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Editorial on the Research Topic

Are natural products, used as antitumoral/antiangiogenic agents, less

toxic than synthetic conventional chemotherapy?

Natural products can be isolated from several biological sources, such as plants,

fungi, animals, plant cell cultures, among others. Some of these compounds can

reduce tumor growth and the spreading of tumor cells by blocking their migration or

preventing blood vessel formation that contribute to the colonization of distant

tissues. A high percentage of drugs derived from natural products are published,

however, most of them fail to gain approval for treating cancer by the European

Medicines Agency in Europe or national regulatory authorities of regional reference

in the Americas. It has been shown that combination of natural products with

conventional clinical chemotherapy and radiotherapy in antitumoral and

antiangiogenic treatments reduced the toxicity of the therapy (Tuorkey, 2015;

Braicu et al., 2017). The major challenge is the lack of scientific evidence to

support their approbation and determine the if it is beneficial to be used as

monotherapy or if the combination with conventional therapies. Their use and

approval require research that defines that these natural products offer adequate

therapeutic action, are less toxic or have a synergistic effect and reduce toxicity in

combination with chemotherapy and radiotherapy in combination.

In this special issue, several articles and reviews discuss the beneficial use of natural

products as antitumoral/antiangiogenic agents compared or in combination with

synthetic conventional chemotherapy.
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The original article by Liang and collaborators discusses

the use of a flavonoid isolated from the rhizome of Alpinia

officinarum: galangin. The authors used in vitro and in vivo

gastric tumor models, demonstrating that this compound

inhibited tumor growth by modulating different signals,

such as p-JAK2, p-STAT3, Bcl-2, cleaved caspase-3, cleaved

PARP, and Ki67. Specifically, galangin appears to induce

apoptosis and decrease cell proliferation, by modulating

STAT3/ROS axis, demonstrating the potential application

of galangin for gastric cancer therapy.

Vitale and collaborators’ review provides an overview of 4-

methylumbelliferone (4-MU), an orally available dietetic

product, derivative of coumarin and mainly found in the

plant family Umbelliferae or Apiaceae, focusing on its

utility in different solid and hematological cancer. The

authors discuss 4-MU mechanisms of action observed in

tumors in different human models. They discuss different

molecular mechanisms of 4-MU associated with its capacity to

inhibit hyaluronan molecules in the tumor extracellular

matrix and the biological impact on different cells of the

tumor microenvironment. Finally, the authors comment

about the possibility of 4-MU use as a co-adjuvant drug in

conventional antineoplastic therapies. And since 4-MU,

originally identified as a hepatoprotective component

approved in European countries, could be considered its

repositioning as an antitumor drug.

The original work of Zhang and collaborators discusses the

role of Saikosaponin A (SSA), a main triterpenoid saponin

component from Radix bupleurum. Their findings first

revealed that SSA possesses potent antiangiogenic activities,

thereby suppressing tumor growth by blocking

VEGFR2 signaling pathways.

Wang and collaborators’ original article show a gut

microbiota study in which they report the identification of

one anticancer gut bacterial strain (AD16). Five new

compounds were isolated and identified

(streptonaphthalenes A and B (1–2), pestaloficins F and G

(3–4), and eudesmanetetraiol A (5)), together with nine

previously known compounds, were isolated from the

effective fractions of AD16. The analysis of network

pharmacology suggested that three compounds could be

the key components for the anti-NSCLC (non-small cell

lung cancer) activity of AD16. In addition to the

PI3K–Akt signaling pathway, the proteoglycans in the

cancer pathway could be involved in the anti-NSCLC

action of AD16.

Yangbo and collaborators showed that the combination of

sodium butyrate with cisplatin enhanced the apoptosis in

gastrointestinal cancer cells through the mitochondrial

apoptosis-related pathways in vitro and in vivo. Their

combination produced a synergic effect. Sodium butyrate

showed to be an alternative to other conventional

chemotherapeutic drugs because it causes less cytotoxic

effects, since it acts by modulating the intestinal

microbiota, with studies already proving both its

improvement the patient’s immune system and its effective

use in other types of cancer. This, suggests that this

combination may be an alternative for the treatment of a

gastrointestinal cancer.

In another original paper, Liu and collaborators studied

the effects of gracillin against gastric carcinoma cell line. They

demonstrated that gracillin acted as inducer of the

endogenous apoptosis, inhibiting cell migration and EMT

(epithelial-mesenchymal transition process) pathway in

BGC-823 cell line, through the tumor necrosis factor–α
inducible protein-8, also called TIPE2. The EMT process is

involved in tumor metastasis, characterized by high

expression of N-cadherin and vimentin and low expression

of E-cadherin. Thus, the authors demonstrated that gracillin

has the potential to suppress tumor cell migration through the

EMT process in the researched cell line, contributing to the

emergence of another possible molecule to act against gastric

cancer, currently the third most common cause of cancer in

the world.

Zhan and collaborators reviewer the effects and

mechanisms of OSW-1 (isolated from Ornithogalum

saundersiae) against cancer in vitro and in vivo. OWS-1

was tested in the U.S National Cancer Institute in 60-cell

lines in vitro screening panel and from these results its

mechanism of action was explored. It has been shown to be

cytotoxic against neoplastic cells of the ovary, breast, cervix,

colon, leukemia, hepatocellular carcinoma and other cancer

cells. In vitro, OSW-1 had activity on the inhibition of cell

proliferation, acting to stop the cell cycle, inducing cell death

by apoptosis and, at high concentrations, by necrosis and

Golgi stress response. In vivo it was effective in inhibiting the

growth of tumors such as breast cancer, colon cancer and

leukemia. In general, it was able to inhibit tumor growth with

a reduction in tumor size and weight, less metastatic nodules

in the lungs and longer survival. In the case of the

NFATc2 knockdown model, the NFATc2 may be related to

suppression of migration and tumor invasion. The compound

regulated the action on angiogenesis and the regulation of

miRNA expression and various signaling pathways.

Cháirez-Ramírez et al. article reviews the role of the most

studied polyphenols in the regulation of key elements of

cancer signaling pathways and highlights the importance

of a profound understanding of these regulations in order

to improve cancer treatment and control with natural

products.

Chang and collaborators reviewer the bibliographic

background of herbal compounds from traditional Chinese

medicine (TCM) applied for treating colorectal cancer

(CRC). The authors focused their discussion on the Wnt/

β-catenin signaling pathway since it plays a vital role in the

initiation and progression of CRC. Also, how these natural
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compounds can be used in different stages of tumor disease,

from precancerous lesions such as polyps, carcinoma in situ

to metastatic cancer. Besides, they make an extensive

comparison between TCM with small molecules or new

drugs targeting Wnt/β-catenin used in combination with

traditional chemotherapy that are under preclinical,

clinical phase or FDA approved.
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Galangin Inhibits Gastric Cancer
Growth Through Enhancing STAT3
Mediated ROS Production
Xiaohui Liang, Ping Wang, Chun Yang, Fei Huang, Hui Wu, Hailian Shi* and Xiaojun Wu*

Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization
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Galangin, a flavonoid isolated from the rhizome of Alpinia officinarum (Hance), exerts
anticancer activities against many cancer cells such as liver cancer, breast cancer, lung
cancer and esophageal cancer. However, the effect, as well as the underlying molecular
mechanism of galangin on gastric cancer remains to be elucidated. In the present study,
galangin inhibited cell viability of MGC 803 cells but not normal gastric mucosal epithelial
GES-1 cells. It suppressed cell proliferation accompanied by reduced Ki67 and PCNA
expression, promoted apoptosis shown by decreased Bcl-2 and elevated cleaved caspase-
3 and cleaved PARP. And, galangin significantly inactivated JAK2/STAT3 pathway. When
STAT3 was overexpressed, the proliferation inhibition and apoptosis promotion induced by
galangin were abrogated. Meanwhile, galangin increased ROS accumulation, and reduced
Nrf2 and NQO-1, but elevated HO-1 in MGC 803 cells. NAC, a ROS scavenger, rescued
ROS over-accumulation and proliferation inhibition of galangin. STAT3 overexpression also
counteracted excessive ROS accumulation induced by galangin. Consistent with the in vitro
experiments, in nudemice exnografted with MGC 803 cells, galangin inhibited tumor growth
and reversed the abnormally expressed proteins, such as p-JAK2, p-STAT3, Bcl-2, cleaved
caspase-3, cleaved PARP, and Ki67. Taken together, galangin was suggested to inhibit the
growth of MGC803 cells through inducing apoptosis and decreasing cell proliferation, which
might be mediated by modulating STAT3/ROS axis. Our findings implicate a potential
application of galangin for gastric cancer therapy possibly with low toxicity.

Keywords: galangin, gastric cancer, apoptosis, proliferation, ROS, stat3

INTRODUCTION

Gastric cancer caused death ranks third among all cancer-related deaths worldwide, and the 5-year
survival rate of cancer patients is still less than 5% (Digklia and Wagner, 2016; Wang et al., 2019).
Surgery is currently considered to be the only radical treatment. However, chemotherapy almost runs
through the treatment of middle- and late-stage gastric cancer after surgery (Amedei et al., 2011;
Corso et al., 2013). Unfortunately, its side effects gravely reduce the life quality of cancer patients and
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limit its clinical efficacy as well. Furthermore, patients with gastric
cancer in advanced stages often poorly respond to chemotherapy.
Therefore, it is still urgent to develop new chemotherapeutic drug
with low toxicity against gastric cancer.

Many oncogenic proteins involve in the cancer progression
including signal transducer and activator of transcription 3
(STAT3), an oncogenic transcription factor, which participates
in the cell apoptosis (Kim and Park, 2018; Wu et al., 2019),
proliferation and autophagy (You et al., 2015; Furtek et al., 2016;
Kim et al., 2017; Fathi et al., 2018; Li et al., 2018). Janus associated
kinase (JAK)2, an important tyrosine kinase, belongs to the Janus
family and plays a positive feedback regulatory role in the

expression of STAT3 (Kaptein et al., 1996; Justicia et al.,
2000). Suppression of JAK/STAT3 pathway, for instance, by
piperlongumine, results in gastric cancer inhibition (Justicia
et al., 2000; Song et al., 2016). Therefore, STAT3 should be a
valuable target for cancer therapy.

Reactive oxygen species (ROS) is a double-edged sword for
cancer cells, and plays different roles in different stages of cancer
(Prasad et al., 2017). ROS promotes proliferation and growth of
cancer cells through activating various cell signaling pathways,
which are primarily mediated through the transcription factors
nuclear factor-kappa B (NF-κB) and STAT3, hypoxia-inducible
factor 1α (HIF1α), kinases, growth factors, cytokines and other

FIGURE 1 | Galangin inhibits cell viability of MGC 803 cells. (A) Chemical structure of Galangin. (B) Galangin reduced cell viability of MGC 803 cells in a dose-
dependent manner after treatment for 48 h. (C) IC50 of galangin for 48 h in MGC 803 cells. (D) Galangin (20 μM) inhibited cell viability of MGC 803 cells in a time-
dependent manner. (E) Galangin showed no significant effect on GES-1 cells (48 h), a normal gastric mucosal epithelial cell line. (F) 5-FU inhibited cell viability of MGC
803 cells (48 h). (G) 5-FU inhibited cell viability of GES-1 cells (48 h). All of the data were shown asmean ± SD, and differences among ≥3 groups (Figures 1B,D,E)
were analyzed via one-way ANOVA with Dunnett test by using GraphPad 7.0 software; *p < 0.05; **p < 0.01; ***p < 0.001, compared with control group. n ≥ 3.
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proteins (Prasad et al., 2017). However, excessive accumulation of
ROS can cause cell damage and apoptosis (Kudryavtseva et al.,
2016; Ismail et al., 2019).

Galangin, named as 3, 5, 7-trihydroxyflavone (Figure 1A), is a
natural flavonoid compound, mainly present in the rhizome of
Alpinia officinarum Hance (Zingiberaceae) (Liu et al., 2018). It
showed anti-tumor activity against several cancer cells except
gastric cancer, such as liver cancer (Zhang et al., 2010), breast
cancer (Liu et al., 2018), lung cancer (Yu et al., 2018) and
esophageal cancer (Ren et al., 2016) in vitro. In this study, the
effect and the underlying molecular mechanism of galangin on
gastric cancer cells were investigated, which may extend its
potential clinical application.

MATERIALS AND METHODS

Cell Culture
Gastric cancer cell line MGC 803 and mucosal epithelial cell line
GES-1 were obtained from Cell Bank, Type Culture Collection
of Chinese Academy of Sciences (Shanghai, China). The cells
were cultured in RPMI 1640 medium (Meilunbio, Cat. No.: MA
0215) supplemented with 10% fetal bovine serum (FBS, Gibco,
Cat. No.: 10099–141), and 1% penicillin and streptomycin
(Meilunbio, Cat. No.:MA0110) in a humidified incubator
with 5% CO2 at 37°C.

Cell Viability Assay
After treatment with galangin at different concentrations for
0–48 h, the cells were incubated with 20 μL CCK-8 solution
(Cell Counting Kit-8, DOJINDO Laboratories, Cat. No.: CK04)
for another 1 h at 37°C. Absorbance of the medium was detected
at 450 nm on a Thermo Scientific Varioskan Flash microplate
reader (Thermo, United States). The cell viability rate was
calculated as follows (absorbance of drug-treated sample/
absorbance of control sample) × 100.

Immunocytochemistry
MGC 803 cells were cultured on coverslips in 24-well plate for
12 h, followed by galangin treatment (20 μM) for 48 h. After
washed once with 1 × PBS solution, the cells were fixed with 4%
paraformaldehyde (PFA), permeabilized with 0.3% Triton-X-100
and blocked with 10% donkey serum. Then they were incubated
with primary antibody against Ki67 (Cat. No. ab16667) overnight
at 4°C. Then they were incubated with secondary antibody
conjugated with Alexa-488 fluorophore for 1 h at room
temperature (RT). After washed with 1 × PBS solution twice,
the coverslips with cells were mounted on glass slides with
mounting medium containing DAPI. Immunofluorescence
images were acquired by an inverted fluorescence microscope
(IX81, Olympus, Japan).

Annexin V/PI Staining
After galangin treatment at 20 μM for 48 h, MGC 803 cells were
harvested by trypsin without EDTA, and washed twice with 1 ×
PBS solution. Consequently, the cells were double stained with
Annexin V/PI according to manufacturer’s protocol, and

detected on a Guava flow cytometer (Guava easycyte HT,
Millipore, Germany).

Hoechst 33258 Staining
After galangin (20 μM) treatment for 48 h,MGC 803 cells were fixed
with 4% PFA for 10min. Then the cells were gently rinsed with 1 ×
PBS solution and stained with 10 μg/ml Hoechst 33258 solution for
another 15min. Finally, the cells were washed with 1 × PBS solution,
and observed under a fluorescence microscope (IX81).

EdU Staining
MGC 803 cells were plated at a density of 8.0 × 104 cells/ml on a
96-well plate and allowed to adhere to plates overnight. EdU
staining was carried out using the EdU imaging kit (RiboBio Co.,
China). Briefly, cells treated with galangin (20 μM) were first
labeled with 50 μM EdU at 37°C for 2 h. Subsequently, they were
fixed with 4% PFA for another 30 min, and incubated with 1 ×
PBS solution containing 0.5% Triton X-100 for 10 min. After
washed with 1 × PBS solution, the cells were incubated with
100 μL dying solution for 30 min in the dark. Finally, the nuclei
were stained with Hoechst 33342 solution for another 30 min.
Fluorescent images were captured by fluorescence microscopy
(IX81). Data were analyzed by using ImageJ software.

Mitochondrial Membrane Potential
Measurement
MMPwas measured by using fluorescent probe JC-1 (Santa Cruz,
Cat. No.: sc-364, 116). After galangin (20 μM) treatment for 24
and 48 h, MGC 803 cells were rinsed with 1×HBSS solution
(Gibco, Cat. No.: 14025–092) and incubated with JC-1 (10 μM) at
37°C for another 30 min. After that, the cells were rinsed with 1 ×
HBSS solution once again, and the fluorescent intensity of the JC-
1 monomers and aggregates was detected under different
conditions (Ex (λ) 485 nm, Em (λ) 530 nm for monomers; Ex
(λ) 530 nm, Em (λ) 590 nm for aggragates) on amicroplate reader
(Varioskan Flash, Thermo Scientific, United States). Fluorescent
images were captured under a fluorescent microscope (IX81).

Western Blotting Analysis
MGC 803 cells or tumor tissues were lyzed in CelLytic™ MT Cell
Lysis Reagent (Sigma, Cat. No.: C3228) containing protease and
phosphatase inhibitors (Roche, Cat. No.: 04693116001,
04906837001) for 30 min on ice. After centrifugation at
12,000 rpm at 4°C for 15 min, the supernatant was collected
and the protein concentration was quantified by using BCA
assay. Totally, 30 μg proteins from each samples were separated
by SDS-PAGE (10%) and transferred onto PVDF membrane by
wet transfer. Afterward, the membranes were blocked with 0.5%
BSA solution for 1 h and incubated with primary antibodies against
JAK2 (1:1,000, D2E12, #3230, CST, United States), p-JAK2 (1:
1,000, C80C3, #3776, CST, United States), STAT3 (1:1,000, 124H6,
#9139, CST, United States), p-STAT3 (1:2000, D3A7, #9145, CST,
United States), Ki67 (1:500, sp6, #ab16667, Abcam, United States),
Bcl-2 (1:1,000, 50E3, #2870, CST, United States), Bax (1:1,000,
D2E11, #5023, CST, United States), Cleaved caspase-3 (1:1,000,
5A1E, #9664, CST, United States), Caspase-3 (1:1,000, D3R6Y

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 6466283

Liang et al. Galangin Modulates STAT3/ ROS Axis

9

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


#14220, CST, United States), LaminB1(1:3,000, # 6,581–1
Epitomics United States), Nrf2 (1:500, sc-722, Santa Cruz,
United States), NQO1 (1:500, sc-32793, Santa Cruz,
United States), HO-1 (1:500, sc136960, Santa Cruz,
United States), PARP (1:1,000, 9532s, Santa Cruz,
United States), and GAPDH (1:200,000, D16H11, #5174, CST,
United States) overnight at 4°C. After washed with 1 × PBST,
the membranes were incubated with respective secondary
antibodies conjugated with horseradish peroxidase for
another 1 h at RT. The protein bands were visualized with
Immobilon™ Western Chemiluminescent HRP Substrate
(Millipore Corporation, Cat. No.: WBKLS0500), and the
images were taken under the visualization instrument
Tanon-5200 (Tanon, China).

Real-Time Quantitative PCR
Total RNA was isolated from the harvested MGC 803 cells by
using TRIzol Reagent (Ambion, REF: 15596018). cDNA was
reversely transcribed from RNA (2 μg) by using Revert Aid First
Strand cDNA Synthesis Kit (Thermo, Cat. No.: K1622)
according to the manufacturer’s protocol. Real-time
quantitative PCR was performed with SYBR reagent
(VazymE, L/N 7E141I7, Cat. No.: Q111–02) on Quant Studio
six Flex System (Life technologies, Cat. No.: 20170777).
Quantification of target genes was determined by the 2−ΔΔCt

method. And the relative expression of individual genes was
normalized to that of GAPDH in the same sample. The
sequences of the primers (GeneRay, China) used were listed
in Table 1.

TABLE 1 | Primers used in qPCR analysis.

Genes Forward primer Reverse primer

Ki67 5′-CAGACATCAGGAGAGACTACAC-3′ 5′-AAGAAGTTCAGGTACCTCAGTG-3′
PCNA 5′-TAATTTCCTGTGCAAAAGACGG-3′ 5′-AAGAAGTTCAGGTACCTCAGTG-3′
GAPDH 5′- GCACCGTCAAGGCTGAGAAC-3′ 5′- TGGTGAAGACGCCAGTGGA-3′

FIGURE 2 | Galangin promotes cell apoptosis. (A–B) Glangin enhanced cell apoptosis after treatment for 24 h in MGC 803 cells detected by Annexin V-FITC/PI
staining. (C) Galangin (20 μM) induced chromatin condensation and nuclear shrinkage or fragmentation in MGC 803 cells after 48 h treatment stained with Hoechst
33,258. (D–E) Galangin (20 μM) treatment decreased mitochondrial membrane potential (MMP) in MGC 803 cells after treatment for 24 and 48 h, detected by JC-1
(10 μM) staining. The staining of MGC 803 cells by JC-1 is visible as green for J-monomers (emission maximum of ∼529 nm) or red for J-aggregates (with a specific
red fluorescence emission maximum at 590 nm). (F–G) Galangin (20 μM) modulated protein expression of apoptosis-related proteins in MGC 803 cells after treatment
for 24 and 48 h analyzed by Western blotting analysis. All of the data were shown as mean ± SD, and differences among two groups (Figure 2B) were analyzed by the
Student’s t-test, and differences among ≥3 groups (Fig.2E and G) were analyzed via one-way ANOVA with Dunnett test by using GraphPad 7.0 software; *p < 0.05;
**p < 0.01; ***p < 0.001, compared with control group. n ≥ 3. Scale bar: 50 μm.
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ROS Level Measurement
The intracellular ROS production in MGC 803 cells was
measured by the oxidation-sensitive fluorescent probe 2′,7′-
dichlorofluorescin diacetate (DCFH-DA). In brief, after
galangin (20 μM) treatment for 12, 18, 24, and 48 h, MGC 803
cells were gently washed with 1 × HBSS solution and incubated
with DCFH-DA (10 μM) for 30 min at 37°C. Fluorescence was
immediately measured on a Varioskan Flash microplate reader
(Ex (λ) 485 nm, Em (λ) 535 nm, Thermo, United States).

STAT3 Transient Transfection
STAT3 was over-expressed by transiently transfecting p-CMV-
STAT3 plasmid in MGC 803 cells. The cells are seeded in a
medium dish until growing to 50% confluency, then transiently
transfected with p-CMV-STAT3 plasmid or p-CMV plasmid for
24 h by using NEOFECT DNA transfection reagent (Neofect
Beijing Biotech, China). After treatment with galangin (20 μM)
for 48 h, MGC 803 cells were subjected to CCK-8 assay and
western blotting assay.

Animals and Treatments
Healthy 4-week-old male nude mice (12 ± 2 g) were obtained
from Shanghai Slake Experimental Animal Co., Ltd. and kept
under SPF animal rooms. All animal experiments were carried
out in accordance with the protocol approved by the Animal

Ethics Committee in Shanghai University of Traditional Chinese
Medicine (SHUTCM), which complies with international rules
and policies for laboratory animal use and care as found in the
European Community guidelines (EECDirective of 1986; 86/609/
EEC). All animal experiments were approved by the institutional
Ethics Committee of SHUTCM (PZSHUTCM200724009).

After one week habituation, the mice were inoculated
subcutaneously with MGC 803 cells (5 × 106 cells in 200 μL
PBS per mouse). Body weight and tumor volume were measured
every three days. When the tumor volume reached
approximately 50 mm3, the mice were randomly divided into
three groups, namely Control group, Galangin group and 5-
Fluorouracil (5-FU) group. Galangin was dissolved in 0.5%
sodium carboxylmethylcellulose. 5-Fu was dissolved in 1 ×
PBS solution. Control mice were intraperitoneally injected
with 0.5% sodium carboxylmethylcellulose solution.
Galangin-treated mice were administered with galangin
(120 mg/kg) by oral gavage once a day. Meanwhile, 5-FU-
treated mice were intraperitoneally injected with 5-FU
(50 mg/kg) twice a week. Tumor volume was calculated
according to the formula [length × (width)2]/2. Three weeks
after treatment, all the nude mice were sacrificed, and the
isolated tumors were weighted and then cut into several parts
which were either fixed in 4% PFA or stored at −80°C for further
analysis.

FIGURE 3 | Galangin inhibits proliferation of MGC 803 cells. (A–B) Galangin (20 μM) decreased cell proliferation of MGC 803 cells after treatment for 24 and 48 h
detected by EdU staining. Scale bar, 50 μm. (C)Galangin (20 μM) inhibited protein expression of Ki67 in MGC 803 cells detected by ICC staining. Scale bar, 100 μm. (D)
Galangin (20 μM) downregulated mRNA expression of PCNA and Ki67 after treatment for 48 h. (E–F) Galangin (20 μM) decreased protein expression of Ki67 in MGC
803 cells after treatment for 24 and 48 h analyzed by Western blotting analysis. All of the data were shown as mean ± SD, and differences among two groups
(Figure 3D) were analyzed by the Student’s t-test, and differences among ≥3 groups (Figures 3B,F) were analyzed via one-way ANOVA with Dunnett test by using
GraphPad 7.0 software; *p < 0.05; **p < 0.01; ***p < 0.001, compared with control group. n ≥ 3.
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Statistical Analysis
All of the data were presented as the mean ± standard deviation
(SD). Differences between two groups were analyzed by the
Student’s t-test. Differences among more than two groups
were analyzed by one-way ANOVA with Dunnett or Tukey
test using GraphPad 7.0 software (La Jolla, CA, United States).
The value of p < 0.05 was considered to indicate a statistically
significant difference.

RESULTS

Galangin Reduced Cell Viability of MGC 803
Cells In Vitro
As shown in Figures 1B,C, galangin significantly reduced the cell
viability of MGC 803 cells after treatment for 48 h. The IC50 value of
galangin on MGC 803 cells for 48 h was 18.685 μM. Galangin
inhibited cell viability of MGC 803 cells as early as 18 h after
treatment. The cell viability of MGC 803 cells inhibited by
galangin (20 μM) were 16.34, 35.57, and 52.97%, respectively, after
treatment for 18, 24, and 48 h (Figure 1D). In contrast, after treatment
for 48 h, galangin used below 200 μM had no significant cytotoxicity
to GES-1 cells (Figure 1E), suggesting its low cytotoxicity to normal
cells. 5-FU (≥2.5 μM) treatment for 48 h significantly inhibited cell
viability of MGC 803 cells (Figure 1F), however, it (≥10 μM) also

significantly suppressed cell viability of GES-1 cells after treatment for
48 h (Figure 1G). These results indicated that galangin inhibited
gastric cancer cell viability with lower toxicity than 5-FU.

Galangin Induced Apoptosis of MGC 803
Cells
As shown in Figures 2A,B, compared with the untreated cells,
galangin (20 μM) prominently increased the percentages of the
early and late apoptotic cells by 41.41% after treatment for 48 h
(p < 0.001). And it significantly induced chromatin condensation
and nuclear shrinkage or fragmentation in MGC 803 cells
(Figure 2C). MMP decrease is an early manifestation of cell
apoptosis. Compared with the control, galangin significantly
reduced the density ratio of JC-1 red/green fluorescence in
MGC 803 cells, suggesting that galangin decreased MMP after
treatment for 24 and 48 h (Figures 2D,E, p < 0.001). As shown in
Figures 2F,G, after treatment for 48 h, compared with the
control, galangin significantly decreased the protein expression
of Bcl-2 and caspase-3, and up-regulated the protein expression
of cleaved caspase 3 and cleaved poly (adenosine diphosphate-
ribose) polymerase (PARP) (p < 0.05, p < 0.01 or p < 0.001).
However, galangin did not change the expression of Bax in MGC
803 cells. These results indicated that galangin induced significant
apoptosis of MGC 803 cells.

FIGURE 4 | Galangin inhibits overactivation of JAK2/STAT3 signaling pathway. (A–B) Galangin (20 μM) decreased protein expression of JAK2, p-JAK2, STAT3,
and p-STAT3 in MGC 803 cells after treatment for 12 and 18 h. (C–D) Overexpression of STAT3 reversed the inhibitory effect of galangin (20 μM) on the protein
expression of p-STAT3 and STAT3 in MGC 803 cells after treatment for 48 h. (E) Overexpression of STAT3 reversed the inhibitory effect of galangin (20 μM) on the cell
viability of MGC 803 cells after treatment for 48 h. All of the data were shown as mean ± SD, and differences among ≥3 groups were analyzed via one-way ANOVA
with Dunnett test (Figure 4B, compared with control (0 h) group) or Tukey test (Figures 4D,E) by using GraphPad 7.0 software; *p < 0.05; **p < 0.01; ***p < 0.001. n ≥ 3.
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Galangin Inhibited Proliferation of MGC 803
Cells
As shown in Figures 3A,B, after treatment for 24 and 48 h, galangin
significantly decreased the number of EdU-positive cells (p < 0.001),
compared with the control. Ki67, a nuclear antigen, is a marker for
cell proliferation. As shown in Figure 3C, compared with the
control, galangin reduced the immuno-fluorescent intensity of
Ki67 in MGC 803 cells. Meanwhile, galangin significantly
inhibited the mRNA expression of PCNA, and suppressed the
expression of Ki67 at both mRNA and protein levels (Figures
3D–F, p < 0.05, p < 0.01 or p < 0.001). These results implicated
that galangin could inhibit the proliferaton of MGC 803 cells.

Galangin Inhibited Cell Viability by
Suppressing STAT3 Activation in MGC 803
Cells
As displayed inFigures 4A,B, galangin reduced the protein expression
of p-JAK2, and p-STAT3 after treatment for 12 and 18 h inMGC 803
cells. When STAT3 was overexpressed, the inhibitory effect of

galangin on the protein expressions of p-STAT3 and STAT3 was
abolished (Figures 4C,D). Meanwhile, the cell viability inhibited by
galangin onMGC 803 cells was counteracted by the overexpression of
STAT3 (Figure 4E, p < 0.001). These results indicated that galangin
inhibited the cell viability of MGC 803 cells through modulating the
activation of STAT3.

STAT3 Overexpression Counteracted
Apoptosis Induced by Galangin in MGC 803
Cells
To confirm the role of STAT3 in the effect of galangin on cell
apoptosis, the STAT3 overexpressed cells treated with galangin were
subjected to Annexin V/PI staining. As shown in Figures 5A,B,
overexpression of STAT3 significantly mitigated the ratio of
apoptotic cells induced by galangin in MGC 803 cells (p < 0.01).
Furthermore, STAT3 overexpression counteracted the inductive
effect of galangin on the protein expression of cleaved caspase-3
and cleaved PARP in MGC 803 cells after treatment for 48 h
(Figures 5C,D). These results clearly clarified the essential role of
STAT3 in galangin induced apoptosis of MGC 803 cells.

FIGURE 5 | STAT3 overexpression counteractes the effect of galangin on cell apoptosis in MGC 803 cells. (A–B) STAT3 overexpression abolished the effect of
galangin (20 μM) on cell apoptosis of MGC 803 cells after treatment for 48 h, detected by Annexin V/PI staining. (C–D) Overexpression of STAT3 reversed the effect of
galangin (20 μM) on protein expression of cleaved caspase-3 and cleaved PARP in MGC 803 cells. All of the data were shown as mean ± SD, and differences among ≥3
groups (Figures 5B,D) were analyzed by one-way ANOVA with Tukey test by using GraphPad 7.0 software; **p < 0.01; ***p < 0.001. n ≥ 3.
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Overexpression of STAT3 Reduced the
Inhibitory Effect of Galangin on Cell
Proliferation of MGC 803 Cells
To confirm the role of STAT3 in the inhibition effect of galangin
on cell proliferation, qPCR assay, Western blot method, and EdU
staining were used to examine the effect of galangin on cell
proliferation in STAT3 overexpressed MGC 803 cells. As shown
in Figure 6A, overexpression of STAT3 markedly increased the
pencentage of EdU positive cells treated by galangin (p < 0.001).

Furthermore, STAT3 overexpression also reversed the inhibitory
effect of galangin on the mRNA expression of PCNA and Ki67 as
well as the protein expression of Ki67 (Figures 6B–D).

Galangin Enhanced ROS Accumulation in
MGC 803 Cells
As shown in Figure 7A, as early as 12 h after treatment, galangin
(20 μM) significantly increased the ROS level in a time-dependent
manner in MGC 803 cells. However, significantly decreased cell

FIGURE 6 | Overexpression of STAT3 counteractes the inhibition of galangin (20 μM) on cell proliferation of MGC 803 after treatment for 48 h. (A) STAT3 overexpression
counteracted the inhibitory effect of galangin (20 μM) on cell proliferation of MGC 803 cells after treatment for 48 h, detected by EdU staining. (B–C) Overexpression of STAT3
reversed the effect of galangin on the mRNA expression of PCNA and Ki67 after treatment for 48 h in MGC 803 cells detected by qPCR assay. (D) Overexpression of STAT3
reversed the effect of galangin on protein expression of Ki67 inMGC 803 cells after treatment for 48 h. All of the data were shown asmean ± SD, and differences among ≥3
groups (Figures 6A–C) were analyzed by one-way ANOVA with Tukey test by using GraphPad 7.0 software; *p < 0.05; ***p < 0.001. n ≥ 3. Scale bar, 50 μm.
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viability was observed after treated with galangin after 18 h
(Figure 7B). In MGC 803 cells treated with galangin for 48 h,
the protein expression of NF-E2-related factor 2 (Nrf2) and
NAD(p)H quinone oxidoreductase 1 (NQO-1) were reduced,
while the protein expression of heme oxygenase-1 (HO-1) was
elevated (Figure 7C). Furthermore, the translocation of Nrf2 into
nucleus was reduced significantly after treated by galangin for 48 h
(Figure 7D). These results indicated that over-produced ROS and
dysfunctioned antioxidant system might finally account for the
inhibitory effect of galangin on the growth of MGC 803 cells.

STAT3/ROS Axis Mediated the Inhibition of
Galangin on Cell Proliferation of MGC 803
Cells
To explore the possible role of the production of ROS in galangin-
treated MGC 803 cells, NAC, a ROS scavenger, was used. As
displayed in Figure 8A, addition of NAC markedly reduced ROS
level in galangin treated MGC 803 cells (p < 0.001).

Correspondingly, compared with cells treated with only
galangin, the percentage of EdU positive cells were increased
significantly in NAC and galangin co-treated cells (Figure 8B, p <
0.01 or p < 0.001). To further investigate the relationship between
STAT3 activation and ROS production, the ROS level in STAT3
overexpressed cells was examined. As shown in Figure 8C,
overexpression of STAT3 did not change the ROS production
in MGC 803 cells. However, STAT3 overexpression reduced the
ROS accumulation induced by galangin treatment in cells
(Figure 8C, p < 0.001). These results suggested that galangin
suppressed the activation of STAT3, thereby increased the
generation of ROS, finally leading to the decrease of cell
proliferation of gastric cancer cells.

Galangin Inhibited Tumor Growth In Vivo
To verify the inhibitory effect of galangin on gastric cancer
growth in vivo, the MGC 803 cell xenograft mouse model was
established. Compared with the control, galangin and 5-FU
treatment significantly inhibited the increase of tumor weight

FIGURE 7 | Galangin enhances ROS accumulation and reduces activation of Nrf2-mediated antioxidant system in MGC 803 cells. (A–B) Galangin (20 μM)
promoted ROS levels in MGC 803 cells after treatment for 12, 18, 24, and 48 h. (C) Galangin (20 μM) reduced protein expression of Nrf2 and NQO-1, and enhanced
protein expression of HO-1 after treatment for 48 h in MGC 803 cells. (D) Galangin (20 μM) inhibited Nrf2 translocation into nucleus of MGC 803 cells after treatment for
48 h. All of the data were shown as mean ± SD, and differences among ≥3 groups were analyzed by one-way ANOVA with Dunnett test by using GraphPad 7.0
software; **p < 0.01; ***p < 0.001, compared with control group. n ≥ 3.
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and volume in vivo (Figures 9A–C, p < 0.05 or p < 0.001).
Nevertheless, as shown in Figure 9D, galangin showed no
significant effect on body weight of nude mice. In contrast, 5-
FU significantly decreased the body weight of nude mice (p < 0.
001). In tumor tissues from galangin treated mice, the ratios of
p-JAK2/JAK2 and p-STAT3/STAT3, as well as the protein
expressions of Bcl-2, caspase-3 and Ki67 were all reduced
remarkably (Figures 9E,F, p < 0.01 or p < 0.001). Conversely,
the protein expressions of cleaved caspase-3 and cleaved PARP
were increased markedly by galangin treatment (p < 0.001). These
results suggested that galangin could inhibit gastric cancer growth
in vivo.

DISCUSSION

Flavonoids are widely distributed in nature, and often can be
found in food. Galangin, a natural flavonoid compound mainly
present in the rhizome of Alpinia officinarum Hance
(Zingiberaceae) (Liu et al., 2018), shows extensive anti-tumor

activities except in gastric cancer. Impaired proliferation and
apoptosis commonly account for the cancer progression (Goldar
et al., 2015; White, 2015). In the present study, galangin was
found to significantly suppress the proliferation, while induced
the apoptosis of MGC 803 cells both in vitro and in vivo.
Moreover, it showed no toxicity on normal gastric mucosal
epithelial cell line (GES-1 cells) and induced no body weight
loss in nude mice, suggesting its potential clinical application for
the treatment of gastric cancer possibly with low toxicity.

STAT3 dysfunction accounts for the impaired cell proliferation
and apoptosis in cancer cells (Fathi et al., 2018; Liang and Yang,
2020). JAK-medicated tyrosine phosphorylation enhances the
dimerization of STATs. In the present study, galangin reduced
the phosphorylated JAK2 and STAT3 in MGC 803 cells at 12 h,
and the inhibitory effect of galangin on cell viability ofMGC803 cells
was counteracted by STAT3 overexpression, indicating galangin
inhibited gastric cancer in a STAT3-dependent manner.

Mitochondrial-dependent apoptosis plays an important role in
cell death. Bcl-2 inhibits cell apoptosis, however, Bax promotes cell
apoptosis (Mao et al., 2007). Both activated caspase-8 and caspase-9

FIGURE 8 | The inhibition of galangin on cell proliferation is associated with ROS generation. (A)NAC (ROS scavenger) abolished the enhanced ROS accumulation
in MGC 803 cells induced by galangin (20 μM) after treatment for 48 h. (B) NAC counteracted the inhibited cell proliferation induced by galangin (20 μM) after treatment
for 48 h detected by EdU staining inMGC 803 cells. (C) STAT3 overexpression reversed the enhanced ROS accumulation inMGC 803 cells induced by galangin (20 μM)
after treatment for 48 h. All of the data were shown as mean ± SD, and differences among ≥3 groups were analyzed by one-way ANOVA with Tukey test by using
GraphPad 7.0 software; **p < 0.01; ***p < 0.001. n ≥ 3. Scale bar: 50 μm.
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can activate caspase-3 which is the central link of apoptosis (Zheng
et al., 2006). Then caspase-3 cleaves several cellular proteins,
including PARP, causing morphological changes and DNA
breaks, and ultimately leading to apoptosis (Zheng et al., 2006;
Yang et al., 2017). In the present study, galangin significantly
decreased Bcl-2 and increased cleaved caspase-3 and cleaved
PARP. STAT3 overexpression counteracted the enhanced
apoptosis induced by galangin, and reversed the inductive effect
of glangin on cleaved caspase-3 and cleaved PARP, indicating that
galangin induced apoptosis in a STAT3-dependent manner through
enhancing cleavage of caspase-3 and its downstream PARP inMGC
803 cells. Meanwhile, STAT3 overexpression abolished the
inhibitory effect of galangin on cell proliferation as well as Ki67

and PCNA expression, indicating galangin inhibited cell
proliferation also in a STAT3-dependent manner.

Low concentration of ROS can activate transcription factors to
promote cell proliferation and differentiation, but excessive ROS can
induce depolarization of the mitochondrial membrane, thereby
promote the increase of other pro-apoptotic molecules in the cells,
reduce the proliferation and survival of tumor cells, and promote cell
apoptosis (Leanza et al., 2017; Prasad et al., 2017). In the present
study, galangin increased intracellular ROS accumulation of MGC
803 cells in a time-dependent manner. Meanwhile, Nrf2-mediated
antioxidant system was significantly decreased, as evidenced by the
decreasedNrf2 andNQO-1 inMGC803 cells. Furthermore, galangin
also suppressed Nrf2 translocation into nucleus, indicating galangin

FIGURE 9 | Galangin inhibits tumor growth in the MGC 803 cell xenograft model. (A–B) Galangin (120 mg/kg) significantly inhibited tumor growth (n � 10). (C)
Galangin (120 mg/kg) significantly inhibited tumor volume (n � 10). (D) Body weight changes (n � 10). (E-F) Galangin modulated protein expression of JAK2, p-JAK2,
STAT3, p-STAT3, Bcl-2, Caspase-3, Cleaved caspase-3, PARP, Cleaved PARP, and Ki67 in tumor tissues (n � 6). (G) Schematic illustration of possible underlying
molecular mechanism of the inhibitory effect of galangin on MGC 803 cells. All of the data were shown as mean ± SD, and differences among ≥3 groups (Figures
9B–F) were analyzed by one-way ANOVA with Dunnett test by using GraphPad 7.0 software; *p < 0.05, **p < 0.01; ***p < 0.001, compared with control group.
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increased ROS level by suppressingNrf2mediated antioxidant system.
NAC could abolish galangin-induced ROS accumulation and block
the inhibitory effect of galangin on cell proliferation, indicating
galangin suppressed cell proliferation in a ROS-dependent manner.
Furthermore, STAT3 overexpression almost completely abolished the
ROS accumulation induced by galangin treatment, indicating galangin
induced ROS generation through STAT3 suppression. Many
researches have proved that ROS enhanced cell apoptosis (Cui
et al., 2018; Dong et al., 2019), however, it has not been found
that STAT3 also modulates ROS levels. Our results demonstrated that
STAT3 activation inhibited ROS overload. Therefore, galangin might
inhibit cell proliferation and enhance apoptosis by modulating
STAT3/ROS axis in MGC 803 cells. 5-FU is a first-line
chemotherapeutic drug for gastric cancer in clinic, that’s why we
choose 5-FU as the positive drug in our study. However, it has serious
adverse effects including bone marrow suppression, digestive tract
toxicity and drug resistance (Wang et al., 2020). Galangin showed no
obvious cytotoxicity on normal gastric mucosal epithelial cell line,
GES-1 cells. In contrast, 5-FU (≥10 μM) significantly inhibited cell
viability of GES-1 cells. Body weight loss is an important indicator of
in vivo toxicity (Cai et al., 2020). Galangin did not reduce the body
weight of nudemice. However, 5-FU showed the negative effect. Thus,
galangin inhibited gastric tumor growth possibly with low toxicity.
However, the low toxicity and its underlying molecular mechanism of
galangin on normal cells still need further study.

In summary, galangin inhibited MGC 803 cells growth
through enhancing apoptosis and decreasing cell proliferation,
which was mediated by modulating STAT3/ROS axis. Our
findings suggest that galangin is a potential drug for gastric
cancer treatment with possibly low toxicity.
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Potential Role of Traditional Chinese
Medicines by Wnt/β-Catenin Pathway
Compared With Targeted Small
Molecules in Colorectal Cancer
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Colorectal cancer (CRC) has become a global public health problem because of its high
incidence and mortality rate worldwide. The previous clinical treatment for CRC mainly
involves conventional surgery, chemotherapy, and radiotherapy. With the development of
tumor molecular targeted therapy, small molecule inhibitors present a great advantage in
improving the survival of patients with advanced CRC. However, various side effects and
drug resistance induced by chemotherapy are still the major obstacles to improve the
clinical benefit. Thus, it is crucial to find new and alternative drugs for CRC treatment.
Traditional Chinese medicines (TCMs) have been proved to have low toxicity and multi-
target characteristics. In the last few decades, an increasing number of studies have
demonstrated that TCMs exhibit strong anticancer effects in both experimental and clinical
models and may serve as alternative chemotherapy agents for CRC treatment. Notably,
Wnt/β-catenin signaling pathway plays a vital role in the initiation and progression of CRC
by modulating the stability of β-catenin in the cytoplasm. Targeting Wnt/β-catenin pathway
is a novel direction for developing therapies for CRC. In this review, we outlined the anti-
tumor effects of small molecular inhibitors on CRC through Wnt/β-catenin pathway. More
importantly, we focused on the potential role of TCMs against tumors by targeting Wnt/
β-catenin signaling at different stages of CRC, including precancerous lesions, early stage
of CRC and advanced CRC. Furthermore, we also discussed perspectives to develop
potential new drugs from TCMs via Wnt/β-catenin pathway for the treatment of CRC.

Keywords: traditional Chinese medicines, colorectal cancer, Wnt/β-catenin, potential role, small molecules,
therapeutic mechanism

INTRODUCTION

Colorectal cancer (CRC) is the third cause of cancer-related death worldwide according to the latest
statistics of the International Agency for Research on Cancer (IARC) of the World Health
Organization (WHO) (Authors Anonymous, 2021a). It estimated that there are 1.8 million new
CRC cases and 880,792 CRC-related deaths in 2018 (Yang et al., 2020). Moreover, the incidence of
CRC in some countries is on the rise gradually. Approximately 70% CRC cases are sporadic and
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develop through the adenoma-carcinoma sequence (De Filippo
et al., 2002; Fodde, 2002). Tumorigenesis is usually driven by
multiple genetic and molecular alterations in the different stages.
The mutations of adenomatous polyposis coli (APC) gene, were
first discovered as the underlying cause of the hereditary colon
cancer syndrome termed familial adenomatous polyposis (FAP);
in 1991 (Kinzler et al., 1991; Nishisho et al., 1991). Then some
researchers found that APC gene could interact with ß-catenin
and loss of APC function results in overactive T-cell factor 4
(TCF4)/β-catenin signaling. These findings establish a direct link
between Wnt/β-catenin signaling pathway and human CRC.
Furthermore, more than 90% of sporadic CRCs has been
identified to carry mutations of one or more components of
theWnt/β-catenin signaling pathway including APC based on the
genome-scale analysis (Network, 2012). Therefore, the canonical
Wnt pathway plays an pivatal role in the development of CRC
and may be a significant potential target for CRC treatment.

In clinical practice, standard conventional treatments for CRC
are surgery, chemo-therapy and radiotherapy. Currently, with the
development of tumor molecular targeted therapy, small
molecule inhibitors present a great advantage in improving the
survival of patients with advanced CRC. Moreover, long-term
application of these therapies can lead to various side effects and
toxicities, consisting of nausea, vomiting, mucositis, peripheral
neuropathy, and diarrhea (Mcquade et al., 2017). Thus, it is
urgent to identify new and more effective drugs for CRC
treatment. TCMs have been used for more than 2000 years in
China. Owing to the low toxicity and the multi-target capacity (So
et al., 2019), TCMs are attracting increasing attention and
acceptance for the treatment of CRC as it can alleviate
chemotherapy-induced side effects and improve the quality of
life of patients with CRC. Previous studies have shown that
diverse TCMs exhibit excellent anti-tumor activities in both
experimental models and clinical cases. In this review, we
focused on ongoing strategies of TCMs used to target aberrant
Wnt/β-catenin pathway compared with targeted small molecules
as a novel therapeutic intervention in different stages of CRC.
Taken together, TCMs will become promising alternative drugs
to treat cancer with less toxicity and also be used as an adjunctive
treatment together with classic drugs for improving therapeutic
outcomes in CRC patients.

Wnt/β-Catenin Pathway and CRC
Wnt signaling pathway is a highly conserved signaling pathway in
eukaryotes and commonly divided into canonical (β-catenin
dependent) and non-canonical (β-catenin independent)
pathways (Polakis, 2012). Originally, many components of the
Wnt signaling were identified as key mediators of patterning
decisions during embryonic development by genetic screening
(Mazzotta et al., 2016). In the last decade, aberrantWnt/β-catenin
pathway activation in carcinogenesis has most prominently been
described for CRC. Data from the Cancer Genome Atlas (TCGA)
suggests that Wnt/β-catenin pathway is activated in 93% of
nonhypermutated CRC and 97% of hypermutated CRC (Li
et al., 2012; Sebio et al., 2014; Voorneveld et al., 2015). The
status of Wnt/β-catenin pathway is mainly related to the stability
of ß-catenin controlled by the ß-catenin destruction complex that

is comprised of scaffolding proteins APC, Axin and the kinases
casein kinase 1 (CK1) and Glycose synthase kinase 3β (GSK3β).
Absence of Wnt ligands stimuli, the cytosolic ß-catenin is
phosphorylated by GSK3β, ubiquitinated by ß-TrCP200 and
targeted for proteasomal degradation. The ligand Wnt binds to
the cell surface receptor Frizzled and low-density lipoprotein
receptor-related protein 5/6 (LRP5/6) to form a trimer, which
recruits the Dishevelled (Dvl) protein to the plasma membrane,
leading to dissociation of the destruction complex followed by
cytosolic accumulation of ß-catenin. Consequently, the ß-catenin
translocates to the nucleus where nuclear ß-catenin cooperates
with TCF/LEF family transcription factors to active target genes
such as c-myc, MMP-7, SNAIL and EGFR (Zhan et al., 2017). The
activation of Wnt/β-catenin signaling is indispensable for the
progression of CRC (Figure 1).

The best-known mutation of APC is the major driver of Wnt
pathway in colorectal tumorigenesis which functions as a
negative regulator and its importance was further highlighted
by several recent studies (Hankey et al., 2018). By using the
CRISPR/Cas9 technique to introduce APC mutation into
human intestinal organoids, the tumorigenesis of CRC could
be modeled in vivo (Drost et al., 2015; Matano et al., 2015).
Moreover, these studies in human and mouse models indicated
that the genotypes of APC mutations are consistent with the
distinct levels of canonical Wnt pathway and these alterations
are associated with characteristic tumor locations within the
large intestine (Buchert et al., 2010; Christie et al., 2013). Besides
APC, ring finger protein 43 (RNF43) mutations and R-spondin
translocations are noted in over 18 and 9% patients with CRC
respectively by preventing removal of Wnt receptor. Both
RNF43 and R-spondin fusion are completely opposite to
APC mutations (Schatoff et al., 2017). In addition to the
well-established function of Wnt/β-catenin in CRC, there is
accumulating evidence indicating that the KRAS is also an
important and frequently mutant gene during colorectal
cancinogenesis. Up to 40% of KRAS mutations occur in
patients with CRC (Arrington et al., 2012). The discovery of
small-molecule RAS inhibitors or a siRNA targeting RAS
displayed anti-proliferative activity on xenografts of human
CRC cell line SW480 (Song et al., 2020). The mutations of
KRAS result in the hyper-activation of RAS-extracellular signal-
regulated kinase (ERK) pathway involving transformation of
cells and tumorigenesis. Series of studies confirmed the
regulation of the RAS-ERK pathway by Wnt/β-catenin
signaling and its roles, such as Axin, APC, and GSK3β, and
so on (Vincan and Barker, 2008). The crosstalk of RAS and
Wnt/β-catenin pathways relies on the phosphorylation of RAS
mediated by GSK3β. GSK3β, a key component of the ß-catenin
destruction complex, is identified as a kinase inducing
phosphorylations of ß-catenin and RAS at the different sites
of the threonine, and subsequently recruits the ß-TrCP E3 linker
for the proteasomal degradation. Inactivation of GSK3β caused
by Wnt stimuli or APC loss further leads to high concentration
of cytoplasmic ß-catenin and KRAS (Lee et al., 2018a).
Therefore, both mutations of APC and KRAS have a positive
connection with the Wnt/β-catenin pathway in colorectal
tumorigenesis (Figure 1).
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Metastasis is a hallmark of advanced cancer and a major
challenge to clinic treatment. Epithelial-mesenchymal transition
(EMT) is a crucial process by which epithelial cells lose cell
polarity and cell-cell adhesion, and closely associate with invasion
and metastasis in many types of malignancies including CRC
(Spaderna et al., 2006; Vu and Datta, 2017). There is a
complicated network involved in the regulation of EMT,
containing different signaling pathways. Many investigations
indicated that aberrant activation of the canonical Wnt
pathway promotes EMT-associated dedifferentiation located at
the invasive front of colorectal tumors. Enhanced Wnt/β-catenin
signaling in CRC cells induces the action of E-cadherin repressors
SNAIL and upregulation of matrix metalloproteinases (MMP)
involving CRC invasion and metastasis (Gu et al., 2016).
However, inactivating mutations of APC and AXIN2 can up-
regulate the canonical Wnt pathway, thereby promoting EMT.
Furthermore, in vitro and in vivo experiments showed that
WNT3a overexpression induces SNAIL expression and
promotes invasion (Qi et al., 2014).

