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Editorial on the Research Topic

Seizure Forecasting andDetection: ComputationalModels,Machine Learning, andTranslation

Into Devices

For the 50 million people with epilepsy worldwide, seizures are seemingly unpredictable events
that can be associated with significant morbidity and mortality. Reliable methods to identify and
anticipate seizures could enable powerful new therapeutic strategies. Owing to the paroxysmal
nature of seizures and the challenges associated with long-term monitoring of brain activity,
however, such methods have been elusive—until now. Recent advances in computational methods
and device technology have reshaped the epilepsy landscape and made accurate detection and
forecasting of seizures a reality. This Research Topic was launched with the aims of highlighting
the latest of these advances and portraying the current state of seizure detection and forecasting
through the viewpoints of patients and researchers. The 18 articles in this special issue comprise
three Perspectives, three Reviews, and 12 Original Research articles.

This collection begins with a first-person account from Moss et al. of one family’s experience
with drug-resistant epilepsy, including their appraisal of current seizure detection devices;
challenges encountered related to privacy, stigma, and comfort; and the need for greater
collaboration between patients and researchers, Grzeskowiak and Dumanis survey a large sample
of caregivers and adults living with epilepsy to assess directly their perspectives on seizure
forecasting, including the optimal forecast horizon, the types of information that would be most
useful for day-to-day planning, and the potential risks of forecasting tools. Hubbard et al. and
Brinkmann et al. review the current status, technical challenges, and performance characteristics
of contemporary seizure detection devices. Both groups highlight the critical need for research
on several fronts: robustly designed clinical validation studies; algorithms to detect seizure types
in addition to convulsive seizures (CS); better incorporation of meaningful clinical outcomes—
such as morbidity, mortality, and quality of life—into algorithm evaluation; and more emphasis by
developers on patient-centered considerations prior to beta-testing of new algorithms.

Several research groups whose work is included in this issue have already made
substantial progress toward these goals. Glaba et al. and Kjaer et al. describe promising
new algorithms that leverage physiological measurements to detect seizure types
other than CS, including absence seizures, using electroencephalography (EEG),

5

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.874070
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.874070&domain=pdf&date_stamp=2022-03-16
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:Sharon.Chiang@ucsf.edu
https://doi.org/10.3389/fneur.2022.874070
https://www.frontiersin.org/articles/10.3389/fneur.2022.874070/full
https://www.frontiersin.org/research-topics/17418/seizure-forecasting-and-detection-computational-models-machine-learning-and-translation-into-devices
https://doi.org/10.3389/fneur.2022.779551
https://doi.org/10.3389/fneur.2021.717428
https://doi.org/10.3389/fneur.2021.740743
https://doi.org/10.3389/fneur.2021.690404
https://doi.org/10.3389/fneur.2021.685814
https://doi.org/10.3389/fneur.2021.718329


Chiang et al. Editorial: Seizure Forecasting and Detection

and focal seizures, using subcutaneous EEG, accelerometry,
and electromyography. Although collection of these types of
physiological data is essential for seizure detection, patient
privacy and unobtrusiveness of devices are also paramount
considerations in algorithm and technology development. In
this context, Manzouri et al. quantify and compare the relative
energy efficiency and performance of several common machine
learning methods, including random forests, recurrent (e.g.,
long short-term memory), and convolutional neural networks.
Hyperdimensional computing, reviewed in an accessible tutorial
by Schindler and Rahimi, is proposed as a powerful approach
to develop energy-efficient seizure detection algorithms. Similar
considerations of efficiency and performance are relevant
for devices being developed for seizure detection. Frankel
et al. report on a prospective feasibility study of Epilog by
Epitel, Inc., a wearable 10-channel EEG system for long-
term recordings. The authors recruited expert EEG readers
and evaluated their ability to detect seizures using Epilog
with or without a clinical decision support system. Onorati
et al. conducted the first prospective multi-center study of
a multimodal CS detection system, based on a wrist-worn
device combining accelerometers and electrodermal activity
sensors, and they report excellent sensitivity and a low false
alarm rate.

Seizure detection algorithms also promise improvements to
epilepsy diagnostic evaluations. As discussed by Parasuram et al.
computational methods that accommodate spatial and temporal
features of EEGmay be more useful for identifying the ictal onset
zone compared to methods relying on temporal features alone.
Li et al. provide promising evidence that deep neural networks
can identify seizures that are occult on scalp EEG but visible
in intracranial EEG. These neural networks can also achieve
high prediction accuracy for other tasks, including ictal onset
zone lateralization and discrimination between ictal, preictal, and
interictal periods.

Seizure detection and seizure forecasting represent
complementary strategies for mitigating morbidity in epilepsy.
Whereas, seizure detection provides a means to alert caregivers
to seizures when they occur, seizure forecasting aims at reducing
uncertainty by quantifying the likelihood of seizures in the future
(1–3). The niche endeavor of forecasting seizures already has a
decades-long history (4, 5), but has only recently gained traction
among clinicians and patients, as the recent development
of devices and algorithms makes it a plausible near-reality.
Brinkmann et al. review variables that can be incorporated into
seizure forecasting algorithms, including cycles of brain activity
that help determine seizure risk (6, 7). Karoly et al. delve into
these seizure cycles and debunk several common misconceptions
related to seizure forecasting. For example, the authors clarify
that cycles in epilepsy cannot be explained solely by behavioral
patterns, medications, or catamenial effects, and they argue
that long timescale rhythms in epilepsy may reflect systemic
physiological processes that are cyclical and that manifest
across a range of human diseases (Karoly et al.). This view
agrees with the identification of multidien rhythms of epileptic
brain activity as free-running, and thus likely endogenous in
nature (8, 9).

The feasibility of seizure prediction on a population scale
hinges on the development of minimally- and non-invasive
devices. In a study of 11 patients with wearable devices,
Stirling, Grayden et al. demonstrate that seizure likelihood can
be forecasted with better than chance-level accuracy by using
algorithms that incorporate data on heart rate, sleep, and step
counts. Stirling, Maturana et al. show that seizure prediction
is also possible with subcutaneous EEG (10) by using a state-
based approach involving a two-step combination of logistic
regression and random forests. Despite growing interest in
potential applications of subcutaneous EEG (11), scalp EEG
remains far more widely available, so Truong et al. use scalp
EEG data and a Bayesian convolutional neural network to predict
seizures in three patients. Attia et al. describe the design and
architecture of the Mayo Epilepsy Personal Assistant Device,
a cloud-based mobile platform integrated with an implanted
intracranial neurostimulation device that is being used in an
ongoing trial of neurostimulation in ten patients with bilateral
mesial temporal lobe epilepsy. This special issue concludes with
a cautionary note from Bosl et al. who draw upon experience
from seizure detection efforts to highlight both the promise of
seizure forecasting and the need for tempered optimism in a
burgeoning field.

The 18 articles featured in this issue provides a status update
and insight into representative lessons learned thus far in the
years since the goals set by colleagues Mormann et al. (4)
and Freestone et al. (5). In summary, we offer the reader the
following insights on the current status of seizure detection and
forecasting and several important priorities that emerge from this
special issue:

1. Emphasis on multimodal techniques: There is no single
perfect data stream; seizure detection and forecasting
approaches will benefit from increased focus on statistical
methods that accommodate multimodal data.

2. Focus on understanding patient priorities and patient-

researcher partnerships: Patient perspectives are crucial to
aid understanding of essential algorithm and device design
aspects early in the development cycle, and to ensure
that patient priorities maintain primacy in algorithm/device
development (12).

3. Interpretability and explainability in machine learning:

Machine learning methods may identify insights that humans
cannot. Interpretability and explainability of predictions
are active areas of research. We anticipate that the coming
years will see translation of emerging computational
techniques to enhance explainability into the area of
seizure detection/forecasting.

4. Expansion of seizure detection to other seizure types:

Current seizure detection methods achieve excellent
performance using EEG. Detection algorithms with non-
EEG signals have attained high sensitivity and specificity
for certain types of seizures (convulsions), but remain
limited for detection of other seizure types. Communicating
the nuanced limitations of these methods to the patient
community is just as critical as research on algorithms to
detect non-convulsive seizure types. Developing technology
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to quantitatively measure patient behavior and consciousness
may help advance seizure classification.

5. Need for increased studies evaluating

reproducibility/generalizability: Studies are emerging
which seek to evaluate the reproducibility and generalizability
of seizure detection/forecasting algorithms, and additional
development will be needed to translate these algorithms
into real-world settings. Expanding the sensing, data
storage, and streaming capabilities of the next generation
of devices will facilitate seizure detection/forecasting
algorithm development.

6. Computational efficiency vs. performance: Given the
importance to patients of non-stigmatizing devices,
designing computationally efficient algorithms, balancing
computational efficiency vs. performance, and developing
minimally-invasive devices are research priorities.

7. Individualized algorithm development: Patients are
heterogeneous in their seizure patterns and semiologies,
as well as in the salient variables and non-linear functions
relating these variables. A patient whose seizures may not be
detected/forecasted by one algorithm and/or set of variables
may be well-predicted by another. It is likely that multiple

methods will need to be combined and tailored based on
patient-specific factors.

8. No prediction or detection method is perfect: Seizure
forecasts reduce uncertainty but do not eliminate it. The hope
is that quantified uncertainty will translate into improved
quality of life for people with epilepsy, but, although
reasonable, this leap of faith will require direct testing in the
clinical setting.
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Great strides have been made recently in documenting that machine-learning programs

can predict seizure occurrence in people who have epilepsy. Along with this progress

have come claims that appear to us to be a bit premature. We anticipate that many

people will benefit from seizure prediction. We also doubt that all will benefit. Although

machine learning is a useful tool for aiding discovery, we believe that the greatest progress

will come from deeper understanding of seizures, epilepsy, and the EEG features that

enable seizure prediction. In this essay, we lay out reasons for optimism and skepticism.

Keywords: electroencephalography, machine learning, chaos & non-linearity, dynamical systems, seizure

prediction

INTRODUCTION

In a 2016 Epilepsy Foundation research program survey of people with epilepsy, “unpredictability
was selected as a top issue regardless of seizure frequency or severity” (1). Seizure recurrence
can be severely limiting (e.g., no driving), (2) socially disruptive and stigmatizing (3), and
even life-threatening (4). Consequently, seizure prediction has the potential to improve epilepsy
management and, therefore, the quality of life of persons with epilepsy (5).

Successful methods to predict an imminent seizure based on electrographic signatures, and
potentially intervene with, for example, “responsive neurostimulation” (RNS) (6–8), would allow
alternatives to drugs to minimize seizure recurrence. When a “pro-ictal” (9, 10) or “pre-ictal
state” (11, 12) is identified, this mode of therapy provides highly localized stimulation intended
to interrupt a seizure. Identification of times of greater and lesser seizure susceptibility will likely
benefit patients, as such states may permit urgent care and interventions.

Progress in our understanding of how seizures develop and propagate (13) would lead to the
expectation that “it may be possible to provide seizure prediction to a wider range of patients
than previously thought” (14). We are not so sure. Before we explain why we expect only limited
success anytime soon, we briefly review what is new with seizure prediction and potential electronic
interventions for refractory epilepsy.

Clinicians and patients have long known that some seizures can be preceded by warning
signs or symptoms (15). By and large, only about a quarter of patients with generalized epilepsy
acknowledge an aura (15).

Electrocorticography (ECoG), which records from electrodes placed directly on the exposed
surface of the brain, appears to be the best way to gather all the information for surgical removal of
a seizure focus (16). ECoG signals are physically identical to EEG signals. Since they are placed
directly on the cortex, less noise contaminates the signal and electrodes can be more closely
spaced. Otherwise, the raw data from ECoG that might be fed into a machine learning algorithm
is the same as with EEG data. The prediction of seizure recurrence now seems possible with
scalp electrodes (17–31). Nevertheless, “modest outcomes associated with localization of abnormal
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electrophysiology suggest . . . a fundamental gap in our
understanding of how neurophysiologic biomarkers relate to
pathophysiology” (32).

Seizure prediction algorithms can be characterized in a variety
of ways. One perspective is to consider three independent aspects
or axes: (1) the physiological signal to be measured, such as brain
electrical activity or heart rate; (2) signal processing methods,
which compute various signal features; and (3) machine learning
methods, which take signal features as input and attempt to
find patterns of features that distinguish seizure activity from
non-seizure activity. Advances in signal features and machine
learning algorithms continue to advance rapidly and contribute
to improved seizure prediction. Signal features that are associated
with seizures appear to be patient-specific. Hence, to have
any value, machine learning algorithms need signal features
from many seizures over a long period of time (33). EEG
measures of brain electrical activity continue to be the most
common physiological measure associated with seizures, but
other measures based on cardiac function, dermal response, or
movement are also used (34).

BACKGROUND FOR UNDERSTANDING

SEIZURE GENERATION, INHIBITION, AND

PROPAGATION

In the next few paragraphs, we review some elements of seizure
generation and propagation that might aid in understanding
electrographic correlates of seizures.

Epileptogenic Zone
The epileptogenic zone (EZ) is tautologically defined as the brain
area indispensable for seizure generation (35). Among patients
with focal epilepsy, more than 90% of seizures have discharges
in the seizure focus and not elsewhere (36). In some patients,
however, complete resection of the presumed EZ did not lead to
seizure-freedom (37). Post-surgical recordings of these patients
suggest that areas adjacent to the resection were also triggering
the epileptic seizures. So was born the concept of “potential
seizure-onset zones” (37).

Deeper gray structures (such as the thalamic reticular nucleus)
appear to modulate the onset and propagation of other seizure
phenomena (e.g., epileptic 2–4Hz spike-wave discharges) (38).
In addition, the epileptogenic zone in patients with pharmaco-
resistant seizures can be larger than in people whose seizures are
more readily controlled with medication (39).

Seizure Propagation and Networks
Seizure generation is only the beginning. Seizures are propagated
“when synchronous connected groups of neurons work in
tandem with rapidly changing de-synchronous relationships
from the surrounding epileptic network” (40). The balance
between inhibition and propagation, and—to a certain extent—
underlying structural and functional connectivity, will determine
to what extent the seizure does or does not spread (41).
One seizure onset pattern is characterized by hypersynchrony

and progressive impairment of inhibition leading to seizure
propagation (42).

Seizures are currently defined by the area and signal
recorded. As identification of these improve, so will seizure
definition and seizure detection. Examples are intensive care
patients who had a much higher percentage of seizures
detected by intracortical depth electrodes than by surface EEG
(43). Therefore, higher spatial resolution, and evaluation of
additional signal characteristics have the potential to influence
our perception of seizures. Hence, seizure prediction hinges on
our definition of seizure onset, which is likely to change as
detection techniques improve.

Inter-neuronal activity in the cortex can restrain the spread
of epileptiform activity (44). As might be expected, seizure
propagation is enhanced when local inhibition networks are
defective (45).

Although many reports of brain functional connectivity have
assumed “temporal stationarity” (i.e., no change with time),
brain networks do reorganize almost continuously in response
to both internal and external stimuli, resulting in temporal
fluctuations of functional connectivity within and between
networks across multiple time-scales (46, 47). By “coordinating
excitability between brain regions in the epileptic network,”
changes in functional connectivity between/among networks
not only allow propagation of the seizure activity, but might
“enhance initiation, evolution, and termination of seizures”
(32). The widespread disturbances of structural and functional
connectivity that characterize some seizure disorders also appear
to contribute to treatment resistance (48).

Epilepsy is considered to be a disorder of neural network
organization (49). Research in network science has shown that
small changes in network structure can have very large effects
on network function, just as small changes in initial conditions
can have large effects on time series (50). This suggests that
small changes to a non-epileptic neural network may be all that’s
needed to make the brain epileptic. Similarly, small changes
in just the right brain regions may be all that’s needed to
reduce seizures. Although this has not yet been demonstrated
in humans, tools for measuring functional cortical networks are
now available (51).

The signal variability of local connectivity among people
with epilepsy appears to be significantly higher than in healthy
controls (52), bringing excitability of the cortical neurons more
often closer to the tipping point of seizures. Although network
connectivity in seizure-onset zones can be increased during
inter-ictal epochs (32, 53), ictal electrographic patterns appear
to be generated by network mechanisms that are different
from those sustaining inter-ictal potentials (54). Even brief focal
spikes can activate diffuse distant networks (55), supporting the
characterization of epilepsy as a network disease (56, 57).

Electrographic Correlates/Patterns

/Signatures of Seizures
In one third of patients with a diagnosis of pharmaco-resistant
focal epilepsy who are candidates for therapeutic surgery,
fast activity at 80–120Hz associated with very slow transient
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polarizing shift, and voltage depression appear to be excellent
biomarkers of ictogenesis and reliable indicators of epileptogenic
zone boundaries (58). The high rate of co-occurrence probably
reflects the restrictive criteria used to select candidates for
surgery who have a presumed single-seizure-focus. Others have
found spectral power in discreet frequency bands, as well as
time- and/or frequency-domain inter-channel correlations to be
helpful (14, 59).

Still other seizure onset patterns are characterized by de-
synchronization of background activity and the appearance
of fast low-voltage rhythms (41, 42), while excessive
synchronization correlates with termination of the seizure
(60). The seizure evolution pathway appears to differ among
patients and tends to be stereotypical for each individual
(11, 13, 61). Consequently, for prediction purposes, ictal
electrographic signatures need to be individualized for each
person for each seizure type (5, 14, 17, 20, 23, 25, 31, 56, 62–72).
The buzzword is “patient-specific.” Perhaps “big data” should be
another buzz-word because analyses of large sample sizes and
multiple individual variables will be needed to decide if groups
of patients with similar epilepsy types and other physiological
or demographic conditions can be viewed as a (relatively
homogeneous) group.

Chaos and Chaotic Systems
Unlike its meaning in common parlance, “chaos” does not mean
random, but only practically unpredictable. Even though the
current state of the system might be known almost infinitely
precisely, the smallest error or perturbation limits our ability to
predict future states of the system.

Seizures often appear to be surprising. This apparent
unpredictability might reflect purely random phenomena, or
emergent chaotic phenomena that can arise at any time. If
seizures are random, then prediction may be impossible in most
cases until the pre-seizure changes begin to occur. If seizures
are emergent chaotic phenomena, seizure prediction should
be possible, since chaotic systems are deterministic. However,
the chaotic nature of the system may limit the pre-seizure
prediction time.

Non-linear (or chaotic) systems are composed of parts that
can interact in complex ways, even if the parts themselves
have simple dynamics or behavior. Non-linear systems are
characterized by sensitive dependence on initial conditions,
emergent phenomena, spontaneous order or synchronization
between components, adaptation, and feedback loops (defined
below), all of which result from the complex interaction of the
parts. The EEG patterns of epilepsy appear to be non-linear
(73, 74), likely reflecting non-linear dynamics of the brain.

Emergence has been defined as “the arising of novel and
coherent structures, patterns and properties during the process
of self-organization in complex systems" (75). This process
of “self-organization” consists of adaptive behaviors between
parts that emerge within chaotic systems, leading to a limited
number of relatively stable configurations (76). The non-epileptic
brain is stable and does not easily move into an ictal (seizure)
state. It exhibits a property called “dynamical resistance” to
seizures, which refers to a resistance to transitions to a seizure

state (77). Resilience, a similar dynamical property, describes
a system’s ability to maintain normal function when internal
errors or external environmental conditions arise (78). The
epileptic brain may have reduced dynamical resistance and/or
resilience, resulting in “multistable dynamics,” (79) which means
that it may spontaneously self-organize into a stable ictal state
(80, 81). Dynamic networks based on EEG channel synchrony
or coherence (amplitude synchrony) of the EEG may also
differentiate patients with generalized epilepsy from normal
controls (82).

Sensitive dependence on initial conditions is exemplified by
the butterfly effect. In the highly non-linear atmospheric system,
a small perturbation produced by a butterfly can lead to large
changes at a future time, perhaps even a hurricane. In short,
an arbitrarily small change in the state of a non-linear system
at one time can have a large effect later. This is what makes a
deterministic non-linear system practically unpredictable. It is
not yet known if seizure occurrence (as opposed to the underlying
neural spiking activity) follows a deterministic, chaotic pattern,
or if it is simply a purely random process (83, 84).

Nobody is in charge of food distribution for most major cities
and yet food gets distributed. This characteristic of complex
systems is identified as spontaneous order, which may represent
what occurs during the inter-ictal resting state (85). Another
perspective is that the ictal and inter-ictal states each represent
a stable, or semi-stable, attractor state of the dynamical system.
An epileptic brain transitions between these states relatively
easily, while this phase shift is very difficult to induce in a
non-epileptic brain.

Neural connectivity, information transmission, and
processing that are essential functions of the brain, may be
altered on a large scale to allow the brain to switch into
pathological states such as seizures, suggesting a scale dependent
tipping (critical) point between normal physiologic function
and pathological spread of electrical activity (86). However, if
the neural structure of the brain is near a critical point, small
changes in neural network structure may tip the brain into an
unstable regime where seizures can occur spontaneously. This
kind of spatial sensitivity to small changes has been described for
networks (87).

Pre-ictal
If seizure prediction is to become clinically useful, programs that
analyze electrical activity need to identify the pre-ictal state as
early and reliably as possible before seizure onset. At present, we
do not know when the pre-ictal state begins. Knowing when the
pre-ictal state begins will allow an assessment of the time needed
to detect and interrupt an impending seizure.

Dynamic models of events define different phase transitions
(some with and others without an event or characteristic)
and then model the probability of transitions from one state
to another (88–91). People who work on seizure-prediction
algorithms recognize at least three states: a seizure (ictal) state, a
pre- or pro-ictal state, and all others. Machine-learning programs
are given the task of comparing the electrographic characteristics
of variously defined time intervals before a seizure to the
electrographic characteristics of times further away (in time)
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from seizure onset. The goal is to define a pre-ictal state. To
do this effectively, the machine-learning programs need to be
provided an abundance of EEG recordings (92), which are
becoming increasingly available.

Characteristics of Ictal EEG
One group found that a few hours before a seizure, the
“network states become less variable (“degenerate”), and this
phase is followed by a global functional connectivity reduction”
(93). Others have reported “less chaos” (94, 95) or “increased
synchronization” before a seizure (18, 96). One group found
that prior to seizure onset, the amplitude of pre-ictal discharges
progressively increased as the interval between these discharges
gradually decreased (97), while others have found that the
cumulative energy profile (98), or measures of spectral entropy,
spectral energy, and signal energy can help identify pre-
ictal states (17). Still others have emphasized that the best
discriminators vary for each individual (99), while another group
emphasized the co-occurrence of multiple phenomena in a high
potassium hippocampal slice model (loss of neuronal network
resilience within the setting of critical slowing down, decreased
ability of a network to recover from perturbations, increased high
frequency fast activity, and successively decreasing resilience to
stimulation (100).

Timing
The goal is to be able to identify the increased seizure propensity
sufficiently before the seizure onset. The interval between
identification of the likelihood of an impending seizure and the
occurrence of the seizure has varied considerably, from under
10 s (17, 23, 24, 72, 81, 101, 102) to intervals of an hour or more
(20–22, 36, 93, 103).

Periodicity
Seizures can display multiple types of periodicities (e.g.,
circadian, multi-day, weekly) in dogs (104) and humans (5, 105–
109). Because only some people have seizures that occur with
an obvious periodicity, seizure prediction is best viewed as
patient-specific (5). Changes in level of epileptogenicity (state
transitions) (110, 111) that most likely characterize periodicities
are best viewed as contributing information to seizure-forecasts
(112). To what extent these periodicities reflect changes in
high-frequency oscillations (112), EEG spike potentials (112),
brain connectivity, and inhibitory neurons (113) remains to be
quantified. Seizure prediction algorithms are most likely to be
effective when they include all the variables that provide relevant
discriminating information for that patient. Each individual’s
seizure periodicities, once quantified, may be among those
discriminating information.

Warning Signals Before Critical Transitions
The existence of early warning signals before catastrophes (e.g.,
species extinction, pandemics) (114–117) supports the concept
that gradual transitions from stable to unstable conditions can
reach a tipping point that heralds the irreversibility of the
transition (118). Phase transitions in chaotic systems can happen
either gradually or suddenly, depending on the system (119).

Indeed, the relatively early aspects of the transition from a non-
seizure state to seizure activity can be gradual (54, 120, 121)
and widespread (36). “The suitability of typically applied early
warning indicators for identifying heightened probability of a
seizure remains controversial” (122, 123).

Binary Forecast or Probability Estimate of

Seizure Risk
The seizure detection system can provide a binary forecast
(impending seizure: yes/no), or a forecast that provides an
estimated probability of an impending seizure (91, 124). The
probability forecast, though obviously more informative than a
binary forecast, will likely be degraded to a binary forecast when
algorithms are written to initiate responsive neurostimulation
(8). Even binary forecasting systems (high- and low-risk), using
only patient-reported seizure data, correctly predicted seizures in
about half of 50 patients (125).

Relatively Reliable Prediction
In an international crowdsourcing competition, an appreciable
number of the more than 10,000 algorithms submitted by 478
teams were able “to distinguish between 10-min inter-seizure
versus pre-seizure data clips” for each of three patients based
on 442 days of continuous intracranial electroencephalography
recordings from 16 subdural electrodes (14). These results
prompted the authors to conclude, “clinically-relevant seizure
prediction is possible in a wider range of patients than previously
thought possible.” While these results are promising, they are
limited to three patients. As noted previously, different patients,
or different epilepsy types, may have different pre-ictal time
periods, ranging from seconds to an hour or more. Much larger
patient sample populations will be needed to map out the
limits of pre-seizure prediction. As a first step in this direction,
crowdsourcing analysis of intracranial EEGs continues on related
platforms, such as epilepsyecosystem.org (14, 126).

Not so Reliable Prediction
Despite subsequent expressions of enthusiasm (12, 31, 92, 127,
128), others have found that the EEGs of one third of patients
with focal (129) or multifocal (130) epilepsies were not able
to provide adequate predictive information about impending
seizures. Findings such as these prompt us to offer words of
caution about the anticipated capability to predict seizures and
intervene effectively to prevent seizure occurrence.

In our acknowledging that some, perhaps many, people
with seizures will benefit from machine-learning programs that
predict seizure recurrence, we also want to justify the restraint in
our enthusiasm. We do so based on the following considerations.

Prediction Performance Metrics
Specification of system parameters, such as prediction
period, prediction horizon and data-driven characterization
of lead seizures (minimal duration of seizure-free period)
each influence prediction performance metrics (131).
Consequently, investigators have the opportunity to cherry-
pick the system parameters that will variably maximize
their metrics. To minimize this, one group proposed a test
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metric of the difference between algorithm sensitivity and
chance sensitivity given an equal proportion of time spent
under warning (132).

Prediction performance metrics may include indicators of
sensitivity and specificity (59). Sensitivity is defined as the
total number of seizures being accurately predicted divided
by the total number of seizures recorded. Specificity is the
number of correctly-identified non-events and is usually more
difficult to evaluate due to the relatively small number of seizure
events during most time intervals (133). Performance indices
related to specificity include time in warning (the fraction of
time the system makes positive predictions), and false positive
error rate (8, 132).

A more general measure of performance that summarizes
the tradeoff between sensitivity and specificity is the area under
the receiver operating characteristic (ROC) curve (AUC) that
discriminates between inter-ictal and pre-ictal data and is the
preferred measure for many studies benchmarking multiple
seizure forecasting algorithms (59, 132, 134).

The ROC curve is a plot of True Positive Rate (TPR) or
sensitivity, vs. the False Positive Rate (FPR), or 1-specificity
for varying model parameters. Thus, the area under the ROC
curve (AUC) is a measure that accounts for the relative trade-
off between sensitivity and specificity. Both are needed for
a prediction algorithm to be practical. For example, perfect
sensitivity is always possible if specificity is completely sacrificed:
always predict a seizure and every seizure will be correctly
predicted, 100% of the time. Similarly, always predicting “no
seizure” will never falsely predict a seizure and thus have
perfect specificity. Clearly, neither of these extremes is useful.
Optimizing both sensitivity (predict all seizures) and specificity
(no false alarms) is the ideal. The AUC is a measure of this
optimal balance (135).

Because of the potential problem of overfitting (136) of the
evaluation statistical model, investigators now seek tomeasure an
“optimism corrected AUC,” which corrects for/avoids optimism
by either: cross-validation with replication (137–139) or leave-
pair-out cross-validation (140).

Variations or extensions of this theme include a final
“Improvement over Chance” binary metric that compares the
measured AUC to a “chance-level AUC” (141), accuracy rates
based on ROC curves (142), and an ROC analysis to extrapolate
a cut-off value for the most significant predictors of seizure
recurrence (143).

Another potential approach to assessing the accuracy of a
prediction algorithm is to compare its accuracy to that obtained
using surrogate output data that has some of the properties of
the true data. An example of this is to randomly permute or
shuffle the outcomes labels, thus retaining the same number
of positives and negatives as in the original outcomes. (144).
After permuting the labels, the predictive accuracy, including
sensitivity and specificity, is computed. This process is repeated
many times in a Monte Carlo style simulation, and the accuracies
for all of the surrogate trials are accumulated to determine how
likely the predictive accuracy with the true labels can be attained
by random chance. For reasons that are not clear, this type
of Monte Carlo simulation, which can be used to estimate the

probability of attaining a selected AUC (145) has been used less
frequently (146–148).

DISCUSSION

Butterfly Effect/Important Data Missing
The butterfly effect refers to the sensitive dependence of a non-
linear system on the accuracy of measurements at a given starting
time. Prediction of the future state of a non-linear system is
limited by the butterfly effect. For example, even if all of the
exact physical equations for atmospheric dynamics are known,
predicting the weather more than a few days into the future is
limited by how accurately the present weather conditions can
be measured at every location from the surface of the earth to
the top of the lower atmosphere. If neural function is a non-
linear system, then seizure prediction may be limited by the
butterfly effect.

The butterfly effect results from the slightest measurement
imprecision. This is different from a lack of information about all
the important processes involved in seizure generation or a lack
of data. We prefer to use the word “missingness” (149, 150) to
describe a lack of measured data regarding the processes involved
in seizure onset and spread.

Seizure prediction will enable successful intervention only
if identifiable pre-ictal signatures occur sufficiently clearly and
sufficiently early to enable a predictive model to be constructed.
A few reviews of the many applications of signal processing and
predictive algorithms present the enormous breadth of this effort
(151–154). This approach has begun to be applied to seizure
prediction (155, 156) with the recognition that the amount of
raw EEG data needed for deep learning approaches might be
prohibitively large (157).

One Size Does Not Fit All
An algorithm created for one person is unlikely to predict
seizure recurrence in another (5, 11, 13, 14, 17, 20, 23, 25, 31,
56, 61–72). Another potential problem is that although seizure
prediction is specific to an epilepsy or seizure type, prediction
can be conditioned by myriad patient characteristics. Large
amounts of patient data, together with properly used machine
learning algorithms, are likely needed to identify the best way
to apply seizure prediction for optimal patient benefit. Sufficient
amounts of data from many patients may improve the ability
of patient-independent algorithms for the benefit of patients
and their physicians who would strongly prefer not to have to
wait a year to receive benefits from the prediction capability of
wearable devices. However, it is also clear that seizure prediction
algorithms can learn from patient-specific patterns and improve
over time scales from days to months (158–160).

Much of the success of the seizure prediction field is owed to
those investigators who have created a valuable database, made it
publicly available, and asked others to contribute to this culture
of data sharing (161). Many annotated seizure databases exist.
Some of the better known ones can be explored further in these
references: (71, 125, 161–165).

Research using machine learning algorithms is frequently
hampered because of the lack of standards that allow data from
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disparate databases to be aggregated (166). A lack of sufficient
amounts of publicly-available data is also apparent (154). Because
insufficient available human data were (59), a recent Kaggle
machine learning competition for seizure prediction relied
on canine EEG data. Advances in seizure prediction will be
enhanced if the epilepsy research community can collaborate to
create a common, aggregated, publicly-available data resource
as the genomics community has done for the Human
Genome Project (167).

We are cautiously optimistic that many people will benefit
from an ability to predict seizure recurrence. We do, however,
want to temper optimism that this ability will be available
to nearly all patients and all seizures. Very large seizure data
sets, with proper clinical annotation, and machine learning
algorithms, as well as deeper understanding of the dynamics
and neurophysiology of seizures and epilepsy, will be needed to

provide a much clearer picture of the limits and possibilities of
seizure prediction.
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Absence seizures are generalized nonmotor epileptic seizures with abrupt onset and

termination. Transient impairment of consciousness and spike-slow wave discharges

(SWDs) in EEG are their characteristic manifestations. This type of seizure is severe in two

common pediatric syndromes: childhood (CAE) and juvenile (JAE) absence epilepsy. The

appearance of low-cost, portable EEG devices has paved the way for long-term, remote

monitoring of CAE and JAE patients. The potential benefits of this kind of monitoring

include facilitating diagnosis, personalized drug titration, and determining the duration

of pharmacotherapy. Herein, we present a novel absence detection algorithm based

on the properties of the complex Morlet continuous wavelet transform of SWDs. We

used a dataset containing EEGs from 64 patients (37 h of recordings with almost 400

seizures) and 30 age and sex-matched controls (9 h of recordings) for development and

testing. For seizures lasting longer than 2 s, the detector, which analyzed two bipolar

EEG channels (Fp1-T3 and Fp2-T4), achieved a sensitivity of 97.6% with 0.7/h detection

rate. In the patients, all false detections were associated with epileptiform discharges,

which did not yield clinical manifestations. When the duration threshold was raised to

3 s, the false detection rate fell to 0.5/h. The overlap of automatically detected seizures

with the actual seizures was equal to ∼96%. For EEG recordings sampled at 250 Hz,

the one-channel processing speed for midrange smartphones running Android 10 (about

0.2 s per 1 min of EEG) was high enough for real-time seizure detection.

Keywords: childhood absence epilepsy, EEG, wavelets, detector, portable device

1. INTRODUCTION

Typical absence seizures are brief (lasting seconds) generalized nonmotor epileptic seizures with
an abrupt onset and termination (1, 2). Transient impairment of consciousness and spike-slow
wave discharges (SWDs) in electroencephalogram (EEG) are their characteristic manifestations.
Typical absence seizures are severe in childhood (CAE) and juvenile (JAE) absence epilepsies but
mild or inconspicuous in other syndromes such as juvenile myoclonic epilepsy (JME). Typical
absence seizures are predominantly spontaneous, but in about 90% of untreated patients, they
may be provoked by hyperventilation. Sleep deprivation, photostimulation, specific geometric

18

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2021.685814
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2021.685814&domain=pdf&date_stamp=2021-06-29
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:miroslaw.latka@pwr.edu.pl
https://doi.org/10.3389/fneur.2021.685814
https://www.frontiersin.org/articles/10.3389/fneur.2021.685814/full


Glaba et al. Absence Seizures Detection Algorithm

patterns, video games, and even thinking may also precipitate
them. The pathophysiology of absence seizures is fundamentally
different from other types of seizures, making their diagnosis and
treatment unique.

CAE is the most common pediatric epileptic syndrome with
an age of onset of around 6–8 years (3). It has a prevalence of 10–
15% in childhood epilepsies. In children under the age of 16 years,
the incidence rate is 1.3 to 6 per 100,000. The ictal EEG of a CAE
seizure demonstrates rhythmic 3 Hz bilateral, synchronous, and
symmetrical spike and wave discharges (SWDs) with a median
duration of approximately 10 s, which on average appear several
times per day. In pyknoleptic cases, hundreds of seizures may
occur daily (4). The 2010 Childhood Absence Epilepsy Study
showed that only 37% of all enrolled subjects were free from
treatment failure on their first medication a year after diagnosis
(5).

JAE typically begins between 10 and 16 years of age and
is usually a life-long condition. JAE seizures tend to be longer
than in CAE (lasting up to 45 s) and non-pyknoleptic (typically
occurring less than daily).

While CAE and JAE are distinct epilepsy syndromes, there is
considerable overlap between them, and the cut-off age remains
controversial. During disease, patients with JAE or patients in
the overlap group are more likely to develop generalized tonic-
clonic seizures and myoclonic attacks. In the long-term follow-
up (mean 26 years, range 3–69), only 58% of the patients with
absence seizures were in remission (6).

The diagnosis of absence seizures is laborious since it
requires analysis of long video-EEGs (on average around 30
minutes long) to detect seizures and their clinical manifestations
(consciousness impairment, motor symptoms) and abnormal
EEG background activity.

The appearance of low-cost, portable EEG devices (7) has
paved the way for long-term, remote monitoring of patients with
absence seizures. The potential benefits of this kind ofmonitoring
include facilitation of diagnosis, personalized drug titration, and
determining of duration of pharmacotherapy. The need for
automatic and reliable detection of absence seizures has long been
recognized (8). Diverse algorithms have been proposed so far to
detect seizures in animal models of epilepsy (9–12) or in human
EEG (13–21). Herein, we present a novel approach to absence
seizure detection, which is applicable both to clinical EEGs and
recordings made with portable EEG devices with a small number
of channels. The algorithm’s efficiency and robustness to motion
artifacts enable its implementation on mobile devices.

2. MATERIALS AND METHODS

2.1. EEG Recordings
Wroclaw Medical University’s Ethics Committee approved
a retrospective analysis of routine anonymized video-EEG
recordings of patients (36 with CAE and 28 with JAE) as
well as 30 EEGs of age-matched controls. Epilepsy syndrome
was established based on history, age at onset, clinical EEG
findings, and neuroimaging. EEGs were acquired with Elmiko
Digitrack (BRAINTRONICS B.V. ISO-1032CE amplifier) or
Grass Comet Plus EEG (AS40-PLUS amplifier) using 200 or 250

Hz sampling frequency. The international 10-20 standard was
used to arrange 19 Ag/AgCl electrodes (impedance below 5k�).
Total EEG duration was equal to 37 and 9 h for the patients and
controls, respectively.

We assigned patients’ EEG to either training or testing
datasets. In the first one, there were 34 recordings (22 CAE and
12 JAE) with 199 seizures (6± 4 per patient and averaged seizure
duration equal to 12 ± 4 s). In the 30 recordings of the testing
dataset (15 CAE and 15 JAE), there were 177 absence seizures (6
± 5 per patient and averaged duration equal to 12 ± 6 s). An
experienced neurologist carried out a visual EEG inspection and
marked the seizures with a 1 s accuracy.

Figure 1 provides the rationale for using the longitudinal
bipolar montage. The seizure detector was developed and tested
for two channels: Fp1-T3 and Fp2-T4.

We used three filters for EEG preprocessing: a second-order
infinite impulse response (IIR), 6th-order high-pass Butterworth
with a cutoff frequency of 0.5 Hz, and 6th-order low-pass
Butterworth with a cutoff frequency of 25 Hz. These filters
remove 50 Hz power line noise, EEG baseline drift, and muscle
artifacts, respectively.

2.2. Continuous Wavelet Transform
The continuous wavelet transform (CWT) of a signal s(t) is an
integral transform:

T[s](a, t0) =
1√
a

∫ +∞

−∞
s(t)ψ∗

(

t − t0

a

)

dt (1)

with the basis functions ψ(a, t0) = ψ(t − t0/a), known as
wavelets, that are translated and scaled version of the mother
functionψ(t) (22). Motivated by the results of the previous study
(23), as a mother function, we use the complex Morlet wavelet
(24, 25):

ψ(t) = 1

π1/4
e2π ifcte−t2/2 (2)

whose Fourier transform ψ̂(f ) is given by

ψ̂(f ) =
√
2 4
√
πe−2π2(f−fc)2 . (3)

The real parameter fc is called the center frequency
since it is equal to the maximum point of the wavelet’s
Fourier power spectrum. The scale a corresponds to the
following pseudofrequency:

fa =
fc

a
. (4)

As we can see in Equations (2, 3), the wavelets are localized both
in time and frequency domains. This dual localization makes
CWT particularly applicable to the detection of transient events
such as absence seizures.

Seizure detection is based on the properties of the

instantaneous wavelet power
∣

∣T[s](a, t0)
∣

∣

2
normalized by

signal’s variance σ 2:

w(n)(fa, t0) =
∣

∣T[s](a, t0)
∣

∣

2
/σ 2. (5)
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FIGURE 1 | Three monopolar EEGs illustrate the difficulties of absence seizure detection in a single channel. (A) is a textbook example of prominent, generalized

SWDs. The amplitude of spikes (B) or slow waves (C) may be small and SWDs may be pronounced only in a handful of channels. (D–F) show the advantages of

using the longitudinal, bipolar montage which in most cases augments both spikes and slow waves of SWDs.

If we apply the convolution theorem to Equation (1), then it is
apparent that the Fourier transform of T[s](a, t0) is the pointwise
product of the Fourier transforms of the signal and wavelet.
Thus, it is possible to calculate CWT by taking the inverse
Fourier transform of such a product. We used this approach in
the MATLAB function, presented in Supplementary Materials,
which calculates the complex Morlet CWT (25). We included
the listing to facilitate the reproduction of the results and
avoid confusion related to erroneous normalization of the most
popular Python and MATLAB CWT implementations. We will
discuss this problem in a forthcoming publication.

For the most commonly used wavelets, such as the complex
Morlet, the analytical expression for their Fourier transform is
known. Therefore, in the presented function, we calculate only

the FFT of the signal and use Equation (3) to obtain the wavelet’s
FFT spectrum.

The complex Morlet CWT of the preprocessed Fp1-T3 and
Fp2-T4 channels was calculated without signal partitioning.

2.3. Detection Algorithm
The detection of an absence seizure (Figures 2A,E), defined as an
SWD lasting for more than 2 s (26), proceeds in two steps. First,
we locate the train of slow waves and then verify that there are
epileptic spikes embedded in it. One can see in the scalogram
Figure 2B that when the wavelet’s pseudofrequency is close to
that of an absence (∼ 3 Hz), then the wavelet power forms a
prominent ridge. We refer to the time interval during which
the power exceeds the chosen threshold TE as the slow-wave
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FIGURE 2 | The complex Morlet wavelet analysis of absence slow wave (B–D) and spikes (F–H). For clarity, absence EEG is presented at the top of both columns

(subplots A,E). The density map (B) shows the time evolution of normalized wavelet power for pseudo-frequencies in [2.5, 5] Hz range. The 2.7 and 3.3 Hz cuts

(Continued)
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FIGURE 2 | (marked with the white horizontal dashed line) are plotted in subplot (C) with the blue and orange lines, respectively. We refer to time intervals during

which the wavelet power for these frequencies exceeds the predetermined threshold (represented in (C) by the red dashed horizontal line) as the slow-wave

envelopes. For a given seizure, the total envelope is obtained by merging 2.7 and 3.3 Hz envelopes as shown in (D). The right column shows the complex Morlet

analysis with parameters tuned to spike detection. The prominent ridges in wavelet power density map (F) and peaks in 15.3 Hz cut (G) are manifestations of seizure’s

spikes. The white horizontal dashed line in (F) corresponds to the spike frequency 15.3 Hz obtained in the grid search. The train of unit pulses in (H) indicates time

intervals during which wavelet power for 15.3 Hz is greater than the spike threshold value (marked in subplot (G) with the red dashed horizontal line). An absence is

detected whenever the epileptic spikes are found in the slow-wave envelope (I).

envelope. This envelope is a unit boxcar function that takes on
one whenever the power is greater than TE. As the frequency of
SWDs is subject-dependent and may even slightly vary during a
seizure (15), we construct two envelopes with wavelet frequencies
flow and fhigh (Figure 2C) andmerge them as shown in Figure 2D.
The merging amounts to a pointwise application of a logical OR
function to both envelopes.

For a suitably chosen pseudofrequency fspike, the wavelet

power w(n)(fspike) peaks around the position of epileptic spikes
(Figure 2F). If the percentage of samples PT within the final
envelope for which the wavelet power is greater than TS, we
conclude that there are spikes (Figure 2H) within the envelope
(Figure 2I). Such the envelope delineates the absence seizure.

In some cases, w(n)(fspike) may also be elevated for high-
amplitude artifacts. To reduce the number of false positives, we
modified the original algorithm. We do the following amplitude
check and disregard all envelopes for which:

• More than 10% of the samples have amplitudes outside the
range [−500 µV, 500 µV] (in the differential montage epileptic
spikes can have amplitudes of the order of hundreds µV).

• Any sample is outside the range [–1,000 µV, 1,000 µV].

For envelopes shorter than 5 s, we also calculate the variance
of w(n)(fspike) to detect the wavelet power pulsatility of absence
(Figure 2G). If such variance is greater than TV , the detector flags
the envelope as a seizure. We refer to such a comparison as the
wavelet variance check.

Figure 3 shows the flowchart of the final absence
seizure detection algorithm. The proposed algorithm may
be used independently for channels Fp1-T3 and Fp2-T4.
Alternatively, the seizure envelopes from these two channels may
be superposed.

2.4. Determination of Algorithms’

Parameters
We determine flow, fhigh, and TE by maximizing the overlap of
slow-wave envelopes with the absence seizures from a training
dataset disregarding possible false detections.

Using these values, we search for the maximum of the
following objective function:

O(fspike,TS, PT) = OVRf − PERR− 0.5× FDET − FDETC (6)

to find fspike, TS, and PTS – spike detection parameters. In Eq
(6), OVRf is the percentage overlap of slow-wave envelopes with
seizures. PERR is the percentage of the number of false positive
samples in a given EEG. FDET and FDETC are the number of
false detections for the patients and controls, respectively.

The form of the objective function follows two requirements.
The first is that we want to overlap the slow-wave envelope
with the seizure as accurately as possible. The second is that
in patients, false positives can be associated with epileptiform
discharges with no clinical manifestations. Therefore, in Eq
(6), the weight assigned to the patients’ false detection penalty
(FDET) is half of that given to the controls. We arbitrarily chose
the 1:2 weight ratio.

TV can be determined in the following way. We calculate the
variance of w(n)(fspike) for the controls’ EEGs. Then, we calculate
the mean and standard deviation of the distribution. Finally, TV

is set to the mean increased by three standard deviations (TV =
0.05).

We determined the slow-wave and spike detection parameters
using the exhaustive grid search.

2.5. Software Implementation
The seizure detection software was implemented both in
MATLAB (R2018a) and Java. In the latter case, we wrote a
desktop version (which can be run on any computer with Java
virtual machine) and a mobile version for Android smartphones.
In Java software, we used the class FastFourierTransformer from
Apache Commons Math Library (version 3.6.1). Testing and
performance benchmarking was performed on a desktop PCwith
AMDRyzen 7 3700X 8-Core processor runningWindows 10 and
Samsung S9 mobile phone (4GB of RAM and 2.8 GHz Samsung
Exynos 9810 8-Core processor) with Android 10.

3. RESULTS

Using two-step (slow-wave envelope and spike detection)
optimization on the training dataset, we obtained the following
model parameters flow = 2.7 Hz, fhigh = 3.3 Hz, TE = 0.05,
fspike = 15.3 Hz, TS = 0.012, PTS = 12%. After the parameters
were determined, we lowered the value of TV from 0.05 to 0.008.
This change is explained in Discussion section.

The seizure detector had 98.5% and 96.6% sensitivity
for the training and testing datasets, respectively (see
Supplementary Tables 1, 2). The corresponding false detection
rates were equal to 0.9/h and 0.4/h. The overlap OVR of the
detected and actual seizures was good for both datasets (97% ±
6% and 95% ± 10%). The percentage error PERR that accounts
for both false positives and erroneously extended slow-wave
envelopes was equal to 0.9%± 0.7% for both datasets.

Supplementary Table 3 shows that both the amplitude
and wavelet variance checks contribute to the false
detection reduction.
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FIGURE 3 | Absence seizure detection flowchart. Once the slow-wave envelope is present in an analyzed EEG segment, the detector checks whether there are

epileptic spikes embedded in it. The amplitude and the normalized wavelet power variance checks are also performed to eliminate artifacts.

In Supplementary Table 4, we compare the execution times of
three absence seizure detector implementations. The execution
time is determined by the efficiency of an FFT function, which
is used to calculate the continuous wavelet transform. Matlab is
renowned for its FFT implementation. Thus, it is not surprising
that for the longest segment (N = 218), the Matlab version of
the detector ran almost 16 and 19 times faster than the Java
software running on Windows 10 and Android 10 (0.18 s vs.
2.79 s and 3.41 s). Interestingly enough, for shorter segments,
the detector ran faster on the mid-range Android device than
on the PC. Nevertheless, the single-channel Android processing
speed of 0.2 s per minute of EEG is adequate for real-time
seizure detection.

4. DISCUSSION

It has long been recognized that long-term EEGmonitoring is the
most reliable method for absence detection (27). Parents notice
only about 6% of daytime seizures, and very often, teachers are

the ones who recognize the CAE/JEA beginning (28). The 2010
Childhood Absence Epilepsy Study (5) has provided a compelling
rationale for using portable EEG devices in the management of
CAE/JEA patients. This randomized controlled trial showed that
only 37% of all enrolled subjects were free from treatment failure
on their first medication a year after diagnosis.

In the last two decades, many researchers have investigated
absence seizure detection (13–17, 20). The datasets in these
studies were small–the analyzed SWDs came from nine patients
(range 2–20). On average, there were 70 seizures longer than 2
s (range 2–158). In all but one algorithm (20), discrete wavelet
transform was used for signal preprocessing. Machine learning
was used in 3 of 4 detectors. On average, 11 features were
extracted from 15 EEG channels.

Kjaer et al. (19) used an experimental EEG setup with 3
electrodes for 24-h EEG monitoring of 6 patients (593 seizures).
Their support vector machine detected 98.4% SWD’s with 0.23/h
false detection rate using 10 features of five-level db4 wavelet
EEG decomposition.
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FIGURE 4 | Examples of false absence seizure detection in the EEG of the patients (A,B) and controls (C,D). The epileptiform discharges in (A,B) were not

accompanied by the clinical manifestations. (C) shows a rare example of a muscle artifact classified as an absence. A prominent spike-and-wave in (D) appeared in a

healthy subject’s EEG.

The absence seizure detection algorithm presented in this
work is unique because it exploits the apparent traits of SWDs
and EEG motion artifacts. Despite the simplicity, its 97.6%
accuracy matches that of black-box machine learning classifiers.

Our experience indicates that frequent, albeit not excessively
long, EEG home monitoring is feasible in pediatric patients as
long as an EEG wearable is easy to put on and is comfortable.
This study used the bipolar channels Fp1-T3 and Fp2-T4 for
seizure detection because they approximately corresponded to
the Muse headband electrode placement. On the one hand,
this choice seems to be rational given absence seizures are
usually well pronounced in the frontal regions (29) and the
large spacing between the electrodes augments the characteristic
features of SWDs as shown in Figure 1. On the other hand, Fp1
and Fp2 channels are prone to muscle and eyeblink artifacts.
There were 26 and 8 false detections in the patients and
controls, respectively. In the patients, all false detections were
associated with epileptiform discharges, which did not yield
clinical manifestations. Half of the errors in the control group
were caused by the prominent SWDs. We show the examples of
misclassified EEG segments in Figure 4. We used the stringent
value TV = 0.05 for the determination of the model parameters.
Once we realized that false detections are not caused by motion
artifacts, for classification, we lowered this parameter to 0.008 to
maximize the detection sensitivity (for TV = 0.05, the sensitivity
was equal to 93% with the false detection rate 0.4/h). Some

pediatricians agree that sensitivity of 90% and false detection rate
of 1/h are clinically acceptable (19).

Unlike previous studies, the false detection rate was not
determined by the motion artifacts. We would like to emphasize
that the presented seizure detection was performed on clinical
EEGs, which is the main limitation of this study. The question
arises as to whether the amplitude and wavelet variance checks
would be equally effective in eliminatingmotion artifacts in EEGs
acquired with wearable devices in home settings. It is worth
mentioning that the false detection rate can be reduced by using
secondary electrodes for artifact cancellation (30) and employing
different single-channel artifact detectors (31, 32). As most
commercial EEG bands have MEMS accelerometers, one may
also explore the possibility of incorporating head acceleration in
the artifact removal algorithm. However, the connection between
EEG artifacts and head movement is not always apparent (33).

In a recent study, Dan et al. presented an absence seizure
detector based on a linear multichannel filter that was
precomputed offline in a data-driven fashion based on the
spatial-temporal signature of the seizure and peak interference
statistics (21). The performance of this detector depends on the
number of channels (from 3 to 18) used in the calculations. For
the three channels, the accuracy was equal to 95% with a 0.4/h
false detection rate. The authors set the minimum seizure length
to 3 s (34). It is worth pointing out that for this absence duration
threshold, the two-channel detector described in this work had
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the false detection rate equal to 0.5/h (18 and 6 false detections
for the patients, and controls, respectively.

To the best of our knowledge, we used the most diverse set
of CAE/JAE EEGs (37 h of recordings from 64 patients) for
development and testing. The overlap of automatically detected
seizures with the actual seizures was high (about 96%). The poor
overlap in some patients is predominantly caused by a very small
amplitude of the epileptic spikes. Consequently, the detector does
not classify such SWD trains as absence seizures. At the end of
the seizure, the frequency of SWDs can decrease far below the
canonical value of 3 Hz. In this case, the slow-wave envelope is
shorter than expected. The frequency drop during the seizure
leads to its sfragmentation.

For EEG recordings sampled at 250 Hz, the one-channel
processing speed for midrange smartphones running Android
10 was high enough (about 0.2 s per 1 min of EEG) for real-
time seizure detection. We found that the detection accuracy was
highest for a sliding 30 s EEG buffer, which was shifted by 10 s.

Absence seizure manifestations are mild compared to other
epileptic syndromes. Consequently, the rationale for using
seizure detectors in CAE/JAE patients is different. Emphasis
may be shifted from detection alerts to the facilitation of drug
titration and side effects elimination. Unobtrusiveness and ease
of use are particularly important for pediatric patients, who may
be more willing to tolerate regular EEG measurements if they
are incorporated into daily routines such as watching cartoons,
playing mobile games, or listening to music.

It is worth pointing out that remote seizure monitoring will be
one of the elements of personalized CAE/JAE treatment. There is

a growing interest in the development of biomarkers of treatment
response and side effects (35). These problems are the subject of
our research (36).
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It is a major challenge in clinical epilepsy to diagnose and treat a disease characterized

by infrequent seizures based on patient or caregiver reports and limited duration

clinical testing. The poor reliability of self-reported seizure diaries for many people with

epilepsy is well-established, but these records remain necessary in clinical care and

therapeutic studies. A number of wearable devices have emerged, whichmay be capable

of detecting seizures, recording seizure data, and alerting caregivers. Developments

in non-invasive wearable sensors to measure accelerometry, photoplethysmography

(PPG), electrodermal activity (EDA), electromyography (EMG), and other signals outside

of the traditional clinical environment may be able to identify seizure-related changes.

Non-invasive scalp electroencephalography (EEG) and minimally invasive subscalp EEG

may allow direct measurement of seizure activity. However, significant network and

computational infrastructure is needed for continuous, secure transmission of data. The

large volume of data acquired by these devices necessitates computer-assisted review

and detection to reduce the burden on human reviewers. Furthermore, user acceptability

of such devices must be a paramount consideration to ensure adherence with long-term

device use. Such devices can identify tonic–clonic seizures, but identification of other

seizure semiologies with non-EEG wearables is an ongoing challenge. Identification of

electrographic seizures with subscalp EEG systems has recently been demonstrated

over long (>6 month) durations, and this shows promise for accurate, objective seizure

records. While the ability to detect and forecast seizures from ambulatory intracranial

EEG is established, invasive devices may not be acceptable for many individuals with

epilepsy. Recent studies show promising results for probabilistic forecasts of seizure risk

from long-term wearable devices and electronic diaries of self-reported seizures. There

may also be predictive value in individuals’ symptoms, mood, and cognitive performance.

However, seizure forecasting requires perpetual use of a device for monitoring, increasing

the importance of the system’s acceptability to users. Furthermore, long-term studies

with concurrent EEG confirmation are lacking currently. This review describes the current
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evidence and challenges in the use of minimally and non-invasive devices for long-term

epilepsy monitoring, the essential components in remote monitoring systems, and

explores the feasibility to detect and forecast impending seizures via long-term use of

these systems.

Keywords: wearable devices, seizure detection, seizure forecasting, multidian cycles, machine learning, epilepsy

INTRODUCTION

It has long been recognized that seizures occur more frequently
than self-reported, though the scale of this underestimation has
only recently been appreciated (1–4). This has complicated our
ability to provide optimal care and safety strategies (5, 6), and
casts uncertainty on the validity of therapeutic strategies and
clinical trials results (4).

Wearable sensing devices are increasing in popularity both in
the general community and through medical applications such
as seizure detection. However, there is insufficient data relating
to the clinical utility and reliability of these systems (7). There are
also significant concerns around data security, privacy, and data
ownership (8), and questions relating to the optimal software,
hardware, and data transmission systems. Additionally, there
are several separate issues to consider with wearable devices:
how the data is acquired, what systems can be used to achieve
this acquisition, and how the data may be used to provide
more sophisticated feedback to individuals and their caregivers.
Wearable devices may also facilitate reliable forecasts of seizure
likelihood, providing the potential for people with epilepsy to
take fast-acting medications or modify activities in anticipation
of an impending seizure (9–11).

Chronically implanted intracranial electroencephalography
(EEG) systems have resulted in dramatic insights into the
dynamics and underlying rhythms of epileptic activity and
seizures (2, 12–19) but are not suitable for widespread use
because of issues relating to cost and risk, and are limited in
spatial sampling. In addition to unreported seizures, these devices
also detect a large number of electrographic seizure patterns
without clear behavioral correlates. However, this electrographic
epileptic activity is highly relevant to epilepsy management
and seizure forecasting, and chronic EEG remains vital to
develop and validate standalone wearable systems. These recent
studies suggest that the aims of seizure forecasting might be
achieved through capturing data, which represent trends and
associations in individuals and populations, harnessing the
strength of multiple sources, and applying recently developed
strategies in machine-learning to combine this information and
generate measures of seizure risk. Seizure forecasting using these
techniques might ultimately become a useful way for individuals
to manage daily activities, and for clinicians to accurately judge
the efficacy of therapies.

SEIZURE REPORTING AND DETECTION

An obstacle currently to clinical management of epilepsy is
the scarcity of accurate, reliable information available to the

physician when diagnosing a seizure disorder and identifying
therapeutic options. Because seizure events are infrequent, the
physician may not be able to directly observe events, and
must rely on the individual, caregivers, and other witnesses
to describe events, identify potential precipitants, report their
frequency, and discuss the impact on the person’s daily life
(20). In-hospital diagnostic tests are expensive and may produce
a diagnosis of epilepsy, psychogenic non-epileptic events, or
syncope, or may be diagnostically inconclusive. Even when a
clear diagnosis of epilepsy is established, the limited availability
of accurate information hinders effective therapy (1). People with
epilepsy may be partly or fully amnestic to seizures (21, 22),
individuals may be unable to provide an accurate account of
seizure occurrence and severity (23–25), and witness accounts
of epileptic and behavioral events are often unreliable (26–28).
Changes in seizure frequency and severity, sometimes due to
poor medication adherence (29), may increase a person’s risk
of SUDEP (30), status epilepticus (31), or injury during daily
activities. Currently, physicians and caregivers have no way to
identify increases in seizure frequency and/or severity between
office visits. Many studies confirm that people under-report their
seizures for a variety of reasons [summarized by Elger and
Hoppe (3)]. A study of an implanted EEG monitoring device
for seizure forecasting (2), compared to monthly self-reported
seizure diaries to ambulatory intracranial EEG, found vast
discrepancies in seizure reports, with some subjects reporting
no seizures in months where the device recorded hundreds
of clinical and electrographic seizures. Compared to long-
term ambulatory EEG monitoring, individuals were found to
report less than half of measured seizures (3), and people
with epilepsy enrolled in clinical medication trials were aware
of their own seizure underreporting in post-study telephone
interviews (4).

Objective data characterizing seizure counts (32) and severity
(33) could be obtained using devices capable of capturing and
storing EEG or other biosignals that indicate seizure occurrence.
Invasive, implanted EEG (33) devices with limited capabilities
are available currently. The NeuroPace RNS device (16, 34)
is clinically available and provides responsive neurostimulation
to suppress seizures in focal epilepsy, but also has the ability
to record and store limited data segments on the device.
Investigational devices like the Medtronic PC+S have a similar
capabilities (35, 36) but are used only in limited research
applications. The limited data capacity of such devices makes
it difficult to evaluate detection sensitivity because there is no
way to confirm that all seizures have been identified, although
identified and stored events can be confirmed as electrographic
seizures (specificity). Finally, minimally invasive subscalp EEG
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devices are emerging as potential alternatives for continuous
EEG recording, providing a balance between signal quality and
user acceptability. One subscalp system (24/7 EEGTM SubQ)
has been CE-marked for epilepsy monitoring and diagnosis,
following a cumulative 490 day trial (nine patients, up to
90 days each) demonstrating its safety and feasibility (37).
Automatically assisted, visual identification of electrographic
seizures has also been demonstrated in the ultra long-term setting
(>6 months) with this system, with excellent sensitivity but low
specificity (38).

Non-invasive Seizure Monitoring
Non-invasive, wearable biosensors have the greatest immediate
potential to meet the needs of the majority of people with
epilepsy. The availability of inexpensive miniaturized electronic
components, wireless data telemetry, and rechargeable
battery technology has given rise to a large number
of lightweight, wearable sensors. Currently, sensors are
commercially available to measure continuous, non-invasive
photoplethysmography (PPG, to measure the blood volume
pulse signal), electromyography (EMG), accelerometry, EEG,
electrocardiography (EKG), electrodermal activity (EDA),
and skin temperature in a range of form factors. A summary
of available sensors is given in Figure 1 (see also Panels in
Appendix). Most individuals are familiar with the accelerometers
and optical PPG sensors included in consumer electronics like
smart watches and fitness monitors. These inexpensive sensors
with sophisticated data processing algorithms on cloud-based
data management systems are capable of tracking sleep and
exercise rates based on accelerometry (39–41), although the
accuracy of sleep staging with these devices is unclear. Variable
accuracy has been found as well in tracking heart rates from
wrist-worn PPG sensors (42). Nevertheless, wearable biosensors
remain of interest for epilepsy management, as changes in sleep
quality (43), exercise (i.e., heart rate and motion tracking) (44),
and stress (i.e., heart rate variability, EDA) (45, 46) may all
trigger seizure onset for some people.

Currently, there are two wearable sensors approved by the
FDA and EU for detecting convulsive seizures: the first, a
wrist-worn smartwatch (Empatica Embrace, Boston MA), uses
accelerometry and EDA to detect the subject’s movements and
maintains a Bluetooth link to the subject’s smartphone, where an
application telemeters data and detections to cloud servers and
issues caregiver alerts for seizures (47). The Empatica Embrace
was CE Marked in 2016 and FDA approved in 2018. The second
device is attached by an adhesive patch affixed to the subject’s
bicep and identifies changes in EMG to detect convulsions
(BrainSentinel SPEAC, San Antonio TX). This device also has
a cloud-based data platform and can send caregiver alerts and
was CE Marked in 2013 and FDA approved in 2017 (48). Other
CE-Marked devices are available (Biovotion Everion, ByteFlies
Sensor Dots, Livassured NightWatch, Epi-Care Free), and studies
of performance at detecting seizures are ongoing. Detection of
convulsive or motor seizures is relatively easier than other seizure
types (49), and studies are beginning to address these other more
difficult semiologies, but only with modest success to date (50–
52). As detection performance improves, approved devices may

become an adjunct measure of seizure activity for anti-seizure
medication trials. These would likely initially be used exclusively
for the detection of tonic–clonic seizures, as wearable sensors are
most performant for this seizure type.

Most commercially available sensors do not have regulatory
approval for use in epilepsy, and these sensors span an array
of form factors and capabilities. The majority of commercial
smartwatches now carry accelerometric and PPG sensors, which
could be useful in tracking seizures (53), and smartwatch
and smartphone applications have been developed for this
purpose. Rigorous testing data is needed, however, and until
clear estimates of sensitivity and specificity under a range of
conditions are established, wearable systems should not be
considered reliable sources of clinically actionable information
(54). Apple and FitBit’s consumer grade wearables have FDA and
CE approval for cardiovascular monitoring currently, and as data
accumulates, regulatory approvals for epilepsy could be possible.
Devices aimed at the clinical research market are available in a
wrist-watch form factor (Empatica E4, Geneactiv), and this form
factor is often rated well by people with epilepsy for comfort and
ease of use (55). Smart devices in a ring form factor (e.g., Oura
and Motiv) can collect accelerometry and finger PPG. The small
size of these devices severely limits their battery capacity, and
most devices do not incorporate real-time Bluetooth data linkage.
Ring devices may be useful for seizure diary applications, or to
provide estimates of sleep quality and other factors to forecasting
algorithms, but currently are not able to provide physiological
data in real time. PPG data quality is adversely affected by subject
movement, and wrist and hand-worn PPG sensorsmay suffer due
to limb movements. Recently published results of commercially
available wearable sensors in seizure detection are summarized
in Table 1.

Arm-band style wearable biosensors are available (Biofourmis,
BrainSentinel), and many adhesive wearable sensors can be
placed on the arm (Byteflies). This is a prime location for
measuring EMG, and muscle activity can be used as a proxy
for convulsive seizure activity. This placement may also facilitate
simultaneous EKG measurement if wires are run through the
sleeve to the subject’s chest, although thismay createmaintenance
challenges for long-term use. Arm band sensors can be rated
lower in comfort and acceptability by subjects (62), and data
quality may suffer due to movement or the sensor sliding
slightly during wear. Small sensors affixed by adhesive patches
(ByteFlies, EpiLog) can conceivably be placed anywhere on
the body, although hair and perspiration may interfere with
adhesives. Adhesive failure and skin irritation are a barrier
to long-term (multiple weeks) and ultra long-term (months
to years) use of these devices, although these devices may
be suitable for prolonged (up to 7 days) monitoring (e.g.,
baseline seizure diaries). This category may be the most flexible
sensor type, and there are commercially available research-
quality sensors for EEG, EMG, EKG, PPG, accelerometry,
and EDA (ByteFlies, Epilog). Continuous glucose monitor
(CGM) and flash glucose devices, FDA and EU approved
for diabetes monitoring, fall in this category of body-worn
sensors and have reached a high level of technical maturity and
reliability (63, 64).
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FIGURE 1 | Available wearable devices for seizure management. Approved

devices include sensor systems CE Marked and/or FDA approved for epilepsy.

Research grade devices are commercially available and provide accurate,

high-quality data. Consumer grade devices are commercially available sensors

designed around applications where data accuracy is not crucial and may

utilize interpolation or estimation methods to provide information to the user.

Benchtop devices are innovative sensors under development and not available

commercially. EEG, electroencephalography; ACC, accelerometry; PPG,

photoplethysmography; EKG, electrocardiography; EMG, electromyography;

EDA, electrodermal activity; T, temperature.

In addition to mature, commercially available wearable
biosensors, numerous early-stage sensors are under
development, which may find application in epilepsy. Sweat
sampling sensors are being developed for exercise applications
and can non-invasively measure glucose, lactate, sodium, and
other metabolites as well as drug or medication levels excreted
in sweat. Fluidic sensors with similar technology have been
integrated into mouth guards (65) and fabrics (66) to sample
saliva and other bodily fluids. Google subsidiary Verily Inc.
developed a contact lens with integrated glucose sensors, but
abandoned the project in 2018 citing inconsistent monitoring
results (67). Known hormonal and metabolic factors that may
be altered prior to or immediately following seizures include
melatonin (68), cortisol (69), reproductive hormones (70),
prolactin and growth hormone (71), lactate, glucose (72), tRNA
fragments (73), and others (74), thus providing a range of
possible biomarkers for seizure detection. The field is evolving
rapidly, and many innovative new sensors will likely become
available. Hopefully, new sensor technologies will allow for
the detection of a broader range of seizure types, beyond
convulsive events.

Behavioral Monitoring
Beyond sensing of basic biosignals, wearable devices and
smartphones can be used to track behavior at more complex
levels, including activity patterns, movement range, sleep

duration and quality, and behavioral indicators of mood,
for example, based on analyses of movement speed, social
connectivity, or affective tone of speech (75–77). This opens up
a window to analyzing behavioral changes occurring over days
or weeks, which may correlate with seizure risk as suggested
by studies on prodromes and on seizure precipitating factors
(78, 79). Beyond passive monitoring, smartphones can be used to
track mood changes and cognitive function by actively querying
the user (80). Assessments can include pop-up questionnaires
at predefined times, as well as specific test batteries assessing
general cognitive capabilities like attention or working memory,
thus capturing high level dynamic brain states. The use of a
smartphones also allows for behavioral intervention, which is
becoming a prominent adjunct therapy (81).

DESIGNING AND CONNECTING SEIZURE
MANAGEMENT SYSTEMS: DECREASING
BARRIERS TO USE

Despite a general willingness of people with epilepsy, caregivers,
and healthcare professionals to use seizure monitoring devices
(55), there are significant user requirements that impede long-
term use. Johansson et al. concluded that on average 19%
(range 6–24%) of data recorded from wearables in free-living
environments may be missing due to a combination of technical
and human factors (82). Cohen et al. found in a long-term
study of wearables in Parkinson’s and Huntington’s disease that
app-based reminders (“push notifications”) are useful tools in
increasing continued device adherence (83), which could provide
similar outcomes in seizure monitoring.

The aesthetics and comfort of devices are significant
considerations in improving long-term adherence with wearable
devices. Bruno et al. found that smartphone and watch-based
devices were acceptable to over 70% of people with epilepsy;
however, leg, upper-arm, chest, and head-based systems had
<50% acceptance. Ring-style wearables had over 60% approval
(84). Interestingly, there is a strong discrepancy between the
views of people with epilepsy and caregivers for wristband and
ring-style wearables, although why this is so is unclear (55).
Performance characteristics are significant as well, and Patel et al.
(85) showed a strong preference among people with epilepsy and
caregivers for excellent sensitivity and text message alerts over
comfort, battery life, and other features. Unfortunately, Patel et
al. do not separate their responses between people with epilepsy
and their caregivers, making it unclear if there are differences
in view between these two groups. Furthermore, it is not clear
that device users’ reported preferences are truly predictive of
their behavior. Janse et al. showed significant differences between
the preferences of people with epilepsy and caregivers in device
form factors, device accuracy, and seizure forecast range (10).
Charging the batteries of wearable devices presents a considerable
adherence challenge, as devices are ideally worn continuously
through both sleep and wakefulness (55). It is estimated that 38–
60% of users claim to be satisfied with recharging a device at
least daily (55, 85). Battery charging depends on frequency of data
sampling and telemetry. Many commercial fitness tracker devices
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TABLE 1 | Sensitivity and false alarm rates for detection of seizures with wearable biosensors.

