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Editorial on the Research Topic

The Impact of Adipose Tissue Dysfunction on Cardiovascular and Renal Disease

Obesity is considered an adverse metabolic disease with high risk of vascular complications,
including cardiovascular disease (CVD) and chronic kidney disease (CKD). These obesity-related
complications are strongly related to excess adipose tissue accumulation, with earlier studies
centered on the impact of typical visceral versus subcutaneous adipose tissue accumulation.
However, the adipose tissues around blood vessels and organs, including perivascular adipose
tissue (PVAT), pericardial adipose tissue (PAT), epicardial adipose tissue (EAT) and perirenal
adipose tissue (PRAT), have attracted a great deal of attention recently. Dysfunction in these “novel”
adipose tissues have been associated with greater risk of CVD and CKD in obesity than in
traditional visceral adipose tissue. Therefore, studies on the interactions of various adipose tissue
malfunctions to metabolic-related diseases are vital for improved prevention and treatment of
cardiometabolic and renal diseases. This Research Topic aimed to provide a platform for novel
advances in dysfunction of various adipose tissues to identify significant contributors to
metabolism-related vascular complications, especially CVD and CKD. The Research Topic
represents a collection of 7 review articles and 3 original research articles ranging from basic
studies to clinical trials, which provide insights into better understanding of the pathophysiology of
adipose dysfunction in CVD and CKD.

PVAT, a fat pad surrounding the blood vessels, maintains normal vascular function. However,
PVAT becomes dysfunctional in obesity and other pathological conditions. The review by Chen
et al. summarizes recent findings regarding dysfunction and inflammation of PVAT in vascular
activity, vascular aging, hypertension, atherosclerosis, diabetes and a few other pathological
conditions. This review article highlights how PVAT malfunction promotes vascular diseases
through stimulation of inflammatory factors and various secreted adipokines, and that
n.org January 2022 | Volume 12 | Article 81589414
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anti-inflammatory therapy to mitigate PVAT inflammation may
be a valuable target for future treatment of vascular diseases.

Abdominal aortic aneurysms (AAAs) are irreversible vascular
diseases with high mortality rates associated with aneurysm
rupture. The association between PVAT and AAA development
was reviewed by Ye et al. Factors derived from PVAT are involved
in all stages of AAA disease development, including inflammatory
cell infiltration, the onset of oxidative stress, and matrix
metalloproteinase activation. Excessive adipocyte accumulation
derived from PVAT in ruptured AAA walls is closely linked
with AAA progression. Through discussion of what is known
about PVAT-derived factors, this review highlights the need for
additional studies into identifying therapeutic drugs targeted for
PVAT dysfunction to reduce AAA rupture-induced mortality.

PVAT dysfunction following vascular damage also promotes
neointimal formation by releasing adipocytokines that can
regulate the phenotypic switch of vascular smooth muscle cells.
Original research studies by Lei et al. found that MIA3/TANGO1
regulates vascular remodeling response to injury. MIA3/
TANGO1 deficiency inhibits neointimal formation by
preventing vascular smooth muscle cell proliferation/migration,
ameliorating neointimal hyperplasia, and maintaining PVAT
function during injury-induced vascular remodeling. MIA3/
TANGO1 may be a novel potential target for neointimal
formation after vascular injury.

Given the interactions between adipose and CVD, several
authors centered their work on the cross-talk between the
adipose tissue surrounding the heart or myocardium (PAT or
EAT) and coronary artery disease (CAD). Using a variety of
bioinformatics algorithms, Li et al. highlighted potential roles of
molecular alterations in PAT and its association with CAD. 147
differently expressed genes and altered predicted pathways were
identified to be mainly associated with regulation of immune
system and inflammatory response in PAT of patients with CAD.
With the outbreak of coronavirus disease 2019 (COVID-19),
patients with metabolic disease and high adverse cardiovascular
events attracted attention. The review by Lasbleiza et al.
emphasized the harmful role of excess EAT on myocardial
injury among COVID-19 patients with obesity. This inflamed
EAT depot may participate in COVID-19-related cardiac injury
due to its unique anatomical contact with the myocardium and its
inflammatory status. The impact of adipose tissue dysfunction on
CVD was also reviewed by Bermúdez et al. This review discussed
how “sick” adipose tissue affects cardiac pathology, such as arterial
fibrillation, coronary artery disease, and myocardial infarction.
Changes in adipose tissue microenvironment and metabolic
reprogramming in adipose tissue were also summarized in
this article.

PRAT, a fat pad surrounding the kidney, has recently been
implicated in the regulation of kidney function. In a Mini-Review,
Hammoud et al. presented a general overview of new insights
linking CVD and CKD, focusing on metabolic disturbances
affecting the physiological function of PRAT and potential
mechanisms. The review summarized PRAT regulation in various
metabolic states and CKD and strengthened the vital role of PRAT,
a usually neglected adipose tissue, on regulating homeostasis.
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The gut microbiome has also emerged as a critical regulator of
host metabolism. It possesses specific impacts on systemic
metabolisms and CVD. Yang et al. reviewed the role of gut
microbiota and its metabolites in the development and
pathogenesis of CVD caused by adipose tissue dysfunction and
potential targeted therapies against undesirable gut microbiota.
The authors also summarized the present state of clinical therapies
for adipose tissue dysfunction targeting the gut microbiota.

Sestrin2, a highly conserved stress-induced protein, may
represent a novel antioxidant target for metabolic diseases.
Gong et al. include a balanced and comprehensive view of
specific mechanisms of Sestrin2 actions in the development of
different diseases. This review briefly introduced the potential for
Sestrin2 as a clinical marker or therapeutic target. It primarily
summarized the regulatory interactions between Sestrin2 and
AMPK/mTOR signaling and the effects of Sestrin2 on glucose
and lipid metabolism, aging and myocardial energy metabolism.

Telomere shortening and telomerase activity caused by
inflammation and oxidative stress are also associated with
cardiovascular risk. Li et al. investigated the telomerase RNA
component (TERC), telomerase reverse transcriptase (TERT)
gene variants, and acute heart failure (AHF) in a prospective
study that enrolled 322 patients. The authors found that seven
single nucleotide polymorphisms (SNPs) of TERC and TERT are
independent risk factors for predicting 18-monthmortality in AHF.

Overall, the articles outlined above in this Research Topic
underscore the critical role of various adipose tissues dysfunction
in CVD and CKD progression, and poses a timely question of
whether targeting specific adipose tissue depots may become an
important target for better, more efficacious approaches to
prevent and/or treat CVD and CKD.
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TERT Gene Polymorphism, and
Leukocyte Telomere Length in Acute
Heart Failure: A Prospective Study
Yanxiu Li1†, Iokfai Cheang2†, Zhongwen Zhang3, Wenming Yao2, Yanli Zhou2,
Haifeng Zhang2, Yun Liu1, Xiangrong Zuo1, Xinli Li2* and Quan Cao1*
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Background: Telomere length and telomerase are associated in development of
cardiovascular diseases. Study aims to investigate the associations of TERC and TERT
gene polymorphism and leukocyte telomere length (LTL) in the prognosis of acute heart
failure (AHF).

Methods: Total 322 patients with AHF were enrolled and divided into death and survival
group according to all-cause mortality within 18 months. Seven single nucleotide
polymorphisms (SNPs) of TERC and TERT were selected. Baseline characteristics,
genotype distribution and polymorphic allele frequency, and genetic model were initially
analyzed. Genotypes and the LTL were determined for further analysis.

Results: Compared to carrying homozygous wild genotype, the risk of death in patients
with mutated alleles of four SNPs- rs12696304(G>C), rs10936599(T>C), rs1317082
(G>A), and rs10936601(T>C) of TERC were significantly higher. The dominant models of
above were independently associated with mortality. In recessive models, rs10936599
and rs1317082 of TERC, rs7726159 of TERT were independently associated with long-
term mortality. Further analysis showed, in haplotype consisting with TERC - rs12696304,
rs10936599, rs1317082, and rs10936601, mutant alleles CCAC and wild alleles GTGT
were significant difference between groups (P<0.05). CCAC is a risk factor and GTGT is a
protective factor for AHF patients. Relative LTL decreased over age, but showed no
difference between groups and genotypes.

Conclusions: The SNPs of TERC and TERT are associated with the prognosis of AHF,
and are the independent risk factors for predicting 18-month mortality in AHF.

Keywords: telomere—genetics, telomerase reverse transcriptase (TERT), genetic polymorphism, heart failure,
prognosis, telomerase RNA component (TERC)
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INTRODUCTION

Heart failure (HF) is a series of symptoms and signs caused by
structural and/or functional abnormalities of the heart. Acute
heart failure (AHF) is defined as a rapid onset of new or
worsening of HF, which often a potentially life-threatening
condition requiring immediate assessment and treatment (1).
The incidence of heart failure is closely related to age and affected
by the environment and the interaction of multiple genes (2).
Cardiovascular disease accounted for more than 40% of the
deaths for residents (3) despite the treatment advancement.
Screening of high-risk patients would significantly reduce the
mortality rate of patients with acute heart failure and also save
medical expenses.

Aging, inflammatory response and oxidative stress are the
main endogenous factors causing changes in telomere
shortening and telomerase activity. Telomere shortening is
associated with cardiovascular risk factors such as age, gender,
smoking, sedentary lifestyle, obesity, excessive drinking, and
psychological stress (4–6). In addition, atherosclerosis, essential
hypertension, heart failure, coronary heart disease and other
cardiovascular diseases are also accompanied by changes in
telomere length and telomerase activity (7–10).

Telomeric DNA sequences of the same species are highly
conserved. The length of telomere DNA gradually shortens with
aging and cell division, which as a circadian clock and eventually
initiate apoptosis (11, 12). Among, leukocyte telomere length
(LTL) has been recognized as a clinical indicator for measuring
the risk of age-related diseases. Animal studies have shown that
telomere depletion is associated with apoptosis in cardiomyocytes
and chronic heart failure (CHF) (13, 14). A follow-up study in
CHF patients showed the shorter telomere length was associated
with higher mortality and rehospitalization rate as well (15).

Genome-wide association studies (GWAS) (16–18) have
demonstrated that differences in telomere length (TL) between
individuals may be associated with single nucleotide
polymorphisms (SNPs), of which five loci are involved in
telomere biology, including chromosomes 3q26.2 (TERC),
5p15.3 (TERT), 4q32.2 (NAF1), 10q24.33 (OBFC1), 18 and
20q13.3 (RTEL1).

Telomerase is a ribonucleoprotein polymerase and composed
of the telomerase reverse transcriptase (TERT), the telomerase
RNA component (TERC), and the TERC-binding protein
dyskerin, which plays a key role in the regulation of telomere
length (TL). Changes in TL and telomerase activity are the
potential pathological features of the above age-related
conditions. In such pathological conditions, TERT and TERC
are considered to participate in abnormally enhanced local or
systemic oxidative stress of the telomere erosion and attrition.
However, there is lack of study regarding the prognostic effect of
TL in the acute setting of heart failure.

This study aims to further explore the polymorphisms of
telomerase gene TERC and TERT, in the leukocyte telomere
length regulation and the relation with the prognosis of acute
heart failure.
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METHODS AND MATERIALS

Participants
This study prospectively enrolled 322 patients whom
hospitalized for AHF in Cardiology Department of the First
Affiliated Hospital with Nanjing Medical University from March
2012 to April 2016. Inclusion criteria were age ≥18 years, with
new-onset AHF or acute exacerbation of chronic heart failure.
All patients received standard treatment after admission
according to the guideline (19). Patients with malignant tumor,
severe mental illness, and/or uncontrolled systemic disease were
excluded. The study protocols were approved by the independent
Ethics Committee (First Affiliated Hospital of Nanjing Medical
University, Nanjing, Jiangsu, China). Each participant had
signed informed consent. The trial was registered at http://
www.chictr.org.cn/(Trial registration: ChiCTR—ONC-
12001944, Registered 5 Feb 2012, http://www.chictr.org.cn/
showprojen.aspx?proj=7604).

Data Collection and Follow-Up
Within 24 h admitted to the hospital, all patients underwent
comprehensive clinical evaluation included demographics,
physical examination, laboratory results, clinical data, medical
history and etiology of AHF.

All venous blood samples were obtained at the admission or
in the following morning and analyzed in the central laboratory
of our hospital to measure the complete blood count and other
biochemical markers. Transthoracic echocardiography (TTE)
was used for evaluating the left ventricular systolic and
diastolic function on the Vivid E9 ultrasound system (GE
Medical System, United States of America).

The primary endpoint was all-cause mortality during the 18-
month follow up. Patients were evaluated for the primary
endpoint by out-patient visit, telephone evaluation, and/or
confirmation of their family or physician every 3 months.
Patients were separated into survival group and death group
according to the primary endpoint.

Single Nucleotide Polymorphism Selection
The genes were selected using the genome database of Chinese
Han Beijing (CHB) population and review of previous relative
studies literature related to association between TERC and TERT
polymorphisms (20–26). 7 SNPs were selected in for further
analysis including TERC (rs12696304, rs10936599, rs1317082,
rs10936601, rs16847897) and TERT(rs7726159, rs2736100). The
minor allele frequencies (MAF) of all the selected SNPs were
greater than 5%.

Genotyping and Leukocyte Telomere
Length Measurement
Genomic DNA was extracted from whole blood samples using
the TIANamp Blood DNA Kit (DP318; TIANGEN, Beijing,
China) and the concentration was measured by spectrometry
(NanoDrop 2000 spectrophotometer, Thermo Scientific,
Waltham, MA, USA).
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TaqMan fluorescent probe quantitative PCR technology were
used for the SNP genotyping. Based on the nucleic acid sequences
of the seven selected SNPs, the allele-specific TaqMan probes were
designed, synthesized and verified by Thermo Fisher Scientific.
Reaction system included TaqPath ProAmp Master Mix 2.5 ml,
Assay Mix Probe [20×] 0.25 ml, Genomic DNA/Nuclease-Free
Water (ddH2O) 2.25 ml (5 ng/ul). Genotyping were performed
using ABI PRISM 7900HT Sequence Detection System 2.4
(SDS2.4) in accordance with the manufacturer’s protocol.

Genotyping quality control procedures leading to SNP
exclusion were call rate <90% and P<0.05 for deviations from
Hardy-Weinberg equilibrium (HWE). The selected SNPs in the
study were successfully genotyped with 99.68% of call rate. With
36B4 for internal control and ETV6 as primer, each LTL sample
was measured using a multiplex quantitative real-time PCR
method and was calculated by T/S ratios (T, telomere signal; S,
single copy gene signal) (27–29).

Statistical Analysis
Continuous variables were expressed as the mean ± standard
deviation (SD) and compared by student’s t-test or one-way
ANOVA for normal distribution, or expressed as median with
inter-quartile range (IQR) and compared by Mann-Whitney U
test or Kruskal-Wallis H test for skewed distribution. Categorical
variables and frequency of events were reported as numbers
(percentages) and compared by chi-square test. In the correlation
analysis, after the logarithmic transformation of the data that
skewed distribution, the Pearson method is used for the analysis.
The online SHESIS software (http://analysis.bio-x.cn/
myAnalysis.php) was used to analyze the HWE, genotype,
allele frequency distribution, linkage disequilibrium and SNP
haplotypes (30, 31). Kaplan-Meier and multi-variable COX
analysis was used to analyze the prognosis of AHF patients
under different genetic models of SNPs. Correlation analysis
between haplotype and AHF prognosis was performed, the P
value was subjected to FDR (False Discovery Rate) correction
and Bonferroni correction.

All statistical analyses were two-sided and the significance
level was set to P < 0.05. When D’ >0.8 and r2 >0.33, linkage
disequilibrium (LD) was considered between sites. SPSS version
19.0 statistical package (SPSS, Chicago, IL, USA) and Microsoft
Excel were used for all statistical analyses.
RESULTS

Baseline Characteristics
In total, 322 AHF patients were divided into death group (80
cases) and survival group (242 cases). The detail characteristics
of the participants between two groups were shown in Table 1.
There were 15 variables from the baseline characteristics (Table
1) were considered to be statistically significant. Variables
included systolic and diastolic blood pressure, aspartate
aminotransferase (AST), albumin (ALB), Serum creatinine
(Scr), blood urea nitrogen (BUN), uric acid (UA), CystatinC
(CysC), serum potassium (K), serum sodium (Na), hemoglobin
Frontiers in Endocrinology | www.frontiersin.org 39
(HB), D-Dimer, NT-proBNP, pulmonary artery systolic pressure
(PASP), and comorbidities of renal dysfunction (All P<0.05). In
addition, there was no significant difference in sex distribution,
treatment regimen, NYHA classification, and other
comorbidities (All P>0.05).
Distribution of the Genotypes and Allele
Frequencies
The distribution of genotypes and allele frequency (Table 2) of
the seven SNPs of TERC and TERT genes were consistent with
HWE in the death group and survival group of patients with
acute heart failure (P>0.05), indicating sample has a
population representative.

Among which the genotype distribution and polymorphic
allele frequencies of the four loci of TERC gene were statistically
different between the two groups (P<0.05):

rs12696304 (G/C, Hazard Ratio - HR=1.82, 95% CI: 1.25–
2.63, P=0.0016);

rs10936599 (T/C, HR=1.87, 95% CI: 1.31–2.69, P=0.0006);
rs1317082 (G/A, HR=1.92, 95% CI: 1.34–2.76, P=0.0004);
rs10936601 (T/C, HR=1.82, 95% CI: 1.25–2.63, P=0.0016);
The genotype distribution and polymorphic allele frequency

of the other three SNPs (rs16847897, rs7726159, and rs2736100)
showed no significance between groups (P>0.05).
Comparison of the Single Nucleotide
Polymorphism Genotype Under Different
Genetic Models
Genetic model analysis showed the genotype distribution and
comparison between the death and survival groups of the seven
selected SNPs of TERC and TERT genes under different genetic
models are shown in Table 3.

i. Both the dominant and recessive model genotype of
rs10936599 (CC+TC vs. TT, HR:2.84 [1.48–5.44]; CC vs.
TT+TC, OR:1.98 [1.10–3.57]) in TERC were statistically
different between the death group and the survival group
(P<0.05).

ii. Both the dominant and recessive model genotype of
rs1317082 (AA+GA vs. GG, HR:2.89 [1.51–5.54]; AA vs.
GG+GA, HR:2.10 [1.16–3.80]) in TERC were statistically
different between the death group and the survival group
(P<0.05).

iii. The dominant model genotype distribution of rs12696304
(CG+CC vs. GG, HR:2.33 [1.37–3.97]) in TERC was
statistically different between the death group and the
survival group (P<0.05).

iv. The dominant model genotype distribution of rs10936601
(CC+TC vs. TT, HR:2.20 [1.30–3.74]) in TERC was
statistically different between the death group and the
survival group (P<0.05).

v. The recessive model genotype distribution of rs7726159 (AA
vs. CC+CA, HR:1.97 [1.07–3.63]) in TERT was statistically
different between the death group and the survival group
(P<0.05).
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Association Between Genetic
Polymorphisms and Prognosis
To further assess the association between each selected SNP and
the prognosis of acute heart failure, Kaplan-Meier curve analysis
were used (Figures 1A–G). Results showed that the overall
survival rate decreased over time.

i. For rs12696304, rs10936599, rs1317082, and rs10936601 of
TERC gene, the survival rate of AHF patients carrying mutant
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alleles were significantly lower than the homozygous wild alleles
(P<0.05, Figures 1A–D).

ii. Under both dominant and recessive models, rs10936599
(Figure 1B ) and rs1317082 (Figure 1C ) were
associated with decreased survival in patients with AHF
(P<0.05);

iii. Dominant models of rs12696304 (Figure 1A) and
rs10936601 (Figure 1D) were associated with decreased
survival rate of AHF patients (P<0.05);
TABLE 1 | Baseline characteristics between survival group and death group.

Characteristic Totals (n=322) Survivals (n=242) Deaths (n=80) P

Age (year-old) 60.51 ± 16.24 59.62 ± 16.41 63.21 ± 15.50 0.086a

Sex (F/M) 110/212 76/166 34/46 0.078b

BMI (Kg/m2) 24.27 ± 4.53 24.27 ± 4.50 24.26 ± 4.65 0.982a

HR (bpm) 86 ± 22 87 ± 22 85 ± 22 0.411a

SBP (mmHg) 125 ± 22 128 ± 23 118 ± 17 0.000a

DBP (mmHg) 78 ± 15 80 ± 16 74 ± 12 0.000a

ALT (U/L) 26.70 (17.73, 46.68) 31.30 (21.80, 49.70) 24.25 (15.83, 58.13) 0.165c

AST (U/L) 29.30 (22.90, 44.18) 30.70 (24.00, 43.90) 27.40 (21.70, 46.35) 0.034c

ALB (g/L) 37.36 ± 4.67 37.71 ± 4.67 36.27 ± 4.52 0.020a

Scr (umol/L) 87.10 (72.05, 109.95) 89.60 (76.00, 110.70) 96.95 (78.63, 137.88) 0.004c

BUN (mmol/L) 7.19 (5.82, 9.54) 7.28 (6.17, 8.71) 8.49 (6.14, 10.90) 0.000c

UA (mmol/L) 473.0 (382.0, 582.0) 479.0 (388.0, 576.0) 526.5 (446.0, 748.0) 0.029c

CysC (mg/L) 1.31 (1.12, 1.63) 1.31 (1.10, 1.57) 1.52 (1.23, 1.77) 0.001c

K (mmol/L) 3.99 ± 0.51 3.96 ± 0.48 4.09 ± 0.56 0.042a

Na (mmol/L) 139.76 ± 4.09 140.19 ± 3.81 138.49 ± 4.62 0.004a

Ca (mmol/L) 2.25 ± 0.14 2.25 ± 0.14 2.25 ± 0.14 0.993a

HB (g/L) 133.08 ± 20.81 135.24 ± 20.08 126.55 ± 21.70 0.001a

RDW (%) 14.95 ± 4.78 14.75 ± 5.35 15.54 ± 2.29 0.205a

D-dimer (mg/L) 0.75 (0.30, 1.72) 0.59 (0.29, 1.58) 0.94 (0.31, 2.84) 0.001c

NT-proBNP (ng/L) 1979 (1176, 4315) 1775 (1205, 2933) 2626 (1688, 6615) 0.000c

cTnT (ng/L) 61.80 ± 387.34 45.82 ± 295.11 101.74 ± 556.69 0.380a

CK-MB (U/L) 35.34 ± 122.90 36.27 ± 139.96 32.98 ± 61.23 0.869a

TTE
LVDd (mm) 61.53 ± 12.51 61.35 ± 11.96 62.08 ± 14.12 0.661a

LVDs (mm) 48.85 ± 14.01 48.67 ± 13.52 49.39 ± 15.53 0.697a

PASP (mmHg) 42.0 (31.5, 53.0) 40.0 (31.0, 48.0) 48.0 (30.5, 60.5) 0.005c

LVEF% 42.50 ± 14.81 42.43 ± 14.57 42.71 ± 15.62 0.885a

NYHA 0.228b

II (n%) 48 (14.9) 40 (16.5) 8 (10.0)
III (n%) 181 (56.2) 137 (56.6) 44 (55.0)
IV (n%) 93 (28.9) 65 (26.9) 28 (35.0)
Comorbidities
IHD (n%) 76 (23.6) 55 (22.7) 21 (26.3) 0.545b

Cardiomyopathy (n%) 130 (40.4) 101 (41.7) 29 (36.3) 0.431b

VHD (n%) 86 (26.7) 63 (26.0) 23 (28.8) 0.663b

PHD (n%) 23 (7.1) 17 (7.0) 6 (7.5) 1.000b

Atrial fibrillation (n%) 122 (37.9) 94 (38.8) 28 (35.0) 0.596b

CHD (n%) 10 (3.1) 6 (2.5) 4 (5.0) 0.273b

HTN (n%) 162 (50.3) 125 (51.7) 37 (46.3) 0.440b

DM (n%) 77 (23.9) 55 (22.7) 22 (27.5) 0.450b

Pulmonary Infection (n%) 66 (20.5) 48 (19.8) 18 (22.5) 0.633b

Renal dysfunction (n%) 20 (6.2) 10 (4.1) 10 (12.5) 0.013b

Thyroid Dysfunction 0.763b

Hyperthyroidism(n%) 7 (2.2) 6 (2.5) 1 (1.3)
Hypothyroidism(n%) 1 (0.3) 1 (0.4) 0 (0)
Smoking (n%) 121 (37.6) 98 (40.5) 23 (28.8) 0.064b
March 2021 | Volume 12 | Article 6
F, Female; M, Male; BMI, Body Mass Index; HR, Heart Rate; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; ALT, Alanine Aminotransferase; AST, Aspartate
Aminotransferase; ALB, Albumin; Scr, Serum Creatinine; BUN, Blood Urea Nitrogen; UA, Uric Acid; CysC, CystatinC; HB, Hemoglobin; RDW, Red blood cell Distribution Width; NT-
proBNP, N-terminal prohormone of brain natriuretic peptide; cTnT, cardiac troponin T; CK-MB, Creatine kinase-MB; LVDd, Left Ventricular Diastolic Dimension; LVDs, Left Ventricular
Systolic Dimension; PASP, Pulmonary Artery Systolic Pressure; LVEF, Left Ventricular Ejection Fraction; IHD, Ischemic Heart Disease; VHD, Valvular Heart Disease; PHD, Pulmonary Heart
Disease; CHD; Congenital Heart Disease; HTN, Hypertension; DM, Diabetes Mellitus.
aCalculated by unpaired t-test; bcalculated by Chi-square test; ccalculated by rank sum test.
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iv. Recessive model of rs7726159 (Figure 1F) was associated
with a decrease in survival rate in patients with AHF
(P<0.05).

v. The other two SNPs—rs16847897 (Figure 1E) and
rs2736100 (Figure 1G) did not show differences in neither
the models between the death group and the survival group
(P>0.05).

Afterward, univariate COX regression analysis all showed
significance in the five SNPs (TERC—rs12696304, rs10936599,
rs1317082, rs10936601; TERT—rs7726159). Wild genotype was
set as the reference genotype. The association of different genetic
models and prognosis of AHF were shown in Table 4.

After adjusted with the 15 significant variables in the baseline
characters, results showed that for rs12696304, rs10936599,
rs1317082, and rs10936601 of TERC, the risk of death carrying
mutation alleles were higher than those of wild homozygous
genotypes, and remained as independent risk factors in AHF
Frontiers in Endocrinology | www.frontiersin.org 511
patients. The dominant models of these four SNPs were all
independently associated with the risk of death in AHF
patients (P>0.05).

Furthermore, the recessive models of rs10936599, rs1317082
of TERC, and rs7726159 of TERT were independently associated
with the risk of death in AHF patients (P>0.05).

Haplotype Analysis of Telomerase RNA
Component and Telomerase Reverse
Transcriptase Genes
The linkage disequilibrium (LD) analysis of five SNPs of TERC
and two SNPs of TERT in AHF patients is shown in Figure 2.
Further haplotype analysis was performed based on the results of
linkage disequilibrium analysis.

The four haplotypes consisting of rs12696304 (G/C),
rs10936599 (T/C), rs1317082 (G/A) and rs10936601 (T/C)
sites, which the overall frequency was above 1%, showed
TABLE 2 | Distribution of the genotypes and allele frequencies.

Gene SNPs Group Genotype HWE Allele HR (95%CI) c2 P

MM Mm mm c2 P c2 P M m

TERC rs12696304 D 26(0.329) 41(0.519) 12(0.152) 10.00 0.0068 0.41 0.5244 93(0.589) 65(0.411) 1.81 (1.24–2.63) 9.75 0.0018
G/C S 128(0.529) 93(0.384) 21(0.087) 0.48 0.4875 349(0.721) 135(0.279)

rs10936599 D 13(0.163) 44(0.550) 23(0.287) 12.17 0.0023 1.1 0.2934 70(0.438) 90(0.562) 1.87 (1.31–2.69) 11.77 0.0006
T/C S 86(0.355) 115(0.475) 41(0.169) 0.06 0.8089 287(0.593) 197(0.407)

rs1317082 D 13(0.163) 44(0.550) 23(0.287) 13.10 0.0014 1.1 0.2934 70(0.438) 90(0.562) 1.92 (1.34–2.76) 12.75 0.0004
G/A S 87(0.360) 116(0.479) 39(0.161) 0.00 0.9744 290(0.599) 194(0.401)

rs10936601 D 27(0.338) 40(0.500) 13(0.163) 9.79 0.0075 0.08 0.7775 94(0.588) 66(0.412) 1.82 (1.25–2.63) 9.99 0.0016
T/C S 128(0.529) 93(0.384) 21(0.087) 0.48 0.4875 349(0.721) 135(0.279)

rs16847897 D 26(0.325) 41(0.512) 13(0.163) 0.60 0.7411 0.22 0.6368 93(0.581) 67(0.419) 0.87 (0.61–1.26) 0.53 0.4674
C/G S 90(0.372) 117(0.483) 35(0.145) 0.09 0.7604 297(0.614) 187(0.386)

TERT rs7726159 D 27(0.338) 32(0.400) 21(0.263) 5.38 0.0679 3.06 0.0804 86(0.537) 74(0.463) 1.26 (0.88–1.81) 1.64 0.201
C/A S 83(0.343) 122(0.504) 37(0.153) 0.51 0.4737 288(0.595) 196(0.405)

rs2736100 D 24(0.300) 35(0.438) 21(0.263) 3.41 0.1815 1.23 0.2683 83(0.519) 77(0.481) 0.79 (0.55–1.13) 1.63 0.2022
A/C S 78(0.322) 123(0.508) 41(0.169) 0.4 0.525 279(0.576) 205(0.424)
March 2
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SNP, single nucleotide polymorphism; HWE, Hardy-Weinberg equilibrium; HR, hazard ratio; D, death group; S, survival group; M, major allele; m, minor allele.
TABLE 3 | Comparison of the SNP genotype under different genetic models between the death and survival groups.

Gene SNPs Group Dominance HR (95%CI) c2 P Recessive HR (95%CI) c2 P

Mm + mm MM mm MM + Mm

TERC rs12696304 D 53(0.671) 26(0.329) 2.29 (1.34–3.90) 9.53 0.002 12(0.152) 67(0.848) 1.89 (0.88–4.03) 2.74 0.133
G/C S 114(0.471) 128(0.529) 21(0.087) 221(0.913)

rs10936599 D 67(0.838) 13(0.163) 2.84 (1.48–5.44) 10.5 0.001 23(0.287) 57(0.713) 1.98 (1.10–3.57) 5.26 0.035
T/C S 156(0.645) 86(0.355) 41(0.169) 201(0.831)

rs1317082 D 67(0.838) 13(0.163) 2.89 (1.51–5.54) 10.9 0.001 23(0.287) 57(0.713) 2.10 (1.16–3.80) 6.17 0.021
G/A S 155(0.640) 87(0.360) 39(0.161) 203(0.839)

rs10936601 D 53(0.663) 27(0.338) 2.20 (1.30–3.74) 8.83 0.003 13(0.163) 67(0.838) 2.04 (0.97–4.30) 3.65 0.062
T/C S 114(0.471) 128(0.529) 21(0.087) 221(0.913)

rs16847897 D 54(0.675) 26(0.325) 1.23 (0.72–2.10) 0.57 0.503 13(0.163) 67(0.838) 1.15 (0.57–2.30) 0.15 0.718
C/G S 152(0.628) 90(0.372) 35(0.145) 207(0.855)

TERT rs7726159 D 53(0.663) 27(0.338) 1.03 (0.60–1.75) 0.01 1.000 21(0.263) 59(0.738) 1.97 (1.07–3.63) 4.89 0.03
C/A S 159(0.657) 83(0.343) 37(0.153) 205(0.847)

rs2736100 D 56(0.700) 24(0.300) 1.11 (0.64–1.92) 0.14 0.782 21(0.263) 59(0.738) 1.75 (0.96–3.18) 3.35 0.073
A/C S 164(0.678) 78(0.322) 41(0.169) 201(0.831)
6

SNP, single nucleotide polymorphism; HR, hazard ratio; D, death group; S, survival group; M, major allele; m, minor allele.
The major/minor alleles were G/C (rs12696304), T/C (rs10936599), G/A (rs1317082), T/C (rs10936601), C/G (rs7726159), C/A (rs1317082) and A/C (rs2736100) respectively.
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statistically significant in overall haplotype distribution between
the survival and death groups (P=0.0031).

The frequency of haplotype CCAC (H1) was significantly
higher in the death group (OR: 1.79 [1.23–2.61], P<0.05); The
frequency of haplotype GTGT (H4) was significantly lower in the
death group than in the survival group (OR: 0.54 [0.38–0.78], P <
0.05). After corrected by Bonferroni or FDR method, the two
haplotypes CCAC and GTGT composed of these four SNPs
remained significant (P<0.05, Table 5).
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The four haplotypes consisting of the rs7726159 (C/A) and
rs2736100 (A/C) of TERT gene showed no statistical difference
between the groups (P>0.05, Table 6).

Leukocyte Telomere Length
Correlation analysis was performed on the difference of LTL
between different prognoses and genotypes. There was a
significant negative correlation between the relative LTL and
age of AHF patients regardless of the primary endpoint (P<0.001,
A B

D E

F G

C

FIGURE 1 | Kaplan-Meier curve analysis of 7 single nucleotide polymorphisms (SNPs) in different genotypes. (A) rs12696304; (B) rs10936599; (C) rs1317082;
(D) rs10936601; (E) rs16847897; (F) rs7726159; (G) rs2736100.
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Figure 3), and no significant correlation with the clinical baseline
(P>0.05, Appendix 1). Moreover, there was no significant
difference had found in the research SNPs and their genotypes
(P>0.05, Appendix 2).
DISCUSSION

Previous studies showed that telomerase, in addition to its nuclear-
specific telomere elongation, also has extranuclear non-telomere
elongation. TERT as the catalysis subunit of telomerase can
regulate the level of mitochondrial reactive oxygen (32, 33). The
telomere length or telomerase gene TERC and TERT
polymorphisms were correlated with age, the morbidity of
tumors and chronic cardiovascular diseases (34–42). These past
studies were mostly regarding in chronic development diseases,
and the results usually showed correlation of TL, SNPs and the
morbidity of these chronic conditions. On the other hand, an
underlying mechanism of decreased or stayed LT in acute settings
(43). The acute stress on the heart induces compensatory
mechanisms aimed at preserving TL by upregulating TERT.
Despite increases in TERT, TL decreased or stayed the same in
early phrase. As the heart disease progresses, however, these
mechanisms become attenuated and then exhausted, leading to
telomere attrition and overt cardiac failure.

To further explore the prognostic values of seven TERC and
TERT genes single nucleotide polymorphisms (SNPs), and
leukocyte telomere length (LTL) in AHF. By using both SNP
and haplotype analysis method, we analyzed the relationship
between TERC and TERT gene polymorphisms and the
prognosis AHF from the perspective of epigenetics, avoiding
the false negative or false positive results that might be caused by
analyzing a single site.

Our results showed the genotypes rs12696304 (G>C),
rs10936599 (T>C), rs1317082 (G>A), and rs10936601 (T>C)
TABLE 4 | COX regression analysis of different genetic models.

Genotype c2 HR (95%CI) P

rs12696304 Codominance GG – 1.0(ref.) –

CC 8.16 3.35(1.46–7.66) 0.004
CG 8.96 2.65(1.40–5.02) 0.003

Dominance GG – 1.0(ref.) –

CC+CG 10.82 2.79(1.52–5.16) 0.001
Recessive GG+CG – 1.0(ref.) –

CC – – 0.071
rs10936599 Codominance TT – 1.0(ref.) –

CC 11.1 4.98(1.94–12.79) 0.001
TC 6.95 3.27(1.36–7.89) 0.008

Dominance TT – 1.0(ref.) –

CC+TC 9.05 3.72(1.58–8.74) 0.003
Recessive TT+TC – 1.0(ref.) –

CC 5.9 2.07(1.15–3.72) 0.015
rs1317082 Codominance GG – 1.0(ref.) –

AA 12.39 5.35(2.10–13.63) 0
GA 6.17 3.05(1.27–7.37) 0.013

Dominance GG – 1.0(ref.) –

AA+GA 8.76 3.63(1.55–8.51) 0.003
Recessive GG+GA – 1.0(ref.) –

AA 8.35 2.35(1.32–4.18) 0.004
rs10936601 Codominance TT – 1.0(ref.) –

CC 6.58 3.07(1.30–7.23) 0.01
TC 10.81 3.01(1.56–5.79) 0.001

Dominance TT – 1.0(ref.) –

CC+TC 11.91 3.02(1.61–5.66) 0.001
Recessive TT+TC – 1.0(ref.) –

CC – – 0.16
rs7726159 Codominance CC – 1.0(ref.) –

AA 6.82 2.69(1.28–5.65) 0.009
CA 0.68 1.32(0.69–2.53) 0.409

Dominance CC – 1.0(ref.) –

AA + CA – – 0.12
Recessive CC + CA – 1.0(ref.) –

AA 4.47 1.96(1.05–3.65) 0.034
Adjusted with systolic and diastolic blood pressure, aspartate aminotransferase, albumin,
Serum creatinine, blood urea nitrogen, uric acid, cystatinC, serum potassium, serum
sodium, hemoglobin, D-Dimer, NT-proBNP, pulmonary artery systolic pressure, and
comorbidity of renal dysfunction.
FIGURE 2 | Linkage disequilibrium analysis of 7 SNPs.
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of TERC were the independent risk factors for death in AHF
patients after 18 months follow-up, which suggesting these sites
can be used to assess the prognosis of patients with AHF.

Haplotype analysis revealed a linkage disequilibrium between
the four SNPs above (rs12696304, rs10936599, rs1317082, and
rs10936601). The haplotype CCAC consisted of the mutant
alleles and the haplotype GTGT consisted of the wild-type
alleles of these four SNPs were significant differences between
the death group and survival group. Haplotype CCAC is a risk
haplotype for patients with AHF, and haplotype GTGT is a
protective factor for patients with AHF.

Although the other three selected SNPs did not showed
significance between groups; further analysis in the recessive
model for rs7726159 of TERT were found related to the
prognosis of patients as well. The results of TL analysis showed
that there were no significant differences between groups in LTL
regarding all genotypes of the seven SNPs in TERC and TERT.
Frontiers in Endocrinology | www.frontiersin.org 814
Combined with our results of haplotype analysis, the
mechanism might be different in the acute setting of disease.
The biological functions and its prognostic influence might not
be related directly to LTL, and may be related to its regulation
mechanism besides telomere elongation of telomerase. The
telomere length shortens in the effects of endogenous factors
and attenuates cardiometabolism (44). In AHF, the wild
genotype might provide physiological effects in protective
regulation pathways by enhanced telomerase activity acting on
telomeres. On the other hand, mutant genotype lost the effects
and tend to be more susceptible of the endogenous factors,
therefore demonstrated a higher mortality.

Although the underlying mechanisms remain to be
systematically investigated, this study offers the prognostic
factor of AHF from a molecular biology perspective—the
effects of TERC and TERT gene polymorphisms in patients
with AHF.
TABLE 5 | Comparison of haplotypes with TERC gene.

Haplotypes Combinations Deaths(freq) Survivals(freq) c2 P HR (95%CI) Pb Pf

TERC H1 CCAC 62.97(0.400) 132.99(0.275) 9.219 0.0024 1.79 (1.23–2.61) 0.0096 0.0096
H2 CCAT 2.03(0.013) 0.75(0.002) 3.587 0.0583 8.32 (0.97–71.67) 0.2332 0.1166
H3 GCAT 22.47(0.147) 59.51(0.123) 0.462 0.4969 1.20 (0.71–2.02) 1.9876 0.6625
H4 GTGT 68.50(0.428) 284.48(0.588) 10.826 0.001 0.54 (0.38–0.78) 0.004 0.001

Global P – 158 484 11.527 0.0031 – –
March 2021 | Volume
 12 | Article
Haplotypes were in the order of rs12696304(G/C), rs10936599(T/C), rs1317082(G/A) and rs10936601(T/C), respectively.
HR, Hazard Ratio; Pb, Bonferroni adjusted P-values; Pf, False Discovery Rate corrected P-values.
TABLE 6 | Comparison of haplotypes with TERT gene.

Haplotypes Combinations Deaths(freq) Survivals(freq) c2 P HR (95%CI) Pb Pf

TERT H1 AA 7.41(0.046) 10.44(0.022) 2.73 0.0986 2.20 (0.84–5.75) 0.3944 0.3944
H2 AC 66.59(0.416) 185.56(0.383) 0.543 0.4611 1.15 (0.80–1.65) 1.8444 0.9222
H3 CA 75.59(0.472) 268.56(0.555) 3.284 0.07 0.72 (0.50–1.03) 0.28 0.0933
H4 CC 10.41(0.065) 19.44(0.040) 1.685 0.1943 1.66 (0.77-3.61) 0.7772 0.1943

Global P – 160 484 6.12 0.106 – –
Haplotypes were in the order of rs7726159(C/A) and rs2736100(A/C), respectively.
HR, Hazard Ratio; Pb, Bonferroni adjusted P-values; Pf, False Discovery Rate corrected P-values.
FIGURE 3 | Leukocyte Telomere Length (LTL) in different age and prognosis.
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Within the selected SNPs, there were five SNPs of TERC and
TERT genes showed a significant correlation to the prognosis of
AHF. These five SNPs are all located in the non-coding region,
where rs10936599 is located in the 5’UTR region, and the
remaining four SNPs (rs12696304, rs1317082, rs10936601, and
rs7726159) are located in the intron region. The variation of
TERC or TERT gene may affect the transcription process,
resulting in changing the expression level of the corresponding
protein, which may eventually affect the progression of AHF.

Studies showed that LTL and adipose tissue was highly
correlated (45). As smoking, sedentary lifestyle, and obesity are
also factors associated with an increased burden of inflammation.
Similar to TL, adipose tissue are also associated with adverse
cardiometabolic risk factors, and often exhibits proinflammatory
and prooxidative metabolic changes (46–48), which might
associated to the direct damaging effects of adipose tissue on
telomeres and the mediation through the expression of
corresponding genes, such as TERT and TERC. On the other
hand, adipose tissues showed various regulatory effects on
cardiovascular system. Among, epicardial adipose tissue (EAT)
regulates physiological and pathophysiological processes in the
heart. Although not investigated in our study, our findings
provide fundamental knowledge regarding TL and AHF;
adipose tissue, especially epicardial adipose tissue, might be
involved in these pathological mechanisms. TL and telomerase
may be attributed to these regulations of metabonomics
in adipocyte.

In addition, this study also has certain limitations. Firstly, the
study was a single-center study with a relatively small sample
size, which needs a larger cohort to further verify the correlation
of the above SNPs and the prognosis of AHF patients. Secondly,
the biological functions of the above positive SNPs in AHF are
still unclear. Lastly, our study SNPs only included limited sites.
Further researches regarding wider genome and the association
with adipose tissue in heart failure are needed.
CONCLUSION

The results suggest a potential association between TERC, TERT
gene variants and AHF. It provided a valuable prognostic
information and will better elucidate the genetic and telomeric
mechanisms of patients with acute heart failure. Further
genomics and lipidomics investigations are needed.
Frontiers in Endocrinology | www.frontiersin.org 915
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding authors.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of the First Affiliated
Hospital, Nanjing Medical University. The patients/
participants provided their written informed consent to
participate in this study.
AUTHOR CONTRIBUTIONS

YL participated in the design of the research and drafted the
manuscript. IC participated in the design and is a major
contributor in writing the manuscript. ZZ participated in the
analyses. WY and HZ performed the analysis and interpretation
of the study statistic design. YZ, YL, and XZ supervised the study
program and method feasibility. QC and XL contributed to the
conception and design of the research, and performed critical
revision of the manuscript for important intellectual content. All
authors contributed to the article and approved the
submitted version.
FUNDING

This study received grant support from the Twelve-Fifth
National Key Technology R&D Program (2011BAI11B08) and
Jiangsu Province Technology Alliance of Cardiovascular
Disease (KFSN201401).
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fendo.2021.
650922/full#supplementary-material
REFERENCES

1. Kurmani S, Squire I. Acute Heart Failure: Definition, Classification and
Epidemiology. Curr Heart Fail Rep (2017) 14(5):385–92. doi: 10.1007/
s11897-017-0351-y

2. Morita H, Seidman J. Seidman CE.Genetic causes of human heart failure.
J Clin Invest (2005) 115(3):518–26. doi: 10.1172/JCI24351

3. Chengxing S, Junbo G. Epidemic of Cardiovascular Disease in China Current
Perspective and Prospects for the Future. Circulation (2018) 138:342–4.
doi: 10.1161/CIRCULATIONAHA.118.033484

4. Zhu H, Belcher M, van der Harst P. Healthy aging and disease: role for telomere
biology? Clin Sci (Lond) (2011) 120(10):427–40. doi: 10.1042/CS20100385
5. Andrew T, Aviv A, Falchi M, Surdulescu GL, Gardner JP, Lu X, et al. Mapping
genetic loci that determine leukocyte telomere length in a large sample of unselected
female sibling pairs. Am J Hum Genet (2006) 78(3):480–6. doi: 10.1086/500052

6. Benetos A, Okuda K, Lajemi M, Kimura M, Thomas F, Skurnick J, et al.
Telomere length as an indicator of biological aging: the gender effect and
relation with pulse pressure and pulse wave velocity. Hypertension (2001) 37
(2 Pt 2):381–5. doi: 10.1161/01.hyp.37.2.381

7. Mukherjee M, Brouilette S, Stevens S, Shetty KR, Samani NJ. Association of
shorter telomeres with coronary artery disease in Indian subjects. Heart
(2009) 95(8):669–73. doi: 10.1136/hrt.2008.150250

8. Willeit P, Willeit J, Brandstätter A, Ehrlenbach S, Mayr A, Gasperi A, et al.
Cellular aging reflected by leukocyte telomere length predicts advanced
March 2021 | Volume 12 | Article 650922

https://www.frontiersin.org/articles/10.3389/fendo.2021.650922/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2021.650922/full#supplementary-material
https://doi.org/10.1007/s11897-017-0351-y
https://doi.org/10.1007/s11897-017-0351-y
https://doi.org/10.1172/JCI24351
https://doi.org/10.1161/CIRCULATIONAHA.118.033484
https://doi.org/10.1042/CS20100385
https://doi.org/10.1086/500052
https://doi.org/10.1161/01.hyp.37.2.381
https://doi.org/10.1136/hrt.2008.150250
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Li et al. TERC, TERT, and LTL in Heart Failure
atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc
Biol (2010) 30(8):1649–56. doi: 10.1161/ATVBAHA.110.205492

9. von Zglinicki T, Serra V, Lorenz M, Saretzki G, Lenzen-Grossimlighaus R,
Gessner R, et al. Steinhagen-Thiessen E.Short telomeres in patients with
vascular dementia: an indicator of low antioxidative capacity and a possible
risk factor? Lab Invest (2000) 80(11):1739–47. doi: 10.1038/labinvest.3780184

10. Matthews C, Gorenne I, Scott S, Figg N, Kirkpatrick P, Ritchie A, et al.
Vascular smooth muscle cells undergo telomere-based senescence in human
atherosclerosis: effects of telomerase and oxidative stress. Circ Res (2006) 99
(2):156–64. doi: 10.1161/01.RES.0000233315.38086.bc

11. Bairley RC, Guillaume G, Vega LR, Friedman KL. A mutation in the catalytic
subunit of yeast telomerase alters primer-template alignment while promoting
processivity and protein-DNA binding. J Cell Sci (2011) 124(Pt 24):4241–52.
doi: 10.1242/jcs.090761

12. Blackburn EH. Switching and signaling at the telomere. Cell (2001) 106
(6):661–73. doi: 10.1016/s0092-8674(01)00492-5

13. Leri A, Franco S, Zacheo A, Barlucchi L, Chimenti S, Limana F, et al. Ablation of
telomerase and telomere loss leads to cardiac dilatation and heart failure associated
with p53 upregulation. EMBO J (2003) 22(1):131–9. doi: 10.1093/emboj/cdg013

14. Oh H, Wang SC, Prahash A, Sano M, Moravec CS, Taffet GE, et al. Telomere
attrition and Chk2 activation in human heart failure. Proc Natl Acad Sci USA
(2003) 100(9):5378–83. doi: 10.1073/pnas.0836098100

15. van der Harst P, de Boer RA, Samani NJ, Wong LS, Huzen J, Codd V, et al.
Telomere length and outcome in heart failure. Ann Med (2010) 42(1):36–44.
doi: 10.3109/07853890903321567

16. Pooley KA, Bojesen SE, Weischer M, Nielsen SF, Thompson D, Amin Al
Olama A, et al. A genome-wide association scan (GWAS) for mean telomere
length within the COGS project: identified loci show little association with
hormone-related cancer risk. Hum Mol Genet (2013) 22(24):5056–64.
doi: 10.1093/hmg/ddt355

17. Prescott J, Kraft P, Chasman DI, Savage SA, Mirabello L, Berndt SI, et al.
Genome-wide association study of relative telomere length. PloS One (2011) 6
(5):e19635. doi: 10.1371/journal.pone.0019635

18. Mangino M, Hwang SJ, Spector TD, Hunt SC, Kimura M, Fitzpatrick AL, et al.
Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating
telomere homeostasis in humans. Hum Mol Genet (2012) 21:5385–94.
doi: 10.1093/hmg/dds382

19. Chinese Society of Cardiology of Chinese Medical Association and Editorial
Board of Chinese Journal of Cardiology. Guideline for diagnosis and
treatment of heart failure 2014. Zhonghua Xin Xue Guan Bing Za Zhi
(2014) 42(2):98–122. doi: 10.3760/cma.j.issn.0253–3758.2014.02.004

20. Shen Q, Zhang Z, Yu L, Cao L, Zhou D, Kan M, et al. Common variants
near TERC are associated with leukocyte telomere length in the Chinese
Han population. Eur J Hum Genet (2011) 19(6):721–3. doi: 10.1038/
ejhg.2011.4

21. Ding H, Yan F, Zhou LL, Ji XH, Gu XN, Tang ZW, et al. Association between
previously identified loci affecting telomere length and coronary heart disease
(CHD) in Han Chinese population. Clin Interv Aging (2014) 9:857–61.
doi: 10.2147/CIA.S60760

22. Brouilette SW, Moore JS, McMahon AD, Thompson JR, Ford I, Shepherd J,
et al. Telomere length, risk of coronary heart disease, and statin treatment in
the West of Scotland Primary Prevention Study: a nested case-control study.
Lancet (2007) 369(9556):107–14. doi: 10.1016/S0140-6736(07)60071-3

23. Denham J, Nelson CP, O’Brien BJ, Nankervis SA, Denniff M, Harvey JT, et al.
Longer leukocyte telomeres are associated with ultra-endurance exercise
independent of cardiovascular risk factors. PloS One (2013) 8(7):e69377.
doi: 10.1371/journal.pone.0069377

24. Mwasongwe S, Gao Y, Griswold M, Wilson JG, Aviv A, Reiner AP, et al.
Leukocyte telomere length and cardiovascular disease in African Americans:
The Jackson Heart Study. Atherosclerosis (2017) 266:41–7. doi: 10.1016/
j.atherosclerosis.2017.09.016

25. Zhang S, Ji G, Liang Y, Zhang R, Shi P, Guo D, et al. Polymorphisms in
Telomere Length Associated TERC and TERT predispose for Ischemic
Stroke in a Chinese Han population. Sci Rep (2017) 7:40151. doi: 10.1038/
srep40151

26. Paik JK, Kang R, Cho Y, Shin MJ. Association between Genetic Variations
Affecting Mean Telomere Length and the Prevalence of Hypertension and
Frontiers in Endocrinology | www.frontiersin.org 1016
Coronary Heart Disease in Koreans. Clin Nutr Res (2016) 5(4):249–60.
doi: 10.7762/cnr.2016.5.4.249

27. Fyhrquist F, Saijonmaa O, Strandberg T. The roles of senescence and telomere
shortening in cardiovascular disease. Nat Rev Cardiol (2013) 10(5):274–83.
doi: 10.1038/nrcardio.2013.30

28. Gabriel S, Ziaugra I, Tabbaa D. SNP genotyping using the Sequenom
MassARRAY iPLEX platform. Curr Protoc Hum Genet (2009) Chapter 2:
Unit 2.12. doi: 10.1002/0471142905.hg0212s60

29. Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res
(2002) 30(10):e47. doi: 10.1093/nar/30.10.e47

30. Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage
disequilibrium, haplotype construction, and genetic association at
polymorphism loci. Cell Res (2005) 15(2):97–8. doi: 10.1038/sj.cr.7290272

31. Li Z, Zhang Z, He Z, Tang W, Li T, Zeng Z, et al. A partition-ligation-
combination-subdivision EM algorithm for haplotype inference with
multiallelic markers: update of the SHEsis. Cell Res (2009) 19(4):519–23.
doi: 10.1038/cr.2009.33. http://analysis.bio-x.cn.