In addition, increasing evidences suggest that cancer stem cells
(CSCs) theory underlies tumor proliferation, differentiation and
metastasis. Although there is still no consensus on the concept of
cancer stemness, the vital role of the Wnt pathway for the
function of normal and cancer stem cells is commonly
accepted (Reya and Clevers, 2005). In the intestinal crypt,
Wnt/β-catenin pathway exerts a crucial role in the self-renewal
of CSCs in CRC (Yan K. S. et al., 2017). R-spondin receptor Lgr5,
one putative mark of intestinal stem cells, is a direct target gene of
the canonical Wnt signaling cascade and able to promote tumor
proliferation after APC is deleted in these cells. The experiments
in mouse models showed that the Lgr5+ stem cells can increase

additionally the population of Lgr5-positive cells and drive
adenoma expanding in colon (Barker et al., 2009). CD44v6, as
another CSC marker in colorectal cancer, is promoted by Wnt/
β-catenin signaling and cytokines secreted from tumor-associated
cells (Todaro et al., 2014). Moreover, the tumor environment has
an important effect on maintenance of cancer stemness in some
studies, such as hepatocyte growth factor, which is secreted by
myofibroblasts in tumor micro-environment and can induce
stemness features in colorectal cancer cells by improving Wnt
activity (Clara et al., 2020). Recently, several studies uncovered
potential relations between Wnt pathway and non-coding
microRNAs in CSCs. Scientists have discovered miR-142 can
inhibit stem cell-like traits by targeting APC gene whose
mutations are linked to colon cancer (Isobe et al., 2014).
Taken together, these findings indicate that canonical WNT
signaling plays a vital role in the maintenance and expansion
of CSCs in CRC.

Small Molecules Targeting Wnt/β-Catenin
Pathway for CRC Treatment
Due to the importance of canonical Wnt/β-catenin signaling in
human carcinogenic development, small molecule inhibitors
targeting Wnt signaling have been developed for the treatment
of CRC (Table 1). Activation of Wnt signaling through ß-catenin
is a critical event in CRC progression. Porcupine (PORCN) is a
membrane-bound O-acyltransferase protein which regulates
Wnt ligands secretion outside the cell membrane through
palmitoylation. In recent years, PORCN has emerged as a
molecular target for treating Wnt-driven cancers. ETC-159,
WNT974 (LGK974) and Rxc004 has been identified as potent

FIGURE 1 | Schematic illustration of the Wnt/β-catenin signaling pathway in CRC. (A) Inactive Wnt/β-catenin pathway. In the absence of Wnt ligands, destruction
complex phosphylates ß-catenin and KRAS for ubiquitination and proteolytic degradation; (B) Active ß-catenin pathway and crosstalk with KRAS/ERK pathway. In the
Wnt stimuli or APC loss, GSK3β becomes inactive status, leading to the high levels of cytoplasmic ß-catenin and KRAS. While KRASmutations have a positive feedback
loop with the level of cytoplasmic ß-catenin. In addition, RNF43 mutations can relieve the degradation of fizzled protein and activate Wnt/β-catenin pathway.
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inhibitors of Wnt secretion inhibiting ß-catenin activity in
preclinical studies. ETC-159 has been proven to be remarkably
efficacious in treating CRCs with R-spondin translocation in vivo
and in vitro experiments (Soo and Keller, 2015). During in vitro
studies in RNF43 mutant and R-spondin fusion CRC cell lines,
Rxc004 could potently repress the cell proliferation by arresting
cell cycle at G1/S and G2/M phase (Shah et al., 2021). IWP-2 is
another inhibitor of PORCN. Experiments on organoid derived
from CRC patients unveiled that IWP-2 is sensitive to the cancers
with loss of function RNF43 mutations (Masaru, 2017).
Pyrvinium, a FDA-approved drug, has been shown to bind to
CK1α and form a degradation complex with GSK-3, APC, and
Axin, resulting in the inhibition of Wnt signaling. Moreover,
Pyrvinium suppresses the proliferation of CRC with mutations
of APC or ß-catenin in HCT116 and SW480 cell lines (Momtazi-
Borojeni et al., 2018). ICG-001, a selective inhibitor of Wnt/
β-catenin pathway, binds to the CREB-binding protein (CBP)
and down-regulates ß-catenin/Tcf transcription. As a
consequence, ICG-001 selectively induces apoptosis in colon
carcinoma cells but not in normal colonic epithelial cells, which
is effective in mouse with APCmutations or nudemouse xenograft
models of colon cancer. PRI-724, the second generation specific
CBP/catenin antagonist for oncology, has been proved to have an
acceptable safety profile in early clinical trials and is now under
further clinical investigation (Bahrami et al., 2017). Windorphen
(WD) is an inhibitor of Wnt/β-catenin signaling by directly
targeting p300 to disrupt the association of ß-catenin with p300.

These findings suggest thatWD can selectively kill cancer cells with
aberrant activation ofWnt signaling (Hao et al., 2013). Other small
molecules, such as NSC668036 and Pen-N3, block the Wnt
signaling pathway through binding to the Dishevelled (Dvl)
PDZ domain and interrupting the receptor Frizzled (Fz)-Dvl
interaction in colon cells (Shan et al., 2005; Zhang et al., 2009).

Some studies indicate that tankyrases (TNKS) are novel targets
for Wnt inhibition by regulating stabilization of Axin and hence
leading to increased ß-catenin degradation. XAV939 and JW55
have been shown to target Wnt/β-catenin pathway through
inhibiting the poly-ADP-ribose polymerase (PARP) domains
of TNKS in DLD-1 and SW480 cell lines in vitro (Huang
et al., 2009). JW55 also reduces the growth of tumor in
conditional APC mutation mice (Waaler et al., 2012). G007-
LK and G244-LM are two other types of small-molecule
tankyrase inhibitors (Lau et al., 2013). In particular, G007-LK
has greater stability and displays favorable pharmacokinetic
properties to inhibit Wnt/β-catenin signaling in APC-mutant
CRC xenograft tumors (Tanaka et al., 2017; Katoh, 2018). IWR-1
is another tankyrase inhibitor which interacts with PARP enzyme
(Mashima et al., 2017).

β-catenin is a key mediator of Wnt signaling, regulating the
stabilization of the destruction complex and consequently
intracellular ß-catenin levels. Ewan K et al. revealed that three
small molecule inhibitors including CCT031374, CCT036477,
and CCT070535 can block the Wnt/β-catenin signaling through
reducing the level of ß-catenin without altering its stability, which

TABLE 1 | List of small molecules targeting Wnt/β-catenin pathway for CRC treatment.

Small molecules Mechanism of action Preclinical vs. clinical
trial (phase) vs. FDA approved

Reference

ETC-159 Porcupine inhibitor Phase 1 Soo and Keller (2015)
WNT874 (LGK974) Porcupine inhibitor Phase 1 Shah et al. (2021)
RXC004 Porcupine inhibitor Phase 1/2
IWP-2 Porcupine inhibitor Preclinical Masaru (2017)
Pyrvinium Binding to CK1a FDA approved Momtazi-Borojeni et al. (2018)
ICG-001 Binding to CBP Preclinical Bahrami et al. (2017)
PRI-724 CBP/β-catenin inhibitor Phase 1b
Windorphen P300/β-catenin inhibitor Preclinical Hao et al. (2013)
NSC668036 Binding to Dishevelled Preclinical Shan et al. (2005)
Pen-N3 Binding to Dishevelled Preclinical Zhang et al. (2009)
XAV939 Tankyrases inhibitor Preclinical Huang et al. (2009)
JW55 Tankyrases inhibitor Preclinical Waaler et al. (2012)
G007-LK Tankyrases inhibitor Preclinical Lau et al. (2013)
G244-LM Tankyrases inhibitor Preclinical Narwal et al. (2012)
IWR-1 Tankyrases inhibitor Preclinical Mashima et al. (2017)
CCT031374 β-catenin inhibitor Preclinical Ewan et al. (2010)
CCT036477 β-catenin inhibitor Preclinical
CCT070535 β-catenin inhibitor Preclinical
iCRT3 β-catenin/Tcf Preclinical Gonsalves et al. (2011)
iCRT5 β-catenin/Tcf Preclinical
iCRT14 β-catenin/Tcf Preclinical
PKF115-584 β-catenin/Tcf Preclinical Yan M. et al. (2017)
PKF222-815 β-catenin/Tcf Preclinical
CGP049090 β-catenin/Tcf Preclinical Tian et al. (2012)
BC21 β-catenin/Tcf Preclinical
NC403 β-catenin/Tcf Preclinical He et al. (2017)
KYA1797k GSK3β activator Preclinical Lee et al. (2018b)
KY1022 GSK3β activator Preclinical Cho et al. (2016)
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TABLE 2 | Effects of monomers, extracts, formula of TCMs on CRC by Wnt/β-catenin pathway.

Herbal medicine Stage Cell Animal Cellular mechanism Wnt related
targets

References

Berberine Polyps KM12C Apc Min/+ mice Proliferation β-catenin, APC Zhang J. et al. (2013)
KM12SM
KM12L4A

Genistein Pre-neoplasia - SD Rat Differentiation Wnt5a, Sfrp1,2,5 Zhang et al. (2020)
EESB CRC HT29 BALB/c nude

mice
Proliferation Apoptosis APC, ß-catenin Wei et al. (2017)

Brucine
Strychnine

CRC DLD1, SW480, LoVe Nude mice Proliferation Apoptosis APC, ß-catenin, Dkk1 Ren et al. (2019)

Luteolin CRC HCT15 BALB/c mice Proliferation GSK-3β, ß-catenin Ashokkumar and
Sudhandiran (2011)

C.
brachycephalum

CRC SW480 - Proliferation GSK-3β, ß-catenin Mervai et al. (2015)

PAG CRC HCT116 - Proliferation, Apoptosis GSK-3β, ß-catenin Qiu et al. (2017)
Dvl2

Wogonin CRC SW480 - Proliferation GSK-3β, Ctnnb1 Li et al. (2020)
NG CRC, Migration HT29, SW620 - Proliferation Apoptosis,

Cell cycle, EMT
GSK-3β, ß-catenin Wen et al. (2019)

IBC CRC HCT116, SW480 - Proliferation Apoptosis GSK-3β, ß-catenin Li et al. (2019)
4 ß HWE CRC HCT116, HT29, SW480,

LoVo, CCD-CoN-841
BALB/c nude
mice

Proliferation, Apoptosis β-catenin Ye et al. (2019)

Rg3 CRC HCT116, SW480 Athymic nude
mice

Proliferation β-catenin He B.-C. et al. (2011)

Isoquercitrin CRC HCT116, DLD-1, SW480 Xenopus
embryos

Proliferation β-catenin Amado et al. (2014)

RTHF CRC SW620, HT29 C57Bl/6 mice Cell cycle,
Stemness, EMT

β-catenin Wu et al. (2018)

TGG CRC NIH3T3, HT29 - Apoptosis β-catenin Li et al. (2019)
TET CRC, Migration HCT116, SW480 Female athymic

nude mice
Proliferation, Apoptosis β-catenin He B.-C. et al. (2011)

Curcumin CRC SW620, rHCT116 - Proliferation β-catenin, Wnt3a Jiang X. et al. (2019)
Apoptosis,EMT

Beta-elemene CRC HCT116, HT29 - Proliferation β-catenin, Wnt3a -
Apoptosis

Celastrol CRC HCT116, SW480 APC Min/+ mice Proliferation β-catenin, YAP, LKB1 Wang et al. (2019)
BRB CRC HCT116, HT29, LoVo,

SW480
c57Bl/6 mice miRNA β-catenin, DKK3 Guo et al. (2020)

Quercetin CRC SW480, clone 26 - Proliferation Apoptosis β-catenin, Tcf4 Shan et al. (2009)
COL CRC DLD1, SW480, LoVe BALB/c nude

mice
Proliferation Apoptosis β-catenin, TCF/LEF Lei et al. (2019)

Apigenin CRC SW480, HCT15 - Proliferation β-catenin, TCF/LEF Xu et al. (2016)
Silibinin CRC SW480 Athymic nude

mice
Proliferation β-catenin, Tcf4 Kaur et al. (2010)

Lonchocarpin CRC RKO, SW480 Xenopus laevis Proliferation β-catenin, Tcf4 Predes et al. (2019)
Henryin CRC HCT116, SW480, HT29 - Proliferation - Li et al. (2013)
γ-Mangostin CRC HCT116, SW480, RKO,

LS174T
Nude mice Proliferation Apoptosis,

Stemness
TCF4 Krishnamachary et al.

(2019)
Huaier CRC, Metastasis T1,T2 - Stemness β-catenin, TCF/LEF Zhang T et al. (2013)
Resveratrol CRC, Invasion,

Metstasis
HCT116, LoVo - MMPs β-catenin Ji et al. (2013)

IPM711 Invasion,
Migration

HT29, HCT116, NCM460 - Proliferation, EMT β-catenin, FZD Ma et al. (2019)

TKP Invasion,
Migration

DLD1, HCT116 - MMP2, MMP9 GSK-3β Sun et al. (2020)

Cinnamaldehyde CRC, Migration HCT116, SW480 BALB/c nude
mice

EMT, Stemness β-catenin, GSK-3β Wu et al. (2019)

ZJW CRC, Invasion,
Migration

SW403 - Proliferation, MMPs β-catenin, Axin1, Dvl2,3,
GSK-3β, Lef1,Tcf4

Pan et al. (2017)

WCA CRC, Metastasis HCT116 - MMPs, EMT β-catenin Tao et al. (2019)
HLJDD CID HT29 Athymic nude

mice
Stemness Wnt3,Axin2, Fzd5,Pygo2 Chan et al. (2020)

AP CACC HT29, HCT116 ICR mice Proliferation β-catenin Li et al. (2020)

Notes: 1. EESB, ethanol extract of Scutellaria barbata D. Don; 2. PAG, pterisolic acid G; 3. NG, Nerigoside; 4. IBC, Isobavachalcone; 5. 4 ß HWE, four ß-Hydroxywithanolide E; 6. RTHF,
Radix Tetrastigma hemsleyani flavone; 7. TGG, 1,4,6-Tri-O-galloyl-β- d -glucopyranose, 8. TET, tetrandrine; 9. BRB, black raspberry; 10. COL, columbamine; 11. IPM711, 4-(1H-imidazo
[4,5-f][1,10]-phenanthrolin-2-yl)-2- methoxyphenol; 12. TKP, Trichosanthes kirilowii; 13. ZJW, Zuo Jin Wan; 14.WCA,Weichang’an; 15.HLJDD, Huanglian Jiedu Decoction; 16. AP, apple
polysaccharide; 17. CID, chemotherapy-induced diarrhea.
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is different from drugs involving inhibition of TCF-dependent
transcription in SW480 cells (Ewan et al., 2010). Interaction of ß-
catenin with TCF binding proteins is a crucial step in the
activation of target genes in response to the activation of Wnt/
β-catenin pathway. A cohort of Wnt antagonists including
iCRT3, iCRT5, iCRT14, PKF115-584, PKF222-815,
CGP049090, and BC21 have been demonstrated to suppress
the Wnt/β-catenin signaling by breaking the association
between Tcf4 and ß-catenin (Gonsalves et al., 2011; Tian et al.,
2012; Yan M. et al., 2017). NC043 is an inhibitor of ß-catenin/
TCF4, which decreases ß-catenin/TCF4 association without
affecting the cytosol-nuclear distribution of soluble ß-catenin
in vivo and in vitro (He et al., 2017).

In recent years, a small molecular KYA1797K has been
identified to suppress the formation of CRCs along with the
mutations of APC and KRAS via activating GSK3β and
subsequently reducing the level of both ß-catenin and Ras as
showed both in vitro and in vivo studies. Moreover, KYA1797K
can alleviate the resistant to the EGFR-targeting therapies because
of KRAS mutations (Lee et al., 2018b). Whereas, KY1022
destabilizes both ß-catenin and Ras by targeting the Wnt/
β-catenin signaling in the process of metastasis involving
EMT, which is different from the action of KY1797K (Cho
et al., 2016). As indicated above, small molecule inhibitors
targeting Wnt/β-catenin pathway exhibit promising
therapeutic effects on CRC. However, to the best of our
knowledge, few of these small molecules has gone into clinical
trials. In the future, many scientists will make great efforts to
identify more small molecules targeting Wnt/β-catenin and
convert them into effective therapies.

Therapeutic Mechanism of TCMs Against
CRC via Wnt/β-Catenin Pathway
It is well documented that uncontrolled cell proliferation is a
typical feature in many types tumor development, especially in
CRC. The complex balance between proliferation and apoptosis is
intimately connected with tissue homeostasis (Diwanji and
Bergmann, 2018) and in general, increased cell proliferation
along with reduced apoptosis, drives tumor formation. It has
been found that many compounds or extracts from TCMs could
inhibit colorectal tumorigenesis by targeting different molecules
inWnt/β-catenin pathway. Therefore, we summarized the single-
herb and formula of TCM against the different stages of CRC via
Wnt/β-catenin pathway (Table 2).

EFFECT OF ACTIVE COMPOUNDS ON
PRECANCEROUS CRC

The presence of adenoma (polyps), is a precursor and amajor risk
factor for CRC (Nguyen et al., 2020). Currently, endoscopic
removal is the most effective therapeutic regimen for these
patients. However, TCMs also have been reported to exhibit
important therapeutic effects on colon adenomas. Alkaloid
berberine, which is previously used as an anti-inflammatory
drug, has proximately been demonstrated to possess anti-

tumor activity by reducing Wnt activity and its mechanism of
action may involve inhibition of ß-catenin translocation to the
nucleus by enhancing the expression of APC gene and stabilizing
the complex of APC-β-catenin. Studies looking at berberine
treatment in vivo have found that it gave rise to reduced
formation of polyps accompanied with a decrease in cyclin D1
and c-myc expression in the intestinal adenoma model.
Furthermore, oral administration of berberine has been
confirmed to significantly reduce the size of polyps in patients
with FAP (Zhang J. et al., 2013). In addition, the discovery of
Aberrant crypt foci (ACF) in early colorectal adenomas provided
new opportunities to explore the pathogenic mechanism of CRC.
Genistein, a soya isoflavone, is capable of decreasing the number
of total aberrant crypts in the colon cancer model with
azoxymethane (AOM) injection by repressing the expressions
of Wnt/β-catenin target genes, including Wnt5a, Sfrp1, Sfrp2,
Sfrp5, and c-Myc. These results revealed a novel role for genistein
as a suppressor of carcinogen-induced Wnt/β-catenin signaling
and the prevention of early colon neoplasia (Zhang et al., 2020).

THERAPEUTIC MECHANISM OF ACTIVE
COMPOUNDS AGAINST CRC IN SITU

Ninety-three percent of CRC cases has at least onemutation inWnt/
β-catenin pathway genes (Pearlman et al., 2017). Themost frequently
mutated gene in CRC is APC which may be a promising target for
drug development in CRC. The ethanol extract of Scutellaria barbata
D. Don (EESB), used for the treatment of various types of cancer
clinically (Wei et al., 2017; Zhang et al., 2017; Liu et al., 2018), has
been found to prevent the development of human CRC via
increasing APC expression with a concomitant decrease in the
expression of ß-catenin, leading to inactivation of the Wnt/
β-catenin pathway in a CRC xenografted mouse model and HT-
29 cell line. Brucine and strychnine from nux vomic have remarkable
effects in improving circulatory system and relieving arthritic and
traumatic pains. Recently, Ren H et al. (2019) found both two
compounds can suppress the growth significantly by inducing the
apoptosis of CRCs in nudemice by enhancing the expression of APC
and reducing that of ß-catenin. Meanwhile, they can greatly promote
DKK1 expression, which is proved to negatively regulate Wnt/
β-catenin pathway. On the other hand, some monomers derived
from traditional Chinese herbs such as Luteolin, C. brachycephalum,
pterisolic acid G (PAG), wogonin, nerigoside (NG) and
isobavachalcone (IBC), exhibit anticancer functions by affecting
the phosphorylation state of GSK-3β and ß-catenin in CRC.
However, nerigoside has been found to destroy the balance of
proliferation and apoptosis through the ERK/GSK3β/β-catenin
signaling pathways, whereas isobavachalcone exerts its anticancer
effect via the AKT/GSK-3β/β-catenin pathway in CRC
(Ashokkumar and Sudhandiran, 2011; Mervai et al. (2015); Qiu
et al., 2017; Li et al., 2019; Tan et al., 2019; Wen et al., 2019).

There are some compounds inhibiting CRC by mediating the
core molecule of canonical Wnt pathway. Ye ZN et al. discovered
that the anti-tumor effect of four ß HWE is to promote the
phosphorylation and degradation of ß-catenin and the
subsequent inhibition of its nuclear translocation in CRC cells
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(Ye et al., 2019). While, Ginsenoside Rg3 and isoquercitrin were
demonstrated to inhibit Wnt/β-catenin pathway by blocking
nuclear translocation of the ß-catenin protein and hence
inhibiting ß-catenin/Tcf transcriptional activity (He B. et al.,
2011). Moreover, some experiments in vitro showed that
Radix Tetrastigma hemsleyani flavone (RTHF), 1,4,6-Tri-O-
galloyl-β-d-glucopyranose (TGG) as well as tetrandrine (TET)
could suppress colorectal tumor growth and downregulate target
genes expression (He B.-C. et al., 2011; Wu et al., 2018; Li et al.,
2019). Curcumin is another inhibitor of ß-catenin in many
cancers (Deguchi, 2015). Previous studies illustrated caudal
type homeobox-2 (CDX2) is a mediator of the Wnt signaling
pathway, and curcumin can reduce cell proliferation and increase
apoptosis by restoring CDX2 which inhibited the Wnt/β-catenin
signaling pathway (Jiang X. et al., 2019). Besides, curcumin might
exert anti-resistant effect of 5-FU on rHCT-116 cells by
controlling WNT signal pathway to reverse the EMT progress
(Lu et al., 2020). Beta-elemene, however, could elevate sensitivity
to 5-FU through down-regulating miR-191 and preventing the
Wnt/β-catenin pathway in CRC cells (Guo et al., 2018). Lately,
accumulating evidence has strongly suggested Hippo signaling
interacted with Wnt/β-catenin pathway. (Jiang Z. et al., 2019).
found that celastrol, isolated from Tripterygium wilfordii plant,
exerted antitumor effects by accelerating ß-catenin degradation
via the HSF1–LKB1–AMPKα–YAP pathway in CRC. In addition,
miRNAmicroarray analysis suggested that black raspberry (BRB)
anthocyanins can reduce the expression of miR-483–3p
accompanied by an increased level of DKK3 expression, which
is one negative regulator of Wnt pathway (Guo et al., 2020).

Some studies revealed that quercetin and columbamine
(inhibitors of the Wnt/ß-catenin pathway) could decrease
nuclear lcatenin and downregulate the transcriptional activity
of ß-catenin/Tcf, leading to inhibition of cell proliferation in
SW480 cell lines (Pahlke et al., 2006; Lei et al., 2019). Similar to
quercetin and columbamine, apigenin can suppress CRC
proliferation by inhibiting ß-catenin nuclear entry and thereby
prevented the expression of Wnt downstream target genes (Xu
et al., 2016). Silibinin and lonchocarpin, also exert anticancer
functions through the regulation of ß-catenin/Tcf transcriptional
activity in animal and cell models (Kaur et al., 2010; Predes et al.,
2019). Yet silibinin exhibited selective growth inhibitory effects
on SW480 cells (human CRC cells), but not HCT116 cells, by
inhibition of Wnt signaling. Henryin, used to control pain for a
long time, has been reported to be capable of impairing the
association of the ß-catenin/TCF4 trans-criptional complex
through direct blockade of ß-catenin binding to TCF4, but not
to affect the cytosol to nuclear distribution of soluble ß-catenin
(Li et al., 2013). In addition, γ-mangostin, found in Mangosteen
fruit, can interact with the transcription factor TCF4 at the ß-
catenin binding domain, which results in the suppression of the
expression of cyclin D1 and c-Myc. Furthermore, γ-mangostin
treatment significantly decreased the levels of stem cell markers
such as Lgr5, Dclk1 and CD44 in HCT116, LS174T and DLD1
cells, which also confirmed in vivomodels (Krishnamachary et al.,
2019). In the last few decades, the existence of CSCs is central to
chemo-resistance and recurrence of many tumors. Some studies
identified Huaier aqueous extract can take action against CRC by

eradicating CSCs and the Wnt pathway may be considered as a
potential target of Huaier for the treatment of CRC (Zhang T.
et al., 2013).

REGULATORY MECHANISM OF ACTIVE
COMPOUNDS AGAINST METASTATIC CRC

The development of distant metastases and therefore resistance to
therapy, are major clinical problems in the management of the
patients with advanced cancer. Recently, medical professionals
have focused on TCMs as a way to resolve these issues.
Resveratrol, a natural antioxidant from Polygonum
cuspidatum, inhibits the invasion and metastasis of human
CRC through down-regulation of Metastasis Associated Lung
Adenocarcinoma Transcript1 (MALAT1) (Xu et al., 2011; Ji et al.,
2013). IPM711, a structurally modified vanillin, was reported to
attenuate EMT by increasing the expression of E-cadherin (Ma
et al., 2019). Furthermore, a serine protease TKP has a repressive
effect on CRC cell invasion and metastasis by targeting MMP2
and MMP9, and is mediated by blockade of both Wnt/β-catenin
and Hedgehog/Gli1 signaling (Sun et al., 2020). In addition,
cinnamaldehyde has been certified to have potential adjuvant
effect on CRC cells in combination with oxaliplatin through
blocking the Wnt/β-catenin pathway and enhancing the
susceptibility of oxaliplatin in the hypoxic environment (Wu
et al., 2019).

EFFECT OF TCM FORMULAS ON CRC

As well as the monomers and extracts derived from TCMs, an
increasing body of evidence suggests that TCM formulas possess
anticancer properties, too. Zuo Jin Wan (ZJW) has been used in
the treatment of gastrointestinal and liver diseases in China for
ages (Chao et al., 2011; Sun et al., 2019), which is composed of
Rhizoma Coptidis and Evodia Rutaecarpa at a ratio of 6:1.
Berberine and evodiamine are two key elements of ZJW
extract and possess anti-tumorigenic activity, respectively
(Ayati et al., 2017; Wang et al., 2019). Over the past few
decades, many clinical studies had found that some subtypes
of 5-HT receptors (5-HTRs) would enhance the proliferation of
CRC cells. Recent studies showed that ZJW extracts can exert
anti-tumorigenic effects by suppressing the canonical Wnt/
β-catenin pathway in animal and cell experiments, similar to
that seen with 5-HTR antagonists (Pan et al., 2017). Weichang’ an
(WCA) is a traditional Chinese medicinal formula used as an
anticancer drug and the experimental data also showed the anti-
metastatic function by blunting the activation of Wnt/β-catenin
pathway and reducing the expression of MMP9 and the EMT-
related protein ZEB1 (Tao et al., 2019). Furthermore, TCM
formulations could provide an adjunct for chemotherapy in
cancer patients. Huanglian Jiedu Decoction (HLJDD) has been
revealed to significantly alleviate the diarrhea induced by
chemotherapy in a mouse model. The experiments from the
intestinal segments of 5-Fu/CPT-11-treated mice proved pre-
treatment with HLJDD could activate the Wnt/β-catenin
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pathway by inducing the expressions of Wnt signaling
components, comprised of Wnt3, Fzd5, Axin2, and Pygo2
(Chan et al., 2020). These data suggest that HLJDD could
boost the regeneration of intestinal progenitor cells after
chemotherapy, probably by activating Wnt/β-catenin.

In addition, TCMs can also prevent the development of colitis
associated colorectal cancer (CACC) through canonical Wnt
signaling. It is showed that apple polysaccharide (AP) from
apple residues could affect the activation of Wnt/β-catenin
signaling pathway in vivo, but not in vitro experiments (Li
et al., 2020). Previous studies showed that AP treatment could
effectively decrease the proliferation of Fusobacterium in AOM/
DSS-induced intestinal tract. Therefore, AP may restrain the
activation of Wnt/β-catenin signal pathway in CACC mice
through controlling the imbalance of intestinal flora.

Development of New Drugs in Clinic
CRC is often diagnosed at an advanced stage when tumor cell
dissemination has already taken place and chemotherapy was one
of the major methods for the treatment of CRC in the past few
decades. In clinic, it is obviously clear that fluoropyrimidines,
irinotecan, and oxaliplatin have been widely applied to
chemotherapeutic regimens for tumors (Gustavsson et al.,
2015). The recent introduction of small molecular target agents,
such as anti-EGFR (cetuximab, panitumumab) and antiangiogenic
molecules (bevacizumab) have led to profound improvements in
the life expectancy of patients with advanced CRC (Franke et al.,
2019), but with potential lethal adverse drug events and drug
resistance. Therefore, it is necessary to develop new and neo-
adjuvant therapies in combination with other chemotherapeutics.
TCMs and their active compounds with multi-targets was reported
to prevent and treat CRC patients as promising candidates, which
is distinct from small molecular inhibitors that depend on single

target (Yeh et al., 2020). In addition, because of relatively lower
toxicity and cheaper price, TCMs can be more accepted by patients
with CRC physically and psychologically.

On account of the significance of Wnt/β-catenin pathway in
CRC development and metastasis, some native components of
TCMs was developed as novel drugs specifically targeting this
signaling pathway and are already in clinical trials (Table 3).
Resveratrol is a naturally occurring polyphenol with antioxidant,
which has been used in many diseases involving cancers. Recently,
in vitro studies suggest that resveratrol exhibited preventative colon
cancer effects and this was associated with Wnt signaling (93). In
this clinical trial, patients with colon cancer were randomly
provided a treatment with resveratrol, and relevant studies
tested its effects directly on colon cancer and normal colonic
mucosa. These results showed that resveratrol could inhibit
Wnt/β-catenin signaling in the normal colonic mucosa, but not
in colon cancer (Nguyen et al., 2009). Thus, resveratrol represented
a potential colon cancer preventive strategy in this phase I study.
Genistein is also identified to block Wnt/β-catenin signaling and
has a cooperative effect with chemotherapeutic agents in lab.
According to pre-clinical data, investigators found that
combining genistein with standard chemotherapeutic regimens
could reduce chemotherapy resistance and improve patient’s
response rates (Authors Anonymous, 2021b).

Besides, small molecular weight Wnt 974, a potential inhibitor
of Wnt/β-catenin signaling, has been used to assess its safety and
antitumor activity in combination with chemotherapeutic agents
in patients with BRAF-mutant metastatic CRC andWnt pathway
mutations (Authors Anonymous, 2021c). Nevertheless, so far, the
study results have not been published. ABT-888 (veliparib) has
also been used in combination with chemotherapeutic drugs to
inhibit the growth of metastatic CRC in phaseⅠandⅡclinical trials
(Authors Anonymous, 2021d). But it has not yet been approved

TABLE 3 | New drugs inhibiting Wnt/β-catenin pathway for treatment CRC in clinic.

New drug Disease or
condition

Combination with Aim or result Phase Recruitment
status

Resveratrol Colon cancer - Resveratrol represented a potential colon cancer
preventive strategy in this phase I study

Phase I completed

Genistein Metastatic CRC FOLFOX or FOLFOX-Avastin Combining genistein with the standard of care
chemotherapeutic regimens reduced chemotherapy
resistance and improved response rates

Phase I
and II

completed

Wnt 974
(LGK974)

BRAFV600-mutant
Metastatic CRC

LGX818 and Cetuximab The triple combination of WNT974, LGX818 and
cetuximab could result in anti-cancer activity with the
inhibition of Wnt and BRAF signals

Phase
Ib/II

completed

ABT-888
(veliparib)

CRC that cannot
been cured by
surgery

Temozolomide Combining veliparib and temozolomide was well-
tolerated at doses up to 200 mg/m2/day of
temozolomide

Phase II completed

Foxy5 Metastatic CRC - The aim is to set up the recommended drug dose for
use in the subsequent clinical phase 2 study and
develop Foxy-5 as a first-line drug in anti-metastatic
cancer

Phase I completed

Foxy5 CRC with lowWnt-5a Surgery to remove the tumour and then
giving treatment with FOLFOX about
6 months

In this trial the safety and tolerability of Foxy-5 will be
built and early signs of anti-metastatic activity will be
evaluated in subjects with resectable colon cancer

Phase II Recruiting

Niclosamide FAP Placebo Niclosamide has been indicated to have a inhibitory
effect on tumorigenesis via inhibition of Wnt pathway
with no significant safety issues

Phase II Recruiting
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by the FDA for use in this cancer. Foxy5, identified by
WntResearch, can prevent migration of epithelial cancer cells
by mimicking the functions of Wnt-5a and thereby play the anti-
metastatic role. The safety and tolerability of Foxy-5 were
established and early signs of anti-metastatic activity were
evaluated in subjects with resectable colon cancer. Further,
researchers have already examined the maximum tolerated
dose and dose-limiting toxicity of this drug (Authors
Anonymous, 2021e). Interestingly, another small molecule
niclosamide, an anti-helminthic drug, has been proved to have
an obviously suppressive effect on colorectal tumorigenesis by
attenuating Wnt/β-catenin signaling lately. In this experiment,
investigators devised a double-blind randomized controlled trial
to evaluate the effect of niclosamide on patients with FAP.
Unfortunately, to date, this project is still in the recruitment
stage (Authors Anonymous, 2021f).

CONCLUSIONS AND FUTURE
PERPECTIVES

CRC has become a global public health problem on account of its
high incidence and mortality rate worldwide. The clinical
treatments for CRC mainly involve surgery-based chemotherapy.
In recent years, with the application of targeting small molecules
against cancer, the quality of life for CRC patients has improved.
Nevertheless, chemotherapy-induced side effects and drug
resistance remain a major issue for clinical practice. Numerous
studies have shown that TCMs can be used to exert potential
anticancer activity and alleviate the side effects associated with
chemotherapy. It is confirmed that various mutations in one or
more members of the canonical Wnt signaling pathway take place
in the progression of CRC. Therefore, in this review, we aimed to
intensively explore molecular mechanisms of TCMs against cancer
at the different stages in CRC progress, including precancerous
lesions, early stage CRC and CRC invasion and migration based on
the inhibition of theWnt/β-catenin signaling pathway. Cell culture

and animal experiments have found that TCMs play anticancer
roles by regulating APC/β-catenin, GSK-3β/β-catenin, and ß-
catenin/TCF4 pathways which represent the main elements of
the Wnt/β-catenin pathway involved in the treatment of CRC.
Thus, understanding the molecular mechanisms of action of TCMs
and how they target Wnt/β-catenin may shed light on future
therapies for CRC. However, it needs multi-level and multi-link
comprehensive action to anti-tumor because of the complex
composition of traditional Chinese medicine. This suggests that
we need to investigate the crosstalk between Wnt/β-catenin signal
pathway and others. In addition, there remains very few new
clinical treatments under development due to lack of strict
evaluation system for effectiveness and safety of TCMs.
Therefore, it will hopefully pave the way for the CRC clinical
treatment and may also relieve the side effects related to
chemotherapy if there is a breakthrough in the study of multi-
target intervention of TCM in CRC.
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Combining Sodium Butyrate With
Cisplatin Increases the Apoptosis of
Gastric Cancer In Vivo and In Vitro via
the Mitochondrial Apoptosis Pathway
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Introduction: The gastrointestinal malignancy, gastric cancer (GC), has a high incidence
worldwide. Cisplatin is a traditional chemotherapeutic drug that is generally applied to treat
cancer; however, drug tolerance affects its efficacy. Sodium butyrate is an intestinal flora
derivative that has general anti-cancer effects in vitro and in vivo via pro-apoptosis effects
and can improve prognosis in combination with traditional chemotherapy drugs. The
present study aimed to assess the effect of sodium butyrate combined with cisplatin
on GC.

Methods: A Cell Counting Kit-8 assay was used to assess the viability of GC cells in vitro.
Hoechst 33,258 staining and Annexin V-Phycoerythrin/7-Aminoactinomycin D were used
to qualitatively and quantitatively detect apoptosis in GC cells. Intracellular reactive oxygen
species (ROS) measurement and a mitochondrial membrane potential (MMP) assay kit
were used to qualitatively and quantitatively reflect the function of mitochondria in GC cells.
Western blotting was used to verify the above experimental results. A nude mouse
xenograft tumor model was used to evaluate the anti-tumor efficacity of sodium and
cisplatin butyrate in vivo.

Results: Cisplatin combined with sodium butyrate increased the apoptosis of GC cells. In
the nude mouse xenograft tumor model, sodium butyrate in combination with cisplatin
markedly inhibited the growth of the tumor more effectively than either single agent. The
combination of sodium butyrate and cisplatin increased the intracellular ROS, decreased
the MMP, and suppressed the invasion andmigration abilities of GC cells. Western blotting
verified that the combination of sodium butyrate and cisplatin remarkably enhanced the
levels of mitochondrial apoptosis-related pathway proteins.

Conclusion: Sodium butyrate, a histone acetylation inhibitor produced by intestinal flora
fermentation, combined with cisplatin enhanced the apoptosis of GC cells through the
mitochondrial apoptosis-related pathway, which might be considered as a therapeutic
option for GC.

Keywords: sodium butyrate, cisplatin, gastric cancer, apoptosis, mitochondrial pathway
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INTRODUCTION

Gastric cancer (GC) is one of the most common gastrointestinal
malignancies and ranks fifth in the incidence of malignancies
worldwide. In 2020, the number of deaths caused by gastric
cancer was estimated to exceed 769,000, and its mortality rate
ranks only behind lung cancer and liver cancer according to the
latest data from GLOBOCAN 2020 (Sung et al., 2021). Although
a recent study showed that GC incidence and mortality rates
have continued to decline globally (Luo et al., 2017), stomach
cancer remains a heavy health burden in China. In 2018, 10.6%
of all cases of GC occurred in China, and the 5-year survival rate
was quite low, at less than 35% from 2013 to 2015 (Zeng et al.,
2018). Currently, the major treatment modalities for GC are
combination therapy, radiotherapy, and surgery; however, the
fact that 70% of patients with GC are diagnosed as suffering
from terminal cancer greatly limits the effectiveness of
treatment (Song et al., 2017). Drug resistance to cisplatin and
5-fluorouracil, for example, which are common traditional
therapies, has resulted in progressively poor curation
outcomes. Therefore, it is necessary to find new natural
anticancer drugs with low toxicity and high efficiency to
construct new chemotherapy regimen combinations to avoid
worsening drug resistance.

Sodium butyrate (NaB), a derivative of butyric acid, is a
metabolite produced by the breakdown of fiber in food
residues by intestinal microorganisms (Sanna et al., 2019).
Sodium butyrate not only regulates intestinal function,
provides energy to intestinal epithelial cells, and regulates cell
flora but also acts as an anti-inflammatory factor to maintain
intestinal homeostasis (Bardhan et al., 2015). In addition, sodium
butyrate is a natural histone deacetylase inhibitor (HDACi).
HDACis are a new class of oncology chemotherapeutic drugs
that have shown enhanced efficacy and reduced toxicity in
combination with classical therapies (Guerriero et al., 2017).
Scholars have shown experimentally that sodium butyrate can
inhibit proliferation and promote apoptosis in vivo and in vitro of
a variety of tumor cells, such as bladder cancer (Wang F. et al.,
2020), lung cancer (Xiao et al., 2020), and colorectal cancer
(Wang W. et al., 2020; Xi et al., 2021). Sodium butyrate
inhibits tumor growth through multiple mechanisms,
particularly the mitochondrial apoptosis pathway (Salimi et al.,
2017; Qin et al., 2020). Encouragingly, sodium butyrate made
tumor cells more sensitive to the anticancer drug, docetaxel
(Chen et al., 2020). Previous studies showed that sodium
butyrate decreased the focal adhesion kinase (FAK) expression
by increasing the death associated protein kinase (DAPK) levels
in GC cells (Shin et al., 2012), potentially inducing the cell-cycle
inhibitors, cyclin dependent kinase inhibitor 1A (CDKN1A, also
known as p21Waf1/Cip1), and cyclin dependent kinase inhibitor
1B (CDKN1B, also known as p27Kip1), as well as the pro-
apoptotic genes, BAX (encoding BCL2 associated X, apoptosis
regulator), BAK (encoding BCL2 antagonist/killer), and BIK
(encoding BCL2 interacting killer) in GC cells, which
contributed to apoptosis (Litvak et al., 2000). However, the
anti-tumor effect of sodium butyrate in combination with
cisplatin in GC and its underlying mechanism remain unknown.

In the present study, GC cells were treated with sodium
butyrate and cisplatin separately and in combination. The
results showed that sodium butyrate inhibited the proliferation
and promoted the apoptosis in GC cells by activating the
mitochondrial apoptosis pathway.

MATERIALS AND METHODS

Cell Culture
The China Center for Type Culture Collection (CCTCC)
provided the human GC cell lines (HGC-27, SGC-7901, and
MGC-803) and the normal cell line (GES-1). The cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM)/F-12
medium (1:1) (HyClone, Logan, UT, United States) and Roswell
Park Memorial Institute (RPMI) 1,640 medium (Gibco, Grand
Island, NY, United States) with 10% fetal bovine serum (FBS)
(Gibco) and a 1% solution of antibiotics (penicillin at 100 U/ml
and streptomycin at 100 g/ml) (Beyotime, Jiangsu, China) at 37°C
and 5% CO2 in a humidified incubator.

Reagents and Antibodies
Sodium butyrate (>99% purity) and cisplatin were obtained from
Sigma-Aldrich (St. Louis, MO, United States). Sodium butyrate
was dissolved in ultrapure water to prepare a 900 mM stock
solution and cisplatin was dissolved in absolute dimethyl
sulfoxide (DMSO) to prepare a 4 mg/ml (4 mg cisplatin +1 ml
DMSO) stock solution, both of which were stored at −20°C.

Rabbit monoclonal antibodies against B-cell lymphoma 2
(BCL-2), BCL2 associated X (BAX), Cytochrome C (CytC),
apoptotic protease activating factor-1 (Apaf-1), apoptosis
inducing factor (AIF), proliferating cell nuclear antigen
(PCNA), cleaved caspase-3, cleaved caspase-9, matrix
metalloproteinase (MMP)-2, MMP-9, survivin, and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were
obtained from Cell Signaling Technology (Danvers, MA,
United States). The antibodies are diluted to a working
concentration at a ratio of 1:1,000 and stored at 4°C. The
secondary antibodies were used at a working concentration of
1:10,000 and were obtained from LI-COR (Lincoln, NE,
United States).

Cell Proliferation Assay
The cell proliferation and viability were assessed quantitatively
using a Cell Counting Kit-8 (CCK-8, Beyotime, Shanghai, China)
in vitro. SGC-7901, HGC-27, MGC-803, and GES-1 cells (normal
gastric mucosa epithelial cells) were sown in 96-well plates (at 5 ×
103 cells/well) and cultured for 24 h. Then, the GC cells were
treated initially with different concentrations of sodium butyrate
(0, 1, 2, 4, 8, 16, 32, and 64 mM), different concentrations of
cisplatin (0, 1, 2, 4, 8, 16, 32, and 64 µg/ml), or a combination of
cisplatin (0, 1, 2, 4, 8, 16, 32, and 64 µg/ml) and sodium butyrate
(0.5 mM or 0, 1, 2, 4, 8, 16, 32, and 64 mM) for additional 24 h.
The next day, we aspirated the supernatant liquid of each well,
added 10 µL of CCK-8 solution, and continued the incubation for
2 h. Meanwhile, the control cells were incubated in DMEM/F-12
medium containing 10% CCK-8. Finally, a microplate reader
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(Victor3 1,420 Multilabel Counter, Perkin Elmer, Waltham, MA,
United States) was used to measure the absorbance of each
sample at 450 nm. GraphPad Prism software (GraphPad Inc.,
La Jolla, CA, United States) was used to calculate the half maximal
inhibitory concentration (IC50) and CompuSyn software
(CompuSyn Inc., Paramus, NJ, United States), which is based
on the Chou-Talalay method, was used to obtain the combination
index (CI) and to construct fraction affected (Fa)-CI plots. CI < 1,
CI � 1, and CI > 1 represent synergistic, additive, and antagonistic
effects, respectively, and the experiment was repeated three times
in parallel.

Transwell Invasion Assay
The GC cells were digested using trypsin and 100 µL of the cell
suspension (5 × 104 cells) was seeded on the upper chamber of a
Transwell insert (Corning Costar Corp, Corning, NY,
United States) with 8 µm pores that were precoated with
Matrigel (BD Biosciences, San Jose, CA, United States). The
next step was to add 600 µL of DMEM/F-12 medium with
15% FBS into the lower chamber and then the insert was
incubated overnight in the incubator. The HGC-27 cells were
treated with DDP (4 µg/ml), NaB (10 mM), or DDP (4 µg/ml)
plus NaB (10 mM). Meanwhile, the SGC-7901 cells were treated
with DDP (4 µg/ml), NaB (5 mM), or DDP (4 µg/ml) plus NaB (5
mM). After 24 h of incubation, the Transwell insert was put into a
24-well plate with 600 µL 4% paraformaldehyde to fix the cells for
20 min; then 0.2% crystal violet was used to stain the cells. After
washing three times with phosphate-buffered saline (PBS), the
Transwell inserts were observed in five random fields for each
sample to count the invasive cells under an inverted microscope
(BX51; Olympus Corporation, Tokyo, Japan).

Wound-Healing Assay
The cells were seeded into a 6-well plate chamber (5 × 105 cells/
well) with fresh medium and incubated for 24 h. The next day,
when the cells were spread evenly over the well, a 200 µL pipette
tip was used to make a scratch in the cell monolayer. PBS was
used to clean floating debris and then the wound was
photographed immediately (0 h). The HGC-27 cells on the
plates were then cultured in DMEM/F-12 medium with 10%
FBS together with DDP (4 µg/ml), NaB (10 mM), or DDP (4 µg/
ml) plus NaB (10 mM). Meanwhile, the SGC-7901 cells on the
plates were cultured in DMEM/F-12 medium with 10% FBS
together with DDP (4 µg/ml), NaB (5 mM), or DDP (4 µg/ml)
plus NaB (5 mM). The wounds were photographed at 48 h and
the area of wound healing was measured.

Hoechst 33,258 Detection of the Apoptotic
Cells
We examined cell apoptosis using a Hoechst 33,258 Staining Kit
(Beyotime). HGC-27 cells and SGC-7901 cells in the exponential
growth phase were seeded into a 6-well plate (1 × 105 cells/well)
and incubated for 24 h. The GC cells were treated with NaB and
cisplatin as mentioned in "Transwell Invasion Assay" section.4
and then stained with Hoechst 33,258 according to the
manufacturer’s instructions. The morphological features of

apoptosis, such as chromatin condensation and nuclear
fragmentation, were observed using fluorescence microscopy
(BX51, Olympus).

Apoptosis Analysis Using Annexin V-PE/
7AAD Double Staining
An Annexin V-Phycoerythrin (PE)/7-Aminoactinomycin D
(7AAD) kit (MultiSciences, Hangzhou, China) and flow
cytometry (FACSCalibur, Becton Dickinson, Franklin Lakes,
NJ, United States) were used to quantify the percentage of
apoptotic cells. The cells were seeded into a 6-well plate and
incubated for 24 h with different treatments and with or without
pretreatment with N-acetylcysteine (NAC) or buthionine
sulphoximine (BSO) for 2 h. According to the instructions, the
adherent cells were collected and washed with PBS and finally co-
stained with 5 µL Annexin V-PE and 5 µL 7AAD in binding
buffer before the flow cytometry analysis. The cells were divided
into four cell populations based on their various fluorescence
characteristics: necrotic cells (Annexin V-PE− and 7AAD+), live
cells (Annexin V-PE− and 7AAD−), late apoptotic cells (Annexin
V-PE+ and 7AAD+), and early apoptotic cells (Annexin V-PE+
and 7AAD−).

Measuring the ROS Levels
A ROS Assay Kit (Beyotime) was used to measure the ROS levels
using 2ʹ,7ʹ-dichloro-fluorescein diacetate (DCFH-DA). The cells
were seeded into a 24-well plate (1 × 105 cells/well) and then
exposed to DDP or NaB at different concentrations, as mentioned
in "Transwell Invasion Assay" section, for 24 h. The next day, the
cells were incubated with 10 µmol/L DCFH-DA for 20 min at
37°C in the dark. After being washed with PBS three times,
coverslips were attached to the glass slides, and the cells were
observed under an upright fluorescence microscope (Olympus).

Measuring the Mitochondrial Membrane
Potential
The changes to the mitochondrial membrane potential (△Ψm)
were assessed using a Mitochondrial Membrane Potential Assay
Kit with JC-1 (Beyotime). After the cells were treated, as
mentioned in "Transwell Invasion Assay" section, for 24 h, the
supernatant was removed and the cells were treated with JC-1 dye
for 1 h. Finally, the cells were washed with buffer solution twice
before observation under a laser confocal fluorescence
microscope (Olympus) or were detected and analyzed using a
flow cytometer.

Western Blotting Analysis
After treatment with DDP or NaB, as mentioned in "Transwell
Invasion Assay" section, for 24 h, the cell proteins were extracted
in RIPA buffer supplemented with phenylmethylsulfonyl fluoride
(PMSF) and protease inhibitors (Beyotime). A bicinchoninic acid
(BCA) Protein Assay Kit (Beyotime) was then used to determine
the protein concentrations according to the manufacturer’s
instructions. The cellular proteins were separated by 10% SDS-
PAGE and transferred to polyvinylidene difluoride (PVDF)
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membranes (Millipore, Billerica, MA, United States).
Immediately, the membranes were blocked with 5% non-fat
dry milk in Tris-buffered saline-Tween 20 (TBST) for 1 h.
Then, the membranes were incubated with primary rabbit
antibodies at 4°C overnight. After washing with TBST four
times (5 min each time), the membranes were further
incubated with secondary antibodies for 2 h at room
temperature. The membranes were then washed with TBST
four times (5 min each time). The Odyssey infrared imaging
system (LI-COR) was used to scan the membranes to determine
the immunoreactive protein bands. GAPDH was used as a
protein loading control.

Xenograft Tumor Models In Vivo and the
TUNEL Assay
The Ethics Committee of Renmin Hospital of Wuhan University
approved the study protocol and all the animal research
procedures were performed according to the institutional
ethical standards and/or those of the national research
committee and according to the 1964 Helsinki Declaration
and its later amendments or comparable ethical standards.
The collected SGC-7901 cells were washed in serum-free
DMEM, suspended in 100 µL of PBS, and implanted
subcutaneously into the dorsal area of male BALB/c nude
mice (5 weeks old), purchased from Beijing Life River
Experimental Animal Technology Co. Ltd. (Beijing, China).
When the tumor volume was approximately 100–150 mm3,
the nude mice were randomly divided into four groups (n � 6
per group), which were treated via intraperitoneal injection with
normal saline, DDP (4 mg/kg), NaB (200 mg/kg), or DDP
(4 mg/kg) plus NaB (200 mg/kg) every 2 days. The mouse
weight and the tumor volume were measured after each
treatment time. The tumor volume (TV) was calculated using
the following formula: TV (mm3) � d2 × D/2, where d and D
represent the shortest and longest diameters, respectively. After
15 days, the mice were sacrificed humanely and their tumors were
harvested and weighed. A terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) assay was performed using an

FIGURE 1 | Evaluation of GC cells’ growth inhibition induced by cisplatin
and/or sodium butyrate by CCK-8 kit. (A) (a) GC cells (HGC-27, SGC-7901
and MGC-803) were treated with cisplatin (0, 1, 2, 4, 8, 16, 32, and 64 µg/ml)
or sodium butyrate (0, 1, 2, 4, 8, 16, 32, and 64 mM) for 24 h. (b) Cell
Counting Kit-8 assays showed that HGC-27 cells and SGC-7901 cells were
more sensitive to sodium butyrate. (c) GES-1 cells were treated with the
different concentrations of cisplatin or sodium butyrate as described above
and a combination of cisplatin and sodium butyrate for 24 h. (B)HGC-27 cells
and SGC-7901 cells were treated with cisplatin and a combination of cisplatin
and sodium butyrate (0.5 mM) for 24 h, respectively. (C) HGC-27 cells and

(Continued )

FIGURE 1 | SGC-7901 cells were treated with cisplatin and a combination of
cisplatin and sodium butyrate for 24 h or 48 h. (D) CompuSyn software was
used to define the type of drug-combination effect. All the above data are
shown as the mean ± SD from an average of three experiments.

