers with clinical and prognostic significance in GBM. To this
end, increasing numbers of differentially expressed RNA have been identified used to
construct competitive endogenous RNA networks for prognostic analysis via comparison
and analysis of RNA expression levels of tumor and normal tissues in glioblastoma. This
analysis demonstrated that the RNA expression patterns of normal and tumor samples
were significantly different. Thus, the resulting differentially expressed RNAs were used to
construct competitive endogenous RNA (competing endogenous RNA, ceRNA) networks.
The functional enrichment indicatedmRNAs in the network are critically involved in a variety
of biological functions. Additionally, the prognostic analysis suggested 27 lncRNAs,
including LOXL1-AS1, AL356414.1, etc., were significantly associated with patient
survival. Given the prognostic significance of these 27 lncRNAs in GBM, we sought to
classify the samples. Importantly, Kaplan-Meier analysis revealed that survival times varied
significantly among the different categories. Overall, these results identify that the
candidate lncRNAs are potential prognostic markers of GBM and its corresponding
mRNAs may be a potential target for therapy.

Keywords: glioblastoma, lncRNA, ceRNA, network, prognostic biomarker

INTRODUCTION

Long non-coding RNAs (lncRNAs), a series of transcript RNAs longer than 200 nucleotides, plays a very
crucial role in biological processes, such as cell proliferation, cell apoptosis, and cell cycle regulation (Zhang
et al., 2020). Accumulating studies reported that lncRNA can be involved in the regulation of competitive
endogenous RNA (ceRNAs) to communicate with other RNA transcripts (Calin et al., 2007; Arvey et al.,
2010; Ebert and Sharp, 2010). LncRNA can function as an endogenous molecular sponge, indirectly
regulating downstream mRNA expression levels by having shared microRNA response elements with
reverse complementary binding seed regions competitively binding to miRNA, and subsequently involved
in cancer development (Bai et al., 2019; Sun et al., 2020). In other words, lncRNA competes with miRNA
target genes for miRNA molecules by sharing a common miRNA binding site with mRNA. It has been
documented that ceRNAs play a regulatory role in gene expression and is involved in the pathogenesis of
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diseases such as cancer (Tay et al., 2011). A growing body of evidence
clarifies thatmolecular networks play an important role in a variety of
human diseases (Silverman et al., 2020). Accordingly, it is valuable to
dissect the ceRNA network for understanding the underlying
molecular mechanisms of cancer development.

Glioblastoma (GBM), one of the most fatal and aggressive forms
of brain tumors, is a prevalent malignant tumor that originates in the
brain, currently accounting for more than half of all gliomas (Liang
et al., 2005). GBM is characterized by its high invasiveness, poor
clinical prognosis, and high mortality rates. Current therapeutic
approaches include focal radiotherapy, chemotherapeutics, and
surgical resection. The 5-years survival rate is less than 3% (De
Leo et al., 2020). Over the past few years, little progress has beenmade
in determining methods to predict which patients will better receive
the current standards of care (Johnson et al., 2020). Although survival
has improved with the optimization of treatment strategies, GBM
prognosis remains poor (Wen and Kesari, 2008; Yuan et al., 2015).
Consequently, investigating potential genetic mechanisms of GBM is
of great significance. The development of alternative and suitable
biomarkers to effectively diagnose and treat GBM remains one of the
most pressing challenges in cancer therapy (Aldape et al., 2015; Zhou
et al., 2019). Identification of prognostic markers of GBM also
contributes to comprehending the mechanisms of metastasis,
which may lead to the discovery of novel therapeutic targets. The
exploration of ceRNA networks in GBM may provide new insight
into understanding the biological mechanisms of the disease.

In this study, glioblastoma-specific ceRNA networks were
constructed based on differentially expressed genes. In
addition, we further derived and characterized the lncRNAs
that were significantly associated with survival in the network,
classified the samples based on the screened lncRNAs. We
observed the significant differences in survival time among the
types of samples, which could shed light on that the lncRNAs we
screened are potential prognostic markers of GBM and its
corresponding mRNA may be a potential target for therapy.