32. Sarek G, Marzec P, Margalef P, Boulton SJ. Molecular basis of telomere
dysfunction in human genetic diseases. Nat Struct Mol Biol (2015) 22
(11):867–74. doi: 10.1038/nsmb.3093

33. Saretzki G. Extra-telomeric functions of human telomerase: cancer,
mitochondria and oxidative stress. Curr Pharm Des (2014) 20(41):6386–
403. doi: 10.2174/1381612820666140630095606

34. Chang ACY, Blau HM. Short telomeres - A hallmark of heritable
cardiomyopathies. Differentiation (2018) 100:31–6. doi: 10.1016/
j.diff.2018.02.001

35. Sharifi-Sanjani M, Oyster NM, Tichy ED, Bedi KC Jr, Harel O, Margulies KB,
et al. Cardiomyocyte-Specific Telomere Shortening is a Distinct Signature of
Heart Failure in Humans. J AmHeart Assoc (2017) 6(9):e005086. doi: 10.1161/
JAHA.116.005086

36. De Meyer T, Nawrot T, Bekaert S, De Buyzere ML, Rietzschel ER, Andrés V.
Telomere Length as Cardiovascular Aging Biomarker: JACC Review Topic of
the Week. J Am Coll Cardiol (2018) 72(7):805–13. doi: 10.1016/
j.jacc.2018.06.014

37. Cui G, Sun J, Zhang L, Li R, Wang Y, Cianflone K, et al. Lack of causal
relationship between leukocyte telomere length and coronary heart disease.
Atherosclerosis (2014) 233(2):375–80. doi: 10.1016/j.atherosclerosis.2014.01.008

38. Hoshide S. Role of telomere length in interindividual variation in
cardiovascular protection in hypertensive patients. Circ J (2014) 78
(8):1828–9. doi: 10.1016/j.atherosclerosis.2014.01.008

39. Al Khaldi R, Mojiminiyi O, AlMulla F, Abdella N. Associations of TERC
Single Nucleotide Polymorphisms with Human Leukocyte Telomere Length
and the Risk of Type 2 Diabetes Mellitus. PloS One (2015) 10(12):e0145721.
doi: 10.1371/journal.pone.0145721

40. Perez-Rivera JA, Pabon-Osuna P, Cieza-Borrella C, Duran-Bobin O, Martin-
Herrero F, Gonzalez-Porras JR, et al. Effect of telomere length on prognosis in
men with acute coronary syndrome. Am J Cardiol (2014) 113(3):418–21.
doi: 10.1016/j.amjcard.2013.10.009

41. Huzen J, van der Harst P, de Boer RA, Lesman-Leegte I, Voors AA, van Gilst
WH, et al. Telomere length and psychological well-being in patients with
chronic heart failure. Age Ageing (2010) 39(2):223–7. doi: 10.1093/ageing/
afp256

42. van der Harst P, van der Steege G, de Boer RA, Voors AA, Hall AS, Mulder
MJ, et al. MERIT-HF Study Group. Telomere length of circulating leukocytes
is decreased in patients with chronic heart failure. J Am Coll Cardiol (2007) 49
(13):1459–64. doi: 10.1016/j.jacc.2007.01.027

43. Booth SA, Charchar FJ. Cardiac telomere length in heart development,
function, and disease. Physiol Genomics (2017) 49(7):368–84. doi: 10.1152/
physiolgenomics.00024.2017

44. D’Mello MJ, Ross SA, Briel M, Anand SS, Gerstein H, Paré G. Association
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Abdominal aortic aneurysms (AAAs) are typically asymptomatic, and there is a high
mortality rate associated with aneurysm rupture. AAA pathogenesis involves extracellular
matrix degradation, vascular smooth muscle cell phenotype switching, inflammation, and
oxidative stress. There is increasing evidence of excessive adipocyte accumulation in
ruptured AAA walls. These excessive numbers of adipocytes in the vascular wall have
been closely linked with AAA progression. Perivascular adipose tissue (PVAT), a unique
type of adipose tissue, can be involved in adipocyte accumulation in the AAA wall. PVAT
produces various chemokines and adipocytokines around vessels to maintain vascular
homeostasis through paracrine and autocrine mechanisms in normal physiological
conditions. Nevertheless, PVAT loses its normal function and promotes the progression
of vascular diseases in pathological conditions. There is evidence of significantly reduced
AAA diameter in vessel walls of removed PVAT. There is a need to highlight the critical
roles of cytokines, cells, and microRNA derived from PVAT in the regulation of AAA
development. PVAT may constitute an important therapeutic target for the prevention and
treatment of AAAs. In this review, we discuss the relationship between PVAT and AAA
development; we also highlight the potential for PVAT-derived factors to serve as a
therapeutic target in the treatment of AAAs.

Keywords: abdominal aortic aneurysm, perivascular adipose tissue, obesity, vascular, vascular diseases
INTRODUCTION

Aortic aneurysms are irreversible, permanent manifestations of local vasodilation that can be either
thoracic or abdominal; most comprise abdominal aortic aneurysms (AAAs) (1). AAAs are
pathological dilations that are 1.5-fold larger than the normal aortic diameter. There is
increasing evidence of excessive adipocyte accumulation in ruptured AAA walls (2). These
excessive numbers of adipocytes in the vascular wall are derived from perivascular adipose tissue
(PVAT); they have been closely linked with AAA progression (3). PVAT, a unique type of adipose
tissue, surrounds most blood vessels (4). Recently, PVAT has attracted considerable interest in the
context of vascular diseases. The fundamental regulatory role of PVAT in vascular physiology and
dysfunction has been reported to affect both dilated and atherosclerotic aortic diseases (5–7).
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Additionally, PVAT can secrete various substances, thus
promoting expansion of the AAA wall; AAA diameter in the
vascular wall has been shown to significantly decrease upon
removal of PVAT (8). However, the underlying mechanism by
which PVAT contributes to AAAs is unclear. In this review, we
focus on PVAT-derived cytokines in the pathophysiological
progression of AAAs. Moreover, we highlight the potential for
PVAT-derived factors to serve as a therapeutic target in the
treatment of AAAs.
CHARACTERISTICS OF AAA

AAAs can occur in any portion of the inferior phrenic aorta,
although they frequently occur in the infrarenal abdominal aorta
(9). Most AAAs are small and become increasingly prominent
over time. Moreover, the risk of rupture increases with increasing
aneurysm diameter (10). Age, increased smoking frequency,
family history of AAAs, and a high-fat diet have been
associated with AAA expansion (11); this type of change is
characterized by progressive expansion and weakening of the
three layers of the abdominal aorta (i.e., intima, media, and
adventitia). The intima is composed of a layer of endothelial cells
upon connective tissue, the media comprises vascular smooth
muscle cells (VSMCs) embedded in structural proteins, and the
adventitia comprises fibroblasts and collagen fibers (12). Damage
to any layer of the abdominal aorta will promote AAA
progression, frequently leading to rupture-related mortality.
This pathological progression involves extracellular matrix
(ECM) degradation, vascular smooth muscle cell phenotype
switching, inflammation, and oxidative stress. (Figure 1)
(13–16). AAAs cause more than 15,000 deaths annually in the
United States; approximately 25% of patients with aortic rupture
Frontiers in Endocrinology | www.frontiersin.org 219
can achieve prolonged survival by undergoing surgery (16–18).
Currently, AAAs cannot be treated with medication; treatment is
limited to surgical repair to prevent disastrous rupture. However,
this treatment does not provide substantial benefits to patients
with small AAAs (19). Thus, there is a need to develop new
therapies to reduce the risk of AAA rupture.
CHARACTERISTICS OF PVAT

PVAT is a metabolically hyperactive tissue that surrounds many
large blood vessels except the cerebral vasculature. Typical PVAT
includes adipocytes, microvasculature, stromal cells, and
inflammatory cells; the specific phenotype depends on
anatomical location and varies markedly due to pathogenesis
(20). PVAT contains both white and brown adipose tissue. White
adipose tissue (WAT) stores energy in the form of triacylglycerols,
which can be mobilized through lipolysis during energy
expenditure or increased fasting. Additionally, WAT can secrete
various hormones, cytokines, and enzymes. These substances
derived from WAT are essential to biological processes such as
inflammation, metabolism, and vascular homeostasis (21, 22). In
contrast, brown adipose tissue (BAT) can generate heat through
intracellular lipolysis and the activity of uncoupling protein 1.
Intracellular lipolysis produces fatty acids as thermogenic
substrates, while uncoupling protein 1 interrupts electron
transport during the generation of adenosine triphosphate
within the cristae-dense mitochondria in BAT (20, 23). The
compositions of WAT and BAT in PVAT vary throughout
the human body. PVAT contains mainly BAT in the thoracic
aorta and mainly WAT in the abdominal aorta (6, 24, 25). In
normal physiological conditions, PVAT releases vasoactive
molecules (e.g., hydrogen peroxide, angiotensin, adiponectin,
FIGURE 1 | The pathogenesis of AAA.
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hydrogen sulfide, and nitric oxide) to attenuate agonist-induced
vasoconstriction (26–28). Conversely, PVAT in pathological
conditions promotes inflammation and oxidative stress; inhibits
the release of vasoprotective adipocyte-derived relaxing factors;
and increases the secretion of paracrine factors such as resistin,
leptin, cytokines [e.g., tumor necrosis factor a and interleukin
(IL)-6] and chemokines [regulated upon activation, normal
T cell expressed and secreted (i.e., RANTES) and monocyte
chemoattractant protein (MCP)-1] (24, 29, 30). These
substances usually contribute to increased incidence of
metabolic disease (e.g., obesity, diabetes, and aging), thereby
promoting PVAT dysfunction and AAA progression (7, 31).
Thus, PVAT has a close relationship with AAAs.
CELLULAR AND MOLECULAR CONTACT
BETWEEN DYSFUNCTIONAL PVAT AND
AAA PATHOLOGY

There is increasing evidence that dysfunctional PVAT influences
AAA progression. This dysfunction involves inflammatory cells
(e.g., lymphocyte, macrophages and neutrophil) infiltration and
migration from the PVAT to the vascular wall; these cells generate
reactive oxygen species to promote elastic arterial stiffness.
Furthermore, PVAT can regulate neointimal formation through
cytokines that promote VSMC phenotype switching, outer
membrane inflammation, and neovascularization. Thus, PVAT-
derived biologically active substances may participate in each
stage of AAA pathogenesis; targeting these substances may aid in
AAA mitigation (Table 1 and Figure 2).

PVAT-Derived Biological Substances
in AAAs
In the vascular walls of AAAs, inflammatory cytokines such as
MCP-1 and C-reactive protein (CRP) are present at increased
levels during pathological conditions (48). Both of these
cytokines contribute to elastic arterial stiffness by promoting
leukocyte and macrophage adhesion and migration into the
vessel wall, leading to VSMC proliferation. These cytokines are
secreted at high levels in PVAT (49), where they promote
neointimal hyperplasia with macrophage infiltration and vasa
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vasorum proliferation after vascular damage (32, 33), thereby
accelerating aneurysm formation.

Upregulation of MMPs, produced by inflammatory cells and
VSMCs, are the basis of AAA pathogenesis. MMPs increase the
expression levels of inflammatory substances, which disrupt
critical components of ECM (e.g., elastin and collagen fibers)
(50–52). ECM degradation by proteolytic enzymes, mainly
MMP-2 and MMP-9, reportedly promotes AAA progression
(34, 35). Notably, MMP-2 and MMP-9 expression levels are
elevated by PVAT-mediated angiopoietin-like protein 2
(Angptl2) (16). Angptl2-deficient mice showed reduced AAA
progression compared with wild-type mice; in particular,
Angptl2-deficient mice exhibited smaller aneurysms, less
vascular structural destruction, and lower MMP expression
levels (53). Additionally, Tian et al. constructed wild-type mice
with PVAT derived from transgenic mice expressing Angptl2 in
adipose tissue; these modified wild-type mice exhibited more
frequent neointimal hyperplasia after endovascular injury,
compared with wild-type mice that underwent transplantation
of wild-type tissue (36). These studies demonstrate that MMP
inhibition in PVAT may reduce AAA size, suggesting that AAA
progression can be controlled by adjusting PVAT-derived
MMPs (54).

Furthermore, although PVAT-derived factors are beneficial
in normal physiological conditions, long-term enhancement in
pathological conditions may promote disease progression.
Platelet-derived growth factor-D (PDGF-D) and vascular
endothelial growth factors (VEGF) can repair damaged blood
vessels, but both contribute to AAA formation. PDGF receptors
are widely expressed in cells of the cardiovascular system,
including fibroblasts, smooth muscle cells, and pericytes.
PDGF-D signaling has important implications in fibrosis,
neovascularization, atherosclerosis, and restenosis (55). A
transcriptomics analysis revealed that PDGF-D was strongly
expressed in PVAT from obese mice; inhibiting PDGF-D
function significantly reduced AAA incidence. The experiment
demonstrated that adipocyte-specific PDGF-D transgenic mice
were more likely to exhibit AAA formation, accompanied by
adventitial fibrosis and inflammation (37). Furthermore, Zhang
et al. reported that PDGF-D stimulates the transforming growth
factor-beta/small mother against decapentaplegic (i.e., Smad)
pathway, thereby mediating AAA formation during obesity
TABLE 1 | Summary of PVAT-derived factors.

Factors Official full name Function in AAA Reference

CRP C-reactive protein neointimal hyperplasia (32, 33)
MCP-1 Monocyte chemoattractant protein-1 neointimal hyperplasia (32, 33)
MMPs matrix metalloproteinases ECM degradation (34, 35)
Angptl2 angiopoietin-like protein 2 neointimal hyperplasia (36)
PDGF-D platelet-derived growth factor-D adventitial inflammation and fibrosis (37)
VEGF vascular endothelial growth factors adventitial neovascularization (16)
leptin vascular remodeling (38)
T cells T lymphocytes Inflammation response (39–42)
PROK2 Prokineticin 2 inflammation and immune-related processes (43, 44)
MAP4K1 Mitogen-activated protein kinase kinase kinase kinase 1 inflammation and immune-related processes (43, 44)
stromal cells vascular remodeling (45, 46)
EVs miR-221-3p extracellular vesicle microRNA-221-3p VSMC phenotypic switching (47)
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(37, 56). These studies showed that PVAT-derived PDGF-D has
a vital role in AAAs. Importantly, PDGF-D stimulates the release
of VEGF-A by fibroblasts (57). VEGF-A overexpression in
PVAT facilitates adventitial neovascularization; VEGF-A is
elevated in aneurysms, compared with non-aneurysmal aortae
(16). The inhibition of VEGF-A expression may reduce AAA
incidence (58). These findings suggested that PVAT-derived
VEGF also has a vital role in AAAs. Therefore, overexpression
of PVAT-derived growth factors could contribute to AAA
progression by promoting adventitial inflammation.

Leptin is a robustly secreted adipokine with a secretion level
directly proportionate to adipocyte size; leptin is closely involved
with AAAs (59). Leptin is reportedly increased 60-fold in PVAT
from obese mice, and PVAT-derived leptin was twofold greater
in AAAs than in normal aortae (60). Chronic elevation of leptin
could lead to vasoconstriction and VSMC phenotypic switching
(61); both of these changes could accelerate exacerbate vascular
remodeling and promote AAA progression (38). Additionally,
PVAT-derived leptin participates in AAA pathogenesis through
the IL-18 signaling pathway, which involves the IL-18 receptor
and NaCl co-transporter (62, 63). Leptin can increase the
expression levels of IL-18, IL-18 receptor, and NaCl co-
transporter; deletions of these receptors reduced AAA growth
(63). These findings suggest that PVAT-derived biological
substances contribute to AAA progression.

PVAT-Derived Immune Cells in AAAs
Immune cells from PVAT are also implicated in AAA
pathogenesis. T cells are the main leukocyte subset in AAAs.
Frontiers in Endocrinology | www.frontiersin.org 421
Activated T cells promote the release of pro-inflammatory
factors derived from macrophages in AAA models, and their
greatest accumulations occur in PVAT (39). Notably, T cells are
highly activated in PVAT/vascular walls, and the degree of T-cell
infiltration into PVAT is strongly associated with AAA size (39–
42). Furthermore, the innate immune signaling molecule CD14
has a vital role in the adventitial recruitment of macrophage
precursors, which lead to AAAs; CD14 is reportedly upregulated
in PVAT-conditioned medium from an AAA model in vivo and
in vitro (31, 64). Thus, PVAT is a reservoir of T cells and may be
critical for modulating the underlying inflammation of
AAA (42).

Weighted correlation network analysis showed that
prokineticin 2 (PROK2) and mitogen-activated protein kinase
kinase kinase kinase 1 (MAP4K1) were hub genes in dilated
PVAT samples, where they mediated AAA pathogenesis (43, 65).
PROK2 is upregulated in granulocytes and macrophages within
inflamed tissue; it reportedly exhibits sevenfold upregulation at
AAA rupture sites (66). Furthermore, MAP4K1 expression is
increased by T and B cells. Both of these proteins regulate
inflammation and immune processes, such as inflammatory
cell adhesion, cytokine release, and immune cell activation (43,
44). However, specific mechanisms underlying PVAT-derived
gene function in AAAs remain unknown; analysis of these genes
may provide promising AAA treatments.

PVAT-Derived Stromal Cells in AAAs
Perivascular adipose tissue-derived stromal cells (PVADSCs) also
participate in AAA formation (5, 67). Adipose tissue-derived
FIGURE 2 | PVAT contributes to the formation of AAA under pathological conditions.
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stromal cells (ADSCs) are mesenchymal stem cells in essence.
Cultured populations of ADSCs contain fibroblast colony-
forming units and a proportion of clonable self-renewing cells,
but will quit proliferating at less than 20 passages. Thus, it to be
more appropriate to use ADSCs (stroma) than the term stem cells
for ADSCs (68). PVADSCs can be distinguished into several cell
lines under specific culture conditions, including endothelial cells,
smooth muscle cells, osteoblasts, and adipocytes (69–71). This
capability is particularly robust in young PVADSCs, but is weak
in aged cells. Aged PVADSCs show decreased differentiation or
aberrant secretion of adipokines and cytokines, which leads to
reduction of their protective effects against vascular lesions. These
changes could initiate myofibroblast proliferation and migration,
followed by neointimal induction (45). Moreover, PVADSCs from
AAA patients displayed enhanced senescence manifestation.
This manifestation contains increased decreased proliferation,
migration ability, mitochondrial fusion, reactive oxygen species
production, and decreased mitochondrial membrane potential,
which all contribute to AAA formation (46).

PVAT-Derived Extracellular Vesicle
miRNAs in AAAs
Multiple types of PVADSCs can be induced by the transfection
of microRNA (miRNA) mimics (72). Based on gene set
enrichment analysis, the respective expression levels of miR-
27b-3p and miR-221-3p in plasma were 1.6-fold and 1.9-fold
higher in patients with AAAs than in healthy controls (73).
Additionally, miR-221-3p is highly expressed in obese PVAT-
derived extracellular vesicles (EVs). PVAT-derived EVs
containing miRNAs communicate intercellular messages in
AAA pathogenesis (74, 75). Obese mice reportedly secrete
large quantities of EVs containing miRNA, which induce
inflammatory reactions in PVAT and VSMC phenotype
switching in the abdominal aorta. In the context of obesity-
associated inflammation, PVAT-derived miR-221-3p could
trigger early vascular remodeling (47). Therefore, efforts to
target PVAT-derived EVs could provide novel therapeutic
approaches for AAAs.
PVAT-TARGETING THERAPY

The only effective therapy against large AAAs or symptomatic
aneurysms is open surgery or endovascular repair; however, this
provides no clear benefits with respect to small AAAs. Current
research regarding drugs and cells aims to identify novel effective
therapeutic and preventive strategies for AAAs. Given the roles
of MMPs in AAA weakening and rupture, MMPs are considered
reliable targets. Some wide-spectrum MMP inhibitors have been
developed as therapeutic agents for cancer; however, no trials
have shown improved overall survival, and MMP inhibitors can
have severe side effects (76). However, a subset of MMP
inhibitors may have better effects. In particular, MMP12 is
significantly increased in AAAs while peroxisome proliferator-
activated receptor g agonist could reduce MMP12 levels, thus
reducing the inflammatory and oxidative statuses of PVAT (77).
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Furthermore, MMP-targeted imaging can be used to predict
AAA progression and rupture risk. Selective MMP12 inhibitors
based on 99mTc-labeled radiotracers have the potential for
detecting AAA biology and predicting AAA outcome; thus,
single photon emission computed tomography imaging
research may be useful regarding AAAs (78).

Additionally, some experiments have been conducted to treat
AAAs by VEGF or its receptor inhibition (79). VEGF-induced
PVAT cell differentiation downregulates protein kinase C epsilon
and p21-activated kinase 1 phosphorylation, thus negatively
regulating vascular progenitor differentiation (80). Reductions
of VEGF signaling-related angiogenesis have been performed to
treat AAAs in mice (81). For example, anti-VEGF-A monoclonal
antibody suppresses aneurysm development, while receptor
tyrosine kinase inhibitor sunitinib limits AAA initiation and
progression (79). These findings indicate that VEGF and its
receptors have therapeutic potential.

Regenerative medicine has achieved clear therapeutic effects
in various cardiovascular diseases, including AAAs. PVADSCs,
as immunomodulatory cells, inhibit the activation of T
lymphocytes and repolarize the phenotype of M1 macrophages
to M2. PVADSCs can differentiate to functional SMC-like cells,
but inhibit SMC apoptosis. In addition, PVADSCs produce
essential ECM components such as collagen, elastin, and
laminin. Experiments involving transplantation of cultured
PVADSCs into a mouse vein graft model suggested that
PVADSCs promote VSMC differentiation, thereby contributing
to vascular remodeling. PVADSCs inhibits high mobility group
box 1 release, leading to reductions of proinflammatory
cytokines (e.g., IL-17) and protection against AAA formation
(82). PVADSCs can maintain a multipotent phenotype and are
easily cultured, providing a promising treatment for small AAA
(68). Thus, regenerative medicine is a compelling long-term
approach for preventing AAA formation. It should be noted
that the targeted therapies cannot eradicate the disease, but delay
its progression in the initial stages. Therefore, it can only be
applied at an early stage of illness. The exact effects still need to
be supported by clinical studies.
CONCLUSION

In pathological conditions, PVAT becomes dysfunctional and
has a vital role in AAA formation. PVAT-derived factors
participate in all stages of pathological AAA formation,
including inflammatory cell infiltration, oxidative stress onset,
matrix metalloproteinase activation, and VSMC phenotype
switching. Thus, PVAT may be a useful new target for the
development of AAA therapeutic drugs. Notably, most studies
thus far have used in vitro and in vivomodels of AAAs. However,
AAA formation in humans is a chronic process. Moreover, the
mechanisms that connect PVAT-derived factors and AAAs
remain unclear. Additional studies are needed to identify the
mechanisms that contribute to AAA inhibition, thus alleviating
the risk of AAA rupture-induced mortality and preventing
AAA formation.
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A healthy adipose tissue (AT) is indispensable to human wellbeing. Among other roles, it
contributes to energy homeostasis and provides insulation for internal organs. Adipocytes
were previously thought to be a passive store of excess calories, however this view
evolved to include an endocrine role. Adipose tissue was shown to synthesize and secrete
adipokines that are pertinent to glucose and lipid homeostasis, as well as inflammation.
Importantly, the obesity-induced adipose tissue expansion stimulates a plethora of signals
capable of triggering an inflammatory response. These inflammatory manifestations of
obese AT have been linked to insulin resistance, metabolic syndrome, and type 2
diabetes, and proposed to evoke obesity-induced comorbidities including
cardiovascular diseases (CVDs). A growing body of evidence suggests that metabolic
disorders, characterized by AT inflammation and accumulation around organs may
eventually induce organ dysfunction through a direct local mechanism. Interestingly,
perirenal adipose tissue (PRAT), surrounding the kidney, influences renal function and
metabolism. In this regard, PRAT emerged as an independent risk factor for chronic
kidney disease (CKD) and is even correlated with CVD. Here, we review the available
evidence on the impact of PRAT alteration in different metabolic states on the renal and
cardiovascular function. We present a broad overview of novel insights linking
cardiovascular derangements and CKD with a focus on metabolic disorders affecting
PRAT. We also argue that the confluence among these pathways may open several
perspectives for future pharmacological therapies against CKD and CVD possibly by
modulating PRAT immunometabolism.

Keywords: perirenal adipose tissue, chronic kidney disease, cardiovascular disease, metabolic dysfunction,
adipose tissue inflammation
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INTRODUCTION

Adipose tissue (AT) is an active cellular complex that includes
three different cellular types: white, brown, and beige adipocytes
where extensive molecular, physiological and metabolic
heterogeneity among different adipose depots exists (1–3). The
main characteristic of white adipose tissue (WAT) is the large
unilocular lipid droplet occupying most of the adipocyte volume.
WAT functions as an excess lipid store in the form of
triglycerides and secretes free fatty acids (FFA) to fulfill
metabolic demands. Importantly, WAT regulates metabolic
homeostasis by the synthesis and secretion of adipokines (4).
Brown adipose tissue (BAT) is characterized by dispersed
pockets of multilocular adipocytes and is rich in mitochondria.
The main function of BAT is to dissipate energy through
uncoupled respiration, that is mainly mediated by uncoupling
protein-1 (UCP-1) (5). All of these AT depots are well
vascularized, innervated by nerve structures, and contain
preadipocytes, pericytes and immune cells (6). Recently,
extensive research has uncovered the crucial role of AT depots.
Not only does the physiological function of AT involve the
maintenance of local and general homeostasis, via endocrine
and paracrine activity, but also AT may contribute to the
pathogenesis of many diseases (7–9). In this respect, the
involvement of several fat depots was identified; perivascular
adipose tissue (PVAT) is involved in the pathogenesis of
hypertension (10) and epicardial AT is associated with
atherosclerosis and coronary diseases (11).

Perirenal AT (PRAT) is yet another metabolically active AT
depot. PRAT harbors an endocrine and paracrine role synthesizing
and secreting adipokines pertinent to glucose and lipid homeostasis
as well as inflammation (12). Interestingly, evidence shows that
PRATmay influence the function andmetabolism of the renal and
cardiovascular system. Here, we summarize the recent findings
regarding PRAT origin, structure and anatomical characteristics.
We elaborate on the involvement of PRAT in different pathological
conditions presentingnew insights linking cardiovascular and renal
diseases with a focus onmetabolic disorders. An argument that the
confluence exists among the pathways controlling metabolism and
inflammation is made. This knowledge may represent a keystone
for future novel approaches in metabolic, renal, and cardiovascular
therapy and may open several perspectives in the field of
PRAT immunometabolism.
PERIRENAL ADIPOSE TISSUE: ANATOMY,
HISTOLOGY, AND ORIGINS

PRAT, a fat depot in the retroperitoneal space surrounding the
kidney, was previously believed to act as mechanical support to
the kidneys (13). However, recent studies highlighted that not
only PRAT has an essential role in regulating kidney function but
is also involved with cardiovascular system control. Anatomical
studies have confirmed that PRAT exhibits an extensive blood
supply, lymphatic channels, and neuronal innervation (14–16).
Due to its interaction with renal blood vessels and possible
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exertion of physical hemodynamic effect, PRAT is believed to
modulate the renal context in a manner analogous to that of
PVAT in controlling blood pressure (17, 18).

The arterial blood supply to PRAT is derived from branches
of the left colic, lower adrenal, renal, lumbar and ovarian/
testicular arteries. This generates an abundant anastomosing
capillary network supplying PRAT with oxygen and nutrients
(19). Thus, PRAT is very well vascularized and is richly
innervated (15, 20).

Although studies on the origin of PRAT are limited, emerging
transcriptomic data provide insights into the unique nature of
PRAT (2). Recent observations on PRAT adipogenesis revealed
that preadipocytes are negative for endothelial markers (21).
Indeed, human PRAT has been demonstrated to be a hybrid
visceral AT, analogous to subcutaneous AT, and distinct from
other visceral depots (2). Nevertheless, PRAT exhibits age-
dependent molecular and morphological alterations. In human
embryos, PRAT-derived adipocyte progenitors differentiated in
vitro exhibit similar features of BAT including PRDM16 and
UCP1 expression, as well as a comparable mitochondrion copy
number, gene expression patterns, and oxygen consumption rates
(22). In newborns, PRAT predominantly consists of brown
adipocytes with a thin layer of WAT, which exhibit an age-
dependent, progressive regression, such that adult PRAT appears
to be predominantly white with dispersed pockets of multilocular
adipocytes (23, 24). However, recent studies have shown that adult
PRAT comprises spatially-distinct populations of dormant
unilocular and multilocular UCP1-expressing adipocytes (21,
24–26). While unilocular UCP1-expressing adipocytes are evenly
distributed within PRAT, multilocular UCP1-expressing
adipocytes are located around the adrenal gland, in areas
containing a higher number of sympathetic nerve endings (21).
These two types of AT are associated with preadipocytes,
mesenchymal stem cells, and several inflammatory cells (12).
PRAT arises as a focal point in regenerative medicine, it is
considered a depot for mesenchymal stem cells which manifest
the ability to differentiate into adipocyte, osteogenic, chondrogenic
and epithelial lineage (27). BAT progenitor cells are present in
PRAT regardless of specific location (21). About 30% of PRAT
population expresses UCP-1, the majority being multilocular and
about 20% of them exhibiting a unilocular phenotype (21, 25).

The variability in PRAT morphology is also gender-
dependent, PRAT is much more developed in males than
females (28). Computed tomography measurements of PRAT
were carried out in 123 individuals where males had higher
PRAT volume than females at a comparable waist circumference
(28). Another study confirmed the gender variability in PRAT
thickness and volume compared to waist circumference (29).
Gender based discrepancies are also reflected in the histological
pattern of PRAT. BAT in PRAT has higher expression levels of
UCP-1 in females than males (30). In cold weather, PRAT can
show higher levels of BAT (25). The increase in browning
capacity after cold exposure in females can be observed as heat
is rapidly dispersed throughout the body and is attributed to the
abundance of renal blood supply. Moreover, stronger browning
capacity in females is associated with specific characteristics of
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mesenchymal cells of PRAT and to a much lesser extent related
to hormonal interventions (30). These findings are confirmed by
a study on a murine model showing that Y-chromosome
suppresses BAT UCP-1 expression (31).

Whencompared toother typical visceralAT,PRAT ismore active
in energy metabolism, synthesis, and secretion of several adipokines
and inflammatory cytokines (12). PRAT manifests an
immunoregulatory phenotype in response to several inflammatory
cytokines as interleukin-1 beta (IL-1b), interferon (IFN), and tumor
necrosis factor alpha (TNF-a) which could be targeted in anti-
inflammatory therapy (27). These cytokines produced can regulate
kidney function through paracrine or endocrine pathways. PRAT
contributes to a decrease in kidney function in hypertensive
individuals regardless of their body mass index (32). Furthermore,
PRAT increases in prediabetic and diabetic patients and is associated
with lower glomerular filtration rates in diabetic individuals (17, 18).
This represents a potential immunomodulatory mechanism that
could be targeted in different aspects of inflammatory conditions,
tissue injuries (27), CVD and renal dysfunction.
PERIRENAL ADIPOSE TISSUE
PHYSIOLOGY

Sympathetic Innervation
The autonomic nervous system is a key regulator of cardiovascular
as well as energy homeostasis (33–35). The sympathovagal balance
is essential in maintaining proper regulation of the cardiovascular
andmetabolic activity. Studies in human and experimental models
indicate that sympathetic overflow induces hypertension (36, 37)
and targeted end-organ damage (38, 39). Sympathetic nerve
overactivity is detected in various tissues in obesity. Increased
renal sympathetic nerve activity is reported in obese individuals
and can be assessed by kidney norepinephrine spillover (40).
Moreover, the sympathetic innervation regulates thermogenesis
and energy liberation by innervating both the brown and white
adipose pools (41–43).

The autonomic innervation into PRAT is functionally active
(Figure 1). Indeed, the activation of afferent signals in the PRAT
induces an increase in renal sympathetic activity (44). The afferent
nerves in the adipocytes controlling the sympathetic outflow are
referred to as an adipose afferent reflex (AAR) that modulates local
homeostasis regulating energy balance and lipolysis (45–47). The
activation of this sympatho-excitatory reflex in PRAT, AAR, can
elevate sympathetic nerve activity and blood pressure (48, 49). The
effect of the sympathetic innervation was even greater in
hypertensive rat models or following a high fat diet (48, 49).
Additionally, PRAT through AAR could regulate the sympathetic
flow and therefore the cardiovascular system (50). Nevertheless, the
function of the primary afferent neurons innervating PRAT
remains unclear, further studies are essential to clarify the
constituents of thispathwayand thepossiblepathogenesis involved.

Given that PRAT thermogenic activation is essentially
downstream of adrenergic stimulation, the inhibition of the
sympathetic nervous system in obese rats by carotid baroreceptor
stimulation not only alleviatedmetabolic derangements and insulin
resistance, but also reduced PRAT mass and adipocyte
Frontiers in Endocrinology | www.frontiersin.org 328
hypertrophy, among other depots, by modulating the AMPK/
PPARa/g pathway (51). This was associated with a reduction of
plasma and PRAT norepinephrine levels and an augmentation of
acetylcholine levels (51). Moreover, rebalancing the autonomic
nervous system by irradiating carotid baroreceptors in obese rats
amelioratedmetabolic dysfunction (52). This was associated with a
restoration of norepinephrine and acetylcholine levels in PRAT,
among other adipose depots, which rectified the AMPK/PPARa/g
pathway originally altered in obese rats (52). Although both
interventions altered UCP-1 expression in BAT, neither altered
UCP-1 expression in PRAT (51, 52). Nevertheless, it was
demonstrated that systemic catecholamine excess in
paraganglioma patients enhanced the prevalence of activated
brown adipocytes in PRAT (53). Additionally, it was shown that
high-fatdiets aswell as lowprotein,highcarbohydratediets induced
PRAT browning that is associated with an upregulation of UCP-1,
PRDM16, as well as b-AR expression (9, 54). Moreover, b3-AR
activation inHFD-fed obese rats not only enhanced FFA influx into
PRAT, but also its utilization, observations similar to those in rats
fed a low protein, high carbohydrate diet (54, 55). As PRAT
represents a heterogenous and unique adipose depot, contrasting
data emanating from these studies must be interpreted cautiously,
and depending on the context. Nevertheless, the function of the
primary afferent neurons innervating PRAT remains unclear,
further studies are essential to clarify the constituents of this
pathway and the possible pathogenesis involved.

Humoral Regulation-Adipokines
Adipokines encompass a group of endocrine proteins synthesized
and released by adipose tissues functioning as regulators of the
immune system and metabolism including insulin sensitivity and
energy balance (56). These properties of adipokines are linked to
metabolic dysfunction, CVD, and type 2 diabetes mellitus
pathogenesis (57, 58). PRAT is highly active in adipokine
synthesis as well as several pro-inflammatory cytokines (12, 59).
PRAT secreted adipokines could affect the function of adjacent
organs including the kidneys. Moreover, adipokines released into
the systemic circulation could regulate CVS function (60, 61).

Leptin, an adipocyte-derived hormone, is a major regulator of
hunger, energy homeostasis, and endocrine function (62).
Circulating leptin increases in obesity through Janus kinase
signal transducer and activator of transcription (JAK-STAT)
pathway (63). Hyperleptinemia exacerbates atrial fibrosis and
atrial fibrillation, as well as impaired glucose intolerance in obese
mice (64, 65). Moreover, hyperleptinemia is associated with
hypertension in obese men (66). Leptin injection into PRAT in
rats stimulated the AAR without affecting the systemic
sympathetic activity, highlighting that PRAT could directly
regulate cardiovascular function (50). Moreover, in a rat model
of metabolic syndrome (MetS), PRAT-derived leptin exacerbates
the proliferation of glomerular endothelial cells by activating the
MAPK pathway (67). Increased leptin synthesis in PRAT
induced higher leptin concentrations in kidneys increasing the
proliferation of glomerular endothelial cells through a cross-talk
between the renin-angiotensin system (RAS) and leptin pathway,
an effect that was reversed following the blockade of either RAS
or leptin pathways (67). Therefore, aside from its systemic role,
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PRAT-derived leptin could directly affect endothelial cells and
regulate RAS thereby affecting blood pressure as well.

Adiponectin is the most abundant adipokine in the human
serum showing unique insulin-sensitizing, anti-inflammatory,
cardioprotective, and antiapoptotic actions (60, 68). Adiponectin
modulates metabolism; low levels of circulating adiponectin are
linked to type 2 diabetes, atherosclerosis, and CVDs (69–71).
Moreover, the activation of peroxisome proliferator-activated
receptor delta (PPARd) increases adiponectin secretion from
PRAT, which exerts a protective effect on the renal tubular
epithelial cells (72). The high salt diet-induced PPARd activity
inhibits sodium-glucose cotrasporter-2 (SGLT2) which promotes
natriuresis and glycosuria. In diabetic states, patients show reduced
natriuresis mainly due to impaired SGLT2 function. Moreover,
reduced natriuresis in patients with uncontrolled hyperglycemia is
correlated with low adiponectin levels. As a result, a distinctive role
of adiponectin is revealed in regulating sodium and glucose
Frontiers in Endocrinology | www.frontiersin.org 429
homeostasis via SGLT2 in kidney tubules, a mechanism that is
found to be impaired in diabetes (72).

Renin-Angiotensin System
The renin-angiotensin system (RAS) is a crucial regulator of energy
metabolism, having a major role in several metabolic disorders
including obesity and insulin resistance (73). RAS modulates
adipocyte function, glucose, and triglyceride metabolism as well
as lipolysis (74, 75). The expression of all components of the RAS,
includingangiotensin II (Ang II) andangiotensin1-7 (Ang1-7) and
their receptors, have been recognized in adipocytes implying the
involvement of local RAS in regulatingAT function (74, 76). Recent
studies have revealed the counteractive role ofAng II andAng1-7 in
regulating various functions of adipocytes (77).

Divergent findings have been reported assessing the regulation
of RAS in AT depending on the type of adipose pool and different
models studied [reviewed in (78)]. In rodents, the local
FIGURE 1 | Illustrative summary of perirenal adipose tissue physiology. PRAT exhibits an extensive blood supply, lymphatic channels and neuronal innervations.
PRAT accumulation activates sympathetic activity, leptin secretion and renin angiotensin system all of which could lead to hypertension, atherosclerosis and
nephrotoxicity. AAR, adipose afferent reflex; MAPK, mitogen-activated protein kinase; RAS, renin angiotensin system.
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angiotensinogen synthesis in AT is increased following increases in
food intake. In this model, angiotensinogen induced local Ang II
synthesis, promoting AT growth (79). Moreover, in mice, the
accumulation of AT is correlated with higher blood pressure an
effect that is thought to be mediated via an increase in Ang II
secretion from AT (80). In humans, Ang II has antiadipogenic
effects in preadipocytes (81, 82). On the other hand, in obese
hypertensive individuals, Ang II is increased highlighting a link
between RAS and insulin resistance (83). In line, other clinical
studies reported an increase in RAS components in obese
individuals (84–87). Indeed, the local genetic expression of RAS
in adipocytes of obese individuals is elevated (78, 88–91).

Recent studies showed that during adipogenesis, both Ang II
production and Ang II type 1 receptor (AT1R) are upregulated
(92). The stimulation of AT1R promotes leptin secretion in
human adipocytes, an effect mediated via extracellular-signal-
regulated kinases 1 and 2-dependent (Erk1/2) pathway (93). The
stimulation of AT1R in AT induces the production of several
pro-inflammatory cytokines (94), which in turn stimulate the
apoptosis of BAT and inhibit the browning of WAT (95).
However, the blockade of AT1R curbs lipid accumulation and
reactive oxygen species (ROS) generation in adipocytes. This was
associated with increases in adiponectin and apelin and a
decrease in the TNF-a, renin, and visfatin (92, 96).

On the other hand, Ang 1-7 pathway opposes the Ang II-AT1R
signaling, as it stimulates lipolysis and glucose uptake in the adipose
pools and suppresses oxidative stress (97, 98). The activation of
angiotensin-converting enzyme 2 (ACE2) in vivo reduces AT
deposition (99). Ang 1-7 administration to rats on a high-fat diet
was found to increaseACE2expression and reduceATaccumulation
(100). More studies on rats verified the previous results, in which
Ang1-7 lipolytic effects were reduced via blockade of Mas receptors
with a PI3K inhibitor (97). Nevertheless, blockers of AT1R andAT2R
in vitro did not provoke changes in the Ang1-7 function.

PRAT fat deposition is presumed to activate RAS through
compression of blood vessels, lymphatic system, and ureters,
which leads to the development of hypertension, atherosclerosis
and kidney dysfunction (101, 102). Low concentrations of Ang II
increase adipocyte differentiation of human preadipocytes
isolated from PRAT (103). Moreover, in states of metabolic
dysfunction inflammatory cytokines derived from PRAT could
be involved in nephrotoxicity (9, 104). The increase in PRAT
inflammation in diabetic mice was reduced following Ang1-7
treatment. Additionally, Ang1-7 counteracted ROS production
in PRAT (104). The functional significance of PRAT production
of RAS components is an area of intense investigation, it could
reveal a link between metabolic dysfunction, CVD, and CKD.
PERIRENALADIPOSETISSUE INFLAMMATION
ANDMETABOLICCOMPLICATIONS

Mechanisms Governing Adipose Tissue
Inflammation and Thermogenesis
Metabolic homeostasis is governed by balanced, intricate, and
opposing processes promoting energy acquisition and energy
Frontiers in Endocrinology | www.frontiersin.org 530
expenditure in order to maintain basal metabolic rates (105). An
imbalance of such processes, exemplified by an increased energy
acquisition due to caloric excess, is thought to drive early
metabolic dysfunction, eventually culminating in the
emergence of insulin resistance and its accompanying
derangements such as obesity, type 2 diabetes, and CVD (106).
Indeed, excessive caloric intake induces hyperinsulinemia, which
drives adipocyte hypertrophy, promoting the diametric
expansion of the AT beyond the diffusion potential of oxygen
(107–109). WAT exhibits a decreased blood supply during
hypertrophic remodeling resulting in a local hypoxic state.
This is accompanied by an increased adipocyte oxygen
consumption that is not made up for by proper compensatory
vascularization, which triggers hypoxia-inducible factor-1 alpha
(HIF-1a) expression and causes adipocyte death and subsequent
inflammation (108). Indeed, hypoxia induces the release of
proinflammatory cytokines, chemokines and angiogenic and
fibrotic factors from adipocytes, favoring AT dysfunction and
immune cell infiltration (61). Hypoxia-triggered expression of
HIF-1a induces NF-kB-mediated cytokine production including
IL-1b, which signals for the recruitment of circulating immune
cells, causing an imbalance between homeostatic AT-resident
immune cells and infiltrating proinflammatory immune cells (61,
110). Therefore, obesity is considered a state of chronic low-
grade inflammation, in which infiltrating immune cells
contribute to the hypoxic phenotype and to insulin resistance
(111, 112). Additionally, hypoxia-induced AT dysfunction is
associated with an extensive lipolytic activity and free fatty
acids (FFA) release, promoting endoplasmic reticulum stress
and adipocyte apoptosis (113, 114). In response to adipocyte
death, the AT initiates a self-limiting reparative response by
which infiltrating macrophages encircle apoptotic adipocytes
creating histologically-distinguishable crown-like structures
(61, 115). These macrophages aberrantly generate toxic ROS
and nitric oxide (NO), which further damage neighboring cells,
promoting tissue fibrosis (61). As the injurious signal persists,
the chronic stimulation of myofibroblasts and immune cells
exacerbates tissue damage, eventually leading to extracellular
matrix remodeling, tissue fibrosis, and AT dysfunction (116).

There exists extensive heterogeneity among different adipose
depots and among the adipocytes of a given depot itself, resulting
in differential, depot-specific susceptibilities to inflammation (1–3).
A long standing subcategorization of adipose depots differentiates
between WAT and BAT. WAT comprises unilocular adipocytes
that specialize in energy storage and adipokine secretion while BAT
comprisesmitochondria-rich,multilocular adipocytes that specialize
in energydissipation throughnon-shivering thermogenesis (5).Non-
shivering thermogenesis encompasses intricate thermogenic
pathways that are thought to occur downstream of b3-adrenergic
receptors (b3-ARs), and in response to stimuli that enhance local
sympathetic discharge including cold exposure and high fat diet
consumption (5, 117, 118). These latter stimuli promote WAT
browning, a phenomenon by which white adipocytes gain
thermogenic potential, transforming into brown-like beige
adipocytes. Emerging evidence implicates different thermogenic
pathways downstream of b3-ARs, that drive the thermogenic
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potential of brown and beige adipocytes. The most efficient
and quantitatively significant thermogenic effector is the inner
mitochondrial membrane protein, UCP-1. UCP-1 is a fatty acid/
H+ symporter that uncouples mitochondrial oxidative
phosphorylation from the production of ATP (5). Moreover, the
activation of b3-ARs induces lipolysis, increasing the levels of FFA,
which further enhances UCP-1 activity. Nevertheless, it was
shown that UCP-1 is dispensable for cold-induced and diet-
induced thermogenesis (119). It was therefore hypothesized
that less-efficient thermogenic pathways contribute to adaptive
thermogenesis, the most prominent of which is creatine futile
cycling (120). Creatine futile cycling, that is the phosphorylation of
creatine by creatine kinase B and its subsequent futile hydrolysis,
appears to take place in UCP-1-positive and UCP1-negative
adipocytes (121, 122). Importantly, blocking creatine cycling in
adipocytes either by impairing its endogenous biosynthesis or its
transport, promotes diet-induced obesity and cold-intolerance
in mice (123–125). Alternative thermogenic pathways also
include lipolysis/re-esterification cycling that mediates adaptive
thermogenesis based on the ATP demand of triacylglycerol
synthesis, calcium cycling that is mediated by the SR/ER calcium
ATPase pump and phospholamban, and the UCP1-independent
proton leakby themitochondrialADP/ATPcarrier that is initiated at
high membrane potentials (5). Importantly, UCP1-dependent and
UCP1-independent uncoupling of mitochondrial respiration from
ATP production is linked to aberrant increases in the mitochondrial
oxygen consumption rates and oxygen demand, thus possibly
exacerbating AT hypoxia in states of metabolic dysfunction (7–9,
126–128).

Mechanisms Linking Perirenal Adipose
Tissue Thermogenesis and Inflammation
Several studies have shown that an augmentation of central adiposity
in overweight and obese individuals is associated with an increased
PRAT mass, and that PRAT mass independently associates with
insulin resistance and lowerHDL-cholesterol levels (129).Moreover,
PRAT thickness is associatedwith cardiovascular risk factors in a sex-
dependent manner, where significant associations exist between
increased PRAT thickness and fasting plasma glucose level,
metabolic syndrome, and waist circumference in men, and only
fasting plasma glucose level in women (130). Nevertheless, such
observationscannotbemerelyexplainedbyan increasedPRATmass.
Recentmechanistic investigationspossibly linkPRAT thermogenesis
and inflammation to renal dysfunction early in the course of
metabolic disease (9). Although it could be inferred from clinical
observations linking reduced PRAT browning to hypertension and
metabolic dysfunction that PRAT browning holds therapeutic
benefits, recent evidence in non-obese, prediabetic rats, links PRAT
thermogenesis to localized inflammation, impairing renovascular
function early in the course of metabolic disease (9, 131).

Indeed, increased UCP1 expression is consistently reported in
different animal models of diet-induced obesity, a phenotype that
is enhanced by the increased abundance of long chain fatty acids
pertinent to these models (132, 133). Such an increased
expression level of UCP1 drives diet-induced thermogenesis
and is associated with increased levels of oxygen consumption
Frontiers in Endocrinology | www.frontiersin.org 631
(134). This is of particular relevance to adipose depots with
inherently low expression levels of UCP1, such as the PRAT, in
which diet-induced thermogenesis produces profound
bioenergetic and inflammatory alterations (9). Indeed, PRAT
inflammation and enhanced oxidative stress in prediabetic rats
were associated with elevated glomerular filtration rate (GFR)
accompanied by mild proteinuria in the absence of hypertension,
hyperglycemia, obesity, and systemic inflammation (9). These
rats exhibited an acutely increased production of ROS in PRAT
which is suggested to have enhanced UCP-1 activity and
mitochondrial respiration uncoupling (9, 135). Importantly,
PRAT of HFD-fed rats exhibited an enhanced expression of
UCP-1 which is thought to exacerbate local hypoxia and increase
HIF-1a expression in the hypertrophied tissue by driving the
aberrant consumption of oxygen. While studies of the PRAT
UCP1 expression profile are scarce, the available evidence shows
alteration of UCP1 expression in PRAT adipocytes in disease
conditions such as hypertension and renal cell carcinoma (131,
136). In this context, mechanistic parallels can be drawn to PVAT,
an intrinsically hybrid tissue harboring brown adipocytes, in which
an increased UCP-1 expression exacerbates local hypoxia leading to
AT dysfunction and inflammation and subsequent vascular
derangements (8, 137). It was therefore suggested that UCP-1 may
serve as a therapeutic target in select adipose depots to mitigate
cardiovascular and renovascular derangements associated with early
phases of metabolic dysfunction (61, 137). This is of particular
relevance as the upregulation of PRAT UCP-1 expression and the
excessive uncoupling of mitochondrial respiration not only
deteriorated kidney function but were also associated with altered
expression of epithelial and mesenchymal markers supportive of
renal epithelial to mesenchymal transition (9).

Additionally, it was shown that PRAT altered adipokine profile
and enhanced oxidative stress, inflammation, and fibrosismay partly
explain the high risk of cardiovascular events observed in patients
with primary aldosteronism or hypercortisolism (138, 139). In
patients with aldosterone-producing and cortisol-producing
adenomas, PRAT expressed significantly higher levels of IL-6 and
TNF-a as well as fibrotic markers in comparison to normotensive
individuals andpatientswith essential hypertension (138, 139).These
observations are supported by in vitro experiments showing that
aldosterone treatment of isolated humanPRAT stromovascular cells,
mouse 3T3-L1, and brown preadipocytes induces the expression of
IL-6 and markers of inflammation and fibrosis (138). Additionally,
the expression level of NADPH oxidase 4 (NOX4) significantly
increased, while that of hemoxygenase-1 (HO-1) and nuclear factor
erythroid 2-related factor 2 (Nrf2) significantly decreased inPRATof
patients with cortisol-producing adenoma (139). Indeed,
dexamethasone treatment of pre-differentiated stromovascular
cells, mouse 3T3-L1, and brown preadipocytes induces marked
fibrosis and adipogenesis (139). Moreover, it was shown that
dexamethasone treatment in adrenalectomized rats promotes
hyperplastic PRAT expansion that is associated with an increased
expression and dehydrogenase activity of 11 b-hydroxysteroid
dehydrogenase type 1, an NADPH-dependent cortisone reductase
(140). Moreover, hypercortisolism in patients with active Cushing’s
syndrome inducedPRATadipocytehypertrophy, thatwas associated
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with an increasedmacrophage infiltration, andaugmented leptin and
reduced adiponectin levels (141). Additionally, PRAT brown
adipocytes were shown to be active in states of secondary
hyperaldosteronism, such as in patients with pheochromocytoma
(142). Nevertheless, the inflammatory landscape of PRAT in these
patients was not assessed. However, it could be inferred from these
studies that states of hyperaldosteronism and hypercortisolism drive
both PRAT inflammation and increased UCP-1 indicating that
possible cross-talks between both mechanisms plausibly exist.
PERIRENAL ADIPOSE TISSUE
AND RENAL DISEASES

PRAT and Chronic Kidney Disease:
A Possible Correlation
The strong correlation between body mass index and higher risk
of chronic kidney disease (CKD) was first reported in 1974 and
was found to be greatly associated with an increase in proteinuria
(143). Patients with a high body mass index had a higher risk of
CKD compared to lean individuals independent of age (144).
Moreover, urinary albumin excretion was also elevated in obese
patients who are neither hypertensive nor diabetic (145). Indeed,
CKD is an independent complication of obesity; a metabolic
profile identified as obesity-related glomerulopathy or obesity-
related kidney disease (146, 147). Several studies highlighted the
association between increased visceral adiposity, and particularly
increased PRAT mass and volume, and determinants of
metabolic and CV disease as well as kidney dysfunction (129,
148). Excess PRAT has also been associated with metabolic
anomalies including insulin resistance, abnormal fasting blood
glucose levels, hypertriglycemia, and higher uric acid excretion in
urine in patients with CKD (129, 148).

Given the intimate relation between PRAT and the kidney,
either due to their spatial proximity or due to their common
innervation and vascularization, PRAT expansion, dysfunction,
and inflammation are thought to have a pronounced impact on
renal function (149, 150). PRAT thickness is increased in patients
with MetS, which is accompanied by increases in oxidative stress
and renal microvascular proliferation (151). PRAT expansion
secondary to obesity contributes to kidney dysfunction
irrespective of obesity (12, 32). This is in line with the observation
that abdominal obesity was strongly associated with CKD
compared to overall obesity (152, 153), where an increasing body
of evidence has suggested that PRAT thickness is positively
associated with visceral adiposity and waist circumference (145,
154). In this regard, excess PRAT was associated with a higher risk
forCKDandcouldbeusedas apredictor for reducedGFR(145, 155,
156) and higher incidence of proteinuria in obese/overweight
individuals (144, 157). A positive correlation was consistently
found between PRAT thickness and microalbuminuria in obese
patients (145, 156). Importantly, excessive PRAT inflammation is
believed to exacerbate renal vascular and endothelial damage (12,
59, 158, 159). Moreover, it was recently shown that PRAT exhibits
an age-dependent inflammatory signature that is characterized by
an increased peri-organ recruitment of macrophages and
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inflammatory natural killer (NK) cells in the vascular stromal
fraction that was associated with a deleterious impact on the
microenvironment of renal transplants (160, 161). Nevertheless,
another study failed to arrive at such association, where PRAT
inflammation did not correlate with the reduced early renal graft
function observed in obese kidney donors (162). Based on the
previous findings, excess PRAT could be considered an
independent predictor of CKD. Additionally, the ultrasound
evaluation of PRAT is now proposed as a parameter that might
be useful for early assessment of obesity-induced renal
dysfunction (145).