TABLE 1 | Specific ways of adding drugs.

Cisplatin (µg/mL) Sodium butyrate (mM) Combination (cisplatin +
sodium butyrate)

1 1 1 + 1
2 2 2 + 2
4 4 4 + 4
8 8 8 + 8
16 16 16 + 16
32 32 32 + 32
64 64 64 + 64
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FIGURE 2 | Effects of sodium butyrate and cisplatin on the invasion and migration of GC cells using the Transwell invasion assay and the wound-healing assay. (A)
Original magnification: ×200. HGC-27 cells were treated with control, 4 µg/ml cisplatin, 10 mM soiudm butyrate, or 4 µg/ml cisplatin +10 mM sodium butyrate; SGC-
7901 cells were treated with control, 4 µg/ml cisplatin, 5 mM sodium butyrate, or 4 µg/ml cisplatin +5 mM sodium butyrate. Quantitative analysis of the average invasive
cell numbers in each group. *p < 0.05 vs the control group. (B) Cells were incubated with control, cisplatin, sodium butyrate, or cisplatin + sodium butyrate
described in (A) above. (C) The levels of MMP-9 andMMP-2 were measured using western blotting and quantitative analysis of the proteins was performed. *p < 0.05 vs
the control group. All the above data are the mean ± SD from an average of three experiments.
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FIGURE 3 | Sodium butyrate combined with cisplatin promotes apoptosis of GC cells. (A) Original magnification: ×200. HGC-27 cells were treated with control,
4 µg/ml cisplatin, 10 mM sodium butyrate, or 4 µg/ml cisplatin +10 mM sodium butyrate; SGC-7901 cells were treated with control, 4 µg/ml cisplatin, 5 mM sodium
butyrate, or 4 µg/ml cisplatin +5 mM sodium butyrate. (B) Quantitative analysis of the apoptosis rate in each group. *p < 0.05 vs the control. (C) Quantitative flow
cytometry measurements of apoptosis in GC cells. All the above data are the mean ± SD from an average of three experiments.
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apoptosis detection kit (Roche Applied Science, Basel,
Switzerland) to detect the apoptotic cells in tumor tissue
sections. To measure liver and renal function, we collected
mouse blood to detect the activation of alanine
aminotransferase (ALT) and aspartate aminotransferase (AST),
and blood urea nitrogen (BUN) and serum creatinine (Cr) levels.

Statistical Analysis
SPSS 21.0 software (IBM Corp., Armonk, NY, United States) was
used for statistical analysis. The data were expressed as the
mean ± SD, and ANOVA was used for comparison between
groups. p < 0.05 was considered statistically significant.

RESULTS

Sodium Butyrate Combined With Cisplatin
Inhibited the Growth of GCCells
The GC cells and GES-1 cells were exposed to different
concentrations of sodium butyrate or cisplatin or both for
24 h. All 3 GC cell lines had different sensitivities to cisplatin
and sodium butyrate. There was no significant effect on the
viability of 90% of GC cells when the concentration of sodium
butyrate was 0.5 mM, and the measured IC50 values are shown in
Figures 1Aa,b. There was no significant cytotoxicity to GES-1
when the concentration of sodium butyrate was below 32 mM
(Figure 1Ac). The combination of sodium butyrate with cisplatin
decreased the IC50 value of cisplatin and attenuated the cytotoxic
effect of cisplatin on the normal cells. Accordingly, we selected
SGC-7901 cells and HGC-27 cells, which showed better
sensitivities to sodium butyrate to perform the subsequent
experiments. The IC50 values of DDP and sodium butyrate in
the SGC-7901 cells at 24 h were about 4 µg/ml and 5 mM,
respectively. Meanwhile, the IC50 values of DDP and sodium
butyrate in the HGC-27 cells at 24 h were about 4 µg/ml and
10 mM. Then, the HGC-27 and SGC-7901 cells were exposed to
combinations of cisplatin and sodium butyrate for 24 h or 48 h
according to the drug dosing scheme in Table 1. Figure 1C shows
that sodium butyrate combined with cisplatin remarkably
inhibited the growth of GC cells to a greater extent than
cisplatin alone in a time- and concentration-dependent
manner. We generated Fa-CI plots using CompuSyn software,
which showed the synergistic effects of the combination of
sodium butyrate and cisplatin in inhibiting the viability of
GC cells (Figure 1D). Using the combination of sodium
butyrate (0.5 mM) with cisplatin to treat GC cells caused the
IC50 value of cisplatin and sodium butyrate to be significantly
lower than that of cisplatin alone (Figure 1B).

FIGURE 4 | Sodium butyrate combined with cisplatin promotes the
accumulation of intracellular ROS and the decreasing trend of the MMP. (A)
Original magnification: ×200. HGC-27 cells were treated with control, 4 µg/ml
cisplatin, 10 mM sodium butyrate, or 4 µg/ml cisplatin +10 mM sodium
butyrate; SGC-7901 cells were treated with control, 4 µg/ml cisplatin, 5 mM
sodium butyrate, or 4 µg/ml cisplatin +5 mM sodium butyrate. Quantitative

(Continued )

FIGURE 4 | analysis of ROS in each group. *p < 0.05 vs the control group. ((B)
and (C)) Cells were incubated with control, cisplatin, sodium butyrate, or
cisplatin + sodium butyrate described in (A) above. MMP was observed via
JC-1 staining. Red inflorescence indicates healthy mitochondria; green
inflorescence indicates collapsed mitochondrial potential. Quantitative
analysis of the MMP in each group. *p < 0.05 vs the control group. All the
above data are the mean ± SD from an average of three experiments.
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Sodium Butyrate Combined With Cisplatin
Inhibited the Migration and Invasion of
Gastric Cancer Cells
Wound-healing assays and Transwell invasion assays were used
to measure the invasion and migration of GC cells. According to
the results shown in Figures 2A,B, the cells in the combination
treatment group had poorer invasion and migration abilities than
the other groups. Meanwhile, western blotting was used to check
the levels of MMP-2 andMMP-9 proteins, which showed that the
combination group had the lowest levels of MMP-2 and MMP-9
proteins among the groups (Figure 2C).

Sodium Butyrate Combined With Cisplatin
Promoted Apoptosis in GCCells
Hoechst 33,258 staining was used to evaluate the nuclei of
GC cells exposed to sodium butyrate and/or cisplatin. The
normal cell nuclei showed blue fluorescence, while the
apoptotic cell nuclei showed bright blue fluorescence with
fragmentation and chromatin condensation. The randomly

selected fields of view showed that sodium butyrate combined
with cisplatin promoted the apoptosis to a greater extent than that
in the other groups of GC cells (Figures 3A,B). Annexin V-PE/
7AAD staining further confirmed that sodium butyrate plus
cisplatin promoted apoptosis to a greater extent than did the
other treatments (Figure 3C).

Sodium Butyrate Combined With Cisplatin
Promotes Apoptosis of Gastric Cancer Cells
via the Mitochondrial Apoptosis Pathway
To determine whether sodium butyrate combined with cisplatin
facilitates the apoptosis of GC cells through the mitochondrial
apoptosis pathway, changes in ROS levels and mitochondrial
membrane potential (ΔΨm) levels were assessed. Figure 4A
shows that the combination group accumulated more ROS
(green fluorescence) than the other groups of GC cells. In
Figures 4B,C, the fluorescence ratio of the JC-1 polymer of
the combined drug group was the lowest among the four
groups, indicating a decrease in the ΔΨm.

FIGURE 5 | Sodium butyrate combined with cisplatin induces apoptosis through the mitochondrial pathway. (A) HGC-27 cells were treated with control, 4 µg/ml
cisplatin, 10 mM sodium butyrate, or 4 µg/ml cisplatin +10 mM sodium butyrate, and western blotting was performed to detect the levels of related proteins. *p < 0.05 vs
the control group. (B) SGC-7901 cells were treated with control, 4 µg/ml cisplatin, 5 mM sodium butyrate, or 4 µg/ml cisplatin +5 mM sodium butyrate, and western
blotting was performed to detect the levels of related proteins. *p < 0.05 vs the control group. All the above data are the mean ± SD from an average of three
experiments.
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Western blotting was used to evaluate the levels of
mitochondrial apoptosis pathway-related proteins to further
validate the relationship between the combination drug
treatment and apoptosis promotion via the mitochondrial
apoptosis pathway. Western blotting showed that the levels of
Apaf-1, Bax, AIF, cleaved-caspase 3, cleaved-caspase 9, and CytC
in the combination group were increased, whereas the survivin,
PCNA, and Bcl-2 levels were decreased, and the extent of the
increase or decrease was higher than that observed using either
agent alone and compared with the control (Figure 5).

Pretreatment With NAC or BSO Inhibited or
Enhanced Apoptosis in GCCells Promoted
by the Combination of Sodium Butyrate and
Cisplatin
To further clarify the molecular mechanisms associated with the
increased apoptosis via the mitochondrial pathway, a glutathione
(GSH) inhibitor (BSO) and promotor (NAC) were used to
pretreat the GC cells for 2 h before treatment with the
combined drugs. Annexin PE/7AAD staining showed that the
number of apoptotic cells was decreased (NAC group) or
enhanced (BSO group) (Figure 6A). The ROS levels in the
combined treatment group were decreased (NAC group) or
increased (BSO group) after 2 h of pretreatment (Figure 6B).
NAC pretreatment reversed the decrease in MMP levels induced
by the combined treatment, while BSO pretreatment promoted
the decrease in MMP levels induced by the combined treatment
(Figures 6C,D).

In addition, western blotting showed that NAC pretreatment
decreased the levels of mitochondrial apoptosis pathway-related
proteins, whereas BSO pretreatment increased their levels
(Figure 7).

Anti-Tumor Effects of Sodium Butyrate and
Cisplatin on GCCells In Vivo
We carried out an in vivo study to explore the effects of cisplatin
and/or sodium butyrate on the xenograft tumor growth.
Compared with the control group, all the treatment groups
showed inhibited growth of tumors in vivo, with significantly
decreased tumor weight and volume; the best effect was achieved
in the combination group (Figures 8A–C).

FIGURE 6 | Pretreatment with NAC and BSO respectively influences the
apoptosis of GC cells induced by soduim butyrate and cisplatin. (A)
Quantitative flow cytometry measurements of apoptosis in HGC-27 cells
(control, 4 µg/ml cisplatin +10 mM sodium butyrate, NAC pretreated +
combination, or BSO pretreated + combination) and SGC-7901 cells (control,
4 µg/ml cisplatin +5 mM sodium butyrate, NAC pretreated + combination, or

(Continued )

FIGURE 6 | BSO pretreated + combination). (B) Original magnification: ×200.
Cells were incubated with control, combination, NAC pretreatment +
combination, or BSO pretreatment + combination described in (A) above.
Quantitative analysis of ROS in each group. *p < 0.05 vs the control group;
#p < 0.05 vs the combination group. ((C) and (D)) Cells were incubated with
control, combination, NAC pretreatment + combination, or BSO pretreatment
+ combination described in (A) above. MMP was observed via JC-1 staining.
Red inflorescence indicates healthy mitochondria; green inflorescence
indicates collapsed mitochondrial potential. Quantitative analysis of MMP in
each group. *p < 0.05 vs the control group; #p < 0.05 vs the combination
group. All the above data are the mean ± SD from an average of three
experiments.
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The TUNEL assay and hematoxylin and eosin (H&E)
staining were performed on the tumor tissues isolated
from the xenograft mice. In the three treatment groups,
the TUNEL staining showed significant cell apoptosis in
the tumors and the highest level of cell apoptosis was
achieved in the combined treatment group (Figures 8D,E).
Table 2 shows the serum BUN, AST, ALT, and Cr levels of
blood samples, which assessed liver and kidney dysfunction;
there was no visible difference among the four groups for any
of these indices (p > 0.05).

DISCUSSION

Anti-cancer drugs mainly promote tumor cell apoptosis to
exert their effects. There are three main apoptotic pathways:
the death receptor pathway, the mitochondrial pathway, and
the endoplasmic reticulum stress pathway (Gupta et al.,
2009; Lee et al., 2012; Iurlaro and Muñoz-Pinedo, 2016).
The mitochondrial pathway, also known as the endogenous

pathway, is an evolutionarily highly conserved form of cell
death that plays an essential role in the development and
homeostasis of multicellular organisms (Roca-Agujetas
et al., 2019). The alteration of mitochondrial permeability
plays a key role in the mitochondrial apoptotic pathway,
which is achieved by the opening of the mitochondrial
permeability transition pore (MPTP) (Sileikyte and Forte,
2019). MPTP opening is a central physiological event in
maintaining the dynamic homeostasis of mitochondrial
health (Barsukova et al., 2011). ROS mainly
originate from the mitochondria and, in turn, the
mitochondria are the targets of ROS (Venditti and Di
Meo, 2020). Short-term, reversible MPTP opening
releases a small amount of ROS, which is beneficial to the
cell growth; however, continuous, irreversible opening of
MPTP causes explosive release of ROS, leading to oxidative
stress and damage to the mitochondria and the cells (Bolduc
et al., 2019).

ROS are oxidants that promote apoptosis, playing the role
of promoter and downstream carrier in the apoptosis process

FIGURE 7 | Pretreatment with NAC or BSO, respectively, decreased or increased the levels of mitochondrial apoptosis pathway-related proteins. (A)HGC-27 cells
were treated with 4 µg/ml cisplatin +10 mM sodium butyrate, NAC pretreatment + combination, or BSO pretreatment + combination and western blotting was
performed to detect the levels of related proteins. *p < 0.05 vs the combination group. (B) SGC-7901 cells were treated with 4 µg/ml cisplatin +5 mM sodium butyrate,
NAC pretreatment + combination, or BSO pretreatment + combination and western blotting was performed to detect the levels of related proteins. *p < 0.05 vs the
combination group. All the above data are the mean ± SD from an average of three experiments.

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 70809310

Li et al. NaB Plus DDP Pro-Induced Apoptosis

41

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


FIGURE 8 | Anti-tumor effects of cisplatin and sodium butyrate in vivo. (A)Morphology of the subcutaneous implanted tumor. (B)Mean tumor volume at each time
point. (C) The tumor weight obtained at the end of the experiment. (D) A TUNEL assay was performed to detect the apoptotic cells in the tumor tissue. (E) Quantitative
analysis of the apoptosis rate in (D). *p < 0.05 vs the control; *#p < 0.05 vs cisplatin alone. All the above data are the mean ± SD from an average of three experiments.
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(Kirtonia et al., 2020). Reduced glutathione (GSH) is a key
intracellular antioxidant that is important to maintain the
proper redox state of sulfhydryl groups in proteins (Sun
et al., 2018). The depletion of GSH plays an important role
in the proliferation and apoptosis of tumor cells and induces
the accumulation of ROS (Lv et al., 2019). As the accumulation
of ROS reaches an irreversible point, the mitochondrial
membrane oxidative stress is induced, allowing the MPTP
to remain open, causing CytC and AIF to be released from the
mitochondria into the cytoplasm (Izzo et al., 2016; Baechler
et al., 2019). Subsequently, pro-apoptotic factors, such as CytC,
interact with the caspase family factor, Apaf-1, and the Bcl-2 protein
family are released into the cytoplasm to accelerate the apoptotic
process (Burek et al., 2006). In contrast, survivin proteins, as
antagonists of the caspase family, inhibit apoptosis (Martínez-
García et al., 2018).

The increasing resistance to conventional
chemotherapeutic agents, such as docetaxel and cisplatin,
and the problem of cytotoxicity have led sodium butyrate, a
metabolite produced by the intestinal flora, to be considered as
a potential anticancer therapeutic agent (Gentilin et al., 2019;
Chen et al., 2020). Intriguingly, a study confirmed that sodium
butyrate modulated the gut microbiota beneficially and
improved the host immune response in in vivo experiments
(Ma et al., 2020). As a histone acetylation inhibitor, an
increasing number of experiments have demonstrated that
sodium butyrate can induce the apoptosis in a variety of
cancer cells (Maruyama et al., 2012; Fialova et al., 2016;
Mrkvicova et al., 2019; Xiao et al., 2020; Xi et al., 2021).
Moreover, there is evidence that sodium butyrate works
well in combination with other drugs in many cancers
(Fialova et al., 2016; Taylor et al., 2019); however, whether
sodium butyrate combined with cisplatin can increase the
inhibition of GC cells has not been investigated. Almost all
anti-cancer drugs exert their anti-cancer effects by activating
the apoptotic pathway to overcome cancer non-surgically, and
sodium butyrate is no exception. Sodium butyrate has been
proven to induce apoptosis in carcinomas through the
mitochondrial apoptotic pathway (Salimi et al., 2017; Qin
et al., 2020); therefore, in the current study, we aimed to
confirm that sodium butyrate combined with cisplatin
promoted apoptosis in GC cells through a mitochondria-
mediated signaling pathway.

The results of the present study showed that the
combination group remarkably inhibited the growth of

GC cells to a greater extent than cisplatin alone,
dependent on the duration and concentration of the
treatment. Subsequently, we confirmed the synergistic
effect of the combination using CompuSyn software. In
addition, a significant pro-apoptotic effect of the
combined group toward gastric cancer cells was observed
using a Hoechst assay and flow cytometry. To explore the
pathway responsible for the observed apoptosis, we
examined the intracellular ROS levels in the group of
cells and found that the ROS levels in the combination
group significantly exceeded those in the other three
groups. Next, we detected the levels of the fluorescent dye
JC-1 in GC cells to show the mitochondrial membrane
potential of each group. We found that the accumulation
of ROS led to changes in the mitochondrial membrane
potential of GC cells, which induced apoptosis.
Subsequently, we pretreated the combination group of
GC cells with BSO and NAC and found significant
differences in the apoptosis rate, ROS levels, and
mitochondrial membrane potential levels in GC cells
compared with those in the control group (Figure 6),
which confirmed our hypothesis that the combination
treatment induced the apoptosis of GC cells via the
mitochondrial apoptosis pathway.

To further demonstrate the role of the mitochondrial
pathway in promoting apoptosis in GC cells after the
combined drug treatment, we examined the expression
levels of relevant proteins in the mitochondrial pathway
using western blotting. The results showed that sodium
butyrate combined with cisplatin remarkably increased
the levels of the pro-apoptotic proteins (Apaf-1, AIF,
BAX, CytC, cleaved caspase-3, and cleaved caspase-9) and
remarkably decreased the levels of anti-apoptotic proteins
(BCL2, PCNA, and survivin). In addition, the increases in
mitochondrial apoptosis pathway-related proteins as
mentioned above were reversed after pretreatment with
NAC or enhanced after pretreatment with BSO
(Figure 7). Finally, the anti-cancer effects of the
combined drugs on GC cells were tested in vivo, and the
results showed that the combined drug treatment inhibited
the proliferation of GC cells and significantly increased the
number of apoptotic cells in tumors (Figure 8).

In conclusion, our results supported the hypothesis that
sodium butyrate combined with cisplatin enhances apoptosis
in GC cells through the mitochondrial apoptosis pathway

TABLE 2 | Effect of sodium butyrate combined with cisplatin or alone on hepatic and renal function.

Group ALT (U/I) AST (U/I) Urea (µmol/l) Cr (µmol/l)

Control 31.8 ± 2.40 143.3 ± 10.35 8.12 ± 0.44 13.00 ± 1.90
Cisplatin 34.2 ± 2.14 140.8 ± 7.63 8.63 ± 0.84 14.33 ± 1.37
Sodium butyrate 30.8 ± 2.79 146.0 ± 15.24 8.54 ± 0.68 13.67 ± 1.75
Combination 30.5 ± 2.35 142.2 ± 3.19 8.38 ± 0.61 14.17 ± 2.48

Data are presented as the mean ± standard deviation, with n � 6 mice/group. There were no differences in the ALT, AST, urea, and Cr levels among all groups (p > 0.05).
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in vitro and in vivo. Thus, sodium butyrate, a histone
acetylation inhibitor produced by intestinal flora
fermentation, combined with cisplatin could represent a
therapeutic option to treat GC.
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For centuries, cancer has been a lingering dark cloud floating on people’s heads. With
rapid population growth and aging worldwide, cancer incidence and mortality are growing
rapidly. Despite major advances in oncotherapy including surgery, radiation and chemical
therapy, as well as immunotherapy and targeted therapy, cancer is expected be the
leading cause of premature death in this century. Nowadays, natural compounds with
potential anticancer effects have become an indispensable natural treasure for discovering
clinically useful agents and made remarkable achievements in cancer chemotherapy. In
this regards, OSW-1, which was isolated from the bulbs of Ornithogalum saundersiae in
1992, has exhibited powerful anticancer activities in various cancers. However, after
almost three decades, OSW-1 is still far from becoming a real anticancer agent for its
anticancer mechanisms remain unclear. Therefore, in this review we summarize the
available evidence on the anticancer effects and mechanisms of OSW-1 in vitro and in
vivo, and some insights for researchers who are interested in OSW-1 as a potential
anticancer drug. We conclude that OSW-1 is a potential candidate for anticancer drugs
and deserves further study.

Keywords: OSW-1, synthesis, anticancer, effect, mechanism, future perspective
INTRODUCTION

Cancer, also known as malignant neoplasm, is a disease caused by abnormal cell growth and
proliferation characterized as an uncontrolled cell division with the ability to metastasize. According
to the GLOBOCAN 2020 by the International Agency for Research on Cancer, it was estimated that
cancer has caused 19.29 million new cases with almost 10.0 million deaths (1). With rapid
population growth and aging worldwide, cancer incidence and mortality are rapidly growing,
and is expected to surpass cardiovascular disease as the leading cause of premature death in this
century (2). Oncotherapy mainly includes surgery, radiation and chemical therapy, as well as
immunotherapy and targeted therapy (3). Despite remarkable advances in medical technology, the
cure rate and overall survival of cancer are still unsatisfactory in reality. Chemotherapy is the only
option in majority of patients with advanced cancer, because surgical and radiation treatments are
ineffective and traumatic. However, conventional chemotherapeutic drugs have great limitations. It
may attack normal cells due to lack of selectivity to neoplastic cells, induce secondary malignancies
during treatment of metastatic cancers, and develop drug resistance and high recurrence after
September 2021 | Volume 11 | Article 747718146
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treatment (4). Therefore, finding new anticancer drugs that are
more effective, have multiple targets, and have low toxicity will
become the breakthrough of chemotherapy. In this regard,
natural compounds have a good potential.

In the 1920s, Berren et al. have begun to study the extracts of
plants, marine organisms, and various microorganisms in search
of natural anticancer compounds (5). Compared with
conventional chemotherapeutic drugs, natural compounds
have more diverse structures and excellent anti-tumor activity
with low cytotoxicity. Traditional medicinal herbs and plants,
which contain valuable bioactive compounds with potential
therapeutic effects, have been an important source of several
clinically useful anticancer agents; that was developed into
standard approaches of tumor chemotherapy available today,
such as vincristine for Leukemia, etoposide for small cell lung
cancer and paclitaxel for ovarian and breast cancer (6).
According to the statistical data released in 2016, from 1940s
to the end of 2014, 49% of the 175 anticancer small molecular
compounds approved by the US FDA were either natural
products or their direct derivatives (7).

Ornithogalum saundersiae is a perennial herb bulbous plant
belonging to the genus Ornithogalum of Liliaceae family, which
is native to southern Africa and mainly planted in temperate
regions of the Eastern Hemisphere. In the 1970s, O. saundersiae
was introduced to China from Korea as an ornamental plant. In
Chinese folk medicine, O. saundersiae is considered to have anti-
inflammatory and antitumor properties, which has been used in
therapy for hepatitis and some types of cancers (8). Scientific
analyses have revealed that it contains more than 20 kinds of
bioactive components, including saponins, polysaccharides,
flavonoids, terpenoids, alkaloids, volatile oils and trace
Frontiers in Oncology | www.frontiersin.org 247
elements, and so on. In 1992, Kubo S et al. (9) isolated
OSW-1, a steroidal saponins, from the bulbs of O. saundersiae,
which has a high cytotoxicity to cancer cells. Its anticancer effect
is about 10-100 times that of many chemotherapeutic drugs
commonly used in clinic, such as doxorubicin, camptothecin and
paclitaxel (10). The sensitivity of normal cells to OSW-1 is
significantly lower than that of cancer cells; with the IC50 of
OSW-1 is 40–150 folds higher than that observed in malignant
cells, demonstrating its relatively high safety (11). However, the
selective anticancer mechanism remains largely unclear, which
limits further clinical applications. In this review, the anticancer
effects of OSW-1 and its underlying mechanisms were
summarized, in order to facilitate research to explore potential
anticancer targets and prepare for its future clinical application.

Synthesis and Structure Activity
Relationship of OSW-1 and Its Derivatives
OSW-1 (C47H68O15) , [ IUPAC: [ (2S ,3R ,4S ,5R)-2-
[(2S,3R,4S,5S)-3-acetyloxy-2-[[(3S,8R,9S,10R,13S,14S,16S,17S)-
3,17-dihydroxy-10,13-dimethyl-17-[(2S)-6-methyl-3-
o x o h e p t a n - 2 - y l ] - 1 , 2 , 3 , 4 , 7 , 8 , 9 , 1 1 , 1 2 , 1 4 , 1 5 , 1 6 -
dodecahydrocyclopenta[a]phenanthren-16-yl]oxy]-5-
hydroxyoxan-4-yl]oxy-4,5-dihydroxyoxan-3-yl] 4-methoxy
benzoate], with molecular weight of 873.0 g/mol, is an acylated
cholestane glycoside, which was first isolated by Kubo S et al. in
1992 (9). It was also proved by Mimaki Y et al. in 1997 (10), that
it has an exceptionally cytostatic activity against various
malignant tumor cells. Figure 1 depicts the chemical structure
of OSW-1. For the last three decades, the anticancer mechanisms
of OSW-1 have remained unclear due to the extremely low
acquisition rate by the traditional extraction methods and the
FIGURE 1 | The chemical structure of OSW-1.
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relatively difficult chemical synthesis. Therefore, chemical
synthesis of OSW-1 has been the subject of research. Recent
studies have shown that the synthesis of OSW-1 and its
derivatives is gradually improving (12–15).

The structure of OSW-1 can be divided into two parts: the
cholestane aglycon and the disaccharide moiety. In 1998, Guo
and Fuchs (16) first synthesized the protected aglycon of OSW-1
and confirmed that the anticancer activity of OSW-1 was due to
the formation of oxygen cation intermediates between 22 oxygen
and 16 b. Ma XQ et al. (17, 18) found that aglycone was an
important structural component of OSW-1 to exert the activity
by synthesizing a series of glycoside derivatives bearing the
disaccharides moiety of OSW-1 and comparing their
anticancer activities. In 1999, Deng S et al. (12) first
synthesized OSW-1 by coupling of the aglycon with the sugar
part from commercially available dehydroisoandrosterone,
L-arabinose, and D-xylose, in total 27 steps with the longest
linear sequence of 14 steps and with 6% yield. Yu and Jin (19, 20)
used the same substrate but adopted a new strategy to synthesize
17 side chains by 1,4-Addition of an acyl anion equivalent to 17
(20)-en-16-one steroids, which greatly simplified the synthesis of
OSW-1 into 10 steps with 28% yield. In 2002, Morzycki’s group
(21) studied the direct glycosylation of the protected aglycone
with the disaccharide trichloroimidate and found that the
hydroxy-lactone 7 is a valuable intermediate in the synthesis of
the highly potent cytostatic OSW-1. In 2005, Shi BF et al. (22)
reported an aldol approach to the stereoselective construction of
the 16R,17R-dihydroxycholest-22-one structure and provided a
convenient route for the synthesis of the 23-oxa-analogue of
OSW-1, which has an approximate anticancer activity to OSW-
1. In 2008, Tsubuki’s group (23) embarked on the synthesis of
OSW-1 in which thiophene ring 17 side chains was produced by
employing 2,3-Wittig rearrangement reaction from the known
17E (20)-ethylidene-16a-hydroxy steroid. After a series of
reactions, the final yield of OSW-1 was 15.6%. In the above
synthesis process, the intermediates often need to be separated
and purified before the next reaction was carried out, and the
reaction conditions were not easily controlled, resulting in
difficulties in the large-scale synthesis of OSW-1. To solve this
problem, Xue et al. (24) developed a new practical synthetic
method to synthesize OSW-1 on a gram scale, with an efficient
procedure to prepare the sugar ligands and disaccharides,
although the overall yield was just 6.4%. This synthesis is
highlighted by the reliable transformations and the simplified
workup procedures (25).

In addition, to better understand the SAR of OSW-1, some
researchers have focused their work on the synthesis and activity
comparison of its derivatives and have achieved some good
results (13, 14, 26–29). For example, OSW-1 analogues with
different modifications of hydroxyl (3b, 16a, 17b), disaccharide,
17-side chain and parent ABCD ring on OSW-1 can increase or
decrease the overall activity. However, none of these studies have
further explored the specific action targets of each functional
group. In recent years, chemical probe-based approaches were
proven powerful in the target identification studies of natural
Frontiers in Oncology | www.frontiersin.org 348
products (30). This may become a strong tool for studying the
action targets of OSW-1 in the future.
ANTICANCER EFFECTS OF OSW-1

In Vitro Studies
In 1992, OSW-1 was found to be cytostatic in the U.S. National
Cancer Institute 60-cell in vitro screen, with a mean IC50 of 0.78
nM and a mean IC100 of 58 nM (31). However, it was not until
1997 when Mimaki et al. (10) discovered that OSW-1 exhibited
exceptionally potent cytostatic activities on various malignant
tumor cells with little toxicity to normal cells that it began to
attract the attention of researchers. Its anticancer effect is about
10-100 times that of doxorubicin, camptothecin and paclitaxel
(10). Early studies have mainly focused on the synthesis of its
derivatives and anticancer effects (14, 17, 18, 29, 32–34), because
of the low field rate. Recently, studies on the anticancer
mechanism of OSW-1 in vitro have gradually increased with
the improvement of total synthetic process (12, 20, 22, 24, 34).
OSW-1 has been shown to exhibit anticancer effect on various
cancer cells, including ovarian, breast, cervical, colon, leukemia,
hepatocellular carcinoma and other cancer cells. Table 1
tabulates the in vitro studies on the efficacy and mechanisms of
OSW-1 on different cancer cells (8, 10, 11, 35–43).

As shown in Table 1, OSW-1 has a high selective cytotoxicity
to cancer cells compared with normal cells. It suggested that
OSW-1 is expected to be developed into a new anticancer drug
with the potential to specifically kill cancer cells. Although
different cancer cells have different sensitivity to the inhibition
effect of OSW-1, all of their IC50 values are in the nanomolar
concentration range. Furthermore, OSW-1 appears to exert
anticancer effects in cancer cells through different mechanisms,
since different type of cancers have their unique key action
targets. OSW-1 happens to be a natural compound with
multiple anticancer targets due to its complex structure, which
can regulate various signaling pathways (40, 41) and inhibit the
development and progression of cancer cells by arresting cell
cycle (38), damaging the structure and function of mitochondria,
disrupting the cellular calcium homeostasis, inducing apoptosis
(8, 11, 36, 38, 39) and Golgi stress response (37), inhibiting
proliferation (35, 42) and metastasis, and repressing the
migratory and invasive capabilities via EMT (36). Interestingly,
necrosis was also detected when cells were treated with a high
dose (180 ng/ml), which means OSW-1 may mediate other cell
death pathways (8). Overall, OSW-1 exhibits potent anticancer
potential against different cancer cells in vitro.

In Vivo Studies
Based on some in vivo studies, OSW-1 has been proved to be
effective in inhibiting tumor growth, such as breast cancer, colon
cancer, and leukemia (Table 2) (8, 10, 36). In 1997, Mimaki et al.
(10) found that OSW-1 was remarkably effective versus mouse
P388, with an increased life span of 59% by only one time
September 2021 | Volume 11 | Article 747718
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TABLE 1 | The cytotoxic effects of OSW-1 against cancer cells in in vitro experiments.

References Cell lines Efficacy, IC50 (exposure time) Mechanisms of action

(36) Human ovarian cancer cell SKOV-1(monolayer) 4.0 ± 2.7 nM(72h) Anti-proliferation, the targeting of ORP4 is
responsible for the anti-proliferative activity of
the OSW-1 compound in the absence of
exogenously supplied cholesterol

OVCAR-1(monolayer) 2.2 ± 0.85 nM(72h)
OVSAHO(monolayer) 1.8 ± 0.61 nM(72h)
OVCAR-8(monolayer) >1,000 nM(72h)
SKOV-3(spheroids) 10 nM(72h)
OVCAR-8(spheroids) 100 nM(72h)

(37) Human breast cancer cell MCF-7 3.72 ± 0.78 nM(72h) Inhibits tumor growth by inducing apoptosis,
represses the migratory and invasive
capabilities via EMT, inhibits tumor growth and
metastasis by decreasing the expression of
NFATc2

T47D 5.92 ± 1.21 nM(72h)
ZR-75-1 10.34 ± 0.07 nM(72h)
BT474 6.54 ± 1.14 nM(72h)
SKBR3 6.67 ± 0.13 nM(72h)
MDA-MB-231 5.82 ± 2.35 nM(72h)
MDA-MB-453 8.66 ± 0.19 nM(72h)
HCC-1937 11.12 ± 4.42 nM(72h)

Human normal mammary
epithelial cell

MCF/10A 52.3 ± 8.72 nM(72h) N/A

(38) Human cervical cancer cell HeLa Cells N/A Induce mis localization of OSBP, which result in
Golgi fragment and TFE3 activation, selectively
trigger the apoptotic Golgi stress response via
↑CREB3-ARF4 proapoptotic pathway, ↓HSP47
antiapoptotic pathway

(39) Human promyelocytic
leukemia cells

HL-60 Cells 0.061 ± 0.0020nM(72h) G2/M arrest, DNA fragmentation, caspase 3
activated, induce apoptosis via a mitochondria-
independent signaling pathway

Human lung adenocarcinoma
cells

A549 0.65 ± 0.018nM(72h) N/A

(8) Human colon cancer cell LoVo 31 ± 2.0 ng/ml(72h) inhibition via induce intrinsic apoptosis,
increased cellular calcium, changed
mitochondrial membrane potential, disrupted
mitochondrial morphology, release of
cytochrome c and the activation of caspase-3

SW480 61 ± 1.0 ng/ml(72h)

Human normal colonic
mucosal epithelial cells

139 ± 9.0 ng/ml (72h) N/A

(42) Human leukemia cells HL-60 the average IC50 value
0.019 nM(72h)

HL-60: disruption of cellular calcium
homeostasis through inhibition of NCX1 and
Inducing Apoptosis through a Mitochondrion-
mediated Mechanism

Raj
K-562
KBM5,
M1

Normal lymphocytes the average IC50 value
1.64 nM(72h)

N/A

(41) Human hepatocellular
carcinoma cells

Hep3B N/A Induce apoptosis and necroptosis, inhibit
invasiveness, angiogenesis, cell polarity and cell
adhesion of cancer via ↓Wnt, ↓MAPK, ↓VEGF,
↑P53 signal pathways

(40) Human hepatocellular
carcinoma cells

Hep3B N/A Affect numerous miRNAs that act on specific
signaling pathways for proliferation,
differentiation, apoptosis, cell adhesion,
migration and EMT

(43) Human colon cancer cell HCT-116 N/A Anti-proliferation by targeting OSBP and
ORP4L

Chinese hamster ovary cells CHO-7
human B cell lymphoma M12 cells

(44) Chinese hamster ovary cells CHO cells N/A Induce mitochondrial-mediated apoptosis
pathway through caspase-8-dependent
cleavage of Bcl-2

Human acute T-lymphocyte
leukemia cell

FADD and caspase-8-
deficient Jurkat T cells

(11) Human leukemia cells ML-1 0.19 nM(72h) Damage the structure and function of
mitochondrial and induce apoptosis through a
calcium-dependent mechanism

HL-60 0.044nM(72h)

(Continued)
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administration of 0.01 mg kg -1. However, they did not further
explore the specific mechanisms behind this effect. For a long
time afterwards, the OSW-1 seemed to disappear from the
researchers’ view. Until recently, Zhang et al. (8) and Ding
et al. (36) began to investigate the anticancer effect of OSW-1
in vivo and explored the possible mechanism, respectively. To
ascertain whether or not OSW-1 was as effective in vivo, Zhang
et al. (8) adopted heterotopic xenograft tumor model in nude
mouse subcutaneously inoculated by LoVo cells, in which OSW-
1 was injected intraperitoneally (0.01 mg/kg diluted in PBS in
500 µ, daily) in treated group when tumors became palpable.
Compared with the control group, the treated group observed a
decrease in tumor size and weight without significant side effects,
with fewer Ki-67-positive cells and more apoptotic cells.
Interestingly, they also observed a destruction of blood vessels
and a reduction in angiogenesis pathologically in the treated
group. It suggested that OSW-1 may be involved in reduction in
angiogenesis and tumor metastasis.

In 2020, Ding et al. (36) designed a series of experiments to
verify the effect of OSW-1 on the tumor growth and metastasis of
breast cancer, including three innovative animal models of tumor
in vivo. They have found the following (1): for xenograft model,
OSW-1 can inhibit tumor growth with reduction of tumor size
and weight (2); for orthotopic model, fewer metastatic nodules in
the lungs and longer survival were observed in treated group, with
downregulation of Vimentin and upregulation of E-cadherin,
which means OSW-1 can inhibit metastasis mediated by EMT;
and (3) for knockdown NFATc2 model, identified NFATc2 may
be a pivotal factor for OSW-1-mediated effects on cell death,
tumor growth, invasion, and migration.

Overall, OSW-1 has good anticancer properties in vivo, and it
is worthy of further research in the field of cancer chemotherapy.
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However, this requires more in vivo experiments to prove that
OSW-1 can also exert similar anticancer effects in other cancers
besides breast and colon cancer. The subsections below will
further discuss the anticancer mechanism of OSW-1.
ANTICANCER MECHANISMS OF OSW-1

OSW-1 Inhibits the Proliferation of
Cancer Cells
The most fundamental trait of cancer cells is the ability to
proliferate and grow without limit. Cancer cells become
masters of their own destinies by inducing and sustaining
positively acting growth-stimulatory signals, which allow them
to enter the proliferation and growth cycles, incessantly (44).
Although there is still insufficient knowledge about the precise
mechanism controlling the proliferative signals of cancer cells,
dysregulation of the cell cycle is considered to be the main
contributor to uncontrolled cell proliferation (45). Therefore, cell
cycle inhibitors are becoming attractive targets in cancer
treatment. It was found that the cell cycle was arrested at the
G2/M phase in HL-60 cells following treatment with OSW-1 at
concentration of either 0.3 nM or 0.01 µM (38). In addition, Jin
et al. (40) examined the potential changes in the gene expression
of a hepatocellular carcinoma cell line incubated with OSW-1 in
vitro, and performed the enrichment analysis of the differentially
expressed gene on signaling pathways. The results showed that
the cell cycle is ranked first in enrichment score, which mean
OSW-1 greatly affects the expression of cell cycle-related genes.

Oxysterol-binding protein (OSBP) and its related proteins
(ORPs) constitute a large, evolutionarily conserved family of
lipid-binding proteins that mediate signal transduction and lipid
TABLE 1 | Continued

References Cell lines Efficacy, IC50 (exposure time) Mechanisms of action

Human lymphoma cell Raji 0.58nM(72h)
Human ovarian cancer cell SKOV3 0.021nM(72h)
Human glioblastoma cell U87-MG 0.047nM(72h)
Human pancreatic cancer
cells

AsPC-1 0.0391nM(72h)

Nonmalignant cells normal lymphocytes 1.73nM(72h)
ovary fibroblasts 0.83nM(72h)
normal brain astrocytes 7.13nM(72h)

(10) Human normal pulmonary cell CCD-19Lu 1.5mg/ml(N/A) N/A
Mouse leukemia P388 0.00013mg/ml(N/A)
Adriamycin-rcsistant P388 P388/ADM 0.00077mg/ml(N/A)
Camptothecin-resistant P388 P388/CPT 0.00010mg/ml(N/A)
Mouse microcarcinoma FM3A 0.00016mg/ml(N/A)
Human pulmonary
adenocarcinoma

A549 0.00068mg/ml(N/A)

Human pulmonary large cell
Carcinoma

Lu-65 0.00020mg/ml(N/A)

Human pulmonary large cell
Carcinoma

Lu-99 0.00020mg/ml(N/A)

Human pulmonary squamous
cell

RERF-LC-AI 0.00026mg/ml(N/A)

Carcinoma CCRE-CEM 0.00016mg/ml(N/A)
Human leukemia HL-60 0.00025mg/ml(N/A)
NA, Not available; ↑, upregulation ; ↓, downregulation.
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transport. It is reported that the OSBP/ORPs family is implicated
in cell proliferation and cancer development (46, 47).
Therefore, OSBP/ORPs may be potential therapeutic targets in
cancer. In 2011, Burgett et al. (42) first identified that OSBPs and
ORP4 are high-affinity receptors of OSW-1 and can mediate the
anti-proliferative activity of OSW-1 in cancer cells. The activity
was also recognized in ovarian cells by Bensen et al. (35).
Notably, the cytotoxicity of OSW-1 was consistent with the
reduction of the ORP4 expression, but not with the reduction
of OSBP expression, suggesting ORP4 is the main anti-
proliferative target of OSW-1 (35). Recently, some studies
show that OSBP does not have any known role in cellular
proliferation (48, 49); while ORP4 participate in the control of
human malignant tumor cell proliferation and survival (50, 51).
Interestingly, in the absence of extracellular lipids, OSW-1 has
enhanced antiproliferative activity and OSBP, but not ORP4, is
likely responsible for the striking shift in sensitivity to OSW-1
(35). OSBP is reported to be required for lipid transport by
burning off the phosphoinositide phosphatidylinositol 4-
phosphate [PI (4)P] between the endoplasmic reticulum (ER)
and the Golgi (52), and dysregulation of PI4P metabolism and
protein interactions are often associated with tumor progression
and a poor prognosis (53). Thus, it is confused whether OSBP or
ORP4 take more charge of the antiproliferative activity of OSW-
1, or maybe both, which require further investigation.

OSW-1 Induces Apoptosis of Cancer Cells
Apoptosis, a form of programmed cell death that results in the
orderly and efficient removal of damaged cells, occurs during
development as a homeostatic mechanism to maintain cell
populations in tissues, and as a defense mechanism when cells
are damaged by harmful stimulations (54, 55). Inappropriate
apoptosis is involved in many human diseases, including
neurodegenerative diseases, ischemic damage, and autoimmune
disorders (56). In cancer, minimal apoptosis results in malignant
cells proliferation without limitations (57). The mechanisms of
Frontiers in Oncology | www.frontiersin.org 651
apoptosis can be divided into two main pathways: the intrinsic
pathway, which is mediated by the mitochondria; and extrinsic
pathway, which is mediated by death receptors, including FasL/
FasR and TNF-a/TNFR1 (58). These two apoptotic pathways
both involve activation of series of caspases and converge on the
same execution pathway, which is initiated by the cleavage of
caspase-3, leading to morphological and biochemical cellular
alterations that are characteristics of apoptosis (57, 59). The
upstream caspase for intrinsic pathway is caspase 9, while that of
extrinsic pathway is caspase 8 (57). With the deepening
understanding on the regulatory mechanism of apoptosis,
drugs that target the deregulated apoptotic pathways to
promote apoptosis has become an important strategy for
chemotherapy (60).

OSW-1 has been known to effectively induce apoptosis in
different cancers. In breast cancer, Ding et al. (36) confirmed that
OSW-1 was capable of inducing apoptosis by using Annexin V/
PI-labeled flow cytometry and TUNEL assay and discovered that
the expression levels of cleaved caspase-3 and cleaved PARP
increased in a dose-dependent manner. Furthermore, apoptosis
was also observed in other cancer cells including colon cancer
(8), leukemia (11, 38, 39, 43), pancreatic cancer (11), and cervical
cancer cells (37), though the specific mechanisms were not
exactly the same (Table 1).

OSW-1 can initiate apoptosis through the intrinsic pathway.
In colon cancer, Zhang et al. (8) discovered that OSW-1
damaged the structure and function of mitochondria leading to
the release of cytochrome c that caused caspase-3 activation,
which was regarded as the classical intrinsic apoptotic pathway.
In the two studies by Zhou et al. (43) and Garcia et al. (39), they
all suggested that OSW- 1 reduced mitochondrial membrane
potential and then induced mitochondria-mediated apoptosis.
Notably, the overload of cytoplasmic calcium was found in those
studies and regarded to play a key role in cell death. Zhou et al.
(11) thought that the damaged mitochondria leading to the
calcium imbalance. Garcia et al. (39) hold the view that the
TABLE 2 | The anti-cancer effects of OSW-1 in vivo tumor bearing animal models.

References Animal models Dose, duration and route of
administration

Observations and results Mechanisms of action

(36) Human breast
cancer cell

MDA-MB-231
xenograft model

0.01 mg/kg diluted in 100 mL PBS,
daily, 20 days, ip

Reduction of tumor size and weight, Ki67↓,
PCNA↓

Inhibits tumor growth

MDA-MB-231
orthotopic model

0.01 mg/kg diluted in 100 mL PBS,
until the tumors in control group
reach 1.0 cm, continue injecting
OSW-1 for 1 week, ip

Fewer metastatic nodules in lungs and
longer survival, E-cadherin↑ and ↓ Vimentin

Inhibits metastasis mediated
by EMT

knockdown
NFATc2 model

0.01 mg/kg diluted in 100 mL PBS,
daily, 20 days, ip

Knocking down of NFATc2 using shRNA
significantly rescues TNBC cells from OSW-
1-mediated effects on cell death, tumor
growth, invasion and migration

NFATc2 is involved in OSW-
1 inhibition of TNBC
progression.

(8) Human colon
cancer cell

LoVo xenograft
model

0.01 mg/kg diluted in PBS in 500
µl, daily, 21 days, ip

Reduction of tumor size and weight, no
apparent side effects, ki-67↓, no necrotic
foci, induce apoptosis

Suppressing colon tumor
proliferation without
significant side effects
through the apoptosis
pathway

(10) Mouse P388
leukemia cell

P388 cell
intraperitoneal
implantation model

0.01 mg/kg, one time, N/A Increased life span of 59% N/A
September 2021 |
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inhibition of NCX1 (sodium-calcium exchanger 1) by OSW-1
was the reason for cytoplasmic calcium to lose homeostasis
leading to calcium overload.

Besides the intrinsic pathway, OSW-1 is capable of inducing
the extrinsic pathway. Lguchi et al. (38) found that OSW-1
induced apoptosis in HL-60 cells via the mitochondria-
independent pathway, for no disruption of the mitochondria
membrane potential and release of cytochrome C was observed.
Zhu et al. (43) showed that OSW-1 induces apoptosis via caspase-
8-dependent cleavage of Bcl-2 in Chinese hamster ovary cells.
Furthermore, Jurkat T cells deficient in caspase-8 or FADD were
resistant to apoptosis induced by OSW-1, which suggested that the
extrinsic pathway is involved in the OSW-1-induced apoptosis
(43). Bcl-2, an anti-apoptotic member of Bcl-2 family, once
cleaved, will amplify the apoptotic signal through the
mitochondria by altering its membrane permeability to facilitate
the release of apoptogenic proteins such as cytochrome C (61).

OSW-1 can also induce apoptosis by Golgi stress-induced
mechanism. In 2019, Kimura et al. discovered that OSW-1, as a
novel class of selective Golgi stress inducer, can regulate Golgi
stress response pathways, in which HSP47 was downregulated
and CREB3-ARF4 was upregulated (37). It’s reported that the
suppression of HSP47 under a Golgi stress condition leads to
caspase 2-mediated apoptosis (62). In addition, CREB3-ARF4
mediates pro-apoptotic pathways in response to Golgi stress was
also demonstrated by Reiling et al. (63).

In summary, OSW-1 has the ability to promote apoptosis in
cancer cells by activating various apoptotic pathways (Figure 2).
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OSW-1 Induces Golgi Stress Response of
Cancer Cells
The classical view of Golgi apparatus is a small membranous
organelle involved in protein transport and glycosylation (64).
Recent descriptions of Golgi network demonstrate the essential
role of Golgi in cellular activities, including mitosis, DNA repair,
stress responses, cell death, and cancer development (65, 66).
Changes on Golgi trafficking, signaling, and morphology in some
malignant cancers were so obvious that the term ‘onco-Golgi’ has
been proposed to describe those particular changes (67). Thus,
the Golgi should have a fundamental impact on cancer cell
survival and emerge as a new cancer therapeutic target. The
Golgi stress response is an autoregulated mechanism for
maintaining the homeostasis of Golgi apparatus similar to ER
stress response (68) by regulating specific functions and size of
various zones of the Golgi apparatus, especially zones related to
apoptotic signaling pathway in accordance with cellular demands
(69). In short, if the capacity of Golgi function becomes
insufficient after various cellular stresses, Golgi will activate the
response signaling pathways (70). Normally, Golgi stress
response should serve to help alleviate the stress, and only
result in cell death if the stress is harmful and irreparable.

Recently, several pathways of the mammalian Golgi stress
response have been identified, especially the TFE3, HSP47, and
CREB3-ARF4 (71). In 2019, Kimura et al. (37) discovered that
OSW-1 preferentially localizes to the Golgi apparatus and
activates the major Golgi stress response pathways by inducing
mis-localization of OSBP from cytoplasm to the trans-Golgi
FIGURE 2 | Overview of mechanisms of apoptosis induced by OSW-1 in cancer cells.
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network, which lead to the activation of TFE3 and the fragment
of Golgi, and then selectively triggering the apoptotic Golgi stress
response via upregulating CREB3-ARF4 proapoptotic pathway
and downregulating HSP47 antiapoptotic pathway. Although
OSW-1 induction of the selective Golgi stress response in cancer
cells remains to be explored, their study provided the first
evidence that link OSW-1-OSBP interactions with cell death
induction (37). Overall, OSW-1 can effectively kill cancer cells by
inducing Golgi stress response-mediated apoptosis, which
provide guidance and reference for clinical development of
novel anticancer drugs targeting Golgi apparatus.

OSW-1 Suppresses Migration, Invasion,
and Angiogenesis of Cancer Cells
Metastasis is the process by which cancer cells leaves the primary
site, travels to distant regions via the circulatory system, and
establishes a secondary tumor (72). It causes most cancer deaths
and involves migration, invasion and angiogenesis, which are
broadly regulated by epithelial-mesenchymal transition (EMT)
(44). EMT is a biological process in which epithelial cells are
converted into cells with mesenchymal phenotype. In cancer, it is
also known as epithelial cell plasticity and is associated with
tumor initiation, invasion, metastasis, and resistance to therapy
(73). It usually begins with the disappearance of epithelial cell
polarity and the weakening of intercellular adhesion (74). The
loss of epithelial markers, such as cytokeratins and E-cadherin,
and the acquisition of mesenchymal markers, such as N-
cadherin and vimentin, indicate that the cancer cells gain the
ability to migrate and invade. Therefore, blocking EMT of cancer
cells will greatly reduce the metastasis rate, thus improving the
prognosis of cancer patients.

Triple negative breast cancer (TNBC) is a particularly
aggressive subtype of breast cancer and accounts for 15% to
20% of cases (75). It is characterized by a lack of expression of
estrogen, progesterone, and human epidermal growth factor 2
receptors and has clinical features that include high invasiveness,
high metastatic potential, proneness to relapse, and poor
prognosis (76). In 2020, Ding et al. found that the OSW-1
decreased the expressions of NFATc2, and inhibited migration
and invasion of TNBC cells via blocking the EMT signaling
pathways in vitro and in vivo experiment (36). It was reported
that nuclear factor of activated T cells (NFAT) is associated with
TGFb-induced EMT, which could influence proliferation,
invasion, migration and angiogenesis of cancer cells (77).

