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Editorial on the Research Topic

Modulation of NMDA Receptors: From Bench Side to Clinical Applications in Psychiatry

N-methyl -D- aspartate receptors (NMDARs) have a complex role in the developing and mature
brain. Disruptions in NMDAR signaling have been observed in different psychiatric disorders
such as schizophrenia, depressive disorder, and Alzheimer’s disease (AD) (1). The articles in
this Research Topic further advance our knowledge on the complex role of NMDARs in
normal and pathological conditions and explore the possibility of novel therapeutic uses of
NMDAR modulators.

The NMDAR hypofunction hypothesis of schizophrenia (2) is the basis for the current use of
NMDAR modulators in modeling of this disease in animals and as potential therapeutics.

In the review article, Pei et al. address the use of direct and indirect NMDAR glycine-site
modulators, such as glycine, D-cycloserine, D-serine, glycine transporter 1 (GlyT1) inhibitors, and
D-amino acid oxidase (DAAO) inhibitors in the treatment of clinical symptoms and cognitive
impairments seen in schizophrenia. Reviewed preclinical and clinical studies suggest that indirect
NMDAR glycine-site enhancers such as GlyT1 inhibitors (sarcosine) andDAAO inhibitors (sodium
benzoate, TAK-831) seem to be more potent in clinical efficacy and with fewer side effects than
direct NMDAR glycine-site agonists, including glycine, D-cycloserine, and D-serine.

Due to the fact that D-serine is one of the most frequently used NMDAR modulators and
findings of its nephrotoxicity in rats, important is the review of Meftah et al. that summarizes
current findings of the safety of D-serine treatment in different mammals, including humans. The
toxicity of D-serine to endocrine, cardiovascular, gastrointestinal and extrapyramidal systems, with
a special focus on the kidneys, is comprehensively discussed. The authors conclude that in humans
D-serine appears to be safe at currently studied maximal doses and suggest that in future work even
higher doses combined with DAAO inhibitors should be investigated.

The kynurenic acid (KYNA), an endogenous NMDA receptor antagonist, is elevated in the
brain of patients with schizophrenia (3). Wright et al. utilized pre-natal exposure to kynurenine
to model prenatal insult in rats and have found gender and circadian changes in the extracellular
levels of glutamate, GABA and KYNA in rat hippocampi. The authors suggested that sex and time-
dependent changes in hippocampal neuromodulation, elicited by prenatal KYNA elevation, may
influence behavioral phenotypes, and have translational relevance to psychotic disorders.
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Mallien et al. focused to identify the cellular substrates of
psychosis induced by NMDAR hypofunction at post-adolescent
stages. For these purposes, they have analyzed the effect of
the inducible ablation of NMDARs in ErbB4 expressing cells,
as neuregulin 1 and its receptor ErbB4 have been identified
as schizophrenia-associated susceptibility factors that closely
interact with NMDARs. They concluded that post-adolescent
NMDAR deletion, even in a wider cell population than
parvalbumin-positive interneurons, is not sufficient to generate
behavioral changes that mimic psychiatric disorders.

With ketamine’s demonstrated efficacy in the treatment
of unipolar depression (4), there are emerging questions
on the mechanism of actions underlying its observed fast
clinical improvement and the potential role of NMDA
transmission in bipolar depression. Yang et al. in their article
highlight the importance of NMDAR transmission in the
generation of mental representation during working memory.
They further postulate that the very rapid, antidepressant
effect of intranasal ketamine may involve the disruption
of NMDAR-generated aversive mood states by the anterior
and subgenual cingulate cortices, providing the opportunity
for the return of top-down regulation by higher prefrontal
cortex areas.

The effects of a single intravenous infusion of ketamine
hydrochloride on magnetoencephalographic recordings
in drug-free individuals with major depressive disorder
performing an attentional task during scanning, have been
investigated by Gilbert et al. Dynamic causal modeling
was used to model effective connectivity of excitatory
and inhibitory pathways. The authors provide additional
support for the GABA disinhibition hypotheses of
depression and the role of AMPA receptors in ketamine’s
antidepressant effects.

Dong et al. in their article address the impact of another oral
NMDAR antagonist, D-cycloserine, combined with lurasidone
on glutamate and glutamine in bipolar depression. This
preliminary pilot study demonstrated that a lower mean
glutamate level post-treatment after administration of NMDAR
antagonist in combination with lurasidone predicts a better
antidepressant response in bipolar depression. Authors propose
that in the future, attenuation of the glutamate response
to NMDAR antagonists could potentially be used as a
biomarker for screening of NMDAR antagonists for their
antidepressant potential.

Recent studies suggested that ketamine’s rapid-acting
antidepressant effect is potentially mediated by the opioid

system (5). Bowman et al. have investigated the resting state
electroencephalography profiles induced by co-administration
of ketamine with either antipsychotic clozapine, or opioid
receptor antagonist naltrexone, in freely moving rats to
clarify this issue further. They demonstrated that the
effect of clozapine, ketamine and naltrexone on local field
potentials (LFP) depends of the locomotor state and that
both clozapine and naltrexone modulated the effect of
ketamine LFPs.

Balanced NMDAR activity is required for optimal brain
and neurocognitive function (6). In an overview, Orzylowski
et al. summarize the potential role of D-serine in normal and
pathological aging such as AD. They review both preclinical
and human studies of D-serine’s modulation of cognition.
Albeit controversial, it has been suggested that, in normal
aging, decreased serine racemase expression, lower D-serine
concentration, and NMDARs downregulation may lead to
impaired synaptic plasticity and declined cognitive function. On
the other hand, in AD, increased serine racemase expression,
higher D-serine levels, and NMDAR overactivation tend to
generate neurotoxicity and dementia. D-Serine and DAAO
have been proposed as possible biomarkers and D-serine
and DAAO inhibitors as potential therapeutics in early-
phase AD.

Besides its role in schizophrenia and depression, the
glutamatergic system and NMDARs have also been implicated
in the pathophysiology of alcohol use disorder (7). Alcohol
exposure upregulates Fyn, a protein tyrosine kinase that
indirectly modulates NMDAR signaling by phosphorylating the
NR2B subunit. Thompson et al. showed that saracatinib, the
Src/Fyn kinase inhibitor, at the doses and regimen used in the
study did not affect alcohol-seeking/craving or consumption in
habitual mice or heavy drinking human participants.
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NMDAR Neurotransmission Needed
for Persistent Neuronal Firing:
Potential Roles in Mental Disorders
Shengtao Yang 1, Hyojung Seo 1,2, Min Wang 1 and Amy F. T. Arnsten 1*

1Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States, 2Department of
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The dorsolateral prefrontal cortex (dlPFC) generates the mental representations that

are the foundation of abstract thought, and provides top-down regulation of emotion

through projections to the medial PFC and cingulate cortices. Physiological recordings

from dlPFC Delay cells have shown that the generation of mental representations during

working memory relies on NMDAR neurotransmission, with surprisingly little contribution

from AMPAR. Systemic administration of low “antidepressant” doses of the NMDAR

antagonist, ketamine, erodes these representations and reduces dlPFC Delay cell firing.

In contrast to the dlPFC, V1 neuronal firing to visual stimuli depends on AMPAR, with

much less contribution from NMDAR. Similarly, neurons in the dlPFC that respond

to sensory events (cue cells, response feedback cells) rely on AMPAR, and systemic

ketamine increases their firing. Insults to NMDAR transmission, and the impaired ability

for dlPFC to generate mental representations, may contribute to cognitive deficits in

schizophrenia, e.g., from genetic insults that weaken NMDAR transmission, or from

blockade of NMDAR by kynurenic acid. Elevated levels of kynurenic acid in dlPFC may

also contribute to cognitive deficits in other disorders with pronounced neuroinflammation

(e.g., Alzheimer’s disease), or peripheral infections where kynurenine can enter brain

(e.g., delirium from sepsis, “brain fog” in COVID19). Much less is known about NMDAR

actions in the primate cingulate cortices. However, NMDAR neurotransmission appears

to process the affective and visceral responses to pain and other aversive experiences

mediated by the cingulate cortices, which may contribute to sustained alterations in

mood state. We hypothesize that the very rapid, antidepressant effects of intranasal

ketamine may involve the disruption of NMDAR-generated aversive mood states by the

anterior and subgenual cingulate cortices, providing a “foot in the door” to allow the

subsequent return of top-down regulation by higher PFC areas. Thus, the detrimental

vs. therapeutic effects of NMDAR blockade may be circuit dependent.

Keywords: NMDAR (NMDA receptor), prefrontal cortex, cingulate cortex, working memory, depression
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INTRODUCTION

The recent discovery that the NMDA receptor (NMDAR)
antagonist, ketamine, can produce rapid, antidepressant actions
has stirred interest in the possible mechanisms underlying these
therapeutic effects, and why blockade of NMDAR can produce
such a swift change in mood. The current review discusses how
NMDAR-calcium mechanisms are needed for sustained neural
representations, e.g., such as the persistent representation of
visual space in working memory by circuits in the dorsolateral
prefrontal cortex (dlPFC), and suggests that parallel mechanisms
in the cingulate circuits mediating mood and emotion may be
overactivated in depression, and aided by NMDAR blockade
(1, 2).

NMDAR are heterotetramers composed of GluN1 and GluN2
(A-D) or GluN3 (A-B) subunits- usually with two GluN1 and
two GluN2 subunits (3). The GluN2B subunit, also known as
the NR2B subunit, has been of particular interest, as it closes
more slowly than the common, GluN2A subunit, and fluxes
high levels of calcium into the neuron (4). Although previous
research in rodent classic circuits had found that NMDA-GluN2B
were mostly at extra-synaptic locations (5), or played a role
only in immature neurons (6), more recent research has shown
that GluN2B play a critical, synaptic role in the primate cortical
circuits mediating higher cognition, providing the synaptic
events that generate sustained representations of visual space in
working memory in the dlPFC (7, 8). The high levels of calcium
influx into spines may be especially important for maintaining
a depolarized post-synaptic membrane, permitting continued
neural firing needed to sustain representations over long time
periods (9). Recent research has also shown that expression
of NMDAR with GluN2B subunits encoded by the GRIN2B
gene expands across primate cortical evolution (10), and across
the cortical hierarchy in humans, with especially high levels in
association and limbic cortices such as the anterior cingulate
cortex (11). The following paper explores the hypothesis that the
critical role of GluN2B in generating sustained representations in
dlPFC may extend to the generation of aversive mood state by
the anterior and subgenual cingulate cortices, and that NMDAR
blockade by ketamine may be helpful by relieving this self-
perpetuating, aversive network activity.

Abbreviations: ACC, anterior cingulate cortex; AMPAR, α-amino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid receptor, an ionotropic glutamate receptor;

BA24, Brodmann’s area 24, part of the anterior cingulate cortex; BA25, Brodmann’s

area 25, also known as the subgenual cingulate cortex; BA32, Brodmann’s

area 32, part of the ventromedial cortex; BA46, Brodmann’s area 46, part of

the dorsolateral prefrontal cortex; dlPFC, dorsolateral prefrontal cortex; GABA,

Gamma-AminoButyric Acid, an inhibitory neurotransmitter; GluN2B, a subunit

of the NMDAR, which closes slowly and fluxes high levels of calcium; HPA

axis, Hypothalamus Pituitary Adrenal gland axis for control of cortisol release

from the adrenal cortex (corticosterone in rodents); immunoEM, Immunoelectron

microscopy; PFC, prefrontal cortex; LIP, lateral intraparietal cortex specialized

for analyzing visual space; M1R, cholinergic muscarinic M1 receptor; mPFC,

medial prefrontal cortex; MT, middle temporal visual cortical area specialized for

analyzing visual motion; Nic, α7R, cholinergic nicotinic α7 receptor; NMDAR, N-

methyl-D-aspartate receptor, an ionotropic glutamate receptor; PFC, prefrontal

cortex; PSD, postsynaptic density; V1, primary visual cortex.

The paper will briefly review PFC circuits in primates and
their regulation of the cingulate cortices, and then discuss the
critical role of NMDAR for generating mental representations in
dlPFC, the expansion in NMDAR-GluN2B transmission across
the cortical hierarchy and across cortical evolution, and the role
of NMDAR-GluN2B in the cingulate cortices mediating affective
pain responses and depression. It will briefly discuss how stress
exposure impairs higher PFC regulation, and will close with
an exploration of the idea that ketamine’s rapid antidepressant
actions may involve blocking mental representations of aversive
mood state in the cingulate cortices.

PRIMATE PREFRONTAL CORTICAL
CIRCUITS

The PFC greatly expands and differentiates over brain evolution,
allowing representations of information in the absence of sensory
stimulation. The primate PFC is topographically organized
across multiple dimensions, e.g., with “simpler” representative
functions found more caudally and more complex (e.g.,
metacognition) more rostrally in the frontal pole (12, 13).
There are also topographic differences across the dorsolateral
to ventromedial dimensions (14), where the dlPFC represents
the outer world (e.g., with inputs from parietal areas that
process visual space, Figure 1A), while the ventral and medial
PFC regions represent the inner world, including taste and
olfaction combining to represent flavor in orbital (ventral)
PFC, and projections from the medial thalamus to the medial
anterior cingulate cortex (ACC, BA24) mediating the emotional
aspects of pain (Figure 1A). Neurons in the dorsomedial
PFC also can represent persistent signatures of loss during a
competitive game (15), and anterior cingulate neurons respond
to errors (16), suggesting these regions are also activated by
aversive psychological events. This information is relayed to
the subgenual cingulate (BA25) that has extensive visceromotor
connections to induce the physical aspects of the emotional
response to pain [Figure 1A; (14)]. For example, BA25 projects
to the amygdala, and the hypothalamus and brainstem to effect
the autonomic nervous system and facial expression, and to
the periaqueductal gray and medial subthalamic nucleus to alter
behavioral response (14, 17–19), e.g., “freezing” behavior in
response to a threat.

The more newly evolved, rostral and lateral areas of PFC
provide top-down regulation of the more primitive medial and
caudal areas. For example, the dlPFC can regulates emotion via
direct projections to BA24 (20, 21), and indirect projections to
BA25 via BA10m or BA32 to BA25 (22, 23) (Figure 1A). The
pathways from dlPFC to BA32 and then to BA25 are now known
in great detail at the ultrastructural level (23–25), showing how
dlPFC and BA32 are positioned to either inhibit or activate
emotional responses by BA25.

An important note about species differences: rodents do
not have rostral PFC areas (e.g., frontal pole) or a dlPFC,
and even the medial and orbital PFC areas they do have are
much less developed and differentiated than those in primates
(26). Indeed, the dorsal to ventral topography of medial PFC
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FIGURE 1 | Primate cortical circuits. (A) Schematic diagram of circuits in the rhesus monkey cortex, where the lateral surface represents the outer world, and the

medial and orbital surface represents inner state. The dorsal stream is shown on the lateral surface, where dlPFC represents visual space in working memory, and

generates the goals for top-down regulation of emotion. The medial surface shows the pathways mediating the emotional response to pain, arising from medial

thalamic projections to the insular cortex (not shown) and the anterior cingulate cortex BA24, which both project to BA25 (subgenual cingulate). BA25 is a major

center for visceromotor outputs, e.g., to the amygdala, brainstem, and hypothalamus to alter heart rate. These cingulate cortices are often overactive in depression,

and a target of DBS treatments. The dlPFC provides top-down regulation of emotion through indirect projections to BA25 via areas BA10m and BA32, and direct

projections to BA24 (not shown). (B) The increasing timescales across the primate cortical hierarchy, and their relationship to GRIN2B expression. Based on (11) and

(9). LIP, lateral intraparietal cortex; MT, middle temporal visual cortex.

subregions appears to be reversed from rodent to monkey,
with the most ventral BA25 activating the stress response in
monkeys, but inhibiting it in rodents (27). This may be due
to the medial PFC being less differentiated in rodents, with

a dorsal-ventral gradient in many medial PFC connections
(28). Thus, the actual circuit connections, e.g., with excitatory
vs. inhibitory neurons in amygdala, need to be identified for
proper interpretation.
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THE CRITICAL ROLE OF NMDAR-Glun2B
IN THE GENERATION OF MENTAL
REPRESENTATIONS BY THE dlPFC

The primate dlPFC has the remarkable ability to generate and
sustain mental representations without sensory stimulation, the
foundation of abstract thought (29). dlPFC “Delay cells” are
able to maintain persistent firing across the delay period in
a working memory task, sustaining representations over many
seconds e.g., remembering a position in visual space (30).
“Delay cells” appear to reside in pyramidal cell microcircuits
in deep layer III of the dlPFC that have extensive recurrent
excitatory connections [Figure 2A; (29, 31)], as well as lateral
inhibition from parvalbumin-containing interneurons to refine
spatial tuning (29, 32). The persistent firing of Delay cells across

the delay period depends on NMDAR stimulation (7), a finding
predicted by computational models (33). Thus, iontophoresis
(local electrical application) of low doses of NMDAR antagonists,
including antagonists that selectively block those with GluN2A
or GluN2B subunits, markedly reduces Delay cell firing (7). An
example is shown in Figure 2B, where under control conditions a
Delay cell can sustain the representation of the cue that had been
flashed at 270◦ over many seconds in workingmemory. However,
the Delay cell is no longer able to represent spatial information in
working memory following the local iontophoretic blockade of
NMDAR GluN2B with the antagonist, TCN237.

Immunoelectron microscopy (immunoEM) showed that
NMDAR-GluN2B are expressed exclusively within the post-
synaptic density (PSD) in layer III dlPFC spines, and are
not extra-synaptic, consistent with their direct mediation of

FIGURE 2 | The persistent firing of dlPFC Delay cells depends on NMDAR with GluN2B subunits. (A) Schematic illustration of the recurrent excitatory microcircuits in

deep layer III of dlPFC that generate persistent firing. (B) A dlPFC Delay cell that represents the spatial position of 270◦ during a spatial working memory task,

maintaining firing across the delay period for only that preferred location. Iontophoresis of the selective NMDAR- GluN2B antagonist, TCN237, completely blocks the

ability of the neuron to generate representations of visual space.
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neurotransmission (7). The ability of GluN2B subunits to flux
large amounts of calcium may be a key aspect of why they
support persistent firing in computational models (33) and in
Delay cells (7).

In contrast to NMDAR, blockade of AMPAR has remarkably
subtle effects on Delay cell firing (7) (Figures 3A,B). This finding
was initially confusing, as it is generally thought that AMPAR
are essential to depolarize the PSD membrane and relieve the
magnesium (Mg2+) block within the NMDAR pore, permitting
NMDAR actions (Figure 3C). However, in dlPFC, this key
permissive role appears to be played by acetylcholine acting
at Nic-α7R and muscarinic M1R within the glutamate synapse
(34, 35) which may depolarize the PSD to support persistent
firing (Figures 3A,B). M1R may depolarize the PSD via closing
of KCNQ channels localized in the PSD, and/or by enhancing
levels of internal calcium release. These physiological data are
consistent with behavioral data showing that Ach depletion
from dlPFC is as deleterious as removing the cortex itself
(36). As acetylcholine is released during wakefulness but not
deep sleep, these mechanisms also help to coordinate cognitive
state with arousal state, permitting conscious experience during
wakefulness, but may render us unconscious during deep sleep
when there is no acetylcholine release. Thus, as summarized
in Figures 3A,B, Delay cell firing in dlPFC depends on
NMDAR stimulation, including those with GluN2B subunits,
with permissive actions by acetylcholine and more limited
contributions from AMPAR.

AMPAR neurotransmission does play an important role in
some dlPFC neurons that respond to sensory events, i.e., dlPFC
Cue cells, and dlPFC response feedback cells that are thought to
convey the corollary discharge back to dlPFC that the intended
motor response has occurred (7). As these events require accurate
timing, it is logical that they would have more of a reliance on
rapid AMPAR neurotransmission.

Systemic ketamine treatment has differential effects on dlPFC
neuronal firing depending upon their reliance on AMPAR vs.
NMDAR neurotransmission. Consistent with their reliance on
NMDAR neurotransmission, dlPFC Delay cells show decreased
firing following systemic administration of the NMDAR
antagonist, ketamine, at low doses used to treat intractable
depression (7). This is only seen during cognitive performance
and is not evident at rest. In contrast, systemic ketamine
administration increases the spontaneous firing of response
feedback neurons that rely on AMPAR (7), which resembles
the increased firing seen with deep layer neurons in rat mPFC
following NMDAR blockade, the basis for the “glutamate surge”
(37). Some of this heterogeneity may arise from the balance
of NMDAR on pyramidal cells vs. GABAergic interneurons,
where pyramidal cell circuits with extensive recurrent NMDAR
excitation may show loss of firing, while those circuits with
extensive NMDAR on interneurons (e.g., in the primary sensory
cortices) may have an overall increase in glutamate signaling.
These data caution that ketamine’s actions are heterogeneous,
and that methods that average the response of large populations
of neurons under resting conditions (e.g., resting fMRI, multi-
electrode recording) may miss critical ketamine actions such as
the loss of representations during working memory. The fact

that ketamine’s effects are circuit-specific creates a complicated
picture, confounding our ability to identify the specific actions
relevant to its antidepressant effects, distinguished from its
actions that lead to cognitive disorder.

The importance of NMDAR transmission to the generation
of mental representations needed for working memory and
abstract thought may have relevance to a number of conditions
where NMDAR are blocked or genetically weakened. The
data from monkeys help to explain the profound cognitive
alterations that can occur in the encephalitis arising from anti-
NMDAR antibodies (38). The loss of mental representations with
NMDAR blockade also helps to explain the profound cognitive
impairments in schizophrenia where there can be genetic
mutations that weaken NMDAR signaling (39), and/or blockade
of NMDAR by kynurenic acid, especially under conditions of
inflammation (40). Blockade of NMDAR by kynurenic acid may
also contribute to cognitive deficits in Alzheimer’s disease (41),
given the importance of inflammatory signaling in early stages
of disease. It is also possible that systemic infection may impair
higher brain functions through the uptake of kyrurenine across
the blood brain barrier (42). For example, the pervasive cognitive
deficits in delirium might arise from high levels of kyrurenine
crossing into the brain during systemic infection (43), and that
the residual “brain fog” from infections such as COVID19 (44–
46), which also leads to systemic kynurenine production, may
also involve sustained blockade of NMDAR in higher cortical
circuits by kynurenic acid. As there are pharmacological tools
to reduce kynurenine production that may relieve NMDAR
blockade, these are important areas for future research.

NMDAR-Glun2B EXPRESSION INCREASES
ACROSS THE PRIMATE CORTICAL
HIERARCHY AND ACROSS PRIMATE
EVOLUTION

There are multiple differences in function and physiology
across the cortical hierarchy from primary sensory cortices, to
association cortices to limbic cortices (Figure 1B). For example,
there are increasing time scales in neuronal firing across the
cortical hierarchy in rhesus monkeys (47) and in gray/white
matter ratios in humans that correspond to transcriptional
expression patterns (11). In particular, there is increasing
expressing of the NMDAR GluN2B gene, GRIN2B, across the
cortical hierarchy in humans, with low levels in primary visual
cortex, high levels in dlPFC, and higher levels still in anterior
cingulate cortices (11). As GRIN2B expression in dlPFC also
increases across primate evolution, it suggests that this receptor
plays an increasing role in primate mental experience.

Physiological studies in rodents (48) and monkeys are
consistent with this hypothesis, as NMDAR-GluN2B has a
much larger role in neurotransmission in the PFC than in
the primary visual cortex, area V1. In rat medial PFC, the
recurrent excitatory connections in layer V depend on NMDAR-
GluN2B neurotransmission, while neurons in V1 showed much
less reliance on these receptors (48). Similar results were seen
in rhesus monkey dlPFC vs. V1. Neurons in V1 respond to
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FIGURE 3 | The primate dlPFC and primary visual cortex (V1) have very different neurotransmission. (A) The dlPFC depends on NMDAR neurotransmission, including

those with slowly closing GluN2B subunits, that are exclusively within the PSD. The permissive excitatory effects to relieve the magnesium (Mg2+) block of the NMDAR

(Continued)
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FIGURE 3 | ion channel are provided by acetylcholine (including Nic-a7R), with a surprisingly small influence from AMPAR. (B) Iontophoresis of the AMPAR antagonist,

CNQX, has only subtle effects on dlPFC Delay cell firing, while blockade of NMDAR- GluN2B with Ro25-6981 (Ro) markedly reduces Delay cell firing. (C) Neurons in

primate V1 show a more classic profile, relying heavily on AMPAR neurotransmission, with less influence by NMDAR. (D) Iontophoresis of low doses of the AMPAR

antagonist, CNQX, markedly reduces V1 neuronal firing, while blockade of NMDAR- GluN2B with Ro has little effect. Adapted from (9) and (8). *p < 0.05, ***p < 0.001.

the presentation of visual stimuli of a preferred orientation
in their receptive field. These neurons have a great reliance
on AMPAR transmission, where even low doses of AMPAR
blockers such as CNQX markedly reduce stimulus-related firing
(8) (Figures 3C,D). In contrast, high doses of NMDAR blockers
are needed to reduce V1 neuronal firing [(8), Figures 3C,D]. A
reliance on AMPAR stimulation is consistent with the function of
V1 neurons, as the rapid kinetics of these receptors, in addition
to their membrane properties (49), would allow accurate timing
to encode the onset and offset of a sensory event. Thus, NMDAR
transmission is not uniform across the primate cortex, and may
be a feature of neurons requiring sustained neuronal firing for
cognitive and possibly affective functions.

The very high levels of GRIN2B expression in the human
anterior cingulate cortex (11) suggests that these receptor
subtypes may be particularly important for the functioning of
the cingulate cortices, e.g., in error detection, affective pain
processing, and visceral affective responding. These limbic
cortices and their corresponding connections are part of the
neural networks that create “mood,” a sustained brain state.
Given the role of NMDAR-GluN2B in mediating sustained firing
in dlPFC, it is possible that these receptors have a parallel
role in anterior and subgenual cingulate cortex. Although there
are currently no direct iontophoretic recordings from primate
anterior or subgenual cingulate cortex examining the role of
GluN2B in cingulate physiology, this will be an important
arena for future research. The following section outlines the
importance of these receptors to cingulate processing of pain and
visceral responding.

THE ROLE OF NMDAR-GluN2B IN THE
CINGULATE CORTICES MEDIATING
AFFECTIVE PAIN RESPONSES AND
DEPRESSION

The anterior cingulate (BA24) and subgenual cingulate (BA25)
cortices mediate the emotional responses to pain [(14), reviewed
in (2)], and are overactive in depression (50, 51). For example,
the ACC is overactive in chronic pain and is a common ablation
site for neurosurgical alleviation of intractable pain (52). In
particular, BA25 in particular overactive in depression and a focus
of deep brain stimulation (DBS) to relieve intractable depression
(51). As described below, there is accumulating evidence that
the emotional responses of the anterior and subgenual cingulate
cortices rely on NMDAR-GluN2B neurotransmission, and that
these aversive responses are reduced by ketamine administration
in the treatment of chronic pain and depression.

Increasing evidence indicates that the response to pain in the
rodent ACC (BA24) is mediated by NMDAR, including those
with GluR2B subunits (53). GluR2B upregulate in response to

chronic pain (54, 55), and long-term potentiation in the anterior
cingulate cortex in response to painful stimuli is mediated
by NMDAR-calcium-cAMP signaling, including NMDAR with
GluR2B subunits, consistent with the sensitized response to
chronic pain [reviewed in (56, 57)]. Systemic administration of
ketamine, or of its active enatiomer, esketamine, reduces the
response to pain as well as accompanying depressive symptoms
in both rodents (58) and humans (59–62).

The subgenual cingulate (BA25) has extensive subcortical
projections to mediate the emotional and visceral response
to pain or other affective experiences (14), including to the
lateral habenula (63), a nucleus activated by aversive events
(64). Recent studies in marmosets have illuminated its functional
role and relationship to ketamine treatment. These studies
showed that pharmacological inactivation of BA25 decreased
the autonomic and behavioral correlates of negative emotion
expectation, while inactivation of BA32 increased them via
generalization (27), consistent with BA32 providing top-down
regulation of BA25. Conversely, activation of BA25 in marmosets
induced an anhedonic state and reduced willingness to work for
reward that was reversed by systemic administration of ketamine
(65). 18F-FDG PET imaging of the marmosets showed that
activation of BA25 was accompanied by activation of BA24 and
insular cortex, while systemic ketamine treatment reduced the
activation of these cortical areas (65). Over-activation of BA25
in marmosets also reduced vagal tone and heart rate variability,
reduced the extinction of an aversive response and potentiated
cortisol release during threat (66). Activation of BA25 in this
study was associated with increased activity in the amygdala, the
hypothalamus, and the temporal association area TH (66), but
decreased the activity of the frontopolar cortex area 9, the dlPFC
area 46, the central orbitofrontal cortex area13, and the lateral
caudate (66). However, in this study, systemic ketamine did not
reverse the effects of threat, suggesting that primitive responses
to threat (e.g., in amygdala) may still control network activity.
These data suggest that ketamine treatment may bemost effective
under conditions of safety. Research is still needed to determine
how local infusion of ketamine into BA24 and/or BA25 alters
emotional responding.

UNCONTROLLABLE STRESS IMPAIRS
HIGHER PFC FUNCTIONS

The findings from the Roberts lab that activation of BA25
in marmoset reduces the activity of the rostral PFC and the
dlPFC are consistent with a long line of research showing
that these more newly evolved PFC areas are weakened by
exposure to uncontrollable stress. As described above, under
control conditions the dlPFC and rostral PFC can regulate
emotion via projections to BA25 (Figures 1A, 4A), which in
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FIGURE 4 | Hypothesis regarding the state of cortical circuits under conditions

of health vs. depression, and their normalization by antidepressant treatments.

(Continued)

FIGURE 4 | (A) Under healthy conditions, the dlPFC and rostral medial PFC

areas provide top-down regulation of the cingulate cortices via medial PFC

connections, reducing BA25 activation of the stress response. The dlPFC also

projects directly to the monoamine nuclei in the brainstem to regulate

catecholamine release. (B) Under conditions of stress or depression, elevated

activity in the cingulate cortices can activate the amygdala, and very high

levels of catecholamine release in cortex takes higher PFC areas such as

dlPFC “offline.” Thus, there is a self-perpetuating, unregulated state, where

primitive circuits prevail. (C) Many antidepressant treatments reduce the

activity of BA25. This may give the cortex a “foot in the door” to restore

top-down regulation, especially when treatments promote dendritic spine

restoration in higher PFC circuits. Other treatments may directly enhance the

top-down regulation by the left dlPFC, e.g., rTMS and insight therapies.

turn can control the activity of the brain’s emotional circuits,
including the amygdala, hypothalamus and brainstem (23, 25).
A recent imaging study observed these rapid dynamics in human
brain, where uncontrollable stress exposure initially reduced the
activity of BA32, which then normalized in correspondence with
reducing the stress response, and BA32 increased its functional
connectivity with the dlPFC (67).

The more primitive cingulate and amygdala circuits may
remove the top-down regulation by higher PFC circuits through
activation of catecholamine neurons in the brainstem, which
can weaken PFC connectivity. The PFC and cingulate cortices
receive catecholamine innervation (68) and can also regulate
the activity of the monoamine nuclei in the brainstem (18,
63, 69). The dlPFC requires moderate levels of catecholamines
to function, but high levels of catecholamines released during
even mild uncontrollable stress rapidly take the dlPFC “offline”
[reviewed in (9, 70)]. Studies in rodents have shown that
psychological stressors or threatening stimuli activate projections
from the amygdala, e.g., to the locus coeruleus, increasing
catecholamine release in the medial PFC (71–76). High levels
of catecholamines in dlPFC drive feedforward calcium-cAMP
signaling, opening nearby potassium (K+) channels on spines
to rapidly weaken synaptic efficacy. This reduces the recurrent
excitation underlying the persistent neuronal firing needed for
mental representations [reviewed in (77, 78)]. High levels of
glucocorticoids, released due to hypothalamic-pituitary-adrenal
(HPA) actions, can also impair PFC working memory function
(79), and may do so in part by blocking the extraneuronal
catecholamine transporters on glia, which normally serve to
reduce catecholamine levels in the extracellular space (80).
In contrast to the dlPFC, high levels of catecholamines and
glucocorticoids enhance the affective functioning of the amygdala
(81–83), thus flipping the brain from a reflective to reflexive state.
The rapid loss of dlPFC executive andworkingmemory functions
from a hypercatecholaminergic state has now been documented
in humans (84–86) in addition to the original studies in rodents
and monkeys (9, 77, 78). Thus, BA25 and amygdala can rapidly
remove their regulation from higher order PFC circuits through
activation of excessive catecholamine release in these higher
PFC regions (Figure 4B). The cingulate cortices may also inhibit
dlPFC by activating inhibitory GABAergic interneurons in the
dlPFC (87).
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This state of weakened higher PFC circuits and stronger
BA24/BA25/amygdala control of brain responding is codified by
chronic stress, which induces spine loss and dendritic retraction
in PFC neurons which correlate with impaired working memory
and attention regulation (88–90). Much of this research has been
done in rats, where it is important to identify the projections
of the neurons under study. Shansky’s (91) elegant studies have
shown that chronic stress exposure causes atrophy of cortico-
cortical projecting mPFC neurons, but expands the dendrites
of PFC neurons that activate the amygdala (i.e. those that are
similar to primate BA25). Weaker connectivity and reduced gray
matter in higher PFC circuits following chronic stress exposure
has also been documented in humans (92, 93). Thus, chronic
stress can create a self-perpetuating state where high levels of
BA25/amygdala activity maintain a high catecholamine state,
which simultaneously strengthens the amygdala but weakens
higher PFC areas, removing inhibitory regulation of emotional
response (Figure 4B). It is not known how catecholamines alter
the activity of BA24 or BA25 in primates; this would be an
important area for future research. Studies in rats have shown
that the spine loss and dendritic retraction caused by chronic
stress exposure can reverse with substantial time spent in a non-
stressed state, at least in young animals, indicating a plastic
dendritic response (94).

HYPOTHESIS: THE RAPID
ANTIDEPRESSANT ACTIONS OF
KETAMINE MAY ARISE FROM BLOCKADE
OF MENTAL REPRESENTATIONS
GENERATING AVERSIVE MOOD STATE IN
CINGULATE CORTICES

The loss of rostral PFC and dlPFC activity in concert with
increased cingulate and amygdala activation would shift mental
state from an outward, cognitively-engaged frame of mind to
one focused inwardly on aversive experience. This is common
in depression, where there is often loss of perspective, reduced
empathy for others, anhedonia, and an urgent need for relief
of mental anguish (95). Symptoms such as loss of motivation
and psychomotor paralysis might also arise from BA25 activation
of the peri-aqueductal gray and subthalamic nucleus that are
positioned to reduce motor, cognitive and affective actions.
Thus, the overactive subgenual cingulate must be inhibited to
give more rostral PFC and dlPFC areas a “foot in the door”
to regain regulation of the brain, including the regrowth of
spines in higher PFC areas (96, 97), to restore top-down higher
network connections.

We have hypothesized that ketamine interrupts the self-
perpetuating cycle of primitive circuit activity that is sustained by
BA25 overactivity, allowing higher PFC circuits the opportunity
to restore more normal functioning [Figures 4B,C; (2)]. As noted
by Mayberg (51), all effective antidepressant treatments, whether
pharmacological (selective serotonin reuptake inhibitors (SSRIs),
possibly psilocybin?), electrical (ECT, DBS) or cognitive (talk
therapy, CBT), reduce BA25 hyperactivity in depressed patients

(Figure 4C). rTMS (repetitive transcranial magnetic stimulation)
to strengthen the functioning of the left dlPFC may also help
to restore regulation of the cingulate cortices (Figure 4C), as
the efficacy of this treatment correlates with reduced activity of
the anterior cingulate cortex (98), and weaker connectivity of
the subgenual cingulate cortex (99). The antidepressant effects
of SSRIs may be related to the very high levels of serotonin
transporters in BA25 (100), although research is still needed
to determine the receptor mechanisms by which serotonin can
inhibit BA25 neuronal firing. We have proposed that ketamine’s
therapeutic effects may arise from ultra-rapid inhibition of
BA25 neurons (2). As described above, systemic ketamine
administration can overcome the deleterious effects of BA25
over-activation in marmosets (65), and can also normalize BA25
hyperactivity in depressed subjects (101), which may involve
blockade of NMDAR transmission in the cingulate circuits
representing a sustained, aversive state. Ketamine also reduces
burst firing in the habenula, which may also contribute to its
ultrarapid therapeutic effects (64).

Intranasal ketamine or esketamine administration may
produce ultra-rapid antidepressant effects by delivering the
drug directly to the anterior and subgenual cingulate cortices,
which reside directly caudal to the nasal epithelium (2).
Ultra-rapid effects have been documented following this route
of administration, with significant improvement at 40min
(102), maximal improvement at 24 h, with therapeutic effects
waning, but still evident at 48 h post-administration (102).
We have proposed that the initial improvement at 40min
would arise from NMDAR blockade of excessive neuronal
firing in the anterior and subgenual cingulate cortices, allowing
a restoration of regulation by higher PFC areas, where
spine growth would provide more sustained antidepressant
actions (2).

Support for this hypothesis comes from a remarkable recent
rodent study, where dendritic spine changes in medial PFC
could be monitored in vivo (103). Prolonged exposure to chronic
unpredictable stress increased “depressive-like behaviors” in the
mice, and caused a retraction of dendritic spines in the mPFC,
while systemic administration of ketamine normalized behavior
and restored spine density (103). However, this study found
that ketamine improved behavior prior to spine re-emergence
(103), suggesting that the initial beneficial effects may arise
from alterations in neuronal firing, while the longer-term,
sustained antidepressant response requires regrowth of spines
in PFC circuits that provide top-down regulation. Finally, our
data from the dlPFC in monkeys would suggest that ketamine
levels would need to dissipate before full dlPFC function could
be restored, given the reliance of layer III dlPFC circuits on
NMDAR-GluN2B neurotransmission. This hypothesis would be
consistent with the maximal therapeutic effects observed 24 h
after ketamine administration.

In closing, we are learning that NMDAR transmission is
especially important for persistent neuronal firing. It is possible
that the sustained neuronal activity underlying mood state,
and particularly an aversive mental state, similarly relies on
NMDAR transmission, and thus is relieved by NMDAR blockade
from ketamine.
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N-methyl-D-aspartate glutamate-receptor (NMDAR) antagonists such as ketamine have

demonstrated efficacy in both major depressive disorder (MDD) and bipolar disorder

depression (BP-D). We have previously reported that reduction in Glx (glutamate +

glutamine) in the ventromedial prefrontal cortex/anterior cingulate cortex (vmPFC/ACC),

measured by proton magnetic resonance spectroscopy (1H MRS) at 3T during a

ketamine infusion, mediates the relationship of ketamine dose and blood level to

improvement in depression. In the present study, we assessed the impact of D-

cycloserine (DCS), an oral NMDAR antagonist combined with lurasidone in BP-D on

both glutamate and Glx. Subjects with DSM-V BP-D-I/II and a Montgomery-Asberg

Depression Rating Scale (MADRS) score>17, underwent up to three 1H MRS scans.

During Scan 1, subjects were randomized to receive double-blind lurasidone 66mg or

placebo. During Scan 2, all subjects received single-blind DCS 950mg + lurasidone

66mg, followed by 4 weeks of open label phase of DCS+lurasidone and an optional

Scan 3. Five subjects received lurasidone alone and three subjects received placebo for

Scan 1. Six subjects received DCS+lurasidone during Scan 2. There was no significant

baseline or between treatment-group differences in acute depression improvement or

glutamate response. In Scan 2, after a dose of DCS+lurasidone, peak change in

glutamate correlated negatively with improvement from baseline MADRS (r = −0.83,

p = 0.04). There were no unexpected adverse events. These preliminary pilot results

require replication but provide further support for a link between antidepressant effect

and a decrease in glutamate by the NMDAR antagonist class of antidepressants.

Keywords: N-methyl-D-aspartate, glutamate, MRS—1H nuclear magnetic resonance spectra, biomarker, bipolar

depression, D-Cycloserine, lurasidone
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INTRODUCTION

Bipolar disorder affects 2% of the population in the United States
(1). Despite overall effectiveness of FDA approved compounds,
many individuals with bipolar depression (BP-D) experience
persistent depression despite antidepressant medication
treatment, either alone or combined with mood stabilizers. For
example, across several recent registration studies, ∼40-50%
of subjects were non-responders based upon Montgomery-
Asberg Depression Rating Scale (MADRS) (2) scores ≥50% of
baseline (3–5).

Recently, the N-methyl-D-asparate glutamate-receptor

(NMDAR) antagonist, ketamine, has emerged as a potential

treatment option for both major depressive disorder (MDD)
(6, 7) and (BP-D) (8). Although the antidepressant mechanism
of action of ketamine remains unclear, convergent evidence
suggests that dysfunction of glutamatergic systems plays a role in
the pathophysiology of BP-D (9, 10).

However, intravenous ketamine use is limited by loss of
benefit after about 5–7 days and transient psychotomimetic side
effects during administration. Intranasal ketamine is easier to
administer but may have more side effects (11, 12). D-cycloserine
(DCS), an FDA-approved anti-tuberculosis drug, is an NMDAR
antagonist at higher doses. It is primarily an antagonist at
>500mg (13–15), via the glycine co-receptor of the NMDAR and
may have a more favorable safety profile than ketamine. Potential
antidepressant effects of DCS were first reported in 1959 (16) but
not formally studied until recently. Efficacy of DCS in a dose of
>500mg in MDD, including an anti-suicidal effect, is supported
by two double-blind studies (15, 17). Recently, we reported an
open label study of treatment resistant BP-D—a single infusion
of ketamine followed by 8 weeks of a combination of DCS +

FDA approved medications for BP-D (including lurasidone).
This combination was employed seeking a treatment where an
atypical antipsychotic prevented any potential psychomimetic
effect of DCS and perhaps had an additional antidepressant
action. Indeed, a sustained benefit for the duration of treatment
was seen (46% symptom reduction, p = 0.019 vs. baseline)
without significant safety concerns (18). Of note, there was a
decline in benefit over the first 2 weeks post ketamine, that
reversed with the ongoing combination of DCS and lurasidone
or other FDA-approved treatments for BP-D.

In previous studies, we used proton magnetic resonance
spectroscopy (1H MRS) to quantify ketamine effects on Glx
(a combination of glutamate (Glu) and glutamine resonance
signals: Glu+glutamine) in the ventromedial prefrontal cortex,
along with the adjacent anterior cingulate cortex (vmPFC/ACC)
in both healthy (19) and depressed (20, 21) individuals. Our
focus on the vmPFC and the ACC stems from extensive research
implicating these regions in the pathogenesis of mood disorders
(22–24) and microdialysis rodent (25, 26) studies suggesting that
the glutamatergic surge in response to NMDAR antagonists is
maximal in the vmPFC.

In our recently published, placebo-controlled, dose-finding,
randomized clinical trial of ketamine (21), we found that
improvement in MDD had a positive linear relationship with
ketamine dose and blood level, and a negative correlation

with Glx response. Reduction of Glx mediated the relationship
of ketamine dose and level with antidepressant response.
In the present report, we sought to determine whether the
same relationship is found within BP-D for DCS combined
with lurasidone. This combination of medications seeks to
preserve the antidepressant effect of DCS and block its potential
psychotomimetic effect with lurasidone. Lurasidone may also
augment the antidepressant effect of DCS since it an FDA
approved medication for BP-D (3, 4).

To determine the independent biological effect of lurasidone,
prior to the DCS/lurasidone scan, all subjects underwent an
1H MRS scan while receiving double-blind lurasidone 66mg
or placebo. We have previously shown that this 1H MRS
method is sensitive to DCS-induced changes in Glx in healthy
controls (27). Due to upgrades in both scanner quality and 1H
MRS methodology (28–30), we now report the more specific
1H MRS outcome of Glu, in place of Glx. We hypothesized
that we would find a similar relationship between Glu and
DCS+lurasidone mediated antidepressant response, thus adding
to our understanding of NMDAR antagonist mechanism of
action in depression.

PATIENTS AND METHODS

The study was conducted under a biomarker letter of support
(IND 129194) from the US Food and Drug Administration and
posted on www.clinicaltrials.gov (NCT03402152).

Enrollment criteria included DSM-V current BP-D-I/II,
confirmed by a SCID (31). Subjects had at least moderate
depression symptoms, as defined by a MADRS score>17, with
no current or chronic psychosis or substance use disorder.
To minimize further acute clinical deterioration, subjects were
permitted to remain on all current pre-study psychotropics,
with the exception that prior antipsychotics and fluoxetine were
discontinued at least 24 h before the first MRI to mitigate
the effect of such medications on the Glu response to acute
administration of DCS or lurasidone.

After screening, each eligible subject underwent up to three
1H MRS scans, on three different days (referred to as Scan 1,
Scan 2, and Scan 3, respectively). During Scan 1, all subjects
were randomized to receive double-blind lurasidone 66mg or
placebo, and during Scan 2 all subjects received single-blind
one dose of NRX-101 (DCS 950mg + lurasidone 66mg). All
subjects received a dose of pyridoxine (200mg) along with the
study medication to prevent DCS related reductions in Vitamin
B6 (32). After Scan 2, subjects were started on a combination of
open-label flexibly dosed DCS/lurasidone and daily pyridoxine
200mg for 4 weeks, culminating in an optional final 1H MRS
scan (Scan 3).

Scans 1 and 2 were at least 1 day apart, and subjects and
data analysts, including 1H MRS data processing, were blind
to treatment order (e.g., unaware that DCS+lurasidone was
always administered immediately prior to Scan 2). The mean
time between Scans 1 and 2 was 3.3 days (range 1–7 days).
After structural MRI and baseline 1H MRS scans (∼30min),
subjects were briefly removed from the scanner for study drug
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administration, followed by serial 1H MRS frame acquisitions
for up to 70min following drug administration. Subjects were
assessed using a side effects checklist, the C-SSRS and MADRS
at baseline,∼30min before and after the imaging on the 1HMRS
days and weekly during the 4-week follow-up.

The study was terminated by the sponsor after eight
randomized subjects due to a corporate decision to pursue a
different approach. Thus, we only report pilot results due to the
limited sample size.

1H MRS Methodology
Six subjects were scanned on a Siemen Prisma 3.0T MR scanner
equipped with a 32-channel surface coil array and two subjects
were scanned on a General Electric SIGNA Premier 3T MR
scanner equipped with a 21-channel surface coil array. MR data
were acquired with the same protocols on both scanners. The
protocols for voxel placement and 1H MRS data acquisition for
both sessions of before and after medication were the same.
First, three-plane scout images were acquired, followed by a high-
resolution structural MRI scan in the sagittal planes; Then, high
resolution structural MRI images in the oblique axial planes
parallel to the AC-PC line were acquired. We placed the 1H
MRS voxel (3.0 × 2.5 × 2.5 cm3) based on the sagittal and
axial MR images in the vmPFC and ACC, with the center of
the posterior side of the voxel close to the frontal tip of the
cingulate gyrus (Figure 1). The 1HMRS data were acquired from
the voxel using a commercial version of the PRESS sequence
(33) implemented on both scanners with following parameters:
TR/TE = 1,500/120ms (28, 29), spectral width = 2,000Hz, free
induction decay (FID) datapoints= 1,024, number of excitations
(NEX) for water unsuppressed 1H MRS scan = 16, and NEX for
water suppressed 1H MRS = 240. Total scan time for each 1H
MRS frame, including pre-scan, was∼8 min.

1H MRS Data Processing
We combined the multichannel 1H MRS data, using the
unsuppressed water signal as a reference for correcting phase
errors and for calculating weighting factors of S/N, where S is the
amplitude of water signal andN is the standard deviation of noise
of each channel (34). We then corrected frequency and phase
shifts among the FIDs in each 1H MRS data file and combined
them into a single FID for each baseline and dynamic 1H MRS
scan.We removed the residual water signal using a singular value
decomposition-based matrix-pencil method (35).

We quantified the 1H MRS data in the time domain using
the software packages AMARES (36) imbedded in jMRUI (37).
To improve accuracy of the quantification of the metabolites
of interest via spectral fitting, we fit all peaks with major
contributions, including metabolic peaks of N-acetylaspartate at
2.01 ppm, total creatine (Cr) at 3.02 ppm, total choline at 3.24
ppm and Glu around 2.26 ppm were included in the spectral
fitting. In the present paper, we focus on the role of Glu/Cr and
Glx/Cr, and did not analyze NAA and Ch. For accurate spectral
fitting of Glu, we incorporated prior knowledge in the model
of relative frequencies, phases, and amplitudes of the major
peaks Glu obtained by fitting the simulated spectra of Glu using
AMARES, similar to the approach in the reference (38), where

FIGURE 1 | CONSORT chart.

the prior knowledge was obtained from phantom 1H MRS data
of Glu. The simulations of Glu spectra for both Siemens and GE
data were performed using the MARSS software package (30).

Due to higher qualitymeasurements on our upgraded scanner,
we modified the initial analysis plan posted on clinicaltrials.gov,
and utilized Glu peak, as opposed to Glx AUC, as the primary
metabolite outcome. Glx was analyzed as a secondary measure.
Based on pharmacokinetics (39–41) of DCS, our prior finding of
the 1H MRS peak at ∼35min DCS post-dose (27) and our prior
ketamine study using peak level (21), Glu 1H MRS peak level
was used, defined as a mean from 30 to 46min post drug. We
used Cr as a reference for the relative quantification of Glu and
expressed the outcome measure from 1H MRS as Glu/Cr. The
rationale for using Cr as a standard is as follows: (1). The Cr level
is assumed to be stable over the course of drug administration;
and (2). The tissue volumes for Glu and Cr are the same in the
voxel and a partial volume effect of using water as a reference
is avoided. We used the ratio of standard deviation to estimated
amplitude given in the fitting by the jMRUI software, as a metric
for quality control and set the threshold to be 20%. No data were
excluded (42).

Data Analysis
Prior to analysis, all variables were examined for distribution
and outliers. Due to the small sample sizes, parametric tests
were utilized only for repeated-measures modeling of change in
MADRS, for which residuals were sufficiently normal.
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FIGURE 2 | Examples of voxel placement (red outline) on the axial and sagittal

localizer images showing the size and location in the medial ventral prefrontal

cortex (Left) and the original, estimated, and their difference spectra from the

voxel (Right).

Wilcoxon sign rank tests were used to test for significant Scan
1 percent change in MADRS and Glu within treatment group,
and Scan 2 percent change in MADRS and Glu in the overall
sample. Additionally, Wilcoxon sign rank tests were also used
to assess both baseline and change in MADRS and Glu response
from Scan 1 to Scan 2, within subject.

Mixed effects linear regression models were fit to model
MADRS change from baseline over the four follow-up weeks.
First, an intercept-only model was fit to assess mean change
across the 4 weeks. Next, week was added to the model as a
categorical predictor to estimate change from baseline at each
week. Both models featured a random intercept for subject.
Spearman’s correlations were used to assess the association
between MADRS and Glu responses, on Scan 1 and on Scan 2,
separately. Due to the small sample sizes, descriptive statistics are
provided in the text.

Significance level was set at α = 0.05, with results reported as
mean ± standard deviation (SD) and median with interquartile
ranges (IQR, 25th percentile, 75th percentile). All analyses were
performed using SAS version 9.4 (Cary, NC: SAS Institute
Inc.; 2014). The data that support the findings of this study
are available on request from the corresponding author if
accompanied by a reasonable plan for their use. The data are not
publicly available due to privacy or ethical restrictions.

RESULTS

Subjects: 9 subjects consented to participate (Figure 2), eight
met study criteria and were randomized (Table 1). On entering
the study, three randomized subjects were unmedicated,
and the remaining five randomized subjects were on stable
doses of mood stabilizers and antidepressants for at least
1 month, including one subject on oxcarbazepine 600mg

TABLE 1 | Baseline demographics, psychopathology and subject disposition.

Age (years) 32.4 ± 13

Sex 7 women

Diagnosis Bipolar I (n = 5)

Bipolar II (n = 3)

Medications Mood stabilizer alone (n = 3),

SSRI + Mood stabilizer (n = 2),

Unmedicated (n = 3)

Illness duration (months) 19.7 ± 34.8

Hospitalizations (n) 1.5 ± 1.4

Manic/hypomanic episodes (n) 5 ± 6.1

MDD episodes (n) 5.9 ± 8.8

Baseline MADRS (screening) 31.5 ± 9.3

Baseline C-SSRS 2 ± 2

Received lurasidone (Scan 1) N = 5

Received placebo (Scan 1) N = 3

Received D-Cycloserine/lurasidone (Scan 2) N = 6

Pre-scan MADRS (Scan 1) 25.3 ± 7.2

Post-scan MADRS (Scan 1) 11.3 ± 8.0

Pre-scan MADRS (Scan 2) 20.0 ± 11.2

Post-scan MADRS (Scan 2) 11.3 ± 10.0

and escitalopram 20mg, one subject on lithium 450mg and
fluoxetine 60mg (discontinued prior to scan), one subject on
lamotrigine 50mg and diphenhydramine 50mg, one subject on
sertraline 200mg, zolpidem 10mg, gabapentin 1,000mg and
diazepam 10mg and one subject on valproic acid 1,000mg,
paroxetine 20mg and dextroamphetamine and amphetamine
20mg. Six out of eight randomized subjects completed the first
two scans, and both non-completers received lurasidone during
Scan 1. Four subjects completed the four-week open-label phase,
with 1HMRS available for three subjects.

Clinical
Five subjects were randomized to lurasidone and three to placebo
on Scan 1. Overall, subjects exhibited a comparable degree of
acute improvement from the baseline MADRS after one dose
of lurasidone alone (57.0% ± 31.7, p = 0.06, n = 5) or placebo
(72.7% ± 32.6, p = 0.25, n = 3) at Scan 1; and sustained
this improvement after a mean of 3.3 days of one dose of
DCS+lurasidone at Scan 2 (67.2%± 22.6, p= 0.03, n= 6). Only
the DCS+lurasidone improvement at Scan 2 relative to baseline
reached statistical significance. Among subjects that completed
both scans, there was no significant difference between baseline
MADRS on scan days, suggesting a lack of carryover effect from
Scan 1 (Signed-Rank Test p= 0.31).

Using mixed-effects linear modeling, a significant overall
MADRS improvement over time was seen (t4 = −6.38, p
= 0.0031) over the 4-week treatment, with the final MADRS
total decreasing to 17.5 ± 12.0. Weekly contrasts demonstrated
significant improvement from baseline at all rating points except
at 2 weeks (p = 0.0038, Figure 3 Right). No subjects achieved
euthymia, defined by MADRS <8.

No patients exhibited active suicidal ideation, intent or
behavior during the study on the C-SSRS (all C-SSRS scores
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FIGURE 3 | A scatter plot of mean change in Glu vs. improvement from baseline MADRS (rs = −0.83, p = 0.04) on the DCS/Lurasidone days (Left). Spaghetti plot of

MADRS over time by subject (Right).

<3). There were no unexpected side effects. There was one
serious adverse event involving a patient who was observed
overnight in hospital for moderate dystonia thought to be related
to lurasidone. This subject remained in the study with a reduction
in dose.

1H MRS: As previously (27), the Glu peak was ∼35min post
oral drug administration. Consistent with our previous work with
ketamine in MDD (21), Glu increase was seen after placebo only.
Both lurasidone alone and the DCS+lurasidone combination
attenuated the Glu response. However, neither the within nor the
between group changes in Glu levels were significant statistically.
The changes observed were small: a decrease after lurasidone
[Median (IQR)=−6.6% (−16.9%,−1.9%), n= 5, p= 0.31]; and
increase after placebo [Median (IQR)= +12.9% (−9.0%,34.8%),
n = 3, p = 1.0]; and a decrease after DCS+lurasidone treatment
[Median (IQR)= −2.7% (−7.6%,−2.2%), n = 6, p = 0.31] on
the 1H MRS scan days (Wilcoxon sign rank test). Within the
same subjects, Glu response decreased after DCS+lurasidone
and lurasidone alone (median: −3.9% vs. −7.4%, n = 4) and
increased after placebo (median: 20.3% vs. −6.7%, n = 2) but
none of these effects were statistically significant.

On the DCS+lurasidone treatment day (Scan 2), change
of Glu from baseline on that day correlated negatively with
improvement from baseline MADRS (rs = −0.83, p = 0.04,
Figure 3, Left), using Spearman’s correlation coefficient. By
contrast, on the placebo/lurasidone day (Scan 1), Glu change
did not correlate with MADRS change (rs = 0.29, p = 0.53).
Controlling for Scan 1 treatment-type did not change results for
Scan 1 or 2 correlations. There were no significant differences in
baseline Glu levels on Scan 1 and Scan 2 [Day 1Med (IQR)= 0.31
(0.20–0.35); Day 2 Med (IQR) = 0.29 (0.22–0.37); Signed-Rank
Test p = 0.69], supporting the assumption that this relationship
was not due to carryover effects from Scan 1. Only 3 subjects
completed Scan 3 (Week 4) 1HMRS, without significant results.

Glx did not show any statistically significant results in Day 1
or Day 2 analysis. Change in Glx on Day 2 did not correlate with
either change in Glu on Day 2 (rs = 0.54, p = 0.27), nor with
MADRS change (rs =−0.37, p= 0.47).

DISCUSSION

Due to the small sample size, particularly for the placebo and
lurasidone alone groups, the present findings are presented as a
preliminary pilot study. Nevertheless, we did observe that lower
mean Glu level post treatment with an NMDAR antagonist
combined with lurasidone predicts better antidepressant
response in BP-D, consistent with prior findings (21) in MDD
when ketamine was employed. This relationship was seen
despite a lack of significant between-treatment group differences
for symptoms or 1H MRS outcomes, and was not seen after
treatment with lurasidone alone or placebo. Of course, the small
sample size precluded an adequately powered statistical analysis.

In a secondary finding, we demonstrate tolerability and
potential efficacy of acute, high-dose DCS in BP-D when
combined with lurasidone and no reports of psychotomimetic
symptoms when receiving this medication combination. While
the analysis was limited by the small sample, statistically
significant improvement in depression was seen after an acute
dose of DCS+lurasidone, but not with lurasidone alone or
placebo. Similarly, the degree of clinical response was comparable
to our previous open label findings of efficacy over 8 weeks of
DCS combined with atypical antipsychotics (27).

We previously proposed that an increase in Glumay be a stress
response because it is most robust in the placebo and healthy
control groups (19, 21). While meta-analysis of medicated MDD
patients indicate lower levels of Glx, when medication status is
considered, the data indicate that medicated MDD has lower Glx
or glutamate and untreated MDD may have elevated levels (43).
Studies of BP-D have reported higher Glu levels (44–46), as have
studies in other relatively treatment resistant populations such
as postpartum depression (47). Similarly, a large mega-analysis
found that while medial frontal cortex Glu and Glx are generally
lower in schizophrenia compared to healthy controls, higher Glu
and Glx levels were associated with more severe symptoms and
lower levels were associated with antipsychotic treatment (48).