Study Device Signal(s) Environment Seizure type Patients (seizures) Sensitivity (%) False alarms per

day

Beniczky (56) IctalCare EDDI EMG EMU GTCS 71 (32) 93.8 0.67

Halford (57) BrainSentinel SPEAC EMG EMU GTCS 199 (46) 76 2.52

149 (29)a 100a 1.44a

Onorati (49) Empatica E4 ACC,EDA EMU GTCS 69 (22) 94.5b 0.2b

Vandencasteele (58) 180◦ eMotion Faros EKG EMU CP (FT) 11 (47) 70 51.6

Empatica E4 PPG 32 43.2

Johansson (59) Shimmer3, custom device ACC EMU TCS 8 (10)c 100b 1.2b

Heidberg (51) Empatica E3 ACC, EDA EMU Multiple 8 (55) 89.1d 18.1e

Jeppesen (60) ePatch EKG EMU Focal, GTCS 43 (125)f 93.1f 1.1f

Vandenncasteele (61) ByteFlies EEG (behind ear) EMU Multiple 54 (182) 69.1 0.49g

Studies before 2015 or reporting earlier results for a device in an identical setting were excluded. GTCS, generalized tonic clonic seizure; CP, complex partial; FT, fronto-temporal; TCS,

tonic clonic seizure; FIA, focal impaired awareness.
aWith optimal placement of device over the belly of the bicep.
bBest performing of three candidate algorithms.
cThree additional patients and 27 additional seizures reserved for training.
dResults reported are for the best performing of two algorithms considered using a patient-wise cross validation.
eEstimated from reported 93.7% specificity, assuming independent 5-min detection windows.
fResults reported are from the 53% of the cohort who exhibited adequate HR response to seizures.
gResults reported are from a patient-specific detection algorithm, which performed better than a cross-patient algorithm.

upload a limited data stream to cloud platforms in near-real
time using smartphones connected to the internet, either through
broadband WiFi or mobile 4G. This approach is attractive for
immediate feedback to people with epilepsy and caregivers but
would pose a considerable burden on the battery of both the
wearable device and smartphone for clinical quality sensor data
on the order of 100s of samples per second.

Computation and Connectivity
Connecting data sources through cloud technologies has the
potential to create insights into seizure patterns (86) and even
forecast seizure events (9, 87). Measurements of a person’s
environment, physiology, and behavior through smartphones
and wearables can be used to make patient-specific models that
help clinicians understand individuals’ risk factors (88). The
following sections outline common methods for accessing data
sources (such as seizure diaries or wearables) through cloud
technologies. Figure 2 presents an overview of how various
software interfaces may interact with device data.

Modern on-demand computing services make the collection
and distribution of large datasets of potentially unknown size,
expanding in response to the users’ needs (14, 89). Importantly,
data sources should use common formats and definitions for data
storage, particularly for imperative entries such as timestamps,
seizure type descriptions, and definitions of seizure durations
(90). Without accurate timing information, errors can occur
between data sources, creating noisy repositories, and inaccurate
forecasts. Removing differences between data sources minimizes
barriers to integrating heterogeneous data streams and gives the
best opportunity for improved care.

Machine learning and artificial intelligence methods are
integral to seizure detection and forecasting with wearable
biosensors. Machine learning approaches allow algorithms to

adaptively learn patterns in data, which may not be apparent
to the human observer. Traditional machine learning requires
preprocessing raw data to extract features or characteristics of
interest, which are then normalized and passed to a classification
algorithm for analysis. However, deep learning, or convolutional
neural network approaches, provides “end to end” learning,
where extraction of salient features is handled by the initial layers
of the neural network after repeated presentation of training data
(91). Automatic feature extraction is considered a key advantage
of deep learning for seizure prediction, because it enables an
algorithm to be tailored to particular seizure types or even an
individual seizure semiology (or semiologies) (92, 93). Despite
this ability for automated feature extraction, the signals recorded
must contain some fundamental information relating to seizure
events, and hence, appropriate device and sensor selection is
still required for utility. For a discussion on factors that may
contribute to seizure likelihood, see Section Factors contributing
to seizure likelihood. A hurdle for machine learning, and deep
learning in particular, is that algorithms typically require a very
large number of training seizures in order to learn a generalized
representation of the data. Epilepsy databases have facilitated
development of machine learning and deep learning methods for
seizure detection (94) and forecasting (95–99). This “big-data”
approach may improve accuracy in detecting more challenging
seizure types.

FORECASTING SEIZURE LIKELIHOOD

People with epilepsy consistently rate the apparent
unpredictability of their seizures to be the most disabling
aspect of their condition (10, 11), and a reliable system to
forewarn individuals or caregivers of impending seizures could
allow fast-acting medications to be administered, or simply allow
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FIGURE 2 | Integrating device data into online accessible databases. An abundance of data relating to physiology, behavior, and environment can be collected with

wearable devices and smartwatches. These can then be collected into a single repository in cloud-based data storage. These data can then be accessed by relevant

clinicians and researchers through a web interface or programmatic access. Informed permission is necessary for each step of data transfer: from user to the

database, and from the database to the clinical environment.

FIGURE 3 | Forecasting seizure likelihood. The schematic shows how data from clinical notes, wearable devices, and mobile apps can be combined to obtain a

deeper understanding of patient-specific risk factors. Utilizing cloud computing, these factors can be integrated into an individualized model of seizure likelihood and

displayed as a real-time forecast to a user.
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FIGURE 4 | Overview of wearable devices in epilepsy.

a person to take preparatory measures. To date, most devices
for use in epilepsy monitoring have been focused on seizure
detection, where the main utility from the perspective of people
with epilepsy is providing a seizure alert to their clinicians or
caregivers. In this context, false alarms have the potential to be
disruptive to the life of someone with epilepsy, their families, and
caregivers, and can cause people to stop using seizure detection
devices (100). However, in seizure forecasting applications, the
primary end goal is to inform the individual of their current
seizure likelihood. This context reduces the impact of “false
alarms,” as not every high likelihood alert would be expected to
result in a seizure (92). When evaluating forecasts, probabilistic
measures can be used instead of only counting “hits” and
“misses.” Therefore, although the problem of seizure forecasting
is more complex than seizure detection from a signal analysis
perspective (101), wearable devices may have broader application
and wider acceptance in seizure forecasting, which will allow

people with epilepsy to plan daily activities and take measures
for seizure control. One retrospective validation study of seizure
forecasting with wearables recently reported better than chance
results in 30 of 69 (43.5%) in-hospital patients studied (102),
confirming that forecasting with non-invasive devices is possible
for many patients. The ability to record continuous, outpatient
data from wearables will enable long-term tracking of risk factors
and should improve forecasting performance.

Instead of trying to predict the exact time of an upcoming
seizure, it may be more feasible to estimate the probability
of someone having a seizure and communicate this risk in a
clinically useful manner (12, 92, 103, 104). Accordingly, there
is increasing interest within the clinical epilepsy community
to develop seizure forecasting devices and applications (9) and
understand user requirements (10, 105). In a survey-based study,
Schulze-Bonhage et al. reported that probabilistic forecasts were
generally considered equally useful to predicting exactly when a
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seizure would occur (105). They also found that missed seizures
were considered worse than false alarms, and perfect accuracy
was not considered a requirement for a forecasting device (105).
This survey agrees with reports from individuals enrolled in
the human study of a long-term seizure forecasting device (the
NeuroVista trial) (2). Subjects in the NeuroVista trial reported on
the usefulness of the device (106, 107), despite less than perfect
sensitivity and time-in-warning of up to 30% (2). More recently,
Janse et al. also showed that seizure forecasting devices were
deemed broadly acceptable despite the potential for inaccuracy
(up to “inaccurate 30% of the time”) (10). Externally worn devices
were ranked more highly than subcutaneous or implantable
devices (10), reinforcing the potential for development of
wearable devices for seizure forecasting applications.

The development of qualitative and clinically useful metrics
to evaluate seizure forecasts has been a key priority. Probabilistic
measures can be used to evaluate performance (86, 108, 109),
but defining an alarm threshold is often deemed necessary to
determine clinical utility and the system becomes parameterized
by the alarm duration, or “seizure prediction horizon” (110).
Nevertheless, evaluation of false alarms is challenging because
there is significant individual variability between seizure
prediction horizons (2), and the “time-in-warning” is frequently
reported as a proxy for a false alarm rate (2, 95, 111). In addition
to benchmarking performance, it is important to understand
user requirements for a forecasting interface (112). A recent
study surveyed people with epilepsy and caregivers about the
visual design of seizure forecasts, finding a range of preferences,
although graphs that provided some temporal context (i.e.,
seizure risk plotted over the course of a day or month as opposed
to a “gauge”) were rated more highly (113). Ultimately, post-
hoc studies and surveys can only provide an indicative measure
of the utility and benefits of a seizure forecasting device. In
a prospective setting, some people initially with interest in
forecasting devices may find false alarms to be debilitating,
whereas others whowere initially skeptical about the benefitsmay
find a forecasting device very helpful (107).

Patterns and Rhythms in Seizure
Probability
It is now understood that most people with epilepsy exhibit
circadian and slower, multiday temporal cycles that modulate
their seizure likelihood [see (17) for a recent review]. Recent
studies have demonstrated impressive seizure forecasting
performance using multiday cycles measured from implantable
EEG (114, 115), although prospective validation is needed.
Cycles of seizure likelihood can also be measured from self-
reported seizure times (116), and for a subset of people, cycles
measured from seizure diaries are predictive of the likelihood
of electrographic seizures and epileptic activity (116, 117).
Machine learning can also be used with historic trends from
self-reported seizure diaries, which may be useful to forecast
future reported seizures (118, 119). Both cyclic and machine-
learning approaches have been shown to accurately forecast
seizures (or, more specifically, seizure diary events) in both focal
and generalized epilepsies. Despite inaccuracy in individual

seizure reporting, long-term patterns and cycles may still be
accurately inferred for many individuals (116, 117). Due to
the indications for use of who can have implanted EEG for
long-term recording, the existence of cycles has largely been
validated electrographically in individuals with focal epilepsies.
Continuously recorded biomarkers remain important to truly
characterize underlying epileptic rhythms, without the inherent
limitations and biases of self-reported seizure diary records (120).

Wearable devices and subscalp EEG have the potential
to improve seizure diaries by providing objective data and
complementary information to help eliminate noise. Objective
seizure measures may capture more seizures, enabling cyclic
patterns to be detected earlier and characterized more accurately
(38). On the other hand, seizure detection with wearable devices
currently has a high error rate, and has only been established
for convulsive or motor seizures (48–50, 121), although progress
is ongoing for other seizure types (51, 52, 93, 122, 123). The
distribution of errors with wearables is likely to be different to the
error distribution of self-reported seizure diaries. There may also
be gaps or poor quality data due to non-adherence or charging
issues (124). Wearable seizure detectors may perform better
at night, when there are fewer movement artifacts, and when
individuals are less likely to self-report seizures (3). Wearable
devices also do not suffer from diary fatigue, or other uniquely
human biases. Therefore, wearable devicesmay have the potential
to improve the accuracy and completeness of the historic record
of individuals’ seizure times when used along with a seizure diary.
A more accurate seizure count, or a combined forecast from
the two data streams (86), may provide a higher performing
forecaster for users. A better record of seizure times enables
personalized forecasting models to be trained and validated more
rapidly and with greater reliability.

Factors Contributing to Seizure Likelihood
Combining multiple sources of information, including cyclic
patterns, EEG features, and other environmental factors, may
contribute to a stronger forecast of seizure likelihood than any
individual signal. There are many data sources that are readily
available and have been shown to be associated with seizure
likelihood. For example, sleep quality (68), weather (125, 126),
mood (78), and stress (45, 46) may all make seizures more likely.
These environmental factors can be combined with information
from seizure times that capture individuals’ daily, weekly, or
monthly cycles to deliver an individualized forecast of seizure
likelihood (12, 92, 104).

Wearable devices provide an opportunity to augment seizure
forecasts with a growing number of physiological signals relevant
to seizure likelihood. For instance, changes in heart rate have
been often found to precede seizure onset by several minutes
(127). Billeci et al. found that heart rate variability could be
used to predict seizures up to 15min before onset with >80%
sensitivity, albeit with a relatively high average false positive
rate of 0.41 per hour (almost 10 per day) (128). Signals that
show some well-defined ictal changes, such as EDA (129–131),
heart rate, or EMG (121), also show predictive changes prior to
seizure onset (32). For instance, a recent study found predictive
value in wearable sensor recordings EDA, blood volume pulse,
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accelerometry, and skin temperature (102). Average heart rate
has also been found to show similar circadian and multiday
cycles to epileptic activity, which are comodulated with seizure
risk (132). Long-term datasets that record large numbers of
individual seizures over long periods of time in conjunction
with continuous wearable monitoring data promise to shed new
light on these patterns governing autonomic nervous system
and metabolic activity that are co-modulated with seizure onset.
The potential of wearable monitoring to track individual seizure
triggers may be more powerful when coupled with behavioral
and mood data. Figure 3 illustrates the concept of a multi-modal
seizure forecasting system.

There is some early promise that physiological signals
derived from peripheral or autonomic systems (i.e., cardiac
activity) contain relevant information for predicting seizure
onset. Figure 4 illustrates a number of these systems. Currently,
insufficient evidence exists that any stand-alone peripheral signal
could be used as a seizure forecast with adequate sensitivity and
specificity (105). However, with more data to determine patient-
specific trends, and in combination with other predictive signals,
wearable monitoring may contribute to an integrated forecast
of seizure likelihood. As more prospective, clinical studies of
forecasting systems are undertaken, a better understanding of the
ideal signals, device specifications, user needs, and performance
benchmarks will be elucidated, and forecasting systems may
begin to reduce the burden of seizure unpredictability on people
living with epilepsy.

CONCLUSION

We are at the edge of a transition in the way that we identify,
analyze, and manage seizures and epilepsy. At the moment,
however, there is still relatively limited data on which to base
decisions about the suitability of various devices currently

available, and the types of seizures in which they might be best
deployed, particularly for non-motor events. There are challenges
ahead regarding the hardware, power, data, and security of the
various devices available, though these problems are being solved
in numerous mobile device applications. Significant challenges

remain around issues related to usability of the systems, and
certainly their chronic use. Developing concepts though relating
to utilization of multiple modality streams and integrating this
information will serve to provide accurate data on which to
more effectively manage epilepsy in the clinic and evaluate
new therapies. Ultimately, data from a variety of systems will
contribute to seizure forecasts and enable people with epilepsy
to achieve a greater degree of safety, freedom, and dignity.
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APPENDIX: PANELS

Panel 1: What Is Wearable?
This review focuses on how wearable devices can be used to
aid chronic, lifetime epilepsy management. Devices that may be
comfortable for a few hours, or even a day may not be classed
as wearable for life. Furthermore, the term “wearable” implies
a degree of accessibility that assumes no specialized medical
knowledge is required for use.

Smartwatches
Highly popular lifestyle tech device.

Signals: photoplethysmography, O2 saturation, skin
temperature, skin conductance, accelerometry, location (GPS),
EKG (in development).

Smart Rings
Similar to smartwatches but with different movement artifacts.

Signals: photoplethysmography, O2 saturation,
skin temperature.

Arm Bands
Sensors mounted on a band around the upper arm. Some devices
may be placed with adhesive stickers.

Signals: Heart rate, muscle activity, oxygen saturation, skin
temperature, skin conductance, accelerometry.

Stick-On Sensor Patches
Subtle patches stuck anywhere on the body that are either
re-useable or easily replaced at regular intervals, such as
EEG electrodes placed behind the ear, or blood-glucose
arm patches.

Signals: EEG/EKG/EMG, accelerometry, glucose, cortisol
(in development).

Smart Phones
Smart phones are not strictly wearable but most wearable
devices integrate and present information to users
via smartphone. Furthermore, more and more people
now carry their smart phone at all times, in a pocket
or handbag.

Signals: Location, accelerometry, microphone, usage patterns,
many aspects of external environment.

Excluded Devices
This review does not consider most scalp EEG electrode caps
or headbands to be wearable. Similarly, implantable devices
may be eminently suitable for long-term use, but they are not
considered “wearable.”

PANEL 2: KEY CONSIDERATIONS IN
WEARABLE DEVICE DESIGN

• Comfort: devices should be able to be wornwithout discomfort
for extended periods of time, including during sleep and
activities such as exercise and bathing.

• Battery life: wearables should be able to record at least 24 h
of activity without needing to recharge the device. Recharging
time should be limited to a few hours. Connectors should be
standard types such as micro-USB or USB-C.

• Accessibility: design of devices and associated phone apps
should account for differences in age groups, genders, vision
capabilities, and body sizes. Particular care should be given to
testing PPG sensors on a variety of skin pigments.

• Appearance: devices should be inconspicuous, or otherwise
not immediately identifiable as medical devices.

• Security: data security and individual anonymity are of high
concern to users, caregivers, and clinicians. Different regions
and jurisdictions will have unique requirements for security
compliance, and laws regarding data access and ownership.

• Internet connectivity: Broadband or 4G internet is required
to transmit data efficiently. Devices can only store a limited
amount of data internally before requiring upload to an
associated device (e.g., via Bluetooth) or the cloud.

• Integration: interfacing with other devices is essential.
Connection with resources such as diaries, smartphone
sensors, and location is becoming ubiquitous.

PANEL 3: CASE STUDY: A BUMP IN THE
DARK

A 30-year-old man presented with a generalized tonic–clonic
seizure after over 12 months of seizure freedom on 500mg
Sodium Valproate once daily. He complained of 6 month history
of occasionally feeling poorly rested. An MRI appeared normal,
and he was otherwise generally healthy. After two 7-day video-
EEG studies (first non-diagnostic), a GTCS was captured lasting
2min occurring during sleep, of which he had no memory. An
additional 500mg Sodium Valproate was given in the evening
and began wearing a wrist-worn accelerometry device to detect
nocturnal seizures in the home. Three events were detected
within a 2-month period, none of which could be recalled.
Carbamazepine was commenced, and he has since been free of
seizures for over 6 months.

This case presents a common problem—a seizure diary
that provides little information to guide treatment, and non-
diagnostic, time-consuming video-EEG studies. Monitoring
within the home can provide longitudinal seizure counts
with reasonable sensitivity for GTCS events (from both
wakefulness and sleep) and provide near real-time alerts to
caregivers. Without a wearable device, multiple video-EEG
studies may be required to measure the effect of each of the
additional medications.
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The unpredictability of epileptic seizures exposes people with epilepsy to potential

physical harm, restricts day-to-day activities, and impacts mental well-being. Accurate

seizure forecasters would reduce the uncertainty associated with seizures but need to

be feasible and accessible in the long-term. Wearable devices are perfect candidates to

develop non-invasive, accessible forecasts but are yet to be investigated in long-term

studies. We hypothesized that machine learning models could utilize heart rate as a

biomarker for well-established cycles of seizures and epileptic activity, in addition to

other wearable signals, to forecast high and low risk seizure periods. This feasibility

study tracked participants’ (n = 11) heart rates, sleep, and step counts using wearable

smartwatches and seizure occurrence using smartphone seizure diaries for at least 6

months (mean = 14.6 months, SD = 3.8 months). Eligible participants had a diagnosis

of refractory epilepsy and reported at least 20 seizures (mean = 135, SD = 123)

during the recording period. An ensembled machine learning and neural network model

estimated seizure risk either daily or hourly, with retraining occurring on a weekly basis

as additional data was collected. Performance was evaluated retrospectively against

a rate-matched random forecast using the area under the receiver operating curve. A

pseudo-prospective evaluation was also conducted on a held-out dataset. Of the 11

participants, seizures were predicted above chance in all (100%) participants using an

hourly forecast and in ten (91%) participants using a daily forecast. The average time

spent in high risk (prediction time) before a seizure occurred was 37min in the hourly

forecast and 3 days in the daily forecast. Cyclic features added the most predictive value

to the forecasts, particularly circadian and multiday heart rate cycles. Wearable devices

can be used to produce patient-specific seizure forecasts, particularly when biomarkers

of seizure and epileptic activity cycles are utilized.

Keywords: seizure forecasting, cycles (cyclical), seizure cycles, circadian rhythms, multiday rhythms, wearable

sensors

41

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2021.704060
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2021.704060&domain=pdf&date_stamp=2021-07-15
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rachelstirling1@gmail.com
https://doi.org/10.3389/fneur.2021.704060
https://www.frontiersin.org/articles/10.3389/fneur.2021.704060/full


Stirling et al. Seizure Forecasting With Wearables

INTRODUCTION

Epilepsy is one of the most common neurological disorders,

affecting roughly 1% of the world’s population (1) and responsible

for 20.6 million disability-adjusted life-years (DALYs) lost, which
is comparable to breast cancer in women and lung cancer in men

(2). Epilepsy is characterized by an increased predisposition of
the brain to generate epileptic seizures, which often result in vast
neurobiological, cognitive, psychologic, and social consequences

(3). Despite decades of new drug development and surgical
treatment, up to one-third of people with epilepsy continue to

suffer from recurrent seizures (4, 5). While most people are
symptom-free for more than 99.9% of their day-to-day life,
epileptic seizures are sudden, potentially catastrophic events that
can be life-threatening both for the person with epilepsy and
others. Crucially, sudden death in epilepsy (SUDEP), most often
following a convulsive seizure, is 27 times more likely than
sudden death in control populations, a mortality burden second
only to stroke when compared to other neurologic diseases (6, 7).
Aside from these risks, living with epilepsy can take a major
toll on quality of life and independence, as the unpredictable
nature of seizures causes feelings of uncertainty (8) and impacts
participation in common day-to-day activities, such as going to
work, driving, and social interactions (9).

To address the uncertainty associated with epileptic seizures,
researchers acrossmany disciplines have spent years investigating
the potential for seizure prediction and forecasting (10). The
ability to reduce the uncertainty of when a seizure is about to
occur would have tremendous implications for quality of life, and
clinical management (10). Timely precautions against seizure-
related injury or timed adjustment of treatment according to
seizure likelihood (chronotherapy) could also reduce seizure-
related harm, hospitalizations, and healthcare-related costs (11).

Until recently, there was no scientific consensus as to whether
seizures would be predictable in a prospective setting since most
research was based on limited data [from short-duration in-
hospital electroencephalography (EEG) recordings] and some
presented methodological flaws (12). Access to better quality
data [made available in public databases (13, 14) and seizure
prediction competitions (15)], more rigorous statistical and
analytical methods, and results from a clinical trial of an
intracranial EEG seizure advisory system [NeuroVista (16)]
have shown promise that seizure prediction devices could
be possible in the foreseeable future. Additionally, there is
a better understanding of the pre-seizure state and of the
mechanisms underlying seizure generation (ictogenesis), with
contributions from basic science, network theory, multiscale
electrophysiological recordings, and functional neuroimaging
(17). Multiple patient-specific seizure precipitants have also been
identified, including stress (18, 19), poor sleep (18), exercise
(20), diet (21), weather (22, 23), alcohol use (24) and poor drug
adherence (25).Many of these factors have shown potential utility
in forecasting seizures (18, 23).

Yet perhaps the most significant breakthrough for the field
of seizure forecasting has been the characterization of short-
and long-term seizure occurrence cycles (11, 26, 27), which
typically occur in circadian and multiday (often weekly and

monthly) periodicities (27, 28). Similar cycles have been reported
in interictal epileptiform activity (IEA) (26), EEG markers of
brain critical slowing (29) and heart rate (30), all of which
have been linked to seizure timing, suggesting that seizures are
co-modulated by underlying biological cycles. An individual’s
seizure cycles can be utilized to generate seizure forecasts using
both self-reporting seizure diaries (31–33) and electrographic
seizures (34). However, the discrete nature of seizure events
means that the underlying biological cycles may be stronger
predictors of seizure occurrence than seizure cycles alone (29,
34, 35). This has already been successfully demonstrated with
cycles of IEA in a retrospective seizure forecasting study using an
implanted intracranial EEG device (34). Furthermore, algorithms
incorporating biological cycles seem to outperform algorithms
using more traditional EEG features, such as spectral power
and correlation (15).

However, seizure forecasting algorithms typically rely on
chronic EEG recordings from invasive, implanted devices, which
require surgery (and associated risks), are costly, and may not
be an option for many people with epilepsy. Minimally-invasive
or non-invasive wearable devices that monitor continuous
biomarkers of seizure risk are, therefore, ideal candidates for
most people who desire seizure forecasts (9). Currently, some
wearable devices are commercially available for seizure detection
(36), although there are also promising results highlighting the
utility of wearables in seizure forecasting. Wearable sensors
can be used to detect actigraphy, blood volume pulse, body
temperature, cerebral oxygen saturation, electrodermal activity
and heart rate, all of which have all shown promise in
seizure prediction (37–40). Periodic wearable signals, such as
temperature (41) and heart rate (30) may also be used as a
biomarker for seizure cycles (35). For example, our recent work
in seizure timing and heart rate, measured from a wearable
smartwatch, shows that seizures are often phase-locked to
underlying circadian and multiday cycles in heart rate (i.e., there
is a strong preference for seizures to occur at specific phases of
individual-specific heart rate cycles, such as near the peak or
trough of a multiday cycle) (30).

To address the need for non-invasive seizure forecasting, this
study aimed to develop a wearable device-based seizure forecaster
using a long-term dataset from an observational cohort study,
Tracking Seizure Cycles. We hypothesized that cycles in heart
rate can be leveraged, in addition to other wearable signals (other
heart rate features, step count and sleep features), to forecast high
and low seizure risk periods. We also investigated the relative
contributions of cycles, heart rate, sleep and activity features to
forecasting performance.

MATERIALS AND METHODS

Study Design
This retrospective and pseudo-prospective feasibility study was
designed using training and testing datasets, followed by pseudo-
prospective evaluation using a held-out dataset.We utilized long-
term smartphone seizure diaries and a wearable smartwatch to
forecast seizure likelihood and elucidate the relationship between
seizures and non-invasively measured wearable signals, namely
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heart rate, sleep stages, sleep time, and step count. The study was
approved by the St Vincent’s Hospital Human Research Ethics
Committee (HREC 009.19) and all participants provided written
informed consent.

Participants
Adults (18 years and over) with a confirmed epilepsy diagnosis
and healthy controls were recruited between August 2019
and January 2021. Participants with epilepsy had uncontrolled
or partially controlled seizures and were recruited through
neurologist referral. All participants provided written
informed consent.

Data Collection
Continuous data were collected via smartphone and wearable
devices for at least 6 months and up to 20 months. Participants
wore a smartwatch (Fitbit, Fitbit Inc., USA) and manually
reported seizure times in a freely available smartphone diary app
(Seer App, Seer Medical Pty Ltd, Australia). Participants were
instructed to report all their clinically apparent events, including
generalized and focal seizures (both aware and unaware). The
smartwatch continuously measured participants’ heart rates (via
photoplethysmography) at 5 s resolution (one recording every
5 s). The smartwatch also estimated sleep stage (awake, REM, and
light and deep sleep) and step count each minute.

Training, Testing and Held-Out Evaluation
Datasets
Participants were required to have 2 months or more of
continuous wearable data recordings, at least 80% adherence (i.e.,
they must have worn the device at least 80% of the time) and a
minimum of 20 seizures reported during the recording time to be
eligible for seizure forecasting. Eligible participant demographic
information is given in Table 1.

The training dataset included at least 2 months of continuous
recordings (M = 5.4 months, SD = 4 months) and at least 15
seizures (M = 35, SD = 47). The patient-specific training cut-
off date was the final day that both of these criteria were met.
The testing dataset included participants’ continuous recordings
(M = 6.6 months, SD = 3.1 months) and seizures (M = 87,
SD = 112) reported from their training cut-off date until 1
February 2021. As a further requirement for seizure forecasting,
participants must have had at least five lead seizures (at least
an hour apart in the hourly forecast and at least a day apart
in the daily forecast) reported during the testing period. Any
continuous recordings (M = 2.6 months, SD = 0.5) and seizures
(M = 13, SD = 14) reported from 1 February 2021 until 25
April 2021 were included in the held-out evaluation cohort, so
long as the participant reported at least one seizure during this
period. This data was held-out to evaluate the performance of the
forecasting algorithm in a pseudo-prospective setting.

Data Preprocessing
The heart rate, step count, and sleep signals were all processed
separately. Heart rate features included rate of change in heart
rate (RCH) and daily resting heart rate (RHR). Physical activity
features included steps recorded in the previous hour and steps

recorded on the previous day. Sleep features included total
time asleep (not including naps), time in REM, time in deep
and light sleep during main sleep, average HR overnight, sleep
time deviation from median sleep time over the past 3 months,
and wake time deviation from median wake time over the
past 3 months. All sleep features were calculated using sleep
labels derived from Fitbit’s sleep algorithm. Additionally, we
included cyclic features, comprising heart rate cycles (circadian
and multiday), last seizure time, and second-last seizure time.
Compared to the hourly forecast, the daily forecast only included
multiday cycles, days since last seizure time, days since second-
last seizure time, all sleep features, daily resting heart rate, and
steps recorded during the previous day.

To derive heart rate features and heart rate cycles, continuous
heart rate signals were initially down-sampled to one timestamp
per minute, followed by interpolation of short missing data
segments with a linear line (missing segments <2 h) or longer
missing data segments with a straight line at the mean heart
rate. RCH was used to estimate heart rate variability (HRV),
which is defined as the variations in RR intervals and is typically
derived using the QRS complex on an electrocardiogram (ECG).
RCH was calculated as the mean beats per minute (BPM) in
1min subtracted from the mean BPM in the previous minute,
representing the change in BPM over 2min. RCH was resampled
every hour for the hourly forecast or every day for the daily
forecast. Daily RHR was derived as the average of the bottom
quintile of BPM where no steps were recorded, thus minimizing
the potential for movement artifact.

To compute the heart rate cycles, we used a similar approach
to a method used to extract multiday rhythms of epileptic activity
(26) [see also (30) for further details]. Briefly, circadian and
multiday peak periodicities of heart rate (cycles) were derived
using a Morlet wavelet. The heart rate signal was filtered (using a
zero-order Butterworth bandpass filter) at the peak periodicities
and instantaneous phase of the cycle at each timepoint was
estimated using a Hilbert transform. Cycles were used as features
for the forecaster if seizures were significantly phase-locked to
the cycle [p < 0.05, according to Omnibus/Hodges-Ajne test for
circular uniformity (42)]. Each cyclic feature (cycle phases and
last/second last seizure time) was transformed into two linear
features by normalizing the signal from 0 to 2π and computing
the sine and cosine.

Forecasting Algorithm
The seizure forecast was presented in hourly and daily formats
to assess the accuracy of an hourly forecast compared to a daily
forecast. The hourly forecast gave the likelihood of a seizure at
the start of the hour, every hour. The daily forecast gave the
likelihood of a seizure for the day, shortly after waking from sleep
(based on Fitbit’s sleep end time).

To forecast the likelihood of a seizure hourly and daily,
we used an ensemble of a long short-term memory (LSTM)
neural network (43), a random forest (RF) regressor (43), and a
logistic regression (LR) classifier (43). An ensemble method was
chosen to allow the combination of diverse feature types. Figure 1
describes the architecture of the model. The training (green),
testing (orange) and evaluation (red) cohorts were different
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TABLE 1 | Eligible participants’ demographic information.

Participant Type of seizures (Focal,

Generalized or Both)

Total seizures during

monitoring

(frequency/month)

Training

recording length

(months)

Testing

recording length

(months)

Evaluation

recording length

(months)

Sleep scoring

(nights)

P1 Focal 57 (5.1) 4.2 4.3 2.7 334

P2 Focal 111 (8.8) 2.0 7.9 2.7 371

P3 Focal 27 (1.5) 12.6 3.1 2.7 549

P4 Focal 24 (1.4) 10.6 4.3 2.7 500

P5 Both 280 (17.0) 2.0 13.3 1.2 459

P6 Focal 246 (36.7) 2.0 2.1 2.6 199

P7 Generalized 28 (1.6) 8.5 5.9 2.7 501

P8 Focal 179 (14.6) 2.5 7.1 2.7 327

P9 Both 392 (19.6) 9.7 7.6 2.7 586

P10 Focal 94 (6.6) 2.4 9.2 2.7 428

P11 Focal 55 (3.9) 3.5 7.8 2.7 399

Summary 8 focal only, 1

generalized only, 2 both

generalized and focal

M = 136 (10.6) M = 5.5 M = 6.7 M = 2.6 M = 423

SD = 123 (10.8) SD = 4.0 SD = 3.2 SD = 0.5 SD = 112

Participants that had more than one seizure during the evaluation period are shown in red.

lengths in each participant, and algorithm retraining occurred
weekly during testing and evaluation. The forecast used an LSTM
model (which contains 7 days of memory) for all sleep features
in order to account for the potential effect of built-up sleep debt
on seizure risk (18). All other features (cycles, heart rate features
and step counts) then predicted seizure risk using a random
forest model. The random forest model was chosen because it
achieved the best results during testing using Python’s sklearn
library, when compared to other conventional machine learning
models (namely logistic regression, linear discriminant analysis,
K-nearest neighbors, naïve bayes and support vector machines).
A logistic regression model, which weighs inputs’ predictive
value, then combined the random forest and LSTM outputs into
one seizure risk value per hour or day. This was compared to
a rate-matched random model (occasionally referred to as the
chance model) using AUC scores. Other metrics were also used
to assess forecast performance (see Performance Metrics).

The LSTM model was trained on sleep features computed
daily after waking. A weekly history of sleep features was
incorporated into each row input, providing a 7 × 7 matrix
for each forecast, representing 7 days and 7 sleep features
per day. The LSTM model was composed of a single layer
with 64 memory units, followed by two densely connected
layers, and a linear activation function. All networks were
trained for 100 epochs. We selected the mean squared
error loss function as the cost function, using the Adaptive
Moment Estimation (Adam) optimizer (44). The LSTM
model outputted the likelihood of a seizure for the day
based on sleep features and was used as an input to the
LR classifier.

The RF regressors with the bootstrap aggregating technique
were trained on all physical activity, heart rate, and cyclic
features. In the model, the number of decision trees was 1000 and
the minimum number of samples required to be at a leaf node
was 120. From observation, these model parameters achieved

the highest accuracy across the board during training. Most
people, particularly participants with low seizure frequency (<2
seizures/month), had a highly imbalanced dataset, with non-
seizure hours/days occurring far more frequently than seizure
hours/days. RF models typically made more accurate predictions
on balanced datasets, so oversampling of seizure hours/days was
undertaken before training the RF model. The output of the RF
model was the likelihood of a seizure within the following hour
or day and was used as an input to the LR classifier.

The LR classifiers were trained on the outputs of the LSTM
and RF models. To aid the classifier in distinguishing between
non-seizure hours/days and seizure hours/days and to mitigate
the low resoltuion of self-reporting, the hour/day immediately
preceding and following the hour/day of each seizure were
removed in the training dataset. The output of the LR model
was the final likelihood of a seizure (risk value); the risk value
was represented as a continuous value between 0 for no seizure
and 1 for a “guaranteed” seizure within the next hour or day,
as appropriate.

The forecaster classified hours and days as either low,
medium, or high risk. The medium and high risk cut-
off thresholds were computed using the training dataset by
optimizing the metrics:

(C1) time spent in low risk > time spent in medium risk > time
spent in high risk;

(C2) seizures in high risk > seizures in medium risk > seizures
in low risk (29).

If C1 or C2 could not be satisfied, the optimization algorithm
maximized the product of the time in low risk and the number
of seizures in high risk (C3 and C4):

(C3) maximize the time spent in a low risk state;
(C4) maximize the number of seizures occurring in the high

risk state.
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FIGURE 1 | Forecasting model architecture. The logistic regression ensemble (combining LSTM, Random Forest Regressor, and all features) was trained on a training

dataset that included at least 15 seizures and at least 2 months of continuous recordings. Two forecasting horizons were compared: hourly and daily forecasts. The

LSTM model incorporated sleep features from the past seven nights and the random regressor included all other features (cycles, heart rate, and physical activity

features), in addition to the output daily seizure likelihood estimates from the LSTM model. The logistic regression ensemble utilized a 10-fold cross validation

approach to forecast seizure likelihood hourly or daily. The forecasting model was assessed (using AUC scores) on a retrospective testing set and a

pseudo-prospective held-out evaluation set and compared to a rate-matched random (RMR) model, where seizure frequency was determined by the training set. The

algorithm was retrained weekly to imitate a clinical forecast.

Retraining the algorithm was implemented to imitate a clinical
seizure forecasting device in which algorithm coefficients and
risk thresholds would be regularly updated. Retraining of the
seizure forecast occurred on a weekly basis as additional data
was collected.

Performance Metrics
To assess the performance of the hourly and daily forecasters, a
variety of different metrics were used. During algorithm testing
and for pseudo-prospective held-out evaluation, performance of
the ensembled model was evaluated using the area under the
receiver operating characteristic curve (AUC) and compared to
the AUC score of a rate-matched (seizure frequency derived from
all seizures that occurred in the training dataset) random forecast.
The AUC scores assessed the classifier’s ability to discriminate
between non-seizure hours/days and seizure hours/days.

Despite the usefulness of the AUC to measure performance,
the AUC can change depending on the forecasting horizon
(34); in this case, an hourly forecast compared to a daily

forecast. This motivated the use of Calibration Curves (CC) to
measure how well the predicted likelihood values corresponded
to observed probabilities, and the Brier score (or Brier loss)
to quantify the accuracy of the predictions. The CC metric
provides a visual representation of the forecaster’s ability to
estimate seizure risk. The ideal CC can be visualized as a
diagonal line, where the forecaster’s predicted seizure likelihood
values are equal to the actual seizure probabilities. Anything
above this line would be considered underestimating seizure
risk and anything below would be overestimating seizure risk.
The Brier score (or Brier Loss) is shown alongside the CC
metric, which is often used to assess calibration performance.
For the Brier Score, a perfectly accurate forecast would result
in a loss score of 0 and a poorly performing forecast would
result in a loss closer to 1. We also considered the accuracy
of the forecaster, time spent in low, medium and high risk
states, and seizures occurring in low, medium and high
risk states.

Analyses were executed using Python (version 3.7.9).
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FIGURE 2 | Receiver operator characteristic (ROC) curves for all participants in the (A) daily and (B) hourly forecast (retrospective testing cohort). The dashed

diagonal line represents a balanced random forecast. ROC curves show that hourly forecasts consistently outperformed a balanced random forecaster, and daily

forecasts mostly outperformed a balanced random forecaster. Patient-specific forecast performance was assessed by comparing the forecaster’s area under the ROC

curve (AUC) to the AUC of a rate-matched random forecast (different to the balanced random forecast shown above).

RESULTS

There were 11 out of 39 participants that met the inclusion
requirements (see Methods: Study Design and Participants)
(Table 1). Eligible participants had an average duration of 14.6
months (SD = 3.8) of continuous heart rate and activity
monitoring, and an average of 423 nights (SD = 112) that
recorded sleep stages and duration. Participant diaries included
an average of 136 (SD = 123) seizures reported during the
wearable monitoring period. Results from the cohort are given
in Figures 2–6 and Table 2. Eight of 11 participants (shown
in red in Table 1) in the testing cohort were also included in
the held-out evaluation cohort, as these people reported more
than one seizure during the evaluation period. The results from
the prospective evaluation cohort are shown in Figure 7 and
Table 2.

Forecast Performance and Metrics
Forecasting performance was quantified to determine
which participants would have benefitted from the non-
invasive seizure forecast. First, we used the AUC metric
to determine forecasting performance. The AUC score
quantifies how useful the forecast is, based on the amount
of time spent in a high-risk state. An excellent forecast
is often considered to have an AUC of >0.9. Of the 11
participants, AUC scores showed that seizures were predicted
above chance in all participants using an hourly forecast
(M AUC = 0.74, SD = 0.10) and in 10 participants using
a daily forecast (M AUC = 0.66, SD = 0.11) (Figure 2
and Table 2).

Both hourly and daily models usually performed well in
people with longer recording times. A weak positive correlation
was found between total recording length and AUC scores in
both the hourly (R2 = 0.63) and daily (R2 = 0.59) forecasters

FIGURE 3 | Forecasting and prediction performance metric results in the

retrospective testing cohort for the (B) hourly and (A) daily forecasters.

Individual participant bars are shown for each metric. Population box plots are

shown on the right of the bars, showing median and upper and lower quartiles

for each metric in the hourly and daily forecasters.

(Supplementary Figure 1). This suggests that the forecaster
improves over time.
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FIGURE 4 | Calibration curves and Brier scores for hourly and daily forecasts summarized for each participant in the retrospective testing cohort. The calibration

curves show the relationship between the forecasted likelihood of seizures (x-axes) and the actual observed probability of seizures (y-axes). For the calibration curves,

10 bin sizes were used, so forecast likelihood values were compared to actual probabilities from 0–10%, 10–20%,..., 90–100%. The ideal calibration curve for a

hypothetically perfect forecaster is shown in each plot.

FIGURE 5 | Example hourly forecasts showing high, medium, and low risk

states, and medium and high risk thresholds. Predicted seizure likelihood

(black line) derived from the hourly forecaster for P4 from the end of

September to the end of January. Seizures are marked with red triangles.

High, medium and low risk states are indicated by the red, orange and green

regions, respectively, and are separated by the medium and high risk

thresholds. Note that the medium risk and high risk thresholds—indicated by

the orange and red lines, respectively—can change after weekly retraining. The

cyclical seizure likelihood is mostly attributable to multiday heart rate cycles.

A relationship was also noticed between seizure frequency
and forecasting performance. The model performed worst in
the participant with the highest seizure frequency (P6) (0.57
and 0.46 for the hourly and daily forecaster, respectively). P6
had a seizure frequency of 36.7 seizures/month (i.e., more
than one per day), which was almost double the next highest
participant. Across the whole cohort, a weak negative correlation
was found between seizure frequency and AUC scores in both
the hourly (R2 = −0.58) and daily (R2 = −0.49) forecasters
(Supplementary Figure 2). This suggests that participants with
lower seizure frequencies (less than once per day) had more
accurate predictions using the current model than participants
with higher seizure frequencies.

Time spent in high, medium, and low risk, alongside the
seizure frequency in high, medium, and low risk, were also
considered (Figure 3). For the hourly forecast, median forecast
accuracy was 86% (min: 56%, max: 95%) and median time in
high risk was 14% (min: 5%, max: 45%). For the daily forecast,
median forecast accuracy was 83% (min: 43%, max: 97%) and
median time in high risk was 18% (min: 6%, max: 29%). Of the 11
participants, the average time spent in high risk (prediction time)
before a seizure occurred was 37min in the hourly forecast and 3
days in the daily forecast. Typically, greater AUC scores implied
that the participant spent more time in low risk andmost seizures
occurred in high risk. For example, P4 spent only 7% of their time
in high risk state, but 83% of their seizures occurred whilst in high
risk (see Figure 5 for an example forecast).

Additionally, we evaluated CC metrics and Brier scores
(Figure 4). Generally, people with more seizures had calibration
curves closer to the ideal diagonal line. Hourly and daily forecasts
were occasionally found to sit well below the ideal line, suggesting
that seizure risk was overestimated in these cases. Brier score
loss, another metric to assess forecast calibration performance,
varied independently to calibration curve variation. For example,
the participants with the highest seizure counts (P5 and P9)
had similar calibration curves for both the hourly and the daily
forecast; however, Brier loss scores were much greater for P9 than
P5. P4 had the lowest Brier loss scores in both the hourly and
daily forecast.

Feature Groups on Forecast Performance
To characterize the importance of feature groups on forecasting
performance, we analyzed AUC score change with the addition of
particular feature groups (Figure 6). Physical activity and heart
rate feature groups added little predictive value to the daily
forecaster. Sleep features appeared to add value to the daily
forecaster in some people, but this was not significant across
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FIGURE 6 | Auxiliary contribution of each feature group on forecasting performance in the retrospective testing cohort. AUC score change represents average change

computed over ten runs of the algorithm. Performance of each feature group was characterized by comparing the AUC score of the forecasting algorithm once the

feature group was added to the AUC score of the forecasting algorithm without the feature group. For example, in the case of physical activity, we compared the AUC

score when the algorithm included all feature groups to the AUC score when the algorithm included only heart rate, sleep, and cycles feature groups. *Indicates that

the feature group’s contribution was significantly greater than zero across the cohort, using a one-sided t-test (***p < 0.001 and **p < 0.01). (A) Daily forecast. (B)

Hourly forecast.

TABLE 2 | AUC scores of the hourly and daily forecasters for the testing and

evaluation cohorts.

Testing dataset Evaluation dataset

Hourly AUC Daily AUC Hourly AUC Daily AUC

Participant 1 0.79* 0.64* 0.68* 0.42

2 0.71* 0.61*

3 0.93* 0.62* 0.94* 0.69*

4 0.89* 0.92*

5 0.75* 0.72*

6 0.57* 0.46 0.55* 0.62*

7 0.67* 0.64* 0.41 0.45

8 0.70* 0.70* 0.82* 0.80*

9 0.76* 0.68* 0.57* 0.45

10 0.66* 0.66* 0.61* 0.80*

11 0.69* 0.61* 0.84* 0.45

Mean (SD) 0.74 (0.1) 0.66 (0.11) 0.68 (0.18) 0.59 (0.16)

*Indicates performance greater than chance (the rate-matched random forecast).

the cohort (p = 0.09). Physical activity added some predictive
value to the hourly forecaster; however, sleep and heart rate
features were the weakest predictors in the hourly forecaster. In
both the hourly and daily forecaster, the cycles feature group
was the strongest predictor across the whole cohort and for
most individuals. 10 of 11 participants (all expect P4) had a
significant (i.e., seizures were significantly locked onto the cycle
in the training dataset) circadian cycle and 10 of 11 (all except
P7) people had least one significant multiday cycle. Despite the
occasional negative AUC score change with the addition of a
feature group, it is important to note that it is unlikely that there
is significant positive or negative value added to the forecaster
when values are close to 0.

Held Out Evaluation Cohort Performance
The held-out evaluation cohort performed well in most cases
(Figure 7 and Table 2). The predictions (based on AUC scores)
were above chance in 7 of 8 (88%) people using the hourly
forecaster (M = 0.68, SD = 0.18) and 4 of 8 (50%) people using
the daily forecaster (M = 0.58, SD = 0.16). It is important to
note that the participant, P7, who did not perform better than
chance using the hourly forecast model had the lowest seizure
count during the evaluation period and was the only participant
without a significant multiday heart rate cycle.

DISCUSSION

Summary
People with epilepsy and their caregivers have expressed their
interest in non-invasive wearable devices for decades, particularly
for seizure forecasting (45) and detection (46). Wearable devices
are more acceptable to people with epilepsy than invasive,
cumbersome or indiscrete devices (45, 46). Nonetheless, very few
studies have investigated the feasibility of non-invasive wearables
in seizure forecasting, and although performance in current
studies is promising, their datasets are usually short-term (<1
week) (37, 40).

This study demonstrates that features recorded via non-
invasive wearable sensors can contribute to accurate seizure
forecasts. Individual forecasters performed better than chance
with all people when an hourly prediction horizon was used,
and with 10 of 11 people when a daily prediction horizon was
used. These results indicate that non-invasive seizure forecasting
is possible for people with epilepsy with seizure warning periods
of up to 24 h.

In the evaluation cohort, predictions were above chance in 7 of
8 people using the hourly forecaster and 4 of 8 people using the
daily forecaster. This is contrary to what we expected: that the
performance would improve with a longer period on which to
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FIGURE 7 | Receiver operator characteristic (ROC) curves for all participants in the (A) daily and (B) hourly forecast (held-out evaluation testing cohort). The dashed

diagonal line represents a balanced random forecast. ROC curves show that hourly forecasts mostly outperformed a balanced random forecaster, and daily forecasts

outperformed a balanced random forecaster half of the time. Patient-specific forecast performance was assessed by comparing the forecaster’s area under the ROC

curve (AUC) to the AUC of a rate-matched random forecast (different to the balanced random forecast shown above).

train the algorithm. The lack of improvement in AUC scores in
the evaluation cohort may be attributed to the shorter recording
lengths and seizure counts in the evaluation dataset compared
to the testing dataset, making it difficult to directly compare
the cohorts. Furthermore, the theoretical shift and change that
may occur in heart rate cycles over time was not considered in
this model. This shift in cycles may be mitigated by consistently
retraining the algorithm on a shorter period of data (e.g., the past
4 months, instead of all past data).

Generally, the hourly forecaster resulted in more accurate
predictions than the daily forecaster. The superior performance
in the hourly forecasts may be attributed to a number of factors,
such as the inclusion of circadian heart rate cycles, hourly step
count and RCH. The resolution of the daily forecaster would
also have played a role in the loss of information. For example,
high frequency seizure days (>1 seizure occurred on a day) were
weighted equally to low seizure frequency days (1 seizure on
a day).

Feature Importance
Overall, cyclic features (heart rate cycles and previous seizure
timing) were the strongest predictors of seizures in most cases
(Figure 6). Most people had a circadian and at least one multiday
cycle that aided prediction of seizure risk. This was expected
given recent incredibly strong performance of cycles for seizure
forecasting (29, 31, 34) and the previously demonstrated utility
of heart rate cycles as a biomarker for seizure risk (30). Cycles
are now becoming increasingly recognized as a fundamental
phenomenon of seizure risk; however, their underlying drivers
are still unknown. For recent reviews on cycles in seizure
forecasting, refer to Stirling et al. (10) and Karoly et al. (47).

Sleep features appeared to be useful predictors of seizure
likelihood for some people using the daily forecaster but were
weak predictors in the hourly forecaster. The lack of utility of
sleep features in the hourly forecaster may be attributed to the
design of the algorithm, as the sleep variable remains constant

for all hours of the day after waking, making it difficult for the
algorithm to distinguish between non-seizure and seizure hours.
In contrast, for some people, sleep was a useful feature in the daily
forecaster, which distinguishes seizure-days from non-seizure
days. This suggests that sleep does play a role in seizure risk for
some people. Sleep features, such as sleep quality, transitions and
length, have historically been associated with seizures in many
people with epilepsy (18, 23). It is possible that the role of sleep
as a seizure precipitant is highly patient-specific, which warrants
further investigation in larger cohorts.

Heart rate features—daily RHR and RCH (estimation of
HRV)—were not significantly predictive of seizures on a cohort
level, but appeared useful in some individuals (Figure 6).
HRV has been of interest to researchers for decades and is
known to reflect autonomic function (48). HRV has also been
used to predict seizures minutes in advance, albeit with high
false prediction rates (39). It is important to note, however,
that we have estimated HRV in the current algorithm using
a very basic method, but recent studies have revealed that
photoplethysmography-based methods for estimating HRV are
available and in the pipeline for wearable devices (49, 50). Daily
resting heart rate, on the other hand, is not often associated
with seizure risk, but seemed to be a useful feature in some
cases. However, daily resting heart rate is likely correlated with
multiday rhythms of heart rate and thus may not provide
distinct value compared to cyclic features that were derived from
heart rate.

Physical activity features were also predictive of seizures
in some people, namely in the hourly forecaster (Figure 6).
Physical activity is beneficial for mental health, quality of life,
and cognitive function for people with epilepsy (51). However,
people with epilepsy are less likely to engage in physical activity
than the general population (52), partially influenced by the
inaccurate historical belief that exercise can provoke seizures
(53). On the contrary, there is some evidence that increased
physical activity is associated with reduced seizure frequency (54,
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55). Physical activity is also known to benefit common psychiatric
comorbidities of epilepsy, such as anxiety and depression (56),
so exercise may indirectly reduce seizure frequency by impacting
other seizure precipitants, such as stress and reduced heart rate.
We did not explore whether the relationship between physical
activity was generally positive or negative in this study, but this
should be investigated in future work.

Note that the relative feature contributions found in this work
may depend on the specific choice of model and may be taken as
an indication of feature importance only. Future work may focus
on more rigorous methods for feature importance (57).

Demographic and Clinical Factors
We generally observed that the model performed best for
participants with longer recording times, and more consistently
over prediction horizons (Supplementary Figure 1). This
suggests that seizure forecasts utilizing wearable sensors perform
better with longer recording times, and are likely to improve over
time. We suggest that a clinical forecast requires a minimum
amount of data or events before starting to use the forecaster.
Future work should investigate the ideal number of events
required for the best results, taking into account an individual’s
seizure frequency, and the optimal number of cycles to observe
before incorporating the cycle into the forecaster.

Interestingly, the model tended to perform
better in participants with lower seizure frequencies
(Supplementary Figure 2). This relationship between seizure
frequency and forecasting performance was also observed in a
prospective forecasting study (16). Although it is well-known
that seizure frequency is important to quality of life (58), people
with fewer seizures are still subject to anxiety and fear caused by
the unpredictability of seizures (8, 59). Therefore, people who
have fewer seizures may have the most to benefit from accurate
forecaster, as a forecaster may enable them to go about their daily
lives without fear of an impending seizure.

Despite less than perfect accuracy in the current model, the
results may still meet the user requirements for a practical seizure
gauge device. Many people with epilepsy may use a forecasting
device despite less than perfect accuracy (45). For example,
subjects in a prospective seizure forecasting study found the
implanted device useful even though the median sensitivity was
only 60% (60). Moreover, shorter time horizons (minutes to
hours) seem to be preferable over longer time horizons (days)
(45). This is in line with the current results, where the shorter
time horizon (hourly) made more accurate predictions than
the longer time horizon (daily). Ultimately, prospective seizure
forecasting studies with non-invasive wearables are needed to
assess user requirements and clinical utility.

Limitations
This study has several limitations. First, self-reported seizure
diaries have inherent drawbacks and are known to be inaccurate
(61). Not everyone with epilepsy is aware of when they experience
a seizure, particularly if they predominantly experience focal
aware seizures. Self-reported events also rely on participant or
caregiver memory for seizure time recollection, which may cause
the forecaster to draw inaccurate conclusions during training.
However, self-reported events are non-invasive, easy to capture,

and remain the standard data source for medical practice and
clinical trials in epilepsy (10). Therefore, seizure diaries remain
important for non-invasive seizure forecasting. To improve the
accuracy of self-reported events, non-invasive seizure detection
devices are available for convulsive seizures, and detection of
non-convulsive seizures are in the pipeline (62).

Second, it is worth noting that the accuracy of heart
rate and sleep stages measured from smartwatch devices
has been investigated compared to electrocardiography
and polysomnography, respectively (63–65). These studies
collectively show that no significant difference was noted
between the heart rate captured using a Fitbit compared to an
electrocardiography device during sleep, but some errors did
emerge during exercise. Smartwatches are known to be useful
in obtaining gross estimates of sleep parameters and heart rate
but are not yet suitable substitutes for electrocardiography
and polysomnography. This suggests that complex parameters,
such as sleep stages and heart rate variability, may need
further investigation to understand their role as seizure drivers.
Wearable heart rate sensors are also subject to artifacts, although
measurement noise was likely to be at a higher frequency than
the time scale focused on in the current work.

Third, seizure number and seizure frequency are also limiting
factors on whether seizure forecasting is possible. When seizure
numbers are low, the forecaster may be unreliable in some
cases due to overfitting in the training set. The optimal learning
period based on seizure frequency should be investigated in
future. Fourth, the ensemble method was complicated because
we combined diverse feature types; however, given the main
contribution to performance was cyclic features, future work
should focus on developing simpler approaches. Cycles may
also shift or change over time, thus affecting the accuracy
of the forecaster. In a real-world implementation, we may
look to remove any past data beyond 1 year or remove
the oldest week of data every time a new week is added
to account for changes in seizure biomarkers and to reduce
memory requirements.

Finally, we attempted to balance our participant recruitment
so that it accurately reflected the population of people with
refractory epilepsy (variety of adult ages, epilepsy types and
seizure frequencies); however, the limited number of participants
in this study means that the population may not have been
accurately represented in the sample, particularly for people
with generalized epilepsy. We also endeavor to explore the
relationship between forecasting accuracy and epilepsy type in
the future.

CONCLUSION

We assessed the utility of electronic self-reported seizure diaries
and non-invasive wearable physiological sensor data to estimate
seizure risk in retrospective and pseudo-prospective cohorts.
This research has shown that non-invasive wearable sensors in
the field of seizure forecasting is not only possible, but feasible
and imminent. Prospective analysis and clinical trials should also
be undertaken on longitudinal datasets in the future.
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A central challenge in today’s care of epilepsy patients is that the disease dynamics are

severely under-sampled in the currently typical setting with appointment-based clinical

and electroencephalographic examinations. Implantable devices to monitor electrical

brain signals and to detect epileptic seizures may significantly improve this situation

and may inform personalized treatment on an unprecedented scale. These implantable

devices should be optimized for energy efficiency and compact design. Energy efficiency

will ease their maintenance by reducing the time of recharging, or by increasing the

lifetime of their batteries. Biological nervous systems use an extremely small amount

of energy for information processing. In recent years, a number of methods, often

collectively referred to as brain-inspired computing, have also been developed to

improve computation in non-biological hardware. Here, we give an overview of one

of these methods, which has in particular been inspired by the very size of brains’

circuits and termed hyperdimensional computing. Using a tutorial style, we set out to

explain the key concepts of hyperdimensional computing including very high-dimensional

binary vectors, the operations used to combine and manipulate these vectors, and the

crucial characteristics of the mathematical space they inhabit. We then demonstrate

step-by-step how hyperdimensional computing can be used to detect epileptic seizures

from intracranial electroencephalogram (EEG) recordings with high energy efficiency,

high specificity, and high sensitivity. We conclude by describing potential future clinical

applications of hyperdimensional computing for the analysis of EEG and non-EEG

digital biomarkers.

Keywords: brain-inspired computing, intracranial EEG, epilepsy, hyperdimensional space, digital biomarker,

personalized medicine

1. INTRODUCTION

At the Sleep-Wake-Epilepsy-Center of the University of Bern, we typically see patients who
are not seizure free every 3–6 months. These check-ups often also include recording an
electroencephalogram (EEG) with extracranial electrodes for a duration of <1 h. This rate of
appointments may be considered typical for a tertiary or quaternary epilepsy center in many parts
of the world. However, there is huge potential for improvements for several fundamental reasons.
It has, for example, been clearly demonstrated that the patients’ accounts of seizure occurrences are
not reliable (1). The main explanation is not the occasional patient who does not want to report
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seizures to avoid a suspension of the driver’s license or other
social and professional consequences, but the fact that many
patients are actually willing but not able to give an accurate
seizure count. Their seizures may occur during sleep, they
may lose consciousness during the seizures, and nobody may
tell them afterwards that a seizure occurred, or their seizures
may impair their memory, as is typically the case in temporal
lobe epilepsy. Furthermore, recent landmark studies (2, 3)
have proven that epileptiform activity is far from constant, but
exhibits fluctuating dynamics with often robust and patient-
specific circadian and multidien periodicities, which are severely
under-sampled by the typical sporadic appointment-based
short-term EEG recordings (4, 5). Devices that could provide
more accurate seizure counts and monitor the individual
dynamics of epileptiform activity therefore have a large potential
to improve and also personalize the care of epilepsy patients.
Nonetheless, a decisive aspect of these devices is that they
have to be as unobtrusive and non-visible to others as possible
to not aggravate the stigmatization that epilepsy patients are
often still exposed to—as most impressively described in the
recent autobiography by the American author and journalist
Kurt Eichenwald (6). There are several, not mutually exclusive,
ways to minimize the obtrusiveness of the devices: one might,
for example, restrict EEG recordings to night-time (7), or
the device might be attached or integrated into personal
accessories. Lee et al. (8) developed a strategy to use elastomeric
composites with conductive nanomaterials for designing
customized, multifunctional electronic eyeglasses that allow
for recording EEG, electrooculogram, ultraviolet intensity, and
body movements. Steady skin contact of their highly conductive
and deformable carbon nanotube/polydimethylsiloxane EEG
electrodes was maintained by a spring-coupled pressure device.
The electrodes’ positions near the ears allowed to accurately track
the dynamics of occipital EEG alpha rhythms. Alternatively, EEG
electrodes have been integrated into caps or individualized ear
pieces (9), or they may be implanted subcutaneously (10, 11) or
into the skull (12–14). In all of these cases, however, the devices
should be designed to be as small as possible and this is why
it is imperative that they are highly energy efficient. Energy
efficiency is a hallmark of biological nervous systems and a set of
methods, referred to as “brain-inspired computing,” has emerged
over recent years. These methods aim at replicating principles
of biological nervous systems into artificial substrates and
thereby allowing the design of a new generation of highly energy
efficient hardware. Here, we set out to introduce computing with
hyperdimensional (HD) vectors (15), one of the most powerful
and elegant of these approaches.

The paper is structured as follows: In section 2, we first give an
introduction to the main characteristics of computing with HD
vectors. Then we provide a detailed account of how computing
with HD vectors has been successfully used to detect epileptic
seizures from intracranially recorded EEG signals (iEEG) in
section 3. Next, we dedicate section 4 to describing examples
of emerging nanotechnology hardware, which is particularly
well suited for implementation of computing with HD vectors.
We conclude in section 5 by summarizing our main points,
giving an outlook on future developments, and important

neurologic applications of computing with HD vectors. Finally,
we recommend resources for further reading, mainly aimed at
clinical neurophysiologists or epileptologists.

2. HYPERDIMENSIONAL COMPUTING

One way to conceive of computation in a very general sense
is as the emergence, change, combination, and dissolution of
patterns. While in biological systems, computation is considered
to mainly rely on self-organization (16, 17), in the case of human
artifacts, computation is engineered. In today’s typical computer,
the patterns used are short bit strings consisting of zeros and
ones (18, 19). The central idea of computing with HD vectors,
as developed by Finnish neuroscientist Pentti Kanerva, is to use
random patterns that are much larger, i.e., in the order of 10,000
(15, 20). These patterns are still made from zeros and ones,
but they are identically and independently distributed (i.i.d.),
and are referred to as “dense random binary hypervectors” (21).
The notion of a “hypervector” is due to the interpretation of
these patterns as vectors or points in a very high-dimensional or
“hyperspace.” Kanerva (15, 20), Plate (22), and Gayler (23) were
inspired to design such a novel and unique data type of random
HD vectors after studying biological central nervous systems
as well as psychological models of human analogy processing.
Hence, the notion of computing with HD vectors is inspired by
these aspects of brains where information is often represented by
very large spatiotemporal distributions of probabilistic neuronal
population firing patterns (24).

Crucially, in HD vectors the information is equally distributed
across all the bits, which are consequently all of equal importance.
The HD vector as a whole and any of its parts represent
the same item, though the individual parts in a less reliable
manner. As a corollary, there are no most or least significant
bits as in classical computing, where bits represent different
values depending on their positions within the bit strings. The
characteristic that the information is spread across the whole
HD vector is often referred to as a holographic or holistic
representation (22). The reason why holographic information
representation is of fundamental importance is that it yields a
very high tolerance to noise. Akin to the situation in biological
brains, where very large numbers of neurons may be impaired
before there are clinical manifestations (25), many bits—often
in the range of 30%—of a HD vector may be randomly flipped
before computing with HD vectors fails. To better understand the
root causes for this surprising robustness, it is essential to study
the hyperdimensional space, which the hypervectors inhabit.
Given that the world we live and have evolved in can adequately
be described by three spatial dimensions, at least on the scale we
have direct sensory access to, it is not surprising that most of
us humans do not have an intuitive grasp for hyperdimensional
spaces. One such crucial but non-intuitive characteristic of
hyperdimensional spaces is called “concentration of measure”
(15, 26) and is illustrated in Figure 1 by the stacked blue median-
and-whiskers plot. It describes the distribution of distances
between dense binary HD vectors of increasing dimensionality
D. The distance between two HD vectors is assessed by the

Frontiers in Neurology | www.frontiersin.org 2 July 2021 | Volume 12 | Article 70179154

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Schindler and Rahimi Hyperdimensional Computing for Seizure Detection

FIGURE 1 | The distributions of normalized Hamming distances (NHD)

illustrate both the non-intuitive structure of hyperdimensional space and the

similarity between a bundled hyperdimensional (HD) vector and its inputs. We

have selected three random dense binary HD vectors R1,R2 and R3 and

bundled them together to yield the HD vector B, i.e., B = [R1 + R2 + R3].

Bundling here denotes the componentwise application of addition followed by

the majority rule. Then the pairwise NHD—the number of components where

two vectors are different, divided by the dimension D—is computed among

the input vectors NHD(Ri ,Rj 6=i ) shown in blue, and between B and each of its

input vectors NHD(B,Ri ), displayed in gray. This procedure is repeated 50,000

times, yielding 150,000 distances for each distribution and for each dimension

D, which increases from D = 100 to D = 10, 000 in steps of 300. The dots

represent the medians, and the whiskers indicate the 1–99 percentile ranges.

One can clearly observe that, with increasing dimension D, the normalized

Hamming distances between the random vectors concentrate around 0.5. In

other words, the random vectors are almost orthogonal to each other. The

distances between the bundled HD vector B and its input vectors is much

smaller and concentrates around 0.25. Both of these characteristics become

progressively and smoothly—i.e., there is no sensitive dependency—more

pronounced with an increasing dimension D.

number of components at which they differ, divided by D, i.e.,
their normalized Hamming distance. The fundamental, albeit
counter-intuitive, observation is that the larger the dimension,
the more the distances are concentrated around a normalized
Hamming distance of 0.5. Thus, the higher the dimension,
the more likely it becomes that two dense binary HD vectors
differ in half of their components and are quasi-orthogonal to
each other. Put differently, points in hyperdimensional space
are surprisingly isolated. If one starts moving away from a
point one has to traverse almost half the diameter of the
hyperdimensional space until one arrives at other points, but
then the number of “neighbors” starts to increase enormously.
Compare this to our everyday experience of moving on a 2D
plane. Kanerva points out (15), if we double the distance,
the “territory” quadruples, but it will never increase billion-
fold as it is possible in hyperdimensional space. Hence, in the
binary hyperdimensional space, with a common but arbitrarily
chosen dimension of D = 10, 000, there exists an inconceivably
large number of different binary i.i.d. HD vectors, which are
quasi-orthogonal to each other. Projecting information into a
hyperdimensional space therefore not only provides a massive
capacity for distinct representations, but these representations
are also extremely robust, becausemost of their neighbors are half

the diameter of the whole space away. This inherent robustness
is one of the main reasons that lends computing with HD vectors
naturally as a computational paradigm for emerging nanoscalable
hardware, where noise due to variability of the materials is a
central challenge (27–31).

Moreover, it is worthwhile to mention here an interesting
recent observation by Singer et al. (32) and Singer and Lazar (33)
that corroborates a potential role for computing with HD vectors,
or HD computing-like information processing, in biological
systems as well. These authors propose that the mammalian
cortex in particular might make use of HD projections of
sensory information. They point out the similarities between
cortical dynamics and reservoir computing (34). Here, the high-
dimensional continuous activity, generated and sustained by
recurrent artificial neural networks, is perturbed by localized
input signals (35, 36). However, only providing a very large
number of different and noise-resistant representations does
not suffice to furnish an efficient computational substrate. In
addition, operations are needed that allow to manipulate these
representations. The two main operations for combining HD
vectors are called binding and bundling. For the binary dense HD
vectors, binding corresponds to the componentwise Exclusive
OR function (XOR). Exclusive OR, also referred to as “exclusive
disjunction,” is a logical operation that outputs “true” only,
when the inputs differ. Here, we denote XOR by the circled
plus sign (⊕). Importantly, the HD vector C that results from
binding the two binary random vectors A ⊕ B is again a
binary random HD vector that is quasi-orthogonal to both A
and B, and hence corresponds to a new, unique, and robust
combined representation. The operation XOR has four relevant
characteristics. It is both commutative, A ⊕ B = B ⊕ A and
associative, i.e., (A⊕ B)⊕C = A⊕ (B⊕C). The neutral element
is 0, that is A⊕0 = A and finally, XOR is self-inverse, A⊕A = 0.
The second main operation is referred to as bundling and is
basically a bitwise thresholded sum of HD vectors, yielding 1 if
more than half of the components equal 1, otherwise the result
is 0. In other words, bundling corresponds to a componentwise
majority function. The thresholding or normalization process is
essential, because it forces the resulting HD vector to remain in
the binary hyperspace. Bundling of three HD vectors is denoted
by [A+B+C], where the squared brackets represent thresholding.
Note that in the case of an even number of HD vectors to be
bundled, the potentially occurring draws are randomly broken. A
central distinction between the binding and bundling operations
is that while the HD vector resulting from binding is quasi-
orthogonal to all of the HD vectors that are bound together, the
HD vector yielded by bundling is similar to each of its input
HD vectors, i.e., the HD vectors that are bundled together. This
characteristic is demonstrated in Figure 1 by the stacked gray
median-and-whiskers plot, representing the distances between
the HD vectors R1,R2,R3 and their resulting bundled HD vector
B. Therefore, bundling is well suited to represent sets of HD
vectors and may function as a memory or in the case of iEEG
analysis to construct “prototype” HD vectors that represent brain
states of interest.

At this point, it is interesting to re-consider HD computing
as being brain inspired and allowing to design cognitive
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architectures (37) with mechanisms and characteristics
reminiscent of phenomena found in the human brain and
mind. For example, the human central nervous system’s essential
ability to associate novel patterns (17) with already known ones
might be part of the neuronal basis of metaphoric thinking,
where we try to understand one abstract or not-yet-seen aspect of
our world by using a different already familiar or more concrete
concept (38, 39). And, on a more philosophical note, as Joseph
Campbell so eloquently described in his comprehensive work
(40), since the dawn of human consciousness, metaphors have
been one of our most powerful tools to create coherent and
meaningful stories and myths that help us navigate through
our lives (41). Furthermore, one of the most promising modern
concepts about consciousness is the theory of integrated
information developed by Giulio Tononi et al. (42). This theory
starts from the essential properties of phenomenal experience,
such as the myriad of unique and different sensory impressions,
which are then combined into a coherent (“integrated”) whole.
These characteristics might be, at least partially, replicated within
the framework of computing with HD vectors.

Before we present one way that has already been successfully
used to detect epileptic seizures from EEG recorded with
intracranial electrodes (iEEG), let us for the sake of completeness
mention that instead of binary components (0 and 1) (21),
bipolar (23), real (22), or complex (43) ones may be used to
design the HD vectors. One frequent alternative choice is+1 and
−1, in which case the HD vectors are termed bipolar. While these
alternatives influence the type of mathematical operations used
for binding and bundling and also some aspects of the hardware
implementation, the overall principles and characteristics of
computing with HD vectors still hold. In other words, for
computing with HD vectors the high dimensionality is more
important than the type of components and operations used to
construct and combine the HD vectors. Furthermore, in addition
to the operations of binding and bundling, HD vectors may
also be permuted. Permutation is typically implemented as a
circular shift of the HD vector’s components and geometrically
corresponds to a rotation (15). Permutation is most often
used to encode sequences, for example the order of letters to
classify different languages (44), or the spatiotemporal patterns
of electrical muscular activity for hand gesture detection (45).
Permutationmight turn out to be useful in future studies to better
assess the shape of iEEG signals, which has been shown to contain
physiologically relevant information (46, 47).