In 2017, Zhang et al. (8) found destruction of blood vessels,
reduction of angiogenesis and no metastatic focus in xenograft
model with OSW-1 treatment, suggesting that OSW-1 may be
involved in angiogenesis and tumor metastasis. The authors did
not explore the mechanism behind this phenomenon. It was
hypothesized that OSW-1 induce Golgi stress response and lead
to the fragment of Golgi apparatus (37), which disrupt the
homeostasis of PI4P and PI4P-binding proteins, including
GOLPH3 or PITPNC1. However, these proteins are essential
to the development of aggressive metastatic and invasive tumor
for their ability to induce malignant secretory phenotype
conversion leading to the release of proteins that can reshape
the extracellular matrix, promote pathological angiogenesis, and
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enhance cell migration (53). The dysregulation of miRNA and
signaling pathways caused by OSW-1 may also contribute to
cancer metastasis and angiogenesis as discussed.

Effect of OSW-1 on miRNAs Expression
MicroRNAs (miRNAs) are a major class of small noncoding
RNA that consists of approximately 20 nucleotides, which
negatively regulate gene expression at the mRNA level, usually
silencing genes by binding to the 3′ or 5′‐untranslated region
(UTR) of their target mRNAs, controlling genes involved in
cellular processes, such as inflammation, proliferation, cell-cycle
regulation, stress response, differentiation, programed cell death,
and migration (78, 79). The cancer‐related miRNAs can be
divided into two groups: tumor suppressor miRNAs (inhibiting
tumor progression by targeting mRNAs that code oncoproteins
and repressing the translation of oncogenic mRNAs) and
oncogenic miRNAs (promoting tumor progression by
promoting metastasis and silencing the tumor suppressor
genes) (80). Given that miRNAs play roles in almost all aspects
of cancer biology, and dysregulation of miRNAs is common in
many cancers, it has been suggested that miRNAs could serve as
potential tumor markers for the diagnosis of cancer, and
developing new molecules targeting miRNAs expression in
cancer represents an attractive strategy for oncotherapy (81, 82).

In 2013, Jin et al. (41) identified differential miRNA
expression of Hep3B with OSW-1 treated in vitro, and the
results showed that OSW-1 regulated many miRNAs, in which
miRNA-142, miRNA-299, miRNA-187, miRNA-210, miRNA-
125b and miRNA-200c were upregulated, and miRNA-126 was
downregulated. Then, authors connected and identified
functions of differential miRNAs with unrecognized functions
of OSW-1, and drew a conclusion that OSW-1 inhibits cancer by
affecting numerous cancer‐related miRNAs that acts on specific
signaling pathways for proliferation, angiogenesis, apoptosis, cell
adhesion, migration, and EMT (41). For instance, miRNA-126,
an endothelial cell restricted miRNA, is associated with tumor
angiogenesis for its ability to enhance pro-angiogenic actions of
VEGF and FGF (83). After OSW-1 treatment, the expression of
miRNA-126 decreased significantly (barely detected), which
reduced the ability of tumor angiogenesis and led to the
inhibition of tumor growth (41). Overall, the effect of OSW-1
on regulating miRNAs deserved further exploring.

Effect of OSW-1 on Various
Signaling Pathways
Signaling pathway, also called signal transduction, is a series of
enzymatic reaction pathways that can transmit extracellular
molecular signals into cells through cytomembrane to exert
effects. With the deeper understanding of the molecular basis
of neoplastic cell behavior, cancer is considered as a disease with
altered signal pathways (84). Currently, signal pathway
inhibition by blocking the enzymes and growth factor
receptors that are essential for cell proliferation are being
explored. Some have achieved remarkable success and are now
commonly used as anticancer drugs, such as gefitinib for non-
small cell lung cancer (85), imatinib for chronic myeloid
leukemia (86) and trastuzumab for breast cancer (87).
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Therefore, agents that directly block pathogenic signal pathways
by targeting key components to inhibit growth of cancers are a
promising therapeutic strategy.

However, all targeting drugs have a common limitation which
is the inevitable emergence of drug resistance (88–90). The
reason is very simple, cancer cells are not easily killed by
blocking one target in a single way, since the signal pathways
in them are very complex and cross-talk and usually, when one of
the pathways is blocked, another compensatory bypass will be
activated (91). In this regard, natural products with potential
multiple targets may be a solution (92). In a study of Jin et al.
(40), the potential gene expression changes of Hep3B incubated
with OSW-1 in vitro were examined and results showed that
OSW-1 affected the expression of core genes in a number of
signaling pathways, including the downregulation of Wnt,
MAPK, and VEGF, and upregulation of P53. Wnt signaling
pathway is important for its crucial function in development and
growth, and has also been tightly associated with cancer for its
aberrant activation involved in maintenance of cancer stem cells,
metastasis and immune control (93); MAPK signaling pathway
represents ubiquitous signal transduction pathways that
regulates cell growth, differentiation, proliferation, apoptosis
and migration functions, and play a role in tumorigenesis and
associated with anticancer drug resistance (94); EGFR is a group
of transmembrane proteins with cytoplasmic kinase activity and
is frequently mutated and/or overexpressed in human cancers
(95), which results in increased cell proliferation, abnormal
metabolism, and cell survival through the activation of the
downstream signaling pathways, such as MAPK, AKT, and
STAT3 (96, 97); P53, a tumor-suppressor gene, is activated by
a host of stress stimuli and, in turn, induce cell cycle arrest or
apoptosis programs to inhibit cancer (98). Although OSW-1
inhibit cancer cells through regulating above signaling pathways
require more rigorous verification, it also provides a new
perspective to demonstrate the anticancer mechanisms of
OSW-1.
FUTURE PERSPECTIVE

In 1992, OSW-1 was first isolated from O. saundersiae and
emerged as a candidate of anticancer drugs for its more powerful
anticancer effect than doxorubicin, camptothecin and paclitaxel
(9). Currently, many in vitro and in vivo studies have identified
the anticancer effects of OSW-1 in various cancers and explored
the potential targets. However, after almost thirty years, the
anticancer mechanisms of OSW-1 are still undefined. Although
Burgett et al. revealed that OSW-1 exhibits cytotoxicity by
targeting OSBP and ORP4L (42), the link between these
targeting and apoptosis induction has remained unclear.
Furthermore, the OSBP-OSW-1 interaction seem to have more
applications in antiviral than anticancer for OSBP is not essential
to cell viability (99) but indispensable to virus replication (48,
100). In addition, the OSBPs targeting is hard to explain
especially the high selective cytotoxicity of OSW-1. In 2013,
Garcia et al. (39) demonstrated that OSW-1 inhibited NCX1 in a
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fashion similar to the NCX inhibitor KB-R7943, and then
disrupted calcium homeostasis of cytoplasm leading to
mitochondria-mediated apoptosis. Interestingly, this inhibitory
effect of OSW-1 is cancer cell-specific with minimal effect on
normal lymphocytes. An earlier study by Harley et al. (101) also
found that the NCX inhibitors selectively kill malignant glioma
cells but not primary astrocytes. Thus, future studies should
concentrate on uncovering the precise key target proteins of
OSW-1 to explain the high selective cytotoxicity.

Nowadays, chemical probe-based approaches have emerged
as powerful methods for mechanistic studies of natural products
by identifying the cellular site of action, the target proteins, and
the target cellular pathways. However, studies on the
development of chemical probes of OSW-1 for investigation of
its biological role are still lacking (30). Recently, network
pharmacology approaches for predicting unexplored targets
and therapeutic potential are being applied increasingly to find
new therapeutic opportunities of natural products (102).
These two methods may be beneficial to reveal intracellular
localization properties of OSW-1 and discover target proteins
leading to the phenotypes of interest. In addition, the surge of
“-omics” technologies, including genomics, transcriptomics,
epigenomics, proteomics, metabolomics, has enabled us to
recognize biological and molecular changes underlying the
development and progression of human disease, and multi-
omics analyses, which take advantage of these technologies
(103, 104), may facilitate the clinical application of OSW-1 in
precise treatment of cancer.

Given the low yield from extraction and limited amount
present in raw plant materials, it is crucial to find a new way
to synthesize OSW-1 in large quantities. Several groups have
achieved total synthesis of OSW-1 and a number of its analogues
have been synthesized to decipher the SAR (25), but the progress
is slow. Comparing total synthesis, exploring derivatives with
simplified molecular structure, with a more potent anticancer
effects, would be a good strategy taking the complex structure of
OSW-1 in consideration. In addition, with the advent of genetic
engineering, the mass production of OSW-1 from plants using
gene editing is also an option (105).

Notably, the pharmacokinetics of OSW-1, which involves the
study of drug movement within the body, including the time
course of absorption, distribution, metabolism, and excretion, is
a blank of current researches. Moreover, although normal cells
are less sensitive to the cytotoxicity of OSW-1, their IC 50 value is
in nanomolar range, indicating that OSW-1 is still toxic to them
(11). Thus, it is essential to perform vigorous animal toxicology
experiments before considering evaluation of clinical application.
In fact, toxicity and drug-like properties have become one of the
main obstacles for many saponin drugs, including osw-1, to
further move to clinical application, despite their extensive
research and remarkable anticancer effects (106). However,
only a few studies of OSW-1 involve in toxicology in vivo
experiments (8, 10, 36). It is recommended that more in vivo
experiments be performed to refine the pharmacokinetics and
pharmacology of OSW-1, so that actual metabolites and
concentrations are taken into account during in vitro
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experiments to simulate more realistic in vivo conditions. In
addition, exploring more reasonable combination therapy
regimens and more effective drug delivery systems to ensure
increased efficacy and decreased toxicity of OSW-1 will also be
one of the focuses of future research.
CONCLUSION

It has been almost 30 years since OSW-1, a natural compound
with potent anticancer activity, was first discovered in 1992.
Currently, an increasing number of preclinical studies have
confirmed the role of OSW-1 in anticancer therapies.
Summarized in this review are the available evidence on the
anticancer effects and mechanisms of OSW-1 in vitro and in vivo.
As mentioned, OSW-1 has been shown to repress cancer
progression through inhibiting cell proliferation, arresting cell
cycle, inducing apoptosis and Golgi stress response, as well as
suppressing migration, invasion and angiogenesis by regulating
miRNAs expression and various signaling pathways (Figure 3).
However, OSW-1 is still far from becoming a real anticancer
agent for some issues, including anticancer mechanisms that
have not been fully explained, especially the high selective
cytotoxicity to cancer cells, the low yield rate from extraction
and synthesis, and the need for more vivo experiments to
refine pharmacokinetics.

In general, OSW-1 is a potential candidate for anticancer
drugs and deserves further study. Since there are still some
Frontiers in Oncology | www.frontiersin.org 1055
problems to be solved before it can be used in clinical
treatment, this will require the joint efforts of different
professional scientists, worldwide.
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FIGURE 3 | Overview of the anticancer mechanisms of OSW-1 in cancer cells.
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Beneficial Effects of Gracillin From
Rhizoma Paridis Against Gastric
Carcinoma via the Potential
TIPE2-Mediated Induction of
Endogenous Apoptosis and Inhibition
of Migration in BGC823 Cells
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Tumor necrosis factor-α inducible protein-8 (TIPE2), initially recognized as a negative
immune regulator, exerts an important role in suppressing the progression of numerous
cancers. In our previous investigation, we found that TIPE2 expression displayed a
decrease or absence in gastric tumor tissue, and the overexpression of TIPE2
suppressed the growth of gastric cancer tumors and cells, demonstrating that TIPE2
could be a potential medicinal target for gastric cancer treatment. However, it’s seldomly
reported that several medicinal agents or candidates targeted TIPE2 for treating diseases,
including gastric cancer. To identify the candidate targeting TIPE2 to fight against gastric
cancer, several extractions from traditional natural medicinal plants with anti-tumor
functions were employed to screen the active compounds according to bioassay-
guided isolation. Interestingly, gracillin, a component from the ethyl acetate extraction
of Rhizoma Paridis, was identified to induce the expression of TIPE2 and inhibit the cell
proliferation in gastric cancer BGC-823 cells. Furthermore, the underlying mechanisms
that restrain gastric cancer were evaluated by clone formation, EdU staining, flow
cytometry, and other assays. Meanwhile, the role of TIPE2 in the anti-tumor effect of
gracillin was elucidated via the use of siTIPE2 RNA. It was determined that gracillin could
fight against gastric cancer cells by inhibiting the cell proliferation participated by the PI3K/
AKT pathway and cell cycle arrest, suppressing the EMT pathway-regulating cell migration,
and inducing bcl2-associated mitochondrial apoptosis. Additionally, TIPE2 maybe
contribute to the benefits of gracillin. These results of the present study are an
important step toward the medicinal development of gracillin, and are also of use in
understanding the effect of TIPE2 as a potential tumor target.
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INTRODUCTION

Gastric cancer has become the fourth most common incidence
and the second most common cause of death globally, as such is a
serious threat to human health and happiness (Rui et al., 2019;
Elizabeth et al., 2020; Tony et al., 2020; Yoshiki, 2020; Hyuna
et al., 2021). Therapeutic strategies for treating gastric cancer have
been challenged by the complex and controversial causes of
gastric cancer development (Antonia and Wagner, 2016; Helge
and Reidar, 2018; Camilla and Giuseppe, 2020; Nalinie et al.,
2020). For several decades, chemotherapy has remained one of
the most commonly used therapies following surgical treatment
to fight against gastric cancer. However, the traditional
chemotherapeutical agents, such as 5-fluorouracil,
cyclophosphamide, and other broad-spectrum anti-tumor
agents, presented serious toxic side effects, such as weight loss,
hair loss, and anorexia, during the treatment of gastric cancer.
This has been attributed to their lack of selectivity for healthy and
tumor cells (Mary et al., 2020; Yong et al., 2021). To improve the
selectivity of chemotherapeutical agents, drugs targeting proteins
specifically expressed in tumor tissue or selectively-mediated
tumor have aroused great interest, and a few target drugs have
also been effectively developed to treat liver cancer, lung cancer,
and gastric cancer in the clinic (G Schinzari et al., 2014).

Tumor necrosis factor-α inducible protein-8 (TNFAIP8L2,
also called TIPE2) is a negative immune mediator that was
discovered in 2008 (Eric et al., 2008; Honghong et al., 2008).
The emerging evidence shows that TIPE2 could inhibit gastric
carcinoma growth and metastasis (Qian et al., 2015; Jie et al.,
2016; Ganesan et al., 2018). Our previous research suggested that
TIPE2 is missing or has low expression in gastric carcinoma but
not in normal gastric mucosa (Wenming et al., 2018; Zhenhe
et al., 2018). Furthermore, the overexpression of TIPE2 could
suppress the proliferation and migration of gastric cancer
BGC823 cells. These data demonstrate that TIPE2 could be a
novel potential therapeutic target for gastric cancer treatment.
However, candidates targeting TIPE2 to restrain gastric
carcinoma are as yet seldom reported. Therefore, exploring
TIPE2’s mediator would be an important and significant
strategy in the development of new anti-tumor medicine for
gastric cancer.

Natural products, especially those found in various traditional
medicine systems such as Traditional Chinese Medicine (TCM),
have served as folk medicinal agents to regulate immune,
inflammation, metabolism, and other physiologies for
thousands of years (Daniel et al., 2012; Tai et al., 2019). The
medicine of natural products was wildly applied to relieve all
kinds of diseases including cancer (Amit and Vikas, 2019; Min
et al., 2019; Tohid et al., 2019; Xuanmei et al., 2019). Excitingly,
Lianhuaqingwen, (TCM) formula consisting of multiple natural
herbs such as fructus forsythiae, Lonicera japonica Thunb, and
Houttuynia cordata Thunb have also contributed to controlling
the 2019 novel SARS-CoV-2 global pandemic (Li et al., 2020;
Ming et al., 2021). These natural products had crucial roles in
maintaining individual’s health and defeating disease, in both
history and present. However, its complicated ingredients with
numerous different yet remarkably similar structural molecules

hindered the modern clinical application. In the last hundred
years, these pure and simple pharmaceutical agents are slipping
into the mainstream of clinical drugs, rather than natural product
mixtures (Emma and Margaret, 2019). Fortunately, the majority
of these pure medicinal compounds were sourced or derived from
natural product components. From 1981 to 2014, 65% of all single
pharmaceutical agents approved by the American Food and Drug
Administration (FDA) came from natural product components
and their derivatives. Furthermore, 75% of the anti-tumor agents
came from natural products and their derivatives (David and
Gordon, 2016). In the future, natural products will remain a
valuable source of novel medicine agents, and identifying
potential lead molecules from natural product mixtures is still
an important strategy of drug discovery.

In this study, we aimed to identify a potential TIPE2 candidate
for restraining gastric carcinoma from a traditional natural herb,
and to clarify the mechanism by which the candidate suppresses
gastric carcinoma via TIPE2. The present research started with
screening active compounds for inhibiting the proliferation of
gastric cancer cell BGC-823 and regulating TIPE2 protein
expression from the fractions of four medicinal plants
Curcuma longa L., Tripterygium Wilfordii, Rhizoma Paridis,
and Reynoutria japonica Houtt. Following screening the active
fractions from the medicinal plant extracts and identifying the
potential candidate from the active fractions via bioassay-guided
isolation, a TIPE2 mediator named gracillin from Rhizoma
Paridis was discovered to have potential in suppressing gastric
cancer cell proliferation. Furthermore, we assessed the
mechanism by which gracillin suppressed gastric carcinoma,
and found that gracillin could induce cellular apoptosis and
inhibit migration via TIPE2-mediated endogenous apoptosis
and EMT pathway in BGC-823. The results provided a
theoretical basis for developing drugs to treat gastric cancer by
targeting TIPE2.

MATERIALS AND METHODS

Preparation of Medicinal Plants Extraction
and the Identification of Active Compounds
The medicinal plants Curcuma longa L., TripterygiumWilfordii,
Rhizoma Paridis, and Reynoutria japonica Houtt were
purchased from the Traditional Chinese Medicine Trade
Center of Bozhou in Anhui Province, China. These plants
were first crushed into a coarse powder and soaked for 2 h in
six volumes of 60% ethanol (volume/weight) to extract by reflux.
The extraction solution was filtered, and the residue was
subjected to this process two more times. The filtered
solutions were merged and concentrated to obtain the total
extraction using rotary evaporation (EYELA, Japan). The total
extraction was suspended in water and extracted with petroleum
ether, chloroform, and ethyl acetate (Sinopharm, Beijing,
China) to obtain the fractions of PE, C, and EA. After a bio-
activities test, the active fractions were separated using
preparative high-performance liquid chromatography with a
flow phase of 40–55% acetonitrile (Merck, Germany) and the
active compounds were identified by mass spectroscopy.
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Cell Culture
Human gastric tumor BGC-823 cells (Chinese Academy of Medical
Sciences, Shanghai, China) were cultured in an RPMI-1640 medium
(Hyclone, Utah, United States) containing 10% FBS (Gibco,
Waltham, United States) and 1% bi-antibiotic of penicillin and
streptomycin (Hyclone, Utah, United States) in an atmosphere of
5%CO2 and 37°C (Thermofisher,MA,United States). Before the bio-
assays of agents were performed, BGC-823 cells were seeded into the
preassigned culture plates and administrated with the different plant
extractions or gracillin for a corresponding time. Then the cells were
harvested and the detection was carried out according to standard
protocol.

MTT Assay
Cell proliferation was evaluated using an MTT assay. Briefly,
BGC-823 cells were seeded into a 96-well plate at a density of
10,000 cells/well and cultured for 12 h. Then the seeded cells were
administrated with plant extractions or gracillin and cultured for
24/48 h. An MTT solution with 5 mg/ml (Solarbio, Beijing,
China) was added to the well and incubated for another 3 h.
After incubation, the mediumwas removed, the cells were washed
twice with PBS, and 100 μL DMSO (Solarbio, Beijing, China) was
added to each well to dissolving the formazan. Finally, the
absorbance was read at 490 nm using a microplate reader
(Thermofisher, MA, United States) and the proliferation ratio
was calculated as follows:

Western Blot
BGC-823 cells were seeded into a 6-well plate with 60% confluence
and maintained in a CO2 incubator for 12 h. Then the seeded cells
were administrated with different doses of gracillin for another 12 h.
The treated cells were harvested, lysed in a RIPA buffer (Solarbio,
Beijing, China) on ice with a vortex of once per 5min for 30min, and
centrifuged at 12,000 rpm and 4°C. The supernatants were collected,
the total protein concentration was evaluated by BCA assay kit
(Thermofisher, MA, United States), and boiled using dry baths
(Yiheng, Hangzhou, China) to denature the protein. A sample of
20 μg of prepared protein was subjected to 8–12% SDS-PAGE to
separate the total protein and then transferred to a PVDFmembrane
(Millipore, MA, United States). The transferred PVDF membrane
was immersed in 5% defatted milk at room temperature for 1 h to
block, incubated overnight at 4°C with the primary antibodies of
TIPE2, AKT, p-AKT, CDK1, p-CDK1, cyclin B1, p21, E-cadherin,
N-cadherin, vimentin, cleaved PARP, bcl2, cleaved caspase3, and
cleaved caspase9 (CST, United States), then incubated with a
secondary antibody (Proteinteck, Wuhan, China) at room
temperature for 1 h. Finally, ECL chemiluminescent solution was
added to the PVDF membranes (Pierce, United States) for imaging.

EdU Staining
The cell proliferation was evaluated using EdU staining. Briefly,
BGC-823 cells and BGC823/TIPE2−/− cells were seeded into a 12-
well plate with 30% confluence and maintained in a CO2

incubator for 12 h. Then the seeded cells were administrated
with 5 μM gracillin and cultured. Later, the cells were added with
EdU solution to stain for 2 h, washed with PBS, and imaged with a
microscope (Olympus, Japan).

Colony Formation
The cell proliferation was also assessed using colony formation.
Briefly, BGC-823 cells and BGC823/TIPE2−/− cells were seeded
into a 12-well plate with 5,000 cells per well and maintained in a
CO2 incubator for 12 h. Then the seeded cells were administrated
with 5 μM gracillin and cultured for 7 days. Later, the cells were
washed with PBS and fixed with 4% paraformaldehyde and then
stained with gimsa solution for 30 min and imaged.

Cell Cycle Distribution Analysis
BGC-823 cells and BGC823/TIPE2−/− cells were seeded into a
6-well plate with 50% confluence and maintained in a normal
medium for 12 h, then replaced with an FBS-free medium to
culture for another 12 h. After starvation culture, the cells
were treated with 3 μM gracillin for 24 h. Then the treated
cells were collected, fixed with pre-cooled 70% ethanol
overnight at 4°C, and stained with 5 μg/ml propidium
iodide (Solarbio, Beijing, China) at room temperature for
20 min. Finally, the stained cells were detected using the
flow cytometer (Beckman, United States).

Scratch Assay
The cell migration was assessed using a scratch assay. Briefly,
BGC-823 cells and BGC823/TIPE2−/− cells were seeded into a
6-well plate with 60% confluence and cultured for 12 h. Then
the seeded cells were scratched with a white pipette tip to form
a cell-free area and administrated with 3 μM gracillin for 48 h.
The cell-free area was imaged and its width was quantified
using Image J software.

Flow Cytometer for Cell Apoptosis
The cell apoptosis was examined by dual-staining with FITC-
Annexin V and PI. Briefly, BGC-823 cells and BGC823/TIPE2−/−

cells were seeded into a 6-well plate with 60% confluence and
cultured for 12 h. Then the seeded cells were administrated with
3 μM gracillin for 24 h. The cells were digested with a 0.25%
trypsin solution and transferred to a 1.5 ml EP tube, then
suspended in 500 μL binding buffer, and dyed with
5 μLAnnexin V-FITC and 5 μL PI according to the
manufacturer’s manual of FITC-Annexin apoptosis detection
kit (BD, United States). The stained cells were detected using a
flow cytometer (Beckman, United States).

Animal Experiment
Male nude mice aged 6 weeks were purchased from the
Xiamen University Laboratory Animal Center. The mice
were raised in pathogen-free conditions with 12 h light/12 h
dark cycles for a week, then randomly divided into two
groups, the control group and the gracillin administration
group, and subcutaneously inoculated with BGC-823 gastric
cancer cells of 2×106 cells per mice. The inoculated mice were
maintained for another week, then injected with gracillin or
normal saline once every other day for 21 days. During this
period, the tumor size and body weight were measured once
every 3 days. On the 21st day, the mice were sacrificed and
their tumors were collected for immunohistochemistry and
western blotting test.
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Hematoxylin and Eosin Staining and
Immunohistochemistry Staining
Tumor tissue specimens were fixed in 4% paraformaldehyde for 1 h,
then soaked in wax and sectioned. The sections were firstly dewaxed
via incubation at 60°C for 1 h, soaked twice in xylene for 5min, then
in 100, 100, 95, 80% alcohol for 1min each. In HE staining, the
dewaxed sections were stained with hematoxylin for 6min and eosin
for 2min, then washed with distilled water, dehydrated with gradient
alcohol (95, 95, 100, and 100%) for 1min each, vitrified with xylene
twice, and sealed with neutral gum. In IHC staining, the dewaxed
sections were immersed in a citrate buffer, washed with 0.01M PBS,
and cooled for antigen repair. Then the sections were incubated with
the primary antibody ki67 overnight and a secondary antibody for
1 h. Finally, the specimens were stained with hematoxylin,
dehydrated, vitrified, and sealed.

Statistical Analysis
Statistical analysis was carried out using SPSS software. The data
were displayed as mean± (SEM). One-way ANOVA was
employed to compare the differences between groups. p < 0.05
was considered statistically significant.

RESULTS

The Main Components Analysis of Active
Fractions From Natural Plants
The anti-proliferation effect of fractions from four traditional
natural plants, Reynoutria japonica Houtt (RJH), Tripterygium
Wilfordii (TPW), Rhizoma Paridis (RP), and Curcuma longa L.
(CLL), were first examined by MTT assay to screen active
factions. As shown in Figure 1A, five fractions (chloroform
extraction and ethyl acetate extraction from Tripterygium
Wilfordii and Rhizoma Paridis (TPW-C, TPW-EA, RP-C, and
RP-EA) and chloroform extraction from Curcuma longa L.(CLL-
C)) showed a proliferation inhibitory ratio of more than 40%
compared with the control group (Figure 1A). In these active
fractions, RP-EA exhibited an evident induction of TIPE2 protein
expression in comparison with the control group (Figure 1B),
implying that some active compounds with the potential to
induce TIPE2 expression and inhibit gastric tumor cell
proliferation could exist in ethyl acetate extraction from
Rhizoma Paridis. To identify the active compounds, high-
performance liquid chromatography (HPLC) and mass
spectroscopy were employed to separate and characterize the

FIGURE 1 | The components analysis of active fractions from medicinal plants. (A) The effect of medicinal plants on cell proliferation in BGC823 cells. 50 μg/ml
extractions of the plants were used to treat BGC823 cells for 48 h. (B) The effects of active fractions on the expression of TIPE2. 50 μg/ml active fractions were used to
treat the BGC823 cells for 12 h. The values in the histogram are displayed as mean ± SD; 0.01 < p < 0.05 (*) represents a significant difference, and p < 0.001 (***)
represents an extremely significant difference to the normal control.
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main components of RP-EA extraction. Five obvious peaks
detected by HPLC chromatography were identified as
polyphyllin II (PPL-II), dioscin, gracillin, polyphyllin I (PPL-
I), and polyphyllin VI (PPL-VI) using mass spectroscopy
(Supplementary Figures S1–S6).

Identifying Gracillin as a Tumor Necrosis
Factor-α Inducible Protein-8 Inducer With
Potential Suppressing Cell Proliferation in
Gastric Cancer BGC823 Cells
The above experiments identified five main components from
the chloroform extraction of Rhizoma Paridis. We next
screened the active compound with the highest potential
for regulating TIPE2 and gastric carcinoma from these

main components via MTT and immunoblotting. MTT
assay showed that polyphyllin I, gracillin, and dioscin
exhibited lower cellular proliferation ratio (lower than 60
versus 100% of the control group, Figure 2A), meanwhile,
immunoblotting indicated that gracillin had an obvious
induction of TIPE2 expression in BGC823 cells
(Figure 2B), demonstrating that gracillin could be a TIPE2
inducer suppressing gastric tumor cell proliferation. The
structure of gracillin was shown in Figure 2C. In addition,
gracillin concentration-dependently inhibited the gastric
tumor BGC823 cell proliferation with IC50 value of 8.3 μM
in the range of 0–15 μM (Figure 2D) and gastric tumor
SGC7901 cell proliferation with IC50 value of 8.9 μM in the
range of 0–15Μm (Supplementary Figure S7). TIPE2
expression tests also showed that gracillin exhibited a

FIGURE 2 | The effect of gracillin on TIPE2 expression and cell proliferation in BGC-823 cells. (A) The effect of five active compounds on cell proliferation. 5 μM
active compounds were used to treat the BGC823 cells for 48 h. (B) The effect of five active compounds on TIPE2 expression. 5 μM active compounds were used to
treat the BGC823 cells for 12 h. (C) The structure of gracillin. (D) The effect of gracillin at different concentrations on cell proliferation. The different concentrations of
gracillin with 3, 6, 9, 12, 15 μM were used to treat the BGC823 cells for 12 h. (E) The effect of gracillin with the indicated concentrations for 12 h on TIPE2
expression. The values of the histogram are displayed as mean ± SD.
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concentration-dependent TIPE2 induction in 3, 6, and 12 μM
(Figure 2E and Supplementary Figure S10).

Establishment of Tumor Necrosis Factor-α
Inducible Protein-8-Silence Cell Line
BGC823/Tumor Necrosis Factor-α Inducible
Protein-8−/−
To explore the role of TIPE2 in gracillin suppression of gastric
tumors, we synthesized three fragments of TIPE2 siRNA
sequence, which were respectively siTIPE2-1, siTIPE2-2, and
siTIPE2-3 (Figure 3A). The fragments were transfected into
BGC823 gastric tumor cells and Figure 3B shows the BGC823
and BGC823/TIPE2−/− cellular images of TIPE2 siRNAs
transfection for 36 h. The transfection efficiency was evaluated

by immunoblotting. As displayed in Figure 3C, siTIPE2-2 and
siTIPE2-3 inhibited the expression of TIPE2 in BGC823.
Furthermore, siTIPE2-2 was more efficient compared with
siTIPE2-3. Therefore, we choose siTIPE2-2 as a tool for
suppressing TIPE2 expression to illustrate the role of TIPE2 in
gracillin suppression of gastric tumors.

Effects of Gracillin on Cellular Proliferation
via Tumor Necrosis Factor-α Inducible
Protein-8 in BGC823 Cells
To confirm whether TIPE2 participated in gracillin inhibition of
gastric tumor cellular growth, the BGC823 and BGC823/
TIPE2−/− cellular viability in the administration of gracillin
(5 μM) were first examined using MTT assay. As seen in

FIGURE 3 | The establishment of TIPE2-silence cell line BGC823/TIPE2−/−. (A) The sequence of siTIPE2 RNA. (B) The effect of siTIPE2 RNA on BGC-823 cells.
(C) The effect of siTIPE2 RNA on TIPE2 expression. The values of the histogram are displayed as mean ± SD, 0.001 < p < 0.01 (**) represented for very significant
difference and p < 0.001 (***) represents an extremely significant difference to the normal control.
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Figure 4A, 5 μM of gracillin inhibited cell proliferation from
131.6 to 60.0% in BGC823/TIPE2−/− cells, and from 100 to 56.0%
in BGC823 cells, demonstrating that the proliferation inhibitory
ratio of gracillin with siTIPE2 RNA treatment is higher than that

without siTIPE2 RNA treatment (54.4 vs 44.0%) in BGC823 cells.
Plate clone formation assay showed that the cellular clone
number in BGC823/TIPE2−/− cells subjected to gracillin
decreased to 466 from 1,247 in the control group, and in

FIGURE 4 | The role of TIPE2 in cell proliferation mediated by gracillin in BGC823 cells. (A)MTT assay for cell proliferation by TIPE2 and gracillin. 5 μM gracillin was
used to treat the BGC823 cells and TIPE2 siRNA BGC823 cells for 48 h. (B) Colony formation for cell proliferation by TIPE2 and gracillin. 5 μM gracillin was used to treat
the BGC823 cells and TIPE2 siRNA BGC823 cells for 7 days. (C) EdU staining for cell proliferation by TIPE2 and gracillin. 5 μM gracillin was used to treat the BGC823
cells and TIPE2 siRNA BGC823 cells for 12 h. (D) The quantitative analysis for EdU staining. (E) Western blot for the expression of TIPE2, AKT, and p-AKT. The
values of the histogram are displayed as mean ± SD. 0.01 < p < 0.05 (*) represents a significant difference and 0.001 < p < 0.01 (**) represents a very significant difference
to the normal control; 0.001 < p < 0.01 (##) represents a very significant difference and p < 0.001 (###) represents an extremely significant difference to the TIPE2 siRNA
control.
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BGC823 cells subjected to gracillin decreased to 557 from 885
(Figure 4B), indicating that gracillin more markedly suppressed
the cellular clone formation in BGC823/TIPE2−/− cells compared
with that in BGC823 cell. EdU-incorporation data revealed the
consistent effect that the proportion of incorporated EdU with
gracillin treatment presented a more obvious reduction in
BGC823/TIPE2−/− cells compared with BGC823 cells (Figures
4C,D). Collectively, these results suggested that TIPE2 may
participate in gracillin inhibition of cell proliferation in BGC823.

PI3K/AKT is an important signaling pathway involved with
cell proliferation and phosphorylation of AKT is an essential
molecular event in the process of PI3K/AKT activation. To
further confirm whether gracillin inhibited gastric tumor
cell proliferation via TIPE2, we conducted western blot
assay to detect the AKT phosphorylation in the supplement
of gracillin and siTIPE2 RNA in BGC823 cells. The data
showed that gracillin more evidently promoted the
induction of TIPE2 in BGC823/TIPE2−/− than in BGC823,

FIGURE 5 | The role of TIPE2 in the cell cycle distribution mediated by gracillin in BGC823 cells. (A) Flow cytometry for cell cycle distribution by TIPE2 and gracillin.
BGC823 cells and TIPE2 siRNA BGC823 cells were maintained with FBS-free medium for 36 h, then treated with 3 μM gracillin for another 24 h. (B) The quantitative
analysis of cell cycle distribution by TIPE2 and gracillin. (C)Western blot for the expression of TIPE2, CDK1, p-CKD1, cyclin B1, and p21. (D) The quantitative analysis of
protein expression. The values of the histogram were displayed as mean ± SD. 0.01 < p < 0.05 (*) represents a significant difference and 0.001 < p < 0.01 (**)
represents a very significant difference to the normal control; 0.01 < p < 0.05 (#) represents a significant difference, 0.001 < p < 0.01 (##) represents a very significant
difference and p < 0.001 (###) represents an extremely significant difference to the TIPE2 siRNA control.
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meanwhile, the inhibition effect of AKT phosphorylation by
gracillin is stronger in BGC823/TIPE2−/− than that in BGC823
(Figure 4E). Thus, TIPE2 maybe contribute to the anti-
proliferation effect by gracillin.

Effects of Gracillin on Cell Cycle Arrest via
Tumor Necrosis Factor-α Inducible
Protein-8 in BGC823 Cells
Deregulation of the cell cycle results in the unlimited proliferation
of tumor cells including gastric carcinoma cell BGC823, and
controlling the deregulated cell cycle would be a crucial strategy
to fight against tumors. To evaluate the association of the cell
cycle with cell proliferation mediated by gracillin, BGC823/

TIPE2−/− and BGC823 cells with or without gracillin were
stained by PI, and the cell cycle distribution was analyzed
using flow cytometry. The histogram from flow analysis
indicated that gracillin induced the increase of G2/M phase
ratio in BGC823 cells, meanwhile, the induction of the G2/M
phase ratio by gracilllin was more evident in BGC823/TIPE2−/−

cells (Figures 5A,B). Moreover, the expression of G2/M phase-
associated proteins CDK1, p-CDK1, cyclin B1, and p21 in the
supplement of gracillin were detected by western blot. The band
graph revealed that gracillin induced the upregulation of TIPE2,
p-CDK1, and p21 and downregulation of CDK1 and cyclin B1 in
BGC823 cells, meanwhile, these change trends of protein
expressions mediated by gracillin were more evident in
BGC823/TIPE2−/− cells (Figures 5C,D). These results

FIGURE 6 | The role of TIPE2 in the cell migration mediated by gracillin in BGC823 cells. (A) Scratch assay for cell migration by TIPE2 and gracillin. BGC823 cells
and TIPE2 siRNA BGC823 cells were treated with 3 μM gracillin for 24 h. (B) Transwell assay for cell migration by TIPE2 and gracillin. (C)Western blot for the expression
of E-cadherin, N-cadherin, and vimentin. 0.01 < p < 0.05 (*) represents a significant difference and p < 0.001 (***) represents an extremely significant difference to the
normal control; 0.01 < p < 0.05 (#) represents a significant difference, 0.001 < p < 0.01 (##) represents a very significant difference and p < 0.001 (###) represents an
extremely significant difference to the TIPE2 siRNA control.
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demonstrated that TIPE2maybe contribute to the cell cycle G2/M
arrest effect induced by gracillin in BGC823 cells, which was
consistent with our previous report that TIPE2 blocks the cell
cycle G2/M phase (Zhenhe et al., 2018).

Effects of Gracillin on Cellular Migration via
Tumor Necrosis Factor-α Inducible
Protein-8 in BGC823 Cells
To investigate the effect of gracillin on gastric cell migration and
the role of TIPE2 in this effect, scratch-wound assay and transwell
assay were performed in BGC823/TIPE2−/− and BGC823 cells. As
seen in Figure 6A, the migration width of BGC823 cells in the
supplement of gracillin for 24 h decreased by 32.2% (from 199 to
135 μm), and BGC823/TIPE2−/− cells displayed a higher fall of
migration width of 62.2% (from 320 to 121 μm) induced by
gracillin. The data from the transwell assay also revealed that
gracillin inhibited the cell migration, which displayed a fall of cell
migrations from 321 to 157 in BGC823 cells, while a larger
decrease was observed in BGC823/TIPE2−/− cell. Additionally,
the expression of EMT pathway-related proteins was detected by
western blot to study the molecular mechanism by which TIPE2
mediates cell migration in gracillin. Figure 6C shows that
gracillin induced the upregulation of E-cadherin and
downregulation of N-cadherin and vimentin in BGC823 cells,
and these trends maintain a similar level in BGC823/TIPE2−/−

cells. Taken together, these results demonstrate that gracillin
could inhibit the cell migration via the EMT pathway in
BGC823 cells and TIPE2 maybe contribute to the inhibitory
effect of gracillin.

Effects of Gracillin on Cellular Apoptosis via
Tumor Necrosis Factor-α Inducible
Protein-8 in BGC823 Cells
Sustained proliferation and resistance to cell apoptosis are two
major hallmarks of cancer. The above-mentioned data have
shown that gracillin could fight against gastric cancer via
TIPE2-regulation of cell proliferation. We performed flow
cytometry, enzyme activity tests, and western blot assay to
study the apoptotic effect of gracillin via TIPE2 in BGC823
cells. Scatter diagrams flow cytometry showed that the
apoptosis ratio of BGC823 cells supplied with gracillin
increased from 3.11 to 32.24% while BGC823/TIPE2−/−

cells displayed a similar change trend (Figures 7A,B).
Enzyme activity tests (Figure 7C) revealed that gracillin
induced the enzyme activities of caspase three and nine in
BGC823 cells and BGC823/TIPE2−/− cells, and that caspase9
activity displayed a more obvious induction in BGC823/
TIPE2−/− cells than that in BGC823 cells. Western blot
(Figure 7D) showed that gracillin induced the cleavage of
PARP, caspase3, and caspase9, and the inhibition of bcl-2
expression in BGC823 cells, furthermore, the regulation by
gracillin in BGC823/TIPE2−/− cells were more statistically
significant. These results demonstrate that TIPE2 maybe
contribute to the pro-apoptosis effect of gracillin in
BGC823 cells.

Effects of Gracillin on Gastric Tumor and
Tumor Necrosis Factor-α Inducible
Protein-8 Expression in vivo
To determine the anti-tumor effect of gracillin in vivo, a xenograft
tumor model of nude mice bearing BGC823 cells was established
and gracillin was administrated. As seen in Figure 8A, the tumor
size of mice treated with gracillin began to fall compared to that of
mice in the control group from the 12th day and reached a great
significant difference at the end of the 21st day (**p < 0.01
compared to the control group). The curve of body weight
showed that the mice that received gracillin had no statistical
change of body weight compared with that in the control group.
The tumor images and weight on the 21st day of gracillin
administration revealed that gracillin suppressed the tumor
size and tumor weight (**p < 0.01 compared to the control
group, Figure 8C). The immunohistochemistry test revealed
that gracillin greatly inhibited the expression of Ki67 in the
mice tumor tissue (***p < 0.001 compared to the control
group, Figures 8D–F). Additionally, western blot data
(Figures 8G,H) showed that gracillin induced the cleavage of
PARP and expression of TIPE2, and inhibited the
phosphorylation of AKT and expression of bcl-2 in the tumor
tissue of mice. Together, these results demonstrated that gracillin
could inhibit tumors via TIPE2-mediation of proliferation and
apoptosis.

DISCUSSION

Gastric cancer has been a serious threat to human life and health
for several decades, which has promoted the identification of new
therapeutic targets and the development of novel therapeutic
agents for gastric cancer. TIPE2 protein was first identified only a
few years ago, and since then a great deal of evidence has
indicated that TIPE2 plays a crucial role in suppressing gastric
cancer. Like other cancer cells, gastric cancer cells are
characterized by sustained proliferative signaling, evasion of
growth suppressors, activate invasion and metastasis,
resistance to cell death, and so on (Douglas and Robert, 2011).
The expression of TIPE2 could control these defects of gastric
cancer cells. It had been verified that TIPE2 could suppress cell
growth and proliferation by inducing the inhibition of the AKT
and ERK1/2 pathways and promoting the p27-associated signal
cascade in gastric cancer cells (Qian et al., 2015). Biochemical
molecular analysis revealed that TIPE2 could reduce the
activation of RAC1 and MMP9 by binding to RAC1, thereby
suppressing gastric cancer cell metastasis (Xuelei et al., 2013).
Also, TIPE2 is reported to elicit cell apoptosis by activating
caspase three and caspase 9, inducing the cleavage of PARP,
and inhibiting bcl-2 expression in BGC-823 gastric cancer cells.
This information demonstrates that TIPE2 could be a novel and
extremely potent gastric cancer target that suppresses gastric
cancer through mediating multiple molecular pathways in
patients with gastric tumors. However, it has not been well
reported that several medicinal agents could regulate TIPE2 to
fight against diseases such as gastric cancer. Therefore, the
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development of a TIPE2 regulator that suppresses gastric cancer
and clarifying its function would be encouraging for the clinical
treatment of gastric cancer and is urgently needed.

Natural products are generally complex multi-ingredient
systems and contain a great deal of different and remarkably
similar structural compounds that have contributed to the
majority of modern medicinal agents. However, these natural
compounds were seldom reported to mediate TIPE2 and explore
its medicinal value. In the present study, we employed four
traditional natural plants with anti-tumor effects, respectively
Curcuma longa L., Tripterygium Wilfordii, Rhizoma Paridis, and
Reynoutria japonica Houtt, to screen the TIPE2 regulator fighting

against gastric cancer in BGC823 cells, and found that the ethyl
acetate extraction of Rhizoma Paridis exerted the induction of
TIPE2 expression and inhibition of cellular proliferation.
Rhizoma Paridis is a plant that generally grows in southwest
China, and has been widely applied to prevent and treat chronic
diseases including cancer as a traditional Chinese medicine with
heat-clearing and detoxifying properties. Its numerous active
ingredients have also been reported to exert multiple anti-
cancer effects, eg. pennogenyl saponins for inhibiting the
growth of hepatoma, dioscin for suppressing osteosarcoma via
inducing cell cycle arrest and apoptosis, and polyphyllin II for
relieving bladder cancer migration. However, the underlying anti-

FIGURE 7 | The role of TIPE2 in the cell apoptosis mediated by gracillin in BGC823 cells. (A) Flow cytometer for cell apoptosis by TIPE2 and gracillin. BGC823 cells
and TIPE2 siRNA BGC823 cells were treated with 3 μM gracillin for 24 h. (B) The quantitative analysis of cell apoptosis. (C) Elisa assay for the enzyme activities of
caspase three and caspase 9. (D) Western blot for the expression of cleaved PARP, bcl2, cleaved caspase 9, and cleaved caspase 3. 0.01 < p < 0.05 (*) represents a
significant difference, 0.001 < p < 0.001 (**) represents a very significant difference and p < 0.001 (***) represents an extremely significant difference to the normal
control; 0.01 < p < 0.05 (#) represents a significant difference, 0.001 < p < 0.01 (##) represents a very significant difference and p < 0.001 (###) represents an extremely
significant difference to the TIPE2 siRNA control.

Frontiers in Pharmacology | www.frontiersin.org September 2021 | Volume 12 | Article 66919911

Liu et al. Gracillin Suppressed TIPE2-Associated Gastrocarcinoma

69

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


cancer mechanism of these active ingredients from Rhizoma
Paridis remains unclear. In this context, we analyzed the active
compounds based on bioassay-guided isolation combining with
the reported ingredient information of Rhizoma Paridis and
evaluated the underlying target and mechanism of the active
compound fighting against gastric cancer. We identified gracillin

as a TIPE2 inducer from Rhizoma Paridis and elucidated the
potential mechanism by which gracillin alleviates gastric
carcinoma via TIPE2-mediated inhibition of proliferation,
induction of endogenous apoptosis, and suppression of
migration (Figure 9). Our findings laid a theoretical
understanding of the underlying mechanism and function of

FIGURE 8 | The effect of gracillin on gastric tumor and TIPE2 expression in vivo. (A) The growth curve of tumors. (B) The curve of body weight. (C) The tumor
images. (D)HE stain for tumor pathology. (E) IHC assay for ki67 expression in tumors. (F) The quantitative analysis of ki67 expression. (G)Western blot for the expression
of TIPE2, p-AKT, AKT, cleaved PARP, and bcl2 in tumor tissue. (H) The quantitative analysis of protein expression as detected by western blot. 0.01 < p < 0.05 (*)
represents a significant difference, 0.001 < p < 0.001 (**) represents a very significant difference and p < 0.001 (***) represents an extremely significant difference to
the normal control.
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Rhizoma Paridis and provided an important insight for the
modern medicinal development of Rhizoma Paridis.

Sustained proliferation is considered as a primary
characteristic of malignant tumor cells differing from the
restricted proliferation of normal cells. AKT, also named
protein kinase B (PKB), is an important part of the PI3K/
AKT/mTOR pathway and its phosphorylation is a sign of the
pathway activation which exerts a vital effect on cell proliferation,
including of malignant cells. Our previous findings revealed that
TIPE2 expression was negatively associated with gastric cell
proliferation, and that it could suppress cell proliferation by
reducing phosphorylation of AKT. In the present study, we
found that gracillin inhibited AKT phosphorylation and cell
proliferation in gastric cancer BGC-823 cells, and in the
absence of TIPE2, gracillin exhibited a more obvious induction
of TIPE2 expression and inhibition of AKT phosphorylation,
demonstrating that gracillin maybe inhibit the gastric cancer cells
via TIPE2-mediated AKT phosphorylation. Additionally, cell
cycle progression on the rails is recognized to be crucial to
maintaining normal cell proliferation, and its dysfunction and
un-limitation contribute to the development of malignant tumor
cells. Our previous data revealed that TIPE2 overexpression could
cause G2/M phase cell cycle arrest and regulate the expression of
CDK1, phosphorylated CDK1, cyclin B1, and p21, and in the
present study, gracillin also displayed a similar effect on cell cycle
with TIPE2 overexpression. Together, these results confirmed
that gracillin could inhibit gastric cancer cell proliferation via

AKT phosphorylation and cell cycle distribution, which may be
associated with TIPE2 expression.

Tumor metastasis is a typical and fatal symptom of advanced
cancer, which contributes to approximately 90% of cancer-related
deaths. During the process of tumor metastasis, malignant tumor
cells begin to migrate via the epithelial-mesenchymal transition
process (EMT), spread to the patient’s organs, and finally
threaten the patient’s life. The EMT process is usually
characterized by high expression of N-cadherin and vimentin
and low expression of E-cadherin. Recent evidence has revealed
that TIPE2 could suppress the migration of tumor cells by
promoting the induction of E-cadherin expression and
inhibition of N-cadherin and vimentin expression. Our present
data show that gracillin suppresses the migration of gastric cancer
BGC-823 cells, and that TIPE2 partly participated in this effect.
Furthermore, gracillin induced the expression of E-cadherin and
inhibited the expression of N-cadherin and vimentin, and cells
treated with TIPE2 siRNA displayed a more obvious regulation
effect of gracillin on E-cadherin and vimentin expression. These
results reveal that gracillin possesses the potential to suppress
tumor cell migration via the EMT process in BGC-823 cells,
which may be associated with TIPE2 expression.

Additionally, cell apoptosis is recognized as a process of
programmed cell death that maintains physiological
homeostasis by clearing away the dysfunctional and valueless
cells. However, the resistance to apoptosis is a classic
characteristic of malignant tumor development. Hence,
reducing the resistance to apoptosis would be an important
strategy for fighting tumors. Bcl2, an antiapoptotic protein
found in mitochondria, plays an important role in
determining the occurrence of apoptosis and regulating tumor
progression. Several previous reports revealed that TIPE2 could
inhibit the expression of bcl2 and suppress mitochondrial
apoptosis as a tumor suppressor in gastric cancer cells and
other tumor cells. This information implied that the effects of
gracillin fighting against gastric cancer were also associated with
TIPE2-mediation of mitochondrial apoptosis. We investigated
this issue and confirmed that gracillin could promote cell
apoptosis and suppress the expression of bcl2, and that the
effect of gracillin was statistically more significant in the
absence of TIPE2. These results demonstrated that TIPE2-
mediation of mitochondrial apoptosis may also be a way that
gracillin suppresses gastric cancer. Of course, the role of
mitochondria needs to be elucidated in future research, to
better understand the pro-apoptotic effect of gracillin.