Possible Mechanisms
The detailed mechanisms by which PRAT initiates and
exacerbates chronic renal injury have not been completely
elucidated, but several pathways are postulated (Figure 2 and
Table 1). First, the accumulation of PRAT on the kidney may
result in a direct obstruction of renal parenchyma and vessels.
This might induce increases in sodium reabsorption and higher
blood pressure as a consequence in addition to alterations in
kidney function in obese patients (24). The firm encapsulation of
the kidney could further increase the interstitial hydrostatic
pressure and reduce renal blood flow (149, 167). Consequently,
the increase is sodium absorption leads to a decreased sodium
chloride delivery to the macula densa resulting in lower
resistance in afferent arterioles which leads to increased GFR
and altered RAS (167–170). All of these processes including an
increase in interstitial hydrostatic pressure, stimulation of renin
release, glomerular filtration and sodium tubular reabsorption
accelerate renal disease progression eventually leading to GFR
reduction (24, 148, 149). Recently, a study on hypertensive
individuals has reported a decline in GFR that was correlated
to an increase in PRAT specifically among other visceral AT
depot regardless of gender (32). As a consequence of GFR
reduction, high uric acid and triglycerides were correlated with
PRAT thickness in patients with CKD (24, 148).

Second, chronic inflammation due to the increase in FFA
production is the hallmark of obesity and therefore can also be
associated with modulation of PRAT function. Indeed, the
increased volume of PRAT is positively associated with
overproduction of FFA (145). Metabolites of FFA have a direct
renal lipotoxic effect and are directly correlated with albuminuria
(145, 171). Levels of FFA in renal venous blood were significantly
higher than those in the jugular vein, this indicates the involvement
of PRAT in kidney damage through direct intercellular signaling
pathways (163). The excessive release of FFA by PRAT could
directly impair endothelial function by enhancing the oxidation
of tetrahydrobiopterin and uncoupling of endothelial nitric oxide
(NO) synthase, leading to the production of L-arginine or
superoxide instead of NO (172). The reduced NO synthesis could
lead to a compensatory mechanism synthesizing vascular
endothelial growth factor, leading to a greater albumin leak from
the glomerulus (172). Furthermore, FFA-induced renal lipotoxicity
could exacerbate chronic inflammation by increasing the
metabolism of intracellular fatty acids (171).

Third, excess PRAT can affect renal function through a local or
systemic secretion of pro-inflammatory mediators which may
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influence the kidney function in a paracrine manner (12, 21, 170,
173). In obese swine, excess PRAT secretes tumor necrosis factor-a
(TNF- a) which impairs renal endothelial function (158). This
could be also related to the loss of NO as discussed previously.
Moreover, the expression of plasminogen activator inhibitor-1
(PAI-1) in PRAT was increased in high-fat diet-induced obese
mouse model (165). PAI-1 is shown to contribute to macrophage
mediated inflammation, extracellular matrix accumulation and
thus diabetic nephropathy. The genetic deletion or the inhibition
of PAI-1 reduced PRAT inflammation, renal histological lesions
and abated renal fibrosis (165). Excessive PRAT secretion of
TNF- a and leptin could trigger renal fibrosis in murine models
(29, 174, 175). Leptin exacerbates vascular remodeling and
glomerular proliferation via activation of the p38 MAPK pathway
(67). Concomitantly, TNF- a induces direct renal endothelial
Frontiers in Endocrinology | www.frontiersin.org 833
dysfunction thus modulating GFR (67, 158). Leptin secretion
could also stimulate the sympathetic nervous activity via altering
the proopiomelanocortin-melanocortin 4 receptor pathway in the
central nervous system (160). Interestingly, our recent study on
non-obese prediabetic rats has shown that a localized PRAT
inflammation, presenting as higher IL-1b expression, evoked
renal structural and functional deterioration associated with an
altered renovascular endothelial function (9). Importantly, a recent
study reported a direct correlation between age and inflammatory
profile of donor-derived stromal vascular fraction ofPRAT (PRAT-
SVF), expressed by a local recruitment of NK cells. These NK cells
are associated with NKG2D receptor activation and encodes for
INFg, indicating that NK cells derived could be involved in the pro-
inflammatory pathway leading to renal dysfunction in elderly
patients with transplants (160).
FIGURE 2 | The emerging role of PRAT in renal and cardiovascular homeostatic function. Metabolic dysfunction triggers PRAT deposition and inflammation leading
to alterations in cardiovascular and renal function, triggering nephrotoxicity and cardiovascular diseases. CIMT, carotid intima-media thickness; CVD, cardiovascular
disease; FFA, free fatty acid; GFR, glomerular filtration rate; IL-1b, interleukin-1 beta; NO, nitric oxide; RAS, renin angiotensin system; TNFa, tumor necrosis factor
alpha; VEGF, vascular endothelial growth factor.
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Additionally, as both obesity, diabetic nephropathy, and primary
hypertension are associated with an enhanced activity of the RAS, it
becomes plausible that the enhanced activity of this system in PRAT
and in the adrenal gland participates in the pathogenesis of obesity-
associated hypertension and diabetic nephropathy, particularly
through Ang II-mediated PRAT dysfunction (101, 102). The
inhibition of ACE in a uninephrectomized rat model of chronic
renal dysfunction preventedPRATmass accumulation and led to the
emergence of multilocular thermogenic adipocytes (176). Indeed, it
was shown that Ang1-7 counteracts the detrimental effects of Ang II
on diabetic nephropathy in db/db mice (166). Ang1-7
supplementation to these mice not only reduced renal mesangial
expansion and urinary albumin secretion, but also renal fibrosis and
PRAT oxidative stress and inflammation mainly through the
attenuation of NOX-mediated ROS production (166). Nevertheless,
it remains unclear whether Ang1-7 reduced renal dysfunction by
virtue of its ameliorative effect on PRAT inflammatory and oxidative
status. Moreover, such mechanisms contributing to diabetic
nephropathy were shown in Zucker-diabetic fatty rats (159).
Inducing the heme oxygenase system in these rats reduced PRAT
adiposity, macrophage infiltration, and the production of pro-
inflammatory cytokines such as TNF-a, IL-1b, and IL-6 (159).
Moreover, the hemin-mediated enhancement of the heme
oxygenase system in PRAT reduced the proinflammatory M1
macrophage polarization while inducing the anti-inflammatory M2
macrophage polarization. These effects were accompanied by
reduced renal damage and fibrosis and enhanced kidney function.
As these models exhibit extensive damage that is associated with
diabetes, the dissection of a causality relationship between PRAT
inflammation and renal dysfunction remains marginally possible.
Another study in non-diabetic, high fat diet-fed rats highlighted
Frontiers in Endocrinology | www.frontiersin.org 934
PRAT association with increased urinary albumin excretion due to
renal vascular dysfunction caused by the activation of renal
inflammatory and oxidative stress augmenting pathways (163).
Nevertheless, the inflammatory condition of PRAT was not
assessed and thus these observations were attributed to increased
visceral adiposity, andparticularly increasedPRATmass.However, it
was shown in non-obese prediabetic rats that subtle PRAT
inflammation induces pronounced kidney dysfunction in isolation
of hyperglycemia and systemic inflammation (9). It therefore
becomes plausible that PRAT inflammation in the setting of
metabolic dysfunction might precede renal manifestations of
the disease.

PRAT thickness could aggravate renal anomalies due to
metabolic dysfunction such as abnormal insulin serum levels,
high glucose or triglycerides and uric acid, all of which are
reported in patients with CKD (129). Additionally, excess PRAT
is detected in patients with calcium phosphate apatite or uric acid
nephrolithiasis (177). However, future research into analyzing
the detailed mechanism is warranted.
RENAL DISEASES AND
CARDIOVASCULAR DYSFUNCTION:
CARDIORENAL SYNDROME

A strong relationship exists between the heart and kidney where
the proper function of one depends on the other. Cardiorenal
syndrome is defined as ‘disorders of the heart and kidney whereby
acute or chronic dysfunction in one organ may induce acute or
chronic dysfunction of the other’ ultimately leading to failure of
TABLE 1 | Main findings of studies linking perirenal adipose tissue to renal disorders.

Main finding Possible mechanism Conducted on Reference

PRAT is associated with increased
urinary albumin excretion

Low adiponectin and elevated leptin levels trigger pathways augmenting renal inflammatory and
oxidative stress leading to renal vascular dysfunction causing increased urinary albumin excretion

obese rats (163)

PRAT promotes renal arterial
endothelial dysfunction

Accumulation of PRAT showed increases in inflammation and oxidative stress, which triggered
renal endothelial dysfunction via TNF-a acting in a paracrine manner.

Pigs with obesity
and metabolic
derangements

(158)

PRAT accumulation was correlated
with a decline in GFR

– Hypertensive
patients

(32)

PRAT thickness was negatively
correlated with GFR

– Diabetic patients (164)

PRAT-derived leptin has a
detrimental effect on the kidney

PRAT hypertrophy induces an increase in leptin expression that is accompanied by an imbalance
in the expression of the Ang II–AT1R and ACE2–Ang(1–7)–Mas receptor axes. This promotes
glomerular endothelial cells proliferation by activating p38 MAPK pathway.

Rats with
metabolic
syndrome

(67)

PRAT inflammation and
macrophage infiltration are linked to
high fat diet induced nephropathy

Expression of plasminogen activator inhibitor-1 (PAI-1) in PRAT was increased. PAI-1 contributes
to macrophage mediated inflammation, extracellular matrix accumulation and thus diabetic
nephropathy.

Obese mouse
model

(165)

Localized PRAT inflammation
evoked renal impairment in early
course of metabolic deterioration

The paracrine effects of PRAT inflammation, presented as higher IL-1b expression, lead to
renovascular endothelial dysfunction, hyperfiltration, renal cortical inflammation and proteinuria.

Non-obese
prediabetic rats

(9)

PRAT Inflammation exacerbates
diabetic nephropathy.

Ang1-7 supplementation to these mice not only reduced renal mesangial expansion and urinary
albumin secretion, but also ameliorated renal fibrosis and PRAT oxidative stress and
inflammation mainly through the attenuation of NOX-mediated ROS production.

db/db mice (166)

Excessive perirenal adiposity may
constitute an independent
prognostic factor of kidney
malfunction

Inducing the heme oxygenase system in diabetic fat rats reduced PRAT adiposity, macrophage
infiltration, and the production of pro-inflammatory cytokines such as TNF-a, IL-1b, and IL-6.

Zucker-diabetic
fatty rats

(159)
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both organs (178). CKD is strongly associated with CVD, it has
been reported that patients with advanced kidney disease are at
high risk of CVD mortality and morbidity (179). Recent studies
reported a 40-50% cardiovascular mortality rate in patients with
advanced and end-stage CKD compared to 26% in patients with
normal kidney function (180, 181). Nonetheless, the correction of
the classical cardiovascular risk factors, including hypertension,
diabetes, and dyslipidemia, in patients with CKDwas not sufficient
in neutralizing the impact of CKDon cardiovascular risk (182). It is
also now being recognized that patients with early stages of CKD
also suffer from a high risk of cardiovascular events (183) possibly
implicating a role for PRAT inflammation in this observations.
Consistent with these observations, CKD is now considered an
independent risk factor for CVD (184). It is also worthmentioning
that patientswithCKDaremore likely to die fromCVDrather than
terminal end-stage kidney disease (185).
PERIRENAL ADIPOSE TISSUE AND
CARDIOVASCULAR DYSFUNCTION

Obesity and specifically visceral fat accumulation are actively
involved in the pathogenesis of CVDs including hypertension
(186) and coronary heart diseases (CHD) (187). Abdominal
obesity has a close association with MetS and CVD (188).
Excess visceral AT poses a high risk for dyslipidemia,
hypertension and cardiorenal disorders (189). Studies have
shown that risk of CVDs is more closely related to visceral fat
volume, including PRAT, compared to subcutaneous AT (130,
148, 190). However, surgical lipectomy of abdominal AT depots
was not effective in improving metabolic function or reducing
CVD risk (191). Therefore, a need exists to identify other AT
pools in which certain interventions could lower the risk of
developing CVDs. Notably, recent findings have identified PRAT
specifically as an emerging risk for CVD independent of
metabolic profile (190) (Figure 2 and Table 2).

Hypertension is a common manifestation of CVD and is even
associated with a higher risk of all-cause mortality (198).
Hypertension increases the risk of myocardial infarction,
congestive heart diseases, and stroke (12). Proper control of blood
pressure is fundamental in CVD treatment and prevention of
further complications. There is a linear relationship between
Frontiers in Endocrinology | www.frontiersin.org 1035
hypertension and obesity, around 60-76% of obese individuals
have hypertension (199). Indeed, PRAT thickness is positively
correlated with blood pressure in obese and overweight patients
(190). In obese individuals, PRAT thickness is considered as an
integral parameter defining both the risk for developing arterial
hypertension and chronic renal disease (192). Twenty-four hours
mean diastolic blood pressure was reported to be a dependent
variable of PRAT and aldosterone production independent of
metabolic parameters (190). Similar results were reported in
patients with polycystic ovary syndrome, a positive correlation
between PRAT thickness and blood pressure in patients was
documented (193). Excessive PRAT accumulation compresses the
kidney, increase RAS sodium reabsorption, and induce
hypertension (149, 168). There is evidence that PRAT could
directly regulate the cardiovascular system through an amplified
afferent signals by the AAR, resulting in an increase in the renal
sympathomimetic outflow (200). PRAT hypertrophy activates
macrophage infiltration and proinflammatory cytokine release
that adversely affect systemic vascular function (201). Altogether,
these results suggest thatPRAThas adirect role in controlling blood
pressure, however; further studies are recommended to assess the
detailed mechanistic pathway behind this phenomenon.

Additionally, atherosclerosis is a key factor in inducing CVDs
and a leading cause of morbidity and mortality (202). Carotid
intima-media thickness (CIMT) assessment is considered as a
marker of subclinical atherosclerosis (203) and is therefore used
to determine the risk of CVDs in clinical trials (204). Indices of
atherosclerosis including body weight, waist circumference can
predict CHD. Alterations in AT metabolism underlie
atherosclerosis and thus CHD (205). More specifically, clinical
studies reported that body fat distribution has a significant
correlation with the severity of CHD without any clinical
evidence of CVD. Compared to other fat depots, PRAT thickness
had the highest partial correlation coefficient with CVD,
highlighting the contribution of PRAT in early cardiovascular
changes in males and females (12). Notably, excess PRAT is
positively correlated with indices that predict atherosclerosis as
CIMT, waist to height and waist to hip ratio, waist circumference,
and abdominal height (194). A thickness level of 0.26 cm of PRAT,
measured using abdominal ultrasound, was found to determine the
presence of sub-clinical atherosclerosis (194). Moreover, in HIV-
infected patients, having a high risk of CVD, similar results were
obtained. Patients with HIV and visceral adiposity exhibited high
TABLE 2 | Main findings of studies linking perirenal adipose tissue to cardiovascular disorders.

Main finding Targeted population and references

PRAT accumulation was correlated with higher blood pressure, which was also dependent on urinary concentrations of
aldosterone independent of metabolic parameters.

Obese and overweight individuals (190)

A significant direct correlation between PRAT thickness and hypertension Hypertensive and non-hypertensive obese
individuals (192)
Patients with polycystic ovary syndrome
(193)

PRAT thickness has shown to be significantly correlated with indices that predict atherosclerosis. Male and female subjects (194)
PRAT thickness was associated with atherosclerosis specifically intima-media thickness of the common carotid artery Male subjects (195)

HIV-infected patients (196)
PRAT was associated with diverse metabolic and cardiovascular risk factors including carotid intima-media thickness Asymptomatic prepubertal Caucasian

children (197)
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PRAT thickness and intima-media thickness of the common
carotid artery. This implies the association of PRAT thickness
and atherosclerosis in these individuals (196). Importantly, the
correlationbetweenPRATandCIMTwas evendetected in children
(197). Being readily available, abdominal ultrasound can easily
measure PRAT thickness and therefore a prompt initiation of
action to mitigate or prevent atherosclerosis and control CVD
can be achieved.

Considering the above-mentioned associations, excess PRAT
contributes to alterations in vascular and metabolic functions
associated with CVD. PRAT is also potentially related to
epicardial fat, both having mesothelial layers enriched with WAT
progenitors that produce adipocytes (129). The coexistence of
metabolic dysfunction, hypertension, and inflammation impacts
end organ function gradually initiating a cascade of events that
exacerbate CVD making it more resistant to treatment. These
findings confirm the suggested hypothesis that excess PRAT is a
risk factor of CVDs and a predictor for cardiac dysfunction.
FUTURE PERSPECTIVE AND
POSSIBLE TREATMENT

Proper understanding of the molecular alterations regulating AT
dysfunction could identify therapeutic targets to promote healthy
AT expansion, hence preserving renal and cardiovascular
function. AT dysfunction is the central mechanism for the
development of complications related to obesity and metabolic
diseases; therefore, most of the therapeutic approaches to
mitigate AT dysfunction are related to indices of obesity (206).
Interventions targeting AT dysfunction rely on a foundation of
lifestyle modification including low caloric intake, suitable
exercise, and fasting (207). Pharmacological tools and surgeries
could be implemented to help the patients reach their health
goals (207). As the potential harmful effects of excessive PRAT
accumulation in renal and cardiovascular diseases were outlined,
targeting PRAT inflammation emerges as a potential approach to
combat the complex mechanisms implicated in CKD and CVDs.

Bariatric surgery is an effective intervention in controlling
type 2 diabetes, dyslipidemia and quality of life of morbidly obese
patients (208). Ricci et al. (192) showed that bariatric surgery
could significantly decrease PRAT as well as blood pressure in
morbidly obese patients. Moreover, as previously mentioned,
PRAT is capable of reactivating dormant BAT into active BAT by
cold exposure or stimulation of b3- adrenergic receptors. This
property represents a promising strategy to combat AT
inflammatory conditions leading to metabolic diseases (25, 55).

Possible pharmacological interventions include several drug
classes. Beyond their lipid-lowering effects, statins, 3-hydroxy-3-
methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors,
were found to have anti-inflammatory, anti-oxidant and anti-
proliferative properties (209). Statins also increase adiponectin
levels, protect the endothelium and reduce urinary albumin
excretion rate in patients with diabetes (210, 211). Pravastatin
treatment for 6 months in patients with documented coronary
artery diseases significantly increase serum adiponectin
concentration (212). Higher adiponectin levels following statin
Frontiers in Endocrinology | www.frontiersin.org 1136
treatment improves endothelial function (213), inhibit vascular
smoothmuscle cell proliferation (214, 215), andmodulate vascular
inflammatory cascades (216, 217).Despite thesefindings, to date no
data link statin treatmentwith changes in thePRATdepot, however
one could speculate a beneficial role of statins inPRATdysfunction.

Other pharmacological tools to modulate PRAT inflammation
are anti-diabetic drugs namely, metformin and pioglitazone. A two-
week treatment with non-hypoglycemic doses of either drug was
shown toamelioratePRAT inflammation inpre-diabetic rats onmild
hypercaloric diet. Interestingly, treatment reversed the deterioration
of renal function triggered by 12weeks of amild hypercaloric feeding
(9). Interestingly, a recent study showed treatment with a sodium/
glucose co-transporter 2 (SGLT2) inhibitor reduced urinary albumin
excretionandglomerular cell proliferation inhigh-fat fedmice,which
was accompanied with decreased PRAT inflammation and leptin
production (218). Indeed, the impact of SGLT2 inhibitors on PRAT
inflammation is proposed to proceed through the activation of
AMPK/Sirt1 pathway and potential restoration of autophagy (219).
Moreover, short-term treatment with glucagon-like peptide receptor
agonists was shown to reduce PRAT thickness and improve
renovascular function in diabetic patients (220). Specifically,
liraglutide treatment reduced perirenal adipocyte size in diabetic
mice (221). Nevertheless, identifying specific drugs to target PRAT
accumulation or inflammation require further investigation
and research.

CONCLUSION

This era ismarked bymajor changes in the traditional perception of
AT physiological and metabolic function. The proximity of PRAT
to the kidney makes its specific anatomical and morphological
features relevant to renal function and general homeostasis. In this
context, regardless of the small size ofPRATcompared tovisceral or
subcutaneous AT, the effect of the adipokines and cytokines
secreted broadens the impact of PRAT in maintaining metabolic,
renal, and cardiovascular homeostasis. The data concerning the
unique nature and pathophysiology of PRAT is limited, but studies
are underway to unveil the potential molecular factors involved in
PRAT function opening promising perspectives in developing
appropriate therapeutic and preventive approaches.
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et al. Perirenal Fat Thickness is Associated With Metabolic Risk Factors in
Patients With Chronic Kidney Disease. Kidney Res Clin Pract (2019) 38
(3):365–72. doi: 10.23876/j.krcp.18.0155

149. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity, Kidney
Dysfunction and Hypertension: Mechanistic Links. Nat Rev Nephrol (2019)
15(6):367–85. doi: 10.1038/s41581-019-0145-4

150. Hall JE, Mouton A, da Silva AA, Omoto ACM, Wang Z, Li X, et al. Obesity,
Kidney Dysfunction and Inflammation: Interactions in Hypertension.
Cardiovasc Res (2020) 117(8):1859–76. doi: 10.1093/cvr/cvaa336

151. Li Z,Woollard JR,Wang S, KorsmoMJ, Ebrahimi B, Grande JP, et al. Increased
Glomerular Filtration Rate in Early Metabolic Syndrome is Associated With
Renal Adiposity and Microvascular Proliferation. Am J Physiol Renal Physiol
(2011) 301(5):F1078–87. doi: 10.1152/ajprenal.00333.2011

152. Pinto-Sietsma SJ, Navis G, Janssen WM, de Zeeuw D, Gans RO, de Jong PE.
A Central Body Fat Distribution is Related to Renal Function Impairment,
Even in Lean Subjects. Am J Kidney Dis (2003) 41(4):733–41. doi: 10.1016/
S0272-6386(03)00020-9
August 2021 | Volume 12 | Article 707126

https://doi.org/10.2152/jmi.64.193
https://doi.org/10.1172/JCI88883
https://doi.org/10.1111/febs.15331
https://doi.org/10.1016/j.cmet.2017.10.012
https://doi.org/10.1042/BCJ20190463
https://doi.org/10.1038/s41574-020-0365-5
https://doi.org/10.1038/s41574-020-0365-5
https://doi.org/10.1038/s41586-021-03221-y
https://doi.org/10.1016/j.cmet.2017.03.002
https://doi.org/10.1016/j.cmet.2017.03.002
https://doi.org/10.1016/j.cell.2015.09.035
https://doi.org/10.1016/j.cell.2015.09.035
https://doi.org/10.1016/j.cmet.2017.08.009
https://doi.org/10.1038/s42255-019-0035-x
https://doi.org/10.1038/s42255-019-0035-x
https://doi.org/10.1016/j.celrep.2013.10.044
https://doi.org/10.1016/j.celrep.2013.10.044
https://doi.org/10.1210/jc.2013-1348
https://doi.org/10.1074/jbc.M115.673756
https://doi.org/10.1007/s40519-018-0532-z
https://doi.org/10.1097/MD.0000000000001105
https://doi.org/10.1007/s12020-015-0572-3
https://doi.org/10.1007/s12020-015-0572-3
https://doi.org/10.1152/ajpregu.00411.2010
https://doi.org/10.1016/j.cell.2012.09.010
https://doi.org/10.1152/ajpendo.00020.2019
https://doi.org/10.1038/nature17399
https://doi.org/10.1038/nature17399
https://doi.org/10.3892/or.2019.7306
https://doi.org/10.1042/CS20190227
https://doi.org/10.1042/CS20190227
https://doi.org/10.1210/en.2017-00651
https://doi.org/10.1210/en.2017-00651
https://doi.org/10.1080/21623945.2019.1690834
https://doi.org/10.1590/S1807-59322011000500023
https://doi.org/10.1002/oby.21887
https://doi.org/10.1371/journal.pone.0122584
https://doi.org/10.7326/0003-4819-81-4-440
https://doi.org/10.1681/ASN.2005060638
https://doi.org/10.1007/s11255-013-0404-4
https://doi.org/10.1159/000228071
https://doi.org/10.7326/0003-4819-144-1-200601030-00006
https://doi.org/10.23876/j.krcp.18.0155
https://doi.org/10.1038/s41581-019-0145-4
https://doi.org/10.1093/cvr/cvaa336
https://doi.org/10.1152/ajprenal.00333.2011
https://doi.org/10.1016/S0272-6386(03)00020-9
https://doi.org/10.1016/S0272-6386(03)00020-9
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Hammoud et al. PRAT Inflammation Drives Kidney Disease
153. Bonnet F, Marre M, Halimi JM, Stengel B, Lange C, Laville M, et al. [Larger
Waist Circumference is a Predictive Factor for the Occurrence of
Microalbuminuria in a non-Diabetic Population]. Arch Mal Coeur Vaiss
(2006) 99(7-8):660–2.

154. Kawasaki S, Aoki K, Hasegawa O, Numata K, Tanaka K, Shibata N, et al.
Sonographic Evaluation of Visceral Fat by Measuring Para- and Perirenal
Fat. J Clin Ultrasound (2008) 36(3):129–33. doi: 10.1002/jcu.20426

155. Foster MC, Hwang SJ, Porter SA, Massaro JM, Hoffmann U, Fox CS. Fatty Kidney,
Hypertension, and Chronic Kidney Disease: The Framingham Heart Study.
Hypertension (2011)58(5):784–90.doi:10.1161/HYPERTENSIONAHA.111.175315

156. Harper W, Clement M, Goldenberg R, Hanna A, Main A, Retnakaran R,
et al. Pharmacologic Management of Type 2 Diabetes. Can J Diabetes (2013)
37 Suppl 1:S61–8. doi: 10.1016/j.jcjd.2013.01.021

157. Klausen KP, Parving HH, Scharling H, Jensen JS. Microalbuminuria and
Obesity: Impact on Cardiovascular Disease and Mortality. Clin Endocrinol
(Oxf) (2009) 71(1):40–5. doi: 10.1111/j.1365-2265.2008.03427.x

158. Ma S, Zhu XY, Eirin A, Woollard JR, Jordan KL, Tang H, et al. Perirenal Fat
Promotes Renal Arterial Endothelial Dysfunction in Obese Swine Through
Tumor Necrosis Factor-a. J Urol (2016) 195(4 Pt 1):1152–9. doi: 10.1016/
j.juro.2015.08.105

159. Ndisang JF, Jadhav A, Mishra M. The Heme Oxygenase System Suppresses
Perirenal Visceral Adiposity, Abates Renal Inflammation and Ameliorates
Diabetic Nephropathy in Zucker Diabetic Fatty Rats. PloS One (2014) 9(1):
e87936. doi: 10.1371/journal.pone.0087936

160. Boissier R, François P, Gondran Tellier B, Meunier M, Lyonnet L, Simoncini
S, et al. Perirenal Adipose Tissue Displays an Age-Dependent Inflammatory
Signature Associated With Early Graft Dysfunction of Marginal Kidney
Transplants. Front Immunol (2020) 11:445. doi: 10.3389/fimmu.2020.00445
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Perivascular adipose tissue (PVAT) is the connective tissue around most blood vessels
throughout the body. It provides mechanical support and maintains vascular homeostasis
in a paracrine/endocrine manner. Under physiological conditions, PVAT has anti-
inflammatory effects, improves free fatty acid metabolism, and regulates vasodilation. In
pathological conditions, PVAT is dysfunctional, secretes many anti-vasodilator factors,
and participates in vascular inflammation through various cells and mediators; thus, it
causes dysfunction involving vascular smooth muscle cells and endothelial cells.
Inflammation is an important pathophysiological event in many vascular diseases, such
as vascular aging, atherosclerosis, and hypertension. Therefore, the pro-inflammatory
crosstalk between PVAT and blood vessels may comprise a novel therapeutic target for
the prevention and treatment of vascular diseases. In this review, we summarize findings
concerning PVAT function and inflammation in different pathophysiological backgrounds,
focusing on the secretory functions of PVAT and the crosstalk between PVAT and
vascular inflammation in terms of vascular aging, atherosclerosis, hypertension,
diabetes mellitus, and other diseases. We also discuss anti-inflammatory treatment for
potential vascular diseases involving PVAT.

Keywords: perivascular adipose tissue, vascular diseases, inflammation, endocrine, crosstalk
INTRODUCTION

The vascular system is a highly branched network lined with endothelial cells (ECs) and vascular
smooth muscle cells (VSMCs), which can provide oxygen and nutrition for tissues. The regulation
of vascular function in response to changing metabolic needs is essential for the maintenance of
normal tissue and organ functions; it is also important for health preservation and disease
prevention (1). Vascular diseases caused by vascular injury and dysfunction are among the top
five causes of death among non-communicable diseases worldwide; these diseases influence various
other diseases, such as heart diseases, nervous system diseases, and metabolic disorders (2). Vascular
homeostasis is regulated by many factors, among which perivascular adipose tissue (PVAT) plays an
important role in the pathogenesis of vascular diseases.

PVAT, which surrounds most blood vessels (except cerebral vessels) (3), is a connective tissue
composed of adipocytes, preadipocytes, mesenchymal stem cells, fibroblasts, inflammatory cells
n.org August 2021 | Volume 12 | Article 710842143
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(macrophages, lymphocytes, and eosinophils), vascular cells, and
nerves; these cells form adipose tissue microvasculature (4). PVAT
is characterized by a reduced degree of differentiation, compared
with classical visceral fat (PVAT more closely resembles
preadipocytes); moreover, it exhibits a tendency to release pro-
inflammatory factors and growth factors (5). Because of the
anatomical characteristics of its adjacent vessel walls, PVAT
provides mechanical support in the vascular system, particularly
during adjacent tissue contraction. Furthermore, PVAT releases
various factors, including adipokines and cytokines/chemokines.
Through paracrine/endocrine mechanisms, these factors can
directly diffuse or reach the vascular endothelial layer through
blood vessels or a network of small mediators that connects the
middle layer and lower adventitia. Additionally, these factors
regulate vascular tension, cell proliferation, and cell migration;
exhibit considerable influence on vascular homeostasis and
function; and demonstrate both protective and harmful effects on
the vascular system, according topathophysiological characteristics
present in the tissue microenvironment.

Under physiological conditions, PVAT has anti-inflammatory
effects, improves free fatty acid metabolism, and regulates
vasodilation. However, in the event of vascular pathology, PVAT
increases in volume and becomes dysfunctional. This leads to changes
in cell composition and molecular characteristics, as well as extensive
secretion of pro-inflammatory and anti-vasodilation factors; it also
promotes the infiltration of inflammatory immune cells and local
oxidative stress, triggering vascular wall “from the outside to the
inside” pathological signal, thereby causing VSMC and EC
dysfunction (6, 7). The specific mechanisms and characteristics of
PVAT dysfunction may differ among vascular diseases, despite
important similarities with respect to inflammation characteristics.
Inflammation is also an important pathophysiological event in
vascular aging, atherosclerosis, hypertension, diabetes mellitus
(DM), and other vascular diseases (8, 9). Therefore, the pro-
inflammatory crosstalk between PVAT and blood vessels may
comprise a novel therapeutic target for the prevention and
treatment of vascular diseases. In this review, we summarize the
latest findings regarding PVAT function and inflammation in various
Frontiers in Endocrinology | www.frontiersin.org 244
pathophysiological contexts and discuss anti-inflammatory
treatments for potential PVAT-related vascular diseases.
SECRETORY FUNCTIONS OF PVAT

PVAT is considered an important endocrine tissue for the
maintenance of intravascular stability. Although most
inflammation in PVAT is attributed to infiltration by
macrophages and T cells, PVAT-related regulation of vascular
function depends largely on its secretory functions (Figure 1).
Dysfunctional adipocytes themselves exhibit pro-inflammatory
phenotypes and may play important roles in triggering and
spreading inflammation within PVAT (10). Similar to other
adipose tissues, PVAT secretes many adipose tissue-specific
adipokines, chemokines, and growth factors; these directly
affect the functions of adjacent blood vessels in a paracrine
manner and can also reach the lumens of adjacent blood
vessels, then have various downstream effects. PVAT affects
tension and endothelial functions throughout the vascular bed
in a vascular secretion manner, thus triggering and coordinating
the infiltration of inflammatory cells (e.g., T cells, macrophages,
dendritic cells, B cells, and NK cells) (11).

Under physiological conditions, PVAT mainly secretes anti-
inflammatory adipokines, such as adiponectin (APN), omentin,
fibroblast growth factor-21 (FGF-21), and nitric oxide (NO)
(Figure 1A). In the context of vascular dysfunction, PVAT
mostly produces and releases pro-inflammatory adipokines,
such as leptin, tumor necrosis factor-a (TNF-a), monocyte
chemoattractant protein-1 (MCP-1, also known as CCL2),
RANTES (Chemokine C-C motif ligand 5, CCL5), interleukin-
6 (IL-6), and interleukin-1b (IL-1b); all of these factors can
directly affect VSMCs and ECs, thus triggering and coordinating
vascular inflammation (Figure 1B) (5, 9).

PVAT and Anti-Inflammatory Cytokines
Under physiological conditions, PVAT releases various anti-
inflammatory factors, including APN. The main biological
A B

FIGURE 1 | Secretory functions mediate inflammatory crosstalk between perivascular adipose tissue (PVAT) and blood vessels. (A) Interactions between PVAT and
blood vessels in normal physiological conditions. (B) Crosstalk between PVAT and blood vessels in pathological conditions. FGF-21, fibroblast growth factor-21; NO,
nitric oxide; IL, interleukin; PVATRF, PVAT-derived relaxing factor; TGF-b1, transforming growth factor-b1; Ang II, angiotensin II; TNF-a, tumor necrosis factor-a;
MCP-1, monocyte chemoattractant protein-1; MIP-1a, macrophage inflammatory protein 1a; IFN-g, interferon g; VEGF-B, vascular endothelial growth factor B.
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functions of APN include promotion of fatty acid biosynthesis
and inhibition of gluconeogenesis in liver, enhancement of
glucose uptake in skeletal muscle, improvement of systemic
insulin resistance, and prevention of systemic atherosclerosis
by increasing fatty acid oxidation (12).

The effects of APN-mediated anti-inflammatory action on
vascular function have been elucidated in multiple vascular
diseases. Compared with mice that were fed a regular chow
diet, the anti-contractile effect of PVAT was significantly
reduced in non-endothelial aortic rings in mice that were fed a
high-fat diet, partly because of reduced APN release from PVAT,
associated with AMPK dysfunction and/or PVAT inflammation
(13–16). APN expression is reportedly downregulated in
desoxycorticosterone acetate (DOCA)‐salt hypertensive mice
because of complement activation in PVAT; this effect can be
reversed by macrophage depletion (17). Transplanted PVAT
exhibits reduced expression of APN, thereby aggravating
endothelial dysfunction through an inflammatory response
(18). Exogenous APN can restore aortic anti-contractile activity
of adult male offspring in mice exposed to gestational intermittent
hypoxia (19). Upregulation of the heme oxygenase-1/APN axis in
PVAT mediates anti-contractility-related Irisin improvement in
the thoracic aorta of obese mice (15, 20). Chronic APN therapy
can inhibit chemokine and pro-inflammatory adipokine
expression patterns in PVAT in both aged rats and rats that
were fed a high-fat diet, thus improving endothelial dysfunction
in these models (21). PVAT around the coronary artery,
collectively classified as epicardial adipose tissue (EAT), is
closely related to the occurrence and development of coronary
atherosclerotic lesions, as well as plaque stability. Angiotensin
converting enzyme 2 (ACE2)-knockout mice that were fed a
high-fat diet exhibited increased EAT inflammation; this was
associated with decreased cardiac APN, decreased AMPK
phosphorylation, increased cardiac steatosis and lipotoxicity,
and myocardial insulin resistance, which exacerbated cardiac
functional damage (22). In EAT from patients with coronary
heart disease (CHD), the levels of APN decreased, while the levels
of IL-6, TNF-a, and Toll-like receptor 4 increased. APN
administration has been shown to prevent atherosclerosis by
reducing the production of TNF-a in macrophages and reactive
oxygen species (ROS) in endothelial cells; it also increases
endothelial cell migration and angiogenesis (23). Samples from
humans indicate that type 2 diabetes (T2DM) is closely related to
hypoadiponectin, suggesting that the APN signaling pathway can
serve as a new route for vascular protection in blood vessels and
PVAT. However, the molecular mechanism by which APN
reduces vascular inflammation remains unclear. Inhibition of
nuclear factor kappa-B (NF-kB) signaling (which regulates
several pro-inflammatory genes) and its transcription factors
may be another mechanism by which APN alleviates vascular
dysfunction (24).

Omentin (also known as intelectin-1, lactoferrin receptor, or
endothelial lectin) has a positive effect on vascular inflammation.
By inhibiting the thioredoxin-interacting protein/nucleotide-
binding oligomerization domain-like receptor family pyrin
domain-containing 3 signaling pathway, omentin can reduce the
Frontiers in Endocrinology | www.frontiersin.org 345
production of pro-inflammatory cytokines (e.g., TNF-a, IL-6,
and IL-1b) and increase the production of anti-inflammatory
cytokines (e.g., APN and IL-10) in obese mouse adipose tissue,
as well as macrophages co-cultured with lipopolysaccharides (25,
26). The anti-contractile effect of PVAT in a physiological
environment was lost in patients with T2DM, although it
partially recovered after treatment with omentin-1, the main
cyclic forms of omentin (27). Furthermore, omentin-1 treatment
significantly improved the pro-inflammatory and pro-oxidant
PVAT phenotype (i.e., through reduction of C-reactive protein
and nitrotyrosine levels), suggesting that omentin-1 could improve
endothelial dysfunction in T2DM patients by improving
dysfunction PVAT; it also has the potential to treat T2DM-
related vascular complications (28). In patients with atrial
fibrillation and valvular heart diseases, the expression of
omentin was downregulated in EAT and right atrial appendage
tissue (29). Importantly, the expression of omentin in EAT was
lower in patients with CHD than in patients without CHD; the
expression of omentin in EATwas lower around stenotic segments
of coronary artery than around non-stenotic segments (30).
However, another study showed that, compared with the control
group, the expression of omentin in EAT increased in patients
with CHD, despite reduction of its circulating level; this finding
suggested that omentin may play a local role in the development of
CHD (31).

FGF-21, a member of the fibroblast growth factor family, is an
important endocrine regulator that mainly acts through
induction of weight loss and management of insulin signaling,
as well as management of glucose and lipid metabolism (32). It
also has important anti-inflammatory roles in various tissues/
cells, such as obese adipose tissue, cardiac tissue, and
macrophages (33–37). FGF-21 gene expression was reportedly
reduced in EAT from patients with multivessel CHD associated
with T2DM (38), while FGF-21 expression was enhanced in EAT
from patients undergoing cardiac surgery, suggesting that FGF-
21 has a protective effect against cardiac surgery-related
inflammation (39). Therefore, anti-inflammatory pathways
related to PVAT may comprise novel targets for the
prevention and treatment of various vascular diseases.

PVAT and Pro-Inflammatory Cytokines
Leptin is another rich adipokine released by adipose tissue
(including PVAT), which was the first adipokine reported in
the literature. Under physiological conditions, leptin mainly
relies on hypothalamus and sympathetic nerve signaling to
reduce appetite, increase energy consumption, and regulate
glucose homeostasis, independent of insulin (40). Leptin
resistance is associated with the development of hypertension and
insulin resistance (40), and inflammation is an important
contributor to leptin resistance (41). Classically, leptin is regarded
as a pro-inflammatory cytokine, which has structural homology
withother cytokines suchasTNF-a and IL-6 (41, 42). Leptin plays a
direct role in inflammation by inducingmonocytes, leukocytes, and
macrophages to produce IL-6, TNF-a, and IL-12; thus, it increases
the production and migration of ROS in monocytes, as well as the
production of chemokine ligands by macrophages (42, 43).
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In obese sedentary mice, PVAT ring-deficient mice exhibited
lower levels of circulating glucose, insulin, resistin, leptin, and
TNF-a; they also demonstrated abnormal endothelial function
in thoracic aorta (44). The reduction of leptin expression in
PVAT may inhibit neointimal hyperplasia and vascular
remodeling by inhibiting monocyte migration and VSMC
proliferation (45). Gene expression profiling showed that the
expression levels of IL-1b, IL-6, and leptin in patients with CHD
were significantly higher in PVAT around the coronary artery
than in PVAT inside the thoracic artery (46). In addition, data
from patients undergoing coronary artery bypass grafting
indicated that the leptin–inflammation–fibrosis–hypoxia axis
plays a key role in coronary atherosclerosis pathogenesis.
Compared with PVAT surrounding the anti-atherosclerotic
internal mammary artery, leptin expression was significantly
increased in “cardiac” PVAT surrounding the aortic root and
coronary arteries (C-PVAT). This increased expression was
accompanied by more obvious angiogenesis and inflammation,
indicating significant increases in the numbers of platelets,
endothelial cell adhesion molecule 1-positive vessels, and
CD68-positive macrophages, as well as greater degrees of
fibrosis and hypoxia, which may lead to an enhanced coronary
atherosclerotic plaque load (47). Increased expression levels of
hypoxia inducible factor-1a and Fos-like antigen 2 were
observed in C-PVAT; these factors reportedly enhance leptin
gene transcription (47). The findings thus far suggest that PVAT
plays an important role in promoting vascular inflammation
through leptin secretion.

Notably, adipocytes and macrophages in PVAT also secrete
large amounts of TNF-a; these levels are higher in obese animals
and people than in lean animals and lean people. TNF-a induces
aortic intima-media thickening through PVAT inflammation
(48). TNF-a has pro-inflammatory effects and can promote the
production of other pro-inflammatory factors (e.g., IL-6, leptin,
and resistin). Furthermore, MCP-1 produced by adipocytes has
been identified as a potential factor for macrophage infiltration
into adipose tissue (49, 50). The increased expression levels of
MCP-1 and TNF-a in transplanted PVAT tissue can aggravate
endothelial dysfunction and atherosclerosis in distant vessels by
enhancing the inflammatory response (18). In addition, RANTES
(produced by T cells, macrophages, VSMCs, ECs,and PVAT
adipocytes (51–53)) is a key factor for leukocyte recruitment to
sites of inflammation or infection (54). Increased RANTES
expression levels in hypertensive PVAT induce T-cell chemotaxis
and vascular accumulation of T cells that express RANTES
receptors (55). In addition, PVAT secretes free fatty acids,
resistin, visfatin, and other pro-inflammatory adipokines, which
participate in the occurrence and development of vascular diseases
(56–58).

ROLES OF PVAT IN VASCULAR DISEASE

Morphological, structural, and functional changes of PVAT have
been investigated in major vascular lesions associated with
vascular diseases such as vascular aging, atherosclerosis,
hypertension, and DM-related vascular dysfunction (Table 1).
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Vascular Aging
Aging is an independent risk factor for vascular diseases.
Vascular aging is mainly characterized by blood vessel-related
structural changes and dysfunction that increase with age, which
culminate in age-related vascular diseases (112–114). In such
diseases, the vascular wall exhibits a pro-inflammatory
microenvironment associated with low-grade perivascular
inflammation, which is characterized by increased secretion of
pro-inflammatory cytokines and chemokines, as well as
enhanced infiltration of immune cells (4). These changes
promote vascular dysfunction, hinder cell metabolism, increase
cell apoptosis, and contribute to the onset of vascular diseases
(115). In this context, PVAT is a key factor that affects vascular
and perivascular inflammation during aging (Table 1).

There is increasing evidence that age can affect PVAT
morphology and function, increase PVAT-related inflammation,
and affect the corresponding vascular activity. In rats, aging
reportedly attenuated the anti-contractile effect of PVAT
around the thoracic aorta, while reducing the amount of brown
adipose tissue-like PVAT (59). In the mesenteric arteries of
SHRSP.Z-Leprfa/IzmDmcr rats (SHRSP.ZF) with metabolic
syndrome, vascular dysfunction is compensated by a PVAT-
dependent mechanism, which disappears with age (60).
Compared with young C57BL/6JRj mice, middle-aged mice
showed more PVAT hypertrophy (61); furthermore, the mean
single adipocyte area in PVAT was significantly increased, while
the expression level of protein inhibitor of activated signal
transducer and activators of transcription 1 (a key negative
regulator of inflammation) was decreased. These effects may
contribute to age-related vascular diseases (61).

With increasing age, resident stromal cells in PVAT
(PVASCs) exhibit decreasing differentiation ability, which
contributes to neointimal hyperplasia and vascular remodeling
after PVAT transplantation into carotid artery. This may be
caused by the loss of PGC1a in aged PVASCs, which can be
improved by overexpression of PGC1a (62). Senescence-
accelerated prone mice (SAMP8), a mouse model of aging,
shows vascular dysfunction associated with hypertension and
cognitive decline (116). Compared with control senescence-
accelerated resistant mice (SAMR1), aged SAMP8 mice
reportedly demonstrated the lack of an anti-vasoconstrictive
effect of PVAT; they also exhibited increased tunica media
thickness, decreased APN expression, and enhanced expression
levels of vascular markers of inflammation (e.g., endothelin-1,
inducible nitric oxide synthase, and cyclooxygenase 2) (63).

Arterial stiffness is an inevitable result of aging. Local PVAT
homeostasis, especially inflammation in PVAT, is associated
with the development of age-related arterial stiffness. Loss of
functional PVAT can enhance arterial stiffness in aging mice;
furthermore, aged C57BL/6J mice that were fed a high-fat diet
demonstrated significant induction of PVAT hypertrophy and
enhancement of arterial stiffness. This change is related to the
low level of mitoNEET expression in PVAT, which increases the
expression of pro-inflammatory genes (64). In addition, older
arteries are more susceptible to obesity-induced aging, compared
with younger arteries (65). Aging aggravates obesity-induced
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PVAT inflammation, promotes secretion of pro-inflammatory
factors by PVAT (including cytokines such as TNFa and IL-6, as
well as chemokines such as eotaxin and MIP-1a), and reduces
APN secretion, thus increasing vascular oxidative stress and
inflammation in a paracrine manner, and stimulating VSMC
proliferation (65, 66).

The effect of PVAT on vascular senescence depends on its
secretion, as well as the presence of inflammatory cells. Studies in
humans have shown that age and body mass index are associated
with the density of CD68-positive macrophages in PVAT (67). In
spontaneously hypertensive rats, aging is associated with
increased numbers of infiltrating leukocytes, macrophages, and
natural killer cells in PVAT, accompanied by gradual elevation of
blood pressure. Dual pharmacological inhibition of Nox1 and
Frontiers in Endocrinology | www.frontiersin.org 547
NOX4 increases blood pressure and leads to the accumulation of
immune cells in PVAT. These effects are related to increased
expression levels of MCP-1 and RANTES in PVAT, which lead
to enhancement of perivascular fibrosis and acceleration of
vascular aging (68). Overall, the existing evidence shows that
PVAT mediates changes associated with vascular aging by
enhancing infiltration of multiple inflammatory cells and
release of various pro-inflammatory factors.

Atherosclerosis
Vascular diseases (e.g., myocardial infarction and cerebral
infarction) are often caused by atherosclerosis, a vascular
disease with robust inflammation, which is characterized by
the accumulation of lipids, diseased cells, and necrotic debris.
TABLE 1 | Central roles of PVAT inflammation in vascular diseases.

Vessels PVAT Reference

Vascular aging • Increased tunica media thickness
• Increased oxidative stress and inflammation

(ET-1, iNOS, COX2)
• VSMCs proliferation
• Increased perivascular fibrosis
• Increased arterial stiffness

• PVAT was hypertrophic and the average area of
single adipocyte was significantly increased

• The differentiation ability of PVASCs decreased
• Increased proinflammatory mediators (TNF-a, IL-6,

eotaxin, MIP-1a, MCP-1 and RANTES)
• Reduction of ant-inflammatory mediators (APN)
• The function of anti- vasoconstriction is weakened
• The infiltration of macrophages and natural killer cells

(59–68)

Atherosclerosis • The infiltration of macrophages, T cells and dendritic
cells increased

• Plaque volume increased, internal lipid increased,
high macrophage density and fibrin deposition

• Increased proinflammatory mediators
• Increased perivascular inflammation

• The size of adipocytes was smaller and the
differentiation phenotype was less

• Increased proinflammatory mediators (TNF-a, IL-6,
IL-1b, MCP-1, resistin, and osteoprotegerin)

• Reduction of ant-inflammatory mediators (APN)
• The infiltration of macrophages, T cells and dendritic

cells increased
• B-1 cells and their secretion of anti-atherosclerotic

IgM decrease

(10, 18, 69–77)
(67, 78–86)

Hypertension • Increased proinflammatory mediators (MCP-1,
RANTES and MIP-1a)

• Endothelial dysfunction
• Increased vascular tone
• Systolic and diastolic blood pressure increased
• vascular hypertrophy and fibrosis
• Increased perivascular inflammation

• The function of anti- vasoconstriction is weakened
• Decreased production of vasodilator factor
• Increased angiotensin II secretion
• Increased proinflammatory mediators (IFN-g,

RANTES, C3, C5a, MCP-1, TNF-a, IL-6, MIP-1a)
• Reduction of ant-inflammatory mediators (APN)
• The infiltration of macrophages, T cells and dendritic

cells increased
• The number of eosinophils decreased

(17, 55, 68, 72,
87–97)

Diabetes mellitus related
vascular dysfunction

• Increased insulin resistance
• Impaired vasodilation and vascular remodeling

mediated by insulin
• The adhesion ability of endothelial cells to

lymphocytes increased

• PVAT phenotype changed to pro-inflammatory, pro
oxidative and pro vasoconstrictive state

• Increased infiltration of M1 macrophages and
dendritic cells

• Overproduction of proinflammatory cytokines(IFN-g,
TNF-a, and IL-6)

• Reduction of anti-inflammatory cytokines (IL-10 and
APN)

(98–102)

Abdominal aortic
aneurysm

• Recruitment of inflammatory cells (macrophages,
lymphocytes, and mast cells) in vascular wall

• Increased expression of perivascular inflammatory
factors

• Enhanced leukocyte- fibroblast interaction in
adventitia

• Migration and proliferation of adventitial fibroblasts
increased

• Increased PVAT deposition
• Co-localization of PVAT inflammation and abdominal

aortic aneurysm
• Increased gene expression of proinflammatory factors

(IL-8, PTPRC, LCK, and CCL5)
• Decreased expression of anti-inflammatory PPARg

(103–111)
August 2021 | Volume 12
The table lists changes in PVAT and vascular inflammation during the onset of vascular aging, atherosclerosis, hypertension, diabetes mellitus-related vascular dysfunction and abdominal
aortic aneurysm (note that the anti-atherosclerotic effects of healthy PVAT are not listed). ET-1, endothelin-1; iNOS, inducible nitric oxide synthase; COX2, cyclooxygenase 2; VSMCs,
vascular smooth muscle cells; PVASCs, resident stromal cells in PVAT; APN, adiponectin; PTPRC, protein tyrosine phosphatase receptor type C; LCK, lymphocyte-specific protein
tyrosine kinase; PPARg, peroxisome proliferator-activated receptor gamma.
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Proinflammatory leukocytes and cytokines play important roles
in various stages of atherosclerotic plaque formation (117). There
is increasing evidence that perivascular inflammation contributes
to multiple stages of atherosclerosis; notably, PVAT plays an
important role in triggering adventitial inflammation in
atherosclerosis. Furthermore, PVAT promotes atherosclerosis
in basic vessels through “from the outside to the inside” signal
transduction. However, PVAT exhibits a nonuniform role in the
development of atherosclerosis. PVAT may have dual effects (i.e.,
both pro- and anti-atherosclerosis), which may influence balance
in the local environment.

Healthy PVAT plays a protective role in regulatingmetabolism,
inflammation, and function innearby blood vessels.Healthy PVAT
may contain immune cells that impede the development of
atherosclerosis (118). The absence of PVAT can lead to enhanced
macrophage infiltration and increased pro-inflammatory cytokine
production in the aortic perivascular area, thus exacerbating
vascular inflammation and atherosclerotic lesions in aortic wall
tissue (119). In addition, PVAT is the main source of aorta-
associated B lymphocytes. Many of these B cells belong to the
anti-atheroscleroticB-1 subgroup; IgM secreted by this subgroupof
B cells can reduce the effects of pro-inflammatory cytokines
produced by M1 macrophages. Notably, the ratio of B-1/B-2 cells
is reportedly 10-fold higher in PVAT than in spleen or bone
marrow, indicating an important anti-inflammatory effect of
PVAT (120).

The number of B-1 cells secreting anti-atherosclerotic IgM is
reportedly reduced in PVAT from apolipoprotein E-/- (ApoE-/-)
mice, which significantly aggravates atherosclerosis in the aorta
and coronary artery (69). A systemic endocrine mechanism also
mediates the anti-atherosclerotic effect of PVAT. The
transplantation of PVAT from thoracic aorta of wild mice was
able to reduce the atherosclerotic plaque size in suprarenal aorta of
ApoE-/- mice that were fed a high-cholesterol diet. This anti-
atherosclerotic effect was mediated by a transforming growth
factor-b1-induced anti-inflammatory response, which may
involve alternatively activated macrophages (121). In addition,
APN derived from PVAT can inhibit carotid collar-induced
carotid atherosclerosis by promoting macrophage autophagy (122).

In the context of chronic hyperthermia, PVAT dysfunction
exacerbates atherosclerosis and increases the risk of plaque rupture.
In dysfunctional PVAT, the secretion of anti-inflammatory factors
(e.g., APN) is decreased, while the secretion of pro-inflammatory
cytokines is increased; thus, thedistributionofpro-inflammatory and
anti-inflammatory immune cells is unbalanced. These changes lead
to the enhancement of local inflammation, aggravating the
development of atherosclerosis (Table 1).