While our small sample size limited the ability to assess
between group differences in the Glu response between
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scan days, we replicate our previous findings with ketamine
(21), finding that DCS combined with lurasidone, appears
to diminish the Glx or glutamate response and this effect
correlates with degree of antidepressant effect. A reduced
stress response is consistent with preclinical studies, indicating
that NMDAR antagonist related antidepressant response
may produce a resilience effect (49). Similarly, putative
glutamatergic treatments in schizophrenia also appear to
reduce NMDAR antagonist induced glutamate increases
(50). Thus, we have previous proposed that elevated Glu or
Glx may be a marker of depressive illness severity (51), and
a reduction is an indicator of antidepressant response to
NMDAR antagonists.

In our previous study of DCS alone in healthy controls
(27), we found a positive peak at ∼35min post-dose (23 ± 5%
increase). In the present report of BP-D patients, we found a small
decrease in Glu after DCS+lurasidone treatment, consistent with
a blunting of the elevation seen in other studies including those
employing the NMDAR antagonist ketamine. Similar to our
ketamine study (21), this blunting was correlated with degree of
antidepressant effect.

The use of target engagement biomarkers early in drug
development can facilitate dose selection and initial proof-
of-mechanism assessments (50, 52–54). While the present
report was not designed to assess dose response, our results
do further support that target engagement at the NMDAR
and the NMDAR glycine site, as measured by 1H MRS, is
necessary for antidepressant response. Exemplary of this, a
recent study of treatment resistant depression (55), found
neither antidepressant nor 1H MRS Glu changes in response
to AV-101, a competitive antagonist at the NMDAR glycine
site. A subsequent study of AV-101 in healthy controls found
evidence for a dose response for AV-101 using the auditory
steady state response (56), and suggested that higher doses may
be needed.

Our study has several limitations, and we emphasize its
presentation as a pilot study. The small sample is the principal
study limitation. A second concern is the potential carry-
over effects from Scan 1 treatment with lurasidone or pre-
study medications, especially concomitant mood stabilizers or
those with a long half-life such as fluoxetine. Although the
discontinuation of other antipsychotics and fluoxetine lowered
the blood and brain levels of these medications, this was not for
long enough to allow them to wash out of the brain completely.
Consequently, although this step reduced the potential impact
of such medications, it did not eliminate the possibility of an
effect. These limitations are minimized by the lack of baseline
Glu and MADRS differences between Scan 1 and 2, and
only one subject was taking fluoxetine pre-study. Furthermore,
potential variability in Glu from the use of two scanners or
pre-study medication differences was minimized because we
focused on the acute percentage change in Glu post study drug
administration within each day for each subject, not absolute
Glu values.

Finally, we focused on Glu in the present report instead of
the composite measure of Glx by taking advantages of data
acquisition parameter TE = 120ms, which is optimized for
Glu separation (28, 29) and spectral fitting prior knowledge
obtained from simulated model spectra (30, 38). While this
optimized our 1H MRS sequence for Glu measurements, the
spectral overlapping between Glu and Gln might result in a
“competition” or a “compensation” between them in the fitting,
limiting the accuracy of Gln. Therefore, the variation of Glx may
be smaller than that of Gln itself but may still larger than Glu. For
this reason, we did not focus on Glx, nor report Gln. This limits
the direct comparison to our Glx results in prior studies (21, 27).
Better spectral fitting methods need to be developed to improve
the fitting of Glu, Gln, and Glx.

In conclusion, our preliminary pilot results are consistent
with our previous work. Attenuation of the Glu response being
correlated with antidepressant response to NMDAR antagonists
requires replication in a larger, multi-dose, controlled study.
If replicated, this biomarker may prove to be a method for
screening NMDAR antagonists for antidepressant potential.
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The glutamatergic modulator ketamine rapidly reduces depressive symptoms in

individuals with treatment-resistant major depressive disorder (TRD) and bipolar disorder.

While its underlying mechanism of antidepressant action is not fully understood,

modulating glutamatergically-mediated connectivity appears to be a critical component

moderating antidepressant response. This double-blind, crossover, placebo-controlled

study analyzed data from 19 drug-free individuals with TRD and 15 healthy volunteers

who received a single intravenous infusion of ketamine hydrochloride (0.5 mg/kg) as

well as an intravenous infusion of saline placebo. Magnetoencephalographic recordings

were collected prior to the first infusion and 6–9 h after both drug and placebo infusions.

During scanning, participants completed an attentional dot probe task that included

emotional faces. Antidepressant response was measured across time points using

the Montgomery-Asberg Depression Rating Scale (MADRS). Dynamic causal modeling

(DCM) was used to measure changes in parameter estimates of connectivity via

a biophysical model that included realistic local neuronal architecture and receptor

channel signaling, modeling connectivity between the early visual cortex, fusiform cortex,

amygdala, and inferior frontal gyrus. Clinically, ketamine administration significantly

reduced depressive symptoms in TRD participants. Within the model, ketamine

administration led to faster gamma aminobutyric acid (GABA) and N-methyl-D-aspartate

(NMDA) transmission in the early visual cortex, faster NMDA transmission in the fusiform

cortex, and slower NMDA transmission in the amygdala. Ketamine administration

also led to direct and indirect changes in local inhibition in the early visual cortex

and inferior frontal gyrus and to indirect increases in cortical excitability within the

amygdala. Finally, reductions in depressive symptoms in TRD participants post-ketamine

were associated with faster α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

(AMPA) transmission and increases in gain control of spiny stellate cells in the early

visual cortex. These findings provide additional support for the GABA and NMDA
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inhibition and disinhibition hypotheses of depression and support the role of AMPA

throughput in ketamine’s antidepressant effects.

Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT00088699?term=

NCT00088699&draw=2&rank=1, identifier NCT00088699.

Keywords: ketamine, major depressive disorder, magnetoencephalography, dynamic causal modeling, amygdala

INTRODUCTION

Ketamine’s rapid antidepressant effects have galvanized research
into the neurobiological underpinnings of mood disorders
and have increased focus on the potential role that the
glutamatergic and GABAergic systems play in the etiology and
pathophysiology of both major depressive disorder (MDD) (1–3)
and bipolar depression (4). As a result of promising clinical and
preclinical data, interest in investigating the glutamate system
has grown exponentially (5), with many studies focusing on
ketamine and its glutamatergically-modulating metabolites as
viable clinical treatment options (6–8). A wealth of studies have
now demonstrated that a single infusion of sub-anesthetic-dose
ketamine can rapidly (within hours) relieve depressive symptoms
in individuals with both MDD (6, 9) and bipolar depression (7,
10), including those who are treatment-resistant (TRD). Repeat-
dose studies have also pointed to continued improvements over
longer time periods compared with a single administration (11).
Understanding the mechanism of action underlying ketamine’s
rapid antidepressant effects could help identify novel biomarkers
of antidepressant response and expedite the development of
novel, rapid-acting therapeutics capable of more effectively
treating depressive symptoms without the psychotomimetic side
effects and risk for misuse associated with ketamine.

Ketamine is a non-competitive N-methyl-D-aspartate
(NMDA) receptor antagonist. Nevertheless, a host of studies
suggest the possibility that NMDA receptor antagonism may not
be the direct mechanism underlying ketamine’s antidepressant
effects, and several other mechanisms are being investigated.
For instance, recent studies found that the ketamine metabolite
(2R,6R)-hydroxynorketamine (HNK) exerts antidepressant
effects in animal models even though it is not an NMDA receptor
antagonist at therapeutically relevant concentrations (12);
rather, (2R,6R)-HNK appears to exert antidepressant effects by
enhancing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) throughput (13).

In addition, subanesthetic-dose ketamine administration
leads to immediate disinhibition of glutamatergic neurons,
producing a glutamate surge (14). This surge is thought to
result fromNMDA receptor blockade by ketamine of fast-spiking
gamma-aminobutyric acid (GABA)-ergic interneurons, leading
to local inhibition of interneuron tonic firing and the subsequent
disinhibition of pyramidal neurons (15, 16). Due to NMDA
receptor blockade on post-synaptic excitatory neurons, excess

synaptic glutamate is primarily taken up by AMPA receptors,

thereby activating neuroplasticity-related signaling pathways,
including mammalian target of rapamycin complex 1 (mTORC1)
(17, 18) and brain-derived neurotrophic factor (BDNF) (19),

both of which result in increased synaptic potentiation and
synaptogenesis. Furthermore, a host of cascading intracellular
changes following ketamine administration involve eukaryotic
elongation factor 2, which promotes BDNF release (20, 21)
and homeostatic synaptic scaling mechanisms (22); cellular
changes resulting from direct inhibition of extrasynaptic NMDA
receptors (23) activate plasticity mechanisms and also promote
synaptic potentiation.

Within the field of psychiatry, a growing body of evidence
suggests that altering the ratio of cortical excitation/inhibition
balance could underlie a host of disorders, including depression
(24, 25). Preclinical work has also demonstrated that therapeutic-
dose ketamine reduces inhibitory input onto pyramidal
cells, thereby increasing synaptically-driven pyramidal cell
excitation in single cell and population-level electrophysiological
recordings (26). Modeling work has robustly demonstrated
that gamma rhythms reflect a balance between network-level
excitation and inhibition (27–29). In addition, work from
our laboratory and that of others found that therapeutic-dose
ketamine administration leads to robust increases in gamma
power (30–33) in TRD participants, potentially reflecting
alterations in excitation-inhibition balance associated with
antidepressant response (32, 34, 35).

Emotional processing deficits have been extensively reported
in MDD. For example, compared to healthy volunteers,
individuals with MDD showed a bias toward negative emotional
information (36, 37), including a bias toward faces demonstrating
negative emotions compared to positive emotions (38, 39).
In addition, antidepressants are thought to normalize neural
activity by potentially increasing activity to positive stimuli
and decreasing activity to negative stimuli within brain regions
important for emotion processing, including regions of the
frontal cortex and the amygdala (40). One task of particular
interest is the dot probe attentional task, which has been used to
study emotional biases in depression (41). Several neuroimaging
studies have identified activation differences between healthy
volunteers and participants with MDD using a dot probe
task (42–44); anxiolytic effects following stimulation of frontal
cortex (45) and pharmacological treatment effects following
ketamine (43) on task performance in TRD have also been
observed. In addition, ketamine has been shown to normalize
brain activation in TRD patients in regions of frontal cortex,
while its antidepressant effects are associated with reduced
activity to negative stimuli and increased activity to positive
stimuli in the amygdala (43). Here we sought to examine
the influence of ketamine on effective connectivity using an
attentional dot probe task with emotional faces, focusing on
modeling connectivity along the ventral face-processing stream,
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with particular interest in ketamine effects on activity within the
frontal cortex and amygdala.

This study sought to model ketamine-mediated differences
in brain network connectivity in a group of participants with
TRD and healthy volunteers who underwent both ketamine
and placebo saline infusions. This double-blind, crossover,
placebo-controlled study used magnetoencephalography (MEG)
in tandem with dynamic causal modeling (DCM) to model
effective connectivity at three timepoints: (a) baseline, (b) 6–9 h
following subanesthetic (0.5 mg/kg) ketamine infusion, and (c)
6–9 h following placebo saline infusion. DCM uses a biophysical
model that includes realistic local neuronal architecture to model
effective connectivity between regions of interest (ROIs). Model
inversion—the fitting of parameterized mean-field neuronal
models to electrophysiological data features—results in in
silico parameter estimates that govern unobservable neuronal
states including receptor-mediated connectivity between cell
populations (here, a lumped estimate of AMPA/NMDA and
GABA for excitatory and inhibitory intrinsic connections,
respectively, in addition to AMPA and NMDA drive estimates
for all region-to-region connections) and decay times of specific
receptor types (here, AMPA, GABA, and NMDA) (46). DCMwas
used to estimate connectivity in a fully reciprocally connected
network of regions activated by the task, including the early visual
cortex, fusiform cortex, amygdala, and inferior frontal gyrus.
Because the study focused on measuring parameters that were
significantly altered following ketamine administration, the post-
ketamine scan was directly compared with both the baseline
and placebo saline scans. It was predicted that ketamine would
increase gamma power in our defined network—particularly in
the amygdala—in line with previous findings of gamma power
as a putative marker of ketamine-mediated synaptic potentiation
(47) and a normalizer of activation in the amygdala post-
ketamine administration in TRD participants (43). The study
also sought to examine group (TRD participants vs. healthy
volunteers) by session (ketamine vs. baseline/placebo) interaction
effects on modeled parameter estimates governing receptor time
constants and connectivity within the amygdala, a key region
involved in the emotional processing of face stimuli.

MATERIALS AND METHODS

Participants
All participants were studied at the National Institute of Mental
Health (NIMH) in Bethesda, Maryland between September
2011 and August 2016. The present study used data drawn
from a larger clinical trial (NCT00088699) that assessed
ketamine’s antidepressant effects. The present study comprised
19 individuals with a DSM-IV-TR diagnosis of TRD (48) without
psychotic features (11 F, mean age = 36.7 ± 10.9 years) and 15
healthy volunteers (11F, mean age = 34.7 ± 11.8 years). Full
demographic and clinical characteristics of the entire sample
have been previously described (34). This subset of participants
was selected because they had usable MEG scans for all three
sessions of interest. Individuals with TRD were 18–65 years old,
were experiencing a major depressive episode lasting at least 4
weeks, had not responded to at least one adequate antidepressant

trial during the current major depressive episode, and had a
Montgomery-Asberg Depression Rating Scale (MADRS) (49)
score of ≥ 20 at screening and before each infusion. The TRD
sample had failed on average 3.8 antidepressant trials across
their lifetime. Diagnosis was determined by Structured Clinical
Interviews for Axis I DSM-IV-TR Disorders (SCID)–Patient
Edition (50). Healthy volunteers were also 18–65 years old, had
no Axis I disorder as determined by the Structured Clinical
Interviews for Axis I DSM-IV-TR Disorders – Non-Patient
Edition, and had no family history of Axis I disorders in first-
degree relatives. All TRD participants were hospitalized for the
duration of the study and were drug-free from psychotropic
medications for at least 2 weeks prior to MEG testing (5 weeks
for fluoxetine, 3 weeks for aripiprazole). Healthy volunteers
completed study procedures as inpatients but were otherwise
outpatients. All participants were also in good health as evaluated
by a medical history and physical examination, toxicology
screens and urinalysis, blood laboratory results, clinical MRI, and
electrocardiogram. The Combined Neuroscience Institutional
Review Board at the National Institutes of Health approved the
study. All participants provided informed written consent and
were matched with an NIMH advocate from the Human Subjects
Protection Unit to monitor consent and participation.

Clinical Measurements
The primary clinical outcome measure for TRD patients—
the MADRS (49)—was administered 60min prior to infusions
(both ketamine and placebo) and at multiple time points
(230min and Days 1, 2, and 3) following infusions. Clinical
outcome for TRD participants was modeled using all available
data, controlling for both the period-specific baseline (−60min
rating of that infusion) as well as a participant-average baseline
(averaging both −60min ratings) and infusion. Repeated
observations were accounted for by freely estimating the residual
variance and covariance for each participant/infusion by drug
(i.e., unstructured covariance matrix estimated by drug). The
difference between ketamine and placebo was then estimated at
230min, the time point closest to the MEG scan.

MEG Acquisition and Preprocessing
MEG recordings were collected at baseline and 6–9 h following
both ketamine and placebo saline experimenter-blinded
infusions. The timing of data collection for the ketamine
infusion occurred past the half-life of the drug. Ketamine and
placebo infusions occurred 14 days apart, with infusion order
randomized across participants.

During each scanning session, participants completed a dot
probe task with emotional face stimuli presented using E-Prime
presentation software (Psychology Software Tools, Pittsburgh,
PA). The task has been described previously (43). Briefly, the
task used a mixed block/event-related design. During each trial,
a fixation cross was presented centrally for 500ms, where the
participant was instructed to maintain focus. This was followed
by the presentation of two simultaneous, side-by-side faces for
500ms. One face displayed a happy, angry, or neutral expression,
while the other was always neutral. After each pair of faces,
a single dot was presented for 200ms behind one of the two
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faces, and participants were instructed to press a button to
indicate the presentation side (left or right). Trials where the
dot replaced the emotional face were considered congruent trials,
as the expectation was that attention would be biased toward
the emotional face. Trials where the dot replaced the neutral
face were considered incongruent. Trials were randomized and
counterbalanced for emotion, gender of face, side of emotional
face, and side of probe. Each trial was followed by a 1,300ms
blank interstimulus interval. Jitter was also randomly added to
reduce expectancy effects, during which a central fixation cross
was presented. Trials were additionally blocked into two “angry
blocks” and two “happy blocks,” with block order randomized
across participants. Angry blocks comprised trials with angry
and neutral faces or two neutral faces. Happy blocks comprised
trials with happy and neutral faces or two neutral faces. This
resulted in four emotional face trial types: angry congruent, angry
incongruent, happy congruent, and happy incongruent, each
having 48 trials over the experimental run. In addition, because
neutral pairs were included in both happy and angry blocks, there
were a total of 96 neutral paired trials.

Neuromagnetic data were collected using a 275-channel CTF
system with SQUID-based axial gradiometers (VSM MedTech
Ltd., Couquitlam, BC, Canada) housed in a magnetically-
shielded room (Vacuumschmelze, Germany). Data were collected
at 600Hz with a bandwidth of 0–300Hz. Synthetic third order
balancing was used for active noise cancellation. Offline, MEG
data were first visually inspected, and trials were removed
where visible artifacts (e.g., head movements, jaw clenches, eye
blinks, and muscle movements) were present. Second, individual
channels showing excessive sensor noise were marked as bad
and removed from the analysis. Data were then bandpass filtered
from 1 to 58Hz and epoched from−100 to 1,000ms peristimulus
time. The analysis routines available in the academic freeware
SPM12 (Wellcome Trust Centre for Neuroimaging, London, UK,
http://www.fil.ion.ucl.ac.uk/spm/) were used for data processing.
This work used the computational resources of the NIH HPC
Biowulf cluster (http://hpc.nih.gov).

Source Localization and Source Activity
Extraction
The multiple sparse priors routine implemented in SPM12 was
used to identify gamma frequency (30–58Hz) sources of activity
from each participant’s sensor-level data over a peristimulus
event time window from −100 to 1,000ms. Gamma frequency
was targeted, as recent findings in both animals and humans
have demonstrated robust, ketamine-mediated cortical responses
in that band (30–32, 51, 52), in keeping with ketamine’s ability
to alter excitation-inhibition balance (47). Induced responses
to face pairs were localized to 512 potential mesh points using
a variational Bayesian approach following co-registration of
sensor positions to a canonical template brain. Participant-
level activation maps were constructed following inversion of
each session (i.e., baseline, placebo, ketamine) separately for
all participants. No prior constraints on source location were
used. Following the inversion, statistical maps of group activity
were computed and a mixed-effects ANOVA was used to define

source-localized cortical regions showing a main effect of task
across all trial types, thresholded at p < 0.05 family-wise
error correction. Secondarily, the main effect of infusion (here,
ketamine compared with placebo) was tested using a more liberal
criterion of p < 0.05, uncorrected.

Group-level statistical activation maps demonstrated
stimulus-induced gamma-band activity in a network of brain
regions including the bilateral early visual cortices, and extending
into the parietal and frontal regions (Figure 1A). Because the
study sought to characterize connectivity in a network of
regions activated during visual processing of emotional faces,
four regions were investigated in order to model forward and
backward connections in a left-lateralized network: early visual
cortex, fusiform cortex, amygdala, and inferior frontal gyrus
(see Figure 1 and below for source locations). Early visual
cortex, fusiform cortex, and inferior frontal gyrus were defined
using their corresponding peak voxels from the average effect
contrast in Figure 1A. Amygdala was defined using the peak
voxel from the infusion contrast in Figure 1A. Subsequent DCM
analyses focused on characterizing connectivity in these regions
in a wide, 1–50Hz frequency band to model stimulus-induced
event-related potentials.

Dynamic Causal Modeling
DCM uses a biophysical model of neural responses based on
neural mass models to predict recorded electrophysiological
data features (53). Dynamics are modeled using parameterized
mean-field models that include coupled differential equations
modeling unobservable neuronal states, such as decay times of
specific receptors and receptor-mediated connectivity between
cell populations. The present study specifically used the
“CMM_NMDA” model, a conductance-based neural mass
model for electrophysiology, as implemented in SPM12 (http://
www.fil.ion.ucl.ac.uk/spm/), to model responses between ROIs.
The CMM_NMDA model includes connection parameters for
AMPA- and NMDA-mediated glutamatergic signaling as well
as GABA signaling. Within the model, superficial pyramidal
cells encode and carry feed-forward signaling to stellate
cells, while deep pyramidal cells carry feedback signaling
to superficial pyramidal cells and inhibitory interneurons
(Figure 1B). Additional parameters include AMPA, GABA, and
NMDA time constants, the inverse of which model the rate
of receptor channel opening and closing within each ROI.
The model has been extensively described in the literature,
and detailed equations can be found elsewhere (30, 54, 55).
The model has been used extensively to estimate NMDA and
AMPA connectivity changes following ketamine administration
in animal (55) and human studies (30, 56, 57).

Thalamic (stimulus-bound) input was modeled with a
Gaussian bump function that drove activity in early visual
cortex (MNI coordinates: −8, −94, −8) in the model. Two
models of message-passing were constructed between the early
visual cortex, fusiform cortex (MNI coordinates: −52, −52,
−22), amygdala (MNI coordinates: −25, −3, −16), and inferior
frontal gyrus (MNI coordinates: −48, −28, −2) (see Figure 2A).
The first model was a traditional bottom-up processing model
that included forward connections from early visual cortex to
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FIGURE 1 | Gamma power and dynamic causal modeling (DCM). (A) A network of regions showed robust increases in induced gamma power during the task. These

included the bilateral early visual cortex, bilateral fusiform cortex, and bilateral inferior frontal gyrus. When directly testing the effect of infusion, higher induced gamma

power was found in the left amygdala for the ketamine infusion. (B) The default CMM_NMDA model includes four distinct intrinsic (within region) cell layers: superficial

pyramidal cells, spiny stellate cells, inhibitory interneurons, and deep pyramidal cells [adapted from Gilbert et al. (57)]. Intrinsic excitatory connections were mediated

by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors while intrinsic inhibitory connections were mediated

by gamma aminobutyric acid (GABA) receptors. Each cell population included a self-gain parameter that reflected precision for each cell type. Each receptor also

included distinct time constants and dynamics in the model. Between regions, superficial pyramidal cells carry forward extrinsic signals to excitatory spiny stellate

cells. Deep pyramidal cells carry backward extrinsic signals to both superficial pyramidal cells and inhibitory interneurons.

fusiform cortex, fusiform cortex to amygdala, and amygdala to
inferior frontal gyrus. Backward connections ensured reciprocal
message-passing in a top-down hierarchy. Model 2 included two
additional connections: direct forward and reciprocal backward
connections between early visual cortex and inferior frontal
gyrus. These connections were included to model presumed
magnocellular projections to frontal cortex, which have been
shown to exert early top-down effects on bottom-up visual
signaling (58–60). Face emotion modulated all region-to-region
connections in bothmodels (i.e., comparing trials in which happy
vs. angry faces appeared).

For the DCM analyses, MEG activity for the extracted
time series was fitted over 1–500ms peristimulus time in a
wide frequency band from 1 to 50Hz using an event-related
potential (ERP) model to capture ERPs of evoked activity. For
computational efficiency, DCM optimizes a posterior density
over free parameters (parameterized by its mean and covariance)
via a standard variational Bayesian inversion procedure (61).
In the present analysis, initial DCMs were computed for each
participant and session, and model fits were assessed. The
posterior estimates were then used to initialize a second set of
DCMs for each participant and session, andmodel fits were again
assessed. This iterative procedure occurred for both Model 1 and
Model 2. In both cases, the initialized model resulted in a better
fit of the model to the data. The negative free energy bound

on the log-model evidence was then used to adjudicate between
Model 1 and Model 2 across participants, selecting the model
with the greatest log-model evidence for subsequent analyses.
Parameter estimates were extracted from optimized DCMs for
the winning model for each participant and session to compare
ketamine-mediated effects across parameter estimates.

To determine the mixture of parameters that mediated
ketamine’s effects, a second-level modeling extension of DCM
called parametric empirical Bayesian analysis (62) was applied.
This analysis refits a full model (where all parameters can covary
according to grouping) and provides reduced models where
smaller combinations of parameters are considered and informed
by differences between sessions. Group, session, and group by
session effects on all parameters were specifically tested in the
second-level design matrix, where the first column represented
the average effect over all participants and sessions, the second
column tested for the effect of group, the third column tested
for the effect of drug, and the fourth column tested for group by
drug interactions. Group by drug interactions were of particular
interest, though group and drug effects are also reported here.

Finally, as additional exploratory analyses, post-hoc classical
statistical tests were conducted to determine whether any
parameters identified using parametric empirical Bayesian
analysis as significantly contributing to group effect, drug
effect, or group by drug interactions were associated with
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FIGURE 2 | Models of connectivity, winning model, and example model fits. (A) Two plausible models were constructed to account for message passing between the

early visual cortex (EV), fusiform cortex (Fusi), amygdala (Amy), and inferior frontal gyrus (IFG). Model 1 included reciprocal forward and backward connections from

the EV to the Fusi, from the Fusi to the Amy, and from the Amy to the IFG. Model 2 included a direct, reciprocal, forward and backward connection from the EV to the

IFG. (B) Bayesian Model Selection (BMS) was used to adjudicate between models, demonstrating that Model 2, with fully interconnected feedforward and feedback

connections between each region, had the greatest exceedance probability. RFX, random effects. (C) Example evoked responses (left) and model fits (right) for a

healthy volunteer (HV, top) and participant with treatment-resistant major depressive disorder (MDD) (bottom).

antidepressant response in the TRD participants only. Here,
changes in parameter values from baseline to ketamine were
specifically examined and correlated with changes in MADRS
score from baseline to post-ketamine using pairwise linear
correlation as implemented in MATLAB software. Because
this analysis was exploratory, a liberal criterion of p < 0.05,
uncorrected, was used.

RESULTS

Clinical and Behavioral
Clinically, the effect of drug at 230min post-ketamine infusion
compared to 230min post-placebo infusion was significant [t18
= 2.07, p < 0.05], for an estimated reduction of 5.37 (SE =

2.28) points on total MADRS score (95% CI: −0.05, +9.48)
following ketamine administration (ketamine −60min = 33.37
± 4.39, ketamine 230min = 26.95 ± 11.06; placebo −60min =

32.26 ± 4.79, placebo 230min = 31.21 ± 5.03). Behaviorally,
both reaction time bias (calculated as the difference between
congruent and incongruent trials for happy and angry faces,
respectively) and accuracy rates on the emotional dot probe
task were examined using multi-way ANOVAs to look for
main effects of group, session (baseline, placebo, ketamine),
emotion (happy vs. angry), and congruency (congruent vs.
incongruent; calculated for accuracy scores only). In addition,
all two-, three-, and four-way interactions were considered.

Although no significant behavioral effects were observed on
reaction time bias scores, main effects were found for group
(F = 14.43, p < 0.01) and session (F = 3.58, p < 0.05) on
accuracy scores for participants; in particular, TRD participants
were more accurate (mean = 94.2%) than healthy volunteers
(mean = 88.8%). In addition, both TRD participants and
healthy volunteers weremost accurate during the baseline session
(mean = 94.2%) followed by the ketamine session (mean =

91.6%) and the placebo session (mean = 89.8%). Post-hoc
tests using Bonferroni correction found significant accuracy
differences between the baseline and placebo sessions across
participants (t = 3.45, p < 0.05).

Source-Level
MEG data were subsequently source-localized to infer the
primary generators of the signal using the multiple sparse priors
routine. Significant group-level induced gamma-band activation
was identified in response to the dot probe task (Figure 1A). The
network of regions activated included the bilateral early visual
cortex extending into higher-order visual areas in the occipital
lobe, regions of the temporal lobe including the fusiform gyrus,
and regions in both the parietal and frontal lobes, including the
inferior frontal gyrus. When testing for the effect of infusion
(ketamine vs. placebo), left-lateralized amygdala response was
found at the more liberal criterion of p < 0.05, uncorrected.
We therefore focused on characterizing parameter estimates of
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effective connectivity using DCM for electrophysiology using a
model that included left-lateralized early visual cortex, fusiform
cortex, amygdala, and inferior frontal gyrus (Figure 2A).

Dynamic Causal Modeling
Two plausible models were constructed to account for
connectivity between ROIs. Using Bayesian model selection
to adjudicate between these models, Model 2—which included
the addition of forward and backward connections between
the early visual cortex and inferior frontal gyrus—was found to
have the strongest model evidence (Figure 2B). Example model
fits for a TRD participant and a healthy volunteer are shown
in Figure 2C.

Parametric empirical Bayes—an analysis approach that allows
testing of random effects of model parameters at the group
level—was used to test for parameters contributing to the
group effect, drug effect, and group by drug interactions.
All fitted parameters in the model were considered, focusing
on parameters that exhibited meaningful effects (specifically,
parameters having a probability of 95% or greater). All identified
parameters are reported in Tables 1–3, and parameters showing
meaningful group by drug interactions are reported here. Four
receptor time constants showed meaningful group by drug
interactions, including the GABA time constant in the early
visual cortex and the NMDA time constants in the early visual
cortex, fusiform cortex, and amygdala (Figure 3A). As the
inverse of time constants are rate constants, faster rates of
GABA and NMDA signal transmission were found in the early
visual cortex for TRD participants post-ketamine, while healthy
volunteers showed slower GABA signal transmission coupled
with faster NMDA signal transmission following ketamine. In
the fusiform cortex, faster NMDA signal transmission was
observed for TRD participants post-ketamine, while healthy
volunteers showed slower signal transmission. Finally, slower
NMDA signal transmission in amygdala was observed for both
groups post-ketamine.

Our second-level modeling extension also identified five
intrinsic, within-region connections that showed meaningful
group by drug interaction effects; three were in the early visual
cortex, with one each in the amygdala and inferior frontal gyrus
(Figure 3B). In the early visual cortex, decreased self-inhibitory
drive was observed on both spiny stellate cells and inhibitory
interneurons for TRD participants post-ketamine; in contrast,
healthy volunteers showed increased self-inhibitory drive on
both cell types post-ketamine. Ketamine was also found to
reduce inhibitory drive from inhibitory interneurons to spiny
stellate cells in the early visual cortex for both groups. In the
amygdala, increased excitatory drive from deep pyramidal cells
to inhibitory interneurons was noted for TRD participants post-
ketamine, while healthy volunteers showed decreased excitatory
drive between these connections. Finally, reduced self-inhibitory
drive on superficial pyramidal cells in the inferior frontal gyrus
was noted in healthy volunteers post-ketamine, but no changes
were observed in TRD participants.

Parameters Associated With
Antidepressant Response
Finally, we explored whether any meaningful parameters
identified as contributing to the group effect, drug effect, or
group by drug interactions were associated with clinical change
at 230min post-ketamine compared to baseline. Two parameters
were found to be associated with antidepressant response
(Figure 4). First, change in AMPA time constants from baseline
to ketamine were associated with antidepressant response in the
TRD participants (r= 0.4917, p< 0.05), with faster AMPA signal
transmission post-ketamine associated with better antidepressant
response. Second, change in self-inhibitory drive of spiny stellate
cells in early visual cortex from baseline to ketamine was
associated with antidepressant response (r =−0.6545, p < 0.01),
with larger self-inhibition on spiny stellate cells post-ketamine
associated with better antidepressant response.

DISCUSSION

This study used MEG recordings collected while participants
completed a dot probe task with emotional faces in tandem
with DCM to probe ketamine’s effects in individuals with TRD
and healthy volunteers. The goal was to measure changes in
effective (causal) connectivity within and between the early visual
cortex, fusiform cortex, amygdala, and inferior frontal gyrus,
in addition to changes in AMPA, GABA, and NMDA receptor
time constants, following ketamine administration. We were
particularly interested in ketamine’s effects in the amygdala, a
key region implicated in the pathophysiology of depression (63)
demonstrating upregulation to positive faces and downregulation
to negative faces during an attentional dot probe task following
ketamine administration (43).

Clinically, we found significantly reduced depressive
symptoms in our TRD sample post-ketamine, consistent with
previous findings (6, 9). Controlling for the period-specific
baseline and the participant-average baseline, ketamine was
found to result in a 5.37-point reduction in MADRS score
in the TRD sample. Behaviorally, no differences in reaction
time bias scores were observed on the task. However, accuracy
differences were observed between the two groups, with TRD
participants significantly more accurate than healthy volunteers
during the task. In addition, session effects were noted with
regard to accuracy rates, with the best performance occurring
during the baseline session, followed by the ketamine and then
placebo sessions. Importantly, post-hoc tests found significant
differences in accuracy between the baseline and placebo sessions
only. These findings suggest that healthy volunteers were less
engaged in the task and therefore did not perform as well as
the TRD participants. In addition, task repetition led to poorer
performance, especially following placebo saline infusion, where
participants were perhaps least motivated to perform well-during
the scan procedures.

We modeled induced gamma-band activity during the dot
probe task, identifying a network of brain regions involved
in the task. We also modeled regions showing an effect of
infusion (ketamine vs. placebo) and found increased gamma

Frontiers in Psychiatry | www.frontiersin.org 7 June 2021 | Volume 12 | Article 67315933

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Gilbert et al. TRD-Mediated Connectivity Changes Following Ketamine

TABLE 1 | Group effects over parameters.

Parameter Parameter Estimate (Ep) Posterior Probability (Pp)

Time constants

1 AMPA–Amy* −0.0978 1

2 GABA–Fusi* 0.1501 1

3 GABA–IFG* 0.1534 1

4 NMDA–EV* 0.1763 1

5 NMDA–IFG* −0.3113 1

Intrinsic connectivity

6 EV: inhibitory self-connection–ss* 0.1285 1

7 EV: inhibitory self-connection–ii 0.0604 0.531

8 Fusi: inhibitory self-connection–ss* 0.2202 1

9 Fusi: inhibitory self-connection–sp* 0.1363 1

10 Amy: excitatory connection–sp to dp* −0.1424 1

11 IFG: inhibitory self-connection–ss* 0.1437 1

Parametric empirical Bayes was used to identify themixing of parameters that contributed to the effect of group. Note that the timing of data collection (6–9 h post-ketamine administration)

occurred past the half-life of ketamine. Meaningful parameters were defined as those with a posterior probability (Pp) >95%. Ten parameters were found to significantly contribute to

group effects. These included the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) time constant within the amygdala (Amy), gamma aminobutyric acid (GABA) time

constants within the fusiform gyrus (Fusi) and inferior frontal gyrus (IFG), and N-methyl-D-aspartate (NMDA) time constants within the early visual cortex (EV) and IFG. In addition, the

inhibitory self-connections on spiny stellate cells (ss) within the EV, Fusi, and IFG differed between groups, as did the inhibitory self-connection on superficial pyramidal cells (sp) within

the Fusi, and the excitatory connections between sp and deep pyramidal cells (dp) in the Amy. Finally, the inhibitory self-connection on inhibitory interneurons (ii) in the EV showed a

group effect, though not at our threshold. *Pp > 0.95.

TABLE 2 | Drug effects over parameters.

Parameter Parameter estimate (Ep) Posterior probability (Pp)

Time constants

1 AMPA–EV* 0.132 1

2 GABA–Amy* 0.1363 1

3 GABA–IFG* 0.1349 1

4 NMDA–EV* −0.2028 1

5 NMDA–Amy* 0.5303 1

6 NMDA–IFG* −0.2419 1

Intrinsic connectivity

7 EV: excitatory connection–sp to dp* 0.1988 1

8 EV: inhibitory connection–ii to sp* −0.2011 1

9 IFG: inhibitory self-connection–ss 0.0773 0.502

10 IFG: excitatory connection–ss to ii* 0.1805 1

Parametric empirical Bayes was used to identify the mixing of parameters that contributed to the effect of drug. Meaningful parameters were defined as those with a probability (Pp)

>95%. Nine parameters were found to significantly contribute to drug effects. These included the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) time constant within the

early visual cortex (EV), gamma aminobutyric acid (GABA) time constants within the amygdala (Amy) and inferior frontal gyrus (IFG), and N-methyl-D-aspartate (NMDA) time constants

within the EV, Amy, and IFG. In addition, the excitatory connections between superficial pyramidal cells (sp) and deep pyramidal cells (dp), and the inhibitory connections between

inhibitory interneurons (ii) and sp differed following ketamine in the EV, as did excitatory connections between spiny stellate cells (ss) and ii in the IFG. Finally, the inhibitory self-connection

on ss in the IFG showed a drug effect, though not at our threshold. *Pp > 0.95.

power in the amygdala post-ketamine vs. placebo for both
TRD participants and healthy volunteers. These findings are
in keeping with preclinical studies suggesting increased cortical
excitation following ketamine administration, due to NMDA
inhibition reducing the activity of putative GABA interneurons
(15). At a delayed rate, this increases the firing rate of pyramidal
neurons due to enhanced AMPA throughput (15) that, in
turn, leads to increased cortical excitation. Given that gamma
power in the amygdala showed a drug-specific effect, with
increased cortical excitation post-ketamine, this suggests that

increased cortical excitation in this key emotional face processing
region may be related to previous reports of normalization
of emotional processing following drug administration (43).
Notably, normalization of amygdalar activity post-ketamine
was previously described in an fMRI study that included
an attentional dot probe task with emotional faces in TRD
participants (43), though this was not specifically examined in the
present study.

Two plausible models of message passing between the early
visual cortex and the inferior frontal gyrus were subsequently
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TABLE 3 | Group by drug interactions over parameters.

Parameter Parameter Estimate (Ep) Posterior Probability (Pp)

Time constants

1 GABA-EV* −0.1274 1

2 NMDA-EV* 0.1994 1

3 NMDA-Fusi* −0.1723 1

4 NMDA-Amy* 0.1502 1

Intrinsic connectivity

5 EV: inhibitory self-connection–ss* −0.2778 1

6 EV: inhibitory connection–ii to ss* −0.1837 1

7 EV: inhibitory self-connection–ii* −0.4241 1

9 Amy: excitatory connection–dp to ii* 0.1998 1

10 IFG: inhibitory self-connection–sp* 0.1943 1

Parametric empirical Bayes was used to identify the mixing of parameters that contributed to group by drug interactions. Meaningful parameters were defined as those with a probability

(Pp) >95%. Nine parameters were found to significantly contribute to group by drug effects. These included gamma aminobutyric acid (GABA) time constants within the early visual

cortex (EV) and N-methyl-D-aspartate (NMDA) time constants within the EV, fusiform cortex (Fusi), and amygdala (Amy). In addition, the inhibitory self-connections on spiny stellate cells

(ss) and inhibitory interneurons (ii), as well as inhibitory connections between ii and ss in the EV showed group by drug interactions. Excitatory connections between deep pyramidal cells

(dp) and ii in the Amy, in addition to inhibitory self-connections on superficial pyramidal cells (sp) in the inferior frontal gyrus (IFG) also showed group by drug interactions. *Pp > 0.95.

FIGURE 3 | Meaningful parameters showing group by drug interactions. The estimated log mean and variance of each meaningful (95% probability or greater)

parameter are plotted for participants with treatment-resistant major depressive disorder (MDD) (left) and healthy volunteers (HV) (right) for: (A) the four receptor time

constants showing group by drug interactions, and (B) the five intrinsic connectivity parameters showing group by drug interactions. IFG, inferior frontal gyrus, C,

baseline/placebo sessions, K, ketamine session, ss, spiny stellate cells; ii, inhibitory interneurons; sp, superficial pyramidal cells; dp, deep pyramidal cells.

fit. A model that included traditional feedforward processing
along the ventral stream to the amygdala in tandem with
feedforward connections from the early visual cortex to the
inferior frontal gyrus provided the best model fits, in line with
ideas that top-down predictions serve to constrain bottom-up
signal propagation (60). All fitted parameters were subsequently
extracted, and a Bayesian modeling extension of DCM was used
to test for meaningful parameters contributing to the group
effect, drug effect, and group by drug interactions. Here, we focus
on discussing group by drug interactions, as these are identified
parameters where ketamine had differential effects between TRD

participants and healthy volunteers. Four modeled receptor time
constants showed group by drug interactions, including the
GABA and NMDA time constants in the early visual cortex and
the NMDA time constants in the fusiform cortex and amygdala.
In the early visual cortex, ketamine administration led to faster
GABA and NMDA transmission estimates for TRD participants,
while GABA transmission slowed for healthy volunteers post-
ketamine. In the fusiform cortex, faster NMDA transmission
followed ketamine administration for TRD participants, though
the rate of transmission slowed for healthy volunteers post-
ketamine. Interestingly, a slowing of NMDA transmission was
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FIGURE 4 | Parameter change and antidepressant response. Two parameters showed a significant association between change from baseline (B) to ketamine (K)

sessions and associated changes in Montgomery-Asberg Depression Rating Scale (MADRS) scores (B–K). ss, spiny stellate cells; AMPA,

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid.

observed in the amygdala post-ketamine for both TRD and
healthy volunteers, though healthy volunteers had significantly
faster NMDA transmission at baseline/placebo than TRD
participants. As the amygdala ROI was identified based on the
effect of infusion (ketamine vs. placebo), slowing of NMDA
transmission within this region is clearly related to drug effects.
Although no association was noted betweenNMDA transmission
in the amygdala and antidepressant response within our sample,
future studies should examine whether these changes in NMDA
time constants are related to other clinical measures of mood
changes following drug administration.

In addition to changes in receptor time constants, group by
drug interactions were found for modeled intrinsic connectivity
within the early visual cortex, amygdala, and inferior frontal
gyrus. In the early visual cortex, three intrinsic connection
parameters showed group by drug changes in inhibitory drive.
First, decreased GABAergic inhibitory drive on self-connections
were found for both inhibitory interneurons and spiny stellate
cells following ketamine in the TRD participants, while healthy
volunteers demonstrated increased GABAergic inhibitory drive
post-ketamine. These self-connections reflect gain or precision
of different cell types, suggesting reductions in self-gain
on inhibitory interneurons and spiny stellate cells following
ketamine administration in the TRD group. Second, reduced
inhibitory drive was observed on the intrinsic connection from
inhibitory interneurons to spiny stellate cells in the early visual
cortex in our TRD and healthy volunteers. Third, ketamine
increased the excitatory drive from deep pyramidal cells to
inhibitory interneurons in the amygdala in TRD participants,
while healthy volunteers showed reduced excitatory drive for this
connection post-ketamine. Finally, ketamine also reduced the
inhibitory self-gain on superficial pyramidal cells in the inferior
frontal gyrus in our healthy volunteers only. Interestingly, these
findings all reflect changes in intrinsic connectivity that regulate
or modulate inhibition locally.Within the amygdala in particular,
increased excitatory drive onto inhibitory interneurons for TRD

participants seems at odds with an increased state of excitability
within this region; however, similar accounts of increased
pyramidal-to-inhibitory interneuron drive have previously been
reported (64) and are thought to reflect a link between increased
pyramidal cell excitability locally and downstream effects of
increased gamma power.

Separately, we tested whether any meaningful parameters
identified in our analysis of group effects, drug effects, or
group by drug interactions were associated with antidepressant
response in our TRD participants. We specifically examined
changes in parameter estimates from the baseline to ketamine
sessions (baseline minus ketamine) and correlated them with
change in MADRS score from baseline to 230min post-ketamine
(the time point closest to the MEG recording session). Two
parameters were found to be associated with antidepressant
response, both in the early visual cortex. The first was
the AMPA time constant in the early visual cortex, where
faster AMPA transmission post-ketamine was associated with
better antidepressant response. The second was inhibitory self-
gain on spiny stellate cells in the early visual cortex, where
larger self-inhibition on spiny stellate cells post-ketamine was
associated with better antidepressant response. The findings of
an association between AMPA transmission and antidepressant
response are particularly striking because AMPA receptor
throughput following NMDA receptor blockade (14, 16) is
thought to result in delayed increases in synaptic potentiation
and synaptogenesis, key mechanisms associated with ketamine’s
antidepressant effects. Similar associations between AMPA
receptor connectivity and antidepressant response were also
previously reported in a time window overlapping with our MEG
recordings (56, 57).

One important limitation of this study is that MEG recordings
were not collected during or immediately following infusions,
but rather 6–9 h following ketamine administration in order
to avoid side effects while measuring therapeutic drug effects.
Thus, we cannot comment on acute changes in modeled
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parameter estimates. However, studies of ketamine’s acute effects
in healthy volunteers suggest robust changes in both gamma
power (30, 31) and AMPA and NMDA receptor drive (30) during
ketamine infusion. Future studies should explore ketamine’s
acute effects in TRD participants to better understand the
mechanisms via which ketamine reduces depressive symptoms.
Another limitation is that we set a liberal criteria of p <

0.05 uncorrected for determining whether modeled parameters
were associated with antidepressant response. Though this
increases the likelihood of false positives, previous findings
have demonstrated associations between AMPA parameters and
antidepressant response in TRD (56, 57). In addition, our study
included secondary analyses of data collected during a clinical
trial of ketamine’s mechanisms of actions, and we limited our
sample to participants having baseline, post-ketamine, and post-
placebo scan data. Additional work should include a larger
sample of study participants to model effective connectivity
during a task probing attentional bias toward emotional
faces, in order to better characterize effective connectivity
changes in regons of the emotion processing network following
ketamine administration.

CONCLUSIONS

These findings demonstrate that ketamine administration leads
to key changes in estimates of GABA and NMDA time constants
measured using MEG in tandem with DCM. In addition to
mirroring findings from animal studies measuring the acute
effects of ketamine (15), these changes also indicate that
ketamine alters estimates of excitatory and inhibitory intrinsic
connectivity within key regions important for visual processing
of emotional faces. Finally, the findings also underscore the
usefulness of DCM for modeling connectivity changes associated
with ketamine administration.
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Background: D-Serine, a direct, full agonist at the D-serine/glycine modulatory site of

the N-methyl-D-aspartate-type glutamate receptors (NMDAR), has been assessed as a

treatment for multiple psychiatric and neurological conditions. Based on studies in rats,

concerns of nephrotoxicity have limited D-serine research in humans, particularly using

high doses. A review of D-serine’s safety is timely and pertinent, as D-serine remains under

active study for schizophrenia, both directly (R61 MH116093) and indirectly through

D-amino acid oxidase (DAAO) inhibitors. The principal focus is on nephrotoxicity, but safety

in other physiologic and pathophysiologic systems are also reviewed.

Methods: Using the search terms “D-serine,” “D-serine and schizophrenia,” “D-serine and

safety,” “D-serine and nephrotoxicity” in PubMed, we conducted a systematic review on

D-serine safety. D-serine physiology, dose-response and efficacy in clinical studies and

DAAO inhibitor safety is also discussed.

Results: When D-serine doses >500 mg/kg are used in rats, nephrotoxicity, manifesting

as an acute tubular necrosis syndrome, seen within hours of administration is highly

common, if not universal. In other species, however, D-serine induced nephrotoxicity has

not been reported, even in other rodent species such as mice and rabbits. Even in rats,

D-serine related toxicity is dose dependent and reversible; and does not appear to be

present in rats at doses producing an acute Cmax of <2,000 nmol/mL. For comparison,

the Cmax of D-serine 120 mg/kg, the highest dose tested in humans, is∼500 nmol/mL in

acute dosing. Across all published human studies, only one subject has been reported to

have abnormal renal values related to D-serine treatment. This abnormality did not clearly

map on to the acute tubular necrosis syndrome seen in rats, and fully resolved within a

few days of stopping treatment. DAAO inhibitors may be nephroprotective. D-Serine may

have a physiologic role in metabolic, extra-pyramidal, cardiac and other systems, but no

other clinically significant safety concerns are revealed in the literature.

Conclusions: Even before considering human to rat differences in renal physiology,

using current FDA guided monitoring paradigms, D-serine appears safe at currently

studied maximal doses, with potential safety in combination with DAAO inhibitors.

Keywords: NMDA–N-methyl-D-aspartate, D-serine, schizophrenia, safety, kidney
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INTRODUCTION

Glutamate-targeted drugs remain a high priority for the
treatment of schizophrenia (1, 2). While no compounds
have successfully navigated the difficult process from Phase
I to regulatory approval, recent meta-analyses support
significant, moderate to large effect size improvements for
both schizophrenia symptoms in general, along with specific
improvements in negative symptoms, for pooled N-methyl-
D-aspartate-type glutamate receptors (NMDAR) modulators
adjunctive to antipsychotics compared to placebo (3). In
addition to overall improvements in residual psychotic and
negative symptoms, glutamatergic based medications have also
targeted cognitive deficits (4, 5).

The vast majority of glutamate-based treatment trials have
targeted the glycine modulatory site of the NMDAR with natural
compounds such as D-serine, glycine, and sarcosine. Recently,
the field has seen some successes and some failures with more
traditional pharmaceutical glutamatergic treatment trials (5–8).
In particular, dose finding, target engagement biomarker work
has helped to guide the field (1, 9), allowing an assessment of the
ideal doses of the correct compounds to use prior to larger Phase
II studies.

The present report focuses on the safety of D-serine, one
of the more thoroughly studied NMDAR modulators (3), with
a specific focus on potential nephrotoxicity. A review of D-
serine’s safety is timely and pertinent, as D-serine remains under
active study, both directly (10), and indirectly through D-amino
acid oxidase (DAAO) inhibitors such as Luvadaxistat (NBI-
1065844/TAK-831) and NaBen (sodium benzoate). In addition
to a primary focus on D-serine and renal safety, specific topics
covered include an overview of D-serine’s physiology, efficacy and
dose-response in treatment studies, physiology/pathophysiology
in other systems and potential metabolic, extra-pyramidal,
cardiac, and oncological adverse events and interaction with
DAAO inhibitors.

METHODS

Using the search terms “D-serine,” “D-serine and schizophrenia,”
“D-serine and safety,” “D-serine and nephrotoxicity” in
PubMed, we conducted a systematic review on D-serine
safety. The reference lists of articles found were reviewed for
additional sources.

OVERVIEW OF D-SERINE PHYSIOLOGY

Glutamate is the primary excitatory neurotransmitter in the
brain, and the NMDAR is the primary glutamate receptor (11,
12). In addition to the primary binding site of glutamate, the
NMDAR is modulated by multiple other binding sites. D-Serine
is a naturally occurring amino acid that is present in high
concentrations in the human brain (13, 14). D-Serine is an
NMDARmodulator and a full agonist at the D-serine/glycine site
of the NMDAR (15, 16). Binding by D-serine or glycine at this
modulatory site is necessary for activation of the NMDAR (11).

D-Serine is the D-isomer of the more common amino acid
L-serine. Along with D-aspartate and D-alanine, D-serine is one
of the few D-amino acids present in high concentrations in the
mammalian brain (or elsewhere in the human body), suggesting
an important physiological role (17). The normal source for
D-serine in brain appears to be conversion from L-serine, via
serine racemase (18, 19). D-serine is converted to back to L-
serine only to a limited degree, but in cortical areas with low
DAAO, serine racemase appears to degrade D-serine via α/β-
elimination of water (20). In general, D-serine is broken down
through the action of DAAO (14). In rodents, DAAO is primarily
expressed in the cerebellum (21), with only a limited expression
in rodent forebrain (22), and thus appears to play a limited role
in D-serine degradation in this area (23, 24). DAAO inhibition
can modulate hippocampal function in rodents (25). In humans,
DAAO is present in both cortical neurons and cerebellar glia (26).

Serine racemase is also present outside the brain (27), but pre-
clinical studies suggest that it is less clearly involved in D-serine
regulation in the periphery (28). By contrast, DAAO appears to be
physiologically active in the periphery, with the largest expression
in the cerebellum, small intestine, liver, and kidney (17, 29, 30).
Thus, DAAO inhibitors appear to exert their putative therapeutic
effects via reduced peripheral degradation of D-serine rather than
by direct cortical action.

In humans, D-serine exhibits linear kinetics (31), with a TMax
∼1–2 h following administration (Figure 1, Left) and a t½ of
∼3.3 h. The CMax of D-serine is 120.6 ± 34.6, 272.3 ± 62.0,
and 530.3 ± 266.8 nmol/ml for the 30, 60, and 120 mg/kg doses,
respectively (31). After 4 weeks of daily treatment, linear kinetics
continued to be observed, although there may be some modest
accumulations (Figure 1, Right).

D-Serine can cross the blood brain barrier, supporting the
potential utility as a therapeutic agent (32, 33). Both D-serine
and glycine have shown promise in clinical trials, although D-
serine may be more pharmacologically potent than glycine (34–
38) and is the main NMDAR regulator in cortex. Relevant to its
potential as a cognitive enhancer (39), D-serine also has a specific
role in long-term potentiation (LTP) and depression (LTD) (40–
42), long-term plasticity (43, 44) and synaptogenesis (45). Studies
suggest a basal deficit in D-serine in schizophrenia (31, 46),
further supporting a role for D-serine as a treatment.

USE OF D-SERINE IN TREATMENT
STUDIES: EFFICACY AND
DOSE-DEPENDENT EFFECTS

A full listing of the 19 published human studies with D-serine
is shown in Table 1. D-Serine has mainly been studied for
schizophrenia and related psychotic disorders, but a role for
use in tics disorder (61), movement disorders (58), alcohol
dependence (64), dementia (65), post-traumatic syndrome
disorder (56), and depression (66, 67) have also been proposed
and studied.

D-Serine was originally reported to be beneficial in
schizophrenia based upon studies conducted in Taiwan (52) and
Israel (54). A recent meta-analysis of NMDAR modulators in
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TABLE 1 | Renal safety of D-serine.

References Active D-serine “n” &

diagnosis

Dose Renal Abnormalities

High dose D-serine

Kantrowitz et al. (47) 20 CHR (prodrome) 60 mg/kg/day for 16 weeks None

Kantrowitz et al. (4) 21 schizophrenia (Sz) 60 mg/kg single dose ×

1week

None

Kantrowitz et al. (48) 16 Sz 60 mg/kg/day for 6 weeks None

Ermilov et al. (49) 10 Sz 3 g/day for 6 weeks (∼45

mg/kg)

None

Kantrowitz et al. (31) 47 Sz 4 week study

12 Sz at 30 mg/kg

19 at 60 mg/kg

16 at 120 mg/kg

1 subject showed 2+

proteinuria without

glycosuria after 4 weeks of

120 mg/kg, without change

in creatinine

Capitao et al. (50) 20 healthy controls 60 mg/kg single dose None

Heresco-Levy et al. (51) 1 Sz with anti-NMDAR

antibodies

4g for 6 weeks None

Low dose D-serine

Tsai et al. (52) 14 Sz 30 mg/kg/day for 6 weeks None

Tsai et al. (53) 10 Sz 30 mg/kg/day for 6 weeks None

Heresco-Levy et al. (54) 19 Sz 30 mg/kg/day for 6 weeks None

Lane et al. (55) 21 Sz 2 g/day for 6 weeks (∼30

mg/kg)

None

Heresco-Levy et al. (56) 21 PTSD 30 mg/kg/day for 6 weeks None

Lane et al. (57) 20 Sz 2 g/day for 6 weeks (∼30

mg/kg)

None

Gelfin et al. (58) 8 Parkinson’s disease 30 mg/kg/day for 6 weeks None

D’souza et al. (59) 51 Sz 30 mg/kg/day for 12 weeks None

Weiser et al. (60) 97 Sz 2 g/day for 16 weeks (∼30

mg/kg)

None

Lemmon et al. (61) 9 Tourette’s 30 mg/kg/day for 6 weeks None

Levin et al. (62) 35 healthy controls 2.1 g single dose (∼30

mg/kg)

None

Avellar et al. (63) 50 healthy older adults 30 mg/kg single dose None

CTP-692

Unpublished 244 Sz 12 week study

81 Sz at 1 g

85 at 2 g

78 at 4 g

None

schizophrenia (3) has found specific improvement for D-serine
adjunctive to antipsychotics for negative symptoms measured by
both the Scale for the Assessment of Negative Symptoms (SANS)
(68), with a standardized mean difference (SMD) = −0.56 and
the Positive and Negative Symptom Scale (PANSS) negative
symptom subscale (69), with a SMD of−0.49. The meta-analysis
for D-serine for total PANSS symptoms was not significant (SMD
= −0.3). Of note, while a positive trial of the closely related
compound D-alanine (70) was included in the meta-analysis, it
was not grouped with D-serine as we have done in the past (48).
D-Serine’s utility as a cognitive enhancer was not evaluated in
this meta-analysis.

The majority of human D-serine studies have used a low (30
mg/kg, ∼2 g/day) dosage, with a significant, but small effect size
improvement (SMD=−0.32) at this dose in meta-analyses (46).
This provides proof of concept, but suggests 30 mg/kg may be
inadequate to fully engage the NMDAR, as evidenced by larger
multi-center studies of 30 mg/kg which failed to separate from
placebo (59, 60).

Pre-clinical studies suggest the need for higher doses. As
further discussed in the Renal effects of D-serine section, rats are
especially, and possibly uniquely vulnerable to D-serine induced
nephrotoxicity. Thus, pre-clinical behavioral studies need to be
completed in mice. In mice, effective doses of D-serine have been
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in the range of 600–1,000 mg/kg, roughly equivalent to human
doses >30 mg/kg (60–120 mg/kg) (71). In other assay systems,
numerical reversal of NMDAR antagonist induced (MK-801-
induced) hyperactivity in mice was observed at a dose of 600
mg/kg, although significant reduction was not observed until
4,000 mg/kg (72).

Human studies have supported the safety and efficacy of
higher dose D-serine, defined as ≥60 mg/kg, ≥4 g/day. An
open label dose finding study compared cohorts of 30, 60,
and 120 mg/kg/day, finding dose-dependent improvement (31).
Significant improvement for total PANSS symptoms was seen at
all doses, but specific improvement for both positive and negative
symptoms individually was only seen in the 120 mg/kg/day
cohort. Similarly, a dose-dependent effect for cognition was
seen, finding significantly greater improvement at ≥60 mg/kg
vs. Thirty milligram/kilogram dose for the Measurement and
Treatment Research to Improve Cognition in Schizophrenia
(MCCB) (73) composite (p = 0.017). A pharmacodynamic
analysis supported a dose effect, finding that higher peak serum
levels of D-serine predict greater MCCB scores and improvement
on the PANSS in this study, consistent with studies suggesting
that basal serum levels of D-serine are related to cognition
(74, 75).