Overall, the present study has identified gracillin as a TIPE2
inducer that can fight against gastric carcinoma, which was
extracted from the medicinal plant Rhizoma Paridis following
bioassay-guided isolation. Furthermore, we elucidated the
mechanism of gracillin’s benefits against gastric carcinoma:
that gracillin inhibits cell proliferation involving the PI3K/
AKT pathway and cell cycle arrest, suppresses the EMT
pathway to regulate cell migration, and induces bcl2-associated
mitochondrial apoptosis. Moreover, we confirmed the role of
TIPE2 in these effects. These findings regarding the benefits and
mechanism of gracillin isolated from Rhizoma Paridis will be
beneficial to the modern medicinal development of Rhizoma

FIGURE 9 | Scheme summarizing the mechanism of gracillin suppress
gastric cancer via TIPE2.
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Paridis and gracillin, and it is also interesting to understand the
role of TIPE2 in gastric carcinoma. Of course, several issues
regarding how gracillin regulates TIPE2 and the more precise
mechanism of TIPE2 in gastric carcinoma remain obscure. Our
laboratory will continue to explore these issues, and some of this
work is already underway.
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In antineoplastic therapy, one of the challenges is to adjust the treatment to the needs of
each patient and reduce the toxicity caused by conventional antitumor strategies. It has
been demonstrated that natural products with antitumoral properties are less toxic than
chemotherapy and radiotherapy. Also, using already developed drugs allows developing
substantially less costly methods for the discovery of new treatments than traditional drug
development. Candidate molecules proposed for drug repositioning include 4-
methylumbelliferone (4-MU), an orally available dietetic product, derivative of coumarin
and mainly found in the plant family Umbelliferae or Apiaceae. 4-MU specifically inhibits the
synthesis of glycosaminoglycan hyaluronan (HA), which is its main mechanism of action.
This agent reduces the availability of HA substrates and inhibits the activity of different HA
synthases. However, an effect independent of HA synthesis has also been observed. 4-
MU acts as an inhibitor of tumor growth in different types of cancer. Particularly, 4-MU acts
on the proliferation, migration and invasion abilities of tumor cells and inhibits the
progression of cancer stem cells and the development of drug resistance. In addition,
the effect of 4-MU impacts not only on tumor cells, but also on other components of the
tumor microenvironment. Specifically, 4-MU can potentially act on immune, fibroblast and
endothelial cells, and pro-tumor processes such as angiogenesis. Most of these effects
are consistent with the altered functions of HA during tumor progression and can be
interrupted by the action of 4-MU. While the potential advantage of 4-MU as an adjunct in
cancer therapy could improve therapeutic efficacy and reduce toxicities of other
antitumoral agents, the greatest challenge is the lack of scientific evidence to support
its approval. Therefore, crucial human clinical studies have yet to be done to respond to
this need. Here, we discuss and review the possible applications of 4-MU as an adjunct in
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conventional antineoplastic therapies, to achieve greater therapeutic success. We also
describe the main proposed mechanisms of action that promote an increase in the
efficacy of conventional antineoplastic strategies in different types of cancer and prospects
that promote 4-MU repositioning and application in cancer therapy.
Keywords: 4-methylumbelliferone, hyaluronan, extracellular matrix, cancer, antitumoral action
1 INTRODUCTION

Natural products derived from plants have been extensively used
for thousands of years. However, to guarantee their correct
application and safety, their benefits should be thoroughly
investigated through both basic and clinical studies. Although
the World Health Organization (WHO) has established the
operational guide to use and conduct clinical studies of these
products, rules and regulations depend on the region or country.
Several products that contain active principles from plant extracts
are already included in the health system, but their percentages in
the prescription depend on the authorization by entities such as
the European Medicines Agency (EMA) or the Food and Drug
Administration (FDA). For example, in an analysis made of
prescriptions dispensed from community pharmacies in the
USA between 1959 and 1980, 25% were products derived from
plants (1). Among these herbal-derived products are coumarins,
whose name originated from the fact that they were first found in
the seed of the tree Dipteryx odorata of the family Fabaceae,
commonly known as “cumaru” or “kumaru” in Central and South
America (2). Coumarin derivatives are currently extracted from
many plants across continents and are found in high levels in
fruits, roots, stems and leaves (3). It has been described that
coumarin and its derivatives have diverse biological effects, acting
as anti-inflammatory (4), anticoagulant (5), antiviral (6),
fungicidal (7) and antitumor agents (8). Chemically, they are
benzo-a-pyrones (IUPAC nomenclature: 2H-chromen-2-one),
which consist of a benzene ring joined to a pyrone ring. Among
coumarin derivatives is 4-methylumbelliferone (4-MU),
considered to belong to the group of simple coumarins (9). 4-
MU is hydroxylated in position seven, known as umbelliferone,
and methylated in position four (IUPAC nomenclature: 7-
hydroxy-4-methylcoumarin), and also known by the
international nonproprietary or generic name: hymecromone.
The information provided in the National Center for
Advancing Translational Sciences (NCATS) Inxight portal
Drugs indicates that this substance is approved in Europe and
Asia to treat biliary spasm and is used orally as a choleretic and
antispasmodic drug and as a standard for the fluorometric
determination of enzyme activity (https://drugs.ncats.io/).

Umbelliferones are widely distributed among the plant
families Rutaceae, Umbelliferae (celery, anise) and Asteraceae
(chamomile) (1). However, since these compounds are not easily
extracted from plants, they are synthesized using the
“Pechmann” condensation reaction of resorcinol and formyl
acetic acid (10). Our interest in these molecules lies on their
mechanism of action. In particular, 4-MU is able to inhibit
hyaluronan (HA) synthesis since the active glucuronidation of 4-
275
MU depletes the cellular UDP-glucuronic acid (UDP-GlcUA)
pool necessary for HA synthesis. It has also been determined that
4-MU downregulates the mRNA levels of HA synthases (HAS)
(11). Since HA is an important extracellular glycosaminoglycan,
able to modulate tumor behavior (12), 4-MU can be considered
as a drug with antitumor action. In addition, some reports have
demonstrated that its therapeutic action in pathological
conditions relies on more than just its effects on HA synthesis
(13, 14). However, it is still necessary to deepen the knowledge on
this mechanism of action. As mentioned, 4-MU depletes the
UDP-GlcUA pool, whose synthesis is dependent on glucose
metabolism, thus affecting the cellular energetic state (15).
Besides, several metabolic routes that use UDP-GlcUA, such as
conjugation reaction, which allows inactivation of other
metabolites, could be affected.

Thus, in this review, we discuss the tumor process that might
be modulated by 4-MU, focusing on the type of tumor as well as
on its action on different tumor-associated cells besides the
tumor cell itself.
2 PHARMACOLOGICAL ASPECTS

2.1 4-MU Metabolism
4-MU metabolism gives rise to a limited number of metabolites
however the metabolites that are produced depend on the
species (3). Specifically, 4-MU is metabolized mainly by
glucuronyltransferases to a glucuronide conjugate in phase II
reactions, transforming it into 4-methylumbelliferone-beta-D-
glucuronide (4-MUG) (16). 4-MU, like other coumarins, is
insoluble in water, and since it is not a polar molecule, it can
cross the lipidic intestinal barrier easily, allowing its complete
absorption when orally administered, finally binding to plasma
protein, which allows it to adequately reach the tissues (3). It has a
short half-life and low bioavailability and is excreted primarily in
urine (17). Besides, the methyl group in position four offers 4-MU
several advantages over the other derived molecules, such as lower
toxicity, since it prevents its metabolism to the mutagenic 3,4-
coumarin epoxide by the action of liver cytochrome P450 enzymes
(18), and lower anticoagulant effect compared to dicoumarol or
warfarin. Thus, products containing 4-MU are available in the USA
and Europe as dietary supplements (Heparvit®, Heparmed®,
DetoxPro®). Besides, a clinical trial in the USA in patients with
chronic hepatitis B and C (ClinicalTrials.gov identifier
NCT00225537) has also demonstrated that 4-MU is safe,
reaching phase II of the study in 2007, although complete results
are not published yet. The dose ranges used in humans are between
October 2021 | Volume 11 | Article 710061
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8 and 7000 mg/day (19), being several times higher than the
acceptable daily intake in food and cosmetic products, which is
0.06 mg/kg/day (20). However, no mutagenic or genotoxic effects
have been observed (21). This makes it an interesting compound to
consider for use in several diseases and propose its repositioning in
cancer, since positive responses have been observed even in
advanced stages of this disease (22).

Based on studies in rats, which are poor models to compare
with humans for this particular type of metabolism, the FDA
classified coumarins as toxic compounds (9). However, as
compared with their hepatotoxicity in rats and mice (23),
studies carried out in humans have shown little evidence of
liver dysfunction (3). Moreover, as compared with other
coumarin derivatives, 4-MU has been safely used in liver
therapy as a choleretic and spasmolytic, improving liver
detoxification systems through increased bile production (24).
In humans, 4-MU is consumed at a dose of 1500 to 2200 mg/day
as a choleretic, and, in several cancer models in mice, it has
shown antitumor activity in doses of 1000 to 3000 mg/kg, being
the maximal tolerated dose 2300 to 7200 mg/kg (3). Thus, taking
into account this pharmacological aspect of 4-MU, it is possible
to suggest that , in combination with other cancer
chemotherapeutic drugs, these doses could be lower without
loss of their effectiveness, providing additive or synergistic effects,
as will be discussed below.

2.2 Differential Pharmacological Effects
of 4-MU
Regarding the undesirable pharmacological effects of 4-MU,
Garcıá-Vilas et al. observed that it could show a potent
antiangiogenic effect by inducing the inhibition of HA
synthesis and that since HA is a normal constituent of the
extracellular matrix (ECM) in several tissues in humans, its
longtime use might cause systemic damage (25). In the context
of cancer, it would be considered that 4-MU should be used at
similar time and in combination with a chemotherapy protocol.
Therefore, tissues that have active HA synthesis could be affected
during chemotherapy treatment. Besides, due to the current
difficulty of deliver the drug in a tumor-specific manner, the
time schedule during cancer treatment must be carefully studied
in human patients. In an atherosclerosis mouse model, Nagy
et al. found that 4-MU alters the normal vascular endothelial
glycocalyx, favoring its progression (26). This also suggests that
this compound could induce side-effects like cardiovascular
alterations, and therefore the correct dose and treatment time
should be analyzed in different contexts to reduce potential
adverse effects. However, experiments at our lab support the
hypothesis that, in a context where HA is overproduced, 4-MU
could have therapeutic effect. In hepatocellular cell lines with
different levels of HA production, we observed that significant
antiproliferative or apoptotic effects were detected only in cells
with high HA levels (27). In fact, 4-MU treatment has been
found to be beneficial for pathologies with high level or
dysregulated synthesis of HA like endometriosis (28), where
the adherence of menstrual CD44-expressing endometrial cells
to mesothelial cells via binding to HA is involved in
Frontiers in Oncology | www.frontiersin.org 376
endometriotic lesions, or autoimmune diseases, such as
rheumatoid arthritis, type 1 Diabetes or multiple sclerosis,
where the chronic inflammation state is associated with
abnormal deposition of HA in the synovial compartment,
pancreatic islets and spaces between myelinated axons,
respectively (29).

In the next section, we will discuss the antitumor effects of 4-
MU in different types of cancers, which is the focus of this review.
3 ANTITUMORAL EFFECTS OF 4-MU
TREATMENT IN DIFFERENT TYPES
OF CANCER

In several human cancers, HA concentration is increased (30, 31)
and it is well known that a HA-rich stroma has an active role in
the tumor microenvironment, promoting tumor development,
angiogenesis, metastasis (32, 33), and drug resistance (34), and
even acting as an immune-regulatory factor (35). Therefore,
targeting HA synthesis by 4-MU represents a specific
therapeutic approach to control HA levels in the cancer cell
stroma. Several reports have shown that 4-MU inhibits the
proliferation, migration, and invasion of multiple cancer types,
both in vitro and in vivo, by a mechanism dependent on the
inhibition of HA synthesis (Table 1), which will be the
mechanism mainly discussed, although independent
mechanisms will also be reviewed.

3.1 Colorectal Carcinoma
Colorectal cancer (CRC), one of the most observed types of
tumor worldwide, presents treatment limitations due to the
necessity of surgical treatment and the high rates of metastasis
and mortality (68). For this reason, it is one of the main targets of
the investigation about alternative therapies that seek to control
tumor spread and reduce mortality. In this sense, several
scientific reports have demonstrated the specific role of 4-MU
in CRC. In colon cancer cells, Heffler et al. showed that the
inhibition of the inhibition of HAS and HA decreases tumor
growth and increase apoptosis in a dose-dependent manner (69).
Similarly, in the HCT-8 cell line, Wang et al. showed that 4-MU
can effectively reduce 2D and 3D proliferation as well as cell
motility and that this effect could be reversed by addition of
exogenous HA, indicating that the reduction of HA production
in cancer cells could inhibit tumor growth and metastasis (70). In
another metastatic CRC cell line, SW620, Heffler et al. also found
that in vitro treatment with 4-MU significantly reduced cell
viability (69). Besides, based on the fact that HA and focal
adhesion kinase (FAK) signaling are associated with the
promotion of tumorigenesis, these authors observed that 4-MU
could act synergistically during FAK inhibition (69). Also, in
CT26 CRC cells, Malvicini et al. observed that 4-MU significantly
reduced HA synthesis without affecting their viability and that, in
an in vivomouse model, the reduction of HA by 4-MU treatment
reduced tumor interstitial pressure without affecting tumor
growth (36). However, in this model, the authors also found
that 75% of mice treated with 4-MU in combination with
October 2021 | Volume 11 | Article 710061
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cyclophosphamide and IL-12 showed tumor regression
(36). This triple combination induced the production
of antiangiogenic factors and increased the migration of
cytotoxic T lymphocytes in tumors, showing that tumor
microenvironment remodeling and reduction of HA synthesis
increase the efficacy of anticancer immunotherapies combined
with chemotherapy agents (36).

These reports indicate that, in CRC models, 4-MU exerts its
action by inhibiting HA synthesis, but the impact of this
inhibition could be associated or not with the modulation of
tumor cell survival, suggesting that it affects both tumor cells and
the tumor microenvironment.

3.2 Pancreatic Cancer
Pancreatic ductal adenocarcinoma (PDAC) is the most
malignant of all solid cancers because of the difficulties in early
diagnosis and the poor response to chemotherapy (37). PDAC
has an abundant volume of stroma composed of large amounts
of HA (30, 71). It has been demonstrated that, in this type of
cancer, 4-MU inhibits HA synthesis, thus affecting tumor cell
behavior (38). In pancreatic cancer cells, Nagase et al. first
determined that 4-MU suppressed cell proliferation and
Frontiers in Oncology | www.frontiersin.org 477
invasion and increased apoptosis by inhibiting HA production
(37). Then, in an in vivo mouse model of PDAC, these authors
found that 4-MU treatment suppressed HA accumulation in
pancreatic tumor tissue and improved survival rate (37). To
better understand tumor microenvironment interactions, Cheng
et al. studied this inhibition in PDAC Panc-1 cells co-cultured
with stromal fibroblasts (39). Specifically, they. found that 4-MU
inhibited the enhanced migration of PDAC cells in response to
tumor-stromal interactions with fibroblasts (39). In addition,
Nakazawa et al. showed that 4-MU inhibited HA synthesis and
the formation of the pericellular HA coat in KP1-NL pancreatic
cells and decreased liver metastases in vivo (40). In another
human pancreatic cancer cell-bearing mouse model, Yoshida et
al. observed a decrease in tumor volume and a significant
reduction of the intratumoral HA amount (41). Besides,
histological analysis by electron microscopy revealed that 4-
MU altered the intercellular space, causing it to become less
cohesive and more permissive to drug delivery, indicating that
this could be a promising combination with chemotherapy
agents, improving their effects (41). In fact, several reports
have indicated the potential role of 4-MU as a co-adjuvant
during the chemotherapeutic treatment of this cancer. In this
TABLE 1 | Effect of 4-MU treatment in different types of tumors.

Tumor Effect of 4-MU treatment (in vitro and/or in vivo) References

Colon carcinoma Higher expression of antiangiogenic factors (36)
Higher migration rates of cytotoxic T lymphocytes
Reduction of tumor interstitial pressure

Pancreatic cancer Suppressed cell proliferation, migration and invasion (37–42)
Increased apoptosis
Alterations in intercellular spaces
Decreased liver metastasis
Potentiated effect of gemcitabine and 5-fluoruracil
Enhanced cytotoxic effect of T lymphocytes

Prostate cancer Inhibited proliferation, motility and invasion (43, 44)
Higher apoptosis
Decreased tumor growth and microvessel formation

Ovarian cancer Inhibition of cell migration, proliferation and invasion (45–47)
Decreased tumor growth

Breast cancer Inhibition of the proliferation of human breast carcinoma cells (48–51)
Decreased cell motility, invasion and proliferation
Decreased incidence of metastasis and growth of CSC in the bone

Hepatocellular carcinoma Inhibition of cancer stem cell properties (27, 52, 53)
Reduction of liver fibrosis and impairment of tumor growth by reduction of proangiogenic factors

Bone-derived cancer Osteosarcoma: (54–57)
Inhibition of cell proliferation, migration and invasion.
Reduced lung metastasis
Chondrosarcoma:
Suppression of cell proliferation, migration and invasion
Inhibition of local tumor growth
Fibrosarcoma:
Positive effect on the sensitivity of cells to radiotherapy

Melanoma Inhibition of cell adhesion and locomotion (58–60)
Suppression of liver metastasis
Positive effect on the sensitivity of cells to vemurafenib

Chronic myeloid leukemia Induction of apoptosis in vitro and in vivo (61–64)
Reduced tumor growth
Sensitization of CML cells to doxorubicin and vincristine

Glioblastoma Decreased cell migration and proliferation (65–67)
Induction of apoptosis
Sensitization of glioblastoma cells to temozolomide
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regards, Nagase et al. found that in vivo co-administration of 4-
MU and the chemotherapeutic drug gemcitabine to tumor-
inoculated mice decreased the size of primary and metastatic
tumors more than gemcitabine alone (37). By combining 5-
fluorouracil with 4-MU treatment in an in vivo pancreatic cancer
model, Yoshida et al. found similar results, where 4-MU
potentiated the effects of 5-fluorouracil by sensitizing tumor
cells to its cytotoxic action (42). Also, the role of 4-MU as a
modulator of immunotherapy strategy during PDAC has been
recently determined. Suto et al., for example, have recently
shown that 4-MU inhibited PDAC cell proliferation and HA
synthesis in four different PDAC cell lines, and enhanced gd T-
cell-rich peripheral blood mononuclear cell-mediated
cytotoxicity against pancreatic cells (72). These authors found
the same results in vivo, where 4-MU reduced intratumor HA
deposition and promoted infiltration of transferred gd T-cells
into tumor tissue, and consequently suppressed tumor growth
(72). These data indicate that 4-MU inhibits HA synthesis and
reduces the amount of HA in the ECM of prostate cancer, thus
affecting tumor cell behavior and its response to chemo-
or immunotherapy.

3.3 Prostate Cancer
Some researchers have proposed that, in prostate cancer, 4-MU
acts as a regulator of HA synthesis and angiogenesis. Lokeshwar
et al., for example, studied the effects of 4-MU on different
prostate cancer cell lines and demonstrated that 4-MU inhibited
proliferation, motility, and invasion and increased apoptosis (43,
44). Besides, in a mouse model of prostate cancer, these authors
observed that oral administration of 4-MU significantly
decreased transgenic adenocarcinoma and PC3-ML tumor
growth without organ toxicity or changes in serum chemistry
or body weight. They also found that tumors from 4-MU–treated
animals showed reduced microvessel density and downregulated
HA receptors, Akt signaling and b-catenin activation (43, 44).
Although not many reports have evaluated 4-MU as a modulator
of prostate cancer behavior, these studies, together with other
studies analyzing the effect of 4-MU in other types of tumors,
reinforce the inhibitory role of 4-MU in prostate cancer growth
with an anti-angiogenic potential. Therefore, these data open up
new avenues of investigation of the effect of this natural molecule
on pancreatic cancer and its possible therapeutic applications.

3.4 Ovarian Cancer
Ovarian cancer is one of the most frequent gynecological
pathologies in adult women. It has a high mortality rate since
it metastasizes early and quickly, presenting high resistance to
chemotherapy (45, 73). Importantly, high levels of HA have been
detected in histological samples from tumor and metastatic
lesions derived from patients with epithelial ovarian cancers
with worse prognostics, suggesting that this molecule could be
considered a therapeutic target (46). Thus, many studies are
currently assessing the ability of natural products as 4-MU to
induce ovarian cancer cell death and complement the antitumor
treatment. One of the first studies performed for Kultti et al.
showed in SKOV-3 ovarian cancer cells determined that 4-MU
inhibits HA synthesis and produces large quantities of 4-MU-
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glucuronide in vitro, depleting the cellular UDP-GlcUA source
(11). The inhibitory effect of 4-MU has also been observed in the
down-regulation of HAS3 expression (11). In addition, Anttila et
al. found that the reduction of the HA-pericellular coat was
related to the inhibition of cell migration, proliferation and
invasion (46). Extending the studies on ovarian cancer,
Tamura et al. demonstrated the effect of 4-MU on HRA
human ovarian serous adenocarcinoma cells, using in vitro
assays and an in vivo rat peritoneal carcinoma model (47).
These authors found that 4-MU inhibited ovarian cancer cell
proliferation in a dose-dependent manner in vitro, but also found
non-inhibitory effects of 4-MU on cell invasion and migration
(47). In their in vivo experiments they found that 4-MU
administration inhibited the growth of peritoneal tumors and
significantly prolonged rat survival (47). Recently, An et al. have
determined the molecular mechanisms associated with the
inhibitory effect of 4-MU on ES2 and OV90 epithelial ovarian
cancer cells (45). Specifically, they observed a decrease in cell
proliferation and cell arrest in the G2/M phase of the cell cycle,
which defines lower cell division rates. They also found that 4-
MU interfered with calcium homeostasis, induced endoplasmic
reticulum stress, inhibited AKT and S6 phosphorylation, and
increased MAPK phosphorylation (45).

Certain ovarian cell carcinomas show a spherule-like mucoid
stroma with a hollow acellular space. Despite the absence of
stromal cells, both the mucoid stroma and hollow spheroids
contain abundant ECM, mainly composed of HA, which plays a
crucial role in the formation of those structures and in tumor
progression. In this sense, Kato et al. determined that after 4-MU
treatment of HAC-2 ovarian cancer cells, HA synthesis was
inhibited and consequently, the spherule-like accumulation of
HA and hollow spheroids were not observed (74). These authors
determined that the inhibition of HA synthesis was associated
with the reduction of cell growth (74).

All these reports indicate that tumor-derived HA is essential
for the regulation of cell growth, migration and invasion ability
of ovarian clear cell carcinoma. Thus, the inhibition of HA
synthesis could be a potential adjunctive therapy, avoiding the
interaction of this molecule with its receptors, like CD44, and in
turn blocking the signaling that allows tumor dissemination in
this type of cancer. However, it has been observed that 4-MU
effect could also be independent of the modulation of HA
expression, affecting other tumor signals besides HA-CD44, a
fact that also supports its therapeutic use.

3.5 Breast Cancer
Breast cancer is one of the most frequently diagnosed cancers in
women and is considered to have a high phenotypic diversity,
which heavily influences the progression and outcome of the
treatment. In this sense, three receptors are frequently analyzed
for the correct treatment decision: the estrogen receptor (ER), the
progesterone receptor (PR) and the human epidermal growth
factor receptor 2 (HER2) (75). Some reports have shown that 4-
MU treatment leads to changes in the proliferative phenotype of
ER- and ER+ cells (48, 75). Karalis et al., for example, found that
4-MU treatment led to a reduction in cell proliferation in both
cell types, which, in ER+ cells, was more pronounced after 2 days,
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and in ER- cells much faster on the first day of treatment (48).
This quicker reaction of ER- cells to lower concentrations of 4-
MU than ER+ cells could indicate a stronger susceptibility of
these cells to low 4-MU concentrations showed that 4-MU
inhibits proliferation of human breast carcinoma cells in
different cell lines, like T-47D (ER+PR+HER2-) and MDA-MB-
231 (ER-PR-HER2-) cells (48). Additionally, these authors
showed that low levels of HA and glucose in the tumor
microenvironment could increase the sensitivity of breast
cancer cells to 4-MU treatment and thus inhibit cell
proliferation more strongly (48).

In breast cancer cell lines with highly invasive character, such
as MDA-MB-231 cells. Urakawa et al. demonstrated that 4-MU
suppresses HA synthesis and accumulation probably due to the
suppression of HAS2 expression, which could in turn lead to
lower cell motility, invasion and proliferation (49). By using 4-
MU to inhibit HA synthesis in breast cancer cells, Brett et al.
suggested that a decrease in pericellular matrix formation is
correlated with decreased invasiveness, and proposed that a
reduction in HA synthesis could inhibit the formation of the
pericellular matrix and provide a good strategy for inhibition of
metastatic progression (50). Also, Kultti et al. showed that 4-MU
inhibits migration of the non-invasive MCF-7 (ER+PR+HER2-)
breast cancer cells and that the growth of these cells is sensitive to
4-MU, being almost completely blocked by high concentrations
of the drug (11). These authors also showed that 4-MU inhibits
HA by reduction of the cellular HAS substrate UDP-GlcUA and
that in MCF-7 cells this reduction was dose-sensitive, with less
pronounced response at higher doses, while MDA-MB-361
(ER+PR-HER2+) cells lost most of their UDP-GlcUA at higher
doses of 4-MU (11).

To form metastasis, metastatic tumor cells usually move into
a specific organ. In particular, breast cancer preferentially
metastasizes to the bone and lungs. Okuda et al. showed that
cancer stem cells (CSCs) from a metastatic breast tumor show
considerably higher tumorigenic and metastatic capability than
CSCs from a low-metastatic tumor and indicate that HAS2 is
essential to provide CSCs with a metastatic phenotype (51).
These authors proposed that 4-MU, due to the specific inhibition
of HA by affecting HAS2 activity, can considerably suppress the
incidence of metastasis and growth of CSCs in the bone (51).

Thus, the above-mentioned reports indicate that 4-MU could
be beneficial to treat breast cancer, although the sensitivity of
tumor cells and the response to this drug will depend on the
hormonal receptor status. Interestingly, this opens a line of
investigation that could associate ECM remodeling by 4-MU
with the signal mediated by progestogens in breast cancer. On
the other hand, it is important to highlight that, due to its ability
to modulate the phenotype of CSCs, 4-MU has a great
therapeutic potential and could help to control tumor resistance.

3.6 Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC) is a tumor that frequently
occurs in the inflammatory microenvironment, usually as a
reaction process that arises in response to chronic injuries, like
chronic hepatitis C and B virus infection or alcohol abuse (76).
Regardless of the etiology, in chronic liver disease, the ECM
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components, like HA and collagen, deposit in the liver,
depending on the level of fibrosis progression. For this reason,
the level of HA could be used as a biomarker to assess the stage of
liver fibrosis (77). In high-HA-producing murine Hepa129 cells
and in medium-HA-producing human Hep3B cells, Piccioni et
al. showed that 4-MU inhibited proliferation and induced
apoptosis (78). Contrarily, in human low-HA-producing Huh7
cells, these authors observed partial resistance to 4-MU
treatment (78). These results show that the mechanism of 4-
MU action in HCC is highly dependent on HA levels (78). It has
also been demonstrated that 4-MU, by inhibiting HA, could
reduce liver fibrosis and diminish tumor growth by reduction of
proangiogenic factors, like VEGF and CXCL12, and also by
reduc t ion of IL-6 product ion in the l iver tumor
microenvironment (27). Some reports have shown that 4-MU
inhibits the properties of CSCs by the inhibition of HA,
accompanied by a reduction of CSC markers, l ike
transmembrane glycoproteins CD44 and CD133, as well as
CD90 and EpCAM cells, indicating a possible mechanism
which involves HA in cell-to-cell and cell-to-matrix
interactions (52, 53). In contrast to these reports, Mikami et al.
showed that systemic inhibition of HA synthesis by oral 4-MU
administration promotes the development of tumor in mice with
liver tumors induced by administration of thioacetamide (TAA)
(79). A possible explanation for this opposite result could be
associated with the HCC model used by the authors. The
administration of TAA induces DNA damage by increasing the
levels of reactive oxygen species (ROS) and affecting the
oxidative status of the liver microenvironment. Thus, HA
inhibition at early stages could be affecting the documented
protective action of HA during oxidative damage (80). At this
time, 4-MU administration would be detrimental, perpetuating
the damage of TAA and accelerating its carcinogenic action.

These results suggest that 4-MU administration could have a
positive impact on the treatment of HCC by affecting angiogenic
factors as well as hepatic CSCs. However, as commented in
section 2.2, further preclinical studies will be required to adjust
the moment of its application and the length of its use according
to the tumor stage to avoid systemic alterations. On the other
hand, analysis of the data about the interaction of 4-MU with
other drugs are also necessary to determine whether they could
affect its antitumoral action in HCC.

3.7 Bone-Derived Tumors
Osteosarcoma (OS), the most common primary bone tumor, is
responsible for considerable morbidity and mortality due to its
high rates of pulmonary metastasis. Although the prognosis of
OS patients has improved dramatically with the introduction of
chemotherapy, cases with metastases or an unresectable tumor
still have a poor prognosis (54). Several researchers have
suggested the involvement of a HA‐rich ECM in the
tumorigenicity of OS cells, and proposed that suppression of
this HA‐rich ECM leads to inhibition of malignant cell behavior
(81–83). Arai et al. demonstrated that 4-MU reduces the
formation of functional cell-associated matrices in OS cells and
inhibits cell proliferation, migration, and invasion, resulting in
the reduction of tumorigenicity and lung metastasis (54). These
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authors further studied 4-MU treatment in in vivo models of OS
and found that, although it showed only a mild inhibitory effect
on the growth of the primary tumor, it markedly inhibited the
development of lung metastasis (54).

4-MU treatment has also shown antitumor effects on low‐
grade chondrosarcoma, which is the second most common
primary malignant bone tumor and a tumor generally
considered resistant to conventional chemo‐ and radiotherapy
(84). This type of tumor is characterized by the formation of a
HA-rich ECM which has been proposed to be associated with
drug resistance (85). Hamada et al. determined that, in
chondrosarcoma cells, inhibition of HA synthesis by 4-MU
suppressed cell proliferation, migration, and invasiveness, and
that, in vivo, daily administration of 4-MU markedly inhibited
local tumor growth and significantly suppressed the amount of
HA in tumoral tissue (55).

Regarding fibrosarcoma, another of the most common bone-
derived tumors, some reports have also shown a positive effect of
4-MU treatment on the sensitivity of cells to radiotherapy (56,
57, 86, 87). In primary solid tumors, external radiotherapy is
generally effective and non-invasive and improves local control
in the target region. However, although radiotherapy is an
effective adjuvant treatment, metastasis and radiation
resistance are associated with poor prognosis in patients (88).
Saga et al. have shown that 4-MU administration in combination
with exposure to 2-Gy ionizing radiation reduced HA
production, cell invasion and the metastatic potential of
fibrosarcoma cells in vitro (86), suggesting that 4-MU could be
a radio-sensitizing molecule. Besides, in a later study, these same
authors determined that the radio-sensitizing effect of 4-MU was
not completely associated with its inhibitory effect on HA
synthesis and that 4-MU improved the radiosensitivity of
fibrosarcoma cells by suppressing inflammation (56).
Specifically, they revealed that 4-MU increased the sensitivity
of fibrosarcoma cells to X-ray radiation by inhibiting the
production of the pro-inflammatory cytokines IL-1b, IL-6 (87),
IL-1a , IL-36g and IL-37 (56). Recently, the authors
demonstrated that the radio-sensitizing effects of 4-MU are
intrinsically related to the suppression of antioxidant activity
through previously discovered anti-inflammatory effects (57).

Even more, in a model of metastatic breast cancer, Urakawa et
al. determined that 4‐MU suppressed metastatic lesions of bone
in vivo and inhibited the expansion of osteolytic lesions and
intraosseous tumor growth in breast cancer xenograft models by
inhibiting HA accumulation in tumor tissues (49).

These results suggest that, in bone-derived tumors, 4-MU
could be a beneficial adjuvant during radiotherapy by inducing
radio-sensitization of tumor cells as a consequence of HA
synthesis inhibition as well as by an independent mechanism
associated with the modulation of inflammatory and
oxidative factors.

3.8 Melanoma
Melanoma is one of the three main types of skin cancer, being the
most serious form. The prognosis of melanoma has historically
been poor, with a median survival of less than 12 months, which
can be ascribed to the aggressive nature of the disease and low
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response rates to conventional chemotherapy (89). In recent
years, although major therapeutic advances have been made,
resistance to these new therapies has also emerged (90). Thus,
new treatment modalities are needed to improve the outcome,
and 4-MU is one of the candidate molecules for use in new
therapeutic strategies. In this sense, different studies have
evaluated the potential role of 4-MU as a modulator of
melanoma progression.

Kudo et al. demonstrated that 4-MU inhibits the formation of
cell surface HA by B16F-10 melanoma cells and its release into
the culture medium. These authors also showed that 4-MU had
no significant cytotoxic effects on cell growth, but inhibited the
adhesion and locomotion abilities of melanoma cells in a dose-
dependent manner (58). Since adhesion and locomotion are
involved in the early stages of metastasis, these results suggest
that HA-rich matrices adjacent to melanoma cells provide a
suitable environment for metastasis. In line with these findings,
Yoshihara et al. evaluated the role of 4-MU in melanoma
metastasis in vivo, by pre-treating melanoma cells with 4-MU
before mouse inoculation, showing both decreased cell surface
HA formation and suppression of metastasis after injection (59).
These authors also demonstrated that oral administration of 4-
MU to mice decreased liver HA content, which also contributed
to a suppressed liver metastasis (59). Thus, in agreement with the
data published by Kudo et al. (58), both cell surface HA of
melanoma cells and recipient liver HA can promote liver
metastasis of melanoma in vivo (59), strongly supporting 4-
MU as a potential anti-metastatic agent in a highly malignant
tumor as melanoma.

Another interesting study that reinforces the anti-invasive
role of 4-MU was carried out by Edward et al. These authors
showed that 4-MU inhibited tumor cell growth and the
activation of stromal HA synthesis by melanoma cell-derived
factors (91). Specifically, they demonstrated that 4-MU caused a
dose-dependent growth inhibition of fibroblast and melanoma
cells. The inhibition of cell growth was more pronounced when
fibroblasts were stimulated with C8161 melanoma cell-
conditioned medium (91). In addition, 4-MU reduced the level
of HA in fibroblast-contracted collagen lattices, and inhibited
both the growth of melanoma cells and invasion into the lattices
(91). These results allow concluding that 4-MU has an anti-
proliferative effect on the melanoma microenvironment, not only
suppressing HA synthesis, but also inhibiting the induction of
stromal HA accumulation and the proliferation offibroblasts and
melanoma cells.

Based on its growth-inhibitory activities against melanoma
cells, Abildgaard et al. have recently proposed 4-MU as a new
drug candidate for melanoma treatment and combination with
chemotherapy (60). These authors showed that 4-MU affected
cellular metabolism through inhibition of glycolysis and
increased ROS production, suggesting the involvement of
oxidative stress in the cellular response (60).

3.9 Glioblastoma
Glioblastoma (GBM) represents the most malignant and deadly
brain tumor in adults (92). Despite invasive treatment strategies,
involving a triad of surgery, radiation and chemotherapy,
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patients inevitably relapse due to resistance and invasion within
the brain parenchyma and succumb within 15 months post-
diagnosis (92). It is noteworthy that the ECM of malignant
gliomas, like GBM, contains higher amounts of HA than normal
brain tissue, indicating that HA could be instrumental for tumor
adhesion and invasion (93, 94). It has been proposed that the
aggressiveness of GBM depends on the co-expression of HAS
and hyaluronidases (95). In this sense, based on the fact that 4-
MU is a small molecule able to cross the blood brain barrier (96),
Pibuel et al. proposed its use as an interesting therapeutic
strategy to complement GBM treatment (65). These authors
demonstrated that, in the GL26 murine GBM cell line, 4-MU
diminished HA synthesis while increasing apoptosis and
decreasing cell proliferation and migration (66). Yan et al.
found that alterations in HA metabolism, by silencing HAS3
or by treating with 4-MU, inhibited glioma cell proliferation by
affecting the autophagy flux (67). Although these new results are
encouraging, more investigations are needed to understand the
action and mechanism of 4-MU in GBM cells.

3.10 Chronic Myeloid Leukemias
Leukemia is the general name for cancer that involves blood-
forming cells. Among them, Chronic myeloid leukemia (CML) is
a type of cancer where the myeloid lineage is affected and
comprises a group of myeloproliferative neoplasms. In 2020,
approximately 15% of new cancer cases diagnosed in adults in
the USA were leukemias (97). Most patients have typical
cytogenetic alterations, the Philadelphia chromosome (Ph1),
and the BCR/ABL rearrangement, the latter of which produces
an abnormal tyrosine kinase and allows the specific treatment
with inhibitors of this kinase. However, a group of patients can
be Ph1-negative and have worse prognosis and shorter survival
than Ph1-positive patients. This group thus needs special
attention to find a successful therapy. Although there are
different well-established therapeutic strategies to control CML
progression (98), some studies have analyzed the potential role of
4-MU in CML. Ban et al. demonstrated that 4-MU is able to
induce apoptosis in K562 CML cells by activating the intrinsic
apoptosis pathway (61). These authors found that treatment with
4-MU leads to apoptosis in K562 cells through poly (-ADP-
ribose) polymerase (PARP) cleavage and alteration of the
mitochondrial membrane potential (61). Interestingly, they
also observed that the addition of exogenous soluble HA
protects K562 cells from 4-MU-induced apoptosis (61), which
suggests that the pro-apoptotic effect of 4-MU demonstrated on
CML cells is directly related to the inhibition of HA synthesis. In
line with this study, the same research group later demonstrated
the molecular mechanism by which 4-MU promotes apoptosis in
CML cells (62). They showed that 4-MU treatment induced
caspase-dependent apoptosis characterized by diminished HA
synthesis, in correlation with increased phosphorylation of p38
and PARP cleavage (62). These authors also showed the pro-
apoptotic effect of 4-MU in vivo, where treatment of tumor-
bearing mice with 4-MU significantly reduced tumor growth
through the induction of apoptosis (62). These results, together
with those of other studies, determine the role of 4-MU as a
molecule that favors the response of CML to chemotherapy
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(63, 64) and suggest that 4-MU is an excellent candidate for use
in combination with conventional therapeutic strategies.
4 EFFECTS OF 4-MU ON SPECIFIC
COMPONENTS OF THE TUMOR
MICROENVIRONMENT

Thanks to the numerous advances in the understanding of tumor
biology and cancer progression, it is well known that the
microenvironment where a tumor resides and develops is just
as important and critical for its growth as tumor cells themselves.
Therefore, it has been proposed that the modulation of the tumor
microenvironment (TME) is particularly important to improve
tumor response to cancer therapies (99). The TME is composed
of non-cellular and cellular components. For decades, the specific
role of non-cellular components of this microenvironment has
been studied, focusing on the ECM components which can
modulate tumor behavior. Even more, several functions of the
different cell types associated with the tumor, such as immune
cells, endothelial cells and mesenchymal stem cells, have been
demonstrated. The modulation of the TME caused by 4-MU
treatment is summarized in Figure 1.

4.1 Effects of 4-MU on Tumor-Associated
Cells
4.1.1 Tumor-Associated Fibroblasts
The cellular components of the TME include not only tumor
cells themselves, but also cancer-associated fibroblasts (100, 101).
Some authors have described that the interactions between
tumor cells and associated stromal fibroblasts stimulate the
synthesis of HA, which, as already mentioned, is present in
large amounts in several types of tumor (102, 103). Recently,
Cheng et al. showed that co-cultivation of PDAC cells and
stromal fibroblasts increased HA production, resulting in a
marked increase in the migration of PDAC cells (39).

Other authors have also shown that increased levels of HA in
the tumor stroma are associated with poor prognosis (31, 104). In
this sense, Urakawa et al. analyzed the effect of 4-MU on tumor
stromal cells, particularly in a murine fibroblast cell line, and
showed that 4-MU decreased HA levels, cell growth and motility
of fibroblasts (49). Also, in a murine bone metastasis model of
breast cancer, these authors showed that 4-MU administration
decreased the accumulation of HA around both tumor and
stromal cells, being well marked in the regions adjacent to bone
which correspond to the stroma, where fibroblasts are generally
abundant (49). In line with these results, Edward et al. showed that
4-MU inhibited fibroblast growth and reduced HA levels in
fibroblast-contracted collagen lattices, which in turn inhibited
both the growth and invasion by melanoma cell culture in this
condition (91), indicating that the remodeling of the tumor stroma
affects tumor development and metastatic capacity.

4.1.2 Macrophages
Macrophages (MØ) are the main infiltrating immune cells of the
TME. They differentiate from monocytes of systemic circulation
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in response to different stimuli from the environment and can
exhibit two phenotypic profiles, M1 and M2. Despite these cells
present high plasticity, MØ classically can be identified as M1
cells, that actively express HLA-DR and CD197 and have
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intrinsic phagocytosis capacity. Contrary, M2 cells express high
levels of CD163, CD209, CD206 and CCL2 with anti-
inflammatory functions (105). Specially, tumor-associated
macrophages (TAMs) can be considered as M2-like phenotype
FIGURE 1 | Effect of 4-MU treatment on the components of the tumor microenvironment.
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due to anti-inflammatory cytokines of the TME. They can induce
angiogenesis and lymphangiogenesis, by the release of growth
factors like VEGF, FGF, PDGF and TGF-b and matrix-
remodeling proteases. Moreover, they can suppress adaptive
and innate immune responses by the release of anti-
inflammatory factors like IL-10, TGF-b, and PD1L (106).
Therefore, TAMs promote the growth and spread of tumor
cells and reduce patient’s survival. Because of this, TAMs have
been proposed as therapeutic targets for cancer therapy.
Additionally, HA from the tumor ECM can modulate MØ
adhesion, migration and activation through its surface
receptors, depending on the size of the molecule. It is well
known that low-molecular-weight HA stimulates the
expression of inflammatory cytokines and chemokines and
growth factors (107). The interaction between receptors such
as CD44 and TLR and HA fragments induces the expression of
inflammatory mediators in murine and human macrophages
(108, 109) and can act as a danger signal by promoting antigen-
specific T-cell response (110). On the other hand, high-
molecu la r -we igh t HA has an t i - inflammatory and
antiproliferative properties, like regulatory T-cell activation
(111, 112). At our lab, in a breast cancer model, we have
previously demonstrated that high-molecular-weight HA
promotes MØ pro-angiogenic capabilities (113). For this
reason, HA-inhibitors like 4-MU could be a promising
therapy. However, the effect of 4-MU on immune cells in the
context of cancer is poorly studied. In an atherosclerosis in vivo
model, Nagy et al. showed that 4-MU oral administration in mice
led to a significant increase in MØ recruitment in atherosclerotic
lesions, promoting an inflammatory response and the
development of the disease (26). In addition, Rodrıǵuez et al.
demonstrated that long-term 4-MU oral administration in mice
with hepatocarcinoma caused, in MØ, an increase in the
secretion of pro-inflammatory cytokines, IL-1b and TNF-a,
and a decrease in anti-inflammatory cytokines, IL-10 and
TGF-b, indicating the polarization of these cells towards an
M1 profile in tumor and non-tumor regions. These examples
demonstrate that 4-MU action over immune cells is
context-dependent.

4.1.3 Endothelial Cells
Endothelial cells are involved in angiogenesis, i.e. the formation
of new blood vessels by sprouting from preexisting vessels. In
tumors, this process is essential as it allows their growth and
dissemination. Although this process is targeted by different
therapeutic drugs approved for use in cancer, development of
resistance has been observed. Thus, since 4-MU can affect
endothelial cell behavior, it could be a good strategy to
maximize anti-angiogenic therapy (114). Garcia-Vilas et al.
have shown evidence of action of 4-MU over endothelial cells.
These authors observed that 4-MU inhibited cell growth, was
able to generate new vessels without affecting the migration
capacity, and enhanced the expression of metalloproteinases
(25). Finally, by using different angiogenesis models in vivo,
they observed that 4-MU led to a significant reduction of this
process (25). In an HCC model, Piccioni et al. found evidence of
4-MU effect on endothelial cells in the TME (27). They observed
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that 4MU-treated mice showed significantly diminished systemic
levels of VEGF and expression of the specific vascular marker
CD31. They also found that 4-MU was able to inhibit endothelial
cell migration and tube formation, demonstrating that 4-MU has
an anti-angiogenic activity in HCC (27). Similar results have
been observed in a model of prostate cancer (44). However, since
little is known about the direct action of 4-MU over endothelial
cells in cancer, this topic should be further explored.

4.2 Effects of 4-MU Treatment on the
Non-Cellular TME
The ECM is the non-cellular component of the TME. During
embryonic development and organ homeostasis, the
composition of the ECM is tightly regulated. However, in
diseases such as cancer, it is usually deregulated and
disorganized, and undergoes extensive remodeling, acting as a
key player driving disease progression (76, 115). In this sense,
extremely high interstitial fluid pressures and a dense ECM
combine to limit the delivery and distribution of therapeutic
agents in solid tumors (116). In addition, high concentrations of
HA cause an expansion of the ECM, which contributes to
increased tumor interstitial pressure, which retards the delivery
and distribution of drugs from the vessels into the tumor (117–
120). Therefore, strategies to remove HA or block its synthesis
may improve drug delivery into solid tumors. In this sense,
several studies have shown that the inhibition of HA synthesis by
enzymatic agents, like PEGylated recombinant hyaluronidase
(PEGPH20), normalize interstitial fluid pressure and re-expand
the microvasculature, improving the delivery, distribution and
accumulation of drugs in tumors (117–119). Regarding this,
Dufort et al. showed that the systemic treatment of mice with
PEGPH20 reduced the extracellular levels of HA and interstitial
pressure, thus removing a significant barrier for drug delivery in
PDAC (117). Other authors also showed that the treatment with
PEGH20 in vivo reduces HA content, induces the re-expansion
of the microvasculature, and consequently improves gemcitabine
and DOX uptake in murine PDAC (118, 119). This example
demonstrates the potential of targeting the ECM/stroma and
modulating the mechanical properties of the surrounding
microenvironment, as an anti-PDAC therapy.

Unfortunately, recent research has shown that the promising
results obtained for PEGH20 in a phase I/II clinical trial in
PDAC (121) did not translate into the subsequent phase III study
HALO 301 (122) and further development of this drug was
stopped. This highlights the importance of looking for other
strategies that allow blocking HA synthesis. In this context, the
use of 4-MU may be a promising strategy. An interesting
research has shown that 4-MU significantly reduced the
amount of tumor HA, leading to a significant decrease in
tumor interstitial pressure and achieving improved tumor
perfusion in murine colorectal carcinoma (36). Similarly, as
described above, in a model of pancreas tumor, 4-MU was able
to remodel the ECM-generated interstitial gap within the tumor
cell by inhibiting HA production (72).

However, it is likely that 4-MU can also affect the synthesis
and organization of other ECM components, such as other non-
cellular components of the TME. In this regards, Keller et al.
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found that 4-MU reduced both versican and fibronectin in
trabecular meshwork cells of the eye (123). Even more,
Andreichenko et al. confirmed that 4-MU inhibits ECM
deposition by directly affecting the production not only of HA,
but also of Col1a, a major form of collagens contributing to ECM
remodeling in liver fibrosis (124). It was observed that other
glycosaminoglycans, such as chondroitin and heparin sulfates,
were sensitive to 4-MU treatment in epidermal keratinocyte
cultures. In this sense, a 4-MU concentration-dependent
dec r e a s e was f ound in the p roduc t i on o f the s e
glycosaminoglycans, although the effect was greater on HA In
epidermal keratinocyte cultures, Rilla et al. observed that other
glycosaminoglycans, such as chondroitin and heparin sulfates,
were sensitive to 4-MU treatment. They found that the
production of these glycosaminoglycans decreased in a 4-MU
concentration-dependent manner, although the effect was
greater on HA (125). In addition, an effect of 4-MU on matrix
metalloproteinases (MMPs), a family of proteolytic enzymes that
degrade many ECM components and play an important role in
tissue degradation and remodeling under various physiological
and pathological conditions, has been observed. Nakamura et al.
reported that, in human skin fibroblasts, 4-MU induces MMP2
activation (126). Surprisingly, in pathological conditions, 4-MU
shows a differential effect. Nakamura et al. reported that, in a
human lymphoma cell line as well as in other cultured human
carcinoma cells, 4-MU inhibited MMP9, an inhibition that could
not be mimicked by treatment of the cells with hyaluronidase
(127). These studies show that 4-MU may target ECM
components other than HA. Even more, as described above, in
a model of fibrosarcoma cells, 4-MU was able to remodel the
surrounding TME by inhibiting the production of pro-
inflammatory cytokines, altering other non-cellular
components of the TME, different from the ECM (56, 87).

Although many reports have highlighted the importance of 4-
MU in inhibiting HA synthesis, it could also be affecting the
synthesis of other ECM components like proteoglycans and have
biological effects on soluble tumoral factors. In fact, further
studies about its effect on other non-cellular components of
the TME, their interaction, and their role in cancer pathogenesis
will be necessary. For example, it will be interesting to investigate
the impact of 4-MUmodulation over different ECM components
and the mechanical properties of the surrounding TME.
5 4-MU TREATMENT AS A NEW
STRATEGY OF CO-ADJUVANT DRUG ON
CONVENTIONAL ANTINEOPLASTIC
THERAPIES

One of the most important challenges of antineoplastic therapies
is to adjust the treatment to the needs of each patient and reduce
the toxicity caused by conventional antitumoral strategies.
Several scientific studies have reported the key role of the
pericellular HA-rich ECM as a biological barrier in the TME.
Among the processes controlled by this natural barrier are the
modulation of immune effectors (35, 113), the inhibition of
Frontiers in Oncology | www.frontiersin.org 1184
diffusion of chemotherapeutic drugs (128) and the difficult
uptake of DNA transgene complexes in gene therapy (129).
Furthermore, previous studies from our laboratory and other
authors have shown that ECM components play important roles
in acquired resistance to anticancer drugs (34, 130, 131).
Therefore, the development of novel cancer treatments that
target HA by altering the ECM represents a pioneering
approach to the treatment of several cancers.

According to the evidence collected so far, 4-MU represents
one of the candidate molecules for drug repositioning in cancer
therapy. While the potential advantage of 4-MU as an adjunct in
cancer therapy could improve therapeutic efficacy and reduce
toxicities, the greatest challenge is the lack of strong scientific
evidence to support its approval. Therefore, crucial human
clinical studies have yet to be performed to respond to this
need. Nevertheless, numerous scientific reports in the early
stages of research have studied the role of 4-MU as a co-
adjuvant of conventional antineoplastic treatments. Since it has
been previously demonstrated that 4-MUmediates the inhibition
of HA synthesis and pericellular HA matrix formation, this
molecule would increase the efficacy of anticancer treatments.

In a study of alternative therapies applicable to pancreatic
cancer, Nakazawa et al. showed that pre-treatment of KP1-NL
cells with 4-MU increased the anticancer effect of gemcitabine
(40). Particularly, these authors showed that pancreatic cancer
cells are enclosed by HA-rich coats, and that 4-MU treatment
inhibited the formation of HA pericellular coat, which promoted
the perfusion and uptake of gemcitabine (41). These results were
also confirmed in an in vivo murine model, where co-
administration of 4-MU and gemcitabine to tumor-bearing
mice reduced the size of the primary and metastatic tumors
(40). These data suggest that the combination of 4-MU and
gemcitabine is effective against human pancreatic cancer cells
and tumor progression in vivo. Regarding the possible use of 4-
MU as a modulator of chemotherapy in pancreatic cancer,
Yoshida et al. found a similar effect in combination with 5-
fluorouracil (5-FU) (42). These authors showed that 4-MU
administration changed the antitumor efficacy of 5-FU,
enhancing its cytotoxicity in vitro and in vivo and that
combined treatments of 5-FU and 4-MU inhibited cell
proliferation and enhanced the intracellular concentration of
5-FU in vitro (42). In the in vivo model, the authors found that
mouse tumors treated with 5-FU and 4-MU decreased in size
and animal survival was prolonged, in addition to a decrease in
the cohesiveness of the intercellular space, which favored 5-FU
perfusion and activity (42).

These findings are consistent with a recent study showing that
chemotherapy with carboplatin (CBP) induces HA synthesis,
which can contribute to chemoresistance by regulating ABC
transporter expression in ovarian cancer (132). Specifically, this
study determined that, in combination with CBP, 4-MU treatment
significantly decreased ovarian cancer cell survival and increased
apoptosis compared to CBP alone (132). In addition, this
combined treatment reduced the expression of cancer stem cell
markers such as ALDH1 and ABCG2 (132). Furthermore, 4-MU
inhibits the invasion ability of chemoresistant primary cells in vivo,
demonstrating that HA inhibition is a promising new strategy to
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overcome chemoresistance and improve ovarian cancer
survival (132).

The effect of 4-MU as a promoter of chemotherapeutic
treatment has also been determined in other types of tumors
such as glioblastoma, the most frequent primary tumor of the
central nervous system (133). In this work, the potential
antitumor effect of 4-MU was tested in combination with
temozolomide on GL26 glioblastoma cells. As expected, 4-MU
decreased HA synthesis, but also diminished cell proliferation
and induced apoptosis while reducing cell migration and the
activity of MMPs. Besides, 4-MU sensitized GL26 cells to the
effect of temozolomide and showed selective toxicity in tumor
cells without exhibiting neurotoxic effects, highlighting its
potential usefulness to improve glioblastoma treatment (66).

