About this Research Topic
Heeger in 1977, organic electronics has been deeply investigated by the research community, emerging as a promising technology for the conception and realization of innovative and smart devices. Indeed, the unique properties of organic small molecules and polymers, such as their easy processability from solution, the possibility of deposition at low temperature, over large areas, and by means of low-cost techniques compatible with roll-to-roll printing processes, make them ideal candidates for the development of a novel platform for advanced opto- and microelectronic devices and sensing systems, easily scalable from laboratory to industrial prototypes. Moreover, the high electronic performances achieved thanks to recent progress in molecular tailoring and device conception and fabrication are pushing organic technology even closer to the marketplace for a large plethora of applications.
Despite the great potential of organic electronics explored in the last 20 years, light-emitting diodes are the only organic device commercialized so far. Several challenges have still to be addressed, feeding the research activity of the last years in this field for a wide range of applications: solar cells, UV-vis and ionizing radiation detectors, thin-film transistors, memories, chemical, and biological sensors, etc. Some of the still open issues concern the improvement of the electronic performance of thin-film transistors and the efficiency of organic photovoltaics, the determination of morphology-performance dependence, and the charge trap-states understanding and control. Further, the great challenge of the long-term stability and lifetime of organic materials and devices has still to be fully managed. Finally, theoretical models developed to describe organic device operation, often are not able to fit with high reliability the behavior of devices based on complex polycrystalline and disordered organic semiconducting thin films.
This Research Topic aims to give an overview of the recent advances in organic electronics, underlying the strategies for facing the challenges to pave the way for broad commercialization.
Themes:
• Synthesis of organic small molecules and polymer semiconductors;
• Processing-morphology-performance dependence in organic devices;
• Charge trap-states understanding, control, and impact on devices’ performance;
• Theoretical models for disordered organic systems;
• Technological advances from lab-scale to large-area processing;
• Long-term stability and lifetime of organic materials and devices;
• Advances of electronic devices towards sensing applications.
Types of Manuscripts: Original Research; Review; Brief Research Report; Mini Review; Perspective.
Keywords: Conducting polymers, Small Molecules, Solution Growth, Functional Materials, Advanced Devices
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.