The initial double blind studies of high dose D-serine were
conducted at a dose of 60 mg/kg, due to caution after a single
subject with abnormal renal values at 120 mg/kg (31), as further
discussed in the Renal effects of D-serine section. A double-
blind high dose study in schizophrenia showed significant,
large effect size improvements for both total (Cohen’s d =

0.8) and negative symptoms (d = 0.88) (48). Additionally,
a nonsignificant, moderate effect size improvement was seen
for the MCCB composite (d = 0.41) and significant target
engagement was seen using mismatch negativity. A high dose
study in a clinically high risk (CHR) for schizophrenia group
(47) also showed significant improvement in prodromal negative
symptoms (d = 0.68). Meta-analysis including high dose studies
demonstrate moderate to large effect sizes for negative symptoms
(3, 48), improving on meta-analysis that only include low dose
studies (46).

D-serine as an adjunct to cognitive remediation has been also
been proposed (39, 76, 77). One trial used daily low dose D-serine
without evidence of efficacy (59), but a trial of 60 mg/kg using an
intermittent (once weekly) strategy has shown promising results
(4). An ongoing double-blind dose finding study is assessing
D-serine doses up to 120 mg/kg (10), using an intermittent
dose strategy.

Further evidence for the necessity of testing higher doses of
D-serine and related compounds come from the recent negative
study of CTP-692 which is a deuterated form of D-serine that

reportedly has both less potential renal toxicity and a longer t½

(78). In this publicly reported, but not published study, fixed
CTP-692 doses were used, and the highest tested dose was 4 g.
Based on publicly available mean weight in kg per dose groups,
the highest dose of CTP-692 tested were equivalent to∼45 mg/kg
on average (https://ir.concertpharma.com/news-releases/news-
release-details/concert-pharmaceuticals-announces-results-

ctp-692-phase-2-trial). Thus, even the highest tested doses of
CTP-692 may have been too low, which may have contributed to
the negative study.

RENAL EFFECTS OF D-SERINE

In addition to their importance in the brain, NMDAR are found
throughout the body, including the kidney, where they play a
diverse, if not fully elucidated role (79–81). D-Serine is also found
in the kidney, with a potential physiological role (80).

The potential risk of D-serine induced nephrotoxicity has been
described since the 1940’s (82–84), primarily based on studies in
rats, and classically leads to a reversible acute necrosis, termed
acute tubular necrosis. Pathological changes are present within 1
to 2 h post D-serine administration, and are generally limited to
necrotic changes of the straight segment of the proximal tubule
(85–87), which is the primary site of D-serine reabsorption (88).
The earliest changes are pronounced eosinophilia in the straight
proximal tubules (87). Concurrently, acute increases in urine
volume, glucosuria, proteinuria, and aminoaciduria, including D-
serine are seen (85, 86), while sodium and potassium excretion
remains stable. D-Serine excretion peaks within the first 8 h post
dose (87). Other specific findings include granular (muddy) casts
seen on urinalysis.

Despite these acute pathological changes, D-serine induced
nephrotoxicity appears to be fully reversible (85), even in
rats. Urine values of protein, glucose and amino acids begin
to normalize 24–48 h after the last dose of D-serine and by
120 h post dose, largely return to normal (87). Pathological
changes also completely resolve within this timeframe, with
complete regrowth of new epithelium in tubules and renal
tubular basophilia (87).

In addition to being reversible, D-serine induced
nephrotoxicity has only been observed in rats. In other species,
including other rodents, D-serine induced nephrotoxicity has
not been reported. Tested species include guinea pigs, rabbits,
and mice (84), along with dogs, hamsters, and gerbils (89). Most
importantly for the treatment of psychiatric disease in humans,
is the lack of evidence for D-serine induced nephrotoxicity in
humans (Table 1). Even in rats, this heightened risk to D-serine
does not appear to occur during “normal,” physiological levels
of D-serine.

The etiology for the isolated risk to rats as compared
to other species is not completely clear, but appears to be
due to both higher reabsorption of D-serine by rat kidneys
compared to other species and differences in DAAO function.
The presence of enhanced reabsorption is apparent from the
low levels of D-serine in rat urine relative to that of other
species, such humans and dogs, despite relatively similar serum
levels (90). Moreover, nephrotoxicity during exogenous D-serine
administration may be related to oxidative stress from the
increased DAAO breakdown of D-serine (29, 91–93). DAAO
is localized in pars recta of the kidney, where D-serine (94,
95) is primarily reabsorbed and the focal point of damage
during D-serine nephrotoxicity. While levels of DAAO in rats
do not appear to be quantitatively different than in other
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species (96), rat DAAO may be less efficient, which may
compound the risk of nephrotoxicity due to hyperfunction
during periods of excess D-serine (97). Relatedly, reducing
DAAO activity through DAAO knockouts or concurrent DAAO
inhibitors may be nephroprotective to excess D-serine (see DAAO
clinical and safety section). Finally, studies also suggest that
rats may have a higher capacity of utilizing D-amino acids
(29) and that NMDAR may be directly involved in producing
nephrotoxicity (98).

By contrast to rats, in most other species, including humans,
D-serine is not actively reabsorbed (90, 99, 100), as evidenced by
relatively higher D-serine urine levels in humans compared to
rats of D-serine under physiological conditions (90). In humans,
D-serine does not accumulate in serum under physiologic
conditions, other than in people (101, 102) or mice (103)
with pre-existing renal impairment. Under these pathological
conditions, D-serine may be a biomarker of renal disease or
recovery in humans (104–107), rising or falling in proportion to
creatinine. However, there does not appear to be a causal link
between D-serine and renal impairment.

Even in rats, D-serine nephrotoxicity appears to be dose
related. The initial rat toxicity studies used doses of 750–1,000
mg/kg (83, 85, 86), and in doses≥500mg/kg, nephrotoxicity after
D-serine treatment appears to be very common, if not universal
in rats. Similar to mice (71), however, the oral dose to serum
concentration ratio does not appear to follow a 1:1 ratio in rats
compared to humans, complicating direct translational studies.

Recently, the pharmacokinetics and toxicokinetics of D-
serine in rats was systematically studied (108), potentially
allowing for a more direct rat to human comparison. In
this study, five intraperitoneal doses were tested, 0.6, 1.2, 1.8,
2.4, and 4.8 mmol/kg. Based on an assumption of linear
pharmacokinetics and a comparison with human studies (31),
the 1.8 mmol/kg rat dose is thought to be approximately
equivalent to an oral human dose of 450 mg/kg, ∼3× the
highest tested human dose. No nephrotoxicity was observed
at either 6 or 24 h post dose at the 0.6 or 1.2 mmol/kg
doses. Beginning at 1.8 mmol/kg, significant dose dependent
elevations are seen for urine protein and glucose compared
to the 0.6 mmol/kg dose at 6 h and for serum creatine from
baseline at 24 h. Toxicity was also seen at higher doses (2.4 and
4.8 mmol/kg).

A Cmax of ∼2,000 nmol/mL was the dividing line between
safety and nephrotoxicity in this study, which was achieved with
the 450 mg/kg equivalent dose (1.8 mmol/kg) (see Figure 1).
Additional support for a dose response for toxicity in rats was
shown in a study in which doses ≤to 250 mg/kg were safe, while
500 mg/kg produced the expected nephrotoxicity (87). Other
studies have reported toxicity at 400 mg/kg (92). For comparison,
the single dose Cmax of 120 mg/kg, the highest dose tested
in humans, was 530.3±266.8 nmol/mL in acute dosing (31).
After 4 weeks of chronic dosing, there was some accumulation,
but the Cmax remained well-below 2,000 nmol/mL (∼800
nmol/mL). We are aware of one study suggesting that extremely
large doses of D-serine can induce nephrotoxicity in a cell
culture of human renal tubular cells (109). However, this study
used D-serine concentrations of 10 to 20mM, which are 20

to 40 times greater than the Cmax of 120 mg/kg (0.5mM or
∼500 µM).

Nineteen human trials have been published or publicly
presented with D-serine or the closely related compound of
CTP-692 (Table 1), including 490 subjects receiving D-serine
with treatment durations ranging from single doses to 16 weeks
of daily dosing and 244 patients on CTP-692. One hundred
twenty-two subjects received high dose D-serine (>30 mg/kg),
including 16 patients receiving 120 mg/kg for 4 weeks. Seventy-
Eight subjects received high dose CTP-692, defined as 4 g per
day. Across all studies, only one subject was reported to have
abnormal renal values related to D-serine treatment (31). Overall,
this 1 case represents 0.2% of all D-serine treated subjects, <1%
of subjects treated with daily high dose D-serine and one of 16
(6.3%) of subjects treated with 120 mg/kg daily. Several mild out
of range renal values were noted in the CHR study (47). No renal
adverse effects were reported in the CTP-692 study.

The single abnormality at 120 mg/kg occurred in a subject
after receiving 4 weeks of the 120 mg/kg dose. This abnormality
was consideredmild in that it involved only an increase in protein
(2+ by dipstick) without granular casts or an accompanying
increase in glycosuria, change in creatinine level or other clinical
correlates of renal dysfunction, and fully resolved within a few
days of stopping treatment. Thus, this abnormality does not
clearly map on to the acute nephrotoxicity syndrome seen in rats.
Under our current FDA approved safetymonitoring criteria, fully
described in the Recommendations for monitoring during clinical
D-serine studies section, this abnormality would not have been
considered a serious adverse event (SAE).

D-SERINE AND THE PANCREAS AND
METABOLISM

Moving beyond the brain and the kidney, D-Serine may play a
physiologic role in both appetite and insulin regulation in the
pancreas, which is of potential clinical relevance since many
antipsychotics are associated with clinically significant weight
gain and metabolic disturbances (110, 111). D-Serine appears
to be elevated in pre-clinical mice models of diabetes, but this
seems to be an effect, and not a contributing cause of diabetes
in vivo (112, 113). As recently reviewed (114, 115), functional
NMDAR are found in pancreatic islets and β-cells, which regulate
insulin release. The role of NMDAR in the pancreas is complex,
with some studies suggesting that NMDAR antagonism would
be therapeutic, and some suggesting the opposite. A similarly
unclear role is found for D-serine itself, and D-serine has been
studied both as a potential treatment for metabolic disorders and
for adverse effects.

Part of the complexity and lack of clarity of the NMDAR
and D-serine’s role in glucose homeostasis stems from the
varied dosages that were used in pre-clinical experiments. Under
physiologic conditions, D-serine appears to activate pancreatic
NMDAR to stimulate ß-cell and potentiate insulin release (116).
At higher, non-physiologic doses, D-serine may lead to toxicity
due to NMDAR internalization, reducing ß-cell activity, and
reduced insulin release. Serine racemase is present and active in
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FIGURE 1 | D-serine Pharmacokinetics. (Left) 24-h pharmacokinetics of an acute dose of D-serine on day 1 of treatment. (Right) 4-h pharmacokinetics after 4 weeks

of chronic dosing. In both figures, the hypothesized renal safety level is added based on experiments in rats. Modified from Kantrowitz et al. (31), Hasegawa et al. (108).

the pancreas (117), and helps regulate insulin secretion (118),
further suggesting a role for D-serine. By contrast, a recent study
(119) suggests that large doses chronic D-serine supplementation
results in both reduced high fat diet intake and impaired insulin
secretion in mice. In this study, mice received 10 g of D-
serine/L of water, and assuming a 25 g mouse drinks 5mL of
water/day (120), the doses required to impair insulin secretion
were large (∼2,000 mg/kg), and thus may be of questionable
clinical relevance.

Other studies (121, 122) have also supported a dose dependent
role for D-serine suppressing intake of high preference (high-fat)
food, suggesting potential utility in modulating obesity. In these
studies, an appetite suppressant effect was seen at D-serine >1.5
g/kg per day, but not at lower doses. The largest doses studied in
humans are ∼10× smaller (120 mg/kg), limiting the translation
of these findings to human studies.

Two recently published human studies assessing D-serine’s
role in monitoring diabetes have shown inconsistent results.
Across one study with 96 women with gestational diabetes and
96 with normal glucose tolerance, serine was significantly higher
in the gestational diabetes cohort (123). By contrast, in a separate
study of 1,623 non-diabetic subjects (124), the opposite result was
seen, as lower serine levels were predictive of impaired glucose
tolerance. In both studies, we note that the term serine is used,
and it is unclear if the measurements were of D-serine, L-serine
or a combination. In published studies, no clinically relevant
weight gain ormetabolic alterations have been reported in clinical
studies of D-serine (Table 2).

D-SERINE AND THE ENDOCRINE SYSTEM

Aside from the brain, the kidney and the pancreas, D-serine
has been most thoroughly studied in endocrine systems. As
recently reviewed (17), D-serine is detected in vivo in multiple
endocrine glands, including the hypothalamus, pituitary, pineal,

TABLE 2 | Adverse events reported in d-serine trialsa.

Adverse event Total n D-serine

(%)

Placebo

(%)

Risk ratio (95% CI);

p-value

Abdominal discomfort 31 0 5.9 0.40 (0.02, 9.12); 0.57

Anxiety 84 4.9 9.3 0.52 (0.10, 2.70); 0.44

Constipation 115 7.3 0 3.93 (0.66, 23.25); 0.13

Depression 44 4.8 4.3 1.10 (0.07, 16.43); 0.95

Diarrhea 31 7.1 0 3.60 (0.16, 82.05); 0.42

Dizziness 192 15.8 26.5 0.61 (0.32, 1.18); 0.14

Dry mouth 149 5.4 0 9.12 (0.50, 166.46); 0.14

Fatigability 84 22.0 23.2 0.96 (0.19, 4.74); 0.96

Headache 149 17.6 38.7 0.45 (0.26, 0.80); 0.007

Nausea 31 14.3 0 6.00 (0.31, 115.56); 0.24

Palpitation 84 29.3 27.9 1.06 (0.45, 2.48); 0.89

Salivation 44 14.3 8.7 1.64 (0.30, 8.89); 0.56

Sexual dysfunction 26 7.7 0 3.00 (0.13, 67.51); 0.49

Sleep disturbance 115 21.8 20 1.07 (0.53, 2.18); 0.85

Weight gain 84 43.9 44.2 1.05 (0.69, 1.59); 0.81

Weight loss 84 7.3 4.7 1.36 (0.16, 11.68); 0.78

aModified from Goh (3).

thyroid, adrenals, ovary, and testes. However, levels of D-serine
in the endocrine organs are lower than those in the CNS, and
the physiological role of D-serine in most endocrine organs
is unclear.

A role for a regulation of sleep has been reported for both
glycine and D-serine, following up on small clinical studies
of glycine (125). In a pre-clinical study, improved sleep was
seen with direct injection of either glycine or D-serine into
the suprachiasmatic nucleus of the hypothalamus (126). D-
Serine may also be involved in activating the NMDAR in
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the corpus cavernosum, suggesting a possible role in treating
impotence (127).

D-SERINE AND EXTRAPYRAMIDAL
EFFECTS

Antipsychotics are associated with varying levels of
extrapyramidal motor side-effects (EPS) (110), such as
Parkinson’s like motor disturbances, tremor and dystonia.
While one of the clearest advantages of many second generation
antipsychotics is a relatively reduced incidence of EPS and
other movement disorders such as tardive dyskinesia (TD)
(128), both remain a clinically significant issue for many
schizophrenia patients.

Antipsychotics likely cause EPS via dopamine type 2 receptor
blockade in the striatum. In a pre-clinical mouse study (129),
both D-serine (300 mg/kg) and sodium benzoate (600 mg/kg)
administered intraperitoneally attenuated haloperidol induced
bradykinesia. D-serine showed a U-shaped curve for attenuation,
as no effects were seen for 100 or 1,000 mg/kg doses. Our pre-
clinical studies with mice (71), suggest a comparable mice dose
of approximately 100 mg/kg for the 60 mg/kg clinical dose. In
this study, D-cycloserine, which acts as an agonist at the D-
serine/glycine site of the NMDAR, but a ketamine like antagonist
at higher doses (130–132), also attenuated haloperidol induced
bradykinesia at doses up to 30 mg/kg, which likely is in the
NMDAR agonist range.

Two clinical studies with D-serine have suggested
improvement in antipsychotic induced EPS and/or TD in
schizophrenia patients (31, 54). One small study of 8 patients
suggested efficacy of low dose D-serine for both the behavioral
and motor symptoms of Parkinson’s disease (58). A double blind
study of high dose D-serine did not find a significant benefit for
EPS (48).

Amyotrophic lateral sclerosis (ALS) is a fatal
neurodegenerative disorder involving an extensive loss of
motor neurons, and some familial and sporadic cases have been
associated with D-serine metabolism. Specifically, mutations
of DAAO have been reported (133), which are associated with
pre-clinical and clinical increases of D-serine (30, 134). One
recent study found elevated plasma levels of D-serine in ∼40%
of ALS patients compared to healthy controls (135). Based on
publicly presented, but unpublished observations in studies
conducted to support our IND, there is no evidence of D-serine
accumulation in motor neurons (71), and there has been no
evidence of motor adverse events in human studies.

D-SERINE, THE LIVER AND THE
GASTROINTESTINAL TRACT

D-Serine is cleared almost exclusively by the kidney, and is
not metabolized by hepatic P450 enzymes. DAAO is present
in the liver, and may contribute to D-serine degradation (136).
The pre-clinical literature of D-serine’s effects on the liver are
sparse, but early experiments did not find evidence of a D-
serine specific hepatoxic effect in rats using known nephrotoxic

doses (1,000 mg/kg) (83). One study using extremely large doses
of D-serine (20mM) was hepatotoxic to in vitro rat liver cells
and mitochondria, producing oxidative stress and swelling (137).
In clinical studies, mild, asymptomatic transaminitis has been
reported in two subjects receiving daily 120 mg/kg (31). Only one
of the subjects had liver function tests (LFTs) >2× upper normal
range. This mild transaminitis resolved completely after D-serine
discontinuation for both patients, and may have been related to
the recent administration of the hepatitis vaccine in the patient
with the larger elevations, which in rare cases can give rise to
elevated liver enzymes (http://vaers.hhs.gov).

In mice, D-serine has shown promise as a treatment and
prophylaxis for inflammatory bowel disease (138), albeit at
high doses, >1.5 g/kg per day. Finally, D-serine may be
involved in lower esophageal sphincter contraction (139), with
unclear clinical relevance. D-Serine has not been associated with
elevated rates of gastrointestinal adverse events in clinical studies
(Table 2).

D-SERINE AND THE CARDIOVASCULAR
SYSTEM

As recently reviewed, NMDAR are also present in cardiac
and vascular tissue (140), and activation of these peripheral
NMDAR in vitro can lead to tachycardia and hypertension
(141). While there is no known physiologic role for D-serine
in the heart, D-serine could theoretically lead to increased
cardiovascular tone by activating NMDAR. By contrast, the
NMDAR antagonist ketamine, consistently produces tachycardia
and hypertension in clinical studies (1). While direct application
of ketamine on in vitro cardiac tissue induces bradycardia
(142), the tachycardic/hypertensive effects of in vivo ketamine
are mediated through brain, with evidence for both centrally
mediated top-down control (143–145) and direct effects on the
baroreflex in the nucleus tractus solitarii (NTS) in the brainstem
(medulla) (146–149). No clinically relevant cardiovascular effects
have been reported in clinical studies of D-serine.

D-SERINE AND CANCER

As recently reviewed (150), D-amino acids may be elevated
in some cancers. D-Serine does not appear to be a causal
factor in tumorigenesis, but there may be increased reuptake
of D-serine by some cancer cells, particularly in high glucose
environments (151). Alternatively, D-amino acids may be useful
for the treatment of some cancers (152–154).

DAAO INHIBITOR CLINICAL STUDIES AND
SAFETY

DAAO-inhibitors have been proposed as a treatment for
schizophrenia, functioning in a similar way to a selective
serotonin reuptake inhibitor (SSRI) by increasing D-serine
levels indirectly. Several DAAO-inhibitors are in development,
including luvadaxistat and sodium benzoate. Sodium benzoate
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has shown efficacy in several, but not all published studies (155–
158), and is being actively developed by SyneuRx International
(NCT02261519). Luvadaxistat is under development by a
partnership between Takeda and Neurocrine (159), and showed
preliminary efficacy for cognitive outcomes in publicly presented,
but unpublished results.

Although DAAO-inhibitors raise the levels of D-serine and
increased DAAO activity may be contributory to nephrotoxicity
in rats (91–93), pre-clinical studies suggest that DAAO-inhibitors
may protect against D-serine induced nephrotoxicity (29, 160).
In a study of rats without functional DAAO activity, D-serine
800 mg/kg did not cause renal damage (29). Furthermore,
administration of D-propargylglycine, which is known to cause
nephrotoxicity through DAAO (161), also did not cause renal
damage in the DAAO knockout rats. By contrast, both D-serine
and D-propargylglycine led to the expected nephrotoxicity in the
control rats with normal DAAO.

Direct evidence that DAAO-inhibitors are nephroprotective
has also been demonstrated in rats (160). In this study, rats
were given D-serine 500 mg/kg 1 h after receiving one of 4
doses of sodium benzoate (125, 250, 500, or 750 mg/kg). A dose
dependent nephroprotective effect was seen with pretreatment
with sodium benzoate 500 mg/kg or greater. The protective
effects were most apparent in the first urinalysis samples
several hours after D-serine. Pathological samples after 24 h
with and without sodium benzoate showed nephrotoxic changes,
but sodium benzoate appeared to attenuate these changes as
compared to the D-serine alone samples. There has been no
reported renal toxicity reported in clinical studies of DAAO-
inhibitors. Taken together, these studies support the safety of
potential combined D-serine + DAAO-inhibitor studies, which
have shown promise pre-clinically (162–164).

ADVERSE EVENTS IN CLINICAL STUDIES
OF D-SERINE

In Table 2, we present a summary of adverse events in published
trials of D-serine, modified from a similar table in a meta-analysis
of NMDAR trials in schizophrenia (3). As in the meta-analysis,
the present report uses the total of all subjects in which an adverse
event is reported as the total potentially affected, rather than the
total number in all studies. This allows for a more conservative
estimate of the rates of an adverse event. The downside to the
analysis is that adverse events were not systematically reported
in most of these studies, and the overall n is small. Noting these
caveats, in these studies, the only adverse event reported at a
significantly different rate than placebo is headache, finding a
significantly lower rate of headaches in the of D-serine group.

RECOMMENDATIONS FOR MONITORING
DURING CLINICAL D-SERINE STUDIES

In our FDA-monitored studies, we monitor for safety as follows.
Routine safety laboratory measures, including a chemistry with
serum creatinine and LFTs, a complete blood count and a
urinalysis with microscopics, are obtained at screening. Vitals

and ECGs are also obtained. No subjects with baseline renal
impairment, as evidenced by an estimated glomerular filtration
rate (eGFR)<60 or clinically significant abnormal laboratories
are enrolled.

During the study, potential nephrotoxicity is monitored
through serum chemistry and urine microscopic examination
looking for evidence of active sediment (e.g., casts), proteinuria
or glycosuria, as per FDA guidance.

After randomization, we monitor as follows:

(a) Urinalysis with microscopics and chemistry biweekly for
daily studies or after each dose for intermittent treatment.

(b) Immediately discontinue D-serine for unexplained serum
creatinine increase >0.3 mg/dL over the pre-study value
or for >1 granular or muddy casts. Treat as SAE possibly
related to study medication. Repeat until clear × 2 to
demonstrate reversibility.

(c) Hold D-serine for >1 hyaline casts, and repeat lab. Ask
subject to eat more salt and drink more water. If absent on
repeat, reinstate D-serine and treat as adverse event (AE). If
present on repeat, continue to hold D-serine and repeat lab
once again. If still present on second repeat, discontinue D-
serine and treat as SAE possibly related to study medication.
Repeat until clear× 2 to demonstrate reversibility.

(d) Hold D-serine for proteinuria >100 mg/dl or unexplained
glucose >250 g/dl (both equivalent to 2+). If absent on
repeat, resume D-serine and treat as AE. If still present
on repeat, discontinue D-serine. Repeat until clear x 2
to demonstrate reversibility. This would be treated as
SAE possibly related to study medication. Unexplained
glycosuria is defined as increased urine glucose in absence of
corresponding increase in serum glucose levels, in patients
without glycosuria at baseline.

(e) Continue D-serine for proteinuria>30 but<100mg/dl (1+),
or unexplained glycosuria (>100 but < 250 g/dl) but repeat.
If absent on repeat, continue D-serine and treat as AE. If still
present on repeat, hold D-serine and repeat once more. If
absent on repeat, resume D-serine and treat as AE. If still
present on second repeat, discontinue D-serine and treat as
SAE possibly related to study medication. Repeat until clear
× 2 to demonstrate reversibility.

(f) For other kidney related measures (e.g., ketones, bilirubin,
WBC, RBC, bacteria, crystals), repeat, but no need to
discontinue even if present on repeat, since unlikely
to be D-serine related. Manage in consultation with
medical specialist.

(g) Contaminated samples (hemolyzed/non-clean
catch/menstruation) will be repeated.

CONCLUSIONS

Schizophrenia remains a difficult to treat illness, with a large
majority of patients not responding completely to FDA approved
antipsychotics. D-Serine appears efficacious in schizophrenia,
especially in high doses (≥60 mg/kg). Our literature review
supports that D-serine is safe and well-tolerated in people without
pre-existing renal dysfunction. While there is no evidence of
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D-serine being nephrotoxic in humans, we require that people
with pre-existing renal dysfunction (GFR<60) be excluded from
clinical studies.

Thus far, 120 mg/kg is the highest D-serine dose tested in
human studies, but animal studies suggest that even higher
doses may be required for optimal target engagement. In this
review, we have taken a conservative approach to interspecies
dose equivalences, but note that standard mouse to human
conversions of 12.3 to 1 have been proposed in the literature
(165). Nevertheless, even before considering human to rodent
differences in physiology, the literature supports that D-serine has
potential safety at doses even higher than 120 mg/kg. Ongoing
dose-response studies are assessing the safety and efficacy of
doses up to 120 mg/kg, and future work is needed to explore

the possibility of even higher doses or combined D-serine +

DAAO-inhibitor studies.
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More effective treatments to reduce pathological alcohol drinking are needed. The

glutamatergic system and the NMDA receptor (NMDAR), in particular, are implicated in

behavioral and molecular consequences of chronic alcohol use, making the NMDAR a

promising target for novel pharmacotherapeutics. Ethanol exposure upregulates Fyn, a

protein tyrosine kinase that indirectly modulates NMDAR signaling by phosphorylating

the NR2B subunit. The Src/Fyn kinase inhibitor saracatinib (AZD0530) reduces ethanol

self-administration and enhances extinction of goal-directed ethanol-seeking in mice.

However, less is known regarding how saracatinib affects habitual ethanol-seeking.

Moreover, no prior studies have assessed the effects of Src/Fyn kinase inhibitors on

alcohol-seeking or consumption in human participants. Here, we tested the effects of

saracatinib on alcohol consumption and craving/seeking in two species, including the

first trial of an Src/Fyn kinase inhibitor to reduce drinking in humans. Eighteen male

C57BL/6NCrl mice underwent operant conditioning on a variable interval schedule to

induce habitual responding for 10% ethanol/0.1% saccharin. Next, mice received 5

mg/kg saracatinib or vehicle 2 h or 30 min prior to contingency degradation to measure

habitual responding. In the human study, 50 non-treatment seeking human participants

who drank heavily and met DSM-IV criteria for alcohol abuse or dependence were

randomized to receive 125 mg/day saracatinib (n = 33) or placebo (n = 17). Alcohol

Drinking Paradigms (ADP) were completed in a controlled research setting: before and

after 7–8 days of treatment. Each ADP involved consumption of a priming drink of

alcohol (0.03 mg%) followed by ad libitum access (3 h) to 12 additional drinks (0.015

g%); the number of drinks consumed and craving (Alcohol Urge Questionnaire) were

recorded. In mice, saracatinib did not affect habitual ethanol seeking or consumption at

either time point. In human participants, no significant effects of saracatinib on alcohol

craving or consumption were identified. These results in mice and humans suggest

that Fyn kinase inhibition using saracatinib, at the doses tested here, may not reduce

alcohol consumption or craving/seeking among those habitually consuming alcohol,
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in contrast to reports of positive effects of saracatinib in individuals that seek ethanol

in a goal-directed manner. Nevertheless, future studies should confirm these negative

findings using additional doses and schedules of saracatinib administration.

Keywords: saracatinib, AZD0530, Fyn kinase, alcohol use disorders, alcohol habit, NMDA receptor, glutamate,

AM404

INTRODUCTION

Alcohol is a leading public health problem, presenting the
largest risk factor for premature death for young to middle
aged adults worldwide (1). Alcohol use disorder (AUD) is the
most prevalent substance use disorder other than tobacco use
disorder, yet currently available treatments are rarely used (1, 2).

Three pharmacotherapies for AUD have U.S. Food and Drug
Administration approval: disulfiram, naltrexone (oral and long-
acting injectable), and acamprosate (2). However, these agents
have issues of modest efficacy, adherence, and possible restricted

effect to subpopulations (3, 4), which highlights the need for
novel AUD treatment options.

The glutamatergic system is heavily implicated in the
pathophysiology of AUD, providing potential targets for novel
therapeutics (5, 6). Indeed, pharmacological manipulation

of AMPA, kainate, mGlu, and NMDA glutamate receptors
(NMDAR) can alter alcohol consumption, seeking, withdrawal
or reinstatement (5, 7–14). The NMDAR is one of the highest
affinity targets of ethanol in the brain (15), and chronic ethanol
exposure is associated with altered NMDAR signaling (16–18).
NMDARs play a role in various consequences of chronic alcohol
use (19): NMDAR antagonists can reduce ethanol tolerance,
craving/seeking, and consumption (20–24). For example, the
uncompetitive NMDAR antagonist memantine reduces cue-
and alcohol-induced craving in humans (7, 25) and we have
also observed that a low dose of memantine combined with
a standard dose of the opioid antagonist naltrexone was well-
tolerated and resulted in reduced alcohol drinking and craving
within a sample of individuals with a positive family history
of AUD (21). Our earlier work has also observed that only
lower doses ofmemantine reduce alcohol craving, whereas higher
doses increase alcohol consumption, especially in individuals
with high levels of baseline impulsivity (26). NMDAR antagonists
can have undesirable cognitive and psychotomimetic effects (27,
28). Together, this evidence suggests that NMDARs may be a
promising target for amelioration of the hyper-glutamatergic
state in AUD, but that direct antagonism may present challenges
and more nuanced approaches that target this system may be
needed (5, 21).

Fyn is an Src family protein tyrosine kinase that indirectly
upregulates NMDAR activity by phosphorylating the NR2B
subunit, a component of the NMDAR that is particularly
implicated in the molecular and behavioral adaptations to
chronic ethanol exposure (29–31). Mounting evidence implicates
Fyn in alcohol use behaviors in human participants and rodents.
Multiple studies have identified polymorphisms in the Fyn gene
associated with increased risk for AUD (32–34). Rodent studies
revealed that ethanol activates Fyn in the dorsomedial striatum

(DMS) (35–38). The DMS is a key brain region for goal-directed
action, which refers to behaviors that are sensitive to changes
in action-outcome contingencies (39). Furthermore, ethanol-
induced long-term facilitation in the DMS is Fyn-dependent
(36, 37). Importantly, pharmacological inhibition of Fyn using
the Src/Fyn kinase inhibitor saracatinib (AZD0530) was reported
to reduce ethanol-seeking and enhance extinction of ethanol-
seeking in mice with goal-directed responding for ethanol (35)
and reduce ethanol consumption in ethanol-naïve mice (40),
suggesting that saracatinib may be a viable treatment option for
goal-directed drinking.

Habits, in contrast to goal-directed behaviors, are insensitive
to changes in action-outcome contingencies or devaluation
of previously desirable outcomes and reflect a shift from
recruitment of DMS to dorsolateral striatum (DLS) (39, 41–43).
Ethanol cues can disrupt otherwise goal-directed food-seeking,
and chronic ethanol exposure facilitates the development of
food habits (41, 44). Ethanol-seeking transitions from goal-
directed to habitual more readily than food-seeking (45–48).
Indeed, overreliance on habits is thought to contribute to
compulsive drug-seeking including in AUD (45, 49, 50), and
has been observed in individuals with AUD (51). However, no
studies have examined the efficacy of saracatinib for reducing
ethanol-seeking and consumption in habitual alcohol consumers.
Here, we performed two parallel studies in mice and human
participants to assess the ability of saracatinib to reduce alcohol
consumption and seeking/craving in habitual ethanol-seeking
mice and participants who were heavy drinkers with an AUD.

MATERIALS AND METHODS

Mouse Study
Mice
Eighteen adult male C57BL/6NCrl mice (Charles River
Laboratories, Wilmington, MA) were used for the mouse
experiment. Mice were delivered at 8–9 weeks old and allowed
to acclimate to the vivarium for 7 days before initiating food
restriction to 85–90% of free-feeding body weight. Mice had
ad libitum access to water in the home cage but were provided
with their daily food 15min prior to initiating operant sessions
without water access to induce thirst. Mice were pre-exposed to
10% ethanol, 0.1% saccharin solution in the home cage for 1 h,
2 days in a row prior to initiating operant training with 10%
ethanol, 0.1% saccharin as the reinforcer (10 µl per reward). All
procedures were approved by the Yale University Institutional
Animal Care and Use Committee and in accordance with the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals of the Institute of Animal Resources.
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Mouse Drugs
Saracatinib, also known as AZD0530, was obtained from
AstraZeneca, Boston, MA. Saracatinib was dissolved in saline
and administered at a dose of 5 mg/kg. This dose was
based on preliminary studies showing that this dose reduces
NR2B phosphorylation in the DMS (data not shown) and to
match levels of saracatinib in cerebrospinal fluid with that
expected for the human study (52), which was performed
simultaneously. AM404 (R&D Systems, Minneapolis, MN) is
an endocannabinoid transport inhibitor that we have previously
shown to reduce habitual responding for ethanol (53): it was
used as a positive control for testing the malleability of habitual
ethanol-seeking. AM404 was dissolved in 5%DMSO, 15% Tween
80 in sterile physiological saline and administered at a dose of 10
mg/kg body weight. Drugs were administered via intraperitoneal
injection (i.p.) at 10 ml/kg body weight.

Mouse Behavioral Paradigm

Apparatus and Training
Mice were trained and tested in standard mouse operant
conditioning chambers in sound attenuation cabinets (Med
Associates, St. Albans, VT). Chambers were equipped with three
nose port apertures and a magazine with photobeam sensors
to record entries and lights to indicate active ports. Ethanol
reinforcers (10% ethanol v/v, 0.1% saccharin) were delivered into
the magazine using a dipper arm holding a 10 µl cup that was
submerged in a reservoir of the reinforcer solution and would
then raise the cup through a hole into the magazine to deliver the
reinforcer, which was provided for 10s before retraction of the
arm back into the reservoir. Mice were trained daily in the same
operant chamber throughout the experiment.

Mice first learned to associate the magazine with reinforcer
delivery in two 40-min magazine training sessions. Each session
began with a reinforcer delivered into the magazine 60 s into the
session. This reinforcer remained available (i.e., dipper arm raised
with cup accessible inside the magazine) until the mouse entered
the magazine, and then for the subsequent 10 s before the dipper
arm was retracted. Following this non-contingent delivery,
reinforcers were delivered on a fixed interval-60 s schedule
throughout the session, meaning that following a minimum of
60 s, the next magazine entry elicited a reinforcer delivery.

Next mice were trained to perform the operant response on
a fixed ratio-1 (FR-1) schedule. One nose port was designated
the “active” port for that mouse (left or right), counterbalanced
between animals but consistent between sessions. The active port
was indicated by illumination of the port. Sessions began with
a single non-contingent reinforcer. Just like magazine training,
reinforcers remained available until the animal entered the
magazine, after which the dipper was available for 10 s before
retraction. Following this free reinforcer, entries into the active
nose port resulted in delivery of a single reinforcer. FR-1 sessions
lasted 45min or until the mouse earned 60 reinforcers, whichever
occurred first. Mice completed FR-1 training upon reaching a
criterion of 13 reinforcers within a single session.

Following FR-1 training, mice earned ethanol reinforcers on
a variable interval (VI) schedule that we have previously shown
to promote habitual responding for ethanol (53). The same

active nose port assigned during FR-1 training remained the
active port for each mouse during VI sessions, as indicated by
illumination of the active port throughout the session. Intervals
were selected pseudo-randomly from an exponential array that
averaged to the schedule duration, after which the first active nose
port response resulted in a reinforcer, as previously (53). Unlike
during magazine and FR-1 training, these reinforcers remained
available for the subsequent 10 s following the active nose port
response, regardless of whether the mouse had yet entered the
magazine. Sessions lasted 45min. Mice were trained on a VI-30
schedule for 3 days, followed by VI-60 for∼24 days.

Contingency Degradation
Contingency degradation sessions delivered ethanol reinforcers
non-contingently at the same rate thatmice earned rewards in the
previous VI session. Active nose port entries had no programmed
responses. Reinforcer delivery occurred at equal intervals that
were individually tailored to the prior day reinforcement rate of
that mouse, meaning each mouse received the same number of
reinforcers as in the prior day VI session. Sessions lasted 45min.
Mice underwent multiple contingency degradation sessions to
test effects of pharmacological agents. Initial testing occurred
following a minimum of 20–25 days of VI-60 training. Between
contingency degradation tests, mice underwent additional VI-60
training days to stabilize responding. Response rates, magazine
entries, and incentivized entries (i.e., magazine entries while
reinforcer is available) were measured and compared between
the contingency degradation test and the preceding day’s VI-60
session, which was used as a baseline. The amount of ethanol
consumed relative to body weight was estimated based on the
number of reinforcers earned. However, consumption could
not be directly confirmed due to the design of the reinforcer
delivery apparatus, which resubmerged the dipper cup into
the reservoir after each reinforcer to refill the cup for the
subsequent reinforcer.

Pharmacological Testing
For each contingency degradation test, the vehicle solution
for the pharmacological agent was administered prior to the
baseline VI-60 session. The day after completing the baseline
session, mice received pharmacological challenge and underwent
contingency degradation testing. First, all animals (n = 18)
received AM404 or vehicle 30min prior to the contingency
degradation test session in a within-subject, counterbalanced
manner. This test served to: (1) provide confirmation that the
group exhibited habitual responding for ethanol (i.e., lack of
decrease in responses during contingency degradation under
vehicle conditions) and (2) provide a positive control testing
whether the habitual responding was sensitive to goal-directed-
promoting agents, as we have previously shown that AM404
reduces habitual responding for ethanol (53). AM404 was
tested within-subject based on our previous experience with
this drug not showing cross-over effects (53, 54). Following
stabilization of responding on the VI-60 schedule following
these contingency degradation tests, saracatinib was tested
in a between-subject cross-over design, in which half the
animals received saracatinib for the 2-h pretreatment condition
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(n = 8/drug), which occurred first for all animals, whereas
the other half received saracatinib for the 30-min pretreatment
condition (n = 8/drug), which occurred second for all animals.
One animal was excluded in each drug group in each time
point due to computer error for a final n = 8/group. The 2-
h pretreatment schedule was selected based on our preliminary
studies showing reduced free-access ethanol consumption in the
home cage at this time point (data not shown) and the 30-
min pretreatment schedule was designed to match the effective
time point for AM404 (53). Overall, animals received one
administration of AM404 vehicle and AM404 prior to any
saracatinib administration, and then all mice received one
dose of saracatinib, at either a 2-h or 30-min pretreatment
time point.

Statistical Analyses
Data were analyzed using SPSS 26 (IBM, Armonk, NY)
and graphed using Prism 8 (Graphpad, San Diego, CA).
Outcome measures included active responses, total magazine
entries, and incentivized entries, which were assessed
using generalized estimating equations with a Poisson
distribution with Wald’s chi square test statistics. Significant
interactions were resolved by making pairwise comparisons
of the estimated marginal means corrected for multiple
comparisons using Sidak’s method. Alpha was set to a threshold
of 0.05.

Human Clinical Trial
Human Participants
Participants (n = 50 randomized to treatment; n = 33
saracatinib, n = 17 placebo) were non-treatment seeking,
heavy drinkers that met the DSM-IV criteria for alcohol abuse
or dependence (Table 1; Supplementary Figure 1). Additional
inclusion criteria were: between 21 and 50 years of age,
body mass index between 19 and 30, capable of reading
English at the 6th grade level or above, average weekly
alcohol consumption of 25–70 standard drinks for men and
20–65 for women with no more than 3 days of abstinence
per week during the month prior to the intake [Timeline
Follow-Back method; TFLB; (55)]. Exclusion criteria included
medical contraindications to drinking alcohol or use of
saracatinib, abuse or dependence on substances other than
alcohol or nicotine, severe psychiatric disability, significant
alcohol withdrawal at any intake appointment [Clinical Institute
Withdrawal Assessment for Alcohol Scale score > 8 (56)],
current use of psychoactive drugs or CYP3A4 inhibitors or
warfarin, those who were not on stable use of prescribed
antidepressants/anxiolytics, those who reported disliking spirits
or were seeking treatment for their drinking, and those who were
pregnant or nursing.

Study Medications
Participants were randomized on a 2:1 ratio (active vs. placebo)
to receive saracatinib (125 mg/day, oral) or matching placebo
for seven to 8 days to achieve steady state drug levels
following exposure to 4–5 half-lives of the drug (t1/2 = 40 h).
The Yale New Haven Investigational Pharmacy randomized

the participants and dispensed the study medications; all
research staff and the participants were blind to treatment
assignment. The dose was selected based on previous studies
demonstrating safety and tolerability of 125 mg/day saracatinib
in human participants (57) and evidence that this dose reached
comparable levels in cerebrospinal fluid to that of 5 mg/kg
in mice, a dose that has been shown to produce neural
changes (52).

Study Design
This study was a randomized, double-blind, placebo-controlled
trial that was approved by the Yale Human Investigations
Committee, registered in ClinicalTrials.gov (NCT02955186), and
followed the National Advisory Council for Alcohol Abuse
and Alcoholism guidelines (58). Alcohol drinking behaviors
were assessed using an established alcohol drinking paradigm
(ADP) conducted in a private room at the Hospital Research
Unit (HRU) of Yale New Haven Hospital (YNHH). The
ADP involved consumption of a priming drinking of alcohol
followed by choice ad libitum consumption of up to 12 drinks
over three 1-h self-administration periods, as done previously
(21). Participants completed a baseline ADP and were then
randomized to receive saracatinib (125 mg/day) or placebo
for a 7–8 day period (Supplementary Figure 2); participants
were contacted daily either in person or virtually to observe
medication administration and check for adverse events. At
the end of this period, they completed the second, on-
treatment ADP.

The YNHH Investigational Pharmacy calculated and
delivered alcohol doses of each participant’s preferred alcohol
to the HRU; the doses were designed to raise blood alcohol
levels to 0.03 g/dl for priming drink and 0.015 g/dl for all
other drinks based on a formula that takes into account
the sex, weight, and age of the participant (59). Each
alcohol dose was mixed with the participant’s preferred
non-caffeinated, non-carbonated mixer in a 1:3 ratio. Each
participant’s preferred alcohol and mixer were determined at an
earlier appointment.

Following completion of each ADP, participants spent the
night at the HRU and were discharged the next morning. They
also received a 1-week follow-up appointment to assess for
adverse events and drinking, and a motivational intervention
to discuss their alcohol use and encourage readiness to change.
Participants were paid to participate and could earn up to $1,142
for completing all portions of the study.

Measures

Alcohol Craving
Craving was measured 30min prior to the priming dose
(baseline), and then 10, 20, 30, 40, and 50min during the priming
dose period and every half hour during each ad libitum period
(i.e., 90, 120, 150, 180, 220, and 240min) using the 8-item
Alcohol Urge Questionnaire (AUQ) (60). Separate area under the
curve (AUC) estimates for each phase were calculated using the
trapezoidal rule based on the time points specified above.
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TABLE 1 | Participant demographics and drinking histories.

All Participants (n = 50) Placebo (n = 17) Saracatinib (n = 33) P

Demographics

Male, n (%) 25 (50%) 9 (53%) 16 (48%) 0.77

Current smokers, n (%) 19 (39%) 7 (44%) 12 (36%) 0.62

White, n (%) 31 (62%) 10 (59%) 21 (64%) 0.74

Family Hx positive, n (%) 20 (40%) 7 (41%) 13 (39%) 0.90

Age, mean (SD) 29 (7.8) 30 (7.9) 29 (7.8) 0.49

Drinking based on 30-day timeline followback interview

Total # drinks, mean (SD) 171 (68) 175 (62) 169 (73) 0.75

Drinks/drinking day, mean (SD) 7.8 (2.8) 7.3 (1.8) 8.1 (3.2) 0.36

% drinking days, mean (SD) 74 (17) 79 (17) 71 (17) 0.10

Alcohol dependence score 10.7 (5.3) 9.9 (5.3) 11.2 (5.4) 0.43

N = 50 total; n = 17 placebo and n = 33 saracatinib. There were no differences between the groups for demographics or drinking measured in the Timeline Followback interview. Hx,

history; SD, standard deviation.

Standard Drinks Consumed
Total number of standard drinks consumed during the 3-h self-
administration period.

Alcohol-Induced Stimulation/Sedation
Determined at 10, 20, and 50min during the priming dose period
and then every hour at the end of each of the three ad libitum
periods with the brief Biphasic Alcohol Effects Scale [BAES; (61)].

Adverse Events
Measured daily during the study medication period using the
SAFTEE (62).

Statistical Analyses
Baseline demographics and drinking characteristics were
compared among medication conditions using t-tests and chi-
square tests as appropriate. Data were checked for normality and
transformations applied as necessary. The two primary outcomes
of interest were: craving (AUQ) and total drinks consumed
during the ad libitum periods, each tested on an intent-to-treat
(ITT) basis at the α = 0.05 threshold. Subjective craving (AUQ)
was quantified by calculating an area under the curve (AUC) for
each phase (priming dose, ad libitum) within each ADP using the
trapezoidal rule, and analyzed using linear mixed models with
medication (placebo, saracatinib) included as a between-subjects
factor and session (baseline, on-Tx) included as a within-subjects
factor. The medication by time interaction was modeled and
participant was the clustering factor. Total drinks consumed was
analyzed using an identical linear mixed model as described for
craving. Potential confounding factors (sex, family history, age,
and baseline drinking variables) were tested by including them in
each model but were not significant and dropped for parsimony.
Similar models were used to assess BAES outcomes. For all
models, the best-fitting variance-covariance structure was based
on the Schwarz-Bayesian Criterion (BIC) (63). Least-square
means were estimated and plotted to determine the nature
of significant effects. All analyses were performed using SAS,
version 9.4 (Cary, NC).

RESULTS

No Effect of 5 mg/kg Saracatinib on
Habitual Responding for Ethanol in Mice
By the end of VI training, mice earned 1.04 ± 0.03 (standard
error of themean) g/kg ethanol within the final session. Although
consumption could not be directly confirmed due to the refilling
of the dipper cup for each reinforcer delivery, all mice entered
the magazine while the dipper cup was available (i.e., incentivized
entries) at least as many times as reinforcers earned, and the
number of incentivized entries was significantly greater than
the number of reinforcers earned [χ2

(1)
= 7.15, p < 0.01],

suggesting knowledge of the action-outcome contingency and the
opportunity to consume the ethanol reinforcers.

Following training, AM404 was administered during
contingency degradation to evaluate whether animals exhibited
habitual responding for ethanol, and whether responding and
ethanol consumption were sensitive to drug challenge with a
known enhancer of goal-directed response patterns. As expected,
AM404 reduced the number of active responses during the
contingency degradation whereas vehicle administration did
not affect responding (Supplementary Figure 3). These results
suggest that the mice were sufficiently trained to respond
habitually for ethanol, and that AM404 successfully reduced
habitual responding for ethanol, consistent with our previous
work (53).

Next, we sought to determine whether saracatinib could
also reduce habitual responding for ethanol. A dose of 5
mg/kg saracatinib was administered 2 h prior to the contingency
degradation test and did not significantly reduce habitual
responding for ethanol (Figure 1A). An increase in responding
was observed across groups during contingency degradation
relative to baseline [χ2

(1)
= 37.01, p< 0.0001]. Likewise, magazine

entries were increased across groups during contingency
degradation [χ2

(1)
= 46.22, p < 0.0001; Figure 1B]. Finally,

no effects of session or drug were identified for incentivized
magazine entries (Figure 1C), a measure of ethanol-seeking
behavior (53). Consistent with the amount of ethanol delivered
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during VI training, mice received an average of 1.17 ± 0.03
(standard error of the mean) g/kg ethanol during testing,
wherein an identical number of reinforcers were delivered
during the baseline VI-60 and contingency degradation sessions.
Overall, saracatinib did not alter habitual responding for
ethanol or ethanol consumption when administered 2 h prior to
contingency degradation testing.

Next, we sought to determine whether the lack of effect
of saracatinib identified at the 2-h time point was due
to a suboptimal time point. We assessed whether a 30-
min pretreatment time point, the time point used for the
positive control compound AM404, would reveal effects of
saracatinib on habitual ethanol responding. Consistent with
the 2-h pretreatment, mice increased active responding during
contingency degradation across drug groups [χ2

(1)
= 4.45, p <

0.05], but no effects of saracatinib were identified (Figure 1D).
Magazine entries increased during contingency degradation
across drug groups [χ2

(1)
= 6.33, p < 0.05; Figure 1E]. No effects

of saracatinib or session type were identified for incentivized
magazine entries (Figure 1F). Consistent with prior testing
phases, mice received an average of 1.11 ± 0.03 (standard error
of the mean) g/kg ethanol. Overall, saracatinib did not affect
habitual responding for ethanol when administered 30min prior
to contingency degradation testing.

No Effect of 125 mg/day Saracatinib on
Alcohol Craving, Alcohol-Induced
Stimulation/Sedation, or Alcohol
Consumption in Human Participants
The final sample of randomized participants (Table 1) included
25 men and 25 women, with an average age of 29.0 [standard
deviation (SD) = 7.8], a diverse racial distribution (31 White, 17
Black, 2 other), and 19 individuals who currently smoked tobacco
(39%), with mean scores of 12.1 (SD = 5.6) on the Alcohol
Dependence Scale (64). During the 30 days prior to the baseline
ADP, participants consumed, on average 171 (SD = 68) drinks,
7.8 drinks per drinking occasion (SD = 2.8) and drank 3 out of
every 4 days (74%, SD = 17%). No differences in demographic
variables were observed between the saracatinib and placebo
groups. See Supplementary Figure 2 for CONSORT diagram.

Saracatinib was well-tolerated and we did not observe any
serious adverse events. The most common adverse events
reported included nausea (saracatinib: n= 5, 15%; placebo: n= 1,
6%) and headache (saracatinib: n = 5, 15%; placebo: n = 1, 6%).
As shown in Supplementary Table 1, participants who received
saracatinib also reported other gastrointestinal symptoms such
as abdominal discomfort and diarrhea (n = 3, 9%), as well as
cold symptoms (n = 6, 18%), nasal congestion (n = 4, 12%) and
joint pain (n = 3, 9%). No one dropped out of the study due to
adverse events. For detailed information on adverse events see
Supplementary Tables 1, 2.

Estimated least-square means and standard errors depicting
the effects of saracatinib on craving for alcohol are shown
in Figures 2A,B. Reductions in craving from baseline were
observed across the placebo and saracatinib treatments during
both the priming dose phase [Figure 2A; F(1,39) = 11.8,

p = 0.0014] and the ad libitum drinking phase [Figure 2B;
F(1, 39) = 10.1, p = 0.003]. However, the observed patterns of
reductions in craving were similar amongmedications during the
priming dose [F(1, 39) = 0.01, p = 0.91] and ad libitum drinking
[F(1, 39) = 0.21, p= 0.65] phases of the paradigm. Craving was not
associated with any of the considered baseline covariates.

Similar to measures of craving, total drinks consumed
(Figure 2C) showed an overall 25% reduction from the baseline
ADP (8.5± 0.51 (standard error of themean) to the on-treatment
ADP session (6.4 ± 0.73) [F(1, 39) = 10.9, p = 0.002], but the
reductions did not differ by medication [medication by session:
F(1, 39) = 0.10, p= 0.75].

We did not observe significant effects of saracatinib on
alcohol-induced stimulation or sedation measured using the
BAES (data not shown).

DISCUSSION

In the present animal and human studies, we assessed the
possibility of a role for Fyn in habitual alcohol-seeking and
drinking in both mice and humans using the Fyn kinase inhibitor
saracatinib. Overall, we did not identify effects of saracatinib
in either mice or humans, suggesting that saracatinib, at the
doses tested, may not be an effective treatment for reducing
alcohol-seeking or consumption in individuals who habitually
consume alcohol.

In mice, we used our established, extended instrumental
training paradigm to induce habitual responding for ethanol
and assessed the effects of acute administration of saracatinib
on ethanol habit. We first demonstrated that this habitual
responding for ethanol was sensitive to pharmacological
manipulation by administering a positive control compound,
AM404, an endocannabinoid transport inhibitor that we have
previously shown to reduce habitual responding for ethanol
(53). AM404 successfully reduced habitual ethanol-seeking,
indicating that the habitual ethanol-seeking was receptive to
pharmacological manipulation. However, 5 mg/kg saracatinib
failed to alter habitual responding for ethanol in mice. This
lack of effect was not likely to be due to time of saracatinib
administration, as neither 2-h, nor 30-min pretreatment was
sufficient to alter habitual ethanol-seeking in these mice. These
time points encompass the 1-h pretreatment employed in a
study that showed saracatinib-induced reduction in ethanol self-
administration inmice reported to have goal-directed responding
for ethanol (35). Furthermore, saracatinib is long-lasting in
the mouse brain, with a half-life of approximately 16 h (52).
Moreover, Fyn activity is upregulated in as little as 15min (37)
and for as long as 16 h (36) following ethanol exposure in rodents.
Overall, these findings suggest that acute administration of 5
mg/kg saracatinib does not modulate ethanol habit in mice.

In the human clinical trial, we assessed alcohol craving and
consumption in non-treatment seeking participants with heavy
drinking habits using our established ADP paradigm before
and after saracatinib administration. No effects of 7–8 days of
oral 125mg saracatinib were identified for craving in either the
priming or ad libitum consumption phases. Furthermore, no
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FIGURE 1 | 5 mg/kg saracatinib did not affect habitual ethanol-seeking or consumption in mice at either time point. Mice received an i.p. injection of saline 2 h (A–C) or

30min (D–F) prior to the VI-60 session preceding contingency degradation (“Baseline”). The following day, mice received an i.p. injection of saline (control condition) or

saracatinib 2 h (A–C) or 30min (D–F) prior to the contingency degradation session (“On-Tx”). (A–C) Response rate, total magazine entries, and incentivized magazine

entries for the 2-h time point, respectively. (D–F) Response rate, total magazine entries, and incentivized magazine entries for the 30-min time point. Two-hour time

point: n = 8/drug. Thirty-minute time point: n = 8/drug. *p < 0.05 vs. baseline day across groups (main effect of session). Tx, treatment; i.p., intraperitoneal.

effects of saracatinib were observed for the number of drinks
consumed. Of note, we observed a reduction in drinking and
craving in the placebo group and in the saracatinib group. While
it is possible that the decrease in the placebo group could have
masked any effects of saracatinib, we have demonstrated drug-
placebo differences in other studies using this ADP paradigm
(21). Together, these results suggest that short-term saracatinib
treatment at a dose of 125mg/daymay not reduce alcohol craving
or consumption in people with heavy drinking habits.

The doses used in these studies were selected based on several
factors: to match cerebrospinal fluid levels of saracatinib between

the two species (52), verified behavioral effects and peripheral
markers of reduced Src family activity (52, 57), and to mitigate
risk of off-target pharmacological effects and side effects (57, 65).
It is possible that alternative doses of saracatinib would yield
different results in both species. Of note, the rate of adverse
events observed, including neuropsychiatric adverse events, with
the 125 mg/day saracatinib dose in human participants was
low compared to what is commonly seen with glutamatergic
agents (21). In contrast, larger clinical trials in older clinical
populations with Alzheimer’s disease (66) have identified higher
rates of adverse effects within the range of the dose used in
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FIGURE 2 | 125 mg/day saracatinib did not affect alcohol craving or

consumption in human participants. Participants underwent two ADPs: One

prior to initiating treatment (“Baseline”) and a second one following 7–8 days of

125 mg/day oral saracatinib treatment (“On-Tx”). (A) AUC for craving during

the priming phase of the ADP session. (B) AUC for craving during the ad

libitum phase. (C) Total drinks consumed. N = 15 placebo; n = 26 saracatinib.

*p < 0.05 vs. baseline ADP across groups (main effect of session). ADP,

alcohol drinking paradigm; AUC, area under the curve; Tx, treatment.

our study. So, our observed lack of adverse events and efficacy
may be related to the population studied, which may potentially
tolerate, and require, higher doses to reverse alcohol-induced
glutamatergic changes due to heavy drinking habits. For example,
in mice, studies that used a dose of 10 mg/kg have reported
saracatinib-mediated reductions in ethanol self-administration
(35). However, in our preliminary work (data not shown) 5
mg/kg of saracatinib was sufficient to reduce phosphorylated
NR2B in DMS, and several studies have used this dose to
successfully ameliorate behavioral deficits or neurodegeneration

in Alzheimer’s models, albeit administered per oral and on a
chronic treatment regimen (52, 67, 68). Nonetheless, future
studies should perform a dose-response curve for effects of
saracatinib on habitual responding for alcohol in mice to
elucidate the present negative findings. Overall, further work to
examine the dose-dependent effects of saracatinib on alcohol
drinking behaviors is needed.

Another possibility for the lack of treatment effects is the
time course of the treatment regimen. While positive effects
of saracatinib on ethanol-seeking and consumption have been
reported after acute administration in mice (35, 40), other
behavioral effects of saracatinib, at the 5 mg/kg dose used in
the present study, required longer time frames. For example,
rescue of cognitive function in an Alzheimer’s mouse model
required 3–5 weeks of 5 mg/kg saracatinib administration for
effects to emerge (52). Likewise, it is possible that a more
extended treatment regimen in the clinical trial would have
yielded positive results. Indeed, maximal plasma levels are
augmented at steady state relative to acute administration
at the 125 mg/day dose, with participants reaching steady
state within 10–17 days (65), whereas the present study
provided saracatinib for 7–8 days. However, a clinical trial
that assessed the efficacy of saracatinib in Alzheimer’s disease
did not observe significant effects at this dose after a year of
treatment, despite positive effects within shorter timeframes in
mouse models (52, 66). Regardless, it is possible that extended
treatment regimens may be needed when considering the
use of this agent to treat alcohol drinking, which may yield
different findings.