MATERIALS AND METHODS

Acquisition of Glioblastoma Transcriptome
and Clinical Data
We obtained the transcriptome expression profile in glioblastoma
with 154 tumor samples and 5 normal samples via The Cancer
Genome Atlas (TCGA) database (https://tcga-data.nci.nih.gov/
tcga). Moreover, we also retrieved the demographic information
(age, gender, race and so on) and survival endpoint (vital status,
days to death and days to last follow-up) of each patient.

Interactions of ceRNA
StarBasev2.0 (http://starbase.sysu.edu.cn/index.php) database is an
open-source platform for decoding miRNA–ceRNA,
miRNA–ncRNA, and protein–RNA interaction networks, stored
the lncRNA related ceRNA interactions identified using
hypergeometric tests (Li et al., 2014). The hypergeometric test
(Sumazin et al., 2011) is executed for each ceRNA pair separately,
which is defined by four parameters: 1) N is the total number of
miRNAs used to predict targets; 2) K is the number of miRNAs that

interact with the chosen gene of interest; 3) n is the number of
miRNAs that interact with the candidate ceRNA of the chosen gene;
and 4) c is the common miRNA number between these two genes.
The test calculates the p-value by using the following formula:

P � ∑
min(K,n)

i�c

(K
i
)(N − K

n − i
)

(N
n
)

(1)

Multiple miRNAs belonging to the same family were every
miRNA family only once, even if it had multiple binding sites at
the same 3′-UTR of protein coding genes or transcript of non-
coding genes. All p-values were subject to false discovery rate
(FDR) correction.

In this study, starBase was utilized to downloaded and
extracted the ceRNA-ceRNA interactions of lncRNA-mRNA.

Associations Between LncRNA and Cancer
We downloaded the relationships between lncRNA and cancer
from the Lnc2Cancer 3.0 (Sumazin et al., 2011) (http://www.bio-
bigdata.net/lnc2cancer/) database, which contains the
associations verified by the literature of 2,659 human lncRNAs
and 216 cancer subtypes.

Identification of Differentially Expressed
LncRNAs and mRNAs
First, we screened out genes that expressed less than 2 in 20 % of the
samples. Next, compared to the normal group with the tumor group,
the R software (version 3.6.3) and limma package in Bioconductor
were used to detect the differentially expressed lncRNAs
(DElncRNAs) and mRNAs (DEmRNAs). DElncRNAs and
DEmRNAs were identified using the selection criteria of adjusted
p-value (FDR) < 0.01 and FC > 2.0 or FC < 0.5 calculated by the
T-test and fold change algorithm. Then, the differentially expressed
lncRNAs and mRNAs meeting the criteria were displayed in
volcano plots.

Construction of Glioma-specific
LncRNA-mRNA ceRNA Network
Ahead of analyzing the basic statistics, we downloaded information
from starBase about the lncRNA-ceRNA interaction. All interactions
are verified by the literature. The starBase database contains
83,916 lncRNA-ceRNA interactions, including 2,539 lncRNAs and
2079 mRNAs. After that, we mapped the DEmRNAs and
DElncRNAs selected in the previous step to the lncRNA related
ceRNA interactions. Subsequently, the interactions between
DEmRNAs and DElncRNAs were singled out to construct a
glioma-specific ceRNA regulatory network. Cytoscape (version
3.7.2) was used to visualize the ceRNA network.