3. SEIZURE DETECTION

After having explained several of the key concepts of computing
with HD vectors, we now detail one way this method has been
successfully used to detect epileptic seizures from iEEG. The
approach starts by first assessing whether an iEEG sampling
point is ≥ than its preceding one or not. Although this form of
symbolization considers only order relations—or, put differently,
discards all amplitude information—it has been demonstrated
to be helpful for assessing smaller and larger scale iEEG
dynamics (48–51). Moreover, it allows for easily building larger

FIGURE 2 | Encoding local intracranial electroencephalogram (iEEG) order

relations into hyperdimensional (HD) vectors. We consider whether an iEEG

sampling point is ≥ or � than its preceding one. The simple situation of only

three sequential iEEG sampling points, used here to demonstrate the method,

yields four different possible pairs of order relations (plotted in blue), each of

which is associated with a unique quasi-orthogonal binary HD vector of

dimension D = 10, 000. For ease of graphical display, the HD vectors of size 1

x 10,000 are reshaped into squares of size 100 × 100. Each quasi-orthogonal

HD vector represents a unique relation, e.g., C1 represents the relation (≥,≥),

C2 (≥,�),C3 (�,�), and C4 (�,≥). These HD vectors are stored in the item

memory and stay unchanged during both learning and classification.

symbols by simply considering longer sequences of differences
between sampling points. Once the iEEG has been symbolized,
the next step is to create an item memory, which we choose
to build dense random binary HD vectors of a dimension
D = 10, 000. As is illustrated in Figure 2, for the didactic
case of very short symbols that take only three consecutive
iEEG sampling points into account, each of the four possible
symbols is represented by one of the HD vectors Ci=1 : 4. The
symbols represented by quasi-orthogonal HD vectors behave
like classical symbols, they are either identical or completely
different. Importantly, these HD vectors, as all the elements of the
item memory, will remain unchanged during both learning and
classification, they represent the projections of the symbolized
iEEG signals into hyperspace.

Next, the spatial information contained in the iEEG signals
has to be encoded, i.e., where a specific-order relation pattern
occurs. The corresponding procedure is displayed in Figure 3.
A second set of HD vectors consisting of HD vectors Ei=1 : 3,
i.e., one per EEG electrode, is generated and added to the item
memory. To compute a spatially composite representation S of
the type and location of the occurring symbols, the HD vectors
Ci are first bound with the HD vectors Ei and then bundled
together, that is, superposed and thresholded. The result is a
single binary HD vector of the same dimensionality as its input
vectors. Thus, several HD vectors have been combined into one,
which correctly implies that some information must have been
lost during this process. Therefore, one refers to the resulting HD
vector S as a reduced representation (43). However, despite the
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FIGURE 3 | Binding and bundling of hyperdimensional (HD) vectors yield a composite representation S of the spatial intracranial electroencephalogram (iEEG)

characteristics. The item memory consists of two groups of HD vectors. One group, C1 :4, represents the four possible order relation patterns, the second group,

E1 : 3, indicates the three different electrodes. By binding the corresponding pairs of Ci∈1 : 4 and Ej∈1 : 3, one arrives at three HD vectors that denote the type and

location of the occurring order relation patterns. Bundling, that is superposing and thresholding, these three vectors produces the single composite spatial

representation S, which is then further processed as a unit.

loss of information, computing with these approximate patterns
still performs well inmany practical classification tasks. Themain
reason for this robustness can be traced back to the counter-
intuitive structure of hyperdimensional space as described in the
previous section, in which HD vectors are extremely resistant
toward degradation. Once again, this feature is shared with
biological nervous systems, which domost often not create highly
precise, but just “good enough” responses when faced with a
novel challenge in our ever changing world. Interestingly, and
directly related, there exist elegant ways to assess composite HD
vectors such as S. Given a spatial composite representation S,
one might for example wonder, which order relation pattern was
recorded with electrode 1. This information may be obtained by
unbinding HD vector E1 with S. As demonstrated in Figure 4,
the result of this operation is a noisy or approximate version of
C3. This noisy HD vector can be cleaned up by comparing it with
the original HD vectors contained in the itemmemory, and using
the one that has the lowest Hamming distance.

To get from a spatial to a spatiotemporal representation, the
procedure shown in Figure 3 is repeated after shifting to the
next sampling point in time, i.e., by using maximal overlap.
The resulting set of spatial composite representations computed
at timesteps t, St∈1 : 15 are then bundled to yield a composite
representation ST across space and time as displayed in Figure 5.
The ST vectors generated from the same state are further bundled
to produce a prototype HD vector representing a certain brain
state. Finally, as illustrated in Figure 6, we demonstrate how this
method can be applied to seizure detection. We use two iEEG
recordings from a patient who suffered from pharmacoresistant

temporal lobe epilepsy and underwent pre-surgical examinations
at the Sleep-Wake-Epilepsy Center at the University of Bern
with intracranial electrodes in order to precisely delineate the
seizure onset zone. A total of 60 electrodes was used and the
signals were sampled at 512Hz and band-pass filtered between
0.5 and 120Hz before analysis. We compared the order relations
between 9 consecutive iEEG sampling points, yielding 28 =
256 possible different outcomes. Therefore, in this case the item
memory contained 316 random HD vectors, 60 vectors that
represented the electrodes, and 256 vectors for the different
order relation sequences of length 8. The recording of the first
seizure is used to learn two prototype vectors Pint and Pict that
represent the interictal and the ictal brain states. Learning hereby
refers to computing spatiotemporal composite representations,
i.e., ST vectors, from two reference time periods of 30 s duration.
The vectors from a reference time are bundled to produce
the prototype HD vector representing the state of interest. For
instance, Pict = [ST1 + ST2 + . . . STk], where all k HD vectors
are extracted from the 30 s of the ictal state. Similarly, Pint is
computed from the interictal reference time. It is noteworthy
how simple this type of learning is. There is neither a need for
a large number of seizure recordings as training examples nor
for any iteration-intensive method, such as back-propagation
or gradient descent. In addition, in the following classification
step, a query HD vector Q is computed in exactly the same
way as the two prototypes Pint and Pict from the yet unseen
second seizure recording. This implies that the same hardware
implementation may be used for both learning and classification,
another factor helpful for minimizing the energy consumption
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FIGURE 4 | Given a spatial composite representation S, which order relation

pattern was recorded by electrode 1? This type of question may be elegantly

answered within the framework of hyperdimensional (HD) computing, by

binding the HD vector representing electrode 1, i.e., E1, with the spatial

composite representation S. Using the characteristic that XOR is its

self-inverse and that binding produces new vectors that are quasi-orthogonal

to their input vectors, one can interpret the result of E1 ⊕ S as a noisy version

of C3. This noisy version is then “cleaned up” by measuring its distance to all

the HD vectors of the item memory that represent order relation patterns and

selecting the most similar one, i.e., C3 in the present case (displayed in blue).

Comparing this result with Figure 3 shows that the correct pattern has been

identified. The ability to compute robustly with approximate patterns is a

hallmark of computing with HD vectors and lends it naturally as a

computational paradigm for novel nano-scale memory-centric hardware with

its intrinsic variability.

and size of an implantable device. This ability to learn from a
single pass is also attractive for situations, where intermittent
or continuous online learning may be needed. One might, for
example, imagine situations, where the iEEG seizure patterns of a
patient slightly change over time due to therapeutic interventions
or a progression of the epilepsy. In that case, an update and
adjustment of the ictal and interictal prototype vectors might be
necessary to maintain accurate seizure detection. Coming back to
the seizure detection example shown in Figure 6, the normalized
Hamming distances between Q and both Pint and Pict may be
used to define thresholds enabling iEEG seizure detection with
high sensitivity and specificity.

As indicated at the beginning of this section, symbolization
based on order relation patterns combined with HD computing
has recently been successfully applied to detecting epileptic
seizures from short-term iEEG recordings with high sensitivity,
high specificity, and high energy efficiency compared to other
state-of-the-art methods (50, 52). These results have been further
improved, especially in the latency of seizure detection, by
including additional iEEG signal characteristics such as line
length and mean amplitude (53) and, notably, could also be
replicated for continuous long-term iEEG recordings (51). More
specifically, these results surpass those yielded by state-of-the-art
methods, including variants of deep learning (54, 55) and support

vector machines (56), on the long-term dataset containing 116
seizures of 18 drug-resistant epilepsy patients in 2,656 h of
recordings. HD computing trains 18 patient-specific models by
using only 24 seizures: 12 models are trained with one seizure per
patient, the others with two seizures. The trained models detect
79 out of 92 unseen seizures without false alarms. Importantly, a
simple implementation of HD computing on the contemporary
Nvidia Tegra X2 embedded device achieves 1.7×–3.9× faster
execution and 1.4×–2.9× lower energy consumption compared
to the best result from the state-of-the-art methods [see (51) for
more details].

We conclude this section by mentioning that, while we have
described the use of intra-cranially recorded electric brain signals
for HD computing based seizure detection here, it has recently
been shown that the method can also be successfully applied
to extra-cranially recorded surface EEG signals, which typically
contain more movement and muscular artifacts than iEEG (57).
In the next section, we focus on viable hardware implementations
of HD computing. Particularly, we go beyond the contemporary
hardware fabric where HD computing has already shown energy
efficiency benefits compared to the other approaches.We provide
an overview on how HD computing can benefit from such
emerging fabrics.

4. ANALOG IN-MEMORY COMPUTING
HARDWARE

We have seen that computing with HD vectors allows to
construct highly efficient algorithms, mainly because training
is very fast and only uses relatively few steps compared
to other approaches such as deep learning, which depends
on many iterations to adjust the parameters of its artificial
neurons. This single pass, non-iterative type of training is
akin to our own neuro-cognitive ability to learn, to keep
continuously learning, and to not forget certain events, the
latter typically associated with the experience of intense
emotions. However, for practical purposes, it is central that
not only the algorithms but also the physical substrates into
which the algorithms are implemented are efficient, i.e., allow
for minimizing energy consumption. Only combining energy
efficient algorithms with energy efficient hardware will ultimately
enable the design of extremely small devices that can be
implanted into the human brain in a minimally invasive way
(58, 59), and—once again—biological brains provide inspiration
for potential solutions.

John von Neumann, the ingenious Hungarian-American
mathematician, physicist and polymath, who among many other
achievements also designed the architecture that is still prevalent
in most of today’s computers (and which are accordingly called
von Neumann architectures in his honor), already pointed out
some of the major distinctions between biological brains and
engineered information processing devices. In his last published
and impressively visionary book titled “The Computer and
the Brain” (60), he underlines that, although the building
elements of biological brains, or “natural automata” as he
calls them, are much slower and much less precise than
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FIGURE 5 | Bundling spatial representations over time produces a spatiotemporal composite representation. The three intracranial electroencephalogram (iEEG)

signals are the same as shown in Figure 3, but stretched horizontally to enable the display of all the composite spatial representations St∈1 : 15. S15 plotted in blue is

identical to S of Figure 3. Each of the HD vectors St is aligned with the first of the three sampling points that are compared to yield the order relation patterns.

Bundling the 15 composite representation St∈1 : 15 produces the spatiotemporal composite representation ST.

their artificial counterparts, they are significantly more energy
efficient, work in parallel, and are much more tightly arranged.
The latter observation has inspired modern strategies to design
non-von Neumann architectures by co-locating memory and
computation. As a result, in the non-von Neuman architectures,
computations are local and the global interconnects are accessed
at a relatively low frequency, as is a hallmark of biological brains
molded through evolution, where efficient structures with short
communication distances had a selective advantage (61, 62).

In classical von Neumann architectures, data have to be
shuffled from memory to the central arithmetic logic unit
and back, whereas in brains, information processing and at
least some forms of memory formation take place within the
same structures, such as the synapses that connect neocortical
neurons. Synapses change their electrical resistance depending
on their electrical activity, a characteristic that has been
replicated in analog memristive devices, such as resistive random
access memory (RRAM) and phase-change material (PCM)
devices, leading to in-memory computing hardware [see (63)
for an overview]. All these emerging nanotechnologies are

characterized by a high variability of their components, and they
thus rely on computational paradigms that not only compensate
but may even embrace randomness. Importantly, it has recently
been demonstrated that HD computing can be implemented
on large-scale PCM devices arranged into crossbar arrays. It
maintained a very high accuracy for various classification tasks
with excellent energy efficiency (30). The used HD computing
architecture is similar to the one described here for the iEEG
seizure detection. Figure 7 illustrates how the interictal and ictal
prototypes can be mapped onto a PCM crossbar array where
the Q HD vector is applied for classification. Interestingly, HD
computing was used to compensate the intrinsic variabilities
of the nanoscale devices on the one hand, but on the other
hand these very variabilities were exploited to optimize HD
projections (29, 31). This is akin to an intriguing idea put
forward in the context of interpreting cortical dynamics as
a biological realization of reservoir computing, namely that
the variability, diversity, and randomness of neurons may also
promote HD projections (36). Furthermore, the aforementioned
prototypes (29, 31) achieve shorter communication pathways
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FIGURE 6 | HD computing for intracranial electroencephalogram (iEEG) seizure detection. Two iEEG seizure recordings from a patient with temporal lobe epilepsy are

used. The patient was implanted with intracranial electrodes with a total of 60 contacts. From seizure #1, two prototype hyperdimensional (HD) vectors are learnt, Pint
from an interictal time period and Pict from seizure onset. Both time periods have a length of 30 s and are displayed in gray. Learning consists of splitting the time

periods into 30 non-overlapping moving windows of 1 s duration, computing a spatiotemporal composite representation and bundling these 30 representations into

the corresponding prototypes. Seizure #2 is then used for classification. From a short moving window, again of a duration of 1 s and displayed in blue, a query HD

vector Q is computed and its normalized Hamming distances to the interictal and ictal prototype vectors are measured. The difference 1 = NHD(Q,Pint )−NHD(Q,Pict )

indicates if the current brain state is closer to the ictal (1 > 0) or the interictal (1 < 0) prototype. The amplitude of 1 and its time continuously spent > 0 allow defining

thresholds and time periods for iEEG seizure detection with high sensitivity and specificity (50–52).

by using 3D monolithic integration, instead of only 2D, to
construct a layered design, similar for example to the neocortex
of human brains. To summarize and conclude this section,

many of these emerging nano-materials are inherently stochastic
and need a computational paradigm that is robust and therein
lies the great appeal to invoke computing with HD vectors for
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FIGURE 7 | Analog in-memory computing hardware based on phase change material (PCM) devices that are arranged into a crossbar array. In a programming phase,

each binary prototype hyperdimensional (HD) vector (Pint or Pict ) is written into 10,000 PCM cells. This programming is done by applying a write voltage that changes

the conductance state of the PCM cells according to the corresponding binary HD vector component. For classification, the query binary HD vector (Q) is applied to

the crossbar array, and its similarity is measured with the programmed prototypes.

future miniaturized and thus much better implantable iEEG
monitoring systems.

5. CONCLUSIONS AND OUTLOOK

We have presented the key concepts of HD computing and
how the method has been successfully used for detecting
epileptic seizures from iEEG with high energy efficiency,
high specificity, and high sensitivity. We have described
how HD computing relies on bit-wise operations, is highly
parallel, memory-centric, scalable, and robust thanks to the
counterintuitive structure of hyperdimensional space, where
points are relatively isolated. Furthermore, computing with HD
vectors is transparent and explainable, in the sense that each
step during learning or classification is easily understandable.
This contrasts to other methods used in artificial intelligence,
which are often likened to “black boxes,” where even the
designers are not able to comprehend the details of why
a system arrived at a particular solution. Considering all
these characteristics, we regard HD computing as a flexible
paradigm ideally suited for a new generation of implantable
devices for monitoring electrical brain activity, which will

be significantly more energy efficient and will consequently
hopefully usher in personalized epileptology on a previously
unknown scale.

There are many potential future clinical applications for HD
computing based (i)EEG analysis. One compelling recent insight,
for example, is how tightly and probably causally connected
neurodegeneration is with both the impairment of slow wave
sleep (64, 65) and epileptic activity (66–68). Both—slow wave
sleep and epileptic activity—might in the future be monitored
for ultra long-term time periods, i.e., for months to years,
at the patient’s home with robust and easy to use (i)EEG
devices that make use of computing with HD vectors for a
smaller and therefore less obtrusive design. From a neurologic
point of view, tracking both sleep and epileptic activity might
turn out to be crucial, for the latter might be exacerbated by
improving slow wave sleep. This might potentially necessitate
the use of drugs or a combination of drugs that simultaneously
stabilize sleep and suppress or minimize epileptic activity, such
as trazodone (69) together with levetiracetam (70, 71). Ultra long-
term monitoring might also provide essential information about
whether interictal epileptic activity has a similarly aggravating
effect on neurodegeneration as does seizure activity. Such insights
are essential for optimizing treatments with drugs like gabapentin

Frontiers in Neurology | www.frontiersin.org 9 July 2021 | Volume 12 | Article 70179161

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Schindler and Rahimi Hyperdimensional Computing for Seizure Detection

that have been reported to improve slow wave sleep (72) and
suppress seizures (73), but increase interictal activity (74).

Another very interesting recent development in epileptology
is the growing understanding of how brain–body interactions
(75) might give rise to epileptic seizures and epilepsy. In
particular, widespread cardiovascular disorders such as arterial
hypertension may be associated with or even cause epileptogenic
effects (76, 77). Therefore, the multi-modal integration of EEG
and non-EEG digital biomarkers (58) is a highly promising
approach to monitoring the mutual interactions between the
visceral organs and the nervous system. For such multi-modal
monitoring, HD computing lends itself naturally as a highly
efficient computational paradigm for sensory fusion (78). This
type of multi-sensor monitoring may be considered a specific
example of “digital phenotyping,” a concept recently introduced
by Onnela et al. (79) as the moment-by-moment quantification
of the individual-level human phenotype in situ using data from
smartphones and other personal digital devices. Though themain
field of investigation for Onnela is psychiatry, digital phenotyping
of patients suffering from neurological disorders might inform
personalized care as well.

On a more technical side, a very active area of research
are memory-augmented neural networks (MANNs), in which
a deep neural network is connected to an associative memory
for fast and lifelong learning. Computing with HD vectors
can reduce the complexity of MANNs by computing with
binary vectors (80). This recently proposed method reduced the
number of parameters by replacing the fully connected layer of a
convolutional neural network with a binary associative memory
for EEG-based motor imagery brain–machine interfaces (81).
Other interesting developments are the combination of concepts
from HD and reservoir computing, which uses recurrent
connections in a neural network to create a complex dynamical
system (35, 82). Kleyko et al. (83) demonstrated the similarities
between the design and manipulation of HD binary vectors and
the random projections of input values onto a binary reservoir,
its updating, and its nonlinearity. Another recent innovative
approach is to combine HD computing with event-driven inputs
such as dynamic vision sensors (84). Hersche et al. (85) showed

how to embed features extracted from such spiking sensors
into binary sparse representations to reduce the complexity of
downstream tasks such as regression.

We conclude by providing some recommendations for further
reading, in particular intended for clinical neurophysiologists
and epileptologists who want to learn more about the
mathematical and engineering aspects of computing with HD
vectors. In our opinion, the best way to delve deeper into
this captivating field is by reading the seminal paper by
Pentti Kanerva (15), followed by Tony Plate’s book (43). An
introduction to computing with HD vectors for robotics, which
also includes instructive visualizations to further a more intuitive
understanding of hyperdimensional spaces, has been written
by Neubert et al. (86). Furthermore, there are two important
books that are highly relevant for the use of HD computing
to better understand and model biological brains (37) on the
one hand, and describe in detail recent and potential future
implementations in new types of hardware (87) on the other
hand. We hope that this literature will provide a helpful entry
point into the fascinating world of HD computing and will
thereby promote its medical applications to ultimately improve
the care for epilepsy patients.
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Epilepsy is one of the most common neurological disorders, and it affects almost 1% of

the population worldwide. Many people living with epilepsy continue to have seizures

despite anti-epileptic medication therapy, surgical treatments, and neuromodulation

therapy. The unpredictability of seizures is one of the most disabling aspects of

epilepsy. Furthermore, epilepsy is associated with sleep, cognitive, and psychiatric

comorbidities, which significantly impact the quality of life. Seizure predictions could

potentially be used to adjust neuromodulation therapy to prevent the onset of a seizure

and empower patients to avoid sensitive activities during high-risk periods. Long-term

objective data is needed to provide a clearer view of brain electrical activity and an

objective measure of the efficacy of therapeutic measures for optimal epilepsy care.

While neuromodulation devices offer the potential for acquiring long-term data, available

devices provide very little information regarding brain activity and therapy effectiveness.

Also, seizure diaries kept by patients or caregivers are subjective and have been shown

to be unreliable, in particular for patients with memory-impairing seizures. This paper

describes the design, architecture, and development of the Mayo Epilepsy Personal

Assistant Device (EPAD). The EPAD has bi-directional connectivity to the implanted

investigational Medtronic Summit RC+STM device to implement intracranial EEG and

physiological monitoring, processing, and control of the overall system and wearable

devices streaming physiological time-series signals. In order to mitigate risk and comply

with regulatory requirements, we developed a Quality Management System (QMS) to

define the development process of the EPAD system, including Risk Analysis, Verification,

Validation, and protocol mitigations. Extensive verification and validation testing were

performed on thirteen canines and benchtop systems. The system is now under a
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first-in-human trial as part of the US FDA Investigational Device Exemption given in 2018

to study modulated responsive and predictive stimulation using the Mayo EPAD system

and investigational Medtronic Summit RC+STM in ten patients with non-resectable

dominant or bilateral mesial temporal lobe epilepsy. The EPAD system coupled with

an implanted device capable of EEG telemetry represents a next-generation solution to

optimizing neuromodulation therapy.

Keywords: epilepsy, deep brain stimulation, implantable devices, neuromodulation, seizure detection, seizure

prediction, wearables

INTRODUCTION

Drug-resistant epilepsy is one of the most common neurological
disorders, affecting almost 1% of the population worldwide (1,
2). Many people living with epilepsy continue to have seizures
despite anti-epileptic medication therapy (3, 4), and for them,
resective surgery and neuromodulation therapy are the primary
therapeutic options. Resective surgery can be attempted if a focal
seizure onset zone can be identified, typically via invasive EEG
monitoring, and if this area can be removed without causing
a functional deficit. Although often effective, brain resection is
irreversible, and for many patients, seizures eventually reoccur.

Neuromodulation therapy for epilepsy has grown
in prevalence following FDA approvals for responsive
neurostimulation (RNS) (5) in 2013 and deep brain stimulation

(DBS) (6) in 2018. While these approaches effectively reduce
seizures, long-term seizure freedom is rare with these methods.
Additionally, optimization of therapeutic parameters, including

stimulation amplitude, rate, and pulse width, is a very slow
process, and optimal therapeutic effect is only achieved after
many years (6, 7). Due to the poor reliability of self-reported
seizure diaries (8), physicians may have difficulty knowing how
effective a given set of stimulation settings is at suppressing or

preventing seizures. Current devices have very limited capability
to record and report seizure activity measures (typically EEG
activity). However, limited objective measures of seizure rates
and epileptiform activity are currently available and have
produced profound insights already (9, 10).

Seizure predictions could potentially be used to adjust
neuromodulation therapy to prevent the onset of a seizure
and prompt medication therapy or to empower patients to
avoid sensitive activities during high-risk periods (11, 12). An
experimental device (NeuroVista SAS) was preclinically trialed
provided clear proof of concept and validation of the value
of long-term objective EEG data and seizure forecasts (13–
15). However, the device did not progress to approval for
clinical use and is no longer available, leaving an unmet need
for a next-generation device with long-term EEG and seizure
forecasting capabilities. Medtronic Inc. recently designed a
novel experimental device with EEG telemetry and therapy
modulation capabilities (16). The investigational Medtronic
Summit RC+STM system was developed to telemeter EEG,
provide on-device seizure detections, and modulate stimulation
therapy based on either on-board EEG analytics or analytics
on an associated mobile computer. A full-featured analytics

platform is needed to configure sensing and analytics on the
device, manage device connectivity and data telemetry, provide
distributed analytics for modulation of stimulation, and interact
with subjects to deploy such capabilities successfully.

All software and components must be developed in
compliance with international engineering standards (in
particular ISO 60601) and a design control process compliant
with United States federal regulations (specifically Title 21,
section 820.20) to use such a system in human subjects.
Significant preclinical testing and comprehensive verification
and validation testing regimen must be employed to ensure
system safety and quality.

As devices become increasingly interconnected and operate
in the context of analytical and cloud computational systems,
compliance with regulations governing software as a medical
device is required, and developing regulations around machine
learning (17, 18) must be included to augment the traditional
regulatory framework around medical device development. At
the core of the design process, user needs, and requirements
are translated into system design and implemented with clear
documentation and a rigorous process for testing, defect
correction, and design updates. The complexity and required skill
set for this is often missing in research lab environments, and
likely contributes to the many barriers to translation of benchtop
discoveries to clinical practice (19).

The EPAD system aims to record objective EEG data
during seizures and modulate stimulation therapy based on
seizure forecasts, which raises several important issues. First,
forecasting algorithms are too compute-intensive to run on
an implanted device, requiring data to be telemetered to an
associated computer. Second, response times to stimulation
require algorithms running with multiple response timescales,
as seizure-responsive stimulation must act very quickly to
abort a seizure. In contrast, seizure forecasts occur tens
of minutes before a seizure allowing more time to adjust
stimulation. Third, dynamic adjustment of stimulation requires
that algorithm implementations are compliant with regulatory
requirements for software development and are confirmed to be
safe by extensive testing. The investigational Medtronic Summit
RC+STM neuromodulation device offers a unique combination
of near-real-time intracranial EEG telemetry, on-device analytics,
and modulated stimulation therapy that could enable therapies
not previously possible. The system can be configured using
the Medtronic Summit libraries and API in custom software,
enabling advanced features. The system is illustrated in Figure 1.
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FIGURE 1 | The EPAD system—The EPAD system user interface and core

logic deployed along with on-tablet seizure detection and forecasting

algorithms. EEG data packets from the investigational Medtronic Summit

RC+STM implanted device are decoded, sorted, assembled, compressed,

and stored in a cloud-synchronized repository in Multiscale Electrophysiology

Format (MEF v.3.0). In addition, dense behavioral inputs from the patient

interaction with the EPAD system and data from external wearable devices are

synchronized over Wi-Fi or cellular data networks to a cloud-synchronized

repository.

The EPAD system user interface and core logic were developed
in C#, and compiled python programs were used to deploy on-
tablet seizure detection and forecasting algorithms. Data packets
containing EEG and accelerometry from the implanted device
are decoded, sorted, assembled, and losslessly compressed using
Range EncodedDifferences (RED) before being stored in a cloud-
synchronized repository in Multiscale Electrophysiology Format
(MEF v.3.0). Seizure, aura, medication, stimulation changes,
and other event annotations are stored in SQL and CSV files.
Video files acquired by the tablet’s embedded camera during
detected or self-reported seizures are synchronized with the
EEG and accelerometry data and stored in the cloud repository.
Dense behavioral input from the patient is received through
interaction with the EPAD system, and data synchronization
between devices, tablet, and cloud repository occurs over Wi-Fi
or cellular data networks. Data flow between the different parts
of the EPAD system is illustrated in Figure 2.

This architecture is beneficial for implementation using
a mobile-computing middle layer responsible for configuring
stimulation and sensing, managing data telemetry from the
device to the cloud, and running moderately complex analytical
algorithms in near real-time. This architecture allows the system
to enable modulated therapy and provide objective EEG and
behavioral data to physicians, patients, and caregivers.

DESIGN AND DEVELOPMENT

The EPAD system is designed to be used as part of an
investigational device system early feasibility study to examine
the safety and potential benefits of a novel closed-loop electrical
stimulation therapy to treat drug-resistant epilepsy (DRE). The
EPAD system tests the feasibility and potential benefits of three
functions that may benefit the management of non-resectable
DRE. (1) Seizure diaries arising from chronic electrographic
recordings, analytics, and expert review may help physicians
better manage patients’ epilepsy. (2) Seizure forecasting, arising
from predictive algorithms trained on physician-identified
seizures, may allow patients to manage their epilepsy better. (3)
Modulating stimulation based on electrographic biomarkers of
sleep and seizures may enable the physician better to treat a
patient’s epilepsy with fewer side effects.

Software that is part of or controls a medical device is subject
to strict regulation due to its safety-critical nature. Therefore,
the EPAD system was developed following work instruction that
meets the Food and Drug Administration (FDA) requirements
for Investigational Device Exemptions (IDEs) as defined in
21 CFR 812.1 and Design Controls as defined in 21 CFR
820.30. In order to integrate traditional software development
standards with the regulatory requirements, the EPAD system
was developed with the V-model (20), a well-established software
development life cycle model, also known as the Verification and
Validation model. By its nature, the V-model is a good fit for
many medical devices software development as the requirements
is understood and clearly defined, and phases are complete one
at a time with a testing phase at each step. That structure allows
the detection of issues and inconsistencies in an early stage and is
why the V-model is typically implemented within the field.

For the EPAD system, design and development were
comprised of two main phases: Planning and Execution.
The execution phase was further subdivided into Design,
Implementation, and Delivery phases. The planning phase
consisted of assessing stakeholder needs, performing a
preliminary Safety Risk Analysis, and obtaining proponent
review and acceptance of the proposed project plan. The
execution phase was initiated with the design phase, where a
System Requirements document was developed in consultation
with physicians, patients, the Medtronic Summit System
staff, and the Mayo design team. The System Requirements
document captures the stakeholder needs translation into system
requirements that describes the system’s required functionality,
performance, attributes, boundaries, and constraints. System
Validation Test Protocol was developed during the design
phase to define the necessary tests to ensure that the research
system operates as intended in its operational environment
according to the System Requirements document. During the
development process’s Implementation phase, the software and
system requirements were translated into a working system
and described in detail by the software design specifications.
Finally, during the Delivery phase of the development process,
the EPAD software was installed and configured on a tablet
computer, and verification testing was performed. Residual
system deficiencies were addressed, and final testing reports
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FIGURE 2 | Data flow—Data flow between the different parts of the EPAD system. Colored arrows represent different data types flow. Blue (solid): data packets and

logs from the from the investigational Medtronic Summit RC+STM are compressed. Blue (dashed): compressed iEEG data and logs are stored in a

cloud-synchronized repository and used as input for the complex electographic seizure detection and prediction algorithms. Orange: patient-generated annotations

are stored in a cloud-synchronized repository. Green: iEEG classifications from the electographic seizure detection and prediction algorithms are stored in a

cloud-synchronized repository. Yellow (solid): stimulation parameters modulation based on EPAD iEEG classifications. Yellow (dashed): stimulation parameters

modulation based on the embedded detector seizure detections.

were generated, including the verification testing report and
unresolved anomalies report.

The majority of the EPAD system’s design effort consists of
developing the EPAD software application and is detailed below.

Medtronic Summit Research Development

Kit
The Medtronic Summit System consists of a Model B35300R
Olympus RC+STM implantable device (INS), commercial leads,
and extensions, Model 97755 Charger, Summit Programming
Application, Model 4NR010 Summit Research Lab Programmer
(RLP), Model 4NR011 Continuous Telemetry Module Gateway
(CTM), and Model 4NR009 Summit Patient Programmer.
Stanslaski et al. (16) detail the two major parts of the
investigational Medtronic Summit RC+STM system, including
(1) an implantable hardware firmware subsystem for neural
interaction and running embedded algorithms and (2) a
supporting firmware-software system for communicating,
recharging, streaming, and analyzing data. The EPAD system
interaction with the investigational Medtronic Summit RC+STM

systems enables the iEEG monitoring, processing, and control
functions of the overall EPAD system. In addition to analysis on
the electrographic signals to trigger changes in physician-defined
safe neurostimulation approaches.

The Medtronic Summit Research Development Kit (RDK),
a software interface library, was incorporated into the EPAD
system and used to access gateway functionality. The RDK
Library is a pre-compiled Dynamic-Link Library (DLL) file
written in the C# programming language. All control and
feedback functions with the investigational Medtronic Summit
RC+STM INS must be handled through the API. Therefore,
methods implemented in the RDK are called directly throughout
the EPAD system. The Medtronic Summit RDK requires
the Application Programming Interface (API) to run under
Microsoft Windows. Hence, the EPAD system was developed as
a mobile application capable of running on aMicrosoft Windows
Tablet computer.

The Research Lab Programmer (RLP) is the
application/hardware the clinician uses to configure INS
therapy safety-related settings and determine system status.
Initial stimulation configuration, including contact selection and
parameter limits, must be done on the RLP to ensure patient
safety. After defining stimulation parameter space available with
the RLP, the EPAD system can modulate stimulation within
clinician-defined limits and modify other configurations using
the Medtronic Summit API. However, it must adhere to the
clinician-defined limits, or it will be rejected.

The Medtronic Summit API is used throughout the EPAD
system to control and communicate with the entire Summit
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system and, specifically, the INS. This allows various actions,
including initiating a link to the CTM and INS, device status
queries, interactions logging, data streaming, and configuration
of the device’s sensing, data processing, classifiers, and adaptive
control policy. The SummitManager enumerates and manages
the telemetry to the implantable device. Using telemetry
information, the SummitManager can create a Summit system
object. The SummitSystem and SummitManager objects are vital
objects within the Medtronic API to maintain the connection
between the tablet, CTM and INS.

The EPAD application utilizes a 30-s keepalive timer active
while running. The keepalive timer reads the CTM battery status
and the INS battery status. These status queries are used to report
status on the main screen and write hourly status annotations.
Also, by querying the battery levels, we can ensure that a proper
connection is maintained between the tablet, the CTM, and
the INS. If more than three attempts to communicate with the
CTM fail, then API commands can re-establish communication.
The Medtronic API offers a callback function that signals the
EPAD system when the connection is broken and should be re-
established. When a new connection to the INS and CTM is
needed, the keepalive timer re-initializes the data collection using
a customized helper function. The function uses a Medtronic
Summit API function to search over Bluetooth for known CTM
devices, as only a CTM device previously paired with the tablet
can be connected. Then uses a Medtronic Summit API function
to discover and connect to the INS and an abstraction layer to
manage all underlying functionality of a single INS.

The INS is queried to its state in terms of streaming data and
stimulation. This information is used in additional features of
the keepalive timer function, including a warning message that
is displayed to the user when EEG data is expected, however,
the tablet has received no data in 30min. Also, the current set
of stimulation parameters set on the INS are compared against
desired stimulation parameters. If a discrepancy is found, the
stimulation parameters are re-sent to the INS. These stimulation
parameters, along with other basic setup parameters, are saved
when any system parameter is changed, and hourly status updates
of the entire system are generated. Furthermore, parameters,
such as stimulation and LDA classifier settings, can have a
daytime/nighttime mode to allow the patient to sleep better. This
is also monitored and adjusted during the 30-s timer.

MEF 3.0
Multiscale Electrophysiology Format (MEF) is an open-source
file format designed to store electrophysiology and EEG (21) but
is extensible to most time-series data. The format incorporates
a header, which contains technical information about the file,
stored data, and subject identifiers. The header is followed by
a variable length sequence of compressed data blocks, each of
varying size. Each compressed data block contains a block header,
which contains the uUTC timestamp of the first data sample in
the block, the number of samples stored in the block, a cyclic
redundancy check value computed on the compressed data block,
and a statistical model of the stored data samples. The format
incorporates 128-bit encryption, which can be applied optionally
to subject identifiers in the file header, technical acquisition

details in the file header, and data blocks. Version 3.0 of MEF
is designed to be a real-time data format, which means that a
viewer/analyzer can read files even as another process is writing
them. The MEF 3.0 file format is fully detailed in the Multiscale
Electrophysiology File Format Version 3.01.

The EPAD system receives data in packets from theMedtronic
API callback commands. Packets typically represent either 50
or 100ms with a corresponding timestamp. Upon receipt,
packets are added to a buffer, which collects between 5 and
10 s of data, and sorts the packets into order using the given
timestamp. Packets that are severely delayed (due to Bluetooth or
other problems) and cannot be ordered correctly are discarded.
Statistics of discarded packets are kept and monitored to ensure
that data loss is not unreasonably high.

The MEF 3.0 API library (“meflib”2) is written in the c
language and is a collection of ∼100 functions designed to ease
the use of the MEF 3.0 format. In addition, a secondary library
(“mefwriter”3) is used to simplify the MEF 3.0 encoding process.
This allows complete MEF 3.0 data channels to be encoded by
using as few as three function calls, and most details of the file
format are abstracted from view. In the EPAD system, both the
meflib and mefwriter libraries are compiled as c functions and
exported as dll files for use by the C# environment. This allows
seamless integration with the EPAD system without having to
recompile the libraries under C#.

MEF 3.0 supports segments, which allows EEG channels to be
divided into arbitrary size files. The EPAD system takes advantage
of this by beginning a new segment each time the application runs
(typically daily, since EPAD software restarts at midnight each
day). During the process of creating a new segment, the previous
segment (and only the previous segment) is read and verified for
consistency. This is necessary for both technical reasons (some
data persists across segments) and guarantees that the on-board
analytics algorithms can successfully read the entire channel. If
even one segment were to be unreadable, then potentially, the
entire channel might be unreadable. Since only the previous
segment is read before creating a new segment, this allows much
older segments to simply be deleted in the interest of reducing
hard drive usage. The meflib library is sufficiently robust to
merely ignore non-existent segments.

Analysis shows that using MEF 3.0 in the EPAD system,
the EEG data (or time-domain data) is losslessly compressed
at a ratio of better than 5 to 1, relative to the original JSON
data produced by the Medtronic Summit API. This compressed
MEF 3 version of the data is immediately indexed and readable
using MEF 3.0 tools as the files continue growing in size. The
compressed nature of the data represents less network traffic
when uploading to the cloud and greater data storage capacity
on the tablet hard drive. The uncompressed JSON version of the
data is deleted every 24 h due to being redundant.

In addition to writing MEF 3.0 data, the EPAD system also
uses a Python version of the MEF 3.0 library (“pymef”4) to read

1https://msel.mayo.edu/files/codes/MEF%203%20Specification.pdf
2https://github.com/msel-source/meflib
3https://github.com/msel-source/mefwriter
4https://github.com/msel-source/pymef
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MEF 3.0 data that has already been written. This library consists
of a Python interface designed around the native MEF c code
compiled for Windows. As mentioned above, the EPAD system
writes MEF 3.0 data, and data analysis is done in near real-
time for seizure detection and prediction purposes in separate
spawned processes that use the python MEF 3.0 reader library.

Hardware Settings
The EPAD system can read or write INS settings using the various
Medtronic API functions to manage the INS settings. There are
write parameters functions to directly modify, change, or set
various INS firmware settings and read parameters functions to
access the INS state.

Sensing Parameters
The Summit system is sensing signals measured using the
INS. The INS can stream up to four channels of local field
potentials (LFPs) from the implanted electrodes. The EPAD
system presents the physician with a series of configurable
options representing the operation of the EPAD system and INS,
including iEEG electrode configuration, sampling rates, sampling
interval, duration, and accelerometer data telemetry from the
INS. Initial selected values reflect options previously configured
using the Medtronic Summit RLP.

A Medtronic API function is used to configure the sensing
state and then sensing data that can be streamed from the INS
to the EPAD system tablet. Individual streams can be enabled
or disabled at any time. Each enabled data stream indicates
the INS to send data packets, which is then handled on the
EPAD system accordingly. The function first parameter is a
Boolean, which determines if time-domain (TD) packets are
sent from the INS/CTM to the tablet. The rest of the function
Boolean inputs correspond to the following individual streams:
Fast Fourier Transform (FFT) of the signal, Power (the input
to the on-board classifier), Detection Events, Adaptive Stim
(active state and stim settings), 3-axis Accelerometer data, Time-
Sync (enables packet gen times), and Loop Recorder (LR) status
updates and external marker echoing. General practice is not to
request more information than is needed since the INS-CTM
connection and the CTM-tablet Bluetooth connection have a data
throughput limit.

The EPAD system is set by default to continuous real-time
streaming but can also operate in periodic streaming. When
designing the EPAD system, the design included putting the
INS into a periodic streaming mode to save battery life, as it
would only be streaming for 1min out of every 3 (for example).
However, it is necessary to close and reconnect the Bluetooth
connection repeatedly to save a meaningful amount of battery
power, and reconnection could be problematic if the CTM is not
maintained in close proximity to the INS.

Stimulation Parameters
The ability to modulate stimulation based on patients’
electrophysiological biomarkers, seizure diary and cyclical
patterns holds unique potential for responsive and predictive
adaptive neuromodulation. Modulating the intensity of
stimulation based on electrophysiological biomarkers could

allow applying high stimulation when a patient is at high
risk of seizure and low stimulation when a patient is at
low risk of seizure, by doing so reducing side effects and
prolonging battery life. Also, neurostimulation intensity could
be increased/decreased during sleep stages which a patient’s
seizure diary suggests a correlation with an increased/decreased
likelihood of seizure occurrence. As well as, seizure diaries
coupling to increase stimulation during sleep after seizures
to disrupt memory consolidation and prevent the brain from
strengthening seizure pathways (22).

To mitigate patient risk, the Medtronic API is limited by
design in its ability to adjust therapy for a patient dynamically.
Therefore, the EPAD system is limited to turning therapy on/off,
switching between stimulation groups, and changing stimulation
parameters within clinician-defined limits (configured with the
RLP). The INS can be configured with up to four stimulation
groups A, B, and C for general open-loop therapy and group D
for adaptive stimulation.

A Medtronic API function is used to change the active group
to a different one specified by the function argument. The EPAD
system uses group A as a “safe mode” state where the baseline
settings are used, when adaptive stimulation is turned off. Groups
B and C are used for the stimulation trial. Finally, group D is
used for adaptive on-board stimulation in combination with the
classified state [baseline (wake and sleep), seizure, pre-seizure].

The EPAD system presents the physician a set of configurable
options affecting the stimulation modes, including stimulation
rates and stimulation current amplitudes for each classified
state [baseline (wake and sleep), seizure, pre-seizure]. When
configuring an INS group program with the RLP, a clinician
can define an upper and lower bound for each parameter.
Because of the safety-critical nature of stimulation parameters
effect on the patient, these are validated within the EPAD system
against desired settings, clinician-defined limits and globally
defined limits, every time new parameters are applied and within
every EPAD system 30-s keepalive timer. When calling the API
function that is used to turn on the stimulation engine and is
required for any therapy to be output to the patient, additional
validation occurs. The function will be rejected if there is no valid
therapy configured or the INS has shutdown unexpectedly. The
EPAD system includes a real-time data visualization capability
that allows the physician to view the real-time effects of the
configured stimulation parameters (Figure 3). This is a valuable
tool giving the physician a unique view of the data immediately.
The data visualization also assists in the Verification and
Validation test.

The Summit system supports sensing-based adaptive
algorithms, where the algorithm acts autonomously on the
INS. Embedded adaptive therapy is only allowed in Group D.
The system will be configured to operate with the on-device
linear discriminant analysis (LDA) closed-loop classifier active,
employing one LD with one threshold. It can have a value
above the maximum threshold (High) and below the minimum
threshold (Low). The embedded classifier will be configured
to detect iEEG characteristics similar to physician-confirmed
electrographic seizures and will implement physician-configured
stimulation parameters (Amplitude and Stimulation Rate) in
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FIGURE 3 | The EPAD Data Visualization tab in Physician mode showing real time data with stimulation artifact (Amplitude = 2mA, Rate = 5Hz).

response to these detections. Using the embedded detector to
detect known electrographic seizure events provides the fastest
possible response to these iEEG changes, while maintaining
reasonably high sensitivity and specificity.

Stimulation Trial Parameters
Finding the right set of stimulation parameters for each patient
is complicated due to the time-consuming nature and the
need to record real-word responses to the parameters. This
feature allows the physician to pre-configure up to 24 parameter
combinations, including stimulation amplitudes (3), rates (4),
and pulse widths (2). Stimulation groups B and C are used for
the stimulation parameters trial. Parameter groups are arranged
in two sets, each of which can have unique pulse widths and
electrode contacts. Within a set the parameter sequences occur
in sequential combination so that every stimulation rate is tested
with every set of amplitudes. The physician can specify the
duration of each stimulation cycle as well as a “rest interval”
between stimulation cycles. The stimulation trial can be repeated
by selecting the number of test cycles and can be stopped at any
point in the process while the tablet is connected. In case the
software crashes or the tablet turns off during the trial, upon
reconnection, the stimulation trial shall resume from the last set
of parameters tested.

Impedance Measurements
The EPAD system can conduct an impedance measurement on
up to 16 contact pairs in a test using an API function. The
EPAD system warns the user that stimulation and sensing will be
temporarily discontinued and waits for any active sensing loops
to complete before turning off sensing and stimulation functions.
Once these functions are confirmed to have stopped by the
INS, the EPAD system conducts the impedance test. Measured
impedances for electrode contacts shall be written to the log file
and the Annotations file.

User Interaction
Technology is advancing rapidly, and there are more and more
digital personal assistants with advanced capabilities. Also, there
are many new technologies for better diagnosis of diseases and
better-targeted therapy to such conditions. The EPAD system
combines these possibilities and provides an interface to allow
the epilepsy patient to enter annotations regarding seizures,
auras, and medications. The patient can make an annotation,
by simply clicking the appropriate button on the main screen
of EPAD. Once the patient presses the Seizure or Aura buttons,
a video recording is started using both the tablet’s front and
back cameras, encrypted and saved in Audio Video Interleave
(AVI) format. The EPAD system also provides the reminder
feature, allowing the physician to pre-schedule reminders for
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medication dosages and battery charging. Reminders and alerts
for INS, CTM, and Tablet batteries can be sent to the patient’s
smartphone via SMS text message. The physician medications
tab allows the physician to enter the patient’s medication dosages
then automatically generates reminders for each dose. When
the Medication button is pressed, a “medication dose” dialog
is presented, which allows the patient to select the appropriate
medication and dose taken. In the Patient-only section, an
additional option is given for extra medications taken that are
not part of the usual regimen specified by the physician.

Epilepsy is associated with sleep, cognitive, and psychiatric
comorbidities, which significantly impact the quality of life. The
EPAD system offers a unique opportunity for long-term tracking
of cognitive performance and psychiatric symptoms using the
questioners feature of the reminders that allow the physician to
schedule mood survey questionnaires, including the IMS-12 (23)
and surveys of premonitory symptoms of seizures (24).

All patient-generated annotations are displayed in the Patient
Annotation Diary, and the physician has access to these
annotations through synchronization of offline data files.

Annotations
Prior studies have documented significant under-reporting of
seizures in many patients (13). Chronic recordings may help
physicians identify unreported seizures and adjust treatment
accordingly. This could identify patients at significant risk of
status epilepticus or SUDEP. Also, it may be possible to identify
circadian or ultradian patterns in a patient’s seizures and use
these patterns to optimize therapy (25). Additionally, chronic
monitoring and seizure diaries could provide a clearer view
of a patient’s seizure patterns and suggest a potential resection
target not apparent upon initial monitoring. Many patients with
intractable epilepsy also exhibit behavioral, non-epileptic spells.
Therefore, objective recordings may help physicians differentiate
among conflicting patient reports or evidence and provide an
alert for physicians or caregivers in the event of prolonged
seizures or status epilepticus.

To investigate the potential benefits of an electronic seizure
diary, we incorporated the ability for seizure annotations within
the system to be generated by the patient or generated by
automated seizure detection algorithms. In addition to user
interface interactions, a back-end database is updated with auto-
generated events. Events are notated in two different ways
to allow greater flexibility upon reading. First, through the
use of a simple text file in Comma-Separated Value (CSV)
format, and second, in a relational database structure using
Structured Query Language (SQL). In the interest of being
lightweight and not computationally intensive, the EPAD system
makes use of SQLite, which is an embedded, open-source c-
language-based SQL management system. The resulting csv and
sqlite files are synchronized to the Mayo BNEL lab’s servers
via Dropbox.

Besides the patient-generated events, numerous system
status events are also incorporated into these files. These
include embedded (INS) detections of seizure-like electrographic
anomalies, on-tablet detections of seizure-like electrographic
anomalies, on-tablet computed pre-seizure state warnings,

battery levels for INS, CTM, and tablet computer, stimulation
pulse rate, amplitudes, channels, and pulse width when
configured, and on/off states, timestamps, and settings for
detectors, stimulation, accelerometer, and other signals saved.
These parameters are updated at least hourly and upon
predefined trigger events to give the physician a complete
picture of the EPAD system’s configuration at any point
in time.

Data Analysis
Reliable seizure forecasting holds great benefits to the patient,
including permitting patients to take fast-acting medications to
prevent seizures and also may improve patient safety by allowing
patients to avoid potentially hazardous activities during high
seizure likelihood periods. Additionally, seizure forecasting may
reduce psychiatric comorbidities of epilepsy by reducing the
anxiety and depression associated with seizure unpredictability.
Moreover, seizure forecasting could enable increasing the
intensity of neurostimulation during seizure-prone periods to
prevent seizures.

Beyond the embedded detector used to detect electrographic
seizure events that provide the fastest possible response, the
EPAD system also runs more complex analytic algorithms
to detect iEEG changes preceding physician-confirmed
electrographic seizures, and iEEG changes associated with
physician-confirmed wake and sleep states. The algorithms
for classification of brain state (e.g., seizure, pre-seizure, wake,
sleep, epileptiform activity) from acquired iEEG data have been
developed in Python and compiled for Windows. The algorithms
are trained offline and algorithm parameters are loaded to the
tablet after training. The main EPAD program calls the compiled
Python executable files through theWindows file system with the
necessary parameters. Based on these iEEG classifications, the
EPAD System will change the baseline stimulation parameters to
physician-defined values designed to optimize neuromodulation
therapy for particular brain states.

Electrographic Seizure Detection
The role of EPAD system seizure detection algorithm is to
support a seizure diary of physician-confirmed electrographic
seizures. The EPAD system implements a modified version
of the best performing seizure detection algorithm from the
recent machine learning seizure detection contest (26) to
accommodate continuous iEEG data. The algorithm was initially
developed for the competition, used a Random Forest classifier
(3,000 trees) with frequency spectrum, time-domain correlation,
and frequency-domain correlation features. Specifically, the
algorithm aggregates the logarithm of the Fourier transform
from 1 to 47Hz (in 1Hz bins), the correlation coefficients,
and eigenvalues of the correlation matrix between Fourier
transformed iEEG channels from 1 to 47Hz, and the correlation
coefficients and eigenvalues between the raw iEEG channels. This
algorithm’s EPAD system implementation uses the same feature
set described above, with a reduced number of 150-tree Random
Forest classifier, operating on 1-s iEEG data segments.
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FIGURE 4 | An excerpt from the EPAD Requirements Traceability Matrix.

Electrographic Seizure Prediction
The seizure prediction algorithm’s role is to support stimulation
parameters modulation in periods preceding physician-
confirmed electrographic seizures. It is reported in the literature
(13, 14) and supported by our internal testing that these
identifiable iEEG signatures occur 60 or more minutes before
the onset of a seizure. The EPAD system implements a modified
version of the best performing seizure prediction algorithm
from a recent machine learning seizure prediction contest (27),
to accommodate continuous iEEG data. The algorithm was
initially developed for the competition used a cross-validation
strategy to select the best performing classifier among Logistic
Regression, Linear Regression, and Support Vector Machine
classifiers, and used a genetic algorithm (or random index)
to select a subset of features from among the following: Time
correlation matrix upper right triangle and sorted eigenvalues,
frequency correlation matrix upper right triangle and sorted
eigenvalues, the logarithm of the FFT magnitude for various
frequency ranges, power-in-band spectral entropies, Higuchi
fractal dimension with Kmax of 2, Petrosian fractal dimension,
and Hurst exponent.

The code developed for the contest was modified to run with
iEEG data from the EPAD system and simplified to improve
execution time. Preliminary algorithm testing on canine iEEG
recordings revealed that the Logistic Regression classifier was

the most reliable algorithm, and that a vastly reduced feature
set was adequate to achieve good performance. The EPAD
implementation of this algorithm uses the Logistic Regression
classifier, operating on 10-min iEEG data segments (28). The
feature set was reduced to interelectrode correlation and the FFT
magnitude between 0.25 and 24Hz. The prediction algorithm
was deployed as a separate executable, so that future advances
in prediction algorithms could be incorporated without recoding
the core application.

Risk Analysis
The EPAD system was developed with a test-driven evolutionary
development strategy. We conducted an analysis of risks
associated with the use of the EPAD system and evaluated
these risks using an acceptability framework defined by our
institution’s Division of Engineering. This analysis of risks
includes a summary of the overall residual risk and the
acceptability of residual risk levels that have been attained
through specific risk mitigations. The main residual risks of the
EPAD system include loss of therapy due to battery depletion in
the implanted neurostimulator, changes in electrode impedances
over long time periods decreasing effectiveness of sensing and
stimulation, electromagnetic noise triggering high stimulation
states when not intended, and unsafe stimulation programs being
implemented by the physician.
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TABLE 1 | Verification tests used in the EPAD quality system.

Requirement Test

EPAD shall disconnect when the

INS battery reaches 25% to

prolong battery life and prevent

loss of therapy

Canine subject’s INS battery was partially

charged, and EPAD disconnection was

observed when it reached 25% power

The embedded LDA detector

shall identify at least 80% of

physician identified

electrographic seizures with a

false positive rate of <20%

The benchtop device is attached to

electrodes immersed in a saline bath. EEG

signals previously recorded from canines

with epilepsy were electrically conducted

into the saline bath using an Arduino.

EPAD recorded the EEG and LDA seizure

detections, and these detections were

compared to the canine EEG signal

annotations

The Application shall modulate

the amplitude and frequency of

stimulation in response to the

output of iEEG analytics, with

frequencies and amplitudes as

configured by the physician.

iEEG analytics shall identify iEEG

characteristics similar to data

preceding physician-identified

seizures (pre-ictal)

Phase I: The python executable

performing seizure prediction was trained

on retrospective canine iEEG data and

tested on over 60 days of data on a

separate computer to verify performance

Phase 2: The same executable running on

the tablet computer as part of EPAD was

trained to identify delta wave sleep and to

initiate very low amplitude (0.5mA)

stimulation on a canine subject. Recorded

iEEG data was reviewed to confirm

stimulation artifact was visible during delta

wave sleep

EPAD shall provide the ability to

conduct a stimulation trial,

cycling through at least 12 sets

of stimulation amplitudes and

frequencies on up to 2 sets of

electrodes

Stimulation trial was configured with

notably different amplitudes and

frequencies on different electrodes. The

stimulation trial was run first on the

benchtop device and then on a canine

subject’s device with EEG recording

enabled. Stimulation artifacts on recording

electrodes were used to confirm relative

stimulation rate and amplitude changes

A definition of Essential Performance is established, as well
as the safety classification of software components used as
part of the device system. AAMI/IEC 60601-1 defines Essential
Performance to be “Performance necessary to achieve freedom
from unacceptable risk.” The standard notes that “Essential
Performance is most easily understood by considering whether
its absence or degradation would result in an unacceptable risk.”
Risk analysis suggests that the Essential Performance of the
EPAD is to notify the user of its operational status. Because it
operates via an external connection to the Medtronic Summit
System, failure of the EPAD system to operate would not
interfere with the Summit System’s ability to deliver stimulation.
“Safety Classification” is used to establish the classification of the
software component and is used to inform software development
and verification efforts. Software safety classes include: Class A:
No injury or damage to health is possible, Class B: Non-serious
injury is possible, and Class C: Death or serious injury is possible.
The software components related to iEEG recording are found to
be Class A, while the stimulation modulation is found to be Class
C; the system as a whole is considered Class C.

TABLE 2 | Validation tests used in the EPAD quality system.

User need Test

Ensure the EPAD system

initializes a connection to the

Medtronic Summit System if

available

Medtronic INS and CTM initially paired

with EPAD system is moved out of range

(>2m) until connection drops. When

moved back within range the system

initiates a wireless connection within 60 s

Ensure the EPAD system can

provide near real-time EEG data

display

With a benchtop device paired, the user

navigates to the EPAD Data Display tab,

which provides near real-time display of

captured iEEG data. While watching

streaming iEEG data, the user taps the

electrodes and confirms that high

amplitude artifacts appear in the display

within a few seconds

Ensure the EPAD system buffers

acquired data locally if no

network data connection is

available

With a benchtop or canine EPAD system

the user disconnects from Wi-Fi networks

and enables iEEG streaming for 24 h. The

user confirms that iEEG data files from the

disconnected day are stored on the tablet

and that iEEG files are transferred once

Wi-Fi is re-established

Ensure the EPAD can provide

reminders, queries, and

questionnaires to the patient

The EPAD system was configured to

provide notifications via dialog windows

and SMS notifications for medications,

mood surveys, and battery charging.

Notifications of each type were set to

occur at 5-min intervals over the course of

a few hours with SMS messages directed

to the user’s phone

Verification and Validation
Verification and validation testing are done to confirm that a
device and software meets its design specifications and if it
fulfills its intended purpose. An essential component in a quality
management system is the Requirement Traceability Matrix
which is shown in Figure 4. The Requirement TraceabilityMatrix
links verification tests to the individual design requirements they
test, and similarly validation tests to user needs. This ensures
that all necessary design inputs are addressed by the design
and confirmed by testing. Best practices in software verification
include embedded and manual build-time testing. With every
new build of an EPAD version, we performed manual tests
designed to cover broad use cases and reveal deficiencies quickly
broadly. Unit testing of individual software elements is also part
of best practices in software design andwas employed throughout
the EPAD code base and performed automatically with each
build. Unit testing generates pass/fail reports for each test, and
these are logged and reported in the Verification Testing Report.
A comprehensive verification testing plan was followed which
specified the testing environment, the materials needed, and the
pass/fail criteria for the test, in order to verify that requirements
defined for the EPAD had been implemented successfully. A
vital element of the EPAD system is the integration of several
independent software components. For that reason, verification
of successful component integration was explicitly tested as part
of the verification test plan. Testing integration ofmodules within
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FIGURE 5 | Cloud analytics—First human subject data in the cloud longitudinal analytics system, including automated seizure detections and gold standard (expert

reviewed) annotations in raw iEEG data. Other features of the iEEG are displayed, such as spike rates and their circadian timing.

the code was handled using bottom-up automated testing at
build time, with integration tests written to confirm the correct
cross-module operation. Specifically, the interactions with the
main EPAD code and the Medtronic Summit RDK, Seizure
Detection Algorithm, Seizure Prediction Algorithm, and MEF
Library were confirmed. Finally, validation tests were performed
according to a detailed testing protocol to confirm the design
and implementation met the input stakeholder needs. All testing
results were carefully documented and stored in a document
control system (SolidWorks PDM, 3DS Inc., WalthamMA).

Tables 1, 2 summarizes some of the basic verification and
validation tests used in the EPAD quality system. Testing was
performed on a dedicated benchtop system or in preclinical
canine studies in a colony of research dogs with epilepsy (29).
A particular challenge in testing this type of application is the
requirement to test detection algorithms over a large number
of seizures. Doing this sort of testing in real-time in canines
would require a prohibitively long time to accomplish, and it
was necessary to use some creativity in devising achievable tests
that would confirm the system’s performance. Availability of both
benchtop INS systems and implanted canines was essential for
system design and testing. While some tests could be performed
in both environments, many required one or the other.

Analytical Platform and Data Visualization
To take advantage of rich data streamed from the EPAD system,
the analytical backend and the cloud-based physician Epilepsy
Dashboard provide a platform for reviewing electrophysiology
data wirelessly telemetered off the implant. The data are

automatically processed with a battery of algorithms running
on the patient’s local handheld for detecting seizures, IES,
and classifying sleep/wake behavioral state. Results are stored
in a database and accessible via a web-based dashboard. The
Epilepsy Dashboard enables swift review of immediate and
long-term data trends from the device (e.g., battery, electrode
impedances), electrophysiology data, and patient inputs. The
physician can quickly review and either confirm or reject
automatically detected, and patient reported events. An example
of the Epilepsy Dashboard is shown in Figure 5.

DISCUSSION

The integration of implanted neuromodulation devices, external
wearable sensors, and dense behavioral sampling with cloud data
storage and computational capabilities represents a potentially
transformative advancement toward fully integrated digital
medicine. The EPAD system, in its role of collecting data and
interacting with patients, facilitates new scientific investigations
which would not otherwise be possible. The EPAD system
was tested and validated in preclinical studies in canines
with epilepsy (29) including pet dogs living at home with
their owners, and has currently been used in three human
subjects with drug-resistant epilepsy. In addition, the EPAD
system plays a vital role in many of our group’s ongoing
projects. To investigate circadian and multidian cycles our
group characterized these in 16 dogs with naturally occurring
focal epilepsy that were continuously monitored with the
investigational Medtronic Summit RC+STM combined with the
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EPAD system (10). This study shows that seizure timing in
dogs with naturally occurring epilepsy is not random, and
that circadian and multiday seizure periodicities, and seizure
clusters are common. In addition, circadian, 7-day, and monthly
seizure periodicities occur independent of antiseizure medication
dosing, and these patterns likely reflect endogenous rhythms
of seizure risk. The EPAD system was also used to improve
seizure detection algorithm on-board of the investigational
Medtronic Summit RC+STM device as the on-board detector
offers the fastest possible response to iEEG changes, while
maintaining reasonably high sensitivity and specificity. In this
study, our group developed an algorithm using two power-in-
band features with the on-board linear discriminant classifier
to distinguish between seizure and non-seizure states. This
simple algorithm can be implemented on the investigational
Medtronic Summit RC+STM combined with the EPAD system
and showed promise for detecting seizures recorded with leads in
bilateral hippocampus (HC) and anterior nucleus of the thalamus
(ANT). To investigate comorbid psychiatric disorders that are
very common in drug-resistant epilepsy our group used the
investigational Medtronic Summit RC+STM combined with the
EPAD system to underline connections between epileptiform
activity, mood, and therapeutic deep brain stimulation. Finally,
in our group recent work we described the first application
of a distributed brain co-processor, made possible by the
EPAD system, providing an intuitive, bi-directional interface
between device and patient, and implement it with human
and canine epilepsy patients in their natural environments
(30). Different algorithms, including automated behavioral state
(wake and sleep) and electrophysiologic biomarker (interictal
epileptiform spikes and seizures), were first developed and
parameterized using long-term retrospective data from 10
humans and 11 canines with epilepsy and then implemented
prospectively in implanted co-processors for two pet canines and
one human with drug-resistant epilepsy as they live naturally
in society.

The challenges remaining in remote monitoring and
dynamic neuromodulation are primarily engineering
challenges associated with battery life and reducing the
overall burden of the system on patients. The success to
date of the EPAD system serves as proof of feasibility,
and we anticipate new systems with these capabilities will
emerge in coming years. The EPAD and associated cloud
infrastructure are applicable to other emerging devices (31–
34), and continued development will allow integration of
different physiological data streams in near real time from
remote subjects.

The need for fully integrated remote monitoring and
neuromodulation systems in clinical epilepsy is clear, and these
systems have the potential to help address significant problems
in epilepsy, including seizure under-reporting (35, 36), seizure
forecasting (13, 37), psychiatric and cognitive comorbidities
(38–40), and the lengthy duration currently needed to adjust
neuromodulation parameters to optimize seizure control (6).
Furthermore, this infrastructure facilitates new scientific insights

into long-term patterns and trends in human and animal
neurophysiology (9, 10, 41).

Important scientific investigation often requires innovative
engineering solutions to enable measurement, study, and data
gathering in ways not previously possible. The investigational
Medtronic Summit RC+STM and EPAD systems are examples
of cutting-edge engineering that enable continuous iEEG data
collection for months to years across the full range of normal
and pathological brain states, in concert with associated mood
and symptom information, along with a full range of stimulation
paradigms. The data accessible via this system is unparalleled
and has the potential to transform neuromodulation therapy
for epilepsy, mood disorders, and other conditions, and to
advance our basic understanding of neuronal ensembles and local
field potentials.
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INTRODUCTION

The propensity for seizures to follow circadian and multiday (i.e., weekly, monthly, or seasonal)
rhythms has been documented for centuries (1, 2). More recent findings from chronically recorded
EEG in both human and animal studies have further elucidated the existence of multiday rhythms
governing seizure timing and rates of epileptic activity [see (3) for a recent review]. These multiday
epileptic cycles are found to be prevalent in a number of studies, including from implantable devices
(4–7), electronic seizure diaries (8, 9), and wearable monitoring (10). It is becoming clear that
multiday seizure cycles are important phenomena in epilepsy, with many implications for seizure
management and more broadly in interpreting research studies and clinical trials (11–13).

The integration of knowledge of seizure cycles into clinical practise is in an early phase, with
some theoretical studies demonstrating the utility of seizure risk forecasts (14–16) or scheduling
diagnostic testing (9) based on multiday cycles. However, several barriers remain before seizure
cycles can be widely adopted in clinical management. One barrier is the knowledge gap between
data scientists and clinicians. Cycles are measured and described using circular statistics and
frequency analysis, making the explanation of the presence and strength of cycles technically
complex. It is yet to be determined at what strength a cycle can be deemed to be clinically relevant
for making treatment or monitoring decisions. Much progress has been made converging the
clinical and engineering aspects of epilepsy, however seizure cycles present new concepts in seizures
and epilepsy that need to be clearly interpretable by clinicians (13, 17). This review aims to bridge
several gaps that commonly arise between data science and clinical practise.

MISCONCEPTION 1: SEIZURE DIARIES ARE TOO NOISY TO
INFER CYCLES

It is well-known that self-reported events (i.e., seizure diaries) are unreliable (18), nevertheless
diaries remain the primary method of monitoring disease burden in epilepsy. Notably, it was
through the meticulous recording of patients’ seizures that early neurologists first recognised
multiday seizure cycles (1, 2, 19, 20). These centuries-old hand charting of seizure occurrence
resulted in critical insights into multiday periodicity in epilepsy that still await explanation. For
instance, in J.R. Reynolds’ seminal textbook from 1861 he observed:
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“it appears, therefore, that although regular periodicity is rarely

observed in epilepsy, and is entirely absent in some cases, yet than in

the majority of cases there is an approximation to periodicity, and

that the recurrence of attacks occupies a somewhat marked relation

to the natural divisions of time; such as the day the month, and

fractional parts of the month”

In an earlier 1746 treatise, Richard Mead also noted that, “great
regard must be had to the times in which the paroxysms most
usually return, in order to effect a cure.” Evidently, diary records
have been of immense value in establishing the existence of
multiday seizure cycles.

On the other hand, advances in chronic EEG recording
have shown that seizure cycles are more reliably estimated
by continuously monitoring biomarkers of excitability (5). For
instance average rates of interictal epileptic activity (4), the
variance and autocorrelation of EEG (15), and even average
heart rate (21) all show multiday cycles that are more robustly
predictive of seizure likelihood than looking at past seizure times.
Additionally, a recent comparison of seizure diaries and epileptic
activity captured from chronic sub-scalp recording systems (22)
showed discrepancies between the cyclic distributions of self-
reported and electrographic events, even when diaries were
relatively accurate (23). This is perhaps not unexpected given
many seizures are not recognised by patients, particularly those
occurring in sleep.

Nevertheless, for some people, self-reported events can be
used to track seizure cycles (see case study). One recent
study found the distributions of seizure diary events and
electrographic seizures were not significantly different for nine
out of 15 subjects, suggesting that although participants vastly
underreported the total number of seizures, the underlying
multiday cycles can still be determined for some individuals
(8). In a retrospective analysis of the same cohort, forecasts
based on self-reported seizures were accurate for electrographic
events for four out of eight participants (8). It should be
noted that this small cohort may not be representative of the
broader diary-using population, andmay in fact bemore accurate
in order to have been selected for this study (24). Another
retrospective forecasting study found multiday cycles in the
rates of interictal epileptic activity corresponded to self-reported
seizure risk for most individuals (14). Similarly, a validation
study found cycles measured from seizure diaries corresponded
to the occurrence of epileptic activity during ambulatory EEG
monitoring (9). Machine learning approaches have also been
successfully deployed to forecast seizure risk from electronic
diaries (25, 26).

On the whole, although advances in tracking continuous
cyclic biomarkers can provide more reliable measures of seizure
risk (27), seizure diaries should not be discounted as a useful
tool to monitor individuals’ seizure cycles and seizure risk
within clinical settings. Patient diaries are likely to remain a
cornerstone of clinical monitoring, and should be incorporated
to characterise seizure cycles where possible, in particular for low
risk applications such as scheduling EEGmonitoring (9). Further
work is needed to characterise the relationship between cycles
of interictal epileptic activity and self-reported events, as well as

to identify the subset of individuals whose self-reported seizure
cycles align with their electrographic events.

Case Study: Self-Reported and
Electrographic Seizures Correspond to
Underlying Cycle of Epileptic Activity
Figure 1 presents a case study of an individual adult female
diagnosed with seizures secondary to a periventricular nodular
heterotopia, refractory to polytherapy, implanted with a chronic
sub-scalp EEG recording system (Epi-Minder “Minder” system)
(28). Event labels and cycles of epileptic activity were detected
using the method described in Stirling et al. (28). It can be
seen that self-reported and electrographic seizures appeared to
align to the same underlying cycle of interictal epileptic activity
(Figure 1A). Cycles were also measured from seizure times alone
(rather than the continuous rate of interictal epileptic activity),
using the method described in Karoly et al. (8). Using this
approach, both self-reported and EEG seizures showed strong
alignment to a fixed underlying cycle of 28-days (Figure 1B),
which agreed with the cycle of interictal epileptic activity.
The phase distributions of self-reported and electrographic
events with respect to the 28-day cycle of interictal epileptic
activity (Figure 1C) were not significantly different (p > 0.05
using a Kolmogorov-Smirnov test for equality). Therefore, this
individual was able to self-report her seizures reliably enough to

FIGURE 1 | Case study of electrographic seizure detection from sub-scalp

EEG (red) and seizure diary self-reported events (green) over >6 months in an

individual patient. (A): counts of detected epileptiform events over time, with

seizures shown as dots. (B) Synchronisation index measured from event times

at different fixed cycle periods showed a similar peak around 28-days for both

EEG and self-reported seizures (C) A polar plot demonstrating that both diary

and EEG seizures show similar phase distributions with respect to the

underlying 28-day cycle.
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estimate the high-risk periods of her underlying multiday cycle,
in agreement with validated electrographic seizures.

MISCONCEPTION 2: WEEKLY CYCLES
ARE DRIVEN BY WEEKDAY BEHAVIOURS

Multiday seizure cycles are consistently found at about-weekly
(5–9 day) and about-monthly (28–32 day) periods (4, 7, 29),
which is often attributed to behavioural (weekday) or catamenial
effects. For instance, a large cohort study found multiday cycles
in 60% of people with epilepsy, with common periods 7, 15, 20,
and 30 days (29). Cycles of around 30 days were as common
in men as in women, suggesting catamenial influences are
probably not explanatory (see subsequent section). Research
suggests that behaviours such as diet, alcohol consumption,
sleep and wake times and exposure to stress impact seizure
risk in an individualised manner (30, 31) and this evidence has
led to hypotheses that behavioural triggers underpin multiday
seizure cycles. Regular social routines are commonly proposed
as the source of weekly seizure cycles however there is no
clear evidence linking cyclic behavioural patterns to cycles of
seizure susceptibility. Conversely, multiday weekly, and monthly
epileptic rhythms are only occasionally modulated by fixed
cycles, such as weekdays or day of month (3, 32).

Nevertheless, several studies have noted an effect of weekdays
on seizure occurrence, suggesting that the weekly routine leads
to some entrainment of naturally occurring rhythms. A large
study of seizure diaries found that 7-day seizure cycles were
significant in about 20% of people with epilepsy (7). Although,
at the population level, there was no clear preference for seizures
to occur on a particular day or part of the week. Rao et al.
found a weak, significant preference for fewer electrographic
seizures on Sunday, similar to the results of Ferastraoaru et al.
of seizure diaries (32, 33). On the other hand, alignment of
weekly seizure cycles to the 7-day week is often transient (32) (see
also case study, Figure 2), suggesting there are more prominent
endogenous physiological mechanisms that modulate seizure
occurrence with approximate weekly rhythms.