Alternatively, Fyn may have brain region- and function-
specific roles that explain the present results. Fyn-dependent long
term facilitation of NMDAR-mediated excitatory postsynaptic
currents in response to ethanol are observed in the DMS,
but not DLS (36, 37). The same study found that the Src
family protein tyrosine kinase inhibitor PP2, which inhibits Fyn,
reduced ethanol self-administration in rats when infused into
the DMS, but not DLS. Furthermore, it was recently reported
that stimulation of D1 neurons in the DMS, but not DLS
upregulated phosphorylation of Fyn and its substrate NR2B
(40), together suggesting that Fyn may play less of a role in
the DLS. These findings align with the possibility that Fyn
may mediate goal-directed, but not habitual, ethanol-seeking
and consumption behaviors; the DMS is classically implicated
in goal-directed action, whereas there is a lateral shift in
activity over time as an action becomes more habitual, including
ethanol-seeking (39, 41, 42). This possibility is supported by the
current literature regarding effects of saracatinib on ethanol-
seeking and consumption. One study reported a reduction
in instrumental responding for ethanol in confirmed goal-
directed mice after acute administration of saracatinib (35).
Another study from the same group reported reductions in
ad libitum ethanol consumption in ethanol-naïve mice (40).
However, we did not test effects of saracatinib on goal-
directed drinking in the present study, and thus cannot
confirm this selectivity from the present results alone. To our
knowledge, the current studies are the first to directly assess the
effects of saracatinib in confirmed habitual ethanol consuming
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individuals, who likely have greater DLS control of ethanol-
seeking (41, 69).

While a strength of these parallel studies is the use
of equivalent doses of saracatinib in chronically alcohol
consuming individuals, there are disparities between the
designs of the mouse and human studies that limit the
comparability. Saracatinib was administered acutely in the
mouse study, whereas the human participants received 7–
8 days of saracatinib. In addition, only male subjects were
used in the mouse study. Furthermore, the mice were
not tested on measures of ethanol dependence, and blood
ethanol concentrations were not measured, which precludes
classification of these mice as heavy drinkers or as ethanol-
dependent. However, prior studies have reported binge-level
blood ethanol concentrations in mice consuming similar
quantities of ethanol during self-administration. For example,
one study reported an average blood ethanol concentration
of 93 mg/dl after consuming 1.3 g/kg ethanol within a 60-
min session, which may be comparable to the present study
in which mice received approximately 1.1 g/kg ethanol within
a 45-min session (70). In addition, in our other studies
using this self-administration paradigm we have observed
heightened withdrawal-induced aggression between male cage
mates (data not shown), which suggests that this experimental
setup may be capable of inducing ethanol dependence.
Nonetheless, these features must be quantified in future studies
for confirmation.

Another key difference between these studies was the direct
assessment of habitual behavior in the mice, which was not
tested in the clinical study. Previous studies have shown that
alcohol-dependent individuals exhibit a shift toward more
habitual, less goal-directed behavior in an outcome devaluation
test (51). Furthermore, another study found that habitual, but
not reward-driven alcohol use was associated with severity of
alcohol dependence (71), and another found that abstinent
participants with high alcohol expectancies and impaired goal-
directed control were more susceptible to subsequent relapse
(72). Together, these findings suggest that habitual behavior
is associated with alcohol dependence and may be relevant
for treatment outcomes. Yet, we cannot draw conclusions
regarding the effects of saracatinib on habitual behavior per se
in the clinical study presented here. There is little work in the
literature regarding back-translatability of effective treatments
for alcohol use disorder in habit paradigms. One study assessed
the effects of naltrexone on ethanol self-administration in rats
using reinforcement schedules that promote goal-directed (FR-
5) vs. habitual (VI-30) responding. They found that naltrexone
reduced responding in both schedules, although they did not
test effects of naltrexone on habit itself, such as in a contingency
degradation or outcome devaluation session (73). More work is

needed in this area to determine the translational potential of
ethanol habit in rodents as a screen for novel therapeutics.

Overall, we did not identify effects of saracatinib on alcohol-
seeking/craving or consumption in habitual mice or heavy
drinking human participants. These results suggest that Fyn
kinase inhibition may not be effective at reducing these aspects
of alcohol use at the doses and treatment regimens employed
in the current study. Future studies should consider the use of
higher doses of saracatinib and alternative treatment regimens to
confirm and expand upon these findings.
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Hypofunction of glutamatergic signaling is causally linked to neurodevelopmental

disorders, including psychotic disorders like schizophrenia and bipolar disorder.

Kynurenic acid (KYNA) has been found to be elevated in postmortem brain tissue

and cerebrospinal fluid of patients with psychotic illnesses and may be involved in the

hypoglutamatergia and cognitive dysfunction experienced by these patients. As insults

during the prenatal period are hypothesized to be linked to the pathophysiology of

psychotic disorders, we presently utilized the embryonic kynurenine (EKyn) paradigm

to induce a prenatal hit. Pregnant Wistar dams were fed chow laced with kynurenine

to stimulate fetal brain KYNA elevation from embryonic day 15 to embryonic day 22.

Control dams (ECon) were fed unlaced chow. Plasma and hippocampal tissue from

young adult (postnatal day 56) ECon and EKyn male and female offspring were collected

at the beginning of the light (Zeitgeber time, ZT 0) and dark (ZT 12) phases to assess

kynurenine pathway metabolites. Hippocampal tissue was also collected at ZT 6 and ZT

18. In separate animals, in vivo microdialysis was conducted in the dorsal hippocampus

to assess extracellular KYNA, glutamate, and γ-aminobutyric acid (GABA). Biochemical

analyses revealed no changes in peripheral metabolites, yet hippocampal tissue KYNA

levels were significantly impacted by EKyn treatment, and increased in male EKyn

offspring at ZT 6. Interestingly, extracellular hippocampal KYNA levels were only elevated

in male EKyn offspring during the light phase. Decreases in extracellular glutamate

levels were found in the dorsal hippocampus of EKyn male and female offspring, while

decreased GABA levels were present only in males during the dark phase. The current

findings suggest that the EKyn paradigmmay be a useful tool for investigation of sex- and

time-dependent changes in hippocampal neuromodulation elicited by prenatal KYNA

elevation, which may influence behavioral phenotypes and have translational relevance

to psychotic disorders.
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INTRODUCTION

Disruptions in neurotransmission are associated with the
pathology of psychotic disorders such as schizophrenia (SZ) and
bipolar disorder (BD). In particular, dysregulated modulation
of the excitatory neurotransmitter glutamate and the inhibitory
small molecule y-aminobutyric acid (GABA) has been implicated
in the etiology of cognitive, negative, and positive symptoms in
individuals with severe psychiatric illness (1–4). Hypofunction
of the cortical ionotropic glutamate receptor N-methyl-d-
aspartate (NMDA) is thought to contribute to dysregulated
tonic GABAergic inhibition, alterations in cortical glutamate
levels, and the pathophysiological manifestation of cognitive and
negative symptoms in individuals with SZ (2).

Abnormally high levels of the endogenous neuromodulator
and tryptophan metabolite kynurenic acid (KYNA) (Figure 1A)
are found in the brain and cerebrospinal fluid of individuals
with SZ and BD (5–10). KYNA is of particular interest as
it competitively antagonizes NMDA receptors at the glycine
site, and inhibits α7 nicotinic acetylcholine (α7nACh) receptors,
thereby directly influencing neurotransmission (11–14). Elevated
KYNA is hypothesized to be causally related to neurocognitive
impairments in patients with psychotic disorders (15). Preclinical
studies in animal models postulate that increased KYNA impairs
learning and memory, especially in brain regions like the
prefrontal cortex and hippocampus, whereas KYNA reductions
may feasibly improve learning and memory (16–22).

SZ and BD are classified as neurodevelopmental disorders,
and perinatal insults, such as stress or infection, associated with
these diseases can result in the activation of the kynurenine
pathway (KP) and increase levels of KYNA. Further, the
prenatal period has been found critical for elevations in
KYNA to cause long term biochemical changes and cognitive
dysfunction in adult rats (23–26). Hence, to further investigate
the neurodevelopmental impacts of KYNA elevation, we utilize
the embryonic kynurenine (EKyn) paradigm in rats, wherein
pregnant Wistar dams are fed 100mg of kynurenine-laced
chow daily from embryonic day (ED) 15 to ED 22 (25,
27) (Figure 1B). This time course corresponds to the second
trimester in human pregnancy, when the developing fetus is
most vulnerable to exposure from infection or injury, thereby
providing a translational model for in utero insults that instigate
neurodevelopmental abnormalities (28–30). Substantial evidence
also suggests that rodents subjected to elevated KYNA during
this critical prenatal window will exhibit long-lasting deficits in
adulthood (25, 31–35).

We recently determined conspicuous sex and time of day
dependent changes in sleep, home cage activity, and arousal in

Abbreviations: SZ, schizophrenia; BD, bipolar disorder; KYNA, kynurenic

acid; EKyn, embryonic kynurenine treatment; ECon, embryonic control

treatment; ZT, zeitgeber time; KP, kynurenine pathway; KYNA, kynurenic

acid; NMDA, pertaining to the N-methyl-D-aspartate glutamate receptor;

GABA, γ-aminobutyric acid; α7nACh, pertaining to the alpha 7 nicotinic

acetylcholine receptor; ED, embryonic day; PD, postnatal day; AP, anterior-

posterior; LM, lateral-medial; DV, dorsal-ventral; HPLC, high-performance liquid

chromatography; UHPLC, ultra high-performance liquid chromatography; KAT

II, kynurenine amino transferase II; REM, rapid eye movement.

young adult EKyn offspring (27). In a behavioral context, sleep
and arousal states depend on hippocampal neuromodulation
to regulate memory consolidation, retrieval, and locomotor
activity (36, 37). Thus, our present aim was to investigate
underlying abnormalities in levels of excitatory neurotransmitter
glutamate and inhibitory neurotransmitter GABA, in relation to
KYNA, in the hippocampus of young adult EKyn offspring. We
hypothesized sex- and time-dependent changes in hippocampal
GABAergic and glutamatergic neurotransmission in adulthood
as a result of prenatal KYNA elevation. Of translational relevance,
kynurenine pathway metabolites are modulated in a circadian-
dependent manner in humans, with excreted metabolite levels
peaking mid-morning after tryptophan administration (38).
Therefore, we also evaluated KP metabolites in the plasma of
young adult EKyn rats. Importantly we determined that while
central levels of KYNA and neurotransmitters change in time
of day and sex-dependent manners in our EKyn paradigm,
plasma metabolites do not serve as predictors for changes in
the brain. Interestingly, while KYNA levels were elevated in
EKyn males, extracellular glutamate levels were attenuated in
both EKyn males and females, yet GABA attenuation was only
evident in EKyn males. Our study highlights sex differences
in response to prenatal KYNA elevation and its impact on
hippocampal neuromodulation of GABA and glutamate through
altered cerebral KP metabolism.

METHODS

Animals
Pregnant, adult Wistar rats (ED 2) were obtained from Charles
River Laboratories, acclimated to our animal facility, and fed
laced diet (details below) beginning on ED 15. All animals were
kept on a 12/12 h light-dark cycle, where Zeitgeber time (ZT)
0 corresponded to lights on and ZT 12 corresponded to lights
off. The animal facility at the University of South Carolina
School of Medicine is accredited by the American Association
for the Accreditation of Laboratory Animal Care. All protocols
were approved by the University of South Carolina Institutional
Animal Care and Use Committees and were in accordance with
the National Institutes of Health Guide for the Care and Use of
Laboratory Animals (39).

EKyn Treatment
Beginning on ED 15, pregnant dams are fed a wet mash
of ground control chow (ECon) or a mash of chow laced
with 100mg of kynurenine (EKyn) daily until ED 22, as
previously described (25). Upon birth, dams received normal
rodent chow pellets ad libitum. On postnatal day (PD) 21,
offspring were weaned and pair-housed by sex. The offspring
were weighed at PD 25, PD 35, PD 47, and PD 56, but otherwise
remained experimentally undisturbed until they reached young
adulthood at PD 56 (Figure 1B). A maximum of two rats
per sex from a single prenatal litter were used within each
experimental cohort to obtain a minimum n = 4 litters
per experiment.
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FIGURE 1 | Schematic showing the kynurenine pathway, experimental paradigm, and rat body weight across age. (A) A simplified schematic of the kynurenine

pathway of tryptophan degradation, wherein kynurenic acid (KYNA) is synthesized from kynurenine via kynurenine aminotransferases (KATs). (B) EKyn experimental

paradigm: pregnant rat dams are fed normal rodent chow (ECon) or rodent chow laced with 100mg of kynurenine (EKyn) daily from embryonic day (ED) 15 to ED 22.

Male and female offspring are weaned at postnatal day (PD) 21 and used in experiments at PD 56, when they reach adulthood. (C) Body weight of ECon and EKyn

offspring at PD 25, PD 35, PD 47, and PD 56. Data are mean ± SEM. Repeated measures 3-way ANOVA effects (#### P < 0.0001) followed by Bonferroni’s

post-hoc test. n = 4–8 litters per group.

Chemicals
L-Kynurenine sulfate salt (“kynurenine,” purity: 99.4%) was
obtained from Sai Advantium (Hyderabad, India). All other
chemicals were obtained from various suppliers but were of the
highest commercially available purity.

Tissue Collection
Cohorts of offspring were euthanized via CO2 asphyxiation at
ZT 0, ZT 6, ZT 12, or ZT 18 to collect tissue. Whole trunk
blood was collected into tubes containing K3-EDTA (0.15%) and
centrifuged at 300 × g for 10min to separate plasma. Brains
were promptly removed, and the hippocampus was dissected. All

samples were snap frozen on dry ice and stored at −80◦C until
biochemical analyses.

Microdialysis
Surgery
Under isoflurane anesthesia (2–5%), animals were placed on a
stereotaxic frame (Stoelting Co.,WoodDale, IL, USA). Carprofen
was used as an analgesic and given at a dose of 5 mg/kg
(subcutaneous) at the beginning of surgery. A guide cannula
(1.0mm outer diameter; SciPro Inc., Sanborn, NY, USA) was
positioned over the dorsal hippocampus (AP: −3.4, LM: ± 2.3,
DV: −1.5 from bregma after coordinates) and anchored in
place using two surgical screws inserted into 0.5mm burr
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holes and acrylic dental cement. After 24–48 h of post-operative
recovery, microdialysis experiments were initiated in freely
moving animals.

Extracellular Fluid Collection by in vivo Microdialysis
Special attention was given to time of day of microdialysis
experiments and experimental efforts were made to collect
microdialysate for up to 24 h. To control for the contribution
of the experimental start time, cohorts of animals were initiated
with microdialysis perfusion at ZT 3, ZT 6, ZT 9, or ZT 22.5. On
the day of microdialysis, a probe (2mm PES membrane/14mm
shaft, 6 kD; SciPro Inc.) was inserted through the guide
cannula in freely moving animals and a microperfusion pump
(Harvard Apparatus, Holliston, MA, USA) set to a flow rate
of 2.5 µL/min perfused Ringer solution (147mM NaCl, 4mM
KCl, 1.4mM CaCl2) through the probe inlet. After 30min,
the flow was reduced to 1.0 µL/min for the duration of the
experiment. Collection of dialysate samples began 2 h after the
onset of perfusion for KYNA analysis. Glutamate and GABA
were analyzed in dialysate samples collected at 4 h after the
onset of perfusion, to achieve stable neurotransmitter levels (40).
Extracellular KYNA, glutamate, and GABA were analyzed from
the same hour fractions and analysis of data was divided by light
phase fractions (ZT 0 – ZT 12) and dark phase fractions (ZT 12 –
ZT 24). Samples were stored at−80◦Cuntil biochemical analyses.

At the end of the experiment, the probe was removed, and
each animal was anesthetized using isoflurane, decapitated via
guillotine, and the brain was carefully removed and dropped
in a 10% formalin solution. Brains were moved step-wise to
20% sucrose before processing with 25–30µm thick coronal
cryostat section that were stained in neutral red to check proper
microdialysis cannula placement (Supplementary Figure 1).

Biochemical Analysis
Plasma and Brain (Tryptophan, Kynurenine, KYNA)
On the day of biochemical analyses, plasma samples were thawed,
diluted (1:1000 for tryptophan, 1:10 for kynurenine and KYNA),
acidified with 6% perchloric acid, and centrifuged at 12,000 ×

g for 10min. The hippocampus was weighed, diluted 1:5 (w/v)
with ultrapure water, and homogenized with a sonicator. Protein
was evaluated in the stock homogenate using the previously
published Lowry method (41). A portion of the remaining
hippocampal homogenate was further diluted with ultrapure
water to a final concentration of 1:10, acidified using 25%
perchloric acid, and centrifuged at 12,000× g for 10 min.

Acidified plasma samples were evaluated for tryptophan,
kynurenine, and KYNA and hippocampal samples
were evaluated for KYNA by high-performance liquid
chromatography (HPLC) analysis as previously described
(26). Briefly, 20 µL of supernatant was injected into a ReproSil-
Pur C18 column (4 × 150mm; Dr. Maisch Gmbh, Ammerbuch,
Germany) using a mobile phase of 50mM sodium acetate, pH
adjusted to 6.2 with glacial acetic acid, and 5% acetonitrile at a
flow rate of 0.5 mL/min. A post column addition of 500mM zinc
acetate at a flow rate of 0.1 mL/min was used to fluorometrically
detect tryptophan [excitation (ex): 285, emission (em): 365,
retention time (rt): 11min], kynurenine (ex: 365, em: 480, rt:

6min), and KYNA (ex: 344, em: 398, rt: 11min) in the eluate
(Alliance, 2,475 fluorescence detector; Waters, Bedford, MA,
USA). Data was analyzed using Empower 3 software (Waters).

Microdialysate (KYNA)
Extracellular KYNA was assessed by diluting the microdialysate
sample 1:2 in ultrapure water and subjecting to fluorometric
HPLC, as described above. Microdialysis data were not corrected
for recovery from dialysis probe.

Microdialysate (Glutamate/GABA)
Extracellular glutamate and GABA from microdialysis samples
were assessed using electrochemical ultra-high-performance
liquid chromatography (UHPLC) ALEXYS analyzer with
a Decade Elite detector (Antec Scientific, Zoeterwoude,
Netherlands). Briefly, 9 µL of undiluted microdialysate was
injected into a HSS T3 column (1.0 × 50mm; Waters) using a
step gradient elution comprised of the first mobile phase (base
solution: 50mM phosphoric acid, 50mM citric acid, and 0.1mM
EDTA at a pH of 3.5) and 2% acetonitrile followed by the second
mobile phase made from base solution and 50% acetonitrile.
Each mobile phase is delivered at a flow rate of 200 µL/min.
An in-needle derivatization added 5 µL of o-phthaldialdehyde
reagent before eluting through the column. A VT03 microflow
cell with a 0.7mm glassy carbon working electrode was used for
electrochemical detection (42). Data was acquired using Clarity
8 software (DataApex, Prague, Czech Republic). Microdialysis
data were not corrected for recovery from dialysis probe.

Statistical Analysis
All statistical analyses were performed using Prism 9.0
(GraphPad Software, San Diego, CA, USA), and all
results and samples sizes are shown in statistical tables
(Supplementary Materials). Weight data were averaged across
litters and assessed by 3-way repeated measures ANOVA with
EKyn treatment, age, and sex as between-subject factors. Separate
analyses by sex were performed by 2-way repeated measures
ANOVA with EKyn treatment and age as between-subject
factors. From weight data, Bonferroni’s post hoc test was used
for multiple comparisons. Plasma and brain metabolite data
were averaged across litters and assessed by 3-way ANOVA with
EKyn treatment, sex, and ZT as between-subject factors. Separate
analyses by sex were performed by 2-way ANOVA with EKyn
treatment and ZT as between-subject factors. Microdialysis data
were averaged across litter depending on the start time of the
experiment, with groups divided by early-light (ZT 3), mid-light
(ZT 6), late-light (ZT 9), and late-dark (ZT 22.5). Samples below
the limit of detection for individual analytes were not included
in those respective analyses. Microdialysis data were analyzed
separately by phase by 3-way ANOVA with EKyn treatment, sex,
and ZT as between-subject factors. Separate analysis by sex was
performed in each phase by 2-way ANOVA with EKyn treatment
and ZT as between-subject factors. Analyses were followed up by
appropriate 2-way interactions. Uncorrected Fisher’s LSD was
used for multiple comparisons in analysis of biochemical data.
Statistical significance was defined as P < 0.05.
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FIGURE 2 | Prenatal KYNA elevation elicits no changes in peripheral

kynurenine pathway metabolism in young adult male EKyn. (A) Plasma

tryptophan. (B) Plasma kynurenine. (C) Plasma KYNA. All data are mean ±

SEM. Three-way ANOVA analyses effects: ## P < 0.01. n = 3–9 litters per

group.

RESULTS

Sex, but Not Prenatal KYNA Elevation,

Influences the Weight of EKyn and ECon

Offspring
To determine if elevated prenatal KYNA exposure impacts
the body weight of offspring during adolescence and young
adulthood, we weighed EKyn and ECon offspring at PD 25,
PD 35, PD 47, and PD 56. We determined main effects of
postnatal day (F3,48 = 795.8, P < 0.0001) and sex (F1,48 = 1906,
P < 0.0001) and a significant postnatal day x sex interaction
(F3,48 = 474.7, P < 0.0001) (Figure 1C). The body weight of

FIGURE 3 | Prenatal KYNA increases hippocampal KYNA in young adult male

EKyn offspring. Hippocampal KYNA. All data are mean ± SEM. Three-way

ANOVA analyses effects: # P < 0.05. 2-way ANOVA analyses by sex followed

by Fisher’s LSD post-hoc test: *P < 0.05. n = 4–12 litters per group.

males was consistently greater than females from PD 35, and this
difference steadily increased across postnatal development. Of
importance, body weight was not impacted by prenatal KYNA
elevation in male or female offspring, complementing what has
been previously described only in males (34).

Hippocampal KYNA Levels, but Not

Peripheral KP Metabolites, Are Elevated in

Young Adult EKyn Offspring
To evaluate circadian dynamics of KP metabolism, we first
measured peripheral and hippocampal KP metabolites at specific
time points during the light and dark phases. Plasma tryptophan
(Figure 2A), kynurenine (Figure 2B), and KYNA (Figure 2C)
were not impacted by EKyn treatment at the beginning of the
light phase, ZT 0, or at the beginning of the dark phase, ZT 12.
Peripheral metabolites tryptophan (F1,40 = 7.658, P = 0.0085),
kynurenine (F1,41 = 7.640, P = 0.0085), and KYNA (F1,41 =

11.53, P = 0.0015) were significantly impacted by sex, as we
determined that females had elevated metabolites compared to
males. Hippocampal KYNA was significantly impacted by EKyn
treatment (F1,107 = 4.879, P = 0.0293), with increased KYNA in
hippocampal tissue in EKyn across the light phase, and post-hoc
in EKyn males at ZT6 compared to ECon (P = 0.0500; Figure 3).

Prenatal KYNA Elevation Elicits an

Increase in Extracellular KYNA Levels

During the Light Phase in the Dorsal

Hippocampus of Young Adult EKyn Males
To more precisely investigate circadian-dependent alterations
in KYNA levels, we analyzed extracellular KYNA in the dorsal
hippocampus of EKyn and ECon young adult offspring. During
the light phase, extracellular KYNAwas impacted by amain effect
of EKyn treatment (F1,207 = 10.62, P = 0.0013 and a sex x EKyn
treatment interaction (F1,207 = 10.01, P = 0.0018) (Figure 4A).
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FIGURE 4 | Extracellular KYNA in the hippocampus is increased during the light phase and decreased during the dark phase in EKyn male offspring. Microdialysis in

the dorsal hippocampus was conducted in young adult offspring, with special attention given to the time of day. Data are represented by phase, wherein light phase

denotes ZT 0–12 and dark phase denotes ZT 12–24. (A) Light phase. (B) Dark phase. (C) Analysis of 6-h bins across light and dark phase. Data are mean ± SEM.

3-way ANOVA analyses effects: # P < 0.05, ## P < 0.01. 2-way ANOVA analyses by sex effects: ∧P < 0.05, ∧∧P < 0.01, ∧∧∧P < 0.001. Fishers LSD post-hoc test:

*P < 0.05, **P < 0.01. n = 4–8 litters per group.

In males, extracellular KYNA was significantly influenced by
EKyn treatment (F1,87 = 13.39, P = 0.0004), and EKyn males
experienced elevated extracellular KYNA in the latter half of the
light phase (ZT 8, P = 0.0282; ZT 9, P = 0.0312; ZT 10, P =

0.0367). Extracellular KYNA in female EKyn offspring, however,
remained unchanged compared to female ECon offspring in
the light phase. Within the dark phase, extracellular KYNA was
significantly impacted by a main effect of sex (F1,160 = 6.635,
P = 0.0109) and a sex x EKyn treatment interaction (F1,160 =

6.744, P = 0.0103) (Figure 4B). In males, extracellular KYNA
was reduced in the EKyn group (F1,68 = 4.556, P = 0.0364),
but not altered in EKyn females compared to controls. We also
analyzed averaged 6-h bins of microdialysis data to evaluate
the contribution of early light phase (ZT 0–6), late light phase
(ZT 6–12), early dark phase (ZT 12–18) or late dark phase
(ZT 18–24) on extracellular KYNA levels. We determined that
extracellular KYNA was impacted by a significant ZT x EKyn
treatment interaction (F3,46 = 6.364, P = 0.0011) and a three-
way ZT x sex x EKyn treatment interaction (F3,46 = 5.242, P =

0.0034) (Figure 4C). When analyses were separated by sex, we
determined in males that extracellular KYNA was impacted by a
ZT x EKyn treatment interaction (F3,19 = 5.279, P = 0.0081). In

ECon males, extracellular KYNA was elevated at the end of the
dark phase when compared to the light phase (ZT 18–24 vs. ZT
0–6, P = 0.0440), while in EKyn males extracellular KYNA was
reduced across the entire dark phase when compared to the light
phase (ZT 12–18 vs. ZT 6–12, P = 0.0091; ZT 18–24 vs. ZT 6–12,
P = 0.0038). In females, extracellular KYNA was not influenced
by EKyn treatment or time of day.

Reduced Extracellular Glutamate in Young

Adult EKyn Offspring
To test the hypothesis that elevated KYNA influences
neurotransmitter levels, we evaluated levels of extracellular
glutamate and GABA in EKyn and ECon offspring in the
dorsal hippocampus. EKyn treatment significantly influenced
extracellular glutamate during the light phase (F1,311 = 6.984, P
= 0.0086) (Figure 5A). EKyn males, in particular, had reduced
extracellular glutamate during the light phase when compared
to controls (F1,113 = 8.616, P = 0.0040), but this reduction was
not present in EKyn females. In the dark phase, extracellular
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FIGURE 5 | Light phase- and sex-dependent alterations in extracellular glutamate in the hippocampus of young adult offspring exposed to elevated prenatal KYNA.

Microdialysis in the dorsal hippocampus was conducted in young adult offspring, with special attention given to the time of day. Data are represented by phase,

wherein light phase denotes ZT 0–12 and dark phase denotes ZT 12–24. (A) Light phase. (B) Dark phase. (C) Analysis of 6 - h bins across light and dark phase. Data

are mean ± SEM. 3-way ANOVA analyses effects: # P < 0.05, ## P < 0.05, #### P < 0.0001. 2-way ANOVA analyses by sex effects: ∧P < 0.05, ∧∧P < 0.01. ∧∧∧P

< 0.001. Fishers LSD post-hoc test: *P < 0.05, **P < 0.01. n = 5–12 litters per group.

glutamate was significantly impacted by main effects of ZT

(F11,179 = 2.941, P = 0.0013), EKyn treatment (F1,179 = 22.40,

P < 0.0001), and sex (F1,179 = 6.416, P = 0.0122) (Figure 5B).

Glutamate was reduced by the end of the dark phase in male

and female ECon and EKyn offspring, and lower in females than

in males. Further, we determined that EKyn treatment resulted

in reduced extracellular glutamate in both male (F1,71 = 9,772,

P = 0.0026) and female (F1,108 = 13.77, P = 0.0003) offspring

compared to counterpart ECon in the dark phase. The time of
day, ZT, impacted extracellular glutamate levels in EKyn males
during the dark phase (F11,71 = 2.917, P = 0.0032). When we
evaluated averaged 6-h bins, we determined that the time of day
significantly influenced extracellular glutamate (F3,68 = 4.034, P
= 0.0106) (Figure 5C). EKyn males sustained reduced glutamate
after ZT 6 (ZT 6–12 vs. ZT 0–6, P = 0.0303; ZT 12–18 vs. ZT
0–6, P = 0.0318; ZT 18–24 vs. ZT 0–6, P = 0.0258) and EKyn
females after ZT 12 (ZT 12–18 vs. ZT 0–6, P = 0.0422; ZT 18–24
vs. ZT 0–6, P = 0.0460) when compared to the first 6 h of the
light phase.

Prenatal KYNA Elevation Elicits

Sex-Dependent Changes in Extracellular

GABA in Young Adult Offspring
Lastly, we determined conspicuous disturbances in extracellular
GABA in the hippocampus of young adult EKyn offspring.
In the light phase, extracellular GABA was influenced by
a main effect of sex (F1,256 = 32.54, P < 0.0001), but
not time of day or EKyn treatment (Figure 6A). However,
in the dark phase, we determined significant main effects
of EKyn treatment (F11,166 = 7.170, P = 0.0082) and sex
(F1,166 = 4.213, P = 0.0417), and a significant sex x
EKyn treatment interaction (F1,166 = 9.017, P = 0.0031)
(Figure 6B). Male EKyn offspring had reduced extracellular
GABA when compared to controls (F1,76 = 23.00, P <

0.0001) in the dark phase. When 6-h bins were evaluated, we
determined that extracellular GABA levels were significantly
impacted by sex (F1,31 = 6.548, P = 0.0156), such that
extracellular GABA was reduced in females compared to males
(Figure 6C).
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FIGURE 6 | Reduced extracellular GABA levels in the hippocampus during the dark phase in young adult male EKyn. Microdialysis in the dorsal hippocampus was

conducted in young adult offspring, with special attention given to the time of day. Data are represented by phase, wherein light phase denotes ZT 0–12 and dark

phase denotes ZT 12–24. (A) Light phase. (B) Dark phase. (C) Analysis of 6-hour bins across light and dark phase. Data are mean ± SEM. 3-way ANOVA analyses

effects: # P < 0.05, ## P < 0.01, #### P < 0.0001. 2-way ANOVA analyses by sex effects: ∧∧∧∧P < 0.0001. Uncorrected Fishers LSD post-hoc test: *P < 0.05, **P

< 0.01. n = 4–11 litters per group.

DISCUSSION

We presently confirmed that prenatal KYNA elevation results in

elevated tissue KYNA levels and extracellular KYNA levels in the

hippocampus of young adult male EKyn offspring (21, 25, 26). Of

interest, our current focus extensively evaluated the contribution
of the time of day of experimentation, while also expanding
our understanding of biochemical dynamics in both sexes of
EKyn offspring. Our results reinforce previous findings that the
long term consequences of prenatal KYNA elevation manifest in
the attenuation of glutamate levels in the rat hippocampus (21)
and complement our recent characterization of sex-dependent
diurnal changes in sleep and arousal behaviors in EKyn offspring
(27). As no differences in weight were observed between EKyn
and control offspring, we presently provide critical evidence, in
both sexes, that the reported long-term manifestation of prenatal
KYNA elevation are not attributed to body weight differences.

Consistent with our previous evaluation of KP metabolites in
the plasma of EKyn offspring (26, 27), plasma tryptophan,
kynurenine, and KYNA remained unchanged between
experimental groups at ZT 0 and ZT 12. Within the brain
however, KYNA levels in dissected hippocampal tissue were

significantly elevated in male EKyn offspring during the middle
of the light phase (ZT 6), supporting our findings from previous
studies evaluating brain tissue KYNA content in EKyn compared
to ECon offspring (25–27, 33). We presently selected the
time points that correspond to transitions between the light
and dark phases for rodents, as we previously studied time
points that corresponded to the middle of the light and dark
phases for rodents (27). As such, we determined that female
offspring had conspicuously higher tryptophan, kynurenine,
and KYNA levels in the plasma compared to males. However,
levels of KP metabolites in the periphery did not serve as strong
predictors for the observed changes in brain KYNA, though
perhaps limited by time intervals of plasma sampling in our
animals. As brain KP metabolism is uniquely regulated (43),
peripheral KP metabolism in clinical studies especially may limit
the understanding of changes in the central nervous system
(5, 7, 15, 44).

Notably, KYNA in the hippocampus, both tissue content
and extracellular levels, were elevated in male EKyn offspring
during the light phase, followed by a sustained decrease in
levels during the dark phase. KYNA elevation during the
light phase corresponds to evolutionarily conserved circadian
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FIGURE 7 | Summary figure representing overall trends in extracellular concentrations of KYNA, glutamate, and GABA in EKyn males and females across the two light

phases.

rhythmicity of tryptophan catabolism in rodents and humans
(38, 45). This diurnal pattern of KYNAmodulation in EKynmale
offspring corresponds with concurrent glutamate attenuation
across the light and first 4 h of the dark phase yet sustained
normal levels of the neurotransmitter during the latter half of
the dark phase. Most notably, when extracellular hippocampal
KYNA levels decrease from ZT 18 to ZT 24 in EKyn males,
extracellular glutamate stabilizes to levels comparable to ECon
males, suggesting that KYNA levels are influencing extracellular
glutamate fluctuations. This notion is supported by evidence
that acute elevations of KYNA, in a dose-dependent manner,
result in locally reduced glutamate levels in several brain regions,
including the hippocampus (18, 46), and further reinforced by
restoration of glutamate levels when KYNA levels are modulated
via kynurenine amino transferase II (KAT II) inhibition or the
α7nACh positive allosteric modulator, galantamine (18, 19, 47,
48). Pharmacological intervention with galantamine or a KAT II
inhibitor has also been shown to restore cognitive flexibility and
glutamate levels in offspring exposed to elevated KYNA during
neurodevelopment, further supporting the notion that these
neurochemical alterations are related to the neuromodulatory
properties of KYNA (19, 21).

In adult female EKyn offspring, extracellular KYNA was
not elevated extracellularly. However, glutamate levels were
found to be reduced during the first 6 h of the dark phase
compared to counterpart controls. It is important to note
that the exact relationship between KYNA and its impact on
extracellular neurotransmitters in females specifically remains
understudied, as most acute, dose-response pharmacological
studies have been conducted only in male rodents (18, 40, 46,
49, 50). Attenuated glutamate levels in EKyn offspring could be
related to changes in local synaptic connections and dendritic

morphology in adult animals exposed to high levels of KYNA
during neurodevelopment (23, 24, 33, 34). Conspicuously, the
alterations in glutamate presently characterized may shed insight
on our recent determination of altered arousal patterns in female
EKyn offspring, specifically reduced home cage activity and
prolonged bouts of wakefulness during the dark phase (27).
Aside from glutamate levels, future studies will be critical to
determine if EKyn offspring suffer from an overall reduction
of neurotransmission which may thereby influence the array of
neurocognitive impairments determined in these animals (21, 25,
26, 34, 35).

In parallel to the observed diurnal fluctuations in glutamate,
we determined a phase-dependent decrease in hippocampal
GABA levels in EKyn male offspring compared to controls.
These results are consistent with previous findings where acute
local KYNA elevation dose-dependently decreases extracellular
GABA levels in the brain (40). Yet curiously, in our EKyn
paradigm, GABA levels are reduced in male offspring transiently,
in a phase-dependent manner, after the late light phase
elevation in KYNA levels. The temporal delay and alteration
in extracellular GABA in the absence of elevated KYNA levels
could potentially be explained by a transient disinhibition of
α7nACh receptor activation on GABAergic interneurons from
the stratum radiatum, which could create a GABAA receptor-
mediated negative feedback loop (51). Relating these present
findings to the sleep and behavioral changes reported in
male EKyn offspring, we speculate that reduced extracellular
hippocampal GABA concentrations toward the end of the dark
phase could be related to aberrant rapid eye movement (REM)
sleep and contextual memory impairment observed in male
EKyn offspring. REM sleep is tightly regulated by afferent medial
septal GABAergic projections to the hippocampus, and when
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silenced, block the consolidation of contextual memory during
REM sleep (37, 52). Interestingly, female EKyn offspring do
not exhibit reduced GABA levels compared to their male EKyn
counterparts, which may also be related to sex-specific changes
in behavior and arousal previously reported (26, 27). However,
sparse information exists on neurochemical profiles of female rats
from studies using neurodevelopmental manipulations. Thereby,
we presently provide novel information regarding hippocampal
KYNA, GABA, and glutamate levels, while considering sex as a
biological variable (See Figure 7).

As individuals with SZ and BD have elevated levels of
KYNA in the brain (5, 11, 15), the enhanced KYNA found
in the brain of adult EKyn rats presents critical translational
value to investigate the longstanding ability of KYNA to
influence multiple neuromodulatory systems implicated in the
pathology of psychotic disorders. As described presently, several
impairments observed in adult EKyn rats resemble hallmark
neurochemical and behavioral deficits found in individuals with
psychotic disorders including SZ and BD (53–57). EKyn rats
exhibit neurochemical changes in hippocampal glutamate levels,
analogous to reduced temporal lobe glutamate levels reported
clinically (53, 55, 56). In patients with psychotic disorders,
glutamatergic and GABAergic deficits have been linked to
impairments in working and association memory, as well as
increased risk for presentation of negative symptoms (58, 59).

Our findings also parallel neurochemical alterations observed
in other prenatal insult paradigms that attempt to capture
pathophysiological alterations common to psychotic disorders
(30, 60–63). The contribution of each individual prenatal
litter is an important consideration in studies like ours, and
albeit a small sample size compared to clinical investigations,
our results provide novel mechanistic insights regarding
the neurodevelopmental implications for elevated KYNA
and its impact on hippocampal excitatory and inhibitory
neuromodulation. A misbalance of gating through excitation
and inhibition is postulated to form the basis for cognitive
and behavioral disturbances (64). Imbalances observed
in GABA and glutamate levels may also be applicable to
neurodevelopmental disorders such as autism spectrum
disorders, where reduced GABA and glutamate levels are
found in specific frontal, thalamic, and striatal brain regions
(65, 66). Ultimately, the deficits in glutamatergic and GABAergic
neuromodulation in relation to KYNA elevation in EKyn
young adult offspring bridge our understanding between
KYNA and neuromodulatory deficits which may contribute to
the observed impairments in cognition, sleep, and arousal
(21, 26, 27). In conclusion, sex-specific neurochemical
changes observed in this study highlight the importance
of evaluating sex as a biological variable when considering

therapeutics strategies, including inhibition of KAT II to
inhibit KYNA synthesis (48, 67, 68), and improve behavioral
dysfunction and clinical outcomes for individuals suffering from
psychiatric disorders.
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Schizophrenia is a severe mental illness that affects ∼1% of the world’s population. It is

clinically characterized by positive, negative, and cognitive symptoms. Currently available

antipsychotic medications are relatively ineffective in improving negative and cognitive

deficits, which are related to a patient’s functional outcomes and quality of life. Negative

symptoms and cognitive deficits are unmet by the antipsychotic medications developed

to date. In recent decades, compelling animal and clinical studies have supported

the NMDA receptor (NMDAR) hypofunction hypothesis of schizophrenia and have

suggested some promising therapeutic agents. Notably, several NMDAR-enhancing

agents, especially those that function through the glycine modulatory site (GMS) of

NMDAR, cause significant reduction in psychotic and cognitive symptoms in patients with

schizophrenia. Given that the NMDAR-mediated signaling pathway has been implicated

in cognitive/social functions and that GMS is a potential therapeutic target for enhancing

the activation of NMDARs, there is great interest in investigating the effects of direct

and indirect GMS modulators and their therapeutic potential. In this review, we focus on

describing preclinical and clinical studies of direct and indirect GMS modulators in the

treatment of schizophrenia, including glycine, D-cycloserine, D-serine, glycine transporter

1 (GlyT1) inhibitors, and D-amino acid oxidase (DAO or DAAO) inhibitors. We highlight

some of the most promising recently developed pharmacological compounds designed

to either directly or indirectly target GMS and thus augment NMDAR function to treat

the cognitive and negative symptoms of schizophrenia. Overall, the current findings

suggest that indirectly targeting of GMS appears to be more beneficial and leads to less

adverse effects than direct targeting of GMS to modulate NMDAR functions. Indirect
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GMS modulators, especially GlyT1 inhibitors and DAO inhibitors, open new avenues for

the treatment of unmet medical needs for patients with schizophrenia.

Keywords: schizophrenia, unmet medical need, negative symptoms, cognitive impairments, glycine modulatory

site (GMS), d-serine, glycine transporter 1 (GlyT1) inhibitor, D-amino acid oxidase (DAO) inhibitor

INTRODUCTION TO SCHIZOPHRENIA AND
UNMET MEDICAL NEEDS IN PATIENT
WITH SCHIZOPHRENIA

Schizophrenia is a devastating mental illness, and the lifetime
prevalence of schizophrenia is ∼1%. Globally, there were
1.13 million schizophrenia cases and 12.66 million DALYs
(disability-adjusted life years) due to schizophrenia in 2017 (1).
The global burden of schizophrenia remains large and continues
to increase, increasing the burden on health-care systems
worldwide. This debilitating brain disorder typically emerges in
late adolescence and early adulthood and is characterized by
three main symptoms: positive symptoms, negative symptoms,
and cognitive deficits (2, 3). Positive symptoms include delusions,
hallucinations, and disorganized thoughts and speech typically
regarded as manifestations of psychosis. Negative symptoms
include reduced affect display, alogia, anhedonia, asociality,
avolition, lack of emotional response, and motivation. Cognitive
deficits include dysfunctions in working memory, attention,
processing speed, visual and verbal learning with substantial
deficits in reasoning, planning, abstract thinking, and problem
solving. Cognitive impairments and negative symptoms, as the
core features of schizophrenia, are enduring and correlate with
the degree of disability (4, 5).

Currently, antipsychotic medications are mainstays in the
treatment of schizophrenia and a range of other psychotic
disorders. Positive symptoms of schizophrenia often respondwell
to antipsychotic drugs. In contrast, the available antipsychotic
medications, which mainly affect the dopamine and serotonin
receptor systems, are relatively ineffective in improving negative
and cognitive deficits. Negative symptoms of schizophrenia
tend to linger or worsen over time and are accompanied by
impaired cognitive function in patients with schizophrenia (6).
The improvement of cognitive dysfunction is a better predictor
of patient quality of life (7, 8). Since existing pharmacological
and biological therapeutic modalities fail to improve cognitive
symptoms, various cognitive remediation strategies have been
adopted (9). In addition, the cognitive deficits in adolescents
at risk for schizophrenia and in patients after their first
episode of schizophrenia suggest that schizophrenia-related
cognitive dysfunction is not the result of chronic illness (10).
The US National Institute of Mental Health (NIMH) thus
developed theMeasurement and Treatment Research to Improve
Cognition in Schizophrenia (MATRICS), which significantly
raised awareness of the cognitive dysfunction in schizophrenia
(11). In addition to the reliance on the dopamine receptor
D2 (DRD2) as a conventional therapeutic target (12), a focus
on the different symptom domains of schizophrenia may lead
to the identification of different endophenotypic markers that

can promote the development of novel therapeutics useful for
rational cellular and molecular targets.

THE ROLES OF GLUTAMATERGIC
TRANSMISSION AND NMDAR
(N-METHYL-D-ASPARTATE RECEPTOR)
HYPOFUNCTION IN THE
PATHOPHYSIOLOGY OF SCHIZOPHRENIA

Similar to those of many other psychiatric disorders, the
etiology and pathophysiology of schizophrenia remain
unclear. Accumulating evidence from human genetic studies
and association studies has revealed several schizophrenia
susceptibility loci and genes. A genome-wide association
study (GWAS) revealed notable associations relevant to
the major hypotheses of the etiology and treatment of
schizophrenia, including DRD2 (the main target of many
effective antipsychotics) and multiple genes [e.g., metabotropic
glutamate receptor 3 (GRM3), glutamate ionotropic receptor
NMDA type subunit 2A (GRIN2A), serine racemase (SR), and
glutamate receptor, ionotropic, AMPA receptor 1 (GRIA1)]
involved in glutamatergic neurotransmission and synaptic
plasticity (13). In contrast to the conventional view of dopamine
involvement in schizophrenia (i.e., the dopamine hypothesis
of schizophrenia), glutamatergic neurotransmission has been
gradually attracting attention in the investigation of the
pathophysiology and treatment of schizophrenia in recent
decades (14–16).

In the central nervous system (CNS), glutamate is the
main excitatory neurotransmitter and activates metabotropic
and ionotropic glutamate receptors. NMDARs are ionotropic
glutamate-gated cation channels with high calcium permeability
that play vital roles in synaptic transmission, neuroplasticity,
and cognitive functions. Heterotetrameric NMDARs are widely
distributed throughout most of the brain and are composed
of two obligatory GluN1 (NR1) subunits with either two
GluN2 (NR2) subunits or a combination of GluN2 (NR2) and
GluN3 (NR3) subunits. As illustrated in the top left panel of
Figure 1, activation of NMDARs requires not only the binding
of glutamate on the GluN2 subunit but also the binding of
the coagonist glycine or D-serine at the glycine modulatory site
(GMS, also referred to as the glycine-B site or the strychnine-
insensitive glycine site) on the GluN1 subunit (17). Intriguingly,
although the endogenous high-potency coagonists glycine and
D-serine are present in the extracellular space (18), the GMSs
on NMDARs are not saturated in vivo (19). D-serine appears
to be the dominant endogenous coagonist for NMDARs and
a modulator for NMDAR-related neurotoxicity, even though
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the levels of glycine are 10-fold higher than those of D-serine
(20–22). The activation of NMDARs produces prolonged
increases in intracellular calcium concentration and thus triggers
downstream signaling cascades involved in the regulation of
many physiological and pathophysiological processes (23).

NMDAR has been proposed to be an important and
potential therapeutic target for many CNS and psychiatric
disorders (24). There is increasing evidence acquired through
different approaches supports the supposition that NMDAR
hypofunction plays a role in schizophrenia. In addition to
the abovementioned large-scale GWAS, copy number variant
studies have also led to the identification of rare genetic
variants in NMDAR-related genes and components related
to the postsynaptic density associated with increased risk for
schizophrenia (25, 26). Postmortem brain studies have also
indicated decreased expression of the NR1 subunit (mRNA
and protein) and NR2C subunit (mRNA) in the postmortem
dorsolateral prefrontal cortex in schizophrenic patients (27)
and reductions in D-serine and serine racemase (SR) levels
in patients with schizophrenia (28). A meta-analysis study
further indicated significant decreases in the expression of NR1
mRNA and protein in the prefrontal cortex of schizophrenic
patients (29). In addition to these genetic and postmortem
studies, aberrant NMDAR function has been identified via
the use of psychotomimetic agents. Pharmacological studies
have revealed that the use of NMDAR antagonists (e.g.,
phencyclidine (PCP) and ketamine) causes not only positive
symptoms of schizophrenia but also negative symptoms and
cognitive deficits in healthy humans (30–32). Subanesthetic
doses of ketamine not only induce psychotomimetic effects
but also increase amphetamine-induced dopamine release in
the striatum, which has been observed in schizophrenic
patients (33). In addition, positron emission tomography (PET)
imaging data have indicated links between glutamatergic system
dysfunction and schizophrenia (34). NMDAR hypofunction in
parvalbumin (PV) interneurons has also been proposed as a
pathological mechanism of schizophrenia (35). Proton magnetic
resonance spectroscopy (MRS) studies have revealed increased
glutamine levels in the medial prefrontal cortex, anterior
cingulate cortex, and thalamus in drug-naïve patients with first-
episode psychosis (36, 37), suggesting dysregulation of glutamate
neurotransmission (38). Moreover, reduced activation of the
prefrontal cortices (i.e., hypofrontality) has been considered
to underlie negative symptoms and cognitive deficits in
schizophrenia (39–41). Notably, it has been proposed that
antipsychotic medications may reduce NMDARs activity and
produce dysfunctions in the corticolimbothalamic circuit and
hypofrontality in patients with schizophrenia (42). Accordingly,
these studies indicate the involvement of NMDARs in the
pathophysiology of schizophrenia and provide new potential
targets for the treatment of schizophrenia.

Given the importance of glutamate in the NMDAR
hypofunction hypothesis for schizophrenia and NMDAR-
mediated neurotransmission, one possible strategy to boost
NMDAR functions involves either directly or indirectly
enhancing glutamate levels in synapses, as illustrated in the
bottom left and top right portions of Figure 1. However,

excessive glutamate induces high levels of calcium influx,
which has been shown to lead to excitotoxicity and neuronal
injury in cellular and animal models (43, 44). In addition,
indirect enhancement of glutamate via DL-TBOA, a glutamate
transporter 1 (GLT1) inhibitor, resulted in attenuated baroreflex
control of sympathetic nerve activity and heart rate (45).
Apparently, from a safety perspective, neither direct nor indirect
enhancement of synaptic glutamate levels is a reasonable
therapeutic approach in the regulation of NMDAR functions.
Alternatively, agents that act at the GMSs of NMDARs have
been proposed to be promising treatments to moderate severe
negative symptoms and cognitive impairments.

DIRECTLY TARGETING THE GMS ON
NMDARs

A unique characteristic of NMDAR is that the GMS must be
occupied by glycine and/or D-serine for glutamate to induce
channel opening. GMS was first reported by Johnson and
Ascher to facilitate the activation of NMDARs in cultured
mouse brain neurons (18). It was later demonstrated that
glycine is necessary to activate NMDARs (46). Mice carrying
targeted point mutations in the GMS of the NMDAR NR1
subunit gene (Grin1) exhibited marked NMDAR hypofunctions
and deficits in long-term potentiation and spatial learning (47,
48), as well as impaired social ability and spatial recognition
(49). Accumulating evidence has indicated that binding to
the GMS can enhance the affinity and efficacy of glutamate
neurotransmission (50), and the administration of GMS agonists
(e.g., glycine) can benefit schizophrenic patients by regulating
NMDAR-mediated neurotransmission (19). The disturbance of
GMS modulators found in schizophrenia patients has been
identified as a contributor to NMDAR hypofunction. Previous
studies have revealed reduced D-serine and SR in schizophrenia
(28). In addition, the levels of kynurenic acid, the only
known competitively endogenous antagonist of the GMS in
NMDAR, are elevated in the postmortem brain tissue (51)
and in the cerebrospinal fluid (CSF) of living schizophrenic
patients (52), suggesting that GMS occupancy might be shifted
toward antagonism in this disorder. Accordingly, modulation
of NMDAR through the GMS has been proposed as a possible
therapeutic target for the treatment of negative and cognitive
symptoms in schizophrenia (53, 54).

Indeed, several agonists have been designed to either directly
or indirectly target GMS due to its great potential for the
treatment of negative and positive symptoms in schizophrenia.
For example, 3-(4,6-dichloro-2-carboxyindol-3-yl) propionic
acid, an indole-2-carboxylic acid derivative, has been found to
have > 2,100-fold greater affinity for the GMS than glycine
(55), and 3-hydroxy-imidazolidin-4-one derivatives are partial
agonists of the GMS (56). Additional computational methods
that can be used to identify potential agonists have been used (57).
In addition to agonists of the GMS, GMS-specific antagonists,
such as 7-chlorkynurenic or L-701,324, have been developed
for research purposes (58, 59). Although numerous potential
agonists and antagonists have been developed or identified,
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FIGURE 1 | An overview of the hypothesis of N-methyl-D-aspartate receptor (NMDAR) hypofunction in schizophrenia and the direct/indirect treatments in the

regulation of NMDAR functioning. Top left panel: A model of glutamatergic trisynapses: pre-synapses, post-synapses, and astrocytes. Activation of NMDAR requires

not only the binding of glutamate to the GluN2 (NR2) subunit but also the binding of the coagonist glycine or D-serine at the glycine modulatory site (GMS) of the

GluN1 (NR1) subunit. In response to NMDAR activation, the intracellular calcium concentration increases and thereby triggers downstream signaling cascades. After

activation, glutamate and glycine are taken up by astrocytes through the glutamate transporter (GLT1) and glycine transporter (GlyT1), respectively. D-serine, another

coagonist of GMS, is predominantly produced in neurons, is synthesized from L-serine by serine racemase (SR) and is shuttled to astrocytes, where it is stored and

released. NMDARs are critical for synaptic plasticity, cortical maturation, and learning and memory processes. The hypofunction of ionotropic glutamate NMDARs has

been proposed to be a model of schizophrenia in humans, and NMDAR hypofunction plays a key role in the pathophysiology of schizophrenia. Bottom left panel:

Enhancing NMDAR functions through direct treatments. Glutamate, glycine, D-cycloserine, and D-serine compounds directly target postsynaptic NMDAR and

activate NMDAR functioning. Top right panel: Boosting NMDAR functions via indirect treatments (e.g., GLT1 inhibitors, DAO inhibitors, and GlyT1 inhibitors). GLT1

inhibitors block the reuptake of glutamate and increase the synaptic levels of glutamate. D-serine is metabolized into hydroxypyruvate by D-amino acid oxidase (DAO)

in astrocytes. DAO inhibitors block the metabolism of D-serine, which prolongs the synaptic concentration of D-serine. GlyT1 inhibitors block the reuptake of glycine

and increase synaptic levels of glycine.

only a few of the candidates are suitable for advancement
from preclinical studies to clinical trials. To date, most clinical
studies have focused mainly on targeting the GMS using

single amino acids as agonists of GMS, including glycine,
D-cycloserine, and D-serine, as indicated in the bottom left
panel of Figure 1.
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Direct Modulation of NMDAR Functions by
Glycine
Glycine is the simplest amino acid and acts as a neurotransmitter
in the CNS. In addition to glycinergic terminals, glycine may
be simultaneously released into the synaptic cleft with GABA
(60). Extracellular glycine is immediately recycled through
glycine transporters, including glycine transporter 1 (GlyT1) in
glial cells or glutamatergic neurons, and glycine transporter 2
(GlyT2) in presynaptic neurons (61). Intracellular glycine is then
metabolized into L-serine by serine hydroxymethyltransferase
in glial cells or catabolized into carbon dioxide and ammonium
by the glycine cleavage system in neurons (62). Glycine
causes inhibitory and excitatory neural transmission via
strychnine-sensitive glycine receptors and NMDA receptors,
respectively. Glycine receptors are mainly located in the
brainstem and spinal cord. In contrast, NMDARs are present
in high density within the cerebral cortices and hippocampus
and are thought to be involved in the pathophysiology of
schizophrenia (24, 63).

Numerous investigations support decreased glutamatergic
signaling and NMDAR hypofunction as pathogenic mechanisms
of schizophrenia. Interestingly, it has been reported that glycine
is upregulated in patients with schizophrenia. Findings on
schizophrenic patients obtained postmortem have revealed
increased binding activity of radiolabeled [3H]glycine in the
brain, especially in the parietal cortex and occipital cortex (64).
Rats treated with a glycine-rich diet for a long period also exhibit
schizophrenia-like abnormalities, including altered sensory
gating function, enlarged cerebral ventricles, and diminished
hippocampal dimensions (65). Similarly, high serum glycine
levels have been reported in patients with chronic schizophrenia,
and these levels have been associated with impaired sensorimotor
gating function in pre-pulse inhibition (66). These findings
imply that glycine levels might compensate for alterations
in glutamate-NMDAR transmission in patients with chronic
schizophrenia. For example, a postmortem study indicated a
striking decrease in tyrosine phosphorylation of the GluN2
subunit in the dorsolateral prefrontal cortex of schizophrenic
patients, but the postsynaptic density of NMDAR complexes in
these patients was, in fact, increased (67). Inconsistently, lower
plasma glycine levels have reported in schizophrenic patients
compared to healthy controls and have been correlated with
negative symptoms of schizophrenia (68). To further elucidate
the glycine levels in the brains of schizophrenia patients, it is
necessary to measure glycine levels in serum and CSF in a large
sample size.

Despite the controversial findings regarding glycine levels
in patients with schizophrenia, glycine-induced augmentation
of NMDAR-mediated neurotransmission has been considered a
potentially safe, and feasible approach for ameliorating negative
symptoms of schizophrenia. Glycine appears to be safe, even at
dosages of as high as 5 g/kg per day in rats (69) and 0.8 g/kg
body weight per day in schizophrenic patients (70). In addition
to its high biocompatibility and low toxicity, the effect of glycine
on the amelioration of schizophrenia-related symptoms has been
demonstrated in animal models of schizophrenia. Subchronic

administration of glycine at doses relevant to its clinical
effects (71) significantly prevents PCP-induced abnormalities
in auditory mismatch negativity (MMN, a neurophysiological
characteristic of schizophrenia) (72). Glycine also significantly
reduced novelty- and methamphetamine-induced locomotor
activity in neonatal ventral hippocampal damaged rats compared
with sham rats (73). In addition, microinjection of 1 µmol
of glycine into the mouse prefrontal cortex alleviated PCP-
induced behavioral deficits in latent learning (74), suggesting
the involvement of glycine in the regulation of frontocortical
NMDARs and cognitive functions. Glycinamide, a prodrug of
glycine, can be converted to glycine in CNS by hydrolysis
and it prevented MK-801 (dizocilpine, a non-competitive
antagonist of NMDAR)-induced deficits in a novel object
recognition task in rabbits (75, 76). Despite contrasting
neurochemical profiles, a recent study further proved that partial
glycine site agonists and glycine reuptake inhibitors display
comparable precognitive effects in rats and therefore have
potential relevance as treatments of cognitive impairments in
schizophrenia (77).

The effects of glycine on the treatment of schizophrenic
symptoms in clinical studies are summarized in Table 1.
Briefly, in the late 1980s, a series of open-label clinical studies
failed to demonstrate the therapeutic potential of glycine in
the amelioration of negative symptoms of schizophrenia (78–
80). Milacemide, an acylated prodrug of glycine, did not
alleviate schizophrenic symptoms, and psychotic symptoms were
worsened (91, 92). Later, glycine was demonstrated to improve
negative symptoms at 0.4 g/kg/day (81). Consistently, recent
clinical studies have also indicated that a high dose of glycine
is associated with improvement in clinical rating scales of
schizophrenia, especially scales of negative symptoms (70, 71, 82,
83, 86, 89, 90). However, inconsistent results have been reported
and indicate that glycine administered with clozapine had no
effect on patients with schizophrenia (84, 85, 87). In a 16-week
randomized double-blind, double-dummy, and parallel-group
clinical trial conducted at four sites in the United States and one
site in Israel, no significant differences were found between the
total average scores on the Scale for the Assessment of Negative
Symptoms (SANS) of patients treated with glycine or placebo,
and no change in the average cognitive scores was apparent
(88). The lack of consistency across trials could be due to small
sample sizes, different doses of glycine, different trial durations,
and different clinical ratings. Notably, glycine is an inhibitory
neurotransmitter in glycinergic neurons, and it has been
reported to have poor CNS penetration (i.e., rate of permeation
across the blood-brain barrier) (93). Therefore, higher doses of
glycine might be required for treatment purpose in patients.
Unfortunately, systemic administration of high-does glycine is
problematic and is not well-tolerated. The administration of
high-dose glycine can result in some unwanted adverse effects,
such as nausea (71, 83, 87) and sensorimotor gating deficits (94).
Thus, these studies suggest that glycine is not a generally effective
therapeutic option for treating negative symptoms or cognitive
impairments. It seems wise to explore other drug candidates
targeting GMS in the glutamatergic system.
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TABLE 1 | Summary of effects of glycine on the treatment of schizophrenic symptoms in clinical studies.