Functional Enrichment Analysis
Gene Ontology (GO) is a universal tool for defining the biological
process (BP), cellular component (CC), and molecular function (MF)
of numerous genes. Kyoto Encyclopedia of Genes and Genomes
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(KEGG) pathway is a database that contains multiple biological
pathways for several organisms (Kanehisa et al., 2017). The
enrichment analyses of mRNAs on the glioma-specific ceRNA
network were performed using the clusterProfiler package in
Bioconductor, and a p-value less than 0.05 was considered as
statistically significant (Yu et al., 2012). Furthermore, we
performed a KEGG pathway enrichment for mRNAs connected to
each lncRNA. GO and pathway analysis provided a deep insight into
the relations of functions or pathways and the primary roles of
these genes.

Survival Analysis
The Cox proportional hazards regression model has the function to
process the truncated survival time while analyzing various variables
with no requirement for the type of distribution of the survival
function (Zhao et al., 2010). To assess the prognostic characteristics of
all lncRNAs, the univariate Cox proportional hazards model was
applied. We integrated all lncRNAs on the glioma-specific ceRNA
network into the univariate Cox model to identify the lncRNAs
significantly associated with survival. p values < 0.05 were regarded as
significant.

Prognostic Analysis
\K-means clustering algorithm was used to classify the samples into
four groups based on lncRNA that was significantly related to survival
and R package “factoextra” was adopted to visualize it. To further
determine the prognostic characteristics of lncRNAs, after combining
the overall survival of 154 patients with GBM, the survival curves of
these samples with classification information were plotted by using
the “survival” package in R based on Kaplan-Meier curve analysis.
Log-rank p < 0.05 was considered significant.

RESULT

Identification of Differentially Expressed
Genes in Glioblastoma
In order to better explore the differences between glioma patients
and normal samples at the gene transcriptome level, based on the
dataset of 5 normal samples of glioblastoma and 154 cancer
samples derived from TCGA, we performed a differential
expression analysis to identify significantly differentially

expressed lncRNAs and mRNAs. Then, as shown in Figures
1A,B , we compared the tumor group with the normal group to
visualize significantly differentially expressed lncRNAs and
mRNAs using volcano maps. Finally 2,326 DElncRNAs
(Figure 1A, B) and 8,304 DEmRNAs were identified (Figure 1C).

Dissecting ceRNANetwork Reveals lncRNA
Functions
Recent studies have reported that lncRNAs can participate in
competing endogenous RNAs (ceRNAs) regulations in order to
communicate with other RNA transcripts. In order to better
understand the regulatory relationship between differential mRNA
and lncRNA, subsequently, we mapped the resulting DElncRNAs
and DEmRNAs to the lncRNA-ceRNA relationship pairs
downloaded from starbase and constructed a glioblastoma-specific
ceRNA network (Figure 2A) which was composed of 343 lncRNAs,
1,427mRNAs, and a total of 3,741 edges. Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes pathway enrichment analyses
revealed that the DElncRNAs involved in the ceRNA network were
remarkably associated with a series of functions, namely, T cell
activation, epidermal cell development, MAPK signaling, and cell
apoptosis (Figure 2B). In addition, we counted the types of cancer
associated with each lncRNA on the ceRNA network by using the
lnc2Cancer database and performed functional enrichment of the
interacting mRNAs via clusterProfiler, the results of functional
enrichment analysis are listed in.

Screening for lncRNAs Significantly
Associated With Survival Involved in ceRNA
Network
To further analyze the relationship between lncRNA and
glioblastoma prognosis in glioblastoma-specific ceRNA networks,
all lncRNAs of the ceRNA network were incorporated into the
univariate Cox model to spot lncRNAs significantly associated
with survival based on the lncRNA expression and clinical
information. As a result, using the threshold value of p < 0.01, 27
lncRNAs containing LOXL1-AS1 and HOTAIRM1 were revealed to
be prominently associated with GBMprognosis among 343 lncRNAs
(Figure 3A). The knockdown expression of LOXL1-AS1 has a
functional inhibitory effect on the proliferation of GBM cells
(Wang et al., 2018), which has been confirmed in the literature.