Another antineoplastic strategy mainly used for cancer
treatment is radiotherapy. In this regards, 4-MU has been
proposed as a positive modulator of radiotherapy response in
fibrosarcoma. Saga et al. reported that co-administration of 4-
MU enhanced the lethality of X-ray irradiation in HT1080
human fibrosarcoma cells and decreased their invasiveness
(86). After that, the authors continued investigating the
molecular bases of their discovery and found that co-
administration of 4-MU suppressed the activation of IL-6 and
IL-8 after X-ray irradiation (86). Similar results have been
observed for the upstream signaling component IL-1 (87).
These results indicate that the radiosensitivity of fibrosarcoma
cells is improved by suppressing inflammation through the
administration of 4-MU.

Consistent results have also been found when evaluating 4-
MU as a co-adjuvant of antineoplastic therapies against
melanoma and CML. In the case of melanoma, one of the
therapeutic strategies is based on the inhibition of the BRAF
oncogene, since the most prevalent BRAFmutation in melanoma
is directly associated with cellular metabolic reprogramming by
the Warburg effect (134, 135). Therefore, treatment with BRAF
inhibitors reverses the Warburg effect and stimulates
mitochondrial activity, which favors disease control (136, 137).
In this regards, Abildgaard et al. demonstrated that 4-MU
potentiates the antitumor effect of the BRAF inhibitor
vemurafenib (60). Particularly, they found that the
combination of 4-MU and vemurafenib was more effective in
reducing viability of ED-013 and ED-196 melanoma cells than
vemurafenib treatment alone, inducing cell cycle arrest in G1
phase. These authors also found that 4-MU plus vemurafenib
treatment increased the cellular production of ROS (60).

Similarly, different studies have proposed 4-MU as a
candidate molecule for co-adjuvant treatments for CML.
Uchakina et al. showed that 4-MU sensitizes K562 cells to
doxorubicin treatment, by inhibiting HA synthesis and
increasing apoptosis rates through p38 activation and PARP
cleavage (63). Lompardıá et al. found similar results when
combining 4-MU treatment with the chemotherapeutic agent
vincristine on K562 and K562 vincristine-resistant cells (Kv562)
(64). These authors revealed that 4-MU decreased tumor cell
proliferation and sensitized Kv562 resistant cells to vincristine
effect and determined that 4-MU effect was related to the
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inhibition of P-glycoprotein and the induction of senescence
(64). These results support the potential use of 4-MU for
combination of therapies in cancer and may encourage
precl inica l val idat ion and cl inica l test ing of such
treatment strategies.
6 4-MU REPURPOSED FROM A DIETARY
COMPONENT TO AN ANTICANCER
DRUG: POTENTIALS FOR ITS
REPOSITIONING

By definition, “drug repositioning” is a method that can help the
conventional drug discovery process by using existing drugs for
treatment of a different disease instead of their original
indication (138). During the COVID-19 pandemic, it has been
shown that this reasoning about the reuse of drugs is an effective
and fast way to provide a treatment solution in a short time
(139). The integration of bioinformatics data tools or “Big Data”
(-omic data, sequencing DNA/RNA, molecular modeling, tumor
biobanks, clinical trials, etc.) and experimental data offers the
possibility to identify how feasible drugs are to be reused (138).
4-MU, originally identified as a hepatoprotective component,
could be considered for this purpose and be now used as an
antitumoral drug. The results described in this review suggest
that this drug could be a good option to improve efficacy and
reduce toxicity of current cancer treatment.
7 CONCLUSIONS AND PERSPECTIVES

The mechanisms of action of 4-MU are not yet known in detail.
However, different results suggest that some of these mechanisms
may be independent of HA synthesis inhibition. In this sense, over
the last years, some authors have described HA-independent
effects for 4-MU toxicity (13, 75). For example, in trabecular
meshwork cells of the eye, Keller et al. found that 4-MU reduced
the ECM components versican and fibronectin, and that the
addition of exogenous HA failed to reverse the effects of 4-MU
(123). Since versican and fibronectin can affect tumor progression
and development (140), it is likely that 4-MU can also affect the
synthesis and organization of other ECM components to mediate
its effects in tumor cells. However, more studies are required to
corroborate this hypothesis. Together, these reports reinforce that
4-MU may have different anti-tumor mechanisms depending on
the type of cancer. However, toxicological, pharmacokinetic and
pharmacodynamic aspects that determine the treatment regimen
(way of administration, doses that impact on its bioavailability,
time of interval between them and schedule) should be extensively
reviewed in preclinical studies. An important study performed by
Kuipers et al. in an EAE mouse model determined that, to observe
a systemic decrease in HA levels, 4-MU should be administered
for 7 days or more and that longer use does not completely reduce
HA levels (141). Besides, they observed that, after oral
administration, 4-MU is rapidly metabolized to 4-MUG and in
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minor proportion to 4-MUS and, since there is a low
bioavailability of 4-MU, high doses are required to reach a
considerable percentage at systemic level (141). Thus, its
metabolites and bioavailability are important points to be
considered in the use of 4-MU without risk of toxic effect. In
fact, Nagy et al. showed that 4-MUG is a bioactive metabolite that
can be hydrolyzed into 4-MU and that 4-MUG also had effects
similar to those of 4-MU in vivo (142), suggesting that studies
using 4-MU should rethink the concept of its bioavailability.

All these reports suggest the feasibility of using 4-MU in cancer
treatment. However, deepening the knowledge of its mechanisms
of action and other pharmacological aspects will allow its
application in clinical trials and its consideration as a therapeutic
option, in combination or not, in current oncology treatments.
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Polyphenols constitute an important group of natural products that are traditionally
associated with a wide range of bioactivities. These are usually found in low
concentrations in natural products and are now available in nutraceuticals or dietary
supplements. A group of polyphenols that include apigenin, quercetin, curcumin,
resveratrol, EGCG, and kaempferol have been shown to regulate signaling pathways
that are central for cancer development, progression, and metastasis. Here, we describe
novel mechanistic insights on the effect of this group of polyphenols on key elements of the
signaling pathways impacting cancer. We describe the protein modifications induced by
these polyphenols and their effect on the central elements of several signaling pathways
including PI3K, Akt, mTOR, RAS, and MAPK and particularly those affecting the tumor
suppressor p53 protein. Modifications of p53 induced by these polyphenols regulate p53
gene expression and protein levels and posttranslational modifications such as
phosphorylation, acetylation, and ubiquitination that influence stability, subcellular
location, activation of new transcriptional targets, and the role of p53 in response to
DNA damage, apoptosis control, cell- cycle regulation, senescence, and cell fate. Thus,
deep understanding of the effects that polyphenols have on these key players in cancer-
driving signaling pathways will certainly lead to better designed targeted therapies, with
less toxicity for cancer treatment. The scope of this review centers on the regulation of key
elements of cancer signaling pathways by the most studied polyphenols and highlights the
importance of a profound understanding of these regulations in order to improve cancer
treatment and control with natural products.

Keywords: polyphenols, signaling pathways, cancer, MAPK, PI3K-AKT pathway, p53, RAS

INTRODUCTION

Cancer represents the second cause of death attributable to noncommunicable diseases, after only
cardiovascular diseases. Despite the fact that the cancer death rate has been reduced in the last
30 years by about 31%, related to the fact that healthier lifestyle habits improve health status, it
continues to be a major concern for public health systems worldwide (Sung et al., 2021). At present,
there are numerous treatments for cancer, including surgery, chemotherapy, hormonal therapy,
radiation, immune therapy, targeted treatments, nanotechnology, and RNA therapeutics
(microRNA and RNAi). Chemotherapeutics have been predominant for systemic cancer
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treatment; the majority of these are acting to cause DNA damage
in order to kill or to inhibit cells from an accelerated rate of
division. Chemotherapeutics are administered as single doses or
short therapies at the maximal tolerable dose, followed by a
treatment-free time that must be observed to allow for the
recovery of normal cells (Nurgali et al., 2018). Despite the
benefits of chemotherapy, it gives rise to adverse effects
including hematological toxicity, alterations of gastrointestinal
activity, alopecia, alterations of neurological activity, anaphylaxis,
hepatotoxicity, and nephrotoxicity. The adverse effects of
systemic chemotherapy are often severe and reduce the quality
of life of patients. Although many adverse effects can be
prevented with adequate prophylaxis, the toxicity of some
agents cannot be controlled; therefore, a dose reduction
becomes the only alternative. In this regard, plant-derived
natural compounds such as polyphenols may arise as ideal
alternatives for single or concomitant therapies for cancer
treatment with more effectiveness, safety, and less toxicity.

Plant-derived natural compounds have been used for the
prevention and treatment of many diseases. Plants produce a
wide range of secondary metabolites that confer on them great
adaptability to act as antimicrobial agents, as growth enhancers,
in resistance to water stress, as sun screeners, and as an aid to
repel predators (Weng et al., 2012). Secondary metabolites
include polyphenols with nearly 10,000 known members,
composed of several aromatic rings and multiple hydroxyl
groups in their structure, with moderate water solubility and
considerable antioxidant capacity (Brglez Mojzer et al., 2016).
Individuals obtain approximately 1 g/day of polyphenols from
their diet; however, this varies according to socioeconomic
factors, gender, and the region of the world where people live.
More than 800 polyphenols have been identified in food sources,
including cereals, cocoa, coffee, tea, wine, and berries (Pérez-
Jiménez et al., 2010). Despite the advances in drug discovery and
development during the last decades, herbal medicine continues
to be used as primary therapy in many developing countries
(nearly 4 billion persons) (Ekor, 2014). Regular consumption of
polyphenols has been related to beneficial health effects, including
regulation of the intestinal microbiota and antiaging effects
(Shimizu et al., 2019), a risk reduction of atherosclerosis (Nie
et al., 2019), a decrease in the risk of colorectal cancer
development (Bahrami et al., 2019), and the modulation of
antioxidant enzymes through Nrf2 regulation (Lee et al.,
2018). One of the major challenges for the therapeutic use of
polyphenols is their low oral bioavailability. The absorption,
transportation, bioavailability, and bioactivity of polyphenols
are of interest in terms of their use and as new drug
candidates. After oral administration, polyphenols pass
through the gastrointestinal tract (GI) with absorption in the
stomach and small intestine, and some are biotransformed by gut
microbiota or by those absorbed during the early stages of
digestion by hepatic phase I/II metabolism, prior to reaching
the systemic circulation, which may affect bioavailability and
bioactivity. Results of importance consider all of these processes
and how they will affect the pharmacokinetics and
pharmacodynamics of polyphenols. However, accessibility,
economic importance, beneficial health effects, and the safety

of polyphenols compared to synthetic drugs (Karimi et al., 2015)
make them perfect candidates to explore possible therapeutic
effects for preventing or treating different types of cancer due to
the capacity of polyphenols to modulate multiple signaling
pathways such as MAPK and PI3K/Akt and the key proteins
involved in cancer development, such as p53 and RAS, rendering
a promising expectation regarding these compounds. The present
review aimed at focusing on the chemistry, bioavailability, and
bioactivities of polyphenols in the key elements involved in
cancer development and progression.

POLYPHENOLS: THEIR CHEMISTRY AND
THEIR IMPORTANCE IN HUMAN HEALTH

Relevant Members of the Polyphenol Family
Polyphenols are classified as derivatives of shikimic acid/
phenylpropanoids (derived from tyrosine and phenylalanine)
and polyketide (lacking functional groups related to nitrogen)
pathways. For shikimic acid derivatives, phenylpropanoid units
serve as the basis for multiple types of polyphenols, such as
cinnamic (C6–C3), benzoic acids (C6–C1), flavonoids
(C6–C3–C6), proanthocyanidins [(C6–C3–C6)n], stilbenoids
(C6–C2–C6), and lignins [(C6–C3)n] (Figure 1) (Pereira
et al., 2009; Cirkovic-Velickovic and Stanic-Vucinic, 2018).

Phenolic Acids
Phenolic acids are the simplest phenolic compounds, formed of
only one phenolic ring with multiple hydroxy or methoxy
groups attached to their backbone. Hydroxycinnamic acids
are aromatic carboxylic acids with unsaturation in the side
chain (commonly of trans-configuration) and are more
abundant than hydroxybenzoic acids. Cinnamic acids work
as phytohormones, which are important components of
lignin and the precursors of chalcones, flavonoids,
anthocyanins, and stilbenes (El-Seedi et al., 2012).
Hydroxycinnamic acids are considered potent antitumor
agents due to the presence of α, β-unsaturation, acting as
Michael acceptors (De et al., 2011). Relevant
hydroxycinnamic acids include caffeic, ferulic, p-coumaric,
and sinapic acids, and the most representative
hydroxybenzoic acids include gallic, vanillic, syringic,
protocatechuic, and p-hydroxybenzoic acids. Phenolic acids
can be found in vegetable-derived foods including cereals,
legumes, soybeans, coffee, tea, rosemary, thyme, apples,
various berries, plums, cherries, and citrus fruits (Clifford
and Scalbert, 2000; El-Seedi et al., 2012). Different health
effects have been related to phenolic acids. Chlorogenic acid
has exhibited its anticancer potential by inducing differentiation
through an increase of KHSRP, p53, and p21, a decrease of poor
differentiation-related genes c-Myc and CD44, and
downregulation of oncogenic miRNA-17 family members in
cancer cell lines (Huang et al., 2019). Other mechanisms involve
epigenetic regulation; gallic acid inhibits DNMT1 activity
through the negative regulation of p-Akt, reducing the
nuclear import and stability of DNMT1. Potential epigenetic
targets include CCNE2, CCND3, CDKN1A, and CCNB1 genes,
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which play important roles in the GADD45 signaling pathway
(Weng et al., 2018).

Flavonoids
Flavonoids are ubiquitous compounds in plants that are
responsible for the fragrance, color, and flavor of fruits, seeds,
and flowers, with important roles in pollination and protecting
plants from ultraviolet (UV) light and acting as detoxifying agents
and as signaling molecules, and they may play important roles in
cold and heat acclimation (Koes et al., 1994; Panche et al., 2016).
There are nearly 6,000 flavonoid-related compounds, including
their derivatives flavanones, flavones, isoflavones, flavanols,
flavonols, and anthocyanidins. Benzo-γ-pyrone is the basic
chemical structure of flavonoids characterized by the presence
of 15 carbon atoms as the base skeleton, organized in the form
C6–C3–C6 (A+C–B) (two benzenic rings A and B) and linked by
a unit of three carbons that may or not form a third-ring structure
(pyran ring C). Flavonoids can occur as aglycones and as
hydroxylated, methylated, and glycosylated derivatives and
have great relevance for the sensory quality of citrus fruits. For
example, flavonoids such as naringerin and neohesperidin are
responsible for bitterness (Wang et al., 2017). Regular consumers
of tea may have intakes of over 1,000 mg/day; however, normal
diets only provide between 20 and 200 mg/day (Birt and Jeffery,
2013), and a regular dietary intake of flavonoids (500 mg/day) has

been related to a diminished mortality risk (Bondonno et al.,
2019).

Flavanones
The chemical structure is based on two benzene rings, A–B (the
flavan core), bound by a dihydropyrone ring C, chirality at C3 of
the C ring, and the absence of double-bound at the C2–C3
position, with 100 glycosides and 350 aglycones as known
members (Barreca et al., 2017). The principal flavanones
comprise naringenin, hesperidin, eriodictyol, taxifolin,
didymin, and eriocitrin, regularly found in citric fruits and
juices such as oranges, mandarins, and lemon (Khan et al.,
2014; Barreca et al., 2017). The beneficial health effects related
to the consumption of citric fruits have been linked to flavanones
such as naringenin through modulation of the PI3K/Akt pathway
and the nuclear translocation of the Nrf2 transcription factor,
promoting the expression of HO-1 (heme oxygenase-1) and
improving antioxidant defense (Zhang et al., 2017).

Flavones
Chemical characteristics of these flavonoids include a double
bond between C3 and C4, a keto group at C4, and no substitution
in C3. Flavones have a characteristic yellow color or can be
colorless; they act as primary pigments in white flowers, as
copigments in combination with anthocyanidins in blue

FIGURE 1 | General classification of polyphenols, representative compounds by group, and their associated rich food sources.
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flowers, and as plant-signaling molecules. Relevant flavones
include apigenin, diosmin, chrysin, tangeretin, luteolin, 7,8-
dihydroxyflavone, and 6-hydroxiflavone. Flavones are found in
plants employed for preparing infusions such as chamomile and
parsley. Apigenin glycosides are abundant in traditional teas
(black, green, and oolong), while luteolin glycosides are found
in rooibos tea (Hostetler et al., 2017; Seleem et al., 2017).
Important bioactivities have been related to flavones; apigenin
has demonstrated health benefits including the inhibition of cell
proliferation, apoptosis induction, the prevention of stem-cell
migration through the upregulation of p21 and p27, and the
downregulation of NF-κB and PI3K/Akt pathways (Erdogan
et al., 2016). Luteolin inhibits MCF-7 cell proliferation and
cell-cycle arrest and activates apoptosis through the regulation
of IGF-1-dependent IGF-1R and p-Akt without disruption of
ERK1/2 phosphorylation (Sabzichi et al., 2014).

Isoflavones
Isoflavones differ from flavones because of the phenyl group
located in C3 instead of in C2 in the pyran ring, and some of their
derivatives can form a D ring (e.g., rotenoid) (Marais et al., 2006).
Isoflavones represent the most abundant flavonoids in soybeans,
in soy-derived products (tofu, soymilk, soybean flour) (Jung et al.,
2000; Preedy, 2013; Terahara, 2015), and in green and mung
beans. In humans, isoflavones may act as phytoestrogens because
of their similarity to 17-β-estradiol (Křížová et al., 2019).
Isoflavones may be found as conjugated forms with acetyl,
malonyl glycosides (e.g., genistin, daidzin, and glycitin), or
aglycones (e.g., genistein, daidzein, and glycitein) (Zaheer and
Humayoun Akhtar, 2017). Isoflavones may regulate cancer-
related signaling pathways. Genistein and daidzein treatment
of ovarian cancer cells inhibits invasion and cell migration in
a dose-dependent manner through the downregulation of FAK
and the PI3K/Akt/GSK signaling pathway andmodulates p21 and
cyclin D1 expression, related to the presence of ERβ (Chan et al.,
2018).

Flavonols
Constituted of a 3-hydroxyflavone backbone, flavonols entertain
an unsaturation between C2 and C3, an OH− at C3, and a
carbonyl group at C4, and along with flavones and
anthocyanidins, they act as copigments to strengthen the color
of flowers (Bueno et al., 2012). Flavonols are usually found as
β-O-glycoside conjugates to facilitate storage in vacuoles (glucose
being the most common conjugate) (Aherne and O’Brien, 2002).
Flavonol-rich dietary sources include fresh capers, dried parsley,
elderberry juice, rocket lettuce, red onions, fresh cranberries,
fresh figs, apples, red wine, and tea (Di Matteo et al., 2007;
Kozłowska and Szostak-Wegierek, 2014; Haytowitz et al., 2018).
The principal flavonols include kaempferol, quercetin, fisetin,
isorhamnetin, and myricetin, and their consumption has been
related to a broad spectrum of health benefits. Different
mechanisms are involved in the anticancer effects of
flavonoids. Quercetin-3-O-glucoside inhibits cell growth,
arrests the cell cycle in phase S, induces apoptosis through
caspase-3 activation, and inhibits topoisomerase II activity in
human hepatic-cancer cells (Sudan and Rupasinghe, 2014). Other

mechanisms include apoptosis induction throughmodification of
the BAX/Bcl-2 ratio and evoking paclitaxel chemosensitization by
the downregulation of MDR-1 (associated with paclitaxel
resistance) in myricetin-treated ovarian cells (Zheng et al., 2017).

Flavanols
Flavanols (also known as flavan-3-ols or catechins) have a pyran
ring with an OH− at C3, the B ring is bound to C2, and there is a
lack of a double bond between C2 and C3 (allowing for two chiral
centers). Flavan-3-ols are found either in free form or as gallic
acid esters in different food sources such as apples, black tea,
green tea, dark chocolate, and red wine (Rothwell et al., 2013).
Relevant flavanols include the following: (+)-catechin;
(+)-gallocatechin; (−)-epicatechin; (−)-epigallocatechin;
(−)-epicatechin 3-gallate; (−)-epigallocatechin 3-gallate;
theaflavin; theaflavin 3-gallate; theaflavin 3′-gallate; theaflavin
3,3′-digallate; and thearubigins (Haytowitz et al., 2018). Several
health benefits have been related to flavanols. Lung cancer cells
treated with (−)-epigallocatechin 3-gallate decreased the cell
migration induced by human neutrophil elastase and induced
α-1 antitrypsin through PI3K-pathway regulation (Xiaokaiti
et al., 2015).

Proanthocyanidins
Proanthocyanidins (condensed tannins) are linked by C–C
(sometimes by C–O–C) bonds, varying in the degree of
polymerization (Rue et al., 2018). According to interflavan
linkages, proanthocyanidins are classified as type A or type
B. Type A lacks interflavan linkage but possesses another bond
between the OH- from A ring and the C2 of C ring (C2–O–C7 or
C2–O–C5) and type B with bonds between the C4 of B ring and
either C6 or C8 of C ring (C4–C6 or C4–C8) (Rauf et al., 2019).
Proanthocyanidins, which are composed of catechin or
epicatechin subunits, are known as procyanidins; if they are
composed of epigallocatechin subunits, they are called
prodelphinidins. Proanthocyanidins confer astringency and
bitterness and are regularly found in natural sources such as
the fruits/seeds/peels of Vitus vinifera, Punica granatum, and
Theobroma cacao, the leaves of Fructus crataegi and Eucalyptus
spp., the flowers of Rosa rugosa and Nymphaea tetragona, and
the roots/stems of Rheum palmatum and Ipomoea batatas (Yang
et al., 2018). Procyanidins along with flavones possess high
antioxidant activity (Lv et al., 2015); catechin-related
compounds are the most powerful flavonoids against reactive
oxygen species (ROS), with a broad spectrum of health benefits.
Grape proanthocyanidins have been associated with a decrease
of UVB-induced photocarcinogenesis in SKH-1 mice through
the regulation of immunosuppression by decreasing the
expression of IL-10 and increasing that of IL-12 (Katiyar
et al., 2017). Proanthocyanidins also inhibit cell proliferation
by means of the modulation of miRNA expression (Wang et al.,
2019).

Anthocyanidins
Anthocyanidins are composed of ring A linked to ring C, which
is bound in C3 to ring B, with no carbonyl group in C4 and two
unsaturations in ring B at the O–C2 and C3–C4 positions.
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Anthocyanidins are salt derivatives from the flavylium cation
with a positive charge in the oxygen atom. Their color is pH-
dependent, with red predominating under acidic conditions,
whereas blue predominates under alkaline conditions (Laleh
et al., 2005). Anthocyanidins can be found as aglycones, but
when they are conjugated into a glycoside, they are known as
anthocyanins (Khoo et al., 2017). Anthocyanidins act as
naturally occurring pigments found in the flowers and fruits
of many plants that confer red, pink, blue, or violet shades
(Kumar and Pandey, 2013) and that occur in the outer cell layer
of many edible products including blueberries, strawberries,
raspberries, red wine, and red onion. The most representative
anthocyanidins are cyanidin, delphinidin, pelargonidin,
peonidin, malvidin, and petunidin (Castañeda-Ovando et al.,
2009; Rothwell et al., 2013; Haytowitz et al., 2018). Many
anthocyanidin-rich plants have been employed in traditional
folk medicine and their effects have been extensively studied. A
phase 0 clinical trial showed that an anthocyanin-rich
raspberry lozenge administered to patients with oral
squamous cell carcinomas (OSCC) for 14 days caused a
reduction in the expression of prosurvival genes AURKA,
BIRC5, and EGFR, and downregulation of proinflammatory
genes NFKB1, PTGS1, and PTGS2 (Knobloch et al., 2016).

Stilbenoids
Stilbenoids are nonflavonoid polyphenols derived from the
phenylpropanoid pathway, in the form of hydroxylated
derivatives of stilbene backbone C6–C2–C6 (two aromatic
rings linked by a methylene bridge), with two possible planar
configurations (cis or trans). Stilbenoids are usually found as
aglycones, glycosidic/methoxyl conjugates, or oligomeric units
(viniferins). Stilbenoids act as phytoalexins and 1,000 of these
compounds have been identified to date (Xiao et al., 2008;
Mekinić et al., 2016). Stilbenoid-rich sources include the
plants of the Gnetaceae, Pinaceae, Cyperaceae, Fabaceae, and
Dipterocarpaceae families; however, their content is <10% of
that found in the Vitaceae family, and the richest sources of
stilbenoids are wine, berries, and grape juice (Niesen et al., 2013;
El Khawand et al., 2018). Resveratrol represents by far the most
important compounds of its kind, followed by gnetol, piceid,
astringin, pterostilbene, piceatannol, viniferins, etc. The
bioactivities of stilbenoids include anticancer effects.
Pterostilbene has shown upregulation of PTEN in prostate
cancer cells and xenografts through the reduction of levels of
oncogenic miR-17, miR-20a, and miR-106b (Dhar et al., 2015),
thus highlighting the potential health effects of stilbenoids in
terms of their being promising candidates as novel therapeutic
agents.

Absorption and Metabolism of Polyphenols
There are several considerations for the development of new
drugs, including bioaccessibility and bioavailability.
Bioaccessibility is the fraction released from the food matrix
into the intestinal milieu, rendering the drug bioavailable (Dima
et al., 2020), whereas bioavailability is the extent of the drug
absorbed that reaches the systemic circulation, with the drug
becoming available at the site of action (Chow, 2014).

Ingested polyphenols are subjected to biotransformation in the
GI tract by either digestive enzymes or the gut microbiota and
may impact their bioactivities. The majority of polyphenols are
released in the stomach (65%) and small intestine (10%)
(Bouayed et al., 2011). The main sites of polyphenol
absorption include the intestine and the colon (5–10% of the
ingested polyphenols), whereas unabsorbed polyphenolics
accumulate at mM concentrations in the large intestine, where
the gut microbiota will exert biotransformation (Cardona et al.,
2013) because complex polyphenols cannot be absorbed without
modifications (Deprez et al., 2001). The gut microbiota involved
in the biotransformation of polyphenols includes Eubacterium
spp., Clostridium spp., Bifidobacterium spp., and Lactobacillus
spp. (Marín et al., 2015). Biotransformed polyphenols are
absorbed through the intestinal wall, transported to the liver
where hepatic enzymes will break down (phase I metabolism) or
conjugate (phase II metabolism) polyphenolics, and then they are
distributed to target organs or eliminated in urine. The
biotransformation of polyphenols may limit biological effects,
and this may explain the discrepancy between in vitro and in vivo
effects. For example, although many metabolites of anthocyanins
can be found in urine, parent compounds are not detectable,
possibly due to full metabolization (Agulló et al., 2020).

Another example is curcumin, which has low bioavailability
and poor absorption, and the majority of the ingested curcumin is
detected in the form of phase II metabolism-derived products,
whereas the parent compound is scarcely detectable in the
organism (Liu et al., 2016; Tsuda, 2018). The gut microbiota
plays a significant role in the metabolism of curcumin, especially
Escherichia coli, which converts curcumin into
tetrahydrocurcumin (Hassaninasab et al., 2011).
Biotransformation is not always linked to the loss of
bioactivity; the oxidative metabolites of curcumin possess
important biological effects (Edwards et al., 2017). However,
like the majority of polyphenols, after passing through the GI,
90% of curcumin is excreted (Metzler et al., 2013); this is
significant in that 10% of the ingested curcumin is responsible
for its biological effects. The low bioavailability and complex
metabolism of polyphenols render it difficult to present
recommendations concerning their daily intake. The high
variability of results of in vivo experiments and clinical trials is
attributed to the poor absorption andmetabolism of polyphenols;
however, their safety and the ease of obtaining make them ideal
candidates for the treatment of many diseases.

Anticancer Activities of Polyphenols
Against the Foremost Malignant Tumors
Cancer constitutes an important public health concern worldwide
with 19.3 million new cases and 10 million deaths in 2020.
Principal cancer types include lung, colorectal, stomach, liver,
breast, esophagus, prostate, and cervix uteri (Sung et al., 2021).
Cancer development is closely related to unhealthy nutritional
habits; the low consumption of fruits and vegetables (<800 g/day)
has been related to an increase of 30–50% in the incidence of
colorectal cancer (Vargas and Thompson, 2012; Aune et al.,
2017). Plant-derived compounds are widely utilized by
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individuals due to their cost accessibility, the belief in better
effectiveness compared to medical prescription drugs, and
the trend toward the use of products of natural origin. The
contribution of plant-derived natural compounds to the
pharmaceutical field is extensive; important examples include
aescin, morphine, paclitaxel, and vincristine and, in the most
recent two decades, more than 30% of US Food and Drug
Administration (FDA)-approved drugs are derived from
natural compounds (Li F. et al., 2019).

Polyphenols may act as antioxidants through two main
mechanisms as follows: first, phenolic groups accept an
electron to form relatively stable phenoxyl radicals,
preventing oxidative damage in cellular components.
Second, OH− groups act as hydrogen donors and interact
directly with reactive nitrogen species (RNS) and ROS
(Leopoldini et al., 2011), which could explain their
preventive role in oxidative damage.

Polyphenols provide protection from cancer risk factors,
including tobacco, alcohol, unhealthy diets, sedentarism, and
even those related to carcinogenic infections caused by
pathogens such as the hepatitis B/C virus (HBV; HCV), the
Epstein-Barr virus, and the human papillomavirus (HPV).

Nicotine represents the most toxic factor of tobacco, may lead
to excessive cell proliferation through an increase in oxidative
stress, and also has been related to an improvement of the
invasiveness of lung and breast cancer cells (Bose et al., 2005;
Dasgupta et al., 2009). Resveratrol prevents nicotine-induced cell
proliferation through the MAPK signaling pathway by means of
the downregulation of p-ERK in pancreatic cells (Chowdhury
et al., 2018a). Alcohol consumption has been related to the
development of colorectal cancer (Nishihara et al., 2014).
Epigallocatechin 3-gallate (EGCG) inhibits ERK and activates
JNK, thus fostering apoptotic cell death by the release of
cytochrome c in human colon cancer cells (Cerezo-Guisado
et al., 2015). Healthy food habits improve the health status of
persons. The kaempferol present in apples and onions suppresses
the expression of MMP-9 (related to metastasis progression) via
the inactivation of theMAPK/AP-1 pathway in breast cancer cells
(Li et al., 2015). HCV promotes the proteasomal degradation of
pRb through the E6 ubiquitin-dependent mechanism, thus
interfering with cell-cycle regulation and the response to
cellular DNA damage. Treatment with theaflavins prevents the
entry of HCV into hepatocytes but does not prevent viral
replication (Chowdhury et al., 2018b); however, it represents a
promising preventive approach for future malignancy induced by
HCV infection. High-risk HPV represents other infectious agents
of relevance for the development of malignant tumors; they
account for approximately 25% of cases of HNSCC (HPV-16),
and virtually all cervical cancers are caused by high-risk HPV (16
and 18). The combination of TriCurin polyphenols (curcumin,
epicatechin 3-gallate, and resveratrol) reduces mRNA and the
protein levels of E6 and E7, leading to the accumulation of p53
and pRb, thus decreasing tumor weight and cell proliferation by
86.3 and 19.9%, respectively (Piao et al., 2017). The effects of
TriCurin on HNSCC appear promising, considering that this
cancer is the sixth most prevalent malignancy worldwide (Shield
et al., 2017).

Despite the fact that the bioactivities of polyphenols can often
be limited by bioavailability, the detoxification metabolism, and
the individual variability index, their wide range of health benefits
is not limited to a single type of cancer or to a single mechanism of
action. Therefore, polyphenols represent promising therapeutic
agents for different cancers.

ACTIVITIES OF POLYPHENOLS IN
RELEVANT CANCER-DRIVING SIGNALING
PATHWAYS
p53 Tumor Suppressor
p53 Overview
p53 represents the most important human tumor suppressor and
a central element for cell-cycle control and apoptosis. p53 is
composed of 393 amino acid (aa) residues and includes the
following six domains: two N-terminus transactivation
domains (TAD, including TAD1 and TAD2); a proline-rich
domain (PRD); a central DNA-binding domain (DBD); a
tetramerization domain (TD); and a C-terminus regulatory
domain (CRD) (a rich-lysine region). The acidic nature of
TAD (∼20%) contributes to the efficacy of the transactivation
(Raj and Attardi, 2017). TAD are important for interaction with
regulators including Mdm2 and MdmX and for the recruitment
of chromatin modifiers CBP/p300, the latter prompting
chromatin opening and p53 stabilization through the
acetylation of CRD, preventing its ubiquitination (Raj and
Attardi, 2017). The DBD contains six “hotspots” where the
most frequent mutations occur in cancer. While R248Q and
R273H disrupt p53/DNA binding, others produce local (R248Q;
R273H) and global (R175H; R282W) conformational distortions
(Brosh and Rotter, 2009; Baugh et al., 2018). TD facilitates p53
tetramerization, contains a nuclear export signal hidden in a
tetrameric form that allows for nuclear accumulation, also
influences the strength and conformation of DNA/p53
complexes, and is important for protein-protein interactions
(CK2, PKC, and RelA bind to p53 through TD) (Chène, 2001;
Gencel-Augusto and Lozano, 2020). CRD is required for the
binding of promoters and structural changes in DBD (Laptenko
et al., 2015) and undergoes extensive posttranslational
modifications (PTM) on Lys residues.

p53 is under strict regulation because of its role as a central
hub in the signal transduction of many cellular processes. In fact,
while p53-null mice can live, those lacking Mdm2 and those that
are incapable of regulating p53 die (Jones et al., 1995). The
p53 half-life accounts for from 5 to 20 min in nearly all cell
types, but after stress signals, senescence, or DNA damage, its
stability is increased (Giaccia and Kastan, 1998). Negative
regulators of p53 include Mdm2 and MdmX. Mdm2 promotes
Lys ubiquitination at the C-terminus, targeting p53 for
proteasomal degradation and abolishing the acetylation
essential for the p53-mediated stress response (Tang et al.,
2008). MdmX regulates p53 by direct interaction with TAD
independent of E3-ubiquitin ligase activity (Raj and Attardi,
2017); however, MdmX can associate with Mdm2, enhancing
its E3-ligase activity (Badciong and Haas, 2002). Recently, it has
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been demonstrated that MdmX inhibits the p53/DNA-binding
function in association with CK1α (Wei et al., 2016). All of these
control mechanisms highlight the importance of p53 regulation,
which renders it an important therapeutic target due to its central
role in cell fate control.

Polyphenols and Their Regulation on p53
p53 control is carried out by a variety of mechanisms, and the
regulatory activities of polyphenols on p53 are widely reported in
the literature. p53 undergoes extensive PTM (Figure 2), including
phosphorylation, acetylation, ubiquitination, and methylation,
which influence its stability, localization, and function; in
addition, polyphenols may influence the posttranslational
status of p53. It was recently described that curcumin
promotes hyperphosphorylation in Ser15, thus promoting the
expression of proapoptotic Bex genes in neuroblastoma cells
(Sidhar and Giri, 2017). However, curcumin may also impair
p53 folding into the required conformation for its
phosphorylation, which affects its tumor-suppression function
(Moos et al., 2004). Curcumin may alter p53/p300 interaction
through p53 acetylation (Lys373), leading to the transcription of
BAX, PUMA, andNoxa, thus enabling p53-mediated apoptosis in
breast cancer cells (Sen et al., 2011). p53/p300 Interaction is
important, considering that the genotoxic stress-related
transcriptional activity of p53 is regulated by its interaction
with its transcriptional coactivator p300. Nrf2 plays a
protective role against oxidative stress in mammals by the
regulation of antioxidant and detoxifying enzyme transcription
(Saha et al., 2020). Dalton’s lymphoma has low levels of Nrf2;

treatment with curcumin restores Nrf2 messenger RNA (mRNA)
levels and enhances the binding of the protein Nrf2 to ARE and
the NF-2E consensus sequence, thus increasing the levels of
endogenous antioxidants and enhancing the general
antioxidant status. Interestingly, curcumin increased p53
mRNA and protein levels, and this increase was related to the
stabilization of Nrf2 expression (Das and Vinayak, 2015). Nrf2
induces the expression of the antioxidant enzyme NQO1 that,
aside from its primary function, forms a complex with p53,
leading to its stabilization in curcumin-treated cervical cancer
cells (Patiño-Morales et al., 2020).

Several anticancer effects have been linked to treatment with
resveratrol. Resveratrol induces phosphorylation in Ser20,
promoting p53 stabilization, thus leading to the activation of
target genes and the induction of apoptosis (Hernandez-Valencia
et al., 2018). Polyphenols may contribute to p53 stabilization
through the prevention of Mdm2-mediated ubiquitination or by
the modulation of deubiquitinating enzymes. Ubiquitination
plays an important role in p53 degradation and localization.
USP10 (a cytosolic deubiquitinating enzyme) with an affinity for
p53 reverses Mdm2-mediated ubiquitination, cytoplasmatic
degradation, and nuclear export and impacts the
transcriptional activity of p53 (Sun and Dai, 2014). Resveratrol
binds to G3BP1 and interrupts the G3BP1/USP10 interaction,
releasing USP10 and promoting its deubiquitinating activity,
increasing p53-mediated apoptosis in melanoma (Oi et al.,
2015). Without the disruption of the p53/USP10 complex by
G3BP1, p53-deubiquitination results were affected, leading to its
proteasomal degradation.

FIGURE 2 | Overview of p53 domain structure and posttranslational modifications induced by polyphenols. Principal sites where polyphenols induce p53
posttranslational modifications (phosphorylation, acetylation, methylation, or ubiquitination) are plotted. TAD, transactivation domain; PRD, proline-rich domain; DBD,
DNA-binding domain; TD, tetramerization domain; CRD, C-terminal regulatory domain.
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SET7/9 methyltransferases regulate p53 through
monomethylation in Lys372, resulting in protein stabilization
and activation. Resveratrol treatment in colon cancer cells
induces p53 methylation, leading to BAX and PUMA gene
expression. The absence of SET7/9 abolishes p53 proapoptotic
effects; hence, their presence appears to be essential for cell death
(Liu L. D. et al., 2019).

Flavonols possess important regulatory activities on p53.
Quercetin upregulates p53 mRNA and protein levels as well as
increases caspase 3/7 activity in mesothelioma (Lee et al., 2015).
Combined treatments of curcumin and quercetin augment
phosphorylation and acetylation levels in lung carcinogenesis
with the downregulation of Bcl2 and the upregulation of p21 and
BAX, leading to apoptosis (Zhang and Zhang, 2018). An
important premise with respect to polyphenols relies on their
apparent affinity for inducing regulatory effects in cancer cells,
but not in normal cells. Quercetin induces cytotoxic effects in
leukemic and breast cancer cells but did not affect normal cells
through direct quercetin/DNA interaction, thus increasing p53
and p-p53 levels, leading to the induction of apoptosis and cell-
cycle arrest in the S phase. Quercetin reduced tumors, improved
lifespan, and had no adverse effects in mice (Srivastava et al.,
2016). A combination of quercetin with the chemotherapeutic
MG132 (a specific 26S proteasome inhibitor) appears promising.
This combination demonstrated a synergistic effect, extending
the half-life of p53 from 74 to 184 min, stabilizing p53 through
Ser15 phosphorylation, and preventing ubiquitination in HepG2
cells (Tanigawa et al., 2008).

Kaempferol, which is another important flavonol, also exhibits
relevant bioactivities in p53 in cancer. Kaempferol treatment of
human cancer cell lines containing mutant p53 led to apoptotic
cell death with an increase of cleaved PARP and caspase (3, 7, 9)
levels, the release of cytochrome c, and DNA fragmentation (Lee
et al., 2014). In another study, human colon cancer cell lines
(HCT116, HCT15, and SW480) were treated with kaempferol;
molecular markers cleaved PARP and caspase-3 increased after
treatment. The proapoptotic effects of kaempferol may be exerted
through the regulation of different pathways; the expression of
p53, p21, and p-p38 was upregulated, whereas p-JNK and p-ERK
were attenuated. Interestingly, the proapoptotic effects of
kaempferol were related to an increase in the intracellular
ROS level (Choi et al., 2018).

Catechins, present in many tea-derived products, also possess
important regulatory activities. EGCG promotes p53
accumulation, increases transcriptional activity through
phosphorylation on Ser15 and Ser20, and prevents p53/Mdm2
interaction, increasing the half-life from 40 to 90 min in lung
cancer (Jin et al., 2013). EGCG increases p53 acetylation in
Lys382, enhancing its stabilization and DNA binding,
increases p21 expression, downregulates HDAC-4, -5, and -6,
and stimulates apoptotic induction in lung cancer cells (Oya et al.,
2017). Relevant mechanisms of EGCG regulation on p53 include
direct interaction between p53 and p53. EGCG binds to the
N-terminal domain of p53 (aa involved in this interaction include
W23 andW25, F54, G52, and T55) and shields p53 TAD, which is
the Mdm2 interaction site (involving p53 residues F19, L22, T23,
L26, G58, E68, V75, and C77), thus inhibiting Mdm2-mediated

ubiquitination (Nagata et al., 2014; Karakostis et al., 2016; Zhao
et al., 2021).

Flavones have also been linked to bioactivities against
important types of cancer. Apigenin modulates the balance
between prosurvival and proapoptotic pathways by the
activation of p53, the repression of STAT-3, and decreased
ROS levels in lymphoma cells (Granato et al., 2017). Apigenin
enhances the response to Cisplatin-induced apoptosis by
disruption of the p53/Mdm2 interaction and favors MAPK-
mediated p53 Ser15 phosphorylation, protecting it from
proteasomal degradation (Liu et al., 2017). The combination of
apigenin with TRAIL has been related to apoptotic effects on
non-small-cell lung cancer (NSCLC) in a p53-dependent manner.
This combination revealed a synergistic effect by increasing the
mRNA levels of DR4, DR5, and protein p53. TRAIL interaction
with DR4/5 leads to the formation of the death-inducing
signaling complex (DISC), with the subsequent binding of
caspase-8, which activates the caspase cascade. The use of the
p53 inhibitor (PFT-α) abolished the effect of the combined
treatment; hence, these effects showed to be p53-dependent.
Proapoptotic effects on lung cancer cells were related to the
upregulation of BAX and Bad and to a prominent reduction of
Bcl-2 and Bcl-xL levels (Chen et al., 2016).

As discussed so far, polyphenols appear to possess promising
activities in p53 regulation through different mechanisms;
however, several studies must be performed to elucidate the
fully implicated mechanisms and consequences of polyphenol
treatments in p53 regulation for the development of new,
efficient, and safe cancer therapies.

MAPK Pathway
MAPK Overview
MAPK belong to serine/threonine kinases central to one of the
principal signaling cascades involved in the control of cell
growth, differentiation, survival, and cell death. MAPK
signaling is activated in response to intra- and extracellular
signals; these signals activate transmembrane glycoproteins of
the tyrosine kinase receptor type, leading to the regulation of
target genes. MAPK signaling cascades are composed of three
main players as follows: the stress-activated protein kinase
c-Jun NH2-terminal kinase (JNK), the stress-activated protein
kinase 2 (SAPK2, p38), and the extracellular signal-regulated
protein kinases (ERK1/2, p44/p42). JNK and p38 are activated
by cytokines, hypoxia, genotoxicity, and oxidative stress; ERK
is activated by mitogens and cytokines, principally by means of
the activation of RAS family members (Rodríguez-Berriguete
et al., 2012).

The dysregulation of MAPK can lead to cell transformation;
the RAS–Raf–MEK–ERK axis is altered in 40% of human cancers,
principally in RAS (30%) (Santarpia et al., 2012). RAS represents
a family of GTPases composed of 150 G-proteins (HRAS, KRAS,
and NRAS) and represents the first actors in the MAPK/ERK
phosphorylation cascade (Johnson and Chen, 2012). Activation
of RAS will result in ERK phosphorylation and activation;
therefore, ERK translocates to the nucleus and promotes the
activation of transcription factors such as c-Fos and c-Jun (Eblen,
2018).
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JNK and p38 are known as stress-activated protein kinases.
JNK translocates from the cytosol to the nuclei and evokes c-Jun
activation through Ser63 and Ser73 phosphorylation, changing
the expression patterns of BAX and Bcl-2 (Zhou et al., 2015). The
role of JNK in cancer development is found in its multiple targets
that are implicated in many cell-regulation mechanisms, such as
STAT1/3, c-Jun, c-Myc, FOXO4, Bcl-2, ATF2, Smad2/3,
PPARγ1, and RXRα (Dou et al., 2019). Multiple JNK-activated
targets render JNK an important objective for targeted cancer
therapies.

The p38 MAPK family comprises four isoforms expressed by
different genes. Isoform p38α is ubiquitously expressed in all
tissues, whereas isoforms β, γ, and δ are tissue-specific. Isoforms
of p38 MAPK engage in redundant activities; however, the
absence of p38α is lethal (Gerits et al., 2007). As many as
200–300 substrates are phosphorylated by p38 MAPK,
including kinases involved in gene regulation, such as MSK1/2
(implicated in the regulation of transcription factors NF-κB p65
and STAT1/3), cytoplasmatic substrates such as cyclin D1, CDK
inhibitors, Bcl-2 family proteins, and nuclear substrates including
p53 (Cuadrado and Nebreda, 2010). Several interesting activities
have been related to p38α, including, but not limited to, the
suppression of ERK and JNK signaling by neutralizing RAS
transformation, leading to senescence and cell-cycle arrest
(Wang et al., 2002; Hui et al., 2007) and to the neutralization
of tumorigenesis in lung, breast, colon, and liver through ROS

production in response to oncogene activation, leading to the
induction of p38-dependent apoptosis (Dolado et al., 2007).
However, its role in tumor neutralization is only exerted at
early stages; once the tumor is established, p38 promotes
tumor growth and metastasis (Igea and Nebreda, 2015; Vidula
et al., 2017).

The vast number of pathways regulated by MAPK make them
ideal candidates for targeted therapies, and polyphenols may
emerge as a promising alternative for the regulation of key
players of MAPK pathways.

Polyphenols and Their Regulation on MAPK
The bioactivities exerted by natural phenolic compounds rely on
their different regulation mechanisms, which strongly contribute
to their anticancer activities. Polyphenols have been associated
with promising regulatory activities in MAPK pathways
(Figure 3).

Curcumin as one of the most promising anticancer agents has
exhibited different regulation mechanisms in MAPK. Curcumin
treatment in Ishikawa cells (endometrial carcinoma) induces
apoptosis, cell-cycle arrest in phase S, and the downregulation
of ERK and Jun mRNA, as well as the reduction of the p-ERK-2/
c-Jun pathway. Interestingly, curcumin reduced cell invasion by
the downregulation of p-ERK/c-Jun and diminishing AP-1
synthesis, thus decreasing MMP2/9 transcription (Zhang et al.,
2019). The effects of curcumin on MAPK pathways are not only

FIGURE 3 | Potential sites of inhibitory actions of polyphenols in MAPK signaling pathways. ERK, extracellular signal-related kinases; JNK, c-Jun amino-terminal
kinases; p38, p38 mitogen-activated protein kinase.
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limited to in vitro results. Curcumin treatment in the xenograft
prostate cancer model demonstrated a reduction in tumor
development. In this study, the mechanism involved in
prostate cancer reduction by curcumin was related to a
reduction of p-JNK, and curcumin was also effective for p-c-
Jun reduction, leading to a decrease in Bcl-2 and Bcl-xL mRNA
levels (Zhao W. et al., 2018). Stilbenoids have also revealed
relevant activities for MAPK inhibition in different cancers.
Resveratrol was effective in increasing p-p38 levels, leading to
a decrease of Bcl-2 and an increase in Bad expression, as well as
acting as a potent tumor growth inhibitor. The involvement of
p38 was assessed using its inhibitor SB203580, which abolished
the protective effects of the resveratrol treatment (Yuan et al.,
2016). Urologic cancers represent a major concern. Resveratrol
treatment reduces cell proliferation and the metastatic potential
of renal-cancer cells. Resveratrol regulates ERK1/2 signaling
pathways, specifically by altering the expression of ERK1/2,
p-ERK1/2, E-cadherin, MMP-2, and MMP-9 (Zhao Y. et al.,
2018). The apigenin treatment of melanoma-cancer cells A375
and C8161 promoted growth arrest through the downregulation
of p-ERK1/2, p-Akt, and p-mTOR (Zhao et al., 2017). Tea
polyphenols may act as potent anticancer agents alone or in
combination with another chemotherapy. EGCG has
demonstrated synergy with Sunitinib in cancer cell lines; both
compounds decreased cell viability and suppressed the ERK
pathway (Zhou et al., 2016). Kaempferol and quercetin stand
as two of the most promising flavonols for cancer treatment.
Quercetin possesses activities against colon cancer with mutant-
type KRAS through JNK-pathway regulation; such activity results
are very promising since KRAS is considered undruggable. In this
study, quercetin selectively inhibited Akt and activated the
p-JNK/c-Jun axis, leading to caspase-3 activation and
subsequent apoptosis (Yang et al., 2019). In fact, flavonols can
act as chemosensitizers. Kaempferol treatment overcomes
resistance to 5-FU in resistant colon cancer cells. Concomitant
treatment led to an increase in apoptosis, cell-cycle arrest, and
modulated the protein expression of the JAK/STAT3, MAPK
(ERK, p38), PI3K/Akt, and NF-κB involved in the progression
and development of colorectal cancer (Riahi-Chebbi et al., 2019).
All of these regulatory activities onMAPK pathways highlight the
pharmacological importance that polyphenols may possess for
the treatment of cancer by inhibiting these pathways; however,
more research is necessary to fully elucidate the mechanisms
involved.

PI3K/Akt Pathway
PI3K/Akt/mTORC1 Pathway
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)
and the mammalian target of rapamycin (mTOR) are signaling
pathways that regulate survival and growth processes (Hemmings
and Restuccia, 2012). These pathways are activated through
several cellular stimuli and control essential cellular functions
such as proliferation, transcription, translation, survival, and
growth (Liu R. et al., 2020).

There are three classes of PI3K isoforms. Class I PI3K are
heterodimer lipid kinases composed of the p110 catalytic subunit
and the p85 regulatory subunit. Akt, also known as protein kinase

B (due to its similarity with PKA and PKC) is a serine protein
kinase, activated by growth factors in a PI3K-dependent manner
(Hemmings and Restuccia, 2012). PI3K phosphorylates the
inositol ring of the membrane phospholipid,
phosphatidylinositol-4,5-biphosphate (PI-4,5-P2), to generate
phosphatidylinositol-3,4,5-trisphosphate (PIP3) on the
cytoplasmic side of the cellular membrane (Rathinaswamy and
Burke, 2019). PIP3 recruits a subset of pleckstrin homology (PH)
domain-containing proteins, such as the same protein kinase Akt
and the constitutively active phosphoinositide-dependent kinase
1 (PDK1). In turn, PDK1 phosphorylates Akt into T308 (Ding
et al., 2010); however, maximal activation of Akt requires its
additional phosphorylation in S473 located at the carboxyl-
terminus site, mediated by mTORC2 (Ikenoue et al., 2008).

mTOR is one of the downstream signaling targets of PI3K/
Akt, which regulates several cellular processes, such as cell
growth, motility, survival, and metabolism (Saxton and
Sabatini, 2017). mTOR exists in two protein complexes, that
is, mTORC1 and mTORC2, of which mTORC1 is directly
inhibited by Rapamycin, a macrolide and antifungal
compound; however, mTORC2 is insensitive to rapamycin
(Saxton and Sabatini, 2017). mTORC1 controls cell growth
and proliferation mainly by promoting transcription,
translation, ribosome biogenesis, and autophagic regulation.
On the other hand, mTORC2 regulates proliferation and
survival primarily by phosphorylating several members of the
AGC family of protein kinases (Fu and Hall, 2020).

Akt inhibits the tuberous sclerosis complex (TSC) that
limits mTORC1 signaling. The TSC complex is composed of
the following three subunits: TSC1 (Harmatin), TSC2
(Tuberin), and TBC1D7. Akt phosphorylates TSC2 in five
residues (S939, S981, S1130, S1132, and T1462), leading to
its inactivation. The TSC complex is a negative regulator of the
small GTPase Rheb (RAS homolog enriched in brain)
(Takahashi et al., 2003) via the stimulation of GTP
hydrolysis. On the other hand, Rheb-GTP is translocated
into the lysosomal membrane, where it directly interacts
with the catalytic domain of mTOR, promoting its
activation (Dibble and Manning, 2013; Kim and Guan, 2019).