It has been hypothesised that endogenous weekly cycles do
influence mammalian physiology, with evidence of such cycles
affecting the cardio-respiratory, immune, and endocrine systems
(34). A recent study found people with epilepsy showed weekly
fluctuations in resting heart rate that were related to their seizure
occurrence (21). Similar to epileptic activity, heart rate cycles
were found at patient-specific periods of between 5 and 9 days
and not necessarily linked to weekdays. Overall, the body of
evidence suggests that, for some individuals, the 7-day week acts
as a synchronizer, rather than a driver, of weekly seizure cycles.

Case Study: Weekly Seizure Cycle Not
Aligned to the Day of Week
Figure 2 presents a case study of an individual with focal
epilepsy who shows their 8-week seizure diary (Figure 2A) to
their clinician. After observing the preference for seizures to
occur on weekends, the clinician may suspect that this patient’s
seizures are driven by an after-stress effect, i.e., they occur on

the weekend at the end of the stressful working week. The polar
plots (Figures 2C,D) validate this belief by showing that seizures
have a stronger link to the weekly cycle than to an intrinsic
8.5-day heart rate cycle (Figure 2B). However, after 15 months
have passed (Figures 2E,F), seizures are no longer linked to the
weekly cycle but remain well-aligned by the 8.5-day heart rate
cycle, which is likely to be endogenous in origin. Therefore, based
on 2 months of observations (i.e., 7 × 8.5-day cycles) seizures
seemed linked to a behavioural driver, although the endogenous
long-term pattern of heart rate was more stable over a 15-month
observation period.

MISCONCEPTION 3: MONTHLY CYCLES
ARE CATAMENIAL EPILEPSY

Despite centuries of data showing that males and females
experience about-monthly seizures with similar prevalence (4,
7, 35, 36), there is a persistent view that approximate monthly
(i.e., 3–5 weeks) cycles of seizure occurrence in women must
be linked to the menstrual cycle. The prevalence of catamenial
epilepsy is variously reported to be between 10 and 70% (37).
Clinically, catamenial epilepsy is defined as an increase (i.e., 2-
fold increase) in seizures during some phase of the menstrual
cycle, generally documented by self-report (38). Most studies
reporting on the prevalence of catamenial epilepsy are based
on short-term analysis of menstrual or hormonal data over
just two to three cycles (39). Limited duration studies of
several months may not be sufficient to determine whether
changes in seizure frequency are significant. Furthermore,
monthly seizure cycles can transiently align with the calendar
month, despite being more closely linked to underlying cyclic
fluctuation in epileptic activity which may not be of exactly
one calendar month in duration (32). Therefore, it is possible
that monthly cycles of seizure occurrence appear to be linked
to menstruation over several months, however the statistical
relationship would be abolished after longer term monitoring
(see case study).

In contrast, some women with about-monthly seizure cycles
may have seizures significantly linked to their menstrual cycle
over long-term monitoring. The underlying cause/s of monthly
seizure cycles are unknown, and are likely to differ between
individuals, with oestrogen or sex hormones playing a role for
some individuals. In support of this hypothesis, some studies in
animalmodels have found evidence for the influence of oestrogen
on seizure occurrence (40, 41). Furthermore, although a
landmark study of hormone treatment for women with suspected
catamenial epilepsy did not show a significant effect (42), post-hoc
analysis revealed a smaller subset of women for whom hormone
treatment may have been effective (43). The findings suggest that
catamenial effects are just one facet of monthly seizure cycles,
rather than being the primary mechanism.

For clinicians, the recognition that about-monthly cycles of
seizure activity in womenmay not relate to underlying menstrual
patterns is important in avoiding perhaps futile manipulation of
hormonal cycles through medication, as are often proposed by
clinicians and patients.
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FIGURE 2 | Case study of 7-day weekly seizure cycle and 8.5-day heart rate cycle showing that seizures were not modulated by weekly behaviour. (A) 8-week

seizure diary showing days that seizures occurred, suggesting a weekly seizure cycle. (B) 8.5-day heart rate cycle of the same period as (a), with seizures shown in

green. Seizures tend to occur on the rising phase of the cycle, with a few exceptions. (C,D) Polar plots demonstrating the location of seizures with respect to the

7-day seizure (red) and 8.5-day heart rate cycle (green) after two months and 35 seizures. Seizures were more strongly locked to the 7-day week. (E,F) Polar plots

demonstrating seizure timing on the seizure and heart rate cycle after 15 months and 245 seizures. Seizures were no longer locked to the weekly cycle but remained

strongly locked to the 8.5-day heart rate cycle. SI, Synchronisation index value with significance according to Omnibus test (***p <= 0.001).

Case Study: Monthly Seizure Cycle Not
Aligned to Menstruation Times
Figure 3 presents the case of a patient who appeared to
have strong phase-locking between seizures and menses when
observed over 4 months. However, there was no alignment over
an observation period of 19 months. Hence, quantification of
cycles using robust statistical techniques over long periods is
required to avoid erroneous conclusions.

MISCONCEPTION 4: CYCLES ARE DRIVEN
BY MEDICATION

The influence of anti-seizure medications (ASMs) has been
suggested as a driver of circadian cycles of epileptic activity and
seizures, since the precise time at which medication is taken

can shift the peak seizure occurrence within a 24-h period
(35, 36). Consequently, medications are sometimes touted as
a possible driver for longer, multiday rhythms. Although the
circadian rhythm of seizure occurrence may be influenced by
ASMs, the short half-life of most ASMs reduces the likelihood
that medication is driving longer rhythms (44). It is possible that
the interactions between multiple ASMs taken throughout the
day can result in periods of high and low therapeutic effect and
therefore affect seizure likelihood throughout the day. However,
there is no clear explanation for how the timing of daily (or
more frequent) medication use could drive fluctuations in seizure
likelihood that repeat over weeks to months or even seasonally.

Several animal studies have also established the existence of
multiday cycles of epileptic activity in the absence of ASM use. A
small study in six dogs with naturally occurring canine epilepsy
included one dog where a weekly seizure cycle was maintained in
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FIGURE 3 | Case study of a catamenial seizure cycle showing that seizures are only transiently aligned to the menstrual phase. (A) 4-month seizure diary showing

days that seizures occurred, and times of menstruation, suggesting a catamenial seizure cycle. (B,C) Polar plots demonstrating the location of seizures with respect to

the menstrual cycle after four months and 26 seizures (B) and after 19 months and 133 seizures (C).

the absence of ASM usage (45). Another study in a rodent model
of epilepsy found multiday weekly cycles in the epileptic activity
of rats who were not treated with ASMs (46). Similarly tetanus-
toxin models of temporal lobe epilepsy also show cycles where
seizures strongly cluster (47).

It is possible that systematic bias affects when people miss
their medications (i.e., on weekends, or when each pack runs
out), providing a periodic seizure trigger. Missed medication
is one of the most common seizure triggers (31, 48), and
clinically significant non-adherence has been reported to affect
between 29 and 79% of people with epilepsy (with the variance
due to different definitions of what constitutes significant
non-adherence) (49). For instance, one study found 66% of
people reported missing their medications at least once per
month (50). However, while the aforementioned studies identify
demographic factors that contribute to medication adherence,
to our knowledge no studies have investigated the timing of
missed medication, such as whether people are more likely to
miss medication on certain days or with any regularity. Sustained
periods of medication non-adherence could also be particularly
relevant, as cyclic fluctuations in seizure risk may build up over
slow timescales of days to weeks (3).

There are no studies that systematically analyse the
relationship between ASM usage and cycles in epilepsy.
Consequently, it is not possible to discount ASMs as a
confounding factor in the detection of seizure cycles. However,
some evidence suggests that seizure cycles exist despite
medications in humans. The ancient Greeks described
approximately monthly cycles in seizures that were thought
to be associated with lunar cycles (51), a theory that is purported

even today (52). A 1,929 investigation into 66 patients with
epilepsy reported three types of circadian distributions over
2,524 seizures (53). The authors concluded that while sedatives
(bromide or luminal) reduced the rates of seizures, their effects
were negligible in driving the cycles. Soon after, a report into
seizures in 110 boys at an epileptic colony over a 10 year period
discovered circadian, and weekly, monthly, and even yearly
cycles in seizures (36). Similarly, the authors concluded that
drugs reduced the number of seizures, but the grouping of
seizures were resistant to drugs.

Hence, although systematic studies remain to be undertaken,
there is a significant body of historical and pre-clinical models
suggesting that ASMs do not drive cycles of seizure activity.

MISCONCEPTION 5: CYCLES ARE ONLY
RELEVANT FOR FOCAL EPILEPSIES

The prevalence of multiday cycles across different epilepsy
types, or whether distinct seizure types adhere to different
cycles, are commonly asked questions regarding epileptic cycles.
Unfortunately, these questions are difficult to answer since
contemporary studies have principally identified cycles of
epileptic activity from chronic implanted EEG in patients with
focal epilepsies. To our knowledge, there are no studies that
report on chronic EEG in individuals with genetic generalised
epilepsies (GGE), and long-term electrographic correlates are yet
to be reported. Historic records of seizure timing may include
individuals with GGE, such as the Griffiths and Fox (36) et al.
record of two sisters with early onset epilepsy and “curiously
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FIGURE 4 | Case study of an individual with juvenile absence epilepsy with 5 and 13-day seizure cycles. (A) Self-reported seizure counts (bin-width of 5 days). (B)

Estimated seizure likelihood (grey—raw likelihood estimate, colour—smoothed likelihood). Markers indicate self-reported seizure occurrences. Note that the majority

(79%) of seizures occurred when the seizure likelihood was high.

alike” seizure cycles around 2 years in duration (36). However,
such historic diagnoses are highly speculative and cannot be
relied upon. Contemporary diary studies have shown multiday
seizure cycles can be measured from self-reported event times in
people with GGEs (7, 9), and have corresponding cycles of heart
rate activity (21).

Particular generalised epilepsy syndromes are well-
characterised as having ultradian cycles of interictal and
clinical epileptiform activity in both adults and children (54–58),
and similar circadian cycles particularly related to sleep-wake
transitions (55, 59, 60). The thalamocortical networks associated
with slow-wave sleep are also implicated in the generation of
generalised spike-wave discharges (56, 61). Hence, despite a lack
of longitudinal EEG to validate patient-specific infradian cycles,
there are well-studied circadian and ultradian rhythms present
in GGE.

From a network perspective, a focal seizure originates from
a single region of the brain (and may or may not generalise),
while a generalised seizure is a more inherent property of the
overall network where no single foci is identifiable (62). Although
overlapping symptomatically, this fundamental difference in
generalised seizure generation may mean that electrographic
multiday cycles are not present in generalised epilepsies due to
the difference in the seizure generation process. We anticipate
that the next generation of chronic EEG devices (23, 28, 63)

will be able to elucidate any such cycles as they have for
focal epilepsies.

Case Study: Ultradian Seizure Cycles in an
Individual With JAE
Figure 4 demonstrates a case study of multiday cycles derived
from an electronic seizure diary (Seer app) from an adult woman
with a confirmed diagnosis of juvenile absence epilepsy (JAE),
with refractory convulsive and absence seizures. Two distinct
cycles were identified at 5 and 13 days from a seizure diary with
a total duration of 18 weeks. From these cycles a forecast was
generated as per (9), resulting in 24% of time spent in high seizure
risk and 79% of seizures occurring in high risk. Hence, although
generated from self-reported events, this case presents seizure
cycles from an individual with a generalised epilepsy capable of
producing an accurate forecast.

MISCONCEPTION 6: CYCLES ARE DRIVEN
BY EPILEPSY-SPECIFIC PHENOMENA

To understand the cause/s of multiday seizure cycles, it is
necessary to look beyond epilepsy and even beyond neurology.
Slow physiological rhythms have been documented across a
range of human diseases (64). Episodic psychiatric conditions are
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suggestive of multiday modulation, including bipolar disorder
(65, 66), depression (67, 68), and other psychopathologies
(69). In cardiology, blood pressure and heart rate have been
found to show endogenous weekly cycles (70), and 7-day and
seasonal patterns have been documented for cardiovascular
diseases (71–73). As well, immunologists have long recognised
weekly cycles governing inflammatory markers in the blood,
including antibody production, circulating lymphocytes, and
cellular immunity in animal studies (74), which appear to impact
individuals’ responses to cancer treatment (75, 76).

Although very limited, some studies have also identified
physiological cycles with weekly, monthly, and seasonal patterns
for healthy individuals. Seven-day rhythms have been studied,
to a small extent, in endocrinology. Circaseptan variations in
cortisol were found on 20 healthy subjects after sampling thrice
weekly for three months (64). Melatonin has also been observed
to vary on a weekly basis (77); however, the study was limited
to weeklong recordings on a small cohort. Evidence for monthly
rhythms in biological phenomena is limited but includes sleep
quality (78) and hormone levels, including testosterone (79).
Monthly rhythms can also be found in heart rate, but this is likely
to be rare; one study mentioned about 3% of people (80). Within
populations, weak seasonal cycles have been observed in some
physiological states and biomarkers, including human cognition
(81), skin temperature (82), and salivary cortisol (83). However,
these seasonal changes were most likely related to environmental
drivers, such as ambient temperature and photoperiod.

The collective evidence of multiday cycles in other spheres of
human physiology and disease hints that similarly long timescale
rhythms in epilepsy do not arise only because of epileptogenesis
or ictogenesis. Instead, systemic physiological rhythms may
combine into complex, individual-specific oscillations that
lead to the periodic emergence of pro-ictal conditions. This
hypothetical emergence of seizure cycles from an underlying
network of oscillators has been outlined in a recent review of
circadian molecular oscillations and rhythmicity of epilepsy (84).
Ultimately, to understand cycles in epilepsy, it will be critical to
understand how many other physiological cycles interact with
rhythms of seizures and epileptic activity.

CONCLUSION

Cycles of epileptic activity have been documented for centuries,
however the recent emergence of technologies such as electronic
seizure diaries, wearable physiology tracking devices, and chronic
EEG recordings have allowed for their thorough investigation. It

is increasingly clear that multiday seizure cycles are highly patient
specific. Although some seizure types and epilepsy syndromes
are known to have population-wide characteristics with respect
to circadian seizure timings, analogous features are only just
beginning to be characterised at multiday time scales (7, 29).
Further work is required to understand whether demographic
or clinical factors may be predictive of cycle periods. Most
of the work presented here involved retrospective, exploratory
data analysis, hence prospective studies with explicit predefined
definitions for seizure cycles will be necessary.

Cycles of seizures have been identified both from self-reported
and electrographic events. Markers of cyclic activity have been
captured from EEG signals and other non-invasive physiological
measurements. How these physiological cycles are fundamentally
linked to the cycles of seizure activity (such as in Figure 2) is
still yet to be uncovered. The interaction of cycles and epilepsy
therapies, such as ASMs, also remains to be investigated.

Beyond the scientific boundaries of our understanding of
seizure cycles, there still exists a communication gap between
the clinical and data science worlds with respect to the cyclic
nature of seizure timing. We hope these academic communities
continue to strive to find a common language and cross-
disciplinary definitions to advance the field of seizure cycles in
close collaboration.
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Andrew S. Blum 3, Jonathan Bidwell 4, Paola De Liso 5, Rima El Atrache 6,
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Background: Using machine learning to combine wrist accelerometer (ACM) and

electrodermal activity (EDA) has been shown effective to detect primarily and secondarily

generalized tonic-clonic seizures, here termed as convulsive seizures (CS). A prospective

study was conducted for the FDA clearance of an ACM and EDA-based CS-detection

device based on a predefined machine learning algorithm. Here we present its

performance on pediatric and adult patients in epilepsy monitoring units (EMUs).

Methods: Patients diagnosed with epilepsy participated in a prospective multi-center

clinical study. Three board-certified neurologists independently labeled CS from

video-EEG. The Detection Algorithm was evaluated in terms of Sensitivity and false alarm

rate per 24 h-worn (FAR) on all the data and on only periods of rest. Performance were

analyzed also applying the Detection Algorithm offline, with a less sensitive but more

specific parameters configuration (“Active mode”).

Results: Data from 152 patients (429 days) were used for performance evaluation

(85 pediatric aged 6–20 years, and 67 adult aged 21–63 years). Thirty-six patients

(18 pediatric) experienced a total of 66 CS (35 pediatric). The Sensitivity (corrected for

clustered data) was 0.92, with a 95% confidence interval (CI) of [0.85-1.00] for the

pediatric population, not significantly different (p > 0.05) from the adult population’s

Sensitivity (0.94, CI: [0.89–1.00]). The FAR on the pediatric population was 1.26

(CI: [0.87–1.73]), higher (p < 0.001) than in the adult population (0.57, CI: [0.36–0.81]).

Using the Active mode, the FAR decreased by 68% while reducing Sensitivity to 0.95

across the population. During rest periods, the FAR’s were 0 for all patients, lower than

during activity periods (p < 0.001).
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Conclusions: Performance complies with FDA’s requirements of a lower bound of CI for

Sensitivity higher than 0.7 and of a FAR lower than 2, for both age groups. The pediatric

FAR was higher than the adult FAR, likely due to higher pediatric activity. The high

Sensitivity and precision (having no false alarms) during sleep might help mitigate SUDEP

risk by summoning caregiver intervention. The Active mode may be advantageous for

some patients, reducing the impact of the FAR on daily life. Future work will examine the

performance and usability outside of EMUs.

Keywords: epilepsy, seizure detection, wearable sensors, machine learning, clinical validation

INTRODUCTION

Generalized tonic-clonic seizures and focal-to-bilateral tonic-
clonic seizures are the most dangerous types of seizures and
represent major risk factors for sudden unexpected death in
epilepsy (SUDEP), especially when patients are left unattended,
e.g., nighttime (1–4). Beyond the risk of serious or life-
threatening injuries (5), the lives of patients and their caregivers
are heavily influenced by the unpredictability of seizures, which
results in decreased quality of life and contributes to social
isolation, especially in adolescents (6, 7).

Over the past decade, wearable devices equipped with
automated seizure detection algorithms have been suggested
to complement and overcome limitations of the gold standard
video-electroencephalography (v-EEG) performed in the
Epilepsy Monitoring Unit (EMU) (8–12). Such devices target a
continuous, remote, unobtrusive and less expensive monitoring
of patients. They are useful mainly for two reasons: (i) to prompt
caregivers’ intervention during or shortly after a seizure while the
patient is unattended, when the risk of injury and SUDEP is the
highest (13), consequently relieving both patients and caregivers;
(ii) to provide objective and more accurate seizure counts in
outpatient settings, overcoming the limitations of seizure diaries
(14, 15). Several surveys have demonstrated the need for accurate
wearable seizure detection (16–22).

Most of the proposed systems can detect seizures with a
clear motor activity component; however, they can have high
false alarm rates (FAR) (11, 23). Among the non-EEG seizure-
monitoring devices, multimodal systems hold the most promise
for attaining both high sensitivity and a low number of false alerts
(24, 25). Moreover, these systems have the potential to assess
seizure severity by tracking and analyzing multiple bio-signals in
the peri-ictal period (13, 26, 27).

Growing efforts have been made by the scientific and clinical
community to standardize the studies on wearable seizure
detection devices to perform a rigorous validation and to enable
their ubiquitous adoption in outpatient settings (24, 28, 29).
Published guidelines have tried to adapt the STARD criteria
to the specific use case of seizure detection (30). The main
recommendation is to test the performance of seizure detection
devices during prospective “phase III” multi-center EMU studies
and “phase IV” in-field studies, where the detection algorithm is
“fixed-and-frozen” on a set of patients’ data previously recorded
from a dataset completely different from the Test Cohort (28, 29).
A few studies have been published that fulfilled phase III or

IV criteria, using a dedicated device and fixed algorithm (31–
35). Only one of them used multimodal seizure detection (32)
and it was tested only during nighttime and only on a group of
patients that included some of the same people used to develop
the algorithm, two conditions that can inflate the algorithm’s
performance. There is a need for studies examining the 24-
h performance of multimodal devices on independent data
sets, which do not include any patients used when developing
the algorithm.

In this work, we present an evaluation using a prospective,
multi-center study with 24-h data from an independent
group of patients wearing multimodal wrist-worn devices
combining accelerometers (ACM) and electrodermal activity
(EDA) sensors. We evaluate the detection of two seizure types,
i.e., “focal onset to bilateral/unilateral tonic-clonic” (FBTC)
seizures, previously known as secondary generalized tonic-
clonic seizure, and “generalized onset tonic-clonic” (GTC)
seizures, previously defined as primary generalized tonic-clonic
seizures. For brevity, we will use “convulsive seizures” (CS) to
generically refer to the two seizure types included in the study.
The ACM with EDA sensor combination has been shown as
promising to capture signs of ongoing CS (36–38), leading to
the commercialization of a wristband specifically designed to
provide real-time alerts of detected CS (Embrace wristband,
Empatica Inc). A previous multicenter study reported high
sensitivity (52 of 55 CS detected) and low false alarm rate (1
false alarm every 5 days) using a machine learning algorithm
(38) that outperformed the pioneering state-of-the-art ACM
and EDA system (37) in a direct performance comparison,
both using independent 24-h test data. However, the study
qualified for phase II, as it reported a cross-validation analysis,
meaning that the parameters of the algorithm were not the
same for all the analyzed patients (29). Here we report the
performance of a “fixed-and-frozen” algorithm on a Test Cohort
of participants that are non-overlapping with participants used
in the training dataset. Three main sets of analyses are shown in
this study:

1. Performance in detecting CS on the whole (24-h a day, all
ages) dataset and on pediatric and adult populations, separately,
which provides indications on potential implications of age on
the CS detection effectiveness.

2. Performance in detecting CS during low-motion
conditions, i.e., on periods of sedentary behavior, which
tend to be sleep periods associated with greater isolation and
SUDEP risk.
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3. Performance in detecting CS with two operating points, i.e.,
the FDA-cleared1 settings and a less sensitive Active operating
point, to provide indications on the potential of the algorithm to
be adapted according to different populations or individual needs
and expectations.

MATERIALS AND METHODS

Study Design and Endpoints
This is a prospective, non-randomized multi-site EMU clinical
trial undertaken to get the clearance by the US Food and Drug
Administration (FDA) of an investigational monitoring and
alerting system for the identification of specific types of seizures
(i.e., CS) using a device worn on the wrist. The device embeds
a Detection Algorithm that processes 3-axis ACM and EDA
sensor data to detect CS events. As per the requirements by
the FDA on medical software, the Detection Algorithm must
be “fixed-and-frozen.”

The population intended for the usage of the device included
children age 6 (included) to 20 (included) and adults age 21
(included) and up.

The performance of the fixed-and-frozen Detection
Algorithm on the Test Cohort has been evaluated in terms
of sensitivity (or percent positive agreement) as the primary
endpoint, and false alarm rate per 24 h-worn (FAR) as the
secondary endpoint. The primary endpoint for the clinical
validation of the wearable medical device was to reach a
lower bound of the 95% confidence interval of the sensitivity
higher than 0.7, for pediatric and adult groups, separately. The
secondary endpoint required that the Detection Algorithm
reached a FAR lower than 2 false alarms per day, for pediatric
and adult groups, separately.

Data Development Plan
Clinical Sites
The clinical sites involved in the study are members of the
National Association of Epilepsy Centers (NAEC) certified as
level IV in the USA, or members of LICE (Italian League against
Epilepsy) and advanced epilepsy center2 in Italy. From 2014
to 2018, a series of IRB approved research studies using ACM
and EDA wrist-worn devices were carried on in several Level
IV NAEC members in the US, including Boston Children’s
Hospital (CHB), New York Langone Medical Center (NYU),
Emory Healthcare (EMORY), Children’s Hospital of Atlanta
(CHOA), and Rhode Island Hospital (RIH). The studies were
conducted following US government research regulations, and
applicable international standards of Good Clinical Practice,
and institutional research policies and procedures. Additionally,
from 2017 to August 2018, a Pivotal study was conducted in a
Level IV center in the US, namely New York Langone Medical
Center (NYUP3) and in an advanced epilepsy center in Rome,

1Note that the FDA does not declare a wearable device to be “approved”; the

language they use after validating a wearable medical device and accepting its

claims to allow it to be marketed is that the device is “cleared”.
2Advanced epilepsy center is equivalent to a Level IV center in US.
3The abbreviation “NYUP” (i.e., NYU Pivotal) differentiates data recorded for the

pivotal study from data previously recorded at the same medical center. Different

Italy, Ospedale Pediatrico BambinGesú (OPBGP)4. The collected
labeled data have been used to test the Detection Algorithm. The
timeline of data collection at each clinical center is reported in the
Supplementary Figure 1.

Sample Size Estimation
The estimation of a minimum required sample size was based
on the Sensitivity requirements of the primary endpoint, i.e.,
meaning that we computed the minimum required number
of patients experiencing at least one convulsive seizure during
admission. The sample size was computed taking into account
the possible presence of multiple events for the same subject
(clustered data) and the need for a high value of sensitivity (39).
For an expected sensitivity of 0.95 (37, 38) with a confidence
interval width of 0.1, and assuming an intra-cluster correlation
based on the Test Cohort of the study for the previous clearance
(40), we estimated a minimum sample size of 17 patients having
seizures, for both adult and pediatric patients. No requirement
was set for the number of epilepsy patients not experiencing
seizures, but we included the available data from all patients to
provide the most accurate measure of FAR.

Reference Standard
The identification of seizures was performed by three board-
certified clinical neurologists, who independently examined v-
EEG recordings synchronized with the data recordings of the
wearable device under evaluation. A “2 out of 3” majority
rule inter-rater agreement has been used to mitigate interrater
variability in marking v-EEG data for seizure activity (41).
The reviewers were blinded to other sources of data, including
raw or processed data from the wearable and the algorithm
output. Seizure types were classified according to the most
recent International League Against Epilepsy (ILAE) seizure
classification (42). Two seizure types were targeted in this study:
“focal onset to bilateral/unilateral tonic-clonic” (FBTC) seizures,
previously known as secondary generalized tonic-clonic seizures,
and “generalized onset tonic-clonic” (GTC) seizures, previously
defined as primary generalized tonic-clonic seizures. The video-
EEG review process consisted of the following steps:

1. The EMU technicians reviewed the v-EEG recordings and
filtered out all non-relevant segments. They did not perform
any filtering on the remaining v-EEG data. The result is a
pruned v-EEG dataset.

2. The research assistants removed any notes in the pruned
dataset added by the EMU technician to prevent any potential
bias to the three independent reviewers.

3. The principal investigators conducted a review on the pruned
v-EEG dataset.

4. Second and third reviewers independently conducted reviews
on the pruned v-EEG dataset.

patients have been enrolled in the new data collection with respect to the previous

study. The two studies were performed at different times and using two different

wearable devices (Empatica E4 for NYU and Empatica Embrace for NYUP).
4“Generalized Seizure Detection And Alerting In The EMU With The Empatica

Embrace Watch And Smartphone-Based Alert System” (ClinicalTrials.gov

Identifier: NCT03207685).
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The review process consisted of confirming the onset and offset
times of a seizure and assigning a classification label to the event
based on the most recent ILAE seizure classification (42). At each
site, the following data were documented per patient:

1) v-EEG-based labeled seizure data with clinical observations,
and three independent experts validating the labeled events.

2) Seizure onset and end time (video/clinical read).
3) Seizure onset and end time (EEG read).
4) Post-ictal generalized EEG suppression (PGES) duration

(if present).
5) Seizure type according to the most recent ILAE seizure

classification (42).
6) Clinical presentation.
7) Demographic information (age at enrollment, gender, height,

weight, diagnosis, and autonomic related pathologies or
relevant chart information).

Wearable Devices
Two multimodal wrist-worn devices were used in this study, the
E4 and the Embrace, both manufactured by Empatica Inc. Both
devices received CE medical clearance from the European Union
in 2016 (class IIa). Embrace received clearance by the US FDA in
January 2018 (Class II) for CS monitoring during periods of rest
for adults and in January 2019 for children aged 6 and up.

The E4 wristband embeds a three-axis ACM sensor
(sampling frequency: 32Hz; range; [−2; +2] g), an EDA sensor
(sampling frequency: 4Hz; range; [0.01; 100] µS), a reflective
photoplethysmography (PPG) sensor (sampling frequency:
64Hz), and a temperature sensor (sampling frequency: 4Hz;
range: [−40;+115]◦C). The Embrace wristband embeds a three-
axis ACM sensor (sampling frequency: 32Hz; range; [−16; +16]
g), a three-axis gyroscope sensor (sampling frequency: 32Hz;
range; [-500; +500] ◦/s), an EDA sensor (sampling frequency:
4Hz; range; [0.01; 85] µS) and a temperature sensor (sampling
frequency: 1Hz; range: [−20;+70]◦C). The automated detection
of CS relies solely on ACM and EDA data. Therefore, only
recorded ACM and EDA data acquired by the two devices were
used as inputs to the Detection Algorithm. The two devices have
been shown to be equivalent in terms of their ACM and EDA
sensor data (see details in the Supplementary Material) and
therefore were used interchangeably in this study.

Experimental Protocol
Patients with a known history of epilepsy were admitted for long-
term v-EEG monitoring at the EMU of each clinical site. The
recruitment process was conducted by each site. Only patients (or
their caregivers) who provided their written informed consent
were enrolled. All patients were recorded following the same
protocol in order to provide homogeneous wearable device data
for inclusion in the clinical study.

In all sites, concomitant electrocardiogram (EKG) data were
recorded, which were not used either for the seizure labeling nor
for informing the classification model of the wearable medical
device.

During their time in the EMU, patients wore the E4 or the
Embrace wristband, synchronized with the v-EEG at the start

of each monitoring period. If seizure semiology reported an
asymmetric involvement of arms, the wristband was placed on
the wrist where convulsions appeared earlier and/or were more
evident; otherwise, the device was worn on the non-dominant
arm. When the wearable device used was an Embrace, the
patients were also provided with a paired wireless device to
download the sensor data from the wearable device and upload
them to a dedicated cloud data storage. Following enrollment,
study subjects were seen daily during their inpatient hospital
stay, continuously monitored with v-EEG and given the usual
standard of care.

Development of the Detection Algorithm
Machine learning algorithms use information embedded in
a training dataset, labeled or unlabeled, in order to build a
classification model and a decision rule function able to identify
and/or distinguish one or more events of interest. The tuning of
all the parameters can be performed minimizing a cost function
or maximizing one or more performance metrics on validation
datasets. The selection of the performance metrics to maximize
is usually motivated by the specific application. More specifically,
for clinical applications, the performance metrics need to reflect
the costs and benefits for patients (43), and thus how to evaluate
the performance of a medical device is usually decided at the
clinical level (44). The selected performancemetrics are described
in section Performance Metrics.

Figure 1 represents the workflow of the Detection Algorithm
validated in this study. At a very high level, data from the ACM
and EDA sensors are processed to compute features from a
pre-determined feature set, which are analyzed by a pre-trained
classification model to obtain an estimation of the probability
that a CS pattern is present in the sensor data. The probability
estimates are then evaluated by a decision rule function, to
establish whether to issue an alert or not, thus classifying the
associated event as a CS.

To identify the features that could represent the pattern
of a CS and distinguish it from other types of events, a
feature engineering approach was performed. To distinguish
CS from all other events, features that characterize both types
of events needed to be included in the classification model. A
feature set of 160 ACM- and EDA-based features was firstly
developed, mostly to better represent the frequency and non-
linear characteristics of the sensor data. Due to computational
limitations, a subset of 40 features was selected using a sequential
floating forward feature selection strategy (45), to maximize
the trade-off between performance and computational cost.
Features were extracted on consecutive 10-s windows overlapped
by 75%.

The process to obtain a classification model for the detection
of CS is schematized in Figure 2 and consisted of two main
steps. At first, the training dataset, i.e., a collection of labeled
sensor data, was processed to obtain a set of features on
windowed sensor data. The same procedure was performed on
separate validation datasets. Then, after defining performance
metrics to maximize, the labeled features from the training
dataset were provided to the machine learning algorithm to
obtain a classification model and a decision rule function, whose
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FIGURE 1 | Scheme of the workflow used to classify epochs of EDA and ACM sensor signals into seizure or non-seizure epochs.

FIGURE 2 | Description of the training phase of the Detection Algorithm.

parameters were tuned by maximizing performance metrics
evaluated on the validation dataset. To train a classification
model able to distinguish CS from non-CS events, it was crucial
to provide labeled samples to the machine learning algorithm
responsible to build the classification model. For this reason, not
only previously recorded clinical data, but also previously logged
data from real-life activities showing patterns potentially similar
to CS (e.g., tooth brushing, hands clapping, hands washing,
gesturing, driving or biking on an uneven surface) were used to
make a training dataset, as this procedure of showing both good
and bad examples showed improved performance on previous
preliminary analyses (46). This process was strictly controlled
and highly selective to preserve the correct representability
and distribution of the data in the training dataset, to avoid
mislabeling of data, and most importantly to prevent overlap
between training, validation, and testing datasets. No patients
whose data were used in the test sets contributed data to the
training or validation processes.

The Test Cohort described in section Test Cohort Allocation
and Demographics represents the testing dataset for the
Detection Algorithm.

Rest Detection Algorithm
A proprietary and validated actigraphy-based rest detection
algorithm was used to evaluate the performance of the Detection
Algorithm during rest conditions (47). Briefly, the magnitude
of the 3-axis ACM channels is band-pass filtered. Then, activity
counts are obtained as the number of crossings of the ACM
magnitude through a specified threshold and accumulated over
30-s epochs. Rest onset and offset are obtained using a rule
applied to the moving average of activity counts from a 30-
min window. Rest periods <2 h apart were merged assuming a
rest interruption between them. The output of the rest detection
typically includes sleep periods, and occasionally long quiescent
periods of wakefulness.

Performance Evaluation
Performance Metrics
Atrue positive occurred when the Detection Algorithm provided
an alarm between the clinical onset and the clinical offset times
of an event that was labeled a CS according to the “2 out of
3” majority rule by three independent board-certified clinical
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neurologists. Given the count of true positives and the expert-
labeled number of CS, sensitivity was estimated as the number
of true positives divided by the number of expert-labeled CS
(“Sensitivity” in Table 3). This value was corrected (“cSensitivity”
in Table 3) for the presence of clusters in the data, more
specifically for multiple CS from the same patient, by estimating
the intra-cluster-correlation (48) and thus removing the resulting
inflation in the sensitivity (39). Similarly, the 95% confidence
interval of the so-obtained corrected sensitivity was estimated
with the classic Wilson Score method corrected for the cluster
effect (39).

A false positive, or a false alarm, occurred when the algorithm
provided an alarm not corresponding to any labeled CS. FAR,
defined as the number of false alarms per 24 h-worn, a typically
reported performance metric in non-EEG seizure detection
systems (11), was computed as the total number of false alarms
divided by the total recording hours, and normalized for 24 h.
The 95% confidence interval of the FAR was computed with
a non-parametric bootstrapping method. Specifically, 100,000
samplings with replacement were performed at the level of
the patients to incorporate all the sources of within-patient
variability (49–51). The number of iterations was chosen equal
to 100,000 since it is considered to be a reasonably large number
for bootstrapping confidence intervals (49, 52). Since the FAR
distribution did not follow a normal distribution, the 95%
confidence interval was computed as the 2.5th and the 97.5th
percentile (49) of the 100,000 FAR samples.

Two additional statistics were computed to represent a
patient-centric point of view on the performance of the detection
system: (1) the precision, which is the ratio between the total
number of true positives and the total number of alerts, with
its 95% confidence interval, computed using the classical Wilson
score method (53). In the case of no false alarms (e.g., during
rest), to provide a more realistic and conservative estimation for
both the precision and its 95% confidence interval, a correction
due to Laplace, namely the “Rule of succession,” has been applied,
as it has been reported as a good correction for probability equal
to 1 with relatively small sample sizes (54); (2) the mean and
the standard deviation of the seizure detection latency, defined
as the number of seconds between the seizure clinical onset and
the algorithm detection time.

To provide a depiction as complete as possible of the
relationship between the different performance metrics and the
operating points, the receiver operating characteristic (ROC)
curve was obtained, which graphs in a two-dimensional space
the sensitivity and the false positive rate, or equivalently
(1 - specificity), while varying the operating point of the
Detection Algorithm (55). For monitoring devices, computing
the specificity is not a well-defined task, as while it is easy to count
the number of CS events, there are not commensurate “no CS
events” that can be easily counted (56). To be able to compute the
ROC curve, we assumed that the wearable sensor data periods
labeled as non-seizure, could be represented as a sequence of
non-overlapping negative events (56), whose duration is equal to
the mean duration of the CS events. Additionally, the precision-
recall (PR) curve (57) was analyzed, as it is useful when classes are
unbalanced, which is the case in epilepsy as most data are from

the class “no CS.” The PR curve graphs in a two-dimensional
space the recall (an alternative name for the sensitivity) and the
precision, while varying the operating curve. It thus attempts
to estimate the benefit of detecting the event of interest vs. the
burden of providing a false alarm to the patient/caregiver. Finally,
the variation of the sensitivity and the FAR at each operating
point were analyzed, representing the primary and the secondary
endpoints, respectively, for the clinical validation of the detection
system. Along with the point estimates of sensitivity, specificity,
precision, and FAR, the respective 95% confidence intervals were
also computed with theWilson score method for the proportion-
like metrics (sensitivity, specificity and precision) (53), and with
a simple normal approximation for the FAR.

All of the components and parameters of the validated
wearable device, including all parameters of the algorithm,
needed to be “fixed-and-frozen” before the clinical validation.
In the Result section, we focus on two operating points of the
decision rule function: the first one, FDA-cleared, was fixed
under the rationale of maximizing the detection of all the
events during periods of rest or low activity; the second one,
Active mode, was fixed to balance the ability of the Detection
algorithm to identify the majority of the events, while reducing
the burden of false alarms on the patients and their caregivers
during moderate to intense activities. In section Performance
Analysis, the performance metrics are presented for the two
different operating points, with a particular emphasis on the
FDA-cleared mode. The performance analyses are presented
over three groupings of the test data: for all the patients, for
pediatric (6–20), and for adult patients (21+). Finally, we present
the performance of the seizure detection system during rest, as
computed by the automated rest detection algorithm, and show
the results for all three groupings.

Statistical Tests
Specific statistical tests were performed to establish whether
different populations (pediatric vs. adult groups) and behavioral
or environmental conditions (rest vs. active groups) showed
statistically significant differences. The 95% confidence intervals
were computed on each grouping. To test whether there was a
statistical difference for “cSensitivity” in each comparison, we
computed the 95% confidence interval of the difference between
the corrected sensitivities for each group and tested it with a
method for independent binomial proportions for clustered data
(58). The null hypothesis that there was no difference between
the groups can be rejected if the 95% confidence interval does
not contain the 0 value. To examine if there were statistically
significant differences in the FAR since each group had different
exposure times, we performed a normal approximation of a
statistical test based on the null hypothesis that the expected
number of events experienced by each group were equal (58).

RESULTS

Test Cohort Allocation and Demographics
A total of 304 patients’ data was recorded from the 6 clinical
centers. Upon completion of the study, the Indications for Use
(IFU) of the wearable seizure detection device were reviewed by
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TABLE 1 | Summary of reasons for withdrawal of patients from the analysis.

Motivation for exclusion # Patients excluded Description

Out of the IFU 112 Wearable device placement

at the ankle

22 Age below 6

1 Non-epileptic seizures

Lost/corrupted data 10 Issues with the reference

device (v-EEG)

3 Corrupted wearable device

data

1 Wearable device hardware

failure

Compliance 1 Wearable device not worn

2 Early termination upon

request from the patient

the FDA, which resulted in the exclusion of some patients from
the analysis even if the reasons for withdrawal had not been set
as exclusion criteria prior to the start of the study. The FDA
requested to use only one location for the device, so we chose
the wrist. Accordingly, 135 patients were excluded from the study
because they did not wear the sensor on the wrist (112)5, did not
have a prior epilepsy diagnosis (1), or were <6 years old (22), as
already explained in Section 2.1. An additional 14 patients were
excluded due to hardware, software or data issues of the EEG
reference device (10) or the wearable device (4). Only 3 patients
were excluded because of lack of compliance (1) or dropping out
from the study (2). Table 1 summarizes all of the cases excluded
from the study.

Thus, the analyzed dataset consisted of a total of 152 patients
(77 females, age range: 6–63 years, median age: 17 years), of
which 85 were pediatric patients (38 females, age range: 6–
20 years, median age: 12) and 67 were adults (37 females, age
range: 21–63 years, median age: 38 years). The total duration
of the recordings was 10,296 h (429 days), including 3,939 h
(162 days) from pediatric patients and 6,357 h (265 days) from
adult patients. A total of 36 of the 152 patients experienced at
least one of the seizures included in the clinical trial during
the monitoring period, equally distributed among children (9
females) and adults (6 females). A total of 66 CS events
experienced by 36 patients were independently identified by
at least 2 out of 3 board-certified clinical neurologists who
reviewed the v-EEG recordings: Of these, 35 were experienced
by 18 pediatric patients (17 by female pediatric patients),
and 31 by 18 adult patients (10 by female adult patients).
Table 2 shows the distribution of patients and CS across the
different clinical sites, along with the wearable device used by
each patient.

5Some patients, especially with sensory disorders, may become distracted or

stressed by a wrist-worn device. Some patients had wrists that were too small for

the E4 device. To allow both types of patients to contribute data, they could wear

an E4 on the lower calf, just above the ankle. However, FDA later asked us to focus

only on data from one location, so we chose the wrist.

TABLE 2 | Distribution of patients, wearable device type and CS events across

the different clinical sites.

Site Location Patients Device CS

Pediatric Adult E4 Embrace GTC FBTC

BCH US 52 (F: 26) 3 (F: 2) 55 0 5 16

CHOA US 13 (F: 5) 0 13 0 3 2

EMORY US 1 (F: 0) 13 (F: 10) 14 0 3 0

NYU US 0 18 (F: 10) 18 0 0 10

NYUP US 1 (F: 1) 13 (F: 4) 0 14 0 11

OPBGP IT 13 (F: 3) 1 (F: 0) 0 14 0 10

RIH US 5 (F: 4) 19 (F: 12) 24 0 1 5

Total 85 (F: 39) 67 (F: 38) 124 28 12 54

F, female.

Performance Analysis
Figure 3 shows the ROC curve, the PR curve and the sensitivity
and FAR curves while varying the operating point of the
Detection Algorithm. Different portions of the curves are
shown to emphasize the two selected operating points and
their relationship with the different performance metrics. The
specificity spanned a very narrow range of values, very close to
0.99, due to the highly unbalanced class distribution and the
high specificity of the Detection Algorithm. The sensitivity at
the two operating points was 0.95 and 0.98, respectively, with
a higher value for the FDA-cleared operating point (blue circle
in Figure 3). The overall precision across all conditions, rest and
non-rest, was relatively low: for the FDA-cleared operating point
the precision was 0.15, which indicates 1 true detection for every
6 false alerts on average, while for the Active operating point the
precision was 0.35, resulting in 1 true detection for every 2 false
alerts. The FAR of 0.84 implied on average <1 false alarm per full
day of recording at the FDA-cleared high-sensitivity operating
point, and the FAR of 0.27 implied on average about 1 false
alarm every 4 days of continuous wear while operating in the less
sensitive Active mode.

Figure 4 shows the detected CS and the FAR for each patient
in the Test Cohort, grouped according to the operating point
of the Detection Algorithm and the age group. In the Active
mode, most patients experienced no false alarms (72 and 63% for
pediatric and adult patients, respectively, had FAR = 0). In the
FDA-cleared mode, an individual FAR of 0 was experienced by
47 and 46% for pediatric and adult patients, respectively.

Table 3 reports the characteristics of the datasets included
in each performance evaluation (rows “Test cohort”) and the
results for each operating point (rows “FDA-cleared” mode and
“Active” mode), for the whole Test Cohort (columns “Overall”)
and each age group separately (columns “Pediatric” and “Adult,”
respectively). Also, the performance evaluation was conducted
including all the data (columns “All data”), or only the data
recognized as rest by the automated rest detection algorithm
described in paragraph 2.7 (columns “Automatically-Detected
Rest”). Overall, rest periods accounted for ∼38% of the total
recording duration. The median duration of rest periods was
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FIGURE 3 | (A) ROC curve with 95% confidence intervals (dotted lines). (B) Precision-Recall (PR) curve with 95% confidence intervals (dotted lines). (C) Sensitivity

(violet) and FAR (yellow) curves with 95% confidence intervals (dotted lines). All curves were obtained by varying the operating point of the Detection Algorithm. Two

operating points are highlighted in each curve, corresponding to “FDA-cleared” mode (blue circles) and “Active” mode (green circles).

7.1 h and the median number of rest periods per recording day
was 1.2. These statistics lend support to a hypothesis that most
of the rest periods were probably sleep periods. More detailed
statistics are reported in the Supplementary Figure 2.

As expected, the estimated sensitivity was inflated by the
presence of clustered data (i.e., multiple CS per patient), and
therefore we computed its statistical correction “cSensitivity,”
which was lower. Nonetheless, the lower bound of the 95%
confidence interval for cSensitivity was higher than 0.7 for all age
groups and both operating points when considering the whole
dataset in the analysis (columns “All data”). Even though only one
operating point has been clinically validated and FDA-cleared,
the less sensitive operating point (“Active” mode, in Table 3) also
reached a good overall performance in detecting CS.

The requirement expressed in the secondary endpoint
regarding the FAR has been met for all three age groupings
and both operating points. When considering only the data
recognized as rest by the rest detection algorithm, corresponding
to sleep periods and occasional long periods of inactivity, the
number of the false alarms dropped to 0 for all the grouped
analyses and both operating points, leading ideally to a FAR
equal to 0. As a consequence, the precision drastically increased.
Even applying a conservative estimate of precision with a
95% confidence interval adjusted by the “rule of succession”
correction of Laplace, the corrected precision reached a value
of 0.95.

Table 4 shows the results of the statistical analysis of the
main performance metrics, i.e., sensitivity and FAR, between the
age groups and the activity groups. As expected, there was no

difference in the ability of the Detection Algorithm in identifying
CS between the two age groups and between the two contexts in
which the CS occurred, i.e., during rest or during a moderate to
high activity. On the contrary, the difference in the occurrence
of the false alarms was statistically significant, as expected when
comparing rest vs. moderate to high activity, and between the two
age groups.

The detection latency of the system was on the order of 30–
40 s (Table 3). Seizures occurring during the whole recording
period were detected with a median detection latency of 37.46 s
and 40.03 s when using the FDA-cleared or the Active mode,
respectively. Considering only seizures occurring during rest
periods, the latency was 33.05 s and 38.36 s with the two
modalities, respectively.

DISCUSSION

Key Findings and Advances Over Prior
Research
Wearable technologies designed to accurately and automatically
monitor for CS seizures provide advantages of improved
detection and alerting to caregivers of potentially life-threatening
events, enabling attention to seizures, and potentially lowering
the risk of serious injury or death from accidents and SUDEP.
A recent study of 255 SUDEP cases (definite and probable) and
1,148 matched controls showed that 69% of SUDEP cases in
patients with GTC seizures who live alone may be prevented if
patients are attended, or if their GTC seizures are controlled.
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FIGURE 4 | (A) Number of CS (gray) and the number of detected CS for each of the 36 patients experiencing CS, grouped according to the operating point of the

Detection Algorithm and the age group. (B) Distribution of the individual FAR for the “FDA-cleared” mode. (C) Distribution of the individual FAR for the “Active” mode.

Recent practical clinical guidelines recommend using clinically
validated devices for automated detection of CS, the seizure types
included in this study, especially in unsupervised patients, where
alarms can facilitate rapid interventions (28).

To the authors’ knowledge, this is the first prospective
study on a multimodal wearable CS detection system based
on wrist ACM and EDA sensors evaluated on a large patients’
pool (152 patients). Prior work has presented prospective
analyses of non-EEG seizure detection devices (31–35), but
none of them combined ACM and EDA sensors or used
multi-modal methods on continuous 24-h patient data, i.e.,
including activity as well as sleep. While ACM sensors
are intuitively fundamental to capture signs of ongoing
CS, EDA sensors, which convey information on sympathetic
autonomic nervous system activity, improve the specificity of
the detection (37) and provide additional information for seizure
characterization (59, 60). Apart from the unique combination
of sensors to the authors’ knowledge, the presented Detection
Algorithm is the only machine learning algorithm used in
commercialized non-EEG seizure detection systems. Machine

learning algorithms are becoming increasingly recognized as
effective tools for the detection of seizures (61, 62), despite
the challenges they pose for traditional medical regulatory
systems (63).

This work further contributes to the field detailed analyses
examining performance differences between pediatric and adult
patients, between rest and active conditions, and using two
different operating modes of the automated algorithm (both
defined a priori during the previous training phase of the
Detection Algorithm and fixed and frozen before applying them
to the test data here). To the authors’ knowledge, these types
of analyses are novel and provide an expanded understanding
of the capabilities and potential shortcoming of the wearable
multimodal system under investigation.

This study may qualify for the recently proposed label of
a phase III validation study (28, 29): Multiple EMU centers
were involved; the reference standard was v-EEG recordings
interpreted by experts; more than 20 patients (n = 36) with
seizures were included with more than 30 seizures (n = 66);
the data and patients analyzed were disjointed from those
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TABLE 3 | Characteristics of the Test Cohort and performance of the Detection Algorithm for all the patients and the two age groups, for the two different operating points

of the algorithm (“FDA-cleared” mode and “Active” mode, and for all the data (“All data”) vs. only periods of rest (“Automatically-Detected Rest”).

All data Automatically-detected rest

Overall Pediatric Adult Overall Pediatric Adult

Test cohort # Patients (w/ CS) 152 (36) 85 (18) 67 (18) 144 (13) 78 (7) 66 (6)

Total hours 10,296 3,939 6,357 3,995 1,703 2,292

Average hours/pat. 68 46 95 26 20 34

Total CS 66 35 31 20 13 7

Mean duration [sec] (St. Dev.) 84.56 (34.57) 89.37 (39.09) 79.13 (28.27) 78.65 (26.49) 79.61 (24.25) 76.86 (32.26)

“FDA-cleared” mode Detected CS 65 34 31 19 12 7

Mean delay [sec] (St. Dev.) 37.46 (21.09) 37.76 (24.06) 37.13 (17.64) 33.05 (12.09) 32.08 (7.77) 34.71 (17.96)

Sensitivity 0.98 0.97 1.00 0.90 0.92 1.00

cSensitivity [95% CI] 0.96 [0.92, 1.00] 0.92 [0.85, 1.00] 0.94 [0.89, 1.00] 0.83 [0.69, 0.97] 0.82 [0.65, 0.99] 0.82 [0.65, 1.00]

Precision [95% CI] 0.15 [0.12, 0.19] 0.14 [0.10, 0.19] 0.17 [0.12, 0.23] 0.95* [0.76, 0.99] 0.93* [0.66, 0.99] 0.89* [0.52, 0.98]

Total false alarms 357 207 150 0 0 0

FAR [95% CI] 0.83 [0.63, 1.07] 1.26 [0.87, 1.73] 0.57 [0.36, 0.81] 0 0 0

“Active” mode Detected CS 63 32 31 19 12 7

Mean Delay [sec] (St. Dev.) 40.03 (16.25) 37.44 (12.96) 42.71 (18.91) 38.26 (12.43) 36.75 (7.62) 40.86 (18.57)

Sensitivity 0.95 0.91 1.00 0.90 0.92 1.00

cSensitivity [95% CI] 0.91 [0.84, 0.99] 0.85 [0.72, 0.98] 0.94 [0.89, 1.00] 0.83 [0.69, 0.97] 0.82 [0.65, 0.99] 0.82 [0.65, 1.00]

Precision [95% CI] 0.36 [0.29, 0.43] 0.33 [0.24, 0.43] 0.39 [0.29, 0.50] 0.95* [0.76, 0.99] 0.93* [0.66, 0.99] 0.89* [0.52, 0.98]

Total false alarms 113 65 48 0 0 0

FAR [95% CI] 0.27 [0.18, 0.36] 0.40 [0.23, 0.59] 0.18 [0.10, 0.28] 0 0 0

CI, Confidence Interval. *Laplace correction (i.e., the “rule of succession”) was applied to improve the estimation of the precision and its 95% confidence interval.

TABLE 4 | Statistical comparison of “cSensitivity” and FAR between pediatric and adult patients, and between Rest and Active periods, for the two operating points.

Operating point Variable Groups p-value

“FDA-cleared” cSensitivity Children vs. adults 0.177

Rest vs. active 0.496

FAR ratio Children vs. adults << 10−3

Rest vs. active << 10−3

“Active” cSensitivity Children vs. adults 0.478

Rest vs. active 0.227

FAR ratio Children vs. adults < 10−3

Rest vs. active << 10−3

Values in bold indicate a statistically significant difference (p-value < 0.05).

used to develop the Detection Algorithm, removing the risk
of overfitting, and all of the analyses were performed in
a real-time manner fully mimicking the functioning of the
algorithm on-board. Offline analysis of bio-signals may raise
the possibility of overfitting to the recorded data set and can
call the generalizability of results into question (28). However,
given that the Detection Algorithm was trained on separate data
and a fully separate patient group, and that it was “fixed-and-
frozen” before being applied to the test set, and still uses the
same code that runs on-board the Embrace device, we believe
that overfitting is not affecting these results, as also supported by
FDA’s careful evaluation.

The performance of the FDA-cleared Detection Algorithm
complies with and surpasses the performance requirements on

non-EEG seizure monitoring devices, which focus on sensitivity
and FAR. The Detection Algorithm showed an excellent
sensitivity, capturing 65 out of 66 CS occurred in 36 patients, with
a lower bound of the 95% confidence interval substantially higher
than the study endpoint on sensitivity. The system provided
reasonably timely detection of CS, within an average of 37.46 s
from the onset of clinical manifestations as annotated by expert
v-EEG raters. Rapid detection is of utmost importance, given
that timely treatment of seizures can be life-saving, especially
after CS, which bear a higher risk of SUDEP (3, 13). Even if the
observed delay is slightly higher than systems using arm-worn
electromyography patches (33, 35), it is comparable to previous
results using wrist-worn ACM-only sensors (31) and combined
ACM and EDA sensors (38) which seem to be preferred by

Frontiers in Neurology | www.frontiersin.org 10 August 2021 | Volume 12 | Article 72490497

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Onorati et al. Multimodal Seizure Detection Device Validation

patients (19). A delay of ∼30–40 s seemingly would be sufficient
warning to allow caregivers to provide interventions (if they are
nearby), e.g., turning patients to minimize postictal respiratory
dysfunction, considering that the minimum duration of CS is
around 30–40 s (64, 65) and that apnea, bradycardia and oxygen
desaturation onset may occur in the postictal phase, ∼50–150 s
after the onset of GTCS (66).

The FAR was well-below the endpoint of <2 false alarms per
day, with almost half of the patients experiencing no false alarms
and only 15% of all the patients experiencing more than 2 false
alarms per day. The precision of the Detection Algorithm was
relatively low (∼0.15) indicating that around 1 out of 7 alerts was
a true seizure; this is an area where continued improvement is
needed. There is a very large variance in the prevalence of CS (67),
resulting in a very large range of individual precision estimates;
thus, the ratio of true alarms to false ones can vary widely (4, 68).
This may be a reason why FDA does not include precision, but
focuses on sensitivity and FAR for evaluating non-EEG seizures
detection systems (29).

The FAR provides a measure of the average frequency of false
alarms independently from the frequency of the CS individually
experienced by the patients, resulting in an estimate of the
potential burden of false alarms in the daily life of the patients
and their caregivers.

When comparing the present results with the previous phase
II multi-center study using the same sensor set (38), the
Sensitivity was slightly higher (0.96 with CI = [0.92, 1.00] in the
current study vs. 0.94 with CI = 0.85–0.98). The FAR observed
in the previous study when pooling data from the 69 patients was
lower (0.2) than the FAR observed in this study (0.83) on all 152
patients. This difference might be ascribed to the much longer
duration of the recordings in the present study (429 days vs.
247 days), likely containing more varied motor patterns during
longer awake time6 and a higher absolute and relative number
of more active, pediatric patients in the present study (85/152
vs. 24/69 patients). The prior phase III validation of another
multimodal seizure detection device based on ACM and PPG
(32) reported a Sensitivity of 0.96 (CI = 0.8–1.00) on 22 tonic-
clonic seizures and a median FAR of 0.25 per night (CI = 0.04–
0.35). However, the system was tested only during nighttime and
only on a group of patients that included some of the same people
used to develop the algorithm, two conditions that can inflate
the algorithm’s performance. The present results, both sensitivity
and FAR, show improvements over the FDA-pivotal study for
a surface-EMG bicep-worn automated seizure detection system
(SPEAC; Brain Sentinel), which originally detected 35 of 46 GTC
seizures (0.76 with CI = 0.61–0.87) with a FAR of 2.52 per 24 h,
and with corrected midline-biceps positioning was improved to
detect 29 of 29 GTC seizures (1.00, CI = 0.88–1.00) with a
mean FAR of 1.44 per 24 h (35). Another phase III study on a
surface-EMG bicep-worn device (EDDI; Ictal Care) reported a

6During longer-duration recording periods it is more likely that the patients are

not always resting, but are getting up and about, engaging inmore diverse activities

that trigger more false alarms; thus, the estimation of the FAR when made over

longer durations may be higher, even though it is always normalized by the

duration.

sensitivity of 0.938 (30 out of 32 GTC seizures were detected, CI
= 0.86–1) with a mean FAR 0.67 per 24 h (33), slightly lower than
the FAR observed here but evaluated on much shorter periods
(155 days from 71 patients). The present results also showed
sensitivity improvements over a previously published phase III
study of a wrist-worn ACM-triggered seizure detector (Epi-Care;
Danish Care Technology, Sorø, Denmark) evaluated in EMU’s
that showed a sensitivity of 0.9 (CI = 0.85–1.00) and a FAR
of 0.2/day for detecting bilateral tonic-clonic seizures (31). The
same device was later evaluated in what was described as a phase
IV field study (34), again reporting a median sensitivity of 90%
but with a lower average FAR of 0.1/day. Of the patients who
completed the latter study (ages 7–72, average = 27), about
half were in an institution, 27% used it only at night, and four
patients discontinued use because of a high FAR. The use only
at night and the removal of participants having a high FAR are
adjustments that we did not make in our study, which make the
two sets of results less comparable as each of these adjustments
generally reduces the FAR. That ambulatory study differs from
our study also in that its seizure logs were based on observation,
without v-EEG confirmation; these factors raise the possibility
that seizures might have been missed both by the device and by
human observers. The prospective nature of the present study as
well as its longer duration of recordings and validated labels (with
both seizure and non-seizure epochs validated separately by three
independent experts using only video and EEG while blinded to
the wearable data) make it more valuable in terms of providing
realistic gold-standard performance estimates.

The comparison between pediatric and adult patients did
not show significant differences regarding Sensitivity. The only
missed CS, when using the FDA-cleared Detection algorithm,
was from a pediatric patient whose convulsions were rather
mild (by inspection of the ACM sensors). Our findings are in
line with the absence of difference between pediatric and adult
seizures reported in the literature. The seizure types used in
this work are independent of patient characteristics such as age
and gender. In the 11 classifications of epileptic seizures and
epilepsy syndromes and revisions by the ILAE, starting in 1964
and ending in 2017 (69), no distinction has been made for tonic-
clonic seizures in patients of different gender or age. Very few
studies have been published about the differences by age or
gender in the EEG or clinical features of CS, and in none of
the seizure types we examined has age or gender been identified
as a significant factor of differentiation (70–72). Moreover, in
the non-EEG-based seizure detection literature, a pivotal trial
that was used to clear a motion-based CS detection device for
medical use in Europe presented no distinctions in age or gender
of patients (31). Differently from the sensitivity, a significant
difference for the FAR between the two age groups was observed,
even if the performance was in line with the recommended limits
(FAR<2) for both subgroups. This may be ascribed to the fact
that children are more likely than adults to engage in repetitive,
activating motions (like excitedly shaking a dice, dancing, or
playing video games, etc.) while in the inpatient EMU, which
resulted in a higher number of false alerts. It is worth noticing the
high variability of the individual FAR perceived by the patients
during their admission in the EMU. Counterintuitively, pediatric
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patients more frequently experienced no false alerts than adults,
but at the same time pediatric patients experienced overall more
false alerts than adults. Specifically, pediatric patients with FAR
higher than 2 outnumbered adult patients. In other words, a few
pediatric patients had a very high FAR, which raised the group
average FAR.

The comparison between periods of rest and periods of
activity showed that the FAR was significantly higher during
periods of activity, for both age groups. This was not surprising,
as non- seizure motor patterns resembling convulsions (e.g.,
periodic movements with relatively high frequency) are more
likely to happen during periods of activity. During sleep, the
number of false alarms was 0, while all seizures except one were
correctly recognized. Issuing an alert for real seizures during
sleep is fundamental to mitigate the risk of SUDEP (73). Having a
precision of 100% during sleep is important to reduce the burden
on both caregivers and patients.

To provide a detailed overview on the capability of the
Detection Algorithm, results were presented at two different
operating points: Active mode, designed to be less sensitive but
more specific than FDA-cleared mode, is characterized by a
FAR 68% lower than the FDA-cleared one, while keeping the
sensitivity slightly lower than the FDA-cleared mode, and most
importantly still above the requirement. At a first glance, the
advantage of FDA-cleared mode vs. Active mode (i.e., a higher
sensitivity) doesn’t seem to counterbalance the cost of an increase
in the FAR. However, it’s worth considering that for applications
developed for saving lives, or to prevent serious consequences,
as the case of the Detection Algorithm presented here, the cost
of type II errors (missed events) is higher than the cost of
type I errors (false positives). For the most dangerous context—
sleep—the FAR is equivalent (FAR=0 for both operating points),
so identifying more CS events becomes the key discriminating
factor for the selection of the operating point. Finally, the
decrease in the detection time, mostly during sleep, is another
important factor that suggests operating the Detection Algorithm
at its more sensitive configuration: a timely intervention in the
case of a near-SUDEP can dramatically increase the chances to
save the patient’s life (74). The Embrace system currently allows
the user to switch between the FDA-cleared mode and the Active
mode, which is suggested during situations in which a lower FAR
is desirable. For example, the patient may switch to Active mode
when engaging in daytime activities likely to cause false alerts and
when they can be sure that their chances of a CS are relatively
low, as some patients have certain times of the day or certain
phases of a hormonal or other multidien cycles (75) with very
low seizure probability.

Limitations
One of the significant strengths of this study is also its most
significant limitation: the system has been tested in EMU
environments. Its validation for outpatient environments still
needs to be fully documented via an appropriately large “phase
IV” study, following the recommendations of the scientific
community (28, 29). To those recommendations, we have also
suggested to add additional criteria that we think are important
such as making sure no participants in the test set were used
to develop or tune the algorithm, and making sure that there

is a high-quality process in place to validate both the presence
and absence of any seizures in the field, as there is typically
no video or EEG when seizures happen in daily-life outpatient
settings. Outpatient settings typically involve increased patient
movement, which as we saw in the EMU was correlated with
higher FAR. In an outpatient setting, if a seizure happens when a
patient is alone and a device (with poor sensitivity) does not alert
anybody to come, then the seizure may not be noted in a diary
and it may not be properly counted as a “missed event.” Patients
are well-known to underreport CS and thus if the patient is not
continuously observed, this can result in a reported sensitivity
that is significantly inflated, as the number of undetected CS
will be under-reported (14). Preliminary studies, where reliable
observers accompanied outpatients continuously to label their
data, have shown that the performance of a previous version
of the ACM and EDA Detection Algorithm, when evaluated in
outpatient settings, has been comparable to the performance in
inpatient settings in both short-term and explorative longitudinal
analysis (36).

Future Research Directions
Future research goals include further reducing the FAR without
reducing the sensitivity of the Detection Algorithm. Future
goals also include adding additional modalities to the ACM
and EDA to discriminate between epileptic and non-epileptic
events (76) and to detect other types of motor epileptic
seizures, such as myoclonic seizures [for which a preliminary
analysis showed promising results (77)]. The recognition of non-
convulsive seizures, e.g., focal seizures, is also a target of growing
interest. At present, a clear evidence gap has still to be filled
before introducing the automated ambulatory detection of non-
convulsive seizures into clinical practice (28, 78, 79). However,
promising results using the E4 wristband indicated that this
may be possible with a wrist-worn device (80–82). Additionally,
advanced post-processing analytics on the peri-ictal periods may
provide seizure semiology information, thereby expanding the
quality of available patient data. The characterization of the
post-ictal phase may also be useful to determine the risk of
SUDEP (83); the wearable sensor studied here continuously
monitored activity vs. inactivity, sleep/wake, respiration during
rest, and sympathetic nervous system function at the time of
a recorded “probable SUDEP” where an alert was sent but
nobody arrived, and a large surge in EDA occurred (27). Several
biomarkers of interest in SUDEP, in seizure-prevention, and
other neurological studies can be monitored continuously by a
smart watch, particularly if it also measures EDA (59, 60, 84). The
development of automated methods for objective risk assessment
of the recorded seizuresmay lead ultimately to a paradigm shift of
patient monitoring and outcome assessment in the field of mobile
seizure detection (22).
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Accurate identification of seizure activity, both clinical and subclinical, has important

implications in the management of epilepsy. Accurate recognition of seizure activity is

essential for diagnostic, management and forecasting purposes, but patient-reported

seizures have been shown to be unreliable. Earlier work has revealed accurate capture

of electrographic seizures and forecasting is possible with an implantable intracranial

device, but less invasive electroencephalography (EEG) recording systems would be

optimal. Here, we present preliminary results of seizure detection and forecasting with

a minimally invasive sub-scalp device that continuously records EEG. Five participants

with refractory epilepsy who experience at least two clinically identifiable seizures

monthly have been implanted with sub-scalp devices (Minder®), providing two channels

of data from both hemispheres of the brain. Data is continuously captured via a

behind-the-ear system, which also powers the device, and transferred wirelessly to a

mobile phone, from where it is accessible remotely via cloud storage. EEG recordings

from the sub-scalp device were compared to data recorded from a conventional

system during a 1-week ambulatory video-EEGmonitoring session. Suspect epileptiform

activity (EA) was detected using machine learning algorithms and reviewed by trained

neurophysiologists. Seizure forecasting was demonstrated retrospectively by utilizing

cycles in EA and previous seizure times. The procedures and devices were well-tolerated

and no significant complications have been reported. Seizures were accurately identified

on the sub-scalp system, as visually confirmed by periods of concurrent conventional

scalp EEG recordings. The data acquired also allowed seizure forecasting to be

successfully undertaken. The area under the receiver operating characteristic curve (AUC

score) achieved (0.88), which is comparable to the best score in recent, state-of-the-art

forecasting work using intracranial EEG.

Keywords: seizure, seizure cycles, seizure forecasting, epilepsy, implantable device, sub scalp
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INTRODUCTION

For people with epilepsy, an estimation of total seizure burden is
fundamental to clinical management as well as for the evaluation
of new therapies, such as drugs or devices. For over a century,
clinicians have relied on their patients’ reports of their seizure
frequency, “that it may be taken as an index of the severity of
the epileptic condition” (1). Although the rate of clinical seizures
influences an individual’s perception of disease severity, the
physiological basis for this remains ambiguous (2, 3). Indeed, the
number of clinical seizures is not representative of (nor closely
correlated with) the total seizure burden (4). Rates of subclinical
epileptiform activity seen on electroencephalography (EEG) are
typically orders of magnitude higher than clinical seizures. These
subclinical events may impact cognition (5, 6) and quality of
life, and are important in epilepsy diagnosis and treatment,
particularly for syndromes that are characterized by stereotypical
discharges. Interictal epileptiform activity is also relevant for
surgical planning (7) and forecasting seizure likelihood (8).
Therefore, capturing both clinical and subclinical events, and
interictal epileptiform activity, is important for the clinical
management of epilepsy. Henceforth, we define Epileptiform
Activity (EA) as interictal and ictal epileptic activity, comprising
interictal discharges and electrographic events (clinical and
subclinical). Often we specify “interictal EA,” which refers to
interictal epileptiform discharges only.

The easiest and most common method of capturing clinical

seizure events is through patient self-reporting. Unfortunately,

the accuracy of self-reported events is unreliable (9, 10). In

addition to unawareness of subclinical events, patients are

often unaware or forgetful of their clinical seizures, and
may also report other non-epileptic symptoms as seizures.
As there have been no real alternatives, seizure diaries (both
paper and electronic) are used almost exclusively to manage
patients, and regulatory authorities assess new treatments
primarily on evidence from diaries (11). It is possible that
the unreliability of self-reporting has impeded progress in
the development of anti-seizure medications (12). In addition
to inaccurate records of seizure frequency, people with
epilepsy and caregivers typically cannot provide an objective
assessment of the time of seizure onset, seizure duration or
seizure type (11). This detailed information about seizures is
important for patient management, particularly with regard to
medication titration and safety. For this reason, capturing EEG
correlates of seizures remains the reference standard in clinical
epilepsy management.

Short-term (up to 10 days) inpatient video-EEG assessment
can be used to assess treatment efficacy, for surgical planning,
and has been proposed as an objective metric for randomized
controlled trials. However, short-term monitoring has major
limitations. The spatiotemporal organization of interictal EA,
including epileptiform spikes and high frequency oscillations
(HFOs), changes over long time scales (months to years), so
short-term capture of interictal EA is unreliable (13, 14). In
addition, seizure rates show high natural variability and require
long-term recording to identify clinically relevant improvements
(15, 16). Short-term monitoring is particularly inadequate for

people with lower seizure frequencies and cannot detect multiday
cycles of interictal EA that occur in most individuals (17, 18).

Ultra-long term monitoring is required for better diagnosis,
management and treatment of epilepsy, including seizure
forecasting. Currently, scalp EEG is not suitable for ultra-long
term monitoring due to limited data quality and the need
for external electrode maintenance (19). Invasive intracranial
systems, such as the RNS System (NeuroPace) and the Percept
PC (Medtronic), are available but are built for neurostimulation,
do not store sufficient data and are too invasive for diagnostic
applications (19). Alternatively, sub-scalp EEG systems are
minimally-invasive tools that may address the need for
objective ultra-long term EEG recordings (19, 20), allowing for
personalized and accurate epilepsy management.

Our earlier work with an implantable intracranial device (4)
demonstrated that continuous EEG permitted characterization
of EEG features (21, 22), epileptic activity (18, 23) and sleep
(24, 25), and enabled successful seizure forecasting (26–28). As
similar data could be acquired from a less invasive (sub-scalp)
EEG recording system, we have developed a minimally invasive
device that is inserted into a sub-scalp location to continuously
record EEG. This work reports on the feasibility of the system to
detect interictal EA and seizures in five subjects. Therefore, the
primary aim of this manuscript was to report on the preliminary
results of interictal EA and seizure detection using the sub-
scalp device, and to qualitatively compare these recordings to
reference-standard 7-day ambulatory video-EEG monitoring. As
a secondary aim, we also present a case study to illustrate the
potential for seizure forecasting using sub-scalp EEG. The case
study provides a proof-of-concept on how cycles can be derived
from event detections in the EEG and how these cycles can
be used to forecast epileptic seizures. The presented forecasting
method builds on previous work in seizure cycles (20, 29–31) and
interictal EA cycles (17, 18, 32).