Pathological conditions (such as altered expression of
angiotensin II [Ang II] or pro-atherosclerotic factors) increase
the dedifferentiation of PVAT adipocytes (70, 71). In larger
vessels associated with atherosclerosis, adipocytes in PVAT are
usually smaller and exhibit a less differentiated phenotype (10,
72, 73). Inflammation in PVAT and adventitia occurs prior to
endothelial dysfunction and atherosclerotic plaque formation
(74). In human aorta, PVAT accumulates in sites where
atherosclerosis can easily form, while inflammatory cells
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concentrate in PVAT at the edge of adventitia and secrete
chemokines that can attract monocytes and T cells to the
adventitial interface, suggesting that PVAT promotes vascular
inflammation (75). Compared with non-diseased aorta,
inflammatory cells exhibited significantly increased infiltration
in PVAT around atherosclerotic aorta (123). During the onset of
atherosclerosis in ApoE-/- mice, macrophages, T cells, and
dendritic cells were recruited into the adventitia and PVAT
(75, 76), in a manner influenced by age (75). In addition,
compared with subcutaneous adipose tissue transplantation in
mice, carotid artery transplantation of PVAT reportedly causes
large lipid rich atherosclerotic lesions in thoracic aorta, as well as
high macrophage density and fibrin deposition. The inhibition of
leukocyte ligand P-selectin glycoprotein ligand 1 may provide a
therapeutic method to reduce the effects of PVAT inflammation
on atherosclerosis (77). PVAT expansion and inflammation in
obesity can remotely induce endothelial dysfunction and
aggravate atherosclerosis. Transplantation of PVAT from the
abdominal aorta of mice that were fed a high-fat diet promoted
inflammation (increased expression of TNF-a and MCP-1;
decreased expression of APN), endothelial dysfunction, and
atherosclerosis in thoracic aorta, suggesting that enhanced
inflammation is the potential mechanism by which PVAT
exhibits a distal vascular effect (18).

Data from human samples showed that the densities of B
lymphocytes and macrophages in PVAT around atherosclerotic
plaque increased with plaque size; the corresponding inflammation
increased with increasing coronary artery occlusion (67). The
number of macrophages in PVAT was also associated with the
number of immune cells in plaque (78–80). In addition, the density
of macrophages was higher in PVAT near unstable plaque than in
PVAT near the stable plaque. The inflammation was stronger in
PVAT near stenotic sites and acute lesions than in adipose tissue
distant from lesions, in the absence of atherosclerosis (67).

Pro-atherosclerotic mediators derived from dysfunctional
PVAT may comprise another mechanism underlying human
vascular atherosclerosis (81). Analysis of dysfunctional PVAT has
revealed upregulated expression of pro-inflammatory genes, as well
as downregulated expression of anti-inflammatory adiponectin
(82–84). EAT from patients undergoing coronary artery bypass
grafting showed significantly higher levels of chemokines (MCP-1)
and pro-inflammatory cytokines (IL-1b, IL-6, and TNF-a),
compared with levels in subcutaneous adipose tissue from the
same patients (84). Furthermore, the expression of anti-
inflammatory APN was significantly lower in EAT samples from
patients with severe coronary atherosclerosis than in EAT samples
from patients without coronary atherosclerosis (83), suggesting
an inflammation imbalance in PVAT from patients with
atherosclerosis. The colocalization of macrophages and resistin
(an adipokine that can enhance endothelial cell permeability
in vitro) in human PVAT indicates that PVAT may participate in
the pathogenesis of atherosclerosis through various mechanisms
(82, 85). Osteoprotegerin, a member of the TNF-related family,
is associated with atherosclerotic progression and increased
instability; its expression is strongly upregulated in human
perivascular adipocytes (124).
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Importantly, vascular wall-associated inflammation also affects
the dynamic balance of PVAT. In the presence of coronary artery
inflammation and atherosclerosis, the release of pro-inflammatory
mediators from the vascular wall to the surrounding PVAT leads to
altered adipocyte differentiation and intracellular lipid formation,
which greatly influences cardiovascular diagnosis and contributes
to distinctive imaging findings (86). Noninvasive detection of
PVAT can provide structural information and distinguish
unstable atherosclerotic lesions. In postmortem studies of human
patients, atherosclerotic plaque size and complex lipid core
composition were positively associated with PVAT volume and
macrophage infiltration (79). Because PVAT inflammation is
related to disordered adipocyte differentiation and reduced lipid
content in adipocytes, Antonopoulos et al. examined the
perivascular CT fat attenuation index (FAI), a water to fat ratio
index with good sensitivity and specificity in the differential
diagnosis of PVAT inflammation (86). Importantly, they found
that the perivascular FAI was greater in unstable plaque than in
stable plaque; itwas greatest near inflamed coronary arteries. PVAT
imaging can provide spatial location information regarding
the human coronary arteritis microenvironment, which enables
early identification of high-risk plaques and may facilitate
further treatment.

Hypertension
Inflammation is an important factor involved in hypertension,
which involves high blood pressure and can cause both end
organ damage and dysfunction (125, 126). The main site of
initial inflammation in hypertension is reportedly within PVAT
and the PVAT/adventitia boundary (55, 127). Inflammation
leads to the loss of the anti-contractile effect of PVAT,
potentially because of adipose tissue dysfunction (128). The
production of vasodilators derived from PVAT adipocytes
decreases during inflammation, while pro-inflammatory
adipokines increasingly infiltrate into the adjacent vascular
system (5); these changes enhance vascular inflammation and
vascular resistance (68). PVAT inflammation leads to vascular
dysfunction in the context of hypertension. Various inflammatory
cells participate in this process, which is mediated by a series of
cytokines and chemokines; for example, interferon-g is producedby
CD8+ cells infiltrating PVAT (55, 87), RANTES mediates the
infiltration of T cells into perivascular space (55), and
complement C5a mediates decreased APN production (17).
These inflammation-related changes exacerbate the pro-
inflammatory crosstalk and dysfunction between PVAT and
hypertensive vessels (Table 1).

The infiltration and activation of macrophages dispersed in
PVAT are important contributing factors in hypertension-related
inflammation. The expression of complement C3 is reportedly
increased in PVAT from DOCA‐salt hypertensive mice (88),
resulting in increased expression of pro-inflammatory M1
macrophage phenotype markers and decreased expression of
anti-inflammatory M2 macrophage phenotype markers. Bone
marrow-specific C3 deficiency significantly improved DOCA-
salt–induced hypertensive vascular hypertrophy and fibrosis (89).
Further studies in DOCA‐salt hypertensive mice showed that the
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recruitment of macrophages in PVAT promotes complement
activation, induces perivascular inflammation, and increases
the production of TNF-a, thereby causing APN downregulation.
This is a potential risk factor for hypertension-related vascular
inflammation and injury (17), whichmay be particularly important
when considering treatment methods for hypertension-
related vascular injury. Moreover, in mice with spontaneous
hypertension induced by perilipin-1 deletion, PVAT exhibited
reduced APN expression, whereas it exhibited enhanced
expression of MCP-1, TNF-a, and IL-6; additionally, the anti-
contractile effect of PVAT was lost. These effects were associated
with an increased pro-inflammatory response, as well as higher
systolic and diastolic blood pressures in aorta (90).

Increased activation of the renin–angiotensin–aldosterone
system (RAS) is an important factor in hypertension
pathogenesis. With the exception of renin, almost all components
of the RAS system are expressed in PVAT, implying key roles in the
regulation of hypertension-related perivascular inflammation (72,
129). Lee et al. found that the release of PVAT-derived relaxing
factor (PVATRF) from PVAT in spontaneously hypertensive rats
was significantly reduced, while the release of Ang II was enhanced
(91). In Ang II-induced hypertensive mice, the numbers of
leukocytes, T cells, macrophages, and dendritic cells in PVAT
were significantly increased (55, 92). In those mice, Ang II
significantly increased the expression levels of MCP-1, RANTES,
andmacrophage inflammatory protein 1a (MIP-1a, also known as
CCL3) in aorta and PVAT. Furthermore, the activation of
angiotensin type 1 receptor (AT1 receptor) in PVAT promotes
vascular inflammation and endothelial dysfunction (93, 94).
Aldosterone may directly promote a pro-inflammatory
phenotype in PVAT. Macrophage infiltration and increased C5a
expression were detected in adipose tissue from patients with
aldosterone-secreting adenoma; these findings were associated
with decreased APN expression (17).

Hypertension was more common in obese individuals than in
lean individuals. The progress of hypertension is related to the
immune response of adipose tissue (130). The anti-
vasoconstrictive properties of healthy PVAT are eliminated in
obesity, resulting in increased arterial tension, which is a key
mechanism of obesity-related hypertension and vascular
dysfunction. Macrophage infiltration in PVAT plays a key role
in obesity-related hypertension (95). In mice that were fed a
high-fat diet, macrophages accumulated in fat PVAT around the
thoracic aorta or mesenteric artery. The absence of class A1
scavenger receptor, a key pattern recognition receptor that
regulates macrophage activity, can stimulate the excessive
production of vascular endothelial growth factor B in
macrophages from PVAT and aorta, increase the accumulation
of endothelial lipid in obese mice, and promote obesity-induced
elevation of blood pressure (95). Eosinophil-deficient
DdblGATA-1 mice reportedly lack the anti-contractile function
of PVAT and show elevated blood pressure (96). Notably,
Withers et al. demonstrated that obesity is accompanied by a
significant decrease in the number of eosinophils present in
PVAT, which may lead to a loss of its anti-contractile function
(97). This effect was restored by replenishment using purified
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eosinophils in vessels with intact PVAT or by the use of IL-33 to
restore the number of eosinophils in PVAT (96, 97). These
findings suggest that PVAT releases an eosinophil-derived
soluble anti-contractile factor. This factor is dependent on B3
adrenoceptor activity and independent of other downstream
signaling pathways (e.g., APN and nitric oxide) mediated by
immune cells (97). Thus, targeting the number of eosinophils in
PVAT may constitute a novel method for the treatment of
obesity-related hypertension.

Diabetes Mellitus-Related Vascular
Dysfunction
The progression of DM eventually involves the development of
chronic vascular complications and associated cardiovascular
diseases; this cardiovascular disease progression is the leading
cause of death in diabetic patients worldwide (131). Endothelial
dysfunction is the initial vascular defect in DM; it is associated with
DM-related macrovascular and microvascular complications (e.g.,
coronary heart disease, stroke, peripheral vascular disease, diabetic
retinopathy, and kidney disease), which represent the main health
burden in patients with DM (132). Inflammation is a major
pathophysiological process that mediates DM-related endothelial
dysfunction. PVAT is presumed to serve as a mechanistic link
between T2DM and vascular diseases such as atherosclerosis (133).

In the context of DM, high glucose stimulation induces PVAT
transition to a pro-inflammatory (increased CRP, CCL2, and
CD36), pro-oxidant, and vasoconstrictive phenotype (98, 99).
PVAT inflammation can promote insulin resistance in the
vascular system, resulting in impaired insulin-mediated
vasodilation and vascular remodeling and subsequent onset of
vascular diseases (99). PVAT obtained from obese db/db mice
greatly impaired insulin-mediated vasodilation of the resistance
artery in muscle, while PVAT obtained from nonobese mice
promoted vasodilation of this artery (100). Furthermore, obesity
and the expansion of PVAT in db/db mice cause elimination of
insulin-stimulated vasodilation and recovery by blocking
inflammation through inhibition of the c-Jun N-terminal
kinase pathway, thus indicating a key role for inflammation in
PVAT (100).

Abdominal Aortic Aneurysm (AAA)
Inflammatory cell recruitment to aortic media, macrophage
activation, and pro-inflammatory molecule production are
important mechanisms involved in AAA (134), which
contribute to gradual thinning of the aortic media and adventitia
(135). Analysis of samples from human patients has shown that
AAAs are surrounded by abundant PVAT (103), and the density of
PVAT is higher around the aneurysm sac in patients with aortic
aneurysm than inhealthyneck tissue, suggesting that thedeposition
of PVAT is related to AAA pathophysiology (104). Overall, PVAT
plays a pro-inflammatory role in the development of AAA.

Genome-wide expression profiling has revealed colocalization
of PVAT inflammation with AAA, suggesting that biological
changes in PVAT may be functionally associated with AAA
pathogenesis (105). Changes in PVAT phenotype and function
initiate inflammatory signals, stimulating the recruitment and
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activation of immune cells; the soluble factors produced by
immune cells cause matrix degradation, leading to the
initiation and progression of AAA (105). PVAT samples from
AAA patients showed increased expression of various pro-
inflammatory genes, including IL-8, protein tyrosine
phosphatase receptor type C, lymphocyte-specific protein
tyrosine, and CCL5, accompanied by decreased expression of
anti-inflammatory genes (e.g., peroxisome proliferator-activated
receptor gamma) and increased degradation of extracellular
matrix (106). Furthermore, adipose tissue from AAA patients
can induce inflammation in healthy VSMCs from control
patients, resulting in increased expression of genes involved in
aneurysm formation (106). Studies in animal models have shown
that PVAT-derived pro-inflammatory factors accelerate the
recruitment of macrophages, lymphocytes, and mast cells in
the vascular wall (93). Deletion of the AT1a receptor gene in
PVAT attenuated AAA development and gelatinolytic activity, as
well as the accumulation of macrophages in abdominal aorta and
adipose tissue; it also contributed to macrophage polarization
from a pro-inflammatory state to an anti-inflammatory state. In
addition, obesity-related PVAT dysfunction reportedly promotes
Ang II-induced aortic aneurysm formation by secreting platelet-
derived growth factor-D (PDGF-D). Leukocyte–fibroblast
interactions in adventitia enhance the recruitment and
activation of local monocytes, leading to aortic aneurysm and
aortic dissection (107, 108); PDGF-D stimulates the migration
and proliferation of adventitial fibroblasts, as well as the
expression of pro-inflammatory factors. Notably, adipocyte-
specific PDGF-D transgenic mice were more likely to form
aortic aneurysm after Ang II infusion, accompanied by
increased adventitial inflammation and fibrosis (109).
Although multiple studies have shown that macrophages are
the key inflammatory cells mediating the formation of AAA
(110), immunophenotypic analysis of advanced AAA samples
infiltrating the largest expansion site demonstrated that T cells
(rather than macrophages) are the main leukocyte subset in
AAA; their greatest accumulation occurs in perivascular tissues
such as PVAT (111). This discrepancy may be related to
differences in AAA stages between studies. However, these
findings clearly indicate that inflammation in PVAT and aortic
wall contributes to the pathophysiology of AAA; these proposed
pathways of inflammatory induction can reveal new therapeutic
targets for AAA.
CONCLUSION

PVAT dysfunction is one of the main risk factors for
cardiovascular diseases; PVAT is particularly important
because of its close proximity to the vascular wall. Therefore,
the importance of PVAT in regulating cardiovascular
complications cannot be ignored. Further mechanistic research
is needed; however, immune dysfunction (i.e., increased presence
of pro-inflammatory mediators, rather than anti-inflammatory
mediators) and subsequent chronic inflammation play key roles.
Crosstalk between PVAT and vascular system occurs in both
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directions, and it has important roles in vascular homeostasis
and disease. In particular, inflammation leads to PVAT
dysfunction through inflammatory cells and various pro-
inflammatory factors, thereby exacerbating altered vasodilation,
while enhancing vasoconstriction and vascular remodeling; these
changes contribute to vascular aging, atherosclerosis, hypertension,
and other vascular diseases. In animal and human studies, PVAT
dysfunctionhasbeenshowntocause various inflammatoryvascular
diseases, and vascular inflammation is associated with changes in
PVAT phenotype; these findings can help to identify vulnerable
vascular lesions. Although the mechanism is not entirely clear, the
existing evidence shows that PVAT inflammation is a strictly
regulated process that occurs in the early stage of vascular disease,
which can serve as a valuable target for future treatment. Therefore,
further research is needed to explorewhetherPVATcanbe targeted
in novel treatments for vascular diseases.

In addition, PVAT-related secretory factors (e.g., adipokines,
hormones, and other factors) have important effects on many
Frontiers in Endocrinology | www.frontiersin.org 951
aspects of the vascular system. PVAT dysfunction promotes the
dedifferentiation of perivascular adipocytes, such that they no
longer serve as lipid storage cells; in contrast, they become
metabolically active synthetic tissues, produce pro-inflammatory
cytokines and chemokines, and play key roles in cardiovascular
disease-related inflammation (5). Overall, extensive analysis of
various adipokines is needed to clearly distinguish the
physiological and therapeutic effects of these adipokines in the
context of vascular dysfunction.
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Imaging, Hôpital Universitaire Timone APHM, Marseille, France

In March 2020, the WHO declared coronavirus disease 2019 (COVID-19), caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a global pandemic.
Obesity was soon identified as a risk factor for poor prognosis, with an increased risk of
intensive care admissions and mechanical ventilation, but also of adverse cardiovascular
events. Obesity is associated with adipose tissue, chronic low-grade inflammation, and
immune dysregulation with hypertrophy and hyperplasia of adipocytes and
overexpression of pro-inflammatory cytokines. However, to implement appropriate
therapeutic strategies, exact mechanisms must be clarified. The role of white visceral
adipose tissue, increased in individuals with obesity, seems important, as a viral reservoir
for SARS-CoV-2 via angiotensin-converting enzyme 2 (ACE2) receptors. After infection of
host cells, the activation of pro-inflammatory cytokines creates a setting conducive to the
“cytokine storm” and macrophage activation syndrome associated with progression to
acute respiratory distress syndrome. In obesity, systemic viral spread, entry, and
prolonged viral shedding in already inflamed adipose tissue may spur immune
responses and subsequent amplification of a cytokine cascade, causing worse
outcomes. More precisely, visceral adipose tissue, more than subcutaneous fat, could
predict intensive care admission; and lower density of epicardial adipose tissue (EAT)
could be associated with worse outcome. EAT, an ectopic adipose tissue that surrounds
the myocardium, could fuel COVID-19-induced cardiac injury and myocarditis, and
extensive pneumopathy, by strong expression of inflammatory mediators that could
diffuse paracrinally through the vascular wall. The purpose of this review is to ascertain
what mechanisms may be involved in unfavorable prognosis among COVID-19 patients
with obesity, especially cardiovascular events, emphasizing the harmful role of excess
ectopic adipose tissue, particularly EAT.

Keywords: epicardial adipose tissue, COVID-19, obesity, cardiac injury, adipose tissue, ectopic fat,
inflammation, immunity
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INTRODUCTION

Since December 2019, a global pandemic of coronavirus disease
2019 (COVID-19), caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), first reported in Wuhan, China,
has been raging (1). Obesity, whose prevalence is rising
worldwide, is currently a major public health issue. It was soon
recognized as a risk factor for worse outcomes of COVID-19 (2),
including the occurrence of acute respiratory distress syndrome
(ARDS), but also adverse cardiovascular events in up to 28% of
hospitalized patients (3). The role of ectopic fat depots, especially
increased amounts of epicardial adipose tissue (EAT), has drawn
interest in the COVID-19 setting because this cardiac adiposity
could fuel critical illness in patients with obesity. The purpose of
this review is to ascertain what mechanisms may be involved in
the unfavorable prognosis of COVID-19 patients with obesity,
especially cardiovascular events, emphasizing the harmful role of
excess ectopic adipose tissue, particularly EAT.
COVID-19 PATHOGENESIS—KEY POINTS

The mechanisms of SARS-CoV-2 viral transmission and
pathogenesis are now better understood and may explain why
some patients appear to be at greater risk of severe forms. SARS-
CoV-2 infects the host cells by binding of the viral spike (S)
proteins, present on the viral envelope, to cellular angiotensin-
converting enzyme 2 (ACE2) receptors and then by employing
cellular serine protease TMPRSS2 for S protein priming and
plasma membrane fusion (4). This enables endocytosis of the
virion and entry of the viral genome into the host cell cytoplasm,
followed by endosomal acidification, viral replication, and
shedding of virion particles (5). Type II alveolar cells, kidney
cells, myocardial cells, nasal, ileum, esophagus epithelial cells,
pancreatic cells, and, interestingly, adipocytes (6–8) have been
identified with high ACE2 expression and could increase SARS-
CoV-2 infection and replication as demonstrated in a mouse
model and HeLa cells (9, 10). Infection results in cell apoptosis,
which triggers the activation of pro-inflammatory cytokines and
chemokines. It has been demonstrated that SARS-CoV-2-infected
patients, especially those requiring admission to intensive care
units (ICUs), have large amounts of pro-inflammatory cytokines
than healthy patients without SARS-CoV-2 infection (11). One of
the mechanisms explaining rapid disease progression could be the
“cytokine storm”, a dysregulated, excessive systemic cytokine
release (12). Studies have shown that serum levels of IL-6,
tumor necrosis factor (TNF-a), granulocyte colony-stimulating
factor (G-CSF), interferon-g-inducible protein 10 (IP-10),
monocyte chemoattractant protein 1 (MCP-1), or macrophage
inflammatory protein 1-a, among others, are higher in patients
with severe conditions (i.e., requiring transfer to an ICU or
mechanical ventilation or who died) than in other infected
patients (13, 14). Obesity is known to be associated with a state
of chronic low-grade inflammation that might be a risk factor for
developing a cytokine storm form during COVID-19 disease.
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OBESITY: A RISK FACTOR FOR BAD
COVID-19 OUTCOMES

Obesity is increasing worldwide and is today clearly recognized
as a critical risk factor for various infections, post-infection
complications, and mortality from severe infection (15, 16). In
particular, since the 2009 influenza A H1N1 outbreak, patients
with obesity have been found to be at greater risk of severe
disease and have needed more mechanical ventilation (17, 18).
During the COVID-19 pandemic, poor prognostic factors have
emerged such as male sex, older age, diabetes mellitus,
hypertension, and the presence of prior cardiovascular or
respiratory disease. These factors were associated with a greater
risk of developing critical or fatal conditions (2, 19). Obesity was
also soon recognized as an independent risk factor associated
with worse outcomes (20, 21). The United Kingdom was the first
to reveal in March 2020, through a report from the Intensive
Care National Audit and Research Centre (ICNARC), that two-
thirds of patients who developed serious or fatal complications
following infection were overweight or obese. A US study
including 5,700 patients hospitalized in New York City for
COVID-19 reported that the prevalence of obesity in recovered
patients was twice that in the population around the hospital
(41.7% vs. 22%) (22). A pooled meta-analysis including 19
studies showed that individuals with obesity were 113% more
at risk of hospitalization (p < 0.0001) (23). This was confirmed by
another study including 45,650 participants from nine countries
worldwide and showing an odds ratio of 2.36 (95%CI: 1.37, 4.07,
P = 0.002) for hospitalization, and 2.63 (95%CI: 1.32, 5.25, P =
0.006) for invasive mechanical ventilation support (24). It has
also been shown that individuals with obesity are more likely to
be managed in ICUs with a need for orotracheal intubation for
mechanical ventilation especially if patients are young (23,
25–27). In CORONADO, a multicentric French study of
COVID-19 infection in hospitalized patients with diabetes,
body mass index (BMI) was the only pre-admission criterion
associated with orotracheal intubation and death at D7 especially
in patients younger than 75 years (28, 29). In a French cohort of
5,795 patients hospitalized for COVID-19 infection, obesity
doubled mortality in all age groups (30).
ECTOPIC FAT AND ADIPOSE TISSUE
DYSFUNCTION: KEY ELEMENTS IN THE
COMPLICATIONS OF OBESITY

Regional distribution of adipose tissue and the development of
ectopic fat are major determinants of metabolic and
cardiovascular diseases (31, 32). Dysfunction of subcutaneous
adipose tissue (SAT) limits its expandability and leads to ectopic
fat deposition.

Adipose Tissue Dysfunction
During weight gain, adipose tissue undergoes multiple structural
and cellular remodeling processes (33) leading to a dysfunctional
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tissue. Firstly, during chronic positive energy balance, mature
adipocytes expand, becoming hypertrophic to store more fat. If
this extra energy is not used, cell numbers increase in adipose
tissue, which then becomes hyperplastic (34). Hyperplastic and
hypertrophic adipocytes are often hypoxic, partly explaining the
development of inflammation (35). Secondly, hypoxia also
induces the production of HIF-1a, which in turn leads to a
potent profibrotic transcriptional program with extracellular
matrix (ECM) component accumulation, leading to fibrosis
and adipose tissue dysfunction (36, 37). Concurrently, immune
cells infiltrate the adipose tissue, and pro-inflammatory
cytokines are overexpressed (33). Under lean conditions,
high M2/M1 ratio, eosinophils, and regulatory T cells, which
secrete IL-4/IL-13 and IL-10, lead to an anti-inflammatory
phenotype. In obesity, activation of several stress pathways
such as endoplasmic reticulum stress, oxidative stress, and
inflammasome (38), but also hypoxia, induces a shift in innate
immunity and lymphoid cells and a modification of macrophagic
signature with a rapid shift in polarization toward an M1
phenotype, associated with adipose tissue inflammation and
insulin resistance (35, 39, 40). A chronic low-grade
inflammation state is therefore mainly explained by immune
cell imbalance in dysfunctional adipose tissue. Stressed
adipocytes release free fatty acids (FFAs) and secrete
chemokines that lead to inflammatory immune cell infiltration
secreting pro-inflammatory cytokines (41). Intestinal microbiota
dysbiosis can also trigger inflammation by activation of immune-
signaling pathways (42). The dysfunction of SAT leads to the
release of FFAs to peripheral organs and ectopic fat deposition
such as EAT.

Epicardial Adipose Tissue and
Cardiovascular Risk
In the last decade, it has been demonstrated that ectopic fat
depots localized around the heart contribute to the pathogenesis
of cardiovascular disease, independently of other visceral depots
(43, 44). EAT is an ectopic fat depot located between the
myocardium and the visceral pericardium in close contact with
coronary vessels (45). With no fascia separating the tissues, local
interaction and cellular crosstalk between myocytes and
adipocytes can occur. EAT is an extremely active endocrine
organ with a high capacity for releasing and taking up FFAs. It is
thought that EAT has protective functions as a mechanical shock
absorber against pulse waves, a regulator of FFA homeostasis,
and, in a more recent work, a thermogenic factor (46–49). It is a
major source of adipokines, chemokines, and cytokines,
interacting paracrinally or vasocrinally with vascular cells or
myocytes (44). Expression and secretion of pro-inflammatory
cytokines (IL-6, IL-1b, MCP-1, TNF-a, etc.) have been found to
be higher in EAT than in subcutaneous fat (50), partly by the
upregulation of nuclear factor kB (NF-kB) and c-Jun N-terminal
kinase (JNK). It was hypothesized to accentuate vascular
inflammation, plaque instability via apoptosis (TNF-a), and
neovascularization (MCP-1).

Using a pangenomic and unbiased lipidomic approach, we
previously reported that EAT has a specific transcriptomic and
Frontiers in Endocrinology | www.frontiersin.org 358
lipidomic signature particularly enriched in inflammation,
extracellular matrix remodeling, immune signaling,
thrombosis, beiging, coagulation, apoptosis, and lipotoxic
pathways with an enrichment in ceramides, diglycerides, and
monoglycerides compared with SAT, especially in patients with
coronary artery disease (CAD) (47, 51). Furthermore, we
previously demonstrated that human EAT secretome induced
marked fibrosis of myocardial atria through the secretion of
adipo-fibrokines, such as activin A (52). Activin A was shown to
be enhanced in patients with heart failure and reduced ejection
fraction and was abundantly expressed in EAT of type 2 diabetes
(T2D) patients with obesity (53).

EAT thickness, volume, and density can be assessed by
various imaging techniques such as echocardiography (54),
computed tomography (CT), and magnetic resonance imaging
(55). Higher EAT volume and lower density were associated with
coronary calcification and serum levels of plaque inflammatory
markers (56). EAT has been shown to be associated with CAD
and the occurrence of major adverse cardiovascular events in
many studies (57–60). It is correlated with the extent and severity
of CAD, chest pain, unstable angina, and coronary flow reserve
(61, 62) and could be a marker of the atherosclerotic burden even
in asymptomatic patients (63, 64). EAT may also play a role in
the development of atrial fibrillation (AF) (65) by infiltration of
adipocytes in the atrial myocardium, mechanical effect on left
atrial pressure stretch and wall stress, fibrosis, and inflammation,
which can lead to structural and electrical remodeling and
cardiac automatic system activation (44).

Obesity thus leads to an increase in ectopic fat deposition,
particularly at the epicardial level, which may partly explain the
increase in adverse cardiovascular events in this condition.
Moreover, the pro-inflammatory phenotype of adipose tissue
makes this organ a target for further immune amplification by
external pathogens, such as SARS-CoV-2. In the current context
of COVID-19 infection, we will see how dysfunction of the
adipose tissue leads to a higher risk of severe-form COVID-19.
DYSFUNCTIONAL ADIPOSE TISSUE IN
OBESITY: A KEY TO UNDERSTANDING
BAD OUTCOMES DURING THE COVID-19
PANDEMIC

Immune and Metabolic Derangement
as a Possible Link to Worse
Outcomes in Obesity
It has been demonstrated that host cell entry of SARS-CoV-2
depending on ACE2 receptors and overexpression of human
ACE2 can increase viral infection and replication. Some studies
have demonstrated that the expression of ACE2 in adipocytes is
higher than that in the lungs, which can act as an important viral
reservoir (7, 66). Experimental studies on mice showed an
increased expression of ACE2 in adipocytes in case of a high-
fat diet (67). In obesity, excess adipose tissue may thus increase
SARS-CoV-2 infection and accessibility to the tissue, leading to
August 2021 | Volume 12 | Article 726967

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Lasbleiz et al. COVID-19 and Epicardial Adipose Tissue
an increased viral systemic spread, entry, and prolonged viral
shedding (68), as seen during the influenza A epidemic. After
infection of host cells, the recruitment of pro-inflammatory
cytokines and impaired lymphocyte T cells culminates in a
cytokine storm associated with progression to ARDS and
multi-organ failure (13). In severe respiratory forms, patients
with COVID-19 infection showed macrophage activation
syndrome. There is a depletion of lymphocytes CD4 and CD8
(69) but a higher ratio of pro-inflammatory Th17 cells and high
secretion of pro-inflammatory cytokines IL-2, IL-6, and TNF-a
(70, 71). In obesity, dysfunctional hypertrophic adipocytes over-
produce pro-inflammatory cytokines, leading to a chronic low-
grade inflammation state. This in turn causes metabolic and
immune derangement, making a cytokine storm more likely
(72). The dysfunction of an adaptative immune system with
increased pro-inflammatory LTCD4+ and impaired T-cell
function could also increase this risk. In this regard, the PD-1/
PDL-1 immune checkpoint could increase within the visceral
adipose tissue (VAT) of individuals with obesity. PD-1 is
expressed by T cells and interacts with receptor PDL-1 to
inhibit cytotoxic T cell responses. A recent study showed that
T cells of individuals with obesity increased PD-1 expression,
leading to T-cell exhaustion and dysfunction (73). During severe
COVID-19, the number of TCD4+ and TCD8+ is also reduced,
and expression of PD-1 is increased (74). Interestingly, Alzaid et
al. observed particularly low levels of cytotoxic CD8+

lymphocytes and increased monocyte size and monocytopenia
restricted to classical CD14Hi CD16− monocytes, which were
specifically associated with severe COVID-19 in patients with
T2D requiring intensive care (75). Monocyte loss was
accompanied by morphological alteration and a hyper-
inflammatory expression profile consistent with the type 1
interferon pathway (IL-6, IL-8, CCL2, and INFB-1). This
particular immunophenotype could be a clue to a better
understanding of the increased risk of severe forms in
individuals with obesity by the escape of SARS-CoV-2 from lysis.

More recently, a significant increase in IL-1b level in plasma
was reported in COVID-19 patients (11), suggesting that the
NOD-like receptor family pyrin domain-containing 3 (NLRP3)
inflammasome might be involved in the pathogenesis of
infection and lung injury. NLRP3 is a multiprotein complex
present in macrophages, dendritic cells, and other non-immune
cells. The activation of NLRP3 as a pivotal component of the
innate immune system plays a critical role in the host defense but
is also associated with metabolic and inflammatory conditions
(76). During SARS-CoV-2 infection, the intense and rapid
stimulation of immune system response could trigger
activation of the NLRP3 inflammasome pathway and the
release of its products including IL-6 and IL-1b (77), which
could be involved in maintaining inflammation. Viral infection
could potentiate this underlying systemic inflammatory state,
which could partly explain worse outcomes in obese
patients (78).

It has also been demonstrated that individuals with obesity
display white adipose tissue depot in large airway walls,
proportionally to BMI, which could lead to airway thickening,
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immune cell infiltration, and then tissue damage and fibrosis in
the lungs (79, 80). Also found in the lungs, lipofibroblasts,
adipose-like cells composed of lipid droplets and located in the
alveolar interstitium, could transdifferentiate to myofibroblasts
and lead to pulmonary fibrosis (5, 7).

There would then be a higher expression of ACE2 and
TMPRSS2 in lung epithelial cells from individuals with obesity
than in those without, as demonstrated in vitro (81).

These conditions could be another basis for the elevated
occurrence of ARDS in obese individuals with obesity.

These different elements partly explain the role of adipose
visceral tissue in critical COVID-19 infection, as a viral reservoir
and by increasing immune responses with consequences for
cytokine cascade amplification and severe forms of the disease.
VAT and EAT could be markers of severity, and recent studies
also show that it could be implicated in myocardial injury.

Visceral Adipose Tissue and Epicardial
Adipose Tissue as Markers of
Myocardial Injury
Cardiac complications have been reported in 28% of patients
hospitalized for COVID-19 infection (3, 82, 83). Myocardial
injury and myocarditis with elevated troponin occurs in 7%–17%
of hospitalized patients and are associated with an increased risk
of adverse outcomes (84, 85). Acute myocarditis represents a
significant diagnostic challenge because of its varied clinical
presentations and risk of worse outcomes such as heart failure.
Changes in electrocardiograms, elevated cardiac biomarkers, and
impaired cardiac function should be considered as alerts
pointing to acute myocarditis (86). Remarkably, no culprit
injury was found in 40% of patients with COVID-19
presenting ST-elevation myocardial infarction (87), which
could be promoted by hypercoagulability, endothelial
dysfunction, microvascular damage, hypoxia-induced injury,
myocarditis, or systemic inflammatory cytokine storm
syndrome. In several studies, cardiac troponin I level was
found to be associated with more severe disease and mortality,
making myocardial damage a prognostic factor (88, 89).
Furthermore, dysrhythmias linked to hypoxia, inflammatory
stress, and therapeutics affect up to 17% of hospitalized
patients (90, 91). Finally, some studies report that heart
failure may be present in 23% of patients hospitalized for
COVID-19, half of whom had no history of hypertension or
cardiovascular disease.

The mechanisms of these cardiac events are not fully clarified,
and ectopic fat and EAT could be important triggers of their
development. More than just BMI, several reports have shown
that VAT volume measured by CT is associated with critical
illness in patients with COVID-19 entailing hospitalization (92),
intensive care need, or death (93–96). According to Favre et al., a
visceral fat area ≥128.5 cm2 was the best predictive value for
severe COVID-19 (93). Further, EAT, known to be strongly
correlated with VAT, has been associated with the occurrence of
cardiac events in COVID-19 infection.

CT imaging of the EAT allows adipose tissue inflammation
to be characterized by quantifying CT threshold attenuation.
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The group of Iacobellis showed that density of EAT, reflecting
inflammatory changes, significantly increased with increasing
COVID-19 severity compared to discharged patients (97).
Furthermore, EAT mean attenuation was negatively correlated
to high-sensitivity troponin T levels and peripheral oxygen
saturation (97). Another international multicenter study on
109 patients showed that volume and attenuation of EAT
measured by CT was associated with extent of pneumonia and
were independent predictors of clinical deterioration or death
(98). This study used a fully automated three-dimensional
measurement of EAT and demonstrated that EAT volume can
predict clinical deterioration or death independently of clinical
factors such as age, diabetes, hypertension, or smoking history
(99). This suggests the importance of automated measurement of
EAT for COVID-19 risk stratification. An increased EAT volume
was associated with lung dysfunction even in healthy individuals
(100), and the close proximity of EAT to the pulmonary
circulation could enable direct diffusion of inflammatory
mediators. According to Wei et al., EAT volume appeared to
be an independent predictor of myocardial injury in patients
with COVID-19 (OR = 3.06) with a maximal cutoff value of
137.1 cm2 (89) after adjustment for age, weight, history of
cardiovascular disease, and dyslipidemia. This work performed
in a large cohort of 400 patients from six Chinese hospitals
clearly indicates that EAT volume enlargement may predict the
development of myocardial injury. However, the cutoff needs
to be evaluated in ethnically diverse cohorts. Furthermore, EAT
was significantly higher in severe cases of COVID-19 groups,
i.e., with signs of respiratory distress (101). In a recent study,
Iacobellis et al. showed that on 427 infected patients, use of
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dexamethasone reduced EAT attenuation (102). EAT could
therefore also serve as a therapeutic target for anti-
inflammatory treatment. All these studies indicate that EAT
volume and inflammation itself are associated with COVID-19
severity and adverse cardiac events.

The mechanisms of these cardiac events are not fully
elucidated, and EAT could be a clue to understanding them.
First, epicardial fat cells seemed to express higher levels of ACE2
than subcutaneous fat cells, which could make them a viral
reservoir in COVID-19 infection. A study on EAT and SAT
biopsies from 43 patients who underwent open-heart surgery
identified higher levels of ACE2 (p < 0.05) but lower ADAM-17
(p < 0.001), with its cleavage enzyme in EAT compared with
subcutaneous fat. Obesity and T2D exacerbated this difference in
patients with cardiovascular disease (103). In an animal study,
ACE2 was upregulated in murine EAT in association with high-
fat diet. Loss of ACE2 in knock-out diet-induced-obesity
(ACE2KO-DIO) mice increased macrophage polarization to a
pro-inflammatory phenotype and EAT inflammation compared
with wild-type and control diet mice. The same study showed that
in human EAT from obese patients with heart failure, ACE2 was
increased and was also associated with pro-inflammatory
macrophage phenotype compared with lean patients (104, 105).
Voluminous and hypervascularized EAT in individuals with
obesity could facilitate viral spread, immune response, and
greater pro-inflammatory cytokine secretion. Volume of EAT
was positively correlated with inflammatory biomarkers during
COVID-19 infection in a study of 100 patients (106), with a
significant positive mild association with neutrophil-to-
lymphocyte ratio (r = 0.33, p = 0.001) and platelet-to-
FIGURE 1 | Impact of obesity and inflammation of epicardial adipose tissue on COVID-19 outcome. CVD, cardiovascular disease; EAT, epicardial adipose tissue;
OSA, obstructive sleep apnea; T2D, type 2 diabetes.
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lymphocyte ratio (r = 0.25, p = 0.01) but a negative correlation
with lymphocyte-to-C-reactive protein (CRP) ratio (r = −0.25,
p = 0.02). Pro-inflammatory cytokines such as TNF-a and IL-6
are expressed at higher levels in EAT of individuals with obesity
linked to a reduction of inotropic effect and cardiac function
resulting in hypoxia and systemic myocardial inflammatory
response (43). By taking advantage of more ACE2-binding sites,
which ultimately lead to an augmented inflammatory signaling
cascade, EAT inflammation could contribute to myocardial
complications, such as myocarditis or cardiomyocyte
dysfunction (107), and then heart failure. Furthermore, it has
recently been shown that EAT adipocytes can release exosomes
that can enter cardiac cells via endocytosis (105). This suggests
numerous mechanisms by which EAT could impair cardiac
function, particularly via the transfer of microRNAs from EAT
to the myocardium and could help mediate SARS-CoV-2 entry
into the heart, causing direct cardiac effects.

COVID-19 thus induces an immune-mediated inflammatory
response, and EAT may transduce this inflammation to the
heart. It can be implicated in COVID-19 myocarditis by its
contiguity with the myocardium and its pro-inflammatory
secretome reaching the myo-pericardium directly by the vasa
vasorum and paracrinally (108–110).

EAT thus contributes to bad outcomes during COVID-19
infection. We and others have shown that EAT significantly
responds to drugs targeting the fat (44). EAT not only is a marker
of inflammation, but it can be a target to anti-inflammatory
treatment. Further studies on the impact of COVID treatment on
EAT volume and inflammation are needed.

All these elements are summarized in Figure 1.
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CONCLUSION

Obesity is a major risk factor for COVID-19. Identifying patients
with obesity who are at high risk of ICU need is crucial. Multiple
studies have demonstrated that ectopic fat accumulation,
especially EAT, is a major driver of COVID-19 severity in such
patients. This unique potentially inflamed EAT depot may play a
direct role in COVID-19 cardiac injury, acting as a fuel through
its specific anatomical contact with the myocardium and its
inflammatory status. Large studies with systematic evaluation of
EAT volume and CT scan attenuation together with evaluation
of pulmonary involvement are needed. Deep learning algorithms
leading to new fully automated three-dimensional methods for
the measurement of EAT will help improve clinical
risk stratification.
AUTHOR CONTRIBUTIONS

Conceptualization, AD and BG. Writing—original draft
preparation, AL, AB, PA, AS, AD, and BG. Writing—review
and editing, AJ, AD, and BG. Supervision, AD and BG. All
authors contributed to the article and approved the
submitted version.
FUNDING

GIRCI (Groupement interrégional de recherche clinique et
d'innovation) Méditerranée VALO-DATA 2020.
REFERENCES
1. Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical

Characteristics of Coronavirus Disease 2019 in China. N Engl J Med (2020)
382:1708–20. doi: 10.1056/NEJMoa2002032

2. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the
Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a
Report of 72 314 Cases From the Chinese Center for Disease Control and
Prevention. JAMA (2020) 323:1239–42. doi: 10.1001/jama.2020.2648

3. Guo T, Fan Y, ChenM,WuX, Zhang L, He T, et al. Cardiovascular Implications
of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19).
JAMA Cardiol (2020) 5:1–8. doi: 10.1001/jamacardio.2020.1017

4. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen
S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is
Blocked by a Clinically Proven Protease Inhibitor. Cell (2020) 181:271–
80.e8. doi: 10.1016/j.cell.2020.02.052

5. Pasquarelli-do-Nascimento G, Braz-de-Melo HA, Faria SS, Santos I de O,
Kobinger GP, Magalhães KG. Hypercoagulopathy and Adipose Tissue
Exacerbated Inflammation May Explain Higher Mortality in COVID-19
Patients With Obesity. Front Endocrinol (Lausanne) (2020) 11:530.
doi: 10.3389/fendo.2020.00530

6. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-Cell RNA-Seq Data
Analysis on the Receptor ACE2 Expression Reveals the Potential Risk of
Different Human Organs Vulnerable to 2019-Ncov Infection. Front Med
(2020) 14(2):185–92. doi: 10.1007/s11684-020-0754-0

7. Kruglikov IL, Scherer PE. The Role of Adipocytes and Adipocyte-Like Cells
in the Severity of COVID-19 Infections. Obes (Silver Spring) (2020) 28:1187–
90. doi: 10.1002/oby.22856
8. Müller JA, Groß R, Conzelmann C, Krüger J, Merle U, Steinhart J, et al.
SARS-CoV-2 Infects and Replicates in Cells of the Human Endocrine and
Exocrine Pancreas. Nat Metab (2021) 3:149–65. doi: 10.1038/s42255-021-
00347-1

9. Yang X-H, Deng W, Tong Z, Liu Y-X, Zhang L-F, Zhu H, et al. Mice
Transgenic for Human Angiotensin-Converting Enzyme 2 Provide a Model
for SARS Coronavirus Infection. Comp Med (2007) 57:450–9.

10. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, ZhangW, et al. A Pneumonia
Outbreak Associated With a New Coronavirus of Probable Bat Origin.
Nature (2020) 579:270–3. doi: 10.1038/s41586-020-2012-7

11. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical Features of
Patients Infected With 2019 Novel Coronavirus in Wuhan, China. Lancet
(2020) 395:497–506. doi: 10.1016/S0140-6736(20)30183-5

12. Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med (2020) 383:2255–
73. doi: 10.1056/NEJMra2026131

13. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. HLH
Across Speciality Collaboration, UK. COVID-19: Consider Cytokine Storm
Syndromes and Immunosuppression. Lancet (2020) 395:1033–4.
doi: 10.1016/S0140-6736(20)30628-0

14. Ulhaq ZS, Soraya GV. Interleukin-6 as a Potential Biomarker of COVID-19
Progression. Med Mal Infect (2020) 50:382–3. doi: 10.1016/j.medmal.
2020.04.002

15. Falagas ME, Kompoti M. Obesity and Infection. Lancet Infect Dis (2006)
6:438–46. doi: 10.1016/S1473-3099(06)70523-0

16. Frydrych LM, Bian G, O’Lone DE, Ward PA, DelanoMJ. Obesity and Type 2
Diabetes Mellitus Drive Immune Dysfunction, Infection Development, and
Sepsis Mortality. J Leukoc Biol (2018) 104:525–34. doi: 10.1002/
JLB.5VMR0118-021RR
August 2021 | Volume 12 | Article 726967

https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1001/jama.2020.2648
https://doi.org/10.1001/jamacardio.2020.1017
https://doi.org/10.1016/j.cell.2020.02.052
https://doi.org/10.3389/fendo.2020.00530
https://doi.org/10.1007/s11684-020-0754-0
https://doi.org/10.1002/oby.22856
https://doi.org/10.1038/s42255-021-00347-1
https://doi.org/10.1038/s42255-021-00347-1
https://doi.org/10.1038/s41586-020-2012-7
https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.1056/NEJMra2026131
https://doi.org/10.1016/S0140-6736(20)30628-0
https://doi.org/10.1016/j.medmal.2020.04.002
https://doi.org/10.1016/j.medmal.2020.04.002
https://doi.org/10.1016/S1473-3099(06)70523-0
https://doi.org/10.1002/JLB.5VMR0118-021RR
https://doi.org/10.1002/JLB.5VMR0118-021RR
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Lasbleiz et al. COVID-19 and Epicardial Adipose Tissue
17. Van Kerkhove MD, Vandemaele KAH, Shinde V, Jaramillo-Gutierrez G,
Koukounari A, Donnelly CA, et al. Risk Factors for Severe Outcomes
Following 2009 Influenza A (H1N1) Infection: A Global Pooled Analysis.
PloS Med (2011) 8:e1001053. doi: 10.1371/journal.pmed.1001053

18. Dıáz E, Rodrıǵuez A, Martin-Loeches I, Lorente L, Del Mar Martıń M, Pozo
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Alvarez E, González-Juanatey JR, et al. Higher ACE2 Expression Levels in
Epicardial Cells Than Subcutaneous Stromal Cells From Patients With
Cardiovascular Disease: Diabetes and Obesity as Possible Enhancer. Eur J
Clin Invest (2020) 51(5):e13463. doi: 10.1111/eci.13463

104. Patel VB, Mori J, McLean BA, Basu R, Das SK, Ramprasath T, et al. ACE2
Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac
Dysfunction in Response to Diet-Induced Obesity. Diabetes (2016) 65:85–95.
doi: 10.2337/db15-0399
Frontiers in Endocrinology | www.frontiersin.org 964
105. Flinn B, Royce N, Gress T, Chowdhury N, Santanam N. Dual Role for
Angiotensin-Converting Enzyme 2 in Severe Acute Respiratory Syndrome
Coronavirus 2 Infection and Cardiac Fat. Obes Rev (2021) 22:e13225.
doi: 10.1111/obr.13225

106. Abrishami A, Eslami V, Baharvand Z, Khalili N, Saghamanesh S, Zarei E,
et al. Epicardial Adipose Tissue, Inflammatory Biomarkers and COVID-19:
Is There a Possible Relationship? Int Immunopharmacol (2021) 90:107174.
doi: 10.1016/j.intimp.2020.107174

107. Zhao L. Obesity Accompanying COVID-19: The Role of Epicardial Fat.
Obesity (2020) 28:1367–7. doi: 10.1002/oby.22867

108. Malavazos AE, Goldberger JJ, Iacobellis G. Does Epicardial Fat Contribute to
COVID-19 Myocardial Inflammation? Eur Heart J (2020) 41:2333.
doi: 10.1093/eurheartj/ehaa471

109. Kim I-C, Han S. Epicardial Adipose Tissue: Fuel for COVID-19-Induced
Cardiac Injury? Eur Heart J (2020) 41(24):2334–5. doi: 10.1093/eurheartj/
ehaa474

110. Iacobellis G, Malavazos AE, Ferreira T. COVID-19 Rise in Younger Adults
With Obesity: Visceral Adiposity Can Predict the Risk. Obes (Silver Spring)
(2020) 28:1795. doi: 10.1002/oby.22951
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Lasbleiz, Gaborit, Soghomonian, Bartoli, Ancel, Jacquier and
Dutour. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s) are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.
August 2021 | Volume 12 | Article 726967

https://doi.org/10.1016/j.metabol.2020.154319
https://doi.org/10.1016/j.metabol.2020.154317
https://doi.org/10.1002/oby.23019
https://doi.org/10.1016/j.metabol.2020.154436
https://doi.org/10.1148/ryai.2019190045
https://doi.org/10.1378/chest.11-0258
https://doi.org/10.1002/oby.22943
https://doi.org/10.1002/oby.23232
https://doi.org/10.1111/eci.13463
https://doi.org/10.2337/db15-0399
https://doi.org/10.1111/obr.13225
https://doi.org/10.1016/j.intimp.2020.107174
https://doi.org/10.1002/oby.22867
https://doi.org/10.1093/eurheartj/ehaa471
https://doi.org/10.1093/eurheartj/ehaa474
https://doi.org/10.1093/eurheartj/ehaa474
https://doi.org/10.1002/oby.22951
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Frontiers in Endocrinology | www.frontiersi

Edited by:
Xiaodong Sun,

Affiliated Hospital of Weifang Medical
University, China

Reviewed by:
Lu Cai,

University of Louisville, United States
Xu Chen,

University of Mississippi Medical
Center, United States

*Correspondence:
Qian Tong

tongqian@jlu.edu.cn
Yan Wang

wangyan@imm.ac.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cellular Endocrinology,
a section of the journal

Frontiers in Endocrinology

Received: 29 July 2021
Accepted: 23 August 2021

Published: 06 September 2021

Citation:
Yang X, Zhang X, Yang W, Yu H,

He Q, Xu H, Li S, Shang Z, Gao X,
Wang Y and Tong Q (2021) Gut

Microbiota in Adipose Tissue
Dysfunction Induced Cardiovascular
Disease: Role as a Metabolic Organ.

Front. Endocrinol. 12:749125.
doi: 10.3389/fendo.2021.749125

REVIEW
published: 06 September 2021

doi: 10.3389/fendo.2021.749125
Gut Microbiota in Adipose Tissue
Dysfunction Induced Cardiovascular
Disease: Role as a Metabolic Organ
Xinyu Yang1,2†, Xianfeng Zhang3†, Wei Yang1, Hang Yu2, Qianyan He4, Hui Xu2,
Shihui Li1, Zi'ao Shang1, Xiaodong Gao1, Yan Wang2* and Qian Tong1*

1 Department of Cardiovascular Medicine, First Affiliated Hospital of Jilin University, Changchun, China, 2 Institute of Materia
Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 3 Department of
Neurosurgery, First Affiliated Hospital of Jilin University, Changchun, China, 4 Department of Neurology, First Affiliated
Hospital of Jilin University, Changchun, China

The gut microbiome has emerged as a key regulator of host metabolism. Accumulating
evidence has indicated that the gut microbiota is involved in the development of various
human diseases. This association relies on the structure and metabolites of the gut
microbiota. The gut microbiota metabolizes the diet ingested by the host into a series of
metabolites, including short chain fatty acids, secondary bile acids, trimethylamine N-
oxide, and branched-chain amino acids, which affects the physiological processes of the
host by activating numerous signaling pathways. In this review, we first summarize the
various mechanisms through which the gut microbiota influences adipose tissue
dysfunction and metabolic processes that subsequently cause cardiovascular diseases,
highlighting the complex interactions between gut microbes, their metabolites, and the
metabolic activity of the host. Furthermore, we investigated the current status of clinical
therapies for adipose tissue dysfunction directed at the gut microbiota. Finally, we discuss
the challenges that remain to be addressed before this field of research can be translated
to everyday clinical practice.

Keywords: gut microbiota, adipose tissue dysfunction, molecular endocrinology, cardiovascular disease(s),
gut dysbiosis
Abbreviations: ANGPTL2, Angiopoietin-Like Protein 2; ATD, Adipose Tissue Dysfunction; BAs, Bile Acids; BCAAs,
Branched-Chain Amino Acids; BMI, Body Mass Index; BS, Bariatric Surgery; CA, Cholic Acid; CDCA, Chenodeoxycholic
Acid; CVDs, Cardiovascular Diseases; CYP7A1, Cholesterol 7a-Hydroxylase; DCA, Deoxycholic Acid; FGF15, Fibroblast
Growth Factor 15; FMO, Flavin Monooxygenase; FMT, Fecal Microbiota Transplantation; FXR, Farnesol Nucleus Receptor;
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1 INTRODUCTION

Obesity is a major global health concern. There is a general
consensus that obesity increases the risk of cardiovascular
diseases (CVDs). By far the most widely accepted measure of
obesity is the body mass index (BMI), a simple calculation
based on an individual’s weight in kilograms divided by the
square of their height in meters (kg/m2) (1). A high BMI has
been associated with shorter life expectancy (2), which is
mainly due to increased risk of type 2 diabetes (T2D),
hypertension, dyslipidemia, and CVD (3).The Global Burden
of Disease study group estimated that elevated BMI values were
responsible for 4 million deaths in 2015, with two thirds of this
number attributed to CVDs (4). However, it has been pointed
out that the BMI alone cannot fully identify patients at high-
risk of CVDs. Wildman et al. (5) found that a substantial
proportion, approximately 50% of overweight individuals and
30% of obese individuals, are free from any obvious signs of
metabolic or cardiovascular complications. Furthermore,
CVDs are also common in people with normal BMI, which
suggests BMI is a highly heterogeneous indicator. That is
because BMI is an overall indicator related only to height and
weight, which does not take body composition into account. At
an individual level, BMI can neither distinguish between fat and
lean tissue nor determine fat distribution, function, and
associated risk factors (1).

Adipose tissue dysfunction (ATD) or “adiposopathy” is a
relatively recent concept and is thought to be more closely
associated with CVDs than the BMI (6). In the past, the adipose
tissue was thought to be relatively inert and its only function
was as a storage depot for excess energy in the form of
triglycerides and to build up or break down excess lipid into
free fatty acids and glycerol based on the metabolic needs of the
body. However, growing research suggests that adipose organs
are considered to be quite active tissues with metabolic
functions and are involved in crosstalk between multiple
organ systems (7).