Compound Type Study site Patient Usage Subject number

(placebo vs.

experiment)

Dosage Trial

duration

(weeks)

Clinical outcomes Clinical ratings References

Glycine OL US SZ Add on 11 (no placebo) 5–25 (g/day) 32–36 – Neuroleptics intake (78)

OL US SZ Add on 6 (no placebo) 10.8 (g/day) 0.6–8 – BPRS, SANS, CGI,

SAS, AIMS

(79)

OL US SZ Add on 6 (no placebo) 15 (g/day) 6 – BPRS (80)

DB + additional

OL

US SZ Add on 7 vs. 7 2–30 (g/day) 8 DB + 8

OL

+ (Negative symptoms) PANSS, ESRS, AIMS (81)

OL US SZ Add on 5 (no placebo) 0.14–0.8

(g/kg/day)

8 + (Negative symptoms) PANSS, SANS, ESRS,

AIMS

(82)

DB (Crossover) Israel TRS SZ Add on 11 vs. 11 0.8 (g/kg/day) 6 + (Negative, depressive,

cognitive symptoms)

PANSS, SAS, AIMS (70)

DB (Crossover) Israel TRS SZ Add on 22 vs. 22 0.8 (g/kg/day) 6 + (Negative, depressive,

cognitive symptoms)

BPRS, PANSS, SAS,

AIMS

(83)

DB (Parallel) US TRS SZ Add on (Clozapine) 10 vs. 9 30 (g/day) 12 – BPRS, SANS, SAS,

SAFTEE

(84)

DB (Parallel) US SZ Add on (Clozapine) 13 vs. 14 60 (g/day) 2 SB + 8

DB

– BPRS, PNASS, SANS,

HDRS, SAS, GAS

(85)

DB (Crossover) US SZ Add on 6 vs. 6 0.2–0.8

(g/kg/day)

6 + (Negative symptoms) PANSS, BARS, SAS,

AIMS

(86)

DB (Crossover) Israel SZ Add on

(Olanzapine &

risperidone)

17 vs. 17

(Olanzapine: 12;

Risperidone: 5)

0.06–0.8

(g/kg/day)

6 + (Negative, cognitive,

positive symptoms,

excitement, depression)

BPRS, PANSS, SAS,

AIMS

(71)

DB (Crossover) Canada TRS SZ Add on (Clozapine) 12 vs. 12 60 (g/day) 28 – BPRS, PANSS, GAF,

ESRS

(87)

DB (Parallel)

(NCT00222235)

US & Israel SZ or SZA Add on (Without

clozapine)

45 (55) vs. 42 (54) 15–60 (g/day) 16 – BPRS, SANS, CGI,

SAS, AIMS

(88)

DB (Parallel) Australia SZ or SZA Add on 21 vs. 22 (SZ:17;

SZA:5)

0.2–0.6

(g/kg/day)

6 + (Acute: duration MMN;

chronic:PANSS scores)

PANSS, CDRS,

WSAS, ERP (MMN)

(89)

DB (Crossover) US SZ (9p24.1 CNV) Add on 2 vs. 2 6–48 (g/day) 6 + (Clinical symptoms) BPRS, PANSS, CGI,

Motor abnormalities

(90)

OL 2 (no placebo) 5.4–86.5

(g/day)

47 + (Clinical symptoms)

+, Positive clinical results; −, Negative clinical results; AIMS, Abnormal Involuntary Movements Scale; BPRS, Brief Psychiatric Rating Scale; CDRS, Calgary Depression Rating Scale; CGI, Clinical Global Impression; DB, double-blind;

ERP, Event Related Potential; ESRS, Extrapyramidal Symptom Rating Scale; GAF, Global Assessment of Functioning Scale; GAS, Global Assessment Scale; HDRS, Hamilton Depression Rating Scale; MMN, Mismatch negativity; OL,

open-label; PANSS, Positive and Negative Syndrome Scale; SAFTEE, Systematic Assessment for Treatment Emergent Event; SANS, Scale for the Assessment of Negative Symptoms; SAS, Simpson Angus Scale for Assessment of

Extrapyramidal Side Effects; SZ, schizophrenia; SZA, schizoaffective disorder; TRS: treatment-resistant; WSAS: Work and Social Adjustment Scale.
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Direct Modulation of NMDAR Functions by
D-Cycloserine
D-cycloserine is a well-known antibiotic metabolite produced
by Streptomyces orchidaceus and Streptomyces garyphalus that
has therapeutic effects on tuberculosis. D-cycloserine has also
been found to act as a partial agonist targeting the GMS
of NMDAR (95), and its binding affinity is 100-fold less
than that of glycine (96). Similar to glycine, D-cycloserine
has been reported to improve cognitive functions through
modulation of NMDAR function in animal studies. For
example, both systemic administration and intra-amygdala
infusions of D-cycloserine facilitated conditioned fear extinction
and improved memory consolidation in rats (97, 98). Single
administration of D-cycloserine also significantly improved
visual recognition memory in rhesus monkeys (99). However,
inconsistently, some studies reported that D-cycloserine had no
effect on neural activity in a mouse model of schizophrenia (100),
MK-801-induced sensorimotor gating dysfunction in mice (101),
or acquisition of memory performance inMK-801-treated rats in
the radial arm maze and the water maze (102).

Similarly, inconsistent findings have also been reported in
clinical studies. Effects of D-cycloserine on the treatment of
schizophrenic symptoms in clinical studies are summarized
in Table 2. Briefly, some studies indicated that D-cycloserine
at a dosage of 50 or 100 mg/day had therapeutic effects in
the treatment of negative symptoms and/or cognitive deficits
(90, 103, 106, 108, 111, 112, 115–119). In contrast, others
reported that D-cycloserine had no effect on patients with
schizophrenia (88, 104, 107, 113, 114). There are several possible
explanations for the contradictory findings in clinical studies.
First, D-cycloserine has a very narrow therapeutic window.
The administration of D-cycloserine >100 mg/day has been
reported to result in the deterioration of clinical outcomes
in patients with schizophrenia (96, 103, 110). It has been
shown that D-cycloserine has neurotoxic side effects, including
hyperexcitability, depression, anxiety, memory deficits, and
even seizures (121). Second, D-cycloserine administered with
clozapine can result in drug-drug interactions, which might
lead to the exacerbation of symptoms in patients (105, 109).
Third, the treatment effect of D-cycloserine might be influenced
by heterogeneity caused by differences in onset age and white
matter integrity (120). In addition, a study revealed that patients
receiving D-cycloserine demonstrated a significant increase in
temporal lobe activation, suggesting that the addition of D-
cycloserine to conventional neuroleptics may improve negative
symptoms through enhanced temporal lobe function (115).
Finally, a meta-analysis indicated that full agonists (such as
glycine and D-serine) appear to be more effective than partial
agonists (such as D-cycloserine) (122, 123). Thus, the therapeutic
potential of D-cycloserine appears to be limited and not
particularly effective.

Direct Modulation of NMDAR Functions by
D-Serine
D-serine is enriched in the forebrain and is an endogenous
ligand of the GMS on NMDAR (124). Emerging evidence
suggests the potential role of D-serine in the regulation of

NMDAR functions for the treatment of schizophrenia. For the
GluN1/N2 subunits of NMDAR, the binding affinity of D-
serine is three-fold more potent than that of glycine (125).
D-serine is mainly expressed by glutamatergic neurons, even
though there has been considerable controversy regarding the
concentration and function of D-serine in glial cells and
neurons (126). D-serine is predominantly produced in neurons
by the stereoconversion of L-serine (provided by astrocytes)
via the PLP-dependent enzyme serine racemase (SR) and is
then shuttled to astrocytes, where it is stored and released.
Studies using more-selective antibodies have demonstrated
that SR and D-serine are prominently expressed in forebrain
glutamatergic neurons (127–130). In addition, the distribution
of D-serine residues in the brain is similar to that of NMDARs
(131). Intriguingly, it has been reported that the deletion
of neuronal SR resulted in impaired NMDAR functions and
synaptic plasticity, whereas deletion of astrocytic SR had no
effect (132). Notably, D-serine is the primary coagonist of
synaptic NMDARs, whereas glycine is the primary coagonist of
extrasynaptic NMDARs (22). In general, D-serine is an allosteric
modulator of brain NMDARs and is predominantly released
from glutamatergic neurons.

Emerging evidence suggests that D-serine is involved in the
pathophysiology of schizophrenia and is a potential therapeutic
agent and/or biomarker for schizophrenia. Indeed, decreased
levels of D-serine in serum and CSF have been found in patients
with schizophrenia compared to those in healthy controls (133).
A CSF and postmortem brain study also revealed a 25%
decreases in D-serine levels and the D/L-serine ratio in the
CSF of schizophrenia patients, suggesting that reduced brain SR
and elevated D-amino acid oxidase (DAO) protein levels may
contribute to the lower D-serine levels observed in the CSF of
schizophrenic patients (28). A recent study further indicated
that poor executive function performance is associated with a
lower D-serine/total serine ratio in schizophrenic patients (134).
Moreover, accumulating evidence has indicated that alteration
of D-serine is associated with neuroplasticity and cognitive
deficits in schizophrenia. For example, supplementation with D-
serine prevented the onset of cognitive deficits in adult offspring
after maternal immune activation in pregnant mice (135),
suggesting that early intervention with D-serine may prevent
the occurrence of psychosis in high-risk subjects. Decreasing
synaptic D-serine by enhancing Na+-independent alanine–
serine–cysteine transporter-1 abolished long-term potentiation
(LTP) and reduced synaptic NMDAR responses by 60–70%
(136). Taking advantage of SR-null mice, a series of studies
confirmed that D-serine is required for NMDAR responses,
NMDAR-dependent LTP, dendritic spine formation, cognitive
functions, and social memory (137–141). However, D-serine is
metabolized rapidly by DAO, reducing its bioavailability and
requiring the administration of high doses, which may lead
to peripheral neuropathies, creating a potential problem for
the use of D-serine in treating schizophrenia-related symptoms
(142, 143). D-serine levels in blood and urine are sensitive to
the presence of kidney dysfunction of different origins. There
are also concerns that high concentrations of D-serine augment
kidney dysfunction and cause potential nephrotoxicity, which has
been reported in rats that have developed acute tubular necrosis

Frontiers in Psychiatry | www.frontiersin.org 7 October 2021 | Volume 12 | Article 74205883

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


P
e
ie
t
a
l.

Ta
rg
e
tin

g
N
M
D
A
R
s
to

Tre
a
t
S
c
h
izo

p
h
re
n
ia

TABLE 2 | Major findings in clinical trials examining effects of D-cycloserine on the treatment of schizophrenic symptoms.

Compound Type Study site Patient Usage Subject

number

(placebo vs.

experiment)

Dosage Trial

duration

(weeks)

Clinical outcomes Clinical ratings References

D-cycloserine OL Italy SZ Add on 7 (No

placebo)

250 (mg/day) 6 – (Worsen symptoms) BPRS, SANS, CGI (96)

SB & RB (Dose

finding)

US SZ Add on 9 5, 15, 50, 250

(mg/day)

10 (2

wks/dose)

+ (50 mg/day: negative,

cognitive symptoms)

BPRS, SANS, GAS, SIRP, AIMS (103)

DB (Parallel) US SZ Add on

(Molindone)

4 vs. 3 vs. 6

(Placebo vs.

10 vs. 30)

10, 30

(mg/day)

4 – BPRS, SANS, CGI (104)

SB & RB (Dose

finding)

US SZ Add on

(Clozapine)

10 5, 15, 50, 250

(mg/day)

10 (2

wks/dose)

– (Worsen symptoms) BPRS, SANS, SIRP (105)

SB (Dose finding) Netherlands SZ (Drug-free) Alone 13 15, 25, 50,

100, 250

(mg/day)

24 days (4

days/dose)

+ (100 mg/day:

negative symptoms)

PANSS, CGI, ESRS (106)

DB (Crossover) Israel TRS SZ Add on 8 vs. 9 50 (mg/day) 6 - PANSS, HDRS, SAS, AIMS (107)

DB (Parallel) US SZ Add on 23 (24) vs. 23

(23)

50 (mg/day) 8 + (Nnegative symptoms) PANSS, SANS, HDRS, GAS, SIRP, AIMS,

Stroop Test, Miller-Selfridge Test, Verbal

fluency, Digit span, Finger tapping

(108)

DB (Crossover) US SZ Add on

(Clozapine)

11 vs. 11 50 (mg/day) 6 – (Worsen negative

symptoms)

PANSS, SANS, HDRS, GAS, SAS, AIMS,

BARS

(109)

DB (Parallel) Netherlands SZ Add on (Without

antidepressants)

13:13 100 (mg/day) 8 – (Worsen symptoms) PANSS, CGI, ESRS (110)

SB & RB (Dose

finding)

US SZ Add on

(Risperidone)

10 5, 15, 50, 250

(mg/day)

10 (2

wks/dose)

+ (50 mg/day: negative

symptoms)

BPRS, SANS, HDRS, GAS, SAS, AIMS,

Word list generation, Digit span, Finger

tapping, Stroop test,

(111)

DB (Crossover) Israel TRS SZ Add on 16 vs. 16 50 (mg/day) 6 + (Negative symptoms) PANSS,HDRS, SAS, AIMS (112)

DB (Parallel) US SZ Add on 12 vs. 10 50 (mg/day) 4 – BPRS, SANS, ATRS, SAS, CPT, Sternberg

paradigm

(113)

DB (Parallel) US SZ Add on 12 (28) vs. 14

(27)

50 (mg/day) 24 – PANSS, SANS, HDRS, QOL, GAS, CVLT,

WAIS III, ANART, Stroop Test, Finger tapping,

WCST, SAS, AIMS

(114)

DB (Parallel) US SZ Add on 6 vs. 6 50 (mg/day) 8 + (Improved negative

symptoms associated

with temporal lobe

activation)

PANSS, SANS, SAS, AIMS, fMRI, (115)

DB (Parallel) US & Israel SZ or SZA Add on (Without

cloazpine)

45 (55) vs. 46

(56)

25–50

(mg/day)

16 – BPRS, SANS, CGI, SAS, AIMS (88)

DB (Parallel) US SZ Add on (Without

cloazpine)

16 (19) vs. 16

(19)

50 (mg/day) 8 + (Negative symptmos,

logical memory)

PANSS, SANS, CGI, SAFTEE, WMS-III,

HVLT, WCST, TMT, Phonemic fluency,

Category fluency, Letter-number sequencing,

Grooved pegboard

(116)

(Continued)
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TABLE 2 | Continued

Compound Type Study site Patient Usage Subject

number

(placebo vs.

experiment)

Dosage Trial

duration

(weeks)

Clinical outcomes Clinical ratings References

DB (Crossover)

(NCT00742079)

US SZ or SZA Add on

(Combined with

CBT)

9 (10) vs. 11

(11) (PCB-first

vs. DCS-first)

50 (mg/day) 1 + (DCB-first: delusional

severity, distress, belief

conviction)

PSYRATS, SAPS, ABA, Bead Task (117)

DB (Parallel)

(NCT00963924)

US SZ or SZA Add on 15 (18) vs. 17

(18)

50 (mg/day) 8 + (Cognitive, negative

symptoms)

PANSS, SANS, MATRICS, CDSS, QOL,

GAS, SAFTEE, Auditory discrimination task

(118)

DB (Parallel) US SZ Add on 21 vs. 24 100

(mg/once)

1 day + (Neural response,

working memory)

BPRS, WASI, EEG, N-back task, IIT, WPT (119)

DB (Crossover)

(UMIN000000468)

Japan SZ Add on 19 (22) vs. 17

(19) (PCB-first

vs. DCS-first)

50 (mg/day) 6 – PANSS, SANS, BACS, JCDSS, GAF, EQS,

DIEPSS, AIMS, MR-DTI

(120)

DB (Crossover) US SZ (9p24.1

CNV)

Add on 2 vs. 2 50 (mg/day) 6 + (Clinical symptoms) BPRS, PANSS, CGI, Motor abnormalities (90)

+, Positive clinical results; −, Negative clinical results; ABA, Alternative Beliefs Assessment; AIMS, Abnormal Involuntary Movements Scale; ANART, Adult North American Reading Test; ATRS, Abrams and Taylor Rating Scale; BACS,

Brief Assessment of Cognition in Schizophrenia; BARS, Barnes Akathisia Rating Scale; BPRS, Brief Psychiatric Rating Scale; CDSS, Calgary Depression Scale of Schizophrenia; CGI, Clinical Global Impression; CPT, Continuous

Performance Test; CVLT, California Verbal Learning Test; DB, double-blind; DCS, D-cycloserine; DIEPSS, Drug Induced Extrapyramidal Symptoms Scale; DTI, Diffusion Tensor Imaging; EEG, electroencephalogram; EQS, Emotional

Intelligence Scale; ESRS, Extrapyramidal Symptom Rating Scale; fMRI, functional Magnetic Resonance Imaging; GAF, Global Assessment of Functioning Scale; GAS, Global Assessment Scale; HDRS, Hamilton Depression Rating Scale;

HVLT, Hopkins Verbal Learning Test; IIT, Information Integration Task; JCDSS, Japanese version of Calgary Depression Scale of Schizophrenia; MATRICS, Measurement and Treatment Research to Improve Cognition in Schizophrenia;

OL, open-label; PANSS, Positive and Negative Syndrome Scale; PSYRATS, Psychotic Symptom Rating Scales; QOL, Quality of Life; RB, rater-blind; SAFTEE, Systematic Assessment for Treatment Emergent Event; SANS, Scale for

the Assessment of Negative Symptoms; SAPS, Assessment of Positive Symptoms; SAS, Simpson Angus Scale for Assessment of Extrapyramidal Side Effects; SB, single-blind; SIRP, Sternherg’s Item Recognition Paradigm; SZ,

schizophrenia; SZA, schizoaffective disorder; TMT, Trail Making Test; TRS, treatment-resistant; WAIS-III, Wechsler Adult Intelligence Scale-III; WASI, Weschler Abbreviated Scale of Intelligence; WCST, Wisconsin Card Sorting Test; WPT,

Weather Prediction Task.
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associated with higher doses of D-serine (144, 145). Nevertheless,
serum D/L-serine levels might provide a measurable biological
marker for schizophrenia, and D-serine may be effective for
the treatment of negative symptoms and cognitive dysfunction
in schizoprhenia. The study of D-serine requires accurate
methodologies and specific controls, and a specific guideline for
accuratemeasurement and detectionmethods has been described
previously (146).

Along the same lines, D-serine has been employed alone
or as an add-on treatment to standard antipsychotics for
improving positive, negative, and cognitive symptoms of
schizophrenia in numerous clinical studies (147–159). Effects
of D-serine on the treatment of schizophrenic symptoms
in clinical studies are summarized in Table 3. Briefly, some
clinical studies have demonstrated positive outcomes for D-
serine (147, 149–151), and repeated D-serine administrations
have been shown to improve MMN and cortical plasticity in
patients with schizophrenia (156, 157). However, other studies
have revealed negative results (148, 152–155). A meta-analysis
indicated that the effect size of D-serine on the treatment of
negative symptoms (SMD = −0.319) and positive symptoms
(SMD = −0.211) appeared to be small (160). In particular,
in the first randomized double-blind placebo-controlled study
with 60 mg/kg D-serine in schizophrenia, D-serine led to
significant improvement in MMN frequency generation and
clinical symptoms (157), which is consistent with another meta-
analyses showing significant effects of D-serine on schizophrenia.
This study also implied that a minimum daily dose of 3.6 g D-
serine is needed to improve negative symptoms. However, high
concentrations of D-serine can lead to peripheral neuropathies,
such as oxidative damage (161), neurotoxicity (162), and renal
toxicity (150, 163). In summary, these studies indicate that
the therapeutic benefit of D-serine may be limited due to its
adverse effects.

INDIRECTLY TARGETING THE GMS ON
NMDARs

As described previously, activation of NMDARs requires the
binding of a coagonist, D-serine or glycine, at the GMS of
NMDARs. To date, the GMS on NMDAR is one of the most
promising therapeutic targets for contributing to the medical
needs of patients with schizophrenia. However, the beneficial
effect of directly targeting the GMS with D-serine is limited
because of the requirements for a high dose, narrow therapeutic
window and poor CNS penetration rate, concomitant side
effects and potential drug-drug interactions. Alternatively, as
illustrated in the right panel of Figure 1, indirectly targeting the
GMS of NMDARs via enhancement of synaptic glycine/D-serine
levels from in astrocytes provides a new approach to modulate
NMDAR functions and to help meet the needs of patients in
schizophrenia (164).

Indirect Modulation of NMDAR Functions
by Targeting Astrocytic GlyT1
A glycine reuptake inhibitor inhibits the reuptake of synaptic
glycine by blocking astrocytic glycine transporters and increasing

the availability of glycine at the synaptic cleft. Glycine transporter
type 1 (GlyT1) is expressed at glutamatergic synapses throughout
mammalian brain regions and primarily regulates the synaptic
concentrations of glycine (165). GlyT1 is highly colocalized with
NMDARs on glial cells and neurons in the cortex, hippocampus,
septum and thalamus (166). GlyT1 effectively regulates synaptic
glycine reuptake and governs GMS occupancy at NMDARs in
excitatory synapses (19). Thus, selective inhibition of astrocytic
GlyT1 is a promising new therapeutic target for indirectly
enhancing synaptic glycine concentrations and facilitating
NMDAR function.

Accumulating evidence from preclinical studies indicates that
inhibition of GlyT1 enhances NMDAR functions in animals.
Initial studies have revealed that glycyldodecylamide, a non-
selective glycine transport antagonist, reverses PCP-induced
behavioral deficits (167, 168). Subsequently, a series of studies
consistently demonstrated that administration of N[3-(40-
fluorophenyl)-3-(40-phenylphenoxy)propyl]-sarcosine (NFPS,
also known as Alx5470), a GlyT1 inhibitor, enhanced LTP and
behavioral performances in associative learning, spatial and
object memory, and social memory (140, 141, 169–171). In
agreement with the results obtained with NFPS, a series of
studies also indicated that sarcosine, another GlyT1 inhibitor,
has promising therapeutic potential in ameliorating behavioral
impairments and cognitive deficits in both pharmacological and
genetic mouse models of schizophrenia (139, 172, 173).
Furthermore, sarcosine has been proven to effectively
regulate the surface trafficking of NMDARs, NMDAR-evoked
electrophysiological activity, brain glycine levels and MK-801-
induced abnormalities in the brain, which might contribute
to the therapeutic effect for the treatment of schizophrenia
(139). Intriguingly, it has been proven that sarcosine also binds
to the GMS of NMDARs and enhances NMDAR functions
through more than one mechanism (139, 174). In addition,
other GlyT1 inhibitors, such as SSR504734 and ORG 24598,
have also displayed similar beneficial effects in sensorimotor
gating, learning and memory functions, and schizophrenia-like
behaviors (175–178). Furthermore, selective genetic disruption
of GlyT1 resulted in enhancement of NMDAR functions, spatial
retention memory, selective attention, and procognitive and
antipsychotic phenotypic profiles, suggesting that inhibition of
GlyT1 might have both cognitive-enhancing and antipsychotic
effects (179–181). These studies indicate that GlyT1 is an
attractive and promising drug target for the treatment of
schizophrenia-related behaviors and cognitive deficits, even
though the high binding affinity of the GlyT1 inhibitor can cause
unpredictable toxicity leading to a coma-like state, compulsive
walking or respiratory distress (15, 182).

With the aim of treating unmet medical needs in
schizophrenia, a number of pharmaceutical industries have
developed selective GlyT1 inhibitors as novel therapeutic drugs
for schizophrenia. Numerous clinical studies have been carried
out to evaluate the effects of special GlyT1 inhibitors on the
treatment of schizophrenic symptoms. Based on the chemical
structures of GlyT1 inhibitors, these clinical studies can be
divided into two major structural classes: sarcosine-based and
non-sarcosine-based inhibitors, and the summaries of these
studies are shown in Tables 4, 5, respectively.
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TABLE 3 | Summary of clinical outcomes and benefits related to D-serine in patients with schizophrenia.

Compound Type Study site Patient Usage Subject number

(placebo vs.

experiment)

Dosage Trial

duration

(weeks)

Clinical outcomes Clinical ratings References

D-serine DB (Parallel) Taiwan SZ Add on 15 vs. 14 30

(mg/kg/day)

6 + (Positive, negative,

cognitive symptoms)

PANSS, SANS, CGI, HDRS, SAS,

AIMS, BARS, UKU

(149)

DB (Parallel) Taiwan SZ Add on

(Clozapine)

10 vs. 10 30

(mg/kg/day)

6 – PANSS, SANS, CGI, HDRS, SAS,

AIMS, BARS, UKU

(152)

DB (Crossover) Israel TRS SZ Add on

(Olanzapine &

risperidone)

38 vs. 37 (Risperidone:

21; Olanzapine: 18)

20–30

(mg/kg/day)

6 + (Negative, positive,

cognitive, depression

symptoms)

BPRS, PANSS, SANS, SAS, AIMS, (147)

DB (Parallel) Taiwan SZ (Acute

exacerbation)

Add on

(Risperidone)

20 (23) vs. 19 (21) 2 (g/day) 6 – PANSS, SANS, SAS, AIMS, BARS,

UKU

(149)

DB (Parallel)

(NCT00491569)

Taiwan SZ Add on 16 (20) vs. 16 (20) 2 (g/day) 6 – PANSS, SANS, GAF,QOL, SAS,

AIMS, BARS, UKU

(153)

OL

(NCT00322023)

US SZ or SZA Add on (Without

cloazpine)

12 vs. 19 vs. 16 (30 vs.

60 vs. 120; no placebo)

30, 60, 120

(mg/kg/day)

4 + (PANSS, MATRICS,

neuropsychological

measures)

PANSS, SANS, CGI, CDSS

MATRICS, SAS, AIMS, BARS

(150)

DB (Parallel)

(NCT00138775)

Israel SZ or SZA Add on 69 (98) vs. 73 (97) 2 (g/day) 16 – PANSS, SANS, CGI, SAS, AIMS,

UKU

(154)

DB (Parallel) Israel TRS SZ Alone 5 (10) vs. 3 (8) (D-serine

vs. Olanzapine)

1.5–3 (g/day) 10 Treatment effect:

Olanzapine > D-serine

PANSS, SAS, AIMS, UKU (158)

DB (Parallel) US & India SZ or SZA Add on 23 (26) vs. 25 (27) vs.

22 (27) vs. 21 (24)

(control vs. D-serine vs.

CRT vs. D-serine +

CRT)

30

(mg/kg/day)

12 – PANSS, CDS, QOL, CPT, WAIS-III,

HVLT-R, TOL, WCST, SAS, AIMS,

BARS, UKU,

(155)

OL Israel TRS SZ Add on 17 (no placebo) 1.5–4 (g/day) 6 + (Extreme delta brush

electrographic pattern)

MRI, continuous EEG (159)

DB (Parallel)

(NCT00826202)

US SZ Prodrome Add on 20 (24) vs. 15 (20) 60

(mg/kg/day)

16 + (Negative symptoms) SOPS, MATRICS, PSQI, SAS,

AIMS, SAFTEE

(151)

DB (Crossover)

(NCT01474395)

US SZ or SZA Add on 13 (one placebo

session + two D-serine

sessions)

60

(mg/kg/day)

2–3 + (Auditory plasticity,

θ-frequency response,

MMN generation)

Auditory emotion paradigm,

ERP(MMN)

(156)

OL

(NCT02156908)

3 vs. 5

DB (Crossover)

(NCT00817336)

US SZ or SZA Add on 16 vs. 16 60

(mg/kg/day)

6 + (MMN frequency,

generation, clinical

symptoms)

PANSS, MCCB, ERP (MMN) (157)

OL

(NCT00322023)

SZ or SZA 5 vs. 8 vs. 6 (30 vs. 60

vs. 120; no placebo)

30, 60, 120

(mg/kg/day)

4 + (MMN frequency)

+, Positive clinical results; –, Negative clinical results; AIMS, Abnormal Involuntary Movements Scale; ANSS, Positive and Negative Syndrome Scale; BARS, Barnes Akathisia Rating Scale; BPRS, Brief Psychiatric Rating Scale; CDS,

Calgary Depression Scale; CDSS, Calgary Depression Scale of Schizophrenia; CGI, Clinical Global Impression; CPT, Continuous Performance Test; DB, double-blind; EEG, Electroencephalogram; ERP, Event Related Potential; GAF,

Global Assessment of Functioning Scale; HDRS, Hamilton Depression Rating Scale; HVLT-R, Hopkins Verbal Learning Test-Revised; MATRICS, Measurement and Treatment Research to Improve Cognition in Schizophrenia; MCCB,

MATRICS consensus cognitive battery; MMN, Mismatch negativity; MRI, Magnetic Resonance Imaging; OL, open-label; PSQI, Pittsburgh Sleep Quality Index; QOL, Quality of Life; SAFTEE, Systematic Assessment for Treatment

Emergent Event; SAS, Simpson Angus Scale for Assessment of Extrapyramidal Side Effects; SANS, Scale for the Assessment of Negative Symptoms; SOPS, Scale of Prodromal Symptoms; SZ, schizophrenia; SZA, schizoaffective

disorder; TOL, Tower of London Test; TRS, treatment-resistant; UKU, Udvalg for Kliniske Undersogelser Side Effects Rating Scale; WAIS-III, Wechsler Adult Intelligence Scale-III; WCST, Wisconsin Card Sorting Test.
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TABLE 4 | Summary of clinical trials evaluating effects of sarcosine-based GlyT1 inhibitors on the treatment of schizophrenic symptoms.

Compound Type Study site Patient Usage Subject number

(placebo vs.

experiment)

Dosage Trial

duration

(weeks)

Clinical outcomes Clinical ratings References

Org 25935 DB (Parallel)

(NCT00725075)

Worldwide

(GINAT trial)

SZ (Negative

symptom)

Add on 62 (70) vs. 62 (71)

vs. 67 (73)

(Placebo vs.

low-dose vs.

high-dose)

4–8 & 12-16

(mg, BID)

12 – PANSS, SANS, GAF, CDSS,

NES, Cognitive battery,

ESRS

(183)

AMG 747 DB (Parallel)

(NCT01568216 &

NCT01568229)

Worldwide SZ Add on 76 (90) vs. 54 (60)

vs. 51 (60) vs. 51

(60) (placebo vs. 5

vs. 15 vs. 40)

5, 15, 40

(mg/day)

12 Terminated (Adverse event) PANSS, NSA-16, CGI,

MCCB, PSP, Q-LES-Q-18,

SDS

(184)

Sarcosine DB (Parallel) Taiwan SZ Add on 21 vs. 17 2 (g/day) 6 + (Positive, negative, cognitive,

gnenral symptoms)

BPRS, PANSS, SANS,

HDRS, SAS, AIMS, BARS,

UKU

(185)

DB (Parallel) Taiwan SZ (Acute

exacerbation)

Add on

(Risperidone)

20 (23) vs. 18 (21) 2 (g/day) 6 + (Positive, negative symptoms) PANSS, SANS, SAS, AIMS,

BARS, UKU

(148)

DB (Parallel) Taiwan TRS SZ Add on

(Clozapine)

10:10 2 (g/day) 6 – PANSS, SAS, AIMS, BARS,

UKU

(186)

DB (Parallel)

(NCT00328276)

Taiwan SZ (Drug-free)

(Acute

exacerbation)

Alone 6 (9) vs. 10 (11) (1

vs. 2; no placebo)

1, 2 (g/day) 6 – PANSS, SANS, QOL, SAS,

AIMS, BARS, UKU

(187)

DB (Parallel)

(NCT00491569)

Taiwan SZ Add on 16 (20) vs. 19 (20) 2 (g/day) 6 + (Positive, negative symptoms) PANSS, SANS, GAF, QOL,

SAS, AIMS, BARS, UKU

(153)

OL (Case report) Poland SZ Add on

(Quetiapine and

citalopram)

1 1, 2 (g/day) 4 (2 g/day:

2 + 1

g/day: 2)

+ (2 g: negative symptom but

cause hypomania)

PANSS, HDRS (188)

OL (Case report) Poland SZ (Negative/

cognitive

symptoms)

Add on

(Olanzapine and

venlafaxine)

1 2 (g/day) 12 (24) Terminated (Cause hypomania) PANSS, HDRS (189)

DB (Parallel)

(NCT01503359)

Poland

(PULSAR)

SZ (Negative

symptom)

Add on 25 vs. 25 2 (g/day) 24 – (Negative, general symptoms)

(Decreased in hippocampal

Glx/Cr, Glx/Cho)

PANSS, 1H-MRS (190)

Paranoid SZ Add on 29 vs. 30 2 (g/day) 24 No changes of cardiometabolic &

body composition parameters

PNASS, BIA,

Cardiometabolic

characteristics

(191)

SZ (Negative

symptom)

Add on 25 vs. 25 2 (g/day) 24 + (Negative symptom) (Increased

in DLPFC NAA/Cho, mI/Cho,

mI/Cr)

PANSS, 1H-MRS (192)

SZ (Negative

symptom)

Add on 25 vs. 25 2 (g/day) 24 + (Negative symptom)

(Decreased in WM Glx/Cr.

Glx/Cho)

PANSS, 1H-MRS (193)

Paranoid SZ Add on 30 vs. 28 2 (g/day) 24 + (Negative, total symptoms)

(MMP-9 no changed)

PANSS, CDSS, BIA serum

MMP-9 measure

(194)

(Continued)
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Sarcosine-Based GlyT1 Inhibitors
In the early period of drug discovery, several high-affinity
GlyT1 inhibitors derived from sarcosine derivatives [e.g., NFPS
(141, 169, 177) and Org 24598 (178)] were produced but
caused unexpected toxicity and side effects (15, 178). Only
two sarcosine-based GlyT1 inhibitors, AMG 747 (184) and
Org 25935 (also known as SCH 900435 or MK-8435) (183),
were advanced into clinical trials. Both AMG 747 and Org
25935 trials ended due to unspecified safety events and failure
to benefit schizophrenia, respectively (182). Researchers have
focused on the low-affinity GlyT1 inhibitor sarcosine as an
adjunctive medication to conventional antipsychotics. Off-label
use of sarcosine in clinical studies has been demonstrated to
improve positive symptoms, negative symptoms, and quality of
life with minimal side effects in patients with schizophrenia
(148, 153, 185, 198). Moreover, findings from previous clinical
trials and moderator analyses further indicated that sarcosine
is more efficacious than D-serine in general psychopathology
for chronically ill stable schizophrenic patients as well as for
schizophrenic patients with acutely exacerbated symptoms of
schizophrenia (123, 148, 153). Along the same lines, a series
of studies from the Polish Sarcosine Study in Schizophrenia
(PULSAR) project illustrated that schizophrenic patients treated
with sarcosine for 6 months displayed significant improvements
in negative symptoms, general psychopathology and changes
in glutamatergic transmission in the brain (190, 192, 193).
However, no significant differences in cardiometabolic systems,
body composition or neurochemical levels (e.g., BDNF, IL-
6 and TNF-α) were found in PULSAR studies (191, 194–
197). Double-blind clinical studies revealed no beneficial effect
of adjunctive sarcosine in drug-free schizophrenia patients or
patients treated with clozapine (186, 187, 199). In terms of the
side effects and safety profile of sarcosine, the overall results
have been satisfactory in most clinical studies; however, sarcosine
administered with glutamatergic and serotoninergic agents may
have had a synergistic effect that exacerbated schizophrenic
symptoms and hypomania in two case reports (188, 189).

Non-sarcosine-based GlyT1 Inhibitors
In addition to sarcosine-based inhibitors, non-sarcosine-
derived GlyT1 inhibitors are potential alternatives for indirectly
modulating the GMS on NMDARs. Compared to sarcosine-
based GlyT1 inhibitors, non-sarcosine-based compounds
are associated with faster off-rates and less toxic side effects
(182). The earliest non-sarcosine-based GlyT1 inhibitors,
including SSR504734 (216), SSR103800 (217), GSK1018921
(218), and DCCCyB (219), were developed and have been
entered into phase I clinical trials. However, the trials with all
these compounds were halted or discontinued for undisclosed
reasons (182, 200, 220). In addition, PF-3463275, another
non-sarcosine-based GlyT1 inhibitor developed by Pfizer (221),
was entered into clinical trials and provided positive results for
the enhancement of cognitive remediation in schizophrenia
(201). However, the first phase II clinical trial (203) on the use of
PF-3463275 as an add-on therapy for the treatment of negative
symptoms was terminated because of unspecified scientific
reasons and safety concerns. The second phase II clinical trial
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TABLE 5 | Major findings in clinical trials examining effects of non-sarcosine-non-sarcosine-based glycine transporter 1 (GlyT1) inhibitors in patients with schizophrenia.

Compound Type Study site Patient Usage Subject number (placebo

vs. experiment)

Dosage Trial

duration

(weeks)

Clinical outcomes Clinical ratings References

SSR504734 Phase I SZ Undisclosed details Terminated (182)

SSR103800 Phase I SZ Undisclosed details Terminated (182)

GSK1018921 DB (Parallel)

(NCT00929370)

SZ Undisclosed details 4 Terminated PANSS, CGI, VAS, SAS,

AIMS, BARS

(200)

DCCCyB Phase I SZ Undisclosed details Terminated (182)

PF-

03463275

DB (Crossover)

(NCT01911676)

US SZ Add on

(Risperidone,

aripiprazole)

9 (12) (Risperidone: 5 (6),

aripiprazole: 4 (6))

10, 20, 40

(mg, BID)

1 + (40 mg: enhanced

neuroplasticity)

PET, EEG (LTP) (201)

Add on 10 (11) 60 (mg, BID) 1 – (202)

DB (Parallel)

(NCT00977522)

US SZ (Negative

Symptom)

Add on 207 (Total) 30 (mg, BID) 12 Teminated PANSS, SANS, CGI, GAS,

MCCB, SQLS, C-SSRS,

ESRS

(203)

Bitopertin DB (Parallel)

(NCT01192867)

Worldwide

(FlashLyte)

SZ (Negative

Symptom)

Add on 594 (total) 10, 20

(mg/day)

24 – PANSS, CGI, PSP (204)

DB (Parallel) Worldwide

(CandleLyte)

SZ (Acute

exacerbation)

Alone 58 (80) vs. 56 (80) vs. 60

(77) (Placebo vs. 10 vs. 30)

10, 30

(mg/day)

4 – PANSS, CGI, C-SSRS,

SCID-CT, ESRS, NOSIE,

ESRS

(205)

DB (Parallel)

(NCT01192906)

Worldwide

(DayLyte)

SZ (Negative

Symptom)

Add on 605 (Total) 5, 10

(mg/day)

24 – PANSS, PSP (206)

DB (Parallel)

(NCT00616798)

Worldwide SZ (Negative/

disorganized

thought)

Add on 61 (81) vs. 60 (82) vs. 57

(81) vs. 53 (79) (Placebo vs.

10 vs. 30 vs. 60)

10, 30, 60

(mg/day)

8 + (Negative symptoms) PANSS, CGI, PSP, SQLS,

HRQoL, SAS, AIMS, BARS

(207)

(208)

– (Quality of life) (209)

DB (Parallel)

(JapicCTI-111627)

Japan SZ (Negative

Symptom)

Add on 9 (15) vs. 57 (73) vs. 48 (73)

(No placebo)

5, 10, 20

(mg/day)

52 + (Negative &

sub-optimally

controlled symptoms)

(20 mg: adverse

events)

PANSS, CGI, PSP, C-SSRS,

ESRS

(210)

DB (Parallel)

(NCT01235520)

Worldwide

(TwiLyte)

SZ Add on 186 (196) vs. 188 (198) vs.

186 (194) (Placebo vs. 10

vs. 20)

10, 20

(mg/day)

12 – PANSS, CGI, PSP, C-SSRS,

ESRS

(211)

DB (Parallel)

(NCT01235585)

Worldwide

(MoonLyte)

186 (193) vs. 187 (195) vs.

191 (200) (Placebo vs. 5 vs.

10)

5, 10

(mg/day)

–

DB (Parallel)

(NCT01235559)

Worldwide

(NightLyte)

189 (199) vs. 190 (198) vs.

190 (199) (Placebo vs. 10

vs. 20)

10, 20

(mg/day)

+ (10 mg: positvie

symptoms)

DB (Parallel)

(NCT01192880)

Worldwide

(SunLyte)

SZ (Negative

Sympt)

Add on 625 (630) 10, 20

(mg/day)

24 – (Small Effect size) PANSS, NSA-16, CGI, PSP,

C-SSRS, ESRS

(212)

(Continued)
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TABLE 5 | Continued

Compound Type Study site Patient Usage Subject number (placebo

vs. experiment)

Dosage Trial

duration

(weeks)

Clinical outcomes Clinical ratings References

DB (Parallel)

(NCT01192906)

Worldwide

(DayLyte)

203 (209) vs. 205 (211) vs.

197 (201) (Placebol vs. 5 vs.

10)

5, 10

(mg/day)

–

DB (Parallel)

(NCT01192867)

Worldwide

(FlashLyte)

197 (210) vs. 200 (208) vs.

197 (208) (Placebo vs. 10

vs. 20)

10, 20

(mg/day)

–

DB (Parallel)

(NCT01116830)

US SZ or SZA Add on 12 vs. 17 10 (mg/day) 6 – PANSS, MCCB, ERP (MMN) (213)

OL

(NCT01116830)

US SZ or SZA Add on 12 vs. 17 10 (mg/day) 6 – PANSS, MCCB, ERP (MMN) (157)

BI 425809 DB (Parallel)

(NCT03859973)

Worldwide SZ Add on (without

clozapine)

200 (Total) 10 (mg/day) 12 Recruiting PANSS, CGI, MCCB,

SCoRS, BET, VRFCAT,

PRECIS

(214)

DB (Parallel)

(NCT02832037)

Worldwide SZ Add on 160 (170) vs. 77 (85) vs. 79

(84) vs. 81 (85) vs. 83 (85)

(Placebo vs. 2 vs. 5 vs. 10

vs. 25)

2, 5, 10, 25

(mg/day)

12 + (Cognitive

symptoms)

PANSS, MCCB, PSP,

SCoRS, C-SSRS

(215)

+, Positive clinical results; –, Negative clinical results; AIMS, Abnormal Involuntary Movements Scale; BARS, Barnes Akathisia Rating Scale; BET, Balloon Effort Task; CGI, Clinical Global Impression; C-SSRS, Columbia-Suicide Severity

Rating Scale; DB, double-blind; EEG, Electroencephalogram; ERP, Event Related Potential; ESRS, Extrapyramidal Symptom Rating Scale; GAS, Global Assessment Scale; HRQoL, Health-Related Quality of Life; LTP, Long-term

potentiation; MCCB, MATRICS consensus cognitive battery; MMN, Mismatch negativity; NOSIE, Nurses’ Observation Scale for Inpatient Evaluation; NSA-16, Negative Symptom Assessment-16; OL, open-label; PANSS, Positive and

Negative Syndrome Scale; PRECIS, Patient Reported Experience of Cognitive Impairment in Schizophrenia; PSP, Personal and Social Performance Scale; SANS, Scale for the Assessment of Negative Symptoms; SAS, Simpson Angus

Scale for Assessment of Extrapyramidal Side Effects; SCID-CT, Structured Clinical Interview for DSM-IV–Clinical Trials version; SCoRS, Schizophrenia Cognition Rating Scale; SQLS, Schizophrenia Quality of Life Scale; SZ, schizophrenia;

SZA, schizoaffective disorder; VAS, Visual Assessment Scale; VRFCAT, Virtual Reality Functional Capacity Assessment Tool.
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(202) was initiated in 2013, and although it has remained active,
to the best of our knowledge, there has been no recruitment
efforts to date.

In addition to the abovementioned non-sarcosine-based
GlyT1 inhibitors, bitopertin (also known as RG1678 or
RO4917838) is an oral, non-competitive GlyT1 inhibitor that was
originally developed by Roche as a potential drug candidate for
the treatment of negative symptoms of schizophrenia. Preclinical
studies revealed that bitopertin modulated schizophrenia-like
behaviors in several naïve and pharmacologically challenged
animal models (222, 223). The most promising finding of
bitopertin was the result of an 8-week randomized, double-blind,
proof-of-concept phase II study, in which bitopertin was proven
to be safe, with the results showing an inverted U-shaped dose–
response efficacy against the predominant negative symptoms
of stable schizophrenia patients (207, 208), but no similar
effect was observed in the quality of life of these patients
(209). Subsequently, in a phase II/III clinical trial, bitopertin
monotherapy improved only the positive subscale score of
the PANSS (Positive and Negative Syndrome Scale) with
respect to acute exacerbation of schizophrenia (205). In a
randomized double-blind phase III study following one-year as
an adjunctive treatment, bitopertin was found to be generally
safe and well-tolerated for the treatment of Japanese patients
with schizophrenia, and all three bitopertin-treated groups
showed improvements in all the efficacy endpoints for both
“negative symptoms” and “suboptimally controlled symptoms”
throughout the duration of the study (210). Except for this study,
unfortunately, the superior efficacy over placebo of adjunctive
bitopertin at any of the doses tested in patients with persistent
predominant negative symptoms of schizophrenia could not be
proven in several randomized, double-blind, placebo-controlled
phase III trials (204, 206, 211, 212). Furthermore, bitopertin
did not significantly affect any symptoms, NMDAR-related
biomarkers, or MMN frequency at the doses tested in double-
blind clinical trials with patients with schizophrenia (157,
213). Accordingly, the negative results and small improvements
associated with bitopertin suggest that adjunctive bitopertin
treatment might only offer a modest benefit and that bitopertin
might not be a broadly effective or optimal therapeutic candidate
for the treatment of schizophrenia. Further study will be needed
to elucidate the effect of bitopertin in animal models and
clinical trials.

Furthermore, BI 425809was recently developed by Boehringer
Ingelheim as a novel, investigational GlyT1 inhibitor to improve
cognitive function and memory in patients with schizophrenia
and Alzheimer’s disease (224–226). A recent randomized double-
blind, placebo-controlled phase II study revealed that BI 425809
improved cognitive functions after 12 weeks in patients with
schizophrenia (215), suggesting that BI 425809 can provide
an effective treatment for cognitive impairment associated
with schizophrenia. Currently, another phase II trial of BI
425809 combined with computerized cognitive training for
schizophrenic patients is in progress (214, 227). Further large-
scale phase III clinical trials will be necessary to replicate these
encouraging findings and to confirm the therapeutic potential of
BI 425809 for the treatment of cognitive deficits in schizophrenia.

In summary, both sarcosine-based and non-sarcosine-based
GlyT1 inhibitors are generally well-tolerated and exhibit a
satisfactory safety profile. GlyT1 inhibitors also exert more-
promising therapeutic potential than agonists directly targeting
the GMS in the improvement of schizophrenic symptoms.
However, in consideration of the etiology and pathophysiology
of schizophrenia, no evidence has supported a proposal that
GlyT1 is overexpressed in the brains of schizophrenic patients.
In contrast, a series of negative findings of association studies
have revealed that neither glycine transmission nor GlyT1 is
implicated in the pathogenesis of schizophrenia (228–230).
As described previously, although concentrations of glycine
are 10-fold higher than D-serine, D-serine is considered the
dominant endogenous coagonist of NMDARs and a modulator
of NMDAR-related neurotoxicity (20, 21). Thus, targeting GlyT1
might not be an optimal strategy for modulation of NMDAR
functions. Furthermore, functional distinctions between synaptic
and extrasynaptic NMDARs in brain physiology, in which
synaptic and extrasynaptic NMDARs are gated by D-serine and
glycine, respectively, have been reported (22, 231). D-serine and
glycine differentially impact NMDAR membrane diffusion and
neuroplasticity (21, 22). Given that glycine, but not D-serine,
preferentially gates NMDARs located at extrasynaptic sites and
that synaptic, but not extrasynaptic, NMDARs are essential for
LTP induction, it is plausible that the efficacy and therapeutic
effect of GlyT1 inhibitors might be relatively less effective than
those of D-serine. Thus, as an alternative to GlyT1 inhibitors,
one of the promising approaches for the development of novel
therapeutic compounds to treat schizophrenia is based on
increased synaptic D-serine levels realized through the indirect
modulation of astrocytic D-serine synthesis.

Indirect Modulation of NMDAR Functions
by Targeting DAO
DAO (or DAAO) encodes D-amino acid oxidase which has a
flavin adenine dinucleotide (FAD) as the prosthetic group, and
DAO catalyzes the oxidative deamination of a wide range of D-
amino acids, including D-serine (232–234). The human DAO
gene is located on chromosome 12q24, and DAO is mainly
expressed in the liver, kidney and CNS (235). DAO is abundant in
both neurons and glial cells in the cerebral cortex, hippocampus
and cerebellum and contributes to normal neuronal functioning
(236, 237). DAO has been of interest in psychiatry because
its major substrate in the brain is D-serine, which modulates
NMDAR functions and contributes to NMDAR hypofunction
in schizophrenia. D-serine is synthesized from L-serine by SR
and is metabolized by DAO and SR through an α, β-elimination
reaction. Among DAO substrates in the brain, D-serine is clearly
the most abundant. DAO is believed to play a crucial role in the
regulation of cellular D-serine concentrations and release (143).
In particular, the three-dimensional structure of human DAO
is a stable homodimer and it is highly conserved compared to
the microorganism sources (238, 239). Human DAO possesses
a low FAD binding function and mainly presents in an inactive
apoprotein form (238, 240) because of its specific structure. DAO
also exhibits a low substrate affinity and catalytic efficiency for
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D-serine (234, 241). The inactive apoprotein form of human
DAO prevents excessive degradation of D-serine in the brain.
The active holeenzyme of human DAO is reconstituted by
binding of active-site ligands, such as FAD and the substrate
stabilizes flavin binding, and thus pushing the acquisition of
catalytic competence (238, 242). Intriguingly, it has been reported
that DAO inhibitor (e.g., benzoate) increases the holoenzyme
reconstitution of human DAO and stabilizes the flavoprotein
(243). In addition, human DAO is mainly colocalized with
pyramidal neurons in the prefrontal cortex and hippocampus
(236). Enhanced DAO activity is considered a potential cause
of reduced D-serine and subsequent impairment to NMDAR
functioning in schizophrenia (123, 244).

The glutamate hypothesis of schizophrenia suggests that
increased DAO activity leads to decreased D-serine levels,
which may subsequently lead to NMDAR hypofunction.
Supporting evidence from association studies, DAO expression
in schizophrenic patients and behavioral outcomes observed in
rodent models have suggested potential therapeutic benefits of
DAO inhibitors (DAOIs). Accumulating evidence from genetic
studies has indicated thatDAO andG72 are putative genes related
to schizophrenia (235, 245, 246). Schizophrenic patients with
genetic variation in DAO and G72 genes also display negative
valence and cognitive deficits (247–250). In complementary
findings, a recent GWAS revealed that of 108 schizophrenia-
associated loci, none were within the DAO or G72 gene regions
(13). Although reports on the association of DAO and G72 with
schizophrenia are ambiguous, these genes remain candidates in
schizophrenia because of their roles in glutamatergic signaling,
which has been associated with schizophrenia in multiple lines
of research (157, 166, 246). Both G72 mRNA and G72 protein
(as known as pLG72) are detected in higher levels in brain
and blood of schizophrenia patients (251, 252). Intriguingly,
DAO-pLG72 complex was reported to modulate intracellular
D-serine concentration in human (233, 238), which suggests
a novel avenue to design molecules to regulate human DAO
activity and thus NMDAR function for future research. In the
same vein, the expression and activity of DAO are significantly
increased in patients with schizophrenia (28, 236, 244, 253).
Intriguingly, it has been reported that chlorpromazine (i.e., a
first-generation antipsychotic) and risperidone (i.e., a second-
generation antipsychotic) are potentially active substances that
inhibit DAO function (254, 255). In addition, inactivation
of DAO in rodents produces behavioral and biochemical
effects, suggesting potential therapeutic benefits (143). Indeed,
increasing levels of D-serine have been observed in rodents
after the administration of DAOIs (256–258). Consistently,
PCP- or MK-801-induced pre-pulse inhibition deficits and
cognitive deficits relevant to schizophrenia were ameliorated
after treatment with DAOIs (256, 259, 260). DAOIs increase the
levels of D-alanine, which might also be beneficial for increasing
NMDAR function (260). Moreover, ddY/DAO(–) mice, which
lack active DAO due to a point mutation, exhibited increased
cerebellar NMDAR functions (261), enhanced hippocampal LTP,
and improved spatial learning in a water maze (262). Other
animal studies have indicated that DAO is involved in the
mechanism of D-serine nephrotoxicity (263), which is attenuated

by DAOIs (264). D-serine combined with DAOI or DAOI
alone might be beneficial for enhancing NMDAR functions
in schizophrenia.

In agreement with the abovementioned studies, DAOIs are
among the most attractive therapeutic targets for improving
cognition and reducing negative symptoms in schizophrenia
discovered in recent decades. Basically, DAOIs can be divided
into two categories: cofactor-competitive and substrate-
competitive inhibitors (238, 240, 241, 265–267). Chlorpromazine,
the first antipsychotic medication, is a traditional dopamine D2
receptor antagonist but it has been reported that chlorpromazine
is also a FAD-competitive DAO inhibitor (243, 255). Compared
to the cofactor-competitive inhibitor of DAO, substrate-
competitive DAOIs (such as CBIO and benzoate) are frequently
used as scaffolds for developing novel drugs. In the late 2000s,
a series of structurally similar molecules (such as ASO57278
(256), Merck compound (257), Pfizer compounds (258), and
CBIO (268), displayed a potent inhibition of DAO in vitro but
had limited elevation of D-serine in vivo. Especially, it has been
reported that acute and chronic administrations of ASO57278
produced inverted U-shaped dose-response curves to reverse
PCP-induced PPI deficits (256). And co-administration of
CBIO with D-serine also significantly increased D-serine level
and attenuated MK-801 induced PPI deficit (259). Thus, these
studies imply that DAOIs have beneficial effects in treatment
of schizophrenia.

To date, there are at least two potential DAOIs that
have been advanced into clinical evaluation, including sodium
benzoate and TAK-831. Effects of these two DAOIs on the
treatment of schizophrenic symptoms in clinical studies are
summarized in Table 6. Sodium benzoate is known as a
preservative that is widely used as a food pickling agent.
Sodium benzoate is a prototype competitive inhibitor of DAO,
and preclinical studies have indicated that it attenuates PCP-
induced pre-pulse inhibition deficits as well as D-serine-induced
nephrotoxicity (264, 277). The first randomized, double-blind,
placebo-controlled trial with chronic schizophrenia patients
reported that add-on sodium benzoate relieved positive, negative,
and cognitive symptoms as well as improved quality of life
(269). Sodium benzoate also showed efficacy and safety for
schizophrenic patients who had a poor response to clozapine
(270). Moreover, adjunctive sodium benzoate plus sarcosine,
but not sarcosine alone, improved the cognitive and global
functioning of chronic schizophrenia patients (199). However, a
randomized clinical study in Australia indicated that adjunctive
use of sodium benzoate had no effect on individuals with
early psychosis (271, 272). Two adaptive clinical phase II
studies performed to evaluate the safety and efficacy of
sodium benzoate in adolescent schizophrenia patients (273) and
treatment-resistant schizophrenia patients (274) are currently
recruiting. One probable drawback for the development of
sodium benzoate as a drug candidate is that it lacks patentability
due to its simple chemical structure. More evidence on the
therapeutic effect of sodium benzoate, especially in larger-
scale clinical trials in schizophernia, is required to prove
its effectiveness and applicability. In addition, another highly
selective and potent DAOI from Takeda known as TAK-831
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TABLE 6 | Potential clinical efficacy and benefits related to D-amino acid oxidase inhibitors (DAOIs) on the treatment of schizophrenic symptoms.