MATERIALS AND METHODS

Patient Selection and Criteria
Data used in this work were acquired during a registered
trial (ACTRN 12619001587190). Subjects participating in the
Minder R© sub-scalp system (Table 1) trial were 18-75 years of
age at the time of implantation, had an established clinical
diagnosis of epilepsy (33) with a minimum of two clinically
identifiable epileptic seizure events per month, and otherwise
were medically and neurologically stable as defined by their
clinician. All participants had EEG profiles that were consistent
with epilepsy diagnosis, and had prior neuroimaging. Subjects
were excluded if they had a neurostimulation implant device for
epilepsy or another condition, or had any other condition that
may impact the study outcome or safety of the device.

All participants wore the sub-scalp system for at least 8
months during both wake and sleep. Subjects were also expected
to maintain a seizure diary, if necessary with the assistance
of a caregiver, and attend regular study appointments. All
participants gave written, informed consent and the study
protocol was approved by St Vincent’s Hospital Melbourne
Human Research Ethics Committee (HREC 063/15).
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TABLE 1 | Participant demographics.

Participant Gender Age

(years)

Epilepsy

type

Epilepsy etiology Seizure onset

localization

Seizure types Antiepileptic

medications

1 F 49 Multifocal Periventricular nodular

heterotopia

Multifocal Focal impaired

Aware-ness

Lacosamide sodium

Valproate, Pregabalin,

Brivaracetam

2 M 60 Focal Cortical dysplasia Right temporo-parietal

junction

Focal impaired

Aware-ness

Carbamazepine,

Lacosamide

4 F 44 Focal Hypothalamic

hamartoma

Hypo-thalamus Focal impaired

Aware-ness

Carbamazepine,

Brivaracetam,

Phenobarbital,

Clonazepam

5 F 47 Focal Non-lesional temporal

lobe epilepsy

Right temporal lobe Focal impaired

aware-ness

Lamotrigine

6 M 45 General-ized Genetic generalized

epilepsy

Generalized Absence, general-ized

tonic-clonic

Sodium valproate,

levetiracetam,

lamotrigine, zonisamide

FIGURE 1 | Data flow throughout the system. Dotted arrows indicate system components under development.

Implantable System
The Minder R© sub-scalp system (Epi-Minder Pty Ltd) is an
investigational device comprising an implanted device, which
communicates with an external wearable unit, a mobile phone
and a secure cloud (Figure 1). The implanted device is positioned
under the scalp, with a small burrhole to recess the telemetry
device and includes an electrode array that is passed superiorly
with two contacts located over each parietal bone. The electrodes
record differential EEG signals across two contacts at 250Hz,
which are captured by the telemetry unit. The telemetry unit
communicates with an external behind-the-ear (BTE) processor
via an inductive radio frequency (RF) link, which allows data
and power transfer between the external wearable device and
the implant. The BTE processor communicates with a mobile
phone via Bluetooth. The mobile phone application (Minder
app) facilitates the transfer of EEG data from the implant to
the phone, and ultimately to a secure cloud for processing. The
Minder app also captures audio and accelerometry data from the
phone and stores it together with the EEG data in the Seer Cloud
(Seer Medical Pty Ltd). Data captured by the implanted device

is reviewed and curated on the Seer Cloud platform. Curated
events are used for training a machine learning algorithm that
detects EA and whose output is used for seizure forecasting. In
future, seizure forecasting will be delivered to patients through
the Seer App.

Surgical Procedure and Follow Up

Assessments
The device is implanted under general anesthetic in a specific
position for the implanted receiver located in the mastoid
bone. The electrode array is passed subcutaneously and over
the pericranium, posterior to the vertex and over the parietal
regions. The location of the sub-scalp electrode was chosen
to optimize EA detection rates (modeling from scalp data
indicated this produced the highest yield of event capture) and
minimize artifact from nearby temporalis muscles. The surgical
procedure for implantation of the Minder implant housing
and coil was modeled closely on that used for commercial
cochlear implants. Regular check-ups (every 2–6 weeks) were
conducted in person and participants communicated with
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study doctors and coordinators between in-person visits. In
addition, 7-day scalp EEG was performed at weeks 4 and 24
after implantation. The scalp EEG recordings consisted of a
standard 10–20 electrode placement with an additional four
scalp electrodes placed as close as practically feasible to the
underlying implanted sub-scalp electrodes. The purpose of the
scalp EEG assessment was to compare the sub-scalp EEG signal
to the scalp EEG, particularly during seizures and interictal
EA, and as well activities including sleep, and potential sources
of artifact. Subjects were asked to keep their seizure diaries
during monitoring so that the three modalities of seizure
detection (sub-scalp implant, scalp EEG and seizure diary) could
be compared.

Epileptic Activity Detection
For both sub-scalp EEG and ambulatory EEG, the detection
of EA was aided by a machine learning algorithm designed to
detect relevant events in the EEG (34, 35). The algorithm was
designed to label suspect EA with high sensitivity to ensure that
all interictal and ictal events were detected.

EEG recordings and suspect events highlighted by the
algorithm were accessed from the cloud through an online
portal and reviewed by expert neurophysiologists, who
marked interictal EA and seizures. Interictal EA marked by
the neurophysiologists consisted of typical epileptiform EEG
activity such as spike discharges. EEG seizures consisted
of EEG activity substantially larger than background
and lasting a minimum of 10 s. Seizure morphologies
were first confirmed in each participant by observing
correlated seizures in the ambulatory scalp video-EEG,
however ambulatory scalp EEG and sub-scalp EEG were
reviewed independently when compared qualitatively in
this manuscript.

Seizure Forecasting Case Study
In this case study, we demonstrate the potential for forecasting
using sub-scalp EEG in participant 1. This participant was chosen
because of their comparatively larger amount of reviewed data
and high seizure count relative to the other participants.

This retrospective case study was designed using training and
testing datasets. To train the forecasting algorithm, we utilized
cycles in both machine-detected suspect events and manually
confirmed electrographic seizures to forecast seizure likelihood
per hour. During testing, the forecaster attempted to predict
human confirmed electrographic seizures.

Data Pre-processing and Feature Extraction
Two features were incorporated into the forecaster: significant
cycles based on rates of machine-detected events and significant
cycles based on seizures. To compute event-based cycles, we
used a similar approach to a previously published method
for extracting rhythms of EA (17). Briefly, a Morlet wavelet
transform was computed on the z-standardized hourly event
rates to produce a global wavelet spectrum of power for each
scale (cycle period). The cycle periods considered were every
1.2 h between 2.4 and 31.2 h, every 2.4 h between 33.6 and 48 h,
every 4.8 h between 52.8 and 4 days and every 12 h between 5

days and up to a maximum period of a quarter of the recording
duration. At least four cycle periods had to be present to confirm
a cycle. Peaks in the wavelet spectrum were found by comparing
neighboring values. Peaks above the global significance (99%
confidence) level were determined to be significant EA cycle
periods using a time-averaged significance test (36).

Once significant cycle periods were computed, event
rates were filtered at each significant cycle period using a
zero-order Butterworth bandpass filter. The bandpass filter
used cut-off frequencies at ±33% of the cycle frequency
[consistent with (17)]. These cut-off frequencies were chosen
to account for phase shifts in the cycle over the recording
time. To account for bandpass overlap in significant cycle
frequencies, we introduced a sparsity criterion whereby only
the strongest peak (greatest power in the wavelet spectrum)
within any cycle’s bandpass filter pass band was considered.
The instantaneous phase of the cycle at each timepoint was
then estimated using a Hilbert transform. Filtered cycles
in event rates were used as features for the forecaster if
seizures were significantly phase-locked to the cycle [p
< 0.05, according to the omnibus/Hodges-Ajne test for
circular uniformity (37)].

Cycles in seizure times were detected using a similar approach
to our previous work (29, 38). We assessed the phase locking
of seizure times to a range of possible cycles using both the
Omnibus test (p < 0.05) and the synchronization index (SI ≥
0.4) value to quantify phase locking. The SI value–a measure
of the magnitude of the resultant vector–ranges from 0 to 1,
where 0 represents a perfectly uniform circular distribution and
1 represents perfect alignment with respect to an underlying
cycle (30). To account for multiple cycle periods meeting the
criteria within close proximity, we used only the strongest cycle
period (based on the highest SI value) within ±33% of any other
cycle period.

All features were transformed from cyclical to linear features
by normalizing the signals from 0 to 2π and computing the sine
and cosine of the normalized signal.

TABLE 2 | Clinically relevant EEG events during the two 7-day EEG sessions.

Participant Interictal EA

discharges

Seizures Patient reported seizures

(confirmed events)

1 S1: 1476 S1: 27 S1: 7 (6)

S2: 5981 S2: 17 S2: 1 (1)

2* S1: 245 S1: 3 S1: 6 (0)

4 S1: 179 S1: 3 S1: 4 (3)

S2: 52 S2: 0 S2: 0

5 S1: 519 S1: 0 S1: 3 (0)

S2: 110 S2: 0 S2: 0

6 S1: 5783 S1: 5 S1: 1 (0)

S2: 2084 S2: 0 S2: 0

Confirmed events are seizures confirmed through clinical review.

S1 - 7-day monitoring at 4 weeks post-implant.

S2 - 7-day monitoring at 24 weeks post-implant.

*: Note participant 2 did not have monitoring at 24 weeks.
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FIGURE 2 | Sample EEG recordings. (A) Sample seizure in participant 1 and examples of (B) vertex waves and spindles during sleep, (C) chewing and (D) blinking

artifacts (*) in participants 6, 2 and 4, respectively. C0 and C1 channels represent the bipolar recordings from the additional scalp electrodes placed over the sub-scalp

electrodes. Blue traces (EEG 0 and EEG 1) represent the sub-scalp recordings. r0,0 and r1,1 represent the Pearson correlation coefficient between C0 and EEG 0, and

C1 and EEG 1, respectively. p0,0 and p1,1 represent the respective p values. Ambulatory scalp EEG and sub-scalp EEG recordings were reviewed independently.

Forecasting Algorithm
To forecast the likelihood of a seizure on an hourly basis, we
used an ensemble machine learning algorithm that combined
a random forest (RF) regressor and a logistic regression
(LR) classifier. The output of the model was the final
likelihood of a seizure (risk value), which was represented
as a continuous value between 0 for no seizure and 1
for a guaranteed seizure within the next hour. Note that
a likelihood was given every hour based on “clock hours”
(e.g., 12 a.m., 1 a.m., etc) rather than just an arbitrary moving
time window.

The RF regressor with the bootstrap aggregating technique
was trained on all features. In the model, the number of decision
trees was 80 and the minimum number of samples required to be
at a leaf node was 15. From observation, these model parameters
achieved the highest accuracy on the training dataset. Since
seizures typically account for <1% of daily life (4), the dataset is
usually imbalanced, with non-seizure hours occurring far more
frequently than seizure hours. RF models typically performed
better on balanced datasets (39), so oversampling of seizure hours
was undertaken before training the RF model. The output of
the RF model was used as an input to the LR classifier. The LR
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classifier was trained on all features, including the output of the
RF model. For simplicity, the default logistic regression model
was used from Python’s sklearn library. The output of the LR
model was the final likelihood of a seizure (risk value) within the
next hour.

Using the likelihood values, the forecaster classified hours as
either low, medium or high risk. The medium and high risk
cut-off thresholds were computed by optimizing (26):

(C1) time spent in low risk > time spent in medium risk >

time spent in high risk;
(C2) seizures in high risk> seizures inmedium risk> seizures

in low risk;
If C1 or C2 could not be satisfied, the optimisation algorithm

maximized the product of the time in low risk and the number of
seizures in high risk (C3 and C4):

(C3) maximize the time spent in a low risk state;
(C4) maximize the number of seizures occurring in the high

risk state.
Note that the likelihood is distinct from a traditional

probability value where all outcomes sum to 1. This distinction
is caused by oversampling the seizure class in the RF model,
which generates synthetic seizure-hours such that the number
of seizure hours is equal to the number of non-seizure hours.
The result is that the likelihood values are higher than the true
probability values.

Training and Testing Datasets
After preprocessing and feature extraction, the dataset was split
into training and testing datasets. Initial algorithm training
occurred using seizures captured over the first 14 days (15
seizures) but using cycles derived from the entire dataset. After
the initial training, re-training occurred after each new seizure
was observed. Re-training occurred on all past data, which
recomputed the algorithm coefficients and risk thresholds for
future predictions.

All analyses were executed in Python (version 3.7.9) using
pandas (v1.2.0), numpy (v1.19.2), matplotlib (v3.3.2), datetime
(v3.7.9), scipy (v1.5.2), pycwt (v0.3.0), sklearn (0.23.1), imblearn
(v0.6.2) and pycircstat (v0.0.2) libraries.

RESULTS

The surgical procedure and devices were well tolerated. No
significant complications have been reported in the five
participants. Overnight use of the system was well tolerated and
the BTE processor was worn either on the ear or attached to
the clothing during sleep. The 7-day EEG recordings revealed
interictal EA in all participants and seizures in four of the five
participants (Table 2).

Seizures were identified on the sub-scalp system, as confirmed
by periods of concurrent conventional scalp EEG recordings
(Figure 2A). Many other neurological events and artifacts were
also present in the sub-scalp recordings. In all participants, clear
sleep-related transients were visible in the sub-scalp recordings
(Figure 2B). Head scratching and muscular artifacts, such as
chewing or jaw clenching artifacts, typically appeared very large

across the sub-scalp recordings (Figure 2C), while other artifacts,
such as blinking, were largely invisible (Figure 2D).

Seizure Forecasting Case Study
We conducted a proof-of-principle analysis of seizure forecasting
for Participant 1. This participant had a total of 134 seizures over
a 6 month period. Figure 3A shows the hourly rate of detected
events from amachine learning algorithm (seeMethods: epileptic
activity detection) over the 6 month period. Shaded blue regions
represent the two 7-day EEG sessions recorded at weeks 4 and
24. The purple region represents an extended period where data
was not collected (device was removed). Note that the device was
removed during this period to undertake a physical examination
of the scalp for any changes to the skin before reapplication of the
system, as part of our safety assessment process.

Figure 3A highlights the presence of multi day cycles
(approximately monthly). The hourly event counts were used
to identify significant periodic cycles ranging from 12 h to 40
days, as shown in the wavelet spectrum in Figure 3B. Confirmed
seizures were only phased locked to some of these cycles
(quantified by significant SI values). Two examples of seizure
phase locking to cycles of hourly event count (18 days and 29
days) are shown (Figures 3C,D).

A practical forecaster minimizes the amount of time the
forecaster displays a high risk warning while maximizing the
number of seizures occurring during high risk. Alternatively, an
opposite, suboptimal forecaster would always show high risk,
achieving perfect predictive performance but of no utility to
the end-user. Figure 3E demonstrates seizure likelihood over 6
months in participant 1, where risk levels have been optimized
to be of highest utility to the user. The likelihood trace peaks in
a cyclical manner, with seizures typically occurring close to the
peaks (Figure 3F). The participant had 134 seizures during this
period, 15 of which occurred in the first 14 days (initial training
phase) and 119 of which occurred during the testing period.

The time spent in low, medium and high risk warnings and
seizures that occured during these periods are given in Table 3

for the testing phase. The distribution of seizure likelihoods
can also be visualized in Figure 3G. The forecast resulted in
the participant spending 26% of time in a high risk state, 11%
of time in a medium risk state and 63% of time in a low
risk state. Of 119 testing seizures, 99 (83%) occurred during
high risk, 8 (7%) occurred during medium risk and 12 (10%)
occurred during low risk. The median time spent in the high
risk state before a seizure occurred was 28 h. The Area Under
the Receiver Operating Characteristic Curve (AUC score), which
demonstrates how good the model is at distinguishing non-
seizure hours from seizure hours during testing, was 0.88. These
results underscore the feasibility of seizure forecasting using data
from the sub-scalp EEG device.

DISCUSSION

Here, we have successfully shown that a sub-scalp system can
accurately record ultra-long term EEG (>12 months) and detect
focal seizure activity (Figure 2). The device was well tolerated in
all five participants, with no serious adverse events to date. This
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FIGURE 3 | Seizure forecasting case study for patient 1. (A) Hourly rate of machine-learning detected events using the sub-scalp EEG device. Verified seizures (red

markers) from manual review of sub-scalp EEG device are shown. The blue regions represent scalp video-EEG assessment periods and the purple region represents

a period where the device was removed. (B) Cycle detection in EA using a Morlet wavelet approach. The wavelet spectrum is shown for a range of time periods

(Continued)

Frontiers in Neurology | www.frontiersin.org 7 August 2021 | Volume 12 | Article 713794109

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Stirling et al. Seizure Forecasting Using EEG

FIGURE 3 | (x-axis), with cycles reaching significance denoted by a black or colored marker. The two colored markers indicate the two cycles shown in the circular

histograms (C,D). (C,D) Circular histograms showing the phase distribution of event cycles (transparent bars) and seizure occurrence (colored bars). Seizures were

strongly locked onto 18 day (C) and monthly cycles (D) of detected events. Seizures only occur in a narrow phase of the periodic activity suggesting a strong

relationship between the cycle and seizures (p < 0.05 with Omnibus test and high SI values). (E) Hourly likelihood of seizures. The likelihood of seizures occurring

within the next hour is given by the black line and seizures are shown by the red markers.The training cut off date (day 14) is indicated by the blue dotted line. The

orange and red lines represent the medium and high risk thresholds, respectively. (F) Inset of (E): hourly likelihood (x-axis, log scale) of seizures for the month of May,

with seizures and threshold lines shown. (G) Frequency (x-axis, log scale) of each seizure likelihood value [y-axis, shared with (E)].

suggests that continuousmonitoring of EA chronically is possible
with a minimally invasive and discrete device. The benefits of
this are ubiquitous, not only for seizure forecasting, but also
for medication management, anti-seizure medication trials and
surgical planning. It is highly likely that accurate and objective
quantification of seizures and interictal EA will become essential
for future drug trials to provide more objective assessments of
therapeutic benefit; sub-scalp EEG would be highly suitable for
this purpose.

Our results demonstrate that sub-scalp devices record high

quality neurological signals that are similar to scalp EEG.

Sub-scalp recordings are also sensitive to other small neurological

events such as sleep transients (Figure 2B). Lack of sleep and

deviations from normal sleep patterns are known risk factors
for seizures. Conversely, the treatment of seizures and seizures
themselves can disrupt normal sleep patterns (40, 41). Sub-scalp
devices provide an opportunity to investigate the complex
relationship between sleep and seizures and can aid in patient
management and seizure forecasting (39). The sub-scalp EEG
was less noisy compared to scalp EEG. Sub-scalp EEG contained
much less interference from electrical line noise (50Hz in
Australia) and was not affected by movement artifacts typically
observed in scalp EEG due to the movement of wires. Sub-scalp
devices are, however, susceptible to other noise and artifacts, such
as muscle activity recorded by electromyography (EMG). While
jaw EMG artifacts may obscure the underlying EEG activity
(Figure 2C), it can also identify jaw activity that is a feature of
the seizures. In contrast, blinking artifacts could not be seen in
the sub-scalp recordings, most probably because of the parietal
positioning of electrodes (Figure 2D).

The sub-scalp device can be used to continuously
monitor interictal and ictal events, which may provide better
understanding of the burden of disease. This information is also
of importance for clinical trials of novel therapies and for routine
patient management. Currently, clinical trials of novel therapies
rely on patient seizure diaries, which are known to be unreliable
in most people (11). The inconsistency of patient seizure diaries
impacts the estimate of disease burden and distorts the estimated
benefit of new therapies. Our case study demonstrates long-term
fluctuations in detected events which were linked to seizures
(Figure 3A).The detected events are likely to represent similar
fluctuations in EA, which have been implicated in cognition and
memory performance (5, 6). Understanding how EA changes
over time is important for tailoring treatments that not only
reduce seizures but ultimately improve quality of life.

The Minder R© sub-scalp system demonstrated utility in
capturing seizure cycles. In the current work, there was

TABLE 3 | Forecast results based on electrographic seizures.

In high risk state In medium risk state In low risk state

Seizures 99 (83%) 8 (7%) 12 (10%)

Time 26% 11% 63%

Number of electrographic seizures occurring in and time spent in high, medium and low

risk states during testing. Training was performed on electrographic seizures. AUC= 0.88.

clear rhythmicity in the detected events (Figure 3A), which is
concordant with previous work with invasive EEG showing the
prevalence of circadian and multiday cycles in interictal EA
(17, 18) and seizures (20, 29, 31). Using a similar approach
to previous work (20, 40), cycles were detected at circadian
and multiday periodicities for one individual (Figure 3B), with
18-day and 29-day cycles in the detected events showing
the strongest relationships with seizure timing (Figures 3C,D).
Interestingly, multiday cyclesin this subject were stronger than
the circadian rhythm. Capturing multiday cycles requires long
term monitoring and, in addition to demonstrated utility for
forecasting, an understanding of seizure cycles may be critical for
the development of new therapies.

We have also demonstrated the potential for seizure
forecasting with sub-scalp systems. In this example, a forecaster
achieved high accuracy (83%) and spent 26% of time in a high
risk state, despite the high probability of seizures (2.2%) in this
participant. These results are comparable to the only prospective
seizure forecasting trial to-date, where patients spent 23% of
their time in the warning state on average, but had a lower
sensitivity of 66% (4). The AUC score (0.88) was also comparable
to recent, state-of-the-art forecasting using interictal EA cycles
derived from intracranial EEG (26, 32).

The case study demonstrates the high performance that can
be achieved through an event-based seizure forecaster. This
forecaster may be used to generate powerful prior probabilities
for a more advanced seizure forecaster that combines other
features, such as non-invasive information (e.g., medication
adherence, heart rate etc.) and continuous features derived from
the EEG (e.g., spectral power, autocorrelation etc.). Additionally,
the forecast was able to continue making predictions despite
the missing data during the period the device was not
connected. Whilst cycles were attenuated during this period,
seizure cycles were still utilized, as they rely on a fitted
sinusoid of fixed period-length. The relative low likelihood
of seizures during April compared to other months suggests
that cycles in the detected events were stronger predictors
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of seizures than seizure cycles. This is in line with previous
work, which suggests seizures are more robustly synchronized to
cycles of a continuous biomarker than fitted sinusoids of fixed
period-length (41).

Cyclic features in the EEG were stable and no adaptation
period was required to start forecasting in this participant. The
lack of implantation effect of sub-scalp systems (42) is in contrast
to intracranial devices, which require a craniotomy and often
a substantial time period before the signal stabilizes (21). This
may require months of data to be discarded prior to training
forecasting algorithms (28, 32). In this case, forecaster training
was undertaken immediately, and only 14 days of training data
were required to generate forecasts (although this will depend
on seizure frequency). Further work will investigate the utility of
forecasting using sub-scalp recordings in a prospective study.

There are limitations with sub-scalp EEG systems. First,
despite the limited invasiveness of subcutaneous electrodes, this
surgical procedure may not be acceptable to all people with
epilepsy (43). Hence, patient seizure diaries will remain a useful
tool in clinical settings, and non-invasive forecasting systems
based on mobile and wearable devices are desired by the epilepsy
community (43, 44). Wearable sensors and non-invasive features
may be useful to forecast seizure likelihood (25, 45, 46), and
self-reported events and biomarkers derived from wearables also
demonstrate cycles that are co-modulated with seizure likelihood
(30, 38, 40). However, the correlation between self-reported
events and electrographic events is patient-specific. In cases
where the accuracy is less than perfect, it is unlikely that forecasts
using self-reported events will perform as well as forecasts
using chronic EEG. Despite advances in wearable technology
for seizure detection, there remain significant false positives and
many seizure types are missed (47). It is likely that chronic sub-
scalp EEG recordings will prove to be a critical “ground-truth” to
develop wearable seizure detection and forecasting.

Second, validating electrographic seizures also remains a
significant challenge, even with the aid of an algorithm detecting
suspect events. A short 24-h segment of continuous EEG alone
can take hours for a trained neurophysiologist to review, which
is not viable for large scale use of sub-scalp devices, and so
optimizing seizure detection algorithms will be critical. The
time taken for clinical review placed several limitations on the
validation of the signal quality and the algorithms used in this
preliminary study. Qualitatively, EEG signals between scalp and
sub-scalp were found to be similar (Figure 2). Furthermore,
the algorithm presented in this work highlighted strong cycles
in detected activity, which are similar to cycles of epileptiform
activity observed in previous studies (8, 17, 18). However, a more
comprehensive assessment of signal equivalence and algorithm
performance is required and will be addressed in future work.

Third, the retrospective forecasting case study was only
presented in one participant. We acknowledge that a larger
cohort study is necessary to demonstrate the generalisability of
our forecasting results. Finally, it should be noted that the highly
clustered nature of the electrographic seizures in participant 1
may have aided the algorithm in achieving a high AUC score.
On the other hand, clusters tend to result in short cycles, but
the long 18d and 29d event cycles were the strongest predictors

in this algorithm, and these are present irrespective of clusters.
To understand this further, future work may investigate the
forecasting performance on lead seizures only.

This study has demonstrated the feasibility of using a
continuous sub-scalp EEG device to record data of sufficient
resolution to capture relevant events, detect the events
algorithmically, and use the events in a seizure forecasting
algorithm. This data is extremely valuable for the assessment of
epilepsy, and could be linked to systems to improve safety and
independence, potentially changing fundamentally our approach
to the management of the condition.
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Epileptic seizure forecasting, combined with the delivery of preventative therapies, holds

the potential to greatly improve the quality of life for epilepsy patients and their caregivers.

Forecasting seizures could prevent some potentially catastrophic consequences such

as injury and death in addition to several potential clinical benefits it may provide for

patient care in hospitals. The challenge of seizure forecasting lies within the seemingly

unpredictable transitions of brain dynamics into the ictal state. The main body of

computational research on determining seizure risk has been focused solely on prediction

algorithms, which involves a challenging issue of balancing sensitivity and false alarms.

There have been some studies on identifying potential biomarkers for seizure forecasting;

however, the questions of “What are the true biomarkers for seizure prediction” or even “Is

there a valid biomarker for seizure prediction?” are yet to be fully answered. In this paper,

we introduce a tool to facilitate the exploration of the potential biomarkers. We confirm

using our tool that interictal slowing activities are a promising biomarker for epileptic

seizure susceptibility prediction.

Keywords: epileptic seizure forecasting, probabilistic programming, Bayesian, variational inference, uncertainty

level

1. INTRODUCTION

There has been great interest recently in identifying biomarkers for seizure susceptibility by
looking into critical transitions in brain dynamics in order to enhance the precision of seizure
forecasting in a cohort of patients with focal epilepsy (1–3). These studies often require a
very long recording that is not available and, in fact, are critically lacking. Chronic and often
intracranial electroencephalogram (EEG) recordings demonstrated some limited evidence of
circadian, multidien, and circannual cycles in epileptic brain dynamics (4–6). In determining
seizure-risk, we believe that understanding what features or biomarkers in the EEG signals lead
to such seizure-risk level.

The availability of a seizure forecasting system that can notify patients or their carers about
forthcoming seizure-risk can drastically improve patients’ quality of life and the chance to develop
innovative interventions and preventative therapies. Many studies have been on forecasting
seizures; most of them used the signal-modal approach based on electroencephalogram (EEG)
signals. These studies can be grouped into two categories: (1) finding discriminative features
with various signal processing and transformation techniques and (2) leveraging deep learning’s
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capability of extracting high-level features. In the first group, the
most common approach is to use spatio-temporal correlation
features, auto-regressive modeling predictive error, Hjorth
parameters, spectral power, energy wavelet coefficients, and other
statistics (7, 8). Other discriminative features include phase
and amplitude lock values (9), common spatial pattern (10),
permutation entropy (11), bispectrum features (12). In the
second group, the convolutional neural network (CNN) and
recurrent neural network (RNN) have shown their capability
to extract high-level features that can be used for forecasting
seizures. Particularly, CNN was used on the EEG signal
spectrogram (13), raw EEG, and fast Fourier transform (FFT) of
raw EEG (14), local mean decomposition of raw EEG (15), and
the common spatial pattern of multi-channel EEG signals (16).
CNN was also used in unsupervised learning as effective
feature extraction for seizure prediction (17). To further extract
the temporal characteristics over time-series data, Wei et al.
(18) applied CNN with long short-term memory recurrent
network on the spectrogram of EEG signals. The combination
of convolutional and recurrent neural networks is also effective
when using multi-timescale of raw time-series EEG signals (19).

In this work, we propose a framework (see Figure 1) to
minimize the risk of sudden unexpected death in epilepsy
(SUDEP), especially for patients with uncontrolled epilepsy. We

A B

C

FIGURE 1 | Reducing SUDEP (sudden unexpected death in epilepsy) risk with seizure forecasting based on reliable long-term EEG monitoring. (A) Simplified pathway

for patients with epilepsy. (B) The fact that most SUDEP cases were unattended (20, 21) emerges the need for reliable 24/7 and long-term EEG monitoring. (C)

Seizure susceptibility prediction tool to suggest alternative treatments [e.g., vagus nerve stimulation (VNS)] for patients with uncontrolled epilepsy.

also introduce a tool to facilitate the exploration of biomarkers
for epileptic seizure forecasting. Specifically, we use probabilistic
programming and propose a framework to incorporate other
relevant information into an EEG-based seizure forecasting
system. As an advantage of using probabilistic programming, our
system not only can forecast impending seizures but also quantify
the uncertainty level of its decision-making.

2. DATASET

EPILEPSIAE is the largest epilepsy database that contains EEG
data from 275 patients (22). However, up to the time of this
writing, only 30 surface EEG and 30 invasive EEG datasets are
made available (23). We believe the use of surface EEG is more
beneficial because it is non-invasive so it can be applied to a
broader group of patients. In this study, we analyze scalp-EEG of
30 patients with 261 leading seizures and 2881.4 interictal hours
in total in this work. The time-series EEG signals were recorded at
a sampling rate of 256 Hz and from 19 electrodes. Seizure onset
information obtained by two methods, namely EEG based and
video analysis, is provided. In our study, we use seizure onset
information using an EEG based technique, where the onsets
were determined by visual inspection of EEG signals performed
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by an experienced clinician (22). Table 1 provides a summary of
the dataset being studied in this work.

3. METHOD

3.1. Pre-processing
We split EEG signals into 30-s segments with 50% overlap. We
perform a short-time Fourier transform (STFT) with a cosine
window of 1-s length and 50% overlap on each 30-s segment
and get data with a dimension of (n × 59 × 129), where n
is the number of EEG channels. We remove the first and last
two elements along the second axis, which corresponds to time,
to eliminate any potential disruption of signal near the signal
window’s edges. We also remove the dc component of the STFT,
which is the first element along the last axis. The final dimension
of pre-processed data is (n × 56 × 128).

TABLE 1 | The EPILEPSIAE scalp-EEG dataset.

Patient Gender Age No. of

seizures

No. of leading

seizures*
Interictal

hours

Pat1 Male 36 11 11 68.9

Pat2 Female 46 8 8 114.9

Pat3 Male 41 8 8 96.3

Pat4 Female 67 5 5 126

Pat5 Female 52 8 8 204.1

Pat6 Male 65 8 7 92.2

Pat7 Male 36 5 5 75.7

Pat8 Male 26 22 11 65.6

Pat9 Male 47 6 6 51.1

Pat10 Male 44 11 11 60.7

Pat11 Male 48 14 14 57.8

Pat12 Male 28 9 9 94.1

Pat13 Male 46 8 8 101.3

Pat14 Female 62 6 6 115.7

Pat15 Female 41 5 5 82.8

Pat16 Female 15 6 6 51.1

Pat17 Female 17 9 9 82.4

Pat18 Male 47 7 6 133

Pat19 Male 32 22 21 75.4

Pat20 Male 47 7 7 115.3

Pat21 Female 31 8 8 106.6

Pat22 Male 38 7 7 88.2

Pat23 Male 50 9 9 179.6

Pat24 Female 54 10 10 36.2

Pat25 Male 42 8 8 109.8

Pat26 Male 13 9 9 97.1

Pat27 Male 58 9 8 99.9

Pat28 Female 35 9 9 95.2

Pat29 Male 50 10 10 111.9

Pat30 Female 16 12 12 92.5

*We are considering leading seizures only. Seizures that are <30 min away from the

previous one are considered as one seizure only, and the onset of a leading seizure is

used as the onset of the combined seizure.

3.2. Bayesian Convolutional Neural
Network
In this paper, we will use variational inference to approximate
posterior densities for Bayesian models (24). Consider x =
x1 : n as a set of observed variables and z = z1 :m as a set
of hidden variables, with joint density p(z, x). The inference
problem calculates the conditional density of the hidden variables
given the observed variables, p(z|x).

p(z|x) = p(z, x)

p(x)
, (1)

where p(x) is intractable in many models (24).
Variational inference overcomes this by specifying a

variational family Q over the hidden variables (24). The
inference problem becomes finding the best candidate q(z) ∈ Q

that is closest in Kullback-Leibler (KL) divergence to p(z|x).
The optimization subsequently can be achieved by maximizing
a function called the evidence lower bound (ELBO) which is
equivalent to minimizing the KL divergence between q(z) and
p(z|x). ELBO is expressed as follows (24):

ELBO(q) = E
[

log p(z, x)
]

− E
[

log q(z)
]

= E
[

log p(x|z)
]

+ E
[

log p(z)
]

− E
[

log q(z)
]

= E
[

log p(x|z)
]

− KL
(

q(z)‖p(z)
)

(2)

The stochastic variational inference was proposed by Hoffman
et al. (25) to help Bayesian neural networks scale efficiently to
large datasets. Particularly, this method generates noisy estimates
of the natural gradient of the ELBO by repeatedly sub-sampling
(mini-batch) the dataset. The loss function can be defined as
the negative of ELBO, i.e., minimizing the loss is equivalent to
maximizing the ELBO.

loss = −ELBO(q) = −E
[

log p(x|z)
]

+ KL
(

q(z)‖p(z)
)

(3)

In an EEG-based seizure prediction system, x is the EEG
signals, and z is a variable indicating a seizure to occur in
the time window T = [SPH : SPH + SOP]. SPH stands for
seizure prediction horizon that is defined as the period where
seizure should not occur after an alarm rises. SOP stands for
seizure occurrence period that is defined as the interval where
seizure onset is expected to occur (26).

3.3. Probabilistic Convolutional Neural
Network With Data Fusion
In this section, we will incorporate signals other than EEG signals
into the Bayesian CNN. We want to estimate the probability of
having a seizure given EEG signals, p(z|x), which is the Bayesian
CNN’s output. Besides EEG signals, we have other relevant data
and want to combine all the seizure forecasting information.
Circadian information or time of the day has been used to
improve the performance of a seizure prediction system (27). For
another instance, electrocardiogram that could change around
and even before seizure onsets has been shown helpful in
predicting epileptic seizures (28, 29). Other physiological signals
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that have been observed to change prior to seizure onset, such as
blood oxygenation, metabolism, can be used as auxiliary data for
seizure prediction (30, 31).

Let us start with EEG signals and one extra signal called d.
Using Bayes theorem, the posterior probability of having a seizure
in the time-window T can be expressed as:

p(z|x, d) = p(d|z, x)p(z|x)
p(d|x) (4)

Assume x and d are independent, (e.g., EEG signals are
independent with the time of the day and can be considered
independent with blood oxygenation), we can rewrite (4) as
follows.

p(z|x, d) = p(d|z)p(z|x)
p(d)

(5)

Similarly, for two extra signals, d1 and d2 with an assumption
that x, d1, and d2 are independent of each other (e.g., time of the
day and blood oxygenation), the posterior probability of having
seizure in the time window T can be expressed as:

p(z|x, d1, d2) =
p(d1|z, d2)p(z|x, d2)

p(d1|d2)

= p(d1|z)p(z|x, d2)
p(d1)

(6)

By substituting Equation (5) (with d replaced by d2) to
Equation (6), we have:

p(z|x, d1, d2) =
p(d1|z)p(d2|z)p(z|x)

p(d1)p(d2)
(7)

To estimate p(d1|z) and p(d2|z), we applied a kernel density
estimation using Gaussian kernels on a histogram containing
time of the day (ToD) of seizure occurrences (see Figure 2) (32).
Regarding the kernel density estimation parameters, we used
Scott’s rule for bandwidth selection and assumed all data points
are equally weighted. Note that here we approximate p(d1|z) ≈

FIGURE 2 | Distribution of time-of-day of seizure occurrences in the

EPILEPSIAE scalp-EEG dataset.

p(d1|z′) and p(d2|z) ≈ p(d2|z′), where z′ is the variable indicating
an occurrence of seizure. The approximation is reasonable
because we choose the time window T = [5 : 35 min] which is
<1 h.

To incorporate Equation (7) into the training of the Bayesian
CNN, we modify the output of the last fully-connected layer (see
Fig. 3), before softmax activation (33) as follows.

new-outputl =
p(d1|z′)p(d2|z′)× outputl

p(d1)p(d2)
, (8)

where p(d1|z′) and p(d2|z′) can be derived from the kernel density
estimation. For example of time of the day, p(d1) = 1/24
because the probability of having the auxiliary signal at a given
hour is 1/24); p(d1|z′) can be inferred from Figure 2. Note that
Equations (7) and (8) can be extended with more extra signals d
given that they are independent on each other.

The Bayesian convolutional neural network (BCNN) with
Bayesian modulator as data fusion is depicted in Figure 3.
Unlike a conventional CNN, where each weight is a single
value, each weight of a BCNN is a distribution estimated during
the training phase. In this work, we model each weight as a
Gaussian distribution with mean and standard deviation values
are trainable parameters. Input to the BCNN is the STFT of 30-
second windows with size of (n × 56 × 128) (see Session 3.1 for
details). The network starts with a convolutional layer consisted
of 16 3-dimensional kernels of size (n × 5 × 5), valid padding,
and a stride of (1 × 2 × 2). A max-pooling layer follows the
first convolutional layer with a pooling size of (1 × 2 × 2).
The network continues with two blocks of convolutional-pooling
combinations, each consists of one convolutional layer with a
kernel size of (3 × 3), valid padding and stride of (1 × 1), and
one max-pooling layer with a pooling size of (2×2). The number
of convolutional kernels in the two blocks is 64 and 128. The next
two layers are fully-connected layers with output sizes of 256 and
2, respectively. The output of the last fully-connected layer is fed
to the Bayesian modulator where we apply Equation 8 for data
fusion, then is applied softmax activation to get the final output
of the network.

4. RESULTS

This section tests the Bayesian convolutional neural network
(BCNN) with the EPILEPSIAE scalp EEG dataset with and
without auxiliary signal: time-of-day (ToD). Following Truong
et al. (13), we use SPH of 5 min and SOP of 30 for calculating the
performance. We also compare a seizure prediction system using
a convolutional neural network (CNN) proposed by Truong et al.
(13) as a baseline. Figure 4A shows the overall performance of
the BCNN with and without auxiliary signal and the baseline
CNN. Compared to the CNN that has an average AUC of 71.65%,
BCNN achieves an AUC of 68.69% that is around 3% lower
than that of CNN. By using the time-of-day information, the
overall performance of BCNN-ToD is slightly improved by 0.3–
69.03%. There is strong agreement between the methods that
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FIGURE 3 | Architecture of Bayesian convolutional neural network (BCNN) with embedded Bayesian modulator. n is the number of EEG channels, which is 19 for all

30 patients in this study. Unlike a conventional convolutional neural network where each weight is a single value, each weight of a BCNN is a distribution. In our work,

we model each weight as a normal distribution with mean value (µ) and standard deviation (σ ) are trainable parameters. The BCNN network has three convolutional

layers, each is followed by a max-pooling layer (not shown). Extracted features by the convolutional layers are fed to two fully-connected layers. The Bayesian

modulator incorporates other relevant data for seizure forecasting into the last fully-connected layer of the network by using Equation (8).

is reflected via scatter plots of AUC between each pair of them
(see Figure 4B). We did a one-tailed Wilcoxon signed-rank test
and a one-tailed t-test between BCNN-ToD and CNN and found
that the two methods’ performance is not significantly different
at the confidence level of 0.05 with p-values of 0.063 and 0.243,
respectively. However, the BCNN-ToD provides more insights
into how the prediction works. Particularly, because each weight
of the BCNN or BCNN-ToD is a distribution, we sample those
distributions to calculate the output for each forward pass of an
input. By running multiple forward passes of the same input, we
can estimate the distribution of the corresponding output. The
output’s distribution can then be used to quantify the uncertainty
of the model’s decision-making that will be explored in section 5.

5. DISCUSSION

Bayes convolutional neural network (BCNN) can generate the
distribution of its output for each input. We sampled the output
of the BCNN by feeding forward the same input through
the BCNN 500 times. We quantify the uncertainty level of
the BCNN’s decision making with Equation (9) below. The
numerator takes into account the variability of the output with
the standard deviation (std). The denominator considers the case
where the output has a uniform-like distribution. Uncertainty

levels of different types of prediction distributions are illustrated
in Figure 5.

Uncertainty level = stdinference values
∣

∣meaninference values − 0.5
∣

∣

(9)

We trained the BCNN with two types of EEG signals: preictal—
35 to 5 min before seizure onset, and interictal—at least 4 h away
from any seizures, we are interested in how the BCNN performs
with continuous EEG recording. We ran inference over 13 h
of continuous EEG recording for one of the best performers,
Patient 4, consisting of two seizures. In Figure 6, we plot both
the prediction scores (from 0 to 1, where higher values indicate
a higher probability of having a seizure) and the corresponding
uncertainty levels of the BCNN. In general, the prediction scores
get higher values when it is closer to the first seizure onset.
Interestingly, at around time 40 and 80 min (around 200 and 160
min before the first seizure onset), there are two predictions with
high scores. However, the uncertainty levels were also high, which
means that the BCNN “thinks” that there might be a seizure

incoming, but it has very low confidence about its decision.

From about 1 h before seizure to seizure onset, we can see
prediction scores were mostly high, but there were also many low

prediction scores with high uncertainty levels. We suggest that

the “patterns” or bio-markers related to seizure prediction only
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FIGURE 4 | (A) Seizure prediction performance using Bayesian convolutional neural network (BCNN). CNN, Convolutional neural network, average AUC is 71.64%;

BCNN, BCNN using EEG signals only, average AUC is 68.69%; BCNN-ToD, BCNN using EEG signals and time-of-day (ToD), average AUC is 69.03%. (B) Scatter

plots between each pair of the three methods showing concordance between them.

occur at certain particular points in time rather than consistently

throughout the whole preictal duration.
Furthermore, we were able to use the trained BCNN as

a tool to extract potential bio-markers from EEG signals.
We fed 30-s EEG segments to the trained BCNN to sample
the output, i.e., run multiple inferences with the same
input; in this work, we ran 100 times. Uncertainty level
and mean prediction score were extracted from the output
samples. For every 30-s segment that has an uncertainty
level below 0.1 and means prediction score above 0.9, we
extract the attention map over time by accumulating over
time the positive values of the feature map of the first
convolutional layer. An example is illustrated in Figure 7.
We observed that, from patients with high performance
and with focal seizures, the BCNN focuses on slow EEG
activity when performing seizure forecasting. Slow EEG activity
has been shown as an important biomarker for studying
epilepsy (34).

To verify the possibility of seizure forecasting, we ran the
inference over the three patients’ EEG recordings with the
best seizure prediction performance in the EPILEPSIAE dataset,
namely Pat-3, Pat-4, and Pat-12. We used different trained
BCNN models at different periods separated by ictal segments
to ensure that the trained BCNN being used did not see the
current period’s preictal segment during training. By doing that,
we can have a retrospective risk of having a seizure over time,
as shown in Figure 8. Generally, the risks are higher when
it is closer to the seizure onset, indicating successful seizure
forecasting. However, there are cases that we consider as false
positive alarms if the risk is assessed as high, but it is too
far from the seizure onset, e.g., the day before. For instance,
Pat-3 receives a high-risk alarm almost 16 h before the first
seizure onset.

Finally, we introduced the Bayesian modulator as a data
fusion technique to incorporate relevant auxiliary signals for
improving seizure prediction performance. In this work, we
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A

B

C

FIGURE 5 | Inference values by sampling the output of Bayesian convolutional neural network 500 times. (A) Correct predictions. Left: ground truth is 0 (interictal),

most of the model’s output samples are close to 0, indicating a correct prediction with high confidence. Right: ground truth is 1 (preictal), most of the model’s output

samples are close to 1, indicating a correct prediction with high confidence. (B) Wrong predictions. Most of the model’s output samples are close to the wrong value

with high confidence. This is an undesirable case. (C) Low-confident predictions with high uncertainty levels. The model’s output samples spread randomly between 0

and 1, indicating the high uncertainty of the model.

FIGURE 6 | Prediction score and uncertainty level produced by Bayesian convolution neural network in seizure forecasting task over 13 h of continuous EEG

recording. For the sake of visualization, for all uncertainty levels higher than 10, we set them to 10.
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have only used one extra signal, which is the time of the day,
and the performance was not increased significantly. However,
we argue that with the Bayesian modulator’s capability to
embed multiple auxiliary signals, we can achieve a boost in
performance which is our aim in future works. Other relevant
signals that can be used for data fusion include heart rate
variability, blood oxygenation, metabolism. Some signals that
have been shown related to seizure onsets, such as electrodermal
activity, near-infrared spectroscopy, skin temperature, and
respiratory monitor (35), can be used for data fusion as
experimental exploration. For example, to use heart rate
variability (HRV) for data fusion, one can plot a distribution
of HRV during preictal periods (i.e., 35 to 5 min prior to
seizure onset), and then apply the kernel density estimation.
Lastly, we relied on the assumption that the auxiliary signals
are independent of each other and independent of the main
signal, i.e., EEG, to derive Equation 7. We are aware that
this assumption may not always be entirely met. However,
we argue that machine learning models may still work even
if the assumptions are weakly met or violated; e.g., in the
field of reinforcement learning, Markov property usually is not
satisfied, but many models have shown working effectively in
practice (36).

6. CONCLUSION

Epileptic seizure forecasting is still a substantially challenging
task, but it has a consequential impact on patients’ quality of life
and their caregivers. While some patient-specific demonstrated
excellent performance in a subset of patients, generalized
predictions on non-invasive EEG recordings can work well on

most patients, which has been a great challenge. This work
presented an innovative approach to incorporate uncertainty
and auxiliary signals information in seizure-risk forecasting.
These informative warning signals will be invaluable for
decision-making in employing any risk-mitigation intervention
or therapies. We built our method based on the Bayesian
convolutional neural network to provide an insight into the
uncertainty level of seizure-risk prediction.

FIGURE 8 | Risk level of having seizures for top three good performance

patients, from top to bottom: Pat-3, Pat-4, Pat-12. All decisions with an

uncertainty level higher than 1 are discarded and not shown. Moving average

of 50 steps backwards is applied to the probability score (risk level). Orange

arrows indicate the seizure onsets.

FIGURE 7 | Slow EEG activity as potential bio-marker detected by Bayesian convolutional neural network (BCNN) for epileptic seizure forecasting. Red channels (on

the right) were labeled as origin of seizure in the EPILEPSIAE dataset.
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Accurate seizure forecasting is emerging as a near-term possibility due to recent

advancements in machine learning and EEG technology improvements. Large-scale

data curation and new data element collection through consumer wearables and digital

health tools such as longitudinal seizure diary data has uncovered new possibilities for

personalized algorithm development that may be used to predict the likelihood of future

seizures. The Epilepsy Foundation recognized the unmet need for development in seizure

forecasting following a 2016 survey where an overwhelming majority of respondents

across all seizure types and frequencies reported that unpredictability of seizures had the

strongest impact on their life while living with or caring for someone living with epilepsy.

In early 2021, the Epilepsy Foundation conducted an updated survey among those living

with epilepsies and/or their caregivers to better understand the use-cases that best suit

the needs of our community as seizure forecast research advances. These results will

provide researchers with insight into user-acceptance of using a forecasting tool and

incorporation into their daily life. Ultimately, this input from people living with epilepsy

and caregivers will provide timely feedback on what the community needs are and

ensure researchers and companies first and foremost consider these needs in seizure

forecasting tools/product development.

Keywords: seizure forecasting, community survey, patient perception, wearable sensors, epilepsy, seizure

forecasting devices

INTRODUCTION

The epilepsies are a set of conditions characterized by recurring and spontaneous seizures. The
seemingly unpredictable nature of epilepsy, for example not knowing when and where an event
will occur, has a huge impact on an individual’s quality of life (1). A reliable seizure forecasting
system could facilitate better management of epilepsy and allow those living with epilepsies more
control over their lives.

The first human clinical trial using intracranial electroencephalography (EEG) for developing
seizure warning systems (Neurovista) demonstrated the viability of personalized prospective
seizure forecasting tailored to the user (2). Subsequent machine learning competitions leveraging
the rich Neurovista datasets (3, 4) demonstrated that these seizure forecasting algorithms can be
improved. These algorithms were further optimized when variables in addition to EEG data such as
circadian rhythms, sleep, weather, and temporal features were incorporated into Bayesian forecasts
(5, 6). With the advent of neural engineering, less invasive systems like UNEEG, which uses
subcutaneous EEG, have also demonstrated the feasibility to forecast seizure cycles in patients (7).
More recent studies have also suggested forecasting from seizure self-reported diaries (despite the
known inaccuracies of self-reported seizure events) can still be utilized for above-chance forecasting
even when there was no accompanying EEG data (8, 9).
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The Epilepsy Foundation created the My Seizure Gauge
Initiative with a mission to create a minimally invasive
personalized seizure advisory system to assess the likelihood of
seizure on a timescale of hours before possible occurrence. Rather
than focusing on early warning detection systems that could
categorically predict an imminent seizure, the emphasis of the
initiative was on developing probabilistic algorithms that would
calculate an individuals likely risk of having a seizure during
specified time ranges. The desire was to leverage biosensors, EEG,
and deep machine learning to improve upon current concepts
and create personalized forecasting algorithms for people living
with epilepsy (10). Part of the initiative is also to engage the
epilepsy community earlier in the research and development
process in order to ensure the voice of the patient is incorporated
into user-design considerations.

In 2018, the Foundation launched a patient preference survey
to quantify patient and caregiver preferences for the potential
benefits and risks of a future hypothetical seizure forecasting
device (11). Results from the survey highlighted key attributes to
consider with a forecasting device such as form factor, cost, and
the accuracy of the algorithm. Moreover, the study highlighted
that the notions of meaningful benefits and acceptable risks
differ between people living with epilepsy and their caregivers.
For example, patients were more willing to accept “inaccurate”
forecasts of the device compared with a care-partner (11).

As seizure forecasting tools are moving from hypothetical
to a likely reality, it is essential to understand the acceptance
of the epilepsy community for such tools and how they would
incorporate these tools into daily life. In 2021, the Epilepsy
Foundation launched a new community survey to evaluate the
readiness of the epilepsy community for a forecasting tool and
better understand how such a device would be incorporated into
daily living.

MATERIALS AND METHODS

A seizure forecasting survey targeted to those living with epilepsy
and their caregivers was generated using Qualtrics (Provo, Utah)
and distributed online (see Supplementary Table 1 for survey
questions). Demographic survey wording was developed by the
Epilepsy Foundation targeting an 8th grade reading level in
accordance with previous Epilepsy Foundation surveys. The
participants for the survey were not recruited through random
selection and therefore any results should not be generalized
to a broader population. Participants were recruited through
convenience sampling; multiple Epilepsy Foundation media
channels were used to ensure widespread distribution including
Epilepsy Foundation Facebook and Twitter pages. The study
was also distributed via the Epilepsy Foundation newsletter
twice via email. The survey collected responses between January
29, 2021, and March 8, 2021. The study only involves survey
procedures and observations of public behavior and is therefore
exempt from IRB review under 45 CFR § 46.104(d)(2). Provisions
were taken to protect the privacy of subjects and to maintain
the confidentiality of data. All responses were aggregated and
anonymized prior to analysis. The survey did not require input

for specific epilepsy diagnosis, age of onset, medications taken,
or intellectual disabilities in order to simplify patient experience
during survey administration and allow respondents to consider
all their seizure types throughout the survey questionnaire.

Inclusion Criteria
Participants were required to be at least 18 years of age and
identify as a person with epilepsy (PWE) or a primary caregiver
of someone with epilepsy.

Exclusion Criteria
Participants who are not older than 18 years of age at the time
of the survey, participants who do not identify as a PWE or
caregiver, or participants who did not fully complete the survey.

Statistical Analysis
To assess any potential differences in survey responses between
those who identified as a person living with epilepsy or care
partners, a non-parametric test—the Mann-Whitney U-Test—
with a two-tailed hypothesis was calculated, with the significance
level set to 0.05.

RESULTS

Survey Demographics
A total of 942 participants started the survey, with 652
progressing until the end (69% completion rate). Only completed
surveys are analyzed in the results, and of the 652 respondents
analyzed, 64% identified as a person with epilepsy and 36% as
a primary caregiver for someone with epilepsy. Table 1 includes
additional demographic information on survey participants
subcategorized for a PWE or caregiver. The majority of
participants were white (82 and 81% PWE and caregiver,
respectively), and were women (70 and 81% PWE and caregiver,
respectively). Respondents also reported their highest level
of education attained (Table 1) in which the majority of
respondents indicated they had completed an Associates’ degree
or higher (68% PWE and 74% caregivers). This demographics
assessment is consistent with metrics collected for unique
visitors to epilepsy.com. Although caregivers were answering for
those with more frequent seizures (Supplementary Figure 1),
no significant differences were found among their responses
regarding user acceptance of the device between the groups
(Supplementary Figures 2–4).

We also asked respondents how often the individual’s
seizures occurred, summarized in Figure 1. While there was
representation from a broad range of seizure frequencies, the
majority of responders were reporting seizure frequency as once
a month (20%), followed by 1 seizure per week (15%) and 3–4
seizures per year (15%).

Epilepsies Community’s Openness to

Seizure Forecasting Research
To assess community acceptance of seizure forecasting tools,
survey participants were asked to indicate whether they thought
it was possible for a device to predict their seizures (Figure 2A,
Supplementary Figure 2). The majority of respondents (79%)
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TABLE 1 | Demographics on seizure forecasting survey responses.

Number of

respondents

418 (64%) person with

epilepsy

234 (36%) caregiver

Age 43+/−16 yrs 45+/−14 yrs

Ethnicity • Hispanic | 26 (6%)

• Not hispanic | 333 (80%)

• Prefer not to say |

59 (14%)

• Hispanic | 22 (9%)

• Not hispanic | 180 (77%)

• Prefer not to say |

32 (14%)

Race • Asian | 19 (5%)

• American Indian or Alaska

native | 5 (1%)

• Black or African American

| 17 (4%)

• Native Hawaiian | 6 (1%)

• Other Pacific Islander |

1 (0%)

• White | 345 (82%)

• Prefer not to answer |

41 (10%)

• Asian | 12 (5%)

• American Indian or Alaska

native | 2 (1%)

• Black or African American

| 10 (4%)

• Native Hawaiian | 2 (1%)

• Other Pacific Islander |

0 (0%)

• White | 189 (81%)

• Prefer not to answer |

26 (11%)

Gender • Female | 292 (70%)

• Male | 105 (25%)

• Non-binary/third gender |

2 (0%)

• Prefer not to say | 19 (5%)

• Female | 190 (81%)

• Male | 33 (14%)

• Non-binary/third gender |

0 (0%)

• Prefer not to say | 11 (5%)

Education • Did not complete high

school | 8 (2%)

• High school diploma/GED

| 100 (24%)

• Associates or 2-year

degree | 65 (15%)

• Bachelors or 4-year

degree | 150 (36%)

• Master’s degree | 58

(14%)

• Doctorate degree | 13

(3%)

• Prefer not to say | 24 (6%)

• Did not complete high

school | 7 (3%)

• High school diploma/GED

| 39 (17%)

• Associates or 2-year

degree | 39 (17%)

• Bachelors or 4-year

degree | 72 (31%)

• Master’s degree | 44 (19%)

• Doctorate degree | 17

(7%)

• Prefer not to say | 16 (7%)

Percentage of each group in parenthesis.

indicated they believe it is possible or may be possible for a device
to predict their seizures. Of those who responded “yes”, 80% also
explained why they answered that way by entering a descriptive
response. Of those free text responses for why a PWE or caregiver
believed a device could forecast their seizures, most could be
grouped into five broad categories:

1. Optimism and belief in technology. A total of 42% of
respondents expressed their hope for the future due to
innovative advances in technology and belief that anything
is possible. For example, one respondent wrote “absolutely,
technology is always improving”.

2. Belief that identifiable seizure triggers or physiological

changes could be used, measured, and incorporated for

a forecasting tool. In total, 26% of respondents discussed
measurable, known seizure triggers such as menstrual cycle
patterns and lack of sleep or food intake which could be
inputs for a forecasting seizure risk assessment. For example,
one respondent wrote “My seizure risk increases based on
sleep, stress, activity, and food intake, so forecasting is
possible”, while another wrote “I imagine that there may be

physiological signs or a combination of signs that could be
precursors for seizure activity”.

3. Preliminary observation of time patterns in their current

seizures that could be incorporated into a device. Overall,
13% of respondents fell into this category. For example,
a respondent wrote “It [seizure forecasting device] could
determine seizure times if there are any patterns regarding
time of day, day of the week, day of the month, or
catamenial seizure”.

4. A belief that brain activity measurements could forecast

seizures. A total of 8% of respondents described an
observation relating to how brain activity may be a key to
the forecasting component. As an example, a free text entry
from a respondent stated: “Yes, a device could predict my
seizures because my EEGs show irregular brain activity before
a seizure occurs. I believe that data could be used to help
the device forecast when a seizure may occur depending
on how I’m feeling that day or how far my brain is
being “pushed”.

5. Existing seizure premonitions. Overall, 8% of respondents
wrote about auras or a feeling they felt prior to seizure
onset that could be incorporated into a forecasting tool. For
example, a respondent wrote “I experience times where I
can “feel’ that it would be a day where seizures might be
more likely, so I know there must be some way we could
capture that with a device as long as it focuses on specific
things”. While another respondent wrote, “Sometimes I will
feel strange several hours before having one and then after the
seizure I realize that was probably a foreboding feeling”.

Of the 10% of participants who responded “no”, they did not
believe it was possible to forecast their seizures based on their
experiences, 62% of these respondents also wrote in why they did
not believe it would be possible. Most of their free text responses
could be grouped into two categories as a belief that:

1. Their seizures were seemingly random with no obvious

warning signs. Respondents wrote that the unpredictability
of their seizures made it unclear what a device could possibly
measure. Fifty percent of respondents answered in this way.
For example, respondents wrote, “My seizures are random.
Nothing in the past has been able to predict my seizures” or
“The times of seizures aren’t consistent”.

2. It might be possible for others but not for their seizure type.

A total of 19% of respondents were included in this category,
writing that their specific seizures were too complicated. For
example, one respondent wrote “I have simple partial seizures.
Most devices currently only detect tonic clonic seizures” while
another wrote “The way my epilepsy manifests has changed
too many times, so I don’t think any device could take into
consideration that many variables”.

Regardless of whether a respondent thought it was possible for
such a device to exist, when respondents were asked whether
a user would use the device if it existed, 76% said they
would use the device, 20% said they might use the device and
only 2% of respondents said they would not use the device
(Figure 2B). Similarly, when asked whether it was important
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FIGURE 1 | Seizure Frequency of survey participants (n = 652). Bar graph showing the percentage of respondents across the various seizure types. No significant

differences were found between segments using the Mann-Whitney U-Test.

for the epilepsy community to have such a device, a majority
(95%) of respondents said it was either extremely (74%) or very
important (19%) (Figure 2C). Of the individuals who did not
believe the device would be useful to them (10%, Figure 2A),
the majority still thought such a device would be extremely
(69%) or very important (18%) for the community to have (88%
total) (Figure 2D) indicating a true, recognized need within the
community, even if no benefit comes to the individual.

The Epilepsies Community Feedback on

Considerations for a Forecasting Device
While there are several critical parameters to consider in
developing a forecasting device, our survey focused on the timing
necessary to make actionable changes to an individual’s day
based on how the individual would envision using a forecasting
device. When asked how far in advance the respondent would
need to be alerted to inform plans or activities for their day,
there were slightly more (28%) respondents who wished to be
alerted within 24 h, however similar preferences were observed
at hourly and more than 24 h (20% each) and within 12 h (23%)
(Figure 3A, Supplementary Figure 3). These results indicate
that alert preferences vary for individuals, likely depending on
what they plan to do with the information of when a seizure will
occur. When analyzed by seizure frequency, the most common
alert window was still 24 h across most seizure frequencies, with
the exception of those with 3–4 seizures per year, who cited
they would like more than 24 h of notice, and those with 1
or more seizures per day, who cited a preference for hourly
seizure warnings (Supplementary Figure 5). Planning may also

depend on seizure type, which was not included in this study
but should be further evaluated. Further user preference studies
will determine the most valuable uses of a device for individual
use cases.

Similar to weather forecasting, where people may use
information from the forecast (i.e., sunny day vs. rainy day)
to determine whether they will go outside for a walk, stay
inside, or prepare in advance, users may prefer to know when
they are both likely and unlikely to have seizures. Indeed, our
results indicate most respondents prefer predictions for both
times they are prone to seizures and times they are unlikely to
have seizures (60%) (Figure 3B), while 38% preferred to only be
alerted during times they are more likely to have a seizure. When
asked whether a device that could predict a low chance of seizure
would impact them, 69% of all respondents indicated this would
help them plan their day. Similarly, 89% of respondents indicated
a forecasting tool that indicated a high likelihood of seizure would
help them plan their day (Figures 3C,D). Taken together, these
results indicate that users would want to be informed of both
the high likelihood and low likelihood of a seizure, but knowing
there is a higher chance of a seizure would be more helpful in
day-to-day planning.

Those who selected that they would use a forecast tool that
indicated a low chance of seizure (Figure 3C), when asked how
this could change their plans, cited examples such as regaining
the ability to drive and participating in sports or physical
activities. For those who indicated they would use a forecast tool
to determine the high chance of seizure (Figure 3D), when asked
how this would change their plans, representative responses
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FIGURE 2 | Assessment of epilepsy community perspectives and need for forecasting tools. Bar graphs showing the percentage of survey respondents who

indicated (A) whether they believed whether it was possible for a device to predict their chance of seizures; (B) whether they would use such a device if it existed; and

(C) whether they believed it was important for the epilepsy community to have the device. Of those who did not believe that a device would be useful to them, (D) a

bar graph indicated the breakdown of whether those respondents thought this was still an important device for the epilepsy community to have. Note that all numbers

have been rounded to two significant figures. No significant differences were found between segments using the Mann-Whitney U-Test.

included: staying home (from work or other activities), avoiding
public transportation, and plans for rescue medication. For those
who stated it would not impact their day, many responded they
are used to expecting seizures, do not have seizures often enough,
or seizures did not stop them from completing daily tasks.

Risk of Forecasting Tools
To determine an individual’s tolerance to having the opposite
occurrence given by the forecast, we asked survey respondents
whether they would continue using a forecasting tool if the device
inaccurately predicted they would have a seizure, but no seizure
occurred. In this case, 65% of respondents indicated they were
still likely or very likely to continue using the device (Figure 4A,
Supplementary Figure 4). Among those that responded “it
depends”, there was an indication they would be willing to try
the device a few times, but that consistent inaccuracies would
result in termination of use of the device. In the event of a seizure
occurring during a time when the forecasting tool predicted a
low chance of seizure, only 52% of respondents indicated they
were likely or very likely to continue using the device (Figure 4B),
with an increase in those responding they would be unlikely (8%)
to use the device compared to Figure 4A (3%). These results

indicate that users prefer the device to be more likely to warn
them of a seizure even if it does not occur, than to have a
seizure that was not forecasted by the device. Similar responses
were observed when scenario testing was evaluated by seizure
frequency (Supplementary Figure 6). These results also indicate
users within the epilepsy community understand and accept
some inaccuracies in a forecasting device.

DISCUSSION

Seizure unpredictability remains a chronic, critical problem for
people living with epilepsies or those caring for someone with
epilepsy (10). Advances in forecasting algorithms suggest that
a personalized seizure forecasting tool may be available in the
foreseeable future (8, 9, 12). Respondents to this survey were
unanimous in assessing that there was importance in developing
this tool for the epilepsy community regardless of whether they
themselves would use it (Figure 2, Supplementary Figure 2).
An oft cited rationale for why a person believed that seizure
forecasting would not apply to their use-case was because the
individual had non-motor seizures that they did not think could
be detected with a device. In contrast, those who believed seizure
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FIGURE 3 | Seizure forecasting device scenario testing. (A) Bar graph indicating the breakdown by percentage of survey respondents who wanted to be alerted at

different time scales for their likelihood of seizure (time ranges indicated on X-axis). (B) Pie chart breaking down the percentage of respondents who indicated whether

they had a preference to use a device that would forecast seizure-prone vs. seizure-safe states. (C,D) Bar graph indicating the percentage of survey respondents that

would use the device in daily planning when the device forecasted a 20% chance of seizure (C) or 70% chance of seizure (D). Note that all numbers have been

rounded to two significant figures. No significant differences were found between segments using the Mann-Whitney U-Test.

forecasting is possible often cite self-observed premonitions,
which have been observed to be detectable at an above chance
level in a prospective self-prediction study using seizure diaries in
a subset of individuals (13, 14). As the research communitymoves
forward with bringing forecasting algorithms to the marketplace,
it will be important to educate the community on who the
target audiences for seizure forecasting will be and whether
these algorithms are inclusive of all seizure types. Indeed, for
seizure detection systems, there is a high degree of variability in
the effectiveness of detection systems when classified by seizure
type (15).

Interestingly, many of the symptoms and stimuli a respondent
referenced as a seizure gauge may possibly correlate neatly to
parameters already being considered as variables for seizure
forecasting algorithm development, from leveraging triggers
and the environment (6) to temporal patterns (5, 16–18).
While it is possible that the respondents to the online survey
collected via epilepsy.com may already be familiar with seizure
forecasting, these results indicate that users may intuitively grasp
components contributing to how a seizure forecasting algorithm

works and have more confidence in using the tool. However,
while our data indicate user respondents may accept some
degree of “inaccuracy” in a forecasting device, more work will
need to be done to educate the community on the distinction
between the prediction of a seizure; a determinant, future event
that will happen at a precise time (categorical statement); in
contrast to forecasting, which indicates likelihood (a probabilistic
statement). The 2021 survey questions emphasized language
around “prediction of chance” to represent a forecast, although
we did not further examine respondents understanding of
the difference.

There are a variety of use-cases discussed in the research
community for how a seizure forecasting device could be
applied: from guiding treatment plans or clinical trial design, to
improving quality of life (19). When the epilepsy community
was asked about how the device would be used in daily life, a
majority said this information would be used to plan their day
(Figure 3). Specifically, many wrote about using it as a tool for
modifying their behavior to reduce their seizure likelihood. For
example, one respondent wrote, “(If there was a 70% chance
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FIGURE 4 | Assessing user tolerance for error. Pie charts indicating the percentage breakdown of survey respondents that would keep using the forecasting tool if (A)

there was no seizure on a day that forecasted high seizure risk or (B) there was a seizure on a day that forecasted low seizure risk. Note that all numbers have been

rounded to two significant figures. No significant differences were found between segments using the Mann-Whitney U-Test.

of seizure), I would decrease other seizure inducing things
(i.e., drinking one cup of coffee instead of three, taking naps)
as well as taking my meds exactly 12 h apart. Just like I do
during seizure season-when the weather is hot and changing
to winter”.

As the field of digital therapeutics begins to gain traction
within our community, it is possible that seizure forecasting will
become a part of managed behavioral intervention strategies.
Respondents wrote about how this would help their activity
planning for the week. For example, one respondent wrote “If
the forecast was that high [70%], I’d work from home that day
or maybe consider taking the day off. I could also prepare myself
mentally for how rough my week was about to get and maybe
make sure other life tasks were in order [like having meals
prepped for the week. My recovery period for a (Tonic Clonic)
is long]. With that, if the device was able to predict the type of
seizure, that would also make a difference. If I knew I was likely to
experience a small focal (like Deja vu), that’s way less detrimental
to my week than a [Tonic Clonic]”.

Several survey respondents wrote that an accurate seizure
forecasting device may help them complete activities such as
swimming or driving. While the notion of independence was
repeatedly observed in our survey, device manufacturers must
properly consider all potential use-cases from the community
and thoroughly warn users of risks associated with inaccurate
seizure prediction. For example, if used to make decisions like
whether or not to drive, additional clear warning labels will
be needed to address limitations of the tool. More research
is needed to explore seizure forecasting use-cases in greater
detail. However, from the survey text responses, many wrote
about how having some indication of seizure chance would still
be an improvement over their current seemingly unpredictable
seizure patterns.

Moreover, there were a small fraction of survey participants
who shared downsides to seizure forecasting, noting their anxiety
levels might increase if they were constantly checking the forecast
to see if their behavior increased their chance of seizure. It
was clear from the responses that different users would want
different thresholds for notifications when a forecasting level
changed depending on their seizure frequency and their baseline
anxiety levels. Although some advances have been made toward
this flexibility (20), further technical and design exploration is
required to understand the user design aspect of setting personal
alerting thresholds.

Seizure forecasting, because of its inherent probabilistic
nature, does not have traditional false negative/false positive
deterministic evaluations. If a seizure does not occur when a
device indicates a high chance of seizure, this does not mean the
forecast was incorrect. Some respondents to the survey indicated
an understanding of this concept and accepted with the notion
of a high chance of seizure not meaning categorically that a
seizure would occur. Many referenced the weather not always
being 100% accurate in their rationale. If an action could be taken
based on the information, they would find it useful (similar to
taking an umbrella in case of rain). Others discussed how seizures
in themselves were probabilistic in nature and the environment
or behavior could impact their chance frommoment to moment,
and thus influence the forecast. For example, a respondent wrote
“If the device predicted a high chance of seizure, and I changed
my behavior to reduce stress and emotional triggers, [and I ended
up with no seizure] then it doesn’t mean the device necessarily
is faulty. It’s what you do with the information”. Another wrote,
“Was the device wrong or did the [medication] administered
prevent it? I think that is important info that will be hard
to measure”. It was clear from the responses the community
did not anticipate a 100 percent accurate device, but rather an
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assessment tool to help themmake decisions on what to do based
on the information. The claims and labeling that a forecasting
tool displays will need to be considered carefully. Understanding
these limitations, encouraging conversations with doctors, and
educating consumers will be essential for informed decision
making. At the same time, it is also imperative for the forecasting
tool to provide useful information to the user that is above and
beyondwhat the user already knows. For example, if someone has
daily seizures, having a forecasting tool that predicts high daily
risk would not be of value to that individual.

A limitation to this study was the convenience sampling of the
survey selection. The majority of respondents to this survey were
Caucasian, women, and had attained at least an Associates’ degree
(Table 1). It is likely that our survey pool taken from the Epilepsy
Foundation digital channels is more aware of seizure forecasting
initiatives due to the Foundation’s sponsorship and promotion
of My Seizure Gauge activities, and their reflections are not
representative of the general population. Device manufacturers
should consider the health literacy of their target population to
ensure they are aware of device limitations and best practices
for using a device, as relates to understanding what probability
means compared to categorical prediction of a seizure event. A
recent study by Chiang et al. examined different ways seizure
forecasting could be visually represented, and found noticeable
differences in health literacy depending on the understanding
of the visual representations, highlighting the importance of
incorporating standardized methods for how such information
on forecasting should be conveyed (21).