In recent years, a significant number of studies have been
conducted investigating the role of gut microbiota in various
endocrine and immune diseases, such as obesity, diabetes,
nonalcoholic fatty liver disease, allergies, and CVDs (8, 9).
There has been much literature summarizing the relationship
between gut microbiota and CVDs, involving a wide range of
gut microbiota metabolites and their endocrine functions in
vivo (10, 11). To date, the gut microbiota is considered a novel
endocrine organ that effects many metabolic activities in the
host. In this review, we provide a brief review of the gut
microbiota and its metabolites, and describe the endocrine
roles and molecular mechanisms involving the gut microbiota
and metabolites in various aspects of ATD-induced CVDs.
Finally, we also briefly review the treatment of various aspects
of ATD-induced CVDs targeting the gut microbiota and thus,
provide guidance for future research in the emerging field of the
gut microbiome associated with the development of metabolic
diseases in humans.
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2 ADIPOSE TISSUE DYSFUNCTION

This concept of ATD further details the phenotype of obese
patients. ATD consists of 2 aspects: abnormalities in fat
distribution and abnormalities in the characteristics of adipose
tissue, which are both highly related to CVDs (Figure 1).

Fat distribution abnormalities refer to the excessive
accumulation of visceral adipose tissue (VAT), or fat storage in
the intraperitoneal and retroperitoneal spaces, and deposition of
ectopic fat, fat stores in body locations where fat is not
physiologically stored such as the liver, pancreas, heart, and
skeletal muscle. Normally, adipose tissue accumulates in
subcutaneous adipose tissue (SAT, 80-90%) (12) and the main
depots of SAT are the abdominal, subscapular (on the upper
back), and gluteal and femoral areas (13, 14). The SAT depot is
located under the skin and does not communicate with internal
organs. It is considered as a normal physiological buffer for
excess energy intake with little threat to cardiovascular health
(15). Conversely, through excessive energy intake, sex hormones
levels (16), use of glucocorticoids (17), genetic make-up (18), and
epigenetic mechanism (19), fat tends to store in the
intraperitoneal and retroperitoneal areas, and in locations
where it is not physiologically stored such as the liver,
pancreas, heart, and skeletal muscle, which has been defined as
VAT. Ross et al. (20) found that individuals matched for
abdominal SAT with low or high VAT levels had different
levels of glucose tolerance, whereas those matched for VAT
had similar glucose tolerance testing with high and low SAT.
This study indicated that SAT may not be a risk factor for
metabolic diseases, whereas VAT and ectopic fat accumulation
was causally related with insulin levels. In addition, several
studies have reported positive associations of excess VAT
accumulation with cardiovascular risk factors, CVDs and all-
cause mortality (21–23). Furthermore, adipose tissue
accumulation at special ectopic sites such as the pericardium
or epicardium also results in increased CVD risk (24).

Another aspect of ATD involves abnormalities in the
characteristics of adipose tissue. Adipocytes typically constitute
the majority of the cellular content of adipose tissue. Adipocytes
are surrounded by fibrous connective tissue, collagen, nerves,
and blood vessels. Despite its location, the metabolic activity of
adipose tissue is also a determinant of ATD-induced CVDs.
Features of dysfunctional adipose tissue include impaired
adipose tissue expandability and adipogenesis (20), as well as
hypertrophy and altered lipid metabolism by fat cells. Most
importantly, macrophage infiltration can be observed in ATD
and initiates a vicious cycle of inflammatory response (25),
leading to polarization of macrophages toward a pro-
inflammatory phenotype (M1-polarized), which can activate
inflammatory pathways and impair insulin signaling (26). In
addition, adipokines, the bioactive compounds which are
synthesized in the adipose tissue and released into circulation,
can be dysregulated in ATD. This dysregulation is a prominent
hallmark of ATD (27). Expression of pro-inflammatory
adipokines such as leptin, tumor necrosis factor a (TNF-a),
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interleukin-6(IL-6), interleukin-8(IL-18), retinol binding protein
4, lipocalin 2, and angiopoietin-like protein 2 far exceeds that of
anti-inflammatory factors such as adiponectin, IL-10, and nitric
oxide (NO). The imbalance between pro- and anti-inflammatory
cytokines in favor of pro-inflammatory ones leads to insulin
resistance, systematic inflammation, oxidative stress,
atherothrombosis and eventually, CVDs (28). However,
systemic inflammation probably involves a complex network of
signals interconnecting several organs. The causal relationship
between systemic inflammation and adipose tissue inflammation
is currently controversial. In summary, ATD increases
cardiovascular risk through adipose t issue ectopic
accumulation and dysregulation of adipokines in adipose tissue.
3 GUT MICROBIOTA AND METABOLITES

3.1 Gut Microbiota—an Endocrine Organ
The term gut microbiota describes the commensal microbial
species in the gastrointestinal tract (29). Trillions of microbial
cells including bacteria, fungi, archaea, and viruses are harbored
in the human intestine, which act as an essential and complicated
part of our healthy physiological ecosystem. With a bacterial load
of more than 1014 (30), the genome carried by the gut microbiota
outnumbers human genome by 100 times (31). More than 90%
of the taxa of the gut microbiota in adults is constituted by two
major bacterial phyla, Bacteroidetes or Firmicutes, with a lower
abundance of Actinobacteria, Cyanobacteria, Fusobacteria,
Proteobacteria, and Verrumicrobia (32). Collectively, these
bacteria make up the most complex and diverse ecosystem in
human gut. Although the composition of gut bacteria is
remarkably similar at the phylum level and a core of bacterial
genera is present in the majority of adult hosts, there is huge
variability at a subspecies level. The human gut microbiome is
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also highly dynamic and can be dramatically altered by age,
antibiotic use, host genetics, chronic dietary patterns, and other
environmental exposures (31, 33, 34).

Gut microbiome plays a predominant role in training and
maturation of the host immune system (35), vitamin synthesis,
resistance to colonization by or overgrowth of pathogenic
microorganisms, deconjugation of bile acids (BAs) (36), and
energy harvest through fermentation of indigestible
carbohydrates (37). With this huge microbiome, diversity at
the subspecies level, it is not surprising that the gut microbiota
has a significant influence on the biological activity of the host.
Indeed, the gut microbiota plays an important role in the
regulation of metabolic activities of the human body, which is
mainly achieved through its metabolites (38).

The Merriam-Webster dictionary defines an endocrine organ
as follows: “producing secretions that are distributed in the body
by way of the bloodstream.” Besides endocrine organs in the
conventional sense like the hypothalamus, pituitary gland,
thyroid gland, and adipose tissue, the gut microbiome also fits
this classic definition. But unlike host endocrine organs, which
produce only a few key hormones, the gut microbial endocrine
organ has the unique potential to produce hundreds if not
thousands of humoral agents defined as metabolites of gut
microbiota. These metabolites are sensed by highly selective
host receptor systems that elicit diverse biological responses
(39), and finally, alter the metabolic functions of distal organs.

3.2 Metabolites of Gut Microbiota
The gut microbiota produces a wide range of metabolites, such as
vitamins and short-chain fatty acids (SCFAs), BAs,
trimethylamine (TMA), branched-chain amino acids (BCAAs),
ammonia, and phenols (8). These metabolites are absorbed by
intestinal epithelial cell and finally enter the circulation. In
addition, structure components of microbiome like
FIGURE 1 | ATD and its relationship with CVDs. ATD consists of two aspects: abnormal distribution and properties. ATD is able to induce CVDs directly, or results
in other metabolic diseases including insulin resistance which eventually leads to CVDs. ATD, adipose tissue dysfunction; CVDs, cardiovascular diseases.
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lipopolysaccharide (LPS) could also enter the circulatory system
of the host and become bioactive compounds (Figure 2). These
microbiota-derived metabolites and LPS are agents of microbe-
host communication, which is essential to maintain vital
functions of the healthy host (39).

3.2.1 Short-Chain Fatty Acids
SCFAs, also known as volatile fatty acids (VFA), are the end
product of the gut microbiome’s fermentation of indigestible
carbohydrates (such as fructose-oligosaccharides, inulin,
oligosaccharides, non-starch polysaccharides, and oat bran)
(40). SCFAs are a group of organic fatty acids with carbon
chains between 1 and 6. They mainly include acetic acid,
propionic acid, butyric acid, isobutyric acid, valeric acid, iso-
valeric acid, iso-caproic acid, and hexanoic acid. The content of
acetic acid, propionic acid and butyric acid is the highest in the
intestinal tract: acetic acid (40–100 mmol/kg), propionic acid
(15–40 mmol/kg), butyric acid (10–30 mmol/kg), the latter is the
main SCFA in the intestinal tract (41). For healthy individuals,
several factors affect the production of SCFAs, including the
source and chemical properties of the substrate, the type and
number of intestinal microorganisms, and the time of
transportation in the intestine (42).

SCFAs have a variety of biochemical and physiological effects.
First, SCFAs can be used for the biosynthesis of lipids,
cholesterol, and proteins. Second, SCFAs act as signaling
molecules to distant tissues and organs of the host. The effects
of SCFAs are in part mediated by G-protein coupled receptors
(GPR41, GPR43, and GPR109A) and histone deacetylase
(HDAC), which are related to oxidative stress, the immune
response, insulin resistance, and inflammatory responses
(43, 44).
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3.2.2 Bile Acids
BAs are a general term for a large group of cholic acids that exist
in the form of sodium salts or potassium salts. Primary BAs are
synthesized from cholesterol in hepatocytes through multiple
reactions such as hydroxylation, side chain oxidation,
isomerization and hydrogenation, and finally forms
chenodeoxycholic acid (CDCA) and cholic acid (CA). Further,
primary BAs combine with glycine or taurine in the liver to form
conjugated BAs, which enter the gallbladder. After food
ingestion, the gallbladder releases these BAs into the
duodenum, where they function in the small intestine and
colon. After the BAs assist in the digestion of food, most are
reabsorbed back into the liver in a process known as the
enterohepatic circulation of BAs (45). A number of recent
studies have found that unabsorbed BAs in the intestine can be
used as substrates for microbial metabolism and further
transformed into secondary BAs through hydrolase or
dehydrogenase enzymes. These intestinal bacteria are mainly
composed of Lactobacillus, Streptococcus, Enterobacter,
Enterococcus, Clostridium, Lactobacillus, Veronococcus (46).
They separate BAs from glycine or taurine to form mainly
deoxycholic acid (DCA) and lithocholic acid (LCA), which in
turn, may be further recirculated to the liver and, like primary
BAs, combine with glycine or taurine and are excreted in small
amounts in the feces (45).

BAs have many important physiological functions. Their
function was first recognized as an emulsion to promote the
absorption of fatty acids and fat-soluble vitamins in the human
body. With their further study, BAs have attracted much
attention as a signaling molecule for diverse endocrine and
paracrine functions (47). BAs are able to bind to the G-protein
coupled receptor sphingosine-1 phosphate receptor 2 (S1PR2)
FIGURE 2 | Gut microbiota metabolites and the associated metabolic signaling pathway. TMAO, BAs, SCFAs, BCAAs are the metabolites that are produced by the
gut microbiota. Conversely, LPS is a component of the cell wall of gut bacteria. All are capable of activating specific signaling pathways. TMAO, Trimethylamine
Oxide; BAs, bile acids; SCFAs, short-chain fatty acids; BCAAs, Branched-Chain Amino Acids; LPS, Lipopolysaccharides.
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(48) and the Takeda G protein-coupled receptor-5 (TGR5) (49).
BA can also activate farnesol nucleus receptor (FXR) (50), which
induces fibroblast growth factor 15 (FGF15) expression and
inhibits the expression of cholesterol 7a-hydroxylase
(CYP7A1) in the liver, the rate-limiting step in BA synthesis,
leading to decreased BA levels via a gut-microbiota-liver
feedback loop. In addition, BAs have been reported to bind to
vitamin D receptors and pregnane X receptors (PXR) in vivo. By
activating these different signaling pathways, BAs play a role in
regulating liver gluconeogenesis, glycogen synthesis, insulin
sensitivity, and regulating the balance of energy metabolism in
the body (51, 52).

3.2.3 Trimethylamine-N-Oxide
Trimethylamine-N-Oxide (TMAO) is a monoamine metabolite
found in gut microbiota that has attracted much attention
because of its relationship with CVD in recent years (53).
Foods containing choline, phosphatidylcholine, and L-carnitine
are sources of TMA (54, 55). Choline, and its precursor
phosphatidylcholine, are an abundant chemical constituents in
daily diets such as animal liver, milk, and egg yolks. L-carnitine is
an abundant nutrient in meat, especially red meats. Both choline
and carnitine within the gut are absorbed within the small bowel
via specific transporters, but absorption is incomplete,
particularly with large meals that can saturate the uptake
systems. Consequently, both dietary choline and carnitine
ingestion can lead to significant elevations in TMA in the
intestine. When TMA is absorbed into the circulation, it can
be further delivery to the liver via the portal circulation, is rapidly
converted into TMAO by hepatic flavin monooxygenase
(FMO) (56).

Since TMAO was discovered, increasing research data,
including human and animal models, has shown significant
associations with a variety of diseases. Current studies have
found that TMAO is closely associated with CVD (57),
nephropathy (58), and diabetes (59). Although the relationship
between TMAO and the above diseases has been established, the
precise receptor or chemical sensor that detects TMAO remains
unknown. Several possible mechanisms of TMAO in the
occurrence and development of CVDs have been reported.
Mechanisms mainly include (1): the inhibition of the reverse
transport of cholesterol, and altering of the metabolic pathways
of cholesterol and lipoprotein in the intestinal tract, blood vessel
wall, liver, and other important organs (55) (2); promotion of
vascular dysfunction and the inflammatory response through
MAPK, NF-kB and NLRP3 inflammasome pathways (60, 61);
and (3) the promotion of the release of Ca2+ in platelets, and
then direct improvement of the response hypersensitivity of
platelets, and acceleration of thrombosis (62).

3.2.4 Lipopolysaccharides
LPS, known as a bacterial endotoxin, is a component of the outer
membrane of Gram-negative bacteria and is important for
maintaining the structural integrity of the bacteria. LPS
consists of three components, including O-specific
polysaccharides, core polysaccharides, and lipid A, which is the
toxic center of LPS. Strictly speaking, LPS is not a metabolite of
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the gut microbiota. However, LPS still exerts its effects as a
metabolism-independent signaling molecule. Dysfunction of the
host’s gut such as following changes in permeability allows LPS
to enter the circulation and activate several pathogenetic
pathways (63).

First, LPS binds to the LPS binding protein (LBP), which
transports LPS to the surface of immune cells and binds to the
membrane protein receptor CD14. CD14 then transfers LPS to
the Toll-like receptor 4 (TLR4) and myeloid differentiation
protein 2 (MD2) protein complex. MD2 helps TLR4 recognize
LPS, which activates intracellular signal transduction pathways
and eventually activates the transcription factor NF-kB,
generating pro-inflammatory cytokines such as TNF-a, IL-1b,
and IL-6 (64).

3.2.5 Branched-Chain Amino Acids
BCAAs, including leucine, isoleucine, and valine, are essential
amino acids and BCAAs or BCAA-rich diets usually have a
positive effect on body weight regulation, muscle protein
synthesis, and glucose homeostasis (65). The gut microbiota
plays an important role in both in vivo synthesis and absorption
of BCAAs. Prevotella copri and Bacteroides vulgatus were found
significantly associated with increased BCAAs biosynthesis and
decreased transport of genes at the fecal metagenomics level.
Butyrivibrio crossotus and Eubacterium siraeum were found to be
associated with the uptake of BCAAs (66).

It is now well established that there is a very close relationship
between BCAAs and insulin resistance. BCAAs are considered to
be sensitive biomarkers in plasma that can respond to the degree
of insulin resistance. However, it is unclear whether BCAAs are
involved in the development of insulin resistance or whether they
are just indicators of the disease (65). Current studies have
assumed that BCAAs are anabolic signals that alter the growth
of energy-consuming tissues, mediated in part through their
ability to activate the mammalian target of rapamycin complex 1
(mTORC1) and protein kinase Cϵ (PKCϵ) (67), which may
explain the bioactivity of BCAA in insulin resistance (67).

3.3 Techniques Used in Microbial Analysis
Although the identification methods of gut bacteria and their
metabolites are not the focus of this review, a brief description of
the common methods is necessary. Initially, bacterial culture was
the only method to identify and analyze the gut microbiota (68),
but with the advent of new techniques, it is current use is in the
isolation and cultivation of a single bacterium, which is still
important in establishing a link between bacteria and diseases
(69). In addition, culture of single bacterium allows researchers
to edit genes of a specific bacteria and to analyze its
characteristics (70).

3.3.1 Next Generation Sequencing
Emerging next generation sequencing (NGS) methods have
replaced bacterial culture as the most efficient way to obtain
information on all species of the human microbiome and even
their respective genomes (71). To date, 2 common NGS
strategies have been used in gut microbiota research: 16S
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ribosomal RNA (16S rRNA) gene sequencing and whole
genomic shotgun sequencing (72).

Sequencing of 16S rRNA genes is currently the most widely
used sequence-based technique for bacterial taxonomic and
phylogenetic studies. It involves sequencing of specified
microbial amplicons (mainly 16S rRNA). 16S rRNA genes are
present in all gut microbiomes, encoding RNAs composed of
small bacterial ribosomal subunits of the 30S. The16S variable
regions are specific to bacteria and 16S rRNA gene sequencing
has great potential for determining genera or species. Although
16S rRNA gene sequencing has important applications in
bacterial identification and classification, its low resolution
limits its application. In addition, 16S rRNA generally provides
information about the composition of the microbiome, but lacks
functional annotation (73).

Whole-genome shotgun sequencing means using high-
throughput genome sequencing combined with advanced
computational bioinformatics to identify taxonomic and
potentially functional microbiomes. Theoretically it can bypass
microbiome culture and identify the function of microbial
communities, but it still requires more experimental
confirmation (74).

3.3.2 Mass Spectrometry Chromatography
In addition to the identification of the composition of the gut
microbiota, the identification of the metabolites of the gut
microbiota is equally very important. Mass spectrometry (MS),
including tandem MS, is an important method for identifying
metabolites of gut microbiota. Its high sensitivity allows us to
analyze trace amounts of bacterial metabolites (75). MS is often
coupled with chromatographic technology including gas
chromatography (GC) and liquid chromatography (LC). This
method combines the advantages of separation capabilities of
chromatography and sensitivity of MS, reducing matrix effects
and ion suppression that allows for a more accurate
quantification and compound identification (76). This method
is the most advanced technically, and most of the bacterial
metabolites such as BA, SCFA, TMAO, LPS can be analyzed
using this method (75, 77).

Furthermore, after identifying the metabolites of bacteria,
functional omics techniques are used to link gut microbiota
composition, metabolites, and diseases together. These
techniques include transcriptomics, proteomics, and
metabolomics (78).
4 GUT MICROBIOTA IN ATD INDUCED
CVDs

4.1 “Gut Dysbiosis”
As mentioned above, although the gut microbiota is relatively
stable in healthy individuals, it constantly changes throughout
the life in response to endogenous and exogenous factors. From
the moment intestinal bacteria are established in the infant, its
composition and abundance are constantly modified under the
influence of various factors such as delivery method, food, age,
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and exposure to antibiotics (79). Although the gut microbiota is
constantly changing, its function in the maintenance of host
homeostasis remains stable within a certain range in
healthy humans.

‘Gut dysbiosis’ refers to a morbid change in the composition
of the gut microbiota and may be caused by several factors such
as diet, increased stress, inflammation, and antibiotic use (80).
Although there is not a clear cause-and-effect relationship
between this change and disease, dysbiosis can be observed in
a wide range of diseases. A classic example of gut dysbiosis is the
change in Firmicutes/Bacteroidetes ratio. As the two most
abundant phylum of gut microbiota, changes in Firmicutes/
Bacteroidetes ratio have been associated with a variety of
diseases, such as obesity, gallstone disease, hypertension (81).
For example, Emoto et al. reported a characteristic change in
microbial composition of patients with coronary artery disease in
which there was a significant increase in Lactobacillales
(Firmicutes) and a decrease in Bacteroidetes (82). Currently,
emerging evidence has shown that gut dysbiosis is able to
disturb homeostatic functions of many metabolic activities
through alteration of its community structure and metabolites
(83). Thus, gut dysbiosis is considered a basic process of gut
microbiota influencing disease development such as adipose
tissue dysfunction (84), insulin resistance (66) and CVD.

However, gut dysbiosis involves alterations in a wide range of
bacteria and their metabolites, so its relationship with adipose
tissue dysfunction induced CVD is intertwined (Figure 3). Below
we will explain the role of gut dysbiosis in the development of
each aspect of the disease.

4.2 Gut Dysbiosis and Adipose
Inflammation
The relationship between high-energy diet and obesity is
unquestionable, and moreover, there is evidence that the intake
of specific substances, such as saturated fatty acids (sFAs),
induces adipose tissue dysfunction. With increasing
understanding of the gut microbiota, scientists found that ATD
is not purely a consequence of specific diet, but rather, may
require the disturbance of intestine-microbiota interaction (85).

As mentioned, adipose inflammation is the most important
feature in ATD. It is upstream of systemic inflammation and
systemic insulin intolerance which leads to CVDs. Tran et al.
(86) demonstrated that gut dysbiosis induced by a western diet is
responsible for adipose inflammation in mice: an increase in
classic proinflammatory M1 macrophages, and a decrease in
anti-inflammatory M2 macrophages in adipose tissue were
observed. Ablation of the gut microbiome could reduce such
inflammatory responses in adipose tissue. Moreover, gene
depletion of Toll-like receptor (TLR)-signaling adaptor protein
myeloid differentiation primary response 88 (MyD88) largely
phenotyped microbiota ablation, supporting the notion that
western diet-induced adipose inflammation did not result from
lipid accumulation per se, but rather was promoted by
microbiota or their products activating innate immune
signaling pathways. Although the study did not examine the
metabolites of gut microbiota, it confirmed that gut microbiota
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and its metabolites induce adipose tissue inflammation through
an inflammatory response related to TLRs. Previously, many
researchers had long demonstrated that LPS was able to activate
TLR (87) and LPS had been shown to be highly correlated with
the development of obesity (88). The above findings could
indicate a significant correlation between LPS produced by the
gut microbiota and adipose tissue inflammation.

Moreover, recent studies are more supportive of the concept
that dysbiosis of gut microbiota is an early event in inflammation
and the development of obesity (84). When eating a high-fat diet
(HFD), the first to be exposed to these nutrients is
gastrointestinal system (89). A HFD induces gut dysbiosis and
alters the secretory patterns of gut peptides. These changes can
provoke an increase in the intestine mucosal inflammatory
response, a disruption of the epithelial barrier, and a
consequent enhanced transit of LPS into the systemic circulation.

LPS, as well as sFA consequent to a HFD intake may act in
synergy to promote a harmful proinflammatory response as they
are recognized as endogenous ligands for specialized TLRs,
normally activated following the recognition of microbial-
associated molecular patterns (MAMPS) by macrophages or
intestinal epithelial cells (90), leading to a systemic low-grade
inflammation. In recent years, researchers have found that TLR
can also be expressed in adipose tissue, and have also found TLR-
bearing macrophages resident in adipose tissue (91). Upon
activation of TLRs, macrophages in adipose tissue are induced
to the M1 pro-inflammatory phenotype and subsequently
generate various inflammatory mediators (92). Adipose tissue
may also secrete pro-inflammatory adipokines such as TNF-a,
IL-6, IL-8, and MCP-1 in a TLR-dependent manner in response
to LPS (93, 94). On initiation, this inflammatory environment
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may further recruit new inflammatory cells (neutrophils,
macrophages), thus magnifying the inflammatory response in
adipose tissue. Overall, systemic low-grade inflammation can
promote adipose inflammation, leading to ATD, which in turn
can further exacerbate systemic inflammation and insulin
resistance, ultimately leading to CVDs.

4.3 Gut Dysbiosis and Insulin Resistance
Insulin resistance refers to a condition where the pancreas
produces insulin, while muscle, liver, and other cells fail to
respond to insulin, which leads to glucose intolerance and
eventually diabetes, which is the most important link between
ATD and CVDs. In parallel to ATD, gut dysbiosis can also
directly mediate insulin resistance. In humans with obesity, a 7-
day treatment with vancomycin, an antibiotic against Gram-
positive bacteria, can modulate the composition of the gut
microbiota and decrease peripheral insulin sensitivity (95).
Adjustment in the Firmicutes/Bacteroidetes ratio has been
proposed in insulin-resistant patients by many researches (96).
In addition, intestinal bacterial species producing SCFAs such as
Roseburia, Eubacterium halii, and Faecalibacterium prausnitzii
are generally decreased, while opportunistic pathogens such as
Lactobacilli gasseri, Streptococcus mutans, and Escherichia coli
are increased in subjects with T2D (97). Thus, the relationship
between insulin resistance and changes in intestinal bacterial
genera and metabolites, with a major focus on BCAAs and
SCFAs, has been demonstrated in many studies.

As mentioned, BCAAs are well-known biomarkers of insulin
resistance and predictors of incident diabetes and CVDs. The gut
microbiota has a wide range of enzymatic functions that trigger
BCAA biosynthesis and BCAA are also adsorbed and enter the
FIGURE 3 | Gut dysbiosis and ATD induced CVDs. Exposure to external environment changes, such as a high-fat diet, treatment with antibiotics, and stress, lead
to gut dysbiosis, causing changes in the structure of gut microbiota and metabolite levels, and increases the morbidity of ATD-induced CVDs.
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human circulation. Pedersen et al. (66) analyzed the gut
microbiota and metabolites of 219 individuals without diabetes
using non-targeted metabolomics and microbial genomic
approaches. BCAAs were analyzed as important markers of
insulin resistance. In addition, Prevotella copri and Bacteroides
Vulgatus were found significantly associated with increased
BCAAs biosynthesis in insulin resistance patients. Another
study (98) also found that P. copri was the strongest driver
species for the positive association between microbial BCAAs
biosynthesis in the gut and insulin resistance, and P. copri was
significantly increased in individuals receiving a HFD.
Interestingly, Kovatcheva-Datchar Petia et al. (99) reported a
contrasting conclusion between glucose intolerance and P. copri
using a different dietary regimen, high in fiber and low in fat.
Nevertheless, there is reason to believe that diet-induced gut
dysbiosis influences the development of insulin resistance
through changes in BCAA composition.

SCFAs, such as butyrate, acetate and propionate, display
beneficial effects on peripheral tissues, such as adipose tissue,
liver tissue, and skeletal muscle tissue, leading to an
improvement in insulin sensitivity (100). SCFAs, as ligands,
bind to FFAR2 and FFAR3 receptors distributed on
enteroendocrine L-cells and play a role in regulating blood
glucose. FFAR2 promote the secretion of insulin, GLP-1, GIP,
and PYY secretion, promote the release of growth hormone, and
reduce insulin signaling in fat. As for FFAR3, it promotes the
secretion of GLP-1 and PYY, promote gluconeogenesis in the
intestine, and decrease insulin secretion (101). In addition,
increased permeability is associated with translocation of
bacteria and their cell wall components which triggers an
inflammatory cascade that has been associated with insulin
resistance. SCFAs appear to play an important role in
maintaining the integrity of the intestinal epithelial barrier
through regulation of tight junction proteins, thus protecting
the host from insulin resistance (102). When gut dysbiosis
occurs, the SCFA-producing microbiome tends to decline,
resulting in weaker regulation of blood glucose and reduction
of insulin resistance by SCFAs, which in turn increases the risk of
insulin resistance and even diabetes in the host (97).

BAs are a l so invo lved in g lucose metabo l i sm.
Tauroursodeoxycholic acid is reported to have the potential to
improve liver and muscle insulin sensitivity in obese hosts (103).
Whist glycoursodeoxycholic acid (GUDCA) has the potential for
treating hyperglycemia (104). Sun et al. (105) revealed that
ablation of the gut microbiome alleviates HFD-induced glucose
intolerance, hepatic steatosis, and inflammation by modulating
the key enzyme CYP7A1 in the alternative BA synthesis pathway
in hamsters, which indicates the dysbiosis of gut microbiota may
contribute to insulin resistance by altering BA metabolism.

4.4 Gut Dysbiosis and Cardiovascular
Diseases
Significant data has accumulated on the relationship between gut
dysbiosis and CVDs. Extensive studies have demonstrated the
role of gut dysbiosis in different CVDs, such as atherosclerosis
(106), hypertension (107), and thrombosis (62). Numerous
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clinical trials have also demonstrated that many alterations in
intestinal bacteria are significantly associated with the
development of CVDs. Col l inse l la , Proteobacter ia ,
Actinobacteria, Enterobacteriaceae, Lactobacillales, Escherichia
coli, and Klebsiella spp, as well as the Firmicutes/Bateriodetes
ratio, which has been reported to increase in CVD, as well as
Butyrate-producing bacteria such as Roseburia intestinalis, while
Faecalibacterium cf. prausnitzii has been reported to decrease in
CVDs (82, 108–111). Notably, in ATD and insulin resistance,
there is a clear causal relationship between gut dysbiosis and
disease risk or severity, that is, such dysbiosis is the cause of
disease onset. However, in heart failure, a CVD disease, there is
evidence that the development of heart failure is responsible for
the dysbiosis of gut bacteria (112). The mechanism might be the
edema of the intestinal wall caused by systemic congestion
secondary to heart failure systemic congestion. In turn, the
highly permeable intestinal mucosa impaired the intestinal
barrier function, leading structural components of microbiota
(majorly LPS) to enter the circulation and to stimulate host
immune responses and vascular inflammation, which causes gut
dysbiosis to aggravate heart failure (113). Clinical trials have
proven that enhanced abundance of pathogenic microbial were
isolated from fecal samples of HF patients, especially in those
with right ventricle heart failure and impaired intestinal barrier
function (114).

Another common CVD, atherosclerosis, is also associated
with gut dysbiosis. Koren et al. first reported the changes of gut
microbiota were associated with atherosclerosis using 16S rRNA
genes to survey bacterial taxa (115). At that time, whether these
changes represented only microbial taxa associated with
coronary heart disease or whether these alterations were risk
factors that could promote the development of coronary heart
disease has not been fully determined. With more contemporary
studies to be reported, Jie et al. (116) observed an increased
abundance of Enterobacteriaceae and oral cavity-associated
bacteria and relatively depleted butyrate-producing bacteria in
patients with atherosclerotic CVD versus those in healthy control
subjects, suggesting that gut dysbiosis may be associated with the
development of atherosclerosis. To date, the bulk of evidence
suggests that gut dysbiosis is a significant risk factor
for atherosclerosis.

TMAO, which links gut dysbiosis to atherogenesis, is one of
the most important discoveries of recent years in the study of gut
microbiota metabolites. In 2011, Wang et al. (53) identified a
strong relationship between TMAO and the risk of CVD risks in
a cohort study of approximately 2000 patients with
atherosclerosis using a non-targeted metabolomics approach.
This study suggested that level of plasma TMAO was strongly
associated with future development of major adverse
cardiovascular events (death, myocardial infarction, and
stroke) in atherosclerosis patients. The mechanisms involved in
TMAO-induced atherosclerosis have been described in previous
sections. Notably, the value of TMAO is currently focused on
prognostic value of circulating TMAO levels. Wang et al. (117).
confirmed that TMAO predicted major adverse cardiac events in
a 3-year follow-up cohort, even in the presence of elevated levels
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of non-microbial metabolites. Furthermore, the prognostic value
of TMAO was also observed in patients with heart failure (118),
diabetes (59), peripheral artery disease (119), and chronic kidney
disease (58) independently of traditional risk factors.

Other metabolites such as BAs and SCFAs can also exert an
effect on CVDs, but the role they play is that of physical
modulators. These affect CVDs by modulating the upstream
metabolic processes, as mentioned above, ATD, and insulin
resistance. This also suggests that gut dysbiosis, by producing
pathogenic effects and metabolic disorders at multiple points,
permeates the development of CVDs due to ATD.
5 GUT MICROBIOME-BASED
THERAPEUTICS IN ATD INDUCED CVDs

As research progresses, we discover that several traditional
therapies are able to influence the distribution of the gut
microbiota. Many pharmaceutical effects that are difficult to
explain by conventional theories can also be explained by
changes in the gut microbiota. In ATD-induced CVDs, several
conventional therapies have proven to be strongly associated
with the modulation of gut dysbiosis.

5.1 Diet as an Important Modulator
of the Gut Microbiota
What we eat, no doubt, is associated with ATD, insulin
resistance, and other metabolic diseases. A breadth of
knowledge exists regarding the impact of dietary fat intake
on metabolic diseases (120, 121). For instance, De Souza et al.
reported that consumption of HFDs correlated with insulin
resistance (122). Woods et al. reported that a high fat intake is
associated with increased fat storage (123). The gut microbiota
serves as a filter for the largest environmental exposure—the
diet. There have been several studies attempting to explain the
role of the gut microbiota in the diet causing ATD, insulin
resistance, and CVDs. For instance, HFDs have been associated
with low-grade systemic inflammation via increases in
c i rcu la t ing microb ia l ly -der ived LPS . In add i t ion ,
HFDs have been linked to atherosclerosis through the
microbial production of TMA from L-carnitine and
phosphatidylcholine. All of these findings suggest that
modification of food composition may be the best way to
treat metabolic disorders induced by gut dysbiosis because of
its simplicity and ease of implementation.

The effects of a diet rich in saturated fat is highly likely to
induce an increase in body mass, liver triglyceride content, and
insulin insensitivity than a diet rich in monounsaturated fat or
polyunsaturated fat by increasing the proportion of Firmicutes
versus Bacteroidetes in the gut (124). In addition, long-term
exposure to diets rich in L-carnitine and phosphatidylcholine
cause excessive production of TMAO and subsequent induction
of CVDs (125). In turn, by adjusting the intake of these
substances, including of sFAs and choline, exercising, as well
as intermittent fasting, we are better able to adjust the risk of
metabolic diseases and CVDs (126, 127).
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In addition, the intake of substances such as fish oil and
nondigestible oligosaccharides has been shown to reduce the risk
of metabolic diseases induced by gut dysbiosis. Caesar et al. (128)
found that mice consuming a fish oil diet were protected from
inflammation mediated by gut dysbiosis. This effect may be
correlated with enrichment of the gut microbial genera
Akkermansia and Lactobacillus. In addition, a high-fish-oil diet
was reported to prevent adiposity and modulate white adipose
tissue inflammation pathways in mice (129). Nondigestible
oligosaccharides act as “fertilizers” of the gut microbiota,
enhancing the growth of beneficial commensal organisms (e.g.,
Bifidobacterium and Lactobacillus species) (130). Cani et al. (131)
found that oligofructose increased intestinal Bifidobacteria in
HFD mice and that endotoxemia was significantly negatively
correlated with bifidobacterial species. They also showed a
significant positive correlation between bifidobacterial species
and improved glucose tolerance and normalized inflammatory
tone in high-fat oligofructose-treated mice. Neyrinck et al. (132)
showed that wheat arabinoxylans in the diet counteracted high
fat diet-induced gut dysbiosis with an improvement of obesity
and lipid-lowering effects. In addition, the positive effects of
wheat arabinoxylans including hypocholesterolemia, anti-
inflammatory activity, and anti-obesity, have been associated
with changes in the gut microbiota. Thus, we propose that by
modifying food composition and intake of probiotic agents, can
we effectively decrease the risk of ATD induced CVDs.

5.2 Metformin Exerts Therapeutic Effects
by Improving Gut Dysbiosis
Metformin is an agent commonly used in clinical practice to treat
diabetes. Metformin has also been reported to correct ATD (133)
and to improve prognosis of CVDs (134). Initially The
antihyperglycemic effect of metformin was mainly attributed to
the reduction of intrahepatic gluconeogenesis. However, as research
continued, metformin was found to be inextricably linked to the
biological activity of the intestine. Bailey et al. described elevated
levels of metformin accumulating in the gut of diabetes patients
that were 300 times that found in the plasma (135). Forslund et al.
reported metformin as a key contributor to changes in the human
gut microbiome composition in patients with diabetes (136).
Currently, many mechanisms have been reported in metformin
activity in the treatment of insulin resistance and diabetes via
improvement of intestinal dysregulation.

First, metformin is able to shift the gut microbiota toward a
SCFA-producing microbiome in T2D individuals (137). Relative
abundance of more than 80 bacterial strains are altered by
metformin compared to placebo, where most changes are
observed in the Firmicutes and Proteobacteria phyla, leading to
an increase in SCFAs. In addition, metformin was reported to
enhance the abundance of Akkermansia muciniphila (138), a
mucin-degrading bacterial strain, which has gained considerable
attention because of the reduction in the abundance of this
bacterium associated with obesity, insulin resistance, diabetes,
and CVDs in rodents and humans (139). Second, metformin
treatment increases the levels of the BA glycoursodeoxycholic
acid by inhibiting Bacteroides fragilis, thus improving insulin
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resistance by activating the FXR pathway (104). Third,
metformin treatment is able to increase the abundance of
Lactobacillus in the upper small intestine and restore the
expression and thus increase the glucose sensitivity of the
sodium glucose cotransporter-1 (SGLT1)-dependent pathway,
which lowered glucose production in rodents (140).

5.3 Bariatric Surgery Alters Gut Microbiota
in Metabolic Disease Patients
Bariatic surgeries (BSs) such as Roux-en-Y gastric bypass
(RYGB) or sleeve gastrectomy(SG) are increasingly being used
and proven to be effective treatment for diabetes and morbid
obesity (141). Evidence has shown that changes in the gut
microbiota are believed to play a role in metabolic
improvements after BS. However, due to the small sample size
of studies of gut microbiota after BS in humans, changes in the
composition of the microbiota have yielded very contradictory
results (142). For example, the abundance of Firmicutes was
reported to be decreased in two studies (143, 144) but increased
in two others (145, 146). Besides, Murphy et al. described an
increase in the microbial population for Bacteroidetes after SG
and a decreased population for the same phylum after RYGB
(145). Meanwhile, Aron-Wisnewsky et al. (147). reported GS
failed to fully rescue decreased gut microbial gene richness
induced by severe obesity, despite the improvement in
microbial gene richness. In any case, these contradictory
results at least suggest that GS is able to exert an impact on the
composition and abundance of gut microbiota.

Interestingly, an observational line study of 13 patients
undergoing RYGB suggested that changes in microbial
functional potential are greater than changes in microbial
species abundance of the gut microbiota (148). This result
reminds us that besides studying compositional changes, it is
more important to pay attention to function and even
metabolomics output of gut microbiota. A recent meta-analysis
suggested that BCAAs were significantly decreased after BS,
whilst TMAO levels were elevated in post-operative
measurements. Although these changes different from those we
may expect, they also suggest that a change in the level of
metabolites is associated with gut microbiota alterations after
BS surgery. The mechanisms induced by such changes and the
effects on the organism remain to be further explored.
6 DISCUSSION

We are exposed to an enormous variety of microorganisms
residing in our gut, ranging from bacteria, viruses, fungi, and
archaea to phages and protozoa. The gut microbiome can
modulate nutrient metabolism upon dietary intake and
produces many metabolites that interact with the host in a
variety of ways. In this review, we have summarized the
current knowledge on the gut microbiota in relation to ATD-
induced CVDs in order to broaden our understanding in this
field and to move towards establishing clinical applications,
which may include a better understanding of etiology,
pathology, and personalized interventions.
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Nevertheless, additional studies are needed to clarify a
number of issues regarding the relationship between the gut
microbiota and ATD-induced CVDs. First, many of the
relationships between gut microbiota and ATD-induced
CVDs are based on findings from animal studies. The
compositional differences of gut microbial communities
between humans and rodents make animal study findings not
directly translatable to humans (149). Observations or studies
in human populations are lacking. Secondly, current studies
have simply confirmed the presence of altered endocrine
properties of the gut microbiota and its metabolites in
patients with ATD, but whether such change is the cause or
the consequence of ATD is still undetermined. Thirdly, current
novel therapies for gut dysbiosis such as fecal transplantation
(FMT) not only offers great potential for the treatment of a wide
array of diseases, but are also a good model to study the cause-
effect relationship between gut microbiota and metabolic
disorders in humans. To date, animal FMT studies have
demonstrated that the gut microbiota may modulate host
metabolic diseases such as obesity and insulin resistance
(150). In addition to FMT, transplantation of single probiotic
species such as Lactobacillus rhamnosus GG has been shown to
improve associated CVDs at the animal level (151). It cannot be
denied that these therapies are very promising, but there is a
lack of evidence for their effectiveness and safety in the
population. A TMA-lyase inhibitor called 3,3-dimethyl-1-
butanol, which in microbial cell cultures and in vivo mouse
mode l s r educes TMA/TMAO produc t ion wi thout
compromising microbial cell survival is another promising
therapeutic approach lacking clinical evidence (152). In
addition, interactions between the gut microbiota and
existing drugs for CVDs such as aspirin, clopidogrel, statins,
and angiotensin inhibitors are also worth investigating.
Therefore, future research is necessary to incorporate the
wealth of information on gut microbiota into clinical decision
pathways and personalized treatment.
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2. Berrington de Gonzalez A, Hartge P, Cerhan JR, Flint AJ, Hannan L,
MacInnis RJ, et al. Body-Mass Index and Mortality Among 1.46 Million
White Adults. N Engl J Med (2010) 363:2211–9. doi: 10.1056/
NEJMoa1000367

3. Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, et al.
Prevalence of Obesity, Diabetes, and Obesity-Related Health Risk Factors,
2001. JAMA (2003) 289:76. doi: 10.1001/jama.289.1.76

4. The GBD 2015 Obesity Collaborators. Health Effects of Overweight and
Obesity in 195 Countries Over 25 Years. N Engl J Med (2017) 377:13–27.
doi: 10.1056/NEJMoa1614362

5. Wildman RP. The Obese Without Cardiometabolic Risk Factor Clustering
and the Normal Weight With Cardiometabolic Risk Factor Clustering:
Prevalence and Correlates of 2 Phenotypes Among the US Population
(NHANES 1999-2004). Arch Intern Med (2008) 168:1617. doi: 10.1001/
archinte.168.15.1617

6. Bays HE. Adiposopathy is “Sick Fat” a Cardiovascular Disease? J Am Coll
Cardiol (2011) 57:2461–73. doi: 10.1016/j.jacc.2011.02.038

7. Neeland IJ, Poirier P, Després J-P. Cardiovascular and Metabolic
Heterogeneity of Obesity: Clinical Challenges and Implications for
Management. Circulation (2018) 137:1391–406. doi: 10.1161/
CIRCULATIONAHA.117.029617

8. Wu J, Wang K, Wang X, Pang Y, Jiang C. The Role of the Gut Microbiome
and its Metabolites in Metabolic Diseases. Protein Cell (2021) 12:360–73.
doi: 10.1007/s13238-020-00814-7

9. Han P, Gu J-Q, Li L-S, Wang X-Y, Wang H-T, Wang Y, et al. The
Association Between Intestinal Bacteria and Allergic Diseases—Cause or
Consequence? Front Cell Infect Microbiol (2021) 11:650893. doi: 10.3389/
fcimb.2021.650893

10. Xu H, Wang X, Feng W, Liu Q, Zhou S, Liu Q, et al. The Gut Microbiota and
its Interactions With Cardiovascular Disease. Microb Biotechnol (2020)
13:637–56. doi: 10.1111/1751-7915.13524

11. Zhou W, Cheng Y, Zhu P, Nasser MI, Zhang X, Zhao M. Implication of Gut
Microbiota in Cardiovascular Diseases. Oxid Med Cell Longev (2020)
2020:5394096. doi: 10.1155/2020/5394096

12. Frank AP, de Souza Santos R, Palmer BF, Clegg DJ. Determinants of Body
Fat Distribution in Humans may Provide Insight About Obesity-Related
Health Risks. J Lipid Res (2019) 60:1710–9. doi: 10.1194/jlr.R086975

13. Karastergiou K, Smith SR, Greenberg AS, Fried SK. Sex Differences in
Human Adipose Tissues – the Biology of Pear Shape. Biol sex Dif (2012)
3:13. doi: 10.1186/2042-6410-3-13

14. Ibrahim MM. Subcutaneous and Visceral Adipose Tissue: Structural and
Functional Differences. Obes Rev (2010) 11:11–8. doi: 10.1111/j.1467-
789X.2009.00623.x
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Background and Aim: Coronary artery disease (CAD) poses a worldwide health threat.
Compelling evidence shows that pericardial adipose tissue (PAT), a brown-like adipose
adjacent to the external surface of the pericardium, is associated with CAD. However, the
specific molecular mechanisms of PAT in CAD are elusive. This study aims to characterize
human PAT and explore its association with CAD.

Methods: We acquired samples of PAT from 31 elective cardiac surgery patients (17
CAD patients and 14 controls). The transcriptome characteristics were assessed in 5 CAD
patients and 4 controls via RNA-sequencing. Cluster profile R package, String database,
Cytoscape were applied to analyze the potential pathways and PPI-network key to DEGS,
whereas the hubgenes were predicted via Metascape, Cytohubba, and MCODE. We use
Cibersort, ENCORI, and DGIDB to predict immunoinfiltration, mRNA-miRNA target gene
network, and search potential drugs targeting key DEGs. The predictable hubgenes and
infiltrating inflammatory cells were validated in 22 patients (12 CAD samples and 10
control samples) through RT-qPCR and immunohistochemistry.

Results: A total of 147 different genes (104 up-regulated genes and 43 down-regulated
genes) were identified in CAD patients. These different genes were associated with
immunity and inflammatory dysfunction. Cibersort analysis showed monocytes and
macrophages were the most common subsets in immune cells, whereas
immunohistochemical results revealed there were more macrophages and higher
proportion of M1 subtype cells in PAT of CAD patients. The PPI network and module
analysis uncovered several crucial genes, defined as candidate genes, including Jun,
ATF3, CXCR4, FOSB, CCl4, which were validated through RT-qPCR. The miRNA-mRNA
network implicated hsa-miR-185-5p as diagnostic targets and drug-gene network
showed colchicine, fenofibrate as potential therapeutic drugs, respectively.
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Conclusion: This study demonstrates that PAT is mainly associated with the occurrence
of CAD following the dysfunction of immune and inflammatory processes. The identified
hubgenes, predicted drugs and miRNAs are promising biomarkers and therapeutic
targets for CAD.
Keywords: CAD (Coronary artery disease), PAT (pericardial adipose tissue), inflammation, macrophage
cell, bioinformation
INTRODUCTION

Coronary artery disease (CAD) is a global health threat,
particularly due to its high level of morbidity, which poses an
enormous socioeconomic and medical burden (1). Obesity, a
type of metabolic syndrome characterized by abnormal
deposition of body fat with chronic inflammation of adipose
tissue, is associated with multiple cardiovascular diseases,
including CAD (2). According to the Framingham Heart
Study, the risk factors for CAD are more associated with
omental adipose tissue than subcutaneous adipose tissue (SAT)
(3). These observations may be plausible owing to the differences
in adipose tissue endocrine and metabolism. White adipose
tissue (WAT) and brown adipose tissue (BAT) are the two
major types of adipose tissues. Briefly, WAT comprises
adipocytes with a large, single fat droplet and is presumed as
the main depot for lipid storage, whereas BAT comprises several
smaller fat droplets and numerous mitochondria and plays a role
in heat production (4). In humans, BAT was thought to rapidly
involute and essentially disappear within the first years after
birth, only a small amount is found in the scapula, paraspinal,
and around the heart and aorta in adulthood (5).

Pericardial adipose tissue (PAT), which refers to the fat
surrounding the external surface of the pericardium, is
supplied by the internal mammary artery (6). PAT covers the
pericardium which is closely adjacent to the epicardial adipose
tissue (EAT), coronary artery, and the heart. Scholars have
suggested that PAT may play a vital role in cardiovascular
disease (7–9). Previous reports in humans indicate that PAT
may appear brown-like adipocyte in morphology, with distinct
features different from WAT and BAT (10–12). Elsewhere, PAT,
as a metabolically active endocrine local adipocyte depot, was
found to be associated with coronary artery disease (CAD)
through the production of free fatty acids and pro-and anti-
inflammatory adipocytokines (13). Elevated PAT volume is
known to be associated with coronary atherosclerosis,
hypoadiponectinemia, inflammation and represents the highest
risk factor for atherosclerosis (14). Other reports have further
demonstrated the association of PAT with cardiovascular events
and left ventricular remodeling (15, 16). However, whether the
transcriptome of PAT changes during CAD, the molecular
mechanism by which PAT mediates CAD progress, and the
possibility to improve the function of PAT in CAD treatment
remains elusive.

In the present study, we employed the RNA-sequencing
(RNA-Seq) approach to explore the transcriptome characteristic
shift in PAT from humans undergoing cardiac surgery with or
n.org 280
without CAD. This was followed by the analysis of the functional
enrichment, protein-protein interaction (PPI) network, hubgenes,
and microRNA (miRNA)-mRNA regulatory network. We further
predicted the potential drugs that target the key differentially
expressed genes (DEGs). This study will deepen our
understanding of PAT in the pathogenesis of CAD.
STUDY PATIENTS

Subject Recruitment
This study complied with the Declaration of Helsinki and was
approved by the ethics committee of Huadong Hospital Affiliated
to Fudan University, Shanghai, China (2020K082). All patients
signed written informed consent, and underwent preoperative
coronary angiography. Control patients were referred for elective
valve surgery and exhibited no significant CAD (a single
lesion >50%) on preoperative coronary angiograms. Besides,
CAD patients were referred for coronary artery bypass
(CABG) surgery because of significant stenosis and surgical
indications. Eventually, 31 patients, including 17 CAD patients
undergoing coronary artery bypass grafting (CABG) and 14
control patients undergoing valve replacement or valve repair
were enrolled for analysis.

Sample Collection and Preparation
We took a sample of PAT (1.0 g) adjacent to the pericardial
surface during surgery (Figure 1A). The adipose sections
collected from 5 CAD and 4 control patients were kept in 10%
formalin for histological analysis. The other adipose tissues were
immediately snap-frozen and stored at liquid nitrogen (–196°C).
Five CAD and 4 control adipose tissue samples underwent RNA
sequencing, while the rest were used in RT-PCR analyses.

Histology and Immunohistochemistry
Formalin-fixed adipose tissues were embedded in paraffin and
sectioned (8mm thick) and stained with hematoxylin and eosin
(H&E). H&E-stained sections revealed the adipocyte size. To
quantify M1 or M2 macrophages, cryosections were stained with
rabbit anti-human CD11b (1:1000 dilution) (Abcam, UK) and
rabbit anti-human CD68 (1:1000 dilution) (Abcam, UK)
antibodies after which a goat anti-rabbit secondary antibody was
conjugated to horseradish peroxidase. Immunohistochemical
images were captured using a Zeiss LSM 5 Pascal microscope
(M205FA, Zeiss, Oberkochen, Germany). Image-Pro Plus
software (version6.0, MEDIA CYBERNETICS, USA) was
employed to analyze the images.
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mRNA Isolation and Real-Time PCR
Total RNA was isolated from adipose tissue biopsies using an
RNA rapid extraction kit (TR205-200, Tianmo biotech, Beijing,
China) following the manufacturer’s protocol. RT-PCR was
performed using a cDNA reverse transcription kit (RR047A,
TAKARA, Japan), Premix Ex Taq (RR420A, TAKARA, Japan) in
7500 Real-Time PCR system (Applied Biosystems, San
Francisco, CA, USA). Standard and melting curves were
generated in every plate for each gene to ensure that the
reaction is efficient and specific. The cycle threshold value of
b-actin acted as the internal control. The relative expression
levels of different genes were analyzed via the 2−DDCT method.
Frontiers in Endocrinology | www.frontiersin.org 381
Primer sequences were obtained from PrimerBank (http://pga.
mgh.harvard.edu/ primerbank) as follows (Table 1): JUN
forward TCCAAGTGCCGAAAAAGGAAG, JUN reverse
CGAGTTCTGAGCTTTCAAGGT ; ATF3 f o rw a r d
CGAGTTCTGAGCTTTCAAGGT , ATF 3 r e v e r s e
TTCTTTCTCGTCGCCTCTTTTT; CXCR4 forward
ACTACACCGAGGAAATGGGCT, CXCR4 reve r s e
CCCACAATGCCAGTTAAGAAGA; FOSB forward
GCTGCAAGATCCCCTACGAAG , FOSB r e v e r s e
ACGAAGAAGTGTACGAAGGGTT; CCL4 forward
CTGTGCTGATCCCAGTGAATC , CCL4 r e v e r s e
TCAGTTCAGTTCCAGGTCATACA; CXCL2 forward
A

B C

D E

FIGURE 1 | (A) Localization of pericardial fat; (B) Heatmap results of DEGs; (C) Volcano plot results of DEGs; (D, E) The significantly enriched KEGG and GO terms
that correspond to coding gene functions of upregulated and downregulated DEGs.
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CTCAAGAATGGGCAGAAAGC , CXCL2 r e v e r s e
CTCCTAAGTGATGCTCAAAC (17).

RNA Sequencing
Paired-end libraries were synthesized using the TruSeq™ RNA
Sample Preparation Kit (Illumina, USA) following the TruSeq™

RNA sample preparation guide. Briefly, the poly-A containing
mRNA molecules were purified using poly-T oligo-attached
magnetic beads. Thereafter, the mRNA was fragmented into small
pieces using divalent cations under 94°C for 8 min. The cleaved
RNA fragments were copied into first-strand cDNA using reverse
transcriptase and random primers. Subsequently, the second strand
cDNA was synthesized using DNA Polymerase I and RNase H.
These cDNA fragments then underwent an end repair process, the
addition of a single ‘A’ base, and ligation of the adapters. The
products were purified and enriched with PCR to generate the final
cDNA library. Clean libraries were quantified using a Qubit® 2.0
Fluorometer (Life Technologies, USA), and validated by Agilent
2100 bioanalyzer (Agilent Technologies, USA) to confirm the insert
size and evaluate the mole concentration. Cluster was generated
using cBot with the library diluted to 10 pM and then was
sequenced on the Illumina NovaSeq 6000 (Illumina, USA).
Library construction and sequencing were performed by Sinotech
Genomics Co., Ltd (Shanghai, China).