Compound Type Study site Patient Usage Subject number (placebo

vs. experiment)

Dosage Trial

duration

(weeks)

Clinical outcomes Clinical ratings References

Sodium

benzoate

DB (Parallel)

(NCT00960219)

Taiwan SZ Add on 23 (27) vs. 24 (25) 1 (g/day) 6 + (Positive, negative,

general symptoms)

PANSS, SANS, CGI, GAF,

MCCB, HDRS, QOLS, SAS,

AIMS, BARS, UKU

(269)

DB (Parallel) Taiwan SZ Add on 16 (21) vs. 17 (21) (Placebo

vs. sarcosine + Bezoate)

Sarcosine: 2

(g/day)

Benzoate: 1

(g/day)

12 + (Cognitive symptom) PANSS, CGI, GAF, MCCB,

SAS, AIMS, BARS, UKU

(199)

DB (Parallel)

(NCT01390376)

Taiwan TRS SZ Add on

(Clozapine)

20 vs. 20 vs. 20 (Placebo

vs. 1 vs. 2)

1, 2 (g/day) 6 + (Positive, negative

symptoms)

PANSS, SANS, GAF,

MCCB, HDRS, QOLS, SAS,

AIMS, BARS, UKU

(270)

DB (Parallel)

(ACTRN126150

00187549)

Australia Early

psychosis

(SZ, SCHF,

delusion,

bipolar)

Add on 160 (Total) 1 (g/day) 12 Protocol PANSS, CGI, GAF, HDRS,

AQOL, PAQ, PGI

(271)

40 (50) vs. 39 (50) – (272)

DB (Parallel)

(NCT01908192)

US & Taiwan SZ

(Adolescent)

Add on 126 (Total) 1 (g/day) 6 Recruiting PANSS, SANS, CGI, CGAS,

CDRS-R

(273)

DB (Parallel)

(NCT03094429)

US TRS SZ Add on

(Clozapine)

287 (Total) 1, 2 (g/day) 8 Recruiting PANSS, CGI, HDRS, PSP,

SQLS, C-SSRS, SAS,

AIMS, BARS, C-SSRS

(274)

TAK-831 DB (Crossover)

(NCT03359785)

US SZ Add on 31 (32) (Total) 50, 500

(mg/day)

8 days Complete BACS, EBC, ASSR, ERP

(MMN)

(275)

DB (Parallel)

(NCT03382639)

Worldwide SZ Add on 307 (315) (Total) 50, 125, 500

(mg/day)

12 Complete PANSS, BNSS, BACS, CGI,

SCoRS

(276)

+, Positive clinical results;−, Negative clinical results; AIMS, Abnormal Involuntary Movements Scale; AQOL, Assessment of Quality of Life; ASSR, Auditory Steady State Response; BACS, Brief Assessment of Cognition in Schizophrenia;

BARS, Barnes Akathisia Rating Scale; BNSS, Brief Negative Symptom Scale; CDRS-R, Children’s Depression Rating Scale-Revised; CGAS, Children’s Global Assessment Scale; CGI, Clinical Global Impression; C-SSRS, Columbia-

Suicide Severity Rating Scale; DB, double-blind; EBC, Eye Blink Conditioning; ERP, Event Related Potential; GAF, Global Assessment of Function; HDRS, Hamilton Depression Rating Scale; MCCB, MATRICS consensus cognitive battery;

MMN, Mismatch negativity; PANSS, Positive and Negative Syndrome Scale; PAQ, Physical Activity Questionnaire; PGI, Patient Global Impression; PSP, Personal and Social Performance scale; QOLS, Quality of Life Scale; SANS, Scale

for the Assessment of Negative Symptoms; SAS, Simpson Angus Scale for Assessment of Extrapyramidal Side Effects; SCoRS, Schizophrenia Cognition Rating Scale; SQLS, Schizophrenia Quality of Life Scale; SZ, schizophrenia;

SCHF, Schizophreniform disorder; TRS, treatment-resistant; UKU, Udvalg for Kliniske Undersogelser Side Effects Rating Scale.
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FIGURE 2 | The therapeutic effects and possible underlying mechanisms of D-amino acid oxidase inhibitors (DAOIs) in the treatment of schizophrenia. Top panel:

Indirect modulation of NMDAR functions by DAOIs restores NMDAR hypofunction. Inhibition of DAO results in increased synaptic levels of D-serine. Middle panels:

DAOIs significantly alleviate positive, negative, and cognitive symptoms in patients with schizophrenia and moderate schizophrenia-like behavioral deficits in animal

models. DAOIs enhance NMDAR functions and hippocampal LTP in animal studies. Bottom panels: Possible mechanism of action of DAOIs. The effects of DAOIs on

brain activity, neuromorphology, and cell surface trafficking of NMDARs, which contribute to the amelioration of NMDAR hypofunction and restoration of mental

functions, are worthy of further investigation.

is currently being evaluated for schizophrenia in a phase II
clinical trial (275, 276, 278). A series of studies of TAK831,

including those directed to pharmacokinetics, target occupancy,
and D-serine concentrations in the brain, have detected and
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analyzed a non-linear quantitative multilayer mechanistic model
for multilayer biomarker-assisted clinical development with
multiple CNS indications (279). Investigations to discover the
characteristics and potential development of TAK-831 are needed
to determine its efficacy and tolerability in the management
of different domains of schizophrenia. In addition to sodium
benzoate and TAK-831, there are additional unpublished data
on DAOIs for which patent applications have been filed and
which have been claimed to have specific therapeutic utility in the
treatment of schizophrenia and other neuropsychiatric disorders
(280). It is worth further investigating the safety and therapeutic
potential of these novel DAOIs for the treatment of unmet
medical needs of patients with in schizophrenia in future studies.

CONCLUSION

Data from clinical, genetic, postmortem, and animal studies
strongly implicate NMDARs as central hubs for many
pathophysiological processes in the brains of schizophrenic
patients. Notably, several NMDAR-enhancing agents,
particularly those directed to the GMS of NMDARs, result
in the significant alleviation of schizophrenia-like behavioral
deficits and cognitive dysfunctions in animal models as well as in
patients with schizophrenia. There is great interest in identifying
potential drug candidates targeting the GMS of NMDARs
and to evaluate their therapeutic effectiveness in attenuating
the negative and cognitive symptoms of schizophrenia with
minimal adverse effects. Modulation of NMDAR functions
through the GMS has been proposed as a possible therapeutic
approach to drug development, and either direct or indirect
activation of GMS results in differential benefits and adverse
effects in the treatment of schizophrenia. A summary of the
relevant animal study data, as well as those from clinical trials,
examining the therapeutic effects and experimental outcomes of
direct and indirect GMS modulators is provided in this article.
Overall, current findings suggest that indirectly targeting GMS
appears to be more beneficial and results in fewer adverse effects
than directly targeting GMS to modulate NMDAR functions.
In particular, compared with GlyT1 inhibitors, one of the
promising approaches to the development of novel therapeutic
compounds for treating schizophrenia is to indirectly increase
synaptic D-serine levels by targeting DAO. As illustrated in
Figure 2, inhibition of DAO via DAOIs not only results in
increased synaptic D-serine levels but also the regulation of
NMDAR-evoked electrophysiological activity, which contributes
to the amelioration of NMDAR hypofunction and restoration of
mental functions. There is great interest in further investigating
the effects of DAOIs on brain activity, neuromorphology, and
cell surface trafficking of NMDARs, which contribute to the
amelioration of NMDAR hypofunction and untreated symptoms

of schizophrenia. Thus, GMS modulators, especially GlyT1
inhibitors and DAOIs, may open new avenues to the treatment
of unmet medical needs in patients with schizophrenia, which
is worthy of further investigation. For the development of
new antipsychotic drugs, the establishment of safety profiles of
these potential compounds will be beneficial and informative,

possibly leading to the elucidation of their precise mechanisms
of action and the evaluation of their therapeutic effects in both
animal models and clinical studies. Notably, however, this review
presents an oversimplified summary of the treatment alternatives
for an extremely complex psychiatric disorder. Indeed, human
diseases are far more complex and only some aspects of human
diseases can be partially modeled in animal models. Clinical
trials are essential and irreplaceable in drug development. In
complementary to human studies, preclinical animal studies
are highly valuable and indispensable to the understanding of
the underlying mechanism and for the development of new
drugs. And we simply focus on discussing the importance of
NMDAR functions on excitatory rather than inhibitory neurons
in this review article. The role of inhibitory neurons and the
impact of NMDAR hypofunction on GABAergic neurons
in the pathophysiology of schizophrenia are worth further
investigating (281, 282). Because the etiology of schizophrenia
remains unclear, disturbances to the GABAergic, cholinergic,
and dopaminergic neurotransmitter systems (283, 284), as well
as disruptions to astrocyte function (164), are also worthy of
further investigation.
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Dementia, of which Alzheimer’s disease (AD) is the most common form, is characterized

by progressive cognitive deterioration, including profound memory loss, which affects

functioning in many aspects of life. Although cognitive deterioration is relatively common

in aging and aging is a risk factor for AD, the condition is not necessarily a part of the aging

process. The N-methyl-D-aspartate glutamate receptor (NMDAR) and its co-agonist

D-serine are currently of great interest as potential important contributors to cognitive

function in normal aging and dementia. D-Serine is necessary for activation of the

NMDAR and in maintenance of long-term potentiation (LTP) and is involved in brain

development, neuronal connectivity, synaptic plasticity and regulation of learning and

memory. In this paper, we review evidence, from both preclinical and human studies, on

the involvement of D-serine (and the enzymes involved in its metabolism) in regulation

of cognition. Potential mechanisms of action of D-serine are discussed in the context

of normal aging and in dementia, as is the potential for using D-serine as a potential

biomarker and/or therapeutic agent in dementia. Although there is some controversy in

the literature, it has been proposed that in normal aging there is decreased expression

of serine racemase and decreased levels of D-serine and down-regulation of NMDARs,

resulting in impaired synaptic plasticity and deficits in learning and memory. In contrast,

in AD there appears to be activation of serine racemase, increased levels of D-serine and

overstimulation of NMDARs, resulting in cytotoxicity, synaptic deficits, and dementia.

Keywords: D-serine, glutamate, NMDA receptor, dementia, Alzheimer’s disease, long-term potentiation,

aging, cognition

INTRODUCTION

Dementia, and its most common form, Alzheimer’s disease (AD), is a complex and progressive
neurological disorder characterized by many neuropsychiatric symptoms, e.g. aggression, anxiety,
depression and sleep disorder, and the better known symptoms associated with progressivememory
loss and cognitive impairment, all of which can significantly alter the quality of life of those afflicted
with this disorder (1, 2). Age is a major risk factor for dementia, and 1.5% of the population will
be affected directly by dementia by the age of 65 and >20% of the population by the age of 85 (3).
Neurocognitive disorders such as AD are expected to steadily increase in prevalence and incidence
as the population ages. It is estimated that the global number of individuals suffering from dementia
will reach 65 million by 2030 and 113 million by 2050 (2, 4). The impact of the high prevalence of
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dementia in the elderly is noteworthy, as seen in the substantial
direct healthcare costs as well as in the devastating social costs
for individuals and their families and caregivers (2). Yet, despite
the growing importance of understanding dementia, we are still
in search of effective methods for its diagnosis and treatment.

In this review, we provide a summary of the potential role
of the amino acid D-serine, a potent co-agonist at the N-
methyl-D-aspartate glutamate receptor (NMDAR), in normal
and pathological aging, with a focus on neurocognition. A
brief discussion on the diagnostic and therapeutic potential
of D-serine is also included. The evidence suggests that this
is a promising avenue of research into the pathophysiology
of neurocognition and its potential treatment in dementing
illnesses. Literature searches were performed in PubMed and
Web of Science for the period January 1970 to May 2021, and
the key search terms used were “D-serine and dementia”, “D-
serine and Alzheimer’s disease”, “D-serine and mild cognitive
impairment”, “D-serine and LTP”, as well as “D-serine and
NMDA receptors”. Only papers in English were used in
preparation of the review, and some of the review papers found
were searched for additional relevant references. Each reference
used was screened by at least two of the authors.

PHYSIOLOGY OF NORMAL AGING

Aging is a normal dynamic process, characterized by the
development of a mild inflammatory environment and a
progressive deterioration of certain physiological functions,
including in the central nervous system (CNS) (5, 6). Although
cognitive decline is relatively common in old age, the relationship
between aging and degenerative dementias such as AD remains
unclear. Whereas aging is a risk factor for AD, it is not inevitable
that AD be part of the aging process. While obvious and
oftentimes widespread structural changes can be seen within
the CNS with dementia pathophysiology, normal aging is not
associated with a significant loss of neurons (7); rather, brain
alterations in normal aging are much more subtle, involving
changes in connectivity and altered functions at the cellular and
molecular level (8). Several cognitive domains are affected in
normal aging and dementia, including learning and memory
(particularly for newly acquired information), processing speed,
working memory, and executive function (9, 10). An intriguing
feature of aging is the variation of degree of cognitive impairment
between individuals, from a mild deficit to a severe dementia, as
in the case of AD (11, 12).

The decline in learning and memory performance during
non-pathological aging appears to be primarily the result
of alterations in neuronal network plasticity within the
hippocampus (12). Memory formation is viewed as being closely
dependent on the capacity of the brain to regulate long-lasting
changes in neuronal communication via synapses, and appears to
be proportional to the strength of those communications (13, 14).
The first convincing support for neuronal plasticity changes
underlying changes in cognition came in the 1970s when long-
term potentiation (LTP), a mechanism now known to underpin
synaptic strengthening critical for learning and memory, was

characterized in the hippocampus (15). It was later shown that
LTP was regulated in large part by NMDAR signaling (16–18).

Dynamic synapses facilitate remodeling of neuronal circuits,
and changes in the functional properties of these networks could
play a critical role in the induction of age-related memory decline
(19). However, the mechanisms governing dynamic synapses in
the brain are still not well understood (20, 21). The hippocampus
is the area most frequently implicated in memory decline and
this structure seems to be particularly vulnerable to aging (22–
24). Interestingly, the circuits that are vulnerable to aging are
composed to a large extent of glutamatergic neurons (25).

Proper brain functioning requires healthy neurons and
neuronal connections, which in turn require properly
functioning neurotransmitters and enzymes that supply
these dendritic and neuronal connections. It has been shown
repeatedly that deficits in glutamatergic transmission mediated
by the NMDAR are related to cognitive impairment in both
laboratory animals and humans. Administration of an NMDAR
antagonist in rhesus monkeys impairs recognition memory
(26), which represents cognitive impairment (27). Similarly,
specific ablation of GRINs (Glutamate Ionotropic Receptor
NMDA Type 1-3), i.e., the genes that encode for subunits of
the NMDAR heterotetrameric complex, in the hippocampus or
pharmacological blockade of NMDAR function can lead to brain
atrophy, impaired neuroplasticity, reduced LTP and deficits
in learning and contextual memory (18, 28, 29). In contrast,
increasing NMDAR function by over-expression or reduced
degradation in the hippocampus can enhance LTP and learning
(30, 31).

Particular attention has been paid to learning and memory,
and to whether activation of NMDARs could be altered in
the course of aging. Various studies in wild-type rodents have
revealed that aging is associated with reductions in themagnitude
of LTP in the hippocampus and have implicated alterations in
NMDAR signaling and a decline in the activation of NMDARs
associated with a decrease in levels of D-serine, a co-agonist
at the NMDA receptor. Therefore, age-related decreases in D-
serine could be contributing to the cognitive decline (10). Since
activation of the NMDAR co-agonist-binding site by D-serine
and glycine is mandatory for the induction of synaptic plasticity,
the LTP rescue observed in aged animals after supplementation
with the co-agonist D-serine also suggests that the mechanisms
managed by endogenous D-serine are altered with age (11).

D-SERINE PHYSIOLOGY, METABOLISM

AND ROLE IN AGING

Memory formation relies on the capacity of neuronal networks
to manage long-term changes in synaptic communication. This
property is driven, at least in part, by NMDARs (32). The
NMDAR is a tetrameric ion channel that may be composed of
many configurations of three subunits, i.e., GluN1, GluN2, and
less commonly, GluN3 (33–35). To be activated, the NMDAR
requires simultaneous binding of the agonist glutamate to
the GluN2 subunit and a co-agonist to GluN1 (34–37). This
binding is crucial for NMDAR activation and originally it
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FIGURE 1 | Chemical structures of L-serine (left), D-serine (center) and

glycine (right). Structures were located with Google and drawn with

ChemDraw.

was thought that the major co-agonist was glycine (10, 36,
37); however, later studies found that D-serine is more potent
than glycine at binding to the co-agonist site on the GluN1
subunit of the NMDAR and stimulating the receptor in forebrain
regions, including hippocampus (38). D-Serine has a regional
distribution in the brain more similar to that of NMDARs
than does glycine (39–41) and it has been reported that D-
serine acts primarily at synaptic NMDARs whereas glycine
acts primarily at extrasynaptic NMDARs (38). Interestingly,
glycine is similar structurally to D-serine (Figure 1) and it is
formed by conversion of L-serine catalyzed by the enzyme
serine hydroxymethyltransferase.

Balanced NMDAR activity is required for optimal brain
function. Hypo- or hyper-function of NMDAR-mediated
neurotransmission can result in cognitive dysfunction or
neurotoxicity, respectively. Depletion of D-serine diminishes
NMDAR activity, LTP, and synaptic plasticity (33). NMDAR-
mediated neurotransmission and its modulation by D-serine
play a critical role in memory formation, learning, and neuronal
plasticity (34, 42–44). In CNS development, D-serine shapes
synaptogenesis and neuronal circuitry through activation of
NMDARs and it is also a key player in astrocyte-mediated LTP
associated with hippocampal plasticity (20).

The reports by Hashimoto et al. were the first to demonstrate
high concentrations of D-serine in the rodent brain and in the
human brain (45, 46). It was only later discovered that D-serine
is enriched in brain regions containing high concentrations
of NMDARs, such as the cerebral cortex, hippocampus, and
amygdala (41). The source of D-amino acids in mammals
was historically attributed to diet or intestinal bacteria (47)
until the racemization of L-serine by serine racemase was
identified as the endogenous source of D-serine (48) (see Figure 1
for structures of L- and D-serine). Serine racemase was first
described to be exclusively present in astrocytes (49–51), but
subsequent work has shown that serine racemase is also present
in neurons (52). Thus, D-serine may be a glial transmitter
as well as a neurotransmitter, and this has been a matter of
considerable controversy [for discussions of this matter see: (52–
54)]. Wolosker et al. (52) proposed that L-serine is synthesized in
astrocytes and then shuttled to neurons where it is converted to
D-serine. For a detailed description of D-serine circuits and the
“serine shuttle”, see Wolosker and Balu (55).

Serine racemase is expressed by many CNS cells, including
pyramidal neurons in the cerebral cortex and the CA1 region
of the hippocampus (41, 56), regions that also have high levels
of D-serine (57). Wong et al. (58) have shown an age-dependent

dendritic and postsynaptic localization of serine racemase in CA1
pyramidal neurons of the mouse. These same researchers, in
studies using serine racemase knockout (KO)mice, showed a cell-
autonomous role for this enzyme in regulating synaptic NMDAR
function at Schaffer collateral (CA3)-CA1 synapses and found
that single-neuron genetic deletion of serine racemase eliminated
LTP at the age of 1 month and that this loss of LTP could be
rescued by administering D-serine (58). The enzyme responsible
for the catabolism (breakdown) of D-serine is D-amino acid
oxidase (DAAO); this enzyme is most abundant in cerebellum
and brain stem, areas with low levels of D-serine (59).

D-Serine levels vary across different CNS areas. The level of D-
serine is in the order of 200–300 pmoles per milligram of tissue in
the hippocampus and frontal cortex in mice, 20-fold higher than
in the pancreas, lung, or testis and almost 50-fold higher than in
muscle (60).Within the brain, highest levels of D-serine are in the
cortex and hippocampus, and there are much lower levels in the
cerebellum and brain stem, likely reflecting the regional variation
in expression of serine racemase and DAAO (review: 61).

D-Serine, through its regulatory effect on glutamatergic
transmission, participates in multiple processes, including
synaptic plasticity (61, 62), cell migration and synaptogenesis
(41, 63), and in homeostatic functions, as a mediator of
hypercapnia-induced respiratory response (64). The production
of D-serine and its tightly regulated release, mainly through
calcium-dependent exocytosis (65), keep its concentration
within a narrow range. Any deviation from this range may
lead to pathology, with abnormally increased levels of D-
serine associated with NMDAR-mediated neurotoxicity (66–68)
and abnormally decreased levels of D-serine associated with
impairments in functional plasticity and with memory deficits
(11). The complexity of its actions and its modulatory effects
are not well understood; indeed, Coyle et al. (69) referred to D-
serine as a “shape-shifting NMDAR co-agonist” and provided
a possible explanation for these dueling effects of D-serine on
driving neuronal plasticity or neurodegeneration based on the
localization of the activated NMDARs involved. It is known that
synaptic NMDARs prompt trophic effects while extra-synaptic
NMDARs on the dendrites or soma drive excitotoxicity (38,
70, 71). Coyle et al. (69) propose that D-serine synthesized by
serine racemase binds preferentially to synaptic NMDARs and
facilitates glutamatergic neurotransmission, while proliferation
of inflammatory A1 astrocytes results in a new source of D-
serine that is released into the extracellular space to activate
extra-synaptic NMDARs.

D-Serine levels in the CNS change during development and
aging. In early developmental stages, a transient increase in
D-serine production matches a transient increase of NMDAR
activity (72). The early postnatal period with high D-serine
levels in glia coincides with a period of intense plasticity,
synaptogenesis and maturation in the CNS, suggesting the
existence of distinct functional roles for D-serine throughout
development (72). Healthy newborn children have elevated CSF
D-serine levels that are rapidly reduced during the first year of life
and reach 15% of the initial concentration at 3 years of age (73).

In the hippocampus of normal aged rats, both D-serine (but
not glycine) and serine racemase levels are decreased relative
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to younger rats (74, 75). In contrast, these reductions in D-
serine and serum racemase are not observed in the LOU/c/jall
rat strain regardless of age (5, 76). The LOU/c/jall strain of rat
(derived from theWistar strain) is a model of healthy aging (with
resistance to obesity and lower oxidative metabolic rates than the
routinely used other inbred strains of rats) (76). Interestingly, the
possibility that D-serine-related pathways could be targeted by
the age-related accumulation of reactive oxygen species (ROS)
has been suggested (5), and LOU/c/jall rats do not develop
oxidative stress (5, 76).

D-SERINE, NMDARs AND COGNITIVE

IMPAIRMENT IN AD/DEMENTIA

Animal Studies
Characterizing the processes associated with hippocampal
dysfunction has been an area of focus in research on AD, where
β-amyloid (Aβ) deposits, intracellular neurofibrillary tangles,
abnormal tau protein phosphorylation and synaptic loss are
typical pathological features (77–79). The pathological changes
that are detected in the brains of patients with AD, such as the
presence of amyloid plaques and neurofibrillary tangles, are now
known to appear several years before the development of clinical
symptoms. As such, current research is focusing more on early
detection and treatment in these earlier stages in the hope of
delaying the onset or slowing the progression of AD.

Although NMDAR function is vital for memory and cognitive
function, its role in the pathophysiology of AD is still not
completely understood. NMDAR over-activation can lead to
cell death mediated by calcium overload. The associated
excitotoxicity is one of the accepted neurochemical models of
AD in rodents and may be involved with the pathophysiology
associated with Aβ , a hallmark of the pathogenesis of
AD (80–82). Interestingly, different forms of Aβ aggregates
increase glutamate release from neurons and astrocytes (2, 83)
and Aβ can increase NMDAR activity and induce inward
Ca2+ current and neurotoxicity; this NMDAR activation may
stimulate Aβ production and Aβ-associated synaptic loss
(2). Aβ deposition appears to play an important role in
the pathophysiology of AD, and the mechanism underlying
glutamate excitotoxicity in AD may be related to Aβ deposition
(84, 85). Aβ aggregation interferes with NMDAR-mediated
neurotransmission, suppressing NMDAR-dependent synaptic
function and LTP, which may lead to cognitive impairment
(86–89). Furthermore, Aβ can lead to intracellular trapping of
NMDARs, decreasing LTP; this effect can be rescued by a Reelin-
and Src kinase-dependent tyrosine phosphorylation in the GluN2
subunit of the NMDARs, restoring normal synaptic plasticity
(90). In addition to Aβ , apolipoprotein E4 (APOE4), a protein
isoform that has lower Aβ-binding capacity than APOE2 and
APOE3, and is a genetic risk factor for AD (91), reduces NMDAR
function and synaptic plasticity by impairing APOE receptor
recycling (92).

Aβ peptides have also been shown to stimulate the synthesis
and release of D-serine (93) in preclinical models (80). The
excessive D-serine release from neurons and glia leads to synaptic

loss and stimulation of extra-synaptic NMDAR currents (94,
95). Excessive levels of D-serine create a dramatic overload of
Ca2+ (96), and degradation of D-serine by DAAO or D-serine
deaminase protects against cell death (97). Dysfunctional D-
serine metabolismmay be a downstream outcome of Aβ toxicity,
and excess D-serine release may contribute to neuronal death
in AD through excitotoxicity. However, whether levels of free
D-serine are elevated in the brains of AD is still a matter of
debate as levels vary depending on brain region and stages of
pathology (10).

Ongoing interest in amyloid precursor protein (APP), the
precursor of the Aβ peptide in AD, has been refueled by
evidence indicating its multifaceted complex role in synaptic
(patho)physiology and development (98). Animal studies have
shown that a lack of APP impairs the structural plasticity of
dendritic spines (important for cognition and memory) and
that APP plays a key role in regulating D-serine homeostasis,
which is an important factor in synaptic plasticity in the adult
brain (98). These authors measured cortical extracellular and
total D-serine concentrations in APP-KO mice and found an
increase in concentrations of total D-serine, but a concurrent
decrease in concentrations of extracellular D-serine. Treatment
with exogenous D-serine not only restored the extracellular
D-serine levels and synaptic plasticity, but also normalized
the concentrations of total D-serine and rescued the cognitive
deficit observed in the APP-KO mice. These results suggest
that the maintenance of D-serine homeostasis requires APP and
demonstrate D-serine’s essential role in adaptive remodeling in
the adult brain (98).

Microglia are the main immune effector cells of the brain and
the main source of inflammatory cytokines and reactive oxygen
species (ROS) in the CNS (5). Alterations in the activation and
regulation of microglia can promote a chronic inflammatory
condition in the CNS in normal and pathological aging
(5), an inflammatory environment termed immunosenescence.
This process induces changes in gene expression related to
the immune response and inflammation, causing increased
susceptibility to inflammatory responses to stressors, which
could facilitate the onset of neurodegeneration (5, 6, 99–
102). Activation of microglial cells, as part of a chronic
inflammatory response, is a prominent component of AD that
drives neurotoxicity through the release of excitotoxins including
glutamate, and increased activity of Aβ , which not only promotes
glutamate release from microglia, but also stimulates expression
of serine racemase and D-serine release from these glial cells
(2, 93, 103). Aβ also promotes serine racemase activity through
increases in intracellular levels of calcium, upregulating the
activity of the enzyme. How much of the changes in D-serine
levels during aging are determined by microglial cell actions is
unclear. However, it is speculated that age-dependent changes in
microglia regulation result in neuroinflammation and increased
oxidative stress (104), in turn eventually activating production of
D-serine by glia and neurons in AD (5).

The functioning of neuronal networks within the CNS
requires high levels of oxygen, and the CNS is particularly
sensitive to oxidative stress (105). Studies have found that
antioxidant levels in the brain are low compared to other
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TABLE 1 | Abnormal D-serine function in normal aging and Alzheimer’s disease.

Serine

racemase

expression

D-serine

levels

NMDARs Cognitive

changes

Normal Aging Down-regulation,

leading to reduced LTP

and impaired synaptic

plasticity

Variable

learning and

memory

deficits

AD Over-stimulation,

interactions with

activated microglia and

Aβ, increased release

of glutamate,

excitotoxicity

Dementia

= decrease; = increase; AD, Alzheimer’s disease; NMDARs, N-methyl-

D-aspartate receptors; LTP, long-term potentiation; Aβ, β-amyloid. [adapted from

Billard (11)].

organs (106). Changes in redox regulation in the CNS may be
accompanied by neuronal dysfunction, particularly alterations of
synaptic plasticity (107, 108). Assuming synaptic plasticity is an
essential neuronal mechanism for learning and memory (13, 14),
it may be a preferred target by which oxidative stress could
alter memory functions. DAAO plays a key role in the process
of oxidative stress and results in formation of ROS; through
this effect and its regulatory function on NMDARs by reducing
levels of D-serine, DAAO may play an important role in the
process of aging and age-related cognitive decline (109). Nagy
et al. (110) studied the effects of the DAAO inhibitor CPD30
on passive avoidance learning and neuronal firing activity in rats
and concluded that inhibition of DAAO is an effective strategy
for cognitive enhancement; CPD30 increased hippocampal firing
and reversed MK-801-induced memory impairment in the
passive avoidance test.

Human Studies
The preclinical studies mentioned above have suggested that
while normal aging may result in decreases in D-serine
synthesis and levels, NMDAR activity, the magnitude of LTP
and synaptic plasticity (all of which may be reversed by
administration of D-serine), pathological aging may involve
activation of serine racemase, increased levels of D-serine,
NMDAR hyperstimulation and excitotoxicity, resulting in
dementia (Table 1).

Madeira et al. (16) conducted a comprehensive combined
clinical-preclinical study on D-serine in AD. D-Serine levels were
measured in post-mortem hippocampal and cortical samples
from non-demented individuals and AD patients. D-Serine
was also measured in hippocampus from wild type rats and
mice after intracerebroventricular injections of Aβ and in the
APP/PS-1 transgenic mouse model of AD. In addition, D-serine
levels in CSF of people with probable AD were also measured
and compared to those of patients with normal pressure
hydrocephalus or major depression, and to healthy controls.
D-Serine levels were higher in the post-mortem hippocampus

and parietal cortex samples of AD patients than in healthy
controls. The researchers also found higher levels of D-serine and
serine racemase in all the rodent models compared to controls.
Furthermore, D-serine levels were higher in the CSF of probable
AD patients compared to the non-demented control groups;
mean D-serine levels in the probable AD group were five-fold
higher than in healthy controls, and approximately two-fold
higher than in the depression or hydrocephalus groups. These
researchers concluded that D-serine levels in brain and CSF are
increased in AD and that D-serine might be a candidate for early
AD diagnosis (16). In contrast, three earlier studies using post-
mortem prefrontal, parietal, frontal or temporal cortical tissue
failed to detect altered D-serine levels between AD and controls
(111–113). All of the post-mortem studies had small sample sizes
and a wide range of participant ages and postmortem collection
times. One study (16) had equal numbers of males and females,
one (113) had all male participants and the other two studies
(111, 112) did not indicate the male/female ratio.

POTENTIAL ROLE OF D-SERINE IN

DIAGNOSIS OF AD

Significant efforts are being made to identify diagnostic markers
and modifiable risk factors for AD, specifically any factor
that influences the earliest stages of the disease process,
when intervention might still provide therapeutic benefit.
In this context, CSF levels of Aβ , total tau protein and
hyperphosphorylated tau (p-tau) have now been included in
diagnostic guidelines (114). Such CSF biomarkers have been
advocated for research purposes, but sensitivity and specificity
issues have generally raised concerns about their widespread
clinical use (15). Madeira et al. (16) proposed that combining CSF
D-serine levels with the Aβ/tau index could markedly increase
the sensitivity and specificity of diagnosis of probable AD.
However, Biemans et al. (115) and Nuzzo et al. (116) did not
find a difference in CSF D-serine levels between AD patients and
elderly controls.

Lin et al. (109) found increased levels of DAAO in the serum
of patients with mild cognitive impairment (MCI) and AD
and observed that the severity of cognitive deficits correlated
positively with DAAO blood levels, suggesting that this enzyme
catabolizing D-serine may also serve as a biomarker forMCI/AD.
These researchers found that DAAO levels were significantly
lower in healthy controls than in the patients, and moreover,
lower in patients with amnestic MCI than in those with moderate
to severe AD (109). In the same study, D-serine levels in serum
were reported to be higher in AD patients than in the healthy
controls. The clinical benefit of DAAO inhibition in AD may
be mediated in part by an antioxidant effect since D-serine
degradation by DAAO generates hydrogen peroxide, a precursor
to many ROS (10, 109). In a later study of D-serine levels
in 144 patients with varying degrees of cognitive impairment,
Lin et al. (117) concluded that higher D-serine levels predict
worse cognitive function, particularly with regard to word recall,
orientation, comprehension, and word-finding.
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In a recent metabolomics study in a cohort of women aged 65–
80 years old, Kimura et al. (118) reported a higher D-proline/(D-
proline+L-proline) ratio in women with MCI compared to
matched controls, and found this biomarker’s accuracy was
improved by further adding the D-serine/(D-serine+L-serine)
ratio. Piubelli et al. (119) measured serum levels of D- and L-
serine in AD patients with either a score of 1 (mild dementia)
or 2 (moderate dementia) in the Clinical Dementia Rating Scale,
and found that D-serine levels and the D-serine/total serine
ratio increased significantly with disease progression. These
researchers suggested using the combination of the above ratio
with other blood-based biomarkers presently under development
and reviewed by Hampel et al. (120).

The role of D-serine in AD is complex and the literature
is often ambiguous. It has been suggested that some of the
differences between findings in laboratory animals and human
AD patients could be due to the fact that current animal models
do not mimic the slow progression and the changes in Aβ and
tau protein that occur in AD in humans (11). It has also been
proposed that studies on D-serine and AD should be done at
various stages of AD since at early stages with low levels of
Aβ oligomers there is also decreased synthesis of L-serine and,
hence, decreased D-serine levels and weaker NMDAR activation.
However, at later stages when there is increased soluble Aβ , glia
start to express more serine racemase and release large amounts
of D-serine, resulting in NMDAR over-activation and resultant
excitotoxicity, neurodegeneration and marked memory deficits
(117). There is also some speculation that D-serine increases
observed in AD patients may be part of a protective mechanism
to counter Aβ signaling and prevent AD pathology (10).

TREATMENT POTENTIAL OF D-SERINE

Asmentioned above, there is a loss of production of D-serine and
a decline in NMDAR activation and a corresponding reduction
of LTP magnitude in the normal aging process, which can be
reversed in animal models by administration of D-serine (11).
These findings imply that increasing D-serine levels in cases
of initial cognitive decline or in early stages of AD may be
therapeutically useful (10).

Findings that the co-agonist modulatory site was not saturated
in vivo prompted investigators to consider whether exogenous D-
serine could act as a cognitive enhancer (10). Although the focus
of the present review is on dementia, it should be mentioned that
much of the research on the effects of D-serine in cognition in
humans has been done on schizophrenia (57, 121–130), reporting
either cognitive benefits (121, 122, 125, 126, 130) or no effects on
cognition (123, 128, 129). It is difficult to compare the studies
since they were performed at several doses, the patients were
taking antipsychotics (which presents a possible confound), and
a variety of tests were conducted to measure cognition. Most of
the studies were carried out using a daily dose of 30 mg/kg, but
Kantrowitz et al. (126, 130) also used higher doses (60 and 120
mg/kg) and reported improvements in cognition.

D-Serine administration can improve cognition in aged
rodents and correct age-related decline in synaptic plasticity

FIGURE 2 | Chemical structures of D-cycloserine (left) and D-cysteine (right).

Structures were located with Google and drawn with ChemDraw.

(10). In mouse models, the learning deficits caused by NMDAR
hypofunction can be rescued by administration of D-serine (131).
Although conflicting results have been reported, D-cycloserine
(Figure 2; a cyclized form of D-serine that is hydrolyzed to
give D-serine and hydroxylamine) has been reported to improve
memory functions in animal studies and in dementia patients
(132, 133). Lin and Lane (133) speculated that D-cycloserine may
have different effects on mood and learning depending on the
stage of dementia involved. D-Serine given intraperitoneally to
rats can increase NMDAR activation in the hippocampus and
improve social memory in rats and recognition and working
memory in mice (10). The potency of exogenous D-serine
to enhance NMDAR activation appears significantly higher in
hippocampal slices from aged rats when compared to effects
in younger adult rats (134). Nikseresht et al. (135), using a rat
model of AD (intracerebroventricular injection of Aβ), reported
a synergistic memory-enhancing effect of D-serine and the
mitochondrial calcium uniporter blocker RU360. The findings
in this report suggested that the coadministration of these drugs
ameliorated memory impairment, probably in part through
an increase in hippocampal levels of cyclic AMP response
element binding protein (CREB) and brain-derived neurotrophic
factor (BDNF).

In a randomized controlled clinical trial (RCT) by Avellar et al.
(9), 50 healthy elderly human adults received a single dose of D-
serine or placebo, and the effects of D-serine administration on
cognitive test performance and a mood scale were measured. In
addition, blood samples were analyzed for levels of D-serine, L-
serine, glutamate and glutamine. D-Serine levels measured while
the participants were on placebo were inversely associated with
aging. D-Serine administration improved performance in the
Groton Maze Learning Test of spatial memory, learning and
problem solving. Individuals who achieved higher increases in
plasma D-serine levels after administration improved more in
test performance. D-Serine administration was not associated
with any significant changes in other cognitive domains, such as
verbal working memory, visual attention or cognitive flexibility.
There were also no changes observed in mood (9). In a
similar study, but in young healthy adults, Levin et al. (136)
demonstrated that D-serine administration improved attention,
verbal learning and memory as well as subjective feelings of
sadness and anxiety.

These above studies suggest an important role for D-serine
in brain networks underlying memory impairment and provide
useful information in the search for new therapeutic strategies
for the treatment of memory deficits. However, an important
question is whether the improvements seen so far with the
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addition of D-serine in animal models and healthy human
controls will have real-life effects in AD (11).

OTHER TREATMENT APPROACHES

RELATED TO D-SERINE

In the aging brain, ROS accumulation may trigger age-
related reduction of cognitive function through oxidative stress.
Consequently, ROS accumulation could be viewed as a major
process acting on the D-serine-related pathway in the aging
hippocampus, especially considering that serine racemase activity
is particularly sensitive to oxidative stress (105). Long-term
dietary supplementation with L-N-acetylcysteine (L-NAC, a
precursor to the antioxidant glutathione) prevented oxidative
damage in the hippocampus and restored D-serine-dependent
NMDAR activation and LTP induction in aged rats (20). These
data provide evidence that maintaining elevated D-serine levels
in the aging hippocampus through the control of the redox state
is able to prevent the cellular injury underlying cognitive aging,
specifically in the CA1 hippocampal area (11).

An increase in D-serine availability in the brain could be
achieved by reducing its degradation by DAAO. Treatment
of rats with a DAAO inhibitor has been reported to increase
levels of D-serine in the cerebral cortex and midbrain (137).
Although DAAO KO mice have been reported to have markedly
increased levels of D-serine in cerebellum and brain stem but
little or no change in D-serine levels in cortex or hippocampus
(138, 139), support for a physiological role for DAAO in
modulating cognition comes from the enhanced learning abilities
reported for DAAO KO mice (57, 140). The DAAO inhibitor
sodium benzoate, which also modulates the immune system
and is an antioxidant, has been shown to improve cognition,
global functioning and positive and negative symptoms of
schizophrenia (141). Modi et al. (142), using an animal model
of AD, reported that sodium benzoate reduced oxidative stress
and protected memory and learning. In addition, in RCTs of 6
weeks daily treatment with sodium benzoate, Lin and colleagues
reported that cognitive scores were improved in early stage
dementia patients and in women, but not men, with later phase
dementia (143).

The D-amino acid D-cysteine, which is derived from the gut,
and is structurally related to D-serine (it is also referred to as
thioserine; Figure 2) also exerts neuroprotection, but it does so
via a DAAO-dependent conversion to H2S (144). Interestingly
DAAO has greater affinity for D-cysteine even though D-serine is
found in far greater concentrations in the brain (145). It is all the
more interesting that D-cysteine has been shown to be a potent
inhibitor of serine racemase (146), thereby making it a potential
treatment for pathologies where D-serine might exert deleterious
effects, such as in AD.

LIMITATIONS IN THE USE OF D-SERINE AS

A BIOMARKER AND TREATMENT

The fact that body fluid levels of D-serine have been reported
to be altered in other psychiatric and neurological disorders,

such as depression, anxiety, schizophrenia, bipolar disorder
and hydrocephalus (16, 61, 147, 148) suggests that D-serine
would not be a specific biomarker for AD. There are also
potential challenges for the clinical use of D-serine, including
the possibility of nephrotoxicity (149, 150). However, this
nephrotoxicity may only be a problem with rats since it has
not been reported in other species, including rodents such as
mice and rabbits (151, 152). Even in rats, the nephrotoxicity is
reversible and appears to occur only at high doses (152). In a
comprehensive review of safety of D-serine across species,Meftah
et al. (152) listed the studies on humans with D-serine that have
been published and reported that only one subject in one study
showed renal abnormalities. These researchers concluded that D-
serine is safe and well tolerated in humans even at the highest
dose (120 mg/kg) tested to date, but that people with pre-existing
renal dysfunction should be excluded from clinical studies. Co-
administration of a DAAO inhibitor with D-serine may be a
strategy to prevent nephrotoxicity since lower doses of D-serine
could be used and hence formation of peripheral metabolites
of D-serine reduced (153). In mice, treatment with a DAAO
inhibitor has been reported to render a low dose of D-serine
effective in treating pre-pulse inhibition deficits caused by the
NMDAR antagonist dizocilpine, compared to the same dose of
D-serine alone (154).

Poor oral bioavailability can also limit the effects of D-
serine on cognition. Accordingly, D-serine had better effects
on cognition when administered as an adjunct to patients with
schizophrenia when higher doses such as 60 mg/kg/day or
higher were used (review: 61). In general, poor oral D-serine
bioavailability may account for mixed results in clinical trials,
and alternative treatment paradigms may need to be considered,
including larger doses of D-serine or a combination of D-serine
and sodium benzoate (thus using lower doses of both drugs while
retaining high efficacy). Because D-serine and sodium benzoate
have different pharmacokinetic and pharmacodynamic profiles,
it is possible that D-serine may be especially useful for treating
depression because of its acute and chronic antidepressant effects,
whereas sodium benzoate may be a safer approach in older adults
with impaired renal function (10).

CHALLENGES AND POSSIBLE FUTURE

DIRECTIONS IN RESEARCH ON D-SERINE

AND COGNITION

Considerable evidence in the literature supports the involvement
of D-serine in reduction of cognitive deficits, but there are
some contradictory findings that indicate that further research
is warranted. For example, Capitao et al. (155), in a study
of a single dose (60 mg/kg) in human volunteers, found
that D-alanine modulated emotional processing while D-serine
did not. Some researchers have questioned the physiological
role of DAAO in controlling D-serine availability because this
enzyme is expressed at low levels in forebrain areas relevant
to cognition such as the hippocampus and cortex, and D-
serine levels have been reported to be elevated markedly in the
cerebellum and brain stem but not in cortex or hippocampus
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of DAAO KO mice (138, 139). However, other researchers
have found that systemic administration of a DAAO inhibitor
to rats increases levels of D-serine in the cortex (137). Labrie
et al. (140) reported that DAAO KO mice had a marked
increase in levels of D-serine in the cerebellum, but also had
a relatively small, but significant, increase in D-serine levels
in the hippocampus and showed enhanced extinction and
reversal learning.

Although it has been proposed that CSF and/or serum
levels of D-serine could be novel biomarkers for AD (16,
119, 156), other researchers have reported that D-serine levels
in these body fluids are unaltered in AD (115, 116). It has
also been reported that perinatal epigenetic mechanisms play
a role in the regulation of levels of D-serine in the brain
(157), and future studies in AD should include epigenetic
investigations on expression of serine racemase and DAAO
genes. Dysregulation of aerobic glycolysis in the brain is often
observed early in the course of AD, and Le Douce et al.
(158) have shown that the astrocytic biosynthetic pathway for
L-serine (the precursor for D-serine), which branches from
glycolysis, is impaired in young AD mice and in AD patients.
These researchers found that dietary supplementation with L-
serine prevented the synaptic and behavioral deficits in AD
mice, which suggests that oral L-serine could be a therapy
for AD.

RELEVANCE OF D-SERINE TO COMORBID

DEPRESSION, ANXIETY AND OTHER

BEHAVIORAL CHANGES IN DEMENTIA

The focus of this review has been on the involvement of
D-serine in cognitive deficits, but dementia is complex and
often there is a high degree of comorbidity with depression,
anxiety, aggression, and/or sleep disorders. There is now an
extensive body of literature indicating involvement of D-serine
in each of these disorders. It may seem contradictory for D-
serine to have antidepressant effects considering the known
antidepressant effects of the NMDAR antagonist ketamine (159),
but several preclinical and clinical studies report antidepressant
actions of D-serine [reviews: (61, 160, 161)]. It has been
proposed that the antidepressant actions of ketamine and D-
serine may be due to common effects on α-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid (AMPA) glutamate receptors
and similar differential actions on synaptic vs. extra-synaptic
NMDARs (160). Wolosker and Balu (55) have provided a
comprehensive review of mainly preclinical studies suggesting
a role of D-serine in fear conditioning and anxiety disorders.
As an abnormal social behavior, aggression (often studied in
mice as social interaction deficits with intruder strains of mice)
has been observed in rodents to show an association with
NMDAR function (162–165). Both D-cycloserine and D-serine
have been reported to improve impaired social interaction
skills, for example in inbred Balb/c mice used as models for
autism (164–167). Nagai et al. (168) reported that mice treated
neonatally with polyI:C (elicits viral-like immune responses) had
emotional and cognitive deficits which could be ameliorated

in adulthood by treatment with D-serine. With regard to
sleep disorders, studies in mammals and Drosophila flies
have shown that NMDARs and D-serine participate in sleep
regulation (169–171). Drosophila has been used as a model for
genetic studies of sleep for several years (172). In a detailed
study of sleep in this model, Dai et al. (173) showed that
sleep is regulated by D-serine through NMDAR1 and that
intestinal expression of serine racemase is important for this
sleep regulation.

Longitudinal studies, both preclinical and clinical, involving
larger samples sizes will be needed in future research on D-
serine, and such investigations should include both males and
females, along with assessments of the comorbid disorders
mentioned above.

SUMMARY

In normal aging there is development of a mild inflammatory
environment and progressive deterioration of several
physiological functions, including cognition involving learning
and memory performance. With aging, the degree of cognitive
impairment can vary markedly among individuals. Memory
formation depends on the capacity of the brain to regulate
long-lasting changes in neuronal communication via synapses,
and these changes in neuronal plasticity are dependent on
LTP, which is regulated in large part by NMDARs. Functioning
of NMDARs is in turn dependent on co-agonists, the most
important of which appears to be D-serine. Numerous animal
studies have shown that even with normal aging there is
a reduction in the magnitude of LTP in the hippocampus
accompanied by a decline in NMDAR action and a decrease in
production and levels of D-serine. It has also been demonstrated
in animal models that administration of D-serine can rescue
the reduced NMDAR function and loss of LTP observed
in aging.

Preclinical studies suggest that D-serine may be useful in
treating cognitive impairment, but while abnormally decreased
levels of D-serine are associated with impairments in functional
plasticity, abnormally increased levels of D-serine can be
associated with NMDAR-mediated excitotoxicity such as occurs
in later-stage AD. Activation of microglia is part of a chronic
inflammatory response in AD that increases release of glutamate
and D-serine from glia and neurons, and Aβ also stimulates
expression of serine racemase in microglia. It has been
suggested that with cognitive deficits associated with normal
aging and in early AD, there may be decreased expression of
serine racemase, decreased levels of D-serine, NMDAR down-
regulation and impaired synaptic plasticity, while in advanced
AD serine racemase activation and D-serine levels are increased
and NMDARs are overstimulated, resulting in excitotoxicity
and dementia.

D-Serine and DAAO have been proposed as possible
biomarkers in the diagnosis of AD, although there have been
conflicting results reported and differences found in animal
models and humans. Current animal models do not mimic
the slow progression and the changes in Aβ and tau protein
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that occur in humans; it has also been proposed that future
studies on D-serine in humans should be done at several stages
of AD. Research to date suggests that earlier stages of AD
would benefit from D-serine supplementation, whereas D-serine
supplementation should be avoided in later stages of AD. DAAO
inhibitors may also be useful for increasing brain D-serine levels
and enhancing learning.

Although we understand a great deal about the roles of D-
serine in brain function, about changes in its brain levels with
normal and pathological aging, and about its potential role as
a cognitive enhancer from experimental and preclinical studies,
much still remains to be learned about its potentially targetable
role in development, treatment and possibly even prevention of
dementia in a clinical setting.
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Extensive evidence suggests a dysfunction of the glutamate NMDA receptor (NMDAR)

in schizophrenia, a severe psychiatric disorder with putative early neurodevelopmental

origins, but clinical onset mainly during late adolescence. On the other hand,

pharmacological models using NMDAR antagonists and the clinical manifestation

of anti-NMDAR encephalitis indicate that NMDAR blockade/hypofunction can trigger

psychosis also at adult stages, without any early developmental dysfunction. Previous

genetic models of NMDAR hypofunction restricted to parvalbumin-positive interneurons

indicate the necessity of an early postnatal impairment to trigger schizophrenia-

like abnormalities, whereas the cellular substrates of NMDAR-mediated psychosis at

adolescent/adult stages are unknown. Neuregulin 1 (NRG1) and its receptor ErbB4

represent schizophrenia-associated susceptibility factors that closely interact with

NMDAR. To determine the neuronal populations implicated in “late” NMDAR-driven

psychosis, we analyzed the effect of the inducible ablation of NMDARs in ErbB4-

expressing cells in mice during late adolescence using a pharmacogenetic approach.

Interestingly, the tamoxifen-inducible NMDAR deletion during this late developmental

stage did not induce behavioral alterations resembling depression, schizophrenia or

anxiety. Our data indicate that post-adolescent NMDAR deletion, even in a wider cell

population than parvalbumin-positive interneurons, is also not sufficient to generate

behavioral abnormalities resembling psychiatric disorders. Other neuronal substrates

that have to be revealed by future studies, may underlie post-adolescent NMDAR-

driven psychosis.

Keywords: glutamate, neurodevelopment, pharmacogenetic, neuregulin-1, schizophrenia, NMDA receptor, post-

adolescent
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INTRODUCTION

Despite intense research, the molecular and cellular mechanisms
of psychotic disorders, like schizophrenia and anti-NMDA
receptor (NMDAR) encephalitis that emerge often during
post-adolescence/young adulthood, are only partly understood.
Glutamate is the main excitatory neurotransmitter in the
mammalian brain. NMDAR represent one of the ligand-
gated non-selective ionotropic glutamate receptors, which are
widely present throughout the brain, in high density within
the hippocampus and the cerebral cortex (1). NMDAR
are preferentially expressed in excitatory neurons that
represent about 70% of the neurons containing NMDAR
(1). Nevertheless, GABAergic interneurons express as
well NMDAR, numerous onto parvalbumin (PV)-positive
interneurons that show a particularly strong glutamatergic
input (2). Extensive evidence implicates dysfunction of the
glutamate NMDAR in the emergence of psychotic symptoms
(3). The glutamate hypothesis of schizophrenia is the most
influential alternative explanatory model of schizophrenia,
postulating hypofunction of NMDAR as pathophysiological
mechanism (4). It emerged from observations that NMDAR
antagonists (phencyclidine/PCP, ketamine, MK-801) mimic
better than any other psychotomimetic drug the whole
spectrum of psychotic symptoms, i.e., not only positive, but
also negative symptoms and cognitive deficits (5). Several
studies reported NMDAR abnormalities in schizophrenia,
showing reduced NMDAR expression in post-mortem brain
tissue in schizophrenia (6, 7), diminished expression of
NMDAR/associated proteins in induced pluripotent stem
cell-derived (iPSC) neurons in schizophrenia (8), and increased
cerebrospinal fluid and post-stress levels of kynurenic acid,
an endogenous NMDAR antagonist in schizophrenia (9).
In addition, proteins structurally and functionally closely
linked to NMDAR, like NRG1 display strong positive genetic
association with schizophrenia (10), whereas abnormal cortical
oscillations triggered by NMDAR dysfunction (11) represent
an electrophysiological endophenotype of schizophrenia (12).
Moreover, subjects suffering from anti-NMDAR encephalitis
show an initial psychotic phase often indistinguishable
from schizophrenia; therefore, an estimated 77% of cases
with anti-NMDAR encephalitis is initially misdiagnosed as
schizophrenia (13). Patients with anti-NMDAR encephalitis
produce anti-GluN1 autoantibodies that reduce surface NMDAR
clusters and protein in a titer-dependent fashion in rodents
and humans in vitro and in vivo (14). Interestingly, the
clinical manifestation of anti-NMDAR encephalitis shows
age-dependent variations: autistic-like features during childhood
(15), psychosis during young adulthood and less severe
symptoms with predominant cognitive deficits in older patients
(16). Moreover, the susceptibility to the psychotomimetic
effects of NMDAR antagonists is minimal or absent in children
and becomes maximal in early adulthood (17). In fact, the
NMDR hypofunction hypothesis of schizophrenia is relying on
initial clinical observations in adults. Although some rodent
studies report protracted schizophrenia-like abnormalities
following perinatal treatment with NMDAR antagonists (18),

it appears clear that NMDAR hypofunction at young adult
stages, without any previous developmental impairment, can
induce as well abnormalities resembling psychosis. Animal
models represent a useful experimental tool to clarify the role
of abnormal NMDAR in psychosis-like abnormalities. Mice
with reduced NMDAR expression (GluN1/Grin1 knockdown,
KD) that express 5–10% of the normal NMDAR levels, are
viable and display schizophrenia-like abnormalities (19).
However, this global NMDAR KD model does not allow
the identification of the neuronal populations implicated in
psychosis. Meanwhile conditional genetic models provide
insights into these cell-specific mechanisms. Numerous data
suggest that GABAergic interneurons play a central role in
schizophrenia showing abnormal distribution and loss of
subpopulations of GABAergic interneurons (20). Most studies
focus on NMDAR hypofunction in fast-spiking PV-positive
GABAergic interneurons that play a key role in generating
cortical oscillatory activity (21). Abnormal synchronization
of gamma-band activity may underlie cognitive deficits in
schizophrenia (22).

However, mice with conditional ablation of NMDAR in
PV-positive interneurons show largely normal behaviors (no
hyperlocomotion and sensorimotor gating deficits as correlates
of positive symptoms of schizophrenia), except for selective
cognitive impairments (23, 24). Cre-driven recombination in
these mice was detected in the somatosensory cortex and
hippocampus at postnatal day 13 (P13) with about 80%
recombination at 29 days (P29) (24). On contrary, mice with
conditional ablation of NMDAR under the control of the Ppp1r2
(protein phosphatase 1, regulatory subunit 2) gene promoter,
targeting mostly (about 75%), but not exclusively PV-positive
interneurons, displayed schizophrenia-like abnormalities (25).
Interestingly, these abnormalities were observed only in the
mouse line in which Cre-driven recombination started at
early postnatal stages, with NMDR expression absent in 40–
50% of cortical and hippocampal interneurons in P28 mutant
mice, but not in mice were recombination started at young
adult stages (P56) (25). Therefore, NMDAR deficiency in
PV-positive interneurons appears not sufficient to induce
all psychosis-like features and if yes, only when occurring
already at early postnatal stages and most likely, also in
other neurons. However, the cellular substrates of NMDAR-
driven psychosis at post-adolescent/young adult stages remain
unknown, these results suggesting that a different neuronal
population, larger than PV-positive interneurons may be
implicated. In sum, there is a discrepancy between the
currently available genetic models of NMDAR dysfunction,
showing psychosis-like changes only when deleted at early
postnatal stages, and pharmacological/clinical data, indicating
that NMDAR blockade also/rather at later/even adult stages can
induce psychosis. We hypothesized that if NMDAR deletion
in PV-positive is insufficient to trigger psychosis-like changes
during adulthood, extension to the larger population of ErbB4-
positive cells may lead to such phenotype.

The schizophrenia-associated susceptibility factors that
interact closely with NMDARs like neuregulin 1 (NRG1) and its
receptor ErbB4, both main genetic risk factors associated with
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schizophrenia (26). Altered NRG1/ErbB4 signaling has been
shown to contribute to NMDAR hypofunction in patients with
schizophrenia (27) and mice with NRG1 deletion have 16% fewer
functional NMDAR than wild-type mice, whereas if a similar
change occurs also in ErbB4 KO mice was not determined (26).
The expression pattern of ErbB4 is highly conserved during
evolution from rodents to humans (28). ErbB4 mRNA is widely
expressed throughout the adult brain, however, it is restricted in
cortical regions to PV-positive interneurons (28). Considerable
expression occurs in the subventricular zone (SVZ) and along
the rostral migratory stream, as well as in other interneuronal
clusters generated in the SVZ and potentially implicated in
the pathophysiology of schizophrenia, forming the Islands
of Calleja (ICj) (29, 30). Moreover, in the midbrain, ErbB4
mRNA expression is prominent in dopaminergic neurons in the
substantia nigra pars compacta and adjacent ventral tegmental
area (29). Further forebrain areas with ErbB4 expression are
the septum, bed nucleus of stria terminalis, medial preoptic
nucleus, suprachiasmatic nucleus, nucleus of the lateral olfactory
tract, subthalamic nucleus, zona incerta, hypothalamus, pre-
and supramammillary nuclei, the central gray, anterior pretectal
nucleus and superior colliculus (29). In contrast, expression is
minimal or absent in most areas of the thalamus, excepting the
reticular nucleus and habenula (29).

We sought in the present study to delineate the specific
contribution of NMDA receptors located on ErbB4-expressing
neurons in the post-adolescent brain to abnormalities relevant
for neuropsychiatric disorders by avoiding deleterious effects
on early cortical circuitry by ablation of the obligatory
GluN1 (formerly NR1) subunit of the NMDAR. The
aim of our study is to identify the cellular substrates of
psychosis induced by NMDAR hypofunction at post-
adolescent stages, and not of schizophrenia in general
(as a disease with most likely early neurodevelopmental
impairment). We do not aim to find the cause of
schizophrenia, but to determine if restricted ablation of
NMDAR in a relevant cell population is associated with
psychosis-like changes.

We employed the Cre/loxP recombination system and
tamoxifen-controlled gene manipulation (31) for time-
and cell type specific depletion of NMDARs during late
adolescence in ErbB4-expressing neurons. Due to fast genetic
inactivation of the functional Grin1 mRNA expression
within two weeks, the NMDAR signaling can be affected
specifically in mature mice, avoiding any interference with
earlier developmental brain circuitry formation. For the
Tamoxifen-induced genetic NMDAR ablation we selected
in mice the “late” developmental stage that corresponds
to transition from adolescence to adulthood, which is the
most frequent time of onset of both schizophrenia and
anti-NMDAR encephalitis.

MATERIALS AND METHODS

Mouse Lines Used in This Study
Mouse lines used in this study are available from
the mouse repositories of the Jackson laboratories

or the EMMA infrafrontier (B6.129-Grin1tm2Rsp/kctt,
EM:09220; B6. CgErbb4tm1.1(cre/ERT2)Aibs/J , Stock: 012360;
B6.Cg-Gt(ROSA)26Sortm14(CAG−tdTomato)Hze Stock 007914).

Generation of Grin11Erb Mice and
Induction of Cre-Mediated Recombination
To achieve NMDAR ablation specifically in most interneurons,
we crossed the well-established Grin1f /f line (32–34) with the
tamoxifen inducible ErbB4-CreERT2-driver line (35).. Mice
harboring one copy of the ErbB4-CreERT2 gene and two copies
of the Grin12lox (Grin1f /f ) allele were used as cell-specific
knockouts (herein called Grin1f /f / ErbB4-CreERT2). Littermates
without the ErbB4-CreERT2 gene and only haploid or diploid
the floxed Grin1 allele (Grin1f /+ or Grin1f /lf ) were used as
controls (called hereafter Grin12lox or controls). We proved, the
tamoxifen-induced interneuronal Cre activity by using tdTomato
Cre reporter mice B6.Cg-Gt(ROSA)26Sortm14(CAG−tdTomato)Hze,
also known A14 (35). Mice were genotyped according to
the public available resources of the mouse repositories:
A14: (https://www.jax.org/Protocol?stockNumber=007914&
protocolID=29436), ErbB4-CreERT2: (https://www.jax.org/
Protocol?stockNumber=012360&protocolID=28814), and
Grin1: for Grin1 genotyping the forward primer NR1.2: CTC
AAG TGA GTC TGC CCC ATG CTG A and the reverse primer
NR1.3as: CAC AGG GGA GGC AAC ACT GTG GAC F were
used to amplify a 369 bp gene fragment for the Grin1-2lox allele
and a 315 bp fragment for the wild type allele. Alternatively,
the genotyping PCR of the EMMA mouse repository can be
employed: https://www.infrafrontier.eu/sites/infrafrontier.eu/
files/upload/public/pdf/genotype_protocols/EM09220_geno.
pdf. The mice were bred and maintained group housed in the
IBF Heidelberg. There were brought to the animal facility at
the Central Institute of Mental Health Mannheim at the age
of 10–14 weeks. To induce the Cre-mediated recombination
at post-adolescence stages both Grin1f /f /ErbB4-CreERT2 mice
and control littermates were injected intraperitoneally twice a
day with 100 µl (i.e., 1mg) tamoxifen (T5648, Sigma-Aldrich)
dissolved in 20 mg/ml peanut old, Sigma-Aldrich) for 5 days
(36, 37) at the age of 7–8 weeks. After recovery the 10–14
days old mice were transferred to the behavioral facility (at the
Central Institute of Mental Health in Mannheim) the mouse
cohorts were subjected to the behavioral test battery for the next
2–3 weeks.