This survey did not include questions around form factor
or user design considerations, such as wearability, usability, or
user tolerance of the device’s invasiveness. We and others have
previously examined user preferences when considering how
the tool would collect information on the individual (11), and
others have examined how it would be visualized (21). Others
who have investigated form factor preferences have shown users’
willingness to charge a device and a preference toward removable,
wearable devices; finding only 5% of patients would accept
an implantable device (22). Through the My Seizure Gauge
Initiative, we have examined additional design considerations
such as charging times and device design compared to user
preferences in the determination of wearables used for biosensor
data collection, which has also been examined by many other
groups (23–28). There is a confirmed need for a joint effort
of clinical and non-clinical experts to optimize usability (20).
Further work will also need to assess patient preferences for
surgical vs. non-invasive devices.

Taken together, the survey highlighted that the community
has many early adopters willing to use forecasting tools. A
vast majority believe forecasting is possible and see utility in
using these tools for their daily living. One note of caution is
to ensure these tools are evaluated not just in the accuracy of
their algorithms, but also in how the information is conveyed
to the user both in language, visualizations, and intended use-
cases. Understanding the communities’ readiness, preferences,
and understanding of seizure forecasting must include multi-
faceted research into considerations around device design, and
to what degree patients will tolerate invasive methodologies.
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Supplementary Figure 1 | Assessment of epilepsies community perspectives

and need for forecasting tools responses segmented by PWE or caregiver. Bar

graphs showing the percentage of survey respondents who indicated (A) whether

they believed whether it was possible for a device to predict their chance of

seizures; (B) whether they would use such a device if it existed; and (C) whether

they believed it was important for the epilepsy community to have the device.

Note that all numbers have been rounded to two significant figures. No significant

differences were found between segments using the Mann-Whitney U-Test.

Supplementary Figure 2 | Seizure forecasting device scenario testing responses

segmented by PWE or caregiver. (A) Bar graph indicating the breakdown by

percentage of survey respondents who wanted to be alerted at different time

scales for their likelihood of seizure (time ranges indicated on X-axis). (B) Bar

graph breaking down the percentage of respondents who indicated whether they

had a preference to use a device that would forecast seizure prone vs. seizure

safe states. (C,D) Bar graph indicating the percentage of survey respondents that

would use the device in daily planning when the device forecasted 20% chance of

seizure (C) or 70% chance of seizure (D). Note that all numbers have been

rounded to two significant figures. No significant differences were found between

segments using the Mann-Whitney U-Test.

Supplementary Figure 3 | Assessing user tolerance for error responses

segmented by PWE or caregiver. Bar graphs indicating the percentage breakdown

of survey respondents that would keep using the forecasting tool if (A) there was

no seizure on a day that forecasted high seizure risk or (B) there was a seizure on

a day that forecasted low seizure risk. Note that all numbers have been rounded

to two significant figures. No significant differences were found between segments

using the Mann-Whitney U-Test.

Supplementary Figure 4 | Assessment of time window preference segmented

by seizure frequency. Bar graph indicating the percentage breakdown by

self-identified seizure frequency of when respondents would want to be alerted at
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different time scales for their likelihood of seizure (time ranges indicated

on X-axis).

Supplementary Figure 5 | Seizure forecasting device scenario testing

segmented by seizure frequency Bar graphs indicating the percentage breakdown

of survey respondents by their self-identified seizure frequencies indicating

whether (A) a forecasting tool indicating lower than a 20% chance of seizure

would impact their day or (B) a forecasting tool indicating higher than 70% chance

of seizure would impact their day. Note that all numbers have been rounded to

two significant figures.

Supplementary Table 1 | Survey Questionnaire. List of questions and logic flow

of the survey questionnaire.
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Seizure detection, and more recently seizure forecasting, represent important avenues

of clinical development in epilepsy, promoted by progress in wearable devices and

mobile health (mHealth), which might help optimizing seizure control and prevention

of seizure-related mortality and morbidity in persons with epilepsy. Yet, very long-term

continuous monitoring of seizure-sensitive biosignals in the ambulatory setting presents

a number of challenges. We herein provide an overview of these challenges and current

technological landscape of mHealth devices for seizure detection. Specifically, we display,

which types of sensor modalities and analytical methods are available, and give insight

into current clinical practice guidelines, main outcomes of clinical validation studies, and

discuss how to evaluate device performance at point-of-care facilities. We then address

pitfalls which may arise in patient compliance and the need to design solutions adapted

to user experience.

Keywords: epilepsy, seizure detection, seizure forecasting, mobile health devices, extracerebral biosensors,

wearables, EEG signals, usability and user experience

INTRODUCTION

We live in the Internet of Things (IoT) era where wearables have become an integral part
of day-to-day life. Health and sleep trackers, fitness wristbands, smartwatches, and other
technologies attached to the human body offer users continuous biometric measurements
(i.e., movement, heart rate, sweating) over time, providing analytics via Bluetooth (or similar
wireless transmission protocols, e.g., wi-fi), and sending feedback to applications integrated
into generic devices (e.g., smartwatches). These wearable devices offer considerable potential
in regards to delivering novel options to shape personalized medical solutions (1). In the
field of epilepsy, specific types of wearable solutions have been developed with the aim of
detecting individual seizures, several of which have penetrated the consumer market. The
overarching goal of these devices is to provide continuous long-term monitoring of non-EEG
seizure related signals in order to detect or forecast seizures (2–9). Currently, however,
seizure detection with appropriate sensitivity and false-alarm rates has only been possible
for generalized tonic-clonic seizures (GTCS) (10, 11), while clinically-relevant accuracy is still
lacking for most other seizures types (12). Solutions to this limitation are likely to emerge
from the rapid advances in machine-learning seizure detection and algorithms forecasting
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the cyclic nature of seizures (13, 14). In parallel, progress has
been made in the field of long-term ambulatory EEG (15).
Subcutaneous electrode implants, embeddedwith a wearable data
receiver have allowed for the first-time real-world EEG data
collections over very long periods (16).

This short review gives an insight into the ambitious and
challenging field of wearable health devices for seizure detection
and forecasting applications and provides context for progress to
date, as well as possible pitfalls and how they might be resolved.

CLINICAL APPLICATIONS

With those suffering from chronic epilepsy, IoT technologies
have the potential to advance personalized epilepsy management
strategies, with the end result of increasing the positive disease
outcome for patients. To date, the epilepsy community has
demonstrated significant interest in wearable seizure detection
(17–21) and forecasting (22) companions. In the following
section, we have highlighted several avenues for their clinical
application, which could prove clinically relevant and useful
to patients.

In patients with high seizure frequency (20) and GTCS,
alarm-triggering to a caregiver’s smartphone might prompt life-
saving procedures and prevent Sudden Unexpected Death from
Epilepsy (SUDEP). It might also help decreasing the risks of
SUDEP and of other causes of GTCS-related mortality (23–
25) and morbidity, by providing predictive biomarkers of such
outcomes (12, 26) and of GTCS severity (26). However, no study
has yet demonstrated that the use of mobile health solutions,
including seizure detection devices coupled with alarms has an
impact on the risk of SUDEP.

A reliable seizure detection device could also provide
physicians with more accurate information on seizure frequency
than patients’ diary entries or recollection, which in turn can help
adjust both the type and dosage of medication and subsequent
treatment outcome, [e.g., (27–31)]. However, despite long-term
ambulatory EEG (32) and/or ambulatory implanted intracranial
EEG (15) studies demonstrating that patients tend to under-
report seizures, there is still need for more evidence to show
that optimized seizure tracking for patients who use connected
devices, is more reliable than diaries or direct communication
with the patient. For instance, a phase-4 study has shown that
a wearable accelerometer based system helped patients and
caregiver to log GTCS into the seizure diary in 44% of the
cases (32).

Major disruptions to quality of life can be attributed to the
uncertainty of when seizures will occur (33).When responding to
questions concerning their medical history, patients commonly
report a periodicity in seizure occurrence and familiarize
themselves with individual risk factors and triggers that they
observe preceding seizure events. These then serve as reference
points for certain individuals to keep an overview of their disease
progression (34–39). The capacity to foresee a seizure event
would transform epilepsy care and ultimately allow patients
to counteract impending seizures by proactively adapting their
behavior. For example, a patient could potentially self-target

neurostimulation to abort the seizure (40), or rely on a
closed-loop apparatus that offered immediate seizure-triggered
therapy (41).

SENSORS

EEG and non-EEG sensors can be embedded in a wearable
tool, and are directly in contact with the body in order to
acquire physiological signals. The set-up should be appropriate
to measure epilepsy-related activity over long periods of time
during the day and night and has specific constraints in
terms of comfort and stigma (42). Especially for EEG systems,
usability comes as a challenge, as full-array scalp electrodes can
only be used in hospitals, or in controlled home-monitoring
settings (43), over time periods of up to several days maximum.
Non-obtrusive solutions have been developed, using only few
electrodes positioned either around (44) or in the ear (45, 46), but
signal quality often remains inadequate, characterized by artifacts
and sub-optimal electrode impedance. In order to facilitate
continuous EEG recordings, subcutaneous (a.k.a. subscalp or
subdermal) electrodes, placed by means of a minimally invasive
surgical procedure under the scalp, have been proposed (37, 47).
Subcutaneous electrodes set-up showed similar SNR levels, and
even better signal quality than standard scalp EEG montages
(48). After the development of first prototypes (49–51), a few
products have started their incubation process, but so far, only
one device has undergone clinical trials to be approved for
commercial use by regulatory bodies (52). First studies in epilepsy
patients showed that surgeries (37, 47) and ultra-long-term use
for real life monitoring for up to 3 months at home (37) were
technically feasible, well-tolerated, and for in a first use-case with
eight epilepsy patients, successfully detected seizures (37, 47).
Recently, a larger multicenter trial involving the implantation
of subcutaneous EEG devices in 14 patients with epilepsy and
12 healthy subjects, demonstrated the technological viability of
stable long-term EEG recordings (52).

Currently, four additional diagnostic solutions are
progressing in their development (16). Different electrode
designs (i.e., bipolar electrodes, multichannel strips), and
placement underneath the scalp (i.e., from focal to covering
both hemispheres) determine the type of seizures that can be
recorded (37, 47). Subcutaneous solutions are quasi invisible
and existing studies show that patients are willing to undergo
the operation and insertion of the material for long periods
of time (37, 47, 53). However, additional data involving larger
patient samples are required to confirm overall acceptance
of these devices. Non-EEG based sensors, are primarily
based on accelerometers, surface electromyography (EMG),
electrocardiography (ECG), photoplethysmography (PPG) and
electrodermal activity (EDA). They are easily integrated in
fashionable wearables, such as bracelets, without displaying the
disease and stigmatizing patients. Accelerometers strapped to a
limb appropriately identify GTCS, and other seizures with strong
motor components (54–56). Surface EMG on the biceps muscle
is particularly useful for the detection of tonic seizures early on
in the course of GTCS (57–60). The prerequisite for performance
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of movement sensors is to fasten them to a body part that
participates in the seizure semiology. Heart rate parameters are
known to vary during and even shortly before seizures (61, 62).
They can be recorded using self-adhesive ECG electrode patches
(63, 64) or via measures of heart rate (HR) by means of an
optical sensor that captures a PPG signal at the wrist (65, 66).

Finally, a clear-cut surge in EDA is observed at onset of GTCS
(67–69), while imbalance in this autonomic biomarker can also
be observed in the pre-ictal state (70). A combination of signals
can be used for seizure monitoring in the real-world setting,
yet the pitfall of this approach is that signal quality, and thus
reliability of the approach, is influenced by daily activities and

FIGURE 1 | (A,B) A wrist worn commercially available seizure detector with integrated ACC and EDA sensor, (B) displays three electrodes for EDA measure that are in

contact with the skin. (C,D) A wrist worn commercially available sensing device with integrated ACC, EDA, and PPG sensor. (D) Displays the PPG sensor that is in

contact with the skin. (E) A wired galvanic skin response (EDA) sensing solution, with velcro fabric finger cuffs and a small receiver unit that attaches to the wrist.
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psychological arousal (70, 71). Please view Figures 1A–E for an
illustration of different form factors of sensing solutions.

POSSIBLE ANALYTICAL APPROACHES

In validation studies, the accuracy of seizure detection algorithms
must be compared to the gold standard for seizure-diagnosis:
video-EEG recording or (for motor seizures) video recordings.
The presence or absence of an epileptic event will then be
mathematically treated as a binary variable. To increase the
accuracy of seizure detection algorithms, various machine
learning methods are available (72). Their performance is
typically evaluated by determining the area under a receiver-
operating characteristic curve (ROC) (2–9). Seizure prediction
algorithms aim at identifying pre-ictal changes immediately
before the seizure in order to anticipate the precise onset of a
given seizure (73–77). Meanwhile, data from a clinical trial (15,
36), animal studies (34, 78–81), crowdsourcing analysis efforts
of EEG databases (82, 83), and cohort studies of mobile seizure
diaries (39, 84, 85), have identified that epileptic activity in some
patients followed circadian, ultradian, and infradian (multidian)
cycles, and was highly correlated with self-forecasting techniques
(86). Thus, an alternative conceptual approach (87) to single
seizure event prediction, is the ability to algorithmically forecast
them. A successful seizure forecast would provide the patient
with a seizure cluster likelihood measure within a given time-
window, based on intraindividual cyclic distribution of events.
Companions using this approach might require more complex
designs than their seizure detection analogs. For instance, the
varying scales of forecasting windows (22) and data visualization
features (88) would be attuned according to frequency and
characteristics of the seizure cycles. Forecasting will also benefit
from the development of new EEG methods for very-long-
term data collection. Currently, clinical trials have been advised
(89) and are urgently needed to further existing knowledge
about seizure networks, the characteristics of interictal changes,
ictogenesis, as well as their cyclicity and predictive value over
prolonged time periods (13, 90, 91). Research on seizure
periodicity function will constitute the basis for addressing this
bottleneck in the advance of algorithmic approaches.

RESEARCH AND DEVELOPMENT

In Europe, clinical trials of wearable devices are steadily
increasing and are required to follow the regulatory framework
of Council Directive 93/42/EEC concerning medical devices.
In order to optimize study quality in the epilepsy domain,
recommendations for standardized testing and clinical validation
of seizure detection devices have been recently proposed (92).
This new standard classifies studies into 5 phases (0–4), with
key trial design features concerning the number of subjects,
types of recordings, data analysis, and alarm criteria. For
example, whereas a phase 0 study can still be performed on
retrospective datasets and serve as a proof of concept for
algorithm development, subsequent phases will require technical
feasibility testing and signal validation against standard hospital

Video-EEG. The final phase (4), will have to include a large
patient sample and be performed in a prospective manner at
multiple sites under real world-settings. As previously proposed
(76), seizure detection criteria for all devices will represent the
first qualitative control with the aim of complementing aspects
specifically relevant for digital forecasting companions. Overall,
device developers must consider that high quality product R&D
will require several years. Furthermore, trials will have to contain
a clear set of outcome measures and criteria to be reported to
and evaluated by regulatory bodies. Result summaries containing
transparent research data should also be made available to the
medical community at large.

DEVICE VALIDITY

The working group of the International League Against
Epilepsy (ILAE) and the International Federation of Clinical
Neurophysiology (IFCN) recently performed a literature search
and published evidence from 28 papers (10, 11), leading to
consensus in the endorsement of “clinically validated wearable
devices for automated detection of GTCS including the focal-
to-bilateral tonic-clonic seizures (FBTCS) when significant safety
concerns exist, especially in unsupervised patients (. . . ).” Only a
handful of validation studies have focused on the detection of
focal, non-convulsive seizures (10–12). As a consequence, no
commercially available wearable devices have received regulatory
authorization for the detection of focal epileptic seizures, and “the
ILAE-IFCN Working Group, does not recommend clinical use of
the currently available wearable devices for seizure types other than
GTCS and FBTCS, as more research and development are needed
for this application (. . . ).”

For the purposes of this short review, we have summarized
and updated the efforts of the ILAE-IFCN workforce below
(10, 11). Table 1 included the outcomes of nineteen phase
2–4 prospective studies that span the development of novel
analytical methods, confirm their safety and accuracy with
respect to regulatory bodies, and their ability to assess seizure
detection performances in the patient’s homes, as opposed to the
laboratory environment.

There is ample evidence regarding the detection rates for
convulsive seizures using a self-adhesive EMG patch placed on
the bicep muscle. In this case, a reasonable true positive/false
positive ratio was achieved using the algorithm, with a GTCS
detection sensitivity of 94% and a false alarm rate of 0.7/24-h (94).
Interestingly, when different detection-thresholds were used,
100% sensitivity could be attained, however the false positive rate
was consequently increased to 1.44/24-h (93).

An alternative GTCS detection method using wrist
accelerometers has approached a relatively high sensitivity
of >89.7% in several phase 2 studies, with the rate of false alarms
significantly reduced <0.24 per day (32, 55, 95–98). ACCs are
most effective when attached to several areas of a patient’s body
known to be implicated in the seizure semiology. Using multiple
ACCs, several phase 1 studies, identified myoclonic-, clonic-,
tonic- (108, 109), and hypermotor seizures (110, 111) with a
sensitivity rate of at least 95%. However, a different phase 2 study
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TABLE 1 | Outcomes of phase 2–4 prospective seizure detection algorithm reliability studies.

Modality Study Phase Study

site/design

Seizure type Device Performance Time to positive

detection after

seizure onset

Surface EMG Szabo et al. (59) 2 EMU/Offline GTCS Brain Sentinel Sensitivity = 95%

FP = 0.017/24 h

µ = 15.2 s

Surface EMG Halford et al. (93) 2 EMU/Offline GTCS Brain Sentinel Sensitivity depending on

cohort = 100%, 76%

FP = 1.4/24 h, 2.5/24 h

µ = 7.45 s

Surface EMG Beniczky et al. (94) 3 EMU/Real-time GTCS Seizure detector

by Ictal Care

Sensitivity = 93.8%

FP = 0.67/24 h

µ = 9 s

Wrist 3D-ACC Kramer et al. (95) 2 EMU/Real-time Motor

seizures,

GTCS

Not specified Sensitivity = 90.9%

FP = 0.11/24

µ = 17 s

Wrist 3D-ACC Beniczky et al. (96) 3 EMU/Real-time GTCS Epi-care Sensitivity = 89.7%

FP = 0.2/24 h

µ = 33 s from

GTCS, µ = 55 s

from FS

Wrist 3D-ACC Meritam et al. (32) 4 In-field/Real-time GTCS Epi-care Sensitivity = 90%

FP = 0.1/24 h

n.a (infield)

Wrist ACC Patterson et al. (97) 2 EMU/Real-time GTCS, tonic,

myoclonic,

hypermotor,

complex

partial

Smartwatch by

Smartmonitor

GTCS: Sensitivity = 31%

FS: Sensitivity = 16%

FP = n.r

Not reported

Wrist ACC Velez at al. (98) 2 EMU/Real-time GTCS Smartwatch by

Smartmonitor

GTCS: Sensitivity = 92.3%

FP = n.r

FS = Not detected

Not reported

Wrist 3D- ACC Johansson et al. (55) 2 EMU/Offline GTCS Shimmer Sensitivity = 90–100% FP =
0.24–1.2/24 h

Not reported

Wrist ACC + EDA Onorati et al. (99) 2 EMU/Offline GTCS Embrace Sensitivity = 94.55% FP =
0.2/24 h

Median = 29.3%

ACC +ECG Van Andel et al. (100) 2 EMU/Offline GTCS,

tonic, clonic,

hypermotor

Shimmer Clinically urgent GTCS:

Sensitivity = 87%

FS: Sensitivity = 56–71% FP

= 2.3–5.7/24 h for all seizures

per night

µ = 13 s

Wrist 3D-ACC + PPG Arends et al. (101) 3+4 EMU +
In-field/Real-time

GTCS,

myoclonic/

tonic,

hyperkinetic

Nightwatch GTCS: Sensitivity = 81%

Other motor seizures:

Sensitivity = 77%

FP = 0.3 per night

Not reported

ECG Boon et al. (102) 2 EMU/Offline GTCS, FS Hospital ECG&

VNS Aspire SR

For HR increase >20%:

Sensitivity = 52.3%

FP = 7.2/h

Not reported

ECG Fisher et al. (103) 2 EMU/Offline GTCS, FS Hospital

ECG&VNS Aspire

SR

For HR increase >20%:

Sensitivity = 91%

FP = 0.7/24 h

µ = 8 s

ECG, PPG Vandecasteele et al.

(104)

2 EMU/Offline FS Hospital ECG,

180◦ eMotion, E4

ECG: Sensitivity = 57% FP =
1.92/24 h

180◦: Sensitivity = 70%

FP = 2.11/24 h

E4: Sensitivity = 32%

FP = 1.8/24 h

Not reported

ECG Jeppesen et al. (63) 2 EMU/Offline GTCS, FS ePatch ECG GTCS: Sensitivity = 100%

FS: Sensitivity = 90.5%

FP = 1/24 h

µ = 30 s

In-the-ear NIRS Jeppesen et al. (105) 2 EMU/Offline FS PortaLite Sensitivity = 6–24% Not reported

Behind-the-Ear-EEG Gu et al. (106) 2 EMU/Offline FS Ambu Neuroline

Cup

Sensitivity = 94.5%

FP = 0.52/24 h

Not reported

PPG + Oxygen

saturation

Brotherstone et al.

(107)

3 EMU/Real-time Clinically

significant

seizures

Nonin finger

sensor

For HR change > 25% +
Oxygen desaturation <85%:

Sensitivity = 87% FP =
4.5/24 h

µ = 69.6 s for HR

µ = 83 s for

oxygen

desaturation

EMG, Electromyogramm; EMU, Epilepsy monitoring unit; FP, False positive; GTCS, Generalized tonic-clonic seizures; HR, heart rate; h, hour; µ, mean; n.a, not applicable; NIRS,

near-infrared spectroscopy; s, second.
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found that ACC-based wristwatches were less sensitive for the
detection of different types of focal motor seizures (0–24%) (97).

Conversely, heart rate parameters from ECG systems were
able to detect arrhythmias associated with focal seizures and
were showed sensitivity as high as (<91%). Nonetheless, many
algorithms still produced false positives from 0.5 to 5.4 per hour
(112–114). PPG signals measured from the wrist, may also be
appropriate detectors, however, they have so far not been shown
to have lower false positives rates than hospital ECGs (2.11 vs.
1.92) (104).

Combining the outputs from several sensors into a single
algorithm, has been considered in order to raise the detection rate
of GTCS (21, 115, 116). For instance, a clinical trial combining
phase-3 and 4, evaluated a band placed on the upper arm,
recording accelerometry and heart rate, and succeeded to isolate
nocturnal GTCS with a sensitivity of 81% (and 77% of motor
seizures), and a reduced false alarm rate of 0.03 per night (101).
A phase 2 EMU study, using a retrospective cross-validation
approach, demonstrated that fusing accelerometry signals with
electrodermal activity (EDA) recorded from a wrist-worn device,
resulted in a sensitivity of 95% for GTCS and a false positive
rate of 0.2 per day (99). Most recently, a phase 3 EMU study
applied pre-defined cut-off points to data obtained in real-time,
and showed that when heart rate changes and oximetry endpoints
are combined, the sensitivity is highest, and lowest when the
parameters are used alone (117).

Wearable EEG devices are potentially well-suited to reflect the
focal seizure onset when placed above the area of seizure onset.
A phase two study performed in the EMU showed the aptitude
of a behind the-ear-EEG set-up with a sensitivity of 94.5%. In
order to allow for ultra-long term monitoring, with the goal to
create personalized seizure forecasting (34, 37–39), subcutaneous
wearable EEG devices are currently being developed (16). To
date, only one device has received approval for sale by the
regulatory authorities (52). For this purpose, Duun-Herniksen
et al. performed EMU-based clinical trials for safety and signal
quality in patients with epilepsy originating from the temporal
lobe (47, 48) and performed the first ultra-long-term home study
in a sample of eight patients. This real-life monitoring, for up to 3
months, was shown to be safe, well-tolerated by participants, and
technically feasible (37).

CLINICAL EVIDENCE

While there is strong evidence to prove the accuracy of non-
EEG wearables, the average time to detect a seizure has been
situated between 7.45 (90) and 83 s (91) from onset. Therefore,
until now the purpose of seizure companions has mostly found
applications such as alarm systems for SUDEP prevention, and
the optimization of seizure diaries. However, first studies have
been published that report having successfully developed seizure
forecasts based on extracerebral biosignals (76, 118). Phase
4 trials for subcutaneous EEG seizure prediction/forecasting
devices have yet to be performed (93). Consequently, clinical
evidence on the impact of wearable solutions is sparse, and has
so far, only been indirectly deduced from epidemiological data

reflecting mortality rates in unsupervised patients who do not
share a bedroom with another person and are found in prone
position following a GTCS (100).

USER EXPECTATIONS AND FIRST
EXPERIENCES WITH DEVICE
IMPLEMENTATION

Surveys have demonstrated the clinical relevance of seizure
detection, giving patients (22, 119, 120), as well as caregivers
and healthcare professionals (17–20, 22), the opportunity to
express their needs and wishes for wearable health companions.
Several studies have specifically addressed user feedback about
acceptable rates in both sensitivity and false alarms (19, 20,
120), finding that at minimum, patients desire both an accurate
detection/prediction rate > 90% and incorrect seizure triggering
of less than once per day. However, at present only the ACC
wristband and EMG patch have achieved this reliability ratio for
the detection of GTCS, whereas other available consumer devices
have not (121). One way to increase seizure recognition has been
to lower the threshold, although consequent higher false positive
rates exist, creating a challenge for software developers who must
then determine how best to tune their devices. For example if a
seizure is missed (false negative), this is considered more harmful
than incorrectly identifying it (false positive) (120). Furthermore,
in patients where seizure frequency is lower, false alarms were
more tolerable, as statistically they would occur only under
certain conditions. Nonetheless, interest in continuous real-time
monitoring and alarms has increased, especially in patients with
a high seizure frequency and concomitant risk of SUDEP (20),
where high rates of daily false alarms would become unbearable
for those most affected. Nonetheless, it was shown that a system
could possibly permit users to tune their sensitivity and false
positive rates (122), allowing to adjust for the patients’ individual
preferences of control, which might be quite different (123).

Regarding seizure forecasting, to date only one survey
has directly questioned patient and caretaker preferences,
finding that high accuracy and short forecasting windows
were favored over long-term, less precise ones (22). Broadly
speaking, forecasting has significant potential, as it covers
physiological parameters and time-frames of various length,
with the ability to provide predictive information of higher
complexity than a binary seizure detector (76). To outline future
applications of this methodology, further studying of end-user
requirements and focusing on user-centric development, are of
the utmost importance.

At present, several wearable companions have reached the
market. Preliminary studies have aimed to evaluate how patients
have implemented wearables in daily life, moving away from
assessing hypothetical tolerability and toward the evaluation of
hands-on device experiences. Major complaints have arisen such
as the disapproval of bulky designs, the presence of wires and/or
electrodes, and the necessity for adhesive material on the skin
(124), whereas those devices deemed comfortable had secure
fittings and discrete form factors (122). In general, patients
are “device-naïve” insomuch as they have not previously used
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wearables. Thus, an uncertainty exists as to whether user-
error could impact the implementation of a seizure detection
strategy, and consequently hinder further development efforts.
Depending on a device’s user interaction, its manipulation may
require sufficiently preserved executive function in order to learn
a sequence of procedures, such as pairing a sensor bracelet
to a mobile application. Furthermore, rapidly adapting to the
device when prompted, such as charging or even changing
the battery, could create obstacles for efficient use. Recently,
a study examining a wrist-worn device demonstrated that
only 50% of patients were able to fully and independently
control it, whilst others needed both appropriate support
and training, and a subgroup of patients (13.3%) required
constant supervision (123). In several devices, users have
identified constraints early on. For example, a phase 2 study
showed that 14% of patients consistently misplaced the EMG
patch (93), whereas another lost 54% of the patient samples
due to mishandling and data connection failures (100). Still
others found possible handling issues in real-world conditions,
leading to a 10% loss in device users during a phase 4
study (32).

Roadblocks such as these will specifically deter patients with
high seizure frequency rates, as cognitive impairment is increased
in the majority of these cases (125). In essence, difficulties
in usability risk hinder the effectiveness of these detection
and forecasting devices in patients with very active epilepsy, a
population subset which should be the ones who benefit most
from wearables with alarms.

CONCLUSION

Mobile health devices show promise for patients suffering
from epileptic seizures. However, before they can be widely
proposed, and/or medical insurance coverage can be assured,
several key efforts need to be solidified. When following

state-of-the-art research (92) and clinical practice guidelines
(10, 11), the overall recommendation is to perform robustly
designed clinical validation studies in EMUs, in addition to
real-life environment situations, to concretely demonstrate the
reliability of GTCS detection and quantification algorithms, as
well as other seizures types. Especially, since currently, mobile
health devices have only shown validity for the detection of
GTCS, and not for other seizure types. Furthermore, clinical
outcomes need to be assessed, including the decreased morbidity
and mortality associated with seizures and improvements in
quality of life. The future of wearable mobile health devices
related to epileptic seizure detection or forecastingmust continue
to focus on the advancement of adequate sensors, and their
development should emphasize user-centric methods prior to
products entering beta testing. At present, there is still a
gap between what seizure detection devices are capable of
measuring and the needs of patients. Specifically, prior to
the implementation of mobile health companions into real-
world situations, device developers should consider the clinical
characteristics of the patients themselves and directly assess
how digital health tools can directly benefit the management
of epilepsy.
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Epitel has developed Epilog, a miniature, wireless, wearable electroencephalography

(EEG) sensor. Four Epilog sensors are combined as part of Epitel’s Remote EEG

Monitoring platform (REMI) to create 10 channels of EEG for remote patient monitoring.

REMI is designed to provide comprehensive spatial EEG recordings that can be

administered by non-specialized medical personnel in any medical center. The purpose

of this study was to determine how accurate epileptologists are at remotely reviewing

Epilog sensor EEG in the 10-channel “REMI montage,” with and without seizure detection

support software. Three board certified epileptologists reviewed the REMI montage

from 20 subjects who wore four Epilog sensors for up to 5 days alongside traditional

video-EEG in the EMU, 10 of whom experienced a total of 24 focal-onset electrographic

seizures and 10 of whom experienced no seizures or epileptiform activity. Epileptologists

randomly reviewed the same datasets with and without clinical decision support

annotations from an automated seizure detection algorithm tuned to be highly sensitive.

Blinded consensus review of unannotated Epilog EEG in the REMI montage detected

people who were experiencing electrographic seizure activity with 90% sensitivity and

90% specificity. Consensus detection of individual focal onset seizures resulted in a

mean sensitivity of 61%, precision of 80%, and false detection rate (FDR) of 0.002

false positives per hour (FP/h) of data. With algorithm seizure detection annotations,

the consensus review mean sensitivity improved to 68% with a slight increase in FDR

(0.005 FP/h). As seizure detection software, the automated algorithm detected people

who were experiencing electrographic seizure activity with 100% sensitivity and 70%

specificity, and detected individual focal onset seizures with a mean sensitivity of 90%

and mean false alarm rate of 0.087 FP/h. This is the first study showing epileptologists’

ability to blindly review EEG from four Epilog sensors in the REMI montage, and the

results demonstrate the clinical potential to accurately identify patients experiencing

electrographic seizures. Additionally, the automated algorithm shows promise as clinical

decision support software to detect discrete electrographic seizures in individual records

as accurately as FDA-cleared predicates.
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INTRODUCTION

Epilepsy affects 1% of the population or ∼70 million people

worldwide (1). For people who are experiencing seizure-like

activity in their daily lives, the current acceptable method for
differential diagnosis requires a visit to an epilepsy monitoring

unit (EMU), for which there only exists∼245 Level III/IV centers
out of ∼6,200 hospitals across the U.S (2). Most commonly,
this requires a limited multi-day stay in the EMU where video
and high-channel-count wired electroencephalography (EEG)
are recorded (19+ EEG channels). A diagnosis of epilepsy is
determined only after epileptologist review of the video-EEG
record for electrographic epileptiform events and clinical seizure
activity. EMU visits require time away from home, potentially
large travel distances, can be very costly even with insurance,
require restricted movements due to the wired and tethered EEG
systems, and can be traumatizing (3, 4). During these limited
EMU stays, adults are commonly taken off their medications
with the intent to record seizures. It is common for some
people to feel overwhelmed by the entire process and leave early
without any recording of seizures or concrete diagnosis of a
seizure disorder (4). Additionally, many people do not have any
electrographic seizure activity during their EMU stay for various
reasons including the rarity of events that do not occur during a
limited EMU stay (3, 5).

Better electrographic seizure recordings and clinical decisions
could be made if the EEG was recorded at home in a person’s
normal daily environment (6). Ambulatory EEG systems (AEEG)
have been used by epileptologists for diagnostic purposes when
an in-EMU visit is not possible. The AEEG systems allow people
to wear the wired AEEG in their home environment, but have
substantial limitations including: the EEG electrodes must be
positioned and glued to the person’s scalp by a trained EEG
technician, the long wired tethers create obfuscating motion
artifacts in the EEG record especially during convulsive seizures
and other movements, the bulky system is restrictive which
prevents the person from many normal daily activities like
exercise or bathing, and the cumbersome system can be socially
stigmatizing if worn out in public (Figure 1) (7, 8). Sub-scalp
EEG systems, such as UNEEG’s SubQ (9) and EpiMinder’s
MinderTM (10) offer potential solutions for long-term, at-home
EEG recording, though they are invasive. A discreet, wireless,
easily applied, wearable EEG system would have the potential to
make home EEG recording more widely available, less restrictive,
and provide EEG with no wired tether artifacts that can obscure
the electrographic seizure activity.

To fill this need, Epitel has developed Epilog (Figure 2), a
miniature, wireless, wearable EEG sensor capable of recording
high-fidelity EEG throughout a person’s daily life. Epilog is
smaller than a cochlear implant, is designed to be aesthetically-
pleasing while worn on the scalp below the hairline, and allows
unrestricted mobility. The Epilog sensor records a single channel
of EEG through a differential electrode pair spaced 18mm
center-to-center, similar to high-density EEG (11). Because all
components are self-contained, Epilog data is less susceptible to
wired movement artifacts or antenna noise that plague wired
EEG systems. Epilog sensors are robust, water-resistant, and

FIGURE 1 | Typical wired ambulatory EEG (with permission from Kelly Falk).

FIGURE 2 | Epilog uses one-piece disposable “stickers,” that are both the

adhesive and conductive hydrogel that serve as the interface between Epilog

and the scalp when used below hairline.

designed to meet the rigorous needs of everyday use while
providing consistent recording performance.

Epitel has developed REMI R©, a Remote EEG Monitoring
platform. REMI is intended to be used in any clinical situation
where near real-time and/or remote EEG is warranted, using
four Epilog sensors placed bilaterally below the hairline on the
forehead and behind the ear, at the approximate F7/F8 and T5/T6
locations based on the standard International 10–20 system
(12). Epitel intends to extend the use of REMI for ambulatory,
outpatient EEG recordings, where any physician can prescribe
the system for a person suspected of seizures. Their patient
would wear the sensors for a specific prescribed duration with
no mobility restrictions in their normal daily lives. The EEG
data from the four Epilog sensors are directly uploaded to an
HIPAA-compliant database, converted into a 10-channel REMI
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montage that includes the four individual sensor recordings and
six sensor-to-sensor differential channels (herein referred to as
“REMI montage”). The REMI montage is accessible for review
by a remote epileptologist through REMI’s Persyst R© Mobile
interface. An example of a 30-s focal onset seizure evolving
to bilateral tonic-clonic recorded and presented in the REMI
montage can be seen in Figure 3.

Reviewing long duration EEG recordings can be a very time-
consuming processes for epileptologists and having more at-
home EEG recordings via wearable systems, such as REMI,
would likely become overly burdensome. Automated seizure
detection algorithms may be used as Clinical Decision Support
Software (CDSS), where the algorithm highlights specific time
periods in an EEG record when seizure activity is likely.
Epileptologists could use the markers to guide and speed up
their EEG review. A wide variety of signal processing and
machine learning algorithms have been studied for seizure
detection purposes (13–16). There are clinically cleared CDSS
that reduce the time required to review EEG in the hospital
with high sensitivity and low false detection rates (FDR) (17–
23). The most commonly used clinically-cleared software for
all types of seizure detection is Persyst R©. The Persyst 12
software is the most commonly cited predicate for scalp EEG
seizure detection software with a mean sensitivity of 81%
and FDR of 0.21 false detections per hour. However effective,
automated scalp EEG seizure detection software is currently only
clinically available for use on in-hospital, high-channel-count,
wired-EEG recordings.

To demonstrate feasibility for long-term ambulatory use of
REMI, it is necessary to first determine how accurate remote
epileptologist reviewers are at identifying spontaneous, recurrent,
electrographic seizures in the REMI montage, and if automated
algorithms can be used as CDSS to support expert review. With
this study, we hypothesize that (a) Epileptologists can accurately
detect focal-onset electrographic seizures in REMI montage data,
(b) Automated seizure detection algorithms can be used to
detect focal-onset electrographic seizures in REMI montage data
with sensitivity and false detection rate similar to FDA-cleared
predicates, and (c) Automated seizure detection algorithms can
be used as CDSS to guide epileptologist review without a loss
in performance.

METHODS

Electroencephalography was recorded by Epilog sensors
alongside standard-of-care 19-channel, full-montage, video-EEG
(herein referred to as “wired-EEG”) in adults during EMU stays
at the University of Colorado Anschutz Medical Center. The
subjects’ wired-EEG included a full array of 19 wired electrodes
in the standard International 10–20 system, including T1, T2,
and eye leads.

General Methods
All protocols were approved by the Institutional Review Board
of the University of Colorado. Adults entering the EMU for
long-term EEG evaluation were called prior to their appointment

FIGURE 3 | A 30-s recording from four Epilog sensors during a focal-onset seizure evolving to bilateral tonic-clonic (TP10 focal onset), displayed in the 10-channel

REMI montage.
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FIGURE 4 | Epilog sensor placement locations with the standard International

10–20 system as reference. For the forehead locations, LF is left-forehead

closest to F7, RF is right-forehead closest to F8, and the Epilog sensors were

placed as far from forehead/eye muscles as possible. For the behind-the-ear

locations, LE is behind left ear closest to T5, and RE is behind right ear closest

to T6, and the Epilog sensors were placed as high up as possible over the

mastoid while still being below the hairline, making sure placement was not

directly over the neck muscles.

to discuss the study objectives. Each subject was consented
in the EMU. Epilog sensors were placed by the trained study
coordinator after the full-montage wired-EEG electrodes were
affixed by an EEG technician. Each subject wore four Epilog
sensors, placed at scalp locations below the hairline on the
forehead and behind each ear, using an adhesive sticker with
embedded conductive hydrogel (see Figure 2 for hydrogel sticker
and see Figure 4 for sensor proximity to 10–20 locations). The
IRB approval allowed for up to 7 days of continuous EEG
recording. The Epilog sensor can be worn continuously for up
to 7 days in a normal EMU environment and required no daily
maintenance from the subject or medical staff. Routine video-
EEG review and associated seizure identification was part of the
standard patient care.

EEG Recordings
Epilog records a single channel of EEG through two gold
electrodes Ø6mm, spaced 18mm center-to-center, and data is
extracted from the sensor’s onboard memory into the European
Data Format Plus file type (EDF+). Epilog data were recorded
at 10-bit, 512Hz with an amplifier passband of 0.8–92Hz. The
full-scale signal amplitude was ± 175 µV. The Epilog sensor
uses a primary battery that supports continuous EEG recording
for 7 days without replacement or recharging. Video-EEG in the

EMUwas recorded with standard clinical equipment and settings
(Nihon Khoden Neurofax EEG-1200, 200 Hz sampling).

Workflow
The study coordinator working with the on-service epileptologist
pre-contacted all subjects, consented all subjects upon arrival,
placed each Epilog sensor after the EEG Technician had placed
wired-EEG electrodes (using training material provided by
Epitel), and managed the reporting and data retrieval. The Epilog
EEG and wired-EEG were time-synced using a sequence of “taps”
on both the Epilog sensor and the Fp1 wired-EEG electrode.
During standard-of-care video-EEG review, the epileptologist
determined the electrographic start and stop time for each seizure
event. The clinical data management specialist then uploaded
de-identified subject data and Epilog EEG records to a HIPAA-
compliant database. The EEG data from the four Epilog sensors
was converted into the 10-channel REMImontage (Figure 3) and
uploaded into a Persyst 14b server with Persyst Mobile access.

Automated Seizure Detection Algorithm
Prior to designing the algorithm for this study, Epitel began
developing a seizure detection algorithm for single-channel EEG
recorded with Epilog sensors. Epilog EEG data from patients at
clinical partner epilepsy centers were used to determine which
specific features, machine learning model types, and machine
learning model hyperparameters are most likely to yield the best
results for focal seizure detection in Epilog sensor EEG. This
was done using common grid search, feature importance, and
stratified k-folds cross-validation methods. This early analysis
can be considered the train-test data for feature and model
determination. The single-channel Epilog EEG data used in the
train-test design of the algorithm was from patients who did
not wear Epilog sensors at all four scalp locations as in this
present study. While the design of the single-channel algorithm
is ongoing, the preliminary knowledge supported the use of the
specific features and machine learning model and parameters
used in the present study.

EEG data is commonly separated into short, seconds-long
segments for seizure detection algorithms that use machine
learning (15, 16). The 10-channel REMI-montage data was
segmented into 2-s windows for scoring and feature extraction.
Data segments that occurred during known electrographic
seizure times were scored as “ictal” segments; segments that
occurred within 15min before and after known seizure times
were scored “near-ictal”; and all other segments were scored
“non-ictal.” The reasoning behind the “near-ictal” scoring is
that there was some pre-ictal evolution in the EEG prior to
the noted electrographic onset as well as some post-ictal EEG
activity that might confound a machine learning classifier. The
15-min “near-ictal” timing was chosen based on internal review
of the Epilog EEG data and knowledge that no known seizure
event timings were within <15min of each other. For each 2-
s segment, features were extracted in the time domain (e.g.,
variance), frequency domain (e.g., power in delta band), time-
frequency domain (e.g., wavelet convolutions), and complexity
domain (e.g., entropy). Because seizures are known to evolve over
time, historical information about each feature was determined as
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a weighted average of prior segments’ feature values and added to
the overall feature set. Cross-channel correlations for all features
were determined and added to the overall feature set for each
2-s segment.

For each of the 20 subjects, a training feature set was created
by combining the segmented and scored features from all other
19 subjects, essentially a leave-one-out method that occurs 20
independent times. The ratio of non-ictal to ictal data was quite
high, even for those who experienced seizures, which would
bias any machine learning classifier. Thus, the training set was
reduced to keep all of the ictal segments and randomly chosen
non-ictal segments in a 3:1 non-ictal:ictal ratio. No “near-ictal”
segments were included in the training set. A random forest
machine learning classifier was trained using an ensemble of
500 trees, where bootstrapping (sample with replacement) was
allowed, and trees were extended to full splits. The trained
classifier was then applied to the held-out subject’s complete
feature set including “near-ictal” segments, and an ictal class
likelihood was determined for each 2-s segment.

In most literature, this is when a threshold is applied to
classify each segment as ictal or not, and metrics such as receiver
operating characteristic curve area-under-the-curve or F1-score
can be determined to see how well the classifier performed in
out-of-sample segmented data. For seizure detection, this is not
enough, as what is necessary is whole seizure start and stop times,
where a complete seizure can be between 10 s and 15min in
duration. This has been demonstrated in some recent literature
using the classifier likelihood output and an integrate-and-fire
neuron (24). For our algorithm, a leaky, weighted integrator
was applied to the classifier likelihood output. Using a fixed
threshold for all subjects, when the integrated ictal likelihood
went above the threshold for five continuous segments (10 s), a
seizure start marker was set. The exact time point of the start
marker was set based on the start time of the first segment
above threshold and accounted for the duration of the integrator.
Similarly, when the integrated ictal likelihood went below the
threshold for five continuous segments, a seizure stop marker
was set. This threshold was set low so that the sensitivity of the
machine learning algorithmwould be high (≥90% on the training
data) at the expense of a possibly high FDR. Some additional
processing was done on these whole-seizure detection events:
(1) Any events that occurred within 2min of each other were
concatenated into a single event, and (2) After the concatenation,
any event that lasted longer than 15min was discarded. The
sensitivity, precision, and FDR of the automated algorithm were
determined for each of the 20 subjects, where a true positive (TP)
event occurs if there is any overlap between the known the seizure
electrographic onset/offset time and the algorithm determined
one (25). For TP events, the percent of overlap was determined as
the amount of time of the known seizure event that the detection
event encompassed.

Blinded Expert Review With Persyst Mobile
Three independent, board certified epileptologists not affiliated
with University of Colorado Anschutz Medical Center, and who
have never reviewed Epilog EEG in the REMI montage before,
were recruited for this study. Each epileptologist was provided

the REMI montage from 40 subjects who wore four Epilog
sensors, to remotely review through Persyst Mobile. The 40
records consisted of randomized data from: (a) unannotated EEG
from 10 subjects who had focal-onset electrographic seizures
during their EMU stay, (b) unannotated EEG from 10 subjects
who had no electrographic seizures or epileptiform activity
during their EMU stay, (c) algorithm-determined seizure-
detection start/stop annotated EEG from the same 10 subjects
who had focal-onset electrographic seizures during their EMU
stay, and (d) algorithm-determined seizure-detection start/stop
annotated EEG from the same 10 subjects who had no
electrographic epileptiform activity during their EMU stay. The
epileptologists were blinded to (a) how many of the 40 subjects
were known to have seizures, (b) that the same 20 subjects’
EEG was the data that was processed to create the algorithm-
determined annotated EEG, and (c) the randomized order that
the data was presented in. There were no algorithm-determined
seizure events for some of the 10 subjects who did not have
electrographic activity, and thus no annotations in the EEG
record. Because of this, the 20 EEG records where automated
seizure detection was applied were noted in their subject ID with
“ML,” visible in Persyst Mobile. As far as the epileptologists knew,
there were 40 independent data sets, some of which contained
focal-onset seizures, and 20 of which had CDSS algorithm-
determined events annotated.

The epileptologists were asked to review the non-ML records
in their entirety and annotate any sections of the EEG data that
they believed to be indicative of electrographic seizure activity.
The epileptologists were also asked to review the algorithm-
annotated records and annotate electrographic seizure activity,
using the algorithm-determined events as CDSS. The reviewers
were told that these records were processed with an automated
seizure-detection algorithm that was tuned so that the sensitivity
would be high across all subjects with possibly high FDR. The
reviewers were told to use their judgement as to how much
they relied on the algorithm annotations or lack thereof. A
majority consensus (best 2 out of 3) was used due to the well-
known inter-rater variability in blinded EEG review, even among
expert neurologists (26). Sensitivity, precision, and FDR [false
positives per hour (FP/h)] were determined for each subject
for both algorithm-annotated and unannotated records, using
the “any-overlap” method discussed earlier. For TP events, the
percent of overlap was determined using the method previously
discussed. For all known seizure times, the inter-rater reliability
was measured with Cohen’s Kappa for pair-wise reviewers and
Fleiss’ Kappa for group reliability.

RESULTS

As part of a larger study, a total of 40 adult subjects (ages 18–
64) were enrolled, and 22 (55%) had at least one seizure in the
EMU. For this specific piece of the study, data from 20 subjects
(ages 18–64) were used: 10 subjects who had focal-onset seizures
as classified according to ILAE (27) and 10 subjects who were
determined to have no seizure events or epileptiform activity in
their wired-EEG (Figure 5). A total of 24 focal onset seizures were
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FIGURE 5 | Complete subject demographics and results. Subjects in light green are those that had focal-onset seizures during their EMU stay. “Naive Review” results

are consensus epileptologist review of the REMI montage without algorithm-detection annotations. “Review with CDSS” results are consensus epileptologist review

with algorithm-detection annotations. “Algorithm” results are for the REMI automated seizure detection algorithm. TP, true positive; FN, false negative; FP, false

positive; FDR, false detection rate; BL TC, bilateral tonic-clonic.

recorded in the 10 subjects (min 1, mean 2.4, median 2, max 6).
The 20 subjects had EMU stays between 0.5 and 5 days (mean
of 2.2 days). Figure 5 details the demographics and results for
all subjects. Table 1 is a summary of sensitivity, precision, and
FDR. Table 2 is a summary of the inter-rater reliability. Table 3
is a summary of the results based on seizure type. Table 4 is a
summary of the overlap between known seizures and reviewer-
and algorithm-detected TP seizures.

Blinded Consensus Epileptologist Review

of Unannotated Data
The consensus review identified at least one electrographic
seizure for 9 out of the 10 subjects who had known
electrographic seizures during their EMU stay (90% Sensitivity)
and identified no false events for 9 out of the 10 subjects who
had no electrographic seizures during their EMU stay (90%
Specificity). Consensus detection of individual electrographic
seizures resulted in a mean sensitivity of 61% across the 10
subjects (100% for 5 out of 10 subjects, Figure 5—Naive Review,
Figure 6—unfilled blue star, Table 1). The range of the per-
reviewer mean sensitivity was 57–73% (Table 1; Figure 6—
unfilled green markers). The consensus mean precision, or
positive predictive value (PPV), was 80% across all subjects, with
a per-reviewer mean PPV range of 58–78%. The consensus mean
FDR was 0.002 FP/h of data, with a per-reviewer mean FDR

TABLE 1 | Summary of sensitivity, precision, and false detection rate results.

Reader Sensitivity Precision False detection rate

% ± SD [range] % ± SD [range] FP/h ± SD [range]

R1—Naive 58 ± 46 [0–100] 75 ± 42 [0–100] 0.006 ± 0.016 [0.0–0.062]

R2—Naive 57 ± 47 [0–100] 58 ± 47 [0–100] 0.031 ± 0.044 [0.0–0.109]

R3—Naive 73 ± 40 [0–100] 78 ± 37 [0–100] 0.006 ± 0.013 [0.0–0.038]

Consensus—

Naive

61 ± 42 [0–100] 80 ± 35 [0–100] 0.002 ± 0.007 [0.0–0.026]

R1—CDSS 58 ± 47 [0–100] 70 ± 48 [0–100] 0.007 ± 0.019 [0.0–0.076]

R2—CDSS 53 ± 50 [0–100] 42 ± 44 [0–100] 0.020 ± 0.054 [0.0–0.244]

R3—CDSS 75 ± 41 [0–100] 73 ± 37 [0–100] 0.010 ± 0.020 [0.0–0.072]

Consensus—

CDSS

68 ± 43 [0–100] 73 ± 44 [0–100] 0.005 ± 0.012 [0.0–0.040]

Algorithm 90 ± 22 [33–100] 60 ± 38 [6–100] 0.087 ± 0.238 [0.0–1.069]

Naïve results are for epileptologist review without algorithm detection support. CDSS

results are for epileptologist review with algorithm detection support. Algorithm results

are for the REMI automated seizure detection algorithm (SD, standard deviation; FP,

false positive).

range of 0.006–0.031 FP/h. The inter-rater reliability (Table 2)
ranged from 0.52 (moderate) to 0.71 (good) for the pair-wise
comparison as measured with Cohen’s Kappa statistic and 0.59
(moderate) for the group as measured with Fleiss’ Kappa statistic.
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TABLE 2 | Inter-rater reliability for known seizure events.

Naive CDSS

R1 vs. R2 0.71 0.44

R1 vs. R3 0.59 0.53

R2 vs. R3 0.52 0.53

Group 0.59 0.49

The values shown are Cohen’s Kappa statistic for pair-wise (e.g., Reviewer R1 vs.

Reviewer R2) and Fleiss’ Kappa statistic for the group.

TABLE 3 | Electrographic seizures ending in a convulsion (convulsive) vs. seizures

that did not end in a clinical convulsion (non-convulsive).

Naive review Review with CDSS Algorithm

Consensus All 3 Consensus All 3

TP FN TP FN TP FN TP FN TP FN

Conv. 8 5 6 2 6 8

Non-conv. 3 13 10 3 13 11 13 3

The Consensus review is best 2 out of 3 and the “All 3” is when all three reviewers agree.

The consensus, all three reviewers, and the algorithm all performed better for detecting

seizures that ended in a convulsion. TP, true positive; FN, false negative.

TABLE 4 | Percent of overlap between known seizures and true positive events

marked by reviewers and the automated algorithm.

Min Max Mean SD

R1—Naive 43 96 80.8 17.3

R2—Naive 54 100 83.5 18.2

R3—Naive 48 100 86.1 15.6

R1—CDSS 64 100 87.2 11.9

R2—CDSS 63 100 90.6 12.5

R3—CDSS 49 100 85.1 15.4

Algorithm 44 100 92.1 13.8

SD, standard deviation.

The consensus review was able to accurately mark 8 out of 8 focal
onset seizures that ended in a clinical convulsion (Type IA1—
Focal Aware w/Motor and Type IC—Focal Evolving to Bilateral
Tonic Clonic) with all three reviewers marking 5 of 8 (Table 3).
The minimum overlap between known seizures and TP reviewer
determined events ranged from 43 to 54%, with means ranging
80.8–86.1% (Table 4).

Blinded Consensus Epileptologist Review

With Algorithm-Detection as CDSS
When the reviewers were provided algorithm seizure-detection
annotations in the EEG record as CDSS, the consensus review
identified at least one electrographic seizure for 8 out of the
10 subjects who had known electrographic seizures during their
EMU stay (80% Sensitivity) and identified no false events for
8 out of the 10 subjects who had no electrographic seizures
during their EMU stay (80% Specificity). The mean sensitivity

FIGURE 6 | Sensitivity vs. false detection rate. The sensitivity (%) and false

detection rate (FDR—FP/h) are shown for the individual reviewers [green x

(R1), square (R2), and circle (R3)], the consensus review (blue star), and the

automated algorithm (black diamond). The unfilled markers denote the naive

epileptologist review and the filled markers denote review with automated

algorithm annotations as clinical decision support software (CDSS). Reviewers

R1 (green x), R3 (green circle), and the consensus (blue star) showed improved

sensitivity with CDSS at the expense of a higher FDR, while reviewer R2 (green

square) had a reduced sensitivity and FDR with CDSS. The REMI automated

seizure detection algorithm (black diamond) had a higher sensitivity than any

one reviewer or consensus, with a higher false detection rate. The error bars

are 95% confidence intervals using a bias-corrected and accelerated method

(BCa, N = 1,000).

for consensus detection of individual electrographic seizures
improved to 68% across the 10 subjects (100% for 6 out of 10
subjects, Figure 5—Reviewwith CDSS, Figure 6—filled blue star;
Table 1). The range of the per-reviewer mean sensitivity was 53–
75% (Table 1; Figure 6—filled green markers). The consensus
mean precision (PPV) was reduced to 73% across all 20 subjects,
with a per-reviewer mean PPV range of 42–73%. The consensus
mean FDR increased to 0.005 FP/h, with a per-reviewer mean
FDR range of 0.007–0.020 FP/h. The inter-rater reliability was
reduced (Table 2) and ranged from 0.44 (moderate) to 0.53
(moderate) for the pair-wise comparison as measured with
Cohen’s Kappa statistic and 0.49 (moderate) for the group as
measured with Fleiss’ Kappa statistic. The consensus review
accurately marked 6 out of 8 focal onset seizures that ended
in a clinical convulsion (Type IA1—Focal Aware with Motor
and Type IC—Focal Evolving to Bilateral Tonic Clonic) with
all three reviewers marking 6 of 8 (Table 3). The minimum
overlap between known seizures and TP reviewer determined
events ranged from 49 to 64%, with means ranging 85.1–90.6%
(Table 4).

Automated Seizure Detection
Epitel’s automated seizure detection algorithm was able to detect
21 of 24 known focal-onset seizures (out-of-sample), providing a
mean sensitivity of 90% across all subjects (100% for 8 out of 10
subjects, Figure 5—Algorithm, Figure 6—filled black diamond;
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Table 1). The three missed events were all Type IB—Focal Onset
with Impaired Awareness (Table 3). The mean precision (PPV)
of the algorithm was 60% and the mean FDR was 0.087 FP/h
across all subjects. The FDR was 0.22 FP/h for subjects who had
electrographic seizures during their EMU stay and 0.04 FP/h for
subjects who did not have seizures. Subject #6 had an outlier
FDR of 1.07 FP/h (99 false detections during the 93-h EMU
stay), while the maximum FDR for all others was 0.17 FP/h.
The algorithm mean sensitivity was higher than any individual
reviewer or consensus review, with or without CDSS, but with a
higher FDR (Figure 6). The algorithm detected at least one TP
seizure event for all 10 subjects who had electrographic seizures
(100% sensitivity) and detected no false positives (FP) for 7 of the
10 subjects who had no seizures (70% specificity). The number
of FP and FDR for the other three non-seizure subjects was
one event, 0.02 FP/h (ID #3), 16 events, 0.17 FP/h (ID #9), and
three events, 0.11 FP/h (ID #17). The minimum overlap between
known seizures and TP algorithm-determined events was 44%
with a mean of 92.1% (Table 4).

DISCUSSION

This study sought to answer if epileptologists could accurately
detect focal-onset electrographic seizures with a remote,
wireless, reduced-channel EEG system, and whether automated
algorithms could assist with that task.

Blinded Epileptologist Review of

Unannotated Data
This is the first study to analyze epileptologists ability to
blindly review remote EEG data from four Epilog sensors in
the 10-channel REMI montage. There are only a few studies
assessing the performance of individual reviewers and consensus
review for blind seizure identification in EEG. In a large ICU
study using standard clinical wired-EEG, Tu et al. reported a
consensus sensitivity of 75% and individual reviewer FDR of
0.085 FP/h (26). Other studies have shown individual reviewer
sensitivities between 70 and 85% with FDR between 0.016
and 0.043 FP/h (20). Epileptologists are trained on, and are
most commonly experienced with, reviewing 19+ channels
of video-EEG in multi-channel montages. Therefore, it is not
surprising that they might have some difficulty with the 10-
channel REMI montage, especially on their first experience.
With no prior training or experience with Epilog EEG in the
REMI montage, the reviewer consensus successfully achieved a
sensitivity of 61%, precision (PPV) of 80%, and FDR of 0.002
FP/h for identifying spontaneous recurrent electrographic focal-
onset seizures (Figure 6; Table 1). As might be expected, the
reviewers were very conservative in marking seizures, including
a very low FDR when compared to prior studies. While the
reviewers had difficulty determining focal-onset seizures that
did not result in a clinical convulsion, they were very good at
detecting events that did end in a clinical convulsion where the
consensus review found all eight events with all three reviewers
finding 5 of the 8 (Table 3). The overlap between known seizure

timings and reviewer-determined events was generally high, with
means above 80% (Table 4).

Blinded Epileptologist Review With CDSS

Annotations
The reviewers were also provided with randomized copies of
the REMI montage records with annotations of seizure event
markers determined by an automated algorithm with high
sensitivity. The consensus review improved from 61 to 68% on
these records, with a slight increase in FDR (0.005 FP/h up from
0.002 FP/h) (Table 1).While the results are an improvement, they
are not statistically different (Figure 6). The reviewers were only
told that the algorithm had a high sensitivity with a possible high
FDR, but not what the exact values would be, and no training
was provided on how to use the algorithm event annotations as
CDSS. During a post-analysis debrief, the reviewers mentioned
they evaluated the EEG in its entirety and then checked their
review against the algorithm-detected events for overlap. The
reviewers felt the algorithm “overcalled” events. There were a
high number of algorithm-detected FPs for three subjects (4,
6, and 9). Two of the four TP markers and none of the 16
FP markers for Subject 4 were noted by the consensus review,
an improvement of 1 TP over blind review without algorithm-
annotations (Figure 5). None of the 16 FP markers for Subject
9 were noted by the consensus review. None of the 6 TP or 99
FP markers for Subject 6 were noted by the consensus review,
though one of the true events was found by consensus in the EEG
record without algorithm-determined markers. Only one of the
131 FP markers for these subjects was noted as an electrographic
seizure by just one of the reviewers overall. It’s possible that the
large number of algorithm-annotation markers for these subjects
led to a disbelief by the reviewers that any of these markers were
valid. It is well-known since Aesop that credibility of a detection
system is intricately intertwined with sensitivity and false alarms.
Effectiveness of the system depends on this credibility. Yet,
each false alarm reduces credibility that in turn affects response
to future alarms, known as the false alarm effect (28), or the
“cry wolf effect.” Paradoxically, the more sensitive a system, the
greater the credibility of the system is affected by the false alarm
effect due to the false alarm rate. Furthermore, as the credibility
of the system is reduced by the false alarm effect, the credibility
of the danger simultaneously increases. This is especially the case
for sparse events, such as low seizure rates.

The intended benefit of automated algorithm detections as
CDSS is to reduce the time it takes an epileptologist to review
long-duration recordings while improving the sensitivity for
finding relevant electrographic seizures. It is possible and likely
that, with epileptologist experience and trust in the algorithm,
CDSS could reduce the time it takes to review the REMImontage,
as well as improve the sensitivity for detecting electrographic
seizure events.

Automated Seizure Detection Software
The results show that the automated algorithm can detect discrete
focal-onset seizures in the REMImontage with a mean sensitivity
of 90% and mean FDR of 0.087 FP/h across all subjects, on
par with the Persyst P12 predicate of 81% sensitivity and FDR
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of 0.21 FP/h. There are a wide variety of commercially- and
clinically-available software for EEG seizure detection. The most
widely used software is Persyst and their P12 software is the
most common benchmark for predicate comparison. Persyst
has FDA-clearance for their most recent P13 and P14 seizure
detection software, where the most notable difference is in the
FDR. Recent studies have shown the P13 algorithm to have
similar sensitivity to the P12 clearance, but higher FDR [0.5 FP/h
in Scheuer et al. (20) and 0.9 FP/h in Koren et al. (18)]. The very
recently released P14 seizure detection software has been shown
to again have similar sensitivity to both P12 and P13, but with a
much reduced FDR [0.04 FP/h, Scheuer et al. (20)]. Other FDA-
cleared EEG seizure detection software show similar performance
characteristics to the predicate P12 software, including the Nihon
Kohden QP-160AK with 77% sensitivity and 0.45 FP/h (22) and
Encevis [75% sensitivity and 0.29 FP/h in USFDA (23) and 78%
sensitivity and 0.2 FP/h in Koren et al. (18)]. The sensitivity and
FDR of the REMI automated algorithm outperforms the P12
predicate characteristics and remains on par with the best results
of the other clinical EEG seizure detectors. The overlap between
known seizure timings and algorithm-determined events was
generally very high, with 92.1% mean overlap (Table 4).

The automated algorithm missed three known seizure events,
all Type IB—Focal with Impaired Awareness (one for Subject #11
and two for Subject #20). For Subject #11, the one missed event
occurred because the integrated ictal likelihood never crossed the
seizure event threshold during the known seizure event timing.
While there was a spike in the integrated ictal likelihood at this
time, the threshold would have to be lowered by∼3% for an event
to be detected at the known event time, though this would lead
to a much higher FDR across all subjects. For Subject #20 it is
more difficult to speculate why the two events were missed. A few
possible reasons exist in that both events were short in duration
(<30 s) and both events were noted in the clinician notes and
wired-EEG to have strong motor content and some of this was
picked up in the Epilog sensor EEG, especially in the sensor
located at the right forehead. Thus, the duration of electrographic
signal in the REMI montage may have been very short compared
to movement-related artifact. None of the individual blinded
reviewers noted seizures at the time of these three events.

Subjects 4, 6, and 9 can be considered outliers based on
their much higher rate of FP when compared to the other 17
subjects. This is especially evident for the 99 FP found by the
automated algorithm for Subject #6. Subjects 4 and 6 were known
to have focal-onset seizures with impaired awareness, both with
right hemisphere and mainly temporal localization. While not
shown here, some of the algorithm-detected FP events for these
subjects look very similar to known true events in evolution and
localization. In the clinical notes, subject 6 was noted to have
“several seizures many of which were subclinical and short in
duration.” Six of these events occurred while the subject was
wearing Epilog sensors and the subject had an additional five
events outside the timeframe when the Epilog sensors were worn.
It is possible that some or many of the FP events were short
duration subclinical events that did not reach the initial expert
reviewer’s definition of a seizure and were not included in the
seizure report. For Subject 9, whose wired-EEG “did not show

any abnormalities,” there were a couple of FP events that look
similar to known seizure events in other subjects, but most of
the 16 FP events appear to be because one or more of the Epilog
sensors were recording data with poor signal quality for unknown
reasons (see channels TP9 and TP10 in Figure 7).

There are a number of ways that the REMI automated
algorithm can be improved. A larger training data set will
improve any bias or variance that the small data set used here
contained. Larger training data sets can be created by enrolling
more subjects in future studies as well as using data augmentation
methods on current training data. Artifact rejection (e.g.,
muscular EMG contamination) and poor signal quality rejection
can be added to the detection algorithm to improve the training
data ground truths and seizure detection FDR.

Ruling-In Electrographic Seizures
It is very common for someone to have no epileptic events
during their EMU stay, simply because their epileptiform activity
is rare and may not occur during a brief EMU stay. Of note
are people who experience psychogenic non-epileptic seizures
(PNES) that account for ∼25% of all patients who enter the
EMU (29). One potential application of REMI would be home
monitoring for people experiencing seizures before an EMU visit
and diagnosis. In this system, a person could wear Epilog sensors
as part of REMI for long durations during their normal daily lives
where the data could be remotely analyzed for electrographic
seizures. This could help as an early mechanism to provide a
better understanding of a patient’s EEG before a costly, time-
consuming, and possibly unnecessary visit to an EMU. If an EMU
stay is warranted, REMI could be used to establish chronicity to
an individual patient’s electrographic events such that scheduling
of the EMU stay could coincide with a higher probability of
having a seizure (30, 31). When looking at their ability to rule-
in subjects who experience electrographic seizures, the consensus
review noted at least one TP seizure event for 9 out of the 10
subjects who had a known seizure event in their record (90%
sensitivity). Similarly, the consensus review noted no events for
9 out of the 10 subjects who did not have any noted events
in their record (90% specificity). The automated algorithm was
tuned for high sensitivity and detected at least one true seizure
event for all 10 known seizure subjects (100% sensitivity) and
did not detect any false events for 7 of the 10 subjects that did
not experience any seizures (70% specificity). For those who are
experiencing very sparse epileptiform events, having an at-home,
longer-duration EEG recording (as may be provided by REMI),
would allow for more efficient and cost-effective electrographic
diagnostics to rule them in for electrographic seizures.

LIMITATIONS

This study was limited to EEG seizure data only from subjects
who had focal-onset seizures. Focal-onset seizures (ILAE Type
I) account for ∼56% of all seizure types (32). Because focal-
onset seizures may only show electrographic seizure activity
in a very small region of the brain, their EEG correlates may
not be captured by reduced-channel EEG systems, though
some of these seizures evolve into bilateral tonic-clonic events
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FIGURE 7 | Poor signal quality is shown for the Tp9 and Tp10 Epilog sensors on Subject #9 during a false positive algorithm detection event.

where the electrographic activity becomes generalized across
most regions of the brain (17% in this study). REMI is
limited to four Epilog sensor placements (eight electrodes) on
the scalp below the hairline, bilaterally on the forehead and
behind each ear. The current clinical practice of high-channel-
count wired electrodes is done to ensure complete spatial
coverage of all brain regions and increase the likelihood of
being able to differentiate very focalized epileptiform activity.
The International Federation of Clinical Neurophysiology has
recently recommended a minimum of 25 electrodes and up
to 256 if necessary, in both adults and children (33), whereas
the American Clinical Neurophysiology Society recommends a
minimum of 16 channels (34). REMI does not have the spatial
coverage of high-channel count systems and therefore may not
be appropriate for seizure onset zone localization. However, EEG
recorded from these four locations have been shown to detect
100% of electrographic seizures of both focal and generalized
onset (35) due to volume conduction. The REMI montage may
be useful for long-term seizure detection and chronicity. It will be
important to show that both expert review of the REMI montage
and use of detection algorithms can provide electrographic
seizure detection in a broader range of seizure types, including
those that have a generalized-onset.

Perhaps the greatest limitation of this study was that none
of these reviewers had ever seen or reviewed Epilog EEG in
the 10-channel REMI montage in the past, and longer-term
experience and/or trainingmay improve results. There were a few
FP found and false negatives missed by all three reviewers and the
automated algorithm. Epileptologists are trained to review video-
EEG from EMU patients for the purpose of diagnosing seizure
disorders. While these experts are well-trained at reviewing EEG,
they can miss some seizures during standard waveform review
(26, 36). In most studies on seizure detection, three or more
expert reviewers are often relied upon to determine a consensus
“ground truth” set of seizure events in the EEG record, and this
was not done for the wired-EEG in this study. It may have been
advantageous to review the wired-EEG for the FP found and false
negatives missed here by the detection algorithm and blinded
reviewers. However, EMUs do not typically keep complete wired-
EEG records for more than a few months due to their large file
size and storage limitations, and the complete wired-EEG records
for these subjects were no longer available during this analysis.

There were only a limited number of subjects (20) and seizure
events (24) used in this study. Better statistical power would be
achieved through a much larger dataset. The long-term intent for
the REMI system is for use in a person’s everyday environment,
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yet the data studied here was collected only in the EMU, where
subjects and the environment are very controlled. It will be
necessary to show that the accuracy of review and software
remains consistent in EEG recorded with REMI during a person’s
normal daily life.

The preferred method for this type of study would be to
have a single, locked algorithm that was previously trained on a
large independent data set, and then validated on all 20 of the
patient’s data included here. The EEG used in this study are the
only data sets currently available where patients wore four Epilog
sensors concurrently. Thus, the only way to train the automated
algorithm was to use the largest data set available, which for each
of the 20 patients was the independent data from all other 19
patients. A four-fold validation scheme was initially considered,
instead of the 20-fold validation done here, where randomized
data from five patients is held out of training, the training data
would come from the remaining 15 patients, and then a single
algorithm would be validated on five independent patient’s data.
The decision was made to not do this because it is possible and
likely that a large number of seizure events would be held-out
from one or more of the four-folds, likely making that fold’s
algorithm ineffective. Future work will include a single, locked
algorithm trained on a large data set, and then validated on a
separate set of multiple independent patients. It can be expected
that those results would fall somewhere in the range of results
described herein.