Data Processing of DEGs
Gene abundance was expressed as fragments per kilobase of exon
per million reads mapped (FPKM). We employed the Stringtie
software to count the fragments within each gene. TMM
algorithm was applied for normalization. The DEGs between
CAD and control patients were detected in the Illumina data
collection software, whereby the P-value and |log2FC| were
calculated. Genes that met the cutoff criteria, P value<0.05 and
|log2FC|>1.0, considered as significantly modulated, were
retained for subsequent analysis.

Enrichment Analysis
The Gene Ontology (GO) analysis and a Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways analysis were performed
in the R package cluster Profiler (version 3.18.0) (18). GO
enrichment analysis included biological processes (BP), cellular
components (CC), and molecular functions (MF).

PPI Network Construction, Significant
Module, and Hub Genes Analysis
The PPI network was first analyzed using Cytoscape (version
3.7.2, www.cytoscape.org) software after which the key genes in
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the PPI networks were identified using cytohubba (version 1.4.2),
a plug-in of the Cytoscape software (19, 20). The Molecular
Complex Detection tool (MCODE) (version 1.5.1) and
Metascape (http://metascape.org/gp/) were employed to screen
the significant module (21, 22).

Identification and Analysis of
Significant Genes
A Venn diagram was delineated to identify significant common
genes across “Metascape_MCODE”, “Cytoscape_MCODE”, and
“Cytoscape_cytoHubba” by Veeny2.1 (https://bioinfogp.cnb.
csic.es/tools/venny/). Summarized functions of significant
genes were obtained via GeneCards (https://www.genecards.
org/) (23).

Analyses of miRNA-mRNA Targets
We applied the miRNA-target tool ENCORI to predict the
miRNA of DEGs (24). There were nine databases about
miRNA-mRNA prediction. miRNAs predicted in at least two
databases were selected as the potential target miRNAs of
hubgenes. Then, the Cytoscape software was employed to
assess the regulatory networks of the miRNA-mRNA pairs.

Immune Cell Infiltration
The immune cell components in adipose tissue were analyzed via
CIBERSORT (25).

Prediction of Drugs Targeting DEGs
The Drug–Gene Interaction Database (DGIdb, www.dgidb.org)
is a web resource that organizes and presents gene druggability
information and drug-gene interactions from databases, articles,
and web resources (26). Herein, we used DGIdb (version 3.0.2) to
predict the potential drugs that target key DEGs confirmed via
network module analysis. The following parameters were used:
Preset filter, Food, and Drug Administration approved; advanced
filters, source databases: all; gene categories, all; and
interaction types, all. The interaction network was constructed
using Cytoscape.

Statistics
Comparison of the clinical characteristics was achieved using the 2-
tailed Student’s t-test for continuous variables or the c2 test for
dichotomous variables. A p-value is less than 0.05 denoted
significance. Adipocyte size and positive cell numbers were
compared via a 2-tailed Student’s t-test. For the qRT-PCR
experiment, expression values relative to b-actin were compared
using 2-way ANOVA and Tukey’s multiple comparisons test.
TABLE 1 | The primer sequences about hub genes.

Gene symbal Forward Primer Reverse Primer

JUN TCCAAGTGCCGAAAAAGGAAG CGAGTTCTGAGCTTTCAAGGT
ATF3 CGAGTTCTGAGCTTTCAAGGT TTCTTTCTCGTCGCCTCTTTTT
CXCR4 ACTACACCGAGGAAATGGGCT CCCACAATGCCAGTTAAGAAGA
FOSB GCTGCAAGATCCCCTACGAAG ACGAAGAAGTGTACGAAGGGTT
CCL4 CTGTGCTGATCCCAGTGAATC TCAGTTCAGTTCCAGGTCATACA
CXCL2 CTCAAGAATGGGCAGAAAGC CTCCTAAGTGATGCTCAAAC
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RESULTS

Clinical Characteristics of Subjects
Table 2 outlines the clinical characteristics of 31 subjects. The
mean age of the CAD group and control group were 66.06 ± 7.94
years and 60.93 ± 12.03 years, respectively (P = 0.165). Except for
a trend towards more female patients in the control group (17.6%
vs 42.9%, P = 0.124) and diabetes history in the CAD group (7/17
vs 2/14, P=0.101), we reported no difference in age, gender, BMI,
comorbid conditions, and clinical biochemical characteristics. As
such, our study groups were well matched. The clinical features
of 9 cases who underwent RNA sequencing are outlined in
Supplemental Table 1. Discriminant multivariate analysis
demonstrated that the two groups were well matched.

Depot-Specific Transcriptomic Profiles of
PAT in CAD and Control Groups
RNA-seq was performed in 9 patients (CAD=5, Control=4), we
first sought to identify depot-specific gene signatures in a pairwise
manner. Using threshold criteria of fold change (FC) greater than
or equal to 2 or less than or equal to –2 and p-value less than or
equal to 0.05, 147 differentially expressed genes (DEGs) (104
upregulated and 43 downregulated) were identified in the CAD
group relative to the control group (i.e., CAD vs. control groups)
(Figures 1B, C). In addition, the top significantly changing genes
were IL6, FOSB, CSF3, IGLC7, and PPP1R14C; these genes were
associated with inflammation, nuclear transcription, cell
differentiation, immunity, and neuronal activity.

Function and Pathway
Enrichment Analyses
To explore the relative functions and pathways of DEGs in CAD
vs. control groups, we performed Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis on those
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DEGs. The DEGs were significantly enriched in regulation of acute
inflammatory response, regulation of complement activation, and
complement activation classical pathway associated biological
process (BP) terms, circulating immunoglobulin complex,
immunoglobulin complex, and external side of plasma
membrane associated component cell (CC) terms, antigen
binding, RNA polymerase II-specific immunoglobulin receptor
binding, and DNA-binding transcription activator activity
associated molecule function (MF) terms (Figure 1E). KEGG
pathway analysis demonstrated the enrichment of DEGs in
cytokine-cytokine receptor interaction, IL-17 signaling pathway,
and COVID-19 (Figure 1D).

PPI Network Construction and Module
Analysis of DEGs
We systematically analyzed the biological functions of the
obtained DEGs between the two groups using a PPI network
of DEGs constructed via the STRING database and visualized
using Cytoscape. The PPI network comprised 77 nodes
(proteins) and 271 edges (interactions; Figure 2A). The 77
nodes included 71 up-regulated genes and 6 down-regulated
genes. According to the topology score, Interleukin-6 (IL-6), Jun
proto-oncogene (JUN), and prostaglandin-endoperoxide
synthase 2 (PTGS2) activating transcription factor 3 (ATF3),
chemokine (C-X-C motif) receptor 4 (CXCR4) were the top five
genes (Figure 2B). Additionally, five MCODE modules were
identified from the PPI network via cytoscape_CMODE;
however, one submodule with a score >5 was extracted from
the PPI network, which comprised 8 nodes and 26 edges
(Figure 2C). In this module, IL-6, chemokine (C-X-C motif)
ligand 2 (CXCL2), selectin E (SELE), C-C motif chemokine
ligand 4 (CCL4), PTGS2 were the top five genes (Figure 2C).
Three MCODE modules were extracted through Metascape
analysis (Figure 2D).
TABLE 2 | Clinical characteristics of the subjects.

Parameters CAD (n=17) NCAD (n=14) p value

Sex (male/female) 14/3 8/6 0.124
Age (years), mean±SD 66.06 ± 7.94 60.93 ±12.03 0.165
BMI (kg/m2), mean±SD 24.7 ± 3.48 25.69 ± 4.26 0.489
Hypertension (Yes/No) 10/7 7/7 0.623
Diabetes (Yes/No) 7/10 2/12 0.101
Stroke (Yes/No) 4/13 1/13 0.217
Smoking (Yes/No) 4/13 1/13 0.217
Total-cholesterol (mM), mean±SD 4.15 ± 1.19 4.55 ± 1.12 0.350
Triglycerides (mM), mean±SD 1.90 ± 1.36 1.50 ± 0.58 0.293
HDL-cholesterol (mM), mean±SD 1.10 ± 0.18 1.31 ± 0.42 0.200
LDL-cholesterol (mM), mean±SD 2.62 ± 1.24 2.45 ± 0.76 0.725
ESR (mm/h), mean±SD 13.44 ± 12.39 14.31 ± 6.77 0.835
CRP (mg/L), mean±SD 10.33 ± 14.55 6.49 ± 5.64 0.368
WBC (10^9/L), mean±SD 6.71 ± 1.39 6.41 ± 2.31 0.662
N (%), mean±SD 66.06 ± 10.09 66.53 ± 13.42 0.913
Hb (g/L), mean±SD 135.88 ± 14.73 132.57 ± 21.58 0.617
ALT (mM), mean±SD 29.61 ± 22.70 29.10 ± 15.10 0.944
AST (mM), mean±SD 25.91 ± 12.02 24.91 ±9.77 0.805
BUN (mM), mean±SD 6.36 ± 1.64 5.84 ± 2.13 0.446
CR (mM), mean±SD 79.04 ± 15.47 81.99 ± 30.72 0.748
eGFR, mean±SD 88.69 ± 14.90 84.67 ± 23.50 0.579
UA (mM), mean±SD 364.46 ± 93.92 386.91 ± 137.50 0.594
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FIGURE 2 | (A) The protein-protein interaction network constructed based on the DEGs. The green heart represents the downregulated genes, the red
parallelogram represents the upregulated genes. (B–D) The hubgenes predicted by cytohubba, Mcode, and metascape Mcode, respectively. (E) Overlap of
hubgenes identified via the three methods; (F) The Pathway analysis results showing the six enriched hubgenes.
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Identification and Analysis of
Significant Genes
To reveal the most important hub gene, we filtered these genes
using the VENN diagram. The VENN diagram revealed six
significant common genes, including JUN, ATF3, CXCR4,
FOSB, CCL4, and CXCL2 (Figure 2E). The functions of the
six significant genes are summarized in Table 3. We shifted our
focus to explore the potential function of these six key genes.
Pathway analysis demonstrated that the six genes were mainly
enriched in the chemokine-mediated signaling pathway,
inflammatory response, transcription from RNA polymerase II
promoter, G-protein coupled receptor signaling pathway, and
positive regulation of transcription from RNA polymerase II
promoter (Figure 2F). RT-qPCR analysis revealed that the
relative expression levels of JUN (Figure 3A), FOSB
(Figure 3B), ATF3 (Figure 3C), CCL4 (Figure 3D), and
CXCR4 (Figure 3E) were significantly higher in the CAD
group adipose tissue than in control group.

miRNA-mRNA Interaction Network
We explored the effect of PAT on CAD progression and its
potential gene regulation mechanism. miRNA-target gene
interaction pairs of reverse association were predicted via
ENCORI according to the hub genes identified previously.
Considering the identified miRNA-mRNA pairs, we compared
the interaction network containing 70 miRNA-mRNA pairs and
visualized them via the Cytoscape software. Through
comparison of the targets of hub genes, we found CXCR4 to
be a potential target of 23 miRNAs, including hsa-miR-185-5p.
Also, FUN and FOSB were the potential targets of 15 miRNAs.
The miRNA-gene regulation network is illustrated in Table 4
and Figure 4, respectively.

Macrophages Are the Major Immune
Infiltrating Cell Subset
GO and KEGG enrichment analysis has shown inflammatory
response is the major procession in PAT of CAD patients.
However, the component of immune cells in the pericardial
adipose deposit is unknown. We employed CIBERSORT, a
bioinformatics tool used to infer immune cell composition
from RNA-seq datasets, to compute the relative frequency of
22 infiltrating immune cell subsets in the 9 cases. Results revealed
that monocytes and macrophages were the most common
immune cell subsets with mean fractions of 0.098 and 0.325,
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respectively (Figure 5). Further, we verified the inflammatory
phenotype of human PAT from both CAD and control patients
through immunohistochemistry analysis of markers of T cell
(CD3), macrophage (CD68), and its M1 subtype (CD11b). We
found that PAT from CAD patients had significantly more T
cells (CD3+) and macrophages (CD68+) than that of control
patients (Figure 6). Semi-quantification analysis revealed that
the IOD/Area of macrophages and T-cells in PAT of CAD
patients was significantly different (Table 5). These findings
further proved that PAT exerts a potential inflammatory effect
in the regulation of CAD.

Drug Predictable Results
The search for potential drugs that can improve the function of
PAT to intervene in the disease process of CAD propelled us to
analyze the six key genes for potential drugs via DGIdb. Finally,
five genes were considered as druggable genes, including JUN,
CXCL2, and CXCR4; also we obtained 77 possible drugs. An
interaction network including 82 nodes and 77 edges was
constructed based on the five druggable genes (Figure 7).
DISCUSSION

In this study, we have sequenced the transcriptome of PAT from
five patients with CAD and four patients without CAD and
analyzed the DEGs between two groups. A total of 147 DEGs
(104 up-regulated genes and 43 down-regulated genes) were
identified. We subjected the DEGs to GO functional and KEGG
pathway enrichment analyses via Clusterprofile package, and
obtained 40 significant GO terms and 55 significant KEGG
pathways. GO term also demonstrated the interaction of these
genes with immune and inflammatory cells, and we, therefore,
employed the Cibersort online tool (https://cibersort.stanford.
edu/) to analyze 22 types of immune cells infiltration. Based on
the results, monocytes and macrophages were the most common
immune cell subsets. Further immunohistochemical staining
demonstrated that more macrophages were present in PAT
from CAD patients, and the proportion of M1 subtype cells
was higher. These findings imply that PAT inflammation
potentially plays a crucial role in CAD progression.

Moreover, GO and KEGG pathway analysis results revealed
the significant enrichment of DEGs in cytokine-cytokine
receptor interaction, IL-17 signaling pathway, and COVID-19,
TABLE 3 | The enrichment results of GO and KEGG of hubgenes.

Category Term P value

GO chemokine activity 0.000104
chemokine receptor binding 0.000213
cytokine activity 0.002367
cytokine receptor binding 0.003134
G protein-coupled receptor binding 0.003652

KEGG IL-17 signaling pathway 1.49E-05
Viral protein interaction with cytokine and cytokine receptor 1.79E-05
Chemokine signaling pathway 0.000126
Cocaine addiction 0.000354
Cytokine-cytokine receptor interaction 0.000452
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FIGURE 3 | (A–E) RT-PCR verification of the expression levels of 5 genes (JUN, FOSB, ATF3, CCL4, CXCR4). The 2−DDCT method was used to analyze the
relative expression levels of various genes. * means 0.05 < p<0.1; ** means p < 0.05; *** means p < 0.01; **** means p < 0.001.
TABLE 4 | The predicted miRNA about 6 hubgenes.

Gene symbol Count miRNA

JUN 15 hsa-miR-92b-3p hsa-miR-524-5p hsa-miR-200c-3p
hsa-miR-758-3p hsa-miR-522-3p hsa-miR-200b-3p
hsa-miR-5688 hsa-miR-495-3p hsa-miR-200a-3p
hsa-miR-542-3p hsa-miR-429 hsa-miR-141-3p
hsa-miR-216b-5p hsa-miR-340-5p hsa-miR-139-5p

ATF3 9 hsa-miR-1224-5p hsa-miR-135b-5p hsa-miR-224-5p
hsa-miR-135a-5p hsa-miR-155-5p hsa-miR-27a-3p
hsa-miR-27b-3p hsa-miR-513a-5p hsa-miR-7-5p

CXCR4 24 hsa-miR-9-5p hsa-miR-494-3p hsa-miR-302d-3p
hsa-miR-655-3p hsa-miR-4306 hsa-miR-302c-3p
hsa-miR-613 hsa-miR-410-3p hsa-miR-302b-3p
hsa-miR-588 hsa-miR-374c-5p hsa-miR-302a-3p
hsa-miR-520e hsa-miR-338-3p hsa-miR-300
hsa-miR-204-5p hsa-miR-302e hsa-miR-211-5p
hsa-miR-185-5p hsa-miR-1-3p hsa-miR-206
hsa-miR-139-5p hsa-miR-27a-4p

FOSB 15 hsa-miR-613 hsa-miR-27a-3p hsa-miR-200a-3p
hsa-miR-342-3p hsa-miR-23b-3p hsa-miR-185-5p
hsa-miR-27b-3p hsa-miR-23a-3p hsa-miR-182-5p
hsa-miR-141-3p hsa-miR-130a-5p hsa-miR-144-3p
hsa-miR-1-3p hsa-miR-128-3p hsa-miR-212-5p

CCL4 8 hsa-miR-620 hsa-miR-4784 hsa-miR-3150b-3p
hsa-miR-496 hsa-miR-324-5p hsa-miR-185-5p
hsa-miR-143-3p hsa-miR-1270

CXCL2 12 hsa-miR-641 hsa-miR-532-5p hsa-miR-217
hsa-miR-582-5p hsa-miR-495-3p hsa-miR-215-5p
hsa-miR-5688 hsa-miR-376c-3p hsa-miR-193b-3p
hsa-miR-193a-3p hsa-miR-192-5p hsa-miR-128-3p
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all of which are inflammatory processes. Compelling evidence
implicates the IL-17 signaling pathway in the pathogenesis of
many inflammatory-driven conditions, including atherosclerosis
(27–30). A study found that IL-17 maintained plaque stability
through induction of proliferation of SMCs and collagen content
in atherosclerotic plaques (29). Also, IL-17 had been revealed to
potentially lower the expression of vascular cell adhesion
molecule (VCAM)-1 in endothelial cells and prevent monocyte
adherence and block T cell infiltration into plaques (31). Other
reports show that IL-17 can induce the release of chemokines,
including CXCL1, CXCL2, CXCL8, CXCL10. Subsequently,
these chemokines can recruit neutrophils and monocytes to the
atherosclerotic lesion (32, 33). Furthermore, IL-17 can stimulate
macrophages to produce inflammatory cytokines, such as IL-6,
TNF-a, and IL-1b (34–36), and induce apoptosis of vascular
endothelial cells through activation of caspase-3 and caspase-9.
These observations affirm that the IL-17 signaling pathway
mediates atherosclerosis (37). We also found that other
signaling pathways such as NF-kappa B signaling pathway,
TNF signaling pathway, JAK-STAT signaling pathway, and
Toll-like receptor signaling pathway were enriched in PAT of
CAD patients. Of note, some proteins in these pathways can
interplay with each other, thereby increasing the severity of
inflammation and apoptosis (38). These results imply that the
management of inflammation in CAD may require nonspecific
inflammatory inhibitors.
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The PPI network-integrated three modules in the analysis of
six significant and reproducible genes (JUN, ATF3, CXCR4,
FOSB, CCL4, CXCL2), and revealed differential expression
between the CAD and control groups. Three core genes
(CXCR4, CXCL2, and CCL4) were markedly enriched in the
chemokine signaling pathway, whereas the others (Jun, FosB,
and ATF3) were transcription factors. Chemokines are cytokines
that mediate cell chemotaxis and stagnation as they bind to their
respective cell surface receptors (39). Chemokines induce the
aggregation of inflammatory cells to the inflammatory site,
which is the main factor that trigger vascular inflammatory
injury (39, 40). Previous reports indicate that CCL4 is highly
expressed in atherosclerotic patients (41), and it potentially
exerts a crucial role in the progression of atherosclerotic
plaque (42–44). In addition, inhibition of CCL4 can stabilize
atherosclerotic plaques by decreasing the expression of MMPs,
inflammatory cell infiltration, circulation of inflammatory
factors, and regulation of blood lipid levels (43). The C-X-C
motif chemokine receptor 4 (CXCR4) is a cytokine receptor and
mediates various biological processes (45). The ligand of CXCR4
is C-X-C motif chemokine ligand 12 (CXCL12) (46). CXCL12
and CXCR4 coordinatively play a pivotal role in atherosclerosis
and arterial injury (47, 48). CXCR4 expression in leukocytes is
closely associated with the vulnerability of atherosclerosis plaque
(49). A recent study found that CXCR4-positive macrophages
accumulated in tissue samples of human carotid plaques and,
FIGURE 4 | The constructed mRNA-miRNA network. The green heart represents the downregulated genes, the red diamond represents the hubgenes.
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CXCR4 was expressed in both smooth muscle cell progenitors
and endothelial progenitor cells in atherosclerotic plaque
progression (46). The study by Puca AA showed that
upregulation of CXCR4 decreases the development of
atherogenic process. This is because it can skew macrophages
to acquire an M2-resolving phenotype, maintains maintain
arterial integrity, preserves preserve endothelial cell integrity,
and restore the normal contractile SMC phenotype (50, 51). In
contrast to CXCR4, CCL4 inhibition reduced the adhesiveness of
coronary endothelial cells, which is an early sign of atherogenesis
Frontiers in Endocrinology | www.frontiersin.org 1088
(43). Herein, we found that CCL4, CXCR4 derived from PAT
was highly expressed at the mRNA level in CAD patients. More
exploration of CCL4 and CXCR4 secreted by PAT would
enhance the understanding of the pathophysiological
mechanism of atherosclerosis and facilitate its utilization as a
biomarker and intervention target for atherosclerosis.

Activator protein-1 (AP-1) is an important class of nuclear
transcription factors in the body. It is a homodimer or
heterodimer composed of JUN, FOS, ATF, and MAF protein
families which exert biological effects (52). AP-1 is largely
FIGURE 5 | Distinction of infiltrating immune cell subpopulations and levels between CHD/NCHD groups.
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associated with cell proliferation, differentiation, apoptosis, and
inflammation (53–55). Previously, the AP-1 cascade was found
to potentially drive additional leukocyte recruitment to the
developing atherosclerotic matrix (56). AP-1 could also
promote the development of atherosclerosis by inducing
endothelial cell death, the proliferation and migration of
vascular smooth muscle cells (57, 58). In this study, we
observed a significant increase in mRNA expression of AP-1
factors JUN, FOSB, and ATF3 from PAT in CAD patients. These
results imply that PAT-derived AP-1 has potential effects on the
Frontiers in Endocrinology | www.frontiersin.org 1189
progression of the coronary artery through cell proliferation,
inflammation, and extracellular matrix remodeling.

Based on bioinformatics, we constructed the miRNA-mRNA
network of core genes through the ENCORI database to further
elucidate the regulatory mechanism of core genes. Among the
predicted miRNAs, only miRNA-185-5p bound to three of the
six core genes (FOSB, CCL4, and CXCR4). Previous studies had
confirmed that miRNA-185-5p is widely involved in the
proliferation, metastasis, and inflammation of various tumors
(59–61). However, its regulatory role in inflammation and the
progression of CAD remains elusive.

Through the prediction of the Drug-Gene Interaction database,
we revealed some drugs that potentially interact with the core genes.
Some drugs were used in the clinic but not to manage CAD. For
instance, colchicine, an anti-inflammatory alkaloid, has beenmainly
used in gout diseases (62); it exerts inhibitory effects on leukocyte
chemotaxis and adhesion, microtubule assembly, and reduces the
FIGURE 6 | IHC staining of CD68, CD11b, and CD3. CD68, CD11b, and CD3 protein are stained in brown.
TABLE 5 | The semi-quantification analysis of infiltrating immune cell.

Cell type CHD Contral

T cells (IOD/Area) 0.093 0.075
Macrophages (IOD/Area) 0.337 0.177
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production of inflammatory mediators (63, 64). Because of its anti-
inflammatory properties, the feasibility of the value of colchicine in
CAD had been investigated in several clinical trials. Most clinical
trials suggest that colchicine is beneficial in patients with CAD or
myocardial infarction (65–67). However, some studies revealed that
colchicine could reduce major cardiovascular events (68), however,
the overall mortality did not decrease. As such, colchicine may
increase the mortality of non-cardiovascular events and limit its
application in CAD (69), which warrants more large-scale clinical
trials. Fenofibrate is a broad-spectrum lipid-lowering drug, which
acts on PPAR to potentially reduce cholesterol and triglyceride
(70, 71). Elsewhere, a study found that fibrates have potential
anti-inflammatory effects, protect endothelial cell function, and
improve insulin resistance (72). However, these drugs are not
recommended for the secondary prevention of CAD. In clinical
trials such as HHS, VA-HIT, and BIP, fibrates have proved to
exhibit significant benefits in subgroups of patients, including those
with insulin resistance or metabolic syndrome (73–75). Recent
studies have further outlined that fibrates can reduce the risk
of cardiovascular events and the level of uric acid in diabetic
patients with dyslipidemia (76, 77). Collectively, fibrates may have
great clinical prospects in some specific groups of patients
with CAD.

In summary, this work has allowed for the identification of
the transcriptome characteristic shift in PAT from humans with
or without CAD and revealed the upregulation in inflammatory
processes of PAT in CAD patients. The crucial genes, pathways,
and drug target genes closely associated with CAD have been
revealed through bioinformatics analyses. Particularly, the
critical genes are potential biomarkers and therapeutic targets
in CAD. Also, colchicine and fenofibrate are the most promising
drugs for coronary artery disease.
Frontiers in Endocrinology | www.frontiersin.org 1290
LIMITATIONS OF THE STUDY

The primary limitation of the research is that we did not analyze
samples from healthy subjects; this could have been more interesting
for the PAT physiology study. Besides, the analyzed samples from
older patients with some comorbidity who came in for various
cardiac surgeries rather than no comorbidity. We also acknowledge
that we had a rather small RNA-Seq sample size, which could not
allow us to analyze samples grouped by obesity, age, and gender. This
may have contributed to the CAD-associated transcriptomic shifts.
DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in GEO (Gene
Expression Ominbus), a public functional genomics data
repository. The accession number(s) in the GEO can be found
below: GSE179397.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the ethics committee of Huadong Hospital Affiliated
to Fudan University, Shanghai, China. The patients/participants
provided their written informed consent to participate in this study.
AUTHOR CONTRIBUTIONS

ML and LQ have contributed equally to this work and share first
authorship. All authors contributed to the article and approved
the submitted version.
FIGURE 7 | The constructed mRNA-drug network. The purple oval represents the genes, and the light red heart represents the drugs.
September 2021 | Volume 12 | Article 724859

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Li et al. Association of PAT With CAD
FUNDING

This work was supported by the Science and Technology
Commission of Shanghai Municipality (20140900600),
National Natural Science Foundation of China (81770420,
91949126, 81970378), Shanghai Municipal Key Clinical
Specialty (shslczdzk02801), National Key Research and
Development Program of China (2020YFC2009001), and
Center of geratic coronary artery disease.
Frontiers in Endocrinology | www.frontiersin.org 1391
ACKNOWLEDGMENTS

We are grateful for the patients and their surgeons.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fendo.2021.
724859/full#supplementary-material
REFERENCES
1. Jemal A, Ward E, Hao Y, Thun M. Trends in the Leading Causes of Death in

the United States, 1970-2002. JAMA (2005) 294(10):1255–9. doi: 10.1001/
jama.294.10.1255

2. Van Gaal LF, Mertens IL, De Block CE. Mechanisms Linking Obesity With
Cardiovascular Disease. Nature (2006) 444(7121):875–80. doi: 10.1038/
nature05487

3. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al.
Abdominal Visceral and Subcutaneous Adipose Tissue Compartments:
Association With Metabolic Risk Factors in the Framingham Heart Study.
Circulation (2007) 116(1):39–48. doi: 10.1161/CIRCULATIONAHA.106.675355

4. Fruhbeck G, Becerril S, Sainz N, Garrastachu P, Garcia-Velloso MJ. BAT: A
New Target for Human Obesity? Trends Pharmacol Sci (2009) 30(8):387–96.
doi: 10.1016/j.tips.2009.05.003

5. Nedergaard J, Bengtsson T, Cannon B. Unexpected Evidence for Active
Brown Adipose Tissue in Adult Humans. Am J Physiol Endocrinol Metab
(2007) 293(2):E444–52. doi: 10.1152/ajpendo.00691.2006

6. Iacobellis G, Corradi D, Sharma AM. Epicardial Adipose Tissue: Anatomic,
Biomolecular and Clinical Relationships With the Heart. Nat Clin Pract
Cardiovasc Med (2005) 2(10):536–43. doi: 10.1038/ncpcardio0319

7. Ding J, Hsu FC, Harris TB, Liu Y, Kritchevsky SB, Szklo M, et al. The
Association of Pericardial Fat With Incident Coronary Heart Disease: The
Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr (2009) 90
(3):499–504. doi: 10.3945/ajcn.2008.27358

8. Kim TH, Yu SH, Choi SH, Yoon JW, Kang SM, Chun EJ, et al. Pericardial Fat
Amount is an Independent Risk Factor of Coronary Artery Stenosis Assessed
by Multidetector-Row Computed Tomography: The Korean Atherosclerosis
Study 2. Obes (Silver Spring) (2011) 19(5):1028–34. doi: 10.1038/oby.2010.246

9. Yang FS, Yun CH,Wu TH, Hsieh YC, Bezerra HG, Liu CC, et al. High Pericardial
and Peri-Aortic Adipose Tissue Burden in Pre-Diabetic and Diabetic Subjects.
BMC Cardiovasc Disord (2013) 13:98. doi: 10.1186/1471-2261-13-98

10. Cheung L, Gertow J, Werngren O, Folkersen L, Petrovic N, Nedergaard J, et al.
Human Mediastinal Adipose Tissue Displays Certain Characteristics of
Brown Fat. Nutr Diabetes (2013) 3:e66. doi: 10.1038/nutd.2013.6

11. Sacks HS, Fain JN, Bahouth SW, Ojha S, Frontini A, Budge H, et al. Adult
Epicardial Fat Exhibits Beige Features. J Clin Endocrinol Metab (2013) 98(9):
E1448–55. doi: 10.1210/jc.2013-1265

12. Sacks HS, Fain JN, Holman B, Cheema P, Chary A, Parks F, et al. Uncoupling
Protein-1 and Related Messenger Ribonucleic Acids in Human Epicardial and
Other Adipose Tissues: Epicardial Fat Functioning as Brown Fat. J Clin
Endocrinol Metab (2009) 94(9):3611–5. doi: 10.1210/jc.2009-0571

13. Yamada H, Sata M. Role of Pericardial Fat: The Good, the Bad and the Ugly.
J Cardiol (2015) 65(1):2–4. doi: 10.1016/j.jjcc.2014.07.004

14. Greif M, Becker A, von Ziegler F, Lebherz C, Lehrke M, Broedl UC, et al.
Pericardial Adipose Tissue Determined by Dual Source CT is a Risk Factor for
Coronary Atherosclerosis. Arterioscler Thromb Vasc Biol (2009) 29(5):781–6.
doi: 10.1161/ATVBAHA.108.180653

15. Shah RV, Anderson A, Ding J, Budoff M, Rider O, Petersen SE, et al.
Pericardial, But Not Hepatic, Fat by CT is Associated With CV Outcomes
and Structure: The Multi-Ethnic Study of Atherosclerosis. JACC Cardiovasc
Imaging (2017) 10(9):1016–27. doi: 10.1016/j.jcmg.2016.10.024

16. Cai S, Wald R, Deva DP, Kiaii M, Ng MY, Karur GR, et al. Cardiac MRI
Measurements of Pericardial Adipose Tissue Volumes in Patients on in-
Centre Nocturnal Hemodialysis. J Nephrol (2020) 33(2):355–63. doi: 10.1007/
s40620-019-00665-4
17. Wang X, Spandidos A, Wang H, Seed B. Primerbank: A PCR Primer Database
for Quantitative Gene Expression Analysis, 2012 Update. Nucleic Acids Res
(2012) 40(Database issue):D1144–9. doi: 10.1093/nar/gkr1013

18. Yu G, Wang LG, Han Y, He QY. Clusterprofiler: An R Package for Comparing
Biological Themes Among Gene Clusters. OMICS (2012) 16(5):284–7.
doi: 10.1089/omi.2011.0118

19. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape:
A Software Environment for Integrated Models of Biomolecular Interaction
Networks. Genome Res (2003) 13(11):2498–504. doi: 10.1101/gr.1239303

20. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. Cytohubba:
Identifying Hub Objects and Sub-Networks From Complex Interactome.
BMC Syst Biol (2014) 8 Suppl 4:S11. doi: 10.1186/1752-0509-8-S4-S11

21. Bader GD, Hogue CW. An Automated Method for Finding Molecular
Complexes in Large Protein Interaction Networks. BMC Bioinf (2003) 4:2.
doi: 10.1186/1471-2105-4-2

22. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al.
Metascape Provides a Biologist-Oriented Resource for the Analysis of
Systems-Level Datasets. Nat Commun (2019) 10(1):1523. doi: 10.1038/
s41467-019-09234-6

23. Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D. Genecards: A Novel
Functional Genomics Compendium With Automated Data Mining and
Query Reformulation Support. Bioinformatics (1998) 14(8):656–64.
doi: 10.1093/bioinformatics/14.8.656

24. Li JH, Liu S, Zhou H, Qu LH, Yang JH. Starbase V2.0: Decoding MiRNA-
CeRNA, MiRNA-NcRNA and Protein-RNA Interaction Networks From
Large-Scale CLIP-Seq Data. Nucleic Acids Res (2014) 42(Database issue):
D92–7. doi: 10.1093/nar/gkt1248

25. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
Enumeration of Cell Subsets From Tissue Expression Profiles. Nat Methods
(2015) 12(5):453–7. doi: 10.1038/nmeth.3337

26. Cotto KC, Wagner AH, Feng YY, Kiwala S, Coffman AC, Spies G, et al. Dgidb
3.0: A Redesign and Expansion of the Drug-Gene Interaction Database.
Nucleic Acids Res (2018) 46(D1):D1068–D73. doi: 10.1093/nar/gkx1143

27. Amara S, Lopez K, Banan B, Brown SK, Whalen M, Myles E, et al. Synergistic
Effect of Pro-Inflammatory Tnfalpha and IL-17 in Periostin Mediated
Collagen Deposition: Potential Role in Liver Fibrosis. Mol Immunol (2015)
64(1):26–35. doi: 10.1016/j.molimm.2014.10.021

28. de Boer OJ, van der Meer JJ, Teeling P, van der Loos CM, Idu MM, van
Maldegem F, et al. Differential Expression of Interleukin-17 Family Cytokines
in Intact and Complicated Human Atherosclerotic Plaques. J Pathol (2010)
220(4):499–508. doi: 10.1002/path.2667

29. Gistera A, Robertson AK, Andersson J, Ketelhuth DF, Ovchinnikova O, Nilsson SK,
et al. TransformingGrowth Factor-Beta Signaling in TCells Promotes Stabilization of
Atherosclerotic Plaques Through an Interleukin-17-Dependent Pathway. Sci Transl
Med (2013) 5(196):196ra00. doi: 10.1126/scitranslmed.3006133

30. Yazdani MR, Khosropanah S, Doroudchi M. Interleukin-17 Production by CD4
+CD45RO+Foxp3+ T Cells in Peripheral Blood of Patients With Atherosclerosis.
Arch Med Sci Atheroscler Dis (2019) 4:e215–e24. doi: 10.5114/amsad.2019.87525

31. Taleb S, Romain M, Ramkhelawon B, Uyttenhove C, Pasterkamp G, Herbin
O, et al. Loss of SOCS3 Expression in T Cells Reveals a Regulatory Role for
Interleukin-17 in Atherosclerosis. J Exp Med (2009) 206(10):2067–77.
doi: 10.1084/jem.20090545

32. Rao DA, Eid RE, Qin L, Yi T, Kirkiles-Smith NC, Tellides G, et al. Interleukin
(IL)-1 Promotes Allogeneic T Cell Intimal Infiltration and IL-17 Production
in a Model of Human Artery Rejection. J Exp Med (2008) 205(13):3145–58.
doi: 10.1084/jem.20081661
September 2021 | Volume 12 | Article 724859

https://www.frontiersin.org/articles/10.3389/fendo.2021.724859/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2021.724859/full#supplementary-material
https://doi.org/10.1001/jama.294.10.1255
https://doi.org/10.1001/jama.294.10.1255
https://doi.org/10.1038/nature05487
https://doi.org/10.1038/nature05487
https://doi.org/10.1161/CIRCULATIONAHA.106.675355
https://doi.org/10.1016/j.tips.2009.05.003
https://doi.org/10.1152/ajpendo.00691.2006
https://doi.org/10.1038/ncpcardio0319
https://doi.org/10.3945/ajcn.2008.27358
https://doi.org/10.1038/oby.2010.246
https://doi.org/10.1186/1471-2261-13-98
https://doi.org/10.1038/nutd.2013.6
https://doi.org/10.1210/jc.2013-1265
https://doi.org/10.1210/jc.2009-0571
https://doi.org/10.1016/j.jjcc.2014.07.004
https://doi.org/10.1161/ATVBAHA.108.180653
https://doi.org/10.1016/j.jcmg.2016.10.024
https://doi.org/10.1007/s40620-019-00665-4
https://doi.org/10.1007/s40620-019-00665-4
https://doi.org/10.1093/nar/gkr1013
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1186/1752-0509-8-S4-S11
https://doi.org/10.1186/1471-2105-4-2
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1093/bioinformatics/14.8.656
https://doi.org/10.1093/nar/gkt1248
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1093/nar/gkx1143
https://doi.org/10.1016/j.molimm.2014.10.021
https://doi.org/10.1002/path.2667
https://doi.org/10.1126/scitranslmed.3006133
https://doi.org/10.5114/amsad.2019.87525
https://doi.org/10.1084/jem.20090545
https://doi.org/10.1084/jem.20081661
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Li et al. Association of PAT With CAD
33. Weaver CT, Hatton RD. Interplay Between the TH17 and Treg Cell Lineages:
A (Co-)Evolutionary Perspective. Nat Rev Immunol (2009) 9(12):883–9.
doi: 10.1038/nri2660

34. Erbel C, Chen L, Bea F, Wangler S, Celik S, Lasitschka F, et al. Inhibition of IL-
17A Attenuates Atherosclerotic Lesion Development in Apoe-Deficient Mice.
J Immunol (2009) 183(12):8167–75. doi: 10.4049/jimmunol.0901126

35. Chen S, Crother TR, Arditi M. Emerging Role of IL-17 in Atherosclerosis.
J Innate Immun (2010) 2(4):325–33. doi: 10.1159/000314626

36. Ng HP, Burris RL, Nagarajan S. Attenuated Atherosclerotic Lesions in Apoe-
Fcgamma-Chain-Deficient Hyperlipidemic Mouse Model is Associated With
Inhibition of Th17 Cells and Promotion of Regulatory T Cells. J Immunol
(2011) 187(11):6082–93. doi: 10.4049/jimmunol.1004133

37. Zhu F, Wang Q, Guo C, Wang X, Cao X, Shi Y, et al. IL-17 Induces Apoptosis
of Vascular Endothelial Cells: A Potential Mechanism for Human Acute
Coronary Syndrome. Clin Immunol (2011) 141(2):152–60. doi: 10.1016/
j.clim.2011.07.003

38. McKellar GE, McCarey DW, Sattar N, McInnes IB. Role for TNF in
Atherosclerosis? Lessons From Autoimmune Disease. Nat Rev Cardiol
(2009) 6(6):410–7. doi: 10.1038/nrcardio.2009.57

39. Blanchet X, Langer M, Weber C, Koenen RR, von Hundelshausen P. Touch of
Chemokines. Front Immunol (2012) 3:175. doi: 10.3389/fimmu.2012.00175

40. Mikolajczyk TP, Szczepaniak P, Vidler F, Maffia P, Graham GJ, Guzik TJ. Role
of Inflammatory Chemokines in Hypertension. Pharmacol Ther (2020)
223:107799. doi: 10.1016/j.pharmthera.2020.107799

41. Cagnin S, Biscuola M, Patuzzo C, Trabetti E, Pasquali A, Laveder P, et al.
Reconstruction and Functional Analysis of Altered Molecular Pathways in
Human Atherosclerotic Arteries. BMC Genomics (2009) 10:13. doi: 10.1186/
1471-2164-10-13

42. Osonoi Y, Mita T, Azuma K, Nakajima K, Masuyama A, Goto H, et al.
Defective Autophagy in Vascular Smooth Muscle Cells Enhances Cell Death
and Atherosclerosis. Autophagy (2018) 14(11):1991–2006. doi: 10.1080/
15548627.2018.1501132

43. Chang TT, Yang HY, Chen C, Chen JW. CCL4 Inhibition in Atherosclerosis:
Effects on Plaque Stability, Endothelial Cell Adhesiveness, and Macrophages
Activation. Int J Mol Sci (2020) 21(18):6567. doi: 10.3390/ijms21186567

44. Munjal A, Khandia R. Atherosclerosis: Orchestrating Cells and Biomolecules
Involved in its Activation and Inhibition. Adv Protein Chem Struct Biol (2020)
120:85–122. doi: 10.1016/bs.apcsb.2019.11.002

45. Hattermann K, Mentlein R. An Infernal Trio: The Chemokine CXCL12 and
its Receptors CXCR4 and CXCR7 in Tumor Biology. Ann Anat (2013) 195
(2):103–10. doi: 10.1016/j.aanat.2012.10.013

46. Merckelbach S, van der Vorst EPC, Kallmayer M, Rischpler C, Burgkart R,
Doring Y, et al. Expression and Cellular Localization of CXCR4 and CXCL12
in Human Carotid Atherosclerotic Plaques. Thromb Haemost (2018) 118
(1):195–206. doi: 10.1160/TH17-04-0271

47. Sun K, Xiang X, Li N, Huang S, Qin X, Wu Y, et al. Gene-Diet Interaction
Between SIRT6 and Soybean Intake for Different Levels of Pulse Wave
Velocity. Int J Mol Sci (2015) 16(7):14338–52. doi: 10.3390/ijms160714338

48. Guo Y, Garcia-Barrio MT, Wang L, Chen YE. Experimental Biology for the
Identification of Causal Pathways in Atherosclerosis. Cardiovasc Drugs Ther
(2016) 30(1):1–11. doi: 10.1007/s10557-016-6644-7

49. Doring Y, Jansen Y, Cimen I, Aslani M, Gencer S, Peters LJF, et al. B-Cell-Specific
CXCR4 Protects Against Atherosclerosis Development and Increases Plasma Igm
Levels. Circ Res (2020) 126(6):787–8. doi: 10.1161/CIRCRESAHA.119.316142

50. Puca AA, Carrizzo A, Spinelli C, Damato A, Ambrosio M, Villa F, et al. Single
Systemic Transfer of a Human Gene Associated With Exceptional Longevity
Halts the Progression of Atherosclerosis and Inflammation in Apoe Knockout
Mice Through a CXCR4-Mediated Mechanism. Eur Heart J (2020) 41
(26):2487–97. doi: 10.1093/eurheartj/ehz459

51. Doring Y, Noels H, van der Vorst EPC, Neideck C, Egea V, Drechsler M, et al.
Vascular CXCR4 Limits Atherosclerosis by Maintaining Arterial Integrity:
Evidence From Mouse and Human Studies. Circulation (2017) 136(4):388–
403. doi: 10.1161/CIRCULATIONAHA.117.027646

52. Eferl R, Wagner EF. AP-1: A Double-Edged Sword in Tumorigenesis. Nat Rev
Cancer (2003) 3(11):859–68. doi: 10.1038/nrc1209

53. Lee JG, Heur M. Interleukin-1beta Enhances Cell Migration Through AP-1
and NF-KappaB Pathway-Dependent FGF2 Expression in Human Corneal
Endothelial Cells. Biol Cell (2013) 105(4):175–89. doi: 10.1111/boc.201200077
Frontiers in Endocrinology | www.frontiersin.org 1492
54. Jeon Y, Jung Y, Kim MC, Kwon HC, Kang KS, Kim YK, et al.
Sargahydroquinoic Acid Inhibits Tnfalpha-Induced AP-1 and NF-Kappab
Signaling in Hacat Cells Through Pparalpha Activation. Biochem Biophys Res
Commun (2014) 450(4):1553–9. doi: 10.1016/j.bbrc.2014.07.026

55. Hellweg CE, Spitta LF, Henschenmacher B, Diegeler S, Baumstark-Khan C.
Transcription Factors in the Cellular Response to Charged Particle Exposure.
Front Oncol (2016) 6:61. doi: 10.3389/fonc.2016.00061

56. Adhikari N, Charles N, Lehmann U, Hall JL. Transcription Factor and Kinase-
Mediated Signaling in Atherosclerosis and Vascular Injury. Curr Atheroscler
Rep (2006) 8(3):252–60. doi: 10.1007/s11883-006-0081-1

57. Ji R, Gu Y, Zhang J, Gao C, Gao W, Zang X, et al. TRIM7 Promotes Proliferation
and Migration of Vascular Smooth Muscle Cells in Atherosclerosis Through
Activating C-Jun/AP-1. IUBMB Life (2020) 72(2):247–58. doi: 10.1002/iub.2181

58. Valente AJ, Irimpen AM, Siebenlist U, Chandrasekar B. Oxldl Induces
Endothelial Dysfunction and Death via TRAF3IP2: Inhibition by HDL3
and AMPK Activators. Free Radic Biol Med (2014) 70:117–28. doi: 10.1016/
j.freeradbiomed.2014.02.014

59. Zhao J, Jiang Y, Zhang H, Zhou J, Chen L, Li H, et al. The SRSF1/Circatp5b/
MiR-185-5p/HOXB5 Feedback Loop Regulates the Proliferation of Glioma
Stem Cells via the IL6-Mediated JAK2/STAT3 Signaling Pathway. J Exp Clin
Cancer Res (2021) 40(1):134. doi: 10.1186/s13046-021-01931-9

60. Liu JQ, Deng M, Xue NN, Li TX, Guo YX, Gao L, et al. LncRNA KLF3-AS1
Suppresses Cell Migration and Invasion in ESCC by Impairing Mir-185-5p-
Targeted KLF3 Inhibition. Mol Ther Nucleic Acids (2020) 20:231–41.
doi: 10.1016/j.omtn.2020.01.020

61. Sun CC, Zhang L, Li G, Li SJ, Chen ZL, Fu YF, et al. The Lncrna PDIA3P
Interacts With MiR-185-5p to Modulate Oral Squamous Cell Carcinoma
Progression by Targeting Cyclin D2.Mol Ther Nucleic Acids (2017) 9:100–10.
doi: 10.1016/j.omtn.2017.08.015

62. Dudkiewicz I, Brosh T, Perelman M, Salai M. Colchicine Inhibits Fracture
Union and Reduces Bone Strength–In Vivo Study. J Orthop Res (2005) 23
(4):877–81. doi: 10.1016/j.orthres.2004.11.014

63. Deftereos S, Giannopoulos G, Papoutsidakis N, Panagopoulou V, Kossyvakis
C, Raisakis K, et al. Colchicine and the Heart: Pushing the Envelope. J Am Coll
Cardiol (2013) 62(20):1817–25. doi: 10.1016/j.jacc.2013.08.726

64. Imazio M, Andreis A, Brucato A, Adler Y, De Ferrari GM. Colchicine for
Acute and Chronic Coronary Syndromes. Heart (2020) 106(20):1555–60.
doi: 10.1136/heartjnl-2020-317108

65. Roubille F, Tardif JC. Colchicine for Secondary Cardiovascular Prevention in
Coronary Disease. Circulation (2020) 142(20):1901–4. doi: 10.1161/
CIRCULATIONAHA.120.051240

66. Slomski A. Colchicine Reduces Cardiovascular Events in Chronic Coronary
Disease. JAMA (2020) 324(16):1599. doi: 10.1001/jama.2020.20646

67. Bates ER. In Patients With CAD, Adding Colchicine to Evidence-Based
Therapies Reduces MACE Without Increasing Adverse Outcomes. Ann
Intern Med (2021) 174(3):JC30. doi: 10.7326/ACPJ202103160-030

68. Tong DC, Quinn S, Nasis A, Hiew C, Roberts-Thomson P, Adams H, et al.
Colchicine in Patients With Acute Coronary Syndrome: The Australian COPS
Randomized Clinical Trial. Circulation (2020) 142(20):1890–900.
doi: 10.1161/CIRCULATIONAHA.120.050771

69. Fiolet ATL, Opstal TSJ, Mosterd A, Eikelboom JW, Jolly SS, Keech AC, et al.
Efficacy and Safety of Low-Dose Colchicine in Patients With Coronary
Disease: A Systematic Review and Meta-Analysis of Randomized Trials. Eur
Heart J (2021) 42(28):2765–75. doi: 10.1093/eurheartj/ehab115

70. Maciejewski S, Hilleman D. Effectiveness of a Fenofibrate 145-Mg
Nanoparticle Tablet Formulation Compared With the Standard 160-Mg
Tablet in Patients With Coronary Heart Disease and Dyslipidemia.
Pharmacotherapy (2008) 28(5):570–5. doi: 10.1592/phco.28.5.570

71. Packard CJ. Overview of Fenofibrate. Eur Heart J (1998) 19 Suppl A:A62–5.
72. Balakumar P, Sambathkumar R, Mahadevan N, Muhsinah AB, Alsayari A,

Venkateswaramurthy N, et al. Molecular Targets of Fenofibrate in the
Cardiovascular-Renal Axis: A Unifying Perspective of its Pleiotropic
Benefits. Pharmacol Res (2019) 144:132–41. doi: 10.1016/j.phrs.2019.03.025

73. Rubins HB, Robins SJ, Collins D, Fye CL, Anderson JW, Elam MB, et al.
Gemfibrozil for the Secondary Prevention of Coronary Heart Disease in Men
With Low Levels of High-Density Lipoprotein Cholesterol. Veterans Affairs
High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl
J Med (1999) 341(6):410–8. doi: 10.1056/NEJM199908053410604
September 2021 | Volume 12 | Article 724859

https://doi.org/10.1038/nri2660
https://doi.org/10.4049/jimmunol.0901126
https://doi.org/10.1159/000314626
https://doi.org/10.4049/jimmunol.1004133
https://doi.org/10.1016/j.clim.2011.07.003
https://doi.org/10.1016/j.clim.2011.07.003
https://doi.org/10.1038/nrcardio.2009.57
https://doi.org/10.3389/fimmu.2012.00175
https://doi.org/10.1016/j.pharmthera.2020.107799
https://doi.org/10.1186/1471-2164-10-13
https://doi.org/10.1186/1471-2164-10-13
https://doi.org/10.1080/15548627.2018.1501132
https://doi.org/10.1080/15548627.2018.1501132
https://doi.org/10.3390/ijms21186567
https://doi.org/10.1016/bs.apcsb.2019.11.002
https://doi.org/10.1016/j.aanat.2012.10.013
https://doi.org/10.1160/TH17-04-0271
https://doi.org/10.3390/ijms160714338
https://doi.org/10.1007/s10557-016-6644-7
https://doi.org/10.1161/CIRCRESAHA.119.316142
https://doi.org/10.1093/eurheartj/ehz459
https://doi.org/10.1161/CIRCULATIONAHA.117.027646
https://doi.org/10.1038/nrc1209
https://doi.org/10.1111/boc.201200077
https://doi.org/10.1016/j.bbrc.2014.07.026
https://doi.org/10.3389/fonc.2016.00061
https://doi.org/10.1007/s11883-006-0081-1
https://doi.org/10.1002/iub.2181
https://doi.org/10.1016/j.freeradbiomed.2014.02.014
https://doi.org/10.1016/j.freeradbiomed.2014.02.014
https://doi.org/10.1186/s13046-021-01931-9
https://doi.org/10.1016/j.omtn.2020.01.020
https://doi.org/10.1016/j.omtn.2017.08.015
https://doi.org/10.1016/j.orthres.2004.11.014
https://doi.org/10.1016/j.jacc.2013.08.726
https://doi.org/10.1136/heartjnl-2020-317108
https://doi.org/10.1161/CIRCULATIONAHA.120.051240
https://doi.org/10.1161/CIRCULATIONAHA.120.051240
https://doi.org/10.1001/jama.2020.20646
https://doi.org/10.7326/ACPJ202103160-030
https://doi.org/10.1161/CIRCULATIONAHA.120.050771
https://doi.org/10.1093/eurheartj/ehab115
https://doi.org/10.1592/phco.28.5.570
https://doi.org/10.1016/j.phrs.2019.03.025
https://doi.org/10.1056/NEJM199908053410604
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Li et al. Association of PAT With CAD
74. Frick MH, Elo O, Haapa K, Heinonen OP, Heinsalmi P, Helo P, et al. Helsinki
Heart Study: Primary-Prevention Trial With Gemfibrozil in Middle-Aged
Men With Dyslipidemia. Safety of Treatment, Changes in Risk Factors, and
Incidence of Coronary Heart Disease. N Engl J Med (1987) 317(20):1237–45.
doi: 10.1056/NEJM198711123172001

75. Bezafibrate Infarction Prevention (BIP) Study. Secondary Prevention by
Raising HDL Cholesterol and Reducing Triglycerides in Patients With
Coronary Artery Disease. Circulation (2000) 102(1):21–7. doi: 10.1161/
01.cir.102.1.21

76. Waldman B, Ansquer JC, Sullivan DR, Jenkins AJ, McGill N, Buizen L, et al.
Effect of Fenofibrate on Uric Acid and Gout in Type 2 Diabetes: A Post-Hoc
Analysis of the Randomised, Controlled FIELD Study. Lancet Diabetes
Endocrinol (2018) 6(4):310–8. doi: 10.1016/S2213-8587(18)30029-9

77. Kim NH, Han KH, Choi J, Lee J, Kim SG. Use of Fenofibrate on
Cardiovascular Outcomes in Statin Users With Metabolic Syndrome:
Propensity Matched Cohort Study. BMJ (2019) 366:l5125. doi: 10.1136/
bmj.l5125
Frontiers in Endocrinology | www.frontiersin.org 1593
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Li, Qi, Li, Zhang, Lin, Zhou, Han, Qu, Cai, Ye and Shi. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
September 2021 | Volume 12 | Article 724859

https://doi.org/10.1056/NEJM198711123172001
https://doi.org/10.1161/01.cir.102.1.21
https://doi.org/10.1161/01.cir.102.1.21
https://doi.org/10.1016/S2213-8587(18)30029-9
https://doi.org/10.1136/bmj.l5125
https://doi.org/10.1136/bmj.l5125
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Frontiers in Endocrinology | www.frontiersi

Edited by:
Cheng-Chao Ruan,

Fudan University, China

Reviewed by:
Tao Nie,

Jinan University, China
Masumi Inoue,

University of Occupational and
Environmental Health Japan, Japan

*Correspondence:
Valmore Bermúdez
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Adipose tissue (AT) biology is linked to cardiovascular health since obesity is associated
with cardiovascular disease (CVD) and positively correlated with excessive visceral fat
accumulation. AT signaling to myocardial cells through soluble factors known as
adipokines, cardiokines, branched-chain amino acids and small molecules like
microRNAs, undoubtedly influence myocardial cells and AT function via the endocrine-
paracrine mechanisms of action. Unfortunately, abnormal total and visceral adiposity can
alter this harmonious signaling network, resulting in tissue hypoxia and monocyte/
macrophage adipose infiltration occurring alongside expanded intra-abdominal and
epicardial fat depots seen in the human obese phenotype. These processes promote
an abnormal adipocyte proteomic reprogramming, whereby these cells become a source
of abnormal signals, affecting vascular and myocardial tissues, leading to meta-
inflammation, atrial fibrillation, coronary artery disease, heart hypertrophy, heart failure
and myocardial infarction. This review first discusses the pathophysiology and
consequences of adipose tissue expansion, particularly their association with meta-
inflammation and microbiota dysbiosis. We also explore the precise mechanisms
involved in metabolic reprogramming in AT that represent plausible causative factors for
CVD. Finally, we clarify how lifestyle changes could promote improvement in
myocardiocyte function in the context of changes in AT proteomics and a better gut
microbiome profile to develop effective, non-pharmacologic approaches to CVD.