Histological Analysis
Mice were anesthetized with isofluran (Baxter Healthcare
Corporation) and perfused intracardiac with PBS and 4%
paraformaldehyde (PFA, Merck) in PBS prior to decapitation
(38). Brains were removed and fixed in ice-cold 4% PFA for
12 h, embedded in 2.5% agarose (Invitrogen) in PBS. After 12 h
coronal vibratome sections (50µm, Leica Vibratome VT100)
were taken and transferred to a 24ml well plate and in PBS. Slices
were then briefly (1–5min) counterstained in with DAPI (4

′

,6-
diamidino-2-phenylindole, Thermo Fisher), 300 nM in PBS.
Slices were washed 3–5 times with PBS. After final wash in PBS
slices were mounted on glass slides (Menzel-Gläser), air dried
for 10min and embedded in aqua polymount (Polyscience).
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Overview images were acquired with an Axioimager/ Axiovision
(Zeiss) and high-resolution images with the SP8 confocal
microscope (Leica). Images were processed by Adobe Illustrator
CS5 (Adobe).

Behavioral Experiments
At the Central Institute of Mental Health Mannheim the animals
were single-housed in Macrolon type II cages (26.8 × 21.5
× 14.1 cm) on a 12 h reversed dark-light cycle (lights on at
7 pm) and supplied with bedding (aspen wood ABEDD LTE
E-002, ssniff-Spezialdiäten, Soest, Germany), nesting material
(cotton square Zoonlab, Castrop-Rauxel) and water and food
(LASQCdiet Rod16, Altromin, Lage) ad libitum. We assessed
body weight once a week during cage changes under red light.

We assessed nesting behavior, locomotion and exploration
(barrier test, open field and novel object test), anxiety (elevated
o-maze, dark-light test), prepulse inhibition, cognition (radial
arm maze, puzzle box, novel object recognition test) and
stress coping (forced swim test). The behavioral observation
started one week after the arrival with the observation of
nesting in the home cage. Experiments were performed
during the dark phase, at least 1 h after the light change,
except for the nest test due to special demands. The mice
were acclimatized to the testing room for at least 30min,
except for the FST, when acclimatization was limited to 6–
10min. Experimental equipment was cleaned after each trial
with 70% ethanol. The testing order was of the mice was
randomized for each behavioral test using randomizer.org.
The experimenters were unaware of the genotype throughout
the experimentation.

Nesting Test
Nest building was evaluated according to a rating scale on shape
and cohesion of the nest as previously described (39). The mice
were placed in a new home cage with cotton nestled 1 h before
the onset of the dark phase and the score was determined 5 and
24 h later.

Barrier Test
The barrier test was performed as we described earlier (40). In
brief, the mouse was introduced into the rear end of a clean Type
III cage (42.5 x 27.6 x 15.3 cm) with reduced amount of bedding
material. A transparent barrier (2 cm) separated the cage into two
equal compartments. The setup was illuminated with 25 lux. The
latency to cross the barrier, the number of crosses and the rearing
were monitored.

Open Field and Novel Object Test
Locomotion was detected in a white open field (50 x 50 x
50 cm) illuminated by 25 lux, recorded by a video camera and
analyzed by the imaging processing software Ethovision XT
(Noldus Information Technology). Assessed parameters were
total distance moved, center time (10 cm distance to the walls),
movement and velocity (41). For the open field test the mouse
was introduced to the center of the field for 10min. In the
subsequent novel object test, a water-filled 50ml Falcon tube
was introduced upside down in the center of the field. Latency

and number of approaches to this novel object were counted
manually for another 10 min.

Elevated o-Maze Test
To evaluate the approach-avoidance conflict in both mouse lines,
the mice were introduced into the closed section of an o-shaped
gray plastic runway (outer diameter 46 cm, width 6 cm, 50 cm
of the ground). Two walled (height, 10 cm) sections of gray
polyvinyl that were placed opposite to each other. The other
sections were open. The floor was covered by grip tape to prevent
falling. The latency to exit into the open arm, the time on the open
arm and the number of crosses between the closed sections were
monitored for 5 min.

Dark-Light Test
In another test for approach-avoidance conflict the mice were
placed into the dark chamber (20 x 15 cm, black acryl with a black
lid) of a 2-chamber box for 5min. The latency to the first exit, the
time spent in the light compartment and the number of exits into
the chamber (30 x 15 cm, white acryl) illuminated with 600 lux
was detected.

Acoustic Startle Response and Pre-pulse Inhibition
The mouse was introduced into a startle chamber (SR-LAB; San
Diego Instruments) as previously described (37). Briefly, in the
chamber a loudspeaker produced continuous background noise
of 60 dB of sound pressure level (SPL) and the acoustic startle
pulses (white noise, 115 dB SPL, 40ms). After the acclimatization
of 5min, 5 initial startle stimuli were presented, followed by
pseudorandomized presentation of pulse alone, control stimulus,
pulse with prepulse (72 or 76 or 80 or 84 db, 100ms before pulse)
with 10 presentations of each trial type. The intertrial stimulus
was randomized between 10 and 20 s. PPI was calculated as the
percent decrease of the ASR magnitude in trials when the startle
stimulus was preceded by a prepulse [100 x (meanASR amplitude
on pulse alone trials—mean ASR amplitude on prepulse-pulse
trials)/mean ASR amplitude on pulse alone trials].

Radial Arm Maze
This learning task was performed as previously described (37).
Briefly, the mouse was introduced into the center of a maze
consisting of a central platform (20 cm in diameter) connected to
eight arms (50 cm long, 8 cm wide), elevated 50 cm and covered
with Plexiglas tunnels to permit visual orientation by extra-maze
cues. The mouse was free to explore all arms and eat the bait
(one millet seed) out of the food cups at the end of the arm
for max. 10min per day on 10 consecutive days. Otherwise, the
session ended after the mouse ate all baits. Assessed movement
parameters were distance moved, immobility, movement, time
to complete and velocity, parameters on choices and errors
were aborted trials, number of choices, correct choices, errors,
procedural errors and working memory errors and angel choices.
Working memory errors occurred when a mouse revisited an
arm repetitively. The classification of workingmemory errors was
based on the disparity to previous entries of the identical arm,
ranging from 0 (re-entry) to max. 8 (more than eight entries in
between were cumulated). Mice were tested for 10 day, with one
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run per day. The results of two consecutive days were given as
one trial.

Puzzle Box Test
We assessed puzzle solving and memory as previously described
in the puzzle box test (42). Briefly, the mouse was introduced into
a brightly lit white chamber (58 × 28 cm, 600 lux) from where it
could escape into a black goal zone (15 × 28 cm, covered with
lid). The passage into the goal box was modified with increasing
difficulty in the total trials on three consecutive days: run 1) open
door over the underpass location; run 2–4, open underpath; run
5–7, underpath was filled with sawdust (bedding closed tunnel),
and runs 8 and 9, underpath was blocked by a cardboard plug
(blocked channel). A trial started by placing themouse in the start
zone and ended when all four paws of the mouse entered the goal
zone or after a total time of 5min. The performance of mice in
the puzzle box was assessed by measuring the latency to enter the
goal zone.

Novel Object Recognition
The novel object recognition was performed in the same setup as
the open field test in a modified protocol (43). On a first day, the
mouse was habituated to the arena for 10min. On day two, the
habituation of 10min was repeated and followed by an exposure
to two identical objects [either a transparent plastic cube (8 cm)
standing on its tip filled with black paper in a frame made of
coated clay or a glass candy jar filled with turquoise stones and
a silver plastic lid (8 cm)] 2 h later for 7min with at least 15 s
of exploration to be included. Two hours later, the mouse was
introduced again and was free to explore one familiar and one
novel object for 5min. Between the trials the mice were brought
to their home cage. We assessed the time spent and the number
of approaches exploring the objects.

Forced Swim Test
Mice were placed for 6min into a glass cylinder (height 23 cm;
diameter 13 cm) filled with water (21 ◦C) to a height of 12 cm.
The latency to immobility and percentage of time spent immobile
were determined by the image-processing system EthoVision
XT, Noldus Information Technology (44, 45). This test was
conducted twice, with a 24 h inter-trial interval.

Statistical Analyses
Statistical analyses were performed using SPSS Statistics version
24 (IBM, Armonk, NY). Differences were considered to be
significant at a P < 0.05. The data were analyzed through
two-way ANOVA with treatment and sex as factors or, when
appropriate, by using repeated-measures ANOVA. Whenever no
sex differences were observed, we merged the data of the groups
(n = 14). No animals were excluded from the study. The sample
size for all experiments was n = 7 per sex and genotype. The
experimental unit was the single animal.

FIGURE 1 | (A) Generation of Grin11erbb4 mice and Cre-activirty in ErbB4

expressing cells. Schematic for the ErbB4-ERT2Cre-mediated deletion in

Grin1f/f mice. (B) The tamoxifen-induced expression pattern of the

Cre-dependent tdTomato in B6. CgErbb4tm1.1(cre/ERT2)Aibs/J/Gt(ROSA)

26Sortm14(CAG−tdTomato)Hze was evaluated in coronal brain sections of

Tamoxifen-injected and in naive mice 3 weeks after Tamoxifen injection by the

tdTomoto fuorescence in the DAPI stained section. Scale bars 1.0mm, Hi,

Hippocampus; Cx, Cortex; BLA, Basal lateral amygdala.

RESULTS

Strategy for the ErbB4-CreERT2-Mediated
GluN1 Expression
For our experimental approach of NMDAR deletion specifically
in ErbB4 expressing neurons approach we selected the
CgErbB4tm1.1(cre/ERT2)Aibs/J for the tamoxifen-induced Cre
expression (Figure 1A). In several previous studies this line was
used reliably to study the erbB4 gene expression in the mouse
brain (46–48). Similarly, our gene-targeted floxed Grin1 mice
encoding the Grin1f /f targeted allele was shown in our previous
studies to be highly accessible for Cre-mediated inactivation
(32) and for inducible inactivation later in development (33)
or for PV knockout in PV-positive interneurons (49). For the
demonstration of the cell type specific gene inactivation we
employed the Cre-inducible tdTomato indicator mouse (Cg-
Gt(ROSA)26Sortm14(CAG−tdTomato)Hze) as this mouse line was used
routinely to monitor the Cre activity in neuronal cell population
e.g., (50). Thus coronal sections of our CgErbB4tm1.1(cre/ERT2)Aibs/J

Cg-Gt(ROSA)26Sortm14(CAG−tdTomato)Hze mice confirmed the

Frontiers in Psychiatry | www.frontiersin.org 5 November 2021 | Volume 12 | Article 750106123

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Mallien et al. Erbb4-Restricted Post-adolescent Ablation of NMDA Receptors

Tamoxifen induced Cre expression in a subpopulation of
neurons that was published before and that demonstrated the
erbB4 expression in a subpopulation of brain cells (Figure 1B,
Supplementary Figure 1) which were previously described as
interneurons and some glia cells (50) providing indirect evidence
for Tamoxifen induced the deletions of NMDAR in those
cells in our Grin1ff /ErbB4-CreERT2 mice, similar to previous
studies (23–25).

Deletion of GluN1 in ErbB4-Expressing
Cells During Adolescence Did Not Alter
Basic Behavior
Behavioral testing of the animals was performed according to
the time line given in Figure 2. We detected no differences in
body weight (Figure 3A) due to genotype, but a time∗genotype
interaction F(8,192) = 2.384, p = 0.018, showing that
Grin1ff /ErbB4-CreERT2 increased faster in body weight than the
controls. In addition, we found the typical body weight gain over
time F(8,192) = 136.919, p < 0.001 and sex differences F(1,24)
= 74.860, p < 0.001, as well as time∗sex interactions F(8,192) =
9.895, p < 0.001 as the weight of the males increased quicker
than the weight of the females. Nesting behavior also revealed
a sex effect in the 5 h time window [5h: F(1,24) = 10.347, p =

0.004; 24 h: F(1,24) = 4.595, p = 0.042], but neither genotype
effects nor interactions (Figure 3B). Locomotion and exploration
were not affected by the genetic manipulation either, neither in
the barrier test (genotype: number of rearings: F(1,27) = 0.062,
p = 0.806; latency to cross: F(1,27)=0.247, p = 0.623; number of
crosses F(1,27) = 0.098, p = 0.757) (Figures 3C–E) or the open
field novel object test (genotype: open field (OF) distance moved:
F(1,26) = 0.163, p = 0.690; novel object distance moved: F(1,26)
= 2.502, p = 0.126; OF center time: F(1,26) = 0.394, p = 0.536;
NO center time: F(1,26) = 2.394, p = 0.134; NO approaches:
F(1,26) = 0.699, p = 0.411), (Figure 3F). Neither did we find sex
specific differences or interactions in the Test (Figures 3C–F).

Affective and Sensory-Gating Behavior
Was Not Affected by the Genetic
Manipulation
Anxiety-like behavior was similar in the dark-light test and the
elevated o-maze (Figures 4A,B) for genotype and sex (genotype:
time in lit compartment: F(1,26)= 0.141, p= 0.710; time on open
arm: F(1,26) = 0.048, p = 0.829). Immobility, a coping behavior
in the forced swim test, which is often associated with despair
behavior and hence used as a marker for depressive-like behavior,
was also not influenced by sex or genotype (genotype: immobility
day 1: F(1,26) = 0.170, p = 0.684; immobility day 2: F(1,26)
= 0.101, p = 0.753; Figure 4C). The acoustic startle response
as well as the prepulse inhibition also displayed no differences
between the factors (genotype: acoustic startle response: F(1,26)
= 0.397, p = 0.534; intensity: F(3,78) = 100.971, p < 0.001;
genotype: F(1,261= 0.669, p = 0.208); Figures 4D,E). We found
an intensity∗genotype interaction F(3,78) = 2.689, p = 0.052,
which indicates a tendency to lower responsivity to the different
noise intensities in Grin1ff /ErbB4-CreERT2mice.

Learning and Memory Was Not Affected by
the ErbB4-CreERT2-Induced NMDAR
Knockout
Since in the novel object recognition was normal Grin1ff /ErbB4-
CreERT2 mice (Supplementary Table S1) we analyzed the
learning behavior in our mutant mice in more detail, in order
to detect shuttle differences in complex attentional tasks: the
puzzle box and in the radial maze (Figure 5). In our analysis
we found that in learning in all tasks of the puzzle box
of ErbB4-CreERT2-mice was comparable to control littermates
(Figure 5A). Moreover, when the conflict solution (puzzle), the
short term (STM) or long term (LTM memory was analyzed
we could not find a statistical difference between genotypes
[genotype: puzzle: F(1,26) = 0.540, p = 0.469; STM: F(1,26) =
0.675, p = 0.390; LTM: F(1,26) = 0.241, p = 0.628; Figure 5B].
Similarly, in the spatial radial maze (RAM) we detected no
increased working memory errors in Grin1ff /ErbB4-CreERT2
mice compared to controls during the acquisition of the task
[genotype: F(1,26) = 0.517, p = 0.478; Figure 5C] indicating
that the Grin1ff /ErbB4-CreERT2 are not impaired in responses
to natural stimuli.

DISCUSSION

Here we report that ablation of GluN1-containing NMDAR in
ErbB4 expressing cells in adults mice does not significantly affect
cognition and does not induce the typical behavioral correlates
of schizophrenia, depression and anxiety. To our knowledge, our
study provides the first characterization of a genetic model of
inducible genetic ablation of NMDAR during late adolescence in
neurons expressing the NRG1 receptor ErbB4, with relevance for
psychiatric disorders, considering that NRG1 and ErbB4 aremain
candidate risk genes gene for schizophrenia (26).

The present results appear at a first glance surprising since
mutant mice heterozygous for either NRG1 or ErbB4 show
a behavioral phenotype that resembles alterations seen in
schizophrenia and, furthermore, NRG1 hypomorphs, expressing
50% of the normal levels of NRG1, have 16% fewer functional
NMDARs than wild-type mice (26). However, as mentioned by
these authors, such results have to be interpreted with caution so
that they do not necessarily mean that the principal pathogenic
alteration in schizophrenia lies in the glutamate system (26).
One important aspect that needs to be taken into consideration
refers to the fact that NMDAR expression is affected already
in early brain development in the NRG1 hypomorph mice,
whereas they are ablated only postnatally in our inducible
pharmacogenetic model. As mentioned previously, only early
postnatal, but not early adult ablation of NMDAR in (mainly,
but not exclusive) PV-positive interneurons triggers psychosis-
like changes (25), causing an excitation-inhibition E/I imbalance
which emerges after adolescence concomitantly with significant
dendritic retraction and dendritic spine re-localization in
pyramidal neurons (51). One possible explanation could be
that NMDA currents gradually decrease and even became
undetectable during cortical development, with most (74%) of
the parvalbumin-positive interneurons exhibiting no NMDA
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FIGURE 2 | Time line for the behavioral analyses of the two Tamoxifen treated cohorts (B6. CgErbb4tm1.1(cre/ERT2)Aibs/J/Gt(ROSA)26Sortm14(CAG−tdTomato)Hze and

control littermates).

FIGURE 3 | Assessment of basic physiological and locomotor parameters in male and female mice revealed no significant effects on the genotype. (A) Body weight,

(B) nest building score after 5 and 24 h, (C) results of the barrier test in latency to cross the barrier, (D) number of rearings, (E) number of crossings over the barrier. In

(F) the results of the open field (OF) and novel object (NO) test on gives the (left) the distance moved, (middle) time spent in center and (right) the approaches toward

the novel object. Group size n = 14. Data is represented as means + SEM.

Frontiers in Psychiatry | www.frontiersin.org 7 November 2021 | Volume 12 | Article 750106125

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Mallien et al. Erbb4-Restricted Post-adolescent Ablation of NMDA Receptors

FIGURE 4 | The genetic manipulation did not lead to alteration in affective behavior and prepulse-inhibition of the acoustic startle response. (A) Time spent in the

illuminated part of the dark-light box, (B) time spent on the open arm of the elevated o-maze, (C) immobility in the forced swim test, (D) acoustic startle response and

(E) prepulse inhibition of the startle response. Group size n = 7. Data is represented as means + SEM.

current in adults, in contrast to other interneuronal populations,
where they remain stable (52). Therefore, an early postnatal
ablation of NMDARs appears crucial in inducing protracted
neuroplastic impairment that underlies schizophrenia-associated
abnormalities. We cannot exclude that ablation of NMDAR
in ErbB4-positive cells induced at earlier time-points than
in the present investigation may trigger schizophrenia-like
abnormalities. Future studies should determine and compare
such stage-dependent effects of cell type-restricted NMDAR
genetic manipulation.

Our data indicate that post-adolescent deletion of NMDAR
even extended to a much larger neuronal population than PV-
positive interneurons is insufficient to trigger behavioral changes
associated with psychosis. The identification of the neural
substrate of these alterations is not yet finalized, other brain
regions such as thalamic neurons (53) or other interneuronal
subpopulations, such as those expressing somatostatin (54), are
as well valid candidates. Another possibility is that NMDAR
deficiency in PV and possibly ErbB4 neurons may be a risk factor
for developing schizophrenia, but is not sufficient on its own:
environmental risk factors or other supplementary triggers may
be needed to lead to clinical manifestation (50). In line with this
view is as well the finding that global pharmacological blockade
of NMDAR with MK-801 induces catatonia-like changes, as
a feature both of a severe schizophrenia and anti-NMDAR
encephalitis, in Grin11PV mice (34).

Limitations of the Study
Finally, we wish to mention that the validation of the current
inducible pharmacogenetic model is limited by various factors.
Providing experimental evidence for the quantitative removal of
NMDAR from cells expressing the erbB4 gene in animal models
with cell type specific deletions using the erbB4-CreERT2 knockin
line is a big experimental challenge. In previous mice with
interneuron-restricted NMDAR depletion (Grin1 cKOs), the
authors used single cell electrophysiology to demonstrate the loss
of NMDAR currents, which complemented the demonstration
that the CRE expression was restricted to interneurons using
Cre-indicator mice (23). In our conditional NMDAR knock out
mouse model inducible deletion was started not early postnatally
as in that model, but at post-adolescent stages, requiring
functional analysis at later, adult time points. However, preparing
consistently healthy acute brain slices from mature animals for
patch clamping experiments is challenging, due to extensive
myelination, reduced tissue viability and increased vulnerability
to damage etc., the vast majority of brain electrophysiologists
working with brain slices from juvenile animals. Therefore, a
reliable electrophysiological single call analysis is very difficult to
be performed due to the technical limitations of single cell patch
analysis of adult mice. Hence we relied–as all of previous studies,
on the Cre-dependent tdTomato expression pattern induced in
our mice, which was used before for efficient Cre-dependent
removal of the NMDAR. For our studies, we have specifically
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FIGURE 5 | Mutant mice showed no impairments in learning and puzzle

solving. (A) Time to complete the puzzle per trial due to condition. (B) Puzzle,

analysis of the recognition of a novel task; STM, short-term memory (repetitive

task on the same day); LTM, long-term memory (repetitive task of the last day).

(C) Working memory errors in the radial maze in 5 consecutive trials (1 tial = 2

runs). Controls are shown in black, Grin11ErbB4f/f//ErbB4−CreERT2 in white. Group

size n = 14. Data is represented as means + SEM.

imported the Erbb4tm1.1(cre/ERT2)Aibs/J mouse line from
Jackson Labs to Heidelberg and used it in our experiments.
We selected this line because it has already been successfully
used in multiple studies. Thus, the functional tamoxifen-induced
Cre recombinase activity in Rosa Cre-Indicator A14 mice was
reproducible and also clearly detected in erbB4-positive cells
(35, 50, 55). In addition, we used our floxed GluN1 mice, which

we used successfully in three manuscripts (32–34), indicating
that the Cre-mediated inactivation of our floxed Grin1f allele
is efficient.

In this context, it is important to mention that the detection
of successful conditional Cre-induced gene ablation of highly
expressed CNS specific genes, such asGrin1 in a small population
of widely scattered cells in the CNS, such as here the ErbB4-
positive neurons, is experimentally challenging. Belforte et al.
has succeeded in using double in situ hybridization to detect
the loss of NMDAR in most GAD67-positive interneurons in
S1 somatosensory cortex (25), although NMDARs are tightly
distributed in the CNS (32, 56). For the electrophysiological
NMDAR analysis in the GAD67-positive cells he adopted a
method that was initially developed to determine the expression
profile in single 5HT3A1 expressing cells in the mouse brain.
In this method, the 5HT3A neurons were tagged by the a
fluorescent protein (FP). By Laser Capture Microscopy (LCM)
the RNA of the FP positive cells was isolated and the mRNA
was amplified by single cell RT-PCR. In this example, the
gene expression profiles of EGFP-tagged 5HT3A expressing
neurons was determined (57). To date several publicly available
“Fluorescent Cre-activity indicator mouse lines” (see Jackson
labs, and the A14 line used in this study) are available. Their
usage have greatly facilitated the specialized task of detecting
Cre expressing single cells in brain slices. By using one of
those CRE-FP transgenes Belforte et al., was able to detect
the loss of NMDAR currents in CRE-FP expressing GAD67
interneurons of young mice (25) and Lin et al., succeeded in
determining the electrophysiological profile of vGat deficient
ErbB4 cells (58). Thus, the implementation of combined CRE-
FP in in the same cell opened the possibility of optimal,
reliable electrophysiological analysis of gene defects in sparse
neuronal subpopulations. A lot of patience and breeding
effort is required here to cross three different mouse lines.
However, this cellular electrophysiological analysis appears to
be largely limited to brain slices from young mice. Thus,
Belforte et al. also show E-phys patching of Cre-FP-expressing
GAD67 cells only in young mice but not in old mice from
an independent cohort of a second NMDAR-KO mouse line
(25). For adult mice LCM the RNA of single cells is still
an option.

In conclusion, our results showing that restricted post-
adolescent deletion of NMDAR from a relatively large
neuronal population of ErbB4-positive neurons does not
affect behavior is once again emphasizing the role of
neurodevelopmental impairment in the emergence of several
psychiatric disorders. Inducible genetic models represent useful
tools toward identifying the neuronal populations implicated
in NMDAR-driven psychosis at specific developmental stages,
including adulthood.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

Frontiers in Psychiatry | www.frontiersin.org 9 November 2021 | Volume 12 | Article 750106127

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Mallien et al. Erbb4-Restricted Post-adolescent Ablation of NMDA Receptors

ETHICS STATEMENT

All experimental procedures were approved by the Animal
Welfare Committee (Regierungspräsidium Karlsruhe) and
carried out according to the European Communities Council
Directive 63/2010/EU (license number: 35-9185-81-G-3-17).

AUTHOR CONTRIBUTIONS

AM, PG, and DI designed the study, analyzed the results, and
wrote the manuscript. MV, SC, and RS generated, bred, and
analyzed the transgenic animal lines. NP and AM performed the
behavioral analyses. All authors contributed to the article and
approved the submitted version.

FUNDING

The present work was supported by grants from the Deutsche
Forschungsgemeinschaft (DFG) IN 168/3-1, the Ingeborg

Ständer Foundation, the ERA-NET NEURON program, the
Bundesministerium für Bildung und Forschung (BMBF) under
the frame of Neuron Cofund (ERA-NET NEURON NMDAR-
PSY) and the Swiss National Foundation (SNF) 186346
to DI.

ACKNOWLEDGMENTS

We acknowledge financial support by DFG within the funding
program Open Access Publishing, by the Baden-Württemberg
Ministry of Science, Research and the Arts and by the Ruprecht-
Karls-Universität Heidelberg.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpsyt.
2021.750106/full#supplementary-material

REFERENCES

1. Conti F, Minelli A, DeBiasi S, Melone M. Neuronal and glial localization

of NMDA receptors in the cerebral cortex. Mol Neurobiol. (1997) 14:1–18.

doi: 10.1007/BF02740618

2. Freund TF. Interneuron Diversity series: Rhythm and mood

in perisomatic inhibition. Trends Neurosci. (2003) 26:489–95.

doi: 10.1016/S0166-2236(03)00227-3

3. Inta D, Monyer H, Sprengel R, Meyer-Lindenberg A, Gass P. Mice with

genetically altered glutamate receptors as models of schizophrenia:

a comprehensive review. Neurosci Biobehav Rev. (2010) 34:285–94.

doi: 10.1016/j.neubiorev.2009.07.010

4. Coyle JT. Glutamate and schizophrenia: beyond the dopamine hypothesis.

Cell Mol Neurobiol. (2006) 26:365–84. doi: 10.1007/s10571-006-9062-8

5. Lahti AC, Koffel B, LaPorte D, Tamminga CA. Subanesthetic doses of

ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology.

(1995) 13:9–19. doi: 10.1016/0893-133X(94)00131-I

6. Kristiansen LV, Beneyto M, Haroutunian V, Meador-Woodruff JH. Changes

in NMDA receptor subunits and interacting PSD proteins in dorsolateral

prefrontal and anterior cingulate cortex indicate abnormal regional

expression in schizophrenia. Mol Psychiatry. (2006) 11:737–47, 705.

doi: 10.1038/sj.mp.4001844

7. Weickert CS, Fung SJ, Catts VS, Schofield PR, Allen KM, Moore LT, et

al. Molecular evidence of N-methyl-D-aspartate receptor hypofunction in

schizophrenia.Mol Psychiatry. (2013) 18:1185–92. doi: 10.1038/mp.2012.137

8. Brennand K, Savas JN, Kim Y, Tran N, Simone A, Hashimoto-Torii K,

et al. Phenotypic differences in hiPSC NPCs derived from patients with

schizophrenia.Mol Psychiatry. (2015) 20:361–8. doi: 10.1038/mp.2014.22

9. Chiappelli J, Pocivavsek A, Nugent KL, Notarangelo FM, Kochunov P,

Rowland LM, et al. Stress-induced increase in kynurenic acid as a potential

biomarker for patients with schizophrenia and distress intolerance. JAMA

Psychiatry. (2014) 71:761–8. doi: 10.1001/jamapsychiatry.2014.243

10. Li D, Collier DA, He L. Meta-analysis shows strong positive association of

the neuregulin 1 (NRG1) gene with schizophrenia. Hum Mol Genet. (2006)

15:1995–2002. doi: 10.1093/hmg/ddl122

11. Rotaru DC, Lewis DA, Gonzalez-Burgos G. The role of glutamatergic inputs

onto parvalbumin-positive interneurons: relevance for schizophrenia. Rev

Neurosci. (2012) 23:97–109. doi: 10.1515/revneuro-2011-0059

12. Rosen AM, Spellman T, Gordon JA. Electrophysiological endophenotypes

in rodent models of schizophrenia and psychosis. Biol Psychiatry. (2015)

77:1041–9. doi: 10.1016/j.biopsych.2015.03.021

13. Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M,

et al. Anti-NMDA-receptor encephalitis: case series and analysis

of the effects of antibodies. Lancet Neurol. (2008) 7:1091–8.

doi: 10.1016/S1474-4422(08)70224-2

14. Hughes EG, Peng X, Gleichman AJ, Lai M, Zhou L, Tsou R, et al. Cellular and

synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci. (2010)

30:5866–75. doi: 10.1523/JNEUROSCI.0167-10.2010

15. Creten C, van der Zwaan S, Blankespoor RJ, Maatkamp A, Nicolai J, van Os J,

et al. Late onset autism and anti-NMDA-receptor encephalitis. Lancet. (2011)

378:98. doi: 10.1016/S0140-6736(11)60548-5

16. Titulaer MJ, McCracken L, Gabilondo I, Iizuka T, Kawachi I, Bataller L, et al.

Late-onset anti-NMDA receptor encephalitis. Neurology. (2013) 81:1058–63.

doi: 10.1212/WNL.0b013e3182a4a49c

17. Farber NB, Wozniak DF, Price MT, Labruyere J, Huss J, St Peter H, et

al. Age-specific neurotoxicity in the rat associated with NMDA receptor

blockade: potential relevance to schizophrenia? Biol Psychiatry. (1995) 38:788–

96. doi: 10.1016/0006-3223(95)00046-1

18. Uehara T, Sumiyoshi T, Seo T, Itoh H, Matsuoka T, Suzuki M, et al.

Long-term effects of neonatal MK-801 treatment on prepulse inhibition

in young adult rats. Psychopharmacology (Berl). (2009) 206:623–30.

doi: 10.1007/s00213-009-1527-2

19. MohnAR, Gainetdinov RR, CaronMG, Koller BH.Mice with reducedNMDA

receptor expression display behaviors related to schizophrenia. Cell. (1999)

98:427–36. doi: 10.1016/S0092-8674(00)81972-8

20. Hashimoto T, Bazmi HH, Mirnics K, Wu Q, Sampson AR, Lewis DA.

Conserved regional patterns of GABA-related transcript expression in the

neocortex of subjects with schizophrenia. Am J Psychiatry. (2008) 165:479–89.

doi: 10.1176/appi.ajp.2007.07081223

21. Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma

rhythms enhance cortical circuit performance. Nature. (2009) 459:698–702.

doi: 10.1038/nature07991

22. Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in

schizophrenia. Nat Rev Neurosci. (2010) 11:100–13. doi: 10.1038/nrn2774

23. Korotkova T, Fuchs EC, Ponomarenko A, von Engelhardt J, Monyer

H, NMDA. receptor ablation on parvalbumin-positive interneurons

impairs hippocampal synchrony, spatial representations, and working

memory. Neuron. (2010) 68:557–69. doi: 10.1016/j.neuron.2010.

09.017

24. Carlén M, Meletis K, Siegle JH, Cardin JA, Futai K, Vierling-Claassen D,

et al. A critical role for NMDA receptors in parvalbumin interneurons for

gamma rhythm induction and behavior. Mol Psychiatry. (2012) 17:537–48.

doi: 10.1038/mp.2011.31

25. Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y, et al. Postnatal NMDA

receptor ablation in corticolimbic interneurons confers schizophrenia-like

phenotypes. Nat Neurosci. (2010) 13:76–83. doi: 10.1038/nn.2447

Frontiers in Psychiatry | www.frontiersin.org 10 November 2021 | Volume 12 | Article 750106128

https://www.frontiersin.org/articles/10.3389/fpsyt.2021.750106/full#supplementary-material
https://doi.org/10.1007/BF02740618
https://doi.org/10.1016/S0166-2236(03)00227-3
https://doi.org/10.1016/j.neubiorev.2009.07.010
https://doi.org/10.1007/s10571-006-9062-8
https://doi.org/10.1016/0893-133X(94)00131-I
https://doi.org/10.1038/sj.mp.4001844
https://doi.org/10.1038/mp.2012.137
https://doi.org/10.1038/mp.2014.22
https://doi.org/10.1001/jamapsychiatry.2014.243
https://doi.org/10.1093/hmg/ddl122
https://doi.org/10.1515/revneuro-2011-0059
https://doi.org/10.1016/j.biopsych.2015.03.021
https://doi.org/10.1016/S1474-4422(08)70224-2
https://doi.org/10.1523/JNEUROSCI.0167-10.2010
https://doi.org/10.1016/S0140-6736(11)60548-5
https://doi.org/10.1212/WNL.0b013e3182a4a49c
https://doi.org/10.1016/0006-3223(95)00046-1
https://doi.org/10.1007/s00213-009-1527-2
https://doi.org/10.1016/S0092-8674(00)81972-8
https://doi.org/10.1176/appi.ajp.2007.07081223
https://doi.org/10.1038/nature07991
https://doi.org/10.1038/nrn2774
https://doi.org/10.1016/j.neuron.2010.09.017
https://doi.org/10.1038/mp.2011.31
https://doi.org/10.1038/nn.2447
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Mallien et al. Erbb4-Restricted Post-adolescent Ablation of NMDA Receptors

26. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson

T, Ghosh S, et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum

Genet. (2002) 71:877–92. doi: 10.1086/342734

27. Hahn CG, Wang HY, Cho DS, Talbot K, Gur RE, Berrettini WH, et al. Altered

neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in

schizophrenia. Nat Med. (2006) 12:824–8. doi: 10.1038/nm1418

28. Neddens J, Buonanno A. Expression of the neuregulin receptor ErbB4 in the

brain of the rhesus monkey (Macaca mulatta). PLoS ONE. (2011) 6:e27337.

doi: 10.1371/journal.pone.0027337

29. Steiner H, Blum M, Kitai ST, Fedi P. Differential expression of ErbB3 and

ErbB4 neuregulin receptors in dopamine neurons and forebrain areas of the

adult rat. Exp Neurol. (1999) 159:494–503. doi: 10.1006/exnr.1999.7163

30. Inta D, Meyer-Lindenberg A, Gass P. Alterations in postnatal neurogenesis

and dopamine dysregulation in schizophrenia: a hypothesis. Schizophr Bull.

(2011) 37:674–80. doi: 10.1093/schbul/sbq134

31. Erdmann G, Schütz G, Berger S. Inducible gene inactivation in

neurons of the adult mouse forebrain. BMC Neurosci. (2007) 8:63.

doi: 10.1186/1471-2202-8-63

32. Niewoehner B, Single FN, Hvalby Ø, Jensen V. Meyer zum Alten

Borgloh S, Seeburg PH, et al. Impaired spatial working memory but

spared spatial reference memory following functional loss of NMDA

receptors in the dentate gyrus. Eur J Neurosci. (2007) 25:837–46.

doi: 10.1111/j.1460-9568.2007.05312.x

33. Bannerman DM, Bus T, Taylor A, Sanderson DJ, Schwarz I, Jensen V, et al.

Dissecting spatial knowledge from spatial choice by hippocampal NMDA

receptor deletion. Nat Neurosci. (2012) 15:1153–9. doi: 10.1038/nn.3166

34. Bygrave AM,Masiulis S, Nicholson E, BerkemannM, Barkus C, Sprengel R, et

al. Knockout of NMDA-receptors from parvalbumin interneurons sensitizes

to schizophrenia-related deficits induced by MK-801. Transl Psychiatry.

(2016) 6:e778. doi: 10.1038/tp.2016.44

35. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A

robust and high-throughput Cre reporting and characterization system for the

whole mouse brain. Nat Neurosci. (2010) 13:133–40. doi: 10.1038/nn.2467

36. Vogt MA, Chourbaji S, Brandwein C, Dormann C, Sprengel R, Gass P.

Suitability of tamoxifen-inducedmutagenesis for behavioral phenotyping. Exp

Neurol. (2008) 211:25–33. doi: 10.1016/j.expneurol.2007.12.012

37. Inta D, Vogt MA, Elkin H, Weber T, Lima-Ojeda JM, Schneider M, et

al. Phenotype of mice with inducible ablation of GluA1 AMPA receptors

during late adolescence: relevance for mental disorders. Hippocampus. (2014)

24:424–35. doi: 10.1002/hipo.22236

38. Gass P, Prior P, Kiessling M. Correlation between seizure intensity and stress

protein expression after limbic epilepsy in the rat brain. Neuroscience. (1995)

65:27–36. doi: 10.1016/0306-4522(95)92049-P

39. Chourbaji S, Brandwein C, Vogt MA, Dormann C, Hellweg R, Gass P.

Nature vs. nurture: can enrichment rescue the behavioural phenotype

of BDNF heterozygous mice? Behav Brain Res. (2008) 192:254–8.

doi: 10.1016/j.bbr.2008.04.015

40. Mallien AS, Häger C, Palme R, Talbot SR, Vogt MA, Pfeiffer N, et al.

Systematic analysis of severity in a widely used cognitive depression model

for mice. Lab Anim. (2020) 54:40–9. doi: 10.1177/0023677219874831

41. Zueger M, Urani A, Chourbaji S, Zacher C, Roche M, Harkin A, et al.

Olfactory bulbectomy in mice induces alterations in exploratory behavior.

Neurosci Lett. (2005) 374:142–6. doi: 10.1016/j.neulet.2004.10.040

42. Ben Abdallah NM, Fuss J, Trusel M, Galsworthy MJ, Bobsin K, Colacicco

G, et al. The puzzle box as a simple and efficient behavioral test

for exploring impairments of general cognition and executive functions

in mouse models of schizophrenia. Exp Neurol. (2011) 227:42–52.

doi: 10.1016/j.expneurol.2010.09.008

43. Mutlu O, Ulak G, Belzung C. Effects of nitric oxide synthase inhibitors 1-

(2-trifluoromethylphenyl)–imidazole (TRIM) and 7-nitroindazole (7-NI) on

learning and memory in mice. Fundam Clin Pharmacol. (2011) 25:368–77.

doi: 10.1111/j.1472-8206.2010.00851.x

44. Kronenberg G, Balkaya M, Prinz V, Gertz K, Ji S, Kirste I, et al.

Exofocal dopaminergic degeneration as antidepressant target in mouse

model of poststroke depression. Biol Psychiatry. (2012) 72:273–81.

doi: 10.1016/j.biopsych.2012.02.026

45. Lima-Ojeda JM, Vogt MA, Pfeiffer N, Dormann C, Köhr G, Sprengel R, et al.

Pharmacological blockade of GluN2B-containing NMDA receptors induces

antidepressant-like effects lacking psychotomimetic action and neurotoxicity

in the perinatal and adult rodent brain. Prog Neuropsychopharmacol Biol

Psychiatry. (2013) 45:28–33. doi: 10.1016/j.pnpbp.2013.04.017

46. Golub MS, Germann SL, Lloyd KC. Behavioral characteristics of a nervous

system-specific erbB4 knock-out mouse. Behav Brain Res. (2004) 153:159–70.

doi: 10.1016/j.bbr.2003.11.010

47. Shamir A, Kwon OB, Karavanova I, Vullhorst D, Leiva-Salcedo E, Janssen MJ,

et al. The importance of the NRG-1/ErbB4 pathway for synaptic plasticity and

behaviors associated with psychiatric disorders. J Neurosci. (2012) 32:2988–97.

doi: 10.1523/JNEUROSCI.1899-11.2012

48. Chen YH, Lan YJ, Zhang SR Li WP, Luo ZY, Lin S, et al. ErbB4 signaling in the

prelimbic cortex regulates fear expression. Transl Psychiatry. (2017) 7:e1168.

doi: 10.1038/tp.2017.139

49. Bygrave AM, Kilonzo K, Kullmann DM, Bannerman DM, Kätzel D.

Can N-Methyl-D-Aspartate Receptor Hypofunction in Schizophrenia Be

Localized to an Individual Cell Type? Front Psychiatry. (2019) 10:835.

doi: 10.3389/fpsyt.2019.00835

50. Bean JC, Lin TW, Sathyamurthy A, Liu F, Yin DM, Xiong WC, et

al. Genetic labeling reveals novel cellular targets of schizophrenia

susceptibility gene: distribution of GABA and non-GABA ErbB4-

positive cells in adult mouse brain. J Neurosci. (2014) 34:13549–66.

doi: 10.1523/JNEUROSCI.2021-14.2014

51. Pafundo DE, Pretell Annan CA, Fulginiti NM, Belforte JE. Early NMDA

Receptor ablation in interneurons causes an activity-dependent e/i imbalance

in vivo in prefrontal cortex pyramidal neurons of a mouse model

useful for the study of schizophrenia. Schizophr Bull. (2021) 47:1300–9.

doi: 10.1093/schbul/sbab030

52. Wang HX, Gao WJ. Cell type-specific development of NMDA receptors in

the interneurons of rat prefrontal cortex. Neuropsychopharmacology. (2009)

34:2028–40. doi: 10.1038/npp.2009.20

53. Vukadinovic Z, NMDA. receptor hypofunction and the

thalamus in schizophrenia. Physiol Behav. (2014) 131:156–9.

doi: 10.1016/j.physbeh.2014.04.038

54. Alherz F, Alherz M, Almusawi H, NMDAR. hypofunction and somatostatin-

expressing GABAergic interneurons and receptors: A newly identified

correlation and its effects in schizophrenia. Schizophr Res Cogn. (2017) 8:1–6.

doi: 10.1016/j.scog.2017.02.001

55. Harris JA, Hirokawa KE, Sorensen SA, Gu H, Mills M, Ng LL,

et al. Anatomical characterization of Cre driver mice for neural

circuit mapping and manipulation. Front Neural Circuits. (2014) 8:76.

doi: 10.3389/fncir.2014.00076

56. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH.

Developmental and regional expression in the rat brain and functional

properties of four NMDA receptors. Neuron. (1994) 12:529–40.

doi: 10.1016/0896-6273(94)90210-0

57. Khodosevich K, Inta D, Seeburg PH, Monyer H. Gene expression

analysis of in vivo fluorescent cells. PLoS One. (2007) 2:e1151.

doi: 10.1371/journal.pone.0001151

58. Lin TW, Tan Z, Barik A, Yin DM, Brudvik E, Wang H, et al. Regulation of

synapse development by Vgat deletion from ErbB4-positive interneurons. J

Neurosci. (2018) 38:2533–50. doi: 10.1523/JNEUROSCI.0669-17.2018

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Mallien, Pfeiffer, Vogt, Chourbaji, Sprengel, Gass and Inta. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Psychiatry | www.frontiersin.org 11 November 2021 | Volume 12 | Article 750106129

https://doi.org/10.1086/342734
https://doi.org/10.1038/nm1418
https://doi.org/10.1371/journal.pone.0027337
https://doi.org/10.1006/exnr.1999.7163
https://doi.org/10.1093/schbul/sbq134
https://doi.org/10.1186/1471-2202-8-63
https://doi.org/10.1111/j.1460-9568.2007.05312.x
https://doi.org/10.1038/nn.3166
https://doi.org/10.1038/tp.2016.44
https://doi.org/10.1038/nn.2467
https://doi.org/10.1016/j.expneurol.2007.12.012
https://doi.org/10.1002/hipo.22236
https://doi.org/10.1016/0306-4522(95)92049-P
https://doi.org/10.1016/j.bbr.2008.04.015
https://doi.org/10.1177/0023677219874831
https://doi.org/10.1016/j.neulet.2004.10.040
https://doi.org/10.1016/j.expneurol.2010.09.008
https://doi.org/10.1111/j.1472-8206.2010.00851.x
https://doi.org/10.1016/j.biopsych.2012.02.026
https://doi.org/10.1016/j.pnpbp.2013.04.017
https://doi.org/10.1016/j.bbr.2003.11.010
https://doi.org/10.1523/JNEUROSCI.1899-11.2012
https://doi.org/10.1038/tp.2017.139
https://doi.org/10.3389/fpsyt.2019.00835
https://doi.org/10.1523/JNEUROSCI.2021-14.2014
https://doi.org/10.1093/schbul/sbab030
https://doi.org/10.1038/npp.2009.20
https://doi.org/10.1016/j.physbeh.2014.04.038
https://doi.org/10.1016/j.scog.2017.02.001
https://doi.org/10.3389/fncir.2014.00076
https://doi.org/10.1016/0896-6273(94)90210-0
https://doi.org/10.1371/journal.pone.0001151
https://doi.org/10.1523/JNEUROSCI.0669-17.2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


ORIGINAL RESEARCH

published: 27 January 2022
doi: 10.3389/fpsyt.2022.737295

Frontiers in Psychiatry | www.frontiersin.org 1 January 2022 | Volume 13 | Article 737295

Edited by:

Celia J. A. Morgan,

University of Exeter, United Kingdom

Reviewed by:

Debamitra Das,

Lieber Institute for Brain Development,

United States

Tomas Palenicek,

National Institute of Mental

Health, Czechia

*Correspondence:

Kjartan Frisch Herrik

KFH@lundbeck.com

†ORCID:

Christien Bowman

orcid.org/0000-0001-7953-6585

Ulrike Richter

orcid.org/0000-0001-6100-7984

Christopher R. Jones

orcid.org/0000-0002-3338-7702

Claus Agerskov

orcid.org/0000-0003-2244-713X

Kjartan Frisch Herrik

orcid.org/0000-0002-1194-0394

Specialty section:

This article was submitted to

Psychopharmacology,

a section of the journal

Frontiers in Psychiatry

Received: 06 July 2021

Accepted: 06 January 2022

Published: 27 January 2022

Citation:

Bowman C, Richter U, Jones CR,

Agerskov C and Herrik KF (2022)

Activity-State Dependent Reversal of

Ketamine-Induced Resting State EEG

Effects by Clozapine and Naltrexone in

the Freely Moving Rat.

Front. Psychiatry 13:737295.

doi: 10.3389/fpsyt.2022.737295

Activity-State Dependent Reversal of
Ketamine-Induced Resting State EEG
Effects by Clozapine and Naltrexone
in the Freely Moving Rat

Christien Bowman 1,2†, Ulrike Richter 3†, Christopher R. Jones 4†, Claus Agerskov 3† and

Kjartan Frisch Herrik 3*†

1 Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands, 2 Bio Imaging Laboratory, Faculty
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Ketamine is a non-competitive N-Methyl-D-aspartate receptor (NMDAR) antagonist used

in the clinic to initiate and maintain anaesthesia; it induces dissociative states and has

emerged as a breakthrough therapy for major depressive disorder. Using local field

potential recordings in freely moving rats, we studied resting state EEG profiles induced

by co-administering ketamine with either: clozapine, a highly efficacious antipsychotic;

or naltrexone, an opioid receptor antagonist reported to block the acute antidepressant

effects of ketamine. As human electroencephalography (EEG) is predominantly recorded

in a passive state, head-mounted accelerometers were used with rats to determine

active and passive states at a high temporal resolution to offer the highest translatability.

In general, pharmacological effects for the three drugs were more pronounced in (or

restricted to) the passive state. Specifically, during inactive periods clozapine induced

increases in delta (0.1–4Hz), gamma (30–60Hz) and higher frequencies (>100Hz).

Importantly, it reversed the ketamine-induced reduction in low beta power (10–20Hz)

and potentiated ketamine-induced increases in gamma and high frequency oscillations

(130–160Hz). Naltrexone inhibited frequencies above 50Hz and significantly reduced

the ketamine-induced increase in high frequency oscillations. However, some frequency

band changes, such as clozapine-induced decreases in delta power, were only seen in

locomoting rats. These results emphasise the potential in differentiating between activity

states to capture drug effects and translate to human resting state EEG. Furthermore,

the differential reversal of ketamine-induced EEG effects by clozapine and naltrexone

may have implications for the understanding of psychotomimetic as well as rapid

antidepressant effects of ketamine.

Keywords: NMDAR (NMDA receptor), resting state EEG, translational biomarker, schizophrenia, antidepressant,

naltrexone, clozapine, ketamine

130

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2022.737295
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2022.737295&domain=pdf&date_stamp=2022-01-27
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:KFH@lundbeck.com
http://orcid.org/0000-0001-7953-6585
http://orcid.org/0000-0001-6100-7984
http://orcid.org/0000-0002-3338-7702
http://orcid.org/0000-0003-2244-713X
http://orcid.org/0000-0002-1194-0394
https://doi.org/10.3389/fpsyt.2022.737295
https://www.frontiersin.org/articles/10.3389/fpsyt.2022.737295/full


Bowman et al. Activity-State Dependent Rat EEG

Graphical Abstract |

INTRODUCTION

Ketamine is a non-competitive N-Methyl-D-aspartate receptor
(NMDAR) antagonist investigated for its psychotomimetic
properties (1, 2) and has, among other NMDAR antagonists,
been used to model positive, negative and cognitive symptoms
of schizophrenia (SZ) (3, 4). More recently, ketamine has gained
attention for its robust, long-lasting, rapid-acting antidepressant
(RAAD) effects (5, 6). The mechanism of therapeutic effect
remains un-elucidated and understanding RAAD pathways is
complicated by ketamine’s affinities to receptors in opioid,
norepinephric, dopaminergic and serotonergic systems (1, 7, 8).

Concerns that ketamine RAAD effects are opioid dependent
were raised (9–13) after publication of two human studies using
naltrexone (opioid antagonist) and ketamine (14, 15). Williams’
study reported that naltrexone pre-treatment completely
prevented ketamine RAAD improvements but left dissociation
intact. Yoon’s study found the opposite, but differed substantially
in methodology. Subsequent research in rodents both implicates

Abbreviations: AC, Auditory cortex; ECoG, Electrocorticography; EEG,

Electroencephalography; FFT, Fast Fourier Transform; GABA - γ-aminobutyric

acid; HFO, High frequency oscillations; LFP, Local field potential; PFC, Prefrontal

cortex (human) / Infralimbic Cortex (rat); NAc, Nucleus accumbens; NMDAR,

N-Methyl-D-aspartate receptor; RAAD, Rapid acting antidepressant; rsEEG,

Resting state EEG; S.C, Subcutaneous; SZ, Schizophrenia; VEH, Vehicle.

and refutes opioid involvement in the RAAD effect of NMDAR
antagonists (9, 16–18). Debate remains as to whether acute
naltrexone administration prevents RAAD effects, but further
research in human subjects is stymied by ethical concerns.

In vivo local field potentials (LFP), electrocorticography
(ECoG) and electroencephalography (EEG) are regularly used
in translational research of disorders and potential therapeutics
including Major Depressive Disorder (19–23). Despite the
potential utility of these techniques to clarify the ketamine-opioid
debate, at the time of writing no LFP or EEG data of acute
‘naltrexone plus ketamine’ have been published.

LFP and ECoG paradigms are also translationally informative
for schizophrenia (SZ) (20, 24, 25). Compared to healthy
controls, unmedicated patients with SZ often present depressed
activity between 7.5 and 20Hz (26–31) and increases in higher
bands > 30Hz (24, 31–34). NMDAR antagonists including

ketamine are used to model positive, negative and cognitive
symptoms of this disorder (3, 4). After ketamine administration,

rodents (35–40), healthy human volunteers (41–47) and

unmedicated patients with SZ (48) all exhibit EEG disturbances
similar to those seen in SZ patiesnts vs. healthy controls. In

animal studies, where it is easier to record higher frequencies
without interference from the skin and skull as in human
s subjects, profound increases to high frequency oscillations
(HFO [130–160Hz]) are the most significant change reported
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(35–40, 49). In rodent studies in which locomotor states were
tracked and separated with video tracking, ketamine-induced
power spectra are distinctly different (50). The most clinically
efficacious neuroleptic, clozapine, is effective in reducing positive
and negative symptoms of SZ (51–53) and is known to modulate
ketamine-induced spectral amplitudes (35, 36, 38, 40), however
its efficacy at ameliorating induced power across different
locomotor states is unknown.

Our research goals were to: apply an accelerometer-based
behavioural detection method during LFP recordings to separate
behavioural states and see if LFP profiles differed between them;
identify if ketamine-induced LFP is modulated by naltrexone,
a combination which is ethically problematic to study further
in humans; and to investigate whether new LFP biomarkers of
the most efficacious antipsychotic could be observed if recording
data is behaviourally segregated; in particular the bands most
disturbed by ketamine exposure: low Beta and HFO.

We characterised how LFP and ECoG spectra are modulated
during ketamine exposure with and without pre-administration
of naltrexone or clozapine. We recorded drug-induced
LFP/ECoG in freely moving rats from four brain structures
relevant to schizophrenia and major depressive disorder: LFPs
from the thalamus (54–60), prefrontal cortex (PFC) (61–64),
the nucleus accumbens (NAc) (65–69), and ECoG above the
auditory cortex (AC) (70–76). To control for behavioural
states, data from head-mounted accelerometers were utilised
to algorithmically define if the animal was active or passive in
each LFP/ECoG window. Additionally, to investigate whether
neuroleptic effects on power spectra are occluded by behavioural
artefacts, we employed the same paradigm with clozapine
and ketamine. Freely moving rats were recorded during
pre-treatment with either naltrexone or clozapine, ketamine
challenge and pre-treatment with naltrexone or clozapine
followed by ketamine challenge.

MATERIALS AND METHODS

Materials
Subjects
Male Wistar rats (n = 115, 270–300 g, Charles River, Germany),
were housed in cages with sawdust bedding and environmental
enrichment (plastic shelter, gnawing blocks and paper strips)
with food and water ad-libitum. Temperature and humidity
were controlled and a 12:12 h reversed cycle (lights off at 6:00
AM) was implemented. All experiments were time matched
and began at 09:00, during the lights off cycle in order
to capture naturalistic wake behaviour. During the “lights
off” period, red light was used to facilitate handling of
animals. Animal welfare and weight recording was carried
out daily.

Experimental procedures, animal housing and care
were carried out in accordance with the Danish legislation
according to the European Union regulation (directive 2010/63
of 22 September 2010), granted by the Animal Welfare
Committee, appointed by the Ministry of Environment and Food
of Denmark.

Drugs
Naltrexone (Lundbeck, 12 mg/ml) was diluted in 0.9% saline
solution and administered subcutaneously (SC) at 1, 3 and 10
mg/kg; clozapine (Novartis, 10 mg/ml) was diluted with 0.5%
methylcellulose was administered SC at 0.3, 1, and 3 mg/kg;
ketamine (Ketolar, 50mg/ml, Sigma) was diluted with 0.9% saline
and administered SC at 10 mg/kg; Vehicle (VEH) control was
0.9% saline solution.

Rat pharmacologically relevant doses and timing to peak
effect of pre-treatment were estimated on the basis of a review
of the literature (35, 77–84) in conjunction with application
of the “Human Effective Dose conversion formula” (85) in
reverse to existing human study data in which the combination
of naltrexone plus ketamine have been evaluated (14, 86).
Ketamine dose was determined through extensive in-house
studies (unpublished) and literature (37, 87) which demonstrate
profound modulation of LFPs at 10 mg/kg.

Electrodes and Accelerometer
Custom accelerometers were manufactured by Ellegaard Systems
and cables by PlasticsOne. Summed accelerometer output [equal
to sqrt (X2

+ Y2
+ Z2)] was amplified (Precision Model 440;

Brownlee, Palo Alto, CA, USA). Each of the 4 recording boxes
with their own accelerometer and amplifier were calibrated to
ensure equal output.

Depth electrodes (8IE3633SPCXE, E363-3-SPC, Elec.005-
125MM SS, 25MM Length) and 6-way pedestals were purchased
from PlasticsOne, manufactured by Bilaney Consultants GMBH.

Methods
Surgical Procedure
Animals were habituated to placebo rimadyl pellets (Rimadyl
MDs, BioServ, Flemington USA) 5 days prior to surgery. On the
day of surgery, rats were anaesthetised with 0.25–0.3 ml/100 g
subcutaneous (S.C.) injection of 1:1 hypnorm/dormicum and
mounted in a stereotaxic frame (David Kopf Instruments,
Tujunga, CA, USA) with blunt ear bars. marcain (0.2ml s.c.) was
injected under the scalp, and gel (Neutral Opthta Eye Gel) put on
the eyes.

Holes were drilled in the skull for three depth electrodes
(Figure 1A) (E363-series; Invivo1/PlasticsOne, Roanoke, VA,
USA) in the right infralimbic PFC (AP: +3.0mm and
ML:−0.7mm from bregma, DV:−3.0mm from the skull surface),
Nucleus Accumbens shell (AP:+1.6mm andML:+1.0mm from
bregma and DV:−6.8mm from the skull surface) and thalamus
(AP:−2.8mm and ML: +0.7mm from bregma, DV:−4.4mm
from the skull surface) and three screw electrodes (E363-
series, 15mm, Invivo1/PlasticsOne, Roanoke, VA, USA) at vertex
(AP:−5.0mm and ML: +5.0mm from bregma), auditory cortex
(AP:−4.8mm and ML:−6.4mm from bregma) and a reference
electrode (AP: +8.0mm and ML: −2.0mm from bregma). Ends
of depth electrodes were cut before use to create an exposed tip.
During the procedure, the rat’s nails were trimmed to prevent
grooming damage to surgical site.

Rats received 0.3ml each of Norodyl and Noromox SC during
the procedure, were placed under a warming lamp for 4 h and
provided extra muesli. Rats were closely observed for 10–14-days
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FIGURE 1 | (A) Overview of electrode placements. (B) Diagram of experimental procedures in one recording session. Plots depicting the mean proportion of time

spent in Active state for Clozapine (C) and Naltrexone (D) groups. Pre-treatment doses given in mg/kg. (E) A plot of mean baseline power in the Active and Inactive

state taken at the NAc between “-30” and “0” min between 0 and 250Hz. (F,G) Heatmaps depicting grand mean LFP [0–200Hz] for an exemplar brain region, the

NAc, for animals given VEH+VEH, VEH+KET, NAL+KET, and CLZ+KET during Active (F) and Inactive (G) epochs. Pre-treatment doses given in mg/kg. The first

(leftmost, evenly green) timebin at the start of each plot indicates the baseline recording, to which the rest of the session was normalised. The white vertical bar at time

0 represents pre-treatment injection, and the black bar at time 30 indicates KET injection. Colours indicate change (in dB, which is logarithmic) to baseline. Number of

subjects is given as a range (lowest-highest n subjects included in a timebin) in the top right of each plot; group sizes were equal, however not all subjects were

included in all timebins as inclusion was conditional on 1) histological validation of electrode placement and 2) sufficient time spent in the Active or Inactive state in any

given timebin. Full heatmaps for other regions can be found in Supplementary Information. VEH, saline; KET, ketamine 10 mg/kg; CLZ, clozapine 3 mg/kg; NAL,

naltrexone 10 mg/kg.

recovery, sutures removed after 7–10 days. No rats lost >10%
pre surgery weight. Animals received rimadyl pellets twice a day
for 5 days.