FUTURE WORK

There are multiple ongoing and planned studies to continue
the work described herein. Most importantly, a broader set of
data encompassing all seizure types is currently being collected
through collaboration with multiple clinical centers. This will
allow a more rigorous analysis of which seizure types can
be accurately reviewed from Epilog sensor EEG in the REMI
montage. Collection and storage of the complete wired-EEG is
a key part of these ongoing studies, so that any FP can be re-
reviewed later from the wired record. The automated seizure-
detection algorithm development is ongoing and future work
involves expansion for all seizure types and any intricacies that
their differences entail (e.g., absence seizures are very different
in evolution and duration and how the algorithm handles these
requires more complexity). Because Epilog sensor data can be
captured over long durations, it will be critical to determine how
long it takes for an epileptologist to blindly review the data, and
if automated algorithm-detection annotations can reduce that
time without affecting performance. Future studies will compare
the automated algorithm performance on the REMI montage
with FDA-cleared detection software that will be run on the
simultaneously acquired wired-EEG. The Epilog sensors used
in this study are intended as single-use, and the current study
allowed for up to 7 days of Epilog sensor wear in the EMU.
The ambulatory version of the Epilog sensor uses a rechargeable
battery that is designed to be recharged once daily. A person
would have multiple Epilog sensors, allowing them continuous
EEG recording throughout their daily life. There are upcoming

studies where Epilog sensors will be worn alongside AEEG
systems in home environments to demonstrate the intended
effectiveness of REMI for use in a person’s normal daily life.
Additionally, there are upcoming studies were Epilog sensors will
be worn for months in the home environment to demonstrate the
intended long-term effectiveness with a rechargeable version of
the sensors.

CONCLUSION

Epileptologists, without any REMI training or prior experience,
reviewed EEG from just four Epilog sensors in the 10-channel
REMI montage and accurately ruled-in subjects experiencing
focal onset electrographic seizures with 90% sensitivity and
90% specificity. Consensus detection of individual spontaneous
recurrent focal-onset seizures resulted in a mean sensitivity
of 61% and mean FDR of 0.002 FP/h. Automated seizure
detection algorithms used as Clinical Decision Support Software
improved this sensitivity to 68% with little change to FDR (0.005
FP/h). The automated algorithm accurately ruled-in subjects
experiencing electrographic seizures with 100% sensitivity and
70% specificity, and detected individual seizures with a very
high mean sensitivity of 90% and low mean FDR of 0.087
FP/h, on par with current FDA-cleared software. Blinded
epileptologist and automated algorithm review of the REMI
montage showed strong potential to delineate patients who
experience electrographic seizures. Such a system, when used in
a person’s everyday environment, could reduce the burden on
EMUs to only those who truly need a differential diagnosis of a
seizure disorder. Remote EEG systems and support software, as
demonstrated here, will be critical to providing seizure diagnostic
services to people in their normal daily lives, no matter where
they live.
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Introduction: Precise localization of the epileptogenic zone is very essential for the

success of epilepsy surgery. Epileptogenicity index (EI) computationally estimates

epileptogenicity of brain structures based on the temporal domain parameters and

magnitude of ictal discharges. This method works well in cases of mesial temporal

lobe epilepsy but it showed reduced accuracy in neocortical epilepsy. To overcome this

scenario, in this study, we propose Epileptogenicity Rank (ER), a modified method of

EI for quantifying epileptogenicity, that is based on spatio-temporal properties of Stereo

EEG (SEEG).

Methods: Energy ratio during ictal discharges, the time of involvement and Euclidean

distance between brain structures were used to compute the ER. Retrospectively, we

localized the EZ for 33 patients (9 for mesial-temporal lobe epilepsy and 24 for neocortical

epilepsy) using post op MRI and Engel 1 surgical outcome at a mean of 40.9 months

and then optimized the ER in this group.

Results: Epileptic network estimation based on ER successfully differentiated brain

regions involved in the seizure onset from the propagation network. ER was calculated

at multiple thresholds leading to an optimum value that differentiated the seizure onset

from the propagation network. We observed that ER < 7.1 could localize the EZ in

neocortical epilepsy with a sensitivity of 94.6% and specificity of 98.3% and ER < 7.3

in mesial temporal lobe epilepsy with a sensitivity of 95% and specificity of 98%. In non-

seizure-free patients, the EZ localization based on ER pointed to brain area beyond the

cortical resections.

Significance: Methods like ER can improve the accuracy of EZ localization for brain

resection and increase the precision of minimally invasive surgery techniques (radio-

frequency or laser ablation) by identifying the epileptic hubs where the lesion is extensive

or in nonlesional cases. For inclusivity with other clinical applications, this ER method has

to be studied in more patients.

Keywords: epileptogenicity, SEEG, epileptogenicity rank, intracranial EEG (iEEG), stereo EEG
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HIGHLIGHTS

- Epileptogenicity Rank (ER) is a modified method of
Epileptogenicity Index (EI) for quantifying epileptogenicity of
brain structures in epilepsy patients.

- The ER method employs temporal and spatial properties
of intracranial Stereo EEG (SEEG) to localize the
epileptogenic zone.

- In neocortical epilepsy, the ER method has higher EZ
localization accuracy than the epileptogenicity index method.

INTRODUCTION

According to Lüders, the epileptogenic zone (EZ) is the
minimum amount of brain area that requires to be resected to
render the patient seizure-free (1). It is approximated by the
various zones, with the irritative zone almost always significantly
larger than the EZ (2). Precise localization of the EZ is always the
major challenge in epilepsy surgery (3). The presurgical workup
involves various evaluations including EEG, MRI, PET, SPECT,
ESI and MEG that study the electrical, structural and functional
abnormalities in the patient brain (4). The recommendation from
presurgical evaluation brings a possible hypothesis about the
seizure onset and propagation zone. To prove this hypothesis
of epileptogenic zone, especially in non-lesional, multilesional or
other difficult cases, intracranial stereo EEG (SEEG) electrodes
are guided to the suspected brain areas to record the local
brain activity during interictal to ictal transition (5–7). SEEGs
are reviewed at various intervals, including interictal, preictal,
and interictal to ictal transition states to localize the EZ. The
visual analysis of SEEG during interictal to ictal transition mainly
depends on the spatio-temporal domain-based localization of
ictal onset. However, the visual analysis of SEEG in neocortical
seizures is extremely difficult due to rapid propagation of
ictal discharges facilitated by dense intralobar and interlobar
connectivity (8).

Themajor challenge in localizing the EZ from SEEG recording
is the precise detection of ictal onset patterns (frequency
change) and spatio-temporal separation of seizure onset zone
from the propagation. Seizure onset in SEEG recordings is
characterized by any of the following patterns (1) low-voltage
fast activity (LVFA), (2) preictal spiking with rhythmic spikes
of low frequency followed by LVFA, (3) burst of polyspikes
of high frequency and amplitude followed by LVFA, (4) slow
wave or baseline shift followed by LVFA, (5) rhythmic spikes or
spike-waves, at low frequency and with high amplitude, and (6)
theta/alpha sharp activity with progressive increasing amplitude
(9, 10). Among these patterns, SEEG signature of LVFA was
found to be largely observed (9) and the other onset patterns like
burst-suppression and delta brush patterns were very rare and
frequency adjustments in detector was required to detect such
seizure onset from SEEG (9–11). Seizure onset from SEEG can
be detected when there was abrupt change in energy ratio (ratio
of emergence of fast oscillation replacing the slow oscillations) of
the signal. A cumulative sum algorithm’ or ‘CUSUM’ can be used
to detect seizure onset zone by performing a test on the mean of
baseline energy calculated from about few minutes of SEEG prior
to ictal onset provided EEG seizures are absent (11–13).

Computational tools including Epileptogenicity Index
(EI) (11), Epileptogenicity map (14, 15), Labview tool (16),
Connectivity Epileptogenicity Index (cEI) (17), and Graph
theoretical and machine learning-based approaches (18, 19)
were developed to localize the EZ. Among these methods, EI
quantifies the epileptogenicity in patient brain using spectral
(appearance of abrupt frequency change) and temporal (delay of
involvement of brain structure in seizure with respect to seizure
onset) properties of SEEG. EI indexes the brain circuit between
values “1” (more epileptic) and “0” (less epileptic). The brain area
with EI value above 0.3 is recommended as an epileptic brain
circuit (20). Though the EI has been defined and invented for
mapping fast activities from different sources of seizure onset,
this method worked well in mesial temporal seizures where the
signal propagation was slow whereas it showed low accuracy
(for localizing EZ) in neocortical seizures where the seizure
propagation was rapid.

Epilepsy is a network disease, identifying the potential
network hubs that initiates epileptic activity is the primary aim
of presurgical evaluation (20). Unlike mesial temporal epilepsy,
in neocortical epilepsy, the seizures propagate rapidly to the
adjacent and anatomically connected areas of the brain that
may be facilitated by the cytoarchitecture and short intralobar,
interlobar, and interhemispheric connections in the cortex (8).
In the literature, EI has been applied in studies of frontal
lobe epilepsies (21), focal epilepsy with involvement of ictal
discharges in thalamus and basal ganglia (22), heterotopic cortex
(23), insular epilepsies (24), and posterior cortex epilepsies (25)
with varying thresholds (EI > or = 0.6 or 0.3) as estimated
values for localizing the EZ. However, these studies were not
suggesting a definite threshold (index) for precise localization
of EZ, especially in neocortical epilepsy. This could be due
to rapid propagation of ictal discharges in the anatomically
connected cortical areas. In these cases, the temporal based
epileptogenicity quantification alone may not be enough to
localize the EZ. In this study, we postulate that adding spatial
parameters along with the EI equation can help to overcome
such scenarios.

In the current study, we utilized the time of involvement of
brain structures and Euclidean distance between brain structures,
along with the energy ratio to localize the epileptogenic
zone. Also, we proposed a modified method of EI called
Epileptogenicity Rank (ER) to quantify epileptogenicity,
especially in neocortical epilepsy. Two important questions we
attempted to address in this study were (1) how to quantify
epileptogenicity in neocortical epilepsy and derive a parameter
to differentiate seizure onset from seizure propagation network,
and (2) To find the optimum ER threshold value that accurately
localized the EZ in mesial temporal and neocortical epilepsy.
This modified method was implemented in MATLAB.

METHODS

Patient Selection and Data Collection
In our study, SEEG recordings from 33 patients (including 23
males and 10 females with a mean age of 24.9 years) evaluated
during 2015–2018 were included. Out of 33 patients, 27 of
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them were seizure-free (Engel 1 a-d) and 6 were non-seizure-
free. For ER threshold estimation, our inclusion criteria were
(1) the patients who underwent intracranial EEG evaluation
with depth electrodes (Stereo EEG), (2) availability of post-op
MRI, and (3) seizure-free/free of disabling seizures (Engel 1 a-
d) till the last follow-up (26). The average outcome follow-up
was 40.9 months. 6 non-seizure-free patients were analyzed to
study how ER localizes EZ in epilepsy surgery failure patients
with Engel 2 or 3 outcome. The epilepsy surgery outcome
was collected from medical records of the post-OP clinic.
The pre-surgical evaluation findings for all patients are given
in Supplementary Table 1. The study was approved by the
institutional review board.

SEEG electrodes were implanted in these patients using
ROSA (Robotized Stereotactic Assistant) method (27). Patients
were implanted with PMT (PMT Corp. USA) intracranial
SEEG electrodes and the acquisition was done at 256 or
1,024Hz using Nicolate/Natus 128 channel amplifier. After
intracranial evaluation, patients underwent tailored resections of
the identified epileptogenic zone. Within 12 months duration,
a postoperative volumetric 3T MRI of the brain was acquired
(using SiemensMagnetomVerio or GEDiscoveryMR 750W) for
each patient and these images were co-registered to volumetric
CT images of the brain with intracranial electrodes to visualize
the cortex recorded by the SEEG contacts and locate the electrode
contacts within the resection cavity (28, 29). Image acquisition
parameters were described in (30).

Localizing Electrode Location From Post

Implantation CT Images
Advanced image processing techniques were required to localize
SEEG electrodes from CT images, thanks to GARDEL, a
computational tool for automatic segmentation and labeling of
SEEG electrode contacts (29). In our study, we used GARDEL for
(1) to coregister and localize SEEG electrodes in post-opMRI and
(2) to export 3D coordinates of SEEG electrode contacts. Each
electrode was manually assessed to identify SEEG contacts within
the brain resection cavity (Figure 1).

Implementation of Epileptogenicity Rank
ER calculates epileptogenicity as a function of energy ratio, time
of involvement of brain structures, and the Euclidean distance
from the initial seizure onset. ER requires two parameters to
localize the EZ: (1) SEEG and (2) the 3D coordinates of SEEG
electrode contacts. The EZ localization was partially automated
by converting the time-series data to the frequency spectrum
and applied a threshold over the mean activity to detect the
seizure onset. Page and Hinkely’s algorithm was implemented for
seizure onset detection (12, 13). The proposed new method was
implemented in a graphical interface for easy usability and made
available at https://github.com/Brain-Mapping/EPI-rank.

Calculation of Energy Spectral Density (es) and

Energy Ratio (er) From the SEEG
Epileptogenic zone localization was implemented in three steps:
(1) calculation of energy spectral density from SEEG, (2)
the optimal detection of seizure onset, and (3) calculation of

epileptogenicity rank (ER). S(t) was a mono channel SEEG
recorded during a seizure which consisted of interictal, pre-
ictal, ictal, and post-ictal states. The computation of spectral
density (E) of S(t) was described in (11). SEEG analysis was
performed on a bipolar derivative montage (subtraction of
consecutive channels).

Calculation of Epileptogenicity Rank (ER)
ER was calculated as the normalized values of the product of
spatio-temporal parameter and energy of the signal. The spatial
parameter was added along with the existing temporal domain
based index calculation (EI) to bring the new epileptogenicity
rank (ER). We set the range of ER from 1 to 10, “ER = 1” being
highly epileptogenic and normal brain region ranked as “ER =
10.” ER of an SEEG was given by,

ERi =
[

1

(ti − t0) + α

(

Eβ + Eγ

Eθ + Eα

)]

+
[

1

di + α

(

Eβ + Eγ

Eθ + Eα

)]

(1)

di =
√

(x− xi)
2 +

(

y− yi
)2 + (z − zi)

2 (2)

where Si denotes the SEEG recorded from electrode contact i and
3D coordinate of i was given by xi,yi,zi. ti denotes the time at
which the frequency change was detected for electrode contact i.
“to” denotes the very first detection of frequency changes in “ti.”
Eθ , Eα , Eβ , and Eγ denotes frequency bands theta, alpha, beta,
and gamma, respectively (31); di denotes the Euclidean distance
between the electrode contact ‘i’ (xi,yi,zi) and the onset electrode
contact (x,y,z); α denotes the constant value to avoid division by
zero for the first frequency change detection.

Estimating Optimum Epileptogenicity Rank

for Mesial-Temporal and Neocortical

Epilepsy
To estimate optimum ER, for each patient, we identified the
SEEG electrode contacts within the brain resection cavity from
their post-op MRIs (Figure 1). For each seizure, the maximum
value of ER to localize the EZ (ERmax) was estimated by
increasing the value of ER from ER = 1 to “n;” the value of “n”
was considered as maximum (ERmax) when further increasing
of ER resulted in localization of EZ outside the resection cavity.
The optimum value for the ER was estimated in this study by
including the data only from seizure-free patients. The variability
in ERmax was calculated as mean ± standard deviation with a
95% confidence interval, and the optimum threshold for ER was
estimated separately for mesial temporal and neocortical epilepsy
by computing the ROC. For each patient, all stereotyped electro
clinical seizures were included in the analysis. Patients with slow
onset patterns were excluded from the analysis (P 4, 7, and 25 in
Supplementary Table 1).

The surgical resection cavity in Engel I patients does include
the epileptogenic zone, but also other brain tissue that needed to
be resected to path the way to the “true” epileptogenic zone. This
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FIGURE 1 | SEEG electrode implantation and post-processing of images. (A) Depicts the post-SEEG electrode implantation CT coregistered on post resection MRI.

(B) Segmented and labeled SEEG electrodes. (C) Coregistered SEEG electrode contacts and the brain resection cavity. Axial (left) and lateral (right) patient brain

model reconstructed from post-op MRI. Green dots represent the implanted SEEG electrodes, and red dots represent the electrode contacts identified within the

resection cavity.

scenario is more obvious in mesial temporal lobe epilepsy where
the standard epilepsy surgery (ATLAH: Anterior Temporal
Lobectomy + Amygdalo-Hippocampectomy) was offered. In
order to accommodate this exception, in our analysis, the seizure
onset zone identified by epileptologist was considered as the gold
standard for all patients with mesial temporal lobe epilepsy.

Statistical Analysis
To estimate a threshold for EZ localization using ER, a receiver
operating characteristic (ROC) curve was computed. ROC was
plotted by estimating the sensitivity and specificity at different
threshold ranges from ER = 1 to 10. McNemar’s chi-square
test was performed to assess the difference in EZ localization
by EI and ER methods (32). The SEEG contacts were assigned

to binary values (EZ localizations = 1 and others = 0) to
compute the chi-square. To assess the quality of the methods,
the percentage agreement between the EZ localization and the
SEEG contacts identified within the resection cavity was also
calculated. The percentage agreement was calculated as (no.
of correct localization) / (no. of correct localization + no. of
incorrect localization).

RESULTS

Of 27 patients included in our study, nine were diagnosed and
treated for mesial temporal and 18 were diagnosed and treated
for neocortical epilepsy and all were seizure-free till the last
follow-up with a mean period of 40.9 months. An additional
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six non-seizure-free patients were also analyzed to study how
ER localizes EZ in epilepsy surgery failure patients. Presurgical
findings and patient details for all 33 patients were given in
Supplementary Table 1.

ER and EI Methods Localized the EZ

Identically for Temporal Lobe Epilepsy and

Differently in Neocortical Epilepsy Patients
In this study, we compared the EZ localization of ER and EI
based methods in mesial temporal and neocortical epilepsy. The
seizure onset and the propagation network were computed by
setting the threshold, EI > 0.3 and EI > 0.6 for both the group
of patients, and in ER based method, the computed optimum ER
values were used, ER < 7.1 for neocortical epilepsy and ER < 7.3
for the temporal lobe epilepsy group (see section Spatiotemporal
Quantification of Epileptogenicity Has Helped to Map the Spatial
Extent of EZ in Mesial Temporal and Neocortical Epilepsy). We
observed that ER and EI methods localized the EZ identically in
mesial temporal epilepsy with the p-value = 0.39. In neocortical
epilepsy patients, EZ detection by the two methods significantly
differed with p-value= 0.01 usingMcNemar’s chi-square test (see
Figures 2–4 and Supplementary Tables 2, 3).

In temporal lobe epilepsy, the percentage agreement between
the EZ localized and SEEG contacts identified within the
resection cavity was found to be 93.06% in ER method and the
percentage agreement reduced to 65.60% in EI method. The
percentage agreement in neocortical epilepsy was found to be
95.7% in ER, and the percentage agreement reduced to 51.3%
in the EI method. From our analysis, we found that the ER
(spatio-temporal) based localization could better differentiate
seizure onset zone from propagation when compared to
temporal domain based EI method (see Figures 3, 4 and
Supplementary Tables 2, 3).

The Spatial Extent of Epileptogenic

Network and Underlying Etiologies
The spatial extent of the epileptogenic network was studied
in mesial temporal lobe and neocortical epilepsy patients. In
the mesial temporal lobe epilepsy group, the ictal involvement
was studied in mesial and lateral temporal structures and
in neocortical epilepsy ictal involvement in EZ and non-EZ
regions were considered. The mean and standard deviation
of ERmax was estimated, in Hippocampus (5.61 ± 1.1),
Amygdale (5.14 ± 0.62), Internal Temporal Pole (8.24 ±
0.06), external Temporal Pole (8.63± 0.04), posterior part of
the Middle Temporal Gyrus (8.42 ± 0.2), Superior Temporal
Gyrus (8.69 ± 0.06), and Insular cortex (8.61 ± 0.14). The
mesial structures showed a significantly reduced ERmax when
compared to lateral structures, indicating a high epileptogenicity
for the mesial structures. In neocortical epilepsy, the brain
structures that come within EZ showed significantly decreased
ERmax of 5.05 ± 2.33, again suggesting high epileptogenicity
when compared to the non-EZ regions (8.09 ± 0.22)
(see Figures 5A,B).

Localization utility of ER between different etiologies,
including Hippocampal Sclerosis (HS) and Focal Cortical

Dysplasia (FCD), was also analyzed. The optimal ER
(ERmax) for HS was found to be 7.72 ± 0.33 and for FCD
7.41 ± 0.25. The mean ERmax for HS and FCD showed
a difference of 0.31 in ER value (see Figure 5C). This
difference may point to the underlying neuronal connectivity in
different etiologies.

Spatiotemporal Quantification of

Epileptogenicity Has Helped to Map the

Spatial Extent of EZ in Mesial Temporal

and Neocortical Epilepsy
ER and EI based method localized EZ in patients with
mesial-temporal lobe and neocortical epilepsy. The optimum
threshold for detecting EZ in EI based method was set to 0.3
for both groups of patients for localizing EZ. The optimum
threshold for localizing EZ based on the newly proposed
method (ER) was estimated in this study using ERmax of
all seizure free-patients (see Supplementary Tables 2, 3). We
observed that ER < 7.1 was the optimum threshold to
localize the EZ in neocortical epilepsy with a sensitivity of
94.6% and specificity of 98.3% and for mesial temporal lobe
epilepsy the optimum ER threshold was estimated as ER <

7.3 with a sensitivity of 95% and specificity of 98% (Figure 6).
These thresholds for ER gave top-left corner curves for both
the ROC with the AUC (test accuracy) value of 0.996 (see
Figure 6).

ER Estimation in Non-Seizure-Free

Patients Revealed the Spatial Organization

of the Ictal Onset Zone Beyond Brain

Resections
With the availability of post-OP MRI, six post-SEEG epilepsy
surgery failure patients were analyzed to study the spatial extent
of EZ in non-seizure-free patients. In five out of six non-seizure-
free patients, the ER method localized the EZ not only within
the resection area but also to the areas adjacent to the borders of
the resection cavity (see Figure 7 and Supplementary Table 4).
The percentage agreement between localized EZ and the SEEG
contacts within the resection cavity was found to be significantly
less in non-seizure-free patients when compared to seizure-free
patients (95.7% in seizure-free and 51.99% in non-seizure-free).
The comparison between EI and ER methods in non-seizure-
free patients showed less percentage agreement in EI (27.67%)
compared to ER method (51.99%). The detailed statistical
analysis on this comparison was limited by the low number of
non-seizure-free patients in our study.

DISCUSSION

The main objective of this study was to formulate a scale
(ER) to quantify epileptogenicity of brain structures in mesial
temporal and neocortical epilepsy. We found that quantification
of epileptogenicity by spatio-temporal method was more useful
to differentiate ictal onset zone from the propagation when
compared to temporal domain based EI method.
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FIGURE 2 | Localization of EZ in mesial temporal and neocortical epilepsy. EI and ER estimated for the patients P23 and P8. (A,C) SEEG during preictal to ictal

transition, the red mark on each signal indicates the SEEG onset detection by the algorithm and the calculated ER and EI values were mentioned above the respective

channels. (B,D) Were the patient brain model and the red shaded area indicated the electrode contacts with ER < 7.3. From bottom to top (in A), very first ictal

discharge was detected in H 1-4 right anterior Hippocampus then spread to left anterior Hippocampus H’ 1-4 then to TP’ 1-2left amygdala and then to TO’2-TO’6 left

temporo-occipital regions. From bottom to top (in C), very first ictal discharge was detected in B 2-3 and C 2-3 mid insula then immediately spread to rest of the

contacts implanted in the insula. See Supplementary Table 5 for SEEG electrode names and abbreviations.

Spatio-Temporal Based EZ Localization

Method Better Differentiated the Seizure

Onset Zone From Propagation Than the

Temporal Domain Based Method
To differentiate sequence of events based on the temporal
properties of signal (SEEG) alone is significantly complicated
during the ictal period. The rapid propagation of ictal discharges
was particularly evident in neocortical epilepsy, mainly facilitated
by the cytoarchitecture and short intralobar, interlobar, and
interhemispheric connections in the cortex (8, 18, 33–35).
These fiber connections can be estimated using the tractography
based on diffusion tensor imaging (36, 37). On the other

hand, in the absence of fiber tractography distances, Euclidian
distance between brain structures can be used to estimate
the magnitude of cortico-cortical evoked responses (37–40).
In our study, we used Euclidian distance between brain
areas, time of involvement, and energy ratio to compute
the ER.

We found a high percentage agreement in localizing EZ
when anatomical distance parameters were introduced, along
with temporal parameters in the calculation of epileptogenicity.
In the comparative analysis of EI and ER method, we also
observed that the temporal domain based estimations and
localization often showed reduced EZ percentage agreement
of 51.3% in neocortical epilepsy due to the fast propagation
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FIGURE 3 | The ER and EI methods localized the EZ identically in temporal lobe epilepsy. Schematic of the patient brain (P23 in Supplementary Tables 1, 3) and the

SEEG electrode contacts with color indicates, green = normal and red = localized as epileptic. (A) EZ localized by computing epileptogenicity using ER method and

(B). Epileptogenicity calculated using EI method. ER and EI were calculated for multiple thresholds to analyze the seizure onset zone and propagation. Comparing the

localization of EZ by ER and EI; the value of ER varied from 1 to 10 whereas the EI varied from 1 to 0. The ER and EI methods localized the EZ identically in (A,B)

(temporal lobe epilepsy) with the p-value = 0.39 in McNemar’s chi-square test.

of signals in the ictal period. We also found a moderately
high percentage agreement between localized EZ and SEEG
electrode contacts within the brain resection cavity in ER
when compared to EI. These findings suggest that temporal
domain based calculation (EI) of epileptogenicity alone
may not differentiate ictal onset from the propagation
network, especially in neocortical epilepsy. With the spatio-
temporal estimation of epileptogenicity as key strengths, this
newly proposed “ER” method was helpful to localize EZ in
neocortical epilepsy.

Estimating epileptogenicity threshold for localizing EZ
is essential for different types of epilepsy. The optimum
ER threshold for localizing EZ in mesial temporal and
neocortical epilepsy was estimated and found to be ER
< 7.1 for neocortical epilepsy and ER < 7.3 for mesial
temporal epilepsy. This difference in the optimum threshold
for localizing EZ may directly connect to the underlying
differences in neuronal circuit and connectivity property

that facilitates the seizure initiation and propagation in
mesial temporal and neocortical epilepsy (41). Further,
theoretical modeling and simulation of various SEEG
onset patterns on the biophysical model of neuronal
micro-circuit and computation of epileptogenicity can
help to better understand the spatial organization of
EZ (42–45).

Studying the Spatial Organization of EZ in

Different Etiologies
Drawing border for brain resection is still an open question
in epilepsy surgery. The patients with large resections may
have higher chance of more EZ area being resected. The
standard for the spatial extent of EZ based on anatomical
landmarks is also not always scientifically definable (18). The
ERmax is different in different substrates/ brain regions as shown
in our study, generalizing a threshold for localizing EZ and
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FIGURE 4 | EZ localization by ER and EI methods contrasted significantly in frontal lobe epilepsy. The patient brain model (P1 of Supplementary Table 1) and the

SEEG electrode contacts were showed (green = normal; red = localized within EZ). Epileptogenicity calculated by ER (A) and EI (B) methods. ER and EI were

calculated for various thresholds (ER varied from 1 to 10 whereas the EI varied from 1 to 0) to localize the seizure onset from the propagation network. The EZ

localization using ER and EI differed significantly (A,B) in neocortical epilepsy with the p-value = 0.01 in McNemar’s chi-square test.
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FIGURE 5 | Variability of ER in different etiologies and brain structures. (A) Comparison of mean ER max between mesial and lateral structures in mesial temporal lobe

epilepsy. (B) In neocortical epilepsy, ER max was compared for brain structures that come within EZ and non-EZ regions. (C) Localization utility of ER between

Hippocampal Sclerosis (HS) and Focal Cortical Dysplasia (FCD). In (A) HIP, Hippocampus; AMY, Amygdale; iTP, Internal Temporal Pole; eTP, external Temporal Pole;

pMTG, posterior part of the Middle Temporal Gyrus; STG, Superior Temporal Gyrus; INS, Insular cortex. The mean and standard deviation of ER max represents the

spatial network of EZ in patients analyzed in this study.
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FIGURE 6 | The optimum threshold for localizing EZ in ER method was calculated using ROC curve. (A) Optimum ER calculated for neocortical epilepsy. (B) Optimum

ER calculated for mesial temporal epilepsy.

defining the borders of resection is difficult (18). To better
understand these issues, we studied variation in epileptogenicity
for localizing EZ in different etiologies like HS and FCD. The
variation in ER value in these two groups of patients suggests
that seizure initiation and propagation was considerably rapid
in FCD (mainly neocortical epilepsy) with ERmax7.41 ± 0.25
than in HS (mesial temporal lobe epilepsy) with ERmax 7.72
± 0.33. This difference points to the underlying variation in
neuronal connectivity across various etiologies and variation in
mechanism of generation and propagation of ictal discharges.
Many other factors, including the age of epilepsy onset, can also
influence the variation in the spatial extent of epileptic brain
circuits (11).

EZ Localization in Non-Seizure-Free

Patients Suggests That Spatial

Organization of EZ Is Beyond Brain

Resection
The post-SEEG epilepsy surgery outcome may be poor mainly
because of three reasons: (1) the implantation hypothesis
would have missed sampling the primary epileptic hub;
(2) the resection of seizure onset zone in those patients
was not adequate; and (3) generation of the secondary
epileptogenic zone over time (46, 47). To understand some
of these aspects, we studied EZ localization in a small
population of non-seizure-free patients with the availability
of post-OP MRI. The ER analysis of epilepsy surgery failure
patients revealed interesting results on the spatial extent
of the EZ. In five out of six post SEEG epilepsy surgery

failure patients we analyzed, the EZ was localized to the
brain structures not only within the resection zone but
also to the resection borders. From our limited analysis, we
suspect inadequate resection of the cortex to be one of the
reasons for poor outcome. Further clinical validation and
computational analysis is required on patients undergoing
second SEEG evaluation after the first epilepsy surgery
failure to prove these assumptions/hypotheses. Modeling
and simulation of dynamics of seizure initiation and
propagation in patient brain model can contribute to the
current understanding of the spatial organization of EZ (48).
The development of such detailed patient-specific epilepsy brain
models should help better define brain resection border for
epilepsy surgery.

Limitations of the Study
The main assumption of quantification of EZ using ER was
that the implanted SEEG electrodes always sample the seizure
onset zone. Therefore, the current computational methods can
fail when the SEEG electrode misses sampling the seizure onset
zone. Other limitations of the studies are listed: (1) the optimal
detection of frequency change in the ER method still relies on
thresholding the detection parameter and (2) the inability to
include all ictal onset patterns (especially the slow onset patterns)
in the default detectionmethod. Hence, more efficient algorithms
need to be developed for the optimal detection of all ictal onset
patterns in these non-stationary signals. The limitation with slow
SEEG onset was recently studied with the graph theory and
incorporated into a quantity, connectivity Epileptogenicity Index
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FIGURE 7 | Localizing EZ in non-seizure-free patients. (A,B) Were the EZ localized for patient P28 and (C,D) for P29 in Supplementary Table 1. (A,C) Were the

SEEG traces plotted during preictal to ictal transition; the red mark on each signal showed the detected frequency change. The estimated ER and EI values

corresponding to brain areas were given above the respective traces. (B,D) Were schematic of the patient brain, and the red shaded area indicates the SEEG

contacts within ER < 8. From bottom to top (A), very first ictal discharge was detected in P’ 9–11 left parietal cortex then immediately spread to CU’ 7–11 cuneus.

From bottom to top (C), very first ictal discharge was detected in A’7–8 frontal operculum then it spread to OF’9–11 orbito frontal and X’ 13–16 prefrontal cortex. See

Supplementary Table 5 for SEEG electrode names and abbreviations.

(cEI) (17). The comparison of ER and cEI was not performed in
this study, since the current study involves patients with faster
SEEG onsets. (3) ER thresholds estimated in this study were
optimized for the current dataset, an independent test need to be
conducted with other datasets. Also, a study with a larger number
of patients is very essential to generalize the current results.
“Fingerprint of the epileptogenic zone” is another interesting
article which studied the fast gamma activity of SEEG contacts
within the resection cavity for localization of EZ (18). They
used machine learning algorithms to train the features extracted
from the SEEG. Direct comparison between EZ fingerprint and
ER may not be possible since we did not use advanced feature
extraction and machine learning algorithms for the localization
of EZ.

The spatial extent of brain resection for epilepsy surgery
is still an open question. However, in clinical practice, the
spatial extent of the brain resection is decided by integrating
multiple modalities of presurgical evaluation. Computational
localization of seizure onset will always complement visual
analysis. The computational EZ localization has to be analyzed
alongside with the semiology and the visual analysis of SEEG by
expert epileptologist before finalizing the seizure onset zone for
clinical applications.

ER and Epileptic Hubs—A Future Study
Epilepsy is a network disease, identifying the potential network
hub that initiates epileptic activity is the primary aim of
presurgical evaluation. Our current study suggested that the
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spatio-temporal quantification of epileptogenicity can localize EZ
from the local neuronal circuit activity recorded by the SEEG.
Inclusion of these brain areas (EZ) involving primary epileptic
hubs/ictal onset zone in the resection zone is the cornerstone
for seizure freedom. Identification of primary epileptic hub
in multilesional and non-lesional epilepsy cases can definitely
improve the epilepsy surgery outcome. Targeting of epileptic
hubs in these patients will open up an opportunity to use
minimally invasive surgery like radiofrequency or laser ablation.
Another important aspect of this study is on the generalizability
of the findings of this new method. How does this threshold
localize EZ in non-lesional vs large lesional patients? The research
also needs to be extended to study the utility of ER with different
underlying etiologies in larger number of patients.

CONCLUSION

Quantifying epileptogenicity rank can help in localizing epileptic
brain circuits for patient-specific surgical planning. Analyzing
frequency components in SEEGwith spatiotemporal information
of rapid discharges between two brain structures was found
to be a useful method to differentiate seizure onset from the
propagation network. An important key to success for resective
or minimally invasive epilepsy surgery depends on an optimal
identification of the seizure onset zone and its propagation. We
believe computational tools like ER can help to map EZ to
a great extent and promise better seizure freedom. A detailed
prospective study of ER based EZ localization on multilesional
and non-lesional cases has to be conducted with a larger number
of patients.
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In people with drug resistant epilepsy (DRE), seizures are unpredictable, often occurring

with little or no warning. The unpredictability causes anxiety and much of the morbidity

and mortality of seizures. In this work, 102 seizures of mesial temporal lobe onset were

analyzed from 19 patients with DRE who had simultaneous intracranial EEG (iEEG) and

scalp EEG as part of their surgical evaluation. The first aim of this paper was to develop

machine learning models for seizure prediction and detection (i) using iEEG only, (ii) scalp

EEG only and (iii) jointly analyzing both iEEG and scalp EEG. The second goal was to

test if machine learning could detect a seizure on scalp EEG when that seizure was not

detectable by the human eye (surface negative) but was seen in iEEG. The final question

was to determine if the deep learning algorithm could correctly lateralize the seizure onset.

The seizure detection and prediction problems were addressed jointly by training Deep

Neural Networks (DNN) on 4 classes: non-seizure, pre-seizure, left mesial temporal onset

seizure and right mesial temporal onset seizure. To address these aims, the classification

accuracy was tested using two deep neural networks (DNN) against 3 different types of

similarity graphs which used different time series of EEG data. The convolutional neural

network (CNN) with the Waxman similarity graph yielded the highest accuracy across all

EEG data (iEEG, scalp EEG and combined). Specifically, 1 second epochs of EEG were

correctly assigned to their seizure, pre-seizure, or non-seizure category over 98% of the

time. Importantly, the pre-seizure state was classified correctly in the vast majority of

epochs (>97%). Detection from scalp EEG data alone of surface negative seizures and

the seizures with the delayed scalp onset (the surface negative portion) was over 97%.

In addition, the model accurately lateralized all of the seizures from scalp data, including

the surface negative seizures. This work suggests that highly accurate seizure prediction

and detection is feasible using either intracranial or scalp EEG data. Furthermore, surface

negative seizures can be accurately predicted, detected and lateralized with machine

learning even when they are not visible to the human eye.

Keywords: intracranial and scalp EEG, deep neural networks, LSTM (long short term memory networks), seizure

lateralization, seizure prediction, convolutional neural networks, seizure detection
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INTRODUCTION

Epilepsy is characterized by recurrent and unpredictable seizures.
This unpredictability is the core of suffering in the person with
epilepsy. Certain actions, like taking medication and getting
enough rest, decrease the risk of seizures. However, there is never

a guarantee for a seizure free day. The field, and this collection

of articles, is working to address this suffering by improving
the accuracy of seizure prediction, detection and forecasting.
Forecasting differs from prediction by identifying a period of
time, lasting hours to days, during which the person is more

likely to have seizures based upon their known prior patterns
and rhythms (1). The focus of our work is not forecasting but in
seizure prediction and detection. In seizure prediction, the goal
is to provide a warning that a seizure is about to occur within
minutes. For this warning to be useful, it must be accurate with a
low false positive and a low false negative rate.

The field of seizure prediction was established in the
1980s, but after >20 years, a comprehensive review published
in 2007 concluded that “the current literature allows no
definite conclusion as to whether seizures are predictable by
prospective algorithms” (2). Nevertheless, in the past decade,
several innovations have driven the field forward including
the compiling of extensive databases of long-term EEG
recordings; the establishment of international seizure prediction
competitions; and a prospective trial of a seizure forecasting
device that provided convincing evidence that forecasting of
seizures is possible (3).

Several reasons can be listed for this problem to evade
success including: inadequate amount of data; complexity of data
generated by EEG signals (noisy, non-linear, and non-stationary);
and lack of labeled data for certain classes. This is partially due to
the fact that EEG signal intensity is very small, in µV range, and
there are significant sensing difficulties given physiological and
non-physiological artifacts.

The nature of data collected by intracranial EEG (iEEG) and
scalp EEG differs greatly. Scalp EEG is readily available and is
not invasive. However, it is more prone to artifacts introduced by
shifting electrodes, muscle interference, and the effects of volume
conduction. Intracranial EEG has a better signal-to-noise ratio
than scalp EEG and can target specific areas of the brain directly.
Most previous work focuses on either scalp or iEEG recordings
since data sets that contain simultaneous recordings of scalp and
iEEG on the same patient are exceedingly rare. The novelty of
the work in this paper rests on a simultaneous iEEG and scalp
EEG data sets.

There are recent comprehensive survey papers on both seizure
detection and prediction (4–8) While many of the studies for
seizure detection are focused on training supervised learning
algorithms on EEG signals (4–6, 9), there are also unsupervised
algorithms based on multiway tensor analysis of scalp EEG
signals (10) and tunable Q factor wavelet transformation (11) or
non-negative matrix factorization of iEEG signals (12).

Seizure detection and prediction systems using intracranial or
scalp EEG signals rely on moving window analysis on extracted
features to generate predictions. One of the main challenges for

accurate prediction is extracting and evaluating linear and non-
linear univariate and bivariate features from the signal. However,
to achieve high sensitivity and a low false prediction rate, many of
the previous studies relied on handcraft feature extraction and/or
tailored feature extraction, which is performed for each patient
independently. This approach, however, is not generalizable, and
requires significant modifications (13).

The length of the pre-ictal period during which it is possible to
predict the seizure is called the prediction horizon or pre-seizure
period. The electrical changes that occur in the brain prior to a
seizure are poorly understood and undetectable by the human
eye. In the literature, the length of the pre-seizure period has
varied from minutes to hours (14), and has often been left as a
design choice. Estimates as to the length of the pre-seizure period
exist, but the estimates are not shown to be general (14, 15) or
they are patient specific (16, 17).

In our prior work, the length of the pre-seizure period was
determined as a part of the learning process and optimized
using grid search (18) on scalp EEG data. The pre-seizure length
was validated by analyzing the extracted features with different
pre-ictal lengths to elucidate the phase transition between the
interictal and pre-seizure state (18). The length of the horizon
was determined from the EEG data to be optimal at 10 min.

From a machine learning perspective, we built on current
models and added new methodology. Previously the maximal
absolute cross correlation value was defined as a functional
connectivity measure and further calculated for each pair of
EEG channels to quantify the similarity between any two
EEG signals (19). In this work, we used 3 methods to build
similarity graphs [Correlation Coefficient, Mutual Information
and Waxman model (20)] and used these as input into the deep
neural networks (DNN). A similarity graph is denoted by G =
(V, E) where the vertex set V is the set of electrodes and the
edge set E contains an edge (i, j) between the vertices i and j
if they are “similar.” Transforming raw EEG signal to a graph
representation enables us to capture spatial information as well
as frequency and time domain information.

In a seizure detection model (21) using DNNs, raw EEG
signal was segmented into 5 second (s) epochs to discriminate
the EEG seizure from the background. We expanded on that
concept and examined several window sizes ranging from 1 to
6 s and evaluated the impact of this parameter on the accuracy of
the results.

For this paper, 102 seizures of mesial temporal lobe onset were
analyzed from 19 patients who had simultaneous stereo and scalp
EEG as part of their evaluation for drug resistant epilepsy (DRE).
The first aim of this paper was to develop machine learning
models for seizure prediction and detection (i) using iEEG only,
(ii) scalp EEG only and (iii) jointly analyzing both iEEG and
scalp EEG. The data sets allowed for a direct comparison of
classification accuracy. The second goal was to test if machine
learning can detect a seizure on scalp EEG when that seizure
was not detectable by the human eye (surface negative) but was
seen in iEEG. The final question was to determine if the deep
learning algorithm could correctly lateralize the seizure onset.We
tested various combinations of machine learning algorithms to
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determine the highest accuracy of classifying the EEG data into
either non-seizure, pre-seizure or seizure (right vs. left).

MATERIALS AND METHODS

Data Sets
The study was approved by the Icahn School of Medicine
Institutional Review Board. Simultaneous iEEG and scalp
EEG were collected from patients using a Natus XLTEK 128
or Natus Quantum amplifier (Natus Medical Incorporated,
Pleasanton, CA). Nineteen scalp electrodes were used in the
standard 10-10 system. Placement of iEEG electrodes was
performed by two neurosurgeons (FP, SG) using the robotic
stereotactic assistance device ROSA software (Rosa; Medtech
Montpellier, France).

Intracranial seizure onset and offset time were determined
by the reading epileptologist and confirmed by independent
review (LM, MF), who adjusted onset and offset times in rare
cases. Scalp EEG onset times were reviewed separately from
iEEG to avoid bias. A comparison of seizure detection on
intracranial data and scalp data using this data sets was previously
published (22).

One hundred and two seizures of mesial temporal lobe onset
were analyzed from 19 patients who had simultaneous stereo
and scalp EEG as part of their evaluation for their DRE. For all
seizures, the integrity of scalp and intracranial electrodes was
intact. Movement artifact was not excluded. For the 19 patients
included, 7 had normal imaging and 12 had abnormal imaging.
Of the 12 with abnormal imaging, only one had prior epilepsy
surgery (R mesial temporal laser ablation). Nine of the patients
had lesions in the mesial temporal area. Three had lesions that
did not localize to themesial temporal area (cingulate cavernoma,
diffuse encephalomacia, and bilateral insular/lateral temporal
polymicrogryia). The patient with the polymicrogyria had seizure
onsets in themesial temporal area and arising from the insula and
lateral temporal lobe. Only the seizures of mesial temporal lobe
onset were included.

All patients had 19 bilateral scalp electrode contacts for
analysis, placed using the standard 10-10 system. Of these 102
seizures, 35 were not seen on the scalp EEG and were surface
negative. These seizures were either focal aware or subclinical.
Of the remaining 67 seizures, 7 had simultaneous scalp and iEEG
onset and 60 had a delayed scalp onset. Eighty seizures were of
right mesial temporal onset and 22 of the seizures were of left
mesial temporal onset. Sixty-eight seizures were focal aware or
subclinical, 18 seizures were focal impaired aware seizures, and
16 were focal to bilateral tonic clonic. As the SEEG arrays for
each patient could differ in the density of coverage and number of
electrodes, a subset of SEEG contacts common to all patients was
used. These were selected by visual analysis of both the SEEG and
the post-operative CT to ensure electrode integrity and proper
anatomic placement. For each hemisphere 24 contacts were used
with 4 contacts in each of the following areas: amygdala, lateral
anterior temporal, hippocampus, lateral mid temporal, medial
orbitofrontal and lateral frontal. Five patients had unilateral
studies (24 SEEG contacts) and the remaining 14 patients had
bilateral studies (48 SEEG contacts).

Data Processing
Our model was written in Python and run on a Macbook
Pro using Spyder with Adam as the optimizer. Adam has a
high performance for machine learning with high computational
efficiency and little memory requirements. All EEG data was
converted to EDF files without bandpass or notch filters.

Prior to running the DNN model, EEG signal segmentations
were chosen from non-overlapping EEG data with the sampling
rate of 512Hz. Each similarity graph was calculated from 1 s of
EEG data, i.e., the similarity between two EEG channels during
1 s was calculated from 512 data points. For DNN models with a
1 s time series, each sample is a single similarity graph that was
calculated from 1 s of EEG. For DNN models using 2 or 6 s time
series, each sample is 2 or 6 similarity graphs calculated from 2 or
6 consecutive time series.

Modeling Multichannel EEG by Similarity

Graphs and DNN
The relevant parameters and the notation is summarized below:

Acc Correlation Coefficient similarity graph adjacency matrix

AMI Mutual Information similarity graph adjacency matrix

Awaxman Waxman similarity graph adjacency matrix

yit tth sample of the time series measured at channel i

µit The mean values of yit

σit The standard deviation of yit

P(yit , yjt ) The joint probability mass function of yit and yjt

pyit The marginal probability mass function of yit

nij L2 norm of yit and yjt.

Samples of non-seizure, pre-seizure and seizure data were
randomly extracted from our EEG data sets. The ratio of these
three classes were non seizure: pre-seizure: seizure – 4:3:2. The
length of time was determined by the length of the seizure. For
example, if a seizure was 60 s, then 120 s of non-seizure data and
90 s of pre-seizure data was used to train the model. Based on our
prior work, the pre-seizure period was defined as the 10min prior
to seizure onset.

Multi-electrode time series data were quantized into 1 s
windows. For each window, a graph where nodes represent the
contacts, and pairwise edges indicate a measure of similarity
between the contacts was constructed. In addition to using a
single second of EEG data, the interaction between consecutive
time series was analyzed for 2 and 6 s time series. In order to
compare the effect of different similarity metrics, we proposed
3 graph construction models based on computing the pairwise
similarity between two electrodes: Correlation Coefficient,
Mutual Information andWaxman model. Each graph model was
tested against different DNNs to determine the combination that
yielded the highest accuracy for correctly classifying EEG data as
either not-seizure, pre-seizure or seizure.

Similarity Metrics and Graph Models
Fourteen patients had bilateral SEEG with 48 contacts selected
while the remaining 5 had unilateral SEEG with 24 SEEG
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contacts. For the unilateral iEEG, the architecture was
maintained with 48 contacts, 24 with recorded EEG data
and 24 without data. The similarity value between the 24
non-recorded contacts was defined as 0. Similarly, the value
between the recorded and the unrecorded contacts was set at 0.
The dimensions of the input similarity graph adjacency matrix
was n x n, where n= 48 for iEEG data; n= 19 for scalp EEG data
and n = 67 for combined EEG data (Figure 1). The adjacency
matrices were then vectorized as the inputs to the DNNs yielding
to 2,304 (48 × 48) for iEEG, 361 (19 × 19) for scalp EEG, 4,489
(67× 67) for joint scalp and iEEG.

Next we formally describe how to compute the similarity
metrics. Consider N channels of recorded EEG signals, each
channel associated with an observable time series{yit}Tt=1

measured over T time-slots, yit denotes the t
th sample of the time

series measured at channel i, i.e., the EEG recording of channel i
at tth second.

1) Correlation Coefficient based similarity graph {ACC}Tt= 1,

the similarity coefficient between channel i and channel j can
given by {cij}Tt=1

, i = 1, 2, ...,N, j = 1, 2, ...,N

cijt =
E[(yit − µit)(yjt − µjt)]

σitσjt
(1)

where µit and µjt are the mean values of yit and yjt , respectively,
σit and σjt are the standard deviation of yit and yjt .

2) Mutual Information based similarity graph {AMI}Tt= 1,

the similarity coefficient between channel j and channel j can
given by

{mij}Tt=1, i = 1, 2, ...,N, j = 1, 2, ...,N

where P(yit , yjt) is the joint probability mass function of yit and

yjt , respectively, Pyit and Pyjt are the marginal probability mass

functions of yit and yjt .

mijt = I
(

yit; yjt
)

=
∑

i ∈yit

∑

j ∈yjt
p(yit ,yjt )

(

i, j
)

log

(

p(yit ,yjt)
(

i, j
)

pyit (i) pyjt
(

j
)

)

(2)

3) InWaxman model based similarity graph {Awaxman}Tt= 1,

the similarity coefficient between channel i and channel j can be
given by {wij}Tt=1

,i = 1, 2, ...,N,j = 1, 2, ...,N.

wijt = β∗exp
(

−nij /α ·max (n)
)

(3)

where β = 0.4, α = 0.1, and n ∈ R N×N have nij = || yit− yjt ||2,
nij is the L2 norm of yit and yjt .

Deep Neural Network Architectures for the Joint

Problem of Seizure Detection and Prediction
The seizure detection and prediction problems were addressed
jointly by training several different types of neural network

architectures. One shallow and several deep neural network
(DNN) architectures were used. A single layer neural network
was constructed as a baseline comparison. For the DNNs, we
focused on Convolutional Neural Networks (CNNs) and Long
Short-Term Memory (LSTM) and reported the classification
accuracy for the 3 class classification problems. Figure 1 shows
the overall DNN architecture used in this study with different
layers and input dimensions depending on the data sets being
analyzed (intracranial, scalp, or combined).We trained the CNNs
by using the Adam optimizer with 0.0005 as the learning rate, and
we trained the LSTM by using Adam optimizer with 0.001 as the
learning rate.

The Four-Class Classifier System for Lateralizing

Seizure Onset Using Scalp EEG
In order to analyze anatomic localization, the 3-class classifier
system (non-seizure, pre-seizure, and seizure) was expanded
to a 4-class classifier system with the seizure category sub-
divided into left and right mesial temporal onsets. Compared
with the DNN architectures shown in Figure 1, we extended
the dimension of the output layer to 4 × 1. For the 4-
class classifier system, we trained the CNN (1 s time series)
in conjunction with the Waxman graph by using the Adam
optimizer with 0.0005 as the learning rate, then presented the
classification accuracy using scalp EEG data. Seizures from
both the bilateral SEEG and unilateral SEEG studies were
included. For the unilateral SEEG, the ground truth onset
lateralization was assumed to be the side with the electrodes
implanted. In no cases did the scalp data or semiology suggest a
different lateralization.

RESULTS

Seizure Detection and Prediction
The data was split into a training set and a testing set in
multiple analyses. The training and test sets for each learning
model were kept separate to prevent data snooping. Furthermore,
we performed 5-fold cross validation to ensure there is no
overfitting. Seizure onset time was defined as the time of the
onset on iEEG data as the scalp onset was often delayed and in
35 seizures not present at all (surface negative seizures).

In the first analysis, all epochs from 16 patients were used as
the training set and all epochs from the remaining 3 patients as
the testing set. This process was repeated 5 times (5-fold cross
validation) to ensure that the 3 patients in the testing set were
different. Table 1 reports the average accuracy on the testing sets
for iEEG data alone, Table 2 shows the results with the same
approach on scalp EEG data alone, andTable 3 reports the results
on the joint iEEG and scalp EEG data sets. Within the training
and test data sets epochs are treated as a bag-of-epochs.

Classification accuracy was repeated on iEEG data alone using
a patient agnostic approach (Table 4). For this analysis, all epochs
were separated into 5 groups with 4 of those groups used for
training and the remaining epochs used for testing. This was
performed a total of 5 times (5-fold cross validation) with epochs
randomly assigned to one of the 5 groups. Table 4 reports the
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FIGURE 1 | CNN and LSTM architecture using different lengths of time series (1, 2, or 6 s) in conjunction with iEEG, scalp EEG or combined EEG similarity graphs. (A)

Shows the CNN architecture for iEEG data only. (B) Depicts the CNN architecture for both scalp EEG data and the combined input of scalp and iEEG data. (C) Shows

the LSTM architecture used for all three cases of the input (i.e., iEEG, scalp EEG, and combined EEG recordings). The dimension of input similarity graph adjacency

matrix was n x n, where n = 48 for iEEG data; n = 19 for scalp EEG data and n = 67 for combined EEG studies. Inputs to DNNs are vectorization of these matrices.

TABLE 1 | Impact of different combinations of similarity graphs with a shallow NN or DNNs on the average accuracy of intracranial EEG classification with 5-fold cross

validation using 16 patients in the training set, and 3 patients in the testing set with multiple random splits.

Intracranial

EEG

Base line:

Shallow NN

(1 s time series)

CNN

(6 s time

series)

CNN

(2 s time

series)

CNN

(1 s time

series)

LSTM

(6 s time

series)

LSTM

(2 s time

series)

LSTM

(1 s time

series)

Correlation Coefficient graph 90.14% 97.10% 97.96% 99.14% 90.16% 94.40% 99.27%

Waxman graph 90.48% 97.93% 98.20% 99.38% 93.48% 96.48% 98.61%

Mutual Information graph 88.12% 95.08% 96.19% 97.13% 90.10% 93.30% 96.39%

TABLE 2 | Impact of different combinations of similarity graphs with a shallow NN or DNNs on the overall average accuracy of scalp EEG classification with 5-fold cross

validation using 16 patients in the training set, and 3 patients in the testing set with multiple random splits.

Scalp EEG Base line:

Shallow NN

(1 s time series)

CNN

(6 s time

series)

CNN

(2 s time

series)

CNN

(1 s time

series)

LSTM

(6 s time

series)

LSTM

(2 s time

series)

LSTM

(1 s time

series)

Correlation Coefficient graph 87.99% 95.66% 96.95% 97.76% 89.32% 93.65% 97.93%

Waxman graph 88.36% 97.08% 97.50% 98.56% 92.54% 95.28% 97.87%

Mutual Information graph 85.42% 90.01% 90.36% 92.14% 89.43% 90.22% 91.23%

TABLE 3 | Impact of different combinations of similarity graphs with a shallow NN or DNNs on the overall average accuracy of iEEG and scalp EEG classification with

5-fold cross validation using 16 patients in the training set, and 3 patients in the testing set with multiple random splits.

Intracranial and

Scalp EEG

Base line:

Shallow NN

(1 s time series)

CNN

(6 s time

series)

CNN

(2 s time

series)

CNN

(1 s time

series)

LSTM

(6 s time

series)

LSTM

(2 s time

series)

LSTM

(1 s time

series)

Correlation Coefficient graph 88.43% 96.69% 98.16% 98.25% 89.96% 94.39% 98.42%

Waxman graph 88.66% 97.45% 98.11% 98.99% 93.15% 96.14% 98.65%

Mutual Information graph 87.95% 94.82% 96.30% 97.21% 90.70% 93.66% 96.10%
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TABLE 4 | Impact of different combinations of similarity graphs with DNNs on the overall average accuracy of intracranial EEG classification with 5-fold cross validation

based on patient agnostic epochs.

Intracranial EEG CNN

(6 s time

series)

CNN

(2 s time

series)

CNN

(1 s time

series)

LSTM

(6 s time

series)

LSTM

(2 s time

series)

LSTM

(1 s time

series)

Correlation Coefficient graph 97.07% 98.01% 99.13% 90.10% 94.38% 99.32%

Waxman graph 97.97% 98.21% 99.38% 93.46% 96.51% 98.60%

Mutual Information graph 95.13% 96.27% 97.14% 90.06% 93.32% 96.44%

average accuracy on the testing set. This approach mixed the data
from all the patients and treated the data as a bag-of-epochs.

The classification accuracy was nearly identical with this
patient agnostic approach. The rest of the discussion focuses on
the results presented with each patient’s data being kept as a
whole in either the testing or training set (Tables 1–3).

For all EEG data, results were poorest (as expected) when
the single layer (shallow) neural network was used. When using
the DNNs, for the iEEG data, the least accurate model was the
LSTM (6 s time series) with the Mutual Information graph at
90.10% and the highest accuracy was 99.38% using CNN (1 s
time series) in conjunction with the Waxman graphs. This latter
combination was the most accurate for scalp (98.56%) as well as
for the combined data sets (98.99%). While accuracy was high for
all EEG subsets, the accuracy was highest for iEEG (99.38%) and
lowest for scalp EEG (98.56%). All subsequent analysis is based
on CNN (1 s time series) with the Waxman graphs.

A confusion matrix for iEEG, scalp EEG and all EEG
(Figure 2) demonstrates how many time windows in each
class can be correctly classified as well as the specific errors
of misclassification. The confusion matrices are obtained by
using CNN model with the Waxman graphs constructed in 1 s
windows. For example, in Figures 2A, 4, 023 s of IEEG seizure
were inputted into the model and classified correctly as seizure
for 3,991 s and misclassified as pre-seizure for 32 s.

The misclassification percent was 0.65% for iEEG, 1.40% for
scalp, and for combined data it was 1.03%. The model showed
a low false positive rate with high classification accuracy for
non-seizure EEG (99.47% iEEG, 99.34% scalp, 99.42% all EEG).
The pre-seizure EEG epochs were correctly classified 99.27%
(iEEG), 97.95% (scalp EEG) and 98.2% (all EEG) of the time. For
seizure, the data was classified correctly in 99.20% (iEEG), 98.07%
(scalp EEG), 99.19% (all EEG). Interestingly, EEG epochs from
seizures were rarely misclassified as pre-seizure but were never

misclassified as non-seizure.

Seizure Detection From Scalp EEG
This analysis sought to ascertain if the model could detect the
seizures or the portions of seizures that were not visible on scalp
EEG. Of the 102 seizures analyzed 35 were surface negative (not
seen on scalp EEG), 60 were seen on scalp EEG after a delay,
and 7 had simultaneous iEEG and scalp onsets. For the surface
negative seizures, the CNNmodel (1 s time series) in conjunction
with the Waxman graph detected the seizure 98.47% of the time.
For the 60 seizures with a delayed scalp onset, only the scalp
EEG prior to a visible seizure was used in this analysis, essentially

the surface negative portion of the seizure. The model classified
these seizures correctly 97.83% of the time. The seizures with a
simultaneous iEEG and scalp EEG onset were classified correctly
classified 99.1% of the time. Anymisclassifications labeled seizure
data as pre-seizure, none as non-seizure, as shown in Figure 3.

Lateralization of Seizure Onset From Scalp

EEG
For the 4-class classifier system (non-seizure, pre-seizure, left-
seizure, right-seizure), the accuracy of the CNN (1 s time
series) in conjunction with the Waxman graph was 98.11%
with scalp EEG as the input. Seizure detection accuracy was
high. For the seizures of left mesial temporal onset, surface
negative seizures were classified correctly 95.00%, the surface
negative portion of seizures with a delayed onset 96.38% and
the simultaneous onset seizures 100%. For the seizures of right
mesial temporal onset, surface negative seizures were classified
correctly 95.25%, the surface negative portion of seizures with
a delayed onset 92.31% and the simultaneous onset seizures
97.49% (Figure 4). Importantly, seizures of left brain onset were
never misclassified as right brain onset and the reverse is true
as well. This finding held firm when analyzing surface negative
seizure and the surface negative portion of seizures with delayed
scalp onset. All misclassifcation errors occurred with seizure
data being mislabeled as pre-seizure data. Seizure data was
never misclassified as non-seizure. For surface negative seizures
(including the surface negative portion of the seizures with a
delayed scalp onset), the model was able to both detect and to
lateralize them with very high accuracy, as shown in Figure 4.

DISCUSSION

In this paper we re-explore seizure prediction and detection on
a unique data sets of simultaneous iEEG and scalp EEG. As
part of this work, various combinations of DNNs (both CNNs
and LTSM) were tested with different similarity graph models
(Correlation Coefficient, Mutual Information, and Waxman)
to determine which combination had the highest classification
accuracy. Interestingly, the models which used consecutive time
series, 2 or 6 s, did not perform as well as the models that used a
single second of EEG data for input. This is perhaps because for
the longer time series there was some averaging of features which
may have impacted accuracy. All models performed quite well,
but the CNN (1 s time series) in conjunction with the Waxman

Frontiers in Neurology | www.frontiersin.org 6 November 2021 | Volume 12 | Article 705119174

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Li et al. Deep Learning on Scalp and Intracranial EEG

FIGURE 2 | The confusion matrix of CNN (1 s time series) with Waxman graph of (A) iEEG data, (B) scalp EEG and (C) scalp and iEEG data jointly.

FIGURE 3 | Seizure detection on scalp EEG data for seizures that are surface negative, have an onset after the iEEG onset (only surface negative portion of seizure

inputted), and have a simultaneous scalp and iEEG onset.

similarity graph performed the best. This combination became
the primary machine learning model in this paper.

The accuracy for correctly classifying EEG data into non-
seizure, pre-seizure and seizure was over 98% for iEEG
alone, scalp alone and iEEG and scalp combined. This
classification system can be used for both prediction and
detection. In the field of seizure forecasting and prediction,
false positives have the potential to create unnecessary
anxiety and intervention. In this model, the false positive
rate was very low, with <1% of the non-seizure epochs
being classified as seizure or pre-seizure. Further, the results
suggest that prediction is indeed possible, as over 97% of
EEG epochs from the 10minutes prior to a seizure were
labeled as pre-seizure. This worked best on iEEG data alone

(99.27%) and slightly less well on scalp EEG data (97.95%).
Correct classification of EEG data into seizure was similarly
highly accurate (>98%), demonstrating high efficacy in
seizure detection.

It is important to remember that this 10min pre-seizure
period is not different from the non-seizure period to the
human eye either intracranially or on scalp. Interestingly, seizure
prediction accuracy was not very different than seizure detection
accuracy; even though for the experienced epileptologist
detecting a seizure is quite easy and predicting a seizure
is impossible.

Surface negative seizures are seizures that do not appear
electrographically on a scalp EEG but are visible intracranially.
These can be clinical or subclinical. If clinical, they are usually
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FIGURE 4 | Analysis of left (A) and right (B) mesial temporal onset seizures using scalp EEG data for seizures that are surface negative, have an onset after the iEEG

onset (only surface negative portion of seizure inputted), and have a simultaneous scalp and iEEG onset.

focal aware seizures, like focal motor or a temporal lobe aura. In
our previous work with simultaneous scalp and iEEG electrodes,
67% of focal aware and 67% of subclinical seizures had no
visible scalp EEG seizure (22). This can occur when the seizure
involves <6 cm2 of cortex and/or when the source is deep.
In this work, 35 of the seizures were surface negative and
60 of the seizures had a surface negative portion (intracranial
onset occurred first followed by a delayed scalp EEG onset).
The model was able to classify these surface negative seizures
accurately as seizures over 97% of the time using scalp EEG
data alone. This suggests that seizure detection is possible using
scalp EEG alone, even when the seizure is not visible to the
human eye.

Lastly, the model was able to successfully lateralize scalp EEG
data into left and right onset (all were mesial temporal) with
high accuracy, using a 4-class DNN classifier. This is perhaps not
surprising for seizures that are visible on scalp. More interesting
is that this accuracy held firm for the surface negative seizures
and the surface negative portion of the seizures with a delayed
scalp onset.

In summary, the contributions of this paper are two-fold.
From the neuroscience perspective, we are the first to use
machine learning to (i) model, analyze, and evaluate iEEG and
scalp EEG jointly, (ii) detect surface negative seizures on the scalp
using scalp data, (iii) lateralize seizures using machine learning
from scalp EEG data, even those that are not visible on the scalp
EEG. This work expands on our previous results reported in (22).

From themachine learning perspective, our contribution is on
the spatial, frequency and temporal modeling of EEG data using
graph theory. In our previous work we introduced the concept
of graph theoretical analysis of scalp EEG recordings for seizure
prediction and detection using hand crafted features (19, 21).
In this work we (i) introduce and analyze different similarity
metrics for graph construction, and (ii) use the graph adjacency
matrices as the input to deep learning algorithms (CNN and
LSTM) which extract and learn from convoluted graph features.
To our knowledge, we are the first to apply the Waxman model
to the seizure prediction problem. This model is a method of
determining if two nodes on a graph are linked (20) and has

been used in communication and data networks. It surprisingly
outperformed the other two similarity graphs tested, suggesting
future utility in EEG modeling.

Clinical Significance
To our knowledge, this is the first work to provide seizure
prediction and detection using machine learning on a combined
data sets using simultaneous iEEG and scalp EEG. The iEEG
seizure onset time was used as the ground truth. Accuracy for
both prediction and detection was high whether or not the
input was iEEG data alone or scalp EEG data. This suggests that
different devices could be constructed from different sources of
EEG data depending on the clinical need. A wearable extracranial
seizure prediction device may be of use for a person with rare but
dangerous seizures who wishes to do a higher risk activity like
hiking. While a permanent intracranial prediction device would
be of greater use for people with refractory epilepsy and more
frequent seizures.

The ability to detect surface negative seizures from scalp
data may provide additional opportunities to non-invasively
understand surface negative seizure frequency and impact. Both
predicting a seizure before it occurs and detecting seizures at their
onset, before they manifest on scalp EEG, suggest a window for
intervention. Possible interventions include administration of a
fast acting medication or simply getting into a safe position and
notifying family.

The model was able to successfully lateralize all seizures, even
those that were not visible on scalp EEG. This suggests that it
may in the future be possible to detect surface negative seizures
in the epilepsy monitoring unit and lateralize them, which has
the potential to shorten length of stay. Additionally, accurate
lateralization can help guide surgical work-up and management
and may give greater detail to the seizure network, the visible and
the invisible.

Future Research and Limitations
The study was limited by data that was retrospective and
from only 19 patients. Additionally, we purposefully limited
this paper to seizures of mesial temporal onset for a more
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homogenous group. However, it is not known if these results can
be generalized to seizure onsets in other parts of the brain. While
this work shows accurate lateralization, a more intensive study
of localization using seizures of different onset location would be
of value.

In this paper, each 1 s window was treated as independent,
but for a real-time deployment of a prediction or detection
system, a risk assessment model, which considers the labeling
of consecutive 1 s windows, can be developed using conditional
probabilities. In other words, if the model assigns a 1 s epoch
into a category, the risk assessment model may require several
consecutive seconds to be classified similarly before the system
makes a categorization determination. This will decrease the false
positive rate. The next planned project is to test this program
prospectively on patients with simultaneous intracranial and
scalp EEG undergoing an epilepsy surgical work-up.

Accurate seizure prediction and detection will enable the
creation of wearable and implantable devices. In recent work
on seizure prediction using scalp EEG, there have been
advancements that will make it easier to deploy within hardware
(23–25). A limitation of the paper is that we did not use other
algorithms on our data sets for direct comparison. We met
our goal with high accuracy of classifying EEG data including
demonstrating it is possible to detect seizures on scalp EEG
that are not visible. Future research will need to allow for
direct comparisons as well as refinement of methods in order to
optimize models for use in portable devices.

The work in seizure prediction does indicate a pre-seizure
state, during which a seizure is nearly inevitable. However, the
transition from non-seizure to pre-seizure is not understood.
One avenue of research is to investigate the DNN themselves
by creating topographical images of the model, ie saliency maps,

to further inform us as to the nature of the pre-seizure state. A
very different avenue is to use prediction tools to conduct real
time experiments during that pre-seizure period of minutes to
understand the biology of the transition into seizure, and the
epileptic brain.
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Background: Epileptic seizures are caused by abnormal brain wave

hypersynchronization leading to a range of signs and symptoms. Tools for detecting

seizures in everyday life typically focus on cardiac rhythm, electrodermal activity, or

movement (EMG, accelerometry); however, these modalities are not very effective

for non-motor seizures. Ultra long-term subcutaneous EEG-devices can detect the

electrographic changes that do not depend on clinical changes. Nonetheless, this also

means that it is not possible to assess whether a seizure is clinical or subclinical based

on an EEG signal alone. Therefore, we combine EEG and movement-related modalities

in this work. We focus on whether it is possible to define an individual “multimodal ictal

fingerprint” which can be exploited in different epilepsy management purposes.

Methods: This study used ultra long-term data from an outpatient monitoring trial

of persons with temporal lobe epilepsy obtained with a subcutaneous EEG recording

system. Subcutaneous EEG, an EMG estimate and chest-mounted accelerometry were

extracted from four persons showing more than 10 well-defined electrographic seizures

each. Numerous features were computed from all three modalities. Based on these,

the Gini impurity measure of a Random Forest classifier was used to select the most

discriminative features for the ictal fingerprint. A total of 74 electrographic seizures

were analyzed.

Results: The optimal individual ictal fingerprints included features extracted from all three

tested modalities: an acceleration component; the power of the estimated EMG activity;

and the relative power in the delta (0.5–4Hz), low theta (4–6Hz), and high theta (6–8Hz)

bands of the subcutaneous EEG. Multimodal ictal fingerprints were established for all

persons, clustering seizures within persons, while separating seizures across persons.

Conclusion: The existence of multimodal ictal fingerprints illustrates the benefits of

combining multiple modalities such as EEG, EMG, and accelerometry in future epilepsy

management. Multimodal ictal fingerprints could be used by doctors to get a better

understanding of the individual seizure semiology of people with epilepsy. Furthermore,

the multimodal ictal fingerprint gives a better understanding of how seizures manifest

simultaneously in different modalities. A knowledge that could be used to improve seizure

acknowledgment when reviewing EEG without video.

Keywords: subcutaneous EEG, accelerometry, EMG, seizure detection, ictal fingerprint, epilepsy
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INTRODUCTION

People with epilepsy (PWE) experience repetitive,
unexpected seizure episodes, caused by abnormal brain
wave hypersynchronization leading to a range of signs
and symptoms—the so-called semiology. Quantitative and
qualitative characterization of semiology is the cornerstone in
every case of epilepsy management. While seizure types tend to
be similar from time to time within an individual PWE, many
different seizure types exist in different PWE (1). Therefore, an
objective description of the most common individual seizure
characteristics for each PWE—the multimodal ictal fingerprint—
could have multiple potential uses within epilepsy treatment
(e.g., clinical management or seizure detection).

In epilepsy management, automatic device-based seizure
detection may be useful for qualitative description of the seizure
semiology in daily life. In the clinic, a concise and objective
qualitative description of the seizure semiology can add value in
the epilepsy diagnostic process for the healthcare professionals.
With an ictal fingerprint available, the clinical management and
treatment optimization might be less cumbersome. Including
movement measures in the ictal fingerprint can potentially
add clinical symptoms, which is an important part of the
seizure semiology—both during the diagnostic process and
treatment optimization.

In the outpatient setting, accurate seizure documentation
remains an ongoing challenge. Seizure diaries, the current
standard assessment of seizure counts at home, has been shown
to be unreliable, potentially leading to over- or under-reporting
(2). Both of which might lead to incorrect seizure treatment and
complications for PWE (3). Furthermore, unobserved seizures
have been associated with increased risk of morbidity and
mortality through seizure related accidents, SUDEP etc. Hence,
a seizure alarm making another person aware of the seizure may
help reduce the risk (4). There exist several seizure alarms, of
which most are based on movement (pressure, accelerometry,
and EMG). However, focus on other modalities like ECG and
EEG seems promising especially in seizures with a limited motor
component (5). Many of the current alarm systems have a limited
use due to low sensitivity, high false alarm rate, not being body
worn or being obtrusive, hence not used (6).