FIGURE 1 | (A) Volcano map of the differential mRNA. (B) Volcano map of the differential lncRNA. (C) Heatmap plots of the differentially expressed lncRNAs
between normal and cancer samples.
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Moreover, HOTAIRM1 knockdown has also been confirmed to
significantly weaken the migration and invasion of GBM cells (Xie
et al., 2020). Next, functional annotations were performed on the
mRNAs regulated by identified lncRNAs significantly associated with
survival in the ceRNA network, and we found that the mRNAs
regulated by these lncRNAs significantly enriched MAPK signaling
pathways and Focal adhesion (Figure 3B). It has been confirmed that
MAPK signaling pathway is significantly correlated with survival and
prognosis of glioma (Nicolas et al., 2019; Chen et al., 2020). In
addition, GSK2256098 is a novel oral focal adhesion kinase (FAK)
inhibitor. Preclinical studies demonstrate growth inhibition in
glioblastoma cell lines (Swartz, 2020). These results indicate that
the 27 lncRNAs identified by us can affect the survival prognosis of
glioma patients.

Classification of Glioma Patients Based on
LncRNA Related to Prognosis
After the above identification, it was known that the 27 lncRNAs
related to survival can be used to judge the survival of patients.

Continuously, based on the expression of 27 lncRNAs
significantly related to survival, using the K-means clustering
method, we gathered samples into four categories on the basis of
the optimal number of clusters as k � 4 (Figures 4A,B). As results,
33 samples were divided into cluster 1, 11 samples were divided
into cluster 2, and clusters 3 and 4 contained 16 and 94 samples,
respectively.

Survival Analysis for the Glioblastoma
Patients of the Four Subtypes
To determine lncRNAs whether have an impact on the overall
survival of patients with GBM, survival analyses were conducted
to investigate the Kaplan–Meier curves for GBM patients with the
27 lncRNAs (Figure 5A). The result exhibited an obvious
difference in survival time between the four categories of
samples (p < 0.05). It indicates that these 27 lncRNAs may be
potential prognostic factors for glioblastoma. Then, we evaluated
the differential expression of 27 lncRNAs significantly associated
with survival in different subtypes. We found that lncRNA

FIGURE 2 | (A) lncRNA-mRNA ceRNA network specific to glioblastoma. (B) The enrichment analyses of mRNAs on the glioma-specific ceRNA network, in which
GO includes BP, MF and CC.

FIGURE 3 | (A) Univariate Cox proportional hazards model was applied to identify the 27 lncRNAs significantly associated with survival. (B) KEGG pathway
enrichment analysis of 27 lncrNA-regulated mrnas significantly associated with survival.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 8032574

Liu et al. Potential Prognostic Biomarkers for Glioblastoma

116

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


HOTAIRM1 was highly expressed in subtype I compared with
the other three subtypes. And it’s been documented that Serum
long noncoding RNA HOTAIR as a novel diagnostic and
prognostic biomarker in glioblastoma multiforme. The higher
the expression of HOTAIR, the worse the survival of patients
(Tan et al., 2018). In our study, HOTAIRM1was highly expressed
in the samples of subtype 1 with the worst prognosis, while
HOTAIRM1 expression was lowest in the samples of subtype 3
with a good prognosis (Figure 5B). This indicates that the
lncRNAs identified by us can accurately classify patients and
explain the clinical results of the corresponding subtypes.

Robustness Analysis of 27 lncrnas
Significantly Associated With Prognosis
To verify the accuracy of patient classification based on the
identification of 27 lncRNAs significantly associated with
survival, we downloaded a set of transcriptome data

FIGURE 4 | (A) The optimal number of clusters for K-means clustering, that is, K � 4. (B) Cluster graph of K-means.

FIGURE 5 | (A) Kaplan–Meier survival curves of four types of samples. (B) The violin diagram shows the expression of lncRNA HOTAIRM1 in samples of four
different subtypes.