PI3K/Akt/mTOR pathways are one of the main prosurvival
pathways that are activated in human cancers (Noorolyai et al.,
2019). The PI3K/Akt/mTOR pathway is found deregulated in
cancer, which is characterized by an overexpression/
hyperactivation of its effector proteins and alterations in the
genes that encode those proteins (Revathidevi and Munirajan,
2019).

Polyphenols and PI3K/Akt/mTOR in Cancer
The PI3K/Akt/mTOR pathway has been considered a major drug
target due to its frequent hyperactivation in cancer (Liu Z. et al.,
2020; Pevzner et al., 2021). Plant-derived natural compounds are
one of the most reliable resources for cancer therapy. Several
polyphenols, such as resveratrol, curcumin, apigenin,
epigallocatechin 3-gallate, and quercetin, target numerous
signaling pathways to exert tumor inhibitory and
antiproliferative effects. One of these pathways is PI3K/Akt/
mTOR (Figure 4).
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Hyperactivation of Akt signaling is frequent in several cancers,
which maintains a high oxidative state in a tumor
microenvironment that is necessary for tumor adaptation.
Antioxidants are proposed to exhibit anticancer roles by
interfering with the tumor microenvironment. Resveratrol is a
natural antioxidant and affects cellular oxidative stress and
mitochondrial membrane potential by interfering with the
PI3K/Akt signaling pathway in SCLC H446 cell lines (Li et al.,
2020). In another study conducted by Jiao and collaborators
(2015), resveratrol inhibited invasive behaviors in vitro and
in vivo by PI3K/Akt/NF-κB suppression and the inhibition of
MMP-2 secretion in glioblastoma (Jiao et al., 2015). An
alternative antioxidant ubiquitously found in dietary sources
with potential health-promising effects is quercetin, a bioactive
flavonoid that has been identified as having antioxidant and
anticancer effects. Many reports showed that quercetin
possesses anticancer activities via Akt inhibition. Recently, it
was found that quercetin attenuates cell survival,
inflammation, and angiogenesis by modulating Akt signaling
in lymphoma-bearing mice (Maurya and Vinayak, 2017).

The PI3K/Akt/mTOR is known to be involved in drug
resistance (Liu R. et al., 2020). In agreement with this,
resveratrol prevents resistance to Adriamycin by decreasing
the expression of multidrug resistance protein (MRP1)
through PI3K/Akt/Nrf2 in acute myeloid leukemia (Li Y.

et al., 2019). Earlier researchers observed that green tea
polyphenols such as EGCG act as a chemosensitizer, leading
to minimizing chemoresistance and enhancing the
chemosensitivity of tumor cells. EGCG and theaflavin (TF)
synergistically inhibited the growth of HeLa cells through
PI3K/Akt inhibition (Chakrabarty et al., 2019). TF or EGCG
reduced the expression of both p85 (the regulatory subunit of
PI3K) and phosphorylated Akt (Ser473), and interestingly, the
reduction of protein expression was observed in a much higher
amount in the case of the combination of these doses of
polyphenols. This synergistic activity might be due to stronger
microtubule depolymerization by the simultaneous binding of TF
and EGCG to a different site on tubulin. This stronger
microtubule depolymerization results in a higher G2/M arrest
of the cell cycle and more drastic mitochondrial damage and
synergistic augmentation of apoptosis (Chakrabarty et al., 2019).

Resveratrol possesses antitumor activity when used alone or in
combination. Bian et al. examined that the coadministration of
resveratrol and rapamycin significantly reduced the
phosphorylation of Akt and p70S6K compared to treatment
with rapamycin alone. This coadministration ablates mTOR
function and prevents Akt activation, which overcomes the
feedback activation of Akt and improves the antitumor effects
(Bian et al., 2020). In an investigation, it was shown that
combining the grape polyphenol resveratrol, quercetin, and

FIGURE 4 | The inhibition of the PI3K/Akt/mTOR pathway by polyphenols in cancer. The phosphoinositide 3-kinase-AKT-mammalian target of rapamycin (PI3K/
Akt/mTOR) pathway is hyperactivated in several cancers and is important in terms of tumor cell growth and survival. Activation of RTK, such as insulin-like growth factor-
1 receptor (IGFR), by growth factors such as insulin, can initiate activation of intracellular pathways. Akt is phosphorylated downstream of PI3K with various effects,
including the activation of mTOR. mTOR phosphorylates p70S6K and 4E-binding protein 1 (4EBP-1), which then leads to an increased translation of mRNA and cell
growth. Polyphenols act by inhibiting this pathway by means of decreasing the phosphorylation of several protein kinases that are part of this signaling pathway. The
green arrows indicate the activation of the pathway, while the red arrows indicate the inhibition of the pathway using different polyphenols.
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catechin at equimolar concentrations inhibits mTOR signaling by
means of a dual mechanism of PI3K/Akt and AMPK regulation
and potentiates breast cancer to anti-EGFR therapy with
Gefitinib, suggesting that this mixture may have synergistic
effects against cancer (Castillo-Pichardo and
Dharmawardhane, 2012).

PTEN is a tumor suppressor often deleted or mutated in a
variety of cancers at a high frequency (Codrich et al., 2021; Zhang
et al., 2021). It acts as a phosphatase that specifically catalyzes the
dephosphorylation of the 3-phosphate of the inositol ring in
phosphatidylinositol (3,4,5)-trisphosphate (PIP3), leading to the
biphosphate product PIP2. The dephosphorylation of PIP3
results in the inactivation of the PI3K/Akt signaling pathway,
because PIP3 is critical for the activation of Akt.

Resveratrol possesses anticancer activity through upregulating
the bone morphogenetic protein 7 (BMP7) in order to inactivate
the PI3K/Akt signaling pathway through partly suppressing the
phosphorylation of PTEN in colorectal cancer. On the other
hand, curcumin inhibits the proliferation of glioblastoma, and
this effect is associated with the inhibition of both Akt andmTOR
phosphorylation by promoting PTEN and p53 expression (Wang
et al., 2020).

Accumulating evidence indicates that the PI3K/Akt/mTORC1
pathway is a negative regulator of autophagy (Yu et al., 2015).
Autophagy is a process of the digestion of long-lived proteins and
the damage of organelles and superfluously unwanted materials
(Tavakol et al., 2019). According to the latter, it was demonstrated
that resveratrol induces autophagic and apoptotic cell death
through decreasing the phosphorylation of Akt in Ser473 and
increasing the protein levels of phosphorylated AMPKα in
Thr172. Resveratrol simultaneously enhanced the protein level
of autophagy-associated proteins and the mRNA expression of
the autophagic genes Atg5, Atg12, Beclin-1, and LC3-II in
Cisplatin-resistant human oral cancer CAR cells (Chang et al.,
2017). Interestingly, curcumin also induced autophagy and
apoptosis in gastric cancer cells by activating p53 and the
inhibition of the PI3K pathway (Fu et al., 2018).

Curcumin is a potent anticancer agent for the treatment of
leukemia. A study by Zhou et al. in 2021 concluded that curcumin
had stronger cytotoxic activity against acute myeloid leukemia
cells compared with three other types of phytochemicals
(epigallocatechin 3-gallate, genistein, and resveratrol).
Mechanistically, curcumin treatment suppressed Akt
activation, leading to cell-cycle arrest and apoptosis (Zhou
et al., 2021).

mTORC1 functions as a downstream effector for PI3K/Akt,
resulting in mTORC1 hyperactivation in a high percentage of
human cancers (Saxton and Sabatini, 2017). Curcumin repressed
mTORC1 signaling by two mechanisms involving the loss of IRS-
1/Akt/PRAS40/Raptor/mTOR signaling and the activation of
AMPK (Kaur and Moreau, 2021). These authors demonstrated
that curcumin decreases the abundance of IRS-1 protein and
inhibits the p-Akt (Ser473). Therefore, this led to a decrease in the
phosphorylation of PRAS40 (Thr246), a negative regulator of
mTORC1 (Kaur and Moreau, 2021).

On the other hand, in head-and-neck cancers, curcumin
reduced the expression of phospholipase D1 (PLD1), the

enzyme that catalyzes the production of phosphatidic acid
(Borges et al., 2020). PLD1 binds to mTOR and displaces the
mTOR-interacting protein (DEPTOR), an mTOR endogenous
inhibitor, which results in mTORC1 activation and stabilization.
In this manner, curcumin downregulates the PI3K/Akt/mTOR
pathway and finally induces an arrest in the G2 phase of the cell
cycle and induces cell death by apoptosis (Borges et al., 2020).

The PI3K/Akt pathway plays an important role in cancer
progression, related to cell survival, growth, angiogenesis, and
metastasis (Liu Z. et al., 2020; Lu et al., 2020). An important
process in the progression of metastasis comprises vasculogenic
mimicry (VM), the de novo formation of perfusable and vessel-
like networks by aggressive tumor cells without endothelial cells.
Several genes, such as vascular endothelial cadherin (VE-
cadherin), participate in the formation of VM (Delgado-
Bellido et al., 2017). Curcumin inhibits the VM of HCC cells
by downregulating the Akt pathway (Chiablaem et al., 2014).
Recently, it was shown that EGCG reduced p-Akt and Akt
expression and reduced the ability of the VM of PC-3 cells.
EGCG inhibited the nuclear localization of twist, followed by the
downregulation of VE-cadherin expression, which in turn
impaired the Akt pathway (Yeo et al., 2020). On the other
hand, EGCG suppresses invasion and migration by preventing
the cadherin switch and decreasing the expression level of TCF8/
ZEB1, β-catenin, and vimentin in pancreatic cancer.
Mechanistically, EGCG inhibited the Akt pathways in a time-
dependent manner by suppressing IGFR phosphorylation and
inducing Akt degradation (Wei et al., 2019). It has been reported
that quercetin suppresses the mobility of breast cancer by the
inhibition of glycolysis through the Akt-mTOR pathway and the
activation of autophagy (Jia et al., 2018). Recently, it was shown
that flavonoids quercetin and myricetin suppressed the HGF and
TGF-α induced migration of HuH7 cells due to the attenuation of
the PIK3/Akt pathway (Yamada et al., 2020).

RAS Oncogene
RAS Overview
RAS proteins are eukaryotic small GTPases that cycle back and
forth between the GDP-bound inactive state and the GTP-bound
active state. RAS-GTP leads to the activation of various signaling
pathways, such as MAPK, PI3K, and RAL-GEF, promoting a
variety of crucial cellular processes including cell proliferation,
differentiation, and survival in response to extracellular stimuli.
RAS family members are encoded by three highly homologous
genes that encode four highly homologous proteins: HRAS,
NRAS, KRAS4A, and KRAS4B (the results of alternative
splicing at the C-terminus) (Weiss, 2020).

RAS signaling responds to many extracellular stimuli, such as
soluble growth factors. Growth factor binding to cell-surface
receptors creates intracellular docking sites for adaptor
molecules and signal-relay proteins that recruit and activate
guanine nucleotide-exchange factors (GEF). GEF displace
guanine nucleotides from RAS and permit passive biding to
GTP, which is abundant in the cytosol. On the other hand,
RAS proteins are negatively regulated by GTPase-activating
proteins (GAP), which markedly stimulate intrinsic GTPase
activity by stabilizing a high energy-transition state that occurs
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during the RAS-GTP hydrolysis reaction (Fernández-Medarde
et al., 2021).

Human cancers frequently express mutant RAS proteins,
termed “oncogenic RAS.” RAS oncogene mutations are those
that result in a persistent GTP-bound, active state. The most
common oncogenic RAS mutation comprises the substitution of
a single amino acid at positions 12, 13, or 61, which induces a
constitutively active RAS phenotype (Muñoz-Maldonado et al.,
2019).

KRAS is the most frequently mutated RAS family member that
can potentiate tumor-promoting activity. These KRAS alterations
have been identified in 25% of all cancers, such as blood, breast,
colorectal, gynecological, lung, prostate, and pancreatic cancer, in
which some cancers, pancreatic cancer (90%), colorectal cancer
(52%), and lung adenocarcinoma (32%) have extremely high
mutation rates (Mustachio et al., 2021).

RAS Oncogene and Polyphenols
The RAS oncogene is particularly difficult to target with specific
therapeutics. These RAS-mutated cancers respond poorly to
standard chemotherapy; thus, targeted approaches need to be
found (Sheffels and Kortum, 2021). Significant efficacy has been
demonstrated in the treatment of tumors with various
polyphenols, in particular the majority of polyphenols that
entertain specificity toward tumor cells that express mutated
KRAS and not so in normal cells.

Several flavonoids were tested on HRAS-transformed cells. Of
these, apigenin, kaempferol, and genistein were able to reverse the
transformed phenotypes, affecting cellular proliferation,
morphological change, and colony formation in soft agar. The
antitumor effect of resveratrol on oncogenic RAS was explored
using a WR-21 cell line derived from a submandibular salivary
adenocarcinoma. These WR-21 cells express an activated human
HRAS transgene (mutated Asp12) RAS protein, as well as p53.
This established that resveratrol inhibited cell proliferation and
induced cell death by apoptosis, through p53 without direct
modulation of the expression of both mRNA and the protein
of mutant HRAS (Young et al., 2005).

Manna et al. examined the in vivo antitumor efficiency of black
tea polyphenols such as theaflavin, EGCG, and ECG in lung
cancer. Treatment with these polyphenols inhibited benzo(a)
pyrene-induced lung carcinogenesis in mice; moreover, it
significantly reduced the expression of proliferation-associated
genes such asHRAS, c-Myc, and cyclin D1 compared to the B(a)P-
treated lung lesions (Manna et al., 2009).

It was shown that polyphenols such as curcumin and
resveratrol, on being supplemented in a diet, can prevent the
formation and growth of tumors by downregulating KRAS
expression (Limtrakul et al., 2001; Saud et al., 2014). EGCG
inhibited cell proliferation induced by oncogenic RAS in
intestinal epithelial cells and blocked cell-cycle transition at
the G1 phase via inhibition of cyclin D1 expression, and
EGCG exhibited a stronger inhibitory effect on cell
proliferation in transformed cells than on nontransformed
cells (Peng et al., 2006). The latter demonstrated the potential
of the natural compound EGCG as effective adjuvant therapy for
colon tumors bearing RAS mutations.

An in vivo investigation was conducted by Saud and
collaborators (2014) to evaluate the preventive and antitumor
effect of resveratrol using a genetically engineered mouse model
for colorectal cancer that has a conditional knock-out of both
copies of APC combined with a latent activated gain-of-function
in the KRASG12D mutation specifically in the distal colon. The
finding demonstrated that resveratrol orally administered at
human equivalent doses (210 mg/day) prevented initial tumor
formation and retarded the growth of established tumors.
Resveratrol suppressed the expression of KRAS both in vitro
and in vivo and induced the expression of miR-96, a microRNA
(miRNA) previously shown to regulate KRAS translation. These
data indicate that resveratrol can prevent the formation and
growth of colorectal tumors by downregulating KRAS
expression (Saud et al., 2014).

Oncogenic RAS has been shown to sensitize colon cancer cells
to treatment with quercetin; moreover, this quercetin
preferentially reduces the half-time life of the oncogenic RAS
protein vs. the wild-type RAS (Psahoulia et al., 2007).
Epicatechin-rich cocoa polyphenol extract inhibits the growth
of human premalignant and malignant KRAS-activated
pancreatic ductal adenocarcinoma. This finding demonstrated
that both the extract and epicatechin alone reduced the GTP-
bound active RAS protein level without having any effect on total
protein. Moreover, they showed that this extract decreased PI3K/
Akt and MAPK signaling by inhibiting KRAS activity (Siddique
et al., 2012).

Clinical Trials of Polyphenols With High
Potential of Cancer Health Benefits
In recent times, polyphenols have gained importance as possible
therapeutic agents, significantly increasing their use in clinical
trials to explore potential health benefits in different cancers.
Despite the abundance of studies in which curcumin, EGCG,
resveratrol, quercetin, apigenin, and kaempferol have
demonstrated excellent anticancer properties, the majority of
these studies were performed in preclinical models. The
bioactivities of polyphenols must also be investigated in
humans because it cannot be assumed that the experimental
results in cellular/animal models can be extrapolated to humans,
principally due to differences in genetics and metabolism. The
majority of these studies imply the exploration of
pharmacokinetics, pharmacodynamics, safety, and the
mechanisms by which these compounds reveal their effects.
Currently, according to the US National Library of Medicine,
386,104 research studies can be consulted that have been
conducted in all 50 US states and in 219 countries to date
(August 2021), and 71, 39, 17, 14, 1, and 0 clinical trials
related to different cancers using the polyphenols curcumin,
EGCG, resveratrol, quercetin, apigenin, and kaempferol are
available, with relevant studies listed in Table 1.

For quercetin, apigenin, and kaempferol, scarce evidence has
been published to date in the literature on cancer clinical trials.
An extensive search in the database clinicaltrials.gov resulted in
only four completed studies of quercetin, and only two of these
are reported in the literature. In the case of apigenin, the sole
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clinical trial (NCT00609310) has suspended status with no results
reported, and for kaempferol, no cancer clinical trials in any
phase have been reported to date. Results evidence the
importance of continuing the carrying out of studies in
different clinical phases, permitting the support of the great
amount of preclinical evidence that has been found to date for
the bioactivities of polyphenols, with the main objective of
demonstrating both their safety and efficacy for the prevention
and treatment of different types of cancer. Safety and tolerability
are demonstrated in numerous studies, and some of the clinical
trials listed inTable 1 include supporting evidence that curcumin,
EGCG, resveratrol, and quercetin are safe for human clinical
trials. Despite the problems related to the physicochemical
properties of polyphenols, their administration route,
pharmacokinetics, pharmacodynamics, and bioavailability,
among others, involved factors that limit and impact their
effectiveness and possible pharmacological action; these
compounds may be considered serious candidates for cancer
treatment. Because of the poor bioavailability of polyphenols and
their extensive metabolism, high doses (up to a maximum of 12 g/
day, depending on the type of compound tested) have been
utilized by researchers in clinical trials. However, the results
evidence the need for more research to increase the evidence
and documentation of the bioactivities of these compounds in
human subjects with well-controlled double-blind/placebo
clinical trials for future therapeutic use, in order to establish
their potential in terms of appropriate doses, the most effective
routes of administration, in which types of cancer may they be
most effective for treatment. Potential medicinal use, accessibility,
low cost, safety, and toxicological profile, as well as multiple
evidence from preclinical and clinical studies, make polyphenols
important candidates for cancer treatment.

DISCUSSION

Polyphenols have gained attention as promising compounds with
regulatory activities in several signaling pathways related to
cancer development and progression. Understanding how
polyphenols regulate cancer-associated mechanisms is
important in the development of new therapies for cancer
treatment. Polyphenols compose the third largest group of
plant-derived chemical compounds after terpenes and
alkaloids (Kennedy and Wightman, 2011), making them an
important source of possible therapeutical agents given the
great diversity of the compounds, from the simplest phenolic
acids to polyphenols with a high degree of polymerization. The
complexity of polyphenols will have an impact on their
bioavailability and bioactivities. Oral administration is the
most usual dosage form because it is safe, convenient for
medication delivery, noninvasive, and painless, no sterile
conditions are needed, both liquids and solids can be
administered, it is cost-effective, and it can be self-
administered. Nevertheless, oral drug delivery has
disadvantages, including nonimmediate action (not suitable for
emergency cases), patients must be conscious, absorption is
variable among individuals, and some medications are not

available in oral form because they are degraded in the GI
tract and they may imply the transformation of the drug into
a less active form or into toxic metabolites (Kerz et al., 2007;
Vinarov et al., 2021). The absorption of polyphenols in GI differs
according to their chemical nature. The main compounds to
become absorbed are, in decreasing order, isoflavones, phenolic
acids (caffeic and gallic), catechins, flavanones, and quercetin
glucosides, whereas high-molecular-weight polyphenols, such as
proanthocyanidins, catechins, and anthocyanins, are poorly
absorbed (Manach et al., 2004). Functional groups may affect
polyphenol absorption; glycosidic residues (the most common
moieties) may render polyphenol absorption difficult in the small
intestine or in the enzymatic activity of gut microbiota. However,
this is not always true: some glycosylated metabolites of quercetin
possess better bioavailability than aglycone itself (Velderrain-
Rodríguez et al., 2014). All of these processes involved in
polyphenol absorption may lead to changes in the molecular
responses obtained in vitro and in vivo and must be considered in
terms of their bioactivities; however, once absorbed and on their
reaching target tissues, polyphenols may exert their bioactivities.

Nanotechnology has high importance in pharmaceutical
formulations, targeted therapies, and high efficiency-controlled
release. The use of nanotechnology may overcome the
bioavailability issues of polyphenols and increase their
bioactivity. The application of nanotechnology leads to an
increase in the bioavailability and bioactivity of phytomedicine
by reducing the size of the particles, by surface modification, and
by entrapping the phytomedicine. Different types of compounds
may be employed for nanoparticle formulations, including
biopolymers, liposomes, quantum dots, polysaccharides,
proteins, and metals. The efficiency of polyphenols may be
enhanced by employing nanoparticles to reach specific tissues
and diminish immunogenicity. The small sizes of nanoparticles
(10–150 nm) ensure more efficient accumulation in tumors.
Nanoparticles of <10 nm probably will be cleared by kidneys,
whereas nanoparticles of >150 nm may be recognized and
eliminated by macrophages (Kijanka et al., 2015).
Nanoparticles significantly increase the efficiency of
polyphenols against tumors. Curcumin-loaded nanoparticles
have demonstrated better dose effectivity and bioactivity in
cervical cancer cells (Zaman et al., 2016). Different
nanoparticle-based therapies are approved by the FDA for the
treatment of different cancers. As relevant examples, Myocet was
approved in the year 2000 for the primary treatment of breast
cancer, and VYXEOS was approved in August 2017 to treat acute
myeloid leukemia. Therefore, the exploration of the use of
polyphenol-loaded nanoparticles as novel anticancer therapies
has a promising future.

Cancer represents a major public health concern around the
globe, and despite the existence of a variety of therapies for its
treatment, these therapies are often accompanied by adverse
effects or toxicities in patients. Given the molecular complexity
involved in cancer development and progression, novel
treatments may be obtained using polyphenols. Polyphenolics
are often recognized as safe products in several toxicity studies.
According to reports of the European Food Safety Authority
(EFSA), the daily recommended safe dose of curcumin is
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0–3 mg/kg body weight (Kocaadam and Şanlier, 2017). The
most promising polyphenols (curcumin, resveratrol, quercetin,
and EGCG) and their use as possible therapeutic agents are
being explored in clinical trials in different cancers including
colon, breast, and prostate, to explore their clinical effects alone
or in combination with chemotherapy.

p53 plays a central role in many cellular processes, can be
activated by diverse stimuli, and is followed by its corresponding
response, including apoptosis, senescence, cell-cycle arrest,
DNA repair, metabolism regulation, and differentiation
(Aubrey et al., 2016). Although p53 is the most studied gene
of all time (Dolgin, 2017), many questions on its regulation in
cells that will determine cellular fate remain unclear. Regulation
of p53 may be achieved by posttranslational mechanisms,
mRNA-level modulation, protein stability, etc. Dietary
polyphenols have important regulatory activities on p53
(Figure 5), including protein stabilization by its interaction
with proteins (NQO1) in cells treated with curcumin (Patiño-
Morales et al., 2020); EGCG evokes the regulation of mRNA and
protein levels (Chu et al., 2017) or the epigenetic regulation
induced by resveratrol, leading to the reestablishment of p53
(Chatterjee et al., 2019). These features of polyphenols highlight
their importance and their possible therapeutic action against
cancer; however, there are many questions concerning the
specific cancer type for which they must be used or on their
molecular mechanisms of action, which are still poorly
understood, as well as the synergistic effect they may have
with conventional chemotherapy (Figure 5). Therefore,
further research is required to answer these questions in
order to move forward to the pharmacological use of
polyphenols for cancer.

The PI3K/Akt/mTOR pathway plays a major role in survival,
growth, metastasis, and drug chemoresistance in cancer. This
pathway comprises a major node that is frequently mutated or
amplified in a wide variety of solid tumors (Manning and
Cantley, 2007). Several novel anticancer agents targeting the
PI3K/Akt/mTOR pathway have been developed for the
treatment of various malignancies. For this reason, inhibiting
any component of this pathway comprises a promising
therapeutic strategy. Wortmannin and LY294002 were the
first-generation PI3K inhibitors that belong to the
nonisoform-specific category. However, Wortmannin with
irreversible inhibition lacks selectivity and adverse effects
resulted in the termination of its clinical trials (Mishra et al.,
2021). LY294002 has poor solubility, bioavailability, and several
adverse effects, such as fatigue, nausea, vomiting, diarrhea, and
hyperglycemia (Esposito et al., 2019).

Dietary polyphenols, such as the resveratrol present in
peanuts, catechins in green tea, curcumin in turmeric, and
apigenin in onions, have been widely demonstrated that
polyphenols have antitumor effects with selective cytotoxicity
to cancer cells and few adverse effects to the patient. Several
preclinical experimental studies have been developed to highlight
the antitumor effect of resveratrol, curcumin, apigenin, EGCG,
and quercetin on several tumors. In this review, we describe that
these polyphenols can alter the function of multiple molecules
effective in PI3K signaling, such as Akt, mTOR, PTEN, and PDK-

1, through different mechanisms, avoiding cancer progression,
drug resistance, angiogenesis, and metastasis.

Multiple in vitro and in vivo studies have shown that
polyphenols decrease drug resistance. It was revealed that
resveratrol decreases this drug resistance by reducing the
expression of MRP1 and the efflux of Adriamycin in HL-60/
ADR cells (Li F. et al., 2019) or by promoting cell death by
autophagy. There is a catabolic process for bulk or selective
encapsulated lysosomal degradation and the recycling of
obsolete or damaged cytoplasmic cargo including proteins and
organelles. Autophagy plays a dual role in cancer. On the one
hand, the activation of autophagy in cancer cells promotes the
efficacy of anticancer strategies, while on the other hand, it may
promote cancer progression through the enhancement of cell
survival (Tavakol et al., 2019). Resveratrol and curcumin induce
autophagy and apoptosis through a decrease of the
phosphorylation of Akt (S473) and AMPK or through p53
activation (Chang et al., 2017). In contrast, in ovarian cancer,
treatment with curcumin induces protective autophagy by
inhibiting the Akt/mTOR pathway, resulting in resistance to
chemotherapy. Interestingly, in these tumors, the inhibition of
autophagy and curcumin therapy may provide a new perspective
for clinical intervention (Liu Z. et al., 2019). However, more
studies are needed to demonstrate the precise molecular
mechanism and whether it is feasible to employ it in other
types of cancer.

As mentioned previously, polyphenols inhibit the PI3K/Akt/
mTOR pathway; however, these agents can interfere with other
signaling cascades involved in cancer progression, such as MAPK
and oncogenic RAS.

FIGURE 5 | p53 Stabilization by curcumin and synergy with routine
therapy for the treatment of cervical cancer. Curcumin activates the Kelch-like
ECH-associated protein 1-nuclear factor (erythroid-derived 2)-like 2 (Keap1/
Nrf2) pathway, leading to an increase in the levels of NAD(P)H:quinone
oxidoreductase 1 (NQO1). NQO1 binds to p53, promoting the loss of the
interaction between p53 and E6AP, a negative regulator, promoting p53
stabilization in cancer cells with wild-type p53, such as cervical cancer cells.
Moreover, a promising area of study is that of evaluating the synergistic effect
of curcumin with routine chemotherapy, thus procuring a better response to
treatment and fewer adverse effects.
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RAS proteins are small eukaryotic GTPases that cycle back and
forth between the GDP-bound inactive state and the GTP-bound
active state. The KRAS gene can simultaneously harbor multiple
mutations that can potentiate tumor-promoting activity in
several human cancers; thus, it is necessary to utilize a new
therapeutic strategy to inhibit this oncoprotein and therefore the
development of cancer (Mustachio et al., 2021). However, the
RAS oncogene is particularly difficult to target with specific
therapeutics. These RAS-mutated cancers respond poorly to
standard chemotherapy; therefore, targeted approaches need to
be found (Sheffels and Kortum, 2021).

Several studies both in vitro and in vivo have shown that
polyphenols such as curcumin, resveratrol, and EGCG
supplemented in a diet can prevent the formation and growth
of tumors by downregulating KRAS expression (Limtrakul et al.,
2001; Saud et al., 2014). EGCG inhibited cell proliferation
induced by oncogenic RAS and exhibited a stronger inhibitory
effect on cell proliferation in transformed cells than in
nontransformed cells (Peng et al., 2006). Epicatechin reduced
the GTP-bound active RAS protein level; moreover, it was
demonstrated that this polyphenol decreased PI3K/Akt and
MAPK signaling by inhibiting KRAS activity (Siddique et al.,
2012). The ability of polyphenols to decrease RAS activity affords
the possibility that polyphenols could be used for the targeting of
many types of cancer that are caused by RAS activation,
representing an attractive opportunity for the treatment of
these tumors, which are characterized by being resistant to
conventional chemotherapy. However, more studies are
necessary to establish effectiveness either as monotherapy or
as a combined therapy.

Despite the wide range of polyphenol health-related beneficial
bioactivities in the regulation of cancer-related signaling pathways,
wemust consider the possible undesirable adverse effects caused by
polyphenols. The similarity and ability of soy isoflavones to act as
phytoestrogens may lead to undesired effects, principally in
hormone-responsive diseases; Genistein treatment produces cell-
cycle arrest and an improvement in mitochondrial functionality in
T47D (low ERα/ERβ ratio), but not in MCF-7 (high ERα/ERβ
ratio) andMDA-MB-231 (ER−) (Pons et al., 2014). Polyphenols are
not exempt from toxicological adverse effects. Despite the fact that
curcumin is recognized as safe, patients given oral doses of
curcumin 10–12 g exhibited minor grade-1 toxic effects
according to the World Health Organization (WHO)
toxicological classification (Vareed et al., 2008). Although
extensive evidence supports the antioxidant protective effects of
curcumin, high concentrations may induce an increase in
intracellular ROS production. It has been demonstrated that
curcumin (2.5–5 µg/ml) induces mitochondrial and nuclear
DNA damage, which could raise questions concerning our
safety (Cao et al., 2006; Burgos-Morón et al., 2010). Polyphenols
such as quercetin inhibit CYP 1A2, 2C9, 2C19, 3A4, and 2D6
(Rastogi and Jana, 2014); therefore, we must take care when drugs
metabolized through these CYP are coadministered with quercetin.
Despite these possible adverse effects, the majority of the evidence
supports the beneficial health effects of polyphenols. However, it is

important to continue the development of experimental studies
and clinical trials that allow us to understand the mechanisms that
are fully involved and the specificity for the different types of cancer
that can be treated with polyphenols.

In conclusion, this reviewhas provided an overview of the principal
strengths of the most promising polyphenolic compounds for the
regulation of important key players in cancer, which control a wide
variety of cellular processes such as differentiation, proliferation,
apoptosis, cell-cycle arrest, and the responses to inflammatory
processes or oxidative stress. Therapies in current use for cancer
are associated with several adverse effects that reduce the overall
quality of life or may cause the death of patients. Polyphenols have
been attracting attention due to their multiple bioactivities and could
be an interesting alternative as therapeutic agentswith the aimof being
more effective and less toxic for cancer treatment. Bioavailability is an
important parameter to be considered in the use of polyphenols as
therapeutics in patients with cancer, due to the biotransformation
processes that modify their structure and, possibly, bioactivities along
their passage through gut and liver metabolism. The anticancer effects
of polyphenols are known to modulate several signaling pathways
includingMAPKandPI3K/Akt, important tumor suppressors such as
p53, and oncoproteins such as RAS isoforms. Several polyphenols
including curcumin, resveratrol, quercetin, kaempferol, EGCG, and
apigenin may upregulate the expression of the key players in these
signaling pathways in several cancer types through a variety of distinct
mechanisms of action. All of these considerationsmake polyphenols a
promising source of therapeutics for cancer treatment; however,
further research is needed to elucidate the complete mechanisms
involved in the polyphenol-induced regulation of cancer.
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Saikosaponin A, a Triterpene Saponin,
Suppresses Angiogenesis and Tumor
Growth by Blocking
VEGFR2-Mediated Signaling Pathway
Pan Zhang1,2†, Xing Lai 3†, Mao-Hua Zhu3, Mei Long3, Xue-Liang Liu3, Zi-Xiang Wang1,
Yifan Zhang1, Run-Jie Guo2, Jing Dong3, Qin Lu3, Peng Sun4, Chao Fang3* and Mei Zhao1,2*

1Department of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China, 2Graduate School, Shanghai
University of Traditional Chinese Medicine, Shanghai, China, 3Tongren Hospital and State Key Laboratory of Oncogenes and
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Saikosaponin A (SSA), a main triterpenoid saponin component from Radix Bupleurum, has
been revealed to have a variety of pharmacological activities. However, whether SSA can
inhibit angiogenesis, a key step in solid tumor progression, remains unknown. In this study,
we demonstrated that SSA could powerfully suppress the proliferation, migration, and
tube formation of human umbilical vein endothelial cells. SSA also significantly inhibited
angiogenesis in the models of the chick embryo chorioallantoic membrane and Matrigel
plugs. Moreover, SSA was found to inhibit tumor growth in both orthotopic 4T1 breast
cancer and subcutaneous HCT-15 colorectal tumor by the inhibition of tumor
angiogenesis. Western blot assay indicated the antiangiogenic mechanism of SSA in
the suppression of the protein phosphorylation of VEGFR2 and the downstream protein
kinase including PLCγ1, FAK, Src, and Akt. In summary, SSA can suppress angiogenesis
and tumor growth by blocking the VEGFR2-mediated signaling pathway.

Keywords: saikosaponin A, angiogenesis, VEGFR2, chick embryo chorioallantoic membrane, cancer therapy

INTRODUCTION

Saikosaponin A (SSA, Figure 1A), a main triterpenoid saponin component from Radix Bupleurum,
has been widely investigated for its multiple pharmacological activities, such as antidepressant (Guo
et al., 2020), immunoregulatory (Qi et al., 2021), and anti-inflammatory properties (He et al., 2016;
Du et al., 2018; Zhou et al., 2019; Piao et al., 2020). The anticancer effects of SSA are also intriguing
with diverse molecular mechanisms. Specifically, SSA can induce apoptosis or inhibit the
proliferation of tumor cells through caspase-2, -4, and -8 activation (Kim and Hong, 2011; Kang
et al., 2017); ERK signaling activation; or CXCR4 downregulation (Wang et al., 2019). SSA also
regulates Th1/Th2 balance in tumors (Zhao et al., 2019) and generates microbicidal neutrophils to
reduce cancer chemotherapy–induced neutropenia infection (Qi et al., 2021); both of them can
benefit from antitumor therapy. However, it remains elusive whether SSA can directly suppress
angiogenesis, the hallmark and a key step in solid tumor progression (Hanahan andWeinberg, 2011).

Angiogenesis, the development of new blood vessels from pre-existing ones, is a validated target in
cancer clinics. More than 10 antiangiogenic drugs, including small kinase inhibitors (sunitinib,
sorafenib, pazopanib, etc.), antibodies (bevacizumab and ramucirumab), and fusion proteins
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(aflibercept), have been approved by the FDA and other countries
for multiple cancer indicators (Jayson et al., 2016). However, low
efficacy, toxic side effects, unsatisfied pharmacokinetic behavior,
and high cost limit their wide use in cancer clinics (Jain et al.,
2011; Jayson et al., 2016; Kim et al., 2019). It is urgent to develop
new antiangiogenic agents. In recent years, exploring
antiangiogenic natural products is emerging as an attractive
research field. Many natural products with diverse molecular
structures exerted potent antitumor actions via multiple
antiangiogenic mechanisms (Guan et al., 2016).

In this work, the antiangiogenic effect of SSA and its molecular
mechanism were revealed. SSA suppressed the proliferation,
migration, and tube formation of human umbilical vascular
endothelial cells (HUVECs, a classical in vitro cell model
mimicking tumor vascular endothelial cells). SSA inhibited
angiogenesis in the chick embryo chorioallantoic membrane
(CAM) and Matrigel plug models. Moreover, SSA suppressed
angiogenesis and tumor growth in orthotopic 4T1 breast cancer
and subcutaneous HCT-15 xenograft in mice without overt
toxicity. The underlying molecular mechanism of SSA is
VEGFR2 signal blocking, which was proved in Western
blot assay.

MATERIALS AND METHODS

Materials, Cells, and Animals
Saikosaponin A (SSA) was purchased from Push Bio-Technology
Company (Chengdu, China). Dulbecco’s modified Eagle medium
(DMEM), RPMI 1640 medium, fetal bovine serum (FBS),
penicillin, and streptomycin were provided by Basal Media
Technologies (Shanghai, China). The recombinant human
vascular endothelial growth factor (VEGF165) was obtained
from ProSpec-Tany TechnoGene (Ness Ziona, Israel). The
Matrigel matrix was obtained from BD Biosciences (San Jose,
CA, United States). Antibodies for Western blotting in the
VEGFR2 signaling assay were supplied by Cell Signaling
Technology (Shanghai, China). The antibodies were VEGF
receptor 2 (55B11) rabbit mAb (#2479), phospho-VEGF
receptor 2 (Tyr1175) rabbit mAb (#2478), PLCγ1 rabbit
antibody (#2822), phospho-PLCγ1 (Ser1248) (D25A9) rabbit
mAb (#8713), FAK rabbit antibody (#3285), phospho-FAK
(Tyr397) (D20B1) rabbit mAb (#8556), Src rabbit antibody
(#2108), phospho-Src Family (Tyr416) (E6G4R) rabbit mAb
(#59548), Akt (pan) (11E7) rabbit mAb (#4685), and
phospho-Akt (Ser473) (D9E) XP rabbit mAb (#4060). Goat

FIGURE 1 | SSA more efficiently suppressed the viabilities of HUVECs compared to those of HCT-15 and 4T1 cells. (A) Chemical structures of SSA. (B) Effect of
SSA on cell viability. (C) Representative fluorescence photographs of HUVECs stained with calcein-AM/PI after treatment with SSA. (D) The live (calcein+) and dead (PI+)
cell percentages of HUVECs after SSA treatments. All values were expressed as mean ± s.d. n � 4. ***p < 0.001.
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anti-rabbit IgG H&L (HRP) (ab205718) was supplied by Abcam
(Shanghai, China).

Primary human umbilical vascular endothelial cells
(HUVECs) were obtained from Lifeline Cell Technology
(Frederick, MD). HUVECs were cultured in the VascuLife
VEGF Cell Culture Medium (Frederick, MD), which contained
supplements and growth factor cytokines, including VEGF, EGF,
IGF-1, and bFGF. The HCT-15 human colorectal
adenocarcinoma cell line and 4T1 mouse breast cancer cell
line were purchased from American Type Culture Collection
(Manassas, VA). They were all cultured at 37°C in humidified
atmosphere containing 5% CO2.

BALB/c mice or nude mice (20 ± 2 g) were provided by
Shanghai Laboratory Animal Center (Chinese Academy of
Sciences, Shanghai, China). All animal-associated experiments
in this study were approved by the Ethical Committee of
Shanghai Jiao Tong University School of Medicine.

Cell Viability Assay
The effect of SSA on cell viability was analyzed by using the Cell
Counting Kit-8 (Dojindo Laboratories, Kumamoto, Japan).
HUVECs, 4T1 or HCT-15 cells, were seeded at a density of
6 × 103 cells/well in 96-well plates (Corning, United States). After
24-h incubation, the cells were treated with various
concentrations of SSA (1–100 μM) for 48 h. Then 10 μL CCK-
8 solution was added for an additional 2-h incubation at 37°C. All
experiments were performed in triplicate. Absorbance at 450 nm
was measured using a microplate reader. Cell viability (%) was
calculated against the control.

The LIVE/DEAD cell viability/cytotoxicity kit (Life
technology, Carlsbad, CA) was also used to assess the viability
of HUVECs. Calcein-AM can be transformed into calcein with
green fluorescence in live cells, and propidium iodide (PI, red
fluorescence) can stain the nuclei of dead cells. HUVECs (6 × 103

cells/well) were cultured in 96-well plates. After incubation at
37°C for 12 h, the medium was replaced by 200 μL of 1–100-μM
SSA for 48-h incubation. Then the culture medium was replaced
with 1 ml PBS containing 2 μM calcein-AM (Ex 488 nm and Em
515 nm) and 4.5μM PI (Ex 535 nm, Em 615 nm) for 15 min to
stain live and dead cells.

Wound Healing Assay
HUVECs were seeded in 96-well plates (1 × 104 cells/well) and
allowed to grow to confluence. Then the cells were scratched with
WoundMaker (IncuCyte) and treated with various
concentrations of SSA (1–100 μM) for 12 h. Then the cells
were incubated with fresh medium till 48 h. After 48 h, the
cells were observed and photographed using the IncuCyte
Live-Cell Analysis System (Essen BioScience). Cell migration
was quantified using Image-Pro Plus 8.0 software (Media
Cybernetics, Bethesda, MD).

Transwell Migration Assay
The HUVEC migration assay was carried out in a 96-well
Transwell Boyden chambers with a polycarbonate filter of a
pore size of 8 μm and 6.5 mm diameter inserts (Corning
Costar, MA). In brief, 5 × 105 cells suspended in 100-μL

serum-free medium with various concentrations of SSA
(1–100 μM) were added to the upper chamber. The bottom
chambers were filled with 600 μL completed endothelial cell
medium containing 20 ng/ml VEGF165. The cells were cultured
routinely in an incubator (37°C with 5% CO2). After 10 h, the
upper surface of the membrane was gently wiped with a cotton
swab to remove non-migrating cells. The membrane was then
fixed in 4% glutaraldehyde for 20 min and stained with crystal
violet overnight at room temperature. After washing the
Transwell chamber five times with PBS, the membrane was
photographed using an EVOS microscope (Life Technologies,
Grand Island, NY). The migrated cells were quantified using
Image-Pro Plus 8.0 software.

Endothelial Cell Tube Formation Assay
Chilled Matrigel (BD Biosciences, CA) was thawed overnight at
4°C, dispensed into 96-well plates (70 μL/well), and then
incubated at 37°C for 30 min for solidification. Then
approximately 2 × 105 cells suspended in 100 μL medium
containing various concentrations of SSA (1–100 μM) were
seeded on Matrigel. After 8 h, the images of HUVEC tubular
structures were photographed using the EVOS microscope, and
the tube length and inhibition effect were analyzed using Image-
Pro Plus 8.0 software.

Chick Embryo Chorioallantoic Membrane
Assay
To evaluate the in vivo angiogenic effect of SSA, the chick embryo
CAM assay was applied in this experiment (Liu et al., 2018). In
brief, the fertilized eggs were placed in an incubator with
approximately 60% humidity and 37.8°C. After 8 days, ∼ a 1-
cm2 window was opened, and the shell membrane was removed
to expose the CAM. A sterilized 5-mm diameter Whatman filter
sheet as a drug carrier that was soaked with SSA of concentrations
(1–100 μM) was placed on the CAM. The saline group was
included as the control. Then the window was sealed with
parafilm and returned to the incubator for additional 48 h.
The images of CAM were captured through the windows
using a digital camera (Nikon, Japan), and the
neovascularization was quantified using Image-Pro Plus 8.0
software.

Matrigel Plug Assay
The in vivo antiangiogenic activity of SSA was also evaluated in
the Matrigel plug model (Liu et al., 2015). Female BALB/c mice
were divided into five groups (n � 4) and subcutaneously injected
with 500-μL Matrigel that contained 30 U heparin with
recombinant human VEGF165 (50 ng/ml) and various
concentrations of SSA (0, 3, 10, 30 μM). Matrigel containing
no VEGF165 (50 ng/ml) was set as control. After 12 days, the
mice were euthanized. The Matrigel plugs were harvested, fixed
in 4% glutaraldehyde overnight, and processed for CD31
immunofluorescence staining. The images of microvessels
were photographed under the EVOS microscope, and
microvessel density (MVD) was quantified using Image-Pro
Plus 8.0 software.
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Anticancer Therapy of SSA in Orthotopic
4T1 Tumor in Mice
One million 4T1 cells were injected into the right mammary
fat pad of female BALB/c mice to establish the orthotopic
tumor model. When the tumor grew to approximately
100 mm3, 16 mice were divided into two groups and
treated intraperitoneally with saline or SSA (10 mg/kg/day)
for consecutive 15 days. The tumor volume and body weight
were recorded every day. The tumor volume was calculated as
follows: volume � (length×width2)/2. On the final day, the
mice were euthanized, and the tumors were removed and
weighted. The tumors were fixed in 4% paraformaldehyde
solution and processed for frozen sections. Then the slices
were stained with rat anti-mouse CD31 antibody (1: 200, BD
Biosciences, Shanghai, China) and Cy3 conjugated goat anti-
rat IgG (H + L) (1:300, Servicebio, Wuhan, China) (Ex
550 nm, Em 570 nm) for microvessel density (MVD) assay.
The tumor tissues were also processed for paraffin sections
for pathological examination. The sections were then stained
with anti-Ki-67 rabbit pAb (1:500, Servicebio, Wuhan,
China) and HRP-conjugated goat anti-rabbit IgG (H + L)
(1:200, Servicebio, Wuhan, China). Then the slices were
photographed under a confocal laser scanning microscope
(Leica TCS-SP8) or photomicroscope (Leica DFC 320), and
the images were analyzed for microvessel density (MVD), Ki-
67–positive tumor cells, and tumor necrosis area using
Image-Pro Plus 8.0 software.

Anticancer Therapy of SSA in Subcutaneous
HCT-15 Tumor in Nude Mice
Three million HCT-15 cells were subcutaneously injected into the
right anterior axillary of the six-week-old BALB/c nude mice to
establish the xenograft tumor model. When the tumor volume
reached ∼100 mm3, 16 mice were randomly divided into two
groups. Then the mice were treated intraperitoneally with saline
or SSA (10 mg/kg) every day consecutively for 15 days. The
methods for antitumor evaluation are same as those in the
aforementioned anti-4T1 tumor experiment.

Western Blot
Western blot assay was used to investigate the antiangiogenic
mechanism of SSA. In brief, HUVECs (2 × 105 cells per well) were
seeded in 6-well plates and incubated for 2 days until they reached
80% confluence. Then the cells were incubated with various
concentrations of SSA for 30 min and stimulated with 50 ng/
ml VEGF165 for 4 min. Subsequently, RIPA lysis buffer
(Beyotime, Shanghai, China) supplemented with PMSF
(Sangon Biotech, Shanghai, China) and phosphatase inhibitor
cocktail (EpiZyme, Shanghai, China) were added to each well to
extract whole cell lysates. The BCA Protein Quantification Kit
(Yeasen biotech, Shanghai, China) was used to determine the
protein concentration. Equal amounts of protein (30 μg) were
applied to 10% SDS-PAGE, and they were transferred onto a
PVDFmembrane (Millipore, Bill-erica, MA). The membrane was
then blocked in 5% non-fat milk blocking buffer for 1 h and

incubated with specific primary antibodies (1:1,000, Cell
Signaling Technology, Shanghai, China) followed by exposure
to HRP-conjugated secondary antibody (1:5,000, Abcam,
Shanghai). All experiments were carried out at least three times.

Statistical Analysis
All data obtained were presented as mean ± s.d. Statistical analysis
was performed using GraphPad Prism 8.0 (GraphPad Software,
San Diego, CA). Differences between the groups were examined
using one-way ANOVA with Bonferroni’s multiple comparison
tests or Student’s t test. The differences were considered
significant when the p value was below 0.05.

RESULTS

SSA Inhibited the Viability of Human
Umbilical Vascular Endothelial Cells
More Efficiently Than That of 4T1
and HCT-15
HUVEC is a normal cell line that can mimic tumor endothelial
cells well. (Guan et al., 2015). SSA efficiently suppressed HUVEC
viability in a dose-dependent manner (Figure 1B). The viabilities
of HUVECs were completely suppressed when SSA
concentrations exceeded 30 μM. Similar observations were
obtained in the calcein-AM and PI dual staining assay
(Figures 1C,D). Compared to HUVECs, tumor cells (4T1 and
HCT-15) were less sensitive to SSA. 3.4- ∼ 7.4-fold higher
viability of the 4T1 and HCT-15 cells was maintained after
treatment with 10–100 μM SSA. Generally, the activated tumor
endothelial cells are more sensitive to chemotherapeutic drugs
than tumor cells, offering a choice for specific antiangiogenic
therapy (Kerbel and Kamen, 2004). We also examined the
cytotoxicity of SSA in two normal cell lines, L-02 (human fetal
hepatocyte line) and ARPE-19 (a human retinal pigment
epithelial cell line). It showed that compared to HUVECs, L-
02 and ARPE-19 were less sensitive to SSA (Supplementary
Figure S1), suggesting the potential safety of SSA when used
in vivo.

SSA Inhibited Human Umbilical Vascular
Endothelial Cell Migration and Tube
Formation
The wound healing test is a representative method for the
evaluation of HUVEC migration (Guan et al., 2015; Li et al.,
2019). HUVECs were pretreated with SSA for 12 h and then
incubated in fresh medium till 48 h. After 12-h incubation, more
than 65% cells were still alive even at the highest test
concentration (100 μM) (Supplementary Figure S2). The
inhibition of the horizontal migration of HUVECs in the
wound healing test was obtained in a dose-dependent manner.
∼40% migration inhibition was obtained under 10 μΜ SSA, and
this effect increased to nearly 80% when 30 μΜ or higher
(100 μΜ) SSA was used (Figure 2A). It is noted that 30 μM
SSA decreased 30% cell viability (Supplementary Figure S2),
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while increased nearly 80% inhibition of the migration. Thus, the
antiangiogenic effect of SSA would be from both direct
cytotoxicity and the specific interference to the cell function in
migration.

HUVEC migration was also investigated using the
Transwell test (Luan et al., 2014). The cells were treated
with SSA for 10 h. During this time, ∼80% cells were still
alive even at the highest test concentration (100 μM)
(Supplementary Figure S3). After 10 μM SSA treatment
for 10 h, more than 90% HUVECs were alive. Under this
treatment condition, more than 60% cell migration was
suppressed (Figure 2B). This observation reflected the
specific interference of SSA to the cell function in
migration. More than 90% migration was suppressed when
the cells were treated with 30 and 100 μΜ SSA (Figure 2B).

The tube formation of HUVECs is a classical in vitro
angiogenesis assay (Luan et al., 2014). The endothelial cells
differentiate and form tube-like structures on the extracellular
matrix (Matrigel). In contrast to the well-formed tube-like
pattern, SSA exhibited strong antiangiogenic potency with
more than 90–100% inhibition when concentrations went
above 10 μΜ with 8-h treatment (Figure 2C). Specifically, the

cells were individually spread on the Matrigel with almost no
connection between them.

SSA Suppressed Angiogenesis in Chick
Embryo Chorioallantoic Membrane
We then investigate the antiangiogenic activity of SSA in vivo
using the classic chick embryo CAM model (Liu et al., 2018).
After 48-h treatment, the formation of new blood vessels was
dramatically suppressed by SSA compared to that in the control,
demonstrating the potent antiangiogenic activity in vivo
(Figure 3).

SSA Inhibited Vascularization in the
Matrigel Plugs in Mice
The Matrigel plug model was also used for the in vivo
antiangiogenic evaluation of SSA (Liu et al., 2015). Matrigel
containing 30 U heparin, VEGF165 (0 or 50 ng/ml), or SSA (3,
10, and 30 μM) was subcutaneously injected into female BALB/
c mice. After 12 days, the formed Matrigel plugs were harvested
and photographed (Figure 4A). The immunofluorescent

FIGURE 2 | SSA significantly suppressed HUVECmigration and tube formation. (A) SSA suppressed the horizontal migration of HUVECs in the wound healing test.
The line indicated the initial boundary of the cells. (B) SSA inhibited HUVEC migration in the Transwell assay. The migrated cells were stained with crystal violet and
quantified using Image-Pro plus 8.0 software. (C) SSA inhibited HUVEC tube formation. The length of the tubular structures was photographed and quantified using
Image-Pro plus 8.0 software. The photos of the control and SSA groups (30 μM) were shown in each panel. The values are expressed as mean ± s.d. n � 3. *p <
0.05, **p < 0.01, and ***p < 0.001. SSA suppressed angiogenesis in the chick embryo CAM.
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FIGURE 3 | Effect of SSA on angiogenesis in the CAM. CAMs were treated for 48 h with a 6.5-mm diameter Whatman filter disk previously immersed in various
concentrations of SSA (1–100 μM). CAM angiogenesis was photographed using a digital camera (A) and quantified using Image-Pro Plus 8.0 software (B). Data were
expressed as mean ± s.d. n � 3. *p < 0.05, **p < 0.01, and ***p < 0.001 as compared with the control group. SSA inhibited vascularization in the Matrigel plugs in mice.