For objective seizure counting and alarms, the need for
improved combinations of devices and algorithms that work in
everyday life settings is substantial. Novel subcutaneous EEG
(sqEEG) devices present an intriguing hardware development
whichmakes EEG recordings possible around the clock (3, 7–10).
However, the use of these devices requires automatic algorithms
to process the recordings due to the vast amount of data. Two
possible approaches for improving these algorithms could be
multimodal sensing and detection based on the individual ictal
seizure semiology. Multimodal sensing is performed as standard
in the epilepsy monitoring unit, but also examples of multimodal
home monitoring are published (11). Combining sqEEG sensing
with movement sensing is a simple way to capture both the
electrographic and clinical motor parts of the seizure semiology
during home monitoring. This approach is novel and exactly
what is investigated in this study. Hereby the gap between home

monitoring and the golden standard video-EEG in the epilepsy
monitoring unit is narrowed.

This article presents a multimodal ictal fingerprint based
on movement measures and ultra long-term sqEEG recorded
in the everyday life of PWE. The aim is to explore if the
concept of an ictal fingerprint can be used to describe and
better understand the homogeneity of seizures within each PWE
and the heterogeneity of seizures across PWEs. If that is the
case, multimodal recordings could be used to supply doctors
with an improved, subject-specific epilepsy semiology during
outpatient monitoring. Furthermore, it could be used to improve
seizure detection methods by increasing the knowledge of the
heterogeneity of individual seizures.

MATERIALS AND METHODS

Data from an outpatient trial using ultra long-term minimally
invasive sqEEG to monitor epileptic seizures constituted the
basis for this work. For a detailed account on the study design,
data collection procedures and demographics of the participating
persons please refer to the initial report of the clinical trial (3).

Study Population
To ensure a representative distribution of seizure data a
minimum of 10 well-defined electrographic seizures were
required for each participant. This meant that four out of
nine participants were included in the present publication. All
included persons suffered frommedically refractory left temporal
lobe epilepsy. Table 1 depicts person characteristics.

In total, 78 electrographic seizures from the four persons
(range: 12–25 seizures/person) were identified from the sqEEG
data. All focal to bilateral tonic-clonic seizures (FBTCS) were
excluded from the analysis (a total of four seizures from two
different persons) to focus on defining the ictal fingerprint
of seizures with a smaller motor component. These are the
challenging ones to separate as opposed to FBTCS which can
be detected using wearable devices (12), and in addition, they
constitute most seizures. Thus, 74 electrographic non-FBTCS’s
constituted the basis for this work.

Data Collection and Characteristics
The sqEEG recorder system (24/7 EEGTM SubQ, UNEEG
medical, Lynge, Denmark), referred to as the SubQ solution,
consists of an implant and an external device. The implant
consists of a 3-contact lead wire (yielding 2-channel bipolar
EEG) and a small housing, implanted unilaterally under local
anesthesia over the temporal region of interest (see Figure 1). The
external device connects to the implant housing via an inductive
link, powering the implant and recording/storing data (sampling
rate: 207Hz). The external device holds a 3-axis accelerometer
(applied sampling rate of 10 or 20Hz). As the external device is
typically carried on the shirt as depicted in Figure 1, derivative
accelerometer measures carry information on the orientation,
posture, and movement of the body trunk.

Each person used the SubQ solution for 2–3 months of their
everyday life. The total amount of outpatient sqEEG has been
reviewed and labeled with “electrographic seizure” by a thorough

Frontiers in Neurology | www.frontiersin.org 2 December 2021 | Volume 12 | Article 718329180

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Kjaer et al. The Individual Ictal Fingerprint

TABLE 1 | Epilepsy and data characteristics for each person.

Person ID Ictal onset zone Semiology EEG data (h) Number of electrographic seizures (N)*

B LT FAS 1,552 25

E LT FIAS 1,147 15

G LT Uncertain 1,516 12

I LT FIAS 1,605 22

FAS, focal aware seizure; FIAS, focal impaired awareness seizure; LT, left temporal.
*Number of seizures when the four FBTCS’s (focal to bilateral tonic-clonic seizures) were excluded.

FIGURE 1 | The SubQ solution and its placement in this study. Left: sagittal view of the head showing the placement of implant at the temporal region, recording

2-channel bipolar temporal sqEEG. Right: frontal view of the trunk demonstrating the placement of the external device, recording 3-axis accelerometry of the body

trunk.

review process of leading experts from three different institutions
(in preparation for publication).

Data Analysis
Of the large amounts of recorded data, ictal, pre-ictal and baseline
data was extracted and applied in this study. All electrographic
seizures were labeled with seizure onset and duration, defining
the ictal period. The baseline and pre-ictal periods were extracted
for comparison with the ictal periods to demonstrate that
the activity during the ictal periods were different from the
remaining signal. The baseline period was defined as a 1-
min period ending 5min before the seizure onset and the
pre-ictal period was defined as the minute period preceding
the seizure onset. A length of 1min was deemed sufficient to
minimize the influence of inherent signal variance. The first
two and the last 2 s of the ictal periods and the last 2 s of
the pre-ictal periods were excluded from the analysis to avoid
transition phenomena.

In addition to the sqEEG and 3-axis accelerometry, an EMG
signal estimate was extracted from the sqEEG, based on the
frequency content above 20Hz. The recording electrodes of the
implant span the temporalis muscle, thus, recorded activity above
20Hz is very likely temporalis activity (13).

To assess a multimodal ictal fingerprint across persons, ∼70
features spanning all three modalities were calculated for the ictal
and pre-ictal periods. To find a compact ictal fingerprint, it was
decided to remove the redundant features. For this purpose, a

Random Forest classifier was trained in a 5-fold cross-validation
scheme with nine different hyperparameter settings (14). The
hyperparameter settings were a grid search over the number of
trees (25, 50, 100) and the minimum number of samples to split
a node (2, 4, 6). The remaining hyperparameters were the default
parameters used by the Random Forest Classifier function of
the python package sklearn (v. 0.24.1). The classification task
consisted of separating ictal periods between persons. From the
best performing model, a feature importance parameter was
extracted based on the internal gini impurity measure, which
determines the node splits in each of the decision trees. The five
most discriminative features were selected for further analysis
(hereafter referred to as the reduced feature space).

A principal component analysis was performed in the
reduced feature space to visualize the person-specific,
feature-based clusters of seizures. A seizure centroid
was computed for each person in the space spanned
by the principal components by averaging over all
seizures. Then each seizure was assigned to the person
with the centroid which was closest measured using
Euclidean distance. The accuracy of this simple clustering
was calculated.

To illustrate the uniqueness of the multivariate ictal
fingerprint, radar charts of the ictal feature medians and
interquartile ranges were displayed for each person. All
features were Z-score normalized for optimized visualization
and comparison.
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FIGURE 2 | The multimodal ictal fingerprint. Each color represents a separate participant (blue, orange, green, and red are person B, E, G, and I, respectively). Left:

Radar charts of the ictal feature medians and interquartile ranges for each person. F1: X-axis acceleration component; F2: EMG power proximal; F3: EEG relative delta

power; F4: EEG relative low theta power; F5: EEG relative high theta power. The heterogeneity across persons is shown. The ictal fingerprint of person B (blue) is

dominated by EEG theta power elevation. The fingerprint of person E (orange) has a partial overlap with elevated theta activity. However, the movement component

(F1) is a major contributor for this fingerprint. The movement component is also substantial for person I (red), but with no remarkable theta elevation. The ictal

fingerprint of person G (green) is not dominated by either of the mentioned features; instead, elevated EMG activity is the main contributor. Right: Pair plot of the first

three principal components of the reduced feature space of the ictal periods, where each dot represents a seizure. Scatterplots are shown for each pairing of the

principal components, and marginal distributions are plotted along the diagonal (layered kernel density estimates). Within-person clustering and separation across

persons are shown. The seizures of each individual could be separated from the rest with an 84.5% accuracy.

To demonstrate that the ictal periods differ from the baseline
and pre-ictal periods within persons, a distance-to-ictal-cluster-
average vs. distance-to-preictal-cluster-average plot was made for
all ictal and pre-ictal periods. Distances were to person-specific
cluster averages, calculated as Euclidean norms in the reduced
feature space.

RESULTS

Feature Space Reduction
The reduced feature space included one accelerometer-based
feature: the x-axis accelerometer component; one estimated EMG
feature: the >20Hz power at the proximal electrode contact
point; and three EEG-based features: the relative power in
the delta (0.5–4Hz), low theta (4–6Hz), and high theta (6–
8Hz) band.

Ictal Clustering
The pair plot of the first three principal components of the
reduced feature vectors (right chart of Figure 2) shows that
the seizures group together in person-specific, feature-based
clusters. Using a simple clustering method, the accuracy of
separating the seizures of all subjects reached 84.5%. By visual
inspection of the figure, it can be observed that B, G, and I were
more distinguishable than E and separating only B, G, and I
could be done with an accuracy of 93.1%. To some extent, the

feature characteristics of person E seem to group with person
I. According to Table 1, their seizure semiologies are alike, both
experiencing focal impaired awareness seizures.

The Ictal Fingerprint
In the left graph of Figure 2, radar plots of the ictal feature
medians and interquartile ranges demonstrate the heterogeneity
across persons. E.g., the ictal period of person G is dominated
by high EMG activity, whereas it is not the case for any other
person. Likewise, the relative low theta power is elevated for the
ictal periods of person B, whereas this does not dominate the ictal
fingerprints of the remaining persons.

Baseline and Pre-ictal to Ictal Separation
Figure 3 includes the pre-ictal periods to show pre-ictal to ictal
separation and Table 2 present the statistics of the separation
task. The cluster center distances show a separation accuracy
of 83.8% for the pre-ictal to ictal separation and 88.1% for the
baseline to ictal separation. Thereby, it is indicated that the
created ictal fingerprints are truly ictal, and not general person-
specific multimodal fingerprints.

DISCUSSION

Seizures can be split up into separate seizure types and the
same seizure type can manifest differently for each patient
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FIGURE 3 | Distance-to-ictal-cluster-average vs. distance-to-preictal-

cluster-average for all ictal and pre-ictal periods to illustrate the separation

capability. Distances are to person-specific cluster averages, calculated as

Euclidean norms in the reduced feature space. The solid black line represents

the class separation. The separation accuracy was 83.8%. Period is shown

with different colors (blue are pre-ictal periods and orange are ictal periods)

and the subject ID is shown with different marker types (circles, crosses,

squares and plusses are persons B, E, G, and I, respectively).

(15). Here we have demonstrated that the concept of an ictal
fingerprint is meaningful when based on data from three different
modalities: EEG, EMG, and accelerometry all recorded with the
SubQ solution in four different PWE. We have not managed
to find previous efforts showing this phenomenon even though
previous studies have tried to use multiple modalities in seizure
detection algorithms (16). For that reason, the purpose was not to
achieve the highest possible separation of seizures in the person-
specific, feature-based clusters. Instead, it was to demonstrate
that an ictal fingerprint exists defined by easily interpretable
features and discuss the advantages of using multiple modalities.
Collecting data on individual seizures from multiple modalities
has the potential to improve clinical treatment management.
The proposed ictal fingerprint supplies information that could
give healthcare professionals in the clinic a more detailed
description of any specific individual’s seizure semiology. Part of
this information would allow to distinguish between clinical and
subclinical seizures. A task that is not possible with unimodal
data because EEG is needed to discover the subclinical seizures
and other modalities, such as EMG or accelerometry, are needed
to determine whether a seizure is clinical.

PWE need a solution for seizure detection that works in
their everyday life, and multiple unimodal setups have been
proposed. The performance of EEG based alarms has so far
been problematic, potentially challenging clinical utility and user
tolerance (17, 18). Most of the studies regarding EEG-based
alarms show only moderate sensitivity, tolerable false detection
rates and are performed on data obtained under standardized
circumstances, e.g., in the hospital and instead of during everyday
activities (19). Most commercially available alarms are triggered
by movement (accelerometry, EMG), or sympathetic activity

TABLE 2 | Accuracy, sensitivity, specificity, positive predictive value, and negative

predictive value of separating ictal from pre-ictal periods.

Statistic Value (%) Confidence interval (%)

Accuracy 83.8 ±6.1

Sensitivity 80.3 ±6.5

Specificity 87.3 ±5.5

Positive predictive value 86.4 ±5.6

Negative predictive value 81.6 ±6.4

(ECG, electrodermal response), requiring either a significant
motor component or autonomic component of the seizures to
work (20). Often movements, exercise or change in autonomic
load cause false detections.

The crucial challenge when designing devices and algorithms
for seizure detection is to detect all true seizures while avoiding
false alarms, i.e., obtaining high sensitivity and specificity.
Achieving this goal requires data in which seizures are separable
from background activity. Our findings in four persons with
temporal lobe epilepsy show that the modalities which describe
the seizures best are different from person to person. Visual
inspection makes it clear that the seizures can be grouped
into person-specific, feature-based clusters, meaning they are
generally more similar within PWEs and more different between
PWEs (Figure 2).

EEG signals differ from person to person to a degree where
EEG has even been proposed as a modality that could be used
for biometric recognition (21–23). It was therefore expected that
the persons could be distinguished based on multiple modalities
incl. EEG. Figure 3 illustrates that there is not only a multimodal
overall fingerprint but also a separate ictal fingerprint as the
pre-ictal periods could be separated from the ictal periods.

This study only presents the ictal fingerprint of four PWEs.
It is therefore unknown to what degree the proposed ictal
fingerprint will overlap between many individuals. While the
reduced feature space represents commonly used features from
the selected modalities, the proposed ictal fingerprint contains
more features than there are PWEs. Separability of the person-
specific, feature-based clusters presented in Figure 2 would
be expected to decrease with increasing number of persons.
This could lead to a need for a revised model of the ictal
fingerprint incorporating other and possibly more features.
The approach described in this paper is novel in the way
it combines movement and EEG in an everyday life setting.
What is also special, is that the accelerometer used in this
study is placed on the chest revealing movement of the trunk
rather than extremities, which is usually the case for seizure
detectors. Finding that body trunk movements can contribute
to the ictal fingerprint might be surprising. However, it is
advantageous that measurement devices placed on extremities
are not required in order to limit the number of devices to be
worn by the PWEs.

Introducing the concept of an ictal fingerprint has the
potential to improve the PWE’s knowledge of their own seizures
which might increase their device compliance. The readiness
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of PWEs to use wearables in everyday life requires that
individual needs are addressed, and expectations are met to
better understand their life situation. A device can be perceived
by the PWEs as a lifeline to health and access to healthcare
professionals (24).

In summary, our findings in four persons with temporal lope
epilepsy show that it is possible to create unique individual
ictal fingerprints, where the multimodal characteristics
describing the ictal periods best, differ from person to person
while staying consistent within each person. Individual ictal
fingerprints may enhance clinical management, improve seizure
acknowledgment and detection algorithms, and lead to better
personal healthcare experiences.
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INTRODUCTION

My name is Aria Moss. My brother, Evan Moss, was diagnosed with epilepsy when he was 3
months old, and Tuberous Sclerosis Complex (TSC) at 2 years. TSC is a genetic disorder that
causes tumor growth in vital organs; Evan has tumors in his brain, kidneys, liver, and skin. At 4
years old, he was having >15 seizures a day and underwent brain surgery, becoming seizure-free
for 2 years. Unfortunately, his seizures recurred at age six, as nocturnal status epilepticus. He’s
since had multiple surgeries and tried >10 medications to treat them. While Evan’s seizures are
now less frequent, occurring every 2 weeks rather than daily, their unpredictability and impact
have remained.

Evan is currently 17 years old. I’m nineteen with hopes of 1 day becoming a doctor. Our parents
are both highly involved with the epilepsy community: our mom, Lisa, works for the TSC Alliance,
and our dad, Rob, developed the online seizure diary Seizure Tracker.

The following interview, conducted by Evan’s neurologist, Dr. Peter Crino, shares the
perspective of our family.

DETECTION DEVICE FUNCTIONALITY

The features of detection devices valued by patients as end-users are vital to device design.
While important features may vary from user to user, certain features are considered particularly
important by the majority of patients. High comfort, low visibility, and high usability are often
crucial features for patient uptake (1), whereas uncomfortable or visible devices dramatically limit
patient willingness to use them and are weighed against benefit and reliability (2).

Dr. Peter Crino: “Today we’re meeting with Evan Moss, along with his parents, Rob and Lisa, and sister,

Aria. We’ll touch on how Evan and his family deal with the uncertainty of living with seizures and

how seizure detection/forecasting carries for their family hope for ultimately improving quality of life.

There are many emerging approaches for seizure detection and forecasting that promise individuals

with epilepsy a view of when seizuresmight occur (3, 4). All are exciting but imperfect (5). Evan, what are

your experiences with seizure detection devices?What’s worked for you, what have you struggled with?”

Evan Moss: “Well, a lot of the devices haven’t helped me much. My seizures cycle every two weeks. I

can tell on my own when I’m getting close to a seizure, but I don’t know exactly when it’ll occur. I need

to know ahead, and I need precision; I want to know what day it’s going to be on.”
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Dr. Crino: “That’s an important observation. As you said, seizure

detection and forecasting are distinct. Many individuals with

epilepsy have some ability to self-predict, but it’s not always

reliable, and doesn’t work for everyone (6, 7). Alerting devices

say when you have a seizure but knowing exactly when seizures

will occur would really help you to prepare. You’ve tried several

devices for seizure alerting–a pulse oximeter, heart rate patches,

and cameras, for example. What have been your experiences

with those?”

Robert Moss: “When we used the pulse oximeter and heart

rate patch, they weren’t super reliable. Other devices, like EMG,

relied on algorithms that required lengthy periods of muscle

involvement. Evan’s seizures included muscle contractions that

were detected by EMG but wouldn’t last long enough for it

to alert.”

Lisa Moss: “There were also challenges wearing the pulse

oximeter; when he wore it on his hand or foot, it didn’t stay on.

The heart rate patches stuck to his chest and were difficult to

remove. They’d irritate his skin.”

Dr. Crino: “So they were uncomfortable, which led to a lack

of functionality.”

Rob: “Comfort and reliability have definitely been an issue.

The best for us as parents has been video monitoring. We can tell

based on motion whether Evan’s having a seizure, and run in to

treat it.”

Evan: “I think there are four features needed for a good

device: it needs to be comfortable, easy to use, accurate, and

precise. They’re different–precision is always hitting the same

spot; accuracy is always hitting the bullseye.”

PRIVACY AND STIGMA

When using wearable devices, patients often report that a device’s
visibility and privacy (or lack thereof) negatively impacts their
experience, which can be isolating or uncomfortable (1, 2, 8).
Here, the Moss family reflects on similar experiences with other
seizure detection methods they use.

Dr. Crino: “Evan, what are your thoughts about being monitored

on camera for seizures? Is that comfortable for you?”

Evan: “Not at all! There’s a camera constantly on in my room.

I have a hard time ever feeling that I’m not being watched.”

Dr. Crino: “I think most people would be pretty opposed to

having a camera in their room, right? We hear this in epilepsy

monitoring units; you’re live theater, all the time. It serves a

function— you all can have eyes on Evan and respond rapidly,

which is great, but privacy is an big issue (9). Tangentially—tell

me about your experience with Mindy, your seizure alert dog. Is

it extra attention you don’t want?”

Evan: “It’s not that bad for me. At school, everyone knows I

have Mindy and love her! I can also choose to leave her at home

on small outings.”

Lisa: “There are even challenges with having Mindy. You

may think everybody knows service dogs are allowed in public

spaces but that isn’t always the case. We’ve had to fight to enter

restaurants, doctor’s offices, even hospitals!”

Dr. Crino: “Really?”

Lisa: “Yes! Life can become confrontational doing basic things,

and it can be unsettling. We’re a spectacle–everywhere we go,

heads turn, people comment. As soon as the vest is on, you get

that attention, whether you want it or not.”

Rob: “Our community’s looking for solutions, but I feel like

there’s rarely conversation about the unintended consequences.

Sometimes the lifestyle changes have an even bigger detrimental

effect on quality of life.”

Lisa: “I think we were really hoping for independence for Evan,

so he could sleep alone without the camera. Mindy alerts two days

ahead of a seizure and responds as it happens, but we usually

wake up before she does. She’s part of our team but doesn’t fill

all the gaps.”

FORECASTING HORIZONS AND
PRIORITIES

Many surveys on patient needs with regards to the performance
of seizure forecasting algorithms have been conducted. In
general, patients have reported that high sensitivity is vital for
seizure prediction (10), with the potential morbidity/mortality
from false negatives a high concern (11). One survey of 1,168
people with epilepsy found that “detecting all seizures” was rated
as themost important priority for detection devices (12). Another
survey found that about 60% of people and caregivers of epilepsy
required 100% accuracy in detection rates to find devices useful
(13). Only 25% (32%) of patients have said they would be very
likely to continue using a forecasting tool if it made one false
negative (false positive) prediction, respectively (14).

Dr. Crino: “Let’s discuss seizure prediction. Recent evidence

suggests that when you have a seizure, it’s been building up for

hours, maybe days (15). There’re lots of markers that go up in the

blood and brain around the time of seizure activity (16, 17). It’s

clearly a systemic effect, we just don’t have a way to reliably pick

it up in advance.”

Lisa: “It would be great if there was a way to predict a seizure

and treat preventatively so it doesn’t occur or you’re prepared. If

you’re going to go out and you’re alerted about a likely seizure,

maybe plans change. Evan’s needs are different since his seizures

happen in his sleep.”

Rob: “That’s why patients have to be involved in developing

devices. Electrographic seizures are considered a gold standard

in prediction, but as a father I don’t want to predict every

seizure. I want to know when he’ll have a seizure that would

require intervention.”

Dr. Crino: “There’s discussion by developers of what

prediction horizons they should aim for. For you, what would be

a good prediction horizon?”

Evan: “My seizures are in my sleep, and usually happen early

in the morning. If I get an alert too far ahead, like over two hours,

I’m going to lie awake, dreading a seizure. But it needs to be far

enough ahead to act, at least more than 10 min.”

Dr. Crino: “Earlier, Evan gave four important features of a

seizure forecasting device–ease of use, comfort, precision, and

accuracy. Is there anything else?”

Rob: “It’s dependent on the characteristics of each person’s

epilepsy. There was a switch when Evan went from many small

seizures a day to status seizures every two weeks. Until we had

to act on those long seizures, we didn’t care about predicting the

small ones. We already knew he was going to have ten or fifteen

seizures the next day.”

Aria Moss: “In general, a device has to be able to predict

seizures better than the patient or caretaker can–which isn’t easy.
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But until you can replace their usual detection methods, you’re

not going to alleviate meaningful burden on the family. Evan has

seizures every two weeks, which always go into status and are

treated with emergency medication right away, and we often call

911. We can’t miss a seizure. If we have a device that works 95%

of the time but will still miss 5% of his seizures, that’s just not

helpful–it’s not enough to rely on alone.”

Dr. Crino: “That’s an interesting point–your family has put

together a strategy for 100% catch rate. That’s the benchmark for

these devices: 100% sensitivity. You really can’t miss any seizures;

there’s morbidity associated with that.”

DISCUSSION: THE PATIENT PERSPECTIVE

About a fifth of patients have expressed that existing devices
are not effective for their seizure type(s), which causes
skepticism about the use of forecasting or detection devices
(14). Almost all evidence for devices currently on the market
is specific to seizure types with major motor features, and
there is little evidence on accuracy for other seizure types
(1). Ultimately, in order to develop effective devices, it is
vital to ensure patient voices are considered throughout the
development process.

Dr. Crino: “I’d like to wrap up with a broader question. What’s

your perspective on howwell the research community is involving

patient perspectives?”

Lisa: “I don’t think that the patient voice is brought in early

enough. The patient is the one to buy the device, follow the

method, wear the tool. When patients are involved early on, they

share their views, and some aspects might improve. Sometimes

a change will evade developers because they’re not living it day

to day, so it’s important to have a diverse population of patients

involved in those discussions. This is related to patient-doctor

interactions, too; patients need to be viewed as valuable and

knowledgeable members of the treatment team and be included in

all aspects of care. As parents we’ve seen our son have thousands

of seizures, and that provides expertise. We’re experts in Evan’s

epilepsy and which treatments will improve his quality of life.

It’s the same when considering a seizure detection device: it’s

important to recognize the knowledge of the patient community

in all stages of development.”

Rob: “Epilepsy is a hard disorder to manage and

requires strong patient/physician communication to

treat effectively. Technology needs to compliment that

communication, not replace it. Developing technologies

that collect data alongside patient-reported outcomes is a

way developers can prioritize both clean data collection and

patient interests.”

Dr. Crino: “I think you’re right–many people think about

this problem in terms of removing the patient altogether, but

to be honest with you, I don’t foresee a future where we

can do that. The patient tells us what outcomes matter most.

Someday, maybe seizure forecasting will be tied to adjusting

the wiring in the brain in real-time (18). We don’t have any

therapies right now to adjust the wiring in the brain, to really

help patients. That’s for you to figure out when you’re a

doctor, Aria.”

Aria: “Talking about predicting seizures is amazing; it’s a new

frontier for epilepsy. When I’m a doctor, I hope we have solutions

that go beyond anything we have today. I’m excited to see where

we’ll be ten, twenty years down the line.”
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Introduction: About 30% of epilepsy patients are resistant to treatment with antiepileptic

drugs, and only a minority of these are surgical candidates. A recent therapeutic

approach is the application of electrical stimulation in the early phases of a seizure

to interrupt its spread across the brain. To accomplish this, energy-efficient seizure

detectors are required that are able to detect a seizure in its early stages.

Methods: Three patient-specific, energy-efficient seizure detectors are proposed in

this study: (i) random forest (RF); (ii) long short-term memory (LSTM) recurrent neural

network (RNN); and (iii) convolutional neural network (CNN). Performance evaluation

was based on EEG data (n = 40 patients) derived from a selected set of surface EEG

electrodes, which mimic the electrode layout of an implantable neurostimulation system.

As for the RF input, 16 features in the time- and frequency-domains were selected.

Raw EEG data were used for both CNN and RNN. Energy consumption was estimated

by a platform-independent model based on the number of arithmetic operations (AOs)

and memory accesses (MAs). To validate the estimated energy consumption, the RNN

classifier was implemented on an ultra-low-power microcontroller.

Results: The RNN seizure detector achieved a slightly better level of performance, with

a median area under the precision-recall curve score of 0.49, compared to 0.47 for CNN

and 0.46 for RF. In terms of energy consumption, RF was the most efficient algorithm,

with a total of 67k AOs and 67k MAs per classification. This was followed by CNN (488k

AOs and 963kMAs) and RNN (772k AOs and 978kMAs), wherebyMAs contributedmore

to total energy consumption. Measurements derived from the hardware implementation

of the RNN algorithm demonstrated a significant correlation between estimations and

actual measurements.

Discussion: All three proposed seizure detection algorithms were shown to be

suitable for application in implantable devices. The applied methodology for a

platform-independent energy estimation was proven to be accurate by way of hardware

implementation of the RNN algorithm. These findings show that seizure detection can
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be achieved using just a few channels with limited spatial distribution. The methodology

proposed in this study can therefore be applied when designing new models for

responsive neurostimulation.

Keywords: seizure detection, responsive neurostimulation, low-power hardware implementation, random forest,

recurrent neural network, convolutional neural network

INTRODUCTION

Problem Definition
Epilepsy is a brain disorder characterized by recurrent epileptic
seizures (1) and is one of the most common neurological
diseases, affecting nearly 70 million people worldwide (2).
Epileptic seizures are defined as episodes of excessive or
abnormal synchronous neuronal activity in the brain, and
can be accompanied by clinical neurological symptoms such
as abnormal movements, abnormal sensory phenomena, loss
of consciousness, or alterations in consciousness. Epilepsy is
therefore associated with considerable neurological morbidity.
Epileptic seizures can vary in form, not only between different
patients but also within a single patient.

Despite advances in the development of medication, about
30% of epilepsy patients are resistant to a treatment with
antiepileptic medications (3). Nevertheless, only 7–8% of these
patients are surgical candidates (4).

In the case of focal seizures, surgical resection of the brain
region(s) generating the seizures may be used to prevent further
seizures. Nonetheless, because not all of these patients have
a unifocal seizure onset zone (SOZ) and the epileptogenic
brain tissue cannot always be resected without significant
functional loss, more innovative therapeutic approaches are
urgently required.

A recently proposed treatment approach for these patients
is electrical stimulation of the epileptic focus during the early
phases of a seizure in order to interrupt its spread across
the brain (2). This can be accomplished using a closed-loop
neurostimulation implant, which records electrical brain
activity via a set of electrodes and continuously monitors
electroencephalography (EEG) activity applying a seizure
detection algorithm. It then triggers electrical stimulation at
the SOZ via the same electrodes in the advent of an emerging
seizure. This approach requires the early detection of seizures
with high accuracy based on EEG. Furthermore, the selected
seizure detection algorithm should be computationally efficient
to have a low energy consumption for long-term application in
an implantable, battery-powered device.

Currently, the only FDA-approved implantable device for
clinical applications that applies this principle is the so-called
“RNS device” (Neuropace Inc., USA). This device provides
electrical stimulation via a generator fixed to the skull, with
electrodes within or directly above the cortical region of the
epileptic focus (1). Whereas, this device has proven to be
efficacious both under short-term and long-term applications
(3, 5, 6), its implantation is complex and the risk of infection at
the implantation site is high, due to the intracranial placement of
the electrodes (4).

In addition, the RNS device suffers from a high number of
false detections. As false detection rates (FDRs) of the device
are not reported explicitly, they can only be derived from the
length of reported stimulation times. According to Heck et al.
(3) a mean stimulation period of 5.9min was applied. With
a pulse burst duration of 100ms, this corresponds to 3,540
stimulations per day and a minimum of 354 detections per
day and 10,620 detections per month. At a baseline seizure
frequency of 8.7 per month, this corresponds to >1,220 false
detections per crisis event. This high number of interventions
leads to the question of how much efficacy is related to closed-
loop suppression of seizure-related ictal activity, in contrast to
long-term depression of seizure probability by neuromodulation.
In addition, improved seizure detection algorithms with higher
specificity of interventions can lead to a longer neurostimulator
battery life, due to the reduced number of stimulations;
accordingly, it may lead to fewer side effects of the stimulation.

Previous Studies
The development of seizure detection algorithms based on EEG
data began several decades ago (7). The initial objective was
to reduce the workload of reviewing continuous long-term
recordings in epilepsy monitoring units and presenting the
neurologist with intervals of only the highest clinical relevance.
In addition, more recent studies have addressed the development
of seizure detection algorithms for responsive stimulation to
prevent the onset or spread of seizure activity in the early
phase of a seizure (8). Such application scenarios require a
reliable seizure detector at a reasonable computational load.
Furthermore, performing an intervention exactly at the onset
of a seizure, requires early detection, which is considered in
more recent approaches (9–11). Because of the high variation in
EEG patterns that characterize a seizure (12), the large variability
in background EEG activity among patients, and the intra-
individual fluctuations in EEG activity, the problem of seizure
detection remains an active research topic (13–15). While several
publications have proposed seizure detection algorithms for
either offline or online applications, only a limited number of
studies have addressed the limitations of seizure detection for
closed-loop applications. One particular limitation is the use of
only a few electrodes for seizure detection, which is driven by
properties of the neurostimulator. Seizure detection using a low
number of electrodes has recently achieved increased interest,
as this concept enables mobile seizure monitoring (16–18). In
contrast, outpatient monitoring with a complete electrode setup
is seen as stigmatizing—as in any application that exposes the
patient to the public—and is therefore not feasible in practice.
A recent study by Vandecasteele et al. (19) described a seizure
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detection algorithm based on a support vector machine classifier
using behind-the-ear EEG data derived from only four electrodes.
However, although the proposed model had a relatively low
FDR, it also had low sensitivity (19). In another recent study,
Dan et al. (20) proposed a method for detecting electrographic
patterns during absence seizures (short, non-motor generalized
onset seizures); this was based on a linear multichannel filter
which was precomputed with the spatiotemporal signature of
the seizure and the peak interference statistics that could run on
a microcontroller. Nevertheless, this particular method requires
20 recording channels. Therefore, the need to develop a seizure
detection algorithm that can detect seizures in early stages not
only with high sensitivity and specificity, but also with low
computational power and a limited number of electrodes has not
yet been fulfilled.

Regarding energy estimation of the seizure detection
algorithms, several methods have been introduced. García-
Martín et al. (21) reviewed the current approaches used to
estimate energy consumption in machine learning. They
suggested dividing the common methods of energy estimation
into three different categories, namely at the software-application
level, the software-instruction level, and the hardware level (21).
The software categories describe the energy related to the
algorithm features, and are based either directly on the
application level, or on the underlying instructions. Here,
a model links the instructions to the energy demand. The
hardware level relates the energy caused by the application to
the components in the hardware setup. Among the methods,
the instruction level in the software category is most relevant to
the scope of this study. At the instruction level in particular, the
energy consumption is evaluated on the basis of program-specific
instructions. This approach was followed by Rouhani et al. (22),
in which the power consumption of a deep neural network
(DNN) was estimated using the number of multiply-accumulate
(MAC) operations. Likewise, Taghavi et al. (23) estimated the
hardware requirements of DNNs and decision tree ensembles
in terms of MAC operations and parameters required for the
classification model. They compared several studies using energy
efficiency, hardware complexity and classification performance
as parameters (23). Yang et al. (24) applied this approach to
estimate the energy consumption for a CNN algorithm. They
constructed the total energy consumption by first extending the
model based on MAC operations and model parameters with the
number of memory accesses (MAs). Next, they weighted these
parameters with measured MAC operations and MA energies to
calculate the total energy dissipation (24).

Own Approach
A minimally invasive, implantable neurostimulation approach
was recently developed using subgaleally placed stimulation
electrodes (EASEE System, Precisis AG, Heidelberg). The
subcutaneous system uses electrodes that are placed outside the
cranium over the SOZ, and connected to a pulse generator on
the trunk (Figure 1). For the integration of a seizure detection
algorithm into this kind of fully implantable intervention
device, several limitations must first be considered. The

FIGURE 1 | A minimally invasive electrode setup as a part of an implantable

system for focal epilepsy (Copyright © Precisis AG, Heidelberg, Germany).

seizure detection algorithm must perform well despite a
low number of electrodes, limited spatial coverage, and low
computational power. To address this issue, three patient-
specific seizure detection algorithms that only apply four
channels each were developed and their performance was
evaluated: random forest (RF), convolutional neural network
(CNN), and long short-term memory (LSTM) recurrent
neuronal network (RNN). In addition, to evaluate their
suitability for application in an implantable, responsive
neurostimulator, their respective computational load and
power consumption were estimated. As in this study, the
classification rate is 1Hz; the estimated energy demand in µJ
is equal to the power consumption in µW. To estimate the
required computational load, an instruction-level model based
on application-specific instructions and MAs was developed
and validated.

The quality of subcutaneous recordings was compared to
standard surface EEG recordings by Duun-Henriksen et al. (25).
They showed that some aspects of the subcutaneous recordings
might be similar, or even superior, to surface EEG recordings
(25). Likewise, Weisdorf et al. (26) reported a high similarity
between EEG data from subcutaneous and proximate scalp
electrodes in patients with temporal lobe epilepsy. Accordingly,
the seizure detection algorithms developed in the current study
were tested on surface EEG data from electrodes configured to
resemble the subgaleal electrode placement.
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FIGURE 2 | Schematic outline of the study design.

MATERIALS AND METHODS

A schematic outline of the study design is presented in Figure 2.
In the following sections, the methodology used for evaluating
performance and estimating power consumption is described.
A more detailed description of the energy estimation method is
provided in the Supplementary Material section.

Dataset
The dataset consists of surface EEG recordings from 50 patients
(23 female; age range, 14–66 years; mean age, 32.5 years) with
focal-onset seizures at the Epilepsy Center Freiburg, Germany;
the total number of seizures was 357. Figure 2 demonstrates
how the dataset was split for training the different classifiers,
i.e., patients 1–10 were selected for pre-training (CNN only),
while the remaining 40 patients (11–50) were selected for
training and evaluation (all 3 methods). Due to considerable
imbalance between the ictal and interictal classes for each seizure,
an hour-long time window around each seizure was selected
for evaluation and the remaining data were then excluded
from analysis. Patients were selected based on long-term video
recordings that included at least five seizures, with electrodes
positioned over the SOZ according to the 10–10 electrode
layout (27). Electrode selection was performed to represent
device layout. Expert epileptologists defined the SOZ by visual
exploration of the seizure onset electrodes recordings, taking into
account the inter-electrode distances. The study was approved

by the local Ethics Review Board. Informed consent of the
patient covered the in-house use of EEG recordings. EEG data
were recorded at a 256Hz sampling rate on a 256-channel
DC amplifier with 24-bit resolution (Compumedics, Abbotsford,
Australia). For anti-aliasing, a low-pass filter with a cut-off
frequency of 100Hz was applied. Five electrodes covering the
SOZ were selected for seizure detection in each patient.

Data Preprocessing
A small number of preprocessing steps were applied to reduce
the effects of noise and artifacts on the performance of the
seizure detection algorithms. First, invalid segments of the EEG
signals, including segments where the signal was not recorded
due to electrode deficiency or during the electrode impedance
measurement, were excluded from analysis. Next, to improve
the signal quality, a 10th order Chebyshev Type-II IIR (infinite
impulse response) bandpass filter with a stopband attenuation of
40 dB and respective stopband frequencies of f1 = 0.1 Hz, and
f2 = 48 Hz was applied. The settings were chosen to filter power
line noise and reduce the influence of broad-bandmuscle activity,
spanning up to 200Hz (28). To remove high-amplitude sharp
artifactual transients, another artifact rejection step was added in
which periods of Tp = 1 s that contain amplitudes higher than
1mV were removed. This threshold was set in such a way that
allowed amplitudes in the range of 100µV [typical of EEG signals
in healthy subjects (29)], as well as interictal spikes up to ∼140
µV (30) to remain in the data. Moreover, the selected threshold
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value allows a good trade-off between excluding artifacts vs.
retaining the scarcely represented ictal patterns in the data, so
as to avoid further imbalance in the dataset. Finally, to account
for the locality of the target electrode configuration, the EEG
channels were re-referenced by subtracting the recordings of
the centrally positioned electrode from those of each of the
peripheral electrodes.

Seizure Detection
Seizure detection can be modeled as a time-series classification in
which ictal phases (seizures) and interictal phases (non-seizures)
are classified. In this section, the three proposed supervised-
learning algorithms for seizure detection are detailed.

Random Forest (RF)
RF is an ensemble-learning method for classification or
regression that operates by constructing a group of decision trees
in which each tree is grown using binary decisions (each parent
node is split into two children) (31). This method combines the
“bagging” technique with the random selection of features. The
randomness of each tree is accomplished in two ways: first, by
random selection of a subset of approximately two thirds of the
data for training the tree, and second, by feature selection of
the nodes of each tree, which is done using a randomly selected
subgroup of features. The remaining one third of the training
data is used for out-of-bag error evaluation and performance
calibration of the tree. In this study, the number of binary
decision trees was set to 100. Entropy was selected as the
branching index for growing each decision tree. The best feature
(splitter) from the eligible, randomly selected subset of features,
which has the highest importance, is used to split the node. In
line with the Liaw and Wiener (32) results, the optimal number
of randomly selected features at each tree node is sqrt(N), where
N is the number of features. In this study, 16 time- and frequency-
domain features were calculated from the EEG data as input.
The time-domain features were mean, maximum, mean absolute
deviation (MAD), variance, skewness, kurtosis, line length and
entropy. Frequency-domain features included values for the
maximum, mean, and variance of the power spectrum, power
in the theta (4–8Hz), beta (13–30Hz), and gamma band (30–
45Hz), spectral entropy, and epileptogenicity index, the latter of
which is defined as the ratio of power in the higher frequency
bands (beta + gamma) vs. the lower frequency bands (theta +
alpha) (33). As a result, four features were randomly selected
at each decision tree node. To maintain a limited tree size and
to confine the required memory for hardware implementation,
the maximum depth of the decision tree was limited to 10.
Bootstrap samples were used while building the decision trees.
The sample weights for each class were adjusted to be inversely
proportional to the class frequencies in the training data. A non-
overlapping time window of 1 s was selected for seizure detection.
For implementation of the RF, the freely available and open
source Scikit-learn machine learning library was used (34).

Convolutional Neural Network (CNN)
CNN is a class of DNNs that were inspired by biological processes
(35) and are commonly applied for pattern recognition (36). A

CNN consists of an input layer, multiple hidden layers, and an
output layer. The hidden layers consist of convolutional layers,
pooling layers, and potentially fully connected layers. In the
convolutional layers, the input is convolved with filters to detect
patterns, and the results are conveyed to the activation function
which is usually a rectified linear unit (ReLU). In addition,
CNNs may include local or global pooling layers that reduce
the dimensions of the data. The pooling layer helps to control
overfitting by making the pattern representation almost invariant
to minor translations of the input. This is accomplished by
striding a window over the output of the activation function and
pooling the average or maximum value. Subsequently, the results
matrix is flattened and fed to the fully connected layers to drive
the classification decision.

To create the inputs for the convolutional network, sliding
windows of 1 s over the EEG data were processed. First, the
data was rescaled by dividing it by the standard deviation
of the training data. Next, the data was normalized using an
estimation of the hyperbolic tangent function, as shown in the
following equation:

x̂ (t) = tanh(0.2 · x (t))

To facilitate hardware implementation of the hyperbolic
tangent function and avoid the need for a lookup table, a
linear approximation of the hyperbolic tangent was applied
for classification:

lintanh(x) : =







x/1.2 −1.2 ≤ x ≤ 1.2
1 x > 1.2
−1 x < −1.2

The architecture of the proposed CNN in this study is shown
in Table 1. Four channels of simultaneously recorded raw EEG
data with a duration of 1 s (256 data points) were selected as
the input. In the first convolutional layer, a kernel size that
extends over time and all four EEG channels was used to facilitate
efficient learning of the spatiotemporal patterns. No padding was
applied in the convolutional layers. In all hidden layers, batch
normalization was applied after the convolutions were performed
(37). The ReLu was selected as the activation function. Dropout
regularization was used during training to reduce overfitting
and generalization error (38). In the last two layers, two fully
connected layers were employed.

Due to the limited amount of available data for each patient,
the transfer learning method was applied for training the model.
This is generally done by applying the gained knowledge from
a learning problem to improve learning on a related problem.
Accordingly, the model was first pre-trained with data from 10
patients. For each of the remaining 40 patients, the model was
subsequently fine-tuned using patient-specific data. Because the
classes (ictal vs. interictal) were imbalanced, the class indices were
weighted to balance the weighting of the loss function during the
training phase (39). Each model was trained for 500 epochs with
a batch size of 512. For weight optimization, an Adam solver (40)
with a learning rate of 10−3 was used. Binary cross-entropy was
selected as the loss function.
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TABLE 1 | Architecture of the proposed CNN.

Layer Operation Output Parameters #

Input (C × 256) C × 256 × 1 –

1 15 × Conv2D (C × 25) 1 × 232 × 15 1,515

Batch Normalization 1 × 232 × 15 60

2 MaxPool2D (1 × 4) 1 × 58 × 15 0

Dropout (0.2) 1 × 58 × 15 0

3 15 × Conv2D (1 × 11) 1 × 48 × 15 2,490

Batch Normalization 1 × 48 × 15 60

4 MaxPool2D (1 × 4) 1 × 12 × 15 0

Dropout (0.2) 1 × 12 × 15 0

5 10 × Conv2D (1 × 5) 1 × 8 × 10 760

Batch Normalization 1 × 8 × 10 40

Dropout (0.2) 1 × 8 × 10 0

6 Dense (8) 8 648

7 Dense (4) 4 36

8 Sigmoid 1 5

C, Number of channels.

Recurrent Neural Network (RNN)
Recurrent Neural Networks (RNNs) are a class of neural
networks with recurrent connections that allow the network to
store information over time. RNNs started to gain attention with
the introduction of LSTM cells, which significantly improves
their performance. The LSTM cell was first introduced by
Hochreiter and Schmidhuber (41) to overcome the problem
of vanishing gradients in RNNs. With its internal state, the
LSTM cell is capable of storing information over time, depending
on its input and output values. The flow of information
is controlled by the so-called gates that can learn which
data in a sequence is important to remember or disregard.
Gates can be seen as controlling valves with the ability to
let the information pass through by multiplying it by the
gate values. These features allow LSTM cells to be used in
time-series problems. Combined with other neural network
layers, they form an LSTM neural network. Such networks
are used across many different applications and are considered
especially useful in sequence prediction or sequence classification
problems (42).

The proposed RNN architecture is based on the work of
Hussein et al. (43) with a few modifications to reduce the
complexity of the model. Similar to CNN, four channels of
simultaneously recorded raw EEG data with the duration of 1 s
(256 data points) were selected as the input. As shown in Table 2,
the network consists of an LSTM layer containing 20 cells with an
input size of 256. Similar to the CNN, a dropout layer is used for
regularization. This is followed by a time-distributed dense layer
consisting of 20 dense cells with a linear activation function that
is computed at every time step. Subsequently, the global average
pooling layer averages the dense cell outputs over time. Finally,
as this is a binary classification task, an output dense layer with a
sigmoid activation function is used that simplifies the calculation.

The classifier performance was investigated with both raw
data and its time-derivative for each individual channel. The

TABLE 2 | Architecture of the proposed RNN.

Layer Operation Output Parameters #

Input (C × 256) C × 256 × 1 –

1 LSTM (20) 256 × 20 2,000

Dropout (0.1) 256 x 20 0

2 Time-Distributed Dense (20) 256 x 20 420

3 Global Average Pooling 1D 20 0

4 Dense (1) 1 21

C, Number of channels.

latter was calculated through the difference of subsequent values
for all electrodes and all time steps as:

1xck = xck − xck−1

where c corresponds to the electrode number and k ∈ {1, . . . ,K}
is the sample index with K samples in the corresponding seizure.
Next, the training data were prepared by striding a moving
window over the sample axis of the input data. For training, a
step size of strideinter−ictal = 16 was chosen for the interictal
class, and a strideictal = 1 was used for the ictal class; this was
done both to account for the imbalance and to increase the ictal
sample size. For validation, a single seizure that was excluded
from the training data was used with the same stride settings as
those used for training. The test set was created with a moving
window step size of stride = 256. Furthermore, early stopping
(44) was applied as another regularization technique to prevent
overfitting and reduce training time. The patience parameter was
set to 10 epochs. It defines the maximum number of epochs
than may occur until an improvement in the validation dataset
is observed, before stopping the training process. Validation loss
was used as the performance metric to decide whether early
stopping was necessary. The samples were presented with a mini-
batch size of 256. The binary cross entropy was chosen as the loss
function and the Adam optimizer chosen to tune the learning
rate. Finally, to further improve the classifier performance, the
output probabilities were median filtered with a moving median
size of three.

Performance Evaluation
For performance evaluation of the seizure detection algorithms,
the “leave-one-out” method was used for cross-validation,
whereby in every iteration one seizure was selected for testing
and all remaining data were used for training. The EEG data
from ten patients were used to pre-train the CNN model.
Performance evaluation was conducted across the remaining
40 patients (total number of seizures = 286) for each of
three proposed classifiers. Evaluation metrics were calculated
for each patient separately and then averaged across all the
patients. Metrics for the performance evaluation of seizure
detection algorithms are either dependent on a threshold-level
set for the seizure probability, or are threshold-free. Accepted
threshold-dependent metrics for performance evaluation of the
seizure detectors are sensitivity, FDR, and average detection
delay. For calculation of the sensitivity, a seizure was counted
as correctly detected when it was detected at least once
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during the ictal phase. Regarding the FDR, false detections
within a 5 s window were counted only once, since they
generally refer to the same detected pattern. Nevertheless, there
is an inevitable trade-off between these threshold-dependent
evaluation metrics. For example, a higher sensitivity and lower
detection delay can be attained if a higher FDR is accepted.
While the use of these metrics facilitates the estimation of
seizure detector performance in different application scenarios,
the use of threshold-free metrics simplifies the comparison of
the classifier performance by combining threshold-dependent
metrics into one threshold-free metric. To yield a threshold-
free comparison of the classifiers, the area under the curve
(AUC) of the receiver operating characteristic (ROC) and
precision-recall (PR) curves were selected as performance
metrics. For calculating threshold-free metrics, the true and
false detections were counted for each time window (1 s), which
is different from how the threshold-dependent metrics were
calculated. Considering that detection delay is not projected
in the AUC, a modified version of the selected metrics was
used as additional metrics, denoted as “early seizure AUC.” In
this case, only those seizures detected within the first 10 s of
seizure onset (as determined by the epileptologist) were deemed
successfully detected.

Energy Estimation
The energy estimation of the proposed seizure detection
algorithms in this study is based on the number of arithmetic,
memory read, and store operations. The total energy required
was estimated via the energy costs per operation (24). The
method in Yang et al. (24) was modified to use the energy
estimation per operation based on the findings reported in
Horowitz (45), instead of measuring the energy for specific
hardware. Additional measurements were performed, and
assumptions were made for operations not included in
their proposed method. Table 3 shows an overview of
the operations and corresponding energy consumption
relevant for the developed model. Horowitz (45) defines
the rough energy cost in a 45 nm process technology for the
fundamental operations and MAs. In addition, Horowitz
included the energy cost of the microprocessor overhead,
which deliberately was not taken into account in the current
study for the purpose of obtaining a hardware-independent
measure. Nevertheless, the proposed model can be adapted
to specific hardware if required. In addition, it enables the
identification of operations that have a higher impact on
energy consumption. Hence, it helps in implementing efficient
signal processing algorithms, or aids in selecting the most
suitable microprocessor.

The total energy is calculated as Etot = (Nload + Nstore) · Em +
∑

x Nx · Ex, where Nload is the number of load operations, Nstore

the number of store operations, Em theMA energy,Nx and Ex the
number of operation x and the corresponding energy defined in
Table 3.

The following assumptions were additionally made: (1) the
energy required for a MAC operation EMAC is defined as EMAC =
Eadd + Emult . (2) The energy overhead of the square root
function, which is not included in Horowitz (45), corresponds

TABLE 3 | Energies assumed for the estimation of the power consumption.

Parameter Energy

Em 5 pJ

Eint32−add 0.1 pJ

Eint32−mult 3.1 pJ

Efloat32−add 0.9 pJ

Efloat32−mult 3.7 pJ

Ecompare
a 0.9 pJ

Efloat32−divide
b 26.3 pJ

Efloat32−1−cycle
c 3.7 pJ

Em is half the cache energy estimated by the energy cost table for 45 nm at 0.9 V

from Horowitz (45) for an 8 kB 64-bit wide cache access, as only 32-bit loads are

considered in this study. Efloat32−add , Efloat32−mult, Eint32−add , Eint32−mult values are also

from Horowitz (45).
aAs a compare operation can be performed as a subtraction which is basically an addition,

the same energy is assumed for the compare operation. bA benchmark on the Ambiq

Apollo 3 Blue with ARM Cortex M4F processor measured by executing three different

measurements with a loop containing float multiply, divide and both instructions to cancel

out loop and other overhead, showed a factor of 7.1 of float division energy consumption

compared to float multiply energy consumption. cOther floating-point operations that take

one clock cycle are considered to consume as much as a multiply operation.

to that of a division operation. This assumption is based on
the specification of the ARM Cortex-M4F floating-point unit,
which states that the two operations have the same number of
execution cycles.

Random Forest Energy Estimation
For energy estimation of the RF classifier, the number of
required arithmetic and memory operations for the 16 time-
and frequency-domain features were first calculated. A 32-
Bit floating-point arithmetic was chosen to obtain an energy
estimation value comparable to that of the RNN and CNN.
Divisions by a constant are considered as multiplications, as
their energy consumption is lower compared to a division.
Each feature is considered to be computed over the sample
or time axis in the input data array vin ∈ R

Nw×C, for
Nw = Fs · Tw, where Fs is the sampling frequency and Tw is
the length of the window required for an observation. In this
section, individual energy considerations are made for a single
input channel. Consequently, the total energy is calculated by
multiplying the required energy for a single channel with the
number of channels C, assuming that all features are calculated
for each channel.

Time-Domain Features
To improve computational efficiency and avoid redundant
calculations, zero-mean values of the signal and their
square values were calculated only once, and then shared
along a set of features. The required number of arithmetic
operations (AOs) and MAs were estimated based on the
number and type of mathematical operations needed
to calculate the features. Table 4 shows the equations
that were considered for the calculation of the time-
domain features, with x being the vector containing the
input samples.
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TABLE 4 | Assumed equations for the Time-domain features.

Time-Domain feature Equation

Maximum max − val = max(x)

Mean x = 1
Nw

·
∑Nw

i=1 xi

MAD MAD = 1
Nw

∑Nw
i=1

∣

∣xi − x
∣

∣

Variance var = 1
Nw

∑Nw
i=1

(

xi − x
)2

Skewness gm = 1

Nw ·s3
∑Nw

i=1

(

xi − x
)3

Kurtosis w = 1

Nw ·s4
∑Nw

i=1

(

xi − x
)4

Line Length LL =
∑Nw

k=2 |xk − xk−1|
Entropy H = −

∑

i pi · log2(pi )

TABLE 5 | Frequency-domain features and their respective equations that were

considered in this work.

Time-Domain feature Equation

Spectral entropy H = −
∑

i pi · log2(pi ), with pi =
Pi

∑L−1
i=0 Pi

Mean spectral power P = 1
L
·
∑L

i=1 Pi

Maximum spectral power maxP = max (P)

Spectral power variance varP = 1
L

∑L
i=1

(

Pi − P
)2

Band power BP =
∑f2/1f

i=f1/1f Pi , with 1f = 1
tw

Epileptogenicity index Epiindex = Pβ+Pγ

Pθ+Pα

P is the power spectrum vector, obtained by the DFT, f1 the lower band frequency, f2 the

upper band frequency of the band power, and tw the duration of the sampled window in

the time-domain.

Frequency-Domain Features
The calculation of the frequency-domain features is based on the
power spectrum P ∈ R

L, where L is the number of frequency
bins. It is obtained using the squared values of the Discrete
Fourier Transform (DFT) of the windowed raw time-domain
signal x (t). To minimize spectral leakage, a Hanning-window
was applied before performing the DFT. The equations of the
frequency-domain features are summarized in Table 5.

Random Forest Classifier
For the classifier itself, the highest possible energy consumption
was considered, whereby all 100 trees are used for classification
and the tree branches are developed to the maximum depth,
which, in this case, was set to 10.

Convolutional Neural Network and Recurrent Neural

Network Energy Estimation
The same scheme was applied for estimating the AOs for
the proposed CNN and RNN models, where each processing
layer was considered individually. For the CNN model, all
the convolutional layers were estimated according to the
standard CNN implementation. Batch normalization parameters
were incorporated into the CNN filter parameters. The same
applies to the RNN, where the original LSTM implementation
was considered. For calculation of hyperbolic tangent and
sigmoid activation functions, look-up tables with approximated
values were used in both architectures. A more detailed

description of the individual layers can be found in the
Supplementary Material section.

Energy Estimation Validation
To validate the feasibility of estimating energy consumption
based on the number of MAs, instructions and AOs, the
RNN classifier was implemented into an ultra-low-power Apollo
3 Blue microcontroller from Ambiq (Austin, Texas, USA).
The energy consumption was measured and compared to the
energy calculated.

The energy consumption was measured with the Texas
Instrument EnergyTraceTM technology for different numbers of
LSTM cells, NLSTM ∈ {2, . . . , 20}. The LSTM cells in the model
were decreased stepwise from 20 to 2, and the corresponding
classification energy consumption was determined for each step.

The validity of the model was proven by analyzing the
correlation between measured and calculated classification
energy. For this purpose, a linear ordinary least squares
regression was performed using the Statsmodels toolbox, which
is a Python module (46). The quality of the fit was investigated
by evaluating the residuals of the fit with the adjusted R2-
value (R2: coefficient of determination). In addition, a t-test was
conducted to investigate the significance (significance level: 5%)
of the estimated coefficients. Pearson correlation coefficients were
calculated using SciPy, a free and open-source python library, as
measure of correlation between the two values.

RESULTS

In this section, the results are presented in two parts. First, the
implemented seizure detectors are compared by using several
metrics to evaluate and compare their performance. Using these
metrics provides valuable insight into the characteristics of
these seizure detectors as well as their suitability for closed-
loop applications. In the second part, the results of the power
consumption estimation for the proposed seizure detection
algorithms are presented. These estimations are based on
hardware implementation on the Apollo 3 Blue microcontroller.

Classifier Performance
Boxplots were selected for visualization of the results because
they display the spread of the plotted variable and provide an
indication of the variable distribution, such as symmetry and
skewness. Moreover, boxplots display the outliers, which help in
the understanding how often a classifier fails to perform robustly.
The AUC-ROC scores of the three seizure detection algorithms
are shown in Figure 3.

For the RNN classifier, two types of input were used and their
performance was evaluated. Application of the time-derivative of
the data, in place of using the raw data as inputs to the RNN,
improved the mean AUC-ROC across all patients ∼2.5% for
normal seizure detection, and 6.4% for early seizure detection,
respectively. For this reason, the results of the time-derivative are
presented here.

The median (mean) AUC-ROC score was the highest across
all patients for the RNN 0.941 (0.910), compared to that of the
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FIGURE 3 | Comparison of the three classifiers across 40 patients using the AUC-ROC score as the performance metric.

FIGURE 4 | Comparison of the three classifiers across 40 patients using AUC-PR score as the performance metric.

RF 0.929 (0.914) and CNN 0.916 (0.876). The average AUC-
ROC score for early seizure detection was similar between the
RNN 0.853 (0.840) and the RF 0.855 (0.847), followed by CNN
0.827 (0.824).

Due to the fact that “ictal” and “interictal” classes are very
imbalanced, another useful measure of prediction success is the
AUC-PR score. The PR curve shows the trade-off between the
precision and recall of different thresholds. The AUC-PR score of
the three classifiers across 40 patients is shown in Figure 4.

The RNN had the highest median (mean) AUC-PR score
across all patients [0.487 (0.548)], compared to that of the RF
0.462 (0.481), and the CNN 0.470 (0.511). The average AUC-
PR score for early seizure detection was similar between the
RNN 0.080 (0.153) and CNN 0.093 (0.152), but lower for the RF
0.038 (0.099).

For a more intuitive representation of seizure detector
performance, sensitivity (Figure 5), FDR (per hour), and average
detection delay (in seconds) for optimized probability thresholds,
based on F1-score, were calculated for all seizure detectors across
the 40 patients.

Median (mean) sensitivity across all 40 patients were 1.0 (0.90)
for the RNN, 1.0 (0.93) for the RF, and 1.0 (0.94) for the CNN.
The FDR (per hour) across all patients was 7.77 (12.93) for the

RNN, 18.59 (22.49) for RF, and 14.25 (17.89) for CNN. The
median (mean) average detection delay (s) across all patients
was 8.05 (9.70) for the RNN, 7.65 (8.70) for RF, and 5.60 (6.62)
for CNN.

Energy Estimation
The total number of MAs and AOs required for hardware
implementation of the proposed seizure detection algorithms is
shown in Figures 6, 7. A window size of tw = 1s was chosen,
resulting in a number of samples, Nw = Fs · tw = 256, multiplied
by the number of channels, C = 4.

Figure 6A shows the number of MAs, AOs, and the resulting
energy estimation for the calculated time and frequency domain
features of EEG as input for the RF classifier. Thereby, it
underlines the difference of energy consumption among the
different features. The most energy intense operations are
required to calculate the power spectrum, the spectral entropy,
and the entropy.

Figure 6B shows the number of MAs, AOs, and
corresponding energy for every layer of the CNN. It can be
observed that the network consumes most of the energy in
the convolutional layers. About 69% of the energy in the
convolutional layers relates to MAs.
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FIGURE 5 | Comparison of the seizure detectors across 40 patients using sensitivity, FDR (per hour), and average detection delay (s) as the performance metrics.

Figure 6C shows that the LSTM layer is by far the most energy
intense layer of the RNN. The energy ratio of energy related to
MA is about 58% of 6.42µJ. The Time-Distributed (Dense) layer,
however, shows with 69% of 1.55 µJ the same behavior as the
convolutional layer in the CNN.

Figure 7 compares the three algorithms and underlines the
superiority of the RF classifier over the RNN and the CNN in
terms of energy consumption. RNN requires 16.6 times and the
CNN 14.5 times more energy than that consumed by the RF.

The total number of AOs required for CNN, RNN, and RF
were estimated as denoted in Table 6.

Energy Estimation Validation
The energy model was evaluated based on the RNN
implementation. The results showed that all the coefficients of
the fitted linear regression (as shown in Figure 8) are significant.

A linear trend with a slope b1 of 32.29 and an offset b0 of
17.06 µJ were observed for the RNN implementation using an
Apollo 3 Blue ARM Cortex-M4F microcontroller. The model
was proven to be accurate with an adj R2 value of 0.9990 and
a high correlation coefficient r of 0.9995. As b1 serves as a
hardware-dependent scaling factor, it follows that the measured
energy consumption for this specific hardware setup is over the
estimated energy consumption by this factor. Its high value in this
case is due to the instruction overhead, which is not part of the
model. Furthermore, the offset b0 is explained by the hardware-
dependent static power consumption in the target system.

An oscillation of the residuals of the linear fit with varying
number of LSTM cells can be observed in Figure 8. A possible
cause of this phenomenon is the loop-unrolling of the pre-
compiled ARM DSP-library. A loop unrolling with a factor of
4 is applied to the vector dot-product function that triggers the
running of extra loop-overhead code for vectors longer than a
multiple of 4.

DISCUSSION

In this study, the development of seizure detection algorithms
for integration into responsive neurostimulators was addressed.
As such a system needs to be implantable into the patient’s body,
there are considerable restrictions in terms of computational
load and energy consumption. Considering these aspects,
three seizure detection algorithms were proposed and
their performance, as well as the required energy for their
implementation in embedded systems, were estimated and
compared. Results of the performance comparison showed
that the RNN classifier outperforms the other classifiers.
Comparison of the required energy using an energy model
based on the respective numbers of specific AOs and MAs
revealed that the RF classifier is the most efficient seizure
detection algorithm, followed by the CNN and RNN. To
evaluate the accuracy of the energy estimation of the seizure
detection algorithms, the RNN classifier was implemented on an
ultra-low-power microcontroller.
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FIGURE 6 | Estimated number of arithmetic operations, memory accesses, and energy using the proposed method: (A) RF, (B) CNN, and (C) RNN.
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FIGURE 7 | Comparison of the classification energy consumption and the number of operations for the proposed seizure detection classifiers.

TABLE 6 | Estimated energies, number of arithmetic operations, and memory

accesses for the CNN, RNN, and RF classifier.

Classifier Energy (µJ) Number of operations (×103)

Total Operations Memory Arithmetic Memory

accesses operations accesses

CNN 7.01 2.19 4.81 488 963

RNN 8.04 3.15 4.89 772 978

RF 0.495 0.147 0.348 68.4 69.5

The introduced energy estimation model showed good
compliance with the energy measurements of the RNN
implementation running on an ARM Cortex-M4F-based
microcontroller. This notion was validated for the RNN classifier
by a significant constant factor in the linear regression fit of
the estimated energy with the measured energy over varying
numbers of LSTM cells.

A comparison of energy consumption with the existing
“RNS device” (Neuropace Inc., Mountain View, CA, USA) is
difficult to perform, since detailed information about the energy
consumption of the seizure detection algorithms are missing.
Only a rough estimation on the basis of battery capacity and
longevity for the whole system, including the required energy
for stimulation, can be performed. The overall power for a
patient profile with low stimulation frequency is ∼40 µW.
Nevertheless, more detailed information is available for some
other prototype devices. For example, a modified ActivaPC
device from Medtronic (Minneapolis, Minnesota, USA), which
was developed for bi-directional brain machine interfaces by

Stanslaski et al. (47), offers 8MB of RAM. It can operate in a
time-domain mode, with a power consumption of 100 µW per
channel and a spectral mode with a power consumption of 5 µW
per channel. A simple classification stage offers a linear support
vector machine with a typical power consumption of 5 µW per
channel (47). This is comparable to the power consumption of
the proposed models in this study based on RNN (68.1 µW per
channel), CNN (60.8 µW estimated per channel), and RF (8.3
µW estimated per channel). An interesting comparison between
local feature computation (2.1 µW) and external classification
(43 µW) with radio transmission of the data (1,733 µW) for
external processing is provided in a study by Verma et al.
(48), which clearly favors the use of low-power processing on
the edge device over transferring the data to a more powerful
external device.

RNN classifiers were used for seizure detection in several
recent studies. For example, Abbasi et al. (49) proposed a seizure
detection algorithm in which an LSTM architecture with double-
layered memory units was applied. They reported a sensitivity
of 96.7% on the Bonn University dataset (49). Their proposed
network consisted of 100 and 128 LSTM cells in the first
and second layers, respectively, which results in a considerably
higher computational load and a subsequent higher energy cost
compared to the proposed architecture in this study. Similarly,
Ahmedt-Aristizabal et al. (50) proposed a seizure detection
algorithm based on the RNN-LSTM. They used an LSTM-NN
architecture with two subsequent LSTM layers (128 and 64
cells) and obtained an AUC-ROC of 98.52% on the dataset
from University of Bonn (50). In another study, Hussein et al.
(43) introduced an LSTM architecture where raw EEG data in
sequences of 23.6 s were passed on to a recurrent layer with 80
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FIGURE 8 | Measured classification energy over the calculated energy and its

linear regression curve. The energies are determined by measuring the energy

of an RNN implementation on an Apollo 3 Blue ARM Cortex-M4F

microcontroller unit under the variation of the number of LSTM cells

from 2 to 20.

LSTM cells followed by a fully connected layer with 80 cells, a
global average pooling layer and a 2-cell classification layer. They
reported this methodology as having 100% accuracy, sensitivity,
and specificity on the Bonn University dataset (43). As previously
mentioned, the model proposed by Hussein et al. influenced
the architecture of the RNN model described in the current
study, which was modified to contain just one recurrent layer
with 20 LSTM cells. This modification then renders the RNN
model a better candidate for application in implantable devices.
In addition, the use of a muchmore comprehensive dataset in the
current study enables more precise performance evaluation.

Similar to the RNN, CNN and RF have been recently
employed for seizure detection (51, 52). For example, Hugle
et al. (53) proposed a CNN model for the early detection of
seizures from intracranial EEG signals that was designed for
implementation on a low-power microcontroller. They reported
a median sensitivity level of 0.96, an FDR of 10.1 per hour,
and a detection delay of 3.7 s. In comparison, the present study
found median sensitivity level of 1, an FDR of 14.25 per hour,
and a detection delay of 5.60 s. As there are differences in the
signal characteristics of the applied dataset in these two studies,
a direct comparison is not possible. In an earlier study from
the current research group, Manzouri et al. (54) proposed a
seizure detection algorithm based on RF for efficient hardware
implementation in implantable devices. The proposed model
was similar to that described in the current study, however; 10
features for classification were applied, and a median AUC-ROC
score of 0.89 was obtained, compared to 0.93 in the present study.
However, because a dataset of intracranial recordings which have
a higher signal-to-noise ratio (55), was used in Manzouri et al.
(54), a direct comparison of classifier performance with the
present study is not possible.

Regarding power consumption, Liu and Richardson (56)
implemented and compared the power consumption of a DNN,

CNN, and LSTM-based model on the CHB-MIT database. The
median (mean) sensitivity of the suggested DNN, CNN, and
LSTM models were 0.857 (0.874), 1.00 (0.967), and 1.00 (0.976),
respectively, compared to 1.0 (0.899) for RNN and 1.0 (0.940)
for CNN in the present study. Although these values are similar
between the two studies, they are not directly comparable due
to the use of different datasets. By applying a sliding window-
based weighted majority voting algorithm, Liu et al. reduced the
FDR and reported values of 0.14 (0.169) 1/h for the DNN, 0.084
(0.102) 1/h for the CNN, and 0.063 (0.071) 1/h for the LSTM
(56), all of which are lower than those of the current study.
Although the deep learning models applied by Liu et al. showed
high performance, they exceed the complexity of the seizure
detection models proposed in the current study. The CNNmodel
with the best performance-to-energy trade-off proposed by Liu
et al. requires 2.4M MAC operations, whereas the proposed
CNN model in the current study requires only 472k. The higher
complexity results in a high demand for memory, inference time
and power consumption.

Since the dataset used in the study is selected based on the
geometry of the suggested subgaleal electrodes and is not yet
publicly available, it is not possible to perform a one-to-one
comparison with other studies that used public datasets such
as the CHB-MIT Scalp EEG database (57) or the EPILEPSIAE
database (58). Nevertheless, the results of this study allow a direct
comparison between three state-of-the-art algorithms for such
an electrode setup, which may have similar properties to future
implantable devices. Sub-clinical seizures and their impact on
seizure detection algorithm performance were not investigated
in this study. Sub-clinical seizures are defined as electrographic
seizures with rhythmic ictal discharges that evolve in frequency
and space, without any subjective or objective alteration in
behavior or consciousness (59). Indeed, the development of more
robust seizure detectors may be facilitated by including sub-
clinical seizures in the performance analysis of seizure detection
algorithms. Another aspect to consider during the evaluation
of seizure detection algorithms is the strong imbalance between
ictal and inter-ictal classes. Evaluation of the proposed models
over longer periods of recordings can provide a more realistic
representation of the clinical performance of these models in
long-term and ultra-long-term recordings.

Regarding energy estimation, the influence of the code
compilation process on energy estimation was not investigated.
However, incorporating this aspect into the analysis would give
an overview of how different compiler settings influence the
energy demand of the implemented algorithm.

Different hardware implementations of the seizure detection
algorithms could be conceived by designing application-
specific integrated circuits. For example, specialized hardware
accelerators could be built to reduce the number of requiredMAs.
In this case, the applicability of the model is limited. Besides,
adjustment of the model is necessary because some neural
network weights can be preserved in the hardware registers.
As a result, less MA overhead is needed. However, the model
helps to identify the aspects which are key to the design of
ASICs. Moreover, it aids in selecting the right accelerator for the
chosen algorithm.
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How the energy consumption of the proposed classifiers
can be further optimized will be investigated in future studies.
One possibility for this is the application of pruning (22)
or quantization techniques. The latter allows for the use of
single-instruction multiple-data instructions to perform AOs
on multiple data, instead of only two operands in a typical
microprocessor setup. Horowitz (45) outlined how this method
saves energy by decreasing the ratio of instruction overhead
for the same number of AOs. He also suggested using
integer calculations with small bit-widths to reduce energy
consumption. The intensive use of single-instruction multiple-
data for neural network applications was proposed by Lai
et al. (60) by introducing the CMSIS-NN library from ARM
Ltd. (Cambridge, England, UK). A more modern approach
is the application of DNN-Accelerators. For microcontroller
systems, one possibility was introduced by ARM with the
Ethos neural processing unit. Among other things, they
improved the memory access of network parameters, which
showed significant improvement in inference, speed, and power
consumption (61).

The proposed methodology for energy estimation in the
current study can be used to verify both the suitability
and applicability of the developed seizure detection models
for implantable devices, and provides a reliable estimation.
Furthermore, the three proposed models in this study are all
candidates for utilization in implantable devices and can be
selected based on the specific requirements, limitations, and
application of the implantable device.
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