FIGURE 6 | Kaplan–Meier survival curves of four types of samples in
independent validation set.
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(GSE121720) from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/) containing 60
glioma samples, and the survival time of patients was
available. Similarly, we classified the samples based on the
identified lncRNAs significantly associated with survival using
k-means. In the independent validation set, we also divided the
samples into four categories, and there were significant
differences in the survival time of the four categories (Figure 6).

DISCUSSION

GBM is a common aggressive brain cancer which occurs in the
central nervous system with a known poor prognosis and limited
treatment options (Xiao et al., 2020). Searching for possiblemolecular
mechanisms and potential biomarkers for GBM is a current urgent
task (Rahaman et al., 2002). Increasing experimental evidence
suggests that aberrant expression of ncRNA, including lncRNA
and miRNA, are intimately associated with malignant progression
and metastasis (Li et al., 2019; Liu et al., 2019). Since the ceRNA
hypothesis was proposed, researchers have gained increasing interest
in ceRNA networks, where lncRNA may influence mRNA
transcription and expression by interacting with miRNA (Li et al.,
2020). Competitive endogenous RNA (ceRNA) regulatory network
has been confirmed to regulate expression based on competitive
mechanisms and play a crucial part in multiple tumor pathological
and physiological processes. ceRNAs are significant mechanisms by
which lncRNAs regulating gene expressionmay exert huge influences
on cancer. It has been extensively reported that the disorder of the
ceRNA network is closely related to cancer progression (Salmena
et al., 2011). For instance, a study showed that lncRNA ZEB1-AS1
functions as a ceRNA in BC, regulating the expression of the protein-
coding gene fascin-1 via miR-200b (Gao et al., 2019). Thus, the
ceRNA network might promote new tools for understanding the
potential mechanisms of GBM and discovering potential new
therapeutic targets. Here, relied on the RNA expression dataset,
we proposed a ceRNA network by identifying significantly
differentially expressed genes in normal samples and cancer samples.

The rapid development of bioinformatics methods provides
methodological support for exploring high-throughput
sequencing data (Zhong et al., 2021). The differential RNA
expression observed in between the GBM and normal samples
suggests that DERNAs may exert a critical role in cancer
progression. In this study, we identified differentially expressed
lncRNAs and mRNAs in GBM and normal brain tissue samples
from the TCGA dataBase, and we further constructed a ceRNA
network specific for glioblastoma combined with the lncRNA-
ceRNA relationships attained in the starBase database. Functional

enrichment analysis of the mRNA in the ceRNA network was
performed to identify the notably enriched KEGG and GO terms.
Based on the principle of the ceRNA network, lncRNA
participates in biological processes by acting as endogenous
molecular sponges that competitively bind to miRNAs and
indirectly regulates the expression level of messenger RNA
(mRNA). Hence, the potential functions and pathways of
lncRNA may be similar to that of mRNA. The GO functional
annotation mostly showed enrichment of mRNA related to
several major regions, such as growth factor binding, Ras
protein signal transduction, and positive regulation of cell
cycle process. Moreover, several enriched pathways observed
in the KEGG results have been reported in previous studies.
MAPK is a key signaling pathway involved in GBM proliferation,
apoptosis, migration, and infiltration (Vitucci et al., 2013).
Finally, we assessed the survival time among the samples by
clustering samples into four different subgroups based on
K-means cluster analysis and the Kaplan–Meier survival curve
showed remarkable differences in the survival time of the four
categories of samples. This also indicates that the 27 selected
lncRNAs that are significantly related to survival may be potential
clinical prognostic factors for glioblastoma, and the mRNAs that
interact with them may be potential therapeutic targets for
glioblastoma.

Overall, we depicted a reliable prognostic ceRNA network
using the differential lncRNAs andmRNAs involving GBM in the
TCGA database and investigated the relevant clinical
information. Our results provide a novel approach to
discovering potential ceRNA networks in GBM, which will
help to better understand the pathogenesis of GBM at the
gene level and identify potential therapeutic agents for
treating GBM.
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