Up until surgery, rats were maintained a normal 12
hr light cycle (lights on at 0600) so that surgery could

be performed in full light without disturbing the rat’s
circadian rhythm. After surgery, the light cycle was
reversed (lights off 0600) and 21 days was allowed to elapse
between experimental recording in order to allow rats to
fully acclimatise.
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Rats were anaesthetised with sevoflurane and 0.1mV passed
through the electrodes to create a lesion for histological
validation of depth electrode placement. Rats were then
decapitated, whole brains extracted, and the brains were
placed in labelled, protective bags and frozen at −80◦C until
cryosectioning. On the day of placement validation, frozen brains
were cut at the transverse fissure with a scalpel to remove the
cerebellum and mounted with polyethylene glycol & alcohol
(OCT Tissue Tek R©, Sakure, The Netherlands) to a metal stand,
placed in a cryostat (Leica CM3050 S) and 20µm slices of
the lesion sites were taken for examination with an optical
microscope. Data from electrodes placed outside of NAc, PFC or
thalamus was discarded.

Groups
The rats were split into three groups:

Group 1 (n = 50) received VEH + ketamine (10 mg/kg),
clozapine (0.3, 1, and 3 mg/kg) + ketamine (10 mg/kg).
Each rat was dosed twice (different treatments) following a
pseudo-randomised schedule that balanced for drug doses and
order with at least 7 days of washout in between to prevent
cumulative tolerance.

Group 2 (n = 50) received VEH + VEH, VEH + ketamine
(10 mg/kg), naltrexone (1, 3, and 10 mg/kg) + ketamine (10
mg/kg). Each rat was dosed twice (different treatments) following
a pseudo-randomised schedule that balanced for drug doses and
order with at least 7 days of washout in between to prevent
cumulative tolerance.

Group 3 (n = 15) received clozapine (0.3, 1 mg/kg) or
naltrexone (1, 3, 10 mg/kg) to quantify peak plasma and
brain concentrations.

EEG Recording
To facilitate habituation, rats were handled and placed
individually into their respective EEG monitoring cage (Acrylic,
30 x 45 x 55 cm) within an electrically shielded, sound-proof box
(90 x 55 x 65 cm) for at least 8 h (in <2-h sessions) in the week
preceding experimental recording. during habituation, animals
were connected to the EEG recording wire with the equipment
switched off. Strict sound discipline was observed within the
lab, preparation of drugs was performed under conditions that
minimised disturbance sound.

On the days of recording, rats were placed into the cage,
attached to a 6-pin recording wire on a rotating swivel and
allowed to habituate for 120min. A plastic spring (2.5 cm long
when compressed and 2.5 cm diameter) was affixed to the
rotating swivel and the recording wire affixed to the spring
to allow 5 cm between the base of the cage and the terminal
end of the wire. This alleviated the weight stress on the
animal, allowed for vertical flexibility and prevented excess wire
impeding animal movement. After 90min of habituation to the
recording environment, EEG and accelerometer recording began
to establish a 30-min baseline for each session (Figure 1B). After
the 30-min baseline recording, animals received a pre-treatment
bolus of VEH (saline 0.9%), naltrexone (1, 3 or 10 mg/kg) or
clozapine (0.3, 1, or 3 mg/kg) via SC flank injection.

Thirty minutes after pre-treatment, the animals received SC
ketamine challenge (10 mg/kg) or VEH. Thirty minutes was
selected as the optimal time for pre-treatment(s) to become
effective following review of the literature (35, 77–84) and
extensive in-house studies (unpublished). Recording of ECoG,
LFP, and accelerometers continued for an additional 180min
after which animals were returned to their home cage.

Analogue LFP/ECoG signals were amplified (Precision Model
440; Brownlee, Palo Alto, CA, USA) and converted to a digital
signal (CED Power 1401, Power 1 (625 k Hz, 16 bit) and CED
Expansion ADC16; CED, Cambridge, England) at a sampling
rate of 1 k Hz. LFP/ECoG signals were band-pass filtered at
0.01–300Hz. Spike2 was used to simultaneously record inputs
from microelectrodes, cameras and accelerometers, this ensured
synchronised timestamps across file types.

Behavioural State Classification
Animal behaviour was recorded in parallel with a video camera
and an accelerometer (custom-made with ADXL335Z, Analogue
Devices) during each recording session. The accelerometer was
fixed inside the plastic docking connector at the terminal end
of the recording tether which screws onto the thread of the
rodent’s electrode headstage. The recorded video was used to
qualify whether the animal was active or inactive, the latter here
being defined as a state with no visible body movement with
the exception of occasional micromovements of the nose and
head. The accelerometer signal was then reviewed in parallel with
the video recording, and an ad hoc threshold for distinguishing
activity from inactivity was determined. For further processing
the signal was smoothed with a gaussian kernel and divided into
7-s segments bins with 1-s overlap. If the signal during a segment
was above the threshold for at least 60% of the time the segment
was determined to be from an active period, correspondingly if
the signal was below the threshold for at least 60% of the time the
segment was determined to be from an inactive period. Segments
that fulfilled neither criteria were left unclassified.

Data Analysis
This study was intended to test whether the investigated drugs
and behavioural states affect LFP and ECoG signals. This
hypothesis was measured by consideration of EEG profiles
across the following frequency bands: Delta (0.1–4Hz), Theta
(4–10Hz), low Beta (10–20Hz), high Beta (20–30Hz), low
Gamma (30–60Hz), high Gamma (60–130Hz), HFO (130–
160Hz), and Ultra High Frequency Oscillations UHFO (160–
200Hz) separated by behavioural state. To avoid power line
interference, 2-Hz sections of frequency centred at 50, 100, and
150Hz were excluded from analysis.

Analysis was carried out in MATLAB (MathWorks, Natick,
MA). Signals were divided into consecutive 2-s segments with
1-s overlap. To minimise influence of artefacts, 2-s segments
in which the signal exceeded ± 7 standard deviations (SD)
from the mean were excluded from analysis. Furthermore,
through comparison with the outcome of the behavioural state
classification, each 2-s segment was assigned to either the active
or inactive motor state or left unclassified. Next, a spectrogram
with time and frequency resolution of 1 s and 0.5Hz, respectively,
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TABLE 1 | Tables of averaged power spectra between 40 and 70min of experimentation for “Inactive” and “Active” epochs of animals given vehicle pre-treatment (at

0min) + vehicle or ketamine (10 mg/kg at 30min).

Region Dose Active Inactive

Ketamine 40–70 min

0–4 4–10 10–20 20–30 30–60 60–130 130–160 160–200 0–4 4–10 10–20 20–30 30–60 60–130 130–160 160–200

NAc V 0.43 0.90 0.21 0.30 0.31 0.75 −0.13 −0.13 0.20 −0.64 −0.43 0.19 0.60 1.12 1.03 1.10

V+K 0.49 0.87 −0.59 −0.79 0.81 0.64 3.67 0.78 −0.38 −1.72 −3.67 −1.45 2.08 2.24 6.09 2.51

Baseline-normalised power (db)

Values are given in normalised dB change from baseline of each session. dB is a logarithmic scale, meaning that “−3dB” = 50% of original value, whilst “3dB” = 200% of original

value. Values significantly different vs. vehicle are coloured according to the valence of change from baseline. Full tables of p-values and non-segregated ’Any’ spectra can be found in

Supplementary Information. Dose is given in mg/kg; V, Vehicle; K, ketamine 10 mg/kg.

TABLE 2 | Table of averaged power spectra at 10–30min.

Region Dose Active Inactive

Clozapine 10–30 min

0–4 4–10 10–20 20–30 30–60 60–130 130–160 160–200 0–4 4–10 10–20 20–30 30–60 60–130 130–160 160–200

NAc V+K 0.63 1.20 0.60 0.41 0.72 0.94 −0.07 −0.05 0.77 0.27 0.20 0.47 0.80 0.94 0.46 0.45

0.3 0.14 1.39 0.98 0.43 0.17 0.71 −0.13 −0.54 1.28 0.11 −0.25 0.53 1.42 1.82 1.39 1.37

1 −0.26 0.82 0.15 −0.09 0.33 0.58 0.05 −0.18 2.02 0.87 0.46 1.28 2.43 2.35 1.95 1.83

3 −1.14 0.27 −0.47 −0.21 0.13 0.66 −0.11 −0.78 1.57 0.43 0.01 0.69 2.25 2.01 1.71 0.95

Baseline-normalised power (db)

Pre-treatment with Clozapine was given at 0 mins. Separated by Active (left) and Inactive (right) epochs. Values are given in dB change from baseline. dB is a logarithmic scale, meaning

that “−3dB” = 50% of original value, whilst “3dB” = 200% of original value. Values that are significantly different vs. vehicle + ketamine are coloured according to the valence of change

from baseline. Full tables of p-values and non-segregated “Any” spectra can be found in Supplementary Information. Dose is given in mg/kg; V, Vehicle; K, ketamine 10 mg/kg.

was produced for each brain area by applying the Fast Fourier
transform (FFT) to each 2-s segment. A spectrogram is a time
series of power spectral densities and allows assessment of the
spectral content of a signal over time, such as the presence of
oscillatory activity in certain frequency bands.

When analysing the raw power, the logarithm was taken,
otherwise each power spectral density was normalised to the
baseline by dividing with the average power spectral density
during the stable 30-min baseline period immediately prior to
injection. The baseline-normalised spectral content was then
converted to decibel (dB). Next, the power spectral densities
were averaged over non-overlapping consecutive 10-min bins,
positioned such that the time of injection is at 0min, thereby
producing spectrograms with 10-min time resolution. The steps
of baseline normalisation and 10-min averaging were done both
disregarding the behavioural state as well as only considering
power spectral densities from segments classified as active or
inactive, respectively. As a final step, grand averages were
produced for each combination of brain area, behavioural state
and treatment group.

Statistical analysis was conducted for averages over certain
time intervals (10–30min for pre-treatment, 40–70min for
ketamine challenge) and/or the already outlined frequency
bands (see Tables 1–3). To investigate whether there were any
significant treatment effects compared to the VEH + ketamine
group, repeatedmeasures analysis of variance (RM-ANOVA) was

performed using MATLABs fitglme function with subsequent
multiple comparison correction using Tukey’s honest significant
difference (HSD). P < 0.05 were considered significant. The
fitted generalised linear mixed effects (GLME) model included
an intercept and a factor for the treatment group, as well as a
random-effects intercept for each animal to account for animal-
specific variations. If applicable (i.e., when averaging only over
a time interval or frequency band), the model also included a
factor for the frequency/time bin and its interaction with the
treatment group.

For each recording, the time the animal spent in the active
and inactive behavioural state, respectively, was also calculated
during non-overlapping 10-min bins, and grand averages were
calculated for each treatment group. Statistical differences were
assessed similar as for the spectral power in a certain frequency
band, i.e., by using a GLME model with an intercept, a factor for
the treatment group and the time interval and their interaction,
and random-effects intercept for each animal, followed by
Tukey’s HSD. An animated visualization of the fundamental
principles behind LFP recording, our recording procedure and
some of the locomotor state differences is provided in the
Supplementary Material.

Drug Exposure Determination
To determine if the selected doses of naltrexone, clozapine
and ketamine resulted in translationally relevant concentrations
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TABLE 3 | Table of averaged power spectra at 40–70min.

Region Dose Active Inactive

Clozapine 40–70 min

0–4 4–10 10–20 20–30 30–60 60–130 130–160 160–200 0–4 4–10 10–20 20–30 30–60 60–130 130–160 160–200

NAc V+K −0.23 1.21 −0.45 −0.51 0.54 1.16 3.05 0.60 0.02 −1.48 −2.37 −0.82 1.63 1.77 4.63 1.31

0.3 −0.15 0.64 −1.28 −1.54 −0.49 0.31 4.47 −0.92 0.91 −0.29 −3.02 −0.42 2.92 3.33 7.37 1.90

1 −0.77 0.66 −1.82 −1.66 −0.53 0.25 4.61 −0.56 1.34 0.63 −2.15 −0.16 2.73 3.25 7.76 2.11

3 −1.33 0.34 −1.77 −1.44 −0.58 0.65 5.97 −1.79 0.75 0.56 −1.73 0.10 2.78 3.90 8.51 0.93

Baseline-normalised power (db)

Pre-treatment with Clozapine was given at 0min, and ketamine at 30min. Separated by Active (left) and Inactive (right) epochs. Values are given in dB change from baseline. dB is

a logarithmic scale, meaning that “−3dB” = 50% of original value, whilst “3dB” = 200% of original value. Values that are significantly different vs. vehicle + ketamine are coloured

according to the valence of change from baseline. Full tables of p-values and non-segregated “Any” spectra can be found in Supplementary Information. Dose is given in mg/kg; V,

Vehicle; K, ketamine 10 mg/kg.

in the blood and brain of subjects, a drug exposure study
was performed. Satellite animals (n = 3 per dose per drug)
were treated by subcutaneous (SC) injection with Clozapine
(0.3, 1, or 3 mg/kg) or Naltrexone (1, 3, or 10 mg/kg) then
terminal venous blood and whole brain samples were taken at
1 h for exposure determination. In brief, plasma was isolated
from whole blood and whole brains were isolated according
to a previously described protocol (87). The brain tissue was
prepared for extraction by dilution in buffer (1:5 w/v in deionised
water) then homogenised by isothermal focused acoustic ultra-
sonication using a Covaris instrument [Covaris E220x, 3.5min
at a bath temperature of 7◦C with a peak power of 500W
and average power of 250W (1,000 cycles per burst, duty
cycle 50%)].

Total drug concentrations (Naltrexone or Clozapine) were
determined in plasma and brain samples using high performance
liquid chromatography coupled with tandem mass spectrometry
(LC-MS/MS). The plasma (25 µL) and brain homogenate (25
µL) samples were precipitated with acetonitrile (4 volumes),
centrifuged (3,500 g, 20min, 5◦C) and the supernatant (50 µL)
diluted with water (3 volumes) before injection on the LC-
MS/MS system. Drug concentrations were determined from
calibration lines of known concentrations spiked into control
plasma or brain homogenate and extracted under identical
conditions. Bioanalysis was performed using a Waters Aquity
UPLC coupled to a Waters XevoTQXS detector. A Waters
Acquity UPLC HSS C18 SB, 1.7µm, 30 × 2.1mm column
was used operating at 40◦C. Mobile phase A consisted of 0.1%
Formic Acid in water and mobile phase B of 0.1% Formic Acid
in Acetonitrile. The LC flow rate was 0.6 mL/min. Analytes
were separated on the LC column using a gradient. From 0 to
0.5min the gradient was held at 2% mobile phase B. From 0.5
to 2min B changed from 2 to 95% and was held at 95% until
2.5min. Thereafter, between 2.5 and 2.7min, B changed to 2%
and was held at 2% from 2.7 to 4min. Electrospray ionisation-MS
(ESI-MS) was performed in positive MRM mode. For ketamine,
clozapine, and naltrexone the parent:daughter [M+H]+ ions:
327.09+→ 270.08+ and 342.17+→ 270.15+ were selectively
monitored for quantification, respectively.

RESULTS

LFPs were similarly modulated by each drug combination across
all recorded brain structures. Thus, in the interests of space and
clarity, figures and tables in the manuscript are restricted to the
Active and Inactive state in an exemplar region, the NAc, as this is
where ketamine’s effects are frequently themost profound in both
our study and the wider literature (35, 36, 39, 66). The full figures
and tables for each brain structure, activity state and un-separated
LFP data may be found in the Supplementary Information.

Locomotor State Globally Alters Local

Field Potentials
To control for animal behaviour during freely moving rsEEG,
recorded epochs (2 s) were separated by locomotor activity
level. This produced separate Active and Inactive baseline-
corrected data for each 10-min timebin. Active or Inactive
state was defined by a two-state classifier using data from a
3-axis, head-mounted accelerometer. Experimental animals
were Inactive >50% in all conditions, and passivity increased
towards the end of each recording session. Animals were
transiently more active after injections at 0 and 30min,
however pre-treatment with Naltrexone (1, 3, and 10 mg/kg,
dose dependent relationship) and clozapine (3 mg/kg)
abolished this (Figures 1C,D). No hyperlocomotion was
observed in any pre-treatment conditions after ketamine
challenge (30 min).

Separating LFP by locomotor activity revealed activity-
state-specific changes to spontaneous neural activity. Power
in Active epochs was higher in all but Delta and low Beta
bands (Figure 1E). In addition, a peak in baseline Theta
amplitude is observed only in the Active state. Some compound
induced changes were occluded entirely by analysing Active
and Inactive LFP together (Supplementary Figures 1, 2 and
Supplementary Tables 1–9). Pharmacologically-induced spectra
were more pronounced during inactivity – mixed modelling of
dB change from baseline found that Activity State significantly
predicted magnitude of change from baseline (F1,9 = 138.20; p <
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0.0001). Differences between Active and Inactive were confirmed
with a post hoc investigation using Tukey’s HSD (p < 0.0001).

Ketamine Suppresses Beta, Enhances HFO
After ketamine administration (30min), rats pre-treated with
saline displayed broad depression of frequencies below 30Hz,
barring Theta [4–10Hz] in the Active PFC. These effects were
more pronounced during Inactive epochs with few exceptions.
Beta power [10–30Hz] was suppressed by ketamine at all
recording electrodes and across all activity states. Low beta
[10–20Hz] underwent the most profound depression in the
Inactive thalamus and AC [4.39 and 4.99 dB decrease vs.
baseline, respectively].

By contrast, ketamine induced increased power in frequencies
30–160Hz. Inactive HFO [130–160Hz] was subject to the most
robust increase in oscillatory power, brain wide and across both
motor states. Of note, the magnitude of HFO power during
Inactive epochs [3.69–6.09 dB increase from baseline] did not
overlap with the range during Active [1.22–3.67 dB increase
from baseline]. In particular, the NAc (Figures 1F,G) and PFC
recorded the most robust increases to spectral power.

Effect of Clozapine on Spontaneous Power

Spectra
Pre-treatment
Clozapine pre-treatment elicited oscillatory activity throughout
the recording regions during Inactive epochs. Interestingly,
the mid-dose (1 mg/kg) induced Inactive LFP power across the
broadest range of frequency bands and brain areas (Figures 1F,G,
Table 2 and Supplementary Tables 2, 3). Clozapine dose
dependently increased Delta [0-4Hz] activity in the Inactive
Thalamus, PFC, and most substantially in the AC (p = 0.0006;
p = 0.004; p = 0.0009). During Inactivity, clozapine (1 and
3 mg/kg) substantially enhanced spectral power in frequency
bands between 30 and 60Hz and across all electrodes.

Clozapine’s effects on Active spectra were primarily
depressive. In the Active PFC and Thalamus, activity in
several frequency bands (low and high beta [10–20Hz; 20–
30Hz] and low y [30–60Hz]) were depressed by clozapine
(3 mg/kg). Suppression in Active epochs was eclipsed when
analysing both motor states.

After Ketamine Challenge
Clozapine largely reversed ketamine’s effects on lower bands,
and enhanced effects >60Hz. Ketamine induced depression
of Theta [4–10Hz] was completely ameliorated by clozapine
in the Inactive state. In low beta [10–20Hz], where ketamine
induced suppression was more profound, clozapine partially
returned LFP power towards baseline throughout the AC,
PFC and Thalamus (3 mg/kg: p = 0.0006; p = 0.0007; p =

0.0009) (Supplementary Tables 6, 7). In the AC for example,
ketamine depressed low beta to 40.18% of baseline, and 3
mg/kg clozapine returned this to 84.14% of baseline. A similar
relationship, though of a lower magnitude, was also displayed in
neighbouring frequency band high beta [20–30Hz]. Reversal of
beta suppression was exclusively seen in the Inactive state. By
contrast, Active beta depression at the PFC and NAc (Table 3

and Supplementary Tables 6, 7) was exacerbated by clozapine (3
mg/kg) (p= 0.015; p= 0.005).

Ketamine-induced power in higher frequencies was
synergistically enhanced by clozapine. Robust, dose-dependent
increases were seen to ketamine-induced y [60–130Hz] and
HFO [130–160Hz] in the Inactive NAc [3.05dB to 3.90dB, p
= 0.00097; 4.63–8.51 dB, p = 0.00096, respectively]. Clozapine
(3 mg/kg) also dose dependently reversed ketamine-induced
depression of low y in the Active PFC, returning it almost to
baseline. Analysis of LFP without separating by locomotor state
rendered this effect invisible (Supplementary Table 3).

Increasing doses of clozapine also modulated the peak
frequency of ketamine-induced spectra in the NAc. Clozapine
increased peak power, but downshifted HFO peak frequency
[from 151 to 143Hz] and low y [58Hz to 51Hz] (Figure 2A).
Interestingly, clozapine dose and peak HFO exhibit a biphasic
relationship – 1 mg/kg clozapine peak HFO was higher than
either 0.3 or 3 mg/kg. The nadir of beta suppression was also
downshifted by clozapine, from 18 to 15 Hz.

Effect of Naltrexone on Spontaneous LFP

Spectra
Pre-treatment
Naltrexone (time 0) reduced oscillatory power globally in
the acute pre-treatment phase (10–30min) across a broad
range of frequency bands (Figures 1F,G, Table 4 and
Supplementary Tables 4, 5). Naltrexone decreased Inactive
high beta [20–30Hz] power and a biphasic relationship was seen
between dose strength, with the mid dose (3 mg/kg) inducing the
greatest depression [NAc, p= 0.001; PFC, p= 0.006; Thalamus, p
= 0.0008]. Increasing doses of naltrexone depressed all frequency
bands >30Hz during Inactive epochs and across all electrodes.
Active HFO power was also reduced below baseline at every
electrode (10 mg/kg/Active; AC, p = 0.0007; NAc, p = 0.0009;
PFC, p= 0.04; Thalamus, p= 0.0009).

After Ketamine Challenge
Naltrexone pre-treatment did not significantly alter ketamine-
induced beta depression in the Inactive or Active state (Table 5
and Supplementary Tables 8, 9). Non-modulation of low beta
[10–20Hz] was consistent at all electrodes and states (10 mg/kg:
Inactive: AC, p= 0.99/; NAc, p= 0.99; PFC, p= 0.99; Thalamus,
p = 0.39; Inactive: AC, p = 0.77; NAc, p = 0.19; PFC, p = 0.83;
Thalamus, p = 0.74). In bands y and above, naltrexone reduced
ketamine-induced power in the Inactive PFC (10 mg/kg, low y,
p = 0.006; high y, p = 0.001; HFO, p = 0.0009; UHFO, p =

0.007), though the resulting LFP power remained substantially
higher than baseline. Similar, but less consistent suppression
was observed at other electrodes, and during Active epochs
(Supplementary Tables 8, 9).

The width of peak HFO that ketamine affected was also
modulated by naltrexone. Animals pre-treated with saline saw
significant ketamine-induced power in a moderate band [135–
167Hz], 1 mg/kg naltrexone widened the band of affected
frequencies by 43.8% [121–167Hz] vs. saline, whilst 10 mg/kg
naltrexone thinned affected HFO 84.4% [152–157Hz] vs.
saline (Figure 2B).
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FIGURE 2 | Baseline-normalised, averaged spectra recorded at the NAc of CLZ (A) and NAL (B) groups between 40 and 70min (10min after KET and 40min after

pre-treatment). Displayed in dB change from baseline. Legends give pre-treatment doses in mg/kg. Significant differences of pre-treatment + KET spectra vs. VEH =

KET are indicated by *p < 0.05/**p < 0.01/***p < 0.001. VEH, saline; KET, ketamine 10 mg/kg; CLZ, clozapine; NAL, naltrexone.

TABLE 4 | Table of averaged power spectra at 10–30min.

Region Dose Active Inactive

Naltrexone 10–30 min

0–4 4–10 10–20 20–30 30–60 60–130 130–160 160–200 0–4 4–10 10–20 20–30 30–60 60–130 130–160 160–200

NAc V+K 0.45 0.58 0.25 −0.16 0.29 0.67 −0.21 −0.13 0.50 −0.06 −0.34 0.27 0.97 1.21 0.39 1.20

0.3 0.08 0.52 0.35 0.63 0.88 0.67 −0.29 −0.49 −0.18 −1.17 −0.99 −0.37 0.27 0.51 0.39 −0.01

1 −0.57 0.73 −0.13 0.14 0.53 0.17 −0.78 −0.89 −0.15 −1.11 −1.08 −0.37 0.24 −0.11 −0.18 −0.36

3 −0.70 −0.03 −0.24 0.13 0.39 −0.89 −1.26 −1.15 −0.34 −0.63 −0.38 −0.06 0.13 −1.83 −2.01 −1.67

Baseline-normalised power (db)

Pre-treatment with Naltrexone was given at 0min. Separated by Active (left) and Inactive (right) epochs. Values are given in dB change from baseline. dB is a logarithmic scale, meaning

that “−3dB” = 50% of original value, whilst “3dB” = 200% of original value. Values that are significantly different vs. vehicle + ketamine are coloured according to the valence of change

from baseline. Full tables of p-values and non-segregated “Any” spectra can be found in Supplementary Information. Dose is given in mg/kg; V, Vehicle; K, ketamine 10 mg/kg.
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TABLE 5 | Table of averaged power spectra at 40–70min.

Region Dose Active Inactive

Naltrexone 40–70 min

0–4 4–10 10–20 20–30 30–60 60–130 130–160 160–200 0–4 4–10 10–20 20–30 30–60 60–130 130–160 160–200

NAc V+K 0.45 0.58 0.25 −0.16 0.29 0.67 −0.21 −0.13 0.50 −0.06 −0.34 0.27 0.97 1.21 0.39 1.20

0.3 0.08 0.52 0.35 0.63 0.88 0.67 −0.29 −0.49 −0.18 −1.17 −0.99 −0.37 0.27 0.51 0.39 −0.01

1 −0.57 0.73 −0.13 0.14 0.53 0.17 −0.78 −0.89 −0.15 −1.11 −1.08 −0.37 0.24 −0.11 −0.18 −0.36

3 −0.70 −0.03 −0.24 0.13 0.39 −0.89 −1.26 −1.15 −0.34 −0.63 −0.38 −0.06 0.13 −1.83 −2.01 −1.67

Baseline-normalised power (db)

Pre-treatment with Naltrexone was given at 0min, and ketamine at 30min. Separated by Active (left) and Inactive (right) epochs. Values are given in dB change from baseline. dB is

a logarithmic scale, meaning that “−3dB” = 50% of original value, whilst “3dB” = 200% of original value. Values that are significantly different vs. vehicle + ketamine are coloured

according to the valence of change from baseline. Full tables of p-values and non-segregated “Any” spectra can be found in Supplementary Information. Dose is given in mg/kg; V,

Vehicle; K, ketamine 10 mg/kg.

TABLE 6 | Clozapine and Naltrexone concentrations measured in terminal plasma and brain homogenate samples 1 h after subcutaneous injection (n = 3 satellite

animals).

Drug pre-treatment Clinical dose (mg) Back translated

rat dose (mg/kg)

SC Dose

(mg/kg)

Time

point (h)

Total plasma

concentration; Mean

± SD (ng/mL)

Total brain

concentration; Mean

± SD (ng/mL)

Total brain: plasma

concentration ratio

(Kp); Mean ± SD

Clozapine 12.5 1.29 0.3 0.5 12.4 ± 1.7 268 ± 35 22 ± 1.3

1 0.5 55 ± nv 1322 ± nv 13 ± nv

3 0.5 112 ± 12 3055 ± 421 27 ± 1

Naltrexone 25–50 3.875 1 0.5 69 ± 5 305 ± 31 4.4 ± 0.2

3 0.5 221 ± 33 883 ± 48 4.0 ± 0.5

10 0.5 875 ± 125 2899 ± 227 3.4 ± 0.5

Quantification of Clozapine and Naltrexone

Concentrations in Satellite Animals
Drug concentrations were determined in satellite animals (n
= 3 per dose per drug) and are presented in Table 6. Both
drugs distributed to the brain with total brain to plasma ratios
∼3.9 and 21, respectively. Ketamine exposures were not assessed
in order to avoid animal handling causing interference during
the pharmacodynamic measurement window. The ketamine SC
dose was selected based on data from several rat cognitive
pharmacology models (data not presented). The Cmax in
these studies confirmed consistent plasma and brain ketamine
exposures were achieved following 10 mg/kg SC administration
(mean total plasma concentration at 0.5 h post dose= 951 ng/mL
(range 670–1,311 ng/mL; n = 5 studies), brain: plasma total
concentration ratio at 0.5 h post dose= 3.6).

DISCUSSION

The primary findings of this study are: (1) the effect on
LFP/ECoG power of clozapine, ketamine and naltrexone depends
on locomotor state; (2) ketamine-induced beta suppression in
the Inactive state is reversed by the antipsychotic clozapine
but is preserved during naltrexone co-administration; and
(3) broadband ketamine induced enhancement of higher

frequencies, especially HFO, is bolstered by clozapine but
dampened by naltrexone.

Locomotor State Separation
The two-state classifier revealed locomotor-state specific effects
on LFP amplitudes that otherwise would have been occluded,
validating head mounted accelerometers as an alternative to
video-tracking solutions. More sophisticated machine learning
solutions utilising both LFP and accelerometers can detect up
to 7 behaviours (88), but may not be suitable for every study
i.e.,: when recording from different brain structures than the
original study. Non-invasive head-mounted accelerometers are
compatible with any freely moving recording paradigm (EEG, 2-
photon calcium microscopy, etc.) and require 0.008% as much
data storage when compared to video files from the same
recording session. As substantial differences in spontaneous
brain activity exist between locomotor states, seen previously
(37) and in the present study, it is imperative that efficient
and economical behavioural segregation of freely moving
experimentation is implemented in future studies.

Separating locomotor states highlighted Active state spectra
that were obscured when looking at non-classified LFP epochs
summed together. The Active-state peak in baseline Theta
has some precedent: Theta power is known to spike during
exploratory behaviour in rodents (89, 90) and more recently was
observed to increase in walking human subjects (91). During
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pharmacological manipulations, Active spectra were generally
outweighed due to 1) the inclination of rats in this study to
remain passive >50% of the recording session in all groups and
pharmacological conditions; and 2) pharmacologically induced
changes to spontaneous Inactive power were of a substantially
larger magnitude. As neuronal firing increases during movement
in response to increased sensory input and processing (37,
92), we hypothesise that the smaller pharmacological deviations
in Active vs. Inactive results from 1) circuits modulated
by clozapine/ketamine/naltrexone are also engaged during
locomotion, thus baseline Active LFPs are closer to physiological
maximum and pharmacological enhancement above baseline
is limited; or 2) distinct circuits of neurons engaged during
Active behaviour generate spectral activity that outweighs LFPs
generated by modulation of drug-susceptible circuits. In support
of the former proposition, comparing raw baseline power showed
that Active power was almost exclusively higher than Inactive
(Figure 1E). Investigation of LFP properties of specific neural
circuits exclusively during movement is required to elucidate the
degree to which either hypothesis is responsible.

We did not observe significant ketamine-induced
hyperlocomotion in any compound combination. This is
concurrent with other observations in rats given 10 mg/kg
ketamine (37, 39) but is contrary to other studies using 2.5–10
mg/kg (40, 93, 94). Habitation differences between studies
reporting hyperlocomotion may explain this: rats habituated to
the recording box for 90min in this study before recording of
EEG or locomotor activity began, vs. 60min (94) and 30min
to room/0min to arena (40, 93). We primarily suspect that
this study’s decision to employ a reversed light cycle may be
responsible. This decision was made to allow rats to be recorded
during their usual waking hours (as in human rsEEG) to capture
the most translatable data. As animals in the present study had
already been awake for several hours (experiments started at
0900, 3 h after “lights out”) their level of wakefulness may have
been higher than rats in other studies recorded during the light
phase (when they are naturally inclined to sleep). Ketamine
(2.5–10 mg/kg) delays onset of sleep (95) and this may be
interpreted as induction of hyperactivity during the light phase.

Irrespective of hyperlocomotion, the importance of separating
LFP data by activity state is clear from our report. Developing
user friendly systems capable of automatically detecting three or
more behaviours may improve the reliability of spectral activity
studies even further. Controlling for motor activity is certain
to be a building block in bridging the translation gap between
pre-clinical and clinical research.

Beta Suppression and Psychotomimetic

Features
Beta band suppression could indicate manifestation of
psychomimetic properties of ketamine. We observed that
beta amplitudes were depressed by ketamine during Inactive
epochs, and that the antipsychotic clozapine dose dependently
reversed this. Clinical findings are strikingly resemblant to
our own: low beta is found to be depressed in unmedicated
schizophrenic patients (26, 27, 30) as are EEG spectra between

[7.5–12.5Hz] (termed alpha in human EEG studies, overlapping
with low beta [10–20Hz]) (30). Both low beta disturbances and
symptoms measured by the Positive and Negative Symptoms
Scale (PANSS) are reduced by acute and chronic clozapine
treatment (29). Moreover, suppression of low beta during
ketamine exposure has been correlated with symptom severity
as scored by the Clinician Administered Dissociative States
Scale (CADSS) (43, 44) and other purpose-built self-report
questionnaires (47) when administered to healthy subjects.
Finally, in one study that failed to find significance between
CADSS scores and ketamine induced low beta suppression,
it was found that restoration of low beta by midazolam and
improvement in dissociation scores in CADSS were causally
linked (46). These results dovetail with the presence and absence
of low beta suppression reported in our study; suppression
occurs during psychotomimetic drug exposure, while clozapine
ameliorates this. Importantly, these human EEG studies were
performed in an “Inactive”-like state i.e.,: 10min of eyes closed
sitting still—and we only saw reversal of ketamine induced
effects on beta in this state, which may explain why it has not
received attention in preclinical studies until now.

Behavioural measures follow a similar pattern. Positive,
negative and cognitive symptoms were inhibited by
administering clozapine to human patients with SZ (53, 96–99),
even when given ketamine (48). Ketamine-induced cognitive
deficits are also prevented in mice by clozapine administration
(100). Naltrexone did not change the dissociative aspects of
acute ketamine exposure in Williams (2019) study, and the same
combination of compounds produced no changes in beta in this
study. The results of this study contribute more evidence towards
an association between beta depression at rest and dissociative
symptoms. Reversal of beta suppression may prove to be a useful
preclinical biomarker for assessing neuroleptics.

Higher Frequencies
Clozapine and Ketamine Enhances HFO Power

Through Asynchrony
In agreement with previous locomotor-state-separated EEG
analyses (37), power in frequencies above 30Hz were broadly
enhanced by ketamine, particularly in the Inactive state. Drug
effects in the gamma band largely resemble those in HFO
albeit with a lower magnitude, therefore as in other NMDAR
antagonist LFP studies (35, 36, 38, 39, 49) we focus the discussion
on effects in the HFO band. Ketamine induced-HFO were
further strengthened by clozapine across both locomotor states.
Increased HFO power can represent asynchronous activity in
several distinct local neuronal populations, and/or circuit(s)
that have become dysregulated (101, 102). Such asynchrony
was indicated by the broader peak of spectral power/greater
spectral entropy observed with increasing doses of clozapine in
the present study (101, 103). Whilst it could be hypothesised
that circuit desynchronisation occurs from clozapine (104)
and ketamine (2) possessing opposing affinities for NMDAR
on GABAergic interneurons, it has been demonstrated that
the firing rate of local GABAergic interneurons in the rat
thalamus and PFC are not significantly altered by ketamine
(87). Ketamine potentially drives HFO through increased
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firing of excitatory pyramidal neurons (105–107). According to
the “direct” hypothesis, ketamine-induced, NMDAR-dependent
plasticity-related protein synthesis seen in pyramidal neurons
(108, 109) is responsible for increased excitatory drive (107, 110).

Clozapine has affinities for several receptors that could recruit
additional neuronal populations, generating more power yet
less synchrony in the HFO band compared to ketamine alone.
Agonism at NMDAR on local GABAergic interneurons, known
generators of fast rhythmic activity in their own right (106),
is one example. Clozapine additionally increases the firing of
dopaminergic neurons in the ventral tegmental area by 100%
(111), which innervates two structures this study observed
broadband HFO increases within: the PFC (112) and NAc (113).
However, single unit electrophysiology studies are necessary
to characterise the precise neuronal sub-populations that are
recruited during acute ketamine and clozapine exposure vs.
ketamine alone.

Naltrexone Modulates Ketamine Induced Excitatory

Disinhibition
Our findings indicate a clear difference in LFPs between
ketamine, and ketamine plus naltrexone; a combination that
is suspected to block RAAD effects (11, 14). While ketamine’s
RAAD effects are suspected to be driven through transient
excitation of pyramidal neurons and synaptogenesis in key brain
structures such as the PFC (114–119), the precise mechanistic
pathway(s) through which improvement manifests is not yet
fully elucidated. In addition, mechanisms have been identified
through which opioid blockade could prevent RAAD (120)
including BDNF upregulation and synaptogenesis (121), which
is blocked by naltrexone (122); and acute agonism at mu-opioid
receptors situated on neurons in the lateral habenula, dorsal
raphe nucleus and ventral tegmental area. Inhibition of these
neurons, via ketamine’s antagonism at NMDAR and agonism
at mu-opioid receptors, triggers downstream disinhibition of
serotonergic and dopaminergic neurons in the PFC and NAc
(120, 123–127). In this proposed circuit, as increasing doses
of naltrexone block mu-opioid receptor agonism by ketamine,
less excitatory disinhibition manifests in the PFC and NAc.
Accordingly, we report a dose-dependent decrease of ketamine-
induced HFO in these locations. If future studies confirm that
naltrexone blocks ketamine’s RAAD properties, increased HFO
in the PFC and NAc should prove to be valuable biomarkers for
antidepressant drug research.

Whilst naltrexone and clozapine had opposite effects in
this band, it is important to be cautious drawing direct
comparisons between the two until more acute studies have
been conducted. One important limitation of this study is the
exclusion of behavioural outcome measures for depressive and
psychotomimetic symptoms. Thus, we can only say that in
drug combinations that block RAAD effects in humans, we see
suppression of ketamine induced HFO. Investigation in human
subjects and in pre-clinical depression models to characterise
the relationship between HFO amplitudes and RAAD effects
is recommended.

CONCLUDING REMARKS

This is the first study to investigate differences in locomotor
state ketamine LFP induced by the neuroleptic clozapine
and the opioid antagonist naltrexone. Our results reveal
distinct profiles of LFP activity across locomotor states and
demonstrate the pressing need to separate these for accurate
analysis in future studies. Separating out Activity states stands
to make translational research more directly comparable to
human data. We also show powerful modulation of ketamine
LFPs by clozapine and naltrexone. Potent reversal of beta
suppression by clozapine exclusively during the Inactive state
hints at its potential value as a biomarker for neuroleptic
efficacy. We also establish here for the first time that HFO is
materially different between ketamine with/without naltrexone
pre-treatment, and the relationship we document here aligns
with the proposed outcomes of a previously proposed pathway
through which ketamine’s RAAD effects are impacted by opioid
blockade. Our findings in both beta and HFO bands appear to
support literature describing opioid involvement in ketamine’s
therapeutic mechanism. Future acute studies in humans with
these compounds will help tease out the intricate dance between
LFP and subjective, symptomatic changes. Both HFO and beta
may prove to be invaluable biomarkers in the hunt for more
efficacious antidepressant and neuroleptic medications with
milder side effects.
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100. SzlachtaM, Pabian P, KuśmiderM, Solich J, KolasaM, ZurawekD, et al. Effect

of clozapine on ketamine-induced deficits in attentional set shift task inmice.

Psychopharmacology. (2017) 234:2103–12. doi: 10.1007/s00213-017-4613-x

101. Guyon N, Zacharias LR, de Oliveira EF, Kim H, Leite JP, Lopes-Aguiar C,

et al. Network asynchrony underlying increased broadband gamma power. J

Neurosci. (2021) 41:2944–63. doi: 10.1101/2020.08.26.265439

102. Uhlhaas PJ, Singer W. Oscillations and neuronal dynamics in schizophrenia:

The search for basic symptoms and translational opportunities.

Biol Psychiatry. (2015) 77:1001–9. doi: 10.1016/j.biopsych.2014.

11.019

103. Valero M, Averkin RG, Fernandez-Lamo I, Aguilar J, Lopez-Pigozzi D,

Brotons-Mas JR, et al. Mechanisms for selective single-cell reactivation

during offline sharp-wave ripples and their distortion by fast ripples.Neuron.

(2017) 94:1234–47.e7. doi: 10.1016/j.neuron.2017.05.032

104. Heresco-Levy U. Glutamatergic neurotransmission modulation and the

mechanisms of antipsychotic atypicality. Prog Neuro-Psychopharmacology

Biol Psychiatry. (2003) 27:1113–23. doi: 10.1016/j.pnpbp.2003.09.007

105. Seamans J. Losing inhibition with ketamine. Nat Chem Biol. (2008) 4:91–

3. doi: 10.1038/nchembio0208-91

Frontiers in Psychiatry | www.frontiersin.org 15 January 2022 | Volume 13 | Article 737295144

https://doi.org/10.1038/aps.2017.168
https://doi.org/10.1093/schbul/sbv030
https://doi.org/10.1016/j.schres.2015.08.041
https://doi.org/10.1016/j.biopsych.2015.03.031
https://doi.org/10.1038/npp.2008.67
https://doi.org/10.1093/schbul/sbw130
https://doi.org/10.1016/j.bpsc.2017.09.001
https://doi.org/10.1016/j.biopsych.2007.02.007
https://doi.org/10.1001/jamapsychiatry.2019.2974
https://doi.org/10.1093/schizbullopen/sgab005
https://doi.org/10.1038/sj.npp.1300274
https://doi.org/10.1371/journal.pone.0155604
https://doi.org/10.1043/0003-3219(2002)072<0476:TROOSO>2.0.CO;2
https://doi.org/10.1016/S0014-2999(00)00277-6
https://doi.org/10.4088/PCC.11r01198
https://doi.org/10.1016/j.ejphar.2008.02.005
https://doi.org/10.1371/journal.pone.0177036
https://doi.org/10.1038/s41467-017-00675-5
https://doi.org/10.4103/0976-0105.177703
https://doi.org/10.1038/sj.npp.1300994
https://doi.org/10.1016/j.neuropharm.2019.107745
https://doi.org/10.1146/annurev-neuro-072116-031548
https://doi.org/10.1016/0013-4694(69)90092-3
https://doi.org/10.1016/j.cub.2017.10.062
https://doi.org/10.1093/cercor/bhu062
https://doi.org/10.1371/journal.pone.0006755
https://doi.org/10.1016/j.bbr.2013.08.017
https://doi.org/10.1038/tp.2017.198
https://doi.org/10.1093/oxfordjournals.schbul.a033376
https://doi.org/10.1001/archpsyc.60.1.82
https://doi.org/10.1176/ajp.152.2.183
https://doi.org/10.1016/0006-3223(95)00305-3
https://doi.org/10.1007/s00213-017-4613-x
https://doi.org/10.1101/2020.08.26.265439
https://doi.org/10.1016/j.biopsych.2014.11.019
https://doi.org/10.1016/j.neuron.2017.05.032
https://doi.org/10.1016/j.pnpbp.2003.09.007
https://doi.org/10.1038/nchembio0208-91
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Bowman et al. Activity-State Dependent Rat EEG

106. Homayoun H, Moghaddam B. NMDA receptor hypofunction produces

opposite effects on prefrontal cortex interneurons and pyramidal neurons.

J Neurosci. (2007) 27:11496–500. doi: 10.1523/JNEUROSCI.2213-07.2007

107. Miller OH, Yang L, Wang C-C, Hargroder EA, Zhang Y, Delpire E, et al.

GluN2B-containing NMDA receptors regulate depression-like behavior and

are critical for the rapid antidepressant actions of ketamine. Elife. (2014)

3:e03581. doi: 10.7554/eLife.03581

108. Wang C-C, Held RG, Chang S-C, Yang L, Delpire E, Ghosh A, et al. A critical

role for GluN2B-containing NMDA receptors in cortical development and

function. Neuron. (2011) 72:789–805. doi: 10.1016/j.neuron.2011.09.023

109. Wang C-C, Held RG, Hall BJ. SynGAP regulates protein synthesis and

homeostatic synaptic plasticity in developing cortical networks. PLoS ONE.

(2013) 8:e83941. doi: 10.1371/journal.pone.0083941

110. Miller OH, Moran JT, Hall BJ. Two cellular hypotheses

explaining the initiation of ketamine’s antidepressant actions:

Direct inhibition and disinhibition. Neuropharmacology. (2016)

100:17–26. doi: 10.1016/j.neuropharm.2015.07.028

111. Chiodo LA, Bunney BS. Possible mechanisms by which repeated

clozapine administration differentially affects the activity of two

subpopulations of midbrain dopamine neurons. J Neurosci. (1985)

5:2539–44. doi: 10.1523/JNEUROSCI.05-09-02539.1985

112. Pierce RC, Kumaresan V. The mesolimbic dopamine system: The final

common pathway for the reinforcing effect of drugs of abuse? Neurosci

Biobehav Rev. (2006) 30:215–38. doi: 10.1016/j.neubiorev.2005.04.016

113. Ikemoto S. Brain reward circuitry beyond the mesolimbic dopamine

system: A neurobiological theory. Neurosci Biobehav Rev. (2010) 35:129–

50. doi: 10.1016/j.neubiorev.2010.02.001

114. Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic

neurotransmission by ketamine: a novel step in the pathway from

NMDA receptor blockade to dopaminergic and cognitive disruptions

associated with the prefrontal cortex. J Neurosci. (1997) 17:2921–

7. doi: 10.1523/JNEUROSCI.17-08-02921.1997

115. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng P, et al. NMDA

receptor blockade at rest triggers rapid behavioural antidepressant responses.

Nature. (2011) 475:91–5. doi: 10.1038/nature10130

116. Li N, Liu R-J, Dwyer JM, Banasr M, Lee B, Son H, et al. Glutamate

N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and

synaptic deficits caused by chronic stress exposure. Biol Psychiatry. (2011)

69:754–61. doi: 10.1016/j.biopsych.2010.12.015

117. Li N, Lee B, Liu R-J, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent

synapse formation underlies the rapid antidepressant effects of NMDA

antagonists. Science. (2010) 329:959–64. doi: 10.1126/science.1190287

118. Gerhard DM, Pothula S, Liu R-J, Wu M, Li X-Y, Girgenti MJ, et al. GABA

interneurons are the cellular trigger for ketamine’s rapid antidepressant

actions. J Clin Invest. (2020) 130:30808. doi: 10.1172/JCI130808

119. Gerhard DM, Wohleb ES, Duman RS. Emerging treatment

mechanisms for depression: focus on glutamate and synaptic plasticity.

Drug Discov Today. (2016) 21:454–64. doi: 10.1016/j.drudis.2016.

01.016

120. Jelen LA, Young AH, Stone JM. Ketamine: A tale of two enantiomers. J

Psychopharmacol. (2020) 35:109–23. doi: 10.1177/0269881120959644

121. Yang C, Shirayama Y, Zhang JC, Ren Q, Yao W, Ma M, et al. R-ketamine:

a rapid-onset and sustained antidepressant without psychotomimetic

side effects. Transl Psychiatry. (2015) 5:e632. doi: 10.1038/tp.20

15.136

122. Zhang H, Torregrossa MM, Jutkiewicz EM, Shi YG, Rice KC,

Woods JH, et al. Endogenous opioids upregulate brain-derived

neurotrophic factor mRNA through δ- and µ-opioid receptors

independent of antidepressant-like effects. Eur J Neurosci. (2006)

23:984–94. doi: 10.1111/j.1460-9568.2006.04621.x

123. Lutz P-E, Kieffer BL. Opioid receptors: distinct roles in mood

disorders. Trends Neurosci. (2013) 36:195–206. doi: 10.1016/j.tins.2012.

11.002

124. Fadda P, Scherma M, Fresu A, Collu M, Fratta W. Dopamine and serotonin

release in dorsal striatum and nucleus accumbens is differentially modulated

by morphine in DBA/2J and C57BL/6J mice. Synapse. (2005) 56:29–

38. doi: 10.1002/syn.20122

125. Margolis EB, Fields HL. Mu opioid receptor actions in the lateral habenula.

PLoS ONE. (2016) 11:e0159097. doi: 10.1371/journal.pone.0159097

126. Le Merrer J, Becker JAJ, Befort K, Kieffer BL. Reward processing

by the opioid system in the brain. Physiol Rev. (2009) 89:1379–

412. doi: 10.1152/physrev.00005.2009

127. Tao R, Auerbach SB. Opioid receptor subtypes differentially modulate

serotonin efflux in the rat central nervous system. J Pharmacol Exp Ther.

(2002) 303:549–56. doi: 10.1124/jpet.102.037861

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Bowman, Richter, Jones, Agerskov and Herrik. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Psychiatry | www.frontiersin.org 16 January 2022 | Volume 13 | Article 737295145

https://doi.org/10.1523/JNEUROSCI.2213-07.2007
https://doi.org/10.7554/eLife.03581
https://doi.org/10.1016/j.neuron.2011.09.023
https://doi.org/10.1371/journal.pone.0083941
https://doi.org/10.1016/j.neuropharm.2015.07.028
https://doi.org/10.1523/JNEUROSCI.05-09-02539.1985
https://doi.org/10.1016/j.neubiorev.2005.04.016
https://doi.org/10.1016/j.neubiorev.2010.02.001
https://doi.org/10.1523/JNEUROSCI.17-08-02921.1997
https://doi.org/10.1038/nature10130
https://doi.org/10.1016/j.biopsych.2010.12.015
https://doi.org/10.1126/science.1190287
https://doi.org/10.1172/JCI130808
https://doi.org/10.1016/j.drudis.2016.01.016
https://doi.org/10.1177/0269881120959644
https://doi.org/10.1038/tp.2015.136
https://doi.org/10.1111/j.1460-9568.2006.04621.x
https://doi.org/10.1016/j.tins.2012.11.002
https://doi.org/10.1002/syn.20122
https://doi.org/10.1371/journal.pone.0159097
https://doi.org/10.1152/physrev.00005.2009
https://doi.org/10.1124/jpet.102.037861
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact 

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	Modulation of NMDA Receptors: From Bench Side to Clinical Applications in Psychiatry
	Table of Contents
	Editorial: Modulation of NMDA Receptors: From Bench Side to Clinical Applications in Psychiatry
	Author Contributions
	Funding
	References

	NMDAR Neurotransmission Needed for Persistent Neuronal Firing: Potential Roles in Mental Disorders
	Introduction
	Primate Prefrontal Cortical Circuits
	The Critical Role Of Nmdar-Glun2B In The Generation Of Mental Representations By The dlPFC
	Nmdar-Glun2B Expression Increases Across The Primate Cortical Hierarchy And Across Primate Evolution
	The Role Of Nmdar-GluN2B In The Cingulate Cortices Mediating Affective Pain Responses And Depression
	Uncontrollable Stress Impairs Higher Pfc Functions
	Hypothesis: The Rapid Antidepressant Actions Of Ketamine May Arise From Blockade Of Mental Representations Generating Aversive Mood State In Cingulate Cortices
	Author Contributions
	Funding
	References

	Relationship of Brain Glutamate Response to D-Cycloserine and Lurasidone to Antidepressant Response in Bipolar Depression: A Pilot Study
	Introduction
	Patients and Methods
	1H MRS Methodology
	1H MRS Data Processing
	Data Analysis

	Results
	Clinical

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Ketamine and Attentional Bias Toward Emotional Faces: Dynamic Causal Modeling of Magnetoencephalographic Connectivity in Treatment-Resistant Depression
	Introduction
	Materials and Methods
	Participants
	Clinical Measurements
	MEG Acquisition and Preprocessing
	Source Localization and Source Activity Extraction
	Dynamic Causal Modeling

	Results
	Clinical and Behavioral
	Source-Level
	Dynamic Causal Modeling
	Parameters Associated With Antidepressant Response

	Discussion
	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	d-Serine: A Cross Species Review of Safety
	Introduction
	Methods
	Overview of D-Serine Physiology
	Use of D-Serine in Treatment Studies: Efficacy and Dose-Dependent Effects
	Renal Effects of D-Serine
	D-Serine and the Pancreas and Metabolism
	D-Serine and the Endocrine System
	D-Serine and Extrapyramidal Effects
	D-Serine, the Liver and the Gastrointestinal Tract
	D-Serine and the Cardiovascular System
	D-Serine and Cancer
	DAAO Inhibitor Clinical Studies and Safety
	Adverse Events in Clinical Studies of D-Serine
	Recommendations for Monitoring During Clinical D-Serine Studies
	Conclusions
	Author Contributions
	Funding
	References

	Saracatinib Fails to Reduce Alcohol-Seeking and Consumption in Mice and Human Participants
	Introduction
	Materials and Methods
	Mouse Study
	Mice
	Mouse Drugs
	Mouse Behavioral Paradigm
	Apparatus and Training
	Contingency Degradation
	Pharmacological Testing

	Statistical Analyses

	Human Clinical Trial
	Human Participants
	Study Medications
	Study Design
	Measures
	Alcohol Craving
	Standard Drinks Consumed
	Alcohol-Induced Stimulation/Sedation
	Adverse Events

	Statistical Analyses


	Results
	No Effect of 5 mg/kg Saracatinib on Habitual Responding for Ethanol in Mice
	No Effect of 125 mg/day Saracatinib on Alcohol Craving, Alcohol-Induced Stimulation/Sedation, or Alcohol Consumption in Human Participants

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Time of Day-Dependent Alterations in Hippocampal Kynurenic Acid, Glutamate, and GABA in Adult Rats Exposed to Elevated Kynurenic Acid During Neurodevelopment
	Introduction
	Methods
	Animals
	EKyn Treatment
	Chemicals
	Tissue Collection
	Microdialysis
	Surgery
	Extracellular Fluid Collection by in vivo Microdialysis

	Biochemical Analysis
	Plasma and Brain (Tryptophan, Kynurenine, KYNA)
	Microdialysate (KYNA)
	Microdialysate (Glutamate/GABA)

	Statistical Analysis

	Results
	Sex, but Not Prenatal KYNA Elevation, Influences the Weight of EKyn and ECon Offspring
	Hippocampal KYNA Levels, but Not Peripheral KP Metabolites, Are Elevated in Young Adult EKyn Offspring
	Prenatal KYNA Elevation Elicits an Increase in Extracellular KYNA Levels During the Light Phase in the Dorsal Hippocampus of Young Adult EKyn Males
	Reduced Extracellular Glutamate in Young Adult EKyn Offspring
	Prenatal KYNA Elevation Elicits Sex-Dependent Changes in Extracellular GABA in Young Adult Offspring

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Directly and Indirectly Targeting the Glycine Modulatory Site to Modulate NMDA Receptor Function to Address Unmet Medical Needs of Patients With Schizophrenia
	Introduction to Schizophrenia and Unmet Medical Needs in Patient With Schizophrenia
	The Roles of Glutamatergic Transmission and NMDAR (N-Methyl-D-Aspartate Receptor) Hypofunction in the Pathophysiology of Schizophrenia
	Directly Targeting the GMS on NMDARs
	Direct Modulation of NMDAR Functions by Glycine
	Direct Modulation of NMDAR Functions by D-Cycloserine
	Direct Modulation of NMDAR Functions by D-Serine

	Indirectly Targeting the GMS on NMDARs
	Indirect Modulation of NMDAR Functions by Targeting Astrocytic GlyT1
	Sarcosine-Based GlyT1 Inhibitors
	Non-sarcosine-based GlyT1 Inhibitors

	Indirect Modulation of NMDAR Functions by Targeting DAO

	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References

	An Overview of the Involvement of D-Serine in Cognitive Impairment in Normal Aging and Dementia
	Introduction
	Physiology of Normal Aging
	D-Serine Physiology, Metabolism and Role in Aging
	D-Serine, NMDARs and Cognitive Impairment in AD/Dementia
	Animal Studies
	Human Studies

	Potential Role of D-Serine in Diagnosis of AD
	Treatment Potential of D-Serine
	Other Treatment Approaches Related to D-Serine
	Limitations in the Use of D-Serine as a Biomarker and Treatment
	Challenges and Possible Future Directions in Research on D-Serine and Cognition
	Relevance of D-Serine to Comorbid Depression, Anxiety and Other Behavioral Changes in Dementia
	Summary
	Author Contributions
	Funding
	Acknowledgments
	References

	Cre-Activation in ErbB4-Positive Neurons of Floxed Grin1/NMDA Receptor Mice Is Not Associated With Major Behavioral Impairment
	Introduction
	Materials and Methods
	Mouse Lines Used in This Study
	Generation of Grin1ΔErb Mice and Induction of Cre-Mediated Recombination
	Histological Analysis
	Behavioral Experiments
	Nesting Test
	Barrier Test
	Open Field and Novel Object Test
	Elevated o-Maze Test
	Dark-Light Test
	Acoustic Startle Response and Pre-pulse Inhibition
	Radial Arm Maze
	Puzzle Box Test
	Novel Object Recognition
	Forced Swim Test
	Statistical Analyses


	Results
	Strategy for the ErbB4-CreERT2-Mediated GluN1 Expression
	Deletion of GluN1 in ErbB4-Expressing Cells During Adolescence Did Not Alter Basic Behavior
	Affective and Sensory-Gating Behavior Was Not Affected by the Genetic Manipulation
	Learning and Memory Was Not Affected by the ErbB4-CreERT2-Induced NMDAR Knockout

	Discussion
	Limitations of the Study

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Activity-State Dependent Reversal of Ketamine-Induced Resting State EEG Effects by Clozapine and Naltrexone in the Freely Moving Rat
	Introduction
	Materials and Methods
	Materials
	Subjects
	Drugs
	Electrodes and Accelerometer

	Methods
	Surgical Procedure
	Groups
	EEG Recording
	Behavioural State Classification
	Data Analysis
	Drug Exposure Determination


	Results
	Locomotor State Globally Alters Local Field Potentials
	Ketamine Suppresses Beta, Enhances HFO
	Effect of Clozapine on Spontaneous Power Spectra
	Pre-treatment
	After Ketamine Challenge

	Effect of Naltrexone on Spontaneous LFP Spectra
	Pre-treatment
	After Ketamine Challenge

	Quantification of Clozapine and Naltrexone Concentrations in Satellite Animals

	Discussion
	Locomotor State Separation
	Beta Suppression and Psychotomimetic Features
	Higher Frequencies
	Clozapine and Ketamine Enhances HFO Power Through Asynchrony
	Naltrexone Modulates Ketamine Induced Excitatory Disinhibition


	Concluding Remarks
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Back Cover 