FIGURE 4 | Effects of SSA on in vivo angiogenesis evaluated in the Matrigel plug model. (A) Photographs of the Matrigel plugs of different groups on day 12. (B)
Immunofluorescence staining of CD31-positive microvessels (red) in the Matrigel plugs. Representative images were shown. (C) Quantified microvessel density (MVD).
All values were shown as mean ± s.d. n � 5. **p < 0.01 and ***p < 0.001. SSA inhibited angiogenesis and growth of orthotopic 4T1 tumors in mice.
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FIGURE 5 | SSA inhibited orthotopic 4T1 tumor growth and angiogenesis in BALB/c mice.When the tumor grew to approximately 100 mm3, themice were treated
intraperitoneally with saline or SSA (10 mg/kg/day) for consecutive 15 days. (A) Tumor growth curve. (B) Photographs of the excised tumor on day 15. (C) Tumor weight
on day 15. (D)Mouse body weight during the therapy. (E)Representative images of the immunohistochemical staining of CD31+ tumor vessels. (F)Quantified analysis of
tumor microvessel density (MVD). (G) H&E staining of the tumors showed the necrosis region. (H) Quantified necrosis area assay. (I) The brown nuclei of
proliferative tumor cells were stained with anti-Ki-67 antibody. (J) Statistical assay of the Ki-67 positive tumor cells in panel I. All values were shown asmean ± s.d. n � 8 in
A, C, and D. n � 5 in F, H, and J. **p < 0.01, ***p < 0.001. SSA suppressed angiogenesis and growth of subcutaneous HCT-15 tumors in mice.

Frontiers in Pharmacology | www.frontiersin.org October 2021 | Volume 12 | Article 7132007

Zhang et al. Saikosaponin A Suppresses Angiogenesis

122

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


FIGURE 6 | SSA suppressed HCT-15 tumor growth by inhibiting tumor angiogenesis. When the tumor volume reached ∼100 mm3, the mice were treated
intraperitoneally with saline or SSA (10 mg/kg) every day for consecutive 15 days. (A) Tumor growth curve. (B) Photographs of the excised tumor on day 15. (C) Tumor
weight on day 15. (D) Mouse body weight during the therapy. (E) Representative images of the immunohistochemical staining of CD31+ tumor vessels. (F) Quantified
analysis of tumor microvessel density (MVD). (G)H&E staining of the tumors showed the necrosis region. (H)Quantified necrosis area assay. (I) The brown nuclei of
proliferative tumor cells were stained with anti–Ki-67 antibody. (J) Statistical assay of the Ki-67 positive tumor cells in panel I. All values were shown asmean ± s.d. n � 8 in
A, C, and D. n � 5 in F, H, and I. **p < 0.01, ***p < 0.001. SSA inhibited angiogenesis by suppressing the VEGFR2 signaling pathway and Its downstream proteins.
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staining of CD31-positive blood vessels in the plugs indicated
that SSA effectively inhibits angiogenesis in a dose-dependent
manner (Figures 4B,C).

SSA Inhibited Angiogenesis and Growth of
Orthotopic 4T1 Tumors in Mice
Based on the antiangiogenic performance of SSA in chick embryo
CAM andMatrigel plug models, we hypothesized that SSA would
inhibit tumor growth by suppressing angiogenesis. The
orthotopic 4T1 tumor breast tumor model was adopted for
this test. Starting from the seventh day, the tumor growth rate
of the SSA-treated group slowed down significantly. On day 15
(the end of the test), the tumor volume treated by SSA was
465.1 mm3, 53.1% smaller than that (991.4 mm3) of the control
group (Figures 5A,B). Correspondingly, the tumor weight
(0.40 g) of the SSA group was 39.6% less than that (0.86 g) of
the control group (Figure 5C). The mouse body weight was well-
maintained, indicating good tolerance of the therapeutic regimen
(Figure 5D). Immunohistochemical and pathological assays
showed that SSA treatment obviously decreased MVD and
dramatically elevated the necrosis area than that in the control
group (Figures 5E–H). The antitumor effect was also reflected in
the percentage of proliferative cells in tumors. It showed that SSA
treatment pronounceably reduced the Ki-67–positive tumor cells
(Figures 5I,J).

SSA Suppressed Angiogenesis and
Growth of Subcutaneous HCT-15 Tumors
in Mice
The antiangiogenic activity of SSA was also examined in HCT-15
tumors in mice. Similar antitumor effects like those in 4T1
tumors were obtained. At the end of the test (day 15), the
HCT-15 tumor volume treated by SSA was 436.9 mm3, 57.5%
smaller than that (1,028.2 mm3) of the control group (Figures
6A,B). Correspondingly, the tumor weight (0.35 g) of the SSA
group was 52.1% less than that (0.73 g) of the control group
(Figure 6C). No obvious loss of mouse body weight appeared,
demonstrating good safety (Figure 6D). Tumor vessels indicated
as MVD were largely inhibited in the SSA-treated group, and the
necrosis area of tumor tissues was dramatically increased
(Figures 6E–H). Same as the observation as in 4T1 tumors,
the proliferative Ki-67–positive cells in HCT-15 tumors were
dramatically decreased after SSA treatment, indicating significant
antitumor efficacy (Figures 6I,J).

SSA Inhibited Angiogenesis by Suppressing
VEGFR2 Signaling Pathway and Its
Downstream Proteins
To explore the mechanism of SSA-mediated antiangiogenic
activity in HUVECs, Western blot assay was used to examine
whether SSA could inhibit the phosphorylation of VEGFR2 and

FIGURE 7 | SSA suppressed the phosphorylation of VEGFR2 and downstream signaling molecules in HUVECs. (A) SSA inhibited the activation of VEGFR2 and its
downstream signaling kinases in HUVECs. The activation of VEGFR2 and its downstream proteins, such as PLCγ1, FAK, Src, and Akt was examined by Western blot.
The gray scale ratio of the phosphorylated protein to the total protein was shown. Comparisons to the control group (cell treated only with VEGF165) were performed. n �
3. (B) Diagram of the SSA-mediated antiangiogenic signaling pathway. *p < 0.05, **p < 0.01, and ***p < 0.001. n � 3.
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its downstream proteins, the most important angiogenic signal
pathway that regulates the endothelial cell function in
angiogenesis. It showed that VEGFR2 activation and the
downstream signaling, including PLCγ1, FAK, Src, and Akt,
were decreased when treated with different concentrations of
SSA in a concentration-dependent manner (Figure 7A).

DISCUSSION

Antiangiogenic therapy is a major therapeutic modality in cancer
clinics. More than 10 antiangiogenic agents have been approved
worldwide, and the small molecular kinase inhibitors account for
the majority (Jayson et al., 2016). However, the clinical benefits
are compromised by the therapy-associated side effects and
resistance (Jayson et al., 2016). Moreover, unsatisfied
pharmacokinetic behavior and high cost limit their wide use
in cancer clinics (Jain et al., 2011; Kim et al., 2019). Exploring
novel natural products with antiangiogenic activity is an
emerging attractive field (Yang and Wu, 2015; Guan et al.,
2016; Kotoku et al., 2016; Lu et al., 2016). Besides similar
therapeutic potential, natural products are generally
inexpensive and less toxic (Lu et al., 2016).

SSA is a triterpenoid saponin extracted from the traditional
Chinese medicinal herb Radix Bupleurum. Its diverse
pharmacological activities including antitumor effects have
been revealed. However, the antiangiogenic potency of SSA still
remains unknown. In this work, the antiangiogenic activity of SSA
was carefully characterized. Compared to the tumor cells (4T1 and
HCT-15), HUVEC viability was more efficiently inhibited by SSA,
indicating higher sensitivity of the tumor vascular endothelial
cells. SSA also suppressed HUVEC migration and tube formation
in a dose-dependent manner. The good antiangiogenic activities
are also well-observed in in vivomodels of the chick embryo CAM
and Matrigel plugs. The potent antiangiogenic activity resulted in
significant antitumor effects in two solid tumor models,
orthotopic 4T1 breast cancer, and subcutaneous HCT-15
colorectal cancer. Over 50% of tumor repression was obtained
at dose of 10 mg/kg/day for consecutive 15 injections. Further dose
escalation and antitumor effects are warranted.

VEGFR2 signaling is the most important pathway for tumor
angiogenesis (Kerbel, 2008). Western blot assay indicated that SSA
could decrease the VEGF-induced VEGFR2 phosphorylation and its
downstream signaling pathways, including PLCγ1, FAK, Src, andAkt,
in a dose-dependent manner. The downregulation of PLCγ1 can be
responsible for the inhibition of human vascular endothelial cell
(HUVEC) proliferation (Sase et al., 2009). The inactivation of FAK
and Src can compromise endothelial cellmigration (Guan et al., 2015).
Akt involves multiple cellular functions, including cell survival,
proliferation, migration, and protein synthesis (Liu et al., 2018).

The antiangiogenic molecular mechanism of SSA is summarized
in Figure 7B. It is noted that other triterpenoid natural products,
such as Raddeanin A (Guan et al., 2015), Platycodin D (Luan et al.,
2014), Cucurbitacin E (Dong et al., 2010), and acetyl-11-keto-
β-boswellic acid (AKBA) (Pang et al., 2009), also exert
antiangiogenic roles via blocking of VEGFR2 signaling. The study
of the structure–activity relationshipwill help reveal themechanismof
action of these compounds in depth.

In conclusion, our findings first revealed that SSA possesses
potent antiangiogenic activities, thereby suppressing tumor
growth by blocking VEGFR2 signaling pathways. These
observations demonstrate that SSA may be a potential drug
candidate or lead compound for antiangiogenic cancer therapy.
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Strain AD16 by Secondary
Metabolites’ Identification, Network
Pharmacology, and Experimental
Validation
Qin Wang1‡, Yao Wang2‡, Ya-Jing Wang1, Nan Ma1, Yu-Jie Zhou2†, He Zhuang2,
Xing-Hua Zhang2, Chang Li1*, Yue-Hu Pei1* and Shu-Lin Liu2,3*
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Gut microbiota plays important roles in several metabolic processes, such as appetite and
food intake and absorption of nutrients from the gut. It is also of great importance in the
maintenance of the health of the host. However, much remains unknown about the
functional mechanisms of human gut microbiota itself. Here, we report the identification of
one anticancer gut bacterial strain AD16, which exhibited potent suppressive effects on a
broad range of solid and bloodmalignancies. The secondary metabolites of the strain were
isolated and characterized by a bioactivity-guided isolation strategy. Five new compounds,
streptonaphthalenes A and B (1-2), pestaloficins F and G (3-4), and eudesmanetetraiol A
(5), together with nine previously known compounds, were isolated from the effective
fractions of AD16. Structures of the new compounds were established by 1D and 2D NMR
andMS analysis, and the absolute configurations were determined by the CDmethod. The
analysis of network pharmacology suggested that 3, 2, and 13 could be the key
components for the anti-NSCLC activity of AD16. In addition to the PI3K–Akt signaling
pathway, the proteoglycans in cancer pathway could be involved in the anti-NSCLC action
of AD16.

Keywords: gut bacterial, secondary metabolites, network pharmacology, anticancer, AD16

INTRODUCTION

The human gut microbiota is composed of an enormous diversity of microorganisms, including
bacteria, fungi, and other microbes, which together play important roles in maintaining the dynamic
homeostatic and healthy micro-environment of the host (Johnson et al., 2016; Thomas et al., 2017;
Liang et al., 2018). In recent years, numerous discoveries have been reported on the human gut
bacteria affecting human health and diseases, such as cardiovascular diseases, inflammatory diseases,
obesity, and especially cancer (Hasan et al., 2020; Moritz et al., 2020). There has been mounting
evidence supporting the roles of the gut bacteria in response to cancer (Johnson et al., 2016; Li et al.,
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2019), such as producing anticancer metabolites (Zhou et al.,
2017). Although several bioactive metabolites from animal gut
bacteria have been reported, such as sannastatin (Yang et al.,
2011), few therapeutic metabolites have been identified from
human gut bacteria (Rahim et al., 2019).

Our previous research suggested that the composition of the
gut microbiota in lung cancer patients was radically different
from that of healthy individuals, which had a higher abundance of
bacteria of phylum Actinobacteria compared to the lung cancer
patients (Zhuang et al., 2019). This finding prompted us to isolate
more Actinobacteria from the human gut (Zhou et al., 2017).
Strain AD16 was determined to belong to the Actinobacteria
genus Streptomyces and showed potent cytotoxic activities against
several cancer cell lines both in vitro and in vivo. Based on the
promising results, AD16 was selected for phytochemical studies
with a focus on its secondary metabolites responsible for the
observed anticancer properties. We identified five new
compounds, including streptonaphthalenes A and B (1-2),
pestaloficins F and G (3-4), and eudesmanetetraiol A (5),
along with nine previously known ones, cyclo-(leucyl-histidyl)
(6) (Furukawa et al., 2012), 4,10-dihydroxy-10-methyl-undec-2-
en-1, 4-olide (7) (Cho et al., 2001), 4-acetyl-benzoxazolin-2-one
(8) (Fielder et al., 1994), cinnamic acid (9) (Ai et al., 2010), indole-
3-carboxylic acid (10) (Qian et al., 2014), 1-(1H-indol-3-yl)-
ethanone (11) (Kamble et al., 2020), DBP (12) (Chang et al.,
2013), 4-hydroxy-8-[6-hydroxy-1,3,7-trimethyl-2-oxo-oct-3-
enyl]-5-methyl-oxocan-2-one (13) (Tapiolas et al., 1991), and
1,2,4-triazolenucleoside (14) (Zhou et al., 2010). We also applied
network pharmacology analysis to investigate the underlying
mechanisms of the anticancer effects of AD16.

In this paper, we describe the anticancer activities of gut
bacterial strain AD16, the isolation and structural elucidation
of five new compounds, along with nine known ones via
bioactivity-guided isolation, and the network analysis of the
compounds from AD16. The chemical structures of the
isolated compounds were deduced by means of their physico-
chemical properties, as well as the analysis of their spectroscopic
data. This work demonstrated that gut microbiota is a rich source
of potential cancer therapeutics for further studies and future
clinical applications.

MATERIALS AND METHODS

General Experimental Procedures
Optical rotations were measured on a Nicolet iS5 (Thermo,
United States) spectrometer, and UV spectra were recorded on
an Evolution 220 (Thermo, United States) UV/Vis spectrometer.
IR spectra were obtained using a JASCO FT/IR-480 plus
spectrometer. 1H-NMR and 2D NMR spectra were measured
on a Bruker AV-600 spectrometer, while 13C-NMR spectra were
measured on a Bruker AV-400 spectrometer. CD spectra were
recorded on MOS 450 (Bio-Logic, France). HRESIMS data were
determined by an Agilent Q-TOF 6520 mass spectrometer. Open
column chromatography (CC) was performed using silica gel
(200–300 mesh, Qingdao Haiyang Chemical Group Corp.,
Qingdao, China), ODS (50 μm, YMC, Japan), and HW-40

(Tosoh, Japan). Thin-layer chromatography (TLC) was
performed using precoated silica gel plates (silica gel GF254,
1 mm, Yantai).

Isolation and Identification of AD16
The detailed collection and isolation procedures of the bacteria
from human fecal specimens were done as previously reported
(Zhuang et al., 2019). A colony of bacteria that showed potent
anticancer activities was identified as closely related to
Streptomyces and was given the strain name AD16 (gene bank
No. KU883604.1). This strain was isolated from the fecal
specimen of a healthy girl (5 years old) and stocked in the
Laboratory of Genomics Research Center of Harbin Medical
University (Harbin, China). All the experiments of the study
were consistent with standard biosecurity and institutional safety
procedures. All microbes were handled in the BSL-2 laboratory.

Cell Culture and CCK-8 Assay
Human solid cancer cell lines, including cervical cancer HeLa,
ovarian cancer A2780, lung cancer A549, and colorectal cancer
HCT116, were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) with 10% fetal bovine serum. Ovarian cancer cell lines
ES-2 and OV-90 were cultured in McCoy’s 5A medium with 10%
fetal bovine serum. All the cultures were maintained in an
incubator at 37°C with 5% CO2 in a humidified atmosphere.

Cell viability was measured by the Cell Counting Kit (CCK)-8
(Dojindo, Tokyo, Japan) assay. A549 cells (5.0 × 103 cells per well)
were seeded into 96-well plates (Corning, NY) and cultured for
24 h. The cells were then incubated with fresh media containing
the compounds under study at various concentrations for 24, 48,
or 72 h. After incubation, the media were removed and the wells
were washed twice with PBS to remove non-adherent cells. Then,
100 μL fresh medium and 10 μL CCK-8 were added to each well
at the indicated time points. The cells were further incubated at
37°C for 60 min. The absorbance of the samples was measured at
492 nm using a Bio-Rad model 3550 microplate reader
(Richmond, CA).

Morphological Assessment
Morphological changes of cells treated with AD16 supernatant or
metabolites were inspected by phase-contrast inverted
microscopy (Zeiss Axiocam ERc 5s, Germany). The
performance of the experiments and the determination of
experimental results were completed blindly and separately by
at least two different persons.

Cell Apoptosis Analysis
The cells were incubated in the medium containing culture
supernatant of AD16 for 6 h. The cells were harvested, washed
twice with cold 1 × PBS, and re-suspended in 100 μL 1 × binding
buffer at a density of 1 × 105 cells/mL. The cells were then stained
with 5 μL Annexin V and 5 μL PI (BD Biosciences) for 15 min in
dark condition at room temperature. After staining, we added
400 µL of 1 × binding buffer to each tube. The samples were
subjected to analysis by flow cytometry (BD FACSCantoTM II).
The early apoptosis was evaluated based on the percentage of
Annexin V–positive and PI-negative cells, while the late apoptosis
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was evaluated based on the percentage of Annexin V–positive and
PI-positive cells.

Statistical Analysis
Statistical analysis was presented as the mean ± standard
deviation (SD) of at least three independent experiments.
Student’s t-test, chi-square test, and Spearman’s rank
correlation analysis were used to assess the means of the
different samples with SPSS statistical software version 17.0
and GraphPad Prism software. The statistical significance was
accepted at p < 0.05. Our study closely followed the line of
randomness and preciseness to ensure reproducibility.

Fermentation, Extraction, and Isolation of
AD16
Strain AD16 was inoculated in 500 ml conical flasks (497 bottles
in total) containing 300 ml GRC1 medium (20 g of soluble starch,
1 g of KNO3, 0.5 g of KH2PO4, 0.5 g of MgSO4 7H2O, and 0.5 g of
NaCl in 1 L of distilled water) for 15 days at 150 rpm/min at room
temperature. D101 macroporous resin was soaked with the whole
culture for 24 h and then eluted with water and EtOH–H2O (95:5,
V/V), respectively. The EtOH–H2O eluate was concentrated by a
rotary evaporator in vacuum to afford 33.8 g of dry material. An
aliquot (31.7 g) was applied to an ODS column (3.5*46 cm;
50 μm) and eluted with MeOH–H2O in gradient to give 13
fractions (K1–K13).

Fraction K4 [MeOH–H2O (20:80, V/V) eluate, 0.7 g] was
subjected to HW-40 CC, eluted with MeOH–H2O in gradient,
to yield 11 subfractions (K4A–K4K). Subfraction K4J
[MeOH–H2O (100:0, V/V) eluate, 15.6 mg] was purified by
preparative HPLC (Cosmosil C18, 5 μm, 20 × 250 mm,
Cosmosil) with MeOH–H2O (15:85, V/V) to afford compound
6 (5.2 mg, tR � 22.5 min).

Fraction K8 [MeOH–H2O (25:75–30:70, V/V) eluate, 0.9 g]
was subjected to HW-40 CC, eluted with MeOH–H2O in
gradient, to yield 11 subfractions (K8A–K8K). Subfraction
K8D [MeOH–H2O (10:90, V/V) eluate, 158.8 mg] was
subjected to silica-gel CC eluted with CH2Cl2–MeOH in
gradient to yield nine subfractions (K8D1–K8D9). Subfraction
K8D2 [CH2Cl2–MeOH (25:1, V/V) eluate, 49.9 mg] was
subjected to Sephadex LH-20 CC eluted with MeOH to yield
three subfractions (K8D2A–K8D2C). K8D2B (MeOH eluate,
9.3 mg) was purified by silica-gel CC with a
cyclohexane–acetone gradient to yield four subfractions
(K8D2B1–K8D2B4). After combining K8D2B2
[cyclohexane–acetone (7:2, V/V) eluate, 4.8 mg] and K8D2C
(MeOH eluate, 4.8 mg) to the new fraction, it was further
purified by preparative HPLC (Cosmosil C18, 5 μm, 10 ×
250 mm, Cosmosil) with MeOH–H2O (18:82, V/V) to afford
compound 4 (2.8 mg, tR � 54 min). Fraction K8K [MeOH–H2O
(50:50–100:0, V/V) eluate, 12.6 mg] was purified by Sephadex
LH-20 CC eluted with MeOH to afford compound 10 (1.3 mg).

Fraction K9 [MeOH–H2O (30:70–50:50, V/V) eluate, 0.6 g]
was subjected to HW-40 CC, eluted with MeOH–H2O in
gradient, to yield 12 subfractions (K9A–K9L). Subfraction K9B
[MeOH–H2O (15:85, V/V) eluate, 49.6 mg] was subjected to

silica-gel CC with cyclohexane–acetone to yield three
subfractions (K9B1–K9B3). The fine fraction K9B2
[cyclohexane–acetone (1:1, V/V) eluate, 10.0 mg] was purified
by Sephadex LH-20 CC eluted with MeOH to afford compound 5
(3.0 mg). Fraction K9C [MeOH–H2O (30:70, V/V) eluate,
25.5 mg] was purified by preparative HPLC (Cosmosil C18,
5 μm, 10 × 250 mm, Cosmosil) with MeOH–H2O (20:80, V/V)
to afford compound 14 (4.7 mg, tR � 66.0 min). Fraction K9H
[MeOH–H2O (30:70, V/V) eluate, 24.8 mg] was purified by
Sephadex LH-20 CC eluted with MeOH to afford compound 8
(3.1 mg).

Fraction K10 [MeOH–H2O (50:50–70:30, V/V) eluate, 1.5 g]
was subjected to HW-40 CC, eluted with MeOH–H2O in
gradient, to yield 17 subfractions (K10A–K10Q). Subfraction
K10J [MeOH–H2O (30:70, V/V) eluate, 18.9 mg] was
subjected to silica-gel CC eluted with a CH2Cl2–MeOH
gradient to afford compound 2 [CH2Cl2–MeOH (25:1, V/V)
eluate, 2.0 mg]. Subfraction K10M [MeOH–H2O (50:50, V/V)
eluate, 23.2 mg] was subjected to silica-gel CC with
cyclohexane–acetone (7:1, V/V) to afford compound 11
(2.4 mg) and yield two subfractions (K10M1-K10M2). The fine
fraction K10M1 [cyclohexane–acetone (7:1, V/V) eluate, 7 mg]
was purified by preparative TLCwith CH2Cl2–MeOH (20:1, V/V)
to afford compound 9 (3.5 mg).

Fraction K11 [MeOH–H2O (70:30, V/V) eluate, 6.9 g] was
subjected to HW-40 CC, eluted with MeOH–H2O in gradient, to
yield nine subfractions (K11A–K11I). Subfraction K11C
[MeOH–H2O (40:60, V/V) eluate, 1.3 g] was subjected to HW-
40 CC eluted with an MeOH–H2O gradient to yield nine
subfractions (K11C1–K11C9). Fraction K11C4 [MeOH–H2O
(15:85, V/V) eluate, 159.5 mg] was subjected to Sephadex LH-
20 CC eluted with MeOH to yield 10 subfractions
(K11C4A–K11C4J). Subfraction K11C4C (MeOH eluate,
24.2 mg) was purified by preparative HPLC (Cosmosil C18,
5 μm, 10 × 250 mm, Cosmosil) with MeOH–H2O (48:52, V/V)
to afford compound 13 (2.0 mg, tR � 115.0 min). Subfraction
K11C4D (MeOH eluate, 18.3 mg) was purified by preparative
HPLC (Cosmosil C18, 5 μm, 10 × 250 mm, Cosmosil) with
MeOH–H2O (48:52, V/V) to afford compound 7 (2.4 mg, tR �
39.0 min). Subfraction K11C4F (MeOH eluate, 21.7 mg) was
purified by preparative HPLC (Cosmosil C18, 5 μm, 20 ×
250 mm, Cosmosil) with MeOH–H2O (43:57, V/V) to afford
compound 3 (2.1 mg, tR � 46.0 min). Subfraction K11C9
[MeOH–H2O (50:50, V/V) eluate, 82.4 mg] was subjected to
silica-gel CC with a cyclohexane–acetone gradient to yield
eight subfractions (K11C9A–K11C9H). The fine fraction
K11C9D [cyclohexane–acetone (4:1, V/V) eluate, 3.4 mg] was
purified by preparative TLC with cyclohexane–acetone (1:1, V/V)
to afford compound 1 (1.8 mg). Fraction K11F [MeOH–H2O (60:
40, V/V) eluate, 0.8 g] was purified by preparative HPLC
(Cosmosil C18, 5 μm, 20 × 250 mm, Cosmosil) with
MeOH–H2O (77:23, V/V) to afford compound 12 (22.1 mg, tR
� 40.0 min).

Streptonaphthalene A (1)
White amorphous solid; [α] 20D 98 (c 0.1, MeOH); UV (MeOH)
λmax (log) 230 (4.22) nm, 275 (3.94) nm; CD (MeOH) 230
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(Δε −2.63), 296 (Δε −1.07) nm; IR 3354 cm−1, 2,957 cm−1, 2,930 cm−1,
2,868 cm−1, 1,694 cm−1; HRESIMS m/z 289.1448 [M-H]- (calcd.
for C17H21O4, 289.1434); for

1H-NMR (CD3OD, 600MHz) and
13C-NMR (CD3OD, 100MHz) data, see Table 1.

Streptonaphthalene B (2)
White amorphous solid; [α] 20D −34 (c 0.1, MeOH); UV (MeOH)
λmax (log) 226 (4.33) nm, 278 (4.17) nm; CD (MeOH) 226 (Δε
−3.76), 286 (Δε −1.33) nm; IR 3393 cm−1, 2,955 cm−1, 2,926 cm−1,
2,874 cm−1, 1,697 cm−1; HRESIMS m/z 305.1396 [M-H]- (calcd.

for C17H21O5, 305.1383); for
1H-NMR (CD3OD, 600 MHz) and

13C-NMR (CD3OD, 100 MHz) data, see Table 1.

Pestaloficin F (3)
Colorless oil; [α] 20D 73 (c 0.1, MeOH); UV (MeOH) λmax (log)
202 (4.26) nm, 231 (3.61) nm; CD (MeOH) 202 (Δε −5.63), 231
(Δε 1.81) nm; IR 3287 cm−1, 2,955 cm−1, 2,868 cm−1, 1749 cm−1;
HRESIMSm/z 213.1127 [M-H]- (calcd. for C11H17O4, 213.1121);
for 1H-NMR (CD3OD, 600 MHz) and 13C-NMR (CD3OD,
100 MHz) data, see Table 2.

TABLE 1 | 1H-NMR (600 MHz) and13C-NMR (100 MHz) data for compounds 1 and 2 (in CD3OD).

Position Compound 1 Compound 2

δH δC δH δC

1 198.7 198.8
2 2.60 (1H, dd, J � 16.3, 8.0 Hz, 2α) 50.1 2.61 (1H, dd, J � 16.2, 7.8 Hz, 2α) 50.1

2.82 (1H, dd, J � 16.3, 3.8 Hz, 2β) 2.86 (1H, dd, J � 16.2, 3.5 Hz, 2β)
3 4.24 (1H, m) 66.5 4.25 (1H, m) 66.5
4 2.92 (1H, dd, J � 15.9, 7.5 Hz, 4α) 40.5 2.92 (1H, dd, J � 16.1, 7.6 Hz, 4α) 40.5

3.16 (1H, dd, J � 15.9, 3.8 Hz, 4β) 3.16 (1H, dd, J � 16.1, 3.6 Hz, 4β)
4a 147.3 147.4
5 6.63 (1H, s) 114.6 6.63 (1H, s) 114.7
6 158.5 158.8
7 132.0 132.0
8 145.5 145.2
8a 124.0 124.0
9 207.7 207.7
10 2.47 (3H, s) 32.6 2.48 (3H, s) 32.6
11 2.89 (1H, m) 30.5 2.89 (2H, m) 30.0

2.83 (1H, m)
12 1.35 (2H, m) 41.3 1.51 (1H, m) 35.8

1.32 (1H, m)
13 1.62 (1H, m) 30.0 1.66 (1H, m) 37.5
14 0.92 (3H, d, J � 6.7 Hz) 22.6 3.35 (1H, m) 68.1

3.48 (1H, m)
15 0.92 (3H, d, J � 6.7 Hz) 22.6 0.96 (3H, d, J � 6.7 Hz) 16.8

TABLE 2 | 1H-NMR (600 MHz) and 13C-NMR (100 MHz) data for compounds 3–5 (in CD3OD).

Position Compound 3 Compound 4 Position Compound 5

δH δC δH δC δH δC

2 172.8 172.8 1 3.20 (1H, t, J � 7.1 Hz) 78.7
3 131.5 131.6 2 1.75 (2H, m) 35.0
4 160.2 160.2 3 3.67 (1H, m) 72.1
5 5.84 (1H, s) 99.7 5.84 (1H, s) 99.2 4 2.39 (1H, m) 34.0
1′ 4.47 (1H, t, J � 6.7 Hz) 67.2 4.52 (1H, t, J � 6.3 Hz) 66.9 5 1.12 (1H, dd, J � 10.6, 4.1 Hz) 51.0
2′ 1.76 (2H, m) 34.3 1.74 (2H, m) 37.0 6 4.01 (1H, t, J � 10.6 Hz) 70.1
3′ 1.32 (1H, m) 35.5 1.39 (1H, m) 21.3 7 1.46 (1H, m) 55.4

1.17 (1H, m) 1.48 (1H, m)
4′ 1.56 (1H, m) 28.9 1.49 (2H, m) 44.3 8 1.62 (1H, dq, J � 13.3, 3.5 Hz) 23.4

1.17 (1H, m)
5′ 0.91 (3H, d, J � 6.6 Hz) 22.8 71.2 9 1.83 (1H, dt, J � 12.8, 3.5 Hz) 40.7

1.04 (1H, dt, J � 12.8, 3.5 Hz)
6′ 0.91 (3H, d, J � 6.6 Hz) 22.7 1.17 (3H, s) 29.0 10 40.5
7′ 2.10 (3H, s) 11.5 1.17 (3H, s) 28.9 11 75.5
8′ 2.11 (3H, s) 11.5 12 1.21 (3H, s) 29.8

13 1.27 (3H, s) 24.1
14 0.91 (3H, d, J � 7.4 Hz) 8.5
15 0.88 (3H, s) 15.6
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Pestaloficin G (4)
Colorless oil; [α] 20D 117 (c 0.1, MeOH); UV (MeOH) λmax (log)
206 (4.06) nm, 229 (3.54) nm; CD (MeOH) 206 (Δε −8.60), 229
(Δε 5.33) nm; IR 3372 cm−1, 2,928 cm−1, 2,860 cm−1, 1,599 cm−1;
HRESIMSm/z 243.1236 [M-H]- (calcd. for C12H19O5, 243.1227);
for 1H-NMR (CD3OD, 600 MHz) and 13C-NMR (CD3OD,
100 MHz) data, see Table 2.

Eudesmanetetraiol A (5)
Yellow crystal; [α] 20D 96 (c 0.1, MeOH); IR 3443 cm−1; HRESIMS
m/z 295.1873 [M + Na]+ (calcd. for C15H28O4Na, 295.1880); for
1H-NMR (CD3OD, 600 MHz) and 13C-NMR (CD3OD,
100 MHz) data, see Table 2.

Target Network Analysis
The ingredients isolated were imported into the PubChem
database and ChemBio3D Ultra 14.0, and the 3D molecular
structures were exported in the form of SDFs. The targets
were retrieved from the online target prediction platform
PharmMapper (http://www.lilab-ecust.cn/pharmmapper/).
Human species was used for target prediction, and the targets
with Norm Fit ≥ 0.75 were collected. Thereafter, the targets were
converted to gene names using the UniProt Knowledgebase
(UniProtKB, http://www.uniprot.org/), and species were
restricted to “Homo sapiens.” Meanwhile, the NSCLC-related
targets were obtained from the DisGeNET database (http://
www.disgenet.org/) and TTD (http://database.idrb.cqu.edu.cn/
TTD/). The STRING database (version 11.0, https://string-db.
org/) was used to explore the protein–protein interactions (PPIs),
and protein interactions with a confidence score > 0.4 were

selected in the designed setting after eliminating duplicates
and independent ones. Cytoscape software (version 3.7.2) was
applied to construct the chemical–target network and
protein–protein interaction (PPI) network. All genes were
subjected to pathway enrichment analysis (KEGG analysis)
using DAVID Bioinformatics Resources 6.8, and those
pathway terms with a p-value < 0.05 were regarded as
significant and interesting (Zhang et al., 2021).

RESULTS AND DISCUSSIONS

Cytotoxic Effects of the Extract of AD16
The anticancer activity of the EtOAc extract of AD16 was
investigated. Strain AD16 exhibited a broad killing spectrum
of cancers including lung cancer (A549), ovarian cancer
(A2780, ES-2/OV-90), colorectal cancer (HCT116), and
cervical cancer (HeLa) at the concentration of 5 μL/ml
(Figure 1A). The CCK-8 result of A549 cells incubated with
AD16 demonstrated that the effects of AD16 were dose- and
time-dependent against A549 as judged by cell proliferation
percentages in comparison with the control (Figure 1B). The
colony formation activity against A549 cells was also investigated,
which indicated that AD16 could strongly inhibit colony
formation of the A549 cell line (Figures 1C,D). To determine
the possible mechanism of the anticancer effects of AD16, we
detected the induction to apoptosis after treatment with AD16.
Six hours after treatment with different concentrations, cells were
double-stained with Annexin V and PI and subjected to flow
cytometry to quantitatively analyze the apoptotic effects. As

FIGURE 1 | (A) Significant changes in cell morphology were observed under the microscope after AD16 metabolites were added in various cancer cells (×400). (B)
CCK-8 assay results of AD16 metabolites in A549 cells. (C) Results of colony formation of A549 cells incubated with AD16 metabolites for 12 h. (D) The paired-sample
t-test was used to analyze whether there was a significant difference in the number of colony formation between each AD16-added group and control (*p < 0.05, ***p <
0.001). Ctrl, control.
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illustrated in Figure 2A, the percentages of total apoptotic cells,
including the early apoptotic portion (Annexin V positive) and
the late apoptotic portion (Annexin V and PI positive), were
dose-dependently increased with increasing concentrations of
AD16 in the A549 cell line (Figure 2B). These results
suggested that the AD16 culture could suppress cell
proliferation by inducing cell apoptosis.

Cytotoxic Effect of the Subfractions
Based on bioactivity-guided isolation, a large quantity of the
AD16 extract was partitioned with ODS by MeOH–H2O
gradients. All the fractions were examined to determine their
anticancer effects at 100 μl/ml (Figures 3A,B). When compared
to other fractions, fractions 9–11 showed the highest inhibitory
activities (Figure 3B). Eventually, we isolated and identified 14
compounds, including five new compounds and nine previously
known ones.

Structural Determination of Compounds
From AD16
Compound 1 was isolated as a white amorphous solid. The
negative-ion ESIMS spectrum showed a peak at m/z
289.1448 [M-H]-, so its molecular formula was unambiguously
assigned as C17H22O4 on the basis of HRESIMS data
(Supplementary Figure S1-3). The 1H NMR spectrum of
compound 1 showed one aromatic proton at δH 6.63 (1H, s,
H-5), an oxygenated methine proton at δH 4.24 (1H, m, H-3), and
three methyl groups at δH 2.47 (3H, s, H-10) and δH 0.92 (6H, d,
J � 6.7 Hz, H-14/15). 13C NMR spectroscopic data revealed the

presence of 17 carbon atoms, including two ketone carbonyls atδC
198.7 (C-1), 207.7 (C-9) and six aromatic carbon atoms at δC
158.5 (C-6), 147.3 (C-4a), 145.5 (C-8), 132.0 (C-7), 124.0 (C-8a),
and 114.6 (C-5). The 1H NMR and 13C NMR data of 1 were very
similar to those of the known compound 7-acetyl-3,6-dihydroxy-
8-propyl-3,4-dihydronaphthalen-1(2H)-one (Yeo et al., 1998)
(Supplementary Figures S1-1,2), except that the propyl
moiety was replaced by the isopentyl moiety in 1 (Figure 4).
Moreover, the 1H–1H COSY correlations between δH 2.89, 2.83
(H-11) and δH 1.35(H-12), δH 1.35 (H-12) and δH 1.62 (H-13), δH
1.62 (H-13), and δH 0.92 (H-14/15), as well as the HMBCs
between H-14/15 (δH 0.92) and C-13 (δC 30.0), suggested the
isopentyl fragment in 1. The HMBCs between H-11 (δH 2.89,
2.83) and C-8 (δC 145.5) suggested the isopentyl fragment to be
located at C-8 in 1 (Figure 5) (Supplementary Figures S1-4,5,6).
The configuration of the chiral carbon C-3 was assigned as R by
comparing the CD spectrum (Figure 6) (negative Cotton effects
at 230 and 296 nm) with that of 7-acetyl-3,6-dihydroxy-8-propyl-
3,4-dihydronaphthalen-1(2H)-one (Huasin et al., 2012). Thus,
compound 1 was named streptonaphthalene A.

Compound 2 was obtained as a white amorphous solid. Its
molecular formula was determined as C17H22O5 on the basis of
HRESIMS data, which gave a peak at m/z 305.1396 [M-H]-

(Supplementary Figure S2-3). The 1H NMR spectrum of
compound 2 also showed one aromatic proton at δH 6.63
(1H, s, H-5), an oxygenated methine proton at δH 4.25 (1H, m,
H-3), and two methyl groups at δH 2.48 (3H, s, H-10) and δH
0.96 (3H, d, J � 6.7 Hz, H-15) (Supplementary Figure S2-1).
13C NMR spectroscopic data revealed the presence of 17
carbon atoms. Analysis of 1H NMR and 13C NMR data

FIGURE 2 | (A) The percent of apoptosis in A549 cells was evaluated by flow cytometry; (B) Student’s t-test was used to analyze the differences between the
control group and the AD16 group (***p < 0.001). Ctrl, control.
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indicated that compound 2 was similar to 1, except that the
methyl group was replaced by the hydroxymethyl moiety
(Supplementary Figures S2-2,4,5,6). The configuration of
the carbon C-3 was deduced to be R by comparing the
structure with that of 1, which might be derived from the
same biosynthesis pathway. Unfortunately, because of its
limited amount, the configuration of C-13 was not further
determined by the chemical method. Compound 2 was named
streptonaphthalene B.

Compound 3 was obtained as colorless oil. Its molecular
formula was deduced as C11H18O4, from the HRESIMS signal
at m/z 213.1127 [M-H]- (calcd. for C11H17O4, 213.1121)
(Supplementary Figure S3-3). The 1H NMR spectrum of
compound 3 showed two oxygenated methine protons at δH
5.84 (1H, s, H-5) and δH 4.47 (1H, t, J � 6.7 Hz, H-1′)
(Supplementary Figure S3-1). The 13C NMR spectrum
revealed the presence of 11 carbon atoms (Supplementary
Figure S3-2). Its NMR spectra contained resonances
reminiscent of a 5-hydroxy-2(5H)-furanone skeleton carrying
an alkane moiety. The furanone moiety was determined by the

chemical shifts of the two quaternary carbon atoms δC 131.5 (C-
3), δC 160.2 (C-4), the carboxy carbon (δC 172.8, C-2), and the
methylene carbon (δC 99.7, C-5), as well as the HMBCs of δH 5.84
(H-5) with δC 172.8 (C-2). 1H–1H COSY correlations of δH 4.47
(H-1′)/δH 1.76 (H-2′), δH 1.76 (H-2′)/δH 1.32, 1.17 (H-3′), δH
1.32, 1.17 (H-3′)/δH 1.56 (H-4′), and δH 1.56 (H-4′)/δH 0.91 (H-
5′/6′) enabled the deduction of the C-6 alkane moiety. The
HMBCs of δH 4.47 (H-1′) with δC 131.5 (C-3)/172.8 (C-2)/
160.2 (C-4), δH 1.76 (H-2′) with δC 131.5 (C-3), and δH 2.10
(H-7′) with δC 160.2 (C-4)/131.5 (C-3)/99.7 (C-5) confirmed the
location of the alkane moiety at C-3 and the methyl moiety at C-4
(Supplementary Figures S3-4,5,6). In the NOESY spectrum, the
correlations of δH 2.10 (7′-CH3) with δH 4.47 (H-1′) and δH 5.84
(H-5) indicated that the two protons H-1′ and H-5 were in the
same orientation (Supplementary Figure S3-7). The negative
Cotton effect at 202 nm (Figure 6) was in good agreement with
those of the model compound with 5R configuration, indicating
the 5R, 1′R configuration of 3 (Song et al., 2018). Thus, the
structure of 3 was assigned as shown in Figure 4, named
pestaloficin F.

FIGURE 3 | (A) All fractions showed different effects in the A549 cell line according to the CCK-8 assay 24 h after treatment with 100 μL/ml of K1–K13. (B) The
activity was determined by the OD492 value compared with the control group. K9, K10, and K11 inhibited cancer cell activity in a concentration-dependent manner
significantly (*p < 0.05, **p < 0.01).
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Compound 4 was obtained as colorless oil. Its molecular
formula was deduced as C12H20O5 by analysis of its
HRESIMS data (m/z 243.1236 [M-H]-, calcd. for
C12H19O5, 243.1227) (Supplementary Figure S4-3). The
comparison of the NMR spectroscopic data of 4 with those
of 3 indicated that 4 also had one butenolide moiety
(Supplementary Figures S4-1,2). The 1H–1H COSY
correlations of δH 4.52 (H-1′)/δH 1.74 (H-2′), δH 1.74 (H-
2′)/δH 1.39 (H-3′), δH 1.39 (H-3′)/δH 1.49 (H-4′) and HMBCs
of δH 1.17 (H-6′/H-7′)/δC 71.2 (H-5′), δH 1.49 (H-4′)/δC 71.2
(H-5′) enabled the deduction of the alkyl moiety (Figure 5)
(Supplementary Figure S4-4). The HMBCs of δH 4.52 (H-1′)
with δC 131.6 (C-3)/172.8 (C-2), δH 1.74 (H-2′) with δC 131.6
(C-3), and δH 2.11 (H-8′) with δC 160.2 (C-4)/131.6 (C-3)/
99.2 (C-5) confirmed the location of the alkane moiety at C-3
and the methyl moiety at C-4 (Supplementary Figures S4-
5,6,7). The CD spectrum of 4 showed similar CEs to 3
(Figure 6), indicating the 5R, 1′R configuration of 4.
Compound 4 was named pestaloficin G.

Compound 5 was obtained as yellow gum. Its molecular
formula was deduced as C15H28O4 by analysis of its HRESIMS
data (m/z 295.1873 [M + Na]+, calcd. for C15H28O4Na, 295.1880)
(Supplementary Figure S5-3). The 1H NMR spectrum of 5
showed signals of three three-proton singlets at δH 0.88 (3H,
s), 1.21 (3H, s), and 1.27 (3H, s) for methyl groups attached to
quaternary carbon atoms, one three-proton doublet at δH 0.91
(3H, d, J � 7.4 Hz) for the methyl group attached to methine
carbon, three methylene protons at δH 1.04 (1H, dt, J � 12.8,
3.5 Hz) and 1.83 (1H, dt, J � 12.8, 3.5 Hz), 1.17 (1H, m) and 1.62
(1H, dq, J � 13.5, 3.5 Hz), and 1.75 (2H, m), three methine proton
(bearing hydroxyl groups) signals at δH 3.20 (1H, t, J � 7.1 Hz),
3.67 (1H, m), and 4.01 (1H, t, J � 10.6 Hz), and three methine
proton signals at δH 1.12 (1H, dd, J � 10.6, 4.1 Hz), 1.46 (1H, m),
and 2.39 (1H, m) (Supplementary Figure S5-1). The 13C-NMR
andDEPT spectra of 5 showed 15 carbon signals (Supplementary
Figure S5-2). C-1 (δC 78.7) was connected to C-2 (δC 35.0) to C-8
(δC 23.4) based on the 1H–1H COSY correlations of H-1 (δH
3.20)/H-2 (δH 1.75)/H-3 (δH 3.67)/H-4 (δH 2.39)/H-5 (δH 1.12)/

FIGURE 5 | Key 1H–1H COSY ( ) and HMBC ( ) correlations of compounds 1–5.

FIGURE 4 | Chemical structures of compounds isolated from AD16.
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H-6 (δH 4.01)/H-7 (δH 1.46)/H-8 (δH 1.62), and HMBC of H-5
(δH 1.12) with C-1 (δC 78.7), C-9 (δC 40.7), and C-10 (δC 40.5),
CH3-15 (δH 0.88) with C1 (δC 78.7) and C9 (δC 40.7), and CH3-
12/13 (δH 1.21/1.27) with C7 (δC 55.4) enabled the deduction of
the planner structure of compound 5 (Figure 5) (Supplementary
Figures S5-4,5,6,7), which had an eudesmane skeleton of
sesquiterpene (Katsutani et al., 2020).

The relative stereochemistry of 5 was deduced from the
analysis of its NOESY correlations. H-6 (δH 4.01) showed
strong NOE interactions with CH3-13 (δH 1.27), CH3-14 (δH
0.91), and CH3-15 (δH 0.88); at the same time, NOE correlations
were observed in H-1 (δH 3.20) with H-3 (δH 3.67) and H-5 (δH
1.12), but H-1 and H-3 showed no correlations with H-14 and
H-15, suggesting that H-6 (δH 4.01), CH3-13 (δH 1.27), CH3-14
(δH 0.91), and CH3-15 (δH 0.88) should be placed as α orientation
and H-1 (δH 3.20), H-3 (δH 3.67), H-4 (δH 2.39), H-5 (δH 1.12),
and H-7 (δH 1.46) should be placed as β orientation. Thus, the
structure of 5 was established unambiguously. Compound 5 was
named eudesmanetetraiol A.

Network Pharmacology Analysis
Network pharmacology is a systems biology–based methodology
focused on the complex interaction network composed of
diseases, genes, protein targets, and drugs using holistic and
systemic views in a biological system, offering an effective
strategy to uncover the overall action mode of multiple
compounds (Bu et al., 2021; Tu et al., 2021). Therefore, to
predict the underlying mechanism of AD16, a network
pharmacology approach was applied. All the isolated
compounds were used for target prediction, and the targets
with the probability more than 0.75 were used for analysis. As

a result, a total of 89 targets were summarized. The
target–compound network was constructed as well
(Figure 7A). The DisGeNET database and TTD search was
performed to predict 592 targets associated with NSCLC.
Then, eleven targets were screened out by looking for the
overlapping targets from the compound-related targets and
NSCLC-related targets (Figure 7B). The connections of the
targets are shown in Figure 7C. Ten targets were identified
in the PPI network based on their topological parameters.
The gene products AURKA, CHEK1, PGR, ESR1, MAPK1,
CASP3, FGFR1, CDK2, KDR, and NOS3 with high node
degree were considered the key targets of AD16 against
NSCLC. Among them, three targets with a higher degree value
among the anti-NSCLC activity of AD16 are caspase 3 (CASP3),
estrogen receptor 1 (ESR1), and mitogen-activated protein kinase
1 (MAPK1).

It can be seen from the results of the interactions between
components of AD16 and NSCLC targets (Figure 7D) that 12 in
14 ingredients could correspond to multiple targets within
multiple pathways, which were responsible for the anti-NSCLC
effect of AD16. The compounds pestaloficin F (3),
streptonaphthalene B (2), and 4-hydroxy-8-[6-hydroxy-1,3,7-
trimethyl-2-oxo-oct-3-enyl]-5-methyl-oxocan-2-one (13)
having the highest degree value (6, 5, 5), which attribute nodes
in the network graph, could be considered the core ingredients in
the network with a major anti-NSCLC effect. Over the years,
butenolides and tetralones have played an important role in drug
discovery, design, and development of plentiful
pharmacologically active moieties. A lot of natural butenolides
have been isolated from endophytic fungus and other microbial
sources, which covered a broad range of therapeutic activities,

FIGURE 6 | CD spectra of compounds 1–4.
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FIGURE 7 | (A) Component–target network of AD16; (B) Venn diagram of targets between AD16-related targets and NSCLC targets; (C) protein–protein
interactions between the targets of AD16; (D) interactions between components and NSCLC targets.

FIGURE 8 | KEGG result of AD16 against NSCLC.
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including anticancer effects (Kornsakulkarn.et al., 2011; Kil et al.,
2018; Husain et al., 2019; Wang et al., 2019; Yang et al., 2019).
Compounds 3 (a new butenolide) and 2 (a new tetralone),
proposed to be active constituents of AD16 herein, could act
as leading compounds for further structural modification and
drug design.

In addition, our result showed that cinnamic acid (9) played
function on the target KDR. According to the references, 9
significantly increased the ratio of tumor growth inhibition,
mean survival time, and percentage of the lifespan of the treated
mice (Almeer et al., 2019). Furthermore, 9 induced angiogenesis
in vivo and in vitro, which is related to VEGF and Flk-1/KDR
expressions of endothelial cells (Choi et al., 2009). It was also
reported that DBP (12) could inhibit the PI3K/Akt signaling
pathway in INS-1 cells to induce cell apoptosis (Li et al., 2021).
These results partially supported these biological processes
predicted by network pharmacology.

Furthermore, potential regulated biological processes and
signaling pathways of AD16 treatment were predicted by
KEGG analysis, and anti-NSCLC–related signal pathways were
summarized (Figure 8). In addition to the PI3K–Akt signaling
pathway and proteoglycans in cancers, pathways in cancer, viral
carcinogenesis, and oocyte meiosis were the other main patterns
for AD16 to achieve its anti-NSCLC effects (Zhang et al., 2017;
Chen et al., 2018; Kim et al., 2018).

To summarize, we isolated one bacterial strain AD16 from
human gut microbiota that had significant cytotoxic effects
on A549. Fourteen compounds were isolated and identified
by various chromatographic methods. Among them, five
compounds were new, and their structures were determined
by NMR, HRESIMS, and CD methods. However, as the
amount of components isolated was limited, we inferred the
anti-NSCLC mechanism of the AD16 compounds mainly
based on network pharmacology. Network pharmacology
analysis revealed that the regulation of AD16 on NSCLC
could be via acting on multiple targets, multiple pathways,
and multiple biological processes. Compounds 3, 2, and 13
might possibly be the key components of AD16 for its anti-
NSCLC effects. In addition, the PI3K–Akt signaling pathway
and proteoglycans in cancer pathway were the main patterns
for AD16 to achieve its anti-NSCLC effects. Our work
demonstrated the function mechanism of the human gut

bacterial strain AD16 by secondary metabolites’
identification, network pharmacology, and experimental
validation. It not only expanded the chemical and
pharmacological diversities of metabolites from gut
microbiota but also recommended that gut microbiota is of
great potential for the discovery of new anticancer agents.
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