Keywords: adipose tissue, myocardiocytes, microbiota, obesity, inflammation
1 INTRODUCTION

Obesity is a chronic and multifactorial metabolic disease described in most scientific literature as the
epidemic of the 21st century. In fact, by 2016, this condition affected 650 million adults, equivalent
to 13% of the adult population worldwide, while in 2019, 38.3 million children under the age of 5
were overweight or obese (1). In the United States, obesity accounts for approximately 21% of
n.org September 2021 | Volume 12 | Article 735070194
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annual national health care costs ($190 billion) (2). In addition,
this entity is frequently clustered to other comorbidities such as
metabolic syndrome (MetS), insulin resistance (IR), type 2
diabetes mellitus (T2DM), non-alcoholic fatty liver disease
(NAFLD), chronic kidney disease (CKD), gout, and
cardiovascular disease (CVD) (3). CVD is the leading cause of
death worldwide, with approximately 17.9 million deaths each
year, of which 85% are attributable to myocardial infarction (MI)
and stroke (4).

Research has centered on evaluating the causality of obesity in
CVD in recent years, focusing on areas such as the potential role
of adipose tissue (AT) on cardiac tissue (5, 6). AT is a highly
functional and complex endocrine organ, characterized by the
release of adipokines, batokines, microRNAs, prostaglandins,
bioactive lipids and other regulators of metabolic homeostasis,
which interact with vascular, hepatic, renal, digestive, cerebral,
skeletal muscle and myocardial tissue through paracrine and
endocrine mechanisms (5, 7–10).

One hallmark feature in obesity is the ectopic and visceral
adipose tissue (VAT) accumulation leading to AT transcriptome
and secretome modification due to adipocyte hypertrophy and
hyperplasia. This condition is related to tissue´s hypoxia and
fibrosis, immune cell infiltration, stimulating the release of pro-
inflammatory, pro-atherogenic and anti-angiogenic substances
that affect AT biology and communication with other target
tissues (11). In addition, myocardial cells are also affected by
signaling molecules from the dysfunctional or “sick” AT
(SickAT), given their link with heart hypertrophy and fibrosis,
atrial fibrillation (AF), MI, among other CVD (12–15).

These data highlight the importance of establishing
therapeutic tools to help combat obesity and, by extension,
CVD. In a nutshell, obesity etiology is derived from an energy
imbalance produced in the context of an obesogenic lifestyle (16)
characterized by a hypercaloric diet and insufficient physical
activity (PA) to counteract the SickAT expansion and subsequent
defective signaling processes (10, 17, 18). Hence, PA and
nutritional interventions (NI) might improve the SickAT
profile and, consequently, enhance adipose tissue and
myocardiocyte crosstalk. Therefore, this review discusses both
AT and SickAT distribution and biology and their relationship
with myocardial tissue. We will also address the molecular
mechanisms by which exercise, food supplementation, and
Abbreviations: AF, atrial fibrillation; AMI, acute myocardial infarction; AT,
adipose tissue; BAT, brown adipose tissue; BeAT, beige or brite adipose tissue;
BMI, body mass index; BCAAs, Branched-chain amino acids; BW body weight; C/
EBP, CCAAT-enhancer-binding proteins; CKD, chronic kidney disease; CVD,
cardiovascular disease; CVS, cardiovascular system; EAT, epicardial adipose
tissue; eNOS, endothelial nitric oxide synthase; FFA, free fatty acid; GD, gut
dysbiosis; GM, gut microbiota; HCD, hypercaloric diet; IF, intermittent fasting;
iNOS, inducible nitric oxide synthase; IR, insulin resistance; LPS,
lipopolysaccharides; MetS, metabolic syndrome; NAFLD, non-alcoholic fatty
liver disease; NI, nutritional intervention; NP, natriuretic peptide; OS, oxidative
stress; PA, physical activity; PAT, pericardial adipose tissue; PPARg, peroxisome
proliferator activated receptor g; PVAT, perivascular adipose tissue; SickAT, sick
(dysfunctional) adipose tissue; SCAT, subcutaneous adipose tissue; SCFA, short-
chain fatty acids; T2DM, type 2 diabetes mellitus; WAT, white adipose tissue;
VAT, visceral adipose tissue.
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changes in eating habits can counteract obesity, taking as a
pivotal point the role of the gut microbiota (GM) in SickAT
pathogenesis to establish the non-pharmacological treatment
of CVD.
2 THE SICK ADIPOSE TISSUE: FROM
DISTRIBUTION TO INTERACTION

The AT is a dynamic and anatomically heterogeneous organ
acting as connective tissue throughout our organism. Beyond its
particular vasculature, innervation and predominant adipocyte
content, its microenvironment includes numerous immune cells,
endothelial and stromal cells, fibroblasts, preadipocytes, and
abundant extracellular matrix (ECM) (19–21). Each
component possesses characteristic properties and can secrete
various hormones, growth factors, microRNAs (miRNAs),
cytokines, and chemokines coordinated, with autocrine,
endocrine, and paracrine action on neighboring and remote
organs/or cells (12, 22, 23). AT can also be classified by
anatomical location, embryonic origin, morphology or
function, the latter which can be grouped into white (WAT),
brown adipose tissue (BAT) (24).

WAT is responsible for storing energy as fatty acids (FA)
within triacylglycerides (TAG), supplying energy and controlling
metabolic homeostasis through the white adipocyte endocrine
functions (25). The main fat deposit in mammals is widely
distributed throughout the subcutaneous adipose tissue
(SCAT), gonadal and inguinal adipose depots. Adipose tissue
located in the abdominal cavity, including intrahepatic and
mesenteric, omental, and retroperitoneal fat, can be considered
VAT (18, 19). Other intrathoracic AT depots identified include
epicardial adipose tissue (EAT), occupying the space between the
pericardium and myocardium, with a direct relationship with the
coronary arteries; pericardial (PAT), located between the visceral
and parietal pericardium, and perivascular (PVAT), which
surrounds the remaining blood vessels (22, 26). It should be
noted that both VAT and cardiovascular system (CVS)-based
depots are considered a risk factor for cardiometabolic diseases,
an association that has been widely reported (11, 26).

Unlike WAT, BAT has adipocytes with smaller lipid droplets,
more abundant mitochondria and substantial vascularization,
which provide its characteristic brown color (27). Likewise, BAT
has high levels of uncoupling protein 1 (UCP1), which confer
thermogenic properties by uncoupling between respiration and
ATP synthesis during the FA oxidation in adipocytes (28, 29);
hence, UCP1 is recently considered as a potential therapeutic
target against obesity (30). In humans, BAT is found in specific
areas (supraclavicular fossa, interscapular and paravertebral
regions, in the axilla and nape) and represents only 4.3% of the
total fat mass (31, 32). Notably, another type of adipocyte has
been characterized within WAT deposits, and it has shown
mixed characteristics of both white and brown adipocytes. For
that reason, this new type of adipocyte has been coined as beige
adipose tissue (BeAT). As stated above, BeAT reside within the
WAT and can be mainly found within the inguinal WAT (33).
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Also, BeAT express the UCP1 gene and, by extension,
thermogenic properties (34). Note that this browning process
occurs through exposure to cold, b-adrenergic stimulation and
pharmacological modulation of WAT (35).

2.1 Changes in Adipose Tissue
Microenvironment and Meta-Inflammation:
The Sick Forgotten
According to the WHO, obesity is defined as excessive or
abnormal fat accumulation with negative health repercussions,
determined by a body mass index (BMI) ≥ of 30 kg/m2 (36).
Although its etiology includes genetic, social, environmental
and/or cultural factors, in most cases, it is characterized by an
imbalance between energy intake and energy expenditure,
attributed to poor eating habits and sedentary lifestyles (16).
This hypercaloric or overnourished state leads to more
significant fat accumulation in AT, mainly in the form of
ectopic or visceral depots (37). AT can increase in abundance
through two different processes: hypertrophy and hyperplasia or
new adipocytes formation.

Hyperplasia is considered a beneficial and adaptive process by
which new functional adipocytes can be formed from fibroblastic
preadipocytes without altering their secretory profile and
maintaining vascularization of the AT microenvironment (37,
38), which is associated with better metabolic health (39). A
transcriptional cascade regulates this cell line differentiation
carried out by peroxisome proliferator-activated receptor
Frontiers in Endocrinology | www.frontiersin.org 396
gamma (PPAR g) and CCAAT enhancer-binding proteins (C/
EBP), in conjunction with pro-adipogenic factors such as bone
morphogenetic proteins (BMPs) (40, 41). However, hypertrophy
and subsequent adipocyte dysfunction disrupt these signaling
processes and preserve the pro-inflammatory phenotype
characteristic of obese individuals (Figure 1) (42, 43).

The pre-existing adipocytes gain volume via increased fat
accumulation, experiencing heightened mechanical stress by
contact with adjacent cells and other extracellular matrix
components (ECM) (44). Over time, AT expansion results in
reduced regional blood flow, altered oxygen diffusion and finally
tissue hypoxia, all of that related to both oxidative stress
activation (OS) (45) and increased transcriptional activity of
hypoxia-inducible factor 1a (HIF1a), nuclear factor kappa B
(NF-kB), and cAMP response element-binding protein (CREB)
genes, whose transcripts, in turn, drives to adipokines,
chemokines, metalloproteases and growth factors gene
expression, all of these related to a pro-inflammatory peptidic
secretome (46). Concurrently, these hypoxia-induced factors
downregulate anti-inflammatory and metabolism-regulatory
adipokines such as adiponectin, which occurs alongside
reduced transcription of antioxidant and thermoregulation-
related genes, particularly catalase encoders UCP2, PPARg and
peroxisome proliferator-activated receptor-gamma coactivator
1a (PGC-1a) (47–49). Consequently, transcriptomic and
proteomic changes in AT lead to a low-grade inflammatory
environment characterized by functionally-altered fibroblasts,
FIGURE 1 | Sick adipose tissue microenvironment and its interactions. Hypertrophic adipocytes and immune cells infiltration characterize the adipose tissue of
obese individuals in response to a hypoxic environment as a signal for cell death and inflammation. This phenomenon leads to proteomic dysregulation and deflective
peripheral signals promoting metabolic alterations in other tissues like muscle cells, particularly the myocardiocytes. In addition, obesogenic habits in overweighed
people cause changes in the intestinal microbiota triggering adipose tissue chronic inflammation and cellular senescence. UCP2, uncoupling protein 2; PGC-1a,
peroxisome proliferator-activated receptor gamma coactivator 1a; PPARg, peroxisome proliferator-activated receptor gamma; VEGF-A, vascular endothelial growth
factor A; MMP, metalloproteinases; HIF1a, hypoxia-inducible factor 1a; LPS, lipopolysaccharides; SCFA, short-chain fatty acids; CB1, cannabinoid receptor 1; ECM,
extracellular matrix.
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endothelial cells and immune cells niche (50, 51). Regarding the
latter, macrophages have been identified as the predominant cells
of this system in AT, showing a pro-inflammatory M1 phenotype
in obese individuals compared to the anti-inflammatory M2 in
lean individuals (52). In this scenario, the hypoxic inflammatory
state of AT promotes the release of interferon-g (IF-g) by T
helper 1 (Th1) lymphocytes, inducing M1 macrophage
recruitment and polarization, which causes increased release of
pro-inflammatory cytokines such as tumor necrosis factor-alpha
(TNF-a), monocyte chemoattractant protein 1 (MCP-1),
interleukin (IL) -6, IL-12, IL-1b and IL-23 (53–56).

Obese patients exhibit clusters of lipid-binding macrophages
from dead adipocytes, a phenomenon well-correlated with AT
inflammation and insulin resistance (57, 58). In addition, obesity
promotes CD8 + and CD4 + T lymphocytes infiltration together
with effector B-cells, heightening pro-inflammatory factors
release and consequently AT dysfunction with defective
extracellular signaling (59, 60). Similarly, myeloid cells, mast
cells (50, 51) and neutrophils are also present in SickAT, showing
that they contribute to tissue damage through elastase secretion
and thus promote macrophage recruitment (61, 62).

Among the essential SickAT characteristics in obese patients are
altered angiogenesis and endothelial dysfunction (ED). Although
SickATupregulates vascular endothelial growth factorA(VEGF-A)
and HIF1a expression (both linked to angiogenesis), production is
insufficient to generate neovascularization and counteract hypoxia,
inflammation and necrosis characteristic of obese patients (63–66).
Furthermore, SickAT leads to reactivity in the endothelium of the
surrounding vessels, inducing the synthesis of intracellular
adhesion molecule (ICAM-1), P-selectin and E-selectin, which in
turn promotes macrophage infiltration worsening the pro-
inflammatory milieu (67). Additionally, adipocyte-endothelial
crosstalk can contribute to vasomotor alterations, deteriorating
the oxygen bioavailability in EAT, PVAT and PAT (68, 69).

Likewise, HIF1a upregulation, immune cell infiltration and
hyperactivity are associated with AT fibrosis. Remarkably, the
increased synthesis of ECM components, mainly type-VI collagen
and its cleavage products such as endotrophin, have been associated
with metabolic dysfunction in obese mice via mechanical stress
caused by limits on AT expansion (44, 70–72). Interestingly, HIF1a
expression is correlated with metalloproteinases (MMP) -2 and
MMP-9 in EAT, which are considered necessary for expansion and
secretome alterations (69).

On a different plane, adipocytemetabolic activity is substantially
modified in a hypoxic state. In fact, some glycolytic enzyme genes
such as hexokinase 2 (HK2), phosphofructokinase (PFKP) and
GLUT1 exhibit an increased expression in adipocyte cell cultures
under hypoxic conditions (73, 74). Furthermore, although GLUT4
is themain isoformfound inadipocytes,GLUT1 is themost efficient
glucose transporter at low-oxygen levels (75). As expected in
hypoxic states, the above changes suggest adipocytes have
increased glucose uptake and metabolism (76), as confirmed by
their increased lactate secretion (77).

In summary, lipid metabolism proteomics tends towards
lipolytic extreme under hypoxic conditions (78). The SickAT
microenvironment is characterized by multiple agents influencing
Frontiers in Endocrinology | www.frontiersin.org 497
insulin signaling, like IL-6, TNF-a, resistin, and IL-1b (79). Under
normal conditions, insulin inhibits lipolysis through themTORC1-
Egr1-ATGL pathway, so inhibition of insulin´s secondmessengers
cascade increases lipolytic activity (80). Furthermore, fatty acid
uptake by adipocytes is blunted under hypoxic conditions (74),
leading to plasma free fatty acids increase worsening insulin
signaling (81) and contributing to the pro-inflammatory state
(82). It should be highlighted that intrathoracic and visceral AT,
BAT, BeAT and SCAT depots are affected in obesity (83), the
thermogenic properties of BAT can be disturbed by mild
inflammatory cells infiltration in severely obese individuals (84),
leading to diminished glucose and FFA oxidative metabolism, and
therefore contribute to IR and dyslipidemia development (84–86).
In contrast, BeAT occurs less frequently owing to the dysfunctional
state of WAT in obese patients (87).

2.2 Microbiota Dysbiosis
The gastrointestinal tract contains a complex population of
microorganisms, the gut microbiota (GM), which exerts a
marked influence on human health and disease (88). Multiple
factors contribute to establishing the intestinal microbiota during
early childhood and as it evolves into adulthood, but it is not
hard to imagine that one of the main factors that shape the gut
microbiota structure throughout our lives is our diet. In addition,
gut bacteria play a crucial role in maintaining and proper
function of the immune system and intermediary metabolism.
Abnormalities in the intestinal bacterial composition (dysbiosis)
have been associated with many inflammatory, infectious,
autoimmune and metabolic diseases.

GM is constituted by bacteria, archaea, viruses and fungi,
interacting symbiotically with the host (88). However, hypercaloric
diet (HCD) and obesogenic habits alter the microbiota-host
relationship, affecting its composition and interaction with the
organism (89). A growing body of evidence in this area has
centered on comparing energy and body fat storage in germ-free
mice with transplantedmicrobiota of wildmice or obese individuals.
Thefindingswere that although themicemaintained the samediet in
both cases, there was a substantial increase in adiposity and IR
development after microbial transplantation, which could be
attributed to the role of the microbiota in calorie extraction and
absorption (90–92). Although the possible mechanisms triggered by
HCD and obesity involved in the GM-AT axis interaction have not
been fully elucidated yet, specific hypotheses have been proposed to
explain these findings.

Significant among these theories is the influence of microbial
products on AT. In physiological situations, the intestinal wall has
selective permeability due to the tight junction proteins between
enterocytes; however, an HCD can decrease expression of these
proteins and allow passage of lipopolysaccharides (LPS), bacterial
products of gram-negative bacteria (93–95). Once in circulation,
LPS spread throughout the body and act on type 4 toll receptors
(TLRs) located in AT adipocytes and immune cells (96), activating
pathwaysdependentonmyeloiddifferentiation factor 88- (MyD88-
) and TIR-domain-containing adapter-inducing interferon-b
(TRIF). This process activates the nuclear translocation of NF-kB
and the subsequent release of pro-inflammatory substances,
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contributing to the typic low-grade inflammation seen in SickAT
(97, 98). Furthermore, it has been reported that LPS/TLR4 pathway
activation can decrease WAT browning (99) and adaptive
thermogenesis (100). Another interesting observation is that
GD can increase permeability by activating the intestinal
endocannabinoid system, acting on its CB1 receptors associated
with obesogenic habits (101).

Likewise, several commensal bacteria species of the GM
ferment indigestible carbohydrates and fiber to obtain energy
by forming short-chain fatty acids (SCFA) (102–104), mainly
acetate, butyrate and propionate. These metabolites have key
roles in energy metabolism (105) and immunomodulation (106),
by acting on the family of free fatty acid receptors (FFAR),
especially FFAR2 (GPR43) and FFAR3 (GPR41), located in
gastrointestinal, nervous, and AT tissue (107). Therefore, GD
present in obese individuals may lead to changes in SCFA levels
and, by extension, SickAT-related metabolic alterations. Higher
SCFA production has been reported to promote lipogenesis by
activating carbohydrate responsive element-binding protein
(ChREBP) and sterol regulatory element-binding transcription
factor 1 (SREBP1), favoring weight gain in animals models (108,
109). Similarly, studies have shown that SCFAs can inhibit
fasting-induced adipocyte factor (FIAF), which can suppress
enzyme lipoprotein lipase (LPL) activity and thus increase
triacylglycerol (TAG) storage and accumulation in AT (90, 91).

Additionally, SCFAs stimulates peptide YY (PYY) and
glucagon-like peptide 1 (GLP-1) secretion, which in turn slow
down the intestinal transit time and thus increase nutrient
absorption (109, 110), influencing appetite control (111). Other
GT-AT axis-related mechanisms such as the TMA/FMO3/TMAO
signaling pathway (112), nucleotide-binding oligomerization
domain-containing 1 (NOD1) and NOD2 (113) proteins, and
modulation of the miRNA-181 family (114) have also been
explored in the context of obesity and its possible implications
in the switch to SickAT. However, given the lack of a proven causal
link between microorganisms, their products and specific
mechanisms in humans, together with the heterogeneity of GT
and the fact that Bacteroidetes and Firmicutes are predominant in
both obese and healthy individuals (115), further research is
warranted in this area.
3 INTERCELLULAR SIGNALING BETWEEN
ADIPOCYTES AND MYOCARDIAL CELLS

3.1 Adipokines
3.1.1 Leptin
Leptin is a peptidic hormone secreted by AT, so peripheral leptin
levels tend to remain directly proportional to AT volume (116).
Consistent with this finding, obese patients show elevated leptin
levels, but signaling defects mean that appetite suppression is
reduced or nullified (117). Thus, obesity-related hyperleptinemia
has been suggested as an important factor in CVD genesis (118).
From a molecular perspective, leptin plays a role in atherosclerosis
initiation by the hyper-production of reactive oxygen species
(ROS) in endothelial cells (119). The explanation of this
Frontiers in Endocrinology | www.frontiersin.org 598
phenomenon relies on increased fatty acid oxidation via protein
kinase A stimulation, which increases MCP-1 production,
facilitating macrophage infiltration into the sub-endothelial
(120). Furthermore, in vitro studies have shown that leptin
increases cholesterol uptake in macrophages by ACAT1
modulation (121). These results match with clinical findings
obtained in other studies; indeed, leptin levels are correlated
with markers of atherosclerosis such as the intima-media
thickness of the carotid artery (122) and likewise with the
severity of coronary artery disease (CAD) (123).

It has also been hypothesized that leptin can induce
cardiomyocyte hypertrophy (124). This effect seems mediated
by multiple mechanisms, such as increased endothelin 1 (ET-1)
and ROS production in cardiomyocytes in response to leptin
levels (125). Another theory is that leptin activates the mTOR
(126) and PPAR-a signaling pathways (127). Consistent with the
above, clinical studies have shown a positive correlation between
serum leptin levels and left ventricular thickness in obese or
insulin-resistant patients (128). In contrast, another study
conducted in a murine model proposes that leptin exhibits
antihypertrophic properties. Based on these findings, mice with
left ventricular hypertrophy reverted to normal ventricular
function when normal leptin levels were restored (129).

Nonetheless, rather than a direct consequence of restored
leptin levels, these findings may stem from reversing metabolic
alterations inherent to leptin deficiency, so these results should be
interpreted cautiously. On the other hand, the antihypertrophic
properties associated with leptin levels have been reported in some
studies (130–132). In conclusion, it remains uncertain whether
cardiac hypertrophy is due to leptin pro-hypertrophic action or is
instead an effect of resistance to leptin antihypertrophic action on
cardiac remodeling.

3.1.2 Interleukin 6
As AT produces around a third of circulating IL-6, it can be
considered an adipokine (133); however, its role in cardiomyocyte
function is somewhat controversial. In acute phases, IL-6 signaling
has been attributed a cardioprotective effect by inducing anti-
apoptotic pathways and conferring protection against OS (134).
However, IL-6 also decreases myocardial contractility and
eventually increases nitric oxide (NO) production may be
through inducible nitric oxide synthase (iNOS) activation (135,
136). Likewise, a study in animals reported no significant effects of
treatment with IL-6 on left ventricular remodeling (137), while
another study found that IL-6 signaling blockade suppresses
myocardial inflammation and ventricular remodeling (137).
Since human and murine IL-6 show only 41% similarity, animal
studies should be approached with caution. Regarding human
studies, elevated IL-6 levels have been correlated with ventricular
dysfunction (138), heart failure, arrhythmias and worse clinical
outcomes (139), indicating a need for further study to clarify the
role of IL-6 in CVD.

3.1.3 Adiponectin
Under SickAT conditions, adiponectin secretion is considerably
reduced, impacting negatively on cardiovascular function (140). On
the other hand, normal adiponectin levels have been shown to
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Bermúdez et al. The Sick Adipose Tissue
improve cardiomyocyte dysfunction in animal models, probably
due to mechanisms related to IRS-1 and the c-Jun pathway (141).
Furthermore, adiponectin is necessary to activate PPARg signaling,
which confers protection against myocardial hypertrophy and
cardiac remodeling (142). Likewise, adiponectin inhibits iNOS
and NADPH oxidase expression, decreasing OS under ischemic
conditions (143). On a different level, adiponectin stimulates COX-2
expression and prostaglandin E2 synthesis, conferring
cardioprotective and anti-inflammatory properties (144).

Clinically, hypoadiponectinemia is independently associated
with ED (145), while normal adiponectin levels are associated
with a lower risk of ischemic events in men (146). Conversely,
low adiponectin levels positively correlate with left ventricular
hypertrophy, regardless of age or other metabolic factors (147).
However, a systematic review found no significant relationship
between adiponectin levels and cardiovascular mortality, and a
10% increased risk of death from any cause was reported (148).
This finding requires considering concurrent situations such as
kidney failure and age-related adiponectin resistance, leading
to bias when analyzing different populations (149, 150).
Nonetheless, the prevailing view in the literature is that
adiponectin confers cardioprotection at normal concentrations,
while hypoadiponectinemia is related to an increased risk of
developing ED as well as myocardial dysfunction.

3.2 BCAAs
Branched-chain amino acids (BCAAs), valine, leucine and
isoleucine, are essential amino acids playing a critical energetic
role in different tissues, including myocardial cells and
adipocytes (151). For example, in physiological circumstances,
adipocytes oxidize BCAAs as an important energy substrate;
however, different stimuli or organic conditions such as insulin
resistance, obesity or cardiovascular disease cause adipose cells
reprogramming, reducing BCAA metabolism in the heart, AT
and liver (152–154).

The mechanisms underlying these changes have not been
fully elucidated yet; however, epigenetic changes such as PP2Cm,
KLF15, or GRK2 gene expression during heart disease could
modify the cells’ metabolic profile. Subsequently, alterations in
BCAA catabolism and use caused by these metabolic changes
could lead to rising arterial amino acid levels (27, 153). Likewise,
AT inflammation has been linked to tricarboxylic acid cycle
modifications, resulting in reduced BCAA catabolism and use,
which provides an alternative explanation for the accumulation
of amino acids in plasma (155, 156) (Figure 2). These variations in
local and organic BCAA concentrations lead to chronic mTOR
receptor expression in myocardial cells, and thus, autophagy
suppression pathways induction, alterations in insulin sensitivity
and tissue transport, as well as protein synthesis pathway
activation, promoting the inhibition of autophagy protective
functions, by modifying the bioenergetic heart homeostasis and
cardiac hypertrophy stimulation, respectively (157).

Given these findings, it is not surprising that a correlation
between heart failure and elevated BCAA levels has been found in
numerous studies (152, 158). For example, a clinical trial
conducted by Peterson et al. evaluated total amino acid
concentrations in patients with heart failure, finding them to be
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abnormally high (159). Similarly, results reported by Kato et al.
indicated elevated plasma amino acid levels as a consequence of
metabolic changes in sodium-sensitive hypertensive rodents (160).
In contrast, a clinical trial conducted by Aquilani et al. reports a
decreased BCAA levels in patients with chronic heart failure
compared to healthy individuals. Although these results could
seem contradictory, factors such as the site of amino acid
quantification and the variability in BCAA levels due to both
duration and severity of pre-existing disease could explain the
differences between findings (161). In this regard, AT and cardiac
tissue exert a reciprocal influence on each other in various
pathological scenarios via modifications in BCAA catabolism
and consumption (154–156, 162).
3.3 Cardiokines
The heart is conventionally viewed as a contractile organ acting as
a muscular pump to provide nutrients to the body (163). Beyond
these functions, however, it can exert regulatory actions on other
organs, such as the kidney, liver or AT (164). These modulatory
activities are carried out mainly through molecules synthesized
and secreted by the heart, known as cardiokines (165–168).

To date, it has identified up to 16 cardiokines, which are thought
to exert homeostatic functions related to growth, cell death, fibrosis,
hypertrophy and cardiac remodeling. In addition, although these
molecules have predominantly paracrine and autocrine functions,
certain cardiokines show endocrine mechanisms of action, allowing
them to act on distant tissues (169). Such is the case of the firsts
cardiokines identified, known as atrial (ANP) and brain (BNP)
natriuretic peptides (NPs) (164, 170). Besides their participation as
blood pressure regulators, both peptides play a critical role in
modulating AT energy metabolism (171).

In this way, different stimuli such as ischemia, reperfusion,
OS, hemodynamic stress, and cardiac hypertrophy can trigger
NP synthesis and release by different cardiac cells into the
circulation and ultimately reaching the AT (172). In this tissue,
NPs bind to the NPR-A receptors, activating the guanylyl cyclase
and cGMP formation. This process, in turn, activates the PKG,
an enzyme responsible for phosphorylating key factors such as
UCP-1, PPARGC1A, CYCS, PRD1-BF 1 and RIZ1, inducing
white adipocyte browning, increasing lipogenesis, mitochondrial
biogenesis and lipid oxidation (171, 173).

Collectively, these phenomena have a double effect. Fatty
acids are released into the bloodstream as energy substrates to
compensate for the low heart contractility observed during the
abovementioned pathological scenarios (174), while increased
mitochondrial production, thermogenesis, and fatty acid
oxidation promote weight loss (175, 176). These reports were
verified by other studies showing abnormally elevated NP
concentrations during CVD and decreased levels of these
peptides in obese individuals (164, 177). For example, in one
study carried out by Kovacova et al. (29), the NPRR expression
was significantly lower in obese than normal-weight individuals.
These findings replicated those obtained in studies carried out in
humans and murine, wherein plasma and cardiac levels of both
BNPs and ANPs were significantly lower in obese than normal-
weight subjects (175, 178).
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3.4 miRNAs and EVs
miRNAs are small, non-coding RNA molecules functioning as
regulatory agents in numerous physiological and pathological
processes by participating in post-transcriptional mRNA and
translation into protein processes (179, 180). These molecules are
synthesized in response to a wide range of stimuli by different
tissues (181), among which AT and EAT are responsible for the
production and release of multiple miRNA varieties (14, 182).

Most miRNAs on EAT operate through autocrine fashion and
have been implicated in various AT processes such as adipocyte
differentiation, fatty acid metabolism, cholesterol homeostasis,
adipogenesis, browning and inflammation (183–185). Other
miRNAs are released into the circulation via exosomes, from where
they travel to and penetrate the heart or other distant organs (186).
Although it has been established that EAT releases differentmiRNAs
towards the heart in response to tissue dysfunction or certain specific
stimuli (13), but the functions and underlyingmechanisms of action
have not been fully characterized. Nonetheless, recent studies have
identified new miRNAs and their potential role in the pathogenesis
and development of heart diseases (12, 187, 188).

In this vein, miRNAs have been implicated in atrial fibrillation
(AF), as demonstrated in the study carried out by Liu et al. (189),
wherein miR-320d were transported in vitro by exosomes to FA
cardiomyocytes, revealing enhanced cell viability and decreased
post-transfection cardiomyocytes apoptosis, reversing several
FA characteristic effects by inhibiting factor STAT3. Likewise,
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a possible cardioprotective role has been suggested tomiR-146a due
to an inhibitory effect on early growth response factor-1 (EGRF1)
in suppressing typical post-MI phenomena such as apoptosis,
inflammatory responses and cardiac fibrosis (190). Similar results
were obtained by Luo et al., in which miR-126 overexpression
in hypoxic H9c2 cells led to reduced local inflammation, pro-
fibrotic protein expression, and microvasculature and cell
migration, thus mitigating the effects of cardiac injury in the
infarcted area (191).

Numerous miRNAs play a positive role in some cardiac
pathologies beyond acute myocardial infarction (AMI) and AF,
including CAD. For example, it has been shown that during
CAD progression, miRNA-3614 expression is downregulated in
EAT, which produces an inhibitory effect on factors such as
TRAF6, which regulates immune cell recruitment and activation
as apoptosis and cardiac remodeling during myocardial ischemia
(189, 192). In this context, a study by Zou et al. identified miR-
410-5p and its promoting effects on cardiac fibrosis in mice with
regular diets by silencing Smad7; concurrently, miR-410-5p
demonstrated anti-fibrotic effects in mice fed high-fat diets
(193). These results suggest a dual role for miRNAs in
cardiovascular pathologies; besides the cardioprotective role of
some miRNAs, these molecules can exert harmful effects on
cardiac tissue, promoting effects such as local inflammation,
hypertrophy, remodeling and cardiac fibrosis in different
CVDs (183, 194–198).
FIGURE 2 | Heart and Adipose Tissue Crosstalk: Key Messengers. Cardiokines: stimuli such as cardiac ischemia, reperfusion, oxidative and hemodynamic stress
stimulate the production of cardiokines, which signaling in an endocrine and paracrine mechanism to the adipose tissue promoting weight loss by increasing
thermogenesis and both the release and oxidation of fatty acids. Adipose tissue dysfunction is a stimulus for miRNAs release, which travel through the bloodstream
to the myocardial tissue inside exosomes, exerting cardioprotective against myocardial infarction, coronary artery disease and atrial fibrillation. On the other hand,
obesity, IR and cardiovascular diseases decrease BCAAs oxidation in adipose tissue, which decreases autophagy with heart hypertrophy and, finally, the alteration of
the bioenergetic homeostasis of the heart. FA, Fatty Acids; AT, Adipose Tissue; CV, Cardiovascular; IR, Insulin resistance.
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4 NON-PHARMACOLOGICAL APPROACH
TO ADIPOCYTE-MYOCARDIOCYTE
DEFECTIVE SIGNALING: IMPACT
OF LIFESTYLE

Preclinical and clinical evidence suggests that positive lifestyle
changes derived from increased PA and NI could improve the
above-described pro-inflammatory metabolic status of obese
patients, highlighting their utility as possible non-pharmacological
therapeutic strategies to manage obesity and cardiovascular risk.

In this regard, studies suggest that PA reduces circulating levels
of insulin, leptin, and pro-inflammatory cytokines and raise
adiponectin and apelin concentrations (199–202). In addition,
increasing PA has been linked to heightened endothelial NOS
(eNOS) expression and iNOS expression reduction (199, 203).
These findings suggest that PA as a strategy helps restore a healthy
metabolic state at the preclinical level.

Additionally, clinical studies have reported an anti-
inflammatory, cardioprotective and slimming effect of PA. For
example, a study in obese men showed that exercise was more
effective than diet in reducing body weight (BW), improving the
systemic inflammatory profile and IR and circulating levels of
adipokines (204). Likewise, a study conducted in obese patients
with T2DM subjected to dietary restriction and aerobic exercise
reported that after a 3-month intervention, adiponectin levels rose
while BMI and TNF-a, IL-6 and leptin levels fell significantly (205).

Concerning the different intensities of PA, a clinical trial
demonstrated that moderate exercise combined with calorie
restriction aided in normalizing adiponectin, leptin and resistin
levels in obese adolescents (206). Furthermore, a meta-analysis
performed by Maillard et al. (207) reported that high-intensity
interval training effectively reduced SCAT and VAT. Similarly,
anothermeta-analysis found that bothmoderate andhigh-intensity
PAhave a similar effect onweight reduction andbody composition;
however, results were seen more quickly when performing high-
intensity exercise (208). Therefore, besides its anti-inflammatory
properties, exercise can reduce BW, indirectly counteracting
SickAT defective signaling by modifying its composition.

Studies have also demonstrated that PA has a regulatory effect
on circulating microRNAs in individuals with cardiometabolic
abnormalities. In this context, a clinical trial showed that
circulating levels of miR-192 and miR-193b (associated with a
prediabetic state) were modified after 16-week exercise
intervention (209). Along similar lines, a combined aerobic
and resistance exercise program in obese patients for three
months was associated with significantly decreased levels of the
inflammatory miRNA miR-146a-5p (210).

Aside from the weight loss achieved with exercise, dietary
interventions have also been shown to positively impact AT and
CVS crosstalk. In this regard, it has been proven that caloric
restriction in the rat diet causes significantly reduced expression
of iNOS, TNF-a and IL-1b in PVAT (211). Furthermore,
another study conducted in rats showed that calorie control-
induced weight loss was associated with improved endothelial
NOS function, reduced TNF-a levels and normalized plasma
adipokines y hormones levels such as leptin and insulin (212).
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Therefore, diet is a rationale tool to improve the cardiovascular
functionality of the PVAT.

In another study, Kim et al. showed that intermittent fasting
(IF) with an isocaloric diet increased VEGF expression in WAT,
favoring macrophage polarization towards the M2 phenotype,
which is linked to increased thermogenesis and AT browning
(213). In this regard, a clinical trial in obese patients reported
that IF combined with caloric restriction and liquid meals
promotes significant BW loss and improves risk indicators for
CAD (214). Furthermore, other studies conducted by the same
research group (215) and Trepanowski et al. (216) were able to
show that in addition to reducing BW, the abovementioned diet
decreases levels of leptin IL-6, TNF-a and insulin-like growth
factor-1 (IGF-1). These results point to IF and low-calorie diets
as a possible strategy to manage AT visceral adiposity and
secretory profile, owing to their cardioprotective effect.

Regarding the role of the nutritional maneuvers approach on
circulating microRNAs, Hsieh et al. (217) showed through a
preclinical study that a low-fat diet could reverse obesity-
associated inflammatory miRNA profiles via BW reduction.
Consistent with this finding, evidence in humans suggests that
BW loss achieved by very-low-calorie NI in obese women (218)
or protein-rich diets in obese men (219) allow positive
modulation of circulating levels of different miRNAs such as
miR-34a, miR-208, miR-193a, miR-223, miR-320, miR-433,
miR-568 and miR-181a.

Likewise, preclinical and clinical studies have shown the
prebiotic and probiotic effects in reducing cardiovascular risk
by leptin resistance (220) and leptin level reductions (221, 222).
In addition, an adiponectin increase (223, 224) and lowering
both apelin (225) and ANP levels (226) have been consistently
reported, a fact attributed to HCD-induced GD correction and
thus a reduced LPS-induced endotoxemia and SCFA levels.
Likewise, 3-n PUFA supplementation has been associated with
recovery of the adipokine and cardiokine profile, resulting in a
healthier cardio-metabolic state. In this context, studies in
animal models and humans have linked supplements
administration with a significant reduction in leptin (227, 228),
follistatin-like 1 (229) and BNP levels (230), and adiponectin
increase (231). Finally, polyphenols such as lycopene, resveratrol
and curcumin have also been linked to improved inflammatory
and adipokine profile, body composition and cardiac fibrosis/
hypertrophy in study subjects (232–235).

These data suggest that PA and different NI, either alone or in
combination, are associated with the upregulation of adipokines,
cardiokines, miRNAs and other components associated with
crosstalk between AT and CVS. Therefore, these strategies are
beneficial in reducing cardiovascular risk in obese patients due to
their mechanisms capable of counteracting the characteristic
pro-inflammatory state of SickAT.
5 CONCLUSIONS

Adipose tissue is a multifunctional exhibiting well-characterized
inter-organ paracrine and endocrine networking, including
myocardial tissue communication. Obesity is characterized
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by metabolic changes in SickAT caused by a hypoxic
microenvironment due to adipocyte hypertrophy driving to
immune cell infiltration and a systemic pro-inflammatory
state affecting target cells such as cardiomyocytes. Excessive
adipokines, microRNA, BCAAs characterize SickAT defective
signaling, and other pro-inflammatory substances release
altering myocardial cells function and, consequently, CVD
development. Likewise, heart cells can also alter AT signals,
thereby causing a vicious cycle that fuels meta-inflammation.
Under this premise, lifestyle changes such as PA, low-calorie
diets, IF, and food supplementation are fundamental non-
pharmacological therapeutic tools to combat obesity and CVD
due to their identified regulatory mechanisms in AT and
CVS signaling.
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Sestrin2 is a highly conserved protein that can be induced under a variety of stress
conditions, including DNA damage, oxidative stress, endoplasmic reticulum (ER) stress,
and metabolic stress. Numerous studies have shown that the AMP-activated protein
kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway has a crucial
role in the regulation of metabolism. Sestrin2 regulates metabolism via a number of
pathways, including activation of AMPK, inhibition of the mTOR complex 1 (mTORC1),
activation of mTOR complex 2 (mTORC2), inhibition of ER stress, and promotion of
autophagy. Therefore, modulation of Sestrin2 activity may provide a potential therapeutic
target for the prevention of metabolic diseases such as insulin resistance, diabetes,
obesity, non-alcoholic fatty liver disease, and myocardial ischemia/reperfusion injury. In
this review, we examined the regulatory relationship between Sestrin2 and the AMPK/
mTOR signaling pathway and the effects of Sestrin2 on energy metabolism.

Keywords: Sestrin2, AMPK, mTOR, metabolism, metabolic diseases
INTRODUCTION

Sestrins, a family of evolutionarily highly conserved stress-induced proteins, are upregulated under
oxidative stress, genotoxic stress, hypoxia, and other stress conditions (1). As stress-induced
metabolic modulators, Sestrins help cells adapt to diverse stress stimuli by activating catabolic
reactions, stopping anabolic activities, and initiating cell repair mechanisms, to maintain cell
homeostasis (2). In mammals, there are three members of the sestrin family, Sestrins1–3, which are
encoded by three independent genes, while only one Sestrin ortholog has been identified in
invertebrates (3–5). Sestrin1, also referred to as p53-activated gene 26 (PA26), was first identified by
Velasco-Miguel et al. and is a growth arrest and DNA damage-inducing gene (5). In 2002, Sestrin2,
also known as hypoxia-inducible gene 95 (Hi95), was reported by Budanov et al., is highly
homologous to Sestrin1, and can be induced by prolonged hypoxia and DNA damage (6, 7).
Sestrin3 is directly activated by forkhead box O (FOXO) transcriptional factors (8). These three
Sestrin proteins have some shared mechanisms of action, including, but not limited to, inhibiting
the production of reactive oxygen species (ROS), activating AMPK, and inhibiting mTORC1 (4, 9).
However, there is growing evidence that the three Sestrins behave differently and promote different
biological effects via AMPK/mTOR signaling because they are distributed differently in different
organs (10, 11). To our knowledge, Sestrin1 has an antioxidant function that can activate the AMPK
signal pathway while inhibiting the mechanistic target of the mTORC1 signal pathway (12).
n.org November 2021 | Volume 12 | Article 7510201109
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Furthermore, Sestrin1 can be activated in a p53-dependent
manner under oxidative stress in skeletal muscle, kidney, brain,
and lung (7). Recent studies suggest that Sestrin1 inhibits
oxidized low-density lipoprotein-induced activation of NOD-
like receptor protein 3 (NLRP3) inflammasome in macrophages
in a murine atherosclerosis model (12). What is even more
interesting is that in multiple mouse models, Sestrin1 influences
plasma cholesterol and regulates cholesterol biosynthesis (13).
Among these members, Sestrin2 is the most intensively studied
since its discovery in 2002. As a p53 target gene, Sestrin2 (SESN2)
can exert cytoprotective functions in the lung, heart, liver,
adipose, and kidney through activation of AMPK and
inhibition of mTORC1 (6, 11, 14, 15). Furthermore, Sestrin2 is
able to suppress nitric oxide release and the production of
classical pro-inflammatory cytokines in cardiomyocytes (16).
Sestrin3 can inhibit mTORC1 and maintain the activity of
protein kinase B (AKT) via activating the AMPK/TSC1/2
signaling pathway (8). Sestrin3 is largely expressed in skeletal
muscle, intestine, adipose, colon, and brain (17).

Increasing evidence suggests that that Sestrin2 has two main
biological functions. Through its own oxidoreductase activity or
activation of antioxidant damage related pathways, Sestrin2 can
reduce the damage of oxidative stress to protect cells and tissues
and maintain redox homeostasis (18, 19). In addition to its redox
activity, Sestrin2 can also inhibit the mammalian target of
mTORC1 through AMPK-dependent or -independent
pathways (20). These two activities of human Sestrin2
(hSestrin2) are supported through its two separate domains,
which were determined from X-ray crystallographic studies. A
recent study of the X-ray crystal structure of hSestrin2 showed
that it consists of well-conserved Sesn-A, Sesn-B, and Sesn-C
domains (11). Sesn-A and Sesn-C are structurally similar but
functionally distinct from each other (21). Sestrin2 controls ROS
and mTOR signaling through two separate functional domains
(22). While Sesn-A reduces alkyl hydroperoxide radicals through
its helix–turn–helix oxidoreductase motif, Sesn-C modifies this
motif to accommodate physical interactions with GAP activity
towards Rags 2 (GATOR2) and subsequent inhibition of
mTORC1 (21, 23). Sestrin2 has a significant role in the
inhibition of ER stress and the activation of autophagy and is
considered to improve obesity-induced and age-related
pathologies by inhibiting mTORC1 (15, 24). Therefore,
Sestrin2 may represent a novel class of potential targets for
the therapeutic intervention of metabolic diseases. In this review,
we discuss the regulatory relationship between Sestrin2 and
AMPK/mTOR signaling and the effects of Sestrin2 on
energy metabolism.
REGULATION OF SESTRIN2 EXPRESSION
IN RESPONSE TO DIVERSE STRESS
CONDITIONS

Human beings exist in a constantly changing environment and
face frequent challenges that threaten our survival and health. In
response to stress, the body undergoes very subtle changes at the
Frontiers in Endocrinology | www.frontiersin.org 2110
cellular and molecular level. Understanding how Sestrin2 is
regulated under different stress conditions is very helpful for us
in studying Sestrin2. Therefore, it is of great significance to study
the regulatory mechanism of Sestrin2 expression under different
types of stress conditions.

Sestrin2 and Oxidative Stress
Reactive oxygen species and reactive nitrogen species (RNS) are
generated continuously in the body through oxidative
metabolism, biological functions of mitochondria, and
immunologic functions (25). Physiological ROS are crucially
important for intracellular and extracellular signal transduction
(26). However, it is well-known that overloaded ROS and RNS
can bind with and destroy most cellular biomolecules (lipids,
enzymes, sugars, proteins, nucleic acids, and other small
molecules) under oxidative stress (27–29). Oxidative stress is
considered to be an imbalance in redox properties in certain
cellular environments (30), and plays a crucial role in the
development of numerous human diseases, including diabetes,
obesity, and myocardial injury (31–33). Resistance to oxidative
stress injury is one of the important functions of Sestrin2. In
response to oxidative stress, the expression of Sesrin2 is regulated
at the mRNA and protein level by various transcription factors,
including nuclear factor kappa-B (NF-kB), activator protein-1
(AP-1), CCAAT-enhancer-binding protein beta (C/EBPb),
forkhead box O3 (FOXO3), and p53 (19, 24, 34–36). Sestrin2
has been suggested to maintain the balance of oxidative
metabolism through two main biological functions. First, as an
antioxidant enzyme, Sestrin2 is capable of directly reducing the
accumulation of ROS (37). However, the intrinsic catalytic
antioxidant activity of Sestrin2 remains elusive and limited.
Second, recent studies have demonstrated that Sestrin2 inhibits
ROS production and defends cells against oxidative stress, which
is likely to be mainly attributed to its regulation of several
signaling pathways related to oxidative stress: the Kelch-like
Ech-associated protein 1 (KEAP1)/NF-E2 related factor-2
(NRF2) antioxidant signaling pathway (2) (Figure 1) and the
AMPK and mTORC1 pathways (which will be described in detail
later) (38). NRF2 is a transcription factor that can bind to
antioxidant-responsive elements (AREs) to promote the
expression of many antioxidant molecules to protect cells from
oxidative insults (36). NRF2 is constitutively expressed in the
cytoplasm under physiological conditions (39). Under normal
conditions, KEAP1 binds to NRF2, preventing NRF2
translocation to the nucleus, promoting its ubiquitination and
proteasome degradation, and maintaining free NRF2 in the
cytoplasm at a low level (19). Under oxidative stress, NRF2
dissociates from KEAP1 and translocates to the nucleus. NRF2
binding to ARE activates the transcription of target genes PRX,
SRX, superoxide dismutase (SOD), catalase (CAT), heme
oxygenase 1 (HO1), and glutathione peroxidase 1 (GPX1) (40,
41). In cellular studies, it was found that Sestrin2 binds to unC-
51-like kinase 1 (ULK1) and p62 to form functional complexes,
and that Sestrin2 promotes the phosphorylation of p62, which
further promotes KEAP1 degradation and NRF2 activation (42).
In addition, in studies of liver damage caused by oxidative stress,
Sestrin2 was shown to act as a scaffold protein to enhance the
November 2021 | Volume 12 | Article 751020
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weak binding of KEAP1 to p62, thereby promoting KEAP1
autophagy degradation and preventing oxidative liver injury
(43). More interestingly, NRF2 regulates the expression of
Sestrin2 by binding to the ARE promoter of SESN2 under
oxidative stress (37). A positive feedback loop is formed
between Sestrin2 and NRF2 to promote the transcription and
translation of antioxidant-related genes downstream of NRF2
and to protect cells from oxidative damage (36). Therefore,
during oxidative stress, Sestrin2 is crucial to maintaining
cellular homeostasis.

Sestrin2 and Endoplasmic
Reticulum Stress
ER stress occurs when unfolded or misfolded proteins accumulate
in the endoplasmic network lumen due to adverse physiological
conditions (44). During ER stress, cells can improve their protein
folding ability, inhibit protein production and accumulation,
induce ER stress-related gene transcription, and strengthen the
self-repair ability of ER to restore protein-folding homeostasis and
regulate ER homeostasis through a series of transduction
pathways, including protein kinase R-like endoplasmic reticulum
kinase-eukaryotic translation-initiation factor 2a (PERK-eIF2a),
inositol-requiring enzyme 1a-X-box-binding protein 1 (IRE1-
XBP1), and activating transcription factor 6-CREBH (ATF6-
CREBH). These reactions are called the unfolded protein
reaction (UPR) (45). If ER stress is too strong or lasts too long,
these responses are not enough to restore ER homeostasis, and
apoptosis is eventually induced (46). A growing body of research
has demonstrated that expression of Sestrin2 can be upregulated
underER stress conditions (15, 35, 47). For instance, Park et al. (15)
found that upregulated Sestrin2 is associated with an ER stress-
activated transcription factor, CCAAT enhancer-binding protein
beta (c/EBPb). Once induced, Sestrin2 in turn stops protein
synthesis by inhibiting mTORC1. Recently, a study by H. Jeong
Kim et al. (48) revealed that induction of Sestrin2-regulated
genes can be connected via activation of the PERK/eIF2a/ATF4
pathway. Consistent with these findings, Jegal et al. (35)
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demonstrated that under ER stress, expression of Sestrin2 can be
enhanced via activating transcription factor 6 in hepatocytes, and
Sestrin2 decreases the phosphorylation of JNK and p38 as well as
PARP cleavage, and blocks the cytotoxic effect of excessive ER
stress so as to play a hepatoprotective role both in vitro and in vivo.
Furthermore, Ding et al. (49) elucidated that upregulation of
Sestrin2 expression is dependent on ATF4 and NRF2 but not
p53 under ER stress induced by glucose starvation. To summarize,
Sestrin2 might serve as an important regulator that exerts cell
and tissue protection functions under excessive ER stress.
However, the exact mechanism by which ER stress induces
Sestrin2 expression remains poorly understood and requires
further exploration.

Sestrin2 and Obesity
Obesity is traditionally considered to be the excessive
accumulation of fat in the body, which is a serious hazard to
human health, and in clinical practice, obesity is usually assessed
by the body mass index (BMI) (50). With the improvements in
the general standard of living, the incidence of obesity has risen
sharply (51). Obesity is a major contributor to the development
of metabolic syndromes, including type 2 diabetes mellitus,
hypertension, hyperlipidemia, and cardiovascular disease (52).
Studies have shown that overnutrition and a sedentary lifestyle
are the main causes of obesity (53). mTORC1 is a nutrient-
sensitive protein kinase that has a fundamental role in
maintaining metabolic homeostasis (54). Recent research has
clarified that overnutrition can result in chronic mTORC1
activation (55). In response to persistent overnutrition, chronic
mTORC1 activation can enhance protein and lipid biosynthesis
and inhibit autophagic catabolism (56). Several studies
confirmed that chronic mTORC1 activation mediated by stress
responses such as overnutrition ultimately leads to
overexpression of Sestrin2 (24, 57). Lee et al. (24) found that
the expression of Drosophila Sestrin (dSesn) is upregulated upon
chronic mTORC1 activation via the c-Jun N-terminal kinase
(JNK) and FOXO signaling pathways. Loss of dSesn results in
FIGURE 1 | The effect of Sestrin2 on metabolic-related signaling pathways.
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triglyceride accumulation and mitochondrial dysfunction.
Furthermore, another study by Lee et al. (57) demonstrated
that Sestrin2 is the only Sestrin protein that is induced by
overnutrition and obesity and attenuates chronic mTORC1
activation via the mTORC1/S6K axis in mouse liver. In
agreement with these conclusions, Kimball et al. (58) revealed
that Sestrin2 expression was upregulated in the livers of rats fed
with a high-fat diet. Thus, in a nutshell, Sestrin2 exerts important
metabolic homeostatic functions.
SESTRIN2 AND THE AMPK/MTOR
SIGNALING PATHWAY

mTOR is an evolutionally conserved protein that is a critical
regulator of cell proliferation, proliferation, metabolism, and
autophagy (37). mTOR promotes anabolic processes such as
ribosome biogenesis and synthesis of proteins, nucleotides, fatty
acids, and lipids, and inhibits catabolic processes such as
autophagy (54). It is composed of two structurally and
functionally distinct complexes, mTORC1 and mTORC2,
which are characterized by the presence of Raptor and Rictor,
respectively (59). mTORC1 consists of mTOR Raptor, PRAS40,
and mLST8, while mTORC2 is composed of mTOR, Rictor, Sin1,
Protor, and mLST8 (54). mTORC1 promotes protein and lipid
synthesis through the phosphorylation of its distinctive
substrates, such as ribosomal protein S6 kinase (S6K) and
eukaryotic initiation factor 4E-binding protein 1 (4EBP1) (2).
In addition, mTORC1 may also regulate adipogenesis through
the regulation of the sterol regulatory element-binding proteins
(60). Furthermore, mTORC1 can phosphorylate and suppress
autophagy-initiating protein kinases unc-51-like kinase 1
(ULK1) to inhibit cellular autophagic catabolism (61).
mTORC2 regulates metabolism and cytoskeletal tissue in
response to growth factors through the activation of AGC
family kinases, including AKT, SGK1, and PKCa (62). Recent
studies have shown that mTORC2 in particular is a crucial
controller of lipid metabolism that regulates adipogenesis in
the liver (60).

AMPK, an important nutrient-sensing protein kinase, has a
critical role in increased catabolism and decreased anabolism
(63). AMPK can inhibit the phosphorylation of the acetyl-CoA
carboxylases ACC1 and ACC2, HMG-CoA reductase, and
the glycogen synthases GYS1 and GYS2 to regulate the
biosynthesis of glycogen and lipids (63). It can also inhibit
mTORC1 activity through the phosphorylation of its
regulatory subunit Raptor (64) or through the phosphorylation
of tuberous sclerosis complex 2 and inhibition of mTORC1-
activating guanosine triphosphatase (GTPase) Rheb (4). In
addition, AMPK restrains the transcriptional activity of sterol
regulatory element binding protein (SREBP) through direct
phosphorylation to decrease the expression of lipogenic
genes (65).

Once induced by stress, Sestrin2 affects a variety of signaling
pathways, thus upregulating stress adaptation mechanisms (23).
When induced in response to oxidative stress, Sestrin2 inhibits
Frontiers in Endocrinology | www.frontiersin.org 4112
mTORC1 through the activation of AMPK (66). Consequently,
Sestrin2-deficient cells and tissues exhibit lower AMPK and
higher mTORC1 activity under both normal and stressed
conditions (6, 24, 66). It has been reported that Sestrin2 acts as
a scaffold protein, promoting the binding of LKB1 to AMPK and
subsequent AMPK phosphorylation and activation, and controls
mTORC1 signaling as an inhibitor of guanine nucleotide
dissociation in Rag GTPases (6, 67, 68). Sestrin2 can also
activate AMPK through direct interaction with the a subunit
of the AMPK complex (66).Recent studies have shown that
Sestrin2 can inhibit mTORC1 through AMPK-dependent or
-independent pathways (15, 20, 57, 68) (Figure 1). Sestrin2
can also modulate amino acid-stimulated mTORC1 activation
through direct interactions with Rag A/B GTPases or GATOR2
complexes (68, 80). Sestrin2 binds to GATOR2 and releases
GATOR1 from GATOR2-mediated inhibition. Released
GATOR1 subsequently binds to and inactivates RagB,
ultimately resulting in mTORC1 suppression (81) (Figure 1).
In addition, Sestrin2 plays a critical role in the activation of
autophagy through multiple mechanisms including activation of
AMPK, inhibition of mTORC1, and activation of ULK1 (82)
(Figure 1). Therefore, the AMPK/mTORC1 signaling pathway is
critical for Sestrin2 in controlling cell metabolism and survival
under stress conditions (Figure 1).
ROLE OF SESTRIN2 IN DIABETES, NON-
ALCOHOLIC FATTY LIVER DISEASE, AND
MYOCARDIAL ISCHEMIA/REPERFUSION
(I/R) INJURY

Mounting evidence has demonstrated that Sestrin2 is
upregulated in response to diverse stress conditions, including
oxidative stress, ER stress, and metabolic stress. Sestrin2 exerts a
significant influence on the protection of human cells and tissues
via related signal transduction pathways, and was shown to play
a critical role against metabolic diseases, such as diabetes,
obesity-related non-alcoholic fatty live, and myocardial I/R
injury (Table 1).

Sestrin2 and Diabetes
Diabetes is the most common metabolic disease, and is a chronic
disease characterized by persistent hyperglycemia (83). More
than 90% of diabetics have type 2 diabetes, and insulin resistance
is consistently found in patients with type 2 diabetes (84). Insulin
resistance is an impaired biological response to insulin
stimulation in target tissues, primarily liver, muscle, and
adipose tissue (85). Insulin resistance impairs glucose
processing, leading to a compensatory increase in beta cell
insulin production and hyperinsulinemia. Sestrin2 is highly
expressed in the liver (86). According to literature reports, two
pathways of Sestrin2 affect cell signaling pathway transduction:
one activates the AMPK pathway and the other downregulates
the mTOR pathway (2, 87). AMPK is an enzyme activated in
energy-deficient conditions (2). Sestrin2 is induced by oxidative
stress through activation of the NRF2 and JNK/AP-1 signaling
November 2021 | Volume 12 | Article 751020
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axes (4, 43, 88). In bacteria, AhpD is a critical member of the
antioxidant defense system and regenerates peroxide AhpC, a
bacterial peroxidant protein (Prx), through catalytic reduction.
In mammalian cells, Sestrins interact with overoxidized PRX and
promote its regeneration. Here, Sestrins act similarly to AhpD in
bacteria (77). Sestrins have no direct catalytic activity leading to
the reduction of PRX, but may regenerate PRX by promoting the
activity of other oxidoreductases, such as thioredoxin (SRX) (4).
Sestrins can increase SRX expression by activating NRF2 (6, 43)
(Figure 1). Increased glucose downregulates Sestrin2 expression,
thereby increasing mTOR activity and inhibiting AMPK (87, 89).
Moreover, when treated with high levels of glucose, such as
metformin (an AMPK agonist and mitochondrial respiratory
inhibitor), Sestrin2 was upregulated, mTOR activity was
significantly increased, and AMPK activity was decreased (6,
87). S6K is an effector of the mTOR pathway (90). By activating
S6K, mTORC1 promotes insulin resistance by inhibiting
phosphorylation of insulin receptor substrates (IRS) (Figure 1)
and attenuating the insulin-induced phosphatidylinositol 3-
kinase (PI3K)/AKT signaling pathway (6). mTORC1/S6K
activity leads to serine phosphorylation and protein
degradation of IRS, forming a negative feedback loop in which
insulin signaling attenuates subsequent insulin action (89). Lack
of amino acids , espec ia l ly leucine , leads to rapid
dephosphorylation of the mTORC1 effectors S6K and 4EBP1,
which depend on mTORC1 for amino acid resynthesis (91).
Sestrin2 is required to maintain insulin sensitivity in the liver in
high-fat diet (HFD)-induced dietary obesity and Lepob
mutation-induced inherited obesity (57). AMPK and mTORC1
are important protein kinases with complete antagonistic
functions in metabolic homeostasis (92). Sestrin1 and Sestrin2
activate AMPK through direct interaction with the a subunit of
the AMPK complex (66). Sestrin2 acts by activating AMPK and
inhibiting various mechanisms of mTORC1. We know that
AMPK and mTORC1 play critical roles in metabolism, and
Sestrin2 is involved in many biological processes as an upstream
Frontiers in Endocrinology | www.frontiersin.org 5113
regulator of AMPK and mTORC1 kinases (57) (Figure 1).
Previous experiments in liver-specific Sesn3 transgenic mice
and knockout mice showed that the transgenic mice were
protected against insulin resistance induced by a high-fat diet,
while the Sesn3 knockout mice showed metabolic defects such as
insulin resistance and glucose intolerance (93, 94). Therefore, we
can recognize that Sestrin2 is a potential insulin sensitizer, and
that Sestrin deficiency and/or dysfunction may lead to insulin
resistance, which can lead to the development of diabetes.
Sestrin2 may be a potential therapeutic target for metabolic
diseases such as diabetes (82).

Sestrin2 and Non-Alcoholic Fatty
Liver Disease
With the global trend in obesity and its related metabolic
syndromes, non-alcoholic fatty liver disease (NAFLD) has
become an important cause of chronic liver disease in
developed countries (95). NAFLD is the hepatic manifestation
of metabolic syndrome characterized by intracellular excessive
accumulation of lipids in hepatocytes, excluding alcohol and
other damaging factors (95). NAFLD involves a range of liver
pathological changes, including steatosis, steatohepatitis,
advanced fibrosis, and cirrhosis (96). Existing studies have
shown that NAFLD is closely associated with persistent ER
stress, inhibition of autophagy, mitochondrial dysfunction,
insulin resistance, lipotoxicity, and overnutrition (15, 71, 96,
97). Overnutrition and obesity give rise to excessive lipid
accumulation in hepatocytes, known as hepatic steatosis (98).
We have previously shown that overnutrition can lead to chronic
mTORC1 activation (53). mTORC1 can intensify the
transcriptional activity of sterol regulatory element binding
protein (SREBP) and the expression of lipogenic genes to
enhance lipid synthesis (Figure 1). It is evident that chronic
mTORC1 activation along with persistent inhibition of
autophagy attenuates clearance of liver lipid droplets,
ultimately leading to hepatosteatosis (99). As a feedback
TABLE 1 | Summary of the role of Sestrin2 in metabolic diseases.

Disease Signaling pathway Effect Reference

Diabetes AMPK/mTOR Improves insulin resistance (57, 69)
Increases insulin-sensitivity

Nonalcoholic fatty liver disease AMPK/mTORC1 Reduces lipid synthesis (24, 70)
Attenuates ER stress (15)

Nrf2/ Keap1 Promotes autophagy (2)
Nrf2/HO-1 Prevents oxidative liver damage (43)
JNKs Keeps redox balance (71)

Attenuates lipotoxicity (72)
Myocardial ischemia/reperfusion (I/R) injury AMPK/PGC-1a Reduces the area of myocardial injury

Attenuates the sensitivity of myocardium to ischemia
(73)

AMPK/LKB1 Protects mitochondrial biogenesis (74)
Inhibits myocardial cell apoptosis (75)

MAPK signaling pathway Diminishes myocardial infarct size (76)
Antioxidant protein Improves function of infarcted myocardium (77)
AMPK/mTOR Refines myocardial substrate metabolism (78)

Modulates cardiac inflammation
Restrains ROS production
Improves contractile function
Attenuates myocardial hypertrophy

(79)

Improves cardiac function
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inhibitor of mTORC1, Sestrin2 can partially ease the effect of
chronic mTORC1 activation. For instance, loss of dSesn leads to
moderate downregulation of AMPK and upregulation of
dTORC1 in Drosophila, which contributes to the increased
expression of liposomal enzyme genes and ultimately to the
accumulation of triglycerides (24). Similarly, a study has
confirmed that hepatosteatosis is more serious, and that the
primary cause of hepatosteatosis is reduced lipid b-oxidation due
to reduced autophagy or mitochondrial biogenesis, rather than
increased adipogenesis in Sestrin2-deficient liver (57).
Furthermore, Sestrin2 also reduces the susceptibility of the
liver to oxidative damage via the NRF2/KEAP1 signaling
pathway (43). In mice with Sestrin2 deficiency, cells continue
to translate large amounts of proteins during ER stress, which
subsequently leads to extensive liver damage, inflammation, and
fibrosis (15). Accordingly, once induced by ER stress, Sestrin2
maintains endoplasmic reticulum homeostasis by inhibiting the
AMPK/mTORC1 signaling pathway (Figure 1), thereby
protecting against hepatosteatosis (15). Kim et al. found that
carbon monoxide can induce Sestrin2 upregulation, and Sestrin2
protects against hepatosteatosis by activating autophagy through
the AMPK/mTORC1 axis in a cellular model of NAFLD (48).
More interestingly, Sestrin2 plays an important role in the
protection against lipotoxicity-associated oxidative stress in the
liver via suppression of JNKs (72). In summary, Sestrin2 has a
significant impact on lipid metabolism and represents a potential
therapeutic strategy for NAFLD.

Sestrin2 and Myocardial Ischemia/
Reperfusion Injury
Coronary heart disease, also known as ischemic heart disease
(IHD), refers to the interruption of blood flow to the heart muscle
due to atherosclerosis, coronary thrombosis, and narrowing of the
small arteries of the heart, which remains the leading cause of
death worldwide because the incidence of IHD increases with age
(100, 101). After an acute myocardial infarction, although early
and successful myocardial reperfusion through thrombolytic or
percutaneous coronary intervention is the most effective way to
rescue the ischemic heart and improve the clinical outcome, the
recovery of blood flow can result in myocardial injury, which
reduces the efficacy of myocardial reperfusion, namely ischemia/
reperfusion (I/R) injury (78, 102). Myocardial I/R injury is closely
related to ROS, calcium overload, energy metabolism disorders,
acidosis, and inflammation (102). Some studies have reported that
the I/R process usually results in elevated levels of ROS
production, especially in the early stages of reperfusion, directly
causing myocardial injury (103). Moreover, excessive ROS leads to
programmed cell death through the activation of the mitogen-
activated protein kinase signaling pathway (104). Mitochondria
have an important role in ROS degradation, and dysfunctional
mitochondria are the main sources of pathological ROS (105, 106).
AMPK can protect mitochondria and play an antioxidant role
during the I/R process (78). Furthermore, AMPK has an essential
role in the activation of glucose uptake in the ischemic heart (107–
109). AMPK also activates 6-phosphofructo 2-kinase, which leads
to the production of fructose 2, 6-bisphosphate, further promoting
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glucose utilization in the ischemic heart (75, 110, 111). Therefore,
AMPK is a protein kinase with significant cardiac protection
against myocardial I/R injury (74). Sestrin2 has been shown to
increase the activation of AMPK via interactions with LKB1 to
improve myocardial substrate metabolism under I/R stress (75).
Sestrin2 was originally characterized as a critical antioxidant
protein that contributes to cycling of peroxiredoxins (77).
Independent of this redox-regulating activity, Sestrin2 can
modulate the activation of AMPK to maintain the integrity of
mitochondrial function and reduce the generation of ROS (14, 66,
74, 112). A study by Quan et al. (76) revealed that Sestrin2 greatly
reduces myocardial damage by modulating inflammation and
redox homeostasis in mouse hearts during I/R stress. Hence,
Sestrin2 provides cardioprotection by repressing ROS during I/R
injury. Furthermore, Quan et al. (73) found that the decreased
Sestrin2 levels in aging and Sesn2-knockout mice led to increased
sensitivity to ischemic insults and areas of myocardial injury,
which aggravated worsened cardiac dysfunction. Sestrin2 protects
mitochondrial function by activating the AMPK/PGC-1a
signaling pathway during myocardial ischemia (73). Sestrin2 has
been shown to be upregulated under anoxic and ischemic
conditions and has a protective role against myocardial ischemia
(7, 74, 78). The loss of Sestrin2 aggravates the accumulation of
fatty acids, thereby altering substrate metabolism in the heart and
increasing the production of ROS (37, 78). Inactivation of the
SESN gene in invertebrates can lead to a variety of metabolic
diseases such as muscle degeneration, oxidative damage, fat
accumulation, and mitochondrial dysfunction (4). Existing
studies have reported that Sestrin2 is involved in the protection
of cardiovascular disease by regulating the AMPK signaling
pathway (38). Sestrin2 protein accumulates in the heart during
myocardial ischemia (17), and the myocardial infarction area in
Sesn2 knockout mice was significantly larger than that in wild-type
mice when myocardial ischemia reperfusion occurred (74). In
conclusion, Sestrin2 has an influential role in cardioprotection
during myocardial I/R injury. Therefore, Sestrin2 may be a
therapeutic target for cardiovascular disease, potentially
revealing a new avenue of investigation for the treatment of
cardiovascular diseases.
PROBLEMS AND PROSPECTS

Sestrin2 is a critical intracellular sensor that activates AMPK and
inhibits mTORC1 to regulate autophagy, ER stress, inflammation,
metabolic homeostasis, and oxidative stress. Clearly, the AMPK/
mTORC1 axis is regulated by Sestrin2 and it provides the main
channel for its function. Sestrin2 regulates metabolism-related
signaling pathways, as summarized in Figure 1. However, despite
their physiological relevance, the exact mechanism by which
Sestrin2 promotes AMPK activation remains unclear. Therefore,
further studies are needed to determine the detailed molecular
function of Sestrin2.

Evidence suggests that Sestrin2 has an important clinical
function in responding to a variety of metabolic diseases, such
as diabetes mellitus, insulin resistance, and lipid metabolism
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disorders. In recent studies, serum Sestrin2 levels were
significantly reduced in obese children and patients with diabetic
nephropathy (113, 114). This suggests that the expression or
secretion of Sestrin2 is somewhat obstructed in the disease state.
Furthermore, a study by Kim et al. revealed that in NAFLD cell
models, carbon monoxide protects the liver against steatosis by
inducing upregulation of Sestrin2, which activates autophagy
through the AMPK/mTORC1 axis (48). Consistent with this
view, as a glucagon-like peptide 1 (GLP-1) analog, liraglutide
could reverse NAFLD by enhancing the level of Sestrin2 protein
and the Sestrin2-mediated NRF2/HO-1 pathway (71). Therefore,
we hypothesized that upregulation of Sestrin2 expression could
ameliorate metabolism-related diseases. Sestrin2 shows great
potential as a good prognostic marker and a viable therapeutic
target in a variety of diseases. However, how to induce Sestrin2
upregulation remains elusive under different disease conditions.
Frontiers in Endocrinology | www.frontiersin.org 7115
To design therapeutic strategies to upregulate Sestrin2, it is
important to further study the upstream and downstream
pathways of the multipotent beneficial effects of Sestrin2. Future
studies should use transgenic animal models with conditional
organ-specific knockout of Sesn2 and attempt to link Sestrin2
levels to disease progression, which will help us identify
biochemical pathways regulated by Sestrin2 in specific diseases.
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Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) and
excessive accumulation of dysfunctional PVAT are hallmarks of pathogenesis after
angioplasty. Recent genome-wide association studies reveal that single-nucleotide
polymorphism (SNP) in MIA3 is associated with atherosclerosis-relevant VSMC
phenotypes. However, the role of MIA3 in the vascular remodeling response to injury
remains unknown. Here, we found that expression of MIA3 is increased in proliferative
VSMCs and knockdown of MIA3 reduces VSMCs proliferation, migration, and
inflammation, whereas MIA3 overexpression promoted VSMC migration and
proliferation. Moreover, knockdown of MIA3 ameliorates femoral artery wire injury-
induced neointimal hyperplasia and increases brown-like perivascular adipocytes.
Collectively, the data suggest that MIA3 deficiency prevents neointimal formation by
decreasing VSMC proliferation, migration, and inflammation and maintaining BAT-like
perivascular adipocytes in PVAT during injury-induced vascular remodeling, which provide
a potential therapeutic target for preventing neointimal hyperplasia in proliferative
vascular diseases.

Keywords: PVAT, MIA3, VSMCs, neointima, adipocytes
INTRODUCTION

Coronary stents are routinely placed in the treatment of coronary artery disease (CAD). Though
application of drug-eluting stents (DES) that release antiproliferative drugs, such as paclitaxel-
eluting stents and sirolimus-eluting stents, has dramatically increased success rate compared to
regular bare-metal stents (BMS), in-stent re-stenosis (ISR) remains to be problematic in coronary
interventional treatment (1, 2).
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The underlying molecular mechanism of in-stent neointimal
formation has not been fully understood. VSMCs are the major
cell types of the medial layer arteries and normally adopt a
quiescent, contractile phenotype to regulate vascular tone.
However, VSMCs retain phenotypic plasticity and can
dedifferentiate into a proliferative, synthetic state, which
associated with altered contractile marker expression such as
smooth muscle myosin II (SM-myosin II), smoothelin, calponin,
and smooth muscle-actin (3–5). Vascular injury caused by
angioplasty, stenting, or bypass surgery triggers phenotypic
switch of vascular smooth muscle cells (VSMCs) and
subsequent abnormal proliferation and migration of VSMCs,
leading to excessive formation of neointima, which contributes
to occlusive vascular diseases such as atherosclerosis, intimal
hyperplasia associated with restenosis, and vein graft stenosis (6–
9). Therefore, unraveling the molecular mechanisms involved in
regulating VSMC phenotypic switch, proliferation, and
migration is a vital step toward understanding the pathology
of restenosis.

Adipose tissues are present at multiple locations in the body.
Most blood vessels are surrounded with adipose tissue, which is
referred to as perivascular adipose tissue (PVAT). PVAT shows
characteristics of beige adipose tissue (BeAT) in human and
brown adipose tissue (BAT)-like in mice. PVAT is not always
BAT in mice and humans. It depends on the anatomic location
and environmental/metabolic context. While endovascular injury
originates in the endothelium, its impact is felt throughout the
blood vessel wall, including the adventitia and perivascular
adipocytes (10). Phenotypic changes in PVAT after vascular
injury promote release of adipocytokines that can regulate
inflammation, VSMC proliferation, and neovascularization,
thereby contributing to neointimal formation.

MIA3 (also named TANGO1) protein is localized to the
endoplasmic reticulum exit site, where it loads cargo molecules,
such as collagen VII, into COPII carriers to promote their
secretion out of the endoplasmic reticulum (11, 12). Several
large-scale meta-genome-wide association studies (GWAS)
identified significant association between SNP rs17465637 in the
MIA3/TANGO1 gene and CAD in the European ancestry
populations and also Chinese populations (13, 14). A recent
GAWS for 12 atherosclerosis-relevant phenotypes identified that
the risk of single-nucleotide polymorphism (SNP) rs67180937 in
the chromosome 1q41 locus was associated with lower VSMC
MIA3 expression and lower proliferation (15). However, the role
of MIA3 during neointimal formation is unknown.

Here, the present study showed that MIA3 was upregulated
during SMC phenotypic modulation, which was induced by FBS
administration. Conversely, the knockdown of MIA3 expression
led to impaired proliferation and migration of SMCs, while
MIA3 overexpression induced SMC proliferation. Knockdown
of MIA3 ameliorates femoral artery wire injury-induced
neointimal hyperplasia and increases brown-like perivascular
adipocytes. This preliminary study provides new insights into
the role and molecular mechanisms of MIA3 controlling
function of VSMC and PVAT and identifies a novel potential
target for suppression of neointimal formation.The authors
Frontiers in Endocrinology | www.frontiersin.org 2120
declare that all supporting data are available within the article
and its online supplementary file.

Murine Model of Femoral Artery
Wire Injury
Femoral arterywire injurywas established inmaleC57BL/6mice, as
previously described (16). Briefly, mice were subjected to left
femoral artery injury using a diameter angioplasty guidewire
(0.35-mm diameter; Cook Inc, Bloomington, IN) under ketamine
HCl (100 mg/kg, intraperitoneal injection) and xylazine HCl (10
mg/kg, intraperitoneal injection) anesthesia and aseptic conditions.
Wire-injured femoral arteries were harvested at 28 days
postsurgery, fixed with 4% paraformaldehyde, embedded in
paraffin wax, and sectioned at 8-mm intervals for histology
analysis. The cross-sections of the injured arteries were obtained
at 500 to 1500 mm distant from the ligation at 100-mm intervals.

Sections were stained with hematoxylin and eosin (Servicebio,
China) and Masson trichrome (Servicebio, China) stain kit and
the images were acquired with Leica DM750 microscope. Five
levels of hematoxylin and eosin staining images at 200-mm
intervals were used for quantification of neointimal formation
per mice. Measurements were made for lumen circumference,
the internal elastic lamina circumference, and the circumference
of the external elastic lamina. Measurements were quantified
using ImageJ software (National Institutes of Health, Maryland,
USA). The neointimal area was determined by subtracting the
luminal area from the area bound by the internal elastic lamina.
The media area was determined by subtracting the area bound by
the internal elastic lamina from the area bound by the external
elastic lamina. The intima-to-media ratio was determined by the
intimal area divided by the medial area. Percentage of stenosis
was calculated as the ratio of the intimal area to the area inside
the original internal elastic lamina. Measurements were
performed with the observer blinded to experimental group.

The animal procedures were performed in accordance with
the Institutional Animal Care and Use of Laboratory Animals
and were approved by the Animal Care Committee of Shanghai
Jiao Tong University.

Histology
The tissue sections were immersed in sodium citrate buffer (10
mM, pH 6.0) and heat retrieved for 20min in a 100°Cwater bath to
perform antigen retrieval. The slices were permeabilized and
blocked in PBS-T (0.02% Triton X-100) with 1% goat serum for
1 h. Immunostaining was performed using the following antibodies
diluted in PBS-T (0.02% Triton X-100) at 4°C overnight: anti-
MIA3 (1:200, 17481-1-AP; WUHAN SANYING; China), Rabbit
anti-Ki67 (1:200, Abcam, ab16667), Goat anti-Perilipin-1 (1:200,
Abcam, ab61682), and Rabbit anti-UCP1 (1:200, Abcam,
ab234430). Slides were mounted with Vectashield mounting
medium containing DAPI (Vector Laboratories, Burlingame, CA,
USA). After washing with PBS, sections were incubated with
secondary antibodies (488 nm conjugated anti-rabbit or goat
secondary antibody and 594 nm conjugated anti-rabbit) diluted
in PBS-T (0.02% Triton X-100) for 1 h at room temperature.
Following wash with PBS for three times, slides were mounted with
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vectashield mounting medium containing DAPI (Vector
Laboratories, Burlingame, CA, USA) and imaged using
fluorescent microscope.

Cell Culture
Human aortic VSMCs were purchased from ATCC company
(PCS-100-012, USA) and cultured in Vascular Smooth Muscle
Cell Growth Kit (PCS-100-042, USA) supplemented with 10%
FBS (Hyclone, USA).

Knockdown of MIA3 In Vitro
The siRNA were purchased from Genepharma company and
transfected into cells using Lipofectamine 2000 (Invitrogen,
Carlsbad, CA) for knockdown of MIA3.The sequence of the
MIA3 oligos was 5’-CCAGGUAGUUCAUGAAUAU-3’.

Overexpression of MIA3 In Vitro
The human MIA3 full-length cDNA was subcloned into pCMV3
vector and transfected into cells using Lipofectamine 2000
(Invitrogen, Carlsbad, CA) for knockdown of MIA3. The
plasmid is confirmed by full-length sequencing.

Real-Time Quantitative–Polymerase
Chain Reaction
Real-time polymerase chain reaction was performed according to
our laboratory workflow. The expression of the involved genes
was normalized to GAPDH, and experiment was repeated in
triplicate. The primer sequences were listed as follows (forward,
reverse): MIA3-homo: 5’-AAGTTCCAACAGATGAGACGGA-
3’, 5’-GGTTCAGGTTCCCTTTCCTTAG-3’; a-SMA-homo: 5’-
GAGAGGAGCAAAATCTGTCCG-3’, 5’-GGGGGAATTATCT
TTCCTGGTCC-3’; Cyclin D1-homo: 5’-TGGAGCCCGTGAAA
AAGAGC-3’, 5’-TCTCCTTCATCTTAGAGGCCAC-3’; IL-1b-
homo: 5’-AGCTACGAATCTCCGACCAC-3’, 5’-CGTTATCCC
ATGTGTCGAAGAA-3’; IL18-homo: 5’-TCTTCATTGACCAA
GGAAATCGG-3’, 5’-TCCGGGGTGCATTATCTCTAC-3’;
CCL7-homo: 5’-TGCTCAGCCAGTTGGGATTA-3 ’ , 5 ’-
GGACAGTGGCTACTGGTGGT-3’; CxCL8-homo: 5’-TTTTG
CCAAGGAGTGCTAAAGA-3’, 5’-AACCCTCTGCACCCA
GTTTTC-3’; GAPDH-homo: 5’-CACCAGGGCTGCTTTTAA
CT-3’, 5’-TGGGATTTCCATTGATGACA-3’; MIA3-mus: 5’-
GTGAGGATGAAGGTGACGA-3’, 5’-CTTGCTACCCTGAAG
ACGA-3’; GAPDH-mus: 5’-TGTTTCCTCGTCCCGTAGA-3’,
5’-ATCTCCACTTTGCCACTGC-3’.

Western Blot Analysis
We used RIPA Lysis Buffer (P0013C; Beyotime Biotechnology,
China) to extract protein from SMCs. Twenty micrograms of
protein was loaded in 8% sodium dodecyl sulfate–
polyacrylamide gel electrophoresis gel. Antibodies used were as
follows: anti-MIA3 (1:1,000, 17481-1-AP; WUHAN SANYING;
China), anti-a-SMA (1:1,000, ab7817; Abcam; USA), and anti-
Cyclin D (1:1,000, ab16663; Abcam; USA). A horseradish
peroxidase-conjugated goat anti−rabbit secondary antibody
(1:1,000, A0277; Beyotime Biotechnology, China) was then
added to the membranes at room temperature for 2 h.
Subsequently, ImageJ analysis software was used to quantify
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the bands of Western blot images, and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was used as internal
reference. Each experiment was repeated three times.

Immunofluorescence Staining
Cells were seeded on glass coverslips placed in 24-well plates and
fixed with 4% paraformaldehyde for 15 min and then
permeabilized with 0.25% Triton X-100 in PBS for 10 min.
Then, cells were washed three times with PBS and blocked
with 5% goat serum in PBS for 30 min. Next, the primary
antibodies were used to incubate VSMCs overnight at 4°C.
Appropriate secondary antibodies were incubated with VSMCs
for 1 h at room temperature. DAPI was used to stain the nuclei.
The images were acquired using a fluorescent microscope (Zeiss
LSM780, Carl Zeiss).

Cell Proliferation Assay
Cell viability was measured using the cell counting, MTT assay,
and EdU staining assay. In the cell counting assay, VSMCs
transfected with MIA3 siRNA or overexpressing vector and
scramble siRNA or control empty vector were seeded at an
initial density of 2 × 104 per well in a 12-well plate in VSMC
culture medium with 10% FBS, and the cells were harvested and
counted at the designated time points. For MTT assay, VSMCs
were seeded in a 96-well plate in VSMC culture medium with
10% FBS, and 50 ml of MTT solution [5 mg/ml; A600799, Sangon
Biotech (Shanghai) Co., Ltd.] was added to each well and
incubated for 4 h at the designated time points. To dissolve the
formazan crystals, 80 ml of mixture of 40 ml of isopropanol plus
44 ml of 37% HCl was added to each well after the media were
removed. Absorbance was measured at 570 nm using a
microplate reader (Bio-Rad). EdU staining assay was
performed using the EdU Staining Proliferation Kit (iFluor
647) according to the protocol booklet. Briefly, equal VSMCs
were seeded in a six-well plate after starved for 24 h and allowed
to grow in VSMC with 10% FBS culture medium, and the EdU
solution was added to VSMCs for 2 h under growth conditions.
VSMCs were fixed in 4% paraformaldehyde, permeated, and
stained with reaction mix to fluorescently label EdU for 30 min.
The samples were mounted on glass slides and were visualized
using an inverted fluorescent microscope (Carl Zeiss,
Oberkochen, Germany).

For propidium iodide cell cycle analysis, VSMCs were starved
for 24 h and grown in culture medium for 24 h. VSMCs were
then harvested and immersed in 70% ethanol at the designated
time point. Cell DNA was stained with 50 mg/ml propidium
iodide and 20 mg/ml RNase at 37°C for 30 min. Cell cycle was
analyzed using a flow cytometry with a FACS canTM flow
cytometer (BD Biosciences, Mansfield, MA, USA).

Cell Migration Assay
For the wound healing assay, VSMCs (2 × 105 cells) transfected
with MIA3 siRNA or overexpressing vector and scramble siRNA
or control empty vector were plated onto six-well plates and
serum-starved for 24 h. An artificial wound (scratch) was
generated using a 200-ml pipette tip and cultured for 24 h in
serum-starved medium. SMCs were visualized using a microscope
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and captured images were assessed using Image−Pro
Plus software.

For the Transwell migration assay, VSMCs were cultured on
the microporous membrane (8.0 µm) in the upper chamber of
the Transwell (Costar 3422; Corning Incorporated, NY, USA) in
serum-free medium for 12 h, and VSMC culture medium with
10% FBS was added into the lower chamber. After 24 h, SMCs
were allowed to migrate from the upper chamber to the
underside of the membrane. The unmigrated cells in the upper
chamber were gently removed using a cotton swab. Cells
migrated through the membrane to the lower chamber were
fixed in paraformaldehyde and stained with 0.05% crystal violet.
Migrated SMCs on the lower membrane were counted using an
Olympus light microscope and analyzed using the Image
J software.
Lentivirus Generation and Transduction
Lentivirus was produced using pLV10N-U6-shRNA vector and
mouse MIA3 shRNA was cloned into the vector, and generated
in the 293T viral packaging cell line. Femoral arteries were
transduced locally with 109 IU per mouse in the presence of 10
mg/ml DEAE-dextran after wire injury. The efficiency of MIA3
knockdown was estimated by real-time quantitative-polymerase
chain reaction. The sequence of MIA3 shRNA was
GCAACCAGACTGGTCACTTCA.
RNA Extraction and RNA High-Throughput
Sequencing
RNA-sequencing was conducted on MIA3 knockdown and
control scramble human aortic smooth muscle cells
(HASMCs). Total RNA was extracted using TRIzol
(Invitrogen, USA) following the manufacturer’s instructions.
The total RNA concentration, the RIN value, 28S/18S, and the
fragment size were measured using an Agilent 2100 Bioanalyzer
(Agilent, USA). Oligo(dT)-attached magnetic beads were used to
purify mRNA. The BGISEQ-500 (Shenzhen Huada Gene, China)
platform was used for high-throughput sequencing to obtain a
50-bp sequencing read. The raw data were subjected to quality
control to obtain effective reads. SOAPnuke (v 1.5.2) and
Trimmomatic (v0.36) were used to perform statistical analysis
and filter out reads of low to moderate quality, polluted
connectors, and unknown nucleotides with high N content
before data analysis to ensure reliability. The clean reads were
mapped to the reference genome using HISAT2 (v2.0.4).
Ericscript (v0.5.5) and rMATS (V3.2.5) were used to fusion
genes and differential splicing genes (DSGs).
Statistical Analysis
All values in the graphs represent the mean ± SEM. Comparison
between two groups were compared using an unpaired Student’s
t-test. Statistical analyses were performed in SPSS version 13.0
(SPSS, Inc., Chicago, IL). p < 0.05 was considered to indicate a
statistically significant difference.
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RESULTS

MIA3 Expression Is Increased
in Proliferative Vascular Smooth
Muscle Cells
FBS is a potent mediator of the SMC phenotypic modulation from
a contractile to a synthetic state by promoting SMC proliferation as
well as repressing SMC marker gene expression. To investigate
whether MIA3 is associated with VSMC proliferation, we treated
the cultured HASMCwith FBS, and our data revealed that MIA3 is
expressed in VSMCs and the mRNA and protein level of MIA3 in
cultured proliferating HASMCs are significantly increased
compared with the serum-starved quiescent HASMCs, whereas
SMC contractile gene a-SMA was significantly reduced
(Figures 1A–C). Proliferation gene Cyclin D expression was
enhanced in parallel with MIA3 expression. Immunofluorescence
staining showed that the expression of MIA3 in cultured HASMCs
was induced by FBS (Figure 1D). These data suggest that
upregulation of MIA3 is positively correlated with the synthetic
SMC phenotype and MIA3 may regulate VSMC proliferation.

As FBS-induced VSMC proliferation contributes to
neointimal hyperplasia, we detected MIA3 expression changes
during neointimal formation in a mouse femoral artery wire
injury model. Compared with the control sham group, MIA3
mRNA level in femoral arteries at 28 days after wire injury was
markedly increased (Figure 1E). Consistent with quantitative
real-time reserve transcription polymerase chain reaction, MIA3
protein expression was increased in the femoral arteries at 28
days after wire injury by immunofluorescent staining
(Figure 1F). Taken together, our results demonstrate that the
increase of MIA3 in the femoral arteries after wire injury may be
involved in neointimal hyperplasia

Knockdown of MIA3 Inhibits Vascular
Smooth Muscle Cell Proliferation In Vitro
Proliferation of VSMCs plays a vital role in the development of
neointimal formation. To investigate whether MIA3 participated
in the proliferation of VSMCs, we used siRNA targeting MIA3 to
silence its expression in VSMCs. As shown in Figures 2A, B,
significantly reduced expression of MIA3 was observed in
HASMCs infected with MIA3 siRNA compared with control
scramble siRNA. As expected, cell counting, MTT assay, and
EdU incorporation assay showed that MIA3 knockdown
attenuated VSMC proliferation (Figures 2C–E). Furthermore,
flow cytometry analysis of cell cycle status showed that MIA3
knockdown caused a significant increase in the percentage of
cells in G1 phase (from 42.1% ± 2.0% to 46.1% ± 1.5% in FBS-
stimulated cells) but decreased the percentage of cells in S phase
(from 42.2% ± 0.4% to 35.1% ± 1.6% in FBS-stimulated cells)
(Figure 2F). Collectively, these results demonstrate that
knockdown of MIA3 attenuates VSMC proliferation in vitro.

Knockdown of MIA3 Inhibits Vascular
Smooth Muscle Cell Migration In Vitro
VSMC migration from the medial layer is another key event to
build neointima. Wound healing and Boyden chamber assay
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were used to test the role of MIA3 in the VSMC migration.
Consistent with the role of MIA3 in VSMC proliferation, MIA3-
specific siRNA efficiently attenuated VSMC migration by wound
healing (Figure 3A) and Boyden chamber assay (Figure 3B).
The above data suggested that MIA3 knockdown in VSMC
decreases cell migration in vitro.
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Overexpression of MIA3 Promotes
Vascular Smooth Muscle Cell Proliferation
and Migration In Vitro
Our above data showed that knockdown of MIA3 blocked VSMC
proliferation and migration. We next investigated the effect of
MIA3 overexpression on VSMC proliferation and migration. The
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FIGURE 1 | MIA3 expression is increased in proliferative vascular smooth muscle cells (VSMCs). (A) mRNA levels of MIA3, a-SMA (smooth muscle a-actin), and
Cyclin D1 by quantitative real-time reverse transcription polymerase chain reaction in VSMCs after treatment with medium containing 10% fetal bovine serum for 24 h
and the control FBS-starve VSMCs. Data are represented as the mean ± SEM, n = 3. *p < 0.05, **p < 0.01, t-test. (B) At 48 h after FBS treatment, VSMC extracts
were collected for determining the protein levels of MIA3, a-SMA (smooth muscle a-actin) and Cyclin D1 by Western blotting. GAPDH served as loading control
expression. (C) Quantification of protein expression normalized to the levels of GAPDH. Data are represented as the mean ± SEM, n = 3. *p < 0.05, t-test. (D)
Immunofluorescent staining of MIA3 in VSMCs after treatment with medium containing 10% fetal bovine serum for 24 h and the control FBS-starve VSMCs. DAPI
represents indicates 4’,6-diamidino-2-phenylindole throughout the article; scale bar: 50 mm. (E) mRNA levels of MIA3 by quantitative real-time reserve transcription
polymerase chain reaction in femoral artery after wire injury for 28 days. Data are represented as the mean ± SEM, n = 3. **p < 0.01, t-test.
(F) Immunofluorescent staining of MIA3 in the femoral artery following wire injury for 28 days; scale bar: 100 mm.
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efficiencyofFoxp1overexpressionwas confirmedbyRT-qPCRand
Western blot (Figures 4A, B). Importantly, VSMC proliferation
was increased upon overexpression of MIA3 determined by cell
counting, MTT assay, and EdU incorporation assay (Figures 4C–
E). The wound healing and Boyden chamber assay further
demonstrated that MIA3 overexpression increased VSMC
migration (Figures 4F, G). Together, upregulation of MIA3 itself
promotes cell proliferation and migration of VSMCs.

Knockdown of MIA3 Attenuates Femoral
Artery Wire Injury–Induced Neointimal
Formation in Mice
To investigate the function of MIA3 in femoral artery wire
injury–induced neointimal formation in mice, lentiviral control
shRNA or lentiviral MIA3 shRNA was perivascularly applied to
femoral arteries immediately after wire injury, as described in the
previous studies (16, 17). The decrease of MIA3 expression in
wire-injured femoral artery applied with lentiviral MIA3 shRNA
was confirmed by real-time quantitative–polymerase chain
reaction (Figure 5A). Consequently, at 28 days after femoral
Frontiers in Endocrinology | www.frontiersin.org 6124
artery wire injury, knockdown of MIA3 significantly attenuated
neointimal formation, as shown by the decreased neointimal
area, neointima/media ratio, and percentage of stenosis in the
lentiviral MIA3 shRNA-treated injured artery, but has no
influence on vessel media area (Figures 5B, C). Masson
trichrome staining showed that knockdown of MIA3
significantly reduced ECM deposition after vascular injury
(Figure 5D). Immunostaining showed a significant reduction
of Ki67-positive cells (Figure 5E) in the neointima of MIA3
knockdown mice, suggesting that knockdown of MIA3 inhibits
the cell proliferation contributing to decreased neointimal
hyperplasia after wire injury of femoral artery. These results
indicate that MIA3 knockdown markedly suppresses neointimal
formation in mice.

Knockdown of MIA3 Maintains BAT-Like
Perivascular Adipocytes in PVAT
Extensive inflammatory cell infiltration around the vasculature
in response to vascular injury induces histological and
phenotypic changes of perivascular adipocytes. Dysfunctional
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FIGURE 2 | Knockdown of MIA3 inhibits vascular smooth muscle cell (VSMC) proliferation. (A) MIA3 mRNA levels in human aortic smooth muscle cells (HASMCs)
with small interfering RNA (siRNA) MIA3 and scramble siRNA. Data are represented as the mean ± SEM, n = 3. **p < 0.01, t-test. (B) MIA3/TANGO1 protein levels in
human aortic smooth muscle cells (HASMCs) with small interfering RNA (siRNA) MIA3 and scramble siRNA with quantitative data at right. GAPDH served as loading
control expression. Data are represented as the mean ± SEM, n = 3. *p < 0.05, t-test. (C, D) VSMC proliferation was determined by cell counts (C) and 3-[4,5-
dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay (D) in VSMCs with or without transfection of MIA3-specific siRNAs. All data were indicated as the
means ± SEM, n = 3. **p < 0.01, t-test. (E) VSMC proliferation was determined by 5-ethynyl-2’deoxyuridine (EdU) incorporation in VSMCs with or without
transfection of MIA3-specific siRNAs. Percentage of EdU staining-positive cells was quantified on the right. Scale bar: 50 mm. Data are represented as the mean ±
SEM, n = 3. **p < 0.01, t-test. (F) VSMC proliferation was determined by PI-cell cycle analysis in VSMCs with or without transfection of MIA3/TANGO1-specific
siRNAs. Data are represented as the mean ± SEM, n = 3, t-test.
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PVAT secretes disease-promoting factors that exacerbate
pathogenesis of neointimal formation. So, we investigated
whether MIA3 deficiency altered PVAT features from BAT-
like to WAT-like contributing to neointimal formation.
Immunostaining showed a significant increase of UCP-1-
positive cells (Figure 6A) in the neointima of MIA3
knockdown mice, suggesting that MIA3 deficiency increased
brown-like perivascular adipocytes.

PVAT dysfunction is characterized by its inflammatory
character, and VSMCs are a significant source of chemokines and
cytokines (18). To investigate the mechanism of MIA3 in
maintaining BAT-like perivascular adipocytes in PVAT, we
performed RNA-sequencing of MIA3 shRNA-treated VSMC and
scramble VSMC, and found that knockdown MIA3 in VSMC
decreased IL-1b, IL18, CCL7, and CxCL8 expression (Online
uploaded excel file), which were confirmed by quantitative real-
time reserve transcription polymerase chain reaction (Figure 6B).
The above results illustrate that knockdown MIA3 in VSMC
maintains BAT-like perivascular adipocytes in PVAT via
inhibiting expression of inflammatory factors.
DISCUSSION

Here, we discovered that MIA3 is a novel regulator in promoting
VSMC proliferation and migration during neointimal formation.
Frontiers in Endocrinology | www.frontiersin.org 7125
Knockdown ofMIA3 reduces proliferation andmigration of SMC.
In contrast, MIA3 overexpression promoted VSMCmigration and
proliferation. Furthermore, administration of MIA3 shRNA lenti-
virus attenuated femoral artery wire injury-induced neointima in
mice. In addition, knockdown MIA3 maintains BAT-like
perivascular adipocytes in PVAT via inhibiting expression of
inflammatory factors following femoral artery wire injury. Our
findings identified MIA3 as a novel target for developing
antineointima drugs during vascular repair.

VSMCs are the major cell types of medial layer arteries and
play a pivotal role in regulating the remodeling process of the
vessel wall (19). Fully differentiated SMCs are almost quiescent
with little proliferation and are programmed for contraction with
relatively high expression of SM myosin heavy chain (SMMHC),
SM22a, and calponin. However, in response to local vascular
injury, SMCs dedifferentiate from contractile phenotype toward
a synthetic state, which was characterized by a decreased
expression of contractile SMC marker genes and increased
rates of migration and proliferation (19, 20). Subsequent excess
proliferation and migration result in an accumulation of
synthetic SMCs in the stented artery, which contributes to the
in-stent restenosis. Thus, inhibiting the proliferation and
migration of intravascular SMC is the predominant therapeutic
strategy to prevent the excessive formation of neointima (21, 22).

MIA SH3 Domain ER Export Factor 3 (MIA3) is an
evolutionarily conserved endoplasmic reticulum-resident
A

B

FIGURE 3 | Knockdown of MIA3 inhibits vascular smooth muscle cell (VSMC) migration. (A) The wound-induced cell migration assay was performed in VSMCs with
or without transfection of MIA3-specific small interfering RNA. The relative blank wound areas in the left were quantified on the right. Scale bar: 100 mm. Data are
represented as the mean ± SEM, n = 3. n.s. indicates nonsignificant. **p < 0.01, t-test. (B) The transwell assay in VSMCs with MIA3 siRNA or scramble siRNA. The
transferred and stained cells were counted on the right. Scale bar: 50 mm. Data are represented as the mean ± SEM, n = 3. t-test.
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transmembrane protein and is required for the export of collagen
VlI (COL7A1) from the endoplasmic reticulum. Mice lacking
MIA3 are defective for the secretion of numerous collagens,
including collagens I, II, III, IV, VII, and IX, from chondrocytes,
fibroblasts, endothelial cells, and mural cells (23). Our study
demonstrated that knockdown of MIA3 significantly reduced
Frontiers in Endocrinology | www.frontiersin.org 8126
ECM deposition after vascular injury (Figure 5D), indicating
that MIA3 may regulate vascular remodeling in response to
injury through regulating extracellular matrix secretion.

Genome-wide association studies (GWAS) have described an
association between MIA3 rs17465637 A/C polymorphisms and
CAD and myocardial infarction (24–26). A recent study
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FIGURE 4 | MIA3 overexpression promotes vascular smooth muscle cell (VSMC) proliferation and migration. (A) MIA3 mRNA levels in human aortic smooth
muscle cells (HASMCs) transfected with MIA3 overexpressing vector (OE) and control empty vector. Data are represented as the mean ± SEM, n = 3. **p <
0.01, t-test. (B) MIA3 protein levels in human aortic smooth muscle cells (HASMCs) transfected with MIA3 overexpressing vector and control empty vector with
quantitative data on the right. GAPDH served as loading control expression. Data are represented as the mean ± SEM, n = 3. *p < 0.05, t-test. (C, D) VSMC
proliferation was determined by cell counts (C) and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay (D) in VSMCs with or without
transfection of MIA3 overexpressing vector. All data were indicated as the means ± SEM, n = 3. **p < 0.01, t-test. (E) VSMC proliferation was determined by 5-
ethynyl-2’-deoxyuridine (EdU) incorporation in VSMCs with or without transfection of MIA3 overexpressing vector. Percentage of EdU staining–positive cells was
quantified on the right. Scale bar: 50 mm. Data are represented as the mean ± SEM, n = 3. **p < 0.01, t-test. (F) The wound-induced cell migration assay was
performed in VSMCs with or without transfection of MIA3 overexpressing vector. The relative blank wound areas in the left were quantified on the right. Scale
bar: 100 mm. Data are represented as the mean ± SEM, n = 3. n.s. indicates nonsignificant. **p < 0.01, t-test. (G) The transwell assay in VSMCs transfected
with MIA3 overexpressing vector or empty vector. The transferred and stained cells were counted on the right. Scale bar: 50 mm. Data are represented as the
mean ± SEM, n = 3. **p < 0.01, t-test.
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observed a significant reduction of MIA3 protein in VSMCs in
thin fibrous caps of late-stage atherosclerotic plaques compared
to early fibroatheroma with thick and protective fibrous caps in
mice and humans (15), indicating that high MIA3 expression
may promote atheroprotective VSMC phenotypic transitions.
However, the detailed role of MIA3 in VSMC phenotypic
transitions is unclear. FBS is a key stimulus for VSMC
proliferation, migration, and phenotypic switch contributing to
neointimal formation (27). In this study, the increase of MIA3 in
FBS-induced VSMC may contribute to the development of
injury-induced neointimal formation. The knockdown of
Frontiers in Endocrinology | www.frontiersin.org 9127
MIA3 results indicated that VSMC proliferation and
migration, which are the critical cellular events in vascular
neointimal lesion formation, were regulated, at least in part, by
MIA3. We showed that local transfer of lentiviral MIA3 shRNA
onto the injured arteries could significantly reduce VSMC
proliferation and decreased neointimal formation at the 28th
day post-injury, providing a basis for preventing or inhibiting in-
stent restenosis via MIA3 siRNA-coated stents.

A previous study demonstrated that overexpression of
endothelial MIA3 significantly increased EC proliferation,
migration, and EC tube formation, which suggest that EC-
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FIGURE 5 | Knockdown MIA3 ameliorates femoral artery wire injury-induced neointimal hyperplasia in mice. (A) Quantitative real-time reserve transcription
polymerase chain reaction was performed to confirm the decreased expression of MIA3 in the injured femoral arteries. Data are represented as the mean ± SEM,
n = 5. **p < 0.01. t-test. (B) Representative hematoxylin and eosin (H&E) staining of mouse femoral arteries after wire injury for 28 days from mice infected with MIA3
shRNA lentivirus and scramble shRNA lentivirus. Scale bar: 100 mm. (C) The neointima area, intima-to-media ratio, % stenosis, and media area of wire-injured
femoral arteries from mice infected with MIA3 shRNA lentivirus and scramble shRNA lentivirus. *p < 0.05, **p < 0.01, n.s. indicates nonsignificant. n = 5, t-test. (D)
Representative Masson trichrome staining of mouse femoral arteries after wire injury for 28 days from mice infected with MIA3 shRNA lentivirus and scramble shRNA
lentivirus, with quantification data on the right. Scale bar: 100 mm. Data are represented as the mean ± SEM, n = 5. **p < 0.01. t-test. (E) Knockdown MIA3 with
shRNA lentivirus exhibit a significant reduction of Ki67-positive cells in the neointima at 28 days after femoral artery wire injury, with representative images (left) and
quantification data (right; n = 5 for each group). Data are represented as the mean ± SEM, n = 5. *p < 0.05. t-test.
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MIA3 might alleviate neointimal formation (24). We will pursue
the role and mechanism of endothelial MIA3 in vascular injury
neointimal formation in the future.

PVAT surrounds most large blood vessels and plays
important roles in vascular homeostasis and excessive
accumulation of dysfunctional PVAT leads to vascular
disorders by targeting VSMCs and endothelial cells (10, 28).
PVAT displays heterogeneity according to species and locations.
Reversing the white features of PVAT to brown characteristics or
maintaining PVAT beige features might be a crucial strategy to
maintain a healthy vasculature (28). Our study revealed that
MIA3 deficiency increased the expression of uncoupling protein-
1 (UCP-1), the brown fat marker, in perivascular adipocytes,
which indicated that MIA3 deficiency in VSMCs reversed the
white features of PVAT to brown characteristics. RNA-
sequencing bioinformatic analysis indicated 694 upregulated
genes and 628 downregulated genes in MIA3-shRNA- and
scramble-shRNA-treated VSMCs (Online uploaded excel file).
The differentially expressed genes between scramble and MIA3
knockdown VSMCs were enriched for protein processing in
endoplasmic reticulum, Hippo signaling pathway, TGF-b
Frontiers in Endocrinology | www.frontiersin.org 10128
signaling pathway, etc. Knockdown MIA3 in VSMC decreased
IL-1b, IL18, CCL7, and CxCL8 expression according to the
RNA-sequencing bioinformatic analysis, which implies the
important roles of inflammatory factors derived from VSMCs
in injury-induced neointimal formation.

In summary, we present compelling evidence that MIA3
deficiency in VSMCs prevents neointimal formation by
decreasing VSMC proliferation and migration and restoring
BAT-like PVAT during injury-induced vascular remodeling.
Our study found for the first time that inhibition of MIA3 in
the injured arteries can prevent postangioplasty restenosis,
supporting a potential role for MIA3 and its target genes in a
variety of proliferative vascular diseases. These findings may
have extensive implications for the treatment of occlusive
vascular diseases.
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FIGURE 6 | Knockdown MIA3 increases the expression of uncoupling protein-1 in the perivascular adipocytes. (A) Knockdown MIA3 with shRNA lentivirus exhibited
significant increase of PLIN and UCP-1 double-positive cells in the neointima at 28 days after femoral artery wire injury, with representative images (left